
Kenneth G. Paterson (Ed.)
LN

CS
 1

27
04

Topics in Cryptology –
CT-RSA 2021
Cryptographers’ Track at the RSA Conference 2021
Virtual Event, May 17–20, 2021
Proceedings

Lecture Notes in Computer Science 12704

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kenneth G. Paterson (Ed.)

Topics in Cryptology –

CT-RSA 2021
Cryptographers’ Track at the RSA Conference 2021
Virtual Event, May 17–20, 2021
Proceedings

123

Editor
Kenneth G. Paterson
ETH Zürich
Zürich, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-75538-6 ISBN 978-3-030-75539-3 (eBook)
https://doi.org/10.1007/978-3-030-75539-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-75539-3

Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts several hundred
vendors and over 40,000 participants from industry, government, and academia. Since
2001, the RSA conference has included the Cryptographer’s Track (CT-RSA). This
track, essentially a sub-conference of the main event, provides a forum for the dis-
semination of current research in cryptography.

This volume represents the proceedings of the 2021 edition of the RSA Conference
Cryptographer’s Track. Due to the COVID-19 pandemic, the conference was held
online during May 17–20, 2021. The unusual circumstances provided an opportunity to
revisit the format of the event and try to integrate it more fully into the main RSA
conference. This was done by partnering each presentation session with a more
informal, broader discussion session involving the presented papers’ authors and
invited guests. I am grateful to the authors and guests for engaging with this experi-
mental approach.

A total of 100 submissions were received for review, of which 27 were selected for
presentation and publication. The selection process was a difficult task since there were
many more high quality submissions than we could accept. The submissions were
anonymous, and each submission was assigned to at least three reviewers (four if the
paper included a Program Committee member as an author or if it was a “Systemisation
of Knowledge” paper). I am thankful to all Program Committee members for producing
high-quality reviews and for actively participating in discussions. My appreciation also
goes to all external reviewers. I am also grateful to the Program Committee members
who acted as shepherds for some of the submissions.

The submission and review process, as well as the editing of these proceedings,
were greatly simplified by using the webreview software written by Dr. Shai Halevi,
which we used with the permission of the International Association for Cryptologic
Research (IACR). My thanks go to Shai. I am also grateful to Prof. Stanislaw Jarecki,
my predecessor as Program Chair for CT-RSA. Stas provided a wealth of advice and
insights based on his experience. I hope to be able to pass on to my successor as much
as I obtained from Stas.

My sincere thanks go also to Dr. Guido Zosimo-Landolfo from Springer Verlag and
everyone on the team there for their assistance in preparing and producing these
proceedings.

Last, but not least, on behalf of all CT-RSA participants, I would like to thank Tara
Jung and Britta Glade who acted as RSA Conference liaison to the Cryptographer’s
Track. In this capacity, Tara and Britta essentially played the role of General Chairs for

the CT-RSA conference, and I am very grateful to them for all the work they did in
helping to organise the conference and making it run smoothly.

March 2021 Kenneth G. Paterson

vi Preface

Organization

Program Chair

Kenneth G. Paterson ETH Zürich, Switzerland

Program Committee

Masayuki Abe NTT Secure Platform Labs, Japan
Shi Bai Florida Atlantic University, USA
Paulo Barreto University of Washington, USA
Lejla Batina Radboud University, The Netherlands
Elif Bilge Kavun University of Passau, Germany
Olivier Blazy Université de Limoges, XLim, France
Chris Brzuska Aalto University, Finland
Céline Chevalier CRED, Université Paris II Panthéon-Assas, France
Craig Costello Microsoft Research, USA
Jean Paul Degabriele TU Darmstadt, Germany
Luca De Feo IBM Research – Zürich, Switzerland
Ben Fuller University of Connecticut, USA
Steven Galbraith University of Auckland, New Zealand
Lydia Garms Royal Holloway, University of London, UK
Daniel Genkin University of Michigan, USA
Paul Grubbs NYU, Cornell Tech, University of Michigan, USA
Goichiro Hanaoka AIST, Japan
Helena Handschuh Rambus Cryptography Research, USA
Carmit Hazay Bar-Ilan University, Israel
Andreas Hülsing Eindhoven University of Technology, The Netherlands
Takanori Isobe University of Hyogo, Japan
Marcel Keller CSIRO’s Data61, Australia
Tancrède Lepoint Google, USA
Benoit Libert CNRS and ENS de Lyon, France
Brice Minaud Inria and ENS, France
Tarik Moataz Aroki Systems, USA
Svetla Nikova KU Leuven, Belgium
Jiaxin Pan NTNU Norway, Norway
Charalampos Papamanthou University of Maryland, USA
Bertram Poettering IBM Research – Zürich, Switzerland
Bart Preneel KU Leuven, Belgium
Eyal Ronen Tel Aviv University, Israel
Andy Rupp University of Luxembourg, Luxembourg
Alexander Russell University of Connecticut, USA
Jacob Schuldt AIST, Japan

Nigel Smart KU Leuven, Belgium
Juraj Somorovsky Paderborn University, Germany
Martijn Stam Simula UiB, Norway
Douglas Stebila University of Waterloo, Canada
Fernando Virdia Royal Holloway, University of London, UK
Michael Walter IST Austria, Austria
Yuval Yarom University of Adelaide and Data61, Australia

Additional Reviewers

Miguel Ambrona
Benedikt Auerbach
Gustavo Banegas
Laasya Bangalore
Subhadeep Banik
Tim Beyne
Rishabh Bhadauria
Nina Bindel
Estuardo Alpirez Bock
Ryann Rose Carter
Shan Chen
Ilaria Chillotti
Ana Costache
Anamaria Costache
Thomas Debris-Alazard
Ioannis Demertzis
Amit Deo
Siemen Dhooghe
Samuel Dobson
Keita Emura
Eiichiro Fujisaki
Alonso Gonzalez
Jérôme Govinden
Felix Günther
Fabrice Ben Hamouda
Keisuke Hara

Gunnar Hartung
Shoichi Hirose
Le Phi Hung
Ilia Iliashenko
Akiko Inoue
Samuel Jaques
Saqib A. Kakvi
Vukasin Karadzic
Shuichi Katsumata
Michael Klooss
Lilia Kraleva
Kaoru Kurosawa
Gregor Leander
Chaoyun Li
Fukang Liu
Patrick Longa
Vadim Lyubashevsky
Akash Madhusudan
Takahiro Matsuda
Alireza Mehrdad
Nadia El Mrabet
Kazuma Ohara
Satsuya Ohata
Miyako Ohkubo
Elisabeth Oswald
Guillermo Pascual Perez

Thomas Peters
Chen Qian
Yuan Quan
Markus Raiber
Adrian Ranea
Simon Rastikian
Krijn Reijnders
Vincent Rijmen
Yusuke Sakai
John Schanck
Berry Schoenmakers
Madura Shelton
Tjerand Silde
Yongsoo Song
Jessica Sorrell
Christoph Striecks
Younes Talibi
Ida Tucker
Qingju Wang
Yunhua Wen
Keita Xagawa
Jianhua Yan
Avishay Yanai
Greg Zaverucha
Lukas Zobernig
Marcus Brinkmann

viii Organization

Contents

Secure Fast Evaluation of Iterative Methods: With an Application to Secure
PageRank. 1

Daniele Cozzo, Nigel P. Smart, and Younes Talibi Alaoui

Compilation of Function Representations for Secure
Computing Paradigms . 26

Karim Baghery, Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
Nigel P. Smart, and Titouan Tanguy

Oblivious TLS via Multi-party Computation . 51
Damiano Abram, Ivan Damgård, Peter Scholl, and Sven Trieflinger

Noisy Simon Period Finding. 75
Alexander May, Lars Schlieper, and Jonathan Schwinger

A Bunch of Broken Schemes: A Simple yet Powerful Linear Approach
to Analyzing Security of Attribute-Based Encryption 100

Marloes Venema and Greg Alpár

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts
and Tweakeys. 126

Chao Niu, Muzhou Li, Siwei Sun, and Meiqin Wang

SoK: Game-Based Security Models for Group Key Exchange. 148
Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila

EPID with Malicious Revocation . 177
Olivier Sanders and Jacques Traoré

Signed Diffie-Hellman Key Exchange with Tight Security 201
Jiaxin Pan, Chen Qian, and Magnus Ringerud

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 227
Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde,
and Thor Tunge

More Efficient Shuffle Argument from Unique Factorization 252
Toomas Krips and Helger Lipmaa

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups . . . 276
Alex Biryukov, Aleksei Udovenko, and Giuseppe Vitto

FAN: A Lightweight Authenticated Cryptographic Algorithm 299
Lin Jiao, Dengguo Feng, Yonglin Hao, Xinxin Gong, and Shaoyu Du

Related-Key Analysis of Generalized Feistel Networks with Expanding
Round Functions. 326

Yuqing Zhao, Wenqi Yu, and Chun Guo

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers . . . 351
Pooya Farshim, Louiza Khati, Yannick Seurin, and Damien Vergnaud

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 375
Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková

Inverse-Sybil Attacks in Automated Contact Tracing 399
Benedikt Auerbach, Suvradip Chakraborty, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter,
and Michelle Yeo

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 422
Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux

SoK: How (not) to Design and Implement Post-quantum Cryptography 444
James Howe, Thomas Prest, and Daniel Apon

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 478
Thijs Laarhoven and Michael Walter

On the Hardness of Module-LWE with Binary Secret 503
Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois,
and Weiqiang Wen

Multi-party Revocation in Sovrin: Performance through Distributed Trust . . . 527
Lukas Helminger, Daniel Kales, Sebastian Ramacher,
and Roman Walch

Balancing Privacy and Accountability in Blockchain Identity Management. . . 552
Ivan Damgård, Chaya Ganesh, Hamidreza Khoshakhlagh,
Claudio Orlandi, and Luisa Siniscalchi

Non-interactive Half-Aggregation of EdDSA and Variants of Schnorr
Signatures . 577

Konstantinos Chalkias, François Garillot, Yashvanth Kondi,
and Valeria Nikolaenko

A Framework to Optimize Implementations of Matrices. 609
Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang

x Contents

Improvements to RSA Key Generation and CRT on Embedded Devices 633
Mike Hamburg, Mike Tunstall, and Qinglai Xiao

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study. 657
Anupam Chattopadhyay, Mustafa Khairallah, Gaëtan Leurent,
Zakaria Najm, Thomas Peyrin, and Vesselin Velichkov

Author Index . 683

Contents xi

Secure Fast Evaluation of Iterative
Methods: With an Application to Secure

PageRank

Daniele Cozzo1 , Nigel P. Smart1,2(B) , and Younes Talibi Alaoui1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{daniele.cozzo,nigel.smart,younes.talibialaoui}@kuleuven.be

2 University of Bristol, Bristol, UK

Abstract. Iterative methods are a standard technique in many areas of
scientific computing. The key idea is that a function is applied repeatedly
until the resulting sequence converges to the correct answer. When apply-
ing such methods in a secure computation methodology (for example
using MPC, FHE, or SGX) one either needs to perform enough steps to
ensure convergence irrespective of the input data, or one needs to perform
a convergence test within the algorithm, and this itself leads to a leakage
of data. Using the Banach Fixed Point theorem, and its extensions, we
show that this data-leakage can be quantified. We then apply this to
a secure (via MPC) implementation of the PageRank methodology. For
PageRank we show that allowing this small amount of data-leakage pro-
duces a much more efficient secure implementation, and that for many
underlying graphs this ‘leakage’ is already known to any attacker.

1 Introduction

Iterative methods are a standard technique in scientific computing; indeed a
vast array of the problems have traditionally been mapped to iterative methods.
Examples include finding roots of systems of equations (e.g. the Newton-Raphson
method for polynomials in a single variable), finding eigenvalues and eigenvectors
of matrices (and hence performing tasks such as Principal Component Analy-
sis), or of finding solutions to ordinary and partial differential equations. Indeed
the solution of many real world problems involve mapping the problem into a
mathematical formulation in which an iterative method can be applied.

Leakage From Iterative Methods: At its heart an iterative method involves a
map F : M −→ M on a metric space M for which we want to compute a
stationary point, i.e. a value x ∈ M s.t. F (x) = x. That M is a metric space
implies we have a well defined distance metric d(x, y), and thus a well defined
notion of convergence. If M is a normed vector space with norm ‖ · ‖ then this
induces the distance d(x, y) = ‖x − y‖. The iterative method requires one to
determine a subset X ⊂ A containing the desired fixed point x, s.t. if we pick
any starting value x0 ∈ X, then the sequence xi+1 ← F (xi) will converge to x.
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 1–25, 2021.
https://doi.org/10.1007/978-3-030-75539-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_1&domain=pdf
http://orcid.org/0000-0001-5289-3769
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7947-9450
https://doi.org/10.1007/978-3-030-75539-3_1

2 D. Cozzo et al.

In applying the iterative method often the most difficult task is the initial choice
of the set X.

However, when examined from the point of view of secure computation one
has an additional problem. Suppose the function F is itself secret, for example
F could be a polynomial of bounded degree whose coefficients are unknown
for which it is desired to compute a root, or F could be a matrix operator of
a given dimension for which an eigenvector is desired. Apart from the actual
computation of the iteration, in the secure domain we need to determine how
many iterations we need to perform. This is a problem irrespective of whether we
try to perform the secure computation with Multi-Party Computation (MPC),
Fully-Homomorphic Encryption (FHE) or using a form of Trusted Execution
Environment (TEE) such as Intel’s SGX platform.

When operating in the clear the iteration is performed until the difference
satisfies d(xi+1, xi) ≤ εabs, for some fixed tolerance εabs. We could perform such
a termination condition in the secure domain, but that would leak information.
Thus a tempting solution to this problem is simply to compute the sequence
(xi)N

i=0 for a large enough N so that we do not need to leak any information.
Clearly, the latter solution is more expensive.

In this paper we examine this ‘when to terminate’ problem in generality,
and relate the information leakage to the classical Banach Fixed Point Theo-
rem (a.k.a. the Contraction Mapping Theorem) which was proved by Banach in
1922. This restricts the function F : M −→ M to a function F : X −→ X for
a subset X ⊂ M for which the resulting function is a contraction (see below
for the definition). In particular the speed of convergence is related to the Lip-
schitz constant of the underlying contraction mapping F : X −→ X. Thus the
information leakage is the single value giving the number of iterations until con-
vergence. This value itself encodes information about the function F and the
set X, as well as the starting position x0. We answer the question as to what
this information actually encodes, specifically with respect to the map F . By
quantifying the precise information leakage, the user of the secure computation
environment can determine whether this leakage is acceptable or not. In many
examples this leakage is indeed totally acceptable.

We focus on what information is leaked about the function F from the num-
ber of iterations. Clearly the number of iterations taken also leaks something
about the initial starting vector x0, in particular how close it is to the final
solution. For some applications of iterated methods this could itself leak infor-
mation about F , for example when using a Newton iteration to find a root of a
polynomial. Thus the number of iterations leaks information about F and the
initial starting point. For the power method to find the dominant eigenvalue one
can select x0 to be a random vector (as long as it has a non-zero component
in the direction of the corresponding eigenvector). Hence, for our application
to the power method the parties can select x0 at random, meaning even less
information is revealed about F via a single iteration. Of course if one applies
the method repeatedly with different random x0 values, then the contribution
from the starting value x0 can be averaged out. Hence, in what follows one needs

Secure Fast Evaluation of Iterative Methods 3

to bear in mind that we are considering the best possible case for an attacker.
In practice, for a single execution of an iterative method, the ability to extract
meaningful information about either x0 or F is limited.

The Power Method for Matrices: To illustrate this we then go on to discuss
one of the most famous applications of iterative methods; namely the power
method for matrices used to compute eigenvalues/eigenvectors. In this problem,
which forms the basis of many numerical computation problems, one is given
an m × m complex valued matrix A ∈ Cm×m, and one is asked to compute an
eigenvalue/eigenvector, i.e. a solution to the equation A · x = λ · x. If we order
the eigenvalues of A as |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λm| then the iteration

xi+1 ← A · xi

‖A · xi‖
will converge to an eigenvector x of A corresponding to the dominant eigenvalue
λ1, assuming the starting vector x0 is has a non-zero component in the direction
of eigenvector x.

The advantage of iterative methods for solving the eigenvector problem is
that they respect any sparseness of the underlying matrix A. In other words
memory is constant. In addition they scale well with the dimension, which the
traditional methods used for low dimension matrices do not. Iterative methods
are also data oblivious, i.e. apart from the termination test the algorithm requires
no data dependent branching or memory access operations.

It is a classical result, found in almost all undergraduate mathematics courses,
that the speed of convergence of the power method iteration is related to the
quotient λ2/λ1, called the spectral gap. Thus, revealing the number of iterations
required in order to satisfy ‖xi+1 − xi‖ ≤ εabs reveals something about the
quantity |λ2|/|λ1|. For large dimensional matrices A revealing this quantity is a
small price to pay for the performance improvement of the computation. Note,
the number of iterations does not leak the exact value of λ2, as the exact number
of iterations depends on all eigenvalues and the initial starting position. However,
the dominant term is dependent on λ2. Whether revealing something about λ2

reveals something adversarially interesting about the original input matrix A
depends upon the problem one is solving, i.e. from where A originates.

PageRank: PageRank is originally an algorithm devised by Brin and Page, in
order to give ‘importance’ rankings to web-pages [28], which formed the basis
of the original Google search algorithm. The algorithm models the Internet as
a directed graph G in which the m nodes are web-pages. A node i has an edge
towards node j, if web-page i contains a hyper-link to web-page j. The PageR-
ank algorithm aims to simulate a random surfer performing a random walk on
the graph of such web-pages. The output of the algorithm is a probability dis-
tribution π over the set of all web pages (i.e. all elements are in the range [0, 1]
and we have ‖π‖1 = 1). The vector π is known as the PageRank vector. The
PageRank vector represents the probabilities of our random surfer ending up on

4 D. Cozzo et al.

a specific web-page. Those probabilities serve as a ranking to web-pages, that is
further used to sort the results that will be displayed for a user after a search
request. The idea being that a page which the random surfer is more likely to
land on is more likely to be important/useful than one which they are less likely
to land on.

To run PageRank we first compute the adjacency matrix A of the graph G
of the m web-pages. This matrix contains zeros except in entry ai,j when page
i has a link to page j, in which case we place a one. We then transform A into
a row-stochastic matrix P . To do this we replace each value of one in P by the
value of one over the Hamming weight of the corresponding row in A. Thus pi,j

equals the probability of a surfer on page i clicking one of the outgoing links
with uniform probability.

However, the matrix P has some issues. In particular there are rows which
are all zero, which correspond to webpages which have no outgoing links. In
the graph such pages are called ‘dangling nodes’. The fix for this problem is to
add to P a matrix D = d · vT , where d(i) = 1 if node i is a dangling node,
and v represents a probability distribution, called the personalization vector. In
‘traditional’ PageRank the personalization vector is set as v with v(i) = 1/m.
This models the idea that once the random surfer reaches a dangling web-page,
he then jumps to a completely random page on the Internet. However, this is
purely a choice and other vectors could be selected. For example users might
be more likely to jump to Facebook or Google in an Internet application. The
resulting matrix Q = P + D is then a row-stochastic matrix.

However, this is yet to model a realistic random surfer, as it supposes that
the surfer will be restricted to the links contained in non-dangling web-pages he
passes through during the random walk, but we know this not to be true. To
take this into account, PageRank has a parameter λ ∈ [0, 1] called the damping
factor, which (in classical PageRank) represents the probability that a user does
not click on a link on a web-page while moving to the next one, but instead jumps
to a random one following the probabilities contained in the personalization
vector v. From this we define the matrix E = e ·vT, where e denotes the all one
m-dimensional column vector, and then compute the final PageRank matrix as

M = ((1 − λ) · Q + λ · E)T . (1)

The value λ is usually selected to be between 0.1 and 0.2, for reasons we will
explain later.

Clearly, by construction, M is a column stochastic matrix, and since it is
stochastic the right eigenvalues of M satisfy λ1 = 1 ≥ |λ2| ≥ . . . ≥ |λm| ≥ 0.
The solution to the PageRank problem is the eigenvector corresponding to the
dominant eigenvalue; i.e. the solution to the problem M ·π = π. Thus PageRank
is an example of a problem which can be solved via iterative methods. Indeed,
iterative methods are preferred since the matrix M is very large.

Note, there is a whole line of work within graph theory which is dedicated
to the relationship between the spectra of adjacency matrices and the structure
of the underlying graphs [1,2,32]. However, this is only applicable in the case

Secure Fast Evaluation of Iterative Methods 5

of undirected graphs. For directed graphs underlying PageRank, it is known
[12,21,22] that if the eigenvalues of Q are given by {1, λ′

2, . . . , λ
′
n} then the

eigenvalues of M are given by {1, (1 − λ) · λ′
2, . . . , (1 − λ) · λ′

n}. This generalized
a result in [16] which showed that if the Markov chain underlying the stochastic
matrix Q has at least two irreducible closed subsets then λ′

2 = 1. Thus assuming
the underlying directed graph has two irreducible closed subsets, then we already
know that the second eigenvalue of the PageRank matrix is equal to 1−λ. Thus
for this specific application of the power method to the PageRank matrix leaking
a function of the second eigenvalue λ2 reveals no more information than one
already knows.

Why a Secure PageRank?: Graph analysis techniques are nowadays a crucial
tool for financial institutions, serving as a means to identify fraudulent bank
accounts, or fraudulent or suspicious transactions (such as transactions related
to money laundering). See [24] for a discussion on secure computation tech-
nologies applied to financial intelligence sharing, or [15] for a specific example
of secure graph analysis for financial stress testing. These techniques help to
extract features from a large amount of data, consisting of, for example, money
movements between bank accounts. Leading to accounts being investigated if
anomalies are detected. One of the techniques proposed is the PageRank algo-
rithm, which turns out to be well suited for the financial context.

PageRank can be used in different ways in this direction. One way [27] con-
sists of modeling the bank accounts and transactions taking place between them
as a directed graph, where nodes consist of bank accounts, and an edge is set
from bank account i to bank account j if i has sent to j a transaction, and then
running a random biased walk to extract the PageRank vector, where the ran-
dom walker bias his walk towards acknowledged fraudulent accounts. The bias
is introduced by making the personalisation vector zero on all accounts which
were not known to be fraudulent, with the same for the starting vector.

Doing this will help determine the bank accounts that are important from
the point of view of fraud. See also [35] for similar ideas in the context of social
security fraud. In another method explained, in [26], the use of PageRank is to
reduce false positive rates in traditional fraud scoring.

In order to obtain reliable results with PageRank, we need many financial
institutions to collaborate. In fact, each financial institution Ik can locally only
build its own transaction graph Gk, modeling transactions in which the sender
or the receiver is a bank account from the set Bk of the bank accounts that Ik

manages. While this will cover the full activity of transfers within Bk, data will
be missing (for example) from regarding bank accounts that receive transactions
from accounts in Bk but which are not in Bk. Such extended transaction graphs
are crucial in applications in which one is trying to locate money laundering.
Thus the more financial institutions that combine their graphs, the more accurate
the results of PageRank will be in detecting fraud; this is explained in more detail
in [11].

However, financial institutions are not willing, or able for regulatory reasons,
to simply share this information among each other. Therefore, they need to

6 D. Cozzo et al.

engage in a protocol, where they can perform the computation (the PageRank
algorithm) on their respective inputs (Gk), and the only information revealed
out of this computation is the output (the rankings of the bank accounts).

Another use case where one would take use of a secure implementation of
PageRank is the analysis of social networks. That is, similarly to the Web and to
transactions among institutions, social networks such as YouTube, Twitter and
Facebook etc., can be modeled as graphs [17] where nodes are users’ accounts.
Running PageRank within one network on the publicly available data is already
deemed to be useful, where PageRank can be used to evaluate the reputation of
users [14]. However, addressing a more complicated problem such as understand-
ing the flow of photos or news stories etc. across interconnected networks may
require the owners of these social networks to engage in a secure computation
of PageRank in order to provide the relevant data.

PageRank and MPC: As already remarked the convergence of fixed point meth-
ods is an issue in any secure computation paradigm in relation to the number
of steps needed to determine convergence. There has already been some work in
looking at MPC as a means of securely evaluating the PageRank algorithm [30],
due to the above mentioned applications in fraud detection.

MPC protocols can be divided into two big families with respect to the level
of security they can offer; protocols providing passive security, and protocols
providing active security. In a passively secure MPC protocol, the adversary is
assumed to be honest, but curious. That is, the parties are assumed to follow
the exact description of the protocol, however they can use the information they
see in order to infer information about inputs of the other parties. In an actively
secure MPC protocol, the adversary can deviate from the protocol, and yet the
privacy of the parties’ inputs must be still maintained.

In [30] the authors presented a passively secure MPC protocol for PageRank
in the context of fraud detection for bank account transactions. The authors
are able to obtain a very fast and scalable protocol due to the fact that they
assume all banks with relevant accounts participate in the protocol. In particular
each bank locally holds their view of the transaction graph, i.e. the movements
between accounts which they have sight of. This enables the protocol to be
efficiently implemented using partially homomorphic encryption. Note, the work
in [30] could be improved using our analysis of termination conditions for the
power method.

Roughly speaking in [30], party Ik is in charge of updating the rankings of the
nodes of Bk in iteration i, using the encryptions it received of the rankings of the
other nodes after iterations i − 1, by taking use of the fact that the encryption
scheme is partially homomorphic and the needed data to update the ranking is
held in clear by Ik. Thus only linear operations are needed to be performed.

Apart from being passively secure, the protocol crucially relied on each part
of the graph being held in the clear to at least one party. In many situations this
may not be feasible. Indeed the protocol is unsuitable for use in a secure out-
sourcing scenario for precisely this reason. For an outsourcing based approach to

Secure Fast Evaluation of Iterative Methods 7

be secure, the financial institutions need to provide all their data encrypted, and
therefore a partially homomorphic encryption scheme will no longer be sufficient.

To cope with these limitations we provide a ‘pure’ MPC implementation of
the PageRank power iteration. In other words a method in which parts of the
graph are hidden from all parties. The protocol will benefit from our early termi-
nation procedure. Furthermore, since we are employing general MPC techniques
that guarantee active security, the resulting implementation will be inherently
actively secure.

Our solution does not require from all the institutions to participate in the
computation, but only a subset of them or third parties, which the institutions
agree upon. Thus we distinguish here between three different entities, the finan-
cial institutions {I1, . . . , Iu}, the computing servers S = {S1, . . . , Sv} with v = 2
or v = 3, and the bank accounts {b1, . . . , bm} that the institutions manage. The
institutions do not need to trust all the servers in S, but they do need to trust at
least one party for the case where v = 2, and at least two parties not to collude
for the case of v = 3.

Even though we are unable to cope with the size of graphs reported on in [30],
we feel our solution can be applied in other situations where one has a different
trade off. In the course of which we provide an optimization to the secure dot-
product computation over fixed point numbers at the heart of PageRank which
is similar to that introduced in [25]; this results in a number of N · m2 secure
additions, N · (m2 + m) secure multiplications and N · m truncations, where
N is the number of the iterations performed. From this it is clear that the
computations are mainly algebraic therefore motivating our using of arithmetic
modulo p to represent secret shared numbers. Indeed linear secret sharing seems
to have an advantage over garbling techniques even for the case of two servers,
due to that adding and multiplying large numbers many times is expensive with
such techniques.

2 Preliminaries

In many applications, such as ours of securely evaluating the PageRank algo-
rithm, we require to work with approximations to real numbers. One could try
to emulate precise IEEE floating point arithmetic, but this is rather expensive.
Thus we need to somehow ‘encode’ the real numbers within the arithmetic of
Fp. A common way of doing this is to use a form of fixed point arithmetic,
introduced in [6].

To represent a real number e we approximate it as a fixed point number e,
where

e = e · 2−f .

The value f is a fixed public value that defines the precise position of the fixed
point, i.e. 2−f is the smallest unit we can represent and the increment between
two successive values. The value e is an integer in the range [−2k−1, . . . , 2k−1],
for some public parameter k. The value k determines the total number of binary
points of data we can represent, thus the biggest value we can represent is 2k−1−f .

8 D. Cozzo et al.

To hold a secret version of this approximation e to the real number e we
simply secret share the integer e above as an element in Fp. In particular this
means that we must have p > 2k; and indeed to perform arithmetic we will
require an even larger value of p as we shall later see. We write 〈e〉 to represent
the sharing of a fixed point value e, and the mod-p value we actually store we
shall denote as 〈e〉.

If 〈h〉 is a shared integer in the range [−2k−1−f , . . . , 2k−1−f] then we can
obtain the shared fixed point representation 〈g〉 of the same value h by computing
〈g〉 = 〈h〉 · 2f (and therefore g = g · 2−f = h), which is a linear operation. Fixed
point shared values can also be added by simply adding the underlying shared
integer representation.

Multiplying fixed point numbers 〈e〉 and 〈g〉 is however a little more complex.
We first multiply the underlying shared integer representations 〈e〉 and 〈g〉, to
obtain the value 〈h〉 ← 〈e〉 · 〈g〉 and then we shift and truncate 〈h〉 by f bits, see
Fig. 1. The value h will be an integer in the range [−22·k−2, . . . , 22·k−2] thus to
avoid wrap-around modulo p we will require 22·k−2 < p.

Fixed Point Multiply

Input: 〈 e 〉, 〈 g 〉, Output: 〈 h 〉 = 〈 e 〉 · 〈 g 〉.
- 〈v〉 ← 〈e〉 · 〈g〉.
- 〈h〉 ← TruncPr(〈v〉, 2 · k, f).

Fig. 1. Algorithm to multiply two shared fixed point values

The truncation by f -bits is done using a technique from [6]. The algorithm
TruncPr(〈x〉, t, o) takes a shared integer value 〈x〉 where x ∈ [−2t−1, . . . , 2t−1],
a value o ∈ [1, . . . , t − 1] and outputs the value 〈y〉 where y = �x/2o� + u for
an (essentially random) unknown bit u ∈ {0, 1}. This probabilistic truncation
algorithm turns out to be more efficient in MPC than a method which avoids
the random bit u. The method works by opening the value 〈a + r〉 for some
blinding value r ∈ [0, . . . , 2t+κ] where κ is a statistical security parameter, and
then computing the result from the clear value c = a+r. In particular we require,
to avoid overflows modulo p, that 2t+κ < p. To ensure correctness of the entire
procedure we hence require that 2 · k + κ < log2 p.

Another computation we will be performing on secret shared fixed-point val-
ues is comparison. The protocols implementing comparison that we will be using
are also taken from [6], where it is also performed using truncation. That is, com-
parison is based on the observation that if a < 0, then �a/2k−1� = −1 and if
a ≥ 0 then �a/2k−1� = 0. Therefore, we can compute the sign of a secret shared
value 〈a〉 by truncating it by k − 1 bits.

However, truncation here uses a deterministic sub-routine Trunc unlike the
sub-routine TruncPr, as we need to round to the correct integer here. While
Trunc does not add any extra conditions to the requirements on the parameters

Secure Fast Evaluation of Iterative Methods 9

for correctness, it is relatively expensive compared to TruncPr. However, we will
be performing orders of magnitude more TruncPr’s than Trunc operations and
so, whilst it is more expensive, the effect of Trunc on the final runtime of the
overall algorithm can be ignored.

3 Banach Fixed Point Theorem and the Power Method

Suppose we have a function F : M −→ M on a complete metric space M with
distance d(x, y). The function F we will compute securely, and then repeat the
application, thus producing a sequence of values

xi+1 ← F (xi),

for some starting value x0. We assume, for the moment, that this sequence tends
to a value xi −→ x which is a fixed point of the function F , i.e. F (x) = x. Our
goal is to securely compute a value xN such that d(xN , x) ≤ εabs; indeed it may
be that we keep the final value xN secure and do not release it to the computing
parties. But as we are computing this in the secure domain, we have two options:

1. We pick a large value of N , irrespective of the specific value of F and x0.
2. At each iteration we reveal to the parties the value d(xi, xi−1), or whether

d(xi, xi−1) ≤ εabs and terminate the iteration if this is less than some given
tolerance εabs. Let N = i denote the first instance when this happens.

Clearly the second methodology, irrespective of the underlying secure computa-
tion technology (be it MPC, FHE or TEE) potentially reveals more information
than the first. The question is; how much? The answer to this question is pro-
vided by the Banach Fixed Point Theorem.

To ensure the sequence (xi) converges we need to make some assumptions
about the starting point x0 and the map F . We first need to restrict the
domain/codomain M to a complete subset X ⊂ M on which F is a contraction
mapping.

Definition 3.1. A map F : X −→ X is said to be a contraction mapping on X
if there exists a constant q ∈ [0, 1) such that, for all x, y ∈ X,

d(F (x), F (y)) ≤ q · d(x, y).

The constant q is called the Lipschitz constant for F and X, it depends on both
F and (sometimes) the set X. The following theorem is classical, and proved by
Banach in 1922,

Theorem 3.1 (Banach Fixed Point Theorem). Let (X, d) be a non-empty
complete metric space and let F : X −→ X be a function. If F is a contraction
mapping, with constant q, then there is a unique fixed point x ∈ X, i.e. F (x) = x.
If we pick x0 ∈ X and define the sequence xi+1 = F (xi) for i ≥ 0, then xi −→ x
as i −→ ∞.

10 D. Cozzo et al.

The speed of convergence is itself controlled by the value q; in particular we have

d(x, xi) ≤ qi

1 − q
· d(x1, x0), d(x, xi+1) ≤ q

1 − q
· d(xi+1, xi),

d(x, xi+1) ≤ q · d(x, xi), d(x, xi+1) ≤ qi · d(x, x0).

Thus in our second secure computation strategy above if we terminated at
step N when d(xN , xN−1) ≤ εabs then we have that

d(x, xN) ≤ q

1 − q
· εabs.

We examine this within the context of the power method, which is the stan-
dard example application of the above theorem. Here we aim to find the eigenvec-
tor corresponding to the dominant eigenvalue λ1 for A ∈ Cm×m, i.e. the solution
to A · x = λ1 · x. The iteration is given by

xi+1 ← A · xi

‖A · xi‖ =
Ai · x0

‖Ai · x0‖
for some vector norm ‖ · ‖. The norm ensures that xi+1 has norm one. We select
x0 to also have norm one at random, thus we have a mapping F from vectors of
norm one to vectors of norm one.

We make the simplifying assumption (for exposition) that A has distinct
eigenvalues λ1, . . . , λm with corresponding eigenvectors v1, . . . ,vm, with |λi| >
|λj | for j > i, and define F via

F (x) =
A · x

‖A · x‖1 . (2)

For concreteness in the above we chose the 1-norm, as in the following we will be
treating stochastic matrices and vectors. Normalizing the eigenvectors so that
‖vi‖ = 1, we can write

x0 = c1 · v1 + · · · + cm · vm.

Assuming c1 �= 0 the iteration xi = F (xi−1) will converge to the eigenvector
corresponding to the dominant eigenvalue since

Ai · x0 = c1 · λi
1 ·

(
v1 +

c2
c1

(
λ2

λ1

)i

· v2 + · · · +
cm

c1

(
λm

λ1

)i

· vm

)
. (3)

Thus the speed of convergence is predominantly determined by the value
|λ2|/|λ1|, with the precise number of iterations depending on all of the eigenval-
ues and the distance between the starting position x0 and the final solution.

We would like to iterate until the difference between two successive iterations
xN−1 and xN is sufficiently close. In other words we will terminate when

‖xN − xN−1‖22 ≤ ε2abs

Secure Fast Evaluation of Iterative Methods 11

holds for the first time, for some constant εabs. Note, in our experiments we later
also use termination using the relative error

‖xN − xN−1‖22 ≤ ε2rel · ‖xN‖22,
for some other constant εrel, as (for large dimension m) the entries in the solu-
tion to PageRank behave like 1/m for a graph with many links, and thus the
relative error allows us to deal with increasing m, without needing to adjust
εabs accordingly. Note, for our termination condition we would prefer to use, for
computational reasons, the square of the 2-norm, (as performing square roots is
expensive in an MPC system).

We make the simplifying assumption that we select our starting set X so that
the map is indeed a contraction mapping for the 2-norm with Lipschitz constant
q = |λ2|/|λ1|1. With the above simplifying assumption, and for this value of N ,
we have

‖v1 − xN‖2 ≤ q

1 − q
· ‖xN − xN−1‖2 ≤ q

1 − q
· εabs =

λ2 · εabs
λ1 − λ2

.

So the bigger the difference between λ2 and λ1, the smaller the error between
where we terminate and the correct solution.

For the iteration before we reach this value of N we have

εabs < ‖xN−1 − xN−2‖2
≤ ‖v1 − xN−1‖2 + ‖v1 − xN−2‖2
≤

(
qN−1

1 − q
+

qN−2

1 − q

)
· ‖x1 − x0‖2

≤ qN−2 · (q + 1)
1 − q

· (‖x1‖2 + ‖x0‖2)

=
2 · qN−2 · (q + 1)

1 − q
.

Thus revealing N reveals information about q, and thus information about the
spectral gap |λ2|/|λ1|. In the context of a given application some information
about the eigenvalues may have already leaked as part of the problem statement.
For example in the PageRank algorithm we already know that λ1 = 1 and that
λ2 is (1 − λ) times the second eigenvalue of the original stochastic matrix Q. As
already remarked, when the underlying graph contains at least two irreducible
closed subsets (which holds in practice for the internet graph) we already know
that λ2 is exactly equal to 1 − λ.

In conclusion if the mapping is indeed a contraction mapping for the metric
used to determine when to terminate an iterative method, then the number of
iterations leaked by performing this test leaks information about the Lipschitz
1 This is not quite true, but is true if we modify the metric used to measure con-

vergence. But then the metric depends on the final answer, which is perfect for
theoretical considerations, but useless in practice. See Appendix A for more details.

12 D. Cozzo et al.

constant and the distance between the starting value and the fixed point. For
all mappings for which the power method converges one can find a metric for
which it is a contraction mapping, but this metric may not be applicable for use
in an algorithm as a convergence test.

For the power method applied to matrices it is known that the speed of
convergence is related to the value q = |λ2|/|λ1|. For some matrices and sets
X this does indeed define a contraction mapping, but not for all. Making the
simplifying assumption, for exposition, that the power method is defined from
a contraction mapping with this Lipschitz constant, one can from N derive
information about q.

Note that whether this is an acceptable leakage or not depends on the appli-
cation in hand, i.e., from where the map F originates. It is worth recalling that
the speed of convergence of an iterative method does not leak the value of q, but
only provides some information about its distribution, which may be considered
as a minor leakage in many cases, or even no leakage at all, such as the case of
PageRank over the internet graph.

4 Stability of PageRank

Being a numerical algorithm we need to worry about the stability of the PageR-
ank algorithm. However, as we are computing in the secure domain we not only
need to worry about the traditional stability of the algorithm, but we also need
to worry about stability caused by the representation of the floating point num-
bers within the secure computation system. In this section we address these two
issues (normal numerical stability and stability within the MPC system).

4.1 Traditional Stability of PageRank

As the value of m is large in applications of PageRank solving for π analytically
or via high-school linear algebra is not feasible. Thus in practice the only method
one can use to solve the PageRank problem is to apply the power method.

Applying the power method on our matrix M requires that we compute in
iteration i

xi = (1 − λ) · QT · xi−1 + λ · v
Note that here we used the fact that M (from Eq. (1)) is stochastic, and the
initial vector x0 is a probability distribution. Thus all xi will be probability
distributions, which implies that ‖xi‖1 = 1 (this explains why xi−1 is dropped
from the term λ ·v above; since λ · ET ·xi−1 = λv · eT ·xi−1 = λ ·v). Besides, it
also implies that we do not need to normalize xi throughout the computation.
See Method 1 in Fig. 2 for PageRank in the clear when we iterate over a fixed
number N of iterations.

The problem though with the power method is that it could be unstable, i.e.
floating point errors in the computation could affect the final outcome. In [7] the
authors proved that solving the PageRank problem is equivalent to solving the
matrix equation R ·y = v, where R = I − (1−λ) ·PT and then normalizing y to

Secure Fast Evaluation of Iterative Methods 13

Three Variants of PageRank

Input: λ, v, x0, εabs/εrel, Q, N . For the secure variants Q and v may be represented
in secret shared form.

Output: The PageRank vector π of M from equation (1)

Method 1: Using Standard Floating Point (in clear)

1. C ← (1 − λ) · QT.
2. For i in 1, . . . , N

(a) xi ← C · xi−1 + λ · v
3. π ← xN

Method 2: Using Fixed Point Arithmetic (in MPC or in the clear)

1. 〈 C 〉 ← (1 − λ) · 〈 Q 〉T.
2. For i in 1, . . . , N

(a) For l in 1, . . . , m

i. 〈 y
(l)
i 〉 ← dot-product(〈 cl 〉, 〈 xi−1 〉)

ii. 〈 x
(l)
i 〉 ← 〈 y

(l)
i 〉 + λ · 〈 v(l) 〉

3. 〈 π 〉 ← (〈 xN 〉)
Method 3: Using Fixed Point Arithmetic and Loop Truncation (in MPC or in the
clear)

1. 〈 C 〉 ← (1 − λ) · 〈 Q 〉T.
2. For l in 1, . . . , N

(a) For l in 1, . . . , m

i. Parties compute 〈 y
(l)
i 〉 ← dot-product(〈 cl 〉, 〈 xi−1 〉)

ii. 〈 x
(l)
i 〉 ← 〈 y

(l)
i 〉 + λ · 〈 v(l) 〉.

(b) 〈g〉 ← (‖〈 xi−1 〉 − 〈 xi 〉‖2
2 < ε2rel · ‖〈 xi−1 〉‖2

2 if using relative error) or
〈g〉 ← (‖〈 xi−1 〉 − 〈 xi 〉‖2

2 < ε2abs if using absolute error).
(c) Open 〈g〉
(d) If g = 1 then break.

3. 〈 π 〉 ← (〈 xi 〉) and Open π to all parties.

Fig. 2. Our various PageRank algorithms

obtain π via π = y/‖y‖1. The authors of [7] also bound the condition number
of R (with respect to the 1-norm)

κ(R) ≤ ‖R−1‖1 · ‖R‖1 ≤ 2 − λ

λ
,

where ‖R‖1 = max1≤j≤m

∑m
i=1 |ri,j |. A similar result is given in [19] for the case

when the diagonal entries of Q are all null.
The condition number explains how numerical errors in data can propagate

after doing computation on it to errors in the result of this computation. Thus

14 D. Cozzo et al.

as λ approaches zero any algorithm to solve the PageRank problem will likely
become unstable; this explains the traditional choice of 0.1 ≤ λ ≤ 0.2.

4.2 Stability Due to Approximate Computations

MPC systems based on linear secret sharing usually work on values defined in a
finite field Fp of large prime characteristic, e.g. a prime p of size 128 bits. A data
item x secret shared among the parties is denoted as 〈x〉. Calculation is then
performed by expressing the computation in terms of additions, multiplications,
and openings over Fp. Linear operations on shared values is essentially for free,
whereas multiplications typically require some pre-processed data and commu-
nication. We extend the notation of secret shared values to vectors of shared
values 〈x〉 and matrices of shared values 〈A〉.

In our application to PageRank we will need to compute mainly dot-products
between vectors of fixed point values, i.e.

〈x〉T · 〈y〉 =
m∑

j=1

〈x(j)〉 · 〈y(i)〉.

The dot-product is one of the problems which have been previously studied in
the MPC literature; see [4] for over the integers, [29] and [25] for over fixed point
values, and [18] for over floating point values. For fixed point values recall that
addition is cheap, but multiplication is expensive. Indeed the most expensive
part of multiplication is the truncation step. In [29], authors used the two-party
ABY framework [10], which allows to do conversions between linear secret shar-
ing and garbled circuit. Their strategy consisted of converting to garbled circuit
after each multiplication between fixed point numbers, in order to perform the
truncation as garbled circuits are well suited for this latter operation. As well
as being focused on the two-party passively secure case, this method introduces
to the computation the cost of converting to-and-from the secret shared form.
In [25], authors proposed a passively secure protocol for fixed point multiplica-
tions, for a setting of three-parties assuming an honest majority, and showed
how we can use an optimization to perform the dot-product. The core idea of
this optimization consists of performing the truncation step only after that all
the necessary additions have been calculated. Authors also proposed an actively
secure protocol under the same setting for matrix by matrix products. The pro-
tocol works by pre-processing matrix triples (U, V,W), s.t. W = U · V , using
the fixed point multiplication protocol of [25], and use a generalization of [13] to
perform matrix by matrix product using the pre-processed matrix triples.

In contrast our work is focused on the many party, actively secure. We per-
form all computation with linear secret sharing, however, we introduce a similar
optimization to [25] into the procedure for executing a dot-product. This opti-
mization is given in Fig. 3 and we refer to the algorithm as dot-product(〈x〉, 〈y〉).

The method works as [25] by delaying the necessary truncation until all
additions have been performed. Since truncation is the expensive part of the
procedure, this basically produces a 1/m performance improvement. Ignoring

Secure Fast Evaluation of Iterative Methods 15

Optimized Dot-Product

Input: 〈 x 〉, 〈 y 〉,Output: 〈 z 〉 = ∑m
j=1〈 x(j) 〉·〈 y(j) 〉 = dot-product(〈 x 〉, 〈 y 〉).

- 〈s〉 ← 0.
- For j ∈ [1, . . . , m] do

- 〈s〉 ← 〈s〉 + 〈x(j)〉 · 〈y(j)〉.
- 〈z〉 ← TruncPr(〈s〉, 2 · k, f).

Fig. 3. Optimized dot-product of vectors of shared fixed point values

the fact that our truncation procedure can be incorrect by a single bit (which
occurs for normal fixed point multiplications in any case), we need to ensure
that the output of this procedure is correct. Indeed, as we apply TruncPr less,
we will introduce less errors in the truncation procedure overall.

The correctness depends to some extent on our precise application. In the
PageRank algorithm using fixed point approximations (Method 2 in Fig. 2) we
apply dot-product on vectors 〈c〉 and 〈x〉 such that each entry in 〈c〉 is a positive
value bounded by 1 − λ, and each entry in 〈x〉 is a positive value bounded by
one. Thus we can assume that the integers representing the fixed point values
satisfy 0 ≤ c(j), x(j) ≤ 2f , and in fact we have ‖c‖∞ ≤ 2f and ‖x‖1 ≤ 2f . We
then find a bound on s as

s =
m∑

j=1

c(j) · x(j) ≤ ‖c‖∞ · ‖x‖1 ≤ 22·f .

This means that the intermediate sum value s, as an integer, will be at most
22·f , thus (since k > f) the application of TruncPr, using second parameter
of 2 · k, will be correct assuming we can deal with the expansion needed in
TruncPr due to the statistical security parameter κ. Thus, we additionally require
2 · k + κ < log2 p, Hence, we require exactly the same correctness requirement
as we have for standard multiplication.

The only remaining parameter which needs to be set for our fixed point
representation is the value k. It is easily seen that all vectors in the algorithm
consist of positive values less than one. Indeed the only place we utilize values
outside the range [0, . . . , 1] is in computing the 2-norms (which we will do in
Method 3 to be discussed later), where we utilize values in the range [−1, . . . , 1].
To cope with these negative values we set k = f + 1.

Using fixed point representation, instead of floating point representation,
hence does not affect the stability of PageRank, as long as the precision chosen
is big enough to handle the computation taking place. However, for an expander
graph we would expect the final PageRank vector π to be uniform, and thus have
entries of the form 1/m in each coordinate. Thus we need to cope with an output
which might have entries all close to 1/m. To cope with this possibility in fixed

16 D. Cozzo et al.

point representation we need to make f a function of m. In particular we set f =
30 + log2 m so that entries which are around 1/m can have around nine decimal
digits of ‘interesting’ data. We can show that this strategy of setting f works
through the following experiment, which compares the two first methodologies
presented in Fig. 2. We think of operations on values 〈x〉 as being (for the time
being) not on secret shared values but on fixed point values with the above
representation, i.e. on x alone. Take a random graph Gm,l of size m and number
of links l, and run one hundred iterations of PageRank using floating point
representation to obtain x100, and then run one hundred iterations on the same
graph using the fixed point representation (in the clear) to obtain z100.

We generated graphs for various values of with m between 100 and 10000,
and for number of links l = i · m for i = 2, . . . , 40. For each (m, l) considered we
generated a set of T = 100 graphs Sm,l = {Gm,l

k for k ∈ {1, . . . , T}} using the
NetworkX package of python3. We then computed for each set the maximum
error observed

em
max = max

G∈{Sm,2∪...∪Sm,40}
eG,

where
eG = ‖z100 − x100‖∞ = max

j∈{1,...,m}

∣∣∣z(j)100 − x(j)
100

∣∣∣.
with the results given in Table 1. As expected, the error induced by using fixed
point representation is negligible, thanks to how we chose f for the experiments.

Table 1. Max error observed for the PageRank vector between fixed point and floating
point representations (i.e. comparing Method 1 to Method 2 in Fig. 2).

m 100 500 1000 5000 10000

emmax 1.1e-10 4.2e-11 1.5e-11 5.7e-12 2.3e-12

5 Effect of Early Termination of PageRank

If we examine Method 3 of Fig. 2 we now terminate the main loop when the error
meets a given condition. We use the square of the 2-norm for the terminating
conditions as this will be easier to implement securely in our MPC system; since
there is no need for costly absolute values as with the 1-norm and no need for
costly square roots as with the non-squared 2-norm.

We define two conditions, one defined by an absolute error

‖〈xi−1〉 − 〈xi〉‖22 < ε2abs.

and one defined by a relative error

‖〈xi−1〉 − 〈xi〉‖22 < ε2rel · ‖〈xi−1〉‖22

Secure Fast Evaluation of Iterative Methods 17

Note, that since ‖xi‖1 = 1 the relative error implies the absolute error bound in
the case when εrel = εabs. However, we will be choosing εrel �= εabs in such a way
that

ε2abs < ε2rel · ‖〈xi−1〉‖22.
This should enable using the relative error to produce almost as accurate a
solution, but with fewer iterations.2

Recall the speed of the convergence of the power method follows a geometric
distribution with ratio |λ2/λ1|. Namely if λ2 is close to λ1 then the method
converges slowly. As we are dealing with stochastic matrices we already know
that λ1 = 1, i.e. for a given dimension m, thus the number of iterations needed is
proportional to |λ2|. As remarked earlier, for graphs with at least two irreducible
closed subsets one has |λ2| = 1−λ [16]. Recall a closed subset S is one in which if
x ∈ S and y can be reached from x, then y is also in S. A closed set is irreducible
if it contains no proper closed subset, i.e. there is a path between each pair of
elements in S.

For the traditional PageRank case, i.e. the application to the internet graph,
the underlying graph does indeed have at least two irreducible closed subsets [5].
In addition experimentally it has been shown that the power method produces
the correct value π (assuming no floating point errors accumulate) for iteration
values between 50 and 100 [23].

For graphs generated uniformly at random (called random graphs from now
on) |λ2| is not necessarily as big as 1 − λ (recall λ is between 0.1 and 0.2 and in
the case of the original PageRank algorithm λ = 0.15). Therefore one may need
fewer iterations to ensure convergence. By inserting the abort-test into Method
3 we potentially improve the performance of PageRank, but at the same time
we leak the number of iterations needed to achieve our level of convergence. See
below for experimental validation of this for random graphs. As explained in
Sect. 3 the number of iterations N leaked, for the absolute error variant, implies
information is leaked about the second eigenvalue λ2 and x0.

However, for transaction graphs for bank accounts, one cannot tell whether
there are at least two irreducible subsets. In [33], authors studied the topology
of the daily graphs, of the interbanks payments transferred between a set of
participants (commercial banks) of the Fedwire Funds Service, corresponding to
the first quarter of 2004. The structure of the underlying graph observed shows
that the degree distribution corresponds to a scale free graph, and from the
results they obtained, one can conclude that over at least 50% of the days, there
exist at least two irreducible subsets.

For our second set of experiments we generated graphs according to the
simulator of transaction graphs from [34]; in what follows we call these bank-
ing graphs. This simulator generates scale free graphs, in particular, following
the Barabasi-Albert model, with a tweak over the strength of the preferential

2 In practice it is easy to choose εabs and εrel satisfying the above. Observe that the
‖ • ‖2 norm on the hypercube given by equation ‖x‖1 = 1 attains its minimum 1

m

at the points
(± 1

m
, . . . , ± 1

m

)
. Therefore it suffices to choose any εabs < εrel such that

ε2abs < ε2rel · 1
m

. This way the choice of the errors will be independent of the sequence.

18 D. Cozzo et al.

attachment. The resulting graphs as the experiments will show, do not contain
two closed subsets.

To choose the tolerance εabs/εrel, one needs to consider how small the compo-
nents of x are, as it may occur that ‖xi−xi−1‖22 triggers the abort due to the fact
that the components of xi and xi−1 are small (if the tolerance was not chosen to
be small enough) while there could be still room for convergence. As explained
earlier if the vector π was uniform then we would expect each coordinate to be
1/m, thus for absolute errors it makes sense to have the tolerance depend on m;
just as we made f depend on m in the previous section. An alternative approach,
which we examine, is to instead look at relative errors instead of the absolute
errors, in which case the effect of small values in π is already accounted for by
taking relative errors. Thus we always set εrel = 2−10 irrespective of m, i.e. we
want our two final iterations to be within 0.1 percent of each other. For the abso-
lute error we set εabs = 2−f/2, and thus we terminate when the ‖〈xi−1〉 − 〈xi〉‖22
is identically equal to zero in our fixed point representation.

To verify that the early termination indeed provides an efficiency improve-
ment, and does not affect the overall accuracy of the output compared to non-
termination, we compared Method 1 against Method 3 using the same type of
experiments, in the clear, as performed in Sect. 4; for both random and our sim-
ulated banking graphs. We computed the average number of iterations N needed
to obtain the required termination condition (when we set εabs and εrel as above),
and compared the result with the values which would have been obtained in the
clear. The accuracy was measured according to the metric em

max from the previous
section, the results being given in Table 2.

From the results of these experiments, it is clear that one does not need to
run many iterations before obtaining convergence, for both the cases of random
graphs and banking graphs. In particular, for a randomly generated graph, we
can see that the more links within the graph, the fewer iterations are needed
to reach convergence. We can also see that the banking graphs take longer time
to process compared to the random graphs the more links we have. Besides,
the experiments show that using the absolute error to test convergence, requires
running more iterations to obtain convergence than using the relative error. This
is due to the fact that the epsilon chosen εabs, implies that convergence is only
obtained when ‖〈xi−1〉−〈xi〉‖22 is equal to zero as explained earlier, while for the
case of the relative error, convergence can happen without necessarily having it.
As for the difference between the PageRank vector obtained after convergence,
and the PageRank vector obtained after one hundred iterations, we can see that
for both cases of using the absolute error and the relative error, the difference
is very small. Besides, we can also see that this difference is slightly bigger for
the case of the relative error. This would imply that considering a termination
condition for the PageRank algorithm, either with an absolute error or a relative
error set as specified in this section, would produce a fairly close PageRank vector
to the one produced after running one hundred iteration.

Secure Fast Evaluation of Iterative Methods 19

Table 2. Iterations needed for convergence and accuracy of the result for the PageRank
algorithm using Method 3 on random and banking graphs with absolute and relative
errors, with respect to the number of nodes and links in the graphs tested.

m Error Number of links

Random graphs Banking graphs

2 · m 5 · m 10 · m 20 · m 40 · m 2 · m 5 · m 10 · m 20 · m 40 · m

100 abs N 21 13 9 7 5 16 12 11 9 11

emmax 3.1e-6 6.3e-7 1.8e-7 7.3e-8 6.5e-8 6.8e-6 7.2e-6 4.2e-6 5.4e-7 3.3e-7

100 rel N 15 9 6 5 4 11 8 7 6 7

emmax 3.2e-4 1.5e-5 7.6e-6 5.3e-6 5.1e-7 4.5e-4 4.1e-4 2.8e-4 3.6e-5 2.0e-5

500 abs N 21 13 9 7 5 15 11 9 9 13

emmax 3.3e-6 4.3e-7 2.9e-7 5.1e-8 4.8e-8 1.5e-6 9.9e-7 8.3e-7 1.0e-6 2.8e-7

500 rel N 15 9 6 5 4 10 8 7 7 9

emmax 2.9e-4 1.6e-5 3.0e-6 4.9e-7 2.1e-7 3.9e-5 2.8e-5 1.5e-5 1.7e-5 1.2e-5

1000 abs N 21 13 9 7 6 17 12 10 10 15

emmax 4.5e-6 3.6e-7 5.2e-8 8.6e-9 3.4e-9 2.6e-6 2.4e-6 3.3e-7 6.7e-8 8.3e-8

1000 rel N 15 9 6 5 4 11 8 7 7 10

emmax 1.5e-4 9.7e-6 1.0e-6 2.3e-7 1.4e-7 1.8e-4 1.6e-4 1.4e-5 7.2e-6 1.0e-5

5000 abs N 21 12 8 7 5 15 11 10 10 15

emmax 3.9e-6 9.8e-8 3.3e-8 5.1e-9 3.4e-9 2.7e-6 2.7e-7 1.5e-7 3.8e-7 1.0e-7

5000 rel N 14 9 6 5 4 10 8 7 7 10

emmax 9.1e-5 6.2e-7 1.9e-7 8.9e-8 7.8e-8 7.0e-5 6.9e-6 4.5e-6 6.8e-6 6.9e-6

10000 abs N 21 12 8 6 5 16 12 10 10 16

emmax 3.8e-6 8.5e-8 1.2e-8 5.3e-9 3.1e-9 8.1e-7 1.5e-7 5.0e-8 8.5e-8 2.4e-8

10000 rel N 14 9 6 5 4 11 8 7 7 10

emmax 4.5e-5 4.9e-7 1.8e-7 3.7e-8 2.1e-8 5.6e-5 5.0e-6 2.9e-6 2.7e-6 6.4e-6

6 A Multiparty Actively-Secure Protocol
for the PageRank Algorithm

Recall our motivating application of using PageRank for financial fraud detec-
tion. We discussed earlier how the more institutions which are involved the better
the analysis will be. This means that the methodology of [30] which requires all
financial institutions which contribute data to be involved in the protocol may
not scale to the large number of institutions required in a cross-border analysis
of money laundering. Thus we look at a methodology in which a large num-
ber of financial institutions {I1, . . . , Iu} wish to apply PageRank over the bank
accounts they maintain. They will do this by securely distributing their data to
a smaller set of computing servers S = {S1, . . . , Sv}, with v = 2 or v = 3. Our
solution will allow us to arbitrarily scale u, but it results in us not being able
to deal with such a large matrix, i.e. number of accounts, as the prior work did
[30], due to the fact that the whole matrix for our case is being secret shared,
for reasons described in the introduction. It is interesting none-the-less to see
the difference in performance between the two approaches.

The first stage of our algorithm is for each institution Ik to secret share
its component of the PageRank matrix to the servers in S. This is simply a

20 D. Cozzo et al.

data-entry phase which we ignore in our analysis. Thus we start by assuming
that the parties in S hold a secret sharing of the initial matrix 〈Q〉 and the
personalisation vector 〈v〉.

Our experiments are performed using Scale-Mamba [3], which is an MPC
framework that utilizes the above secret sharing based methodology and in addi-
tion already has a number of built in routines for dealing with the above fixed
point representation. Scale-Mamba is an actively secure framework with abort,
which means that it offers the strong security guarantee that if an adversary
deviates from the protocol then it is detected with overwhelming probability.

The system works in an offline-online manner. In particular in the func-
tion independent offline phase pre-processed data is generated, such as so-called
Beaver triples (random triples shared values 〈a〉, 〈b〉, and 〈c〉 s.t. c = a · b) and
random bits (shared values 〈b〉 s.t. b ∈ {0, 1}). In the online phase the actual
computation takes place, during this phase the pre-processed random data is
consumed. The main metric for measuring cost in the online phase is the num-
ber of rounds of communication required by an operation. Whilst the online
phase is relatively fast, the offline phase can be an order of 10 to 100 times
slower.

To summarize the cost of the different operations we need in terms of pre-
processed data, we present Table 3; where h(k) is the function

∑�log2(k)	
i=1 g(i),

for g(i) = f(i)−2 ·
(

f(i−1)
2 mod 2

)
−1 and f(i+1) = f(i)

2 +
(

f(i)
2 mod 2

)
and

f(0) = 2·k (see [3] for details about the function h). Note that while we provided
the rounds of communication required by each operation we need, these can be
merged if many operations can be performed in parallel.

Table 3. Costs of Basic Scale-Mamba Operations over Integers

Operation Open 〈a〉 · 〈b〉 〈a〉 · 〈b〉 〈a〉 < 〈b〉 TruncPr(〈a〉, k, f) Trunc(〈a〉, k, f)

No. Triples 0 1 1 h(k) 0 h(k)

No. Bits 0 0 2 · k + κ k + κ k + κ k + κ

Rounds 1 1 2 �log2 k� + 1 1 �log2(k)� + 1

A key parameter of an MPC system is the number of parties in the system,
and the number of ‘bad’ players which can be tolerated. Scale-Mamba supports
various options for these access structures. Each one coming with different advan-
tages and disadvantages. To illustrate our protocol we focus on two cases:

1. Two party protocol with one active corruption. Here the Scale-Mamba system
makes use of the SPDZ protocol [8]. The offline phase is roughly 180 times
slower than the online phase, but the online phase is very fast.

2. Three party protocol with one active corruption. Here we utilize a secret shar-
ing scheme based on Shamir sharing [31]. In this case Scale-Mamba imple-
ments the protocol of [20] to obtain a fast online phase, at the expense of
having an offline phase which is roughly 4 times slower.

Secure Fast Evaluation of Iterative Methods 21

We implemented PageRank within the Scale-Mamba system and then run various
experiments, with different transaction graphs to see how performance behaved.
We varied the value of m to range from around m = 100 to m = 10000. We fixed
the initialization vector x0 and the personalization vector v to be the vectors
with 1/m in each entry, although modifying our code to deal with secret shared
value v is trivial. Finally we fixed λ to be 0.15 in the PageRank algorithm itself,
modeling the damping factor that the institutions would use, but of course the
institutions can choose any value they wish prior to executing PageRank. For
our approximation of floating point by fixed point numbers considered earlier
we used f = 30 + log2 m, k = f + 1, κ = 40, and a modulus of 2 · k + κ bits.

The most expensive part (by a large margin) of the entire procedure is the
execution of Step 2a in Method 3 of Fig. 2. For single execution of this step we
present our runtimes in Table 4, in addition to the amount of data sent per party.
Our experiments were run on Intel i-9900 CPU based machines with 128 GB of
RAM, connected by a local network with a ping time around 0.048 ms, connected
with a switch of bandwidth 1 Gb. We notice that the case of the two parties is
slightly faster than the case of three parties.

Table 4. Average online runtimes in seconds for Step 2a in Method 3 of Fig. 2 for one
iteration of the PageRank algorithm for two players and three players with respect to
the number of nodes m, as well as the size of data sent by each player in MB.

m 100 500 1000 5000 10000

Two parties 0.03 0.40 2.11 55.23 231.61

Three parties 0.03 0.61 2.42 60.82 245.34

Data sent 1.56 14.50 45.19 1305.93 5014.23

Thus we have the expected time for execution of a single iteration of the
PageRank algorithm. To obtain the final runtime we need to multiply this by the
expected number of iterations, from Table 2, to obtain Table 5. Here we can see
the effect of the terminating condition on the runtime. Without our terminating
condition we would need to run for a large number (say 100) of iterations, which
is costly. By terminating after a suitable convergence has been reached we save
a lot of time, but we leak some information. However, as we have explained the
information leaked is essentially only information about the spectral gap; which
may be considered a minor leakage depending on the application.

22 D. Cozzo et al.

Table 5. Average runtimes in seconds for the PageRank algorithm of Fig. 2 for Method
2, as well as Method 3 with absolute and relative errors on random and banking graphs,
for two parties and three parties with respect to the number of nodes m.

m Setting Runtimes

100 Random graphs Banking graphs

iteration abs rel abs rel

100 Two parties 3 0.6 0.4 0.5 0.3

100 Three parties 3 0.6 0.4 0.5 0.3

500 Two parties 40 8.4 6.0 6.0 4.0

500 Three parties 61 12.8 9.1 9.1 6.1

1000 Two parties 210 44.1 31.5 35.7 23.1

1000 Three parties 242 50.8 36.3 41.1 26.6

5000 Two parties 5500 1161.3 774.2 829.5 553.0

5000 Three parties 6070 1274.7 849.8 910.5 607.0

10000 Two parties 23100 4855.2 3236.8 3699.2 2543.2

10000 Three parties 24530 5151.3 3434.2 3924.8 2698.3

Acknowledgments. The authors would like to thank Dragoş Rotaru and Titouan
Tanguy, for suggestions in relation to this paper, and Frederik Vercauteren for the
helpul discussions in the early stages of this work. This work was supported in
part by CyberSecurity Research Flanders with reference number VR20192203, by
ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific
(SSC Pacific) under contract No. FA8750-19-C-0502, and by the FWO under an
Odysseus project GOH9718N. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the ERC, DARPA, the US Government or the FWO. The U.S.
Government is authorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation therein.

A Converses to Banach’s Fixed Point Theorem

To understand the convergence of fixed point iterations of contraction mappings
more precisely, we need to appeal to so-called converse to Banach’s Theorem.
These are results which show that if an iterative method converges for some set
X on a metric space with metric d, then there is a (potentially different) metric
d′ for which the map is a contraction mapping for any Lipschitz constant q. In
particular in [9] the following converse theorem is proved.

Theorem A.1 (Theorem 1 of [9]). Let (X, d) be a complete, proper metric
space and F : X −→ X be continuous with respect to d such that F has a unique
fixed point x∗, and the iteration xi ← F (xi−1) converges to x∗ with respect to d,
and there exists an open neighbourhood U of x∗ such that F (n)(U) −→ {x∗} as
n −→ ∞.

Secure Fast Evaluation of Iterative Methods 23

Then, for all q ∈ (0, 1) and ε > 0, there is a metric dq,ε which is topologically
equivalent to d, such that (X, dc,ε) is a complete metric space and

1. ∀x, y ∈ X : dq,ε(f(x), f(y)) ≤ q · dq,ε(x.y).
2. ∀x, y ∈ X : dq,ε(x, y) ≤ ε implies that

min{ dq,ε(x∗, x), dq,ε(x∗, y), dq,ε(x, y) } ≤ 2 · ε.

The second property here is used to bound the number of iterations needed in
terms of the constants q, ε and the distance d(x0, x

∗).
The authors of [9] illustate this in terms of the power method for matrices.

Indeed in [9][Proposition 1] it is shown that if we restrict to real matrices A
(with eigenvalues |λ1| > |λ2| ≥ . . . ≥ |λm|) then there is a metric d(x,y) on Rm

such that the mapping, for any vector norm ‖ · ‖,

F (x) =
A · x

‖A · x‖
is a contraction mapping with

d(F (x), F (y)) ≤ |λ2|
|λ1| · d(x,y)

for all x,y ∈ Rm. The metric being

d(x,y) =
∥∥∥ x
xT · v1

− y
yT · v1

∥∥∥
2
.

Thus there is a metric for which the Lipschitz constant is q = |λ2|/|λ1|. In
addition for any x0 ∈ Rn which has a nonzero component in the direction of v1,
we have that after

N∗ =
log(d(x0,v1)/ε)

log(|λ1|/|λ2|)
steps we have ‖xN∗ − v1‖2 ≤ d(xN∗ ,v1) ≤ ε. This allows us to upperbound
the number of iterations needed for a given level of convergence. However, the
metic is not suitable to use within the algorithm to determine the first eigen-
value/eigenvector as it depends on the value of the first eigenvector itself.

References

1. Alon, N., Milman, V.: Lambda1, isoperimetric inequalities for graphs, and super-
concentrators. J. Comb. Theory Series B 38(1), 73–88 (1985). http://www.
sciencedirect.com/science/article/pii/0095895685900929

2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)
3. Aly, A., et al.: SCALE and MAMBA v1.9: Documentation (2020). https://homes.

esat.kuleuven.be/∼nsmart/SCALE/Documentation.pdf
4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-

preserving computations. Cryptology ePrint Archive, Report 2008/289 (2008).
http://eprint.iacr.org/2008/289

http://www.sciencedirect.com/science/article/pii/0095895685900929
http://www.sciencedirect.com/science/article/pii/0095895685900929
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
http://eprint.iacr.org/2008/289

24 D. Cozzo et al.

5. Broder, A., et al.: Graph structure in the web (2000)
6. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R.

(ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 6

7. Del Corso, G.M., Gulĺı, A., Romani, F.: Fast PageRank computation via a sparse
linear system (extended abstract). In: Leonardi, S. (ed.) WAW 2004. LNCS, vol.
3243, pp. 118–130. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30216-2 10

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Daskalakis, C., Tzamos, C., Zampetakis, M.: A converse to Banach’s Fixed Point
Theorem and its CLS completeness. CoRR abs/1702.07339 (2017). http://arxiv.
org/abs/1702.07339

10. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015. The Internet Society,
February 2015

11. Dikland, T.: Added value of combining transaction graphs on fraud detection using
the PageRank algorithm. Internship Report, TNO and TU Delft (2018)

12. Elden, L.: A note on the eigenvalues of the Google matrix (2004). http://arxiv.
org/abs/math/0401177

13. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

14. Han, Y.-S., Kim, L., Cha, J.-W.: Evaluation of user reputation on YouTube. In:
Ozok, A.A., Zaphiris, P. (eds.) OCSC 2009. LNCS, vol. 5621, pp. 346–353. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02774-1 38

15. Hastings, M., Falk, B.H., Tsoukalas, G.: Privacing preserving network analytics
(2020). https://papers.ssrn.com/sol3/papers.cfm?abstract id=3680000

16. Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Technical
Report 2003-20, Stanford InfoLab (2003). http://ilpubs.stanford.edu:8090/582/

17. Huynh, T.D.: Extension of PageRank and application to social networks. (Exten-
sion de PageRank et application aux réseaux sociaux). Ph.D. thesis, Pierre and
Marie Curie University, Paris, France (2015). https://tel.archives-ouvertes.fr/tel-
01187929

18. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite col-
lision analysis. Cryptology ePrint Archive, Report 2013/850 (2013). http://eprint.
iacr.org/2013/850

19. Kamvar, S., Haveliwala, T.: The condition number of the PageRank problem.
Technical report 2003-36, Stanford InfoLab, June 2003. http://ilpubs.stanford.edu:
8090/597/

20. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 10

21. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Technical report, Depart-
ment of Mathematics, N. Carolina State University (2003)

22. Langville, A.N., Meyer, C.D.: Fiddling with PageRank. Technical report, Depart-
ment of Mathematics, N. Carolina State University (2003)

https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-540-30216-2_10
https://doi.org/10.1007/978-3-540-30216-2_10
https://doi.org/10.1007/978-3-642-32009-5_38
http://arxiv.org/abs/1702.07339
http://arxiv.org/abs/1702.07339
http://arxiv.org/abs/math/0401177
http://arxiv.org/abs/math/0401177
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-642-02774-1_38
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3680000
http://ilpubs.stanford.edu:8090/582/
https://tel.archives-ouvertes.fr/tel-01187929
https://tel.archives-ouvertes.fr/tel-01187929
http://eprint.iacr.org/2013/850
http://eprint.iacr.org/2013/850
http://ilpubs.stanford.edu:8090/597/
http://ilpubs.stanford.edu:8090/597/
https://doi.org/10.1007/978-3-319-98113-0_10

Secure Fast Evaluation of Iterative Methods 25

23. Langville, A.N., Meyer, C.D.: Survey: Deeper inside PageRank. Internet Math.
1(3), 335–380 (2003). https://doi.org/10.1080/15427951.2004.10129091

24. Maxwell, N.: Innovation and discussion paper: case studies of the use of privacy
preserving analysis to tackle financial crime. Technical report, Royal United Ser-
vices Institute (2020). https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis
innovation and discussion paper - case studies of the use of privacy preserving
analysis.pdf

25. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 35–52.
ACM Press, October 2018

26. Molloy, I., et al.: Graph analytics for real-time scoring of cross-channel transac-
tional fraud. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp.
22–40. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 2

27. Moreau, A.: How to perform fraud detection with personalized PageRank,
9 January 2019. Blog: https://www.sicara.ai/blog/2019-01-09-fraud-detection-
personalized-page-rank

28. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. In: Proceedings of the 7th International World Wide
Web Conference, pp. 161–172 (1998)

29. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T.,
Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine
learning applications. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T.
(eds.) ASIACCS 2018, pp. 707–721. ACM Press, April 2018

30. Sangers, A., et al.: Secure multiparty PageRank algorithm for collaborative fraud
detection. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 605–
623. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 35

31. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

32. Simić, S.K., Andelić, M., da Fonseca, C.M., Živković, D.: Notes on the second
largest eigenvalue of a graph. Linear Algebra Appl. 465, 262–274 (2015). http://
www.sciencedirect.com/science/article/pii/S002437951400617X

33. Soramaki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of
interbank payment flows. Physica A: Stat. Mech. Appl. 379(1), 317–333 (2007).
http://www.sciencedirect.com/science/article/pii/S0378437106013124

34. Soramaki, K., Cook, S.: Sinkrank: an algorithm for identifying systemically impor-
tant banks in payment systems. Economics Open-Access Open-Assess. E-Journal
7, 1–27 (2013)

35. Vlasselaer, V.V., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B.: GOTCHA!
network-based fraud detection for social security fraud. Manag. Sci. 63(9), 3090–
3110 (2017). https://doi.org/10.1287/mnsc.2016.2489

https://doi.org/10.1080/15427951.2004.10129091
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis.pdf
https://doi.org/10.1007/978-3-662-54970-4_2
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://doi.org/10.1007/978-3-030-32101-7_35
http://www.sciencedirect.com/science/article/pii/S002437951400617X
http://www.sciencedirect.com/science/article/pii/S002437951400617X
http://www.sciencedirect.com/science/article/pii/S0378437106013124
https://doi.org/10.1287/mnsc.2016.2489

Compilation of Function Representations
for Secure Computing Paradigms

Karim Baghery1 , Cyprien Delpech de Saint Guilhem1 ,
Emmanuela Orsini1 , Nigel P. Smart1,2(B) , and Titouan Tanguy1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{karim.baghery,cyprien.delpechdesaintguilhem,emmanuela.orsini,

nigel.smart,titouan.tanguy}@kuleuven.be
2 University of Bristol, Bristol, UK

Abstract. This paper introduces M-Circuits, a program representation
which generalizes arithmetic and binary circuits. This new representation
is motivated by the way modern multi-party computation (MPC) sys-
tems based on linear secret sharing schemes actually operate. We then
show how this representation also allows one to construct zero knowl-
edge proof (ZKP) systems based on the MPC-in-the-head paradigm. The
use of the M-Circuit program abstraction then allows for a number of
program-specific optimizations to be applied generically. It also allows to
separate complexity and security optimizations for program compilation
from those for application protocols (MPC or ZKP).

1 Introduction

Secure computation methodologies are becoming more mainstream with multi-
party computation (MPC), fully homomorphic encryption (FHE) and zero-
know-ledge proofs of knowledge (ZKPoKs) all finding applications at an increas-
ing rate. At their heart all three technologies work with a public function; either
to be compute it securely (in the case of MPC or FHE), or to prove the cor-
rectness of public outputs under secret inputs (in the case of ZKPoKs). The
representation of this function is key to many of the practical realizations. For
example: in theoretical MPC papers functions are often represented by arith-
metic circuits, in FHE they are often binary circuits, and in ZKPoK papers
R1CS representations are often used.

In this work we concentrate on two secure computation technologies: MPC
protocols based on linear secret sharing schemes (LSSS) and ZKPoKs based on
MPC-in-the-Head (MPCitH). It is common in theoretical treatments of these
protocols to assume the input function representation is given as an arithmetic
or binary circuit. However, in practice, this is not how functions are repre-
sented as input to such protocols. It has been known since Beaver’s work [6]
that sometimes a more interesting representation is as a set of linear opera-
tions, combined with a correlated randomness source. Previous work showed
that more efficient representations for LSSS-based MPC can be obtained using
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 26–50, 2021.
https://doi.org/10.1007/978-3-030-75539-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_2&domain=pdf
http://orcid.org/0000-0001-7213-8496
http://orcid.org/0000-0002-0147-2566
http://orcid.org/0000-0002-1917-1833
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7965-620X
https://doi.org/10.1007/978-3-030-75539-3_2

Compilation of Function Representations for Secure Computing Paradigms 27

different sources of correlated randomness, as well as a combination of differ-
ent finite fields [10,11,16]. This latter idea has been expanded in recent years
with the advent of so-called daBit-based protocols for switching between LSSS-
based MPC and garbled circuit-based MPC [27]. Thus the standard theoretical
assumption of representing the function as a simple arithmetic circuit is at least
ten years out of date given the state-of-the-art of LSSS-based MPC protocols.

A similar situation holds for MPCitH protocols. These are a class of zero-
knowledge protocols introduced by Ishai et al. in [22], and recently extended
in a number of works e.g. [3,5,9,12,21,23] In such protocols, a key aspect is to
represent the function as a sequence of linear operations, combined with access to
sources of correlated randomness, as in [5,23]. In MPC protocols, the creation of
the correlated randomness sources often involves expensive pre-processing, but
for MPCitH this can be done essentially for free. Therefore, larger performance
improvements for MPCitH could result from expanding the use of correlated
randomness sources.

Indeed in both LSSS-based MPC and MPCitH there is no single ‘correct’
representation of a function, with different representations presenting different
performance trade-offs in the final protocol. But it is also case that different
representations can also present different security trade-offs as well. Indeed the
compilation of the abstract function into a concrete representation can introduce
security issues.

Our Contributions and Paper Overview. The first contribution of this paper (in
Sect. 2) is a generalized definition of the program input to such LSSS-based MPC
and MPCitH protocols, which we call an M-Circuit. It can be considered as a
generalization of arithmetic circuits, but tuned for MPC and MPCitH protocols
(hence the name). An M-Circuit can make use of linear operations on sensitive
variables, correlated randomness sources, as well as objects we call ‘gadgets’.
A gadget is a function call from the M-Circuit representation of the program
which is not necessarily implemented itself as an M-Circuit. Such gadgets allow
for specific functions to be implemented in ways which avoid inefficiencies from
implementing them using only an M-Circuit definition. Each M-Circuit belongs
to a set of classes of M-Circuits, determined by what correlated randomness
sources we allow, what finite fields are utilized, and what magic ‘gadgets’ are
used. We can then determine which classes of protocols are best suited for dif-
ferent protocols.

We furthermore examine what it means for a compilation of a function into an
M-Circuit to be ‘secure’. And we relate this security definition to the security of
the resulting MPC/MPCitH protocol when the given M-Circuit representation is
used. Some compilation strategies are clearly insecure, some give perfect security
and some give statistical security; leading to the same corresponding security
of the final protocol in which they are used. Whilst well understood in the
practical community, we can find no treatment of the security aspect of program
compilation being discussed in the MPC literature before.

After presenting our representation we show how this maps, in Sect. 3, onto
common MPC frameworks (such as MP-SPDZ [24] and SCALE-MAMBA [1]),

28 K. Baghery et al.

and how the M-Circuit representation is already the underlying one used in
practice. This application is now standard and we only sketch it in this work.

In our second contribution in Sect. 4, we show how M-Circuits can be used
in MPCitH protocols. We recast the protocols of [5,23] to use our general M-
Circuit definition (initially excluding the use of the gadgets). We define the
components needed to allow M-Circuits to be used in general MPCitH protocols.
We then go on to present a number of optimization strategies which our M-
Circuit representation allows one to express easily for MPCitH protocols. The
first, in Sect. 5, examines how introducing new correlated randomness sources can
produce more efficient proofs. We recall that for MPCitH adding new correlated
randomness sources comes at little extra cost and thus this is a resource we can
utilize to improve efficiency quite aggressively. The second, in Sect. 6, shows how,
for some randomness sources, one can replace cut-and-choose checking with a
form of sacrificing (as used in MPC protocols such as SPDZ). This acts as a warm
up for our method which introduces the ability to introduce complex gadgets
into our MPCitH protocol, given in Sect. 7. Details of standard definitions and
proofs of our main results are given in the full version.

2 M-Circuits

Given a function F there are many ways of representing the function: theo-
reticians may look at binary or arithmetic circuit representations, programmers
may think of C, Java, or Haskell, a processor designer may think of an x86
instruction stream. By the Church-Turing thesis all are essentially equivalent.
In this section we formalize a way of representing a function for use in LSSS-
based MPC and/or MPCitH systems. A key aspect of our definition is that the
process of compiling/programming an abstract mathematical function F as a
concrete representation involves some form of security analysis, i.e. it is not only
the MPC/MPCitH protocol which impacts security but also the input represen-
tation of the function being operated upon.

2.1 Defining an M-Circuit

At the heart of our definitions is the idea that a function maps input variables
to output variables, but that some of the input variables, and indeed some of
the output variables may be sensitive.

Machine State. We start by defining a machine state.

Definition 2.1 (Machine State). A machine state state defined over a set
of finite fields F = {Fq1 , . . . ,Fqf } is a collection of variables (or memory
addresses). Each variable has a type which is one of the following three forms:

– (qi,−), which refers to a variable which holds a non-sensitive variable in the
finite field Fqi ;

Compilation of Function Representations for Secure Computing Paradigms 29

– (qi, s), which refers to a variable which holds a sensitive variable in the finite
field Fqi ;

– (−,−) which refers to a signed integer variable (i.e. an element of Z) in some
bounded range (for example a 64-bit integer).

The machine state can hold these variables in a number of manners, for example
as memory locations indexed by integers via stacks. The usage of the signed
integer variables are to allow memory access operations and stack operations
within the machine. Note, one could extend the definition to finite rings, and
not just finite fields, using techniques such as those from SPDZ2k [15], but for
now we keep to the simpler case of finite fields.

To ease notation in what follows we let {x}q denote a variable of type (q,−),
〈x〉q denote a variable of type (q, s), and x denote a variable of type (−,−).
Also, we make no distinction between the name of the variable and the value it
contains. If we want to refer to a type, and are not interested in its sensitivity
classification, we refer to the type (q, ∗), and call it the base type of the variable.

We note that variables of the same type can be added, subtracted and mul-
tiplied etc. Variables of different types can be combined in the following sense:
the operation of a binary arithmetic operator on two variables of type (p1, s1)
and (p2, s2) can be applied if gcd(p1, p2) �= 1, resulting in a type (p3, s3) where:

– p3 = gcd(p1, p2),
– s3 = s if and only if s1 = s or s2 = s, otherwise s3 = −. (This means that

variables can only become more sensitive, akin to the ‘no write down’ rule of
Bell-LaPadula [7]).

Thus one can form (relatively) arbitrary arithmetic expressions on variables, and
one can assign a type to the result of the expression.

Variables of type (p,−), for prime p, can be arbitrarily converted into vari-
ables of type (−,−) and vice-versa, using the inclusion Fp −→ [0, . . . , p−1) ⊂ Z

and the mapping Z −→ Fp given by x �→ x (mod p).

Correlated Randomness Sources: As well as variables, and the arithmetic
expressions we can create from them, there are two additional components for an
M-Circuit, namely correlated randomness sources and gadgets, which we describe
in the following.

Definition 2.2 (Correlated Randomness Source). A correlated random-
ness source S is defined by a set of variables {v1, . . . , vt} of any (specific) types
{(q1, ∗), . . . , (qt, ∗)} and a predicate pred on those variables.

A correlated randomness source should be thought of as related to the data
which is produced in preprocessing phases of MPC protocols such as SPDZ [20].
Thus typical sources would be:

– Triple: This has associated to it three variables, (a, b, c) all of type (p, s), for
which the predicate is pred(a, b, c) := a · b = c, with a, b being uniformly
randomly chosen from Fp.

30 K. Baghery et al.

– Square: This has associated to it two variables, (a, b), both of type (p, s) for
which the predicate is pred(a, b) := a ·a = b, with a being uniformly randomly
chosen from Fp.

– Bit: This has associated to it a single variable, a, of type (p, s) for which the
predicate is pred(a) := a ∈ {0, 1}, and a is uniformly randomly chosen from
{0, 1}.

– daBit: This has associated to it two variables, a, b, one of type (p, s) and one
of type (2, s), for which the predicate is pred(a, b) := (a = b) ∧ (a ∈ {0, 1}),
with a uniformly randomly chosen from {0, 1}.

Gadgets: The second component we introduce now is called a ‘gadget’. From a
high level point of view these can be arbitrary operations. More formally, they
are function calls made by the M-Circuit which we do not necessarily implement
using an M-Circuit. This means, for example, that their functionality could be
provided by some externally defined protocol. In practice, we will use gadgets
to perform very specific operations within specific protocols and also to help
to define stages of program transformation within a compilation. Thus gadget’s
correspond to operations which are done using special protocols, with the idea
being that if we can show the special protocol for implementing the gadget is
secure and correct, then we can use the gadget as an optimization process within
our final protocols.

Definition 2.3 (Gadget). A gadget G is a mathematical function which takes
a set of variables and outputs a set of variables (v̂1, . . . , v̂u) ← G(v1, . . . , vt),
where no assumption is made about how G will be implemented. The types of
the input and output variables are assumed to be implicitly defined by the gadget
itself.

Looking ahead, in the context of MPC using a gadget is like calling a protocol
to perform a Garbled Circuit operation on some secret shared data over F2 in a
system such as that described by the Zaphod paper [2]. The gadget in this case
goes outside the neat confines of LSSS-based MPC, but it is integrated with the
LSSS based MPC and is thus able to allow greater functionality at reduced cost.
Another example of a gadget could be a multiplication gate, which we do not
expand into its Beaver representation if we want to avoid correlated randomness
sources.

Instructions and M-Circuits. An M-Circuit is composed of an ordered finite
list of instructions as follows.

Definition 2.4 (Instruction). An instruction can be one of the following
forms:

– A pair (v, expr), where v is a variable and expr, is an arithmetic expression
as described above. The type of v must correspond to the type of expr. As
a shorthand we may write v ← expr. We restrict the expressions expr to be
arbitrary arithmetic expressions, however the total degree of the expression

Compilation of Function Representations for Secure Computing Paradigms 31

in any sensitive variables must be one. Thus we can only compute linear
functions on sensitive variables.

– A tuple ({v1, . . . , vt},S) where S is a correlated randomness source, and the
variables {v1, . . . , vt} have the same types as the variables associated to the
source. As a shorthand we may write v1, . . . , vt ← S.

– A tuple ({v̂1, . . . , v̂u}, {v1, . . . , vt},G) where v̂i and vi are variables and G is a
gadget as described above. The types of vj and v̂i must correspond to the input
and output types of the Gadget. As a shorthand we may write v̂1, . . . , v̂u ←
G(v1, . . . , vt).

– A ‘declassification’ instruction which we write as x ← y.reveal(). This takes a
variable y of type (p, s) and creates a variable x of type (p,−) which has the
same value as y.

– A special instruction called terminate.

Examples, of the first three types of instruction, could include:

〈z〉 ← 〈x〉p + 〈y〉p

〈x〉p, 〈y〉p, 〈z〉p ← Triple

{〈ci〉2}127i=0 ← AES
(

{〈ki〉2}127i=0, {〈mi〉2}127i=0

)
.

Finally, we can define what we mean by an M-Circuit.

Definition 2.5. An M-Circuit is a tuple consisting of an ordered list of instruc-
tions I and two sets of variables VI and VO (called the input and the output
variables).

A class of M-Circuits C({S1,...,Ss},{G1,...,Gg})
{Fq1 ,...,Fqf

} is the set of all M-Circuits over

the finite fields {Fq1 , . . . ,Fqf }, which utilize correlated randomness sources
{S1, . . . ,Ss} and gadgets {G1, . . . ,Gg}. If F and F ′ are sets of finite fields, and
S and S ′ are sets of correlated randomness sources, and G and G′ are sets of
gadgets then we have C(S,G)

F ⊆ C(S′,G′)
F ′ if F ⊆ F ′, S ⊆ S ′ and G ⊆ G′.

2.2 Executing an M-Circuit

An M-Circuit (I,VI ,VO) operates on a machine state as follows. The machine
state state has an initial state consisting of the set of registers VI with pre-
assigned values given to them (i.e. the inputs to the function). In addition there
is a special register of type (−,−), called pc, which is initial set to zero. Then
the following operations are repeated until a terminate instruction is met.

– Instruction numbered pc is fetched from the list of instructions I.
– The value of pc is incremented by one.
– The instruction is executed as follows depending on its type

– (v, expr) is evaluated if all the variables in expr are currently defined, and
the result is assigned to variable v. If not all variables are defined then
the system aborts.

32 K. Baghery et al.

– ({v1, . . . , vt},S) is evaluated by sampling the variables {v1, . . . , vt} accord-
ing to the source definition.

– ({v̂1, . . . , v̂u}, {v1, . . . , vt},G) is evaluated as for (v, expr)
– Declassification instructions do the obvious declassification operation.
– If the instruction is terminate then the M-Circuit terminates.

On termination the M-Circuit outputs the variables in the set VO, if they are
defined. If any are not defined it aborts.
Note, this is a rather general model in a number of senses:

– One can perform a conditional branch on non-sensitive variables by making
instructions of the form (pc, expr), e.g. pc ← b · 100 + (1 − b) · 200 will either
result in a jump to instruction 100 or instruction 200 depending on the value
of variable b ∈ {0, 1} of type (−,−).

– Subroutines calls, and hence recursion, can be performed by using creating a
stack of type (−,−) in the machine state, and then using this to push/pop
the pc variable on or off of it.

The main limitation of the model seems to be that instructions of the form
(v, expr) can only contain linear functions of sensitive variables. This is where
our gadgets and randomness sources will come in.

There are four different measures of complexity of an M-Circuit, and we name
these so as to link them with their analogues when we use M-Circuits for MPC
(where analogues exist), as follows.

– The offline complexity is the number of calls to the source oracles {S1, . . . ,Ss}
made by the M-Circuit on a given input.

– The online communication complexity is the number of calls to the operation
reveal() made by the M-Circuit on a given input.

– The online round complexity is the minimum number of parallel calls to the
operation reveal() made by the M-Circuit on a given input.

– The gadget-complexity (which has no usual analogue in the MPC domain) is
the number of calls to gadgets G made by the M-Circuit on a given input.

2.3 Compiling M-Circuits

An M-Circuit is created by a process called compilation.

Definition 2.6 (Compilation). A compilation step is an algorithm which
takes an M-Circuit C in a class C(S,G)

F and maps it to an M-Circuit C ′ in a
class C(S′,G′)

F ′ . The algorithm must ensure that the functional behaviour of C and
C ′ are identical, i.e. the input/output behaviour of C and C ′ are the same.

Note a compilation says nothing about whether C(S,G)
F ⊆ C(S′,G′)

F ′ or vice-versa.
Given an arbitrary polynomial time function F , defined over a set of finite

fields F and the integers, there is always an M-Circuit, which we call CF , which
implements F in the class C(∅,{F})

F , namely the M-Circuit which uses the gadget
G = F . The goal of compilation is to find representations of CF in simpler
classes, in particular a class which can be implemented in either an MPC or
MPCitH system. We present three exemplar compilations here to fix ideas:

Compilation of Function Representations for Secure Computing Paradigms 33

– Arithmetic Circuit: Consider the gadget GM for a finite field Fp which
multiples two input values, giving the output value of the same type. Then
the standard ‘arithmetization’ of polynomial time functions F compiles the
M-Circuit CF to an M-Circuit CA

F in the class C(∅,{GM})
Fp

.
– Beaver Randomized Circuit: We can take the M-Circuit CA

F produces
in the previous example and compile it to an M-Circuit CB

F in the class
C(Triple,{∅})
Fp

using Beaver’s standard circuit randomization trick, [6].
– Insecure Circuit: Here we take F , and create the functionally equivalent

function F ′ which first de-classifies all the sensitive input variables of F . Then
it evaluates F on the clear values, using the arithmetic circuit representation
of F . Finally, it re-classifies any output variables as sensitive which need to
be sensitive, by multiplication by 〈1〉p. The associated arithmetic circuit CA

F ′

(which includes reveal() operations as well as the usual arithmetic operations)
is an M-Circuit in the class C(∅,{GM})

Fp
.

The last example here hints that compilation can create something which is
‘insecure’. To quantify this notion we need to define what we mean by security
of an M-Circuit.

2.4 Security of M-Circuits

To define security of an M-Circuit we have to examine the reveal() operations in
more detail, since these are the operations which potentially de-classify sensitive
information. Informally we require that the reveal() operations never reveal more
than an negligible amount of sensitive information about any sensitive inputs to
the function.

To each reveal operation of the form a ← 〈b〉q.reveal() we associate a given
distribution Rb on the set Fq. The reader can think of Rb on first reading as the
uniform distribution (which will be true for circuits compiled using the Beaver
compilation above, but it is not true in general). To take into account the type
of efficient function representations used in say [11] we need to be a little more
nuanced.

The distributions Rb are on the outputs of reveal() are conditioned on the
following three things:

– The specific non-sensitive inputs and outputs of the function being evaluated.
– The random execution path taken by the circuit.
– The distributions of the correlated randomness sources.

However, the distributions are not conditioned on sensitive input and output
values to the function. For example consider the code fragments in Fig. 1. In
fragment (a) the function is b, in which case the distribution Rz has probability
mass of one at the value b − 1 and is zero elsewhere, whilst in fragment (b) the
distribution Rz is the set of values in the range [−B, . . . , B] with an associated
binomial distribution.

34 K. Baghery et al.

Code Fragment (a)
a = z.reveal()

b = a+1

Output b

Code Fragment (c)
z=x+y

a=z.reveal()

Output a

Code Fragment (b)
for i in range(2*B):

b_i = Bits

z = sum(b[2*i]-b[2*i+1],i in range(B))

a = z.reveal()

Code Fragment (d)
b=x.reveal()

c=y.reveal()

a=b+c

Output a

Fig. 1. Example code fragments

The trace TraceC of an M-Circuit, on a given input, consists of the set of
non-sensitive input variables, the non-sensitive output variables, plus the output
of every reveal() operation. A simulated trace SimC is the same except that
the output of every reveal() operation is replaced by a value chosen via the
distributions Rb above.

Definition 2.7 (Perfectly Secure M-Circuit). An M-Circuit C is said to
perfectly securely implement a function F if the functional behaviour of the M-
Circuit C and the M-Circuit CF are identical, and the distribution of TraceC

and SimC are identical for all input values.

Definition 2.8 (Statistically Secure M-Circuit). The M-Circuit C is said
to securely implement a function F with statistical security sec if the functional
behaviour of the M-Circuit C and the function CF are identical, and the statis-
tical distance between the distribution of TraceC and SimC is bounded by 2−sec

for all input values.

The first question one must ask is if such a definition is vacuous. The celebrated
technique of Beaver’s Circuit Randomization [6] says no.

Theorem 2.1. Every polynomial time function F can be perfectly securely
implemented by the M-Circuit CB

F with polynomial complexity (in all four met-
rics).

Proof. Using the compilation process above we can compile the M-Circuit CB
F .

It is well known that the reveal() operations this creates are associated with
uniform distributions, and thus the reveals are perfectly hiding.

Note, this definition is about the representation of the function i.e. the compila-
tion of the M-Circuit from the function definition. It asks whether the compila-
tion process is itself secure; it makes no claim about how the M-Circuit is then
used or evaluated within an MPC or MPCitH system.

Not all compilations will result in secure M-Circuits, as our insecure com-
pilation example illustrates. To see why this compilation violates our security
definition, consider the specific function F which takes two sensitive values x

Compilation of Function Representations for Secure Computing Paradigms 35

and y, and returns their sum, but as a non-sensitive value. Mathematically one
could write F (〈x〉, 〈y〉) = (〈x〉 + 〈y〉).reveal(). A functionally valid M-Circuit for
this function is given in code fragment (c) of Fig. 1, whilst another functionally
valid M-Circuit for the same function is given in code fragment (d).

Code fragment (c) is a perfectly secure M-Circuit, with the distribution Rz

being the point distribution will all the probability mass at the point a (where
a is the public output of the function). Thus the valid transcript TraceC and
SimC are identical and equal to TraceC = SimC = {∅, {a}, {a}.}, i.e. there are no
distributions here at all, TraceC and SimC are fixed by the output a. Note, the ∅
corresponds to the set of non-sensitive input variables, the first {a} is the set of
non-sensitive output variables, and the second {a} is the output of every reveal
(resp. the simulated reveals) in the case of the actual trace (resp. the simulated
trace).

Code fragment (d) has Rx being the point distribution on x, with y being the
point distribution of y = a − x. Thus TraceC of the second M-Circuit is equal to
TraceC = {∅, {a}, {x, a−x}} which is a fixed value (for each given input), whereas
the simulated trace SC is equal to the value given by SC = {∅, {a}, {r, a − r}}
where r uniformly chosen from Fp. Thus TraceC and SC in the second case
can never be statistically close. Thus the second compilation to an M-Circuit is
insecure, but functionally correct.

3 M-Circuits for Multi-party Computation

It turns out that our M-Circuit notion lies underneath almost all algorithmic
level optimizations of LSSS-based MPC over the last decade (by which we mean
optimizations related to the program representation and not the MPC protocol
itself). The M-Circuit concept allows us to isolate which optimizations can be
utilized by which MPC protocols, since not all MPC protocols can implement
all M-Circuit classes.

As remarked earlier, arithmetic circuit representation of a functionality over a
finite field Fq correspond to M-Circuits in the class C(∅,{GM})

Fq
. Thus ‘traditional’

LSSS based MPC protocols such as [8,13], or modern protocols such as [14],
which have specific protocols for the multiplication operation can utilize this M-
Circuit representation. However, the security of these protocols is then proved
by showing that the implementation of the specific multiplication gadget leaks
no information.

Protocols which expand the multiplication gadget via Beaver’s trick [6] uti-
lize circuits from the class C({Triple},∅)

Fp
. The security of the underlying (passively

secure) online protocol then follows from the security of the M-Circuit repre-
sentation; if the M-Circuit is secure then so is the obvious LSSS-based MPC
protocol in which one replaces the sensitive variables in the M-Circuit by secret
shared values. The problem comes in creating an offline phase to produce the
necessary correlated randomness source Triple in a secret shared manner. For
honest majority protocols this offline phase is usually performed using hyper-
invertible matrices (as in VIFF [17]) or, for dishonest majority protocols using

36 K. Baghery et al.

homomorphic encryption (as in SPDZ [20]) or OT (as in MASCOT [26]). In the
latter case to prove active security of the underlying MPC protocol one needs to
provide a form of authenticated secret sharing, while the privacy of the protocol
follows from the security of the M-Circuit representation. For the passive case
the security of the online phase we cover in Sect. 4.1 later.

Papers such as [10,11,16] showed that one can obtain greater efficiency by
working with M-Circuits in the class C(∅,{GM})

F28 ,Fq
, or equivalently C({Triple28 ,Tripleq},∅)

F28 ,Fq
;

although of course they did not use this language. In these latter works the
authors used multiplication to create shared-random bits, whereas if one assumes
these as a random source then the protocols become simpler to describe; thus the
same work can be cast as corresponding to M-Circuits in the class C({Triple,Bit},∅)

Fq
.

It is this latter representation which is used in modern LSSS-based systems
in the pre-processing model; for example the second generation of the SPDZ
protocol [18] utilizes function descriptions which are M-Circuits in the class
C({Triple,Square,Bit},∅)
Fp

. The papers such as [10,11] also showed one can obtain more
efficient representations, in terms of minimizing the various complexity measures
we described earlier, by compiling to what we call statistically secure M-Circuits
as opposed to perfectly secure M-Circuits.

Systems which make use of daBits [27] to translate between binary and arith-
metic fields utilize M-Circuits in the class C({Triple,Square,Bit,daBit},∅)

{Fp,F2} . Systems such
as Zaphod, [2] extend this idea further by allowing gadgets based on garbled cir-
cuits to be evaluated within the MPC-computation. Thus they allow M-Circuits
in the class C({Triple,Square,Bit,daBit},{G1,...,Gg})

{Fp,F2} for specific garbled circuit based sub-
procedures G1, . . . ,Gg. As long as the gadget can be securely implemented, then
the overall MPC protocol is itself secure.

Obviously compilation methods, and different sources of correlated random-
ness, will give different M-Circuits with different complexities. This is essentially
the engineering challenge of MPC solutions: to pick the compilation strategy and
sources of correlated randomness in order to achieve an efficient M-Circuit which
can be executed by a given MPC engine.

4 M-Circuits for MPC-in-the-Head

In this section, we present an MPCitH-based Honest Verifier Zero-Knowledge
(HVZK) argument of knowledge system for satisfiability of a function (compu-
tation) that is compiled to an M-Circuit. Initially we consider M-Circuits with
no gadgets, namely we consider the class of M-Circuits C({S1,...,Ss},∅)

{Fq1 ,...,Fqf
} . Later we

shall remove this restriction, at the expense of introducing more rounds of com-
munication.

Our construction extends Katz et al.’s construction [23] for arbitrary finite
fields. Since we work with M-Circuits, we do not consider operations such as
AND, multiplication or squaring (as in Katz et al.’s presentation), but rather
we formalize the protocol in term of generic correlated randomness sources over
arbitrary finite fields, along with calls to the reveal() function. As we have already

Compilation of Function Representations for Secure Computing Paradigms 37

explained, such a representation is universal, and can lead to optimizations
(which we will discuss later).

We first describe the specific underlying MPC protocol to securely compute
an M-Circuit instance that we will exploit in our MPCitH protocol. Then, we
present an MPCitH-based HVZK argument of knowledge based on the input
M-Circuit instance. Initially, we present a protocol which checks the correlated
randomness sources using the cut-and-choose paradigm. This method works for
arbitrary sources. In a latter section we present another methodology which
works for some specific correlated randomness sources which is based on the
sacrificing idea used in some actively secure MPC protocols.

4.1 The Underlying MPC Protocol

The MPCitH protocol we utilize will make use of a very simple (passively secure)
MPC protocol based on full threshold secret sharing in the pre-processing model.
The function F we will be evaluating is assumed to have (some) sensitive input
variables, but no sensitive output variables. The N parties in the protocol we
will denote by P1, . . . , PN .

Offline Phase. We define an ideal functionality for the offline phase, which imple-
ments the generation of suitable correlated randomness according to the sources
required by the M-Circuit. This is given in Fig. 2.

MPC Offline Functionality FS
Offline

For every source S ∈ S we define a command which operates as follows:

S: On input of (S) the functionality proceeds as follows
1. Generate (v1, . . . , vt) according to the source definition S.
2. For all variables vi of type (qi, s) wait for shares vi,j from the adversary A.
3. On receiving these shares complete them to a full set of shares

∑
j A∈� vi,j =

vi − ∑
j∈A vi,j and send the relevant vi,j to the honest parties.

4. Output vi when it is of type (qi, −) to all parties.

Fig. 2. Functionality FS
Offline

Online Phase. We wish to implement the passively MPC/SFE functionality
given in Fig. 3, in which we assume the sensitive inputs are assigned to specific
parties. This is done using the online phase given in Fig. 4, which is defined in
the FOffline-hybrid model.

38 K. Baghery et al.

Passively Secure MPC/SFE Functionality FMPC

Given a function F defined over finite fields with input variables VI and output
variables VO, the functionality proceeds as follows.

1. For each input variable v ∈ VI :
(a) If input variable v of type (q, s) is assigned to party Pi then wait for party

Pi to enter the value v.
(b) If input variable v is of type (q, −) then wait for all parties to input the

same value v.
2. Compute the function F on (v1, . . . , vt) and output the output variables to all

parties (recall we assume F has no sensitive output variables).

Fig. 3. Passively secure MPC/SFE functionality FMPC

Security. We let A denote an adversary which statically corrupts a subset of
the parties. We abuse notation slightly by referring to A both as the adversary,
and as the set of parties which it has corrupted. We define view{A,ΠMPC}(C) to
be the view of A during the execution of the protocol ΠMPC on the function F
represented by the M-Circuit C in the FOffline-hybrid model. This view consists
of the inputs of the parties in A, the shares of the correlated randomness the
parties in A receive from {S1, . . . ,Ss}, and the messages they obtain from the
other parties while evaluating the protocol. The security of Π is stated in the
following theorem, the proof of which is given in the full version.

Theorem 4.1. For every subset of parties A ⊆ {P1, · · · , PN}, with |A| ≤ N −
1, there exists a probabilistic polynomial-time algorithm S, with access to the
functionality FMPC, such that {S(A, F, vA)} ≡ view{A,ΠMPC}(C), where vA
are the function inputs of the parties in A.

The equivalence relation is a perfect equivalence if the M-Circuit C is a per-
fectly secure implementation of the functionality F , and is a statistical equiva-
lence if the M-Circuit is a statistically secure implementation of F .

4.2 Sub-procedures for MPCitH

In this subsection we collect together a number of sub-procedures and algorithms
for our general MPCitH protocol for M-Circuits.

Pseudo-Random Generator. We let PRGq denote a pseudo-random function,
which on input of a key seed and an index j outputs a (pseudo-) uniformly
random element of the finite field Fq. We let PRFλ denote an equivalent function
which outputs values in {0, 1}λ.

Compilation of Function Representations for Secure Computing Paradigms 39

Passively Secure MPC/SFE Protocol Π
(F,S)
MPC (C)

Given a function F defined over finite fields with input variables VI and output
variables VO represented as an M-Circuit C in the class C(S,∅)

F , the protocol proceeds
as follows.

1. For each input variable v ∈ VI

(a) If input variable v of type (q, s) is assigned to party Pi then party Pi shares
v =

∑
vj and sends vj to party Pj .

(b) If input variable v is of type (q, −) then all parties agree on the value v.
2. Now execute the M-Circuit line by line (as above).

- For a x.reveal() command, party Pi sends his share xi to all parties.
- For a call to a correlated randomness source S ∈ S, make the appropriate
call to the functionality FOffline.

- For an arithmetic operation, perform the associated operation on the linear
secret sharing scheme given above.

3. Finally, for a terminate operation, for each variable v ∈ VO the parties output
their (necessarily opened) value v as their output.

Fig. 4. Passively secure MPC/SFE protocol Π
(F,S)
MPC (C)

GenAux Function. To a correlated randomness source S we associate a determin-
istic algorithm GenAuxS which on input of a given assignment to the variables
{v1, . . . , vt} in the source will output a set of variables {v′

1, . . . , v
′
t} of the same

types. The output should satisfy the following equality of distributions, where
v1 ← Fp1 means sample v1 uniformly from the field Fp1 ,

{
(v1 + v′

1, . . . , vt + v′
t) : vi ← Fpi

for i = 1, . . . , t,

(v′
1, . . . , v

′
t) ← GenAuxS(v1, . . . , vt)

}

≡
{

(v1, . . . , vt) : (v1, . . . , vt) ← S

}

Note, there can be many ways for a given source to define the algorithm GenAux;
some are more compact than others. For example take the source Triple which
has (at least) the two following definitions for GenAux.

1. GenAuxTriple(a, b, c) = (0, 0, a · b − c).
2. GenAuxTriple(a, b, c) = (x − a, y − b, z − c) where x, y are deterministically

selected from Fp by GenAuxTriple using a PRG with the seed H(a, b, c), for
some hash function H, and z = x · y.

The first of these is more efficient in our application as the user knows the first
two coordinates are always zero, and can therefore drop them from any data
transferred. It turns out the first is also better for one of our optimizations we
present later.

40 K. Baghery et al.

Sources which require some specific distribution, such as the Bit source from
earlier, can be produced by defining GenAuxBit(a) = (a − b) where b = H(a)&1
for some hash function H.

GenShares. To each correlated randomness source S, with variables {v1, . . . , vt}
we associate the following seeds:

1. If vi is of type (qi,−) then we associate a single seed seedSi .
2. If vi is of type (qi, s) then we associate N seeds seedSi,j for j = 1, . . . , N .

We also associate a counter cntS, which on initialization of the source is set
to zero. In the MPCitH protocol below when S is called we execute an algo-
rithm GenSharesS (given in Fig. 5) which takes as input the above seeds and
the counter cntS and produces a sample from the randomness source presented
as a sharing amongst the parties, as well as the correction term. We write
({vi}†, {vi,j}∗, aux, cntS) ← GenSharesS({seedSi }†, {seedSi,j}∗, cntS).

The GenSharesS Algorithm

1. For all variables vi output by S of type (q, −) execute
(a) vi ← PRGqi(seed

S

i , cnt
S)

2. For all variables vi output by S of type (q, s) execute
(a) vi,j ← PRGqi(seed

S

i,j , cnt
S) for j = 1, . . . , N .

(b) vi ← ∑n
j=1 vi,j for all i ∈ 1, . . . , t.

3. cntS ← cntS + 1.
4. aux = (v′

1, . . . , v
′
t) ← GenAuxS(v1, . . . , vt).

5. vi ← vi + v′
i for all i.

6. vi,N ← vi,N + v′
i for all i such that vi has type (qi, s).

7. Output ({vi}†, {vi,j}∗, aux, cntS), where † denotes vi has type (qi, −) and ∗
denotes vi has type (qi, s).

Fig. 5. The GenSharesS algorithm for a source S

4.3 The Construction of HVZK Argument of Knowledge

We can now present our generalization of the MPCitH protocols of [5,23] to the
case of arbitrary M-Circuits. Our initial construction uses the cut-and-choose
checking paradigm, but later we will also consider the other checking approach,
i.e. sacrificing, that we show to be more efficient for particular cases. Recall at
this point we assume an M-Circuit C is given in the class C({S1,...,Ss},∅)

{Fq1 ,...,Fqf
} . The M-

Circuit has no sensitive output variables, but there are a set of sensitive input
variables, which we denote by w. The prover wishes to show that he knows a
witness for these output variables, which by abuse of notation we also call w,
such that the M-Circuit produces a given output.

Compilation of Function Representations for Secure Computing Paradigms 41

At a high level the proof proceeds by the prover simulating the N -party MPC
protocol from Sect. 4.1 in his head and executes it over an additive sharing of
w, along with calls to the correlated randomness sources ({S1, . . . ,Ss}, ∅), which
are performed using the algorithm GenSharesS given above. Clearly, as the secret
sharing scheme is executed in prover’s head, the prover might try to cheat and
convince the verifier about a false statement. To prevent such issues, and hence
to obtain a negligible soundness error, the construction allows the verifier to
challenge the prover. Namely, at the end of the first round the prover commits
(by the above commitment scheme) to the views of N parties in M executions.
Then, the verifier (randomly) challenges a subset of executions E ⊂ [M] of size
τ for which all correction terms induced by calls to the correlated randomness
sources will be revealed and verified. The verifier also (randomly) challenges a
single party j ∈ [N], such that all parties views are opened to him (bar party j)
for all e ∈ [M] \ E.

After revealing the secret information for the challenged executions and par-
ties, e.g. the master seeds, the challenged parties’ seeds, or the commitments,
the verifier recomputes (either using directly the values sent by the Prover, or
by using the parties’ seeds and correction terms to emulate the secret sharing
scheme) and checks the commitments and final output of the M-Circuit.

In the described HVZK argument, intuitively, zero-knowledge is achieved
relying on the fact that the M-Circuit is secure (its trace is simulatable) and the
revealed data are only random values which are independent of the witness w.
Thus the N −1 views that are revealed do not reveal anything as the underlying
MPC protocol is passively secure against N − 1 semi-honest parties.

In our protocol description, as before, we use 〈x〉q to denote a sensitive vari-
able (associated to an additive sharing x =

∑
j∈[N] xi) and {x}q to denote

a non-sensitive variable within the M-Circuit. As input to both the protocol
and the verifier we have a general M-circuit C in the class C(S,∅)

F , with the
set of finite fields F = {Fq1 , . . . ,Fqf }, a set of Correlated Randomness Sources
S = {S1, . . . ,Ss}, and no gadget. We assume that the prover and verifier have
agreed on the non-sensitive input variables to the M-Circuit, and the prover
additionally has an assignment to the sensitive input variables (witness) such
that the M-Circuit evaluates to a given public output. Due to the similarity
with the protocol from [23] we present the specific protocols in the full version.

5 Using Different Correlated Randomness Sources

In the case of MPC protocols if one wants to add a new form of correlated
randomness to a protocol then this equates to a more complex and costly offline
phase. When using our cut-and-choose methodology for checking the correlated
randomness sources in the MPCitH protocol we have already paid the cost of
introducing a single source. Thus introducing new sources is essentially ‘for free’,
and can indeed reduce complexity of this stage by requiring less data to check, as
well as reducing proof complexity (both in time to produce/verify and in terms of
size). Thus a new correlated randomness source should aim to reduce the online

42 K. Baghery et al.

cost conline, whilst not increasing coffline (and the associated size of the auxiliary
data needed for the resource) by a similar amount. We give two examples, one
arithmetic and one non-arithmetic.

5.1 Dot-Product Computation

As an example, suppose in an M-Circuit program one is given sensitive vectors
〈x〉q and 〈y〉q of size k and one wishes to compute their dot-product. The naive
way of doing the dot product would be to call the correlated randomness source
for triple generation k times; thus receiving {(〈ai〉q, 〈bi〉q, 〈ci)〉q}i∈[k], and then
doing the Beaver multiplication trick k times.

〈z1〉q = 〈c1〉q − (x1 − a1) · 〈b1〉q − (y1 − b1) · 〈a1〉q + (x1 − a1) · (y1 − b1)
.

〈zk〉q = 〈ck〉 − (xk − ak) · 〈bk〉q − (yk − bk) · 〈ak〉q + (xk − ak) · (yk − bk)

Finally we obtain 〈z〉q =
∑

i∈[k]〈zi〉q. The k calls to the correlated randomness
source, however, require k correction terms to make sure that 〈ci〉 = 〈ai · bi〉 for
all i. Thus these k terms need to be added to the proof. However, by introducing
a different correlated randomness source tailored to this specific operation we
can replace these k correction terms with a single term. To see this note that we
could also write

〈z〉q =
∑

〈ci〉q −
∑ (

(xi − ai) · 〈bi〉q − (yi − bi) · 〈ai〉q + (xi − ai) · (yi − bi)
)
.

Therefore, the necessary pre-processing data could be obtained by defining a
new correlated source which produces values of the form

〈a1〉q, . . . , 〈ak〉q, 〈b1〉q, . . . , 〈bk〉q, 〈c〉q where c =
∑
i∈[k]

ci =
∑
i∈[k]

ai · bi.

Using this source we thus need only one correction term for c, thus saving
(M − τ) · (k −1) field elements of communication for the pre-processing material
when using our cut-and-choose method for source correctness verification.

5.2 Matrix Triples

This is a trick known in the MPC literature that can be easily applied to the
setting of MPCitH. Consider 〈X〉q and 〈Y〉q two matrices of size n · m and m · l
respectively. The naive way of computing 〈Z〉q = 〈X · Y〉q requires O(n · m · l)
calls to the correlated randomness source for triple generation. However if one has
access to a correlated randomness source for matrix triples (〈A〉q, 〈B〉q, 〈C〉q)
such that C = A·B and A, B are two matrices of size n·m and m·l respectively,
one can perform the matrix multiplication much more efficiently. Indeed, this
source only requires n · l auxiliary information and the multiplication protocol
is similar to the classic Beaver multiplication, thus requires to reveal one n · m
and one m · l matrix.

Compilation of Function Representations for Secure Computing Paradigms 43

5.3 Tiny-Tables

Interesting optimizations from the MPC world can be carried over directly to
the MPCitH worlds using our abstraction. Consider for example the Tiny-Tables
optimization, see [19] as extended by [25]. Suppose we wish, at some point in
the computation, to compute a function y = G(x) where x, y ∈ Fq, for prime q,
and x is known to be restricted to come from a small domain D ⊂ Fq of size
d − 1, with d < q/2. For simplicity assume D = {0, . . . , d − 1} in what follows.

We can define the correlated randomness source SG which outputs sensi-
tive values 〈s〉, 〈g0〉, . . . , 〈gd−1〉, subject to the constraints that s is uniformly
randomly chosen from Fq and that

gi = G
(

(s + i (mod q)) (mod d)
)
.

Evaluation of the table on a shared value 〈x〉, whose value is guaranteed to lie
in D, can then be performed by opening the value 〈h〉 = 〈x〉 − 〈s〉, to obtain h
(which we reduce into the centred interval (−q/2, . . . , q/2)) and then taking the
result of the table look up as 〈gh (mod d)〉.

In the case of MPCitH the size of the output of GenAux will depend on the
input domain size d. Thus the Tiny-Table approach will result in a smaller proof
if the table size is less than the multiplicative complexity of the function G,
assuming the only alternative is to compute G via an arithmetic circuit.

6 Sacrificing

Another trick we can take from the MPC world and apply to the world of
MPCitH protocols, directly from our M-Circuit definition, is that of sacrific-
ing. At a high level one can consider the cut-and-choose component of the
MPCitH protocol i.e. where the verifier selects the set E and the prover opens
all the correlated randomness from the executions in E, as a method to turn a
passively secure offline phase into an actively secure offline phase for the under-
lying MPC protocol. The method of cut-and-choose is very general, and thus
applies to any correlated randomness source. However, some correlated random-
ness sources are arithmetic in nature and thus can be checked using arithmetic
means. This is well known in the MPC literature, and is called sacrificing. We
note a similar trick was proposed in [5] but not in the generality we present.

We refer to correlated randomness sources for which one can execute a
method akin to sacrificing as a Checkable Correlated Randomness Source. Using
such a check, as opposed to the generic cut-and-choose methodology from earlier,
can introduce efficiencies. However, it comes at the cost of needing a five-round,
as opposed to a three-round protocol.

The basic idea is to modify the correlated randomness source so that it pro-
duces an additional correlation, which is ‘sacrificed’ so as to check the correctness
of the desired correlation. The correctness check makes use of a verifier defined
random nonce, which can be fixed across all of the checks. To simplify our pre-
sentation we consider the case where all the variables in a randomness source

44 K. Baghery et al.

are defined over the same finite field Fq, where q is large; extending to smaller
and different finite fields is trivial.

In terms of an M-Circuit definition, suppose we have an initial M-Circuit
utilizing a desired source S which produces correlated variables x. However,
to compile it we utilize a related source S

′ whose output variables are of the
form (x,y) and which has a function generating auxiliary input GenAuxS

′
. There

is then a procedure SCheckS which takes x, y, the output of GenAuxS
′

and a
challenge value t. The procedure SCheckS which outputs a single bit b; if b = 0
then the value x is not from the same distribution as S and if b = 1 then it is.
The probability that the bit b is incorrect is bounded by a value εS

′
, with the

probability being a function of the choice of the challenge value t. We say that
such a source S

′ is a Checkable Correlated Randomness Source. The required
modifications to our MPCitH protocol we give in the full version. Our protocol
is similar to the one before, except now the prover cannot commit to the views
of the M-Circuit evaluation until it knows the versifier’s choice for tS

′
for every

S ∈ Scheck. On the other hand it must commit to the seeds generating the players
secret sharings before it knows the value of tS

′
. This introduces an extra two

rounds of communication, resulting in a total of five rounds of interaction.
We note that to determine how many calls we make to the random sources, we

need to know the value of all the variables in the M-circuit. Therefore, the output
of all sources (checkable and non-checkable) must be known before receiving the
cut-and-choose challenge. An attentive reader may thus point out that if one has
to pay the soundness cost of cut-and-choose, then there is no practical reason
for adding sacrificing on top of it, as all correlated randomness sources that can
be checked by sacrificing can also be checked by cut-and-choose. This is indeed
the case, and in the case of an M-Circuit C ∈ C(S,∅)

F , one should, in practice, use
the sacrificing technique only if ∀S ∈ S,S ∈ Scheck, and completely ignore the
cut-and-choose part of the protocol (set τ = 0).

However the usefulness of our 5-round protocol will be clear once we describe
gadgets. Indeed, gadgets will be treated in a similar way as checkable corre-
lated randomness sources, with the exception that, unlike correlated randomness
sources, the cut-and-choose technique can not be used to check the correctness
of their execution.

Example Checkable Correlated Randomness Sources: Note, the ‘pro-
gram’ for the check SCheckS can be expressed as an M-Circuit in the class C(∅,∅)

Fq
.

Thus property of being a checkable correlated randomness source is a function
not only of the procedure SCheckS existing, but also of the definition of the
function GenAuxS

′
as we now illustrate.

Triple. Recall the source Triple produces tuples (〈a〉, 〈b〉, 〈c〉) such that c = a · b.
Our ‘extended’ source Triple′ produces values (〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉) where it is
‘claimed’ that c = a ·b and e = b ·d. This validity can be verified by the following
algorithm which takes as input a public value t ∈ Fq (which can be the same for
every output of Triple′).

Compilation of Function Representations for Secure Computing Paradigms 45

1. 〈ρ〉 ← t · 〈a〉 − 〈d〉.
2. ρ ← 〈ρ〉.reveal().
3. 〈r〉 ← t · 〈c〉 − 〈e〉 − ρ · 〈b〉.
4. r ← 〈r〉.reveal().
5. Reject if r �= 0.

Note, this algorithm is an M-Circuit in the class C(∅,∅)
Fq

. Also note that the algo-
rithm reveals no information about the values 〈a〉, 〈b〉 and 〈c〉. Also note, that
for a valid tuple we have r = t · c− e−ρ · b = t ·a · b− b ·d− (t ·a−d) · b = 0, and
note that if c �= a · b and e �= b · d then we have r = t · (c − a · b) + e + b · d which
will equal zero with probability εTriple′

= 1/q, when t is chosen independently of
the output of Triple′.

However, whilst this verifies that the (〈a〉, 〈b〉, 〈c〉) variables output by Triple′

satisfy the desired multiplicative relationship, it does not on its own demonstrate
that the distribution of (〈a〉, 〈b〉, 〈c〉) is correct; namely that 〈a〉 and 〈b〉 are chosen
uniformly at random. To ensure this we need to examine how GenAuxTriple′

is
defined. Mirroring our two previous instantiations of GenAuxTriple we have

1. GenAuxTriple′
(a, b, c, d, e) = (0, 0, a · b − c, b · d − e).

2. GenAuxTriple′
(a, b, c, d, e) = (x − a, y − b, z − c, u − d,w − e) where x, y, u are

deterministically selected from Fp by GenAuxTriple′
using a PRG with the seed

H(a, b, c, d, e), for some hash function H, z = x · y and w = y · u.

The first case produces the correct distribution irrespective of what the prover
computes, whereas the second case does not. In the second case a cheating prover
can deviate from the protocol and make 〈a〉 follow any distribution they desire.

Bit. As remarked earlier this is the more interesting correlated randomness source
in applications, as it enables far more efficient M-Circuit representations of func-
tions. The source Bit produces a value 〈b〉 such that b is guaranteed to lie in {0, 1}.
However, whilst in an MPC protocol there is a sacrificing methodology for Bits,
this does not translate over to the MPCitH paradigm as one needs a way of
verifying the bits are uniformly selected. Thus checking the source Bit seems to
require cut-and-choose.

7 Executable Gadgets

Up until now we have considered for our MPCitH protocols only M-Circuits from
classes of the form C(S,∅)

F , i.e. M-Circuits with no gadgets. A gadget captures an
essential non-linear subroutine within an M-Circuit. By abstracting it away, we
simplify the composition of special-purpose protocols for such subroutines within
a more generic M-Circuit. Whilst M-Circuits can describe arbitrary gadgets, only
special gadgets, which we call executable gadgets are able to be supported by the
MPCitH protocol.

We proceed to the formal definition of an executable gadget, which we define
over a single finite field Fq of large characteristic for ease of exposition, and then
we present two examples of executable gadgets for MPCitH protocols.

46 K. Baghery et al.

Definition 7.1 (Executable Gadget). An Executable Gadget G is an object
defined by

I. A function G with (possibly zero) inputs and (at least one) output in F .
II. A GenAuxG function that fixes the auxiliary information needed to correct

a uniformly random y to be equal to G(x), i.e. GenAuxG(x,y) = G(x) − y.
III. A GCheckG M-Circuit in the class C(S,∅)

F for a set of randomness sources S,
the function which takes as input x, y, the output of GenAuxG(x,y) and a
challenge value t ∈ F . The procedure GCheckG which outputs a single bit b;
if b = 0 then the the values are inconsistent, i.e. the purported value of aux
is not correct, and if b = 1 then it is correct. The probability that the bit b
is incorrect is bounded by a value εG

′
, with the probability being a function

of the choice of the challenge value t.

Thus an executable gadget is very similar to the checkable randomness sources
from the previous section. To process the gadget with in the MPCitH protocol
we thus proceed just as we did for checkable randomness sources; the initial M-
Circuit C is extended to an augmented circuit C ′ which includes all the necessary
GCheckG operations. As GCheckG itself potentially requires access to correlated
randomness sources this might require the addition of addition correlated ran-
domness source. Then the five round protocol is executed, so that the augmented
circuit C ′ can be created (as it depends on the versifier’s selection of the chal-
lenges t in GCheckG). The modification to the soundness error is the same as
that introduced for checkable randomness sources.

The BitDecomp Gadget: The executable gadget BitDecomp for a given sensi-
tive value 〈x〉q produces the �log2(q)� sensitive values 〈bi〉q such that bi ∈ {0, 1}
and x =

∑�log2(q)�−1
i=0 bi · 2i. A simple example is the bit decomposition oper-

ation (〈b0〉q, . . . , 〈b�log2(q)�−1〉q ← BitDecomp(〈x〉), where ∀i, bi ∈ {0, 1} and∑
i bi2i = x. See Fig. 6 for a formal specification, note this checking procedure

requires no random input from the verifier; this is because there is implicitly ran-
dom input needed to check the (checkable) correlated randomness source Square
which it requires.

In the above instantiation of BitDecomp we assumed that our randomness
source Square was already checked by either cut-and-choose or sacrificing. How-
ever, we can obtain a further efficiency if we merge the checking of the output
of Square with the checking of this bits produced in the gadget. To present this
we give utilize a correlated randomness source USquare, which represents an
unchecked square tuple. Namely, we check the output is correct neither by the
sacrificing style check or via cut-and-choose. This allows us to present an more
efficient check of the BitDecomp Gadget in Fig. 7, where now we require the ver-
ifier to provide a random challenge t ∈ Fq. At first sight it seems to involve the
same number of reveals operations, but we actually save operations as we no
longer need reveals to check the output of Square.

Compilation of Function Representations for Secure Computing Paradigms 47

The BitDecomp Gadget

I. Function G : (〈x〉q) �→ 〈b0〉q, . . . , 〈b�log2(q)�−1〉q
)
such that bi ∈ {0, 1} and

x =
∑

i bi · 2i
II. GenAuxBitDecomp(x, (y0, . . . , y�log(q)�−1)) = (0, b0 − y0, . . . , b�log2(q)�−1 −

y�log2(q)�−1)
III. GCheckBitDecomp ∈ C(Square,∅)

Fq
: On input of 〈b0〉q, . . . , 〈b�log2(q)�−1〉q, 〈x〉q:

(a) flag ← 1, 〈s〉q ← 0
(b) For i from 	log2(q)
 − 1 to 0 do

- 〈a〉q, 〈a2〉q ← Square
- 〈α〉q ← 〈bi〉q − 〈a〉q
- {α}q ← 〈α〉q.reveal()
- 〈r〉q ← {α}q · (〈bi〉q + 〈a〉q) + 〈a2〉q − 〈bi〉q
- {r}q ← 〈r〉q.reveal()
- If {r}q �= 0 then flag ← 0
- 〈s〉q ← 2 · 〈s〉q + 〈bi〉q

(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q �= 0 then flag ← 0
(f) Return flag

Fig. 6. The BitDecomp Gadget

The Optimized BitDecomp Gadget

I. Function G : (〈x〉q) �→ 〈b0〉q, . . . , 〈b�log2(q)�−1〉q
)
such that bi ∈ {0, 1} and

x =
∑

i bi · 2i
II. GenAuxBitDecomp(x, (y0, . . . , y�log(q)�−1)) = (0, b0 − y0, . . . , b�log2(q)�−1 −

y�log2(q)�−1)
III. GCheckBitDecomp ∈ C(Square,∅)

Fq
: On input of 〈b0〉q, . . . , 〈b�log2(q)�−1〉q, 〈x〉q and a

value t from the verifier:
(a) flag ← 1, 〈s〉q ← 0
(b) For i from 	log2(q)
 − 1 to 0 do

- 〈a〉q, 〈a2〉q ← USquare
- 〈ρ〉q ← 〈bi〉q − t · 〈a〉q
- {ρ}q ← 〈ρ〉q.reveal()
- 〈r〉q ← 〈bi〉q − {ρ}q · (〈bi〉q + t · 〈a〉q) − t2 · 〈a2〉q.
- {r}q ← 〈r〉q.reveal()
- If {r}q �= 0 then flag ← 0
- 〈s〉q ← 2 · 〈s〉q + 〈bi〉q

(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q �= 0 then flag ← 0
(f) Return flag

Fig. 7. The optimized BitDecomp gadget

48 K. Baghery et al.

The RNSDecomp Gadget: If we extend our definitions to rings Zq with q =∏k
i=1 pi and pi primes, an interesting technique which has been widely used in

cryptography is to make use of the Chinese Remainder Theorem. In MPCitH it
is very easy for the prover to inject the residues of a sensitive variable such
that the M-Circuit can operate on those residues. Since CRT reconstruction is
a linear operation, it is also trivial to design a GCheck M-Circuit, as it suffice
to apply the linear CRT reconstruction algorithm to the residues, and compare
the result with the original value. An application of such a technique would then
be to use the Tiny-Tables optimization described previously, but for functions
with domain Zq that can be computed residue-wise. By following the blueprint
of [4], one would then create a table of the desired function for all the residues,
thus going from a prohibitive size q table to k tables of total size

∑
pi. (e.g.

exponentiation of a sensitive variable by a non-sensitive variable) (Fig. 8).

The RNSDecomp get

I. Function G : (〈x〉q) �→ (〈x1〉p1 , . . . , 〈xk〉pk) such that xi ∈ Fpi and x =
CRT([x1, . . . , kk], [p1, . . . , pk])

II. GenAuxRNSDecomp(x, (y1, . . . , yk)) = (0, x1 − y1, . . . , bk − yk)
III. GCheckRNSDecomp ∈ C(∅,∅)

Zq,Fp1 ,...,Fpk
: On input of 〈x1〉p1 , . . . , 〈xk〉pk , 〈x〉q:

(a) flag ← 1
(b) 〈s〉q ← CRT([〈x1〉p1 , . . . , 〈xk〉pk], [p1, . . . , pk]) (Local operation)
(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q �= 0 then flag ← 0
(f) Return flag

Fig. 8. Residue number system decomposition

Acknowledgments. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. HR001120C0085 and FA8750-19-C-0502, by the FWO under an Odysseus
project GOH9718N, and by CyberSecurity Research Flanders with reference number
VR20192203.

References

1. Aly, A., et al.: SCALE and MAMBA documentation, v1.11 (2021). https://homes.
esat.kuleuven.be/∼nsmart/SCALE/Documentation.pdf

2. Aly, A., Orsini, E., Rotaru, D., Smart, N.P., Wood, T.: Zaphod: efficiently combin-
ing LSSS and garbled circuits in SCALE. In: Brenner, M., Lepoint, T., Rohloff, K.
(eds.) Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC@CCS 2019, London, UK, 11–15 November
2019, pp. 33–44. ACM (2019). https://doi.org/10.1145/3338469.3358943

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://doi.org/10.1145/3338469.3358943

Compilation of Function Representations for Secure Computing Paradigms 49

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, Octo-
ber/November 2017

4. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 565–577. ACM Press, October 2016

5. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

7. Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations.
MITRE Corporation Technical Report 2547 (1973)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

9. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.:
Ligero++: a new optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020, pp. 2025–2038. ACM Press, November 2020

10. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

11. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 6

12. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1825–1842. ACM Press, October/Novemebr 2017

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

14. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

15. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

16. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

17. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 10

https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10

50 K. Baghery et al.

18. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

19. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

21. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007

23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018

24. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Lig-
atti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1575–1590. ACM
Press, November 2020

25. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

26. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

27. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits
with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019.
LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35423-7 12

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12

Oblivious TLS via Multi-party
Computation

Damiano Abram1, Ivan Damg̊ard1, Peter Scholl1(B), and Sven Trieflinger2

1 Aarhus University, Aarhus, Denmark
peter.scholl@cs.au.dk

2 Robert Bosch GmbH, Stuttgart, Germany

Abstract. In this paper, we describe Oblivious TLS: an MPC protocol
that we prove UC secure against a majority of actively corrupted parties.
The protocol securely implements TLS 1.3. Thus, any party P who runs
TLS can communicate securely with a set of servers running Oblivious
TLS; P does not need to modify anything, or even be aware that MPC
is used.

Applications of this include communication between servers who offer
MPC services and clients, to allow the clients to easily and securely pro-
vide inputs or receive outputs. Also, an organization could use Oblivious
TLS to improve in-house security while seamlessly connecting to exter-
nal parties.

Our protocol runs in the preprocessing model, and we did a prelimi-
nary non-optimized implementation of the on-line phase. In this version,
the hand-shake completes in about 1 s. Based on implementation results
from other work, performance of the record protocol using the standard
AES-GCM can be expected to achieve an online throughput of about
3 MB/s.

1 Introduction

Secure multi-party computation (MPC) allows a group of parties to jointly eval-
uate a function on private inputs, ensuring that no party learns anything more
than what can be deduced from the output of the function. Developments in
recent years have shown that MPC can be practical for a range of use-cases, and
is starting to see real-world deployments. While the classic scenario for MPC
involves a set of parties who each have a private input, more recent applications
also focus on the setting where a set of MPC servers, called an MPC engine,
are distributively performing a computation on inputs uploaded by clients and
known to none of the servers. In this client-server setting, the computation may
be outsourced by external parties who initially provided the inputs, or the servers
may be part of a larger system which delegated a private computation to them.
As in the regular MPC setting, there must be some intrinsic motivation or incen-
tive for the parties operating the MPC servers not to collude. For instance, the
servers can be hosted by independent organisations which have interest in pro-
tecting the confidentiality of the clients’ data against the other parties, perhaps
because some form of representation is implemented.
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 51–74, 2021.
https://doi.org/10.1007/978-3-030-75539-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_3

52 D. Abram et al.

The set of clients can be dynamic in such systems and clients should not need
to participate in the actual MPC protocol, instead they should be able to send
private input to the protocol using standardized algorithms, which is exactly the
issue we address. This creates a more flexible overall system that more closely
resembles the cloud-based IT system deployments that are common today. For
instance, in [8], Damg̊ard et al. describe a concrete instantiation of such a system.
They propose a credit rating system that enables banks to benchmark their
customers’ confidential performance data against a large representative set of
confidential performance data from a consultancy house. The authors anticipate
that the MPC servers would be run by the consultancy house and the Danish
Bankers Association in a commercial setting. Individual banks as clients learn
nothing but the computed benchmarking score.

Security is typically maintained as long as not too many of the servers are
corrupted; for instance, in the dishonest majority setting it is common to allow
up to n − 1 out of n servers to be corrupted, while the honest majority setting
relaxes this by assuming that more than half of the servers are honest.

The Transport Layer Security protocol (TLS) is the leading standard for
secure communication over the Internet. TLS allows two parties, or endpoints,
to first run a handshake protocol to establish a common key, and secondly, in the
record layer protocol, to securely and authentically transmit information using
the key. The latest version of the protocol is TLS 1.3, which has seen major
design changes to address vulnerabilities in previous versions.

Contributions. In this work, based on a master’s thesis [1], we study the
problem of obliviously running one or more endpoints of the TLS 1.3 protocol,
inside an MPC engine. We refer to this scheme as Oblivious TLS. The protocol
allows the engine to securely communicate with any endpoint of the Internet
that runs TLS, in a completely oblivious manner: the other endpoint does not
need to be modified, nor even be aware of the fact that it is interacting with
a multi-party computation (and likewise, the second endpoint may also be an
Oblivious TLS instance, unbeknownst to the first).

The possibilities created by Oblivious TLS are manifold and potentially
groundbreaking: Oblivious TLS facilitates the integration of MPC-based com-
ponents into today’s complex IT systems. For example, distributed key man-
agement systems based on MPC can be interfaced without time-consuming
and sometimes infeasible client-side modifications. Workloads that, despite the
impressive performance gains seen in recent years, are still outside the realm of
the possible using MPC today, could be securely outsourced to external services
protected by comparatively low overhead Trusted Execution Environments by
seamlessly integrating with TLS-based remote attestation mechanisms. Another
fascinating possibility is the use of Oblivious TLS in conjunction with Dis-
tributed Autonomous Organizations (DAO) that ensure the confidentiality of
data through the use of MPC. In the future, Oblivious TLS may enable DAOs
to obliviously use external services to, for example, autonomously manage cloud
resources required to conduct their business.

Oblivious TLS via Multi-party Computation 53

The MPC engine itself can be instantiated with a large class of standard,
modern MPC protocols based on secret-sharing with arithmetic operations.
We focus on instantiating this with actively secure MPC protocols based on
information-theoretic MACs with security against a dishonest majority, such as
SPDZ [9,10] and related protocols [19], however, our techniques are also appli-
cable to other settings and honest majority protocols.

TLS 1.3 is notoriously complex, and running this inside MPC presents several
technical challenges. We first give an overview of some of these challenges below,
and then describe some further motivation for the problem of running TLS in
MPC.

Multi-party Diffie-Hellman. For the handshake protocol, we chose to run
elliptic-curve Diffie-Hellman, currently the most popular key exchange method.
Doing this inside MPC requires an exponentiation between a known public key
and a secret exponent, where the output must remain secret. Moreover, the
shared key (an elliptic curve point) must be represented in a suitable manner
in the MPC engine to allow for further private computations. We present a new
method for doing this based on doubly-authenticated points, namely, a way of
reliably generating random elliptic curve points that are secret-shared both in
a standard finite field MPC representation, and simultaneously in a specialized
shared elliptic curve representation. This allows for efficient conversions between
the two representations, and may be of independent interest.

In the full version of this paper [2], we also present a more efficient variant,
which avoids the use of doubly-authenticated points. This comes with the slight
downside that we do not manage to securely realise the same key exchange
functionality, since a corrupted MPC server in the oblivious endpoint can force
the derived key to be shifted by an arbitrary amount. In practice, however, we
argue that this weaker version of the functionality suffices to run TLS, since the
shift to the key is completely harmless, unless the adversary already happened
to know the private key of the other endpoint.

Threshold Signing. To authenticate the endpoints, we additionally need to
run a threshold signing protocol. Here, the message to be signed (based on the
TLS transcript) is public, so the only information secret-shared in the MPC
engine is the signing key and signature randomness. For this, we use EdDSA
Schnorr-based signatures, which allow a simple threshold protocol without any
expensive MPC operations.

Record Layer Protocol. For the record layer, we need to run authenticated
encryption inside MPC. For this, we present an approach based on the standard
AES-GCM construction, and only in the full version of this paper [2], a more spe-
cialized approach based on a custom MPC-friendly AEAD scheme. AES-GCM
is quite well-suited to MPC, because of the linear structure of its Galois field
MACs. The second approach is much more efficient, however, since it avoids

54 D. Abram et al.

doing any AES operations inside MPC. This comes at the cost of a small modi-
fication to the TLS specification, which also requires the endpoint to know the
number of MPC servers involved in the computation.

Motivation and Related Work. As MPC becomes more widespread, it is
natural to think not only about designing new and improved MPC protocols, but
also about how these can be integrated into existing infrastructure. In particular,
an MPC engine will typically not be a standalone piece, but rather a secure
component of a larger system.

Whenever some private data passes in or out of the MPC component, this has
to be done in a secure manner. With typical MPC protocols based on some form
of secret sharing, the natural solution is to simply have the external process
secret-share inputs to the MPC servers, and receive shares of outputs to be
reconstructed. When active security is required, this is less straightforward since
shares can be tampered with, although there are known methods and protocols
that allow receiving inputs from, or sending outputs to, an external client in an
authentic manner [8].

A drawback of these solutions is that they tend to be tailored to specific MPC
protocols, meaning that all the clients and components of the system must be
aware of the fact that MPC is taking place. This firstly has the potential security
concern that it reveals that an MPC protocol is being carried out in the first
place, and secondly, requires highly specialized software to implement.

In [14], this motivated the study of symmetric primitives such as PRFs, which
are MPC-friendly (either by design, or by chance), meaning that they can be
evaluated inside an MPC engine relatively cheaply. This was later extended to
build MPC-friendly modes of operation for block ciphers [21].

While these works address the problem of encrypting data inside an MPC
engine, they do not immediately lead to solutions for securely communicating
with an external party, without either resorting to protocol-specific methods or
other assumptions like pre-shared keys. DISE [3] also studied distributed forms
of symmetric encryption including authenticated encryption. However, in their
setting the message is always known to one party, which is not the case for us.

Finally, the recent and independent work DECO [23] presents a protocol
that allows a TLS client to prove provenance of TLS data to a third party. Their
solution is essentially based on a 2-party execution of a TLS client, with a very
similar approach to the one described in this paper. Oblivious TLS is however
applicable to both client and server sides of the connection and generalises to the
multiparty case. Moreover, the multiparty Diffie-Hellman procedure presented
in this paper is completely actively secure, whereas the solution proposed in [23]
allows for influence of the adversary that may cause a Handshake failure.

Roadmap. We begin with some preliminaries in Sect. 2, where we explain nota-
tion, give an overview of TLS 1.3, and the MPC building blocks we use. In Sect. 3,
we outline our solution, describing the general idea and presenting the main
steps of the protocol. Section 4 covers the handshake layer of Oblivious TLS,

Oblivious TLS via Multi-party Computation 55

where we focus on the method for generating doubly-authenticated points, the
elliptic-curve Diffie-Hellman protocol and the signature generation. In Sect. 5, we
describe the record layer. Then, in Sect. 6, we discuss security and performance
of Oblivious TLS.

2 Notation and Preliminaries

We denote the finite field with p elements by Fp, where p is a prime or prime
power. Its multiplicative group is F

×
p . Sometimes, when the cardinality is not

important for the discussion, we simply write F. When dealing with groups, we
represent the cyclic subgroup generated by an element g with 〈g〉.

When dealing with bit sequences, we identify the sets {0, 1}k, F
k
2 and F2k

as different representations of the finite field with 2k elements. For this reason,
when multiplying two elements a, b ∈ {0, 1}k, we mean multiplication in F2k .
The set {0, 1}∗ instead represents

⋃∞
i=0{0, 1}i.

The symbol [m] indicates the set {1, 2, . . . ,m}. Whenever we write a ← b to

assign the value of b to a, and similarly, write a
$← S, where S is a set, to mean

that a is randomly sampled from S. Finally, P represents a probability measure.

2.1 An Overview of TLS 1.3

TLS 1.3 [20] is the latest version of TLS, one of the most common protocols
for secure communications over the Internet. The procedure is composed of two
subprotocols: the Handshake and the Record layer. The goal of the first one is
to negotiate secure symmetric keys between the two endpoints. The second one
instead uses the bargained keys to protect the communications.

The Record Layer. Security is enforced by an AEAD (authenticated encryp-
tion with additional data), an encryption algorithm that guarantees privacy and
integrity of the plaintext as well as the integrity of the header of the Record
layer fragments. In order to encrypt and decrypt, an AEAD needs a different
nonce for every fragment. These are deterministically derived from an initial
vector (IV) and do not need to be kept secret. Indeed, security is guaranteed as
long as the key remains private. The Record layer of TLS 1.3 provides for three
types of fragments: Handshake messages, alerts and application data. The first
type consists of all the information concerning the standard management of the
TLS connection. Alerts are used to notify unexpected and potentially malicious
events, whereas application data refers to the actual communication between the
two endpoints (i.e. all the information for which they decided to use TLS 1.3).

The Handshake. We use the term “client” to denote the endpoint that initi-
ates the connection, whereas the term “server” indicates the other endpoint.
Furthermore, we define the transcript as the concatenation of all the messages
exchanged on the connection until the analysed moment. The Handshake can
be split into two phases: the key exchange phase, whose goal is to establish the

56 D. Abram et al.

keys and negotiate the cryptographic algorithms used in the connection, and the
authentication phase, which has the objective of authenticating the endpoints
and provide key confirmation.

The Key Exchange Phase. The protocol is started by the client sending a Client-
Hello to the server. This is a message containing a 32-byte nonce (protection
against replay attacks), information concerning the cryptographic algorithms
supported by the client (signatures, AEADs, Diffie-Hellman groups) and at least
one Diffie-Hellman public key. The server replies with a ServerHello, which con-
tains another 32-byte nonce, the cryptographic algorithms selected among those
offered by the client and one Diffie-Hellman public key. When the initial exchange
is concluded, the two endpoints perform a Diffie-Hellman key exchange using the
keys specified in the Hello messages. A key derivation function is then applied
on the result. The operation takes as input also the transcript. At the end, the
parties obtain two AEAD keys (handshake keys), as well as the related IVs.
From that moment, the Record layer protects the client-to-server flow (resp. the
serve-to-client flow) using the first key (resp. using the second key). The end-
points obtain also two MAC keys. After that, the server could provide further
information concerning the management of the connection through the Encrypt-
edExtensions message.

The Authentication Phase. Starting from the server, the endpoints exchange
their certificates (ServerCertificate and ClientCertificate) and a signature on
the transcript using the key specified on them (ServerCertificateVerify and
ClientCertificateVerify). Finally, they send an HMAC on the transcript using
the MAC keys obtained from the key derivation (ServerFinished and ClientFin-
ished). In particular, the client uses the first key, the server uses the second one.
In general, only the server is required to authenticate itself, the client is only
required to send ClientFinished. Anyway, the server may impose the authentica-
tion of the client through a CertificateRequest message. Clearly, the endpoints
verify all the signatures and the MAC supplied by the other endpoint. If any
check fails, the connection is closed.

Derivation of the Keys. At the end of the Handshake, the endpoints feed the
new messages of the transcript into the key derivation function.1 At the end,
the parties obtain two new AEAD keys (application keys), as well as the related
new IVs. From that moment, the Record layer protects the client-to-server flow
(resp. the serve-to-client flow) with the first new key (resp. with the second new
key). The old keys are never used again.

As it was proven in [11], all the values output by the Handshake are computa-
tionally independent. Furthermore, slight modifications in the transcripts input
in the key derivation function would lead to completely different and unpre-
dictable outputs.

1 The key derivation function maintains an internal state, therefore all its outputs
depend on the Diffie-Hellman secret and the Hello messages.

Oblivious TLS via Multi-party Computation 57

2.2 Multiparty Computation Protocols

Multiparty computation (MPC) deals with techniques that allow a set of parties
(sometimes called an MPC engine) to jointly perform computations with security
guarantees against external attackers as well as against dishonest parties.

Throughout the work we assume there is a fixed set of n parties, denoted
P1, . . . , Pn. We want to prove security against an active adversary that can cor-
rupt up to n − 1 parties, in the static corruption model, so that the set of
(indices of) honest parties H := {i ∈ [n] | Pi is honest} is fixed and non-empty.
We denote the set of corrupted parties [n] \ H with C. Our security proofs are
expressed in the universal composability (UC) framework [6].

Authenticated Secret Sharing. We use protocols based on additive secret-sharing
schemes over finite fields, specifically, large prime fields, large binary fields and
F2. We say that x ∈ F is secret-shared if every party Pi holds a random share
xi ∈ F such that

∑
i∈[n] xi = x. As long as at least one party keeps its share

secret, nobody learns anything about the value of x. If all parties collaborate, x
can be reconstructed by revealing all the shares. This operation is called opening.
To prevent corrupted parties from opening incorrect values, protocols typically
augment the shares with information-theoretic MACs as in the SPDZ protocol [4,
10]. Then, whenever secret-shared values are opened, the MACs can be checked
and any tampering is detected with overwhelming probability.

Secret Sharing over Elliptic Curve Groups. Additive secret sharing, as presented
above, can be performed over any finite group. Suppose now that E is an ellip-
tic curve. Let G be one of its points with prime order q. In [7], the authors
showed that the authenticated secret-sharing scheme of SPDZ over Fq induces
an authenticated secret-sharing scheme over 〈G〉 which uses the same MAC key.
Given a public value a ∈ Fq and a secret-shared point [[Q]] ∈ 〈G〉, this allows the
parties to obtain shares [[aQ]] (over E) without any communication between the
parties. Moreover, given a secret-shared [[a′]] ∈ Fq and a public point Q′ ∈ 〈G〉,
it is possible to non-interactively obtain [[a′Q′]] over E.

Arithmetic Black Box Functionality. We work in the arithmetic black box model,
which abstracts away the underlying details of secret-sharing by an ideal func-
tionality. The functionality has separate commands for receiving inputs from
the parties, performing certain arithmetic operations, and delivering outputs.
We write [[x]] to denote that a value x ∈ F is stored by the functionality under
some public identifier known to all parties.

The specific functionality we use is FMPC, given in Appendix A of the full
version of this paper [2]. It supports computations on different fields, as well as
over an elliptic curve as described above. It can also handle conversions between
values stored in F2 and Fp. These operations can be instantiated using protocols
such as SPDZ [10] (for computations over large fields), TinyOT [19] or multi-
party garbled circuits [15] (for computations over F2). Conversions between Fp

and F2 can be done using so-called preprocessed doubly-authenticated bits [22].

58 D. Abram et al.

In Sect. 4.1, we provide further discussion on how the FMPC functionality can
be instantiated.

3 Overview of the Solution

Oblivious TLS is a protocol that allows an n-party MPC engine to communicate
with a TLS 1.3 endpoint, preserving privacy and correctness of the transmissions
against up to n − 1 corrupted parties. Effectiveness and security are guaranteed
when either one or both TLS endpoints are replaced by such an MPC engine.
For concreteness, however, in this paper we assume Oblivious TLS is adopted at
the server side, which we expect to be the most common scenario.

The Communicating Party. We assume that only one of the parties manages the
communication with the client. Supposing this is party P1, then whenever the
MPC engine has to send a message, P1 is the entity that physically performs the
operation. Moreover, when the client sends a message to the engine, P1 receives
it and shares it with the other parties. Clearly, P1 can always perform a Denial-
of-Service attack, by simply dropping the incoming or outgoing communications.

Handshake Modes. The goal of our work was to design the simplest protocol
that allowed a set of parties to communicate with a TLS 1.3 endpoint. For this
reason, we focused our attention on Diffie-Hellman-based Handshakes without
the use of pre-shared keys (see [20, Sect. 2]). We believe that Oblivious TLS can
be extended to other Handshake modes. However, it might be the case that the
use of pre-shared keys decreases the efficiency of the whole protocol as the key
derivation would become more complicated. Since this is an expensive part of
Oblivious TLS, opening a new connection might be preferable to resuming an
older session.

Privacy of Metadata. Oblivious TLS does not preserve privacy of Handshake
messages and alerts against the corrupted parties of the MPC engine, but
only against external attackers. This is because the derived handshake keys are
revealed to the MPC engine, and the alerts are immediately opened upon receipt.
This choice allows a more efficient management of alerts and handshake mes-
sages, including verification of signatures and computation of transcripts. On
the other hand, if an attacker corrupts any party of the engine, it gains access
to the metadata of the connection. We do not believe this to be a huge concern,
however, since this type of targeted attack is not typically feasible for, say, a
mass surveillance adversary who aims to harvest metadata.

Handshake

The Handshake of Oblivious TLS is a multiparty execution of its original ver-
sion. In particular, the messages exchanged between the client and the MPC
engine are the same as in a traditional TLS 1.3 connection. However, additional

Oblivious TLS via Multi-party Computation 59

security properties are guaranteed, specifically, the protocol protects the privacy
of the application keys against up to n − 1 corrupted parties and ensures the
authenticity of the multiparty endpoint. Both objectives are achieved using mul-
tiparty public keys, i.e. key pairs where the private counterpart is secret-shared.
We now outline the main steps of the protocol.

Initialisation. To set up an Oblivious TLS server, the parties generate an EdDSA
key using ΠSign (see Sect. 4.2) and request a Certificate Authority to issue a
certificate that binds the public key to the identity of the MPC engine. The
private counterpart is secret-shared, therefore, its value remains secret as long as
at least one party is honest. The key will be used to guarantee the authenticity of
the communications. The MPC engine also generates a random seed s for a PRG
(this can be done using commitment schemes). Every random value inserted in
the Handshake messages must be generated using s and the selected PRG.

ClientHello and ServerHello. The two messages are generated following the
specification of TLS 1.3. However the 32-byte nonces must be generated using
the seed s and the selected PRG. Moreover, the messages must contain a not-
necessarily-fresh DH public key which was generated using ΠDH (see Sect. 4.1).
The private counterpart of such key is secret-shared, therefore, its value is known
to nobody as long as at least one party is honest.

Cryptographic Computations - Part I. After sending the Hello messages, the
parties perform a multiparty Diffie-Hellman key exchange using ΠDH, obtaining
a secret-shared output. Then, the key derivation function is applied to the result
using the MPC techniques described in Sect. 4. At the end, the Handshake keys2

and IVs are opened. The MAC keys for ServerFinished and ClientFinished as
well as the internal state of the key derivation function are instead kept in shared
form.

EncryptedExtensions, CertificateRequest and Certificates. These messages are
generated and checked as described in the specification of TLS 1.3. Observe that
their encryption and decryption can be computed locally by each party. Indeed,
the handshake keys and IVs have been opened in the previous step. Clearly, the
parties must send the certificate of the MPC engine.

ServerCertificateVerify and ClientCertificateVerify. Observe that the transcript
of the connection is known to all the parties of the engine. Therefore, the ver-
ification of ClientCertificateVerify can be performed locally. The signature in
ServerCertificateVerify is instead generated using the MPC protocol ΠSign (see
Sect. 4.2). Clearly, in order to do that, all the parties must agree on the tran-
script. In particular, they must check that P1 generated a fresh nonce using s
and the DH key was generated by the whole MPC engine. Since the EdDSA pri-
vate key is shared, only with the collaboration of the whole engine, it is possible
to generate a signature.
2 Using the notation of [20, Sect. 7.1], client handshake traffic secret and server hand-
shake traffic secret must not be opened.

60 D. Abram et al.

ServerFinished and ClientFinished. The generation of the HMAC in ServerFin-
ished is performed by applying MPC algorithms to the corresponding secret-
shared MAC key (see Sect. 4). The verification of the HMAC in ClientFinished
instead does not require the use of any multiparty protocol. Indeed, the client
MAC key can be opened just after the reception of the message. Each party can
then check the MAC locally. It is fundamental that the MAC key is opened after
the reception of ClientFinished. Otherwise, the protocol would not guarantee
explicit authentication. In any case, opening the MAC keys for the verification
does not affect security. Indeed, the opened MAC key is never used afterwards
and its value does not leak any information.

Cryptographic Computations - Part II. The second part of the key derivation is
performed using the MPC techniques described in Sect. 4. The operation takes
as input the full transcript of the connection as well as the internal state of
the key derivation function, which is secret-shared. At the end, the new IVs are
opened. The remaining outputs must be kept in shared form.

Key Update. TLS 1.3 describes a key update scheme based on the key deriva-
tion function of the Handshake (see [20, Sect. 7.2]). Again, we can perform the
operations using the MPC techniques presented in Sect. 4. At the end, the new
IVs are opened. The remaining outputs must be kept in shared form.

Record Layer

The Record layer of Oblivious TLS is essentially an adaptation of the origi-
nal protocol to secret-shared keys. As a consequence, the changes do not affect
the Handshake messages. Indeed, in that case, the keys as well as the nonces
are known to every party. When we switch to the application keys, instead,
only the nonces are known. For compatibility, the fragment partition, the addi-
tional data, the nonce generation and the padding are performed as in TLS 1.3.
Encryptions and decryptions are instead executed using multiparty operations
(see Sect. 5). Specifically, the encryption outputs a non-shared ciphertext taking
as input a secret-shared plaintext, a secret-shared key and cleartext nonce and
additional data. The decryption outputs either ⊥ (in case of a tampered cipher-
text) or a secret-shared plaintext and takes as input a secret-shared key and
non-shared nonce, ciphertext and additional data. Upon decryption, the frag-
ment type (which is encoded in the padding) is checked. In case of Alerts and
Handshake messages, the plaintext is opened and handled according to TLS.

4 Handshake Operations

The Handshake of TLS 1.3 is based on Diffie-Hellman key exchange. Given the
public key of the client, the parties running Oblivious TLS should be able to
compute a secret-sharing of the exchanged secret. Notice that if any party Pi

learns the exchanged secret, Oblivious TLS would completely lose its purpose as

Oblivious TLS via Multi-party Computation 61

Pi could compute the symmetric keys and communicate with the client without
any restriction. In order to design a multiparty Diffie-Hellman protocol, it is
necessary for the parties to have a secret-shared private key. Clearly, the public
key does need to be kept secret.

We chose to focus on Diffie-Hellman over elliptic curves, as it is the most
popular version of the protocol and allows us to work over smaller finite fields
than traditional DH. Specifically, we use the curve Curve25519 of [5], although
with minor changes the protocol could also use other curves of TLS 1.3.

In this section, we will present an actively secure protocol for Diffie-Hellman.
In Sect. 4.2 of the full version of this paper [2], we will also describe a more
efficient variant that allows some limited influence on the computation to the
adversary. The downside of this solution is that it does not permit to directly
reduce the security of Oblivious TLS to the security proof of TLS 1.3 [11] without
introducing new cryptographic assumptions.

Diffie-Hellman Notation. For the whole section, we assume to work with an
elliptic curves E of equation

Y 2 = X3 + AX2 + BX + C

over a prime field of cardinality p �= 2. Furthermore, we assume the Diffie-
Hellman group to be 〈G〉 where G ∈ E has prime order q such that q2 � |E|. We
denote the identity element of the group with ∞. Remember that this is the only
non-affine point of the group. In this section, we use the notation [[·]]q, [[·]]p
and [[·]]E to denote secret-sharings over Fq, Fp and 〈G〉 respectively (modelled
as values in FMPC).

For clarity, we assume the elliptic curve Diffie-Hellman key exchange to be the
algorithm that, on input a secret key s ∈ F

×
q and a point Q ∈ 〈G〉\{∞}, outputs

the x-coordinate of sQ. Actually, among all the elliptic curves supported by TLS
1.3, this description applies only to Curve25519 and Curve448. The output of
the other algorithms usually depends on both the coordinates of sQ.

Computations over Elliptic Curves. Recall that given two affine points (x0, y0)
and (x1, y1) of the curve E such that x0 �= x1, their sum (x3, y3) is computed as
follows

m ← y1 − y0

x1 − x0
, x3 ← m2 − A − x0 − x1, y3 ← m(x1 − x3) − y1 (1)

We also recall that given an affine point (x0, y0) of E, its opposite is (x0,−y0).
As a consequence, two points P and Q of the curve have the same x-coordinate
if and only if P = Q or P = −Q.

Actually, there exist multiple ways to compute the addition between ellip-
tic curve points. In traditional computation (i.e. non-multiparty computation),
alternative coordinate systems are usually preferred as they permit to perform
operations over elliptic curves without divisions. However, for secret-sharing
based protocols like SPDZ the cost of a division is roughly twice the cost of

62 D. Abram et al.

a multiplication. All the division-free methods known so far need at least 10
multiplications to perform additions, so in our case, affine coordinates are still
the best solution.

Key Derivation, HMAC and Key Updates. After having performed the Diffie-
Hellman key exchange, the obtained secret is input into a key derivation func-
tion which outputs multiple symmetric keys. In particular, TLS 1.3 uses the
HKDF scheme of [18] which is based on hash functions (concretely, SHA256 or
SHA384). Since both the exchanged secret and the derived symmetric keys must
remain private, the key derivation must be performed in MPC.

Before computing the hash function, we convert the secret from a [[·]]p sharing
into a [[·]]2 sharing, so we can compute the hash function as a binary circuit,
using e.g. a garbled circuit-based protocol [15]. Alternatively, we could use a
customized MPC-friendly hash function, however, this is non-standard and not
supported by endpoints on the Internet.

The same approach can be used also to compute the IVs and the actual
encryption keys of the AEAD (see [20, Sect. 7.3]), the HMAC keys and the
HMACs used in ClientFinished and ServerFinished (see [20, Sect. 4.4.4]) and
the key updates (see [20, Sect. 7.2]).

Signatures. The last cryptographic operation that the MPC engine needs to
perform in the Handshake is the generation and verification of signatures. Since
the transcript is known to all the parties of the engine, signatures can always
be verified locally. Signing instead is more complex, indeed, the signature must
be issued only with the approval of all the parties. We therefore use a threshold
Schnorr-style protocol based on EdDSA signatures, given in Sect. 4.2. Since the
message being signed is public, we can do this step without any expensive MPC
operations.

4.1 Diffie-Hellman

DaPoint. The proposed protocol needs a particular preprocessing phase
ΠdaPoint, which is described in Figs. 1 and 2. The description uses FMPC and
FRand as resources. The latter is a simple functionality that outputs a random
permutation to all the parties.

The protocol ΠdaPoint has the purpose of generating N doubly-authenticated-
point (daPoint) tuples, i.e. random triples of the form

(
[[R]]E , [[u]]p, [[v]]p

)
such

that R ∈ 〈G〉 \ {∞} and (u, v) are the affine coordinates of R. The algorithm is
based on a cut-and-choose style bucketing technique [19].

It is possible to prove that ΠdaPoint securely implements the functionality
FdaPoint described in Fig. 3.

Theorem 1. Assuming that

ω := N

(
M + N · l

l

)−1

and ω′ :=
M + N · l

q

Oblivious TLS via Multi-party Computation 63

ΠdaPoint

Let M, N, l ∈ N be three security-parameter-dependent values with M, l ≥ 2.
MPC
The parties can issue queries to FMPC but they cannot access the internal values
(i.e. everything except the output) of the procedure DaPoint.
DaPoint
On input (daPoint, (idi,1, idi,2, idi,3)i∈[N]) the parties compute the following steps:

1. For each i ∈ [n], the parties generate M + Nl random elements
[[zi,1]]q, [[zi,2]]q, . . . , [[zi,M+Nl]]q in Fq such that zi,j is known only to Pi for
each j ∈ [M + Nl]. This operation is performed using FMPC.

2. For each i ∈ [n] and j ∈ [M + Nl], the parties compute [[Zi,j]]E ← [[zi,j]]qG
using FMPC and Pi computes Zi,j locally.

3. For each i ∈ [n] and j ∈ [M + Nl], party Pi computes (xi,j , yi,j), the affine
coordinates of Zi,j . If this is not possible since Zi,j = ∞, the protocol aborts.
Otherwise, Pi inputs xi,j and yi,j in FMPC with domain Fp.

4. The parties sample a random permutation ψ of [M + Nl] using FRand.
5. For each i ∈ [n] and j ∈ [M+Nl]\[Nl], the parties open [[Zi,ψ(j)]]E , [[xi,ψ(j)]]p

and [[yi,ψ(j)]]p. If the affine coordinates of the former do not coincide with
the latter, the protocol aborts.

6. For each (i, j) ∈ [n] × [Nl], the parties set [[si,ψ(j)]]p ← [[xi,ψ(j)]]
2
p and open

ti,ψ(j) ← [[yi,ψ(j)]]
2
p − [[xi,ψ(j)]]p · [[si,ψ(j)]]p −A · [[si,ψ(j)]]p −B · [[xi,ψ(j)]]p −C.

If any of the ti,ψ(j)’s is different from zero, the protocol aborts.
7. For each j ∈ [Nl], the parties set [[Rψ(j)]]E ← ∑

i∈[n][[Zi,ψ(j)]]E and

[[xψ(j)]]p ← [[x1,ψ(j)]]p, [[yψ(j)]]p ← [[y1,ψ(j)]]p. Then, for i ∈ [n] \ {1},

[[m]]p ← [[yψ(j)]]p − [[yi,ψ(j)]]p

[[xψ(j)]]p − [[xi,ψ(j)]]p

[[xψ(j)]]p ← [[m]]2p − A − [[xψ(j)]]p − [[xi,ψ(j)]]p

[[yψ(j)]]p ← [[m]]p · ([[xi,ψ(j)]]p − [[xψ(j)]]p) − [[yi,ψ(j)]]p.

If for any i, m cannot be computed due to a zero denominator, the protocol
aborts.

8. For each (i, j) ∈ [N] × [l], let [[Ri,j]]E := [[Rψ((i−1)l+j)]]E and

[[ui,j]]p := [[xψ((i−1)l+j)]]p, [[vi,j]]p := [[yψ((i−1)l+j)]]p.

The sequence Bi := (ψ((i − 1)l + j − 1))j∈[l] is called the i-th bucket. This
is equivalent to splitting the first Nl elements of the permuted sequence into
blocks of l elements called buckets.

Fig. 1. The daPoint protocol - part 1

are negligible functions in the security parameter, ΠdaPoint securely implements
FdaPoint in the (FMPC,FRand)-hybrid model.

64 D. Abram et al.

9. For each i ∈ [N] and j ∈ {2, 3, . . . , l}, the parties compute and open

Wi,j ← [[Ri,1]]E + [[Ri,j]]E

[[m]]p ← [[vi,1]]p − [[vi,j]]p

[[ui,1]]p − [[ui,j]]p

wi,j ← [[m]]2p − A − [[ui,j]]p − [[u1,j]]p

w′
i,j ← [[m]]p · ([[ui,j]]p − [[wi,j]]p) − [[vi,j]]p

If for any j, m cannot be computed due to a zero denominator or the affine
coordinates of Wi,j do not coincide with (wi,j , w

′
i,j), the protocol aborts.

Otherwise, for every i ∈ [N], the parties store [[Ri,1]]E , [[ui,1]]p and [[vi,1]]p
with identities idi,1, idi,2 and idi,3.

Fig. 2. The daPoint protocol - part 2

FdaPoint

MPC
FdaPoint replies to the queries as FMPC did.
daPoint
After receiving (daPoint, (idi,1, idi,2, idi,3)i∈[N]) from every honest party and the
adversary, FdaPoint samples a random point Ri in 〈G〉 \ {∞} for every i ∈ [N].
Let (ui, vi) be its affine coordinates. The functionality stores Ri, ui and vi with
labels idi,1, idi,2 and idi,3.

Fig. 3. The daPoint functionality

We present a sketch of the proof of Theorem 1. The complete version can be
found in Appendix B.1 of the full version of this paper [2]. We point out that
if the order of the additions in step 7 of ΠdaPoint is changed, the protocol is
probably still secure but our proof does not apply anymore.

Proof (Sketch). Consider the simulator SdaPoint that runs the protocol with the
adversary impersonating the honest parties and sends (Abort) to the functional-
ity if and only if the simulated execution aborts. We show that no PPT adversary
can distinguish between ΠdaPoint and the composition of FdaPoint with SdaPoint.

For simplicity, we ignore the fact that the addition of elliptic curve points can
fail due to a zero-denominator. Each of these operations indeed comes with some
leakage, which accumulates throughout the protocol. Showing its negligibility is
actually the most complex part of the proof.

When there exist i ∈ [n] and j ∈ [M + Nl] such that (xi,j , yi,j) �∈ E, the
protocol always aborts. Indeed, if the incorrect point is opened in step 5, the
protocol aborts. Moreover, in the lucky case in which the point passes the check,
the protocol aborts in the following step when the equation of the curve is
checked on all the non-opened points.

Oblivious TLS via Multi-party Computation 65

Consider the protocol. For every i and j, we define

Rj :=
∑

i∈[n]

Zi,j , Z ′
i,j := (xi,j , yi,j), R′

j :=
∑

i∈[n]

Z ′
i,j .

Observe that the coordinates of R′
ψ(j) are (xψ(j), yψ(j)) (see step 7 of ΠdaPoint).

Moreover, since at least one of the addends Zi,j is not known to the adversary,
Rj is random from the adversary’s perspective.

Claim. If there exists any j ∈ [M + Nl] such that R′
j �= Rj , the protocol aborts

with overwhelming probability.

Let S := {j ∈ [M + Nl] | R′
j �= Rj}. Observe that if R′

j �= Rj , there exists
at least one i ∈ [n] such that Z ′

i,j �= Zi,j . Therefore, if there exist more than Nl
elements in S, the protocol aborts with probability 1 at step 5.

For each i ∈ [N] and j ∈ [l], let f(i, j) := ψ((i − 1)l + j). The protocol does
not abort only if every bucket is either contained in S or in S�. Indeed, in every
bucket Wi,j = Rf(i,1)+Rf(i,j), whereas (wi,j , w

′
i,j) = R′

f(i,1)+R′
f(i,j). Therefore,

if |S| > Nl or l � |S|, the probability of an abortion is 1. We now analyse what is
the probability of aborting in the other cases, i.e. when |S| = rl with 0 < r ≤ N .

We consider the possible permutations ψ that would make the protocol suc-
ceed. Let their set be Σ. We can represent each permutation as a sequence of
M + Nl non-repeated numbers in [M + Nl]. The j-th number of the sequence
represents the image of j. The i-th bucket is the sequence of elements from posi-
tion (i − 1)l + 1 to il. The permutations that cause no abortion have to send all
the elements of S in r of the first N buckets. There are

(
N
r

)
ways of choosing

these buckets, (rl)! ways of permuting the elements in S and (M + Nl − rl)!
ways of permuting the remaining elements. Therefore, the probability of picking
any of the permutations that cause no abortion is

P(ψ ∈ Σ) ≤
(
N
r

) · (rl)! · (M + Nl − rl)!
(M + Nl)!

=
(

N

r

)(
M + Nl

rl

)−1

≤ ω.

The last inequality was proven in [13, Sect. 5]. The claim follows from the fact
that ω is negligible by hypothesis.

Observe that the values opened in step 5 and in the buckets are independent
of the final output, that terminates the sketch of the proof.
�

Complexity of daPoint. If we implement FMPC using SPDZ, the execution of
ΠdaPoint takes 10+4(n−1) rounds. Each of the generated tuples has the following
cost: 2nl − 1 multiplicative triples in Fp, nl − 1 division tuples in Fp, 3nl − 1
squaring couples in Fp, 2n(l+M/N) input masks in Fp, n(l+M/N) input masks
over Fq and the communication of

(
3nM/N + 2M/N + 5l + 11nl − 9

) · log(p) + nM/N + l − 1

bits for every party.

66 D. Abram et al.

Multiparty Diffie-Hellman. Given the functionality FdaPoint, it is possible to
construct a multiparty protocol for elliptic curve Diffie-Hellman as described in
Fig. 5. The following theorem shows that ΠDH securely implements the func-
tionality FDH presented in Fig. 4.

FDH

MPC
FDH replies to the queries as FdaPoint did.
Key Generation
After receiving (KeyGen, id) from every honest party and the adversary, FDH

samples a random value s
$← F

×
q and computes S ← sG. Then, it passes S to

the adversary and waits for a reply. If the answer is OK, FDH outputs S to every
honest party and stores s with label id. Otherwise, it aborts.
Diffie-Hellman
After receiving (DH, id1, Q, id2) from the adversary and every honest party, FDH

retrieves the private key s of label id1. If Q = ∞ or qQ �= ∞, the functionality
does nothing. Otherwise, it computes e, the x coordinate of sQ, and stores it with
identity id2.

Fig. 4. The Diffie-Hellman functionality

ΠDH

MPC
The parties can issue queries to FdaPoint but they cannot access the private keys
and the internal values of the key exchange procedure.
Key Generation
On input (KeyGen, id) the parties perform the following steps

1. Sample a random secret value [[s]]q ∈ Fq and set [[S]]E ← [[s]]qG.
2. Call FdaPoint to open [[S]]E . If S = ∞, the protocol restarts.
3. Store the secret key [[s]]q with label id and output the public key S.

Diffie-Hellman
On input (DH, id1, Q, id2) the parties perform the following steps

1. They retrieve the private key [[s]]q with label id1. Such key is stored in
FdaPoint. If Q = ∞ or qQ �= ∞, the protocol stops.

2. They compute [[Z]]E ← [[s]]qQ using FdaPoint.
3. They call FdaPoint to obtain a random daPoint tuple ([[R]]E , [[x]]p, [[y]]p) .
4. They compute and open W ← [[Z]]E − [[R]]E .
5. Let (u, v) be the affine coordinates of W . If W = ∞, the final output is [[x]]p.

Otherwise, using FdaPoint, the parties compute the output

[[e]]p ←
(

[[y]]p − v

[[x]]p − u

)2

− A − [[x]]p − u.

In case of zero denominator, the protocol aborts. The value of [[e]]p is stored
with label id2.

Fig. 5. The Diffie-Hellman protocol

Oblivious TLS via Multi-party Computation 67

Theorem 2. Assuming q−1 to be a negligible sequence in the security parameter,
the protocol ΠDH securely implements the functionality FDH in the FdaPoint-
hybrid model.

We present a sketch of the proof of theorem 2. The complete version can be
found in Appendix B.2 of the full version of this paper [2].

Proof (Sketch). Consider the simulator SDH that forwards the communications
between adversary and functionality in the key generation and simulates Diffie-
Hellman by sending a random point in 〈G〉. We show that no PPT adversary is
able to distinguish between ΠDH and the composition of FDH and SDH.

It is easy to see that the no adversary can distinguish between the original
key generation and the simulated one. Therefore, we focus on Diffie-Hellman. We
recall that R = (x, y) by how FdaPoint is defined. As a consequence, in step 5,
we compute the first coordinate of W + R = Z = sQ. The relation holds even if
W = ∞, indeed, in such case sQ = Z = R. Observe that in the protocol the value
of W is random, as the adversary does not know R. Moreover, the probability
that the procedure fails due to a zero denominator is negligible. Indeed, that
happens if and only if R = W = Z − R or R = −W = R − Z, therefore, if and
only if 2R = Z or Z = ∞. The first case occurs with negligible probability, the
second one is just impossible because it would require either S = ∞ or Q = ∞.
That terminates the sketch of the proof.
�

Complexity of Diffie-Hellman. If we implement FMPC using SPDZ, the protocol
ΠDH takes 4 rounds, 1 division tuple over Fp, 1 squaring couple over Fp, 1
daPoint tuple and the communication of 5 log(p) + 1 bits for every party. The
key generation requires instead just 1 random shared element of Fq and the
communication of log(p) + 1 bits for every party.

Instantiating FMPC on the Required Fields. In concrete situations, we
cannot choose the elliptic curve used by the Diffie-Hellman algorithm. As a
matter of fact, TLS 1.3 supports only 5 secure curves. Although, it may be
possible to find other secure curves, very few endpoints of the Internet would
support them. For this reason, the choice of the fields Fp and Fq used by FMPC

is very restricted. If FMPC is implemented using SPDZ, the Offline phase (i.e.
the expensive preprocessing phase which is necessary to perform multiplications
and inputs) must be instantiated on these fields. Unfortunately, some of the
most efficient solutions (e.g. homomorphic encryption based Offline phases) come
with strong constraints, which are usually not satisfied in our case. However,
Oblivious Transfer based protocols such as MASCOT [17] just require the field
to have cardinality sufficiently close to a power of 2. This condition is satisfied
by both Fp and Fq for most the elliptic curves proposed by TLS 1.3. A more
extensive discussion on the topic can be found in Sect. 4.3 of the full version of
this paper [2].

68 D. Abram et al.

4.2 Signature Generation

The authentication of the TLS connection is essentially based on signatures.
Since the identity of the MPC engine consists in the union of all its parties, it
is necessary for the private key to be secret-shared, otherwise, an attacker may
issue new signatures without having control of all the parties.

In TLS 1.3, the endpoints sign the transcript of the Handshake. Since the
latter is known to all the members of the MPC engine, it is sufficient that
we design a multiparty protocol that on input a secret-shared key [[a]] and a
cleartext message m, outputs a cleartext signature s ← Sign(a,m). Clearly, the
signing algorithm should be supported by TLS 1.3. We decided to base our
protocol on EdDSA. Indeed, Schnorr signatures have interesting homomorphic
properties that suit our context.

Schnorr Signatures. We briefly recall how Schnorr signatures are generated. Let
(〈G〉,+) be an elliptic curve group of prime order q and suppose that the discrete
logarithm problem is hard over 〈G〉. Let H : {0, 1}∗ −→ Fq be a hash function.
A private key is a random element a ∈ Fq, whereas its public counterpart is
defined to be A := aG. A signature (R, s) of a message m ∈ {0, 1}∗ is generated
as follows

r
$← Fq, R ← rG, s ← (r + H(R,A,m) · a) mod q

The signature can be verified by checking whether sG = R + H(R,A,m)A.

FSign

Let G be the base point of the curve and let q be its order.
Initialization. Upon receiving (Init) from every party, FSign generates a random
pair (a, A) such that A = aG. Then, it sends A to the adversary and waits for a
reply. If the answer is OK, the functionality outputs A to every honest party and
stores (a, A). Otherwise, it aborts.
Sign: Upon receiving (Sign, m) from every party, where m is in {0, 1}∗, FSign

generates a signature (r, R) of m using the stored key. Then, it sends (s, R, m) to
the adversary. If the answer is OK, FSign outputs (s, R) to every honest party.
Abort: On input (Abort) from the adversary, the functionality aborts.

Fig. 6. The functionality FSign

Multiparty Signature. Using the functionality FKey as a resource (see Fig. 7),
the parties can generate EdDSA signatures using the protocol ΠSign described
in Fig. 8. In practice, FKey can be implemented by having each Pi broadcast
Si, and run a zero-knowledge proof of knowledge of the secret si. The proof of
the following theorem can be found in Appendix D of the full version of this
paper [2].

Oblivious TLS via Multi-party Computation 69

FKey

Key
On input (Key) from each party, FKey samples si

$← Fq for each i ∈ H and
computes Si ← siG. When the adversary provides a pair (sj , Sj) for every j ∈ C,
the functionality answers with {Si}i∈H and waits for a reply. If the adversary
sends OK, FKey checks that Sj = sjG for each j ∈ C. In such case, it outputs
(si, S1, S2, . . . , Sn) to Pi ∀i ∈ H. Otherwise, it sends ⊥ to each honest party.

Fig. 7. The functionality FKey

ΠSign

Let G be the base point of the curve and let q be its order.
Initialization. Party Pi sends (Key) to FKEY. If FKEY replies with
(ai, A1, A2, . . . , An), Pi outputs A ← ∑

j∈[n] Aj and stores (A, ai). Otherwise,
it aborts.
Sign. Let m be in {0, 1}∗, every party Pi performs the following operations.

1. It sends (Key) to FKEY. If FKEY replies with (ri, R1, R2, . . . , Rn), Pi computes
R ← ∑

j∈[n] Rj . Otherwise, it aborts.

2. Pi computes and broadcasts si ← (ri + H(R, A, m) · ai) mod q.
3. Pi waits for sj from every other party Pj and computes s ← ∑

i∈[n] si mod q.

Then, it checks that sG = R + H(R, A, m) · A. If this is not true, it aborts.
Otherwise, it outputs (R, s).

Fig. 8. The protocol ΠSign

Theorem 3. The protocol ΠSign securely implements FSign in the FKey-hybrid
model.

5 Record Layer Operations

In the Record layer for Oblivious TLS, we need secure protocols that given an
AEAD scheme (E ,D) and a secret-shared symmetric key [[K]], allow performing
the following operations

– Encrypt. On input a cleartext nonce N , cleartext associated data A and a
secret-shared plaintext [[X]], output a cleartext string C = E(K,N,A,X).

– Decrypt. On input a cleartext nonce N , cleartext associated data A and a
non-shared ciphertext C, output ⊥ if and only if ⊥ = D(K,N,A,C). Other-
wise, output a secret-shared value [[X]] where X = D(K,N,A,C).

The secret-sharing scheme used in this high-level description strongly depends
on the AEAD. Observe that in practical situations, there might be a mismatch
between the secret-sharing scheme used by the application on top of TLS and
the secret-sharing scheme used by the AEAD. In such cases, we assume that
suitable conversions were already performed.

70 D. Abram et al.

Padding. In TLS 1.3, the plaintexts always have a padding. Whereas its appli-
cation is a simple operation, the removal can be a bit complex. Indeed, using
multiparty computation, we need to discover the position of the last non-zero
byte and open it. Its value encodes the fragment type (see [20, Section 5.1]). In
the case of an alert or Handshake data (key update requests, post Handshake
authentication or new session tickets), the plaintext is simply opened and handle
according TLS 1.3. In the case of application data, the first part of the plaintext
(up to the second last non-zero value) is kept in shared form and is handled
following the instructions of the application on top of TLS.

Supported AEADs. Oblivious TLS supports two different AEAD schemes. The
first one is AES-GCM, one of the most popular encryption algorithms. The sec-
ond one is instead a novel AEAD specifically designed by us for Oblivious TLS,
and avoids all evaluation of block ciphers inside MPC. The description and the
security analysis of the latter can be found in Sect. 5.2 of the full version of this
paper [2]. The efficiency of the MPC friendly AEAD is considerably better than
AES-GCM, however, the downside is that a custom algorithm is generally not
supported by TLS clients. Both solutions rely on MACs to guarantee integrity.
For this reason, the associated MAC keys must always be kept in shared form,
otherwise a corrupted party would be able to tamper with the communications.

5.1 AES-GCM

We decided to adopt AES-GCM as it seemed to allow the most efficient MPC
execution among all the AEADs suggested by TLS 1.3 (see [20, Section B.4]).

Overview of AES-GCM. We briefly recall how the cipher works (for details,
see [12]). Let k be the key and let N be a nonce. Let AES(k, x) denote the
encryption of x under the key k using the AES block cipher. The algorithm
defines the MAC key H := AES(k,O) where O is the 128-bit string entirely
made of zeros. Figure 9 describes the encryption procedure. The value C0 is
usually called the MAC of the AEAD. Decryptions are performed in a similar
way: at the beginning the MAC is regenerated from the ciphertext and the
result is compared with the MAC received from the client. If the check fails,
the algorithm outputs ⊥, otherwise the plaintext is retrieved by reversing the
operations of the encryption.

1. The plaintext is split into 128-bit blocks X1, X2, . . . , XL. Do the same on the
associated data to get A1, A2, . . . , AL′ .

2. From N , L + 1 128-bit nonces N0, N1, N2, . . . , NL are derived.
3. Set Ci ← Xi ⊕ AES(k, Ni) for every i ∈ [L].
4. Let S be an encoding of L and L′ as a 128-bit string.

5. Set M ← ⊕L′
i=1 Ai · Hi ⊕ ⊕L

i=1 Ci · Hi+L′ ⊕ S · HL+L′+1.
6. Set C0 ← M ⊕ AES(k, N0) and output C0, C1, . . . , CL.

Fig. 9. AES-GCM encryption

Oblivious TLS via Multi-party Computation 71

Multiparty AES Evaluation. To run AES-GCM inside MPC, we need many eval-
uations of AES on cleartext inputs derived from the nonce, under a secret-shared
key and with secret-shared output. We consider two methods for evaluating AES:

– The secret-sharing based AES evaluation of [16]. This solution might be
preferable when the parties can communicate over fast networks.

– A multi-party garbled circuit protocol such as [15]. This involves evaluating
AES as a binary circuit, but obtains a constant round complexity so may be
preferable over slow networks.

After the AES evaluations, the parties get [[Ci]] from [[Xi]] (in the encryp-
tion) or [[Xi]] from Ci (in the decryption) for every i ∈ [L]. In encryption, [[Ci]]
is opened for every i ∈ [L].

The MAC Generation. It remains to explain how C0 is generated (or checked in
the case of a decryption). Suppose now that we have a secret-sharing of [[Hi]]
over F2128 for every i ∈ [L+L′ +1]. It is possible to obtain a secret-sharing of the
MAC [[C0]] without communication between the parties. Indeed, the additional
data as well as C1, C2, . . . , CL and S are cleartext information, therefore

[[C0]] = [[AES(k,N0)]] ⊕
L′

⊕

i=1

Ai · [[Hi]] ⊕
L⊕

i=1

Ci · [[HL′+i]] ⊕ S · [[HL+L′+1]].

The MAC must be opened only in the case of an encryption, otherwise H
might be leaked. When decrypting, the parties must check [[C0]] for equality with
the first 128-bit block of the ciphertext received from the client. The operation
must leak no information besides the output bit.

Once and for All Operations. Observe that some operations do not have to
be repeated for every encryption or decryption. Specifically, for every symmetric
key, the AES key scheduling, the computation of the secret-shared MAC key [[H]]
and its powers can be performed only once. Clearly, it is sufficient to compute
the first T powers where T is an upper bound on L+L′+1. In TLS 1.3, L+L′+1
is at most 1026, but depending on the application, it may be smaller.

6 Security and Performance

The Multi-stage Key Exchange Model. We want to prove the security of Obliv-
ious TLS in the Multi-Stage Key Exchange Security Model [11]. The adversary
interacts with several endpoints running the protocol and has complete con-
trol over the network. In particular, it is allowed to intercept, drop and inject
communications. Moreover, it has the ability to corrupt endpoints and request
the leakage of established keys. The adversary wins when it succeeds in breaking
particular authentication properties (Match Security) or can distinguish a tested
key from a random string of the same length (Multi-Stage Security). Since the
model was used to prove the security of TLS 1.3 [11], our intention is to reduce
the security of Oblivious TLS to the proof of TLS 1.3.

72 D. Abram et al.

Adaptations to Oblivious TLS. The main difference between our protocol and the
traditional version of TLS 1.3 is the use of MPC, therefore, every endpoint of our
multi-stage model is actually an MPC engine. We regard them as atomic entities.
Observe that we can model the actual MPC protocols for Diffie-Hellman, key
derivation, signature generation and encryption and decryption with the corre-
sponding functionalities. We allow the multi-stage adversary the same influence
on the multiparty procedures as if it controlled the corrupted parties of the
engine. The corruption of an MPC engine in the model corresponds in practice
to the corruption of all the associated parties.

We obtain a model that is almost identical to the security model of TLS 1.3.
The only differences are the following:

– The Handshake keys are leaked to the multi-stage adversary whenever there
exists at least one corrupted party.

– The MAC keys used in ClientFinished and ServerFinished are leaked to the
multi-stage adversary upon reception of the corresponding messages.

– The IVs are leaked to the adversary.

Actually, in this model, it would be trivial for the adversary to win. Indeed, it
would be sufficient to test a handshake key of an engine with a corrupted party
(distinguishing it from random is straightforward as the key is leaked). To fix
this problem, we allow the adversary to test handshake keys only if none of the
parties of the two endpoints is corrupted.

Security of Oblivious TLS. In [11], the authors proved that in TLS 1.3, the
application keys remain secure and authenticated even if the encryption keys
are leaked. Moreover, they proved that the MAC keys used in ClientFinished
and ServerFinished are computationally independent of all the other keys of the
protocol. Since they are used for the last time in the verification of the MACs,
the Handshake remains secure as long as they are leaked after the reception of
ClientFinished and ServerFinished. Even the IVs are independent of the keys
(see [20, Section 7.3]). Therefore, their knowledge does not leak any additional
information. Moreover, the security of an AEAD is guaranteed as long as the keys
are kept secret. As a consequence, the security proof of [11] applies to Oblivious
TLS too, after minor modifications.

6.1 Performance

To estimate the performance of Oblivious TLS, we carried out some bench-
marks using the SCALE-MAMBA library3, based on implementation of the
main components in the handshake and record layers, which we believe to be
the bottleneck. This does not give a full, standards-compliant implementation of
Oblivious TLS, but rather, is intended to obtain some estimates of its expected
performance.

3 https://github.com/KULeuven-COSIC/SCALE-MAMBA.

https://github.com/KULeuven-COSIC/SCALE-MAMBA

Oblivious TLS via Multi-party Computation 73

We tested the online phase of the resulting MPC protocol, assuming the
necessary input-independent preprocessing (multiplication triples etc.) has been
generated. Based on the results, we can expect a Handshake to take around 1 or
2 s. We also tested the throughput of the different multiparty AEADs we consid-
ered. The MPC-friendly AEAD showed interesting outcomes with a throughput
of around 300 KB/s. The Garbled-Circuit-based version of AES-GCM, instead,
proved itself to be rather inefficient (around 1 KB/s). We expect that with
the alternative AES evaluation method based on [16] (which is not currently
available in SCALE-MAMBA), we could achieve throughputs up to 3 MB/s for
AES-GCM, even exceeding our MPC-friendly AEAD. The drawback of this is
that the preprocessing material is much more expensive to generate, and also
the round complexity is higher. For further information on performance, see
Appendix F of the full version [2].

Acknowledgments. We would like to thank Douglas Stebila and the anonymous
reviewers for valuable feedback which helped to improve the paper, as well as Roberto
Zunino for suggestions and comments on Damiano Abram’s master’s thesis. The work
of Sven Trieflinger and Damiano Abram was funded by Robert Bosch GmbH. Ivan
Damg̊ard was supported by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO). Peter Scholl was supported by a starting grant from the Aarhus
University Research Foundation.

References

1. Abram, D.: Oblivious TLS. Master’s thesis, Università degli Studi di Trento, March
2020

2. Abram, D., Damg̊ard, I., Scholl, P., Trieflinger, S.: Oblivious TLS via multi-party
computation. Cryptology ePrint Archive, Report 2021/318 (2021). https://eprint.
iacr.org/2021/318

3. Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: distributed symmetric-
key encryption. In: ACM CCS 2018. ACM Press, October 2018

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

5. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS. IEEE Computer Society Press, October 2001

7. Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC
keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 654–673. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 32

8. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 10

https://eprint.iacr.org/2021/318
https://eprint.iacr.org/2021/318
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10

74 D. Abram et al.

9. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

11. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. Cryptology ePrint Archive, Report 2020/1044 (2020)

12. Dworkin, M.: Recommendation for block cipher modes of operation: galois/counter
mode (GCM) and GMAC. Technical report (2007)

13. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

14. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: ACM CCS 2016. ACM Press, October 2016

15. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

16. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

17. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS 2016. ACM Press, October
2016

18. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

19. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

20. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446
(2018)

21. Rotaru, D., Smart, N.P., Stam, M.: Modes of operation suitable for computing on
encrypted data. IACR Trans. Symm. Cryptol. (3) (2017)

22. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure
setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://
eprint.iacr.org/2019/1300

23. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: liberating
web data using decentralized Oracles for TLS. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (2020)

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-32009-5_40
https://eprint.iacr.org/2019/1300
https://eprint.iacr.org/2019/1300

Noisy Simon Period Finding

Alexander May , Lars Schlieper(B) , and Jonathan Schwinger

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany
{alex.may,lars.schlieper,jonathan.schwinger}@rub.de

Abstract. Let f : Fn
2 → F

n
2 be a Boolean function with period s. It is

well-known that Simon’s algorithm finds s in time polynomial in n on
quantum devices that are capable of performing error-correction. How-
ever, today’s quantum devices are inherently noisy, too limited for error
correction, and Simon’s algorithm is not error-tolerant.

We show that even noisy quantum period finding computations may
lead to speedups in comparison to purely classical computations. To this
end, we implemented Simon’s quantum period finding circuit on the 15-
qubit quantum device IBM Q 16 Melbourne. Our experiments show that
with a certain probability τ(n) we measure erroneous vectors that are
not orthogonal to s. We propose new, simple, but very effective smooth-
ing techniques to classically mitigate physical noise effects such as e.g.
IBM Q’s bias towards the 0-qubit.

After smoothing, our noisy quantum device provides us a statistical
distribution that we can easily transform into an LPN instance with
parameters n and τ(n). Hence, in the noisy case we may not hope to
find periods in time polynomial in n. However, we may still obtain a
quantum advantage if the error τ(n) does not grow too large. This
demonstrates that quantum devices may be useful for period finding,
even before achieving the level of full error correction capability.

Keywords: Noise-tolerant simon period finding · IBM-Q16 · LPN ·
Quantum advantage

1 Introduction

The discovery of Shor’s quantum algorithm [24] for factoring and computing
discrete logarithms in 1994 had a dramatic impact on public-key cryptogra-
phy, initiating the fast growing field of post-quantum cryptography that studies
problems supposed to be hard even on quantum computers, such as e.g. Learning
Parity with Noise (LPN) [3] and Learning with Errors (LWE) [21].

For some decades, the common belief was that the impact of quantum algo-
rithms on symmetric crypto is way less dramatic, since the effect of Grover
search can easily be handled by doubling the key size. However, starting with

See arXiv [19] for a full version.
A. May and L. Schlieper—Funded by DFG under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 75–99, 2021.
https://doi.org/10.1007/978-3-030-75539-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_4&domain=pdf
http://orcid.org/0000-0001-5965-5675
http://orcid.org/0000-0002-4870-1012
https://doi.org/10.1007/978-3-030-75539-3_4

76 A. May et al.

the initial work of Kuwakado, Morii [17] and followed by Kaplan, Leurent, Lev-
errier and Naya-Plasencia [15] it was shown that (among others) the well-known
Even-Mansour construction can be broken with quantum CPA-attacks [5] in
polynomial time using Simon’s quantum period finding algorithm [25]. This is
especially interesting, because Even and Mansour [12] proved that in the ideal
cipher model any classical attack on their construction with n-bit keys requires
Ω(2

n
2) steps.

These results triggered a whole line of work that studies the impact of Simon’s
algorithm and its variants for symmetric key cryptography, including e.g. [2,
6–8,14,18,22]. In a nutshell, Simon’s quantum circuit produces for a periodic
function f : Fn

2 → F
n
2 with period s ∈ F

n
2 , i.e. f(x) = f(z) iff z ∈ {x,x + s},

via quantum measurements uniformly distributed vectors y that are orthogonal
to s. It is not hard to see that from a basis of y’s that spans the subspace
orthogonal to s, the period s can be computed via elementary linear algebra in
time polynomial in n. Thus, Simon’s algorithm finds the period with a linear
number of quantum measurements (and calls to f), and some polynomial time
classical post-processing. On any purely classical computer however, finding the
period of f requires in general Ω(2

n
2) operations [20]. Let us stress again that

we consider quantum CPA attacks via Simon, i.e. the attacker has access to a
cipher that is implemented quantumly—a very powerful attack model.

Our Contributions. We implemented Simon’s algorithm on IBM’s freely available
Q16 Melbourne [1], called IBM-Q16 in the following, that realizes 15-qubit
quantum circuits. Since Simon’s quantum circuit requires for n-bit periodic func-
tions 2n qubits, we were able to implement functions up to n = 7 bits. Due to
its limited size, IBM-Q16 is not capable of performing full error correction [9]
for n > 1. However, we show that error correction is no necessary requirement
for achieving quantum speedups.

Implementation. Our experiments show that with some (significant) error
probability τ , we measure on IBM-Q16 vectors y that are not orthogonal to s.
The error probability τ depends on many factors, such as the number of 1- and
2-qubit gates that we use to realize Simon’s circuit, IBM-Q16’s topology that
allows only limited 2-qubit applications, and even the individual qubits that we
use. We optimize our Simon implementation to achieve minimal error τ . Since
increasing n requires an increasing amount of gates, we discover experimentally
that τ(n) grows as a function of n. For the function f that we implemented,
we found τ -values ranging between τ(2) = 0.09 and τ(7) = 0.13. We would like
to stress that our choice of f is highly optimized to minimize IBM-Q16’s error.
Any realistic real-word cryptographic f would at the moment result in outputs
close to random noise, i.e. with τ(n) close to 1

2 .
For our simple f despite the errors we still qualitatively observe the desired

quantum effect: Vectors y orthogonal to s appear with significant larger proba-
bilities than vectors not orthogonal to s. Similar experimental observations have
been achieved in Tame et al. [26].

Noisy Simon Period Finding 77

Smoothing Techniques. In the error free case, Simon’s circuit produces vectors
that are uniformly distributed. However, on IBM-Q16 this is not the case. First,
IBM-Q16’s qubits have different noise level, hence different reliability. Second,
we experimentally observe vectors with small Hamming weight more frequently,
the measured qubits have a bias towards 0.

To mitigite both effects we introduce simple, but effective smoothing tech-
niques. First, the quality of qubits can be averaged by introducing permutations
that preserve the overall error probability τ . Second, the 0-bias can be removed
by suitable addition of vectors, both quantumly and classically. In combination,
our smoothing methods are effective in the sense that they provide a distribu-
tion where vectors orthogonal to s appear uniformly distributed with probability
1 − τ , and vectors not orthogonal to s appear uniformly distributed with prob-
ability τ . Note that our smoothing techniques do not reduce the overall error τ ,
but smooth the error distribution.

We call the problem of recovering s ∈ F
n
2 from such a distribution Learning

Simon with Noise (LSN) with parameters n and τ . Notice that intuitively it
should be hard to distinguish orthogonal vectors from non-orthogonal ones.

Hardness. We show that solving LSN with parameters n, τ is tightly polyno-
mial time equivalent to solving the famous Learning Parity with Noise (LPN)
problem with the same parameters n, τ . The core of our reduction shows that
LSN samples coming from smoothed quantum measurements of Simon’s circuit
can be turned into perfectly distributed LPN samples, and vice versa. Hence,
smoothed quantum measurements of Simon’s circuit realize a physical LPN ora-
cle.

From an error-tolerance perspective, our LPN-to-LSN reduction may at first
sound quite negative, since it is commen belief that we cannot solve LPN (and
thus also not LSN) in time polynomial in (n, τ)—not even on a quantum com-
puter.

Error Handling. On the positive side, we may use the converse LSN-to-LPN
reduction to handle errors from noisy quantum devices like IBM-Q16 via LPN-
solving algorithms. Theoretically, the best algorithm for solving LPN with con-
stant τ is the BKW-algorithm of Blum, Kalai and Wasserman [4] with time

complexity 2
O
(

n
log(n

τ
)

)
. This already improves on the classical time 2

n
2 for period

finding.
Practically, the current LPN records with errors τ ∈ [0.09, 0.13]—as observed

in our IBM-Q16 experiments— are solved with variants of the algorithms
Pooled Gauss and Well-Pooled Gauss of Esser, Kübler, May [11]. We
show that Pooled Gauss solves LSN for τ ≤ 0.292 faster than classical period
finding algorithms. Well-Pooled Gauss even improves on any classical period
finding algorithm for all errors τ < 1

2 .
Well-Pooled Gauss is able to handle errors in time 2cn, where c < 1

2 is
constant for constant τ . For the error-free case τ = 0, we obtain polynomial
time as predicted by Simon’s analysis. In the noisy case 0 < τ < 1

2 we achieve
exponential run time, yet still improve over purely classical computation. This

78 A. May et al.

indicates that we achieve quantum advantage for the Simon period finding prob-
lem on sufficiently large computers, even in the presence of errors: Our quantum
oracle helps us in speeding up computation! But as opposed to the exponential
speedup from the (unrealistic) error-free Simon setting τ = 0, we obtain in the
practically relevant noisy Simon setting 0 < τ < 1

2 only a polynomial speedup
with a polynomial of degree 1

2c > 1.
Assume that in a possibly far future one could build a quantum device

with 486 qubits performing Simon’s circuit on a 243-bit realistic real-world
cryptographic periodic function with error τ(486) = 1

8 . Then our smoothed
techniques could translate the noisy quantum data into an LPN-instance with
(n, τ) = (243, 1

8). Such an LPN instance was solved in [11] on 64 threads in only
15 days, whereas classically period finding would require 2121 steps.

We would like to stress that our introduction of a simple error parameter τ
is to indicate at which point in the future quantum devices may help to speed
up Simon-based quantum cryptanalysis. We do not give any predictions how
τ(n) behaves for future devices, nor for realistic cryptographic functions. This
remains an open problem.

Our paper is organized as follows. In Sect. 2 we recall Simon’s original quan-
tum circuit, and already introduce our LSN Error Model. In Sect. 3 we run
IBM-Q16 experiments, and show in Sect. 4 how to smooth the results of the
quantum computations1 such that they fit our error model. In Sect. 5 we show
the polynomial time equivalence of LSN and LPN. In Sect. 6 we theoretically
show that quantum measurements with error τ in combination with LPN-solvers
outperform classical period finding for any τ < 1

2 . Eventually, in Sect. 7 we exper-
imentally extract periods from noisy IBM-Q16 measurements.

2 Simon’s Algorithm in the Noisy Case

Notation. All logs in this paper are base 2. Let x ∈ F
n
2 denote a binary vector

with coordinates x = (xn−1, . . . , x0) and Hamming weight h(x) =
∑n−1

i=0 xi. Let
0 ∈ F

n
2 be the vector with all-zero coordinates. We denote by U the uniform

distribution over F2, and by Un the uniform distribution over F
n
2 . If a random

variable X is chosen from distribution U , we write X ∼ U . We denote by Berτ

the Bernoulli distribution for F2, i.e. a 0, 1-valued X ∼ Berτ with P[X = 1] = τ .
Two vectors x,y are orthogonal if their inner product 〈x,y〉 :=∑n−1

i=0 xiyi mod 2 is 0, otherwise they are called non-orthogonal. Let s ∈ F
n
2 .

Then we denote the subspace of all vectors orthogonal to s as

s⊥ = {x ∈ F
n
2 | 〈x, s〉 = 0} .

Let Y = {y1, . . . ,yk} ⊆ F
n
2 . Then we define Y ⊥ = {x | 〈x,yi〉 = 0 for all i}.

1 IBM-Q16 data can be found in our supplementary material.

Noisy Simon Period Finding 79

For a Boolean function f : F
n
2 → F

n
2 we denote its universal (quantum)

embedding by

Uf : F2n
2 → F

2n
2 with (x,y) 	→ (x, f(x) + y).

Notice that Uf (Uf (x,y)) = (x,y).
Let |x〉 ∈ C

2 with x ∈ F2 be a qubit. We denote by H the Hadamard function

x 	→ 1√
2
(|0〉 + (−1)x |1〉).

We briefly write Hn for the n-fold tensor product H⊗. . .⊗H. Let |x〉 |y〉 ∈ C
4 be

a 2-qubit system. The cnot (controlled not) function is the universal embedding
of the identity function, i.e. |x〉 |y〉 	→ |x〉 |x + y〉. We call the first qubit |x〉 control
bit, since we perform a not on |y〉 iff x = 1.

A Simon function is a periodic (2 : 1)-Boolean function defined as follows.

Definition 2.1 (Simon function/problem). Let f : F
n
2 → F

n
2 . We call f

a Simon function if there exists some period s ∈ F
n
2 \ {0} such that for all

x �= y ∈ F
n
2 we have

f(x) = f(y) ⇔ y = x + s.

In Simon’s problem we have to find s given oracle access to f .

In order to solve Simon’s problem classically, we have to find some collision
x �= y satisfying f(x) = f(y). It is well-known that this requires Ω(2

n
2) function

evaluations.
|0n〉 Hn

Uf

Hn

|0n〉

Fig. 1. Quantum circuit QSimon
f

Simon’s quantum algorithm [25],
called Simon (see Algorithm 1), solves
Simon’s problem with only O(n) func-
tion evaluations on a quantum circuit.
It is known that on input |0n〉 ⊗ |0n〉
a measurement of the first n qubits
of the quantum circuit QSimon

f depicted in Fig. 1 yields some y ∈ F
n
2

that is orthogonal to s. Moreover, y ∈ F
n
2 is uniformly distributed in

the subspace s⊥, i.e. we obtain each y ∈ s⊥ with probability 1
2n−1 .

Simon repeats to measure QSimon
f until it has collected n − 1 linearly inde-

pendent vectors y1, . . . ,yn−1, from which s can be computed via linear algebra
in polynomial time. It is not hard to see that the collection of n − 1 linearly
independent vectors requires only O(n) function evaluations.

At this point we should stress that Simon only works for noiseless quantum
computations. Hence we have to ensure that each y is indeed in s⊥. Assume that
we obtain in line 4 of algorithm Simon at least a single y with 〈y, s〉 = 1. Then
the output of Simon is always false! Thus, Simon is not robust against noisy
quantum computations.

More precisely, if we obtain in line 4 erroneous y /∈ s⊥ with probability
τ , 0 < τ ≤ 1

2 , then Simon outputs the correct s only with exponentially small
probability success probability (1−τ)n. This motivates our following quite simple
error model.

80 A. May et al.

Algorithm 1: Simon
Input : Simon function f : Fn

2 → F
n
2 .

Output: Period s ∈ F
n
2

1 Set Y = ∅.
2 repeat
3 Run QSimon

f on |0n〉 ⊗ |0n〉.
4 Let y ∈ F

n
2 be the measurement of the first n qubits.

5 If y /∈ span(Y), then include y in Y .

6 until |Y | = n − 1

7 Compute the unique s ∈ Y ⊥ \ {0}.
8 return s.

Definition 2.2 (LSN Error Model). Let τ ∈ R with 0 ≤ τ ≤ 1
2 . Upon mea-

suring the first n qubits of QSimon
f , our quantum device outputs with probability

1 − τ some uniformly random y ∈ s⊥, and with probability τ some uniformly
random y ∈ F

n
2 \ s⊥. That is, the output distribution is

P[QSimon
f outputs y] =

{
1−τ
2n−1 if y ∈ s⊥

τ
2n−1 else

. (1)

We call τ the error rate of our quantum device. We call the problem of comput-
ing s from the distribution in Equation (1) Learning Simon with Noise (LSN).
We further refine LSN in Definition 5.2.

In the subsequent Sect. 3 we show that the results of our IBM-Q16 imple-
mentation only roughly follows the LSN Error Model of Definition 2.2. However,
we also introduce in Sect. 4 simple smoothing techniques such that the IBM-
Q16 measurements can be transformed into almost perfectly matching our error
model.

Notice that intuitively there is no efficient way to tell whether y ∈ s⊥. This
intuition is confirmed in Sect. 5, where we show that solving LSN is tightly as
hard as solving the Learning Parity with Noise (LPN) problem.

3 Quantum Period Finding on IBM-Q16

We ran our experiments on the IBM-Q16 Melbourne device, which (despite its
name) realizes 15-qubit circuits. Let us number IBM-Q16’s qubits as 0, . . . , 14.
Our implementation goal was to realize quantum period finding for Simon func-
tions f : Fn

2 → F
n
2 with error rate as small as possible. To this end we used the

following optimization criteria.

Gate Count. IBM-Q16 realizes several 1-qubit gates such as Hadamard and
rotations, but only the 2-qubit gate cnot. On IBM-Q16, the application of
any gates introduces some error, where especially the 2-qubit cnot introduces

Noisy Simon Period Finding 81

approximately as much error as ten 1-qubit gates (see Fig. 2). Therefore, we
introduce a circuit norm that defines a weighted gate count, which we minimize
in the following.

Definition 3.1. Let Q be a quantum circuit with g1 many 1-qubit gates and g2
many 2-qubit gates. Then we define Q’s circuit-norm as CN(Q) := g1 + 10g2.

Topology. IBM-Q16 can only process 2-qubit gates on qubits that are adjacent
in its topology graph, see Fig. 2. Let G = (V,E) be the undirected topology
graph, where node i denotes qubit i.

Fig. 2. Topology graph G(V, E) of IBM-Q16.

If {u, v} ∈ E then we can directly implement cnot(u, v), respectively
cnot(v, u), where u, respectively v, serves as the control bit. Hence, we call
qubits u, v adjacent iff {u, v} ∈ E.

×
=

• •
× •

Fig. 3. Realisation of swap via 3 cnots.

Let us assume that we want to real-
ize cnot(1, 3) in our algorithm. Since
{1, 3} /∈ E we may first swap the contents
of qubits 2 and 3 by realizing a swap gate
via 3 cnots as depicted in Fig. 3. Thus,
with a total of 3 cnots we swap the con-
tent of qubit 3 into 2. Since {1, 2} ∈ E, we may now apply cnot(1, 2).

3.1 Function Choice

Notice that in Definition 2.1 of Simon’s problem, we obtain oracle access to a
Simon function f . In a quantum-CPA attack we assume that a cryptographic
function f is realized via its quantum embedding Uf . An attacker gets black-box
access to Uf , i.e. he can query Uf on inputs of his choice in superposition.

We choose the following function fs whose Ufs is not too expensive to realize
on IBM-Q16.

82 A. May et al.

Definition 3.2. Let s ∈ F
n
2 \ {0}, and let i ∈ [0, n − 1] be the smallest i with

si = 1. We define
fs : Fn

2 → F
n
2 , x 	→ x + xi · s.

Let us first show that fs is indeed a Simon function as given in Definition 2.1.
Moreover, we show that every Simon function – no matter whether it is efficiently
computable or not – is of the form fs followed by some permutation.

Lemma 3.1. Let fs(x) = x + xi · s as in Definition 3.2. Then the following
holds.

(1) fs is a Simon function with period s, i.e. fs(x) = fs(y) iff y ∈ {x,x + s}.
(2) Any Simon function is of the form P ◦ fs for some bijection P : Fn

2 → F
n
2 .

Proof. See full version [19]. ��

Instantiation of Function Choice. Throughout the paper, we instantiate our
function fs with the period s = (sn−1, . . . , s0) = 0n−211 and xi = x0. We may
realize fs with n cnot-gates for copying x, and an additional 2 cnot-gates for
the controlled addition of s via control bit 0. See Fig. 4 for an implementation
of fs with n = 3.

0 : x0 H • • • H

1 : x1 H • H

2 : x2 H • H

3 : y0

4 : y1

5 : y2

Fig. 4. Simon circuit Q1 with our realization of fs and
CN(Q1) = 56. The first 3 cnots copy x, the remaining
two cnots add s = 110.

Our function choice has
the advantage that it can be
implemented with only n+2
cnot gates (if we are able to
avoid swaps). In addition,
we need 2n Hadamards for
realizing Simon. Thus we
obtain a small circuit norm
CN = 10(n + 2) + 2n,
which in turn implies a rel-
atively small error on IBM-
Q16. We perform further
circuit norm minimization
in Sect. 3.2.

Discussion of our Simple Function Choice. As shown in Lemma 3.1, our function
fs is general in the sense that any Simon function is of the form g = P ◦ fs(x).
However, for obtaining small circuit norm we instantiate our Simon function
with the simplest choice, where P is the identity function. In general, we could
instantiate non-trivial P via some variable-length PRF with fixed key such as
SiMeck [27]. This would however result in an explosion of the circuit norm and
therefore in an explosion of IBM-Q16’s noise rate τ(n).

Thus, Simon with a general Simon function could be implemented as depicted
in Fig. 5, where the permutation P is quantumly implemented in-place on the last
n qubits (with at most one ancilla bit as shown in [23]). But already from Fig. 5
one observes that P does not at all effect the Simon algorithm. In fact, Simon

Noisy Simon Period Finding 83

outputs the measurement of the first n qubits, which only depend on which
arguments x,x+s collide under fs, but not which function value fs(x) = fs(x+s)
they take (which is controlled by P). So, quantumly the choice of a non-trivial
P would just unnecessarily increase the error rate τ .

|0〉 H

Ufs

H

...
...

|0〉 H H

|0〉
P

...
...

...

|0〉

Fig. 5. Simon with a general Simon
function P ◦ fs.

However, we would like to point out
that choosing P as the identity function
implies that classically extract the period
s is not hard. Notice that fs(x) ∈ {x,x+
s}. Thus, we may compute fs(1n) +
1n = s. The reason that fs(x) classically
reveals its period so easily is that the
image x + s together with the argument
x directly gives us s. This correlation
between argument x and image x + s is
destroyed by a random P , which explains
why in general period finding classically
becomes as hard as collision finding.

However, as explained above, Simon does not profit from a trivial P , since
Simon is oblivious to concrete function values.

3.2 Minimizing the Gate Count of fs

We may implement fs on IBM-Q16 directly as the circuit Q1 from Fig. 4. Since
Q1 uses 6 Hadamard- and 5 cnot-gates, we have circuit norm CN(Q1) = 56,
but only when ignoring IBM-Q16’s topology. As already discussed, IBM-Q16
only allows cnots between adjacent qubits in the topology graph G = (V,E) of
Fig. 2.

Thus, IBM-Q16 compiles Q1 to Q2 as depicted in Fig. 6. Let us check that Q2

realizes the same circuit as Q1, but only acts on adjacent qubits. Let Ufs : F6
2 → F

6
2

be the universal quantum embedding of fs with (x,y) 	→ (x, fs(x) + y) = x +
x0s + y). In Ufs we first add each xi to yi via cnots, see Fig. 4. Thus, we have to
make sure that each xi is adjacent to its yi. Second, we add s = 011 via cnots
controlled by x0. Thus, we have to ensure that x0 is adjacent to y0 and y1.

We denote by i : j that qubit i contains the value j. This allows us to define
the starting configuration as

0 : x0 1 : x1 2 : x2 3 : y0 4 : y1 5 : y2.

Step 1 of Q2 (see Fig. 4) performs swap(2, 3) and thus results in configuration

0 : x0 1 : x1 2 : y0 3 : x2 4 : y1 5 : y2.

Step 2 of C2 performs swap(1, 2) as well as swap(4, 3). This results in configu-
ration

0 : x0 1 : y0 2 : x1 3 : y1 4 : x2 5 : y2.

84 A. May et al.

Since {0, 1}, {2, 3}, {4, 5} ∈ E, in Step 3 we now compute cnot(0, 1), cnot(2, 3)
and cnot(4, 5). This realizes the computation of x+y. Eventually, Step 4 of C2

performs swap(0, 1) and swap(2, 3) resulting in

0 : y0 1 : x0 2 : y1 3 : x1 4 : x2 5 : y2.

For realizing the addition of xi · s = x0 · 011, in Step 5 we compute cnot(1, 0)
and cnot(1, 2) using {0, 1}, {1, 2} ∈ E.

0 : x0 H • • •

1 : x1 H • • • • • H

2 : x2 H • • • • • •

3 : y0 • • • • H

4 : y1 • • H

5 : y2

Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 6. IBM-Q16 compiles Q1 to Q2 with CN(Q2) = 206.

0 : x1 H • H

1 : y1

2 : x0 H • • • H

3 : y0

4 : x2 H • H

5 : y2

Fig. 7. Circuit Q3.

H • H
=

H H •

Fig. 8. Control bit change.

In total Q2 consumes six 1-bit
gates and twenty 2-bit gates and thus
has CN(Q2) = 206, as compared to
CN(Q1) = 56. In the following, our
goal is the construction of a quantum
circuit that implements Q1’s function-
ality with minimal circuit norm on
IBM-Q16.

In Fig. 7 we start with circuit Q3,
for which our optimization eventually
results in circuit Q4 (Fig. 10) that can
be realized on IBM-Q16 with gate
count only CN(Q4) = 33.

From the discussion before, it
should not be hard to see that Q3

realizes QSimon
fs

, but yet it has to
be optimized for IBM-Q16. First of
all observe that cnot is self-inverse,
and thus we can eliminate the two
cnot(2, 3) gates. Afterwards, we can
safely remove qubit 3. The resulting situation for qubits 0, 1, 2 is depicted in
Fig. 9, where we use a control bit change (see Fig. 8).

Noisy Simon Period Finding 85

H • H

= H • H H • H = H • • H

H • H

Fig. 9. Optimization of Q3.

From Fig. 9 we see that the change of control bits from cnot(0, 1), cnot(2, 1)
to cnot(1, 0), cnot(1, 2) leads to some cancellation of self-inverse Hadamard
gates. Moreover, the second Hadamard of qubit 1 can be eliminated, since it does
not influence the measurement. We end up with circuit Q4 with an optimized
gate count of CN(Q4) = 33.

0 : x1

1 : y1 H • •

2 : x0

4 : x2 H • H

5 : y2

Fig. 10. Optimized circuit Q4 on IBM-Q16 with CN(Q4) = 33.

Since {0, 1}, {1, 2}, {4, 5} ∈ E, all three cnots of Q4 can directly be realized
on IBM-Q16. Notice that a configuration with optimal circuit norm is in general
not unique. For our example, the following configuration yields the same circuit
norm as the configuration of Q4:

3 : y0 4 : x0 5 : y1 6 : x1 8 : y2 9 : x2.

We optimized our IBM-Q16 implementation by choosing among all configu-
rations with minimal circuit norm the one using IBM-Q16’s qubits of smallest
error rate (see Fig. 2). The choice of our configurations and a complete list of
optimized circuits with this configurations can be found in the full version [19].

3.3 Experiments on IBM Q 16

For each dimension n = 2, . . . , 7 we took 8192 measurements on IBM-Q16 of
our optimized circuits from the previous section. The resulting relative frequen-
cies are depicted in Fig. 11. For each n, let S(n) denote the set of erroneous

86 A. May et al.

measurements in F
n
2 \ s⊥. Then we compute the error rate τ(n) as τ(n) = |S(n)|

8192 .
In Fig. 11 we draw horizontal lines 1−τ(n)

2n−1 , respectively τ(n)
2n−1 , for the proba-

bility distributions of our LSN Error Model for orthogonal, respectively non-
orthogonal, vectors.

Fig. 11. IBM-Q16 measurements of our optimized circuits (see full version [19]).

Noisy Simon Period Finding 87

On the positive side, we observe that vectors in s⊥ are much more frequent.
Hence, IBM-Q16 is noisy, but in principle works well for period finding. E.g.
for n = 3, we have {s}⊥ = {011}⊥ = {000, 011, 100, 111}, and we measure one
of these vectors with probability 1 − τ ≈ 90%.

On the negative side, we observe the following effects.

– Different Qubit Quality. We deliberately ordered our qubits by error rate
to make the quality effect visible. Using the IBM-Q16 calibration, we choose
lowest error rate for the least significant bit x0 up to highest error rate for
the most significant bit xn−1 (nevertheless e.g. for n = 4 it seems that the
qubit for x2 performed worse than the one for x3).

– Bias Towards 0. In Fig. 11 we ordered our measurements on the x-axis
lexicographically. It can be observed that in general measurements with small
Hamming weight appear with larger frequencies than large Hamming weight
measurements. This indicates a bias towards the |0〉 qubit, which seems to be
a natural physical effect since |0〉 is a non-activated ground state.

– Increasing τ(n). The error rate τ(n) is a function increasing in n. This is
what we expected, since the circuit norm increases with n, and for larger n
we also had to include lower quality qubits.

Remark 3.1. We experimented with different periodic fs, especially more com-
plex than our choice from Definition 3.2. Qualitatively, we observed similar effects
albeit with larger error rates τ(n).

The effects of different qubit quality and bias towards 0 obviously violate our
LSN Error Model from Definition 2.2, since they destroy the uniform distribution
among orthogonal, respectively non-orthogonal, vectors. However, we introduce
in the subsequent Sect. 4 simple smoothing technique that (almost perfectly)
mitigate both effects.

4 Smoothing Techniques

Let us first introduce a simple permutation technique that mitigates the different
qubit quality.

Permutation Technique. We already saw in Sect. 3.2 that configurations for
some quantum circuit C with minimal circuit norm are not unique. Let M be the
set of configurations with minimal circuit norm, including all permutations of
qubits. Then we may perform measurements for circuits randomly chosen from
M , see Algorithm 2. This approach averages over the qubit quality, while due
to its invariant circuit norm preserving the error rate τ(n).

Algorithm 2: Permutation Technique.
1 Let M := {Configurations of C with minimal circuit norm}.
2 Evaluate C with configurations chosen randomly from M .

88 A. May et al.

Instantiation of M in Our Experiments. First we chose a set of of highest quality
qubits {i1, . . . , i2n−1} together with a starting configuration with minimal circuit
norm. Let this be

i1 : x0 i2 : x1 i3 : y1 i4 : x2 . . . i2n−2 : xn−1 i2n−1 : yn−1.

We then chose b ∼ U and a random permutations π on {2, . . . , n−1}. This gives
us circuit-norm preserving configurations

i1 : xb i2 : x1−b i3 : y1 i4 : xπ(2) . . . i2n−2 : xπ(n−1) i2n−1 : yπ(n−1).

We took 50 circuit-norm preserving configurations, and for each we performed
8192 measurements on IBM-Q16.

The experimental results of our Permuation Technique are illustrated for
n = 5 in Fig. 13b. In comparison, we have in Fig. 13a the unsmoothed distribution
for 8192 measurements of a single optimal configuration (as in Fig. 11). We
already see a significant distribution smoothing, especially vectors with the same
Hamming weight obtain similar probabilities. But of course, there is still a clear
bias towards 0, which cannot be mitigated by permutations.

|0n〉
QSimon

fs

X X

|0n〉

Fig. 12. Double-Flip circuit QDF . Triple
lines represent classical wires.

Double-Flip Technique. To mitigate
the effect that vectors with small Ham-
ming weight are measured more fre-
quently than vectors with large Ham-
ming weight, we flip in Simon’s cir-
cuit all bits via NOT-gates X before
measurement, see Fig. 12. This flipping
inverts the bias towards 0 that comes
from the quantum measurement (not from the previous quantum computation).
Since after flipping we measure the complement, we have to again flip all bits
(classically) after measurement and combine them with the original measure-
ments.

Experimental Results and Discussion. We performed 8192 measurements with
circuit QDF from Fig. 12, the results are illustrated in Fig. 13c. As expected,
we now obtain a bias towards 1. Hence, in the Double-Flip Technique we put
together the original measurements with 0-bias from Fig. 13a and the flipped
measurements with 1-bias from Fig. 13c, resulting in the smoothed distribution
from Fig. 13d.

From Fig. 13d we already see that the Double-Flip Technique is quite effec-
tive. Moreover, similar to the Permutation Technique, Double-Flip is a general
smoothing technique that can be applied for other quantum circuits as well.
However, there is also a significant drawback of Double-Flip, since it requires
additional (small) quantum circuitry for performing X. Thus, as opposed to the
Permutation Technique the Double-Flip does not preserve circuit norm. This
implies that it slightly increases the error rate τ , as we will see in Sect. 4.1,
where we study more closely the quality of our smoothing techniques.

Noisy Simon Period Finding 89

Fig. 13. Smoothed IBM-Q16 measurements.

Hamming Technique. The Hamming Technique is similar to the Double-
Flip Technique, but as opposed to Double-Flip Hamming is specific to Simon-
type problems and a purely classical post-processing of data without adding any
additional circuitry.

90 A. May et al.

Let Q ⊆ F
n
2 be a multiset of quantum measurements, e.g. the set of 8192

measurements from Fig. 13a. Then consider the complementary multiset

Q̄ = {q + 1n | q ∈ Q},

where we flip all bits. Let q ∈ Q ∩ s⊥, i.e. q is a measurement in the subspace
orthogonal to s. By complementing Q we want to preserve orthogonality, i.e. we
want to have q + 1n ∈ s⊥ which is true iff 1n ∈ s⊥ by the subspace structure.

Thus, complementation preserves orthogonality iff 1n ∈ s⊥, which is in turn
equivalent to even Hamming weight h(s). Similar to Double-Flip, in the Ham-
ming Technique we combine both measurements Q∪Q̄. The Hamming Technique
mitigates the effect that for each q ∈ Q with large frequency (due to the 0-bias)
we also obtain q + 1n with small frequency (due to the 0-bias), and vice versa.
Thus, averaging both frequencies should smooth our distribution closer to uni-
formity.

What happens if 1n /∈ s⊥? We want to add some vector v ∈ F
n
2 with Ham-

ming weight as large as possible. It is not hard to see that there always exists
some v ∈ s⊥ with h(v) ≥ n − 1. Thus, we can simply try all n + 1 possible
vectors.

Experimental Results. Since our instantiation of fs from Sect. 3.1 uses even-
weight periods s, we can use the multiset Q̄ (with 1n), which was done in Fig. 13e
and is a direct mirroring of Q in Fig. 13a. The multiset of measurement Q ∪ Q̄
is then depicted in Fig. 13f.

In comparison with Double-Flip from Fig. 13d, we see that the Hamming
technique provides in Fig. 13f a distribution which is closer to the uniform distri-
bution among orthogonal and non-orthonal vectors. Thus, for our experimental
data one should prefer the Hamming technique over Double-Flip.

Combination of Techniques. The same preference can be observed when we
combine the Permutation technique with either Double-Flip (see Fig. 14a) or
with Hamming (see Fig. 14b).

Fig. 14. Smoothing using a combination of techniques.

Noisy Simon Period Finding 91

The combination Permutation/Hamming seems to outperform Permutation/
Double-Flip, and Permutation/Hamming almost optimally follows our LSN
Error Model from Definition 2.2.

4.1 Quality Measures Statistics

Let us introduce a well-known statistical distance that quantitatively measures
the effectiveness of our smoothing techniques. Recall that we require error dis-
tributions close to our LSN Error Model, in order to justify the proper use of
LPN solvers in subsequent sections.

The Kullback-Leibler divergence describes the loss of information when going
from a distribution P – e.g. our LSN Error Model distribution – to another
distribution Q – e.g. our smoothed IBM-Q16 measurements.

Definition 4.1 (Kullback–Leibler divergence (KL)). The Kullback-Leibler
divergence of two probability distributions P towards Q on F

n
2 is

DKL(P ||Q) :=
∑

y∈Fn
2

P (Y) log
(

P (y)
Q(y)

)
.

We compute KL and the error rate τ on the data from Figs. 13 and 14. The
results are given in Table 1.

Table 1. Kullback–Leibler applied to our Smoothing Techniques.

Smoothing Measure

KL τ

None 0.04644 0.10730

Permutation 0.01596 0.10954

Double-Flip 0.00600 0.13104

Permutation/Double-Flip 0.00297 0.12044

Hamming 0.00139 0.10730

Permutation/Hamming 0.00011 0.10954

As we would expect for KL, Hamming is more effective than Double-Flip.
Also as predicted, Double-Flip increases the error rate τ , whereas the other
techniques leave τ (basically) unchanged. In particular, Hamming leaves τ
unchanged, since it is only a classical post-processing of our quantum data.
We have already seen qualitatively in Fig. 14 that the combination Permuta-
tion/Hamming performs best. This is supported also quantitatively in Table 1:
KL is very close to zero, indicating that via Permutation/Hamming smoothed
IBM-Q16 quantum measurements almost perfectly agree with the LSN Error
Model.

The results of applying Permutation/Hamming to all n = 2, . . . , 7 are
depicted in Fig. 15.

92 A. May et al.

Fig. 15. Via Permutation/Hamming Technique smoothed IBM-Q16 measurements for
n = 2, . . . , 7. KL is the Kullback-Leibler divergence to the LSN Error Model distribu-
tion.

Noisy Simon Period Finding 93

5 LSN is Polynomial Time Equivalent to LPN

In the previous section, we smoothed our IBM-Q16 experiments to the LSN
Error Model (Definition 2.2). Recall that the LSN Error Model states that with
probability τ we measure in the quantum circuit QSimon

fs
some uniformly dis-

tributed y ∈ F
n
2 \ s⊥. The question is now whether such erroneous y as in our

error model can easily be handled, i.e. whether LSN can be efficiently solved.
In this section, we answer this question in the negative. Namely, we show

that solving LSN is tightly as hard as solving the well-studied LPN problem,
which is supposed to be hard even on quantum computers.

Definition 5.1 (LPN-Problem). Let s ∈ F
n
2 \ {0} be chosen uniformly

at random, and let τ ∈ [0, 1
2). In the Learning Parity with Noise problem,

denoted LPNn,τ , one obtains access to an oracle OLPN(s) that provides sam-
ples (a, 〈a, s〉 + ε), where a ∼ Un and ε ∼ Berτ . The goal is to compute s.

Definition 5.1 explicitly excludes s = 0 in LPN. Notice that the case s = 0
implies that the LPN oracle has distribution Un × Berτ , whereas in the case
s �= 0 we have Pa[〈a, s〉 = 0] = 1

2 and therefore Pa[〈a, s〉 + ε = 0] = 1
2 . Hence,

for s �= 0 the LPN samples have distribution Un × U . This allows us to easily
distinguish both cases by a majority test, whenever τ is polynomially bounded
away from 1

2 . In conclusion, s = 0 is not a hard case for LPN and may wlog be
excluded.

Let us now define the related Learning Simon with Noise problem that reflects
the LSN Error Model.

Definition 5.2 (LSN-Problem). Let s ∈ F
n
2 \ {0} be chosen uniformly at

random, and let τ ∈ [0, 1
2). In the Learning Simon with Noise problem, denoted

LSNn,τ , one obtains access to an oracle OLSN(s) that provides samples y, where
y ∈ F

n
2 is distributed as in Definition 2.2, i.e.

P[y] =

{
1−τ
2n−1 , if y ∈ s⊥

τ
2n−1 , else

and therefore P[〈y, s〉 = 0] = 1 − τ.

The goal is to compute s.

In the following we prove that LSNn,τ is polynomial time equivalent to
LPNn,τ by showing that we can perfectly mutually simulate OLPN(s) and
OLSN(s). The purpose of excluding s �= 0 from LPNn,τ is to guarantee in the
reduction non-trivial periods s �= 0 in LSNn,τ .

Theorem 5.1 (Equivalence of LPN and LSN). Let A be an algorithm that
solves LPNn,τ (respectively LSNn,τ) using m oracle queries in time T with suc-
cess probability εA. Then there exists an algorithm B that solves LSNn,τ (respec-
tively LPNn,τ) using m oracle queries in time T with success probability εB ≥ εA

2 .

Proof. See full version [19]. ��

94 A. May et al.

Theorem 5.1 shows that under the LPN assumption we cannot expect to
solve LSN in polynomial time. However, it does not exclude that quantum mea-
surements that lead to an LSN distribution are still useful in the sense that
they help us to solve period finding faster than on classical computers. In the
following section, we show that LSN distributed quantum outputs indeed lead
to speedups even for large error rates τ .

6 Theoretical Error Handling for Simon’s Algorithm

It is well-known [20] that period finding for n-bit Simon functions classically
requires time Ω(2

n
2). So despite the hardness results of Sect. 5 we may still hope

that even error-prone quantum measurements lead to period finding speedups.
Indeed, it is also known that for any fixed τ < 1

2 the BKW algorithm [4] solves

LPNn,τ—and thus by Theorem 5.1 also LSNn,τ—in time 2O
(

n
log n

)
. This implies

that asymptotically the combination of LSN samples together with a suitable
LPN-solver already outperforms classical period finding.

In this work, we focus on the LPN-solvers of Esser, Kübler, May [11] rather
than the class of BKW-type solvers [4,10,13,16], since they have a simple descrip-
tion and runtime analysis, are easy to implement, have low memory consump-
tion, are sufficiently powerful for showing quantum advantage even for large
errors τ < 1

2 , and finally they are practically best for the IBM-Q16 error rates
τ ∈ [0.09, 0.13].

We start with the analysis of the Pooled Gauss algorithm [11]. Pooled
Gauss solves LPNn,τ in time Θ̃

(
2log(

1
1−τ)·n

)
using Θ̃

(
n2

)
samples.

The following theorem shows that period finding with error-prone quantum
samples in combination with Pooled Gauss is superior to purely classical
period finding whenever the error τ is bounded by τ ≤ 0.293.

Theorem 6.1. In the LSN Error Model (Definition 2.2), Pooled Gauss finds
the period s ∈ F

n
2 of a Simon function fs using Θ̃

(
n2

)
many LSNn,τ -samples,

coming from practical measurements of Simon’s circuit QSimon
fs

with error rate τ ,

in time Θ̃
(
2log(

1
1−τ)·n

)
. This improves over classical period finding for error

rates
τ < 1 − 1√

2
≈ 0.293.

Proof. See full version [19]. ��
Theorem 6.1 already shows the usefulness of a quite limited quantum oracle

that only allows us polynomially many measurements, whenever its error rate τ
is small enough.

If we allow for more quantum measurements, the Well-Pooled Gauss
algorithm [11] solves LPNn,τ in improved time and query complexity Θ̃(2f(τ)n),
where f(τ) = 1 − 1

1+log(1
1−τ)

. The following theorem shows that Well-Pooled

Gauss in combination with error-prone quantum measurements improves on
classical period finding for any error rate τ .

Noisy Simon Period Finding 95

Theorem 6.2. In the LSN Error Model (Definition 2.2), Well Pooled
Gauss finds the period s ∈ F

n
2 of a Simon function fs using Θ̃(2f(τ)n) many

LSNn,τ -samples, coming from practical measurements of Simon’s circuit QSimon
fs

with error rate τ , in time Θ̃(2f(τ)n), where

f(τ) = 1 − 1
1 + log(1

1−τ)
.

This improves over classical period finding for all error rates τ < 1
2 .

Proof. See full version [19]. ��
The results of Theorem 6.1 and Theorem 6.2 show that quantum measure-

ments of QSimon
fs

help us (asymptotically) even for large error rates τ , provided
that our error model is sufficiently accurate.

7 Practical Error Handling for Simon’s Algorithm

In this section, we compare the practical runtimes needed to find periods s with
the smoothed experimental data from our IBM-Q16 quantum measurements
(see Fig. 15) with purely classical period finding.

Notice that our LPN-solvers incur some polynomial overhead, which makes
them for very small n as on IBM-Q16 inferior to purely classical period finding.
Moreover, we would like to stress the experimental result of Sect. 3 that IBM-
Q16’s error rate τ(n) is a function increasing in n. So even if asymptotically LPN-
solvers outperform classical period finding, a fast convergence of τ(n) towards 1

2
prevents practical quantum advantage.

Periods Classically. Let us start with the description of an optimal classical
period finding algorithm, inspired by [20]. Naively, one may think that it is
optimal to query fs at different random points xi, until one hits the first collision
fs(xi) = fs(xj). However, assume that we have already queried the set of points
P = {x1,x2,x3}, without obtaining a collision. This gives us the information
that s is not in set of distances D = {x1 + x2,x2 + x3,x1 + x3}. This implies
that we should not ask x1 +x2 +x3, since it lies at distance x1 +x2 of x3. Hence
on optimal algorithm keeps track of the set D of all excluded distances. This is
realized in our algorithm Period, see Algorithm 3.

Periods Quantumly. By the result of Sect. 5 we may first transform our quan-
tum measurements into LPN samples, and then use one of the LPN-solvers from
Sect. 6. Since the error rates from our smoothed IBM-Q16 measurements (Fig. 15)
are below 1

8 , according to Theorem 6.1 we may use Pooled Gauss.

96 A. May et al.

Instead of applying the LSN-to-LPN reduction to our smoothed data, we
directly adapt Pooled Gauss into an LSN-solver, called Pooled LSN (Algo-
rithm 4). Pooled LSN can be considered as a fault-tolerant version of Simon
(Algorithm 1) that iterates until we obtain an error-free set of n − 1 linearly
independent vectors. Notice that error-freeness can be tested, since the resulting
potential period s′ is correct iff fs(s′)=fs(0).

Algorithm 3: Period
Input : Access to fs.
Output: Secret s.

1 begin
2 Set P = {(0, fs(0))}. � Set of queried points.

3 Set D = {0}. � Set of distances.

4 repeat
5 Select x ∈ argmax{|{s′ ∈ D | (x + s′, ·) �∈ P}|}. � Optimal next query.

6 P := P ∪ (x, fs(x)) � Update queries.

7 for (x′, fs(x′)) ∈ P do
8 D := D ∪ {x + x′} � Update distances.

9 end

10 until ∃x′ �= x : (x′, fs(x)) ∈ P or |D| = 2n − 1
11 if |D| = 2n − 1 then return s ∈ F

n
2 \ D. � Only possible period.

12 else return x + x′. � Collision found.

13 end

Algorithm 4: Pooled LSN

Input : Pool P ⊂ F
n
2 of LSN samples with |P | ≥ n − 1

Output: Secret s
1 begin
2 repeat
3 Randomly select a linearly independent set Y = {y1, . . . ,yn−1} ⊆ P .

4 Compute the unique s′ ∈ Y ⊥ \ {0}.

5 until fs(s
′) ?

= fs(0)
6 return s′.
7 end

Run Time Comparison. Period and Pooled LSN exponentially often iter-
ate their repeat-loops, where each iteration runs in polynomial time (using the
right data structure). Hence, asymptotically the number of iterations dominate
runtimes for both algorithms. For ease of simplicity, we take as cost measure only
the exponential number of loops, ignoring all polynomial factors (the polynomial
factors actually dominate in practice for our small dimensions n).

Noisy Simon Period Finding 97

2 3 4 5 6 7

1

2

3

Dimension

It
er
at
io
n
(l
og

)

Pooled LSN loops
Period loops

Fig. 16. Log-scaled loop iterations of
Pooled LSN and Period, averaged over
10.000 iterations.

Using this (over-)simplified loop
cost measure, we ran 10.000 itera-
tions of Period for n = 2, . . . , 7 and
averaged over the runtimes. For the
quantum period finding we took as
pool P the complete smoothed data
of Fig. 15. We then also ran 10.000
iterations of Pooled LSN for n =
2, . . . , 7 and averaged over the run-
times. The resulting log-scaled run-
times are depicted in Fig. 16.

As expected, Period’s experi-
mental runtime exponent is n

2 . For
Pooled LSN, we obtain an experi-
mental regression line of roughly n

3 ,
where the slope seems to decrease
with n. This results in a cut-off point
for the loop numbers between n = 4
and n = 5. Thus, experimentally we obtain quantum advantage, at least for our
loop cost measure.

References

1. 15-qubit backend: IBM Q team,“IBM Q 16 Melbourne backend specification
V2.0.1,” (2020). https://quantum-computing.ibm.com. Accessed 14 Jan 2020

2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 3

3. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307. IEEE Computer Society Press, October 2003

4. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press,
May 2000

5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

6. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 20

7. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 20

8. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol.
11272, pp. 560–592. Springer, Heidelberg (2018)

https://quantum-computing.ibm.com
https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-319-72565-9_20
https://doi.org/10.1007/978-3-030-34578-5_20

98 A. May et al.

9. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.: Quantum error correction
and orthogonal geometry. Phys. Rev. Lett. 78(3), 405 (1997)

10. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 638–
666. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 22

11. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

12. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

13. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 1

14. Hosoyamada, A., Sasaki, Yu.: Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 11

15. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

16. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 3

17. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher.
In: Proceedings of the International Symposium on Information Theory and its
Applications, ISITA 2012, Honolulu, HI, USA, 28–31 October 2012, pp. 312–316
(2012). http://ieeexplore.ieee.org/document/6400943/

18. Leander, G., May, A.: Grover meets Simon–quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

19. May, A., Schlieper, L., Schwinger, J.: Noisy simon period finding (2020). https://
arxiv.org/abs/1910.00802

20. Montanaro, A., de Wolf, R.: A survey of quantum property testing. Theor. Comput.
Grad. Surv. 7, 1–81 (2016). https://doi.org/10.4086/toc.gs.2016.007

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

22. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quant. Inf. Comput. 17(1&2), 65–78 (2017). http://www.
rintonpress.com/xxqic17/qic-17-12/0065-0078.pdf

23. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. CAD Integr. Circ. Syst. 22(6), 710–722 (2003). https://doi.
org/10.1109/TCAD.2003.811448

24. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November
1994

https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-662-45611-8_1
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
http://ieeexplore.ieee.org/document/6400943/
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://arxiv.org/abs/1910.00802
https://arxiv.org/abs/1910.00802
https://doi.org/10.4086/toc.gs.2016.007
http://www.rintonpress.com/xxqic17/qic-17-12/0065-0078.pdf
http://www.rintonpress.com/xxqic17/qic-17-12/0065-0078.pdf
https://doi.org/10.1109/TCAD.2003.811448
https://doi.org/10.1109/TCAD.2003.811448

Noisy Simon Period Finding 99

25. Simon, D.R.: On the power of quantum computation. In: 35th FOCS, pp. 116–123.
IEEE Computer Society Press, November 1994

26. Tame, M.S., Bell, B.A., Di Franco, C., Wadsworth, W.J., Rarity, J.G.: Experimen-
tal realization of a one-way quantum computer algorithm solving Simon’s problem.
Phys. Rev. Lett. 113, 200501, November 2014. https://link.aps.org/doi/10.1103/
PhysRevLett.113.200501

27. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (Sep (2015)

https://link.aps.org/doi/10.1103/PhysRevLett.113.200501
https://link.aps.org/doi/10.1103/PhysRevLett.113.200501

A Bunch of Broken Schemes: A Simple
yet Powerful Linear Approach

to Analyzing Security of Attribute-Based
Encryption

Marloes Venema1(B) and Greg Alpár1,2

1 Radboud University, Nijmegen, The Netherlands
{m.venema,g.alpar}@cs.ru.nl

2 Open University of the Netherlands, Heerlen, The Netherlands

Abstract. Verifying security of advanced cryptographic primitives such
as attribute-based encryption (ABE) is often difficult. In this work,
we show how to break eleven schemes: two single-authority and nine
multi-authority (MA) ABE schemes. Notably, we break DAC-MACS, a
highly-cited multi-authority scheme, published at TIFS. This suggests
that, indeed, verifying security of complex schemes is complicated, and
may require simpler tools. The multi-authority attacks also illustrate
that mistakes are made in transforming single-authority schemes into
multi-authority ones. To simplify verifying security, we systematize our
methods to a linear approach to analyzing generic security of ABE. Our
approach is not only useful in analyzing existing schemes, but can also be
applied during the design and reviewing of new schemes. As such, it can
prevent the employment of insecure (MA-)ABE schemes in the future.

Keywords: Attribute-based encryption · Cryptanalysis ·
Multi-authority attribute-based encryption · Attacks

1 Introduction

Attribute-based encryption (ABE) [30] is an advanced type of public-key encryp-
tion. Ciphertext-policy (CP) ABE [5] naturally implements a fine-grained access
control mechanism, and is therefore often considered in applications involving
e.g. cloud environments [22,23,26,37,38,40] or medical settings [25,27,29]. These
applications of ABE allow the storage of data to be outsourced to potentially
untrusted providers whilst ensuring that data owners can securely manage access
to their data. Many such works use the multi-authority (MA) variant [8], which
employs multiple authorities to generate and issue secret keys. These authorities
can be associated with different organizations, e.g. hospitals, insurance compa-
nies or universities. This allows data owners, e.g. patients, to securely share their
data with other users from various domains, e.g. doctors, actuaries or medical

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 100–125, 2021.
https://doi.org/10.1007/978-3-030-75539-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_5

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 101

researchers. Many new schemes are designed for specific real-world applications,
that cannot be sufficiently addressed with existing schemes.

Unfortunately, proving and verifying security of new schemes are difficult,
and, perhaps unsurprisingly, several schemes turn out to be broken. Some
schemes were shown to be generically broken with respect to the basic func-
tionality, and are therefore insecure. Others were only broken with respect to
additional functionality. Table 1 shows that many of these schemes have been
published at venues that include cryptography in their scope. This suggests that,
even for cryptographers, it is difficult to verify security of ABE. In addition, many
of these schemes are highly cited due to their focus on practical applications.
This popularity shows that the claimed properties of these schemes are high in
demand. It is thus important to simplify security analysis.

Table 1. Attacks on existing schemes. For each scheme, we list in which work it
was broken, which functionality was attacked, and whether it was later fixed. Also,
we provide the venue and number of citations for these schemes according to Google
Scholar. These measures were taken on 18 November 2020.

Scheme Broken in Attacked functionality Fixed? Venue Cit.

LRZW09 [21] LHC+11 [20] Private access policies [20] ISC 203

ZCL+13 [41] CDM15 [9] AsiaCCS 104

XFZ+14 [36] NC 46

HSMY12 [12] GZZ+13 [11] Basic U NC 176

YJR+13 [40] HXL15 [15] Revocation [35] TIFS 474

WJB17 [35]

HSM+14 [13] WZC15 [32] Basic U ESORICS 30

HSM+15 [14] TIFS 128

JLWW15 [17] MZY16 [24] Distributed key generation [18] TIFS 161

NC = non-crypto venue/journal; U = unknown

To simplify the design and analysis of complex primitives such as ABE,
frameworks have been introduced [1,3,34] based on the common structure of
many schemes. These frameworks allow for the analysis of the exponent space
of the schemes—called pair encoding—with respect to simpler security notions.
Interestingly, Agrawal and Chase [1] show that fully secure schemes can be con-
structed from pair encodings that are provably symbolically secure. Using this,
they show that any scheme that is not trivially broken implies a fully secure
scheme. Later, Ambrona et al. [2] expand their framework to a broader class of
schemes, and devise automated tools to prove symbolic security, subsequently
yielding provably secure schemes in the generic bilinear group model [6,7]. How-
ever, operating these tools still requires a considerable expertise (and in a dif-
ferent field). Additionally, these frameworks do not support practical extensions
of ABE such as multi-authority ABE (MA-ABE).

102 M. Venema and G. Alpár

In any case, these works illustrate that proving generic security of a scheme
provides a meaningful first step in the analysis of a new scheme, and may even
imply stronger notions of security. Conversely, showing that a scheme is not
generically secure provides overwhelming evidence that a scheme is insecure,
regardless of the underlying group structure or accompanying security proofs.
As such, devising manual tools and heuristics to effectively analyze the generic
(in)security of schemes may further contribute to these frameworks. That is,
finding a generic attack—assuming that one exists—is often much simpler than
verifying the correctness of a security proof. In fact, it is often the first step that
an experienced cryptographer takes when designing a new scheme.

1.1 Our Contribution

We focus on simplifying the search for generic attacks (provided that they exist).
In a broader context, our goal is not necessarily to attack existing schemes, but
to propose a framework that simplifies the analysis—and by extension, design—
of secure ABE schemes. We do this by systematizing a simple heuristic approach
to finding attacks. Our contribution in this endeavor is twofold. First, we show
that eleven schemes are vulnerable to generic attacks, rendering them (partially)
insecure. Five of these are insecure in the basic security model. The other six
are insecure in the multi-authority security model—which also allows for the
corruption of one or more authorities—but are possibly secure if all authorities
are assumed to be honest. Essentially, these six schemes provide a comparable
level of security as single-authority schemes. Second, we systematize our meth-
ods to a linear approach to generic security analysis of ABE based on the com-
mon structure of many schemes. Similarly as the aforementioned frameworks,
we consider the pair encodings of the schemes. To this end, we also formal-
ize such pair encodings for multi-authority schemes. Furthermore, we describe
three types of attacks, which model the implicit security requirements on the
keys and ciphertexts, and simplify the search for generic attacks. They model
whether the master-key of the/an authority can be recovered, or whether users
can collude and decrypt ciphertexts that they cannot individually decrypt. In
the multi-authority setting, we also model the notion of corruption.

1.2 Technical Details

Ciphertext-Policy ABE. In CP-ABE, ciphertexts are associated with access
policies, and secret keys are associated with sets of attributes. A secret key is
authorized to decrypt a ciphertext if its access structure is satisfied by the asso-
ciated set. These secret keys are generated by a key generation authority (KGA)
from a master-key, which can be used to decrypt any ciphertext. Users with
keys for different sets of attributes should not be able to collude in collectively
decrypting a ciphertext that they are individually not able to decrypt. There-
fore, these keys need to be secure in two ways. First, the master-key needs to
be sufficiently hidden in the secret keys. Second, combining the secret keys of
different users should not result in more decryption capabilities.

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 103

A Brief Overview of the Attack Models. We propose three types of attacks,
which all imply attacks on the security model for ABE. This model considers
chosen-plaintext attacks (CPA) and collusion of users. Two of our attack models
only consider the secret keys issued in the first key query phase of the security
model, while the third model also considers the challenge ciphertext. Informally,
the attacks are:

– Master-key attack (MK): The attacker can extract the KGA’s master-key,
which can be used to decrypt any ciphertext.

– Attribute-key attack (AK): The attacker can generate a secret key for a
set S ′ that is strictly larger than each set Si associated with an issued key.

– Decryption attack (D): The attacker can decrypt a ciphertext for which
no authorized key was generated.

In addition, we distinguish complete from conditional decryption attacks.
Conditional attacks can only be performed when the collective set of attributes
possessed by the colluding users satisfies the access structure. In contrast, com-
plete attacks allow any ciphertext to be decrypted. Figure 1 illustrates the rela-
tionship between the attacks, and how the attacks relate to the security model.
We consider the first key query phase and the challenge phase, which output the
secret keys for a polynomial number of sets of attributes, and a ciphertext asso-
ciated with an access structure such that all keys are unauthorized, respectively.

Fig. 1. The general attacks and how they relate to one another.

104 M. Venema and G. Alpár

The security models in the multi-authority setting are similar, but include the
notion of corruption. The attacker is allowed to corrupt one or more authorities
in an attack, which should not yield sufficient power to enable an attack against
the honest authorities. Sometimes, schemes employ a central authority (CA)
in addition to employing multiple attribute authorities. This CA is assumed to
perform the algorithms as expected, though sometimes, it may be corruptable.
In this work, we show how to model the corruption of attribute authorities and
corruptable CAs, and how the additional knowledge (e.g. the master secret keys)
gained from corrupting an authority can be included in the attacks.

Finally, we observe that sometimes it is unclear whether a multi-authority
scheme is supposed to provide security against corruption. Initially, multi-autho-
rity ABE was designed to be secure against corruption [8,19]. Not only does this
protect honest authorities from corrupt authorities, but it also increases security
from the perspective of the users. Conversely, not allowing corruption in the
security model provides a comparable level of security as single-authority ABE.
In some cases, the informal description of a scheme is ambiguous on whether
it protects against corruption. For instance, schemes are compared with other
multi-authority schemes that are secure against corruption, while the proposed
scheme is not, even though this is not explicitly mentioned [23,27].

Finding Attacks, Generically. We evaluate the generic (in)security of a
scheme by considering the pair encodings of a scheme [1,2]. Intuitively, the pair
encoding scheme of a pairing-based ABE scheme provides an abstraction of the
scheme to what happens “in the exponent”, without considering the underlying
group structure. In most pairing-based schemes, the keys and ciphertexts exist
mainly in two source groups, and during encryption, a message is blinded by a
randomized target group element. To unblind the message, decryption consists
of pairing operations to appropriately match the key and ciphertext components
and then lift these to the target group. For instance, let e : G × H → GT be a
pairing that maps two source groups G and H to target group GT , and let g ∈ G

and h ∈ H be two generators. Then, the keys and ciphertexts are of the form:

SK = hk(α,r,b), CT = (m · e(g, h)αs, gc(s,b)),

such that k and c denote the key and ciphertext encodings of the scheme, α
denotes the master-key, b is associated with the public key and r and s are the
random variables associated with the keys and ciphertexts, respectively.

On a high level, generic security of a scheme is evaluated by considering
whether e(g, h)αs can be retrieved from ciphertext CT and an unauthorized key
SK. Due to the additively homomorphic properties of groups G, H and GT , and
the multiplicative behavior of the pairing operation, we can also consider the
associated pair encoding scheme. That is, instead of retrieving e(g, g)αs from SK
and CT, we retrieve αs from k(α, r,b) and c(s,b). By multiplying the entries of
k and c, we emulate the pairing operations. By linearly combining the resulting
values (for which we require additions), we emulate the other available group

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 105

operations. As a result, such a “combination” of a key and ciphertext encoding
can be denoted by a matrix multiplication, i.e. E for which kEcᵀ = αs.

Pair encoding schemes allow us to evaluate the generic security of any scheme
that satisfies this structure, regardless of the underlying group structure. Unfor-
tunately, the structure of most multi-authority schemes differs from this struc-
ture. Therefore, we extend the existing definitions to additionally support these
multi-authority schemes. Furthermore, we split the key and ciphertext encodings
in two parts, so we can separately evaluate the stronger attacks, i.e. master-key
and complete decryption attacks, and the weaker attacks, i.e. attribute-key and
conditional decryption attacks. This further simplifies the analysis of schemes.

Table 2. The schemes for which we provide attacks. For each scheme, we indicate on
which scheme it is based, which type of attack we apply to it and whether it is complete,
whether it uses collusion or corruption, whether the attack explicitly contradicts the
model in which the scheme is claimed to be secure. We also list the conference or journal
in which the scheme was published and how many times the paper is cited according
to Google Scholar. These measures were taken on 18 November 2020.

Scheme Based on CD Att. Col. Cor. Con. Venue Cit.

ZH10 [42,43]

ZHW13 [44]
– ✗ AK 2 – � NC

NC

112

123

NDCW15 [26] Wat11 [33] � D – – � ESORICS 46

YJ12 [37] – � MK – A � NC 155

YJR+13 [39,40]

WJB17 [35]
– � D – – � NC, TIFS

NC

474

28

JLWW13 [16]

JLWW15 [17]
BSW07 [5] ✗ AK 2 – � NC

TIFS

174

161

QLZ13 [28] – � MK – – � ICICS 42

YJ14 [38] – � D – A � NC 240

CM14 [10] – � D – A U NC 42

LXXH16 [22]

MST17 [25]
Wat11 [33] � MK – CA

�
U

NC

AsiaCCS

110

25

PO17 [27] – � D – A U SACMAT 16M
u
lt
i-
a
u
t
h
o
r
it
y

A
B
E

MGZ19 I [23] LW11 [19] � MK – CA U Inscrypt 4

CD = complete decryption attack, Att = attack, MK = master-key attack, AK = attribute-
key attack, D = decryption attack; Col = collusion, Cor = corruption, Con = contra-
dicts proposed security model, U = unclear, NC = not published at peer-reviewed crypto
venue/journal

The Attacked Schemes. Table 2 lists the schemes for which we have found
attacks. Many of these schemes are published at venues that include cryptog-
raphy in their scope, or have been highly cited. Hence, even though many
researchers have studied these schemes, mistakes in the security proofs have
gone unnoticed. These attacks also illustrate that systematizing any generic
attacks may actually have merit. Not only does it provide designers with sim-
ple tools to test their own schemes with respect to generic attacks, but also
reviewers and practitioners. Because most schemes are broken with respect to
the strongest attacks, i.e. master-key and complete decryption attacks, formaliz-
ing these models—which are stronger but easier to verify—simplifies the search
for generic attacks as well.

106 M. Venema and G. Alpár

2 Preliminaries

Notations. If an element is chosen uniformly at random from some finite set
S, we write x ∈R S. If an element x is generated by running algorithm Alg,
we write x ← Alg. We use boldfaced variables for vectors x and matrices M,
where x denotes a row vector and yᵀ denotes a column vector. Furthermore, xi

denotes the i-th entry of x. If the vector size is unknown, v ∈R S indicates that
for each entry: vi ∈R S. Finally, x(y1, y2, ...) denotes a vector, where the entries
are polynomials over variables y1, y2, ..., with coefficients in some specified field.
However, for conciseness, we often only write x. We refer to a polynomial with
only one term, or alternatively one term of the polynomial, as a monomial.

Access Structures. We consider monotone access structures (see the full ver-
sion [31] for a formal definition) [4]. If a set S satisfies access structure A, we
denote this as A |= S. For monotone access structures, it holds that if S ⊇ S ′

and A |= S ′, then A |= S. We denote the i-th attribute in the access structure
as atti ∼ A.

Pairings. We define a pairing to be an efficiently computable map e on three
groups G, H and GT of order p, such that e : G × H → GT , with generators
g ∈ G, h ∈ H such that for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab

(bilinearity), and for ga �= 1G, hb �= 1H, it holds that e(ga, hb) �= 1GT
, where 1G′

denotes the unique identity element of the associated group G
′ (non-degeneracy).

2.1 Formal Definition of (Multi-authority) Ciphertext-Policy ABE

We slightly adjust the more traditional definition of CP-ABE [5] and its multi-
authority variant [19]. Specifically, we split the generation of the keys in two
parts: the part that is dependent on an attribute and the part that is not. These
are relevant distinctions in the definitions of various attack models.

Definition 1 (Ciphertext-policy ABE). A CP-ABE scheme with some
authorities A1, ...,An (where n ∈ N) such that each Ai manages universe Ui,
users and a universe of attributes U =

⋃n
i=1 Ui consists of the following algo-

rithms.

– GlobalSetup(λ) → GP: The global setup is a randomized algorithm that takes
as input the security parameter λ, and outputs the public global system param-
eters GP (independent of any attributes).

– MKSetup(GP) → (GP,MK): The master-key setup is a randomized algorithm
that takes as input the global parameters GP, and outputs the (secret) master-
key MK (independent of any attributes) and updates the global parameters by
adding the public key associated with MK.

– AttSetup(att,MK,GP) → (MSKatt,MPKatt): The attribute-key setup is a
randomized algorithm that takes as input an attribute, possibly the master-key
and the global parameters, and outputs a master secret MSKatt and public key
MPKatt associated with attribute att.

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 107

– UKeyGen(id,MK,GP) → SKid: The user-key generation is a randomized
algorithm that takes as input the identifier id, the master-key MK and the
global parameters GP, and outputs the secret key SKid associated with id.

– AttKeyGen(S,GP,MK,SKid, {MSKatt}att∈S) → SKid,att: The attribute-key
generation is a randomized algorithm that takes as input an attribute att pos-
sessed by some user with identifier id, and the global parameters, the master-
key MK, the secret key SKid and master secret key MSKatt, and outputs a
user-specific secret key SKid,att.

– Encrypt(m, A,GP, {MPKatt}att∼A) → CTA: This randomized algorithm is
run by any encrypting user and takes as input a message m, access structure
A and the relevant public keys. It outputs the ciphertext CTA.

– Decrypt(SKid,S ,CTA) → m: This deterministic algorithm takes as input a
ciphertext CTA and secret key SKid,S = {SKid,SKid,att}att∈S associated with
an authorized set S, and outputs plaintext m. Otherwise, it aborts.

– MKDecrypt(MK,CT) → m: This deterministic algorithm takes as input a
ciphertext CT and the master-key MK, and outputs plaintext m.

The scheme is called correct if decryption outputs the correct message for a secret
key associated with a set of attributes that satisfies the access structure.

In the single-authority setting (i.e. where n = 1), the GlobalSetup, MKSetup
and AttSetup are described in one Setup, and the UKeyGen and AttKeyGen
have to be run in one KeyGen. In the multi-authority setting (i.e. where n > 1),
the GlobalSetup is run either jointly or by some CA. MKSetup can either be run
distributively or independently by each Ai. AttSetup can be run distributively or
individually by Ai for the managed attributes Ui. UKeyGen is run either distribu-
tively, individually for each Ai, or implicitly (e.g. by using a hash). AttKeyGen
is run by the Ai managing the set of attributes.

2.2 The Security Model and Our Attack Models

Definition 2 (Full CPA-security for CP-ABE [5]). Let C = (GlobalSetup,
...,MKDecrypt) be a CP-ABE scheme for authorities A1, ...,An conform Defi-
nition 1. We define the game between challenger and attacker as follows.

– Initialization phase: The attacker corrupts a set I � {1, ..., n} of authori-
ties, and sends I to the challenger. In the selective security game, the attacker
also commits to an access structure A.

– Setup phase: The challenger runs the GlobalSetup, MKSetup for all
authorities, and AttSetup for all attributes. It sends the global parameters
GP, master public keys {MPKatt}att∈U , and corrupted master secret keys
{MSKatt}att∈UI to the attacker, where UI =

⋃
i∈I Ui.

– Key query phase I: The attacker queries secret keys for sets of attributes
(id1,S1), ..., (idn1 ,Sn1). The challenger runs UKeyGen and AttKeyGen for
each (idj ,Sj) and sends SKid1,S1 ,...,SKidn1 ,Sn1

to the attacker.
– Challenge phase: The attacker generates two messages m0 and m1 of equal

length, together with an access structure A such that Sj ∪ UI does not satisfy
A for all j. The challenger flips a coin β ∈R {0, 1} and encrypts mβ under
A. It sends the resulting challenge ciphertext CTA to the attacker.

108 M. Venema and G. Alpár

– Key query phase II: The same as the first key query phase, with the restric-
tion that the queried sets Sn1+1, ...,Sn2 are such that A �|= Sj ∪ UI .

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as |Pr[β′ = β] − 1
2 |. A ciphertext-

policy attribute-based encryption scheme is fully secure (against static corrup-
tion) if all polynomial-time attackers have at most a negligible advantage in this
security game.

We formally define our attack models in line with the chosen-plaintext attack
model above and Fig. 1, such that CPA-security also implies security against
these attacks. Conversely, the ability to find such attacks implies insecurity in
this model. While this follows intuitively, we prove this in the full version [31].

Definition 3 (Master-key attacks (MKA)). We define the game between
challenger and attacker as follows. First, the initialization, setup and first key
query phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs MK′.

The attacker wins the game if for all messages m, decryption of ciphertext CT ←
Encrypt(m, ...) yields m′ ← MKDecrypt(MK′,CT) such that m = m′.

Definition 4 (Attribute-key attacks (AKA)). We define the game between
challenger and attacker as follows. First, the initialization, setup and first key
query phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs SKS′ , where S ′
� Sj for all j ∈

{1, ..., n1}, and S ′ ⊇ ⋃n1
j=1 Sj.

The attacker wins the game if SKid′,S′ is a valid secret key for some arbitrary
identifier id′ and set S ′.

Definition 5 (Decryption attacks (DA)). We define the game between chal-
lenger and attacker as follows. First, the initialization, setup, first key query and
challenge phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs plaintext m′.

The attacker wins the game if m′ = m. A decryption attack is conditional if
A |= ⋃n1

j=1 Sj. Otherwise, it is complete.

3 Warm-Up: Attacking DAC-MACS (YJR+13 [39,40])

We first give an example of how an attack can be found effectively by attacking
the YJR+13 [39,40] scheme, also known as DAC-MACS. DAC-MACS is a popu-
lar multi-authority scheme that supports key revocation. This functionality was
already broken in [15,35], but a fix for its revocation functionality was proposed
in [35]. We show that even the basic scheme—which matches the “fixed version”

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 109

[35]—is vulnerable to a complete decryption attack. We review a stripped-down
version of the global and master-key setups, the user-key generation and encryp-
tion. In particular, we consider only the parts that are not dependent on any
attributes. Also note that we use a slightly different notation for the variables:
(a, αk, βk, zj , uj , tj,k) 	→ (b, αi, bi, x1, x2, ri).

– GlobalSetup: The central authority generates pairing e : G × G → GT over
groups G and GT of prime order p with generator g ∈ G, chooses random
integer b ∈R Zp and publishes as global parameters GP = (p, e, G, GT , g, gb);

– MKSetup: Authority Ai chooses random αi, bi ∈R Zp, and outputs master
secret key MSKi = (αi, bi) and master public key MPKi = (e(g, g)αi , g1/bi);

– UKeyGen: Upon registration, the user receives partial secret key SK =
(x1, g

x2) from the central authority, with a certificate that additionally
includes x2. To request a key from authority Ai, the user sends this cer-
tificate. The attribute-independent part of a user’s secret key provided by
authority Ai is SK′

i = (gαi/x1+x2b+rib/bi , gribi/x1 , grib), where ri ∈R Zp;
– Encrypt: A message m is encrypted by picking random s ∈R Zp and comput-

ing: CT = (m · (
∏

i e(g, g)αi)s
, gs, gs/bi , ...).

Note that an authority Ai can individually generate gαi/x1+x2b+rib/bi , if x2 is
known to the authority. In the specification of DAC-MACS, the central author-
ity generates a certificate containing x2 and the identifier of the user, such that
these are linked. In the conference version [39], this certificate is encrypted,
and can be decrypted only by the authorities. However, in the journal ver-
sion [40], this certificate is not explicitly defined to be hidden from the user.
We assume that x2 is therefore also known to the user. Then, after receiving
the certificate from the user, x2 is used by the authority Ai to link the secret
keys to this particular user. However, we show that knowing exponents x1, x2

enables an attack. That is, any decrypting user is trivially able to decrypt any
ciphertext, without even needing to consider the attribute-dependent part of
the keys and ciphertexts. First, we show that we cannot perform a master-key
attack, i.e. retrieve αi. In particular, the partial secret keys are of the form
SK = (x1, g

x2 , x2, g
αi/x1+x2b+rib/bi , gribi/x1 , grib). We observe that master-key

αi only occurs in gαi/x1+x2b+rib/bi . Now, we can cancel out gx2b, because x2 is
known and gb is a global parameter. Unfortunately, we cannot cancel out grib/bi .

Subsequently, we show that it is possible to perform a decryption attack. For
this, we also consider CT = (m ·e(g, g)αis, gs, gs/bi , ...). To retrieve e(g, g)αis, we
start by pairing gαi/x1+x2b+rib/bi and gs, and compute

e(gαi/x1+x2b+rib/bi , gs)x1 = e(g, g)αis

︸ ︷︷ ︸
+

to cancel
︷ ︸︸ ︷
e(g, g)x1x2sb+x1risb/bi

Blinding value
e(gb, gs)x1x2

e(grib, gs/bi)x1

110 M. Venema and G. Alpár

Hence, e(g, g)αis can be retrieved and thus the ciphertext can be decrypted.
Resisting this attack is not trivial. The main issue is that x2 is known to the user,
because x2 needs to be known by the authority to generate gαi/x1+x2b+rib/bi .
Otherwise, it cannot generate gx2b. To avoid the attack, the CA could encrypt
the certificate containing x2—like in the conference version [39]—so only the
authorities Ai can decrypt it, and the user does not learn x2. The attacker can
however corrupt any authority, learn x2 and perform the attack. This still breaks
the scheme, because of its claimed security against corruption of authorities Ai.

This attack illustrates two things. First, it shows the simplicity of finding a
master-key or complete decryption attack—the two strongest attacks—provided
that one exists. In particular, in the analysis, we only have to consider the parts
of the keys that are not related to the attributes or additional functionality.
This strips away a significantly more complicated part of the scheme. Second,
we can systematically focus on the the goal of retrieving gαi or e(g, g)αis. Due to
the structure of the scheme, we can directly analyze the exponent space of the
key and ciphertext components. The pairing operation effectively allows us to
compute products of these values “in the exponent”. Therefore, we do not have
to consider the underlying group structure. Instead, we can attempt to retrieve
αis by linearly combining the products of the exponent spaces of the key and
ciphertext components. In addition, we can use the explicit knowledge of certain
variables “in the exponent” by using these variables in the coefficients.

Not only is finding such a generic attack simpler than verifying a security
proof, it may also help finding the mistake in the proof. As shown, the main
reason that our attack works is that x2 is known to the user. We use this obser-
vation to find the mistake in the security proof in the journal version [40], which
is loosely based on the selective security proof by Waters [33]. In the proof, the
challenger and attacker play the security game in Definition 2. The attacker is
assumed to be able to break the scheme with non-negligible advantage. The chal-
lenger uses this to break the complexity assumption by using the inputs to the
assumption in the simulation of the keys and challenge ciphertext. Roughly, the
challenger embeds the element that needs to be distinguished from a random
element in the complexity assumption in the challenge ciphertext component
e(g, g)αis. To ensure that e(g, g)αis cannot be generated trivially from e.g. gαi

and gs, the challenger cannot simulate the master secret key gαi . To simulate
the key gαi/x1+x2b+rib/bi , the part with gαi is canceled out by the gx2b part.
By extension, the challenger cannot fully simulate gx2b. Because gb needs to
be simulated (as it is part of the public key), it is not possible to simulate the
secret in x2. In [40], the authors attempt to solve this issue by generating x2 ran-
domly, and by implicitly writing it as the sum of the non-simulatable secret and
another random integer x′

2 (which is thus unknown to the challenger). While this
allows the simulation of x2, this causes an issue in the simulation of gαi/x1+x2b.
Because the secret part in x2 is meant to cancel out the non-simulatable part,
gαi/x1+x2b needs to be simulated by computing gx′

2b. This is not possible, since
x′
2 is unknown to the challenger.

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 111

4 Systematizing Our Methodology

Our methodology consists of a systemized approach to finding attacks. It consists
of a more concise notation implied by the common structure of many ABE
schemes (Sect. 4.1). We model how learning explicit values “in the exponent”,
e.g. by corrupting an authority, can be used in the attacks (Sect. 4.2). We give
our attack models in the concise notation (Sects. 4.3, 4.4). Finally, we describe
a heuristic approach that simplifies the effort of finding attacks (Sect. 4.5).

4.1 The Common Structure Implies a More Concise Notation

Many schemes have a similar structure, captured in frameworks that analyze the
exponent space through pair encodings [3,34]. We adapt their definitions of pair
encoding schemes to match our definition of CP-ABE (Definition 1), which also
covers the multi-authority setting. Pair encodings facilitate a shorter notation.

Definition 6 (Extended pair encoding implied by CP-ABE). Let author-
ities A1,...,An manage universes Ui for each i, and set U =

⋃n
i=1 Ui as the

collective universe.

– GlobalSetup(λ): This algorithm generates three groups G, H, GT of order p
with generators g ∈ G, h ∈ H, and a pairing e : G × H → GT . It may also
select common variables b ∈R Zp. It publishes the global parameters

GP = (p, G, H, GT , g, h,U , ggp(b)),

where we refer to gp as the global parameter encoding.
– MKSetup(GP): This algorithm selects α ∈R Zp, sets master-key MK = α

and publishes master public key MPK = {e(g, h)α}.
– AttSetup(att,MK,GP): This algorithm selects integers batt ∈R Zp as secret

MSKatt = batt, and publishes

MPKatt = gmpka(batt,b),

where we refer to mpka as the master attribute-key encoding.
– UKeyGen(id,MK,GP): This algorithm selects user-specific random integers

ru ∈R Zp and computes partial user-key

SKid = hku(id,α,ru,b),

where we refer to ku as the user-key encoding.
– AttKeyGen(S,GP,MK,SKid, {MSKatt}att∈S): Let SKid = (hid,1, hid,2, ...).

This algorithm selects user-specific random integers ra ∈R Zp and computes
a key SKid,S = {SKid,att}att∈S , such that for all att ∈ S

SKid,att = (hka,1(att,ra,b,batt)
id,1 , h

ka,2(att,ra,b,batt)
id,2 , ...),

where we refer to ka,i as the user-specific attribute-key encodings.

112 M. Venema and G. Alpár

– Encrypt(m, A,GP, {MPKatt}att∼A): This algorithm picks ciphertext-specific
randoms s = (s, s1, s2, ...) ∈R Zp and outputs the ciphertext

CTA = (A,m · e(g, h)αs, gc(A,s,b), gca(A,s,b,{batt}att∼A)),

where we refer to c as the attribute-independent ciphertext encoding,
and ca the attribute-dependent ciphertext encoding.

– Decrypt((SKid,SKid,S),CTA): Let SKid = hku(id,α,ru,b) = (hid,1, hid,2, ...),
SKid,S = {(hka,1(att,ra,i,b,batt)

id,1 , h
ka,2(att,ra,i,b,batt)
id,2 ,...)}i∈{1,...,n},att∈S∩Ui

, and
CTA = (A, C = m · e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). Define
SA = {att ∼ A | att ∈ S}, and matrices E, Eatt,S,A for each att ∈ S such
that

cEkᵀ
u +

∑

att∈SA

(c | ca)Eatt,S,A(ku | ka)ᵀ = αs.

Then, the plaintext m can be retrieved by recovering e(g, h)αs from C,Ca and
SKid,SKid,S , and m = C/e(g, h)αs.

– MKDecrypt(MK,CT): Let MK = α, MK′ = hmk(α,b) and CT = (C = m ·
e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). Define vector e such that
ceᵀmk = αs. Then, m can be retrieved by computing

C/
∏

�

e(C�,MK′)e� ,

where C� and e� denote the �-th entry of C and e, respectively.

Each encoding enc(var) denotes a vector of polynomials over variables var.
Generators constructed by hash functions [5] are covered by this definition by
assuming that H(att) = gbatt for some implicit batt. Depending on the scheme,
MKSetup may be run distributively or by a single CA (in which case there is only
one public key e(g, h)α associated with the master-keys), or independently and
individually by multiple authorities Ai (in which case there are multiple public
keys e(g, h)αi , and we replace the blinding value e(g, h)αs by e(g, h)

∑
i∈I αis).

4.2 Modeling Knowledge of Exponents – Extending Zp

The previously defined notation describes the relationship between the various
variables “in the exponent” of the keys and ciphertexts. The explicit values of
most variables are unknown to the attacker. In multi-authority ABE, authorities
provide the inputs to some encodings, and therefore know these values, as well
as their (part of the) master-key. Hence, corruption of authorities results in the
knowledge of some explicit values “in the exponent”. If the values provided by
honest authorities are not well-hidden, it might enable an attack on them.

We model the “knowledge of exponents” in attacks by extending the space
from which the entries of E and Eatt,S,A are chosen: Zp (or some extension with
variables associated with S and A). In fact, the entries of these matrices may be

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 113

any fraction of polynomials over Zp and the known exponents. Let K be the set
of known exponents, then the extended field of rational fractions is defined as

Zp(K) = {ab−1 (mod p) | a, b ∈ Zp[K]},

where Zp[K] denotes the polynomial ring of variables K.

4.3 Formal Definitions of the Attacks in the Concise Notations

We formally define our attack models (conform Definitions 7–9, depicted in
Fig. 1) in the concise notation. For each attack, K ⊆ {x, x1, x2, ...} denotes the
set of known variables. We use the following shorthand for a key encoding for a
user id with set S and for a ciphertext encoding for access structure A:

kid,S := (gp(b),mpka(batt,b),ku(id, α, ru,b) | ka,1(att, ra,b,batt) | ...),
cA := (gp(b),mpka(batt,b), c(A, s,b) | ca(A, s,b, {batt}att∼A)).

We first define the master-key attacks. In these attacks, the attacker has
to retrieve master-key mk(α,b), so any ciphertext can be decrypted conform
MKDecrypt. In many schemes, it holds that master-key mk is α (i.e. hα), though
in others, recovering e.g. mki = αi/bi for authorities Ai is required to decrypt
all ciphertexts. This is because ciphertext encoding c often contains s or sbi.

Definition 7 (Master-key attacks). A scheme is vulnerable to a master-
key attack if there exist (id1,S1), ..., (idn1 ,Sn1) and the associated key encodings
kidi,Si

, and there exist ei ∈ Zp(K)�i , where �i = |kidi,Si
| denotes the length of the

i-th key encoding, such that
∑

i kie
ᵀ
i = mk(α,b) ∈ Zp(α,b). Then, it holds that

for all attribute-independent ciphertext encodings c there exists e′ ∈ Z
�′
p (with

|c| = �′) such that mke′cᵀ = αs.

We formally define attribute-key attacks. In an attribute-key attack, the
attacker has to generate a secret key associated with a set S ′ that is strictly
larger than any of the sets Si associated with the issued keys.

Definition 8 (Attribute-key attacks). A scheme is vulnerable to an attri-
bute-key attack if there exist (id1,S1), ..., (idn1 ,Sn1) such that for the key encod-
ings kidi,Si

, it holds that a valid key kid′,S′ (with user-specific randoms ru and ra

constructed linearly from the other user-specific randoms) can be computed such
that

⋃n1
i=1 Si ⊆ S ′ and Si � S ′ for all i ∈ {1, ..., n1}. We say that kid′,S′ can be

computed, if there exist Ei ∈ Zp(K)�i×�, where � = |kid′,S′ | and �i = |kidi,Si
|, for

all Si such that kid′,S′ =
∑

i kidi,Si
Ei.

We formally define the complete and conditional decryption attacks. In a
decryption attack, the attacker decrypts a ciphertext for which it only has unau-
thorized keys. The attack is conditional if the collective set of attributes satisfies
the access structure associated with the ciphertext. Otherwise, it is complete.

114 M. Venema and G. Alpár

Definition 9 (Complete/conditional decryption attacks). A scheme is
vulnerable to a decryption attack if there exist (id1,S1), ..., (idn1 ,Sn1) and A such
that A �|= Si for all i, associated ciphertext encoding cA and key encodings kidi,Si

,
for which there exist Ei ∈ Zp(K)�i×�′

, where �i = |kidi,Si
| and �′ = |cA|, such

that
∑

i kidi,Si
Eic

ᵀ
A

= αs. The attack is conditional if it holds that A |= ⋃
i Si.

Otherwise, it is complete.

It readily follows that master-key and attribute-key attacks imply decryp-
tion attacks. Specifically, master-key attacks and attribute-key attacks for which⋃n1

i=1 Si � S ′ holds imply complete decryption attacks.

4.4 Definitions of Multi-authority-specific Attacks

The multi-authority setting yields two additional difficulties in the design of
secure schemes. First, the corruption of authorities yields extra knowledge about
the exponent space. Second, the distributed nature of the master-key may enable
new attacks. Formally, we define attacks under corruption as follows.

Definition 10 (Attacks under corruption). A scheme is vulnerable to
attacks under corruption if an attacker can corrupt a subset I � {1, ..., n} of
authorities A1, ...,An and thus obtain knowledge of variables K consisting of all
variables and (partial) encodings generated by the corrupt authorities, enabling
an attack conform Definitions 7, 8 or 9.

Oftentimes, the master-key is generated distributively by the authorities.
Hence, the blinding value is of a distributed form, e.g. e(g, h)αs = e(g, h)

∑
i αis.

If each partial blinding value e.g. e(g, h)αis can be recovered independently of the
user’s randomness, then the scheme is vulnerable to a multi-authority-specific
decryption attack under collusion. For instance, suppose the blinding value is
defined as (α1 + α2)s. If one user can recover α1s (but not α2s) and another
user can recover α2s (but not α1s), then the scheme is vulnerable to a multi-
authority-specific decryption attack. They can collectively recover (α1 + α2)s,
while clearly, they cannot do this individually. This type of attack was also
performed by Wang et al. [32] on the HSM+14 [13] and HSM+15 [14] schemes.

Definition 11 (Multi-authority-specific (MAS) decryption attacks).
Suppose the blinding value of the message is of the form

∑
i bvi(αi, s,b), where

αi denotes the master-key of authority Ai, and bvi represent elements in GT .
A scheme is vulnerable to a MAS-decryption attack if there exist a ciphertext
encoding cA and sets Si ⊆ Ui with key encodings kidi,Si

for which there exist
Ei ∈ Zp(K)�i×�′

, where �i = |kidi,Si
| and �′ = |cA|, such that kidi,Si

Eic
ᵀ
A

= bvi.

A MAS-decryption attack is also a decryption attack conform Definition 9.
The blinding value can be retrieved, while the individual sets are not authorized
to decrypt the ciphertext. Conversely, because such attacks do not exist in the
single-authority setting, they are weaker than regular decryption attacks.

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 115

4.5 Our Heuristic Approach

We devise a targeted approach, which can be applied manually (or automati-
cally), to finding attacks. As the definitions in the previous section imply, finding
an attack is equivalent to finding a suitable linear combination—where the linear
coefficients are the entries of e or E—of all products of the key and ciphertext
entries. While finding such coefficients is relatively simple, we note that finding
suitable inputs to the attacks may be more difficult. In particular, the number of
colluding users and the number of attributes associated with the keys and cipher-
texts are effectively unbounded. However, we observe that it often suffices to con-
sider a limited number of inputs, and that for some attacks, only the user-key
and attribute-independent ciphertext entries need to be considered. Specifically,
Table 3 describes these inputs in terms of encodings, the sets of attributes, and
the access policy. Depending on the maximum number of monomials consisting
of common variables in any key entry, the attacker might need multiple secret
keys for the same set of attributes to recover certain coefficients. For instance,
suppose the attacker wants to retrieve α from α + r1batt1 + r′

1b
′
att1 , where r1

and r′
1 are known, user-specific random variables, and batt1 and b′

att1 denote the
common variables associated with attribute att1. Because of the three unknown,
linearly independent monomials, this can only be done if the attacker has three
distinct keys for attribute att1. In general, the maximum number of keys with
the same set of attributes can be determined in this way, i.e. by counting the
maximum number of linearly independent monomials for each entry.

Table 3. The inputs of the attacks, and which encodings are needed.

Attack Secret keys Ciphertexts

UK AK S AI AD A

Master-key � ✗ – ✗ ✗ –

Attribute-key � � S1 = {att1},S2 = {att2} ✗ ✗ –

Complete decryption � ✗ – � ✗ –

Conditional decryption � � S1 = {att1},S2 = {att2} � � A = att1 ∧ att2
UK, AK = user-, attribute-key; AI, AD = attribute-independent, -dependent

Similarly, the inputs to multi-authority specific attacks can be limited. First,
we consider the attacks under corruption. Corruption of any number of authori-
ties results in the additional knowledge of some otherwise hidden exponents, i.e.
the master keys and any random variables generated by these authorities. For
most schemes, it should be sufficient to consider one corrupted and one hon-
est authority in the attacks, though depending on how e.g. the master-key α
is shared, the number of corrupted authorities may need to be increased. Fur-
ther, we use the same descriptions of the inputs to the attacks as in the single-
authority setting, with the additional requirement that the input attributes are
managed by the honest authority. Second, we consider multi-authority specific
(MAS) decryption attacks. Corruption is not necessary in this setting, so we

116 M. Venema and G. Alpár

assume that all authorities are honest. Additionally, we require at least two hon-
est authorities as input to finding any attack, so we let each authority manage
one attribute. Table 4 summarizes the additional inputs to the attacks in Table 3.
Finally, it may be possible that a corruptable central authority (CA) is part of
the scheme, in which case we also consider whether corruption of this CA enables
an attack.

Table 4. The number of required honest authorities n and the attribute universes U1

and U2 managed by authorities A1 and A2, respectively, in the multi-authority setting.

Attack n U1 U2

Master-key 1 ✗ ✗

Attribute-key 1 {att1, att2} ✗

Complete decryption 1 ✗ ✗

Conditional decryption 1 {att1, att2} ✗

MAS-decryption 2 {att1} {att2}

We describe a more targeted approach to finding an attack, i.e. the linear
coefficients e and E, given the input encodings. The approach to finding an
attack is linear, as we attempt to retrieve the desired output (conform Defini-
tions 7, 8 and 9) by making linear combinations of products of encodings. The
simplest attacks are the master-key and complete decryption attacks, as we only
need to consider the attribute-independent parts of the keys and ciphertexts.
For these attacks, the goal is to retrieve master-key α, or blinding value αs.
Typically, α occurs only in one entry of the keys, while s occurs only in one
entry of the ciphertext. Instead of trying all combinations of the key entries
with the ciphertext, we formulate a more targeted approach. First, consider the
monomials to be canceled, and then which combinations of the key and cipher-
text entries can make these monomials. In canceling the previous monomials, it
might be that new monomials are added, meaning that these in turn also need
to be canceled. This process repeats until all monomials are canceled, and α or
αs remains, unless such an attack does not exist. For attribute-key attacks, this
effort is considerably more difficult, as the target is less clear. However, it often
suffices to consider whether the same monomial occurs more than once in the
key encoding. For conciseness, we will only provide the non-zero coefficients in
an attack.

5 Examples of Our Attacks Demonstrating the Approach

Using examples of attacks that we have found, we illustrate the way in which
our heuristic approach can be applied. In particular, this suggests the simplicity

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 117

of only considering the exponent space rather than also considering the under-
lying group structure. Furthermore, in our strongest attack models (i.e. master-
key and complete decryption), we often only need to consider the attribute-
independent variables, which strips away a large and significantly more difficult
part of the scheme. Because many schemes are broken in these models, we assert
that it has merit to manually analyze schemes with respect to these models.

5.1 Example Without Corruption: The YJR+13 [39,40] scheme

We perform the attack on YJR+13 in Sect. 3 in the concise notations.

– Type of attack: Complete decryption attack;
– Global parameters: gp = (gp1, ...) = (b, ...);
– Master keys Ai: mpki = bi;
– User-key: ku(α, r,b) = (αi/x1 + x2b + rib/bi, ribi/x1, rib);
– Attribute-independent ciphertext: c(s,b) = (s, s/bi);
– Blinding value: αis;
– Known exponents: K = {x1, x2} (by definition);

Note that this notation is not only more concise, it is also more structured. In
particular, it is clearly denoted what the goal is (i.e. retrieve the blinding value),
and what the relevant keys and ciphertexts look like without considering any
information about the underlying groups or attribute-dependent variables. Fur-
thermore, this allows us to strip away any additional functionality that further
complicates the structure—and by extension, the analysis—of the scheme.

Due to the concise notations, the previous attack can also be found more
simply than before. First, we sample a user-key (k1, k2, k3) ← ku(α, r,b), and
ciphertext (c1, c2) ← c(s,b). To retrieve αis, we start by pairing k1 with c1:

x1k1c1 = αis +

to cancel
︷ ︸︸ ︷
x1x2sb + x1risb/bi,

Blinding value

x1x2gp1c1 x1k3c2

which yields two monomials to cancel. Subsequently, we can combine the other
components and our explicit knowledge of x1 and x2 in such a way that these
monomials can be canceled. This attack can be formulated in matrix notations:

αis = (k1, k2, k3, gp1)︸ ︷︷ ︸
ku

⎛

⎜
⎜
⎝

x1 0 0
0 0 0
0 −x1 0

−x1x2 0 0

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
E

⎛

⎝
c1
c2
gp1

⎞

⎠

︸ ︷︷ ︸
c

= x1k1c1 − x1k3c2 − x1x2gp1c1.

118 M. Venema and G. Alpár

Because most of the entries of E are zero, we will only write the non-zero entries
of E in further attacks. Note that attacks found in the concise notations also
translate back to the original description, e.g. compare this attack with that
in Sect. 3. More generally, computing kjEi,jci in terms of pair encodings corre-
sponds to computing e(gci , hkj)Ei,j in the original description of the scheme.

5.2 Example with Corruption: The YJ14 [38] scheme

The YJ14 [38] scheme is somewhat similar to the YJR+13 [40] scheme in the
secret keys. However, the decrypting user knows fewer exponents: instead of shar-
ing x2 in YJR+13 with the user, it is shared with the authorities Ai. Regardless,
corruption of one authority leads to the knowledge of x2, and thus enables an
attack. We define the encodings and attack as follows.

– Type of attack: Complete decryption attack, under corruption of one Ai;
– Global parameters: gp = (b, b′);
– Master secret key Ai: mski = (αi, x);
– User-key: ku(αi, r,b) = (αi + xb + rb′, r);
– Attribute-independent ciphertext: c(s,b) = (s, sb′, ...);
– Blinding value: (

∑
i αi)s;

– Known variables: K = {x} (by corrupting A′);
– The goal: Recover αis from (k1,i, k2,i) ← ku(αi, r,b), (c1, c2) ← c(s,b);
– The attack: αis = k1,ic1 − k2,ic2 − xmpk1c1. ��

5.3 Example Without Corruption: The JLWW13 [16] scheme

We also give an example of a conditional attribute-key attack enabled by two
colluding users. This illustrates the increased difficulty of executing more general
attacks, as they require us to evaluate the entire key. An additional difficulty of
executing an attribute-key attack is in finding an appropriate target key encod-
ing. However, our possibilities as an attacker are considerably limited, as we can
only linearly combine the key components, and not multiply them. In fact, as
Table 2 shows, we could only find attribute-key attacks if a key consists of recur-
ring monomials. While it is difficult to prove that an attribute-key attack does
not exist, it is easy to verify whether a key consists of recurring monomials.

We attack the JLWW13 [16] and JLWW15 [17] schemes—also known as
AnonyControl—which have the same key generation. The JLWW15 [17] scheme
is different from JLWW13 in the encryption. It is however incorrect, because a
value of a single user’s secret key is used. The encodings are defined as follows.

– Type of attack: Conditional attribute-key attack, collusion of two users;
– Global parameters: gp = (b, b′),mpka(atti) = batti

;
– Secret keys: ku(α, r,b) = (α + r), ka(atti, r, ri,b) = (ribatti

+ r, ri);

We show that the recurrence of r as a monomial in the user-key and attribute-
key encoding enables an attack. While it is relatively simple to show that this

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 119

cannot be exploited in a single-user setting, we show that sampling two keys
for two different sets of attributes S1 = {att1} and S2 = {att2} (as in Table 3)
enables the generation of a third key for both attributes, i.e. S3 = {att1, att2}.
For S1 = {att1}, we sample k ← ku(α, r,b), and (k1, k2) ← ka(att1, r, r1,b).
For S2 = {att2}, we sample k′ ← ku(α, r′,b), and (k′

1, k
′
2) ← ka(att2, r′, r2,b).

The goal is to compute a key for set S3 = {att1, att2}. We aim to generate
attribute-keys for the user-key associated with S1, i.e. k, which links the keys
together with r. As such, to create a key for S3, we need to generate an attribute-
key for att2. We do this by computing: ka(att2, r, r2,b) = (k′

1 + k − k′, k′
2). ��

6 More Attacks, on Several Other Schemes

We present attacks on several existing schemes. For each scheme, we describe the
secret keys, and possibly the global parameters and master keys, the ciphertext,
and the form of the blinding value in the concise notation introduced in Sect. 4.1.
Furthermore, we show whether collusion between users and corruption of any
entities are required for the attack. Such corruption results in extra knowledge
of exponents, so Zp is extended with the known variables conform Sect. 4.2.

6.1 Single-Authority ABE

The ZH10 [42] and ZHW13 [44] Schemes. In these schemes, three generators
are defined for each attribute att: a positive (att), a negative (¬att) and a dummy
∗att value. For each user, the secret key consists of a part associated with the
positive or negative attribute and the dummy value.

– Type of attack: Conditional attribute-key attack, collusion of two users;
– Global parameters: gp = (b), mpka(atti) = (batti

, b¬atti
, b∗atti

);
– Secret keys: Define att = att if att ∈ S and otherwise att = ¬att,

ku(
∑

ri, b) = ((
∑

atti∈U ri)b), and ka(atti, ri,b) = (rib + bbatti
, rib + bb∗atti

);
– Input: S1 = {att1,¬att2}, ku ← ku(r1 + r2, b), (k1,i, k2,i) ← ka,1(atti, ri,b),

S2 = {¬att1, att2}, with k′
u ← ku(r′

1 + r′
2, b), (k′

1,i, k
′
2,i) ← ka(atti, r

′
i,b);

– The goal: Generate a key for S3 = {att1, att2};
– The attack: ku(r′

1 + r′
2,b) = k′

u, ka(att1, r′
1,b) = (k1,1 + k′

2,1 − k2,1, k
′
2,1),

and ka(att2, r′
2,b) = (k′

1,2, k
′
2,2). ��

The NDCW15 [26] Scheme. This scheme implements a tracing algorithm,
allowing the KGA to trace misbehaving users. To this end, some exponents are
known to the user. The keys considered below correspond to those given in the
second step of the key generation in [26] (which the user can compute).

– Type of attack: Complete decryption attack;
– Global parameters: gp = (b1, b2);
– User-key: ku(α,b) = (α

b1+x3
+ x2

b2
b1+x3

, x1, x1b1);
– Attribute-independent ciphertext: c(s,b) = (s, sb1, sb2);
– Known variables: K = {x1, x2, x3} (by definition);
– The goal: Recover αs from (k1, k2, k3) ← ku(α,b), (c1, c2, c3) ← c(s,b);
– The attack: αs = x3k1c1 + k1c2 − x2c3. ��

120 M. Venema and G. Alpár

6.2 Multi-authority ABE

The YJ12 [37] Scheme. This scheme employs a certificate authority (CA),
assumed to be fully trusted, and (corruptable) attribute authorities (Ai), respon-
sible for the generation of the secret keys. For the key encodings, we assume that
the master public keys are generated as H(att)αi rather than as it was originally
proposed in [37]: gαiH′(att). The latter trivially enables complete attribute-key
attacks (because H′ is public), while the former ensures that H(att)αi = gαibatt

is such that batt is unknown to everyone and thus protects against these attacks.

– Type of attack: Complete master-key attack, corruption of one A;
– Global parameters: gp = (b′, 1/b′);
– Master secret key Ai: mski = (αi, b/b′);
– User-key: k(αi, r,b) = (r, rb/b′ + αi/b′);
– Attribute-independent ciphertext: c(s,b) = (sb′);
– Blinding value: (

∑
i αi)s, so mk(αi,b) = αi/b′;

– Known exponents: K = {α′, b/b′} (by corrupting A′);
– The goal: Recover mk(αi,b) from (k1,i, k2,i) ← k(αi, r,b);
– The attack: mk(αi,b) = k2,i − b/b′k1,i. ��
The QLZ13 [28] Scheme. This scheme supports hidden access structures and
a blind key generation. However, the secret keys trivially leak the master-keys.

– Type of attack: Complete master-key attack;
– Global parameters: gp = (b, b1, b′, ...);
– User-key: ku(α, r,b) = (α + rb + b1

x+b′ , rb − r′b1, (r′ + 1
x+b′)b1);

– Known variables: K = {x} (by definition);
– The goal: Recover α from (k1, k2, k3) ← ku(α, r,b);
– The attack: α = k1 − k2 + k3. ��
The CM14 [10] Scheme. This scheme is a multi-authority version of [33].

– Type of attack: Complete decryption attack, under corruption of one A;
– Master key pair of Ai: mpki = (bi), mski = (bi);
– User-key: ku(αi, r,b) = (αi+r

bi
, r);

– Attribute-independent ciphertext: c(s,b) = (sbi);
– Blinding value: (

∑
i αi)s;

– Known variables: K = {b1} (by corrupting A1);
– The goal: Recover αis from (k1,i, k2,i) ← ku(αi, r,b), c1 ← c(s,b);
– The attack: αis = k1,ic1 − 1/b1k2,ic1 such that i �= 1. ��
The LXXH16 [22] and MST17 [25] Schemes. These schemes are similar.
The LXXH16 scheme employs a corruptable CA to run the global setup. In the
MST17 scheme, it is unclear which entity runs it and thus generates the b below.

– Type of attack: Complete master-key attack, under corruption of CA;
– Global parameters: gp = (b);
– User-key: ku(α, r,b) = (α + rb, r);

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 121

– Known variables: K = {b} (by corrupting CA, and thus the global setup);
– The goal: Recover α from (k1, k2) ← ku(α, r,b);
– The attack: α = k1 − bk2. ��
The PO17 [27] Scheme. This scheme was proposed to address an issue of the
Cha07 [8] scheme, which requires that a user receives a key from each authority.
However, unlike Cha07, the PO17 scheme does not protect against corruption.
Thus, in terms of security, it is closer to any single-authority scheme.

– Type of attack: Complete decryption attack under corruption of one A;
– Master key pair of Ai: mpki = (bi), mski = (bi);
– User-key: ku(αi, r,b) = (αi−r

bi
, r);

– Attribute-independent ciphertext: c(s,b) = (sbi);
– Blinding value: (

∑
i αi)s;

– Known variables: b1 (by corrupting A1);
– The goal: Recover αis from (k1,i, k2,i) ← ku(αi, r,b), c1 ← c(s,b);
– The attack: αis = k1,ic1 + 1/b1k2,ic1. ��
The First MGZ19 [23] Scheme. This scheme employs multiple “central autho-
rities”—to remove the random oracle from [19]—and attribute authorities (AA).
The security model considers corruption of the AAs but not the CAs. The
description of the scheme does not require the attribute authorities to be aware
of the CAs. However, we show that all CAs need to be trusted to ensure security.
In particular, we show that corruption of one of the CAs enables an attack.

– Type of attack: Complete master-key attack, under corruption of one CA;
– Master key pair Ai: mpka,i(attj) = (battj

), mski(attj) = (αi, battj
);

– CAi generates: r;

Table 5. The schemes for which we found attacks, and the consequences of these. For
each scheme, we list whether a scheme is insecure in the basic (CPA-)security model,
or only under corruption of the central authority (CA) or attribute authorities (A).

Scheme Problem CPA-security

ZH10 [42,43], ZHW13 [44] Recurring monomials ✗

NDCW15 [26] Known-exponent exploits ✗

M
A
-A

B
E

YJ12 [37] Known-exponent exploits ✗A
YJR+13 [39,40], WJB17 [35] Known-exponent exploits ✗

JLWW13 [16], JLWW15 [17] Recurring monomials ✗

QLZ13 [28] Recurring monomials ✗

YJ14 [38] Known-exponent exploits ✗A
CM14 [10] Known-exponent exploits ✗A

LXXH16 [22], MST17 [25] Known-exponent exploits ✗CA
PO17 [27] Known-exponent exploits ✗A

MGZ19 I [23] Known-exponent exploits ✗CA
✗A, ✗CA = none under corruption of A, CA

122 M. Venema and G. Alpár

– Secret key: ku(αi, r,b) = (r), ka(attj , αi, r,b) = (αi + rbattj);
– Known variables: K = {r} (by corrupting one CA);
– The goal: Recover αi from ki,j ← ka(attj , αi, r,b), mpki,j ← mpka,i(attj);
– The attack: αi = ki,j − rmpki,j . ��

7 Discussion

We have presented a linear, heuristic approach to analyzing security—consisting
of a more concise notation—and applied it to existing schemes. This approach
simplifies manually finding generic attacks provided that they exist. For future
work, it would be valuable to extend the approach to be provably exhaustive,
such that it follows with [2] that the scheme also implies a provably secure
scheme. In addition, it would be valuable to automatize finding attacks for the
multi-authority encodings like [2] does in the single-authority setting. To demon-
strate the effectiveness of our approach, we have shown that several existing
schemes are vulnerable to our attacks, either rendering them fully or partially
insecure. Most of the attacks are similar in that they either exploit that one
monomial occurs more than once in the keys, or known exponents yield suffi-
cient knowledge to enable an attack. Table 5 lists each attacked scheme and the
associated fundamental problem that enables the attack. In general, schemes
for which we found an attack without requiring corruption are structurally more
complicated than the single-authority schemes on which they are (loosely) based.
Schemes that are insecure against corruption are generally closer to their (prov-
ably secure) single-authority variants, but knowing certain exponents enables an
attack. Possibly, distributively generating these exponents may prevent this. For
future work, it may be interesting to consider whether this yields secure schemes.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions.

References

1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

2. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the
generic group model: automated proofs and new constructions. In: CCS, pp. 647–
664. ACM (2017)

3. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

4. Beimel, A.: Secure schemes for secret sharing and key distribution (1996)
5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: S&P, pp. 321–334. IEEE (2007)

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-642-55220-5_31

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 123

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

7. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

8. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

9. Chaudhari, P., Das, M.L., Mathuria, A.: On anonymous attribute based encryption.
In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 378–392.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26961-0 23

10. Chen, J., Ma, H.: Efficient decentralized attribute-based access control for cloud
storage with user revocation. In: ICC, pp. 3782–3787. IEEE (2014)

11. Ge, A., Zhang, J., Zhang, R., Ma, C., Zhang, Z.: Security analysis of a privacy-
preserving decentralized key-policy attribute-based encryption scheme. IEEE
TPDS 24(11), 2319–2321 (2013)

12. Han, J., Susilo, W., Mu, Y., Yan, J.: Privacy-preserving decentralized key-policy
attribute-based encryption. IEEE TPDS 23(11), 2150–2162 (2012)

13. Han, J., Susilo, W., Mu, Y., Zhou, J., Au, M.H.: PPDCP-ABE: privacy-preserving
decentralized ciphertext-policy attribute-based encryption. In: Kuty�lowski, M.,
Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 73–90. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11212-1 5

14. Han, J., Susilo, W., Mu, Y., Zhou, J., Au, M.H.A.: Improving privacy and security
in decentralized ciphertext-policy attribute-based encryption. IEEE TIFS 10(3),
665–678 (2015)

15. Hong, J., Xue, K., Li, W.: Comments on DAC-MACS: Effective data access control
for multiauthority cloud storage systems/security analysis of attribute revocation
in multiauthority data access control for cloud storage systems. IEEE TIFS 10(6),
1315–1317 (2015)

16. Jung, T., Li, X.Y., Wan, Z., Wan, M.: Privacy preserving cloud data access with
multi-authorities. In: INFOCOM, pp. 2625–2633. IEEE (2013)

17. Jung, T., Li, X.Y., Wan, Z., Wan, M.: Control cloud data access privilege and
anonymity with fully anonymous attribute-based encryption. IEEE TIFS 10(1),
190–199 (2015)

18. Jung, T., Li, X.Y., Wan, Z., Wan, M.: Rebuttal to Comments on Control cloud data
access privilege and anonymity with fully anonymous attribute-based encryption.
IEEE TIFS 10(4), 868 (2016)

19. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: EURO-
CRYPT. pp. 568–588. Springer (2011)

20. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: AsiaCCS, pp.
386–390. ACM (2011)

21. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with
user accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04474-8 28

22. Li, W., Xue, K., Xue, Y., Hong, J.: TMACS: a robust and verifiable threshold
multi-authority access control system in public cloud storage. IEEE TPDS 27(5),
1484–1496 (2016)

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-319-26961-0_23
https://doi.org/10.1007/978-3-319-11212-1_5
https://doi.org/10.1007/978-3-642-04474-8_28
https://doi.org/10.1007/978-3-642-04474-8_28

124 M. Venema and G. Alpár

23. Ma, C., Ge, A., Zhang, J.: Fully secure decentralized ciphertext-policy attribute-
based encryption in standard model. In: Guo, F., Huang, X., Yung, M. (eds.)
Inscrypt 2018. LNCS, vol. 11449, pp. 427–447. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-14234-6 23

24. Ma, H., Zhang, R., Yuan, W.: Comments on Control cloud data access privilege and
anonymity with fully anonymous attribute-based encryption. IEEE TIFS 11(4),
866–867 (2016)

25. Malluhi, Q.M., Shikfa, A., Trinh, V.C.: Ciphertext-policy attribute-based encryp-
tion scheme with optimized ciphertext size and fast decryption. In: AsiaCCS, pp.
230–240. ACM (2017)

26. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy
attribute-based encryption with white-box traceability and public auditing in the
cloud. In: ESORICS. pp. 270–289. Springer (2015)

27. Pussewalage, H.S.G., Oleshchuk, V.A.: A distributed multi-authority attribute
based encryption scheme for secure sharing of personal health records. In: SAC-
MAT, pp. 255–262. ACM (2017)

28. Qian, H., Li, J., Zhang, Y.: Privacy-preserving decentralized ciphertext-policy
attribute-based encryption with fully hidden access structure. In: Qing, S., Zhou,
J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 363–372. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02726-5 26

29. Qian, H., Li, J., Zhang, Y., Han, J.: Privacy-preserving personal health record using
multi-authority attribute-based encryption with revocation. Int. J. Inf. Security
14(6), 487–497 (2014). https://doi.org/10.1007/s10207-014-0270-9

30. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

31. Venema, M., Alpár, G.: A bunch of broken schemes: A simple yet powerful linear
approach to analyzing security of attribute-based encryption. Cryptology ePrint
Archive, Report 2020/460 (2020)

32. Wang, M., Zhang, Z., Chen, C.: Security analysis of a privacy-preserving decentral-
ized ciphertext-policy attribute-based encryption scheme. Concurrency and Com-
putation 28(4), 1237–1245 (2015)

33. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

34. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

35. Wu, X., Jiang, R., Bhargava, B.: On the security of data access control for multiau-
thority cloud storage systems. IEEE Trans. Serv. Comput. 10(2), 258–272 (2017)

36. Xhafa, F., Feng, J., Zhang, Y., Chen, X., Li, J.: Privacy-aware attribute-based phr
sharing with user accountability in cloud computing. J. Supercomput. 71, 1607–
1619 (2014)

37. Yang, K., Jia, X.: Attribute-based access control for multi-authority systems in
cloud storage. In: IEEE Distributed Computing Systems, pp. 536–545. IEEE Com-
puter Society (2012)

38. Yang, K., Jia, X.: Expressive, efficient, and revocable data access control for multi-
authority cloud storage. IEEE TPDS 25(7), 1735–1744 (2014)

39. Yang, K., Jia, X., Ren, K., Zhang, B.: DAC-MACS: effective data access control for
multiauthority cloud storage systems. In: INFOCOM, pp. 2895–2903. IEEE (2013)

https://doi.org/10.1007/978-3-030-14234-6_23
https://doi.org/10.1007/978-3-030-14234-6_23
https://doi.org/10.1007/978-3-319-02726-5_26
https://doi.org/10.1007/s10207-014-0270-9
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

A Simple yet Powerful Linear Approach to Analyzing Security of ABE 125

40. Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: DAC-MACS: effective data access
control for multiauthority cloud storage systems. IEEE TIFS 8(11), 1790–1801
(2013)

41. Zhang, Y., Chen, X., Li, J., Wong, D., Li, H.: Anonymous attribute-based encryp-
tion supporting efficient decryption test. In: AsiaCCS, pp. 511–516. ACM (2013)

42. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and
broadcast encryption. In: CCS (poster), pp. 753–755. ACM (2010)

43. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and
broadcast encryption. Cryptology ePrint Archive, Report 2010/395 (2010)

44. Zhou, Z., Huang, D., Wang, Z.: Efficient privacy-preserving ciphertext-policy
attribute based-encryption and broadcast encryption. IEEE Trans. Comput. 64(1),
126–138 (2015)

Zero-Correlation Linear Cryptanalysis
with Equal Treatment for Plaintexts

and Tweakeys

Chao Niu1,2, Muzhou Li1,2, Siwei Sun3,4, and Meiqin Wang1,2(B)

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, Shandong, China

{niuchao,limuzhou}@mail.sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security

of Ministry of Education, Shandong University, Qingdao 266237, Shandong, China
mqwang@sdu.edu.cn

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

4 University of Chinese Academy of Sciences, Beijing, China

Abstract. The original zero-correlation linear attack on a tweakable
block cipher EK,T (EK,T is an ordinary block cipher when |T | = 0) with
key K and tweak T exploits linear approximations 〈α, x〉 ⊕ 〈β, EK,T (x)〉
with correlation zero for any fixed K and T , where the correlation is
computed over all possible plaintexts x. Obviously, the plaintexts, keys,
and tweaks are not treated equally. In this work, we regard the tweakable
block cipher as a vectorial Boolean function F : Fn+m+l

2 → F
n
2 mapping

(x, K, T) ∈ F
n+m+l
2 to EK,T (x) ∈ F

n
2 , and try to find zero-correlation

linear approximations of F of the form

〈α, x〉 ⊕ 〈γ, K〉 ⊕ 〈λ, T 〉 ⊕ 〈β, F (K, T, x)〉,
where the correlation is computed over all possible (x, K, T)’s. Standard
tools based on SAT and SMT can be employed to search for this type
of zero-correlation linear approximations under a unified framework of
which Ankele et al.’s work on zero-correlation analysis at ToSC 2019
by taking tweaks into account can be seen as a special case with linear
tweak schedules and γ = 0. Due to the links between zero-correlation lin-
ear approximations and integral distinguishers, we can convert the new
type of zero-correlation linear distinguishers into related-tweakey integral
distinguishers. We apply our method to TWINE, LBlock, and SKINNY with
both linear and nonlinear tweakey schedules. As a result, we obtain the
longest distinguishers for TWINE and longer zero-correlation linear distin-
guishers for LBlock and SKINNY when considering key/tweak schedule.
The correctness of our method is verified by recovering the results of
Ankele et al. and experiments on a toy cipher.

Keywords: Zero-correlation linear cryptanalysis · SAT · SMT ·
Tweakable block ciphers · TWINE · LBlock · SKINNY

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 126–147, 2021.
https://doi.org/10.1007/978-3-030-75539-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_6

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 127

1 Introduction

Linear cryptanalysis [17] is one of the most important techniques for analyz-
ing block ciphers, from which many cryptanalytic techniques have been derived,
including the linear hull effect [20], multiple linear cryptanalysis [12], multidi-
mensional linear cryptanalysis [10], etc. Basically, these techniques rely on linear
approximations of the targets with relatively high absolute correlations. In 2014,
a variant of linear cryptanalysis named as zero-correlation linear cryptanalysis
exploiting linear hulls with absolute zero correlation was proposed by Bogdanov
and Rijmen [5]. The main drawback of this technique in its infancy stage is
that it requires almost the whole codebook to execute the attack. This limi-
tation in terms of data complexity of zero-correlation linear cryptanalysis was
overcome at FSE 2012, where multiple linear approximations of the target with
correlation zero (MPZC) are exploited [6]. However, the assumption in MPZC
distinguisher that all involved zero-correlation linear approximations are inde-
pendent restricts its application. At ASIACRYPT 2012 [4], a new distinguisher
called multidimensional zero-correlation (MDZC) distinguisher was constructed,
which removed the assumption in MPZC distinguisher. Subsequently, the fun-
damental links between zero-correlation linear approximations and integral dis-
tinguishers [4,22] allows us to observe an integral property in the data-path.

Another interesting development of the zero-correlation linear cryptanalysis
discussing the effect of the tweakeys was initiated at ToSC 2019 [1]. In this work,
Ankele et al. show that it is possible to find zero-correlation linear approxima-
tions involving the bits of plaintexts, tweaks, and ciphertexts, sometimes leading
to distinguishers covering more rounds of the target. Note that such improve-
ments are only possible in the context of zero-correlation linear cryptanalysis,
since Kranz, Leander, and Wiemer showed that the addition of a tweak using
a linear tweak schedule does not introduce new valid linear characteristics [15].
However, Ankele et al.’s approach only applies to ciphers with linear tweakey
schedule algorithms and at the word level, and thus may miss some bit-level
distinguishers.

Our Contributions. We generalize Ankele et al.’s idea [1] by considering zero-
correlation linear approximations of a (tweakable) block cipher involving the
bits of plaintexts, keys, and tweaks, where the correlation is computed over
all possible plaintexts, keys, and tweaks. Under this framework, the public and
secret inputs of the target ciphers are treated equally.

Then we show that such zero-correlation linear approximations can be found
with automatic tools based on SAT or SMT. The only difference between the
new models and the traditional ones [5] for zero-correlation linear analysis is that
in our models we also need to describe the behavior of the linear characteristics
propagating through the key schedule algorithms. Compared with Ankele et al.’s
work (which can be regarded as a special case of ours), the new approach is
much more straightforward and applies to ciphers with both linear and nonlinear
tweakey schedule algorithms and it works at the bit level.

128 C. Niu et al.

Since the zero-correlation linear approximations are taken over all possible
inputs including the secret keys, it is difficult to use them by following the
approach of traditional zero-correlation linear cryptanalysis. To actually use
these zero-correlation linear approximations in attacks, we can convert them
into related-tweakey integral distinguishers according to the links between zero-
correlation linear approximations and integral distinguishers.

We apply our method to TWINE [13], LBlock [28], and SKINNY [2] with both
linear and nonlinear tweakey schedules. As a result, we obtain the longest distin-
guishers for TWINE and longer zero-correlation linear distinguishers for LBlock
and SKINNY when considering key/tweak schedule. A summary of the results
on block cipher with nonlinear key schedule can be found in Table 1. Using our
new method, we can find distinguisher for SKINNY that is one round longer than
Ankele et al.’s work, one can refer to Table 2. In addition, to confirm the cor-
rectness of our model, we try to automatically recover the results of Ankele et
al. and perform full experiments on a toy cipher. The source code is available at
https://github.com/zero-cryptanalysis/Experiment-on-TC.

Table 1. A comparison of our results and previous results on TWINE, LBlock, where
ZC, ID, RK, and KDIB stand for zero correlation, impossible differential, related-key,
and key difference invariant bias, respectively. #keys : the number of different keys
used; CP: chosen plaintext; KP: known plaintext.

Cipher Distinguisher Data per Key #keys Attack type Ref.

TWINE-80 14 262.1KP 1 ZC [25]

TWINE-80 15 261.42CP 2 RK-ID [26]

TWINE-80 17 264KP 16 ZC/Integral Sect. 4.1

TWINE-128 14 252.21CP 1 ID [13]

TWINE-128 17 262.29KP 32 KDIB [3]

TWINE-128 18 264KP 16 ZC/Integral Sect. 4.1

LBlock-80 14 262.3KP 1 ZC [29]

LBlock-80 15 264KP 16 ZC/Integral Sect. 4.2

LBlock-80 16 261.4CP 4 RK-ID [27]

LBlock-80 16 262.29KP 32 KDIB [3]

Table 2. A comparison of our results and previous results on SKINNY, where ZC stands
for zero correlation. #tks: the number of different tweaks used; KP: known plaintext.

Cipher Distinguisher Data per Tweaks #tks Attack type Ref.

SKINNY-64/128 13 268KP 28 ZC/Integral [1]

SKINNY-64/128 14 268KP 28 ZC/Integral Sect. 4.3

SKINNY-64/192 15 272KP 212 ZC/Integral [1]

SKINNY-64/192 16 272KP 212 ZC/Integral Sect. 4.3

https://github.com/zero-cryptanalysis/Experiment-on-TC

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 129

Related Work. Most symmetric-key cryptanalytic techniques such as impos-
sible differential cryptanalysis and zero-correlation cryptanalysis are originally
proposed in the single-key setting. These years, lots of cryptanalysts are trying
to make use of the key schedule in their attack model which means in this kind
of attack scenario related keys should be taken into account. Related-key impos-
sible differential cryptanalysis of TWINE [26,30] and LBlock [27] exploit the key
schedule of a block cipher by involving difference into both data path and key
expansion data path which can get a longer distinguisher. Worth mentioning,
the property of linear hulls with invariant bias under a related-key difference
was proposed by Bogdanov et al. in [3]. Their cryptanalytic method is effective
with the application on TWINE and LBlock. Our zero-correlation linear approxi-
mation considering key/tweak schedule also makes use of the construction of the
key/tweak schedule and gets a longer distinguisher on TWINE. Different from the
key schedule of TWINE, a bit-level rotation in the key schedule of LBlock has a
strong diffusion. This may be the reason we can not get a longer distinguisher of
LBlock than the above two cryptanalytic methods. Our method exploited the
slow diffusion property of the key schedule which is different from the above two
cryptanalytic methods.

Outline. In Sect. 2, we briefly recall the basic zero-correlation linear cryptanaly-
sis and a variant of it where the linear approximations also involve tweak bits. In
Sect. 3 we consider a new type of zero-correlation linear approximations where
the plaintext, keys, and tweaks are treated equally. Then we present a SAT-
based automatic method for finding such zero-correlation linear approximations.
Finally, we show that these new zero-correlation linear approximations can be
translated into related-tweakey integral distinguishers. We apply our method to
TWINE, LBlock, and SKINNY in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

In this section, we briefly recall the zero-correlation linear cryptanalysis on an
n-bit tweakable block cipher EK,T with key K ∈ F

m
2 and tweak T ∈ F

l
2. When

l = 0, it turns into an ordinary block cipher with no tweaks. Alternatively, a
block cipher can be regarded as a vectorial Boolean function:

F : Fm
2 × F

l
2 × F

n
2 → F

n
2 ,

which maps (K,T, x) to EK,T (x), i.e., F (K,T, x) = EK,T (x).
Let α and β be n-bit vectors in F

n
2 . The correlation

corF (K,T,·)(α, β) = corEK,T (·)(α, β)

of F (K,T, ·) = EK,T (·) with a given (K,T) ∈ F
m+l
2 is defined as

#{x ∈ F
n
2 : 〈α, x〉 ⊕ 〈β, EK,T (x)〉 = 0} − #{x ∈ F

n
2 : 〈α, x〉 ⊕ 〈β, EK,T (x)〉 = 1}

2n
, (1)

130 C. Niu et al.

where 〈u, v〉 denotes the inner product of two bit vectors of the same length.
The orignal zero-correlation linear cryptanalysis exploits linear approximations
with input and output linear masks α and β such that corEK,T (·)(α, β) = 0 for
any K and T . Such an (α, β) is called a zero-correlation linear approximation
of EK,T . Given a single zero-correlation linear approximation of EK,T , one can
distinguish EK,T by using almost the whole codebook [5]. In [4], Andrey et al.
showed that it is possible to distinguish EK,T with data complexity O(2n/

√
s)

by using s zero-correlation linear approximations.
At ToSC 2019, Ankele et al. proposed to consider a new type of zero-

correlation linear cryptanalysis where the linear masks for tweaks can be
nonzero [1]. We formally describe their idea in the following.

Let L((λ,α),β)
F (K,·,·) (T, x) = 〈λ, T 〉 ⊕ 〈α, x〉 ⊕ 〈β, F (K,T, x)〉. The correlation

corF (K,·,·)((λ, α), β)

of F (K, ·, ·) for any fixed key K is defined as

#{(T, x) ∈ F
l+n
2 : L((λ,α),β)

F (K,·,·) (T, x) = 0} − #{(T, x) ∈ F
l+n
2 : L((λ,α),β)

F (K,·,·) (T, x) = 1}
2l+n

, (2)

i.e., the correlation is computed over all possible plaintexts and tweaks. To
search for such zero-correlation linear approximations involving also tweak bits,
Ankele et al. adopted the following strategy, which is only applicable to ciphers
with linear tweakey expansions.

First, fix the linear masks for plaintext and ciphertext to α and β. Then
derive all linear characteristics with nonzero correlation whose masks for plain-
text and ciphertext are α and β, from which the set S of all possible λ such
that corF (K,·,·)((λ, α), β) �= 0 is computed. Finally, pick a λ′ /∈ S, and we have
corF (K,·,·)((λ′, α), β) = 0. We note that the derivation of S heavily relies on the
linearity and simplicity of the tweak expansion. Moreover, since Ankele et al.’s
method is performed manually and works at the word level, it only applies to
ciphers with linear tweak expansions and may miss some zero-correlation linear
approximations.

3 Zero-Correlation Linear Cryptanalysis with Equal
Treatment for Plaintexts, Keys, and Tweaks

Taking Ankele et al.’s idea one step further, we treat all the public and secret
inputs of the block cipher E equally, and consider linear approximations involv-
ing plaintexts, keys, tweaks, and ciphertexts. Moreover, the output of the
key/tweak schedule is not available to us. To find this kind of new linear approx-
imation, we set the mask on the output of the key/tweak schedule equal to
zero.

Denote ((γ, λ, α), β) be the linear mask on key, tweak, plaintext, and cipher-
text respectively. Let Λ = ((γ, λ, α), β) ∈ F

m+l+2n
2 . The linear approximation

LΛ
F (K,T, x) is defined as

〈γ,K〉 ⊕ 〈λ, T 〉 ⊕ 〈α, x〉 ⊕ 〈β, F (K,T, x)〉, (3)

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 131

and the correlation corF ((γ, λ, α), β) of the linear approximation is defined as

#{(K, T, x) ∈ F
m+l+n
2 : LΛ

F (K, T, x) = 0} − #{(K, T, x) ∈ F
m+l+n
2 : LΛ

F (K, T, x) = 1}
2m+l+n

. (4)

From the above definition, we can see that the correlation is computed over
all possible plaintexts, keys, and tweaks. Therefore, due to the involvement of the
keys, it is unknown how to carry out a key-recovery attack based on such zero-
correlation linear approximations. To exploit this type of zero-correlation linear
approximations, we show how to translate them into related-tweakey integral
distinguishers in the following.

The links between the original zero-correlation linear approximations and
integral distinguishers facilitating the conversions between them are established
in [4,22]. The most relevant theorem in our context is rephrased as follows.

Theorem 1 ([22]). Let F : Fn
2 → F

n
2 be a vectorial Boolean function, and A be

a subspace of Fn
2 and β ∈ F

n
2\{0}. Suppose that (α, β) is a zero correlation linear

approximation for any α ∈ A, then for any λ ∈ F
n
2 , 〈β, F (x ⊕ λ)〉 is balanced on

A⊥ = {x ∈ F
n
2 : 〈α, x〉 = 0, α ∈ A}.

Theorem 1 can be adapted into the following form to serve our purpose, and
the same strategy for proving Theorem1 can be applied to its new form.

Corollary 1. Let F : Fm
2 × F

l
2 × F

n
2 → F

n
2 be a vectorial Boolean function, and

A be a subspace of Fm+l+n
2 and β ∈ F

n
2\{0}. Suppose that Λ = ((γ, λ, α), β) ∈

F
m+l+2n
2 is a zero correlation linear approximation for any (γ, λ, α) ∈ A, then

for any u ∈ F
m+l+n
2 , 〈β, F (x ⊕ u)〉 is balanced on

A⊥ =
{
x ∈ F

m+l+n
2 : 〈(γ, λ, α), x〉 = 0, (γ, λ, α) ∈ A

}
.

Corollary 1 tells us that if we can find a family of linear approximations
Λ = ((γ, λ, α), β) ∈ F

m+l+2n
2 which are zero correlation for any (γ, λ, α) in a

d-dimensional linear subspace A ⊆ F
m+l+n
2 , then we can construct an integral

distinguisher with data complexity 2m+l+n−d, and the set of chosen inputs of F
is

A⊥ ⊕ u =
{
x ⊕ u ∈ F

m+l+n
2 : 〈(γ, λ, α), x〉 = 0, (γ, λ, α) ∈ A

}

for any fixed u ∈ F
m+l+n
2 .

Automatic Search Tools. To search for linear approximations of the form
given in Equation (3) with correlation zero, we can employ the constraint-based
approach presented in [16,21]. Note that in the original models [6], the keys and
thus the subkeys as well as the tweaks are regarded as constants. Therefore,
the original models only model the propagations of the linear masks in the
encryption data path without considering the tweakey schedule algorithms, for
which no variables and constraints are introduced. In our model, since we treat
EK,T (x) as a function F (K,T, x) from F

m+l+n
2 to F

n
2 , the propagation of the

input linear masks for plaintexts, keys, and tweaks through F , including both

132 C. Niu et al.

Algorithm 1: Search for Zero-Correlation Linear Approximations
Input: A cipher EK,T (·) with F (K, T, x) = EK,T (x)
Output: Zero-correlation linear approximations of F

1 Let X be some predefined subset of Fm+l+2n
2

2 for ((γ, λ, α), β) ∈ X ⊆ F
m+l+2n
2 do

3 M ← GenerateLinearModel(F)

4 Add the following constraints to M:
5 � Fix the linear mask of (K, T, x) to (γ, λ, α)
6 � Fix the linear mask of the ciphertext to β

7 if M has no solution then
8 Output ((γ, λ, α), β) as a zero-correlation linear approximation of F

the encryption data path and tweakey schedule data path has to be modeled.
The general framework of the search algorithm is described in Algorithm1.

In Algorithm 1, X is defined heuristically by the cryptanalysts, since it is
impossible to enumerate all patterns in F

m+l+2n
2 . Typically, X is chosen to

be the set of patterns with relatively low Hamming weights. The subroutine
GenerateLinearModel() generates a mathematical model containing the vari-
ables representing the linear characteristics of F , and the constraints imposed on
these variables according to the propagation rules of the linear characteristics.
Therefore, after the execution of

M ← GenerateLinearModel(F),

the solution space of the mathematical model M is the set of all nonzero-
correlation linear characteristics of F . Moreover, after we fixing the linear masks
of (K,T, x) and the ciphertext, the solution space of M is the set of all nonzero-
correlation linear characteristics of F with input mask (γ, λ, α) and output mask
β. Consequently, if the solution space of M is an empty set at this point, we
know that the linear approximation ((γ, λ, α), β) must be zero-correlation. Since
all of our targets contain only the four types of basic operations, including XOR,
branch, linear transformations, and S-boxes, we only specify the mathematical
constraints imposed on these basic operations, and the full model M can be
assembled from the constraints of these basic operations.

• XOR([16]). The XOR operation maps (x, y) ∈ F
n
2 to z = x ⊕ y. Let a and b

denote linear masks of the two input bits, and c denote the output mask. Then
the linear approximation of XOR due to (a, b, c) is of nonzero-correlation if
and only if it fulfills a = b = c.

• Branch([16]). The branch operation maps x ∈ F
n
2 to (y, z) ∈ F

2n
2 with

x = y = z. Let (a, b, c) be the linear mask of (x, y, z), then the linear
approximation of the branch operation due to (a, b, c) is of nonzero-correlation
if and only if c = a ⊕ b.

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 133

• Linear transformation([16]). A linear transformation with matrix repre-
sentation M maps a column vector x to y = Mx. Let (a, b) be the linear
mask of (x,y). Then the linear approximation of the linear transformation
M due to (a, b) is of nonzero-correlation if and only if a = MT b.

• S-box([16]). Let S be an S-box with a linear approximation table LAT. Let
θin and θout be the input and output linear masks, respectively. Then the
correlation of the linear approximation of S due to (θin, θout) is nonzero if
and only if LAT (θin, θout) �= 0.

In practice, the mathematical model can be constructed with the languages
of CP [8,23], SAT/SMT [14,18], or MILP [19,24]. In this work, we choose the
SAT/SMT based approach and use the well-known STP solver [7].

Experimental Verifications. Since our models are strictly generalizations
of previous models, to partly confirm the correctness of our model, we try to
recover the results of Ankele et al. [1] and Hosein et al. [9] automatically with
our technique. Taking Ankele et al.’s result on SKINNY for example, we first set
up the model describing the linear approximations of SKINNY involving both the
encryption and tweakey-schedule data paths. Then we add the constraints fixing
the linear masks of the master key to zero, and the masks of the plaintext, tweak,
and ciphertext to the values given by the zero-correlation linear approximations
found in [1]. Finally, we solve the model with STP and indeed there is no solution
for the model, meaning that the predefined linear approximations are indeed zero
correlation in our model.

Besides, our model is fully verified on a toy cipher based on the Type-II
GFS structure (see Fig. 1). The block size and key size of the toy cipher are
both 16-bit. Using our method, we obtain a family of 10-round zero-correlation
linear approximations of the toy cipher shown in Fig. 1. Firstly, we can verify
the zero-correlation property by going over all the 232 input plaintext and key
combinations. Then we convert the zero-correlation linear approximations into
a related-key integral distinguisher, which can be verified with about 216 calls
to the toy cipher. Due to inaccuracy of manual derivation, the confliction that
leads to the zero-correlation property can not be found in Fig. 1, where white
nibbles and the nibbles marked by red T are traversed positions in our integral
distinguisher. The code for the experiments is available at https://github.com/
zero-cryptanalysis/Experiment-on-TC.

4 Applications

In this section, we apply our method to TWINE, LBlock, and SKINNY. We will
visualize the conflictions leading to the zero-correlation property whenever it is
possible.

https://github.com/zero-cryptanalysis/Experiment-on-TC
https://github.com/zero-cryptanalysis/Experiment-on-TC

134 C. Niu et al.

T

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

S

S

S

S

Round 1 Round 6

Round 2 Round 7

Round 3 Round 8

Round 4 Round 9

Round 5 Round 10

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

RK

S

RK RK RK

S

S

S

S

S

Fig. 1. Zero-correlation linear approximations of the 10-round toy cipher, where the
S-boxes are borrowed from TWINE

4.1 Application to TWINE

TWINE is a family of 64-bit lightweight block ciphers with the generalized Feistel
structure designed by Suzaki et al. [13]. There are two members TWINE-80 and
TWINE-128 in the family supporting 80-bit and 128-bit keys respectively. The
round function of the TWINE and the key schedule algorithms for TWINE-80 and
TWINE-128 are visualized in Figs. 2, 5, and 3. We refer the reader to [13] for more
details of the cipher.

Results for TWINE-80. We identify a family of 17-round zero-correlation linear
approximations for TWINE-80 shown in Table 3. To illustrate the contradiction
making it zero-correlation we depict the propagation of the linear masks through
both the encryption data path and key schedule data path in Figs. 4 and 5,
respectively. Given the mask (α, γ, β) that we found in our zero-correlation linear
approximations, we can manually derive the confliction in the key schedule. The
mask propagation is characterized by three kinds of active states of the mask,
where white nibble, gray nibble, and black nibble denote inactive mask, active
mask, and any mask, respectively.

S

RK

S

RK

S

RK

S

RK

S

RK

S

RK

S

RK

S

RK

0 2 4 6 8 10 12 141 3 5 7 9 11 13 15Round i

Round i+1

Fig. 2. Round function of TWINE block cipher

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 135

Table 3. Zero-correlation linear approximations for 17-round TWINE-80, where * can
be any 4-bit value and c is an arbitrary 4-bit nonzero value.

Domain Mask for Value

α ∈ F
64
2 Plaintext *000 0000 0000 0000

γ ∈ F
80
2 Key ***0 **** **** **** ****

β ∈ F
64
2 Ciphertext 0000 0000 0000 0c00

Table 4. Integral distinguisher for 17-round TWINE-80, where c is a 4-bit constant
nibble, a is a 4-bit active nibble, b is a 4-bit balanced nibble, and ? is a 4-bit unknown
nibble.

Pattern on Value

Plaintext caaa aaaa aaaa aaaa

Key ccca cccc cccc cccc cccc

Ciphertext ???? ???? ???? ?b??

Round i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S S S

Round i+1

RK RK RK RK RK RK RK RK

Fig. 3. Key schedule of TWINE-128

Then, according to Corollary 1, the family of zero-correlation linear approx-
imations can be converted to an integral distinguisher given in Table 4. The
integral distinguisher requires to encrypt a set of plaintexts enumerating the
values of 15 nibbles over 24 different master keys, and the sum of the corre-
sponding ciphertext bits is balanced. Since the attack needs 24 different keys,
we regard it as a related-key integral attack.

Table 5. Zero-correlation linear approximations for two 18-round TWINE-128, where *

can be any 4-bit value and c is an arbitrary 4-bit nonzero value.

Domain Mask for Value

α ∈ F
64
2 Plaintext 00*0 0000 0000 0000

γ ∈ F
128
2 Key **** *0** **** **** **** **** **** ****

β ∈ F
64
2 Ciphertext 0c00 0000 0000 0000

α ∈ F
64
2 Plaintext 0000 00*0 0000 0000

γ ∈ F
128
2 Key **** *0** **** **** **** **** **** ****

β ∈ F
64
2 Ciphertext 0c00 0000 0000 0000

Results for TWINE-128. We identify two families of 18-round zero-correlation
linear approximations for TWINE-128 shown in Table 5, and their corresponding

136 C. Niu et al.

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Round 11

Round 12

Round 13

Round 14

Round 15

Round 16

Round 17

Fig. 4. The propagation of the linear masks through the encryption data path of 17-
round TWINE-80

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 137

Confliction

Confliction

TRound 0

S S

Round 1

S S

Round 2

S S

Round 3

S S

Round 4

S S

Round 5

S S

Round 6

S S

Round 7

S S

Round 8

S S

Round 9

S S

Round 10

S S

Round 11

S S

Round 12

S S

Round 13

S S

Round 14

S S

Round 15

S S

Round 16

S S

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

RK RK RK RK RK RK RK RK

Fig. 5. Mask propagation in the key schedule of TWINE-80

138 C. Niu et al.

Table 6. Integral distinguisher for 18-round TWINE-128, where c is a 4-bit constant
nibble, a is a 4-bit active nibble, b is a 4-bit balanced nibble, and ? is a 4-bit unknown
nibble.

Pattern on Value

Plaintext aaca aaaa aaaa aaaa

Key cccc cacc cccc cccc cccc cccc cccc cccc

Ciphertext ?b?? ???? ???? ????

Plaintext aaaa aaca aaaa aaaa

Key cccc cacc cccc cccc cccc cccc cccc cccc

Ciphertext ?b?? ???? ???? ????

related-key integral distinguishers are given in Table 6 The integral distinguisher
requires 215×4 = 260 chosen plaintexts over 24 master keys, and the total data
complexity is 260+4 = 264.

4.2 Application to LBlock

LBlock is a lightweight 64-bit block cipher with an 80-bit key designed by Wu
et al. in 2011 [28]. It is designed based on a variant of the Feistel structure
and contains 32 rounds. The round function and the key schedule algorithms
for LBlock are visualized in Figs. 6 and 7. We refer the readers to [28] for more
details of the cipher.

Table 7. Zero-correlation linear approximations for 15-round LBlock-80, where * can
be any 4-bit value and c is an arbitrary 4-bit nonzero value.

Domain Mask for Value

α ∈ F
64
2 Plaintext 0000 *000 0000 0000

γ ∈ F
80
2 Key **** **** **** **** ***0

β ∈ F
64
2 Ciphertext 0000 0000 0000 c000

We identify a family of 15-round zero-correlation linear approximations for
LBlock shown in Table 7. its corresponding related-key integral distinguisher is
given in Table 8. The integral distinguisher requires 215×4 = 260 chosen plaintexts
over 24 master keys, and the total data complexity is 260+4 = 264.

4.3 Application to SKINNY

SKINNY [2] is a family of block ciphers designed based on the TWEAKEY frame-
work [11]. In this work, we focus on SKINNY-64/t, where t ∈ {64, 128, 192} denotes
the tweakey size. We refer the reader to [2] for more details of the design.

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 139

Table 8. Integral distinguisher for 15-round LBlock-80, where c is a 4-bit constant
nibble, a is a 4-bit active nibble, b is a 4-bit balanced nibble, and ? is a 4-bit unknown
nibble.

Pattern on Value

Plaintext aaaa caaa aaaa aaaa

Key cccc cccc cccc cccc ccca

Ciphertext ???? ???? ???? b???

Round i

SB, LN

≪ 8

SK

Round i + 1

Fig. 6. Round function of LBlock

Zero-Correlation Linear Hull on STK with TK-p. Using our method, we
can recover the results of Ankele et al. for SKINNY. Moreover, we also get longer
distinguisher for SKINNY-64/128 and SKINNY-64/192. To confirm the correctness
of our results, Ankele et al.’s method for checking the zero-correlation property
can be employed. In the tweakey expansion algorithm of SKINNY, the c-bit nibbles
are independent of each other. One can focus on the updating of one nibble in
the tweak schedule to find contradictions. To this end, Ankele et al. proposed
the definition of Γ sequence.

Definition 1 (Γ sequence [1]). The forward and backward propagations with
probability one are evaluated from the given input linear mask Γ0 and output
linear mask Γr, respectively. Then, for any i, the Γ sequence is defined by the

Round i

≪ 29

S S

Round i + 1

Fig. 7. Key schedule of LBlock

140 C. Niu et al.

(R + 1) sequence, where whether Γr [h′r(i)] is active, inactive, or any is stored
in the r-th element.

When the Γ sequence is inactive for any i, it causes a contradiction when the
i-th nibble of master tweak Λ[i] is an active mask, since the master tweak can
be obtained by XORing all the values in the Γ sequence. Moreover, when there
is only one active value in the Γ sequence, it also causes a contradiction when
Λ[i] is the zero mask.

Ankele et al. proved that tweakable block cipher based on STK structure
with TK-p has the zero-correlation linear hull as follows.

Proposition 1. If there is a pair of linear masks (Γ0, Γr) and the nibble position
i such that the Γ sequence has at most p linearly active values, the tweakable block
cipher has a non-trivial zero-correlation linear hull.

Proposition 1 is proven in [1]. It shows that if the number of active nibbles
in the Γ sequence is not more than the number of parallel tweakey schedule in
the STK structure, applying an inactive mask to the master tweak nibble causes
contradiction.

Table 9. Zero-correlation linear approximations for two 14-round SKINNY-64/128,
where * can be any 4-bit value and c is an arbitrary 4-bit nonzero value.

Domain Mask for Value

α ∈ F
64
2 Plaintext 0000 0000 0000 **00

λ ∈ F
2×64
2 TK1 ‖ TK2 *0** **** **** **** *0** **** **** ****

β ∈ F
64
2 Ciphertext 0000 000c 0000 0000

α ∈ F
64
2 Plaintext 0000 0000 0000 **00

λ ∈ F
2×64
2 TK1 ‖ TK2 *0** **** **** **** *0** **** **** ****

β ∈ F
64
2 Ciphertext 0000 0000 000c 0000

Results for SKINNY-64/128. We identify a family of 14-round zero-correlation
linear approximations for SKINNY-64/128 shown in Table 9. To illustrate the
contradiction that leads to zero correlation we depict the propagation of the
linear masks through both the encryption data path and tweakey schedule data
path in Fig. 8. Then, we can manually derive the contradiction in the tweakey
schedule by using Proposition 1.

We focus on the tweak nibble labeled 1, where the Γ sequence which defined
in Definition 1 is depicted by using a red frame. Since the Γ sequence has just two
active nibbles and SKINNY-64/128 is based on TK-2, applying an inactive mask
to the before mentioned tweak nibble causes a contradiction due to Proposition 1.

Then, we can connect zero-correlation linear hull to a integral distinguisher.
Its corresponding related-tweak integral distinguisher is given in Table 10. The
integral distinguisher requires 214×4 = 256 chosen plaintexts over 28 master
tweaks, and the total data complexity is 256+8 = 264 .

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 141

Table 10. Integral distinguisher for two 14-round SKINNY-64/128, where c is a 4-bit
constant nibble, a is a 4-bit active nibble, b is a 4-bit balanced nibble, and ? is a 4-bit
unknown nibble.

Pattern on Value

Plaintext aaaa aaaa aaaa ccaa

TK1 ‖ TK2 cacc cccc cccc cccc cacc cccc cccc cccc

Ciphertext ???? ???b ???? ????

Plaintext aaaa aaaa aaaa ccaa

TK1 ‖ TK2 cacc cccc cccc cccc cacc cccc cccc cccc

Ciphertext ???? ???? ???b ????

Table 11. Zero-correlation linear approximations for two 16-round SKINNY-64/192,
where * can be any 4-bit value and c is an arbitrary 4-bit nonzero value.

Domain Mask for Value

α ∈ F
64
2 Plaintext *000 0000 0000 0000

λ ∈ F
3×64
2 TK1 ‖ TK2 ‖ TK3 **** ***0 **** **** **** ***0 **** ****

**** ***0 **** ****

β ∈ F
64
2 Ciphertext 0000 000c 0000 0000

α ∈ F
64
2 Plaintext *000 0000 0000 0000

λ ∈ F
3×64
2 TK1 ‖ TK2 ‖ TK3 **** ***0 **** **** **** ***0 **** ****

**** ***0 **** ****

β ∈ F
64
2 Ciphertext 0000 0000 000c 0000

Table 12. Integral distinguisher for two 16-round SKINNY-64/192, where c is a 4-bit
constant nibble, a is a 4-bit active nibble, b is a 4-bit balanced nibble, and ? is a 4-bit
unknown nibble.

Pattern on Value

Plaintext caaa aaaa aaaa aaaa

TK1 ‖ TK2 ‖ TK3 cccc ccca cccc cccc cccc ccca cccc cccc

cccc ccca cccc cccc

Ciphertext ???? ???b ???? ????

Plaintext caaa aaaa aaaa aaaa

TK1 ‖ TK2 ‖ TK3 cccc ccca cccc cccc cccc ccca cccc cccc

cccc ccca cccc cccc

Ciphertext ???? ???? ???b ????

142 C. Niu et al.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

9 15 8 13
10 14 12 11
0 1 2 3
4 5 6 7

1 7 0 5
2 6 4 3
9 15 8 13
10 14 12 11

15 11 9 14
8 12 10 13
1 7 0 5
2 6 4 3

7 3 1 6
0 4 2 5
15 11 9 14
8 12 10 13

11 13 15 12
9 10 8 14
7 3 1 6
0 4 2 5

3 5 7 4
1 2 0 6
11 13 15 12
9 10 8 14

SB AC

TK1 TK1

AK SR

MC

Round 1

SB AC

TK2 TK2

AK SR

MC

Round 2

SB AC

TK3 TK3

AK SR

MC

Round 3

SB AC

TK4 TK4

AK SR

MC

Round 4

SB AC

TK5 TK5

AK SR

MC

Round 5

SB AC

TK6 TK6

AK SR

MC

Round 6

SB AC

AK SR

TK7 TK7
Round 7

13 14 11 10
15 8 9 12
3 5 7 4
1 2 0 6

5 6 3 2
7 0 1 4
13 14 11 10
15 8 9 12

14 12 13 8
11 9 15 10
5 6 3 2
7 0 1 4

6 4 5 0
3 1 7 2
14 12 13 8
11 9 15 10

12 10 14 9
13 15 11 8
6 4 5 0
3 1 7 2

4 2 6 1
5 7 3 0
12 10 14 9
13 15 11 8

10 8 12 15
14 11 13 9
4 2 6 1
5 7 3 0

SB AC

TK8 TK8

AK SR

MC

Round 8

SB AC

TK9 TK9

AK SR

MC

Round 9

SB AC

TK10 TK10

AK SR

MC

Round 10

SB AC

TK11 TK11

AK SR

MC

Round 11

SB AC

TK12 TK12

AK SR

MC

Round 12

SB AC

TK13 TK13

AK SR

MC

Round 13

SB AC

AK SR

TK14 TK14
Round 14

Fig. 8. 14-round zero-correlation linear hulls for SKINNY-64/128

Results for SKINNY-64/192. We identify a family of 16-round zero-correlation
linear approximations for SKINNY-64/192 shown in Table 11. Its related-tweak
integral distinguisher is given in Table 12. The integral distinguisher requires
215×4 = 260 chosen plaintexts over 212 master tweaks, and the total data com-
plexity is 260+12 = 272. One can refer to AppendixA for the 16 round zero-
correlation distinguisher (Fig. 9).

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 143

5 Conclusion

In this paper, we generalize Ankele et al.’s work [1] by treating plaintexts, keys,
and tweaks equally in zero-correlation linear cryptanalysis. To make our zero-
correlation linear approximations apply to practical attack scenarios, we pro-
posed a unified linear mask setting on key/tweak schedule. Using our new linear
mask setting, we can convert obtained zero-correlation linear approximations
into related tweakey integral distinguishers which can be used for key recov-
ery attacks. We also show that such zero-correlation linear approximations can
be found by standard automatic tools based on SAT and SMT, which is much
more straightforward than Ankele et al.’s approach and applies to both linear
and nonlinear tweak-key schedule algorithms. We apply the method to TWINE,
LBlock, and SKINNY and obtain improved results. To confirm the correctness of
our method, we recover the results of Ankele et al. automatically and run a full
experiment on a toy cipher.

Compared to related-key impossible differential and key difference invariant
bias cryptanalysis, our method exploits the different property of the key schedule.
After comparing the result of TWINE and LBlock, we get an observation that
our method is suited for block ciphers with a slow diffusion in the key/tweak
schedules. It is noteworthy that the inner connection of these three cryptanalytic
methods is not yet known.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments and suggestions to improve the quality of the paper. Siwei Sun is funded
by the National Key Research and Development Program of China (Grant No.
2018YFA0704704), the Chinese Major Program of National Cryptography Develop-
ment Foundation (Grant No. MMJJ20180102), and the National Natural Science Foun-
dation of China (Grant No. 62032014, Grant No. 61772519). This work is supported
by the National Natural Science Foundation of China (Grant No. 62002201, Grant No.
62032014), the National Key Research and Development Program of China (Grant
No. 2018YFA0704702), the Major Scientific and Technological Innovation Project of
Shandong Province, China (Grant No. 2019JZZY010133), the Major Basic Research
Project of Natural Science Foundation of Shandong Province, China (Grant No.
ZR202010220025).

144 C. Niu et al.

A Zero-Correlation Linear Hulls for SKINNY-64/192

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

9 15 8 13
10 14 12 11
0 1 2 3
4 5 6 7

1 7 0 5
2 6 4 3
9 15 8 13
10 14 12 11

15 11 9 14
8 12 10 13
1 7 0 5
2 6 4 3

7 3 1 6
0 4 2 5
15 11 9 14
8 12 10 13

11 13 15 12
9 10 8 14
7 3 1 6
0 4 2 5

3 5 7 4
1 2 0 6
11 13 15 12
9 10 8 14

13 14 11 10
15 8 9 12
3 5 7 4
1 2 0 6

SB AC

TK1 TK1

AK SR

MC

Round 1

SB AC

TK2 TK2

AK SR

MC

Round 2

SB AC

TK3 TK3

AK SR

MC

Round 3

SB AC

TK4 TK4

AK SR

MC

Round 4

SB AC

TK5 TK5

AK SR

MC

Round 5

SB AC

TK6 TK6

AK SR

MC

Round 6

SB AC

TK7 TK7

AK SR

MC

Round 7

SB AC

AK SR

TK8 TK8
Round 8

13 14 11 10
15 8 9 12
3 5 7 4
1 2 0 6

5 6 3 2
7 0 1 4
13 14 11 10
15 8 9 12

14 12 13 8
11 9 15 10
5 6 3 2
7 0 1 4

6 4 5 0
3 1 7 2
14 12 13 8
11 9 15 10

12 10 14 9
13 15 11 8
6 4 5 0
3 1 7 2

4 2 6 1
5 7 3 0
12 10 14 9
13 15 11 8

10 8 12 15
14 11 13 9
4 2 6 1
5 7 3 0

2 0 4 7
6 3 5 1
10 8 12 15
14 11 13 9

SB AC

TK8 TK8

AK SR

MC

Round 8

SB AC

TK9 TK9

AK SR

MC

Round 9

SB AC

TK10 TK10

AK SR

MC

Round 10

SB AC

TK11 TK11

AK SR

MC

Round 11

SB AC

TK12 TK12

AK SR

MC

Round 12

SB AC

TK13 TK13

AK SR

MC

Round 13

SB AC

TK14 TK14

AK SR

MC

Round 14

SB AC

AK SR

TK16 TK16
Round 16

Fig. 9. 16-round zero-correlation linear hulls for SKINNY-64/192.

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 145

References

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion. IACR
Trans. Symmetric Cryptol. 2019(1), 192–235 (2019). https://doi.org/10.13154/
tosc.v2019.i1.192-235

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Bogdanov, A., Boura, C., Rijmen, V., Wang, M., Wen, L., Zhao, J.: Key difference
invariant bias in block ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 357–376. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7 19

4. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimen-
sional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 16

5. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanal-
ysis of block ciphers. Designs, Codes Cryptogr. 70(3), 369–383 (2012). https://doi.
org/10.1007/s10623-012-9697-z

6. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 3

7. Ganesh, V., Hansen, T., Soos, M., Liew, D., Govostes, R.: STP (2014). https://
stp.github.io/

8. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key
differential cryptanalysis. In: Principles and Practice of Constraint Programming -
22nd International Conference, CP 2016, Toulouse, France, September 5–9, 2016,
Proceedings. pp. 584–601 (2016). https://doi.org/10.1007/978-3-319-44953-1 37

9. Hadipour, H., Sadeghi, S., Niknam, M.M., Song, L., Bagheri, N.: Comprehensive
security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019(4), 290–317
(2019). https://doi.org/10.13154/tosc.v2019.i4.290-317

10. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 15

11. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

12. Kaliski, Burton S.., Robshaw, M.. J.. B..: Linear cryptanalysis using multiple
approximations and FEAL. In: Preneel, Bart (ed.) FSE 1994. LNCS, vol. 1008,
pp. 249–264. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-
8 19

13. Kobayashi, E., Suzaki, T., Minematsu, K., Morioka, S.: Twine: a lightweight block
cipher for multiple platforms. In: The Conference on Selected Areas in Cryptogra-
phy (2012). https://doi.org/10.1007/978-3-642-35999-6 22

https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.13154/tosc.v2019.i1.192-235
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-42033-7_19
https://doi.org/10.1007/978-3-642-42033-7_19
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1007/978-3-642-34047-5_3
https://stp.github.io/
https://stp.github.io/
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.13154/tosc.v2019.i4.290-317
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-60590-8_19
https://doi.org/10.1007/3-540-60590-8_19
https://doi.org/10.1007/978-3-642-35999-6_22

146 C. Niu et al.

14. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 8

15. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: key schedules and tweak-
able block ciphers. IACR Trans. Symmetric Cryptol. 2017(1), 474–505 (2017).
https://doi.org/10.13154/tosc.v2017.i1.474-505

16. Liu, Y., et al.: STP models of optimal differential and linear trail for s-box based
ciphers. IACR Cryptol. ePrint Arch. 2019, 25 (2019)

17. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

18. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: application to salsa20. Cryptology ePrint Archive, Report 2013/328 (2013).
https://eprint.iacr.org/2013/328

19. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Information Security and Cryptol-
ogy - 7th International Conference, Inscrypt 2011, Beijing, China, November 30–
December 3, 2011, pp. 57–76. Revised Selected Papers (2011). https://doi.org/10.
1007/978-3-642-34704-7 5

20. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0053460

21. Sasaki, Yu., Todo, Y.: New impossible differential search tool from design and
cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 7

22. Sun, B., et al.: Links among impossible differential, integral and zero correlation
linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 95–115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 5

23. Sun, S., Gérault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Analysis
of AES, skinny, and others with constraint programming. IACR Trans. Symmetric
Cryptol. 2017(1), 281–306 (2017). https://doi.org/10.13154/tosc.v2017.i1.281-306

24. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

25. Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanal-
ysis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08344-5 1

26. Wei, Y., Xu, P., Rong, Y.: Related-key impossible differential cryptanalysis on
lightweight cipher TWINE. J. Ambient Intell. Hum. Comput. 10(2), 509–517
(2018). https://doi.org/10.1007/s12652-017-0675-1

27. Wen, L., Wang, M., Zhao, J.: Related-key impossible differential attack on reduced-
round LBlock. J. Comput. Sci. Technol. 29(1), 165–176 (2014). https://doi.org/
10.1007/s11390-014-1419-8

https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.13154/tosc.v2017.i1.474-505
https://doi.org/10.1007/3-540-48285-7_33
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/BFb0053460
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/s12652-017-0675-1
https://doi.org/10.1007/s11390-014-1419-8
https://doi.org/10.1007/s11390-014-1419-8

Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts 147

28. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

29. Xu, H., Jia, P., Huang, G., Lai, X.: Multidimensional zero-correlation linear crypt-
analysis on 23-round LBlock-s. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.)
ICICS 2015. LNCS, vol. 9543, pp. 97–108. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29814-6 9

30. Zheng, X., Jia, K.: Impossible differential attack on reduced-round TWINE. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 123–143. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12160-4 8

https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-319-29814-6_9
https://doi.org/10.1007/978-3-319-29814-6_9
https://doi.org/10.1007/978-3-319-12160-4_8

SoK: Game-Based Security Models
for Group Key Exchange

Bertram Poettering1 , Paul Rösler2(B) , Jörg Schwenk3 ,
and Douglas Stebila4

1 IBM Research – Zurich, Rüschlikon, Switzerland
poe@zurich.ibm.com

2 TU Darmstadt, Darmstadt, Germany
paul.roesler@tu-darmstadt.de

3 Ruhr University Bochum, Bochum, Germany
joerg.schwenk@rub.de

4 University of Waterloo, Waterloo, Canada
dstebila@uwaterloo.ca

Abstract. Group key exchange (GKE) protocols let a group of users
jointly establish fresh and secure key material. Many flavors of GKE have
been proposed, differentiated by, among others, whether group member-
ship is static or dynamic, whether a single key or a continuous stream of
keys is established, and whether security is provided in the presence of
state corruptions (forward and post-compromise security). In all cases,
an indispensable ingredient to the rigorous analysis of a candidate solu-
tion is a corresponding formal security model. We observe, however, that
most GKE-related publications are more focused on building new con-
structions that have more functionality or are more efficient than prior
proposals, while leaving the job of identifying and working out the details
of adequate security models a subordinate task.

In this systematization of knowledge we bring the formal modeling of
GKE security to the fore by revisiting the intuitive goals of GKE, criti-
cally evaluating how these goals are reflected (or not) in the established
models, and how they would be best considered in new models. We clas-
sify and compare characteristics of a large selection of game-based GKE
models that appear in the academic literature, including those proposed
for GKE with post-compromise security. We observe a range of short-
comings in some of the studied models, such as dependencies on overly
restrictive syntactical constrains, unrealistic adversarial capabilities, or
simply incomplete definitions. Our systematization enables us to iden-
tify a coherent suite of desirable characteristics that we believe should
be represented in all general purpose GKE models. To demonstrate the
feasibility of covering all these desirable characteristics simultaneously
in one concise definition, we conclude with proposing a new generic ref-
erence model for GKE.

The full version [PRSS21] of this article is available as entry 2021/305 in the IACR
eprint archive.
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 148–176, 2021.
https://doi.org/10.1007/978-3-030-75539-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_7&domain=pdf
http://orcid.org/0000-0001-6525-5141
http://orcid.org/0000-0002-2324-5671
http://orcid.org/0000-0001-9315-7354
http://orcid.org/0000-0001-9443-3170
https://eprint.iacr.org/2021/305
https://eprint.iacr.org
https://doi.org/10.1007/978-3-030-75539-3_7

SoK: Game-Based Security Models for Group Key Exchange 149

Keywords: Group key exchange · Key agreement · Key
establishment · Security model · Multi-user protocol

1 Introduction

The group key exchange (GKE) primitive was first considered about four decades
ago. The aim of early publications on the topic [ITW82,BD95] was to generalize
the (two-party) Diffie–Hellman protocol to groups of three or more participants,
i.e., to construct a basic cryptographic primitive that allows a fixed set of anony-
mous participants to establish secure key material in the presence of a passive
adversary. Later research identified a set of additional features that would be
desirable for GKE, for instance the support of participant authentication, the
support of dynamic groups (where the set of participants is not fixed but mem-
bers can join and leave the group at will), the support of groups where one
or many members might temporarily be unresponsive (asynchronous mode of
operation), or a maximum resilience against adversaries that can obtain read-
access to the states of participants for a limited amount of time (forward and
post-compromise security).

Standard applications that require a GKE protocol as a building block
include online audio-video conference systems and instant messaging [RMS18].
Indeed, in an ongoing standardization effort the IETF’s Messaging Layer Secu-
rity (MLS) initiative [BBM+20] tests employing GKE protocols for the protec-
tion of instant messaging in asynchronous settings.

While, intuitively, most of the GKE protocols proposed in the literature can
serve as a building block for such applications, it turns out that effectively no two
security analyses of such protocols were conducted in the same formal model,
meaning that there is effectively no modularity: For every GKE candidate that
is used in some application protocol, a new security evaluation of the overall
construction has to be conducted. In fact, as will become clear in the course
of this article, the GKE literature has neither managed to agree on a common
unified syntax of the primitive, nor on a common approach for developing and
expressing corresponding security definitions. In our view, the lack of a common
reference framework for GKE, including its security, and the implied lack of
modularity and interoperability, imposes an unnecessary obstacle on the way to
secure conference and messaging solutions.

1.1 Systemizing Group Key Exchange Models

With the goal of developing a general reference formalization of the GKE prim-
itive, we have a fresh look at how it should be modeled such that it simulta-
neously provides sufficient functionality and sufficient security. More precisely,
we are looking for a formalization that is versatile enough to practically fit and
protect generic applications like the envisioned video conferencing. To achieve
this, we need to consider questions like the following: What features does an
application expect of GKE? What type of underlying infrastructure (network

150 B. Poettering et al.

services, authentication services, . . .) can a GKE primitive assume to exist?
What types of adversaries should be considered? To obtain a satisfactory refer-
ence formalization, our model should be as generic as possible when meeting the
requirements of applications, should make minimal assumptions on its environ-
ment, and should tolerate a wide class of adversaries.

After identifying the right questions to ask, we derive a taxonomy in which
existing models for GKE can be evaluated to determine whether they provide
answers to these questions. If they don’t, we explore the consequences of this.
As a side product, our taxonomy also sheds light on how the research domain
of GKE has evolved over time, and how models in the literature relate to each
other. It also informs us towards our goal to develop a versatile and uniform
model for GKE.

We organize our taxonomy and investigations with respect to four property
categories of GKE models:

1. the syntax of GKE (Sect. 2),
2. the definition of partnering (Sect. 3.1),
3. the definition of correctness (due to space restriction only in the full ver-

sion [PRSS21]), and
4. the definition of security (Sect. 4).

While syntax, correctness, and security are properties generally formalized for
all kinds of cryptographic primitives, the partnering notion is specific to the
domain of key exchange. In a nutshell, partnering captures the conditions under
which remote parties compute the same session key.

For each of these four categories, we discuss their purposes and central fea-
tures, and classify the literature with respect to them. Having both considered
the literature and revisited GKE with a fresh view, we identify a set of desirable
characteristics in each of the four categories, from the perspective of generality
of use and minimality of assumptions on the context in which GKE takes place.
Based on these findings, we see how individual definitional approaches and, to
some extent, subparadigms of GKE, do not fully satisfy the needs of GKE anal-
ysis. We are further able to synthesize a coherent set of desirable properties into
a single, generic model (Sects. 2.5, 3.2, and 4.1), demonstrating that it is possible
to design a model that simultaneously incorporates all these characteristics.

Choice of Literature. Most of the literature in the domain of GKE revolves
around the exposition of a new construction (accompanied either with for-
mal or only heuristic security arguments; see, e.g., [ITW82,BD95]). When
selecting prior publications to survey in this SoK article, we focused on those
that were developed with respect to a formal computational game-based secu-
rity model. Our comparison covers all publications on GKE with this type of
model that appeared in cryptographic “tier-one” proceedings1 [BCP01,BCPQ01,
BCP02a,BCP02b,KY03,KLL04,KS05,CCG+18,ACDT19]. Beyond that, we

1 CRYPTO, Eurocrypt, Asiacrypt, CCS, S&P, Usenix Security, and the Journal of
Cryptology.

SoK: Game-Based Security Models for Group Key Exchange 151

browsed through the proceedings of all relevant “tier-two” conferences2 and
selected publications that explicitly promise to enhance the formal modeling of
GKE [GBG09,YKLH18].3 We also include three recently published articles on
GKE with post-compromise security (aka. group ratcheting or continuous GKE),
one of which is yet only available as a preprint [CCG+18,ACDT19,ACC+19]. 4

As computational simulation-based (UC) and symbolic modeling approaches are
essentially incomparable with computational game-based notions, we exclude
these type of models from our systematization.

Tables 1, 2, and 3 summarize and compare the common features that we
identified in the surveyed models. The models reflected in these tables are
arranged into three clusters. Leftmost: GKE in static groups [BCPQ01,BCP02b,
KY03,KS05,GBG09,CCG+18]; centered: GKE with regular, post-compromise
secure key material updates (aka. ratcheting) [CCG+18,ACDT19,ACC+19];
and rightmost: GKE in dynamic groups [ACDT19,ACC+19,BCP01,BCP02a,
KLL04,YKLH18]. Within each cluster, models are, where possible, ordered
chronologically by publication date. Naturally, works are historically related,
did influence each other, and use intuitively similar notations across these clus-
ters (e.g., due to overlapping sets of authors). Our results, however, show that
these “soft” properties are almost independent of the factual features according
to which we systematized the models. We correspondingly refrain from intro-
ducing further “clustering-axes” with respect to historic relations between the
considered works as this may mislead more than it supports comprehensibility.
Nevertheless, we refer the interested reader to the extended version [PRSS21] for
a short overview of the historic context of the chosen literature and the purposes
of each selected article.

We use symbols , , , , , -, and others to condense the details of the
considered model definitions in our systematizing tables, and accompany them
with textual explanations. Not surprisingly, this small set of symbols can hardly
reflect all details encoded in the models but makes “losses due to abstraction”
unavoidable. We optimized the selection of classification criteria such that the
amount of information loss due to simplifications is minimized.

Relation to Two-Party Key Exchange. While the focus of this article is on GKE,
many of the notions that we discuss are relevant also in the domain of two-party
key exchange. In our comparisons, we indicate which properties are specific to
the setting of GKE, and which apply to key exchange in general. Given the large
amount of two-party key exchange literature, we do not attempt to provide more
direct comparisons between group and two-party key exchange.

2 TCC, PKC, CT-RSA, ACNS, ESORICS, CANS, ARES, ProvSec, FC.
3 We appreciate that many more publications introduce other GKE constructions (e.g.,

[BC04,ABCP06,JKT07,JL07,Man09,NS11,XHZ15,BDR20]). However, we did not
identify that they contribute new insights to the modeling of GKE.

4 Since our analysis started before [ACDT20] was submitted to CRYPTO 2020,
we consider a fixed preprint version [ACDT19] here. Note that the two follow-up
works [ACJM20,AJM20] use simulation-based security models.

152 B. Poettering et al.

Proposed Model. Since none of the models that we survey achieves all the desir-
able properties that we identify, we conclude this article with proposing a simple
and generic GKE model that achieves all these properties. The components of
this model are introduced gradually at the end of each systematization section.
We emphasize that it is not necessarily our goal to guide all future research efforts
to a unified GKE model. Some modeling design decisions are not universal and
cannot be reduced to objective criteria, so we are neither under the illusion
that a perfectly unified model exists, nor that the research community will any
time soon agree on a single formalization. Our primary goal when writing down
a model was rather to demonstrate the relative compatibility of the desirable
properties. That said, as our systematization reveals undesirable shortcomings
even in very recent GKE models for ratcheting—shortcomings that partially
seem inherited from older work—we believe that proposing a better alternative
is long overdue.

Although our model can be used for analyzing GKE protocols with various
realistic, so far disregarded properties, achieving these properties is not manda-
tory but optional for covered GKE protocols. For example, dynamic GKE pro-
tocols with multi-device support that can handle fully asynchronous interaction
can be analyzed by our model as well as static GKE protocols in which the
interaction between the participating instances follows a fixed schedule. We con-
sider these properties as implementation details of the protocols to which our
model is carefully defined indifferent. The only mandatory property that our
model demands is the secrecy of keys in the presence of either active or passive
adversaries, which demonstrates the generality and versatility of our proposal.

1.2 Basic Notions in Group Key Exchange

A group key exchange scheme is a tuple of algorithms executed by a group of
participants with the minimal outcome that one or multiple (shared) symmetric
keys are computed.

Terminology of GKE. A global session is a joint execution of a GKE protocol.
By joint execution we mean the distributed invocation of GKE algorithms by
participants that influence each other through communication over a network,
eventually computing (joint) keys. Each local execution of algorithms by a par-
ticipant is called a local instance. Each local instance computes one or more
symmetric keys, referred to as group keys. Each group key computed by a
single local instance during a global session has a distinct context, which may
consist of: the set of designated participants, the history of previously computed
group keys, the algorithm invocation by which its computation was initiated, etc.
Participants of global sessions, represented by their local instances, are called
parties.5 If the set of participants in a global session can be modified during
the lifetime of the session, this is an example of dynamic GKE; otherwise the
GKE is static.
5 We further clarify on the relation between local instances and parties and their

participation in sessions in the full version [PRSS21].

SoK: Game-Based Security Models for Group Key Exchange 153

There are many alternative terms used in the GKE literature for these ideas:
local instances are sometimes called processes, local sessions, or (misleadingly)
oracles; group keys are sometimes called session keys; and parties are sometimes
called users.
Security Models for GKE. As it is common in game-based key exchange models,
an adversary against the security of a GKE scheme plays a game with a chal-
lenger that simulates multiple parallel real global sessions of the GKE scheme.
The challenge that the adversary is required to solve is to distinguish whether
a challenge key is a real group key established in one of the simulated global
sessions or is a random key. In order to solve this challenge, the adversary is
allowed to obtain (through a key reveal oracle) group keys that were computed
independently, to obtain (through a state exposure oracle) ephemeral local
secret states of instances that do not enable the trivial solution of the challenge,
and to obtain (through a corruption oracle) static party secrets that do not
trivially invalidate the challenge either. While the GKE literature agrees on these
high-level concepts, the crucial details are implemented in various incompatible
ways in these articles.

2 Syntax Definitions

Modeling a cryptographic primitive starts with fixing its syntax: the set of algo-
rithms that are available, the inputs they take and the outputs they generate.
We categorized the GKE models we consider according to the most important
classes of syntactical design choices. In particular, the GKE syntax may reflect
(1) imposed limits on the number of supported parties, sessions, and instances;
(2) assumptions made on the available infrastructure (e.g., the existence of a
PKI); (3) the type of operations that the protocols implement (adding users,
removing users, refreshing keys, . . .); and (4) the information that the protocols
provide to the invoking application (set of group members, session identifiers,
. . .). We compile the results of our studies in Table 1. If for some models an
unambiguous mapping to our categories is not immediate, we report the result
that comes closest to what we believe the authors intended. Independently, if in
any of the categories one option is clearly more attractive than the other options,
we indicate this in the Desirable column. (We leave the cells of that column
empty if no clearly best option exists.) The Our model column indicates the
profile of our own GKE model; see also Sect. 2.5. Note that no two models in
the table have identical profiles.6

The upcoming paragraphs introduce our categories in detail.

2.1 Quantities

All models we consider assume a universe of parties that are potential candi-
dates for participating in GKE sessions. Instances per party: While most
6 Surprisingly, this holds even for models that appeared in close succession in publi-

cations of the same authors.

154 B. Poettering et al.

Table 1. Syntax definitions. Notation: n: many; F: fixed; V: variable; D: dynamic;
: yes; : implicitly; : partially; : no; -: not applicable; (blank): no option clearly

superior/desirable; SK: symmetric key; PW: password; PK: public key; G: global;
L: local.

Syntax GKE-specific [BCPQ01] [BCP02b] [KY03] [KS05] [GBG09] [CCG+18] [ACDT19] [ACC+19] [BCP01] [BCP02a] [KLL04] [YKLH18] Desirable Our model

Quantities
Instances per party n n n n n n 1 (1) 1 n n n n n

Parties per session F F V V V V D D D D D D D D
Multi-participation

Setup assumptions
Authentication by . . . SK PW PK PK PK PK PK (PK) SK PK PK PK any
PKI - - * * * - * -
Online administrator - - - - - -

Operations
Level of specification G L L L G G G L L
Algo: Setup -
Algo: Add -
Algo: Remove -
Algo: Refresh/Ratchet -
Abstract interface

Return values
Group key
Ref. for session
Ref. for group key
Designated members
Ongoing operation - - - -
Status of instance

models assume that each party can participate—using independent instances—
in an unlimited number of sessions, three models impose a limit to a single
instance per party.7 In Table 1 we distinguish these cases with the symbols n
and 1, respectively. Parties per session: While some models prescribe a fixed
number of parties that participate in each GKE session, other models are more
flexible and assume either that the number of parties is in principle variable yet
bound to a static value when a session is created, or even allow that the number
of parties changes dynamically over the lifetime of a session (accommodating
parties being added/removed). In the table we encode the three cases with the
symbols F,V,D, respectively. Multi-participation: In principle it is plausible
that parties participate multiple times in parallel in the same session (through
different, independent instances, e.g., from their laptop and smartphone). We
note however that all of the assessed models exclude this and don’t allow for
more than one participation per party. We encode this in the table by placing
the symbol in the whole row. Despite no model supporting it, we argue that
a multi-participation feature might be useful in certain cases.

Discussion. We note that security reductions of early ring-based GKE pro-
tocols [BD95] require that the number of participants in sessions always be
even [BD05]. We take this as an example that clarifies a crucial difference between
the F and V types in the Parties-per-session category, as [BD95] fits into the
F regime but not into the V regime.
7 The case of [ACC+19] is somewhat special: While their syntax in principle allows

that parties operate multiple instances, their security definition reduces this to
strictly one instance per party. For their application (secure instant messaging) this
is not a limitation as parties are short-lived and created ad-hoc to participate in
only a single session.

SoK: Game-Based Security Models for Group Key Exchange 155

2.2 Setup Assumptions

Security models are formulated with respect to a set of properties that are
assumed to hold for the environment in which the modeled primitive is oper-
ated. We consider three classes of such assumptions. The classes are related to
the pre-distribution of key material that is to be used for authentication, the
availability of a centralized party that leads the group communication, and the
type of service that is expected to be provided by the underlying communication
infrastructure. Authentication by . . . : If a GKE protocol provides key agree-
ment with authentication, its syntax has to reflect that the latter is achievable
only if some kind of cryptographic setup is established before the protocol ses-
sion is executed. For instance, depending on the type of authentication, artifacts
related to accessing pre-shared symmetric keys, passwords, or authentic copies
of the peers’ public keys, will have to emerge in the syntax. In the table we
encode these cases with the symbols SK,PW,PK, respectively.8 PKI: In the
case of public-key authentication we studied what the models say about how
public keys are distributed, in particular whether a public key infrastructure
(PKI) is explicitly or implicitly assumed. In the table we indicate this with the
symbols and . We further specially mark with * the cases of “closed PKIs”
that service exclusively potential protocol participants, i.e., PKIs with which
non-participants (e.g., an adversary) cannot register their keys. Online admin-
istrator: The number of participants in a GKE session can be very large, and, by
consequence, properly orchestrating the interactions between them can represent
a considerable technical challenge.9 Two of the models we consider resolve this
by requiring that groups be managed by a distinguished always-honest leader
(either being a group member or an external delivery service) who decides which
operations happen in which order, and another two models assume the same but
without making it explicit. The model of [ACC+19] is slightly different in that
a leader is still required, but it does not have to behave honestly. The model of
[YKLH18] does not assume orchestration: Here, protocols proceed execution as
long as possible, even if concurrent operations of participants are not compatible
with each other. This is argued to be sufficient if security properties ensure that
the resulting group keys are sufficiently independent. The remaining models are
so simple that they do not require any type of administration.

Discussion. While the authentication component that is incorporated into GKE
protocols necessarily requires the pre-distribution of some kind of key material,
the impact of this component on the GKE model should be minimal; in par-
ticular, details of PKI-related operations should not play a role. It is even less
desirable to assume closed PKIs to which outsiders cannot register their keys.

8 In continuation of Footnote 7: The case of [ACC+19] is special in that the require-
ment is an ephemeral asymmetric key, that is, a public key that is ad-hoc generated
and used only once.

9 Consider, for instance, that situations stemming from participants concurrently per-
forming conflicting operations might have to be resolved, as have to be cases where
participants become temporarily unavailable without notice.

156 B. Poettering et al.

As we have seen, some models require an online administrator where oth-
ers do not. If an online administrator is available, tasks like ensuring that all
participants in a session have the same view on the communication and group
membership list become easy. However, in many settings an online administrator
is just not available. For instance, instant messaging protocols are expected to
tolerate that participants, including any administrator, might go offline without
notice. Unfortunately, if no administrator is available, seemingly simple tasks
like agreeing on a common group membership list become hard to solve as, at
least implicitly, they require solving a Byzantine Consensus instance. On the
other hand, strictly speaking, achieving key security in GKE protocols is possi-
ble without reaching consensus.

2.3 Operations

In this category we compare the GKE models with respect to the algorithms
that parties have available for controlling how they engage in sessions. Level
of specification: While precisely fixing the APIs of these algorithms seems a
necessity for both formalizing security and allowing applications to generically
use the protocols, we found that very few models are clear about API details:
Four models leave the syntax of the algorithms fully undefined.10 Another four
models describe operations only as global operations, i.e., specify how the overall
state of sessions shall evolve without being precise about which steps the individ-
ual participants shall conduct. Only three models fix a local syntax, i.e., specify
precisely which participant algorithms exist and which inputs and outputs they
take and generate. In the table, we indicate the three levels of specification with
the symbols , G, and L, encoding the terms “missing”, “global”, and “local”,
respectively. The model of [YKLH18] sits somewhere between G and L, and is
marked with . Algo: The main operations executed by participants are session
initialization (either of an empty group or of a predefined set of parties), the
addition of participants to a group, the removal of participants from a group,
and in some cases a key refresh (which establishes a new key without affecting the
set of group members). In the table we indicate which model supports which of
these operations. Note that the correlation between the Add/Remove rows and
symbol D in Quantities/Parties-per-Session is as expected. Only very recent
models that emerged in the context of group ratcheting support the key refresh
operation. Abstract interface: While the above classes Add/Remove/Refresh
are the most important operations of GKE, other options are possible, includ-
ing Merge and Split operations that join two established groups or split them
into partitions, respectively. In principle, each additional operation could explic-
itly appear in the form of an algorithm in the syntax definition of the GKE
model, but a downside of this would be that the models of any two protocols
with slightly different feature sets would become, for purely syntactic reasons,

10 In some cases, however, it seems feasible to reverse-engineer some information about
an assumed syntax from the security reductions also contained in the corresponding
works.

SoK: Game-Based Security Models for Group Key Exchange 157

formally incomparable. An alternative is to use only a single algorithm for all
group-related operations, which can be directed to perform any supported oper-
ation by instructing it with corresponding commands. While we believe that this
flexible approach towards defining APIs to group operations has quite desirable
advantages, we have to note that only one of the considered models supports it.

Discussion. Instance-centric (‘L-level’) specifications of algorithms are vital for
achieving both practical implementability and meaningful security definitions.
To see the latter, consider that the only way for adversaries to attack (global)
sessions is by exposing (local) instances to their attacks.

2.4 Return Values

The main outcome of a successful GKE protocol execution is the group key
itself. In addition, protocol executions might establish further information that
can be relevant for the invoking application. We categorize the GKE models
by the type of information contained in the protocol outcome. Group key:
We confirm that all models that we consider have a syntactical mechanism for
delivering established keys. Reference for session: By a session reference we
understand a string that serves as an unambiguous handle to a session, i.e., a
value that uniquely identifies a distributed execution of the scheme algorithms.
Some of the models we consider require that such a string be established as part
of the protocol execution, but not necessarily they prescribe that it be commu-
nicated to the invoking application along with the key. (Instead the value is used
to define key security.) In Table 1, we indicate with symbols and whether
the models require the explicit or implicit derivation and communication of a
session reference. We mark models with if no such value appears in the model.
Reference for group key: A key reference is similar to a session reference
but instead of referring to a session it refers to an established key. While ref-
erences to sessions and keys are interchangeable in some cases, in general they
are not. The latter is the case, for instance, for protocols that establish multiple
keys per execution. Further, if communication is not authentic, session references
of protocol instances can be matching while key references (and keys) are not.
In the table we indicate with symbols and if the models consider explicit
or implicit key references. Designated members: Once a GKE execution suc-
ceeds with establishing a shared key, the corresponding participants should learn
who their partners are, i.e., with whom they share the key. In some models this
communication step is made explicit, in others, in particular if the set of part-
ners is input to the execution, this step is implicit. A third class of models does
not communicate the set of group members at all. In the table we indicate the
cases with symbols , , , respectively. Ongoing operation: In GKE ses-
sions, keys are established as a result of various types of actions, particularly
including the addition/removal of participants, and the explicit refresh of key
material. We document for each considered model whether it communicates for
established group keys through which operation they were established. Status
of instance: Instances can attain different protocol-dependent internal states.

158 B. Poettering et al.

Common such states are that instances can be in an accepted or rejected state,
meaning that they consider a protocol execution successful or have given up on
it, respectively. In this category we indicate whether the models we consider
communicate this status information to the invoking application.

Discussion. In settings where parties concurrently execute multiple sessions of
the same protocol, explicit references to sessions and/or keys are vital for main-
taining clarity about which key belongs to which execution. (Consider attacks
where an adversary substitutes all protocol messages of one session with the mes-
sages of another session, and vice versa, with the result that a party develops a
wrong understanding of the context in which it established a key.) We feel that
in many academic works the relevance of such references could be more clearly
appreciated. The formal version of our observation is that session or key refer-
ences are a prerequisite of sound composition results (as in [BFWW11]). Sound
composition with other protocols plays a pivotal role also in the Universal Com-
posability (UC) framework [Can01]. Indeed, not surprisingly, the concept of a
session reference emerges most clearly in the UC-related model of [KS05].

Also related to composition is the requirement of explicitly (and publicly)
communicating session and key references, member lists, and information like
the instance status: If a security model does not make this information readily
available to an adversary, a reductionist security argument cannot use such infor-
mation without becoming formally, and in many cases also effectively, invalid.

Finally, we emphasize that some GKE protocols allow for the concurrent
execution of incompatible group operations (e.g., the concurrent addition and
removal of a participant) so that different participants might derive keys with
different understandings of whom they share it with. This indicates that the
Designated members category in Table 1 is quite important.

2.5 Our Syntax Proposal

We turn to our syntax proposal that achieves all desirable properties from the
above comparison. It is important to note that, in contrast to our party-centric
perspective in the comparative systematization of this article, we design our
model with an instance-centric view. That means, we here consider instances as
the active entities in group key exchange and parties as only the passive key-
storage in authenticated GKE to which distinct groups of instances have joint
access. We discuss the perspectives on the relation between instances and parties
in more detail in the full version of this article [PRSS21].

A GKE protocol is a quadruple GKE = (gen, init, exec,proc) of algorithms
that generate authentication values, initialize an instance, execute operations
according to protocol-dependent commands, and process incoming ciphertexts
received from other instances. In order to highlight simplifications that are
possible for unauthenticated GKE, we indicate parts of the definition with
gray marked boxes that are only applicable to the authenticated case of GKE.

We define GKE protocol GKE over sets PAU , SAU , IID, ST , CMD, C, K,
KID where PAU and SAU are the public and secret authenticator spaces (e.g.,

SoK: Game-Based Security Models for Group Key Exchange 159

verification and signing key spaces, or public group identifier and symmetric
pre-shared group secret spaces), IID is the space of instance identifiers, ST is
the space of instances’ local secret states, CMD is the space of protocol-specific
commands (that may include references from IID to other instances) to initiate
operations in a session (such as adding users, etc.), C is the space of protocol
ciphertexts that can be exchanged between instances, K is the space of group
keys, and KID is the space of key identifiers that refer to computed group keys.
The GKE algorithms are defined as follows:

– gen out−−→ PAU × SAU . This algorithm takes no input and outputs a pair of
public and secret authenticator.

– IID in−→ init out−−→ ST . This algorithm initializes an instance’s secret state.11

– SAU × ST × CMD in−→ exec out−−→ ST . This algorithm initiates the execu-
tion of an operation in a group, e.g., the adding/joining/leaving/removing
of instances; affected instances’ identifiers can be encoded in the command
parameter cmd ∈ CMD.

– SAU × ST × C in−→ proc out−−→ ST ∪ {⊥}. This algorithm processes a received
ciphertext. Return value ⊥ signals rejection of the input ciphertext.

Interfaces for Algorithms. In contrast to previous works, we model communica-
tion to upper layer applications and to the underlying network infrastructure
via interfaces that are provided by the environment in which a protocol runs
rather than via direct return values. Each of the above algorithms can call the
following interfaces (to send ciphertexts and report keys, respectively):

– IID × C in−→ snd. This interface takes a ciphertext (and the calling instance’s
identifier) and hands it over to the network which is expected to deliver it
to other instances for processing. (The receiving instances are encoded in the
ciphertext, see below.)

– IID×KID×K in−→ key. This interface takes a key identifier and the associated
key (and the calling instance’s identifier) and delivers them to the upper layer
protocol.

Information Encoded in Objects. We assume that certain context information like
paired protocol instances and public authenticators is encoded in objects like key
identifiers, ciphertexts, and instance identifiers. More precisely, we assume three
‘getter functions’ mem, rec, pau as follows:

– Function KID in−→ mem out−−→ P(IID) extracts from a key identifier the list of
identifiers of the instances that are expected to be able to compute the same
key.12

11 Although exec and proc could implicitly initialize the state internally, we treat the
state initialization explicitly for reasons of clarity.

12 P(X) denotes the powerset of X .

160 B. Poettering et al.

– Function C in−→ rec out−−→ P(IID) extracts the identifiers of the instances that
are expected to receive the indicated ciphertext.

– Function IID in−→ pau out−−→ PAU , in the authenticated setting, extracts the
public authenticator of an instance from its identifier.

While this notation is non-standard, it has a number of advantages over alterna-
tives. One advantage has to do with clarity. For instance, function mem is precise
about the fact that the list of peers with whom a key is shared is a function of
the key itself, represented by its key identifier, and not of the session that estab-
lished it. Indeed, the latter could establish also further keys with different sets
of peers. A second advantage has to do with compactness of description. (This
will be discussed in more detail in Sect. 3.1.) For instance, the notation of the
proc algorithm would be more involved if the set of recipient instances of the
ciphertext would have to be made explicit as well.

The properties of this syntax proposal are presented in the rightmost column
of Table 1. Note that some properties are implied only by the use of this syntax
in our partnering, correctness, and security definitions. For example, the flexi-
ble consideration of authentication mechanisms and the dispensability of online
administrators are due to the game definition in our security notion of Sect. 4.1.
We clarify on the advantages of our model at the end of Sect. 4.1.

3 Communication Models

The high flexibility in communication (i.e., interaction among participants) in
a GKE protocol execution creates various challenges for modeling and defining
security of GKE. Firstly, tracing participants of a single global session is a crucial
yet typically complex task. Nearly all considered GKE models trace communi-
cation partners differently and, in the two-party key exchange literature, there
exists an even wider variety of partnering predicates (aka. matching mechanisms)
for this task. Secondly, normatively defining valid executions of a GKE protocol
(versus invalid ones) in order to derive correctness requirements for them is not
trivial for a generic consideration of GKE protocols. We note that only five out
of the twelve considered models define correctness. In the following, we discuss
partnering notions of the analyzed models. Due to space limits we systematize
their correctness definitions in the full version [PRSS21].

3.1 Partnering

Generally, a partnering predicate identifies instances with related, similar,
or even equal contexts of their protocol execution. However, partnering has
served many different, somewhat related and somewhat independent purposes
in (group) key exchange security models. We distinguish four subtly distinct
purposes of partnering.

1. Forbid trivial key reveals. In security experiments where an adversary trying
to break a challenge key can also reveal “independently” established keys,

SoK: Game-Based Security Models for Group Key Exchange 161

partnering is used to restrict the adversary’s ability to learn a challenge
instance’s key by revealing partner instances’ keys. Here, the partnering pred-
icate must include at least those instances that necessarily computed the same
key (e.g., group members), but it could be extended to further instances to
artificially weaken the adversary (as this restricts its ability to reveal keys),
for example, in order to allow for more efficient GKE constructions.

2. Detect authentication attacks. In some explicitly authenticated GKE security
definitions, partnering is used to identify successful authentication attacks
when one instance completes without there existing partner instances at every
designated group member. Here, the partnering predicate must include at
least those instances belonging to designated members of a computed key,
otherwise it is trivial to break authentication. But in this use, compared to
use (1) above, the predicate should not be extended to further instances, as
actual attacks against authentication might go undetected, if partnering is
used for this purpose.

3. Define correctness. Partnering is sometimes used to identify instances
expected to compute the same key for correctness purposes. In this case, the
partnering predicate must include at most those instances that are required
to compute the same key.

4. Enabling generic composability. Partnering also plays a crucial role in the
generic composability of (group) key exchange with other primitives: Brzuska
et al. [BFWW11] show that a publicly computable partnering predicate is suf-
ficient and (in some cases) even necessary for proving secure the composition
of a symmetric key application with keys from an AKE protocol. (Although
they consider two-party key exchange, the intuition is applicable to group key
exchange as well.)

Even though the first three purposes share some similarities, there are also
subtle differences, and defining them via one unified notion can lead to prob-
lems.13

Our Consideration of Partnering Predicates. We consider the forbidding trivial
key attacks ((1) above) as the core purpose of the partnering predicate. If the
predicate is defined precisely (i.e., it exactly catches the set of same keys that
result from a common global session) and is publicly derivable, it also allows for
generic compositions of group key exchange with other primitives ((4) above),
which we also consider indispensable.

Thereby, it is important to overcome a historic misconception of partnering:
for either of the two above mentioned purposes (detection of key reveals and
13 During the research for this article, we found two recent papers’ security defini-

tions for two-party authenticated key exchange that, due to reusing the partnering
definition for multiple purposes, cannot be fulfilled: Li and Schäge [LS17] and Cohn-
Gordon et al. [CCG+19] both require in their papers’ proceedings version for authen-
tication that an instance only computes a key if there exists a partner instance that
also computed the key (which is impossible as not all/both participants compute the
key simultaneously). Still, the underlying partnering concept suffices for detecting
reveals and challenges of the same key (between partnered instances).

162 B. Poettering et al.

Table 2. Partnering definitions. Notation: : yes, : implicitly, : almost, : partially,
: no, -: not applicable; (blank): no option clearly superior/desirable.

Partnering/Matching/. . . GKE-specific [BCPQ01] [BCP02b] [KY03] [KS05] [GBG09] [CCG+18] [ACDT19] [ACC+19] [BCP01] [BCP02a] [KLL04] [YKLH18] Desirable Our model

Defined?
Generic or protocol-specific - -
Normative/Precise/Retrospect. Variable N - N N N N N - N - V V P P
� Tight (vs. loose) - - - - - - -

Publicly derivable - -

Components included in partnering predicate:

Transcript
Matching transcripts - -
Sequence of matching transcripts - -

Identifiers
Group identifier - - *
Key identifier - - *
Externally input identifier - -

Group key
Whether partners computed a key - -
Whether group computed a key - -
Whether partners computed same key - -

Members of the group - -

use of established keys in compositions), not the instances (that compute keys)
are central for the partnering predicate but the keys themselves and the con-
texts in which they are computed are. As a result, a partnering definition ideally
determines the relation between established keys and their contexts instead of
the relation between interacting instances. We elaborate on this in the follow-
ing: In two-party key exchange, the context of a key is defined by its global
session which itself is defined by its two participating instances. In multi-stage
key exchange, keys are computed in consecutive stages of a protocol execution.
Hence, the context can be determined by the two participating instances in
combination with the current (consecutive) stage number. However, in group
key exchange—especially if we consider dynamic membership changes—the con-
text of a key is not defined consecutively anymore: due to parallel, potentially
conflicting changes of the member set in a protocol execution, it is not neces-
sary that all instances, computing multiple keys, perform these computations
in the same order. Consequently, partnering is not a linear, monotone predicate
defined for instances but an individual predicate for each computed group key
that reflects its individual context. This context can be protocol-dependent and
may include the set of designated member instances, a record of operation by
which its computation was initiated, etc. We treat the context information of
group keys as an explicit output of the protocol execution also for supporting
the use of these keys in upper layer applications (see Table 1).

Models Without Partnering Definitions. Three models do not define a part-
nering predicate at all. In one of these, [ACDT19], a partnering predicate is
implicit within their correctness definition. Two of these have no need of part-
nering since they restrict to (quasi-)passive adversaries [ACDT19] or do not offer
adversaries a dedicated access to group keys [ACC+19], however by not defining
a partnering predicate, they do not allow for generic composition with symmet-
ric applications. [BCP02a] seemingly rely on an undefined partnering predicate,
using the term ‘partner’ in their security definition but not defining it in the
paper. [KLL04] define a partnering predicate of which two crucial components

SoK: Game-Based Security Models for Group Key Exchange 163

(group and key identifier; see the asterisk marked items in Table 2) are neither
defined generically nor defined for the specific protocol that is analyzed in it.

Generality of Predicates. A partnering predicate can be generic or protocol-
specific. From the considered models, only one has a predicate explicitly tailored
to the analyzed GKE construction. But many of the generic partnering predicates
involve values that are not necessarily part of all GKE schemes (e.g., group
identifiers, externally input identifiers, etc.); a sufficiently generic partnering
predicate should be able to cover a large class of constructions.

Character of Predicates. Generic partnering predicates can be normative, pre-
cise, or retrospectively variable.

Normative predicates define objective, static conditions under which con-
texts of keys are declared partnered independent of whether a particular proto-
col, analyzed with it, computes equal keys under these conditions. This has nor-
mative character because protocols analyzed under these predicates must imple-
ment measures to let contexts that are—according to the predicate—declared
unpartnered result in the computation of independent (or no) keys. As almost
all security experiments allow adversaries to reveal keys that are not partnered
with a challenge key (see Sect. 4), protocols that do not adhere to a specified
normative predicate are automatically declared insecure (because solving the key
challenge thereby becomes trivial). These predicates can hence be considered as
(hidden) parts of the security definition.

The class of normative predicates can further be divided into tight and
loose ones. Tight predicates define only those contexts partnered that result
from a joint protocol execution when not attacked by active adversaries. This
corresponds to the idea of matching conversations being the first tight predicate
from the seminal work on key exchange by Bellare and Rogaway [BR94]. Two
instances have matching conversations if each of them received a non-empty pre-
fix of, or exactly the same, ciphertexts that their peer instances sent over the
network—resulting in partnered contexts at the end of their session. Matching
conversations are problematic for the GKE setting for two reasons. First, achiev-
ing security under matching conversations necessitates strongly unforgeable sig-
natures or message authentication codes when being used to authenticate the
communication transcript.14 Second, lifting matching conversations directly and
incautiously to the group setting, as in [KY03], requires all communication in a
global session to be broadcast among all group members so each can compute the
same transcript—inducing impractical inefficiency for real-world deployment. If
the model’s syntax generically allows to (partially) reveal ciphertexts’ receivers,
as in [ACDT19], pairwise transcript comparison does not require all ciphertexts
to be broadcast but the strong unforgeability for authenticating signatures or
MACs remains unnecessarily required. Several models [BCPQ01,BCP01] cir-
cumvent the necessity of broadcasting all group communication in a matching
conversation-like predicate, although their syntax does not reveal receivers of

14 Note that every manipulated bit in the transcript (including signatures or MAC tags
themselves) dissolves partnering.

164 B. Poettering et al.

ciphertext: they define two instances and their contexts as partnered if there
exists a sequence of instances between them such that any consecutive instances
in this sequence have partnered contexts according to matching conversations.
(This still needs strongly unforgeable signatures and MACs, however.)

A loose partnering predicate is still static but declares more contexts part-
nered than those that inevitably result in the same key due to a joint, unim-
peded protocol execution. This may include contexts of instances that actually
did not participate in the same global session, or that did not compute the
same (or any) key. An example for loose partnering predicates is key partner-
ing [CCG+18] which declares the context of a key as the value of the key itself,
regardless of whether it is computed due to participation in the same global
session. Clearly, two instances that participated in two independent global ses-
sions (e.g., one global session terminated before the other one begun) should
intuitively not compute keys with partnered contexts even if these keys equal.
Forbidding the reveal of group keys of intuitively unpartnered contexts results in
security definitions that declare protocols ‘secure’ that may be intuitively inse-
cure. On the other hand, partnering predicates that involve the comparison of a
protocol-dependent [GBG09] or externally input [KS05] group identifier are loose
because equality of this identifier means being partnered but does not imply the
computation of an equal (or any) key.

A precise partnering predicate exactly declares those contexts as partnered
that refer to equal keys computed due to the participation in the same global
session. Hence, the conditions for being partnered are not static but depend
on the respectively analyzed protocol. As a response to the disadvantages of
normative partnering (and in particular tight matching conversations), Li and
Schäge [LS17] proposed original-key partnering as a precise predicate for two-
party key exchange: two instances have partnered contexts if they computed the
same key, due to participating in a global session, that they would also have
computed (when using the same random coins) in the absence of an adversary.
As of yet, there exists no use of original-key partnering for the group setting in
the literature, and we discuss drawbacks of this form of precise predicate with
respect to the purpose of partnering below.

Variable predicates are parameterized by a customizable input that can be
post-specified individually for each use of the model in which they are defined.
Hence, these predicates are neither statically fixed nor determined for each pro-
tocol (individually) by their model, but can be specified ad hoc instead. As a
result, a cryptographer, using a model with a variable predicate (e.g., when prov-
ing a construction secure in it), can define the exact partnering conditions for
this predicate at will. The main drawback is that different instantiations of the
same variable predicate in the same security model can produce different security
statements for the same construction. We consider this ambiguity undesirable.
Both group identifier and key identifier are left undefined in [KLL04] so they
are effectively variable; in [YKLH18] the group ID is outsourced and thus left
effectively variable.

SoK: Game-Based Security Models for Group Key Exchange 165

Public Derivability of Predicates. A partnering predicate can and—in order to
allow for generic compositions—should be publicly derivable. That is, the set
of partnered contexts should be deducible from the adversarial interaction with
the security experiment (or, according to Brzuska et al. [BFWW11], from the
communication transcript of all instances in the environment). Only four models
considered achieve this as listed in Table 2; here refers to the implicit ability to
observe whether group keys are computed. Partnering in all remaining models
involves private values in instances’ secret states. We remark that original-key
partnering [LS17] (for two-party key exchange) is the only known precise predi-
cate but it is not publicly computable as it depends on secret random coins.

Components of Predicates. The lower part of Table 2 lists the various param-
eters on which partnering predicates we consider are defined. These parame-
ters include: the transcript of communications, protocol-specific identifiers,
external inputs, the computed group key, the set of group members, etc.

The two main purposes of partnering ((1) forbidding trivial attacks and (4)
allowing for generic composition) use the partnering predicate to determine
which keys computed during a protocol execution are meant to be the same
and in fact equal (i.e., whether they share the same context). Consequently, an
ideal partnering predicate should depend on the context that describes the cir-
cumstances under which (and if) the group key is computed. As only for few
protocols (e.g., optimal secure ones; cf. [PR18a,PR18b,JS18]) it is reasonable
that the entire communicated transcript primarily determines the circumstances
(i.e., the context) under which a key is computed, we consider it unsuitable to
define partnering based on the transcript generally.

We conclude that it is not the task of the partnering predicate to define secu-
rity (as normative predicates do). Neither should the variability of partnering
predicates lead to ambiguous security notions. Hence, we consider generic, pre-
cise, and publicly derivable partnering predicates desirable. With our proposed
partnering predicate from Sect. 3.2, we demonstrate that the problems of the yet
only known precise partnering predicate [LS17] can be solved.

3.2 Our Partnering Proposal

Our partnering predicate defines keys with the same explicitly (and publicly; see
Sect. 4.1) output context kid partnered:

Definition 1 (Partnering). Two keys k1, k2 computed by instances id1 and id2
and output as tuples (id1, kid1, k1) and (id2, kid2, k2) via their key interface are
partnered iff kid1 = kid2.

4 Security Definitions

Although the actual definition of security is the core of a security model, there
is no unified notion of “security” nor agreement on how strong or weak “secu-
rity” should be—in part because different scenarios demand different strengths.

166 B. Poettering et al.

Thus we do not aim to compare the strength of models’ security definitions, but
do review clearly their comparable properties. We focus on the desired security
goals, adversarial power in controlling the victims’ protocol execution, and adver-
sarial access to victims’ secret information. We do not compare the conditions
under which adversaries win the respective security experiments (aka. “fresh-
ness predicates”, “adversarial restrictions”, etc.) as this relates to the models’
“strength”, but we do report on characteristics such as forward-secrecy or post-
compromise security.

Table 3. Security definitions. Notation: : yes, : implicitly, : almost, : partially,
: no, -: not applicable; (blank): no option clearly superior/desirable.

Security GKE-specific [BCPQ01] [BCP02b] [KY03] [KS05] [GBG09] [CCG+18] [ACDT19] [ACC+19] [BCP01] [BCP02a] [KLL04] [YKLH18] Desirable Our model

Security goals
Key indistinguishability
� Multiple challenges

Explicit authentication

Adversarial protocol execution
All algorithms
Instance specific
Concurrent invocations
Active communication manipulation

Adversarial access to secrets
Corruption of involved parties’ secrets -
� After key exchange - - -
� Before key exchange - - -

Corruption of independent parties’ secrets -
� Always - - -

Exposure of involved instances’ states
� After key exchange - - - - -
� Before key exchange - - - - -

Exposure of independent instances’ states
� Always - - - - -

Reveal of independent group keys
� Always

Security Goals. The analyzed models primarily consider two independent security
goals: secrecy of keys and authentication of participants.

Secrecy of keys is in all models realized as indistinguishability of actually
established keys from random values, within the context of an experiment in
which the adversary controls protocol executions. During the experiment, the
adversary can query a challenge oracle that outputs either the real key for a
particular context or a random key; a protocol is secure if the adversary cannot
dinistinguish between these two. Only one model allows adversaries to query
the challenge oracle multiple times; all others allow only one query to the
challenge oracle, resulting in an unnecessary and undesirable tightness loss in
reduction-based proofs of composition results.

Key indistinguishability against active adversaries already implies implicit
authentication of participants. That means keys computed in a session must
diverge in case of active attacks that modify communications. Some models
require explicit authentication: that the protocol explicitly rejects when there
was an active attack. ([KLL04] only provide a very specialized notion thereof.)
However, the value of explicit authentication in GKE, or even authenticated
key exchange broadly, has long been unclear [Sho99]: GKE is never a standalone
application but only a building block for some other purpose, providing keys that

SoK: Game-Based Security Models for Group Key Exchange 167

are implicitly authenticated and thus known only to the intended participants.
If the subsequent application aims for explicit authentication of its payload, the
diverging of keys due to implicit authentication can be used accordingly.

Adversarial Protocol Execution. To model the most general attacks by an adver-
sary, the security experiment should allow adversaries to setup the experiment
and control all victims’ invocations of protocol algorithms and operations;
all models considered do so. However, in two models the adversary can setup
only one group during the entire security experiment (); this again introduces
a tightness loss in the number of groups for composition results, and means
that the use of long-term keys by parties across different sessions, as defined
by [ACC+19], cannot be proven secure in the respective model.

Most models allow for instance-specific scheduling of invocations. This
means that the adversary can let each instance execute the protocol algorithms
individually instead of, for example, being restricted to only initiate batched
protocol executions (e.g., of all instances involved in a group together). Three
models () indeed require that the adversary schedules algorithm and operation
invocations that change group membership for all affected instances at once (and
not individually); hence, diverging and concurrent operations (e.g., fractions of
the group process different actions) cannot be scheduled in these three models.
In practice this restriction means that some form of consensus is required (e.g., a
central delivery server). While algorithms and operations can be invoked con-
currently in [ACDT19], this model allows only one of the resulting concurrently
sent ciphertexts to be delivered to and processed by the other participants of
the same session; this similarly requires some consensus mechanism.

An active adversary who modifies communication between instances is
permitted in almost all models. However, [CCG+18] forbid active attacks dur-
ing the first communication round, [ACC+19] only allow adversaries to incon-
sistently forward ciphertexts but not manipulate them, and [ACDT19] require
honest delivery of the communication. For the deployment of protocols secure
according to the latter two models, active adversaries must be considered imprac-
tical or authentication mechanisms must be added.

Adversarial Access to Secrets. GKE models allow the adversary to learn certain
secrets used by simulated participants during the security experiment. Below we
discuss the different secrets that can be learned and the conditions under which
this is allowed. We neglect adversarial access to algorithm invocations’ random
coins in our systematization as only three models consider this threat in their
security experiments [CCG+18,ACDT19,ACC+19].

Corruption of party secrets models a natural threat scenario where par-
ties use static secrets to authenticate themselves over a long period. Corruption
is also necessary to model adversarial participation in environments with closed
public key infrastructure (see Sect. 2), allowing the adversary to impersonate
some party. Table 3 shows which models allow for corruptions of party secrets
after and before the exchange of a secure group key (i.e., forward-secrecy and
post-compromise security, respectively), and corruptions of independent par-
ties anytime. In [ACDT19] parties do not maintain static secrets so corruption

168 B. Poettering et al.

is irrelevant. Two other models do have parties with static secrets but do not
provide an oracle for the adversary to corrupt them.15 Due to imprecise defini-
tions, [KLL04] partially forbids corruptions of involved parties even after a secure
key was established, and two other models even forbid corruptions of indepen-
dent parties before an (independent) secure group key is established. Only three
models treat authentication as the sole purpose of party secrets, defining precise
conditions that allow corruptions before and after the establishment of a secure
group key. As secrecy of a group key should never depend solely on secrecy of
independent parties’ long-term secrets and forward-secrecy is today considered
a minimum standard, we deem security despite later corruption of long-term
secrets desirable.

Exposure of instance states is especially important in GKE because sin-
gle sessions may be quite long-lived—such as months- or years-long chats—so
local states may become as persistent as party secrets. In most security exper-
iments that provide adversarial access to instance states, their exposure is not
permitted before the establishment of a secure group key. Some of these models
further restrict the exposure of independent instances’ states (e.g., because they
were involved in earlier stages of the same session). The three papers that con-
sider ratcheting of state secrets allow adversarial access to these states shortly
before and after the establishment of a secure group key. [CCG+18] model state
expose through the reveal of random coins, which means an exposure at a par-
ticular moment reveals only newly generated secrets in the current state, not
old state secrets. We consider the ability to expose states independent of and
after the establishment of a group key desirable, and leave state exposure before
establishment—post-compromise security—as a bonus feature.16

The reveal of established group keys in the security experiment is impor-
tant to show that different group keys are indeed independent. One motivation
for this is that use of keys in weak applications should not hurt secure applica-
tions that use different keys from the same GKE protocol. The reveal of keys
is furthermore necessary to prove implicit authentication of group keys. Reveals
should also be possible to permit composition of key exchange with a generic
symmetric key protocol [BFWW11]. Almost all models allow the reveal of differ-
ent (i.e., unpartnered) group keys unlimitedly. As [BCP02a] and [KLL04] do not
define partnering adequately (see Sect. 3.1), it cannot be assessed which group
keys are declared unpartnered in their models. The adversary in [ACC+19] is not
equipped with a dedicated reveal oracle but since the security in this model is
strong enough, the exposure of instance states suffices to obtain all keys without
affecting unpartnered keys. [YKLH18] forbid the reveal of earlier group keys in

15 Moreover, in [BCP02b,ACC+19], party secrets cannot be derived via state expo-
sures. Although [ACC+19] allow the exposure of instance states, their syntax, strictly
speaking, does not have a method for using party secrets in the protocol execution,
even though their construction makes use of them (violating the syntax definition).

16 Note, for example, that post-compromise security is rather irrelevant for short-lived
static GKE protocols.

SoK: Game-Based Security Models for Group Key Exchange 169

the same session. As unpartnered keys should always be independent we consider
it desirable to allow their unrestricted reveal.

4.1 Our Security Proposal

We define security of GKE schemes via a game in which adversaries can inter-
act with these schemes via oracles: For each algorithm of the GKE scheme (see
Sect. 2.5), adversaries can query a corresponding oracle—Init, Execute, Process in
the unauthenticated setting and additionally Gen in the authenticated setting—
and thereby choose the respective public input parameters. The public outputs,
produced by the respective internal algorithm invocations of these oracles, are
given to adversaries via the interfaces snd and key. Adversaries can also query
oracles Expose, Reveal and in the authenticated setting additionally Corrupt to
obtain instances’ secret states, established group keys, and parties’ authentica-
tion secrets, respectively. By querying oracle Challenge, adversaries obtain chal-
lenge group keys and win the game if they correctly determine whether these keys
were actually established by simulated instances during the game or randomly
sampled.

We provide the formal pseudo-code description of this game in Fig. 1. The
majority of lines of code in this figure only realizes the sound simulation of the
game and, therefore, equally appears in our correctness definition that we provide
in the full version of this article [PRSS21]. Below we textually describe the
remaining parts that constitute restrictions of the adversary and the definition
of security.

Table 4. Variables in Fig. 1.

K Array of computed group keys
ST Array of instance states
SAU Array of secret authenticators
CR Set of corrupted or external authenticators
WK Set of weak group keys
CH Set of keys challenged for A
CP Set of keys already computed by an instance
TR Transcript as queue of ciphertexts sent among instances

To prevent the trivial solving of challenges, the game forbids the adversary
to conduct the following attacks.

1. A group key must not be both revealed via oracle Reveal and queried as a
challenge via oracle Challenge (lines 37,42,05).

2. After an instance’s local state is exposed via oracle Expose, all keys that can be
computed by this instance according to their key identifier are declared weak

170 B. Poettering et al.

Fig. 1. KIND game of GKE modeling unauthenticated or authenticated group key
exchange. ‘·’ at the margin highlight mechanisms to restrict the adversary (e.g., to
forbid trivial attacks). Almost all remaining code equally appears in our correctness
definition (see the full version [PRSS21]) and is less important for understanding the
security definition. The used variables are explained in Table 4. Line 27 uses iids from
line 25.

SoK: Game-Based Security Models for Group Key Exchange 171

(i.e., known to the adversary), if these keys have not already been computed
by this exposed instance before (lines 45,34).

As weak keys cannot be challenged but non-weak keys can, we require
forward-secrecy—previously computed keys are required to stay secure after an
exposure—but not post-compromise security—all future keys of this instance
are declared insecure after an exposure. We sketch how to add post-compromise
security requirements to this notion below but we consider this weaker security
definition sufficient for our demonstration purposes.

Finally, the treatment of active impersonation attacks against the communi-
cation in the unauthenticated setting is as follows:

3a) If a ciphertext from an unknown sender (or from a known sender in the
wrong order) is processed by an instance without being rejected (lines 30–
31, 25), then all keys that can be computed by this processing instance
according to their key identifier are declared weak, if they have not already
been computed by this processing instance before (lines 26, 34).

This reflects that in the unauthenticated setting every adversarially generated
ciphertext that is accepted as valid by an instance can be considered a successful
impersonation of another (honest) instance. Hence, future keys computed by the
accepting receiver are potentially known to the adversary.

In the authenticated setting, the set of keys that are declared weak is reduced
based on the set of corrupted authenticators. Authenticators are considered cor-
rupted if they have not been generated by the challenger (lines 01, 09; because
thereby they are potentially adversarially generated) or if they have been hon-
estly generated first but then corrupted via oracle Corrupt (lines 01, 09, 48). As
the impersonation of instances with uncorrupted authenticators should be hard
in the authenticated setting, active attacks against the communication between
instances are treated as follows:

3b) If a ciphertext from an unknown sender (or from a known sender in the
wrong order) is processed by an instance without being rejected (lines 30–
31, 25), then all keys that can be computed by this processing instance
according to their key identifier are declared weak, if they have not already
been computed by this processing instance before (lines 26, 34) and,
according to their key identifier, they are also computable by an instance
with a corrupted authenticator (lines 26, 01, 09, 48).

Definition 2 (Adversarial Advantage). The advantage of an adversary A
in winning game KIND from Fig. 1 is Advkind

GKE(A) := | Pr[KIND1
GKE(A) = 1] −

Pr[KIND0
GKE(A) = 1]|.

Intuitively, a GKE scheme is secure if all realistic adversaries have negligible
advantage in winning this game.

Discussion of the Model. With our proposed model we only want to provide
an example definition of security. As mentioned before, we believe that optimal

172 B. Poettering et al.

security for GKE is often too strong for practical demands (and hence unde-
sired), and we are not under the illusion that there exists a unified definition
of security on which the literature should or aims to agree on. Our contribu-
tion is instead that we provide a simple, compact, and precise framework that
generically captures GKE and in which the restriction of the adversary (which
essentially models the required security) can easily be adjusted. The provided
instance of this framework achieves all properties that we identified as desir-
able in our systematization of knowledge. To name only some advantages of
our model: 1. it allows for participation of multiple instances per party per ses-
sion, 2. it covers unauthenticated, symmetric-key authenticated, and public-key
authenticated settings, 3. it imposes no form of key distribution mechanism on
GKE constructions and their environment, 4. neither does it impose a consensus
mechanism for unifying all session participants’ views on the session (although
they can be implemented on top), 5. it permits any variant of protocol-specific
membership operations, 6. it bases on natural generic interfaces, 7. it outputs the
context of group keys along with the group keys themselves to upper-layer appli-
cations, 8. it allows for actual asynchronous protocol executions in which not all
participants need to agree upon the same order of group key computations,9.
it defines partnering naturally via the context that the protocol itself declares
for each group key, 10. it illustrates how a generic model can allow for protocol-
dependent definitions of contexts for group keys, 11. it respects the requirements
of composition results [BFWW11], 12. it naturally gives adversaries in the secu-
rity experiment full power in executing the protocol algorithms and determining
their public inputs, 13. and it can easily express different strengths of security
(see the next paragraph). At the same time, none of the newly captured proper-
ties are required to be achieved by analyzed protocols since our model is designed
to be indifferent to them. We conclude that this model fulfills its main purpose:
demonstrating that the desired properties from our systematization framework
do not conflict and can hence be achieved simultaneously.

Adding Post-Compromise Security. Extending our proposed security definition
to also require secrecy of group keys after an involved instance’s state was
exposed is, due to our flexible key identifiers, straight forward. Intuitively, an
instance can recover from a state exposure by contributing new (public) key
material to the group. The period between two such contributions by an instance
is sometimes called “epoch” (cf. [PR18b,ACDT20]). By encoding in the key iden-
tifier of each group key the current epoch of each involved instance, the set of
keys that are declared weak due to a state exposure can be reduced accordingly:
Instead of declaring all keys weak that an instance can compute in the future
after its state was exposed (see item 2 and line 45), only those keys that can be
computed by this instance in the current epoch are declared weak. This has the
effect that group keys of future epochs are required to be secure again.

SoK: Game-Based Security Models for Group Key Exchange 173

5 Concluding Remarks and Open Problems

Our systematization of knowledge reveals some shortcomings in the GKE lit-
erature, stemming from a tendency to design a security model hand-in-hand
with a protocol to be proven; such a model tends to be less generic, making
specific assumptions about characteristics of the protocols it can be used for
or the application environment with which it interacts. Sometimes the appli-
cation environment appeared to be fully neglected. We revisit the underlying
concepts of GKE and take into account the broad spectrum of requirements
that may arise from the context in which a GKE protocol may be used, such
as the type and distribution of authentication credentials of parties, how groups
are formed and administered, and whether parties can have multiple devices in
the same group. The goal is not to develop a single unified model of group key
exchange security, but to support the development of models within the GKE
literature that are well-informed by the principle requirements of GKE. Our
prototype model demonstrates that these desirable properties of GKE can be
satisfied within one generic model, with reduced complexity, increased precision
and without restricting its applicability and coverage.

Looking forward, group key exchange is on track for increasing complexity.
There now exist prominent applications requiring group key exchange—group
instant messaging, videoconferencing—and using a cryptographic protocol in a
real-world setting invariably leads to greater complexity in modeling and design.
Moreover, the desire for novel properties such as highly dynamic groups and post-
compromise security using ratcheting, manifested in proposed standards such as
MLS, make it all the more important to have a clear approach to modeling the
security of group key exchange.

Among others, our work leaves a number of challenges as open problems. As
noted, our model should be seen as a general framework from which versions
dedicated to specific use cases can be derived by restricting certain components.
Identifying a palette of such submodels that are simultaneously useful and gen-
eral is challenging, and left for future research. Independently, appropriately
integrating the consideration of weakened randomness sources or low entropy
password-based authentication into our model remains an open task. Finally,
our work contributes a new model that, so far, has not been tested by analyzing
the security of a concrete real-world GKE construction.

Acknowledgments. We thank the reviewers of CT-RSA 2021 for their detailed and
helpful comments. B.P. was supported by the European Union’s Horizon 2020 Research
and Innovation Programme under Grant Agreement No. 786725 – OLYMPUS. P.R.
was supported by the research training group “Human Centered Systems Security”
(NERD.NRW) sponsored by the state of North-Rhine Westphalia. D.S. was supported
by Natural Sciences and Engineering Research Council of Canada (NSERC) Discov-
ery grant RGPIN-2016-05146 and NSERC Discovery Accelerator Supplement grant
RGPIN-2016-05146.

174 B. Poettering et al.

References
[ABCP06] Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based

group key exchange in a constant number of rounds. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–
442. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 28

[ACC+19] Alwen, J., et al.: Keep the dirt: tainted TreeKEM, an efficient and
provably secure continuous group key agreement protocol. Cryptology
ePrint Archive, Report 2019/1489 (2019). https://eprint.iacr.org/2019/
1489. Accessed 13 Feb 2020

[ACDT19] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and
improvements for the IETF MLS standard for group messaging. Cryp-
tology ePrint Archive, Report 2019/1189 (2019). https://eprint.iacr.org/
2019/1189. Accessed 13 Feb 2020

[ACDT20] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and
improvements for the IETF MLS standard for group messaging. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170,
pp. 248–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 9

[ACJM20] Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group
key agreement with active security. Cryptology ePrint Archive, Report
2020/752 (2020). https://eprint.iacr.org/2020/752

[AJM20] Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. Cryp-
tology ePrint Archive, Report 2020/1327 (2020). https://eprint.iacr.org/
2020/1327

[BBM+20] Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K.,
Robert, R.: The messaging layer security (MLS) protocol. Technical report
(2020). https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/

[BC04] Bresson, E., Catalano, D.: Constant round authenticated group key agree-
ment via distributed computation. In: Bao, F., Deng, R., Zhou, J. (eds.)
PKC 2004. LNCS, vol. 2947, pp. 115–129. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24632-9 9

[BCP01] Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group
Diffie-Hellman key exchange — the dynamic case. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 18

[BCP02a] Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-
Hellman key exchange under standard assumptions. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-46035-7 21

[BCP02b] Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie-Hellman key
exchange secure against dictionary attacks. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 497–514. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 31

[BCPQ01] Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably
authenticated group Diffie-Hellman key exchange. In: Reiter, M.K., Sama-
rati, P. (eds.) ACM CCS 2001, pp. 255–264. ACM Press, November 2001

[BD95] Burmester, M., Desmedt, Y.: A secure and efficient conference key distri-
bution system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol.
950, pp. 275–286. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0053443

https://doi.org/10.1007/11745853_28
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://eprint.iacr.org/2020/752
https://eprint.iacr.org/2020/1327
https://eprint.iacr.org/2020/1327
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://doi.org/10.1007/978-3-540-24632-9_9
https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1007/3-540-36178-2_31
https://doi.org/10.1007/BFb0053443
https://doi.org/10.1007/BFb0053443

SoK: Game-Based Security Models for Group Key Exchange 175

[BD05] Burmester, M., Desmedt, Y.: A secure and scalable group key exchange
system. Inf. Process. Lett. 94(3), 137–143 (2005)

[BDR20] Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group
ratcheting protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II.
LNCS, vol. 12551, pp. 198–228. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64378-2 8

[BFWW11] Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability
of Bellare-Rogaway key exchange protocols. In: Chen, Y., Danezis, G.,
Shmatikov, V. (eds.) ACM CCS 2011, pp. 51–62. ACM Press, October
2011

[BR94] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 21

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CCG+18] Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On
ends-to-ends encryption: asynchronous group messaging with strong secu-
rity guarantees. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.)
ACM CCS 2018, pp. 1802–1819. ACM Press, October 2018

[CCG+19] Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager,
T.: Highly efficient key exchange protocols with optimal tightness. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 767–797. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8 25

[GBG09] Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise
impersonation attacks on group key exchange protocols. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 7

[ITW82] Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system.
IEEE Trans. Inf. Theory 28(5), 714–720 (1982)

[JKT07] Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-
hiding authenticated group key agreement. In: Abe, M. (ed.) CT-RSA
2007. LNCS, vol. 4377, pp. 287–308. Springer, Heidelberg (2006). https://
doi.org/10.1007/11967668 19

[JL07] Jarecki, S., Liu, X.: Unlinkable secret handshakes and key-private group
key management schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007.
LNCS, vol. 4521, pp. 270–287. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 18

[JS18] Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained
state compromise: the safety of messaging. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 2

[KLL04] Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-round authenticated group
key exchange for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30539-2 18

[KS05] Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange pro-
tocols. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp.
180–189. ACM Press, November 2005

https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-642-00468-1_7
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/978-3-540-72738-5_18
https://doi.org/10.1007/978-3-540-72738-5_18
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-540-30539-2_18
https://doi.org/10.1007/978-3-540-30539-2_18

176 B. Poettering et al.

[KY03] Katz, J., Yung, M.: Scalable protocols for authenticated group key
exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
110–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 7

[LS17] Li, Y., Schäge, S.: No-match attacks and robust partnering definitions:
defining trivial attacks for security protocols is not trivial. In: Thurais-
ingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
1343–1360. ACM Press, October/November 2017

[Man09] Manulis, M.: Group key exchange enabling on-demand derivation of peer-
to-peer keys. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud,
D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 1–19. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01957-9 1

[NS11] Neupane, K., Steinwandt, R.: Communication-efficient 2-round group key
establishment from pairings. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS,
vol. 6558, pp. 65–76. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19074-2 5

[PR18a] Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryp-
tology ePrint Archive, Report 2018/296 (2018). https://eprint.iacr.org/
2018/296

[PR18b] Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 1

[PRSS21] Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: game-based secu-
rity models for group key exchange. Cryptology ePrint Archive, Report
2021/305 (2021). https://eprint.iacr.org/2021/305

[RMS18] Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end secu-
rity of group chats in Signal, WhatsApp, and Threema. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 415–429.
IEEE (2018)

[Sho99] Shoup, V.: On formal models for secure key exchange. Technical report
RZ 3120, IBM (1999)

[XHZ15] Xu, J., Hu, X.-X., Zhang, Z.-F.: Round-optimal password-based group key
exchange protocols in the standard model. In: Malkin, T., Kolesnikov, V.,
Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp.
42–61. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-
7 3

[YKLH18] Yang, Z., Khan, M., Liu, W., He, J.: On security analysis of generic
dynamic authenticated group key exchange. In: Gruschka, N. (ed.) Nord-
Sec 2018. LNCS, vol. 11252, pp. 121–137. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03638-6 8

https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-642-01957-9_1
https://doi.org/10.1007/978-3-642-19074-2_5
https://doi.org/10.1007/978-3-642-19074-2_5
https://eprint.iacr.org/2018/296
https://eprint.iacr.org/2018/296
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://eprint.iacr.org/2021/305
https://doi.org/10.1007/978-3-319-28166-7_3
https://doi.org/10.1007/978-3-319-28166-7_3
https://doi.org/10.1007/978-3-030-03638-6_8
https://doi.org/10.1007/978-3-030-03638-6_8

EPID with Malicious Revocation

Olivier Sanders1(B) and Jacques Traoré2

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. EPID systems are anonymous authentication protocols
where a device can be revoked by including one of its signatures in a
revocation list. Such protocols are today included in the ISO/IEC 20008-
2 standard and are embedded in billions of chips, which make them a
flagship of advanced cryptographic tools. Yet, their security analysis is
based on a model that suffers from several important limitations, which
either questions the security assurances EPID can provide in the real
world or prevents such systems from achieving their full impact. The
most prominent example is the one of revocation lists. Although they
could be managed locally by verifiers, which would be natural in most
use-cases, the security model assumes that they are managed by a trusted
entity, a requirement that is not easily met in practice and that is thus
tempting to ignore, as illustrated in the corresponding standard.

In this paper, we propose to revisit the security model of EPID, by
removing some limitations of previous works but mostly by answering
the following question: what can we achieve when revocation lists are
generated by a malicious entity?

Surprisingly, even in this disadvantageous context, we show that it
is possible to retain strong properties that we believe to better capture
the spirit of EPID systems. Moreover, we show that we can construct
very efficient schemes resisting such powerful adversaries by essentially
tweaking previous approaches. In particular, our constructions do not
require to perform any significant test on the revocation lists during the
signature generation process. These constructions constitute the second
contribution of this paper.

1 Introduction

1.1 Related Works

Direct Anonymous Attestation (DAA) was introduced by Brickell, Camenisch
and Chen [10] as an anonymous authentication mechanism with some controlled
linkability features. In such systems, platforms can issue anonymous signatures
after being enrolled by an issuer, in a way akin to group signatures [16]. A few
years later, Brickell and Li [11] proposed a variant with enhanced revocation
features under the name of Enhanced Privacy ID (EPID). Indeed, EPID addi-
tionally allows to revoke a platform P by adding one of its signature to a so-called

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 177–200, 2021.
https://doi.org/10.1007/978-3-030-75539-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_8

178 O. Sanders and J. Traoré

signature revocation list SRL. In such a case, P will not be able to produce new
(valid) signatures on input SRL but we stress, to avoid confusion, that signatures
issued by P with different revocation lists remain anonymous and unrevoked.

Both DAA and EPID systems are among the few advanced1 cryptographic
mechanisms that are widely deployed today. They are indeed embedded in
billion of devices [23,31] and have been included in standards, such as ISO/IEC
20008-2 [25].

Surprisingly, the real-world popularity of these mechanisms did not extend
to cryptographic literature as only a few papers have been published on these
topics. This stands in sharp contrast with a sibling primitive, group signature,
that has been extensively studied by the cryptographic community.

Actually, this relatedness with group signature probably explains the lack of
academic interest for DAA and EPID schemes. It is indeed tempting to see a
DAA or an EPID system as a simple variant of group signature, which lessens
the appeal for any contribution in this area. More concretely, a DAA can be seen
as a group signature where the opening feature is discarded and replaced by a
linking feature that is rather easy to implement. EPID replaces the latter feature
by a more intricate revocation mechanism that is nevertheless rather simple to
add modularly.

From the algorithmic standpoint, constructing a DAA or an EPID system
from a group signature might therefore look trivial. However, from the secu-
rity model standpoint, removing the opening feature has huge consequences and
makes the formalization of security properties much more difficult. In the par-
ticular case of EPID, the revocation feature creates additional problems as it
is more complex to control in this context. This explains in part the somewhat
chaotic history of DAA and EPID security models that we briefly recall here.

The original security model [11] for EPID was based on simulation. Back
then, it was a natural choice as DAA [10] also considered simulation-based mod-
els. Unfortunately, the security model of [10] was not correct and several attempts
[17–19] to fix it failed (see [5] for a discussion on these issues). This probably
explains the shift to game-based models for DAA that was followed by EPID in
[12]. The latter paper, enhanced with some remarks from [5], is a good starting
point to study the security of EPID but unfortunately the resulting model still
suffers from several problems that limit the practical assurances it provides in
the real world. More recently, a new simulation-based model was proposed by
Camenisch et al. [13] for DAA and later extended to EPID in [26]. Although
it implies a cleaner definition of unforgeability, it imposes in practice the same
kind of restrictions to the constructions as in [12]. Moreover, [26] suffers from
the same limitations regarding anonymity as previous models of EPID, which
has important consequences in the real world. All these issues are discussed in
details below.

Concretely this means that, as of today, the security assurances provided by
mechanisms deployed in billion of devices are not well understood and sometimes

1 By “advanced” we here mean asymmetric mechanisms that go beyond standard
signature, encryption and key exchange.

EPID with Malicious Revocation 179

rely on some assumptions that seem questionable. This is particularly true in the
context of EPID as the revocation mechanism imposes very strong constraints
on the whole system, which has been underestimated in previous works. In this
paper, we will then focus on the case of EPID as it is the most complex one but
we note that many of our remarks also apply to standard DAA schemes.

1.2 Our Contributions

The contribution of our paper is actually twofold. First, we propose a secu-
rity model for EPID with new unforgeability and anonymity definitions that we
believe to better capture what we expect from such systems. In particular, we
are the first (to our knowledge) to consider the case where revocation lists are
not generated by a trusted entity. Such a trusted entity is indeed very conve-
nient from the theoretical standpoint but its existence is not obvious and the
way it will proceed to decide in practice which signature should be added to
revocation lists is far from clear. To deal with malicious revocation lists is a very
challenging task but we argue it is a realistic scenario and it is thus important
to understand what we can retain in this case and how to construct schemes
that still resist such powerful adversaries. We extensively discuss the issues of
previous models in the following paragraphs as it is necessary to understand the
rationale behind our new definitions. We choose a game-based approach as we
believe it is better suited for complex primitives such as EPID. In particular,
we hope that separate experiments will lead to a better understanding of what
an EPID system can achieve in our model. Our second contribution consists of
two efficient constructions that achieve our new security properties. They share
many similarities with existing constructions but also present some differences
that we comment at the end of this section.

Issues with Previous Unforgeability Notions. The problems regarding
unforgeability (called traceability in [5]) concern both DAA and EPID models
and we believe they all find root in the difficulty to properly define what is a valid
forgery in this context. Indeed, any model must provide to the adversary A the
ability to own some signing keys (that are called corrupt), which inevitably allows
A to issue signatures. We can’t therefore rely on something akin to unforgeability
for standard digital signature. The idea that seems to be behind previous models
is then to mimic security notions of group signatures, but this does not work
well in this setting. Indeed, group signature provides an opening algorithm that
allows to trace back any group signature to its issuer. Dealing with corrupt keys
is then simple, as we have a way to detect if the adversary’s forgery is trivial
(that is, it has been generated using corrupt keys) or not (the signature cannot
be linked to a corrupt key). In a DAA or an EPID scheme there is no counterpart
of the opening algorithm but one can test if a signature has been generated by
a given platform if one knows its secret key. This has led to the following two
cases.

In game-based models [5,12], the experiment assumes that the adversary
provides all its signing keys, which enables “opening” of signatures issued with

180 O. Sanders and J. Traoré

corrupt keys and so to rule out trivial wins by the adversary. In the context
of EPID, this constraint can be partially relaxed by alternatively requiring a
signature from each malicious platform that has not yet revealed its secret key
(see [12]). More concretely, existing game-based EPID models consider a set U
of malicious platforms and requires, for each i ∈ U , either the signing key ski

or a signature issued by i. If we set aside the problem of identifying in the real
world the set U of malicious platforms without an opening procedure, it remains
to explain why the adversary would ever agree to 1) reveal some of its secret
keys and/or 2) return a signature generated with ski for every unrevealed key
ski. The assumption 1) is clearly questionable. The plausibility of the second
assumption is not much more obvious because the challenger is not able to
determine if the signatures returned by the adversary fulfil the corresponding
requirement (the adversary could have generated all the returned signatures
using the same key) unless it knows the corresponding secret keys, which brings
us back to the first problem. Put differently, this defines a success condition for
the adversary that the challenger is not able to verify. To sum up, current game-
based security models define an unforgeability experiment that either makes an
unrealistic assumption on the adversary behaviour or whose output (success or
failure) cannot be computed.

The problem 1) was actually already pointed out in [13] who addressed it
by introducing a new simulation-based model taken up in [26]. The authors of
these works indeed assume that their ideal functionality knows the secret keys
of all corrupt platforms, which solves the problems mentioned above. This is
theoretically cleaner as the model no longer expects the adversary to hand over
its keys willingly. However, this implies that every construction realising their
ideal functionality must provide a way to recover all platforms keys in the security
proof (including corrupt ones), which in practice does not seem that different
from what happens in game-based models. In particular this suggests the use
of zero-knowledge proofs of the platform secret key during Join, which either
limits the number of concurrent Join sessions (if one uses rewinding techniques)
or requires additional features such as online-extractability [20], which negatively
impacts performance.

Our Unforgeability Notion. At the heart of the problems we discuss in both
cases, there are thus the attempts to identify the signing key that was used to
generate the “forgery”. In our security model, we therefore try to avoid these
identification issues and favour a different reasoning that seems more pragmatic.
Concretely, if an adversary owns n signing keys ski, then we should not focus
on whether its forgeries has been generated using sk0, sk1, etc. since it necessary
leads to the issues we discuss above. What we can do is to successively revoke
each of the adversary signing keys by adding every signature it generates to SRL,
thus ensuring that it will not be able to produce n + 1 successive signatures. In
practice, it means that if a user with sk is revoked via the inclusion of one of
his signatures σ in the revocation list, then he cannot produce a new signature
σ′ unless he gets a new signing key sk′. In the latter case, contrarily to previous

EPID with Malicious Revocation 181

models, we do not care if σ′ is produced using sk or sk′ because this is uncheckable
without the knowledge of these keys. All we ensure is that this user will not be
able to produce a third signature, regardless of the key it used to produce σ′. We
believe this captures what is expected from EPID without making assumptions
on the ability to recover adversary’s keys.

Issues with Previous Anonymity Notions. The last problem regarding
existing models is related to anonymity and is very specific to EPID (not DAA)
systems. It concerns the signature revocation list that every model (game-based
[12] or simulation-based [26]) assumes to be honestly generated without dis-
cussing the plausibility and the concrete consequences of this assumption. More
concretely, they all assume that these revocation lists only contain valid sig-
natures, which is enforced in [12,26] by appointing a trusted entity, called the
revocation manager that will perform these verifications. We see several prob-
lems with this solution.

Firstly, we note that the existence of such trusted entity is far from insignif-
icant as all anonymity assurances would be lost if the revocation manager did
not correctly carry out its task. In some way, the revocation manager can be
compared to the opening authority of a group signature as anonymity of the
whole system relies on his honesty. There is indeed a link between revocation
and the ability to trace users as noted in [8] although the case of EPID is more
subtle.

Secondly, it implies a very centralized system where each service manager
would not be able to directly revoke a platform which misbehaved based on its
signature but would have to first contact the central revocation manager. As
central revocation must not be treated lightly, this is likely to imply a regulated
procedure and the grounds on which the revocation manager will decide the
legitimacy of the demand are not clear.

Thirdly, it means that any platform must be aware of the current (and
authentic) version of the revocation list SRL at the time of signing, which may be
problematic in some use-cases. In particular, privacy can no longer be ensured if
the verifier sends its own revocation list SRL. An alternative solution could be to
shift the burden of verifying the elements of SRL to the platform when generating
the signature but this would clearly result in an inefficient signing protocol.

Finally, this requirement is somewhat inconsistent with the ISO/IEC 20008-2
[25] standard. Indeed, the specifications of the EPID system called “Mechanism
3” in [25] clearly states that signature revocation can be local, which, according to
ISO/IEC 20008-1 [24], means that the signature revocation list may be managed
by the verifier itself. However, the same specifications contain the following note:

“To preserve anonymity, it is recommended to have a trusted entity for updat-
ing the signature revocation list. If a malicious entity controls the signature revo-
cation list, the anonymity of the signer can be reduced.”

The wording is surprising for a standard as it does not sound like a require-
ment but it yet threatens unspecified problems regarding anonymity if one does
not comply with this informal instruction. This results in a blurry situation that

182 O. Sanders and J. Traoré

is indicative of an EPID paradox. On the one hand, there is a revocation mecha-
nism that is inherently decentralized as any verifier is able to revoke a signature
by placing it in its own revocation list. This is clearly the most natural and
convenient solution for most use-cases. On the other hand, there are security
models that all require a central and trusted entity to manage revocation lists,
with the consequences discussed above. In this context, it is extremely tempting
to ignore this requirement in practice and, to say the least, even the ISO/IEC
recommendation above does not deter us very forcefully from doing so.

We therefore believe it would be better to remove all restrictions on SRL and
to rather consider a model where the adversary A has a total control on the
elements of the revocation lists and where the platform does not have to check
any property of SRL beyond the one that it can correctly be parsed. This will
offer much more flexibility to EPID systems by removing the need for a central
trusted revocation entity and thus allow decentralized services managing their
own revocation lists.

Our first remark is that current proofs strategies no longer work in this new
setting. Indeed let us consider the quite standard approach of EPID systems (e.g.
[11,12]) where each signature μ contains a pair (h, hx) where h ∈ G is random
and x is the platform secret key, leading to an anonymity proof under the DDH
assumption. If μ is added to SRL, then any platform generating a signature with
this revocation list will have to include a proof that they did not generate (h, hx).
In security proofs of existing models, the challenger does not know x (otherwise
DDH is trivial) but it can recognize (h, hx) from its previous signatures and so
correctly simulate the proof. Now, in our model where we allow the adversary
to generate SRL, it could replace (h, hx) by (hr, (hx)r) for any r ∈ Zp. In this
case, the challenger will be unable to recognize if this pair was generated using
x (unless it can itself solve DDH) and so will not be able to correctly answer a
signature query, leading to an incorrect simulation.

This example highlights the fact that removing restrictions on SRL is not just
a formalization issue and that it has important consequences on EPID systems.
In particular, it gives to any verifier (and so to the adversary) the power of
a revocation authority, which is very unusual in privacy-preserving protocols.
This leads to a new anonymity experiment that we believe to better capture the
security assurances we can retain in the real world.

Our Anonymity Notion. In our security experiment, we give the adversary a
total control on the elements of this list. In return, we need to completely redefine
the notion of anonymity we can really achieve without these restrictions. Indeed,
we note that nothing now prevents the adversary from testing if a signature σ
was issued by a given platform i. It can simply add σ (or some part of it in
practice) in SRL and then query a signature from i with SRL: if a valid signature
is returned then σ was not produced by i; else, i will return a failure message or
will abort. The main consequence is that our model cannot provide the adversary
with an access to a signing oracle that takes as input an identifier i and returns
a signature on behalf of this platform. This is not a restriction of our model as

EPID with Malicious Revocation 183

it only reflects the real-world situation of EPID where any verifier suspecting a
signer to be the issuer of a previous signature can proceed as we have explained
to identify it. This is actually the very goal of EPID.

We then need to be much more careful when defining the signing oracle
and the success conditions of the adversary in our new experiment. The first
novelty is the absence of a user identifier in the inputs of the signing oracle as
it prevents any meaningful definition as we explained. Our oracle will instead
return a signature using one of the honest keys that are not implicitly revoked
by SRL. As the adversary is now oblivious of the users’ identifiers we can’t expect
it to return the identifier of the issuer of some signature. We will instead ask it
to link two signatures in a game where it will select two signatures μ0 and μ1

and then ask for a new signature μ∗ from the issuer of μb. It will succeed if it
can guess the value of b with probability different from 1

2 , that is, if it can link
two signatures with non-trivial probability.

Our Constructions. Our new security model has two important consequences
in practice. Firstly, we no longer need to extract all platforms secret keys thanks
to our new unforgeability experiment. This allows us to define simple Join pro-
tocols where a platform simply receives a certificate without needing to prove
knowledge of its secret key or to use alternative solutions that would enable
extraction of this key. Secondly, we now need to deal with malicious revocation
lists SRL without performing any test on them. As we explain above, this invali-
dates the strategy of previous constructions as the adversary is now able to place
in SRL elements that were not part of valid signatures. Surprisingly, we can deal
with this problem very efficiently by defining a signature algorithm where the
platform generates a proof of non-revocation with respect to the hash of (some
of) the elements in SRL, instead of the elements themselves. Intuitively, the use
of a hash function will prevent the re-randomization strategy of the adversary
described above and leads to one of the following two situations. Either the ele-
ments of SRL were indeed included in a valid signature or they were generated
by the adversary. In the former case, it is easy to know which platforms are
revoked, which allows to correctly answer signing queries in the security proof.
In the latter case, we show that the forged elements are unlikely to revoke an
honest user under the computational Diffie-Hellman assumption. Our first con-
struction reflects these changes and proves that our new security properties can
be efficiently achieved. Our second construction is a simple variant of the first
one where we further reduce the size of the EPID signatures by using a differ-
ent building block, at the cost of reintroducing proofs of knowledge in the Join
protocol.

2 Preliminaries

Bilinear Groups. Our constructions require bilinear groups which are consti-
tuted of a set of three groups G1, G2, and GT of order p along with a map, called
pairing, e : G1 × G2 → GT that is

184 O. Sanders and J. Traoré

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;
2. non-degenerate: for any g ∈ G

∗
1 and g̃ ∈ G

∗
2, e(g, g̃) �= 1GT

;
3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

As most recent cryptographic papers, we only consider bilinear groups of
prime order with type 3 pairings [22], meaning that no efficiently computable
homomorphism is known between G1 and G2.

Computational Assumptions. The security analysis of our protocols will
make use of the following assumptions.

– DL assumption: Given (g, gx) ∈ G
2, this assumption states that it is hard to

recover x.
– DDH assumption: Given (g, gx, gy, gz) ∈ G

4, the DDH assumption in the
group G states that it is hard to decide whether z = x · y or z is random.

– CDH assumption: Given (g, gx, gy, g̃, g̃x, g̃y), the CDH assumption (extended
to type 3 bilinear groups) states that it is hard to compute gx·y.

3 Specification of EPID

3.1 Syntax

Our EPID system considers three types of entities, an issuer I, platforms P and
verifiers V. When comparing our model with the one of group signature, we will
sometimes use the term user instead of platform to match the terminology of
this primitive.

– Setup(1k): on input a security parameter 1k, this algorithm returns the public
parameters pp of the system.

– GKeygen(pp): on input the public parameters pp, this algorithm generates the
issuer’s key pair (isk, ipk). We assume that ipk contains pp and so we remove
pp from the inputs of all following algorithms.

– Join: this is an interactive protocol between a platform P, taking as inputs
ipk, and the issuer I owning isk. At the end of the protocol, the platform
returns either ⊥ or a signing key sk whereas the issuer does not return any-
thing.

– KeyRevoke({ski}m
i=1): this algorithm takes as input a set of m platform secret

keys ski and returns a corresponding key revocation list KRL containing m
elements that will be denoted as KRL[i], for i ∈ [1,m].

– SigRevoke({(μi)}n
i=1): this algorithm takes as input a set of n EPID sig-

natures {(μi)}n
i=1 and returns a corresponding signature revocation list SRL

containing n elements that will be denoted as SRL[i], for i ∈ [1, n].
– Sign(ipk, sk,m, SRL): this algorithm takes as input the issuer’s public key ipk,

a platform secret key sk a message m and a signature revocation list SRL and
returns an EPID signature μ.

EPID with Malicious Revocation 185

– Identify(sk, t): given a platform secret key and an element t from a revo-
cation list SRL (i.e. there exists some i such that t = SRL[i]), this algorithm
returns either 1 (t was generated using sk) or 0.

– Verify(ipk, KRL, SRL, μ,m): given an issuer public key ipk, a key revocation
list KRL, a signature revocation list SRL, a signature μ and a message m,
this algorithms returns 1 (the signature is valid on m for the corresponding
revocation lists) or 0.

Remark 1. We note that our definition of SigRevoke implicitly assumes that
no verification is performed on the purported signatures μi since this algorithm
does not take as input the elements that would be necessary to run Verify
(such as the issuer’s public key, the message m and the corresponding revocation
list). We indeed do not see which security assurances could be provided by such
verifications in our context where we do not assume the existence of a trusted
entity managing the lists SRL and therefore choose this simpler definition. In
practice, it will then be up to each verifier (even a malicious one) to decide how
to construct the revocation lists. This will be captured by our security model
and our constructions will be secure even in this very strong model.

3.2 Security Model

As in [12], we expect an EPID system to be correct, unforgeable and anony-
mous. However, the comparison stops here as our definitions of unforgeability
and anonymity strongly differ from the ones of previous works. We refer to
Sect. 1.2 for a discussion on this matter and here only formalize the intuition
provided in our introduction.

Correctness. Here, we essentially follow [12] and require that a signature gen-
erated with a platform signing key sk will be considered as valid by the Verify
algorithm as long as sk was not revoked, either explicitly using KRL or implic-
itly using SRL. However, we note a minor problem in the correctness definition
of [12] because the latter assumes that SRL contains signatures whereas it only
contains parts of signatures in their concrete constructions. To match reality, we
do not assume anything regarding the elements placed in SRL but instead use in
our formal definition of correctness the Identify algorithm that tests whether
an element SRL[i] was generated using a given signing key or not. Additional
requirements on this Identify algorithm will be specified by our other security
properties. This leads to the following formal requirement: for all signing key ski

generated using Join, KRL generated using KeyRevoke and SRL generated using
SigRevoke:

Verify(ipk, KRL, SRL, Sign(ipk, ski,m, SRL),m) = 1
⇔ ski /∈ KRL ∧ ∀j : Identify(ski, SRL[j]) = 0

186 O. Sanders and J. Traoré

Unforgeability. Our unforgeability experiment is defined in Fig. 1, where c
(resp. d) is a counter indicating the number of corrupt users created by A (resp.
of signatures issued by the adversary A) at the current time and where A may
query the following oracles:

– OAdd(k) is an oracle that is used by the adversary to add a new honest
platform k. A signing key skk is then generated for this platform using the
Join protocol but nothing is returned to A.

– OJoincor() is an oracle playing the issuer’s side of the Join protocol. It is
used by A to add a new corrupt platform. Each call to this oracle increases
by 1 the current value of c (c = c + 1).

– OCor(k) is an oracle that returns the signing key skk of an honest platform
k and also adds it to a list K that is initially set as empty.

– OSign(k, SRL,m) is an oracle that is used by A to query a signature from the
platform k on a message m with a signature revocation list SRL. We define S
as the set of all signatures returned by this oracle.

Exp
unf
A (1k) – Unforgeability Security Game

1. c, d ← 0
2. SA ← ∅
3. pp ← Setup(1k)
4. (isk, ipk) ← GKeygen(pp)
5. while d ≤ c:

– SRL ← SigRevoke(SA)
– (µ,m) ← AOAdd,OJoincor,OCor,OSign(SRL, ipk)
– KRL ← KeyRevoke(K)
– if 1 = Verify(ipk, KRL, SRL, µ,m) ∧ µ /∈ SA ∪ S

then d = d+ 1 ∧ SA ← SA ∪ {µ}
6. Return 1

Fig. 1. Unforgeability Game for EPID Signature

An EPID system is unforgeable if Advunf (A) = Pr[ExpunfA (1k) = 1] is negligi-
ble for any A. Concretely, an adversary owning d − 1 corrupt keys succeeds if it
has generated d valid (and distinct) signatures despite systematic revocation of
the signatures it has previously issued. For sake of simplicity, we chose to place
each key corrupted through a OCor query on a key revocation list KRL. We could
proceed differently by offering to the adversary the ability to decide which one
should be revoked with KRL but we believe that it would only introduce unnec-
essary complexity to our model. We also implicitly assume that our while loop
aborts after some polynomial number of iterations, in which case the experiment
returns 0.

EPID with Malicious Revocation 187

Anonymity. Our formal anonymity experiment described in Fig. 2 makes
use of the following oracles. An EPID system is anonymous if Advan(A) =
|Pr[Expan−1

A (1k) = 1] − Pr[Expan−0
A (1k) = 1]| is negligible for any A.

– OJoinhon() is an oracle playing the user’s side of the Join protocol and is
then used by A, playing the issuer, to add a new honest platform. Each call
generates a platform secret key sk that is kept secret by the challenger.

– OSign∗(SRL,m) is an oracle used by A to query a signature on m from an hon-
est platform that is not implicitly revoked by SRL. The challenger of the exper-
iment randomly selects a signing key sk among those that are not revoked by
SRL (that is, the secret keys ski such that Identify(ski, SRL[j]) = 0 for every
element SRL[j] of SRL) and then return the output of Sign(ipk, sk,m, SRL).
We define S as the set of all signatures returned by this oracle concatenated
with the key sk used to generate them.

– OCor∗(μ) is an oracle that returns the signing key skk used to generate the
signature μ if there is some pair (μ||skk) in S. Else, it returns ⊥. Once the
adversary has returned the two challenge signatures μ0 and μ1 (step 3 of the
anonymity game), we slightly modify the behaviour of this oracle to prevent
unintentional failure of the adversary. Indeed, the adversary could inadver-
tently query OCor∗ on a signature μ generated using the same key as μ0

or μ1, making it lose the game at step 8. After step 3, this oracle therefore
returns ⊥ if queried on a signature μ generated using ski, for i ∈ {0, 1}. We
note that we nevertheless still need the success condition of step 8 as the
adversary could have queried OCor∗ on such a signature μ before outputting
μ0 and μ1. However, in such a case, the adversary knows that μ0 and μ1

are illicit choices before returning them and its failure will then no longer be
unintended.

Expan−b
A (1k) – Anonymity Security Game

1. pp ← Setup(1k)
2. (isk, ipk) ← GKeygen(pp)
3. (µ0, µ1,m, SRL) ← AOJoinhon,OCor∗,OSign∗

(isk)
4. if no entry (µi, ski) in S for i ∈ {0, 1}, then return 0
5. if ∃j and i ∈ {0, 1}: Identify(ski, SRL[j]) = 1, then return 0
6. µ∗ ← Sign(ipk, skb,m, SRL)
7. b′ ← AOJoinhon,OCor∗,OSign∗

(isk, µ∗)
8. if ∃i ∈ {0, 1}: ski leaked during a OCor∗ query, then return 0
9. Return (b = b′)

Fig. 2. Anonymity Game for EPID Signature

188 O. Sanders and J. Traoré

4 Our First Construction

4.1 Description

Intuition. The goal of our first construction is to highlight the fact that security
in our strong model can be achieved quite efficiently with a few tweaks to pre-
vious approaches. Indeed, a platform producing an EPID signature essentially
does two things. Firstly, it proves that it is a legitimate platform that has been
correctly enrolled by the issuer during a Join protocol. Secondly, it proves that
it has not generated any of the signatures in the revocation list SRL.

The first part is common to many privacy-preserving signatures such as group
signature [3], DAA [10], EPID [11], multi-show anonymous credentials [21], etc.
It essentially consists in proving knowledge of a signature issued by I on a secret
value s generated by the platform. In bilinear groups, there are many signature
schemes [6,14,27] that have been specifically designed for this purpose but we
will not use them in our first construction for a purely technical reason. Indeed,
a benefit of our new model over previous works is that we do not inherently
need a way to extract all platform secrets. In particular, we do not need zero-
knowledge proofs of s during Join and thus to limit the number of concurrent
Join sessions. Using one of the signature schemes cited above would however
force us to reintroduce zero-knowledge proofs as we would need, in the security
proof, knowledge of the secret scalars to query the signing oracle of the corre-
sponding EUF-CMA experiment. To avoid this problem, we will instead use a
signature scheme able of signing group elements (in G1), and more specifically
the one from [21] which is particularly well suited for anonymous constructions.
We nevertheless stress that this choice is only driven by our will to highlight the
differences between our model and the previous ones. In particular, the scheme
from [21] can be replaced by one from [6,14,27] in the following construction as
we will show in Sect. 5.

For the second part, we will here follow an approach very similar to the one
from [12] but with some adjustments that are made necessary by the absence of
a trusted entity to construct revocation lists SRL. As in [12], we indeed implicitly
include a pair (h, hs) to each signature generated with a secret s to enable effi-
cient proof of non-revocation. The latter will be implemented with the protocol
from [15]. However, as we explain in Sect. 1, we cannot just add the pair (h, hs)
to the revocation list as it will prevent us in the security proof from correctly
simulating the answers from honest platforms. For the latter, we need a way to
detect such elements without knowing s or g̃s ∈ G2. In our scheme, this will be
done by constructing h ∈ G1 as a hash output H(str) for some random string
str and so by replacing (h, hs) by (str, hs). This way, our security reduction
faces two cases for each element (str, hs) in SRL. Either str was used in a pre-
vious signing query or the reduction never used it before. In the first case, the
reduction knows that the key s is revoked if and only if the corresponding entry
in SRL is exactly the pair (str, hs) used in a previous signature. In the second
case, the reduction knows that the key s is not revoked unless the adversary
managed to forge a BLS signature [7] and thus to break the CDH assumption.

EPID with Malicious Revocation 189

In all cases, this means that we can prove anonymity under DDH without per-
forming any verification on SRL nor making any assumption on the way SRL is
constructed.

We provide the formal description of our scheme below but first recall some
elements on the signature on equivalence classes from [21].

FHS Signature. In [21], Fuchsbauer, Hanser and Slamanig introduce a sig-
nature on equivalence classes for the following equivalence relation on tuples in
G

n
1 : (M1, . . . ,Mn) is in the same equivalence class as (N1, . . . , Nn) if there exists

a scalar a such that Ni = Ma
i for all i ∈ [1, n]. The point of their signature is

that anyone, given a signature τ on some (M1, . . . ,Mn), can derive a signature
τ ′ on a new representative (N1, . . . , Nn) of this class. By correctly computing
the latter values, one can ensure that (τ, (M1, . . . ,Mn)) and (τ ′, (N1, . . . , Nn))
are unlinkable under the DDH assumption. In this paper, we will only need the
case n = 2.

– Setup(1λ): outputs parameters pp containing the description of type-3 bilin-
ear groups (G1,G2,GT , e), with generators (g, g̃) ∈ G1 × G2.

– Keygen(pp): generates two random scalars x1 and x2 and sets sk as (x1, x2)
and pk as (˜A1, ˜A2) = (g̃x1 , g̃x2).

– Sign(sk, (M1,M2)): selects a random scalar t and computes the signature
(τ1, τ2, τ̃) ← ((Mx1

1 Mx2
2)t, g1/t, g̃1/t) on the representative (M1,M2) ∈ G

2
1.

– Verify(pk, (M1,M2), (τ1, τ2, τ̃)): accepts (τ1, τ2, τ̃) ∈ G
2
1 ×G2, a signature on

(M1,M2) �= (1, 1), if e(τ1, τ̃) = e(M1, ˜A1) · e(M2, ˜A2) and e(τ2, g̃) = e(g, τ̃)
hold.

One can note that if (τ1, τ2, τ̃) is valid on (M1,M2), then (τ r·t′
1 , τ

1/t′

2 , τ̃1/t′
) is

valid on (Mr
1 ,Mr

2) for all pairs (r, t′) ∈ Z
2
p.

Construction.

– Setup(1k): this algorithm returns the public parameters pp containing the
description of a bilinear group (e,G1,G2,GT) along with two generators g ∈
G1 and g̃ ∈ G2 and two hash functions H : {0, 1} → Zp and H ′ : {0, 1} → G1.

– GKeygen(pp): this algorithm generates a key pair isk ← (x1, x2) and ipk ←
(˜A1, ˜A2) for the FHS signature.

– Join: this protocol starts when a platform sends gs to the issuer for some
random secret s. I then generates a FHS signature τ ← (τ1, τ2, τ̃) on the pair
(g, gs) and returns τ to the platform. The latter can then verify τ using ipk
and store sk ← (s, τ) (if τ is valid) or return ⊥.

– KeyRevoke({ski}m
i=1): this algorithm takes as input a set of m platform secret

keys ski = (s(i), τ (i)) and returns a corresponding key revocation list KRL with
KRL[i] = ski, for i ∈ [1,m].

– SigRevoke({(μi)}n
i=1): this algorithm takes as input a set of n EPID signa-

tures {(μi)}n
i=1 and parses each of them as ((τ (i)

1 , τ
(i)
2 , τ̃ (i)), (M (i)

1 ,M
(i)
2), h(i)

2 ,
π(i)). It then returns a signature revocation list SRL such that SRL[i] =
(M (i)

1 , h
(i)
2), for i ∈ [1, n].

190 O. Sanders and J. Traoré

– Sign(ipk, sk,m, SRL): to issue a signature on a message m with a revocation
list SRL, a platform owning a secret key (s, (τ1, τ2, τ̃)) proceeds as follows:
1. it first re-randomizes its FHS signature by selecting two random scalars

(r, t) and computing (τ ′
1, τ

′
2, τ̃

′) ← (τ r·t
1 , τ

1/t
2 , τ̃1/t) along with a new rep-

resentative (M1,M2) = (gr, gr·s) of (g, gs);
2. it computes (h1, h2) ← (H ′(gr), hs

1);
3. for all i ∈ [1, n], it parses SRL[i] as (M (i)

1 , h
(i)
2) and computes h

(i)
1 ←

H ′(M (i)
1);

4. it generates a proof π of knowledge of s such that M2 = Ms
1 and

h2 = hs
1 and that (h(i)

1)s �= h
(i)
2 for all i ∈ [1, n] using the protocol from

[15]. More specifically, it selects random scalars ri and computes Ci =
((h(i)

1)s/h
(i)
2)ri . If ∃i ∈ [1, n] such that Ci = 1, then it returns ⊥. Else, it

selects k, {ki,1, ki,2}n
i=1

$← Z
2n+1
p and computes (K0,1,K0,2) ← (Mk

1 , hk
1)

along with (Ki,1,Ki,2) ← ((h(i)
1)ki,1 ·(1/(h(i)

2)ki,2 , h
ki,1
1 ·(1/h2)ki,2). It then

computes

c = H(τ ′
1, τ

′
2, τ̃

′,M1,M2, h1, h2, {Ci}n
i=1, {Ki,1,Ki,2}n

i=0,m).

along with z = k + c · s and (zi,1, zi,2) = (ki,1 + c · s · ri, ki,2 + c · ri). The
proof π is then set as ({Ci}n

i=1, c, z, {zi,1, zi,2}n
i=1);

5. it returns the signature μ = ((τ1, τ2, τ̃), (M1,M2), h2, π).
– Identify(sk, t): this algorithm parses sk as (s, (τ1, τ2, τ̃)) and t as (M1, h2),

and returns 1 if h2 = H ′(M1)s and 0 otherwise.
– Verify(ipk, KRL, SRL, μ,m): This algorithm parses μ as ((τ1, τ2, τ̃), (M1,M2),

h2, π), each KRL[i] as (s(i), (τ (i)
1 , τ

(i)
2 , τ̃ (i))) for i ∈ [1,m] and each SRL[i] as

(M (i)
1 , h

(i)
2) for i ∈ [1, n]. It then returns 1 if all the following conditions hold

and 0 otherwise.
1. e(τ1, τ̃) = e(M1, ˜A1) · e(M2, ˜A2) ∧ e(τ2, g̃) = e(g, τ̃);
2. ∀i ∈ [1,m], Identify(KRL[i], (M1, h2)) = 0;
3. ∀i ∈ [1, n], Ci �= 1;
4. c = H(τ1, τ2, τ̃ ,M1,M2, h1, h2, {Ci}n

i=1, {Ki,1,Ki,2}n
i=0,m), where h1 ←

H ′(M1), (K0,1,K0,2) ← (Mz
1 · M−c

2 , hz
1 · h−c

2) and (Ki,1,Ki,2) ← (C−c
i ·

[(h(i)
1)zi,1/(h(i)

2)zi,2], hzi,1
1 /(hzi,2

2)) with h
(i)
1 = H ′(M (i)

1).

Correctness. The first step of the verification protocol checks that (τ1, τ2, τ̃) is
a valid FHS signature on the representative (M1,M2). The second step checks
that the issuer of μ is not revoked by KRL. It is easy to verify that this step fails
if μ was generated using a secret s in KRL. The third step checks that s has not
been used to generate one of the elements in SRL. By construction, we would
necessarily have Ci = 1 in this case. The last step checks the validity of π. The
proof is a simple combination of the Schnorr’s protocol [30] and the Camenisch’s
and Shoup’s one [15]. For a valid signature μ, one can indeed see that

EPID with Malicious Revocation 191

– Mz
1 · M−c

2 = Mk+c·s
1 · M−c

2 = Mk
1 ,

– hz
1 · h−c

2 = hk+c·s
1 · h−c

2 = hk
1 ,

– Ki,1 = (h
(i)
1)zi,1

(h
(i)
2)zi,2

· C−c
i = (h

(i)
1)ki,1+c·s·ri

(h
(i)
2)ki,2+c·ri · (h

(i)
1)−c·s·ri

(h
(i)
2)−c·ri

= (h
(i)
1)ki,1

(h
(i)
2)ki,2

,

– Ki,2 = h
zi,1
1

h
zi,2
2

= h
ki,1+c·s·ri
1

h
ki,2+c·ri
2

= h
ki,1
1

h
ki,2
2

,

which ensures that the last condition is satisfied.

Remark 2. As we explain at the beginning of this section, we need to generate h1

as some hash output. We could use any random string str but the latter would
then have to be added to μ. As several elements of μ are already random, we
arbitrarily choose to derive h1 from one of them. We selected M1 that is simply
considered as a bitstring by the hash function H ′ but most other elements of μ
(or combinations of them) would work.

Theorem 1. In the random oracle model, our EPID system is

– unforgeable under the DL assumption, the CDH assumption and the EUF-
CMA security of the FHS signature if π is a sound zero-knowledge proof
system.

– anonymous under the CDH and DDH assumptions if π is a zero-knowledge
proof system.

4.2 Security Proofs

Unforgeability. Let A be an adversary succeeding against the unforgeability
of our scheme with probability ε. We recall that A succeeds if it can issue c + 1
valid signatures {μi}c+1

i=1 despite systematic revocation of its previous signatures,
where c is the number of corrupted keys it has created. In this proof, an honest
key refers to a key that was generated during a OAdd query and that has never
been involved in a OCor query. We distinguish the following three types of
forgeries:

– (type 1) A has queried OSign with a revocation list SRL such that ∃i :
Identify(sk, SRL[i]) = 1 for some honest key sk and yet none of the previous
signatures returned by OSign contains the pair in SRL[i];

– (type 2) the previous case does not occur and ∃i ∈ [1, c + 1] such that μi

can be parsed as ((τ (i)
1 , τ

(i)
2 , τ̃ (i)), (M (i)

1 ,M
(i)
2), h(i)

2 , π(i)) with Identify(sk,
(M (i)

1 , h
(i)
2)) = 1 for some honest key sk;

– (type 3) none of the previous cases occur.

The first case intuitively deals with malicious verifiers that would introduce
illicit elements in SRL, that is, elements that were not part of a previous EPID
signature and that can yet be associated with some honest user. We show that
this case implies an attack against the CDH assumption.

The second case is an attack against what would be called non-frameability
in a group signature [4] paper, that is, A has managed to produce a signature

192 O. Sanders and J. Traoré

that can be “traced back” to some honest user. We show in lemma 2 that A can
be used against the DL assumption in such case.

Else, we will show that A has necessarily produced a signature on a new class
of equivalences and has thus broken the security of FHS signatures.

Lemma 1. Let qH′ (resp. qa) be a bound on the number of oracle queries to H ′

(resp. OAdd) made by the adversary A. Then any type 1 adversary succeeding
with probability ε can be converted into an adversary against the CDH assumption
succeeding with probability at least ε

qH′ ·qa .

Proof. Let (g, gx, gy, g̃, g̃x, g̃y) be a CDH challenge, we construct a reduction R
using A to compute gxy. In our proof, A will submit a set of n < qH′ different
strings {stri}n

i=1 to the hash oracle H ′. R then selects a random index i∗ ∈
[1, qH′] and proceeds as follows to answer such queries. First it checks if stri

has already been queried in which case it returns the same answer as previously.
Else, it selects and stores a random r

$← Zp and returns gr if i �= i∗ and gy if
i = i∗. In the experiment, R makes a guess on the identifier k∗ ∈ [1, qa] of the
platform illicitly revoked by the adversary’s revocation list SRL and generates
the issuer’s key pair as usual. Upon receiving a query on k to OAdd, it proceeds
as usual except if k = k∗, in which case it implicitly sets the platform secret
value as x. Thanks to isk, it can then handle any OAdd and OJoincor query. R
can also handle any OCor query except the one on k∗ in which case it aborts.

To answer a signing query with revocation list SRL, R first uses its knowledge
of g̃x to test whether SRL contains a pair (h0, h2) with e(H ′(h0), g̃x) = e(h2, g̃).
If no such pair is found, then R answers a signing query for k∗ as follows (the
case k �= k∗ is trivial). R re-randomizes the FHS certificate and the repre-
sentative (M1,M2) as usual. In the very unlikely event where M1 = stri∗ ,
it simply chooses a different representative of (M1,M2). This means that it
knows in all cases the scalar r such that H ′(M1) = gr and can thus compute
h2 = (gx)r. It then simulates the zero-knowledge proof π and returns the result-
ing EPID signature μ. Now let us assume that SRL contains a pair (h0, h2) with
e(H ′(h0), g̃x) = e(h2, g̃). This event occurs if the guess on k∗ was right as we
assume type 1 adversary. Moreover, we also know that this pair has never been
used by R to answer a OSign query. This means that h0 has never been used
by R as h2 is deterministically computed from it. The value h0 has then been
queried by A to H ′ and there are two cases. Either R returned gy, which means
that h2 = gx·y, or R returned some element gr for a random r and it aborts.

In the former case, R has thus broken the CDH assumption. This occurs if
both the guess on k∗ and the one on i∗ are correct and so with probability at
least ε

qH′ ·qa .

Lemma 2. Let qa be a bound on the number of OAdd queries made by A. Then,
any type 2 adversary succeeding with probability ε can be converted into an adver-
sary against the DL assumption succeeding with probability at least ε

qa·(c+1) .

Proof. Let (g, gx) be a DL instance, we construct a reduction R using A to
recover x. First, R makes a guess on the identifier k∗ of the honest platform

EPID with Malicious Revocation 193

that will be associated with the adversary’s forgery and on the index i∗ of the
forgery. It then generates the issuer’s key pair (isk, ipk) and is thus able to answer
any Join query. It answers any oracle query on a string str to the hash function
H ′ by generating (and storing) a random scalar r and returning gr, unless str
has already been queried in which case it returns the original answer. Upon
receiving a OAdd query on k, it proceeds as usual except when k = k∗. In this
case, it acts as if the platform secret were x. Note that this is not a problem
as the issuer generates a signature τ directly on (g, gx) instead of x. Regarding
OCor queries, it simply forwards the secret key except if k = k∗, in which case
R aborts. However, the latter case does not occur if R guess on k∗ is valid.

Let SRL be the revocation list associated with some OSign query on k∗. Since
we here consider type 2 adversary we know that, ∀i ∈ [1, n], either SRL[i] is a part
of a signature previously issued by R or that it does not revoke one of the honest
platforms. In the former case, R checks if SRL[i] was used to issue a signature
on behalf of k∗ in which case it returns ⊥. Else, it knows that k∗ can produce
a signature. To generate μ, it re-randomizes the certificate τ into τ ′ along with
the representative (g, gx) into (M1,M2). It then defines H ′(M1) = gr for some
random r unless in the very unlikely event where H ′ has already been queried
on M1, in which case R simply recovers the corresponding scalar r. In all cases,
R is able to compute a valid h2 = (gx)r. It then only remains to simulate the
proof π and to return the resulting signature μ.

Now R extracts from the proof of knowledge contained in μi∗ the secret key
s∗ used by the adversary to generate this signature (recall that μi∗ must differ
from the signatures issued by R). If the guesses on both k∗ and i∗ are correct,
then s∗ = x thanks to the soundness of the proof. R can thus solve the DL
problem with probability at least 1

qa·(c+1) .

Lemma 3. Any type 3 adversary succeeding with probability ε can be converted
into an adversary against the EUF-CMA security of FHS signatures succeeding
with probability at least ε

c+1 .

Proof. Our reduction R receives a FHS public key from the challenger of the
EUF-CMA security and sets it as the issuer’s public key ipk. R generates as usual
the secret values for honest platforms and is thus able to handle any OSign or
OCor query. It can also use its FHS signing oracle to address any OAdd and
OJoin query. The simulation is then perfect and A eventually outputs, with
probability ε, c+1 EPID signatures μi fulfilling the type 3 requirements. Each of
them contains a FHS signature τ (i) on some representative (M (i)

1 ,M
(i)
2). The fact

that all keys returned by OCor are revoked and that none of the EPID signature
satisfies the condition Identify(sk, (M (i)

1 , h
(i)
2)) = 1 for honest keys sk means

that (M (i)
1 ,M

(i)
2) is not in the equivalence class of (g, gsj) for all i ∈ [1, c+1] and

(g, gsj) generated during a OAdd query. Moreover, as μi is produced while taking
as input a revocation list SRL containing μ1, . . . , μi−1, we know, thanks to the
soundness of π, that (M (i)

1 ,M
(i)
2) is not in the equivalence class of (M (j)

1 ,M
(j)
2)

∀i �= j ∈ [1, c+1]. Therefore, the c+1 signatures τ (i) are valid on c+1 different
equivalence classes. As the adversary only received c FHS signatures and as it

194 O. Sanders and J. Traoré

did not use one associated with a honest platform (otherwise A would be a type
2 adversary), ∃i∗ ∈ [1, c + 1] such that τ (i∗) is valid on an equivalence class that
was never submitted to the FHS signing oracle. R then makes a guess on i∗

and returns τ (i∗) along with (M (i∗)
1 ,M

(i∗)
2) to the challenger of the EUF-CMA

security experiment. It then succeeds with probability at least ε
c+1 .

Anonymity. We here proceed through a sequence of games where Game 1, b is
exactly the experiment Expan−b

A defined in Sect. 3.2. For each i, we define Advi

as the advantage of A playing Game i, 0 and Game i, 1. As Game i, 0 and Game
i, 1 are virtually identical (the only difference is the parameter b), we will abuse
notation and omit b in what follows. We set ε as the advantage of A playing
Game 1 and define AdvCDH (resp. AdvDDH) as the advantage against the CDH
(resp. DDH) assumption.

Game 1. Here, the reduction generates normally all the platform secrets and is
thus able to answer any oracle query by the adversary. By definition, Adv1 = ε.

Game 2. In this second game, R randomly selects k0, k1 ∈ [1, qa] where qa is a
bound on the number of OJoinhon queries. If the signatures μ0 and μ1 returned
by the adversary in the experiment were not issued by the platforms k0 and k1,
then R aborts. We then have Adv2 = ε

q2
a
. The conditions we define in Fig. 2 then

ensure that no successful adversary can receive skk0 and skk1 through OCor∗

oracle queries.

Game 3. In this third game, R proceeds as in Game 2 but parses each signature
revocation list SRL used by A in OSign queries. If one of these lists contains
a pair (h0, h2) that can be linked back to an honest secret key (that is, a key
that has not leaked through a OCor∗ query) and yet R never used this pair to
answer a previous OSign query, then R aborts. We show below that Adv3 ≥
Adv2 − AdvCDH.

Game 4. In this fourth game, R proceeds as in Game 3 except that it now
simulates the proof of knowledge π included in signatures it generates. We then
have Adv4 ≥ Adv3 − AdvZK , where AdvZK is the advantage of an adversary
against the zero-knowledge property of the proof system used to generate π.

Game (5, i). In this game, defined for i ∈ [1, qS] with qS a bound on the number
of OSign queries, R proceeds as in Game 4 but answers the i first OSign queries
as follows. For j ∈ [1, i], let SRLj be the signature revocation list involved in the
j-th query to OSign and Hj the set of honest keys that are not revoked by SRLj .
Since Game 3, R is indeed perfectly able to identify the set Hj corresponding to
SRLj . R selects a random key sk ∈ Hj and proceeds as usual if sk /∈ {skk0 , skk1}.
Else, it replaces in the generated signature the elements (M1,M2) and h2 by
ones generated using a fresh random secret key and the FHS signature τ by one
valid on (M1,M2). We show below that Adv(5,i) ≥ Adv(5,i−1) − AdvDDH if we
define Adv(5,0) = Adv4.

EPID with Malicious Revocation 195

Game 6. In this sixth game, R replaces in μ∗ the elements (M1,M2) and h2 by
ones generated using a fresh random secret key and the FHS signature τ by one
valid on (M1,M2). We show below that Adv6 ≥ Adv5 − AdvDDH.

In the end we then get

Adv6 ≥ ε

q2a
− AdvCDH − AdvZK − (qS + 1)AdvDDH.

As all the signatures in Game 6 (including μ∗) are generated with keys inde-
pendent of skk0 and skk1 , the adversary can only succeed with negligible proba-
bility, which concludes our proof.

It then remains to prove the inequalities (1) Adv3 ≥ Adv2 − AdvCDH, (2)
Adv(5,i) ≥ Adv(5,i−1) −AdvDDH and (3) Adv6 ≥ Adv5 −AdvDDH. Regarding (1), we
note that this is exactly what we prove in Lemma 1. We now focus on (2).

Let (g, gx, gy, gz) be a DDH instance, we show that if A can distinguish Game
(5, i) from Game (5, i − 1), then it can be used to decide whether z = x · y.

R implicitly sets the signing keys of k0 and k1 as x ·u0 and x ·u1, respectively,
for random u0, u1 ∈ Zp, when it receives the corresponding OJoinhon queries.
Using gx, it can indeed receive, for d ∈ {0, 1}, a FHS signature τ on (g, gx·ud)
that it stores for further uses.

Upon receiving the j-th OSign∗ query, R proceeds as follows. If j < i, then
it proceeds as defined in Game (5, i − 1). If j > i, it randomly selects a platform
k that is not revoked by SRL. If k /∈ {k0, k1}, then it generates the signature
as usual. Else, k = kd for some d ∈ {0, 1} and R re-rerandomizes τ together
with (g, gx·ud) and thus gets a FHS signature τ ′ valid on a new representative
(M1,M2). It then sets h1 = H ′(M1) = gr for some random r and is then able
to compute h2 = (gx·ud)r. As π is simulated since Game 4, it can then return a
valid EPID signature μ.

If j = i, we distinguish two cases depending on the value of sk ∈ Hj , the
key selected by R to answer this query. If sk /∈ {skk0 , skk1}, then R generates
normally the signature and we clearly have Adv(5,i) = Adv(5,i−1). Else, let d
be such that sk = skkd

. R selects a random r ∈ Zp, defines M1 = gy·r and
M2 = gz·r·ud , programs h1 = H ′(M1) = gy (in the unlikely event where M1

has already been queried, then R starts over with a new random value r) and
then sets h2 = (gz)ud . Using its knowledge of isk, it can then generate a valid
FHS signature on (M1,M2) and returns the resulting signature μ (the proof π
is simulated since Game 4). In the case where z = x · y, this is a valid signature
issued by kd and we are playing Game (5, i−1). Else, this is exactly Game (5, i).
Any adversary able to distinguish these two games in this case can thus be used
to solve the DDH problem. In all cases, we have Adv(5,i) ≥ Adv(5,i−1) − AdvDDH.

The proof regarding the point (3) is essentially the same, which proves
anonymity of our construction.

Remark 3. A reader familiar with security proofs of group signature schemes
might be surprised by our Games 5, i for i ∈ [1, qS]. Indeed, with group signa-
tures, the game 6 would be enough as it ensures that the elements constituting
the challenge signature μ∗ are independent of the bit b. This reasoning does

196 O. Sanders and J. Traoré

not seem to apply for EPID schemes because even a fully random μ∗ remains
implicitly associated with skkb

, which has consequences on subsequent OSign∗

queries. Indeed, we recall that OSign∗ normally uses an honest key that is not
implicitly revoked by SRL to generate a signature. An adversary querying the
genuine OSign∗ oracle with empty revocation lists SRL could then expect to
receive from time to time signatures generated with either skk0 or skk1 . Con-
versely, among these two keys, only skkb

(with b + b = 1) has a chance to be
used to answer OSign∗ queries with a revocation list containing elements from
the random μ∗. With standard OSign∗ answers, it therefore seems unreasonable
to claim that a random μ∗ will necessarily lead to a negligible advantage for
A as the distribution of elements returned by R still depends on skkb

(and so
on b). Fortunately, this problem can easily be solved by tweaking the behaviour
of OSign∗, as we do in Games 5, i for i ∈ [1, qS]. Once all signatures involving
k0 or k1 are generated with fresh random keys, we can indeed assure that our
reduction in Game 6 is perfectly independent of the bit b that A must guess.

5 An Efficient Variant with Limited Concurrent
Enrolments

5.1 Description

In the previous scheme, an EPID signature issued on an empty revocation list
SRL contains 2 scalars, 5 elements of G1 and 1 of G2. We can do even better
and construct EPID signatures with only 2 scalars and 4 elements of G1 (non-
revocation proof excluded) using Pointcheval-Sanders (PS) signatures [27,28].
Using the BLS12 curve from [9] to provide a common metric, this means a
reduction of 36 % of the bit size of the signature. Moreover, this avoids to
implement the complex arithmetic of G2 (that is usually defined over a non-
prime field) on the signer’s side, which is particularly important when the signer
is a constrained device. Apart from this, this new variant is very similar to the
previous one and is mostly presented here for completeness. But first, we need
to recall some elements on PS signatures.

PS Signature. In [27], Pointcheval and Sanders constructed re-randomizable
signatures σ consisting of only 2 elements of G1, no matter the size n of the signed
vector (m1, . . . ,mn). Here, re-randomizability means that one can publicly derive
a new signature σ′ from σ by simply raising each element to the same random
power. The point is that σ and σ′ are unlinkable (under the DDH assumption in
G1) for anyone that does not know the full signed vector.

We will here focus on the case where n = 1 as it is sufficient for our con-
struction. The scheme described below is actually a slight variant of the original
scheme that uses some folklore techniques (see e.g. [1,2,5]) to reduce the verifi-
cation complexity at the cost of an additional element in the signature.

EPID with Malicious Revocation 197

– Setup(1λ): Outputs the parameters pp containing the description of type-3
bilinear groups (G1,G2,GT , e) along with a set of generators (g, g̃) ∈ G1×G2.

– Keygen(pp): Generates two random scalars x and y and sets sk as (x, y) and
pk as (˜X = g̃x, ˜Y = g̃y).

– Sign(sk,m): On message m, generates a signature (σ1, σ2, σ3) ←
(gr, gr(x+y·m), gr·m) for some random scalar r.

– Verify(pk,m, (σ1, σ2, σ3)): Accepts the signature on m if σ3 = σm
1 and if the

following equality holds: e(σ1, ˜X) · e(σ3, ˜Y) = e(σ2, g̃).

With this variant, m is no longer involved in the pairing equation of Verify,
which will dramatically reduce the cost of related zero-knowledge proofs. The
price is the additional element σ3, which seems reasonable in our context. If one
needs instead to optimise the EPID size, then one can simply use the original PS
signature and adapt the following construction. One can note that the EUF-CMA
security of this variant is trivially implied by the one of the original scheme.

Construction

– Setup(1k): this algorithm returns the public parameters pp containing the
description of a bilinear group (e,G1,G2,GT) along with two generators g ∈
G1 and g̃ ∈ G2 and two hash functions H : {0, 1} → Zp and H ′ : {0, 1} → G1.

– GKeygen(pp): this algorithm generates a key pair (isk, ipk) for the PS signature
scheme by setting isk = (x, y) $← Z

2
p and ipk = (pp, ˜X, ˜Y) ← (g̃x, g̃y).

– Join: this protocol starts when a platform P, taking as inputs ipk, contacts
the issuer I for enrolment. It first generates a random s

$← Zp and sends gs

to I who owns isk. P then engages in an interactive proof of knowledge of
s with I, using the Schnorr’s protocol [30]. Once the latter is complete, I
selects a random r

$← Zp and computes a PS signature σ = (σ1, σ2, σ3) ←
(gr, gr·x · (gs)r·y, (gs)r) on s that it returns to P. The platform then stores
(s, σ) as its secret key sk.

– KeyRevoke({ski}m
i=1): this algorithm takes as input a set of m platform secret

keys ski = (s(i), σ(i)) and returns a corresponding key revocation list KRL with
KRL[i] = ski, for i ∈ [1,m].

– SigRevoke({(μi)}n
i=1): this algorithm takes as input a set of n EPID sig-

natures {(μi)}n
i=1 and parses each of them as ((σ(i)

1 , σ
(i)
2 , σ

(i)
3), h(i)

2 , π(i)). It
then returns a signature revocation list SRL such that SRL[i] = (σ(i)

1 , h
(i)
2), for

i ∈ [1, n].
– Sign(ipk, SRL, sk,m): To sign a message m while proving that it has not been

implicitly revoked by SRL, a platform P owning sk = (s, (σ1, σ2, σ3)) generates
a random r

$← Z
∗
p and

1. re-randomizes the PS signature (σ′
1, σ

′
2, σ

′
3) ← (σr

1, σ
r
2, σ

r
3);

2. computes (h1, h2) ← (H ′(σ′
1), h

s
1);

3. for all i ∈ [1, n], it parses SRL[i] as (σ(i)
1 , h

(i)
2) and computes h

(i)
1 ←

H ′(σ(i)
1);

198 O. Sanders and J. Traoré

4. it generates a proof π of knowledge of s such that σ3 = σs
1 and

h2 = hs
1 and that (h(i)

1)s �= h
(i)
2 for all i ∈ [1, n] using the protocol from

[15]. More specifically, it selects random scalars ri and computes Ci =
((h(i)

1)s/h
(i)
2)ri . If ∃i ∈ [1, n] such that Ci = 1, then it returns ⊥. Else,

it selects k, {ki,1, ki,2}n
i=1

$← Z
2n+1
p and computes (K0,1,K0,2) ← (σk

1 , hk
1)

along with (Ki,1,Ki,2) ← ((h(i)
1)ki,1 · (1/(h(i)

2))ki,2 , h
ki,1
1 · (1/h2)ki,2). It

then computes

c = H(σ′
1, σ

′
2, σ

′
3, h1, h2, {Ci}n

i=1, {Ki,1,Ki,2}n
i=0,m).

along with z = k + c · s and (zi,1, zi,2) = (ki,1 + c · s · ri, ki,2 + c · ri). The
proof π is then set as ({Ci}n

i=1, c, z, {zi,1, zi,2}n
i=1);

5. it returns the signature μ = ((σ′
1, σ

′
2, σ

′
3), h2, π).

– Identify(sk, t): this algorithm parses sk as (s, (σ1, σ2, σ3))) and t as (σ1, h2),
and returns 1 if h2 = H ′(σ1)s and 0 otherwise.

– Verify(ipk, SRL, KRL, μ,m): to verify an EPID signature μ, the verifier parses
it as ((σ′

1, σ
′
2, σ

′
3), h2, π), each KRL[i] as (s(i), (σ(i)

1 , σ
(i)
2 , σ

(i)
3)) for i ∈ [1,m] and

each SRL[i] as (σ(i)
1 , h

(i)
2) for i ∈ [1, n]. It then returns 1 if all the following

conditions hold and 0 otherwise.
1. σ1 �= 1G1 ∧ e(σ1, ˜X) · e(σ3, ˜Y) = e(σ2, g̃);
2. ∀i ∈ [1,m], Identify(KRL[i], (σ1, h2)) = 0;
3. ∀i ∈ [1, n], Ci �= 1;
4. c = H(σ1, σ2, σ3, h1, h2, {Ci}n

i=1, {Ki,1,Ki,2}n
i=0,m), where h1 ← H ′(σ1),

(K0,1,K0,2) ← (σz
1 ·σ−c

3 , hz
1 ·h−c

2) and (Ki,1,Ki,2) ← ([(h(i)
1)zi,1/(h(i)

2)zi,2]·
C−c

i , h
zi,1
1 /(hzi,2

2)) with h
(i)
1 = H ′(σ(i)

1).

The correctness of this variant essentially follows from the one of the previous
scheme, the main difference being located in Step 1 of the Verify algorithm
where the verification of a FHS signature is here replaced by a verification of
a PS signature. Similarly, the security proofs from the previous section readily
adapt to this variant, except for some subtleties that we discuss in the full version
[29] of this paper.

6 Conclusion

In this paper, we have introduced a new security model for EPID, a cryptographic
primitive embedded in billions of chips [23], which has important consequences in
practice. Firstly, our new unforgeability property addresses the problems of pre-
vious models and in particular removes the need to extract all platforms’ secret
keys. This makes enrolment of new platforms simpler while allowing concurrent
Join. Secondly, our new anonymity property allows decentralized management
of revocation lists, which better captures the spirit of EPID. We have in partic-
ular showed that we can retain a strong anonymity notion even in presence of
powerful adversaries with unlimited control of the revocation lists. All this leads

EPID with Malicious Revocation 199

to a better understanding of what an EPID system can truly ensure in what we
believe to be the most realistic usage scenario.

Another result of our paper is that such strong properties can actually be
achieved by very efficient constructions that we describe. Perhaps the most sur-
prising feature of the latter is that they do not require to perform any significant
test on the malicious revocation lists. This is particularly important as it proves
that we are not simply shifting the burden of the revocation manager to each
platform. The latter can indeed issue signatures with essentially the same com-
plexity as in existing systems that require a trusted revocation manager.

Acknowledgements. The authors are grateful for the support of the ANR through
project ANR-18-CE-39-0019-02 MobiS5.

References

1. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. IACR Cryptol. ePrint Arch (2005)

2. Barki, A., Desmoulins, N., Gharout, S., Traoré, J.: Anonymous attestations made
practical. ACM WISEC (2017)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

5. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Sec. (2013)

6. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Vijay-
alakshmi, A., Pfitzmann, B., McDaniel, P., (eds.), ACM CCS 2004, pp. 168–177.
ACM Press, October 2004

9. Bowe, S.: BLS12-381: New zk-SNARK Elliptic Curve Construction (2017). https://
electriccoin.co/blog/new-snark-curve/

10. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In Vijay-
alakshmi, A., Pfitzmann, B., McDaniel, P., (eds) ACM CCS 2004, pp. 132–145.
ACM Press, October 2004

11. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation scheme
with enhanced revocation capabilities. In WPES 2007 (2007)

12. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. In: Elmagarmid, A.K., Agrawal, D., (eds.) IEEE Confer-
ence on Social Computing, SocialCom (2010)

13. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. Part II, volume 9615 of LNCS, pp. 234–264. Springer, Heidelberg (2016)

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/

200 O. Sanders and J. Traoré

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

15. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

17. Chen, L., Morrissey, P., Smart, N.P.: DAA: fixing the pairing based protocols.
IACR Cryptol. ePrint Arch. 198 (2009)

18. Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In:
ProvSec 2008 (2008)

19. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Pairing
2008 (2008)

20. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

21. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

22. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. (2008)

23. Intel. A cost-effective foundation for end-to-end IOT security, white paper (2016).
https://www.intel.in/content/www/in/en/internet-of-things/white-papers/iot-
identity-intel-epid-iot-security-white-paper.html

24. ISO/IEC. ISO/IEC 20008–1:2013 information technology - security techniques
- anonymous digital signatures - part 1: General (2013). https://www.iso.org/
standard/57018.html

25. ISO/IEC. ISO/IEC 20008–2:2013 information technology - security techniques -
anonymous digital signatures - part 2: Mechanisms using a group public key (2013).
https://www.iso.org/standard/56916.html

26. El Kassem, N., Fiolhais, L., Martins, P., Chen, L., Sousa, L.: A lattice-based
enhanced privacy ID. In: WISTP 2019 (2019)

27. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

28. Pointcheval, D., Sanders, O.: Reassessing security of randomizable signatures.
In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338. Springer,
Heidelberg (2018)

29. Sanders, O., Traoré, J.: EPID with malicious revocation (full version). IACR
Cryptol. ePrint Arch., 1498 (2020)

30. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

31. TCG (2015). https://trustedcomputinggroup.org/authentication/

https://www.intel.in/content/www/in/en/internet-of-things/white-papers/iot-identity-intel-epid-iot-security-white-paper.html
https://www.intel.in/content/www/in/en/internet-of-things/white-papers/iot-identity-intel-epid-iot-security-white-paper.html
https://www.iso.org/standard/57018.html
https://www.iso.org/standard/57018.html
https://www.iso.org/standard/56916.html
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://trustedcomputinggroup.org/authentication/

Signed Diffie-Hellman Key Exchange
with Tight Security

Jiaxin Pan(B), Chen Qian, and Magnus Ringerud

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

{jiaxin.pan,chen.qian,magnus.ringerud}@ntnu.no

Abstract. We propose the first tight security proof for the ordinary
two-message signed Diffie-Hellman key exchange protocol in the random
oracle model. Our proof is based on the strong computational Diffie-
Hellman assumption and the multi-user security of a digital signature
scheme. With our security proof, the signed DH protocol can be deployed
with optimal parameters, independent of the number of users or sessions,
without the need to compensate any security loss. We abstract our app-
roach with a new notion called verifiable key exchange.

In contrast to a known tight three-message variant of the signed
Diffie-Hellman protocol (Gjøsteen and Jager, CRYPTO 2018), we do
not require any modification to the original protocol, and our tightness
result is proven in the “Single-Bit-Guess” model which we known can be
tightly composed with symmetric cryptographic primitives to establish
a secure channel.

Keywords: Authenticated key exchange · Signed Diffie-Hellman ·
Tight security

1 Introduction

Authenticated key exchange (AKE) protocols are protocols where two users can
securely share a session key in the presence of active adversaries. Beyond pas-
sively observing, adversaries against an AKE protocol can modify messages and
adaptively corrupt users’ long-term keys or the established session key between
users. Hence, it is very challenging to construct a secure AKE protocol.

The signed Diffie-Hellman (DH) key exchange protocol is a classical AKE
protocol. It is a two-message (namely, two message-moves or one-round) protocol
and can be viewed as a generic method to transform a passively secure Diffie-
Hellman key exchange protocol [14] into a secure AKE protocol using digital
signatures. Figure 1 visualizes the protocol. The origin of signed DH is unclear
to us, but its idea has been used in and serves as a solid foundation for many
well-known AKE protocols, including the Station-to-Station protocol [15], IKE
protocol [19], the one in TLS 1.3 [32], and many others [7,18,22,23,25].

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 201–226, 2021.
https://doi.org/10.1007/978-3-030-75539-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_9

202 J. Pan et al.

Fig. 1. Our signed Diffie-Hellman key exchange protocol and the tight variant of
Gjøsteen and Jager [18]. The functions H and G are hash functions. Operations marked

with a gray box are for our signed DH protocol, and dashed boxes are for Gjøsteen
and Jager’s. Operations without a box are performed by both protocols. All signatures
are verified upon arrival with the corresponding messages, and the protocol aborts if
any verification fails.

Tight Security. Security of a cryptographic scheme is usually proven by con-
structing a reduction. Asymptotically, a reduction reduces any efficient adver-
sary A against the scheme into an adversary R against the underlying com-
putational problem. Concretely, a reduction provides a security bound for the
scheme, εA ≤ � ·εR, where εA is the success probability of A and εR is that of R.
We say a reduction is tight if � is a small constant and the running time of A is
approximately the same as that of R. For the same scheme, it is more desirable
to have a tight security proof than a non-tight one, since a tight security proof
enables implementations without the need to compensate a security loss with
increased parameters.

Multi-challenge Security for AKE. An adversary against an AKE pro-
tocol has full control of the communication channel and, additionally, it can
adaptively corrupt users’ long-term keys and reveal session keys. The goal of an
adversary is to distinguish between a (non-revealed) session key and a random
bit-string of the same length, which is captured by the Test query. We follow
the Bellare-Rogaway (BR) model [5] to capture these capabilities, but formalize

Signed Diffie-Hellman Key Exchange with Tight Security 203

it with the game-based style of [21]. Instead of weak perfect forward secrecy, our
model captures the (full) perfect forward secrecy.

Unlike the BR model, our model captures multi-challenge security, where an
adversary can make T many Test queries which are answered with a single
random bit. This is a standard and well-established multi-challenge notion, and
[21] called it “Single-Bit-Guess” (SBG) security. Another multi-challenge notion
is the “Multi-Bit-Guess” (MBG) security where each Test query is answered
with a different random bit. Although several tightly secure AKE protocols
[2,18,28,35] are proven in the MBG model, we stress that the SBG model is
well-established and allows tight composition of the AKE with symmetric cryp-
tographic primitives, which is not the case for the non-standard MBG model.
Thus, the SBG multi-challenge model is more desirable than the MBG model.
More details about this have been provided by Jager et al.[21, Introduction] and
Cohn-Gordon et al. [10, Section 3].

The Non-tight Security of Signed DH. Many existing security proofs of
signed DH-like protocols [7,22,23] lose a quadratic factor, O(μ2S 2), where μ and
S are the maximum numbers of users and sessions. In the SBG model with T
many Test queries, these proofs also lose an additional multiplicative factor T .

At CRYPTO 2018, Gjøsteen and Jager [18] proposed a tightly secure variant
of it by introducing an additional message move into the ordinary signed DH
protocol. They showed that if the signature scheme is tightly secure in the multi-
user setting then their protocol is tightly secure. They required the underlying
signature scheme to be strongly unforgeable against adaptive Corruption and
Chosen-Message Attacks (StCorrCMA) which is a notion in the multi-user setting
and an adversary can adaptively corrupt some of the honest users to see their
secret keys. Moreover, they constructed a tightly multi-user secure signature
scheme based on the Decisional Diffie-Hellman (DDH) assumption in the random
oracle model [4]. Combining these two results, they gave a practical three message
fully tight AKE. We note that their tight security is proven in the less desirable
MBG model, and, to the best of our knowledge, the MBG security can only
non-tightly imply the SBG security [21]. Due to the “commitment problem”, the
additional message is crucial for the tightness of their protocol. In particular,
the “commitment problem” seems to be the reason why most security proofs for
AKEs are non-tight.

1.1 Our Contribution

In this paper, we propose a new tight security proof of the ordinary two-message
signed Diffie-Hellman key exchange protocol in the random oracle model. More
precisely, we prove the security of the signed DH protocol tightly based on the
multi-user security of the underlying signature scheme in the random oracle
model. Our proof improves upon the work of Gjøsteen and Jager [18] in the
sense that we do not require any modification to the signed DH protocol and our
tight multi-challenge security is in the SBG model. This implies that our analysis
supports the optimal implementation of the ordinary signed DH protocol with
theoretically sound security in a meaningful model.

204 J. Pan et al.

Our technique is a new approach to resolve the “commitment problem”. At
the core of it is a new notion called verifiable key exchange protocols. We first
briefly recall the “commitment problem” and give an overview of our approach.

Technical Difficulty: The “commitment problem”. As explained in [18],
this problem is the reason why almost all proofs of classical AKE protocols are
non-tight. In a security proof of an AKE protocol, the reduction needs to embed
a hard problem instance into the protocol messages of Test sessions so that
in the end the reduction can extract a solution to the hard problem from the
adversary A. After the instance is embedded, A has not committed itself to which
sessions it will query to Test yet, and, for instance, A can ask the reduction
for Reveal queries on sessions with a problem instance embedded to get the
corresponding session keys. At this point, the reduction cannot respond to these
Reveal queries. A natural way to resolve this is to guess which sessions A
will query Test on, and to embed a hard problem instance in those sessions
only. However, this introduces an extremely large security loss. To resolve this
“commitment problem”, a tight reduction should be able to answer both Test
and Reveal for every session without any guessing. Gjøsteen and Jager achieved
this for the signed DH by adding an additional message.

In this paper, we show that this additional message is not necessary for tight
security.

Our Approach: Verifiable Key Exchange. In this work we, for simplicity,
use the signed Diffie-Hellman protocol based on the plain Diffie-Hellman protocol
[14] (as described in Fig. 1) to explain our approach. In the technical part, we
abstract and present our idea with a new notion called verifiable key exchange
protocols. Our approach is motivated by the two-message non-tight AKE in [10].

Let G := 〈g〉 be a cyclic group of prime-order p where the computational
Diffie-Hellman (CDH) problem is hard. Let (gα, gβ) (where α, β $← Zp) be an
instance of the CDH problem. By its random self-reducibility, we can efficiently
randomize it to multiple independent instances (gαi , gβi), and, given a gαiβi , we
can extract the solution gαβ .

For preparation, we assume that a Test session does not contain any forg-
eries. This can be tightly justified by the StCorrCMA security of the underlying
signature scheme which can be implemented tightly by the recent scheme in [12].

After that, our reduction embeds the randomized instance (gαi , gβi) into each
session. Now it seems we can answer neither Test nor Reveal queries: The
answer has the form K := H(ctxt, gxy), but the term gxy cannot be computed
by the reduction, since gx is from either adversary A or the CDH problem
challenge. However, our reduction can answer this by simulating the random
oracle H. More precisely, we answer Test and Reveal queries with a random
K , and we carefully program the random oracle H so that adversary A cannot
detect this change. To achieve this, when we receive a random oracle query
H(ctxt,Z), we answer it consistently if the secret element Z corresponds to the
context ctxt and ctxt belongs to one of the Test or Reveal queries. This check
can be efficiently done by using the strong DH oracle [1].

Signed Diffie-Hellman Key Exchange with Tight Security 205

The approach described above can be abstract by a notion called verifiable
key exchange (VKE) protocols. Roughly speaking, a VKE protocol is firstly
passively secure, namely, a passive observer cannot compute the secret session
key. Additionally, a VKE allows an adversary to check whether a session key
belongs to some honestly generated session, and to forward honestly generated
transcripts in a different order to create non-matching sessions. This VKE notion
gives rise to a tight security proof of the signed DH protocol. We believe this is
of independent interest.

On the Strong CDH Assumption. Our techniques require the Strong CDH
assumption [1] for the security of our VKE protocol. We refer to [11, Appendix
B] for a detailed analysis of this assumption in the Generic Group Model (GGM).
Without using the GGM, we can use the twinning technique [9] to remove this
strong assumption and base the VKE security tightly on the (standard) CDH
assumption. This approach will double the number of group elements. Alterna-
tively, we can use the group of signed Quadratic Residues (QR) [20] to instantiate
our VKE protocol, and then the VKE security is tightly based on the factoring
assumption (by [20, Theorem 2]).

Real-World Impacts. As mentioned earlier, the signed DH protocol serves as
a solid foundation for many real-world protocols, including the one in TLS 1.3
[32], IKE [19], and the Station-to-Station [15] protocols. We believe our approach
can naturally be extended to tighten the security proofs of these protocols. In
particular, our notion of VKE protocols can abstract some crucial steps in a
recent tight proof of TLS 1.3 [11].

Another practical benefit of our tight security proof is that, even if we imple-
ment the underlying signature with a standardized, non-tight scheme (such as
Ed25519 [8] or RSA-PKCS #1 v1.5 [31]), our implementation does not need to
lose the additional factor that is linear in the number of sessions. In today’s
Internet, there can be easily 260 sessions per year.

1.2 Protocol Comparison

We compare the instantiation of signed DH according to our tight proof with the
existing explicitly authenticated key exchange protocols in Fig. 2. For complete
tightness, all these protocols require tight multi-user security of their underlying
signature scheme. We implement the signature scheme in all protocols with the
recent efficient scheme from Diemert et al. [12] whose signatures contain 3 Zp

elements, and whose security is based on the DDH assumption. The implementa-
tion of TLS is according to the recent tight proofs in [11,13], and we instantiate
the underlying signature scheme with the same DDH-based scheme from [12].

We note that the non-tight protocol from Cohn-Gorden et al. [10], whose
security loss is linear in the number of users, has better communication efficiency
(2, 0, 0). However, its security is weaker than all protocols listed in Fig. 2, since
their protocol is only implicitly authenticated and achieves weak perfect forward
secrecy.

206 J. Pan et al.

Fig. 2. Comparison of AKE protocols. We denote Comm. as the communication com-
plexity of the protocols in terms of the number of group elements, hashes and Zp

elements (which is due to the use of the signature scheme in [12]). The column Model
lists the AKE security model and distinguishes between multi-bit guessing (MBG) and
the single-bit-guessing (SBG) security.

We detail the comparison with JKRS [21]. Using the DDH-based signature
scheme in [12], the communication complexity of our signed DH protocol is
(2, 0, 6), while that of JKRS is (5, 1, 3). We suppose the efficiency of our protocol
is comparable to JKRS.

Our main weakness is that our security model is weaker that of JKRS. Namely,
ours does not allow adversaries to corrupt any internal secret state. We high-
light that our proof does not inherently rely on any decisional assumption. In
particular, if there is a tightly multi-user secure signature scheme based on only
search assumptions, our proof directly gives a tightly secure AKE based on search
assumptions only, which is not the case for [21].

Open Problems. We do not know of any tightly multi-user secure signature
schemes with corruptions based on a search assumption, and the schemes in
[30] based on search assumptions do not allow any corruption. It is therefore
insufficient for our purpose, and we leave constructing a tightly secure AKE
based purely on search assumptions as an open problem.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . ,n}. For a finite set S, we denote the sampling of a
uniform random element x by x $← S. By �B� we denote the bit that is 1 if the
evaluation of the Boolean statement B is true and 0 otherwise.

Algorithms. For an algorithm A which takes x as input, we denote its com-
putation by y ← A(x) if A is deterministic, and y $← A(x) if A is probabilistic.
We assume all the algorithms (including adversaries) in this paper to be proba-
bilistic unless we state it. We denote an algorithm A with access to an oracle O
by AO.

Games. We use code-based games [6] to present our definitions and proofs.
We implicitly assume all Boolean flags to be initialized to 0 (false), numerical
variables to 0, sets to ∅ and strings to ⊥. We make the convention that a

Signed Diffie-Hellman Key Exchange with Tight Security 207

procedure terminates once it has returned an output. GA ⇒ b denotes the
final (Boolean) output b of game G running adversary A, and if b = 1 we say
A wins G . The randomness in Pr[GA ⇒ 1] is over all the random coins in
game G . Within a procedure, “abort ” means that we terminate the run of an
adversary A.

Digital signatures. We recall the syntax and security of a digital signature
scheme. Let par be some system parameters shared among all participants.

Definition 1 (Digital Signature). A digital signature scheme SIG := (Gen,
Sign,Ver) is defined as follows.

– The key generation algorithm Gen(par) returns a public key and a secret key
(pk, sk). We assume that pk implicitly defines a message space M and a
signature space Σ.

– The signing algorithm Sign(sk,m ∈ M) returns a signature σ ∈ Σ on m.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0

(reject).

SIG is perfectly correct, if for all (pk, sk) ∈ Gen(par) and all messages m ∈ M,
Ver(pk,m,Sign(sk,m)) = 1.

In addition, we say that SIG has α bits of (public) key min-entropy if an
honestly generated public key pk is chosen from a distribution with at least α bits
min-entropy. Formally, for all bit-strings pk′ we have Pr[pk = pk′ : (pk, sk) $←
Gen(par)] ≤ 2−α.

Definition 2 (StCorrCMA Security [12,18]). A digital signature scheme SIG is
(t , ε, μ,Qs ,QCor)-StCorrCMA secure (Strong unforgeability against Corruption
and Chosen Message Attacks), if for all adversaries A running in time at most
t, interacting with μ users, making at most Qs queries to the signing oracle
Sign, and at most QCor (QCor < μ) queries to the corruption oracle Corr as
in Fig. 3, we have

Pr[StCorrCMAA ⇒ 1] ≤ ε.

Fig. 3. StCorrCMA security game for a signature scheme SIG. A has access to the
oracles O := {Sign,Corr}.

Security in the Random Oracle Model. A common approach to analyze
the security of signature schemes that involve a hash function is to use the ran-
dom oracle model [4] where hash queries are answered by an oracle H, where H is

208 J. Pan et al.

defined as follows: On input x , it first checks whether H(x) has previously been
defined. If so, it returns H(x). Otherwise, it sets H(x) to a uniformly random
value in the range of H and then returns H(x). We parameterize the maxi-
mum number of hash queries in our security notions. For instance, we define
(t , ε, μ,Qs ,QCor,QH)-StCorrCMA as security against any adversary that makes
at most QH queries to H in the StCorrCMA game. Furthermore, we make the
standard convention that any random oracle query that is asked as a result of
a query to the signing oracle in the StCorrCMA game is also counted as a query
to the random oracle. This implies that Qs ≤ QH.

Signature Schemes. The tight security of our authenticated key exchange
(AKE) protocols are established based on the StCorrCMA security of the under-
lying signature schemes. To obtain a completely tight AKE, we use the recent
signature scheme from [12] to implement our protocols.

By adapting the non-tight proof in [17], the standard unforgeability against
chosen-message attacks (UF-CMA) notion for signature schemes implies the
StCorrCMA security of the same scheme non-tightly (with security loss μ). Thus,
many widely used signature schemes (such as the Schnorr [33], Ed25519 [8] and
RSA-PKCS #1 v1.5 [31] signature schemes) are non-tightly StCorrCMA secure.
We do not know any better reductions for these schemes. We leave proving the
StCorrCMA security of these schemes without losing a linear factor of μ as a
future direction. However, our tight proof for the signed DH protocol strongly
indicates that the aforementioned non-tight reduction is optimal for these prac-
tical schemes. This is because if we can prove these schemes tightly secure, we
can combine them with our tight proof to obtain a tightly secure AKE with
unique and verifiable private keys, which may contradict the impossibility result
from [10].

For the Schnorr signature, we analyze its StCorrCMA security in the generic
group model (GGM) [29,34]. We recall the Schnorr signature scheme below and
show the GGM bound of its StCorrCMA security in Theorem 1.

Let par = (p, g , G), where G = 〈g〉 is a cyclic group of prime order p with
a hard discrete logarithm problem. Let G : {0, 1}∗ → Zp be a hash function.
Schnorr’s signature scheme, Schnorr := (Gen,Sign,Ver), is defined as follows:

Gen(par):
01 x $← Zp

02 X := gx

03 pk := X
04 sk := x
05 return (pk, sk)

Sign(sk,m):
06 parse x =: sk
07 r $← Zp ; R := gr

08 h := G(pk,R,m)
09 s := r + x · h
10 return (h, s)

Ver(pk,m, σ):
11 parse (h, s) =: σ
12 parse X =: pk
13 R = gs · X−h

14 return �G(R,m) = h�

Theorem 1 (StCorrCMA Security of Schnorr in the GGM). Schnorr’s sig-
nature SIG is (t , ε, μ,Qs ,QCor,QG)-StCorrCMA-secure in the GGM and in the
programmable random oracle model, where

ε ≤ (QG + μ + 1)2

2p
+

(μ − QCor)
p

+
QGQs + 1

p
, and t ′ ≈ t .

Signed Diffie-Hellman Key Exchange with Tight Security 209

Here, QG is the number of group operations queried by the adversary.

The proof of Theorem1 is following the approach in [3,24]: We first define
an algebraic interactive assumption, CorrIDLOG, which is tightly equivalent
to the StCorrCMA security of Schnorr, and then we analyze the hardness of
CorrIDLOG in the GGM. CorrIDLOG stands for Interactive Discrete Logarithm
with Corruption. It is motivated by the IDLOG (Interactive Discrete Logarithm)
assumption in [24]. CorrIDLOG is a stronger assumption than IDLOG in the sense
that it allows an adversary to corrupt the secret exponents of some public keys.
Due to space limit, we leave the detailed proof of Theorem 1 in our full version.

3 Security Model for Two-Message Authenticated Key
Exchange

In this section, we use the security model in [21] to define the security of two-
message authenticated key exchange protocols. This section is almost verbatim
to Sect. 4 of [21]. We highlight the difference we make for our protocol: Since
our protocols do not have security against (ephemeral) state reveal attacks (as
in the extended Canetti-Krawczyk (eCK) model [26]), we do not consider state
reveals in our model.

A two-message key exchange protocol AKE := (GenAKE, InitI,DerR,DerI) con-
sists of four algorithms which are executed interactively by two parties as shown
in Fig. 4. We denote the party which initiates the session by Pi and the party
which responds to the session by Pr . The key generation algorithm GenAKE out-
puts a key pair (pk, sk) for one party. The initialization algorithm InitI inputs the
initiator’s long-term secret key ski and the responder’s long-term public key pkr ,
and outputs a message mi and a state st. The responder’s derivation algorithm
DerR takes as input the responder’s long-term secret key, the initiator’s public
key pki and a message mi . It computes a message mr and a session key K . The
initiator’s derivation algorithm DerI inputs the initiator’s long term key ski , the
responder’s long term public key pkr , the responder’s message mr and the state
st. Note that the responder is not required to save any internal state information
besides the session key K .

Fig. 4. Running an authenticated key exchange protocol between two parties.

We give a security game written in pseudocode. We define a model for explicit
authenticated protocols achieving (full) forward secrecy instead of weak forward

210 J. Pan et al.

secrecy. Namely, an adversary in our model can be active and corrupt the user
who owns the Test session sID∗, and the only restriction is that if there is no
matching session to sID∗, then the peer of sID∗ must not be corrupted before
the session finishes.

Here explicit authentication means entity authentication in the sense that
a party can explicitly confirm that he is talking to the actual owner of the
recipient’s public key. The key confirmation property is only implicit [16], where
a party is assured that the other identified party can compute the same session
key. The game IND-FS is given in Figs. 5 and 6.

Fig. 5. Game IND-FS for AKE. A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test}. Helper procedures Fresh and Valid are defined in Fig. 6. If
there exists any test session which is neither fresh nor valid, the game will return b.

Execution Environment. We consider μ parties P1, . . . ,Pμ with long-term
key pairs (pkn , skn), n ∈ [μ]. Each session between two parties has a unique
identification number sID and variables which are defined relative to sID:

– init[sID] ∈ [μ] denotes the initiator of the session.
– resp[sID] ∈ [μ] denotes the responder of the session.

Signed Diffie-Hellman Key Exchange with Tight Security 211

Fig. 6. Helper procedures Fresh and Valid for game IND-FS defined in Fig. 5. Proce-
dure Fresh checks if the adversary performed some trivial attack. In procedure Valid,
each attack is evaluated by the set of variables shown in Table 1 and checks if an allowed
attack was performed. If the values of the variables are set as in the corresponding row,
the attack was performed, i.e. attack = true, and thus the session is valid.

– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i.e. whether the initiator
or the responder computes the session key.

– I [sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i.e. ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and
the second one of type “Re”. The SessionR oracle also runs the DerR algorithm
to compute it’s session key and complete the session, as it has access to all the
required variables. In order to complete the initiator’s session, the oracle DerI

has to be queried.
Following [21], we do not allow the adversary to register adversarially con-

trolled parties by providing long-term public keys, as the registered keys would
be treated no differently than regular corrupted keys. If we would include the key
registration oracle, then our proof requires a stronger notion of signature schemes
in the sense that our signature challenger can generate the system parameters
with some trapdoor. With the trapdoor, the challenger can simulate a valid sig-
nature under the adversarially registered public keys. This is the case for the
Schnorr signature and the tight scheme in [12], since they are honest-verifier
zero-knowledge and the aforementioned property can be achieved by program-
ming the random oracles. However, for readability, we treat the registered keys
as corrupted keys.

212 J. Pan et al.

Finally, the adversary has access to oracles Corr and Reveal to obtain
secret information. We use the following boolean values to keep track of which
queries the adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given
to the adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted

and its long-term key was given to the adversary at the time the session key
is computed, which is important for forward security.

The adversary can forward messages between sessions or modify them. By that,
we can define the relationship between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are
involved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent
and received are the same (I [sID] = I [sID′] and R[sID] = R[sID′]) and they
are of different types (type[sID] �= type[sID′]).

Our protocols use signatures to preserve integrity so that any successful no-
match attacks described in [27] will lead to a signature forgery and thus can be
excluded.

Finally, the adversary is given access to oracle Test, which can be queried
multiple times and which will return either the session key of the specified ses-
sion or a uniformly random key. We use one bit b for all test queries, and store
test sessions in a set S. The adversary can obtain information on the interac-
tions between two parties by querying the long-term secret keys and the session
key. However, for each test session, we require that the adversary does not issue
queries such that the session key can be trivially computed. We define the prop-
erties of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s
key is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary
performed any attack which is defined in the security model. We capture this
with attack Table 1.

Attack Tables. We define validity of different attack strategies. All attacks
are defined using variables to indicate which queries the adversary may (not)
make. We consider three dimensions:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the respon-
der’s side (type[sID∗] =“Re”),

– all combinations of long-term secret key reveals, taking into account when a
corruption happened (corrupted and peerCorrupted variables),

– whether the adversary acted passively (matching session) or actively (no
matching session).

Signed Diffie-Hellman Key Exchange with Tight Security 213

Table 1. Distilled table of attacks for adversaries against explicitly authenticated two-
message protocols without ephemeral state reveals. An attack is regarded as an AND
conjunction of variables with specified values as shown in the each line, where “–”
means that this variable can take arbitrary value and F means “false”.

A gets (Initiator, Responder) co
rr

u
p
te

d
[i

∗]

co
rr

u
p
te

d
[r

∗]

p
ee

rC
o
rr

u
p
te

d
[s

ID
∗]

ty
p
e[

sI
D

∗]

|M
(s

ID
∗)

|

0. multiple matching sessions – – – – >1

1.+2. (long-term, long-term) – – – – 1

5.+6. (long-term, long-term) – – F – 0

This way, we capture all kind of combinations which are possible. From the 6
attacks in total presented in Table 2, two are trivial wins for the adversary and
can thus be excluded:

– Attack (3.)+(4.): If there is no matching session, and the peer is corrupted,
the adversary will trivially win, as he can forge a signature on any message
of his choice, and then compute the session key.

Other attacks covered in our model capture forward secrecy (FS) and key com-
promise impersonation (KCI) attacks. An attack was performed if the variables
are set to the corresponding values in the table.

However, if the protocol does not use appropriate randomness, it should not
be considered secure. Thus, if the adversary is able to create more than one
matching session to a test session, he may also run a trivial attack. We model
this in row (0.) of Table 2.

Note that we do not include reflection attacks, where the adversary makes
a party run the protocol with himself. For the KEDH protocol, we could include
these and create an additional reduction to the square Diffie-Hellman assumption
(given gx , to compute gx

2
), but for simplicity of our presentation we will not

consider reflection attacks in this paper.

How to read the tables. As an example, we choose row (5.) of Table 2.
Then, if the test session is an initiating session (namely, type[sID∗] = “In”), the
responder is not corrupted when the key is computed, and there does not exist a
matching session (namely, |M(sID∗)| = 0), this row will evaluate to true. In this
scenario, the adversary is allowed to query both long-term secret keys. Note that
row (6.) denotes a similar attack against a responder session. Since the session’s
type does not change the queries the adversary is allowed to make in this case,
we merge these rows in Table 1. For the same reason, we also merge lines (1.)
and (2.).

214 J. Pan et al.

Table 2. Full table of attacks for adversaries against explicitly authenticated two-
message protocols. The trivial attacks where the session’s peer is corrupted when the
key is derived, and the corresponding variables are set to T, are marked with gray .
The ⊥ symbol indicates that the adversary cannot query anything from this party, as
he already possesses the long-term key.

A gets (Initiator, Responder) co
rr

u
p
te

d
[i

∗]

co
rr

u
p
te

d
[r

∗]

p
ee

rC
o
rr

u
p
te

d
[s

ID
∗]

ty
p
e[

sI
D

∗]

|M
(s

ID
∗)

|

0. multiple matching sessions – – – – >1

1. (long-term, long-term) – – – “In” 1

2. (long-term, long-term) – – – “Re” 1

3. (long-term, ⊥) – T T “In” 0

4. (⊥, long-term) T – T “Re” 0

5. (long-term, long-term) – – F “In” 0

6. (long-term, long-term) – – F “Re” 0

The purpose of these tables are to make our proofs precise, by listing all the
possible attacks. We note that while in our case it would have been possible to
simply write out the attacks, the number of possible combinations get too large
if state-reveals are considered. As we adopt our model from [21], which does
include state-reveals, we stuck to their notation.

For all test sessions, at least one attack has to evaluate to true. Then, the
adversary wins if he distinguishes the session keys from uniformly random keys
which he obtains through queries to the Test oracle.

Definition 3 (Key Indistinguishability of AKE). We define game IND-FS
as in Figs. 5 and 6. A protocol AKE is (t , ε, μ,S ,T ,QCor)-IND-FS-secure if for
all adversaries A attacking the protocol in time t with μ users, S sessions, T
test queries and QCor corruptions, we have

∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣
≤ ε.

Note that if there exists a session which is neither fresh nor valid, the game
outputs the bit b, which implies that Pr[IND-FSA ⇒ 1] = 1/2, giving the adver-
sary an advantage equal to 0. This captures that an adversary will not gain any
advantage by performing a trivial attack.

Signed Diffie-Hellman Key Exchange with Tight Security 215

4 Verifiable Key Exchange Protocols

A key exchange protocol KE := (InitI,DerR,DerI) can be run between two (unau-
thenticated) parties i and r , and can be visualized as in Fig. 4, but with differ-
ences where (1): parties does not hold any public key or private key, and (2):
public and private keys in algorithms InitI,DerR,DerI are replaced with the cor-
responding users’ (public) identities.

The standard signed Diffie-Hellman (DH) protocol can be viewed as a generic
way to transform a passively secure key exchange protocol to an actively secure
AKE protocol using digital signatures. Our tight transformation does not modify
the construction of the signed DH protocol, but requires a security notion (i.e.
One-Wayness against Honest and key Verification attacks, or OW-HV) that is
(slightly) stronger than passive security: Namely, in addition to passive attacks,
an adversary is allowed to check if a key corresponds to some honestly generated
transcripts and to forward transcripts in a different order to create non-matching
sessions. Here we require that all the involved transcripts must be honestly gen-
erated by the security game and not by the adversary. This is formally defined
by Definition 4 with security game OW-HV as in Fig. 7.

Fig. 7. Game OW-HV for KE. A has access to oracles O := {SessionI,SessionR,DerI,
KVer}.

Definition 4 (One-Wayness against Honest and key Verification
attacks (OW-HV)). A key exchange protocol KE is (t , ε, μ,S ,QV)-OW-HV
secure, where μ is the number of users, S is the number of sessions and QV

216 J. Pan et al.

is the number of calls to KVer, if for all adversaries A attacking the protocol
in time at most t, we have

Pr[OW-HVA ⇒ 1] ≤ ε.

We require that a key exchange protocol KE has α bits of min-entropy, i.e.
that for all messages m ′ we have Pr[m = m ′] ≤ 2−α, where m is output by either
InitI or DerR.

4.1 Example: Plain Diffie-Hellman Protocol

We show that the plain Diffie-Hellman (DH) protocol over prime-order group [14]
is a OW-HV-secure key exchange under the strong computational DH (StCDH)
assumption [1]. We use our syntax to recall the original DH protocol KEDH in
Fig. 8.

Let par = (p, g , G) be a set of system parameters, where G := 〈g〉 is a cyclic
group of prime order p.

Definition 5 (Strong CDH Assumption). The strong CDH (StCDH)
assumption is said to be (t , ε,QDh)-hard in par = (p, g , G), if for all adver-
saries A running in time at most t and making at most QDh queries to the DH
predicate oracle Dha , we have:

Pr
[

Z = Ba

∣
∣
∣
∣

a, b $← Zp ; A := ga B := gb

Z $← ADha (A,B)

]

≤ ε,

where the DH predicate oracle Dha(C ,D) outputs 1 if D = C a and 0 otherwise.

Fig. 8. The Diffie-Hellman key exchange protocol, KEDH, in our syntax definition.

Lemma 1. Let KEDH be the DH key exchange protocol as in Fig. 8. Then KEDH

has α = log2 p bits of min-entropy, and for every adversary A that breaks the
(t , ε, μ,S ,QV)-OW-HV-security of KEDH, there is an adversary B that breaks the
(t ′, ε′,QDh)-StCDH assumption with

ε′ = ε, t ′ ≈ t , and QDh = QV + 1. (1)

Signed Diffie-Hellman Key Exchange with Tight Security 217

Proof. The min-entropy assertion is straightforward, as the DH protocol gener-
ates messages by drawing exponents x , y $← Zp uniformly as random.

We prove the rest of the lemma by constructing a reduction B which inputs
the StCDH challenge (A,B) and is given access to the decisional oracle Dha . B
simulates the OW-HV security game for the adversary A, namely, answers A’s
oracle access as in Fig. 9. More precisely, B uses the random self-reducibility of
StCDH to simulate the whole security game, instead of using the InitI and DerR
algorithms. The most relevant codes are highlighted with bold line numbers.

Fig. 9. Reduction B that breaks the StCDH assumption and simulates the OW-HV
game for A, when A = ga and B = gb for some unknown a and b.

We show that B simulates the OW-HV game for A perfectly:

– Since X generated in line 26 and Y generated in line 37 are uniformly random,
the outputs of SessionI and SessionR are distributed as in the real protocol.
Note that the output of DerI does not get modified.

– For KVer(sID,K), if K is a valid key that corresponds to session sID, then
there must exist sessions sID1 and sID2 such that type[sID1] = “In” (defined
in line 24) and type[sID2] = “Re” (defined in line 34) and

K = (B · gα[sID2])(a+α[sID1]) = Y a · Y α[sID1]. (2)

218 J. Pan et al.

where I [sID] = I [sID1] = A · gα[sID1] (defined in line 26) and R[sID] =
R[sID2] = Y := B · gα[sID2] (defined in line 37). Thus, the output of
KVer(sID,K) is the same as that of Dha(Y ,K/Y α[sID1]).

Finally, A returns sID∗ ∈ [cntS] and a key K ∗. If A wins, then
KVer(sID∗,K ∗) = 1 which means that there exists sessions sID1 and sID2

such that type[sID1] = “In”, type[sID2] = “Re” and

K∗ = g(a+α[sID1])(b+α[sID2]) = gab ·Aα[sID2] ·Bα[sID1]gα[sID1]α[sID2] = gab ·Aα[sID2] ·Y α[sID1],

where Y = R[sID2] = B · gα[sID2]. This means B breaks the StCDH with gab =
K ∗/(Y α[sID1] · Aα[sID2]) as in line 08, if A break the OW-HV of KEDH. Hence,
ε = ε′. The running time of B is the running time of A plus one exponentiation
for every call to SessionI and SessionR, so we get t ≈ t ′. The number of calls
to Dha is the number of calls to KVer, plus one additional call to verify the
adversary’s forgery, and hence QDh = QV + 1.

Group of Signed Quadratic Residues. Our construction of a key exchange proto-
col in Fig. 8 is based on the StCDH assumption over a prime order group. Alter-
natively, we can instantiate our VKE portocol in a group of signed quadratic
residues QR

+
N [20]. As the StCDH assumption in QR

+
N groups is tightly implied

by the factoring assumption (by [20, Theorem 2]), our VKE protocol is secure
based on the classical factoring assumption.

5 Signed Diffie-Hellman, Revisited

Following the definition in Sect. 3, we want to construct a IND-FS-secure authen-
ticated key exchange protocol AKE = (GenAKE, InitI,DerI,DerR) by combining a
StCorrCMA-secure signature scheme SIG = (Gen,Sign,Ver), a OW-HV-secure key
exchange protocol KE = (Init′I,Der

′
I,DerR

′), and a random oracle H. The con-
struction is given in Fig. 10, and follow the execution order from Fig. 4.

Fig. 10. Generic construction of AKE from SIG, KE and a random oracle H.

We now prove that this construction is in fact a secure AKE protocol.

Signed Diffie-Hellman Key Exchange with Tight Security 219

Theorem 2. For every adversary A that breaks the (t , ε, μ,ST ,QH, ,
QCor)-IND-FS-security of a protocol AKE constructed as in Fig. 10, we can con-
struct an adversary B against the (t ′, ε′, μ,Qs ,Q ′

Cor)-StCorrCMA-security of a
signature scheme SIG with α bits of key min-entropy, and an adversary C against
the (t ′′, ε′′, μ,S ′,QV)-OW-HV security of a key exchange protocol KE with β bits
of min-entropy, such that

ε ≤ 2ε′ +
ε′′

2
+

μ2

2α+1
+

S 2

2β+1

t ′ ≈ t , Qs ≤ S , Q ′
Cor = QCor

t ′′ ≈ t , S ′ = S , QV ≤ QH.

Proof. We will prove this by using the following hybrid games, which are illus-
trated in Fig. 11.

Game G0: This is the IND-FS security game for the protocol AKE. We assume
that all long term keys, and all messages output by InitI and DerR are distinct. If a
collision happens, the game aborts. To bound the probability of this happening,
we use that SIG has α bits of key min-entropy, and KE has β bits of min-
entropy. We can upper bound the probability of a collision happening in the
keys as μ2/2α+1 for μ parties, and the probability of a collision happening in
the messages as S 2/2β+1 for S sessions, as each session computes one message.
Thus we have

Pr[IND-FSA ⇒ 1] = Pr[GA
0 ⇒ 1] +

μ2

2α+1
+

S 2

2β+1
. (3)

Game G1: In this game, when the oracles DerI and SessionR try to derive a ses-
sion key, they will abort if the input message does not correspond to a previously
sent message, and the corresponding signature is valid w.r.t. an uncorrupted
party (namely, A generates the message itself).

This is the preparation step for reducing an IND-FS adversary of AKE to an
OW-HV adversary of KE. Note that in this game we do not exclude all the non-
matching Test sessions, but it is already enough for the “IND-FS-to-OW-HV”
reduction. For instance, A can still force some responder session to be non-
matching by reusing some of the previous initiator messages to query SessionR,
and then A uses the non-matching responder session to query Test.

The only way to distinguish G0 and G1 is to trigger the new abort event in
either line 19 (i.e. AbortDerR) or line 39 (i.e. AbortDerI) of Fig. 11. We define the
event AbortDer := AbortDerI ∨ AbortDerR and have that

∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ ≤ Pr[AbortDer].

To bound this probability, we construct an adversary B against the
(t ′, ε′, μ,Qs ,Q ′

Cor)-StCorrCMA-security of SIG in Fig. 12.
We note that AbortDer is true only if A performs attacks 5 + 6 in Table 1

which may lead to a session without any matching session. If AbortDer = true

220 J. Pan et al.

Fig. 11. Games G0-G2. A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test}, where Reveal and Corr are simulated as in the original
IND-FS game in Fig. 5. Game G0 implicitly assumes that there is no collision between
long term keys or messages output by the experiment.

then Σ is defined in lines 26 and 42 of Fig. 12 and Σ is a valid StCorrCMA forge
for SIG. We only show that for the case when AbortDerR = true here, and the
argument is similar for the case when AbortDerI = true. Given that AbortDerR
happens, we have that Ver(pki ,X , σi) = 1 and peerCorrupted[sID] = false. Due
to the criteria in line 40, the pair (X , σi) has not been output by SessionI on
input (i , r) for any r , and hence (i ,X) has never been queried to the Sign′

oracle. Therefore, B aborts A in the IND-FS game and returns (i ,X , σi) to the
StCorrCMA challenger to win the StCorrCMA game. Therefore, we have

Pr[AbortDerR] ≤ ε′, (4)

Signed Diffie-Hellman Key Exchange with Tight Security 221

Fig. 12. Adversary B against the (t ′, ε′, μ,Qs ,Q
′
Cor)-StCorrCMA-security of SIG. The

StCorrCMA game provides oracles Sign′,Corr′. The adversary A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Corr,Test,H}, where Reveal and Test
remain the same as in Fig. 4. We highlight the most relevant codes with bold line
numbers.

which implies that
∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ ≤ Pr[AbortDerI] + Pr[AbortDerR] ≤ 2ε′. (5)

The running time of B is the same as that of A, plus the time used to run the
key exchange algorithms Init′I,DerR

′,Der′I and the signature verification algorithm

222 J. Pan et al.

Ver. This gives t ′ ≈ t . For the number of signature queries we have Qs ≤ S , since
SessionR can abort before it queries the signature oracle, and the adversary can
reuse messages output by SessionI. For the number of corruptions, we have
Q ′

Cor = QCor.

Game G2: The Test oracle always returns a uniformly random key, independent
on the bit b.

Since we have excluded collisions in the messages output by the experiment,
it is impossible to create two sessions of the same type that compute the same
session key. Hence, an adversary must query the random oracle H on the correct
input of a test session to detect the change between G1 and G2 (which is only in
case b = 0). More precisely, we have Pr[GA

2 ⇒ 1 | b = 1] = Pr[GA
1 ⇒ 1 | b = 1]

and

∣
∣Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ =

1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] + Pr[GA
2 ⇒ 1 | b = 1]

− Pr[GA
1 ⇒ 1 | b = 0] − Pr[GA

1 ⇒ 1 | b = 1]
∣
∣

=
1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ .

(6)

To bound Eq. (6), we construct an adversary C to (t ′′, ε′′, μ,S ′,QV)-break the
OW-HV security of KE. The input to C is the number of parties μ, and system
parameters par. In addition, C has access to oracles Session′

I,Session
′
R,Der′

I

and KVer.
We firstly show that the outputs of SessionI, SessionR and DerI (simulated

by C) are distributed the same as in G1. Due to the abort conditions introduced
in G1, for all sessions that has finished computing a key without making the
game abort, their messages are honestly generated, although they may be in a
different order and there are non-matching sessions. Hence, SessionI, SessionR

and DerI can be perfectly simulated using Session′
I, Session

′
R and Der′

I of the
OW-HV game and the signing key.

It is also easy to see that the random oracle H simulated by C has the same
output distribution as in G1. We stress that if line 66 is executed then adversary
A may use the sID to distinguish G2 and G1 for b = 0, which is the only case for
A to see the difference. At the same time, we obtain a valid attack Σ := (sID,K ∗)
for the OW-HV security. Thus, we have

∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ ≤ ε′′.

As before, the running time of C is that of A, plus generating and verifying
signatures, and we have t ′′ ≈ t . Furthermore, S ′ = S , as the counter for the
OW-HV game increases once for every call to SessionI and SessionR.

Signed Diffie-Hellman Key Exchange with Tight Security 223

Fig. 13. Reduction C against the (t ′′, ε′′, μ,S ′,QV)-OW-HV-security of KE. The
OW-HV game provides oracles O′ := {Session′

I,Session
′
R,Der′

I,KVer}. The adver-
sary A has access to oracles O := {SessionI,SessionR,DerI,Reveal,Corr,Test,H},
where Reveal,Corr and Test are defined as in G2 of Fig. 11. We highlight the most
relevant codes with bold line numbers. The center dot ‘·’ in this figure means arbitrary
value.

224 J. Pan et al.

At last, for game G2 we have Pr[GA
2 ⇒ 1] = 1

2 , as the response from the
Test oracle is independent of the bit b. Summing up all the equations, we obtain

ε ≤
∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] +
μ2

2α+1
+

S 2

2β+1
− Pr[GA

2 ⇒ 1]
∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1] + Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1] +

μ2

2α+1
+

S 2

2β+1

∣
∣
∣
∣

≤ ∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ +

∣
∣Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]

∣
∣ +

μ2

2α+1
+

S 2

2β+1

≤ 2ε′ +
ε′′

2
+

μ2

2α+1
+

S 2

2β+1
,

and t ′ ≈ t , Qs ≤ S , Q ′
Cor = QCor, t ′′ ≈ t , S ′ = S , QV ≤ QH.

Acknowledgement. We thank the anonymous reviewers for their many insightful
suggestions to improve our paper.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

3. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. Cryptology
ePrint Archive, Report 2020/416 (2020). https://eprint.iacr.org/2020/416

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

7. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://eprint.iacr.org/2020/416
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9

Signed Diffie-Hellman Key Exchange with Tight Security 225

9. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 25

11. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. ACNS 2021 (2021). https://eprint.iacr.org/2020/1029

12. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: PKC 2021 (2021). https://ia.cr/2021/235

13. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. J. Cryptol. (2020). https://eprint.
iacr.org/2020/726

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

15. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

16. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May
2016

17. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002). https://doi.org/10.1016/
S0020-0190(01)00338-6

18. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

19. Harkins, D., Carrel, D.: The internet key exchange (IKE). RFC 2409 (1998).
https://www.ietf.org/rfc/rfc2409.txt

20. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 37

21. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: EUROCRYPT 2021 (2021). https://ia.cr/2020/1279

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

23. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel
establishment and the security of TLS-DHE. J. Cryptol. 30(4), 1276–1324 (2017)

24. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2

25. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-030-26954-8_25
https://eprint.iacr.org/2020/1029
https://ia.cr/2021/235
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/726
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://www.ietf.org/rfc/rfc2409.txt
https://doi.org/10.1007/978-3-642-03356-8_37
https://ia.cr/2020/1279
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24

226 J. Pan et al.

26. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

27. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, October–
November 2017

28. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: ASIACRYPT 2020 (2020). https://
ia.cr/2020/1088

29. Maurer, U.: Abstract models of computation in cryptography (invited paper). In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

30. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search
assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020,
Part II. LNCS, vol. 12309, pp. 485–504. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59013-0 24

31. PKCS #1: RSA Cryptography Standard. RSA Data Security, Inc., June 1991
32. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446

(Proposed Standard (2018). https://tools.ietf.org/html/rfc8446
33. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–

174 (1991)
34. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,

W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

35. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key exchange
protocol in the CK model. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 171–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 9

https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://ia.cr/2020/1088
https://ia.cr/2020/1088
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-59013-0_24
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-40186-3_9

Lattice-Based Proof of Shuffle
and Applications to Electronic Voting

Diego F. Aranha1 , Carsten Baum1 , Kristian Gjøsteen2 ,
Tjerand Silde2(B) , and Thor Tunge2

1 Aarhus University, Aarhus, Denmark
{dfaranha,cbaum}@cs.au.dk

2 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

Abstract. A verifiable shuffle of known values is a method for proving
that a collection of commitments opens to a given collection of known
messages, without revealing a correspondence between commitments and
messages. We propose the first practical verifiable shuffle of known values
for lattice-based commitments.

Shuffles of known values have many applications in cryptography, and
in particular in electronic voting. We use our verifiable shuffle of known
values to build a practical lattice-based cryptographic voting system that
supports complex ballots. Our scheme is also the first construction from
candidate post-quantum secure assumptions to defend against compro-
mise of the voter’s computer using return codes.

We implemented our protocol and present benchmarks of its compu-
tational runtime. The size of the verifiable shuffle is 17τ KB and takes
time 33τ ms for τ voters. This is around 5 times faster and at least 50%
smaller per vote than the lattice-based voting scheme by del Pino et al.
(ACM CCS 2017), which can only handle yes/no-elections.

Keywords: Lattice-based cryptography · Proof of shuffle
Verifiable encryption · Return codes · Electronic voting ·
Implementation

1 Introduction

A verifiable shuffle of known values is a method for proving that a collection of
commitments opens to a given collection of known messages, without revealing
exactly which commitment corresponds to which message.

One well-known approach is due to Neff [25]: Define two polynomials, one that
has the known messages as its roots and another that has the values committed
to as its roots. Since polynomials are stable under permutation of their roots, it

C. Baum–This work was funded by the European Research Council (ERC) under the
European Unions’ Horizon 2020 research and innovation programme under grant agree-
ment No. 669255 (MPCPRO). Part of this work was done while visiting NTNU in
Trondheim.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 227–251, 2021.
https://doi.org/10.1007/978-3-030-75539-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_10&domain=pdf
http://orcid.org/0000-0002-2457-0783
http://orcid.org/0000-0001-7905-0198
http://orcid.org/0000-0001-7317-8625
http://orcid.org/0000-0002-5455-0409
https://doi.org/10.1007/978-3-030-75539-3_10

228 D. F. Aranha et al.

is sufficient to prove that these two polynomials have the same evaluation at a
randomly chosen point.

Proving that the second polynomial has a given evaluation at a given point
could be done using multiplication and addition proofs on the commitments.
Usually multiplication proofs for committed values are quite expensive, while it
is somewhat cheap to do proofs of linear combinations of committed values with
public coefficients. Following the idea of Neff, the determinant of a particular
band matrix is the difference of the two polynomials, and we show that the
polynomials are equal by showing that the columns of the matrix are linearly
dependent.

1.1 Our Contribution

Verifiable Shuffle of Known Values. Our main contribution is a verifiable shuffle
of known values for lattice-based commitments. This is the first efficient con-
struction from a candidate post-quantum secure assumption of such a primitive.
As discussed above, our construction is based on techniques originating with
Neff [25], although there are a number of obstacles with this approach in the
lattice-based setting, where we use the commitments of Baum et al. [5].

First of all, many group-homomorphic commitment schemes allow either
direct or very simple verification of arbitrary linear relations. No known com-
mitment scheme secure under an assumption considered as post-quantum secure
has a similar structure, which means that we must use adaptations of existing
proofs for linear relations. Secondly, the underlying algebraic structure is a ring,
not a field. Since we need certain elements to be invertible, we need to choose
challenges from special sets of invertible elements, and carefully adapt the proof
so that the correctness of the shuffle is guaranteed.

In order to make our construction practical, we use the Fiat-Shamir trans-
form to make the underlying Zero-Knowledge proofs non-interactive. We want
to stress that our proof of security only holds in the conventional Random Ora-
cle Model, which is not a sound model when considering quantum adversaries.
Constructing a post-quantum secure verifiable shuffle of known values is an inter-
esting open problem.

Voting from Lattices. Our second contribution is the first construction of a prac-
tical voting system that is suitable for more general ballots (such as various forms
of ranked choice voting, perhaps in various non-trivial combinations with party
lists and candidate slates) and that is secure under lattice-based assumptions.

We adopt an architecture very similar to deployed cryptographic voting sys-
tems [13,17]. The protocol works as follows:

– The voter’s computer commits to the voter’s ballot and encrypts an opening
of the ballot. The commitment and ciphertext are sent to a ballot box.

– When counting starts, the ballot box removes any identifying material from
the ciphertext and sends this to the shuffle server.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 229

– The shuffle server decrypts the openings, verifies the commitments and out-
puts the ballots. It uses our verifiable shuffle of known values to prove that
the ballots are consistent with the commitments.

– One or more auditors inspect the ballot box and the shuffle server.

For this to work, the voter’s ciphertext must contain a valid opening of the
voter’s commitment. To achieve this, we use the verifiable encryption scheme of
Lyubashevsky and Neven [22].

This architecture seems to be an acceptable trade-off between security and
practicality. It achieves privacy for voters under the usual threat models, it
provides cast-as-intended verification via return codes, it achieves coercion-
resistance via revoting, and it achieves integrity as long as at least one auditor
is honest. However, the architecture makes it difficult to simultaneously achieve
privacy and universal verifiability. (We cannot simply publish the ballot box,
the decrypted ballots and the shuffle proofs, because the shuffle server then
learns who submitted which ballot, breaking privacy.) This is often not a signifi-
cant problem, because coercion resistance requires keeping the decrypted ballots
secret when so-called Italian attacks apply, and it is usually quite expensive to
achieve universal verifiability without publishing the decrypted ballots. If Italian
attacks do not apply or coercion resistance is otherwise not an issue, if one is
willing to pay the price, it would be possible to distribute the decryption among
two (or more) players by using nested encryption and nested commitments, after
which everything could be published and universal verifiability is achieved. The
cost is significant, though. Limited verifiability can be achieved in cheaper ways.

Voting with Return Codes. Our third contribution is the first construction of
a voting system that supports so-called return codes for verifying that ballots
have been cast as intended and that is based on a candidate post-quantum
assumption.

One of the major challenges in using computers for voting is that computers
can be compromised. Countermeasures such as Benaloh challenges do not work
very well in practice, since they are hard to understand1. Return codes can
provide integrity for voters with a fairly high rate of fraud detection [14]. Return
codes do not work well with complex ballots, but our scheme could be modified
to use return codes only for parts of a complex ballot.

We again use the commitments and verifiable encryption. The voter’s com-
puter commits to a pre-code and proves that this pre-code has been correctly
computed from the ballot and some key material. It also verifiably encrypts an
opening of this commitment. The pre-code is later decrypted and turned into a
return code, which the voter can inspect.

Implementation of Our Voting Scheme. Our fourth contribution is a concrete
choice of parameters for the system along with a prototype implementation,
demonstrating that the scheme is fully practical. We choose parameters in such
1 Very few members of the International Association for Cryptologic Research use

Benaloh challenges when casting ballots in their elections.

230 D. F. Aranha et al.

a way that arithmetic in the used algebraic structures can be efficiently imple-
mented. This gives a fairly low computational cost for the scheme, so the limiting
factor seems to be the size of the proofs. For elections with millions of voters, the
total proof size will be measured in gigabytes, while systems based on discrete
logarithms would produce much smaller proofs. Since we do not try to achieve
universal verifiability, which means that proofs in our architecture are only han-
dled by well-resourced infrastructure players, the proof size is unlikely to matter
much. (If ordinary voters were to verify all the shuffle proofs, this would still not
be infeasible, but it would be more of an issue.)

1.2 Related Work

Verifiable Shuffles. The idea for a verifiable shuffle of known values that we use
was introduced by Neff [25]. Since [25], there has been a huge body of work
improving verifiable shuffles of ciphertexts, but not for constructions that use
post-quantum assumptions.

Costa et al. [10] use ZK proofs for lattice commitments to show a correct shuf-
fle and re-randomization of a collection of ciphertexts. They also adopt some of
the techniques from Neff, but instead of using a linear algebra argument they
use multiplication proofs. This is conceptually simpler than our approach, but
turns out to be less efficient even with the newer, improved multiplication proofs
of [3]. A related concept to the verifiable shuffle of known values is the decrypt-
ing mix-net [8], which proves that the decryption of a collection of ciphertexts
equals a given collection of messages. Decryption mix-nets can be very fast [6],
but these constructions provide guarantees of correct decryption only if at least
one participant in the mix-net is honest at the time of decryption, unlike our
approach which provides proper soundness even if both the ballot box and shuffle
server are compromised at the time of decryption.

Candidate Post-quantum Cryptographic Voting Systems. There is a large body
of academic work on cryptographic voting systems, and several systems have
been deployed in practice in Europe in e.g. Estonia [17] and Norway [13,17],
while Switzerland [19] also planned to use an e-voting system. All of these sys-
tems make significant efforts to provide so-called cast-as-intended verification, to
defend against compromise of the voter’s computer. For lower-stakes elections,
Helios [1] has seen significant use. All of these systems have roughly the same
architecture, and offer varying levels of verifiability. None of these systems are
secure against quantum computers.

Many real-world political elections have ballots that are essentially very sim-
ple, such as a single yes/no question, or a t-out-of-n structure (even though many
such races can be combined to form a visually and cognitively complex ballot).
However, real-world voting systems can also have more complicated ballots that
cannot be decomposed to a series of simple, independent races. For example, the
Australian parliamentary ballot may encode a total order on all candidates in
a district, and transferable votes make counting quite complex. While work has

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 231

been done on homomorphic counting for such elections, the usual approach is to
recover cleartext ballots and count them.

While it is a simple exercise to use existing theoretical constructions to build
a candidate quantum-safe voting system similar to the above deployed systems,
the problem is that these constructions are practically inefficient, either because
they are too computationally expensive or the proofs used are too large to make
verification of many such proofs practical.

del Pino et al. [11] gives a feasible construction that uses homomorphic count-
ing, but it is only applicable to yes/no-elections (though it can be extended to 1
out of n elections, at some cost). The scheme also does not try to defend against
compromise of the voter’s computer, limiting its applicability. Chillotti et al. [9]
proposed a system based on homomorphic counting, but using fully homomor-
phic encryption. Again, this only supports 1 out of n elections, and practical
efficiency is unclear. Gjøsteen and Strand [15] proposed a method for counting
a complex ballot using homomorphic encryption. However, their scheme is not
complete and the size of the circuit makes the system barely practical.

As discussed above, existing verifiable shuffles for candidate post-quantum
secure cryptosystems could be used for generic constructions. Costa et al. [10]
uses certain ZK proofs for lattice commitments to show a correct shuffle and re-
randomization of a collection of ciphertexts. The bottleneck of their approach are
the underlying rather inefficient ZK proofs. The faster construct by Strand [27]
is too restrictive in the choice of plaintext domain. Even given that shuffle,
these schemes still require a verifiable (distributed) decryption for lattice-based
constructions. These, currently, do not exist.

2 Preliminaries

If Φ is a probability distribution, then z
$← Φ denotes that z was sampled accord-

ing to Φ. If S is a finite set, then s
$← S denotes that s was sampled uniformly

from the set S. The expressions z ← xy and z ← Func(x) denote that z is
assigned the product of x and y and the value of the function Func evaluated on
x, respectively.

For two matrices A ∈ Sα×β ,B ∈ Sγ×δ over an arbitrary ring S, we denote
by A ⊗ B ∈ S(α·γ)×(β·δ) their tensor product, i.e. the matrix

B =

⎛
⎜⎝

b1,1 . . . b1,δ

...
. . .

...
bγ,1 . . . bγ,δ

⎞
⎟⎠ , A ⊗ B :=

⎛
⎜⎝

b1,1 · A . . . b1,δ · A
...

. . .
...

bγ,1 · A . . . bγ,δ · A

⎞
⎟⎠ .

2.1 The Rings R and Rp

Let p, r ∈ N
+ and N = 2r. Then we define the rings R = Z[X]/〈XN + 1〉 and

Rp = R/〈p〉, that is, Rp is the ring of polynomials modulo XN + 1 with integer
coefficients modulo a prime p. If p is congruent to 1mod 2δ, for N ≥ δ > 1 a
power of 2, then XN + 1 splits into δ irreducible factors.

232 D. F. Aranha et al.

We define the norms of elements f(X) =
∑

αiX
i ∈ R to be the norms of

the coefficient vector as a vector in Z
N :

||f ||1 =
∑

|αi| ||f ||2 =
(∑

α2
i

)1/2

||f ||∞ = max
i∈{1,...,N}

{|αi|}.

For an element f̄ ∈ Rp we choose coefficients as the representatives in[−p−1
2 , p−1

2

]
, and then compute the norms as if f̄ is an element in R. For vec-

tors a = (a1, . . . , ak) ∈ Rk we define the 2-norm to be ‖a‖2 =
√∑ ‖ai‖2, and

analogously for the ∞-norm. We omit the subscript in the case of the 2-norm.
One can show that sufficiently short elements in the ring Rp (with respect

to the aforementioned norms) are invertible.

Lemma 1 ([24], Corollary 1.2). Let N ≥ δ > 1 be powers of 2 and p a
prime congruent to 2δ+1mod 4δ. Then XN +1 factors into δ irreducible factors
XN/δ + rj, for some rj’s in Rp. Additionally, any non-zero y such that

‖y‖∞ < p1/δ/
√

δ or ‖y‖ < p1/δ

is invertible in Rp.

For the remaining part of this paper we will assume that the parameters p, δ and
N are chosen such that Lemma 1 is satisfied. We define a set of short elements

Dβ∞ = {x ∈ Rp | ‖x‖∞ ≤ β∞}.

We furthermore define

C = {c ∈ Rp | ‖c‖∞ = 1, ‖c‖1 = ν} ,

which consists of all elements in Rp that have trinary coefficients and are non-
zero in exactly ν positions, and we denote by

C̄ = {c − c′ | c �= c′ ∈ C}
the set of differences of distinct elements in C. The size of C is 2ν

(
N
ν

)
. It can be

seen from Lemma 1 that, for a suitable choice of parameters, we can ensure that
all non-zero elements from the three sets are invertible.

We need a bound on how many roots a polynomial can have over the ring
Rp. The total number of elements in the ring is |Rp| = pN .

Lemma 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ +1mod 4δ
and T ⊆ Rp. Let g ∈ Rp[X] be a polynomial of degree τ . Then, g has at most τ δ

roots in T , and Pr[g(ρ) = 0|ρ $← T] ≤ τ δ/|T |.
Proof. First, by Lemma 1, we divide XN +1 into δ irreducible factors XN/δ +rj .
Each of the irreducible factors contributes at most τ roots to a polynomial
g ∈ Rp[X] of degree τ . Using the Chinese remainder theorem to combine the

roots, we get that g has at most τ δ roots in Rp. If we choose ρ
$← Rp uniformly

at random, the probability that this is a root of g is the total number of roots
divided by the size of the ring. Since T is a subset of Rp, it can contain at most
as many roots as Rp itself. ��

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 233

2.2 The Discrete Gaussian Distribution

The continuous normal distribution over R
k centered at v ∈ R

k with standard
deviation σ is given by

ρ(x)N
v ,σ =

1√
2πσ

exp
(−||x − v||2

2σ2

)
.

When sampling randomness for our lattice-based commitment and encryption
schemes, we’ll need samples from the discrete Gaussian distribution. This distri-
bution is achieved by normalizing the continuous distribution over Rk by letting

N k
v ,σ(x) =

ρkN
v ,σ(x)

ρkN
σ (Rk)

where x ∈ Rk and ρkN
σ (Rk) =

∑
x∈Rk

ρkN
σ (x).

When σ = 1 or v = 0, they are omitted.

3 Lattice-Background: Commitments and ZK Proofs

We first introduce the commitments of Baum et al. [5], and continue with a
zero-knowledge proof protocol of linear relation over the ring Rp using these
commitments. The protocol is implicitly mentioned in [5].

3.1 Lattice-Based Commitments

Algorithms. The scheme consists of three algorithms: KeyGenC, Com, and Open
for key generation, commitments and verifying an opening, respectively. We
describe these algorithms for committing to one message, and refer to [5] for
more details.

KeyGenC outputs a public matrix B over Rp of the form

B1 =
[
In B′

1

]
whereB′

1
$← Rn×(k−n)

p

b2 =
[
0n 1 b′

2

]
where (b′

2)
� $← R(k−n−1)

p ,

for width k and height n + 1 of the public key pk := B =
[
B1

b2

]
.

Com commits to messages m ∈ Rp by sampling an rm
$← Dk

β∞ and computing

Com(m; rm) = B · rm +
[
0
m

]
=
[
c1

c2

]
= [[m]].

Com outputs [[m]] and d = (m; rm, 1).

234 D. F. Aranha et al.

Open verifies whether an opening (m; rm, f) with f ∈ C̄ is a valid opening of
c1, c2 by checking if

f ·
[
c1

c2

]
?= B · rm + f ·

[
0
m

]
,

and that ‖rm[i]‖ ≤ 4σC

√
N for i ∈ [k] with σC = 11 · β∞ · ν · √

kN . Open
outputs 1 if all these conditions hold, and 0 otherwise.

Baum et al. [5] proved the security properties of the commitment scheme with
respect to knapsack problems (which in turn are versions of standard Module-
SIS/Module-LWE problems). More concretely, they showed that any algorithm
A that efficiently solves the hiding property can be turned into an algorithm A′

solving DKS∞
n+1,k,β∞ with essentially the same runtime and success probability.

Furthermore, any algorithm A that efficiently solves the binding problem can
be turned into an algorithm A′′ solving SKS2

n,k,16σC
√

νN
with the same success

probability. We provide formal definitions of these assumptions in the full version.
The commitments [5] have a weak additively homomorphic property:

Proposition 1. Let z0 = Com(m; rm) be a commitment with opening (m; rm, f)
and let z1 = Com(ρ;0). Then z0−z1 is a commitment with opening (m−ρ; rm, f).

The proof follows from the linearity of the verification algorithm.

3.2 Zero-Knowledge Proof of Linear Relations

Let [[x]], [[x′]] be commitments as above such that x′ = αx + β for some public
α, β ∈ Rp. Then ΠLin in Fig. 1 shows a zero-knowledge proof of knowledge
(ZKPoK) of this fact (it is an adapted version of the linearity proof in [5]).
The proof is a Σ protocol that aborts2 with a certain probability to achieve the
zero-knowledge property. For the protocol in Fig. 1 we define

[[x]] = Com(x; r) =
[
c1

c2

]
, [[x′]] = Com(x′; r′) =

[
c′
1

c′
2

]
.

In [5] the authors show that a version of ΠLin is a Honest-Verifier Zero-
Knowledge Proof of Knowledge for the aforementioned commitment scheme.
This can directly be generalized to relations of the form α · x̃ + β as follows:

Lemma 3. Let α, β, [[x]], [[x′]] be defined as above. Then ΠLin is a HVZK proof
of the relation

RLin =
{

(s, w)
s = (α, β, [[x]], [[x′]],B1, b2), w = (x̃, r̃, r̃′, f),
Open([[x]], x̃, r̃, f) = Open([[x′]], α · x̃ + β, r̃′, f) = 1

}

2 This approach is usually referred to as Fiat Shamir with Aborts (see e.g. [20,21] for
a detailed description). If the proof is compiled with a random oracle into a NIZK,
then these aborts only increase the prover time by a constant factor.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 235

Prover P Verifier V
y,y

$← N k
σC

t ← B1y, t ← B1y

u ← α b2,y b2,y t, t , u

d d
$← C

z ← y + dr

z ← y + dr

Continue with probability:

(a,b)∈{(r,z),(r ,z)}
min 1,

N k
σC(b)

M · N k
da,σC

(b)
z,z

return Accept iff

1 : z[i] , z [i] ≤ 2σC

√
N, i ∈ [k]

2 : B1z
?= t + dc1

3 : B1z
?= t + dc1

4 : α b2,z b2,z
?= (αc2 + β − c2)d + u

Fig. 1. Protocol ΠLin is a Sigma-protocol to prove the relation x′ = αx + β, given the
commitments [[x]], [[x′]] and the scalars α, β.

The proof for this is exactly the same as in [5], and we do only sketch it
now: Assume that we can rewind an efficient poly-time prover and obtain two
accepting transcripts with the same first message t, t′, u but differing d, d (as well
as responses z,z′,z,z′). Then one can extract valid openings (x̃; r̃, f) and (αx̃+
β; r̃′, f) for [[x]], [[x′]] respectively as follows: From the two accepting transcripts
and the equations checked by the verifier we can set f = d − d, r̃ = z − z, r̃′ =
z′ − z′ where it must hold that

α〈b2, r̃〉 − 〈b2, r̃
′〉 ?= f(αc2 + β − c′

2).

By setting x̃ = c2 − f−1〈b2, r̃〉 and x̃′ = c′
2 − f−1〈b2, r̃

′〉, we then have that
αx + β = x′ by the aforementioned equation. The validity and bounds of the
opening follow from the same arguments as in [5].

Compression. Using the techniques from [4,16], as already mentioned in [5,
Section 5.3], allows to compress the non-interactive version of the aforementioned
zero-knowledge proof. The main idea is that the prover only hashes the parts of
the proof that got multiplied by the uniformly sampled part B′

1 of B1, and that
the verifier only checks an approximate equality with these when recomputing
the challenge. We do the following changes to the protocol.

The prover samples vectors y,y′ of dimension k − n according to σC, then
computes t = B′

1y and t′ = B′
1y

′. Note that u is computed as before, as the
n first values of b2 are zero. Then z and z′ are computed as earlier, but are of
dimension k − n instead of k. The prover computes the challenge d as

d = H(B, [[x]], [[x′]], α, β, u, �t�γ , �t′�γ)

236 D. F. Aranha et al.

where γ ∈ N and �·�γ denotes rounding off the least γ bits.
To make sure that the non-interactive proof can be verified, we must ensure

that d can be re-computed from the public information. Let t̂ = B′
1z − dc1 and

t̂
′
= B′

1z
′ − dc′

1 and observe that t̂[i] − t[i] = dr[i], for each coordinate i ∈ [n],
and similar for t̂

′
and t′. For honestly generated randomness, for each i ∈ [k],

we have that ‖r[i]‖ ≤ β∞
√

N , and since d ∈ C̄, we have that ‖d‖ =
√

ν. It
follows that ‖dr[i]‖∞ ≤ β∞

√
νN , and similar for dr′[i]. When hashing t and t′

to get the challenge d, we then remove the γ = �log β∞
√

νN� lower bits of each
coordinate first, to ensure that both the prover and the verifier compute on the
same value. Hence, before outputting the proof, the prover will also test that

d′ = H(B, [[x]], [[x′]], α, β, û, �B′
1z − dc1�γ , �B′

1z
′ − dc′

1�γ), where
û = α〈[1 b′

2],z〉 − 〈[1 b′
2],z

′〉 − (αc2 + β − c′
2)d.

The prover then outputs the proof (d,z,z′) if d = d′ and ‖z[i]‖ , ‖z′[i]‖ ≤
2σC

√
N (when setting up the check as in [4,16], then the test will fail with

probability at most 1/2), and the verifier will make the same checks to validate
it. The proof size is reduced from k to k −n Gaussian-distributed ring-elements.

4 Protocol: Zero-Knowledge Proof of Correct Shuffle

In this section we present the shuffle protocol for openings of commitments. We
construct a public-coin 4 + 3τ -move protocol3 such that the commit-challenge-
response stages require the prover to solve a system of linear equations in order
to prove a correct shuffle. Our construction extends Neff’s construction [25] to
the realm of post-quantum assumptions.

The proof of shuffle protocol will use the commitments defined in Sect. 3.
For the shuffle proof to work, the prover P and verifier V receive commitments
{[[mi]]}τ

i=1. P also receives the set of openings {(mi, ri)}τ
i=1 as well as a permu-

tation π ∈ Sτ . Additionally, both parties also obtain {m̂i}τ
i=1.

The goal is to ensure that the following relation RShuffle holds:

RShuffle =

⎧⎨
⎩ (s, w)

s = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ , m̂i ∈ Rp),
w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ ,
∀i ∈ [τ] : Open([[mπ−1(i)]], m̂i, ri, fi) = 1

⎫⎬
⎭

To use the idea of Neff, all m̂i messages involved have to be invertible. How-
ever, this may not be the case for arbitrary ring elements. We start by showing
that if V samples a random ρ in Rp then all m̂i − ρ will be invertible with high
probability:

Proposition 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ +
1mod 4δ. Then

Pr
x1,...,xτ ∈Rp

[x1−ρ, . . . , xτ−ρ invertible in Rp | ρ
$← Rp] ≤ 1−max(1, τ ·(1−e−δ/p)).

3 This is only a theoretical problem as the protocol is public-coin and can therefore
directly be transformed into NIZKs using the Fiat-Shamir transform.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 237

Plugging in realistic parameters (p = 232, δ = 2, τ = 1, 000, 000) we see that
the probability of all m̂i − ρ being simultaneously invertible is essentially 1. The
proof for Proposition 2 can be found in the full version.

Therefore, the first step for our shuffle protocol will be that V picks a random
appropriate ρ

$← Rp and sends ρ to P. P and V then locally compute the values
M̂i,Mi by setting Mi = mi − ρ, M̂i = m̂i − ρ. The proof, on a high level,
then shows that

∏
i Mi =

∏
i M̂i. This is in fact sufficient, as the mi, m̂i can

be considered as roots of polynomials of degree τ . By subtracting ρ from each
such entry and multiplying the results we obtain the evaluation of these implicit
polynomials in the point ρ, and if the m̂i are not a permutation of the mi

then these implicit polynomials will be different. At the same time, the number
of points on which both polynomials can agree is upper-bounded as shown in
Lemma 2.

Prover P Verifier V
ρ ρ

$← Rp \ {m̂i}τ
i=1

M̂i = m̂i − ρ M̂i = m̂i − ρ

Mi = mi − ρ [[Mi]] = [mi] − ρ

θi
$← Rp, ∀i ∈ [τ − 1]

Compute [[Di]] as in Eq. (1), i.e.

[[D1]] = [[θ1M̂1]], [[Dτ]] = [[θτ−1Mτ]],

[[Di]] = [[θi−1Mi + θiM̂i]] for i ∈ [τ − 1] \ {1} {[[Di]]}τ
i=1

β β
$← Rp

Compute si, ∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that

(1) β[[M1]] + s1M̂1 = [[D1]]

(2) ∀i ∈ [τ − 1] \ {1} : si−1[[Mi]] + siM̂i = [[Di]]

(3) sτ−1[[Mτ]] + (−1)τβM̂τ = [[Dτ]]

i.e. all equations from (2)

return accept iff all instances of ΠLin are accepting

Fig. 2. The public-coin zero-knowledge protocol of correct shuffle ΠShuffle.

Our public-coin zero-knowledge protocol proves this identity of evaluations
of these two polynomials by showing that a particular set of linear relations (2)
is satisfied (we will show later how it is related to the aforementioned product
of Mi and M̂i).

As a first step, P draws θi
$← Rp uniformly at random for each i ∈ {1, . . . , τ},

and computes the commitments

238 D. F. Aranha et al.

[[D1]] = [[θ1M̂1]]

∀j ∈ {2, . . . , τ − 1} : [[Dj]] = [[θj−1Mj + θjM̂j]]
[[Dτ]] = [[θτ−1Mτ]].

(1)

P then sends these commitments {[[Di]]}τ
i=1 to the verifier4 V, which in turn

chooses a challenge β ∈ Rp, whereupon P computes si ∈ Rq such that the
following equations are satisfied:

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

(2)

To verify the relations, P uses the protocol ΠLin from Sect. 3 to prove that
the content of each commitment [[Di]] is such that Di,Mi and M̂i satisfies the
equations (2). The protocol ends when V has verified all the τ linear equations
in (2). In order to compute the si values, we can use the following fact:

Lemma 4. Choosing

sj = (−1)j · β

j∏
i=1

Mi

M̂i

+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Eq. (2).

The proof can be found in the full version.
From Lemma 4 it is clear that the protocol is indeed complete. Interestingly,

this choice of sj also makes these values appear random: each sj is formed by
adding a fixed term to a uniformly random private value θj . This will be crucial
to show the zero-knowledge property.

For the soundness, we show the following in the full version:

Lemma 5. Assume that the commitment scheme is binding and that ΠLin is a
sound proof of knowledge for the relation RLin except with probability t. Then the
protocol in Fig. 2 is a sound proof of knowledge for the relation RShuffle except
with probability ε ≤ τδ+1

|Rp| + 4τt.

From Lemmas 4 and 5 we get the following theorem:

Theorem 1. Assume that (KeyGenC, Com, Open) is a secure commitment scheme
with ΠLin as a HVZK Proof of Knowledge of the relation RLin with soundness
error t. Then the protocol ΠShuffle is an HVZK Proof of Knowledge for the rela-
tion RShuffle with soundness error (τ δ + 1)/|Rp| + 4τt.

The proof can be found in the full version.

4 P does not show that these commitments are well-formed, this will not be necessary.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 239

5 Applications to Electronic Voting

We now construct an e-voting protocol by combining the shuffle protocol from
Sect. 4 with a verifiable encryption scheme and a return code mechanism.

Towards this end, consider the shuffled openings of commitments as the out-
come of the election, meaning that each commitment will contain a vote. Com-
mitments are not sufficient for a voting system, and we also need encryptions of
the actual ballots and these must be tied to the commitments, so that the shuf-
fling server can open the commitments without anyone else being able to. We use
a version of the verifiable encryption scheme by Lyubashevsky and Neven [22] to
verifiably encrypt openings under a public key that belongs to the shuffle server.
We also reuse the verifiable encryption to get a system for return codes. The
return code computation is done in two stages, where the first stage is done on
the voter’s computer, and the second stage is done by an infrastructure player.
The voter’s computer commits to its result and verifiably encrypts an open-
ing of that commitment for the infrastructure player. Then it proves that the
commitment contains the correct value.

We will now describe the verifiable encryption scheme that we use as well as
the return code mechanism in more detail, before explaining how to construct
the full e-voting protocol.

5.1 Verifiable Encryption

In a verifiable encryption scheme, anyone can verify that the encrypted plaintext
has certain properties. We use a version of [22] where we use a generalization
of the [7,23] encryption system. The reason is that in [22] the public key only
consists of single polynomials of degree N , requiring that the plaintext vector
must also be a multiple of N - which might not always be the case as in our
setting. This section only describes the algorithms of the generalized scheme
here, while we argue its security in the full version.

In our setting, the goal is to show that the plaintext is a value µ ∈ Dκ
β∞ such

that
Tµ = umod p, (4)

for some fixed T ,u and where T ∈ Rλ×κ
p . Using the construction of [22], one can

show a weaker version of the statement, namely that decryption yields a small
µ̄ and c̄ ∈ C over Rp such that

T µ̄ = c̄u mod p. (5)

We will see that this will be sufficient for our voting scheme5.
The verifiable encryption scheme consists of 4 algorithms: Key generation

KeyGenV , encryption Enc, verification Ver and decryption Dec. To generate a
5 Recently, [3] showed a more efficient HVZKPoK for the respective relation. Unfortu-

nately, their proof cannot guarantee that c̄ is invertible, which is crucial for the ver-
ifiability of the encryption scheme. Their optimization can therefore not be applied
in our setting.

240 D. F. Aranha et al.

public key (A, t) for the verifiable encryption scheme one samples A ← R�×�
q

uniformly at random as well as s1, s2 ← D�
1, sets t ← As1 + s2 and outputs

(A, t) as public key as well as s1 as private key. The encryption, verification
and decryption algorithms are described in Figs. 3, 4 and 5 respectively. Here,
encryption follows [7,23] but additionally computes a NIZK that the plaintext is
a valid preimage of Eq. 4 and also bounded. Ver validates the NIZK, while Dec
decrypts to a short plaintext that is valid under Eq. 5.

There are multiple parameter restrictions in [22] in order to achieve security.
These also apply to our setting:

1. The underlying encryption scheme must safely be able to encrypt and decrypt
messages from Rκ

p . For this, we obviously need that message and noise, upon
decryption, do not “overflow” mod q while the noise at the same time must be
large enough such that the underlying MLWE-problem is hard. For concrete
parameters, the latter can be established by e.g. using the LWE Estimator
[2]. For correctness of the decryption alone, we require that the decryption
of a correct encryption must yield6 a value < q/2. This also means that the
decryption algorithm will always terminate for c = 1 in case the encryptor is
honest.

2. The NIZK requires “quasi-unique responses”, which (as the authors of [22]
argue) it will have with overwhelming probability over the choice of A as long
as 24σ2

E < q.

Encrypting Openings of Commitments. We want to make sure that the
voter actually knows his vote, and that the commitment and the opening of the
commitment are well-formed. We also want to ensure that the ciphertext actually
contains a valid opening of the commitment. This can be achieved if the voter
creates a proof that the underlying plaintext is an opening of the commitment.
Then the ballot box can ensure that the shuffle server will be able to decrypt
the vote and use it in the shuffle protocol. Note that the voter may send a well-
formed but invalid vote, but then the shuffle server can publicly discard that
vote later, and everyone can check that the vote indeed was invalid.

Recall that the commitment is of the form

Com(m; rm) =
[
c1

c2

]
=
[
B1

b2

]
· rm +

[
0
m

]
.

The value c1 serves to bind the committer to a single choice of rm, while
c2 hides the actual message using the unique rm. Fixing rm fixes m uniquely,
and m can indeed be recovered using rm only. The idea is to use the verifiable
encryption scheme to encrypt the opening rm, and prove that the voter knows
a witness for the relation c1 = B1rm mod p where rm is bounded. Any such
randomness could then be used to uniquely open the commitment.

6 This translates into the requirement that q > 2p(2� · N2 · β∞2 + N + 1).

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 241

Input: Public key pk = (A, t, p, q), pair (T ,u),µ ∈ Dκ
β such that

Tµ = u, hash function H : {0, 1}∗ → C,

σE = 11 · max
c∈C

c κN(3 + β)

Output: ciphertext (v,w, c,z) ∈ R ·κ
q × Rκ

q × C × R(2 +2)κ

1 : r,e
$← D ·κ

1 ,e
$← Dκ

1

2 :
v

w
← A ⊗ (pIκ) pI ·κ 0(·κ)×κ 0(·κ)×κ

t ⊗ (pIκ) 0κ×(·κ) pIκ Iκ
r e e µ

3 : y ← yr ye ye yµ
$← DR(2 +2)κ,0,σE

4 : Y ←

⎡
⎢⎣
A ⊗ (pIκ) pI ·κ 0(·κ)×κ 0(·κ)×κ

t ⊗ (pIκ) 0κ×(·κ) pIκ Iκ

0λ×(·κ) 0λ×(·κ) 0λ×κ T

⎤
⎥⎦ yr ye ye yµ

mod q

mod q

mod p

5 : c ← H

⎛
⎜⎜⎝

⎡
⎢⎣
A ⊗ (pIκ) pI ·κ 0(·κ)×κ 0(·κ)×κ

t ⊗ (pIκ) 0κ×(·κ) pIκ Iκ

0λ×(·κ) 0λ×(·κ) 0λ×κ T

⎤
⎥⎦ ,

⎡
⎢⎣
v

w

u

⎤
⎥⎦ ,Y

⎞
⎟⎟⎠

6 : s ← r e e µ c

7 : z ← s + y

8 : With probability 1 − min 1,
DR(2 +2)κ,0,σE

(z)
3 · DR(2 +2)κ,s,σE

(z)
goto 3

9 : if z ∞ ≥ 6σE goto 3, else return e = (v,w, c,z)

Fig. 3. The verifiable encryption algorithm Enc.

Input: Secret key sk = (s1), pair x = (T ,u),

ciphertext t = (v,w, c,z), C = max
c∈C

||c||∞
1 : if Ver(t, x, pk) = 1 then

2 : while

3 : c
$← C

4 : c ← c − c

5 : m[i] ← (w − s1,vi)c mod q for all i ∈ [κ]

6 : if ||m||∞ ≤ q/2C and ||m mod p||∞ < 12σE then

7 : return (m mod p, c)

Fig. 4. Algorithm Dec for decryption of a ciphertext.

Input: ciphertext t = (v,w, c,z) ∈ R ·κ
q × Rκ

q × Rq × R(2 +2)κ, language element x = (T ,u),

public key pk = (A, t, p, q)

1 : if z ∞ > 6 · σE then return 0

2 : Z ←

⎡
⎢⎣
A ⊗ (pIκ) pI ·κ 0(·κ)×κ 0(·κ)×κ

t ⊗ (pIκ) 0κ×(·κ) pIκ Iκ

0λ×(·κ) 0λ×(·κ) 0λ×κ T

⎤
⎥⎦z − c

⎡
⎢⎣
v

w

u

⎤
⎥⎦

mod q

mod q

mod p

3 : if c = H

⎛
⎜⎜⎝

⎡
⎢⎣
A ⊗ (pIκ) pI ·κ 0(·κ)×κ 0(·κ)×κ

t ⊗ (pIκ) 0κ×(·κ) pIκ Iκ

0λ×(·κ) 0λ×(·κ) 0λ×κ T

⎤
⎥⎦ ,

⎡
⎢⎣
v

w

u

⎤
⎥⎦ ,Z

⎞
⎟⎟⎠ then return 0

4 : return 1

Fig. 5. Algorithm Ver for verification of a ciphertext.

242 D. F. Aranha et al.

To encrypt the opening rm verifiably, Step 4 in Fig. 3 is now the system

⎡
⎣
v
w
c1

⎤
⎦ =

⎡
⎣
A� ⊗ (pIκ) pI�·κ 0(�·κ)×κ 0(�·κ)×κ

t� ⊗ (pIκ) 0κ×(�·κ) pIκ Iκ

0λ×(�·κ) 0λ×(�·κ) 0λ×κ B1

⎤
⎦ ·

⎡
⎢⎢⎣

r
e
e′

rm

⎤
⎥⎥⎦ .

5.2 Return Codes

In the case of a malicious computer, we need to make sure that the voter can
detect if the encrypted vote being sent to the ballot box is not an encryption of
the correct ballot. We achieve this by giving the voter a pre-computed table of
return codes which he can use for verification. The return codes are generated
per voter, using a voter-unique blinding-key and a system-wide PRF-key.

A commitment to the blinding key is made public. The computer gets the
blinding-key and must create a pre-code by blinding the ballot with the blinding-
key. The computer also generates commitments to the ballot and the pre-code,
along with a proof that the pre-code has been generated correctly. Anyone with
an opening of the pre-code commitment and the PRF-key can now generate the
correct return code without learning anything about the ballot.

Defining the Return Code. Assume that the voters have ω different options in
the election. Let v̂1, v̂2, . . . , v̂ω ∈ Rp be ballots, let aj ∈ Rp be a blinding-key for
a voter Vj and let PRFk : {0, 1}∗ × Rp → {0, 1}n be a pseudo-random function,
instantiated with a PRF-key k, from pairs of binary strings and elements from
Rp to the set of binary strings of length n. The pre-code r̂ij corresponding to
the ballot v̂i is r̂ij = aj + v̂i mod p. The return code rij corresponding to the
ballot v̂i is rij = PRFk(Vj , r̂ij).

Let caj
, cj and cr̂j

be commitments to the blinding key aj , the ballot
vj ∈ {v̂1, . . . , v̂ω} and the pre-code r̂j = aj + vj mod p. It is now clear that
we can prove that a given r̂j value has been correctly computed by giving a
proof of linearity that aj + vj = r̂j . This can be done either by adding the com-
mitments caj

and cj together directly to get a commitment caj+vj
with larger

randomness (if the choice of parameters allows for the sum of the randomness
to be a valid opening of the commitment) and then prove the equality of the
committed messages, or to extend the proof of linearity to handle three terms.
Our return code construction is now straight-forward:

A commitment caj
to voter Vj ’s voter-unique blinding key aj is public. The

voter Vj ’s computer will get the voter-unique blinding-key aj together with the
randomness used to create caj

. It has already created a commitment cj to the
ballot vj . It will compute the pre-code r̂j = aj + vj , a commitment cr̂j

to r̂j and
a proof Πr̂j

of knowledge of the opening of that sum. Finally, it will verifiably
encrypt as er̂j

the opening of cr̂j
with the return code generator’s public key.

The return code generator receives Vj , cr̂j
, cj , er̂j

and Πr̂j
. It verifies the

proof and the encryption, and then decrypts the ciphertext to get r̂j . It computes
the return code as rj = PRFk(Vj , r̂j).

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 243

Note that if a voter re-votes (such as when exposed to coercion), the return
code generator would be able to learn something about the ballots involved. We
give a return code mechanism for re-voting in the full version of the paper.

5.3 The Voting Scheme

We get our e-voting protocol by combining the shuffle protocol with the verifiable
encryption scheme and the return code construction. A complete description of
this protocol can be found in Fig. 6 and we elaborate more on it in the full ver-
sion. All communication happens over secure channels. We discuss the privacy,
integrity and coercion resistance of the voting scheme in detail in the full version.

Vj

v̂1 r1j

v̂2 r2j

...
...

v̂ω rωj

r
?= rij

D B

F R

S

A

dkS

Shuffle
Generate ΠS

k,caj , dkR

r ← PRFk(Vj , r̂)
Verify Πr̂

aj ,caj

r̂ ← aj + vj

cr̂ ← Com(r̂)
er̂ ← Enc(r̂)
cj ← Com(vj)
ej ← Enc(dj)
Generate Πr̂

caj

Verify Πr̂

Key material
Computation

vj cj ,ej , idj

cr̂,er̂, Πr̂

cr̂

er̂

Πr̂

{ci}τ
i=1

r

r

{ci,ei}τ
i=1

{vπ(i)}τ
i=1ΠS

{c
i} τ

i=
1

cr̂,er̂, Πr̂

{ci}τ
i=1

Fig. 6. Complete voting protocol. A voter Vj gives a vote vj to their computer D. The
value dj is the opening of the commitment cj . The public keys for commitments and
encryption are assumed known to all parties. Signatures are omitted: D signs the vote
to be verified by the ballot box B and the return code server R, while R signs the
incoming votes and sends the signature in return, via B, to D to confirm that the vote
is received. Both B and R sends the commitments of the votes to authorities A to
verify consistent views. After all votes are cast, B forwards them to the shuffle server
S, stripping away the voters id’s and signatures.

Registration Phase. The only thing that happens in this phase is key generation.
Every player generates their own key material and publishes the public keys and
any other commitments.

244 D. F. Aranha et al.

The voter’s computer, the return code generator and a trusted printer then
use a multi-party computation protocol7 to compute the ballot-return code pairs
for the voter, such that only the trusted printer learns the pairs. The trusted
printer then sends these pairs to the voter through a secure channel. We empha-
size that for many voters, the registration phase likely requires significant com-
putational resources for the return code generator and the trusted printer. In
practice, the voter’s computer will usually play a minor role in this key genera-
tion.

Casting a Ballot. The voter begins the ballot casting by giving the ballot vj to
the voter’s computer.

The voter’s computer has the per-voter secret key material, and gets the
ballot vj to be cast from the voter. It computes the pre-code r̂ and generates
commitments cj and cr̂ to the ballot and the pre-code, respectively. It creates
a proof Πr̂ that the pre-code has been correctly computed (with respect to
the commitments). It creates a verifiable encryption ej of an opening of cj to
vj under the shuffle server’s public key, and a verifiable encryption er̂ of an
opening of cr̂ under the return code generator’s public key. It then signs all of
these values, together with its identity and every public key and commitment
used to create the proofs. We note that the voter’s identity and relevant keys
and commitments are included in the proofs used. (This is not an artefact of
making the security proof work, but it prevents real-world attacks.)

The computer sends the commitments, encryptions, proofs and signature to
the ballot box. The ballot box verifies the signature and the proofs. Then it
sends everything to the return code generator.

The return code generator verifies the signature and the proofs. Then it
decrypts the opening of er̂ and computes the return code from r̂. It hashes
everything and creates a signature on the hash. It sends the return code to the
voter’s phone and the signature to the ballot box. The ballot box verifies the
return code generator’s signature on the hash. Then it sends the return code
generator’s signature to the voter’s computer.

The voter’s computer verifies the return code generator’s signature and then
shows the hash and the signature to the voter as the transcript. The voter checks
that the computer accepts the ballot as cast. When the phone displays the return
code r, the voter accepts the ballot as cast if (vj , r) is in the return code table.

Tallying. When the tally phase begins, the ballot box sends everything from
every successful ballot casting to the auditors. It extracts the commitments to the
ballots and the encrypted openings (without any proofs), organizes them into a
sorted list of commitment-ciphertext pairs and sends the sorted list to the shuffle
server. The return code generator sends everything from every successful ballot

7 Since this happens before the election, speed is no longer essential. Even so, for the
computations involved here, ordinary MPC is sufficiently practical. In a practical
deployment, the voter’s computer is unlikely to be part of this computation. It
would instead be delegated to a set of trusted key generation players.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 245

casting to the auditors. The shuffle server receives a sorted list of commitment-
ciphertext pairs from the ballot box. It hashes the list and sends a hash to the
auditors. The shuffle server waits for the auditors to accept provisionally.

An auditor receives data from the ballot box and the return code generator,
and a hash from the shuffle server. If the data from the ballot box and the return
code generator agree, the auditor extracts the sorted commitment-ciphertext
pairs from the data, hashes it and compares the result with the hash from the
shuffle server. If it matches, the auditor provisionally accepts.

When the shuffle server receives the provisional accept, it decrypts the com-
mitment openings and verifies that the openings are valid. For any invalid open-
ing, it sends the commitment-ciphertext pair and the opening to the auditors. It
then sorts the ballots and creates a shuffle proof for the ballots and the commit-
ments. It then counts the ballots to get the election result and sends the ballots,
the shuffle proof and the result to the auditors.

An auditor receives the ballots, the shuffle proof and the result from the
shuffle server. It verifies the proof and that the election result is correct. It
extracts the hashes (but not the signatures) signed by the return code generator
from the ballot box data and creates a sorted list of hashes. It signs the hash list
and the result and send both signature and hash list to the shuffle server. Once
the shuffle server has received signatures and hash lists from every auditor, it
verifies that the hash lists are identical and that the signatures verify. It then
outputs the result, the hash list and the auditors’ signatures as the transcript.

Verification. The voter has the transcript output by the voter’s computer and
the transcript output by the shuffle server. It first verifies that the hash from the
computer’s transcript is present in the shuffle server’s hash list. Then it verifies
all the signatures. If everything checks out, the voter accepts.

6 Performance

As outlined in our construction, we are nesting the commitment scheme of [5]
into the encryption scheme of [22]. To determine secure while not enormously
big parameters for our scheme, we need to first make sure that we have suffi-
ciently large parameters to ensure both binding and hiding of the commitments
for which we will use the “optimal” parameter set of [5] (but with twice the
standard deviation to keep the probability of abort in the rejection sampling
down to 3 trials for the proofs of linearity) which is both computationally bind-
ing and hiding (see Table 2). The LWE-estimator [2] estimates at least 100 bits
of security with these parameters. We then instantiate the verifiable encryption
scheme with compatible parameters, which is possible due to our generalization
of [22]. The verifiable encryption scheme will then yield decryptions with an ∞-
norm that is way below the bound for which the commitment scheme is binding,
so any valid decryption which differs from the original vote would break the
binding of the commitment scheme. In general, the instantiation of the encryp-
tion scheme offers much higher security than the commitment scheme, but the

246 D. F. Aranha et al.

Table 1. Parameters for the commitment and verifiable encryption schemes.

Parameter Explanation Constraints

N, δ Degree of polynomial XN + 1 in R N ≥ δ ≥ 1, where N, δ powers of two

p Modulus for commitments Prime p = 2δ + 1 mod 4δ

β∞ ∞-norm bound of certain elements Choose β∞ such that β∞ < p1/δ/
√

δ

σC Standard deviation of discrete Gaussians Chosen to be σC = 22 · ν · β∞ · √
kN

k Width (over Rp) of commitment matrix

n Height (over Rp) of commitment matrix

ν Maximum l1-norm of elements in C
C Challenge space C =

{
c ∈ Rp | ‖c‖∞ = 1, ‖c‖1 = ν

}

C̄ The set of differences C − C excluding 0 C̄ =
{

c − c′ | c �= c′ ∈ C}

Dβ∞ Set of elements of ∞-norm at most β∞ Dβ∞ = {x ∈ Rp | ‖x‖∞ ≤ β∞}
σE Standard deviation of discrete Gaussians Chosen to be σE = 11 · ν · √

κN(3 + β∞)

κ Dimension of message space in

encryption

Equal to the length of randomness k

� Dimension the encryption matrix Equal to the size of the commitments k − n

λ Dimension of public u in T µ = u Equal to the height n + 1 of the commitment

matrix

q Modulus for encryption Must choose prime q such that q > 24σ2
E

and q > 2p(2� · N2 · β∞2 + N + 1)

and q = 2δ + 1 mod 4δ

τ Total number of votes For soundness we need (τδ + 1)/|Rp| < 2−128

choice of parameters are restricted by the constraints from combining it with
the commitments (Table 2).

6.1 Size

Size of the Votes. Note that each ciphertext e includes both the encrypted
opening (v,w) and the proof of valid opening (c,z). Using a lattice based signa-
ture scheme like Falcon-768 [26], we have signatures of size ≈ 1 KB. The voter
verifiability protocol requires a commitment, an encryption + proof, and a proof
of linearity. It follows that a vote (cj ,ej , cr̂,er̂,Πr̂) is of total size ≈ 235 KB,
which means that, for τ voters, the ballot box B receives 235τ KB of data.

Size of the Shuffle Proof. Our shuffle protocol is a 4+3τ -move protocol with
elements from Rp. Each element in Rp has at most N coefficients of size at most
p, and hence, each Rp-element has size at most N log p bits. For every Rp-vector
that follows a Gaussian distribution with standard deviation σ we assume that
we can represent the element using N · log(6σ) bits. Every element from C will
be assumed to be representable using at most 2N bits.

We analyze how much data we have to include in each step of the shuf-
fling protocol in Fig. 2. Using the Fiat-Shamir transform [12], we can ignore
the challenge-messages from the verifier. The prover ends up sending 1 commit-
ment, 1 ring-element and 1 proof of linearity per vote. Using the parameters
from Table 2, we get that the shuffle proof is of total size ≈ 17τ KB.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 247

6.2 Timings

We collected performance figures from our prototype implementation written in
C to estimate the runtime of our scheme. Estimates are based on Table 2 and
the implementation was benchmarked on an Intel Skylake Core i7-6700K CPU
running at 4 GHz without TurboBoost using clang 12.0 and FLINT 2.7.1 [18].
Timings are available in Table 3, and the source code can be found on GitHub8.

Table 2. Parameters for the commitments by Baum et al. [5] and verifiable encryption
scheme by Lyubashevsky and Neven [22].

Parameter Commitment (I) Encryption (III)

N 1024 1024

p ≈ 232 ≈ 232

q - ≈ 256

β∞ 1 1

σ σC ≈ 54000 σE ≈ 54000

ν 36 36

δ 2 2

k 3 -

n 1 -

� - 2

κ - 3

λ - 2

Proof 4.7 KB 42.4 KB

Primitive 8.2 KB 64.5 KB

Table 3. Timings for cryptographic operations. Numbers were obtained by computing
the average of 104 consecutive executions of an operation measured using the cycle
counter available in the platform.

Our scheme: Commit Open Encrypt Verify Decrypt Shuffle

Time 1.1 ms 1.2 ms 208 ms 39 ms 6 ms 27τ ms

Elementary Operations. Multiplication in Rp and Rq is usually implemented
when p ≡ q ≡ 1 mod (2N) and XN + 1 splits in N linear factors, for which
the Number-Theoretic Transform is available. Unfortunately, Lemma 1 restricts
parameters and we instead adopt p ≡ q ≡ 5 mod 8 [22]. In this case, XN +1 splits
in two N/2-degree irreducible polynomials (XN/2 ± r) for r a modular square
root of −1. This gives an efficient representation for a = a1X

N/2 + a0 using the

8 https://github.com/dfaranha/lattice-voting-ctrsa21.

https://github.com/dfaranha/lattice-voting-ctrsa21

248 D. F. Aranha et al.

Chinese Remainder Theorem: CRT (a) = (a (mod XN/2−r), a (mod XN/2+r)).
Even though the conversions are efficient due to the choice of polynomials, we
sample ring elements directly in this representation whenever possible. As in
[24], we implement the base case for degree N/2 using FLINT for polynomial
arithmetic [18]. We use SHA256 for hashing to generate challenges.

Commitment. A commitment is generated by multiplying the matrix B by a
vector rm over Rp and finally adding the message m to the second component
in the CRT domain. Computing and opening a commitment takes 0.9 ms and
1.2 ms, respectively, and sampling randomness rm takes only 0.2 ms.

Verifiable Encryption. Verifiable encryption needs to sample vectors according
to a discrete Gaussian distribution. For an Rq element with standard deviation
σE ≈ 215.7 (for the encryption scheme), the implementation from COSAC [28]
made available for σ = 217 samples 1024 integers in 0.12 ms using very small
precomputation tables. Each encryption iteration takes 69 ms and, because we
expect to need 3 attempts to generate one valid encryption (line 8 in Fig. 3), the
total time of encryption is around 208 ms. For verification, 39 ms are necessary
to execute a test; and 6 ms are required for the actual decryption.

Shuffle Proof. The shuffle proof operates over Rp and is thus more efficient.
Sampling uses the same approach as above for σC from the commitment scheme.
Benchmarking includes all samplings required inside the protocol, the commit-
ment, the proof of linearity and, because we expect to need 3 attempts to gen-
erate each of the proofs of linearity to the cost of 7.5 ms, amounts to 27τ ms for
the entire proof, omitting the communication cost.

6.3 Comparison

We briefly compare our scheme with the scheme by del Pino et al. [11] from
CCS 2017 in Table 4. We note that the scheme in [11] requires at least ξ ≥ 2
authorities to ensure ballot privacy, where at least one authority must be honest.
The authorities run the proof protocol in parallel, and the time they need to
process each vote is ≈5 times slower per vote than in our scheme. We only need
one party to compute the shuffle proof, where we first decrypt all votes and
then shuffle. Our proof size is at least 19 KB smaller per vote when ξ = 2, that
is, a saving of more than 50%, and otherwise much smaller in comparison for
ξ ≥ 3. We further note that both implementations partially rely on FLINT for
polynomial arithmetic and were benchmarked on Intel Skylake processors. A
significant speedup persists after correcting for clock frequency differences.

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 249

Table 4. Comparing our scheme with the yes/no voting scheme in [11]

Comparison Vote size Voter time Proof size Prover time

Our scheme: 115KB 209ms 17τ KB 33τ ms

CCS 2017 [11]: 20ξ KB 9ms 18ξτ KB 150τ ms

For a fair comparison, we only included the size and timings of the commit-
ment of the vote and the encrypted openings from our scheme. In practice, the
size and timings of the voter will be twice of what it is in the table, because of
the return code mechanism, which is not a part of [11]. This has no impact on
the decryption and shuffle done by the prover. The work done by the voter is
still practical. For [11] to be used in a real world election, they would need to
include an additional mechanism for providing voter verifiability, like the one we
have constructed.

Finally, we note that [11] can be extended from yes/no voting to votes con-
sisting of strings of bits. However, the size and timings of such an extension will
be linear in the length of the bit-strings, and our scheme would do even better
in comparison, as we can handle votes encoded as arbitrary ring-elements.

Thanks

We thank Andreas Hülsing and the anonymous reviewers for their helpful com-
ments.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security 2008.
USENIX Association, July–August 2008

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS,
vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 17

4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Boyen, X., Haines, T., Müller, J.: A verifiable and practical lattice-based decryption
mix net with external auditing. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020, Part II. LNCS, vol. 12309, pp. 336–356. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59013-0 17

https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-59013-0_17

250 D. F. Aranha et al.

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012. ACM, January 2012

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
e-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

10. Costa, N., Mart́ınez, R., Morillo, P.: Lattice-based proof of a shuffle. In: Bracciali,
A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019 Workshops. LNCS,
vol. 11599, pp. 330–346. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-43725-1 23

11. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: ACM CCS 2017. ACM Press, October–November 2017

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

13. Gjøsteen, K.: The Norwegian internet voting protocol. In: E-Voting and Identity -
Third International Conference, VoteID 2011, pp. 1–18 (2011)

14. Gjøsteen, K., Lund, A.S.: An experiment on the security of the Norwegian elec-
tronic voting protocol. Ann. Telecommun. 1–9 (2016

15. Gjøsteen, K., Strand, M.: A roadmap to fully homomorphic elections: stronger
security, better verifiability. In: Brenner, M., et al. (eds.) FC 2017 Workshops.
LNCS, vol. 10323, pp. 404–418. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70278-0 25

16. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

17. Hao, F., Ryan, P.Y.A. (eds.): Real-World Electronic Voting: Design, Analysis and
Deployment. CRC Press, Boca Raton (2016)

18. Hart, W., Johansson, F., Pancratz, S.: FLINT: fast library for number theory
(2013). Version 2.4.0, http://flintlib.org

19. Lewis, S.J., Pereira, O., Teague, V.: Trapdoor commitments in the SwissPost e-
voting shuffle proof (2019)

20. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

22. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

23. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

24. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/978-3-642-33027-8_31
http://flintlib.org
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-319-78381-9_8

Lattice-Based Proof of Shuffle and Applications to Electronic Voting 251

25. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS
2001. ACM Press, November 2001

26. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

27. Strand, M.: A verifiable shuffle for the GSW cryptosystem. In: Zohar, A., et al.
(eds.) FC 2018 Workshops. LNCS, vol. 10958, pp. 165–180. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-662-58820-8 12

28. Zhao, R.K., Steinfeld, R., Sakzad, A.: COSAC: COmpact and scalable arbitrary-
centered discrete Gaussian sampling over integers. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 284–303. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 16

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-030-44223-1_16
https://doi.org/10.1007/978-3-030-44223-1_16

More Efficient Shuffle Argument
from Unique Factorization

Toomas Krips1 and Helger Lipmaa1,2(B)

1 University of Tartu, Tartu, Estonia
2 Simula UiB, Bergen, Norway

Abstract. Efficient shuffle arguments are essential in mixnet-based e-
voting solutions. Terelius and Wikström (TW) proposed a 5-round shuffle
argument based on unique factorization in polynomial rings. Their argu-
ment is available as the Verificatum software solution for real-world devel-
opers, and has been used in real-world elections. It is also the fastest non-
patented shuffle argument. We will use the same basic idea as TW but
significantly optimize their approach. We generalize the TW characteri-
zation of permutation matrices; this enables us to reduce the communica-
tion without adding too much to the computation. We make the TW shuf-
fle argument computationally more efficient by using Groth’s coefficient-
product argument (JOC 2010). Additionally, we use batching techniques.
The resulting shuffle argument is the fastest known ≤5-message shuf-
fle argument, and, depending on the implementation, can be faster than
Groth’s argument (the fastest 7-message shuffle argument).

Keywords: Mix-net · Shuffle argument · Unique factorization

1 Introduction

A (zero knowledge [20]) shuffle argument enables a prover to convince a verifier
that given two lists of ciphertexts (encrypted by using a suitable homomorphic,
blindable public-key cryptosystem like Elgamal [11]) [w] = ([w1], . . . , [wN]) and
[ŵ] = ([ŵ1], . . . , [ŵN]), she knows a permutation π ∈ SN and a vector of ran-
domizers s = (s1, . . . , sN), such that [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)) for
i = 1, . . . , N .1 On top of satisfying the intuitively clear soundness requirement,
it is required that the verifier obtains no additional information except the truth
of the statement; that is, a shuffle argument should be zero knowledge [20]. In
particular, shuffle arguments are important in e-voting applications, [9], allowing
one to anonymize encrypted ballots while preventing one from cheating, e.g., by
1 Here, the computation is done in an additive cyclic group G of prime order q, and

for a fixed generator P = [1] of G, we denote xP = x[1] by [x]. We generalize this
notation to matrices as in ([aij]) = [(aij)] = (aijP). Nevertheless, when discussing
efficiency, we use multiplicative terminology by (say) computing the number of expo-
nentiations instead of the number of scalar multiplications. Finally, recall that an
Elgamal encryption belongs to G

2.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 252–275, 2021.
https://doi.org/10.1007/978-3-030-75539-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_11

More Efficient Shuffle Argument from Unique Factorization 253

changing some of the ballots. Shuffle arguments and mix-nets have several other
prominent applications, see [25] for further references. As an important recent
emerging application, shuffle arguments have become popular in cryptocurren-
cies, [15].

Since the prover may not know any of the corresponding plaintexts, the
construction of efficient shuffle arguments is nontrivial. While contemporary
shuffle arguments are relatively efficient, they are conceptually quite compli-
cated, often relying on (say) a novel characterization of permutation matrices.
In particular, computationally most efficient shuffle arguments either offer less
security (for example, the argument of [18] is not zero-knowledge) or rely on
the CRS-model [6] and require a large number of rounds (unless one relies on
the random oracle model [4] to make the argument non-interactive by using the
Fiat-Shamir heuristic [16]). On the other hand, the proposed random oracle-less
CRS-model non-interactive shuffle arguments [12–14,23,27] are computationally
considerably less efficient. While the random oracle model and the Fiat-Shamir
heuristic are dubious from the security viewpoint [8,19], there are no known
attacks on random oracle-model shuffle arguments. Moreover, the most efficient
random oracle-less shuffle arguments [12–14,27] are only proven to be sound in
the generic group model that is also known to be problematic. For the sake
of efficiency, we only consider interactive shuffle arguments with the implicit
understanding that they can be made non-interactive by using the Fiat-Shamir
heuristic. Nevertheless, it is preferable to minimize the number of rounds.

We recall three main paradigms used in the known computationally most
efficient shuffle arguments. Other approaches are known, but they have, up to
now, resulted in significantly less computation-efficient shuffle arguments. For
example, an orthogonal direction is to minimize the communication and the
verifier’s computation at the cost of possibly larger prover’s computation and
the number of rounds; see [1].

First, the approach of Furukawa and Sako [18] relies on a specific character-
ization of permutation matrices. Namely, a matrix M is a permutation matrix
if 〈M (i),M (j)〉 = δij and 〈M (i),M (j) � M (k)〉 = δijk, where M (i) is the ith
column vector of M , δij = [i = j] is the Kronecker delta, δijk = δijδik, �
denotes the element-wise multiplication, and 〈, 〉 denotes the scalar product.
The Furukawa-Sako argument satisfies a privacy requirement that is weaker than
zero knowledge. Later, Furukawa [17] made it more efficient and zero-knowledge.
Importantly, shuffle arguments of this approach have only 3 messages.

Second, the approach of Neff [28] uses the fact that permuting the roots of
polynomial results in the same polynomial. Groth [21] optimized Neff’s argu-
ment, and the resulting argument is the most computationally efficient known
shuffle argument. Unfortunately, the arguments that follow Neff’s approach
require 7 messages.

Terelius and Wikström (TW [32]) proposed the third approach that uses
the fact that Zq[X] is a unique factorization domain. This approach is based
on another characterization of permutation matrices: namely, M ∈ Z

N×N
q is a

permutation matrix iff

254 T. Krips and H. Lipmaa

(a)
∏N

i=1〈M (i),Xi〉 =
∏N

i=1 Xi, where Xi are independent random variables,
and

(b) M · 1N = 1N .

The TW approach results in shuffle arguments of the intermediate number of
messages (namely, 5). However, up to now, it has resulted in somewhat higher
computational complexity than the first two approaches; see Table 1 for an effi-
ciency comparison.

Notably, the TW approach has some benefits that are important in practical
applications. First, the first two approaches are patented, while the TW app-
roach is not. Second, the TW approach is backed up by an available open-source
software package2 that has been used in several real-life electronic elections.
Therefore, we see it as an important open problem to optimize the TW app-
roach to the level of the first two approaches, if not above.

Our Contributions. We propose a more efficient version of the shuffle argu-
ment of Terelius and Wikström [32] (that is, the TW approach). It provides bet-
ter computational and communication complexity than the argument of Terelius
and Wikström as described in [32,34], due to the new characterization of per-
mutation matrices, the use of Groth’s coefficient-product argument, and more
precise security analysis. Computationally, the resulting shuffle argument is the
most efficient known ≤5-message shuffle argument, and comparable to the most
efficient 7-message shuffle argument by Groth [21], see Table 1.

We also note that [32] only has a sketch of the security proof (although their
main reduction is precise), while [34] lacks any security proofs. Thus, for the first
time, we give full security proof of a unique-factorization-based shuffle argument.

In some aspects, the new argument is very similar to the 7-message argu-
ment of Groth [21] that corresponds to the second approach. A precise efficiency
comparison between the new argument and Groth’s argument is up to imple-
mentation since we replaced some multi-exponentiations with the same number
of fixed-base exponentiations. See Table 1 for an efficiency comparison.

The new shuffle argument is broadly based on the TW shuffle argument,
with three main technical changes that range from a generalization of the TW’s
characterization of permutation matrices to using a protocol from Groth’s shuffle
argument to using batch verification techniques.

First. In Sect. 4, we generalize the permutation matrix characterization of
Terelius-Wikström. Namely, we call a family of non-zero polynomials ψi(X),
1 ≤ i ≤ N , PM-evidential, iff neither any non-linear sum of ψi nor any ψ2

i

divides their product. Generalizing a result from [32], we prove that M ∈ Z
N×N
q

is a permutation matrix iff the following holds:

(i)
∏N

i=1〈M (i), ψi(X)〉 =
∏N

i=1 ψi(X) for some PM-evidential polynomial fam-
ily ψi, and

2 http://www.verificatum.org.

http://www.verificatum.org

More Efficient Shuffle Argument from Unique Factorization 255

Table 1. The complexity of some known interactive shuffle arguments, sorted by the
number of rounds. Multi-exponentiations and fixed-based exponentiations are much
more efficient than usual exponentiations.

Prover Verifier Prover + Ver. �round

�(
N

-w
id

e
m

.e
.)

�e
x
p
.

N

�(
N

-w
id

e
f.
b
.e

.)

�(
N

-w
id

e
m

.e
.)

�e
x
p
.

N

�(
N

-w
id

e
f.
b
..
e.

)

�(
N

-w
id

e
m

.e
.)

�e
x
p
.

N

�(
N

-w
id

e
f.
b
.e

.)

Furukawa [17] 3 1 5 6 — — 9 1 6 3

Verificatum [34] 9 1 — 9 — — 18 1 — 5

Current paper 5 — 1 6 — — 11 — 1 5

Groth [21] 6 — — 6 — — 12 — — 7

(ii) M · 1N = 1N .

In particular, we show that one can choose ψi(X1,X2) = Xi
1 + X2. The use of

the novel characterization allows us to minimize communication: in one round
of the communication, the TW shuffle verifier returns N new random variables
Xi. In our case, 2 variables suffice.3

Second. In a coefficient-product argument, the prover proves that the product
of the coefficients of a committed vector is equal to a publicly known integer.
Almost all (non-multi-)exponentiations in the TW shuffle argument are executed
during the coefficient-product argument. Instead of the coefficient-product argu-
ment of [32], we use a more efficient coefficient-product argument by Groth [21].
Together with batch verification techniques [2], this is the main technique that
helps us to decrease the computational complexity of the TW argument.

Third. We use batch verification techniques to speed up the verifier. Intuitively,
batch verification means that instead of checking two (or more) verification equa-
tions, one checks whether a random linear combination of them holds. Depending
on the equations, this allows us to save some verifier’s computation.

Discussion. We compare efficiency in Table 1, see Sect. 6 for more information.
Note that Table 1 is not completely precise since many of the single exponen-
tiations come as part of (say) 2-wide multi-exponentiations. In the new shuffle
3 We note that one can use a PRG to generate N random variables from a random

seed, and thus if this method is applicable, one does not have to use our optimization.
However, there might be situations where one does not want to or cannot rely on a
PRG.

256 T. Krips and H. Lipmaa

argument, the prover executes four (≈N)-wide multi-exponentiations and in
addition approximately N fixed-base exponentiations. Since an N -wide multi-
exponentiation is much more efficient than N (non fixed-base) exponentiations,
the new argument is significantly faster than the arguments of the first approach
or the argument of Terelius and Wikström [32].

The comparison of the new shuffle argument with the best arguments fol-
lowing Neff’s approach like [21] is more complicated. Since Neff’s approach does
not use permutation matrices, it only uses multi-exponentiations. However, in
the new shuffle argument, the only non-multi exponentiations are fixed-base
exponentiations, and the prover has only to execute N of them. By using a
version Straus’s algorithm [31], the computation of N fixed-base exponentia-
tions requires one to execute approximately 2N log2 q/ log2(N log2 q) squarings
or multiplications. This is comparable to the time required by Straus’s multi-
exponentiation algorithm, where one has to use approximately the same number
of multiplications.

However, when one uses a parallel computation model (like a modern GPU),
an N -wide multi-exponentiation induces a latency (at least Θ(log N), to com-
bine all N individual exponentiations) while N fixed-base exponentiations can be
computed independently. Hence, a precise comparison depends on the used hard-
ware platform. Moreover, the bit complexity of (multi-)exponentiations depends
heavily on the bit-length of exponents. In the current paper, we provide a pre-
cise analysis of the size of exponents; such analysis in the case of the Groth’s
argument from [21] is still missing.

2 Preliminaries

Let q be a large prime. All arithmetic expressions with integers (for example,
Eqs. (1)–(3)) are in Zq by default, while commitments and ciphertexts belong
to an order q cyclic additive group G of order q. For a fixed generator P = [1]
of G, we denote xP = x[1] by [x]. We generalize this notation to matrices as in
([aij]) = [(aij)] = (aijP); e.g., [a, b] = ([a], [b]). We assume that p ← (G, q, [1]) is
generated by a public algorithm Pgen(1λ).

Implicitly, all vectors are column vectors. For a vector a, let wt(a) be the
number of its non-zero coefficients. The dimension of all vectors is by default N .
Let 〈a,b〉 =

∑N
i=1 aibi be the scalar product of vectors a and b (in Zq, as usual).

We denote the vertical concatenation of two vectors a and b by a //b. Let ei be
the ith unit vector. For a matrix M = (Mij)ij ∈ Z

N×N
q , let M i be its ith row

vector, and M (j) be its jth column vector. Let SN be the symmetric group of
N elements. For a permutation π ∈ SN , the corresponding permutation matrix
M = Mπ ∈ Z

N×N
2 is defined by Mij = 1 iff i = π(j). Thus, a Boolean matrix

M is a permutation matrix if it has a single 1 in every row and column. When
A is a randomized algorithm, we denote by a ← A(inp; r) the output of A on
input inp given the random tape r.

More Efficient Shuffle Argument from Unique Factorization 257

Let λ be a security parameter; the complexity of algorithms is computed
as a function of λ. Let poly(λ)/negl(λ) be an arbitrary polynomial/negligible
function, and let f(X) ≈c g(X) iff |f(X) − g(X)| = negl(λ).

Lemma 1 (Schwartz-Zippel [30,35]). Let f ∈ F[X1, . . . , Xn] be a non-zero
polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset of F, and
let x1, . . . , xn be selected at random independently and uniformly from S. Then
Pr[f(x1, . . . , xn) = 0] ≤ d/|S|.

Cryptography. Let λ be the security parameter. For two distributions D1 and
D2, D1 ≈c D2 means that they are computationally indistinguishable by any
non-uniform probabilistic polynomial-time adversary.

In the CRS model [6], a trusted third party generates a CRS crs together with
a trapdoor. The CRS is published and given to all participants. The trapdoor is
however kept secret, and only used in the proof of zero-knowledge to generate a
simulated transcript of the protocol.

Commitment Schemes. A commitment scheme Γ = (Pgen,KGen,Com) in the
CRS model consists of a key generation algorithm KGen, that generates a com-
mitment key ck (the CRS), and a commitment algorithm Comck(a; ·) that first
samples a random r and then uses it to commit to a message a. We also assume
that ck implicitly contains p. Γ is perfectly hiding if a random commitment is
statistically independent from the message. Γ is (T, ε)-binding, if for any prob-
abilistic T -time adversary A, Advbinding

Γ,A (λ) ≤ ε, where

Advbinding
Γ,A (λ) := Pr

[

p ← Pgen(1λ); ck ← KGen(p); (a0,a1, r0, r1) ← A(ck);
Comck(a0; r0) = Comck(a1; r1) ∧ a0 �= a1

]

.

We say that Γ is computationally binding if it is (poly(λ), negl(λ))-binding.
The extended Pedersen commitment scheme Γp [29] is defined as follows. Let

p = (G, q, [1]). KGen samples ck = ([h1], . . . , [hN]) ←$ G
N uniformly at random.

For a ∈ Z
N
q , let Comck(a; r) := r[1] + 〈a, [h]〉 = r[1] +

∑N
i=1 ai[hi]. Γp is com-

putationally binding under the discrete logarithm assumption [7]. It is perfectly
hiding since the distribution of Comck(a; r), r ←$ Zq, is uniform in G.

The extended Pedersen commitment scheme is additively homomorphic,
Comck(a0 + a1; r0 + r1) = Comck(a0; r0) + Comck(a1; r1). Clearly, from this
it follows that for any integer n, Comck(na;nr) = n · Comck(a; r).

Cryptosystems. An public-key cryptosystem Π = (Pgen,KGen,Enc,Dec) con-
sists of a key generation algorithm KGen, that generates a public key pk and
a secret key sk, an encryption algorithm [w] ← Encpk(a; ·) that first samples
a random r and then uses it to encrypt a message a, and a decryption algo-
rithm Decck([w]) that uses sk to decrypt [w]. Obviously, it is required that for
(pk, sk) ← KGen(p), Decsk(Encpk(a; r)) = a for any a, r.

258 T. Krips and H. Lipmaa

In the Elgamal cryptosystem [11], one samples sk ←$ Zq and then defines the

public key as pk = [1
h], where [h] ← sk·[1]. Let Encpk([m]; r) = [c1

c2] =
(

[m]+r[h]
r[1]

)

.
To decrypt a ciphertext, one computes [c1] − sk[c2] = [m]. The Elgamal cryp-
tosystem is IND-CPA secure, assuming that the Decisional Diffie-Hellman prob-
lem is hard. It is group-homomorphic, with Encpk([m]; r) + Encpk([m]′; r′) =
Encpk([m] + [m]′; r + r′).

In the lifted Elgamal, the plaintext m belongs to Zq, and the cipher-

text is
(

m[1]+r[h]
r[1]

)

. Lifted Elgamal is Zq-homomorphic, with Encpk(m; r) +
Encpk(m′; r′) = Encpk(m + m′; r + r′).

The new shuffle argument allows to use both lifted and non-lifted Elga-
mal. Moreover, it allows one to work with a tuple of plaintexts [m] =
([m1], . . . , [mM])�, for some M ≥ 1, that is encrypted as Encpk([m]; r) =
(Encpk([m1]; r1) // . . . //Encpk([mM]; rM)). For the sake of simplicity, we concen-
trate the exposition on the case of (non-lifted) Elgamal and M = 1. However,
the case M > 1 is important in practice, e.g., in the case of complicated ballots.

Arguments. Let R = {(inp, wit)}, with |wit| = poly(|inp|), be a polynomial-
time verifiable relation. Let LR = {inp : ∃wit, (inp, wit) ∈ R}. We allow R
and L to depend on the common reference string (CRS) crs that is generated
by a trusted third party by using an algorithm KGen; crs can say contain the
description p of a group and the commitment key ck = [{hi}] of the extended
Pedersen commitment scheme. In this case, we denote R by Rcrs and LR by
LR:crs. Thus, (crs, inp, wit) ∈ R iff (inp, wit) ∈ Rcrs.

For a randomized two-party protocol (KGen,P,V) between the prover P and
the verifier V in the CRS model, let σp be the number of random choices the
prover can make (thus, log2 σp� is the bit-length of the prover’s random tape)
and σv the number of random choices the verifier can make (thus, log2 σv�
is the bit-length of the verifier’s random tape). We require the protocol to
be public-coin, at the end of which the verifier will either accept (outputs
acc) or reject (outputs rej). We allow the acceptance to be probabilistic, and
assume that the verifier does also output the coins he used to decide accep-
tance. For a protocol between prover P and verifier V in the CRS model, let
〈P(crs, inp, wit),V(crs, inp)〉 be the whole transcript between P and V, given
crs, common input inp and prover’s private input (witness) wit. We sometimes
write 〈P(crs, inp, wit),V(crs, inp)〉 = acc to denote that the verifier accepts, and
rej if V rejects. The concrete meaning will be clear from the context.

Then, (Pgen,KGen,P,V) is an argument for relation R if for all non-uniform
probabilistic polynomial-time stateful adversaries A,

Completeness: Pr[p ← Pgen(1λ); crs ← KGen(p); (inp, wit) ← A(crs) :
(inp, wit) �∈ Rcrs ∨ 〈P(crs, inp, wit),V(crs, inp)〉 = acc] ≈c 1.

Soundness: Pr[p ← Pgen(1λ); crs ← KGen(p); inp ← A(crs) : inp �∈ LR:crs ∧
〈A(crs, inp),V(crs, inp)〉 = acc] ≈c 0.

We call (KGen,P,V) a proof if soundness holds against unbounded adversaries.
An argument is public coin if the verifier’s subsequent messages correspond to

More Efficient Shuffle Argument from Unique Factorization 259

subsequent bit-strings from her random tape. In particular, they do not depend
on the prover’s messages.

As noted in [21], the standard definition of a proof of knowledge [3] does not
work in such a setting since the adversary may have non-zero probability of com-
puting some trapdoor pertaining to the common reference string and use that
information in the argument. In this case, it is possible that there exists a prover
with 100% probability of making a convincing argument, where we nonetheless
cannot extract a witness. We prove security by using witness-extended emula-
tion [26], the CRS-model version of which was defined by Groth [21]. Intuitively,
an argument has witness-extended emulation, if for every prover P there exists
an emulator Emul, such that if P makes V accept, then almost always Emul makes
V accept and outputs P∗’s witness.

Definition 1. A public-coin argument Π = (Pgen,KGen,P,V) has witness-
extended emulation if for all deterministic polynomial-time provers P∗ there
exists an expected polynomial-time emulator Emul, such that for all non-uniform
probabilistic polynomial-time adversaries A, Advsound

Π,A (λ) ≈c Advemul
Π,A,Emul(λ),

where

AdvsoundΠ,A (λ) :=Pr

[
p ← Pgen(1λ); crs ← KGen(p);ωP ←$ R; (inp, st) ← A(crs;ωP);

tr ← 〈P∗(crs, inp; st),V(crs, inp)〉 : A(tr) = acc

]
,

Advemul
Π,A,Emul(λ) :=Pr

⎡
⎢⎢⎣
p ← Pgen(1λ); crs ← KGen(p);ωP ←$ R; (inp, st) ← A(crs;ωP);

(tr, wit) ← Emul〈P
∗(crs,inp;st),V(crs,inp)〉(crs, inp) :

A(tr) = acc ∧ (tr is accepting ⇒ (inp, wit) ∈ Rcrs)

⎤
⎥⎥⎦ .

Here, Emul can rewind the transcript oracle 〈P∗(crs, inp; st),V(crs, inp)〉 to any
particular round with the verifier choosing fresh random coins, R is the space of
the random coins for A, ωP is the random tape of A, and st is the state of P∗

that also contains his random coins (P is deterministic in inputs (crs, inp, st)).

The verifier’s randomness is a part of the transcript (we recall that this includes
also the random coins used to probabilistically accept the transcript), while P∗

is a deterministic function of (crs, inp; st). Thus combining (crs, inp; st) with the
emulated transcript gives us the view of both the prover and the verifier, and at
the same time gives us the witness.

Then, we have an argument of knowledge in the sense that the emulator is
able to extract the witness whenever P∗ makes a convincing argument. Hence,
this definition implies soundness.

Honest-Verifier Zero Knowledge (HVZK, [10]). An argument Π =
(Pgen,KGen,P,V) is honest-verifier zero knowledge if there exists a probabilis-
tic polynomial-time simulator Sim, such that for any non-uniform probabilistic
polynomial-time adversary A,

260 T. Krips and H. Lipmaa

Pr

[

p ← Pgen(1λ); crs ← KGen(p); (inp, wit, ωV) ← A(crs);
tr ← 〈P(crs, inp, wit),V(crs, inp;ωV)〉 : (inp, wit) ∈ Rcrs ∧ A(tr) = acc

]

≈c Pr

[

p ← Pgen(1λ); crs ← KGen(p); (inp, wit, ωV) ← A(crs);
tr ← Sim(crs, inp;ωV) : (inp, wit) ∈ Rcrs ∧ A(tr) = acc

]

.

That is, given that the verifier is honest, there exists a simulator that can sim-
ulate the view of the prover without knowing the witness. To compensate for
this, Sim is allowed to create the messages of the transcript out-of-order.

3 Coefficient-Product Argument

In the shuffle argument, we need a coefficient-product argument, where the prover
P shows that given a CRS ck = ([h1], . . . , [hN]) (ck for the Pedersen commitment
scheme), a public commitment [ct] ∈ G and a public value γ ∈ Zq, he knows how
to open [ct] to a vector t, [ct] = Comck(t; rt), so that

∏N
i=1 ti = γ. Formally, it is

an argument for the ck-dependent relation

Rcpa
ck :=

{

(([ct], γ), (t, rt)) : [ct] = Comck(t; rt) ∧ ∏N
i=1 ti = γ

}

.

Next, we outline the coefficient-product argument that is closely based on the
coefficient-product argument from [21]. (More precisely, in [21] it was used as a
subargument of a shuffle of known contents. See, for example, [22] for another
prior implicit use of the following argument.) We give a formulation of this
argument as a separate argument of its own worth.

In the coefficient-product argument, P first proves he knows the message in
the commitment [ct] = Comck(t; rt), by using the following standard Σ-protocol.
Here, the verifier’s message comes from a set of σy elements for some σy ≥ 2λ.

1. The prover samples τ ←$ Z
N
q , �t ←$ Zq, and sends [cτ] ← Comck(τ ; �t) to

the verifier.
2. The verifier samples y ←$ {1, . . . , σy} and sends it to the prover.
3. The prover sends

t∗ ← yt + τ (1)

and r∗
t ← yrt + �t to the verifier.

4. The verifier accepts iff y[ct] + [cτ] =? Comck(t∗; r∗
t).

(As always, the prover’s third message elements are computed modulo q.)
Note that

∏N
i=1 t

∗
i =

∏N
i=1(yti + τi) = yN

∏N
i=1 ti + p(y), where p(Y) is some

degree ≤N − 1 polynomial. To finish up the coefficient-vector argument, the
prover now only has to demonstrate the knowledge of p(y), for some degree
≤N − 1 polynomial p(Y), such that

∏N
i=1 t

∗
i − p(y) = yNγ.

More Efficient Shuffle Argument from Unique Factorization 261

For this, using a technique from [21], the prover does the following. Let

Qi ← y
∏i

j=1 tj + Δi , (2)

and Δi were chosen before y was sent. (Thus, Δi does not depend on y and Qi is
a linear polynomial on y.) In particular, set Q1 ← t∗1 = yt1 + τ1; thus, Δ1 = τ1.

Also, choose ΔN ← 0, thus

QN = y
∏N

i=1 ti = yγ , (3)

which can be tested by the verifier. (The verifier can recompute QN , as we will
see shortly.) The prover samples the rest of Δi ←$ Zq randomly. Now,

y(Qi+1 − Δi+1)
(2)
=yti+1(Qi − Δi)

(1)
= t∗i+1Qi − τi+1Qi − yti+1Δi

(2)
= t∗i+1Qi − τi+1

(

y
∏i

j=1 tj + Δi

)

− yti+1Δi

=t∗i+1Qi − y
(

ti+1Δi + τi+1

∏i
j=1 tj

)

− τi+1Δi .

Define bi ← Δi+1 − ti+1Δi − τi+1

∏i
j=1 tj , βi ← −τi+1Δi, and b∗

i ← ybi + βi

as on Fig. 1. Thus, for i = 1, . . . , N − 1,

yQi+1 = t∗i+1Qi + ybi + βi = t∗i+1Qi + b∗
i . (4)

The verifier can recompute Qi by using the definition of Q1, and Eq. (4), see
Fig. 1.

Since b∗
i is linear in y,

yNγ
(3)
=yN−1QN

(4)
= yN−2(t∗NQN−1 + b∗

N−1)
(4)
= · · · (4)

=
∏N

i=1 t
∗
i + p(y)

=yN
∏N

i=1 ti + p′(y) ,
(5)

where p(X) and p′(X) are degree ≤N − 1 polynomials. This is equivalent to
yN (γ − ∏N

i=1 ti) + p′(y) = 0. As y was chosen randomly, due to Schwartz-Zippel
lemma Eq. (6), with overwhelming probability this implies that yN (γ−∏N

i=1 ti)+
p′(y) is a zero polynomial and thus γ =

∏N
i=1 ti. Hence, we are done.

Construction. The full coefficient-product argument Πcpa is depicted by Fig. 1.
Note that the verifier chooses y �= 0 to avoid division by 0 on the penultimate
line of Fig. 1.

Security. We prove that this argument is perfectly complete, has witness-
extended emulation, and is perfectly special honest-verifier zero knowledge. We
state the security of Πcpa in Theorem 1. Πcpa is essentially the same as a sub-
argument in [21]; it only includes batch verification as an additional step of
optimization, and moreover, [21] did not formalize it as a separate argument.

262 T. Krips and H. Lipmaa

CRS: crs = ck = ([h1], . . . , [hN]) as in the extended Pedersen.
Common inputs: inp = ([ct] = Comck(t; rt), γ).
Witness: wit = (t, rt).

1. The prover P(crs, inp, wit) does:
(a) Sample τ ←$Z

N
q .

(b) Let Δ1 ← τ1 and ΔN ← 0.
(c) For i = 2, . . . , N − 1: sample Δi ←$Zq.
(d) X0 ← 1; For i = 1, . . . , N − 1:

– Set Xi ← Xi−1ti, bi ← Δi+1 − ti+1Δi − τi+1Xi, βi ← −τi+1Δi.
(e) Denote b = (b1, . . . , bN−1) , β = (β1, . . . , βN−1) .
(f) Sample t, rb b ←$Zq.
(g) [cτ] ← Comck(τ ; t) ; [cb] ← Comck(b // 0; rb) ;
(h) [cβ] ← Comck(β // 0; b) ;
Send [cτ , cb, cβ] to the verifier.

2. The verifier samples y ←$ {1, . . . , σy}, and sends y to the prover.
3. Prover does:

(a) Set t∗ ← yt + τ , r∗
t ← yrt + t, b∗ ← yb + β ∈ Z

N−1
q , r∗

b ← yrb + b.
(b) Send (t∗, r∗

t ,b
∗, r∗

b) to the verifier.
4. The verifier samples z ←$ {0, . . . , σz − 1}. He checks that

y[ct] + [cτ] + z(y[cb] + [cβ]) =? Comck(t∗ + z(b∗ // 0); r∗
t + zr∗

b) . (6)

Set Q1 ← t∗1, Q2 ← (t∗2Q1 +b∗
1)/y, . . . , QN ← (t∗NQN−1 +b∗

N−1)/y. Check
that QN =? yγ.
The verifier outputs (acc, z) iff both checks succeed, and (rej, z) otherwise.

Fig. 1. The coefficient-product argument. Dotted formulas correspond to expensive
(that is, Ω(N)) computations.

First, note that if either of the following equations does not hold,

y[ct] + [cτ] =? Comck(t∗; r∗
t) , y[cb] + [cβ] =? Comck(b∗ // 0; r∗

b) , (7)

then according to Schwartz-Zippel lemma, Eq. (6) holds for a random z at most
with probability 1/σz. To simplify the proofs of both following theorem, we
define another coefficient-product argument Π ′

cpa that differs from Πcpa only by
removing the batch verification: namely, the verifier checks Eq. (7) instead of
Eq. (6). Clearly, if an adversary succeeds with probability ε against Πcpa, then
it succeeds with probability not larger than ε′, ε ≥ ε′ ≥ ε − 1/σz, against Π ′

cpa.
Fix p ← Pgen(1λ) and crs ← KGen(p). Let us denote with ωP the random

coins of the adversary and with ωV the random coins of the verifier in Π ′
cpa. Since

Π ′
cpa is a public-coin protocol, each ωV corresponds to a different value verifier’s

challenge y. Let V = V crs be a crs-dependent matrix with an entry V ωP,ωV
=

V (ωP, ωV) = 1 if for (inp, st) ← A(crs;ωP), 〈P∗(crs, inp; st),V(crs, inp;ωV)〉 =
acc and V (ωP, ωV) = 0 otherwise.

More Efficient Shuffle Argument from Unique Factorization 263

Theorem 1. Πcpa is a three-message public-coin argument for [ct] being a com-
mitment to a message t such that

∏N
i=1 ti = γ. It is perfectly complete and

perfectly HVZK. It has witness-extended emulation, assuming the commitment
scheme is binding.

Proof. Completeness: obvious.

Witness-extended emulation: Fix p ← Pgen(1λ) and crs ← KGen(p). Let
V′ be the verifier of Π ′

cpa. Let P∗ be a prover that makes V′ to accept a false
statement with some non-negligible probability ε′

crs.
To extract a witness, Emul rewinds a runs 〈P∗,V′〉 on the same

challenge x until it gets another acceptable argument. Let trj =
(inp; [cτ , cb, cβ]; yj ; t∗j , r

∗
t:j ,b

∗
j , r

∗
b:j), j ∈ {1, 2}, be the two acceptable arguments.

Emul uses the last two transcripts to open the commitments. Since y1 �= y2
and Eq. (7) holds, from Eq. (7) (left) it follows that [ct] = Comck(t; rt), where
t ← (t∗1 − t∗2)/(y1 −y2) and rt ← (r∗

t:1 −r∗
t:2)/(y1 −y2). Thus, Emul has succeeded

in extracting an opening of [ct].
Following Theorem 1 in [21], we can argue that Emul runs in expected poly-

nomial time. If we are in a situation where P∗ can make the verifier to accept
with probability ε > 0 on challenge x, then the expected number of rewindings
to get an acceptable transcript is 1/ε. If P∗ fails then we do not have to rewind
at all, and thus the number of expected queries to 〈P∗,V′〉 is 2. Since Emul does
an expected polynomial number of queries, there is only negligible probability
of ending in a run where y = y′ or some other unlikely event (e.g., breaking
the binding of the commitment scheme) occurs. Hence, with an overwhelming
probability, either P∗ did not succeed or Emul succeeded in extraction.

Next, we argue that the probability for extracting an opening of [ct], such
that

∏N
i=1 ti �= γ, is negligible. Assume that P∗ has a non-negligible success prob-

ability 1/f(λ), for a polynomial f(X), to produce an acceptable argument. We
now run P∗ and rewind to get three random challenges y1, y2, y3. With proba-
bility at least 1/f(λ)3, P∗ succeeds in creating accepting arguments for all three
challenges. Since y1 �= y2, with an overwhelming probability, and Eq. (7) holds,
Emul can open the following commitments from the first two transcripts (with
an overwhelming probability).

(1) From Eq. (7) (left) it follows that [ct] = Comck(t; rt), where t ← (t∗1 −
t∗2)/(y1 − y2); rt ← (r∗

t:1 − r∗
t:2)/(y1 − y2).

(2) Since it knows t∗1, t, r∗
t:1 and rt, Emul can compute τ ← t∗1 − y1t; �t ←

r∗
t:1 − y1rt; thus [cτ] = Comck(τ ; �t).

(3) From Eq. (7) (right) it follows that [cb] = Comck(b // 0; rb), where b ←
(b∗

1 − b∗
2)/(y1 − y2); rb ← (r∗

b:1 − r∗
b:2)/(y1 − y2).

(4) Since it knows b∗
1, b, r∗

b:1 and rb, Emul can compute β ← b∗
1 − y1b; �b ←

r∗
b:1 − y1rb; thus [cβ] = Comck(β // 0; �b).

Thus, Emul has extracted t, rt, τ , �t,b, rb,β, �b, and thus also t∗ ← yt + τ and
b∗ ← yb + β.

Consider now the third transcript with y3. Since QN = yγ, we obtain from
Eq. (5) that P (y3) := yN

3 (γ − ∏N
i=1 ti) − p′(y3) = 0, where p′(Y) is some degree

264 T. Krips and H. Lipmaa

≤ N − 1 polynomial. Since the emulator knows t∗ and b∗, it knows P (Y). Since
a non-zero degree-(≤ N) polynomial P (Y) has ≤ N roots, then the probability
that P (y3) = 0 and P (Y) �= 0 is at most N/σy. Since P (Y) = 0 implies that γ =
∏N

i=1 ti, Emul has retrieved a witness wit = (t, rt), such that [ct] = Comck(t; rt)
and γ =

∏N
i=1 ti, with an overwhelming probability. Thus, this argument has

witness-extended emulation.

Perfect SHVZK: We construct the following simulator Sim. (This part of the
proof follows [21] quite closely.) The simulator is depicted in Fig. 2. Since Sim’s
output does not depend on t or rt, it reveals no information about the witness.
Clearly, Sim’s output will be accepted by the verifier.

Sample t∗ ←$Z
N
q , r∗

t ←$Zq;
Set [cτ] ← Comck(t∗; r∗

t) − y[ct];
Set Q1 ← t∗1, Qi ←$Zq for i ∈ {2, . . . , N − 1}, and QN ← yγ;
Sample rb ←$Zq ;

1 Set [cb] ← Comck(0N ; rb);
Set b∗

1 ← yQ2 − t∗2Q1, . . . , b∗
N−1 ← yQN − t∗NQN−1;

Sample r∗
b ←$Zq;

Set [cβ] ← Comck(b∗ // 0; r∗
b) − y[cb];

Return ([cτ , cb, cβ]; y; t∗, r∗
t , b

∗, r∗
b ; acc, z);

Fig. 2. Simulator Sim(ck, inp, (y, z)) of the coefficient-product argument

We use the same idea as [21] to show that this simulator provides output
from the correct distribution. First, consider the following simulator Simt that
otherwise outputs the same thing as Sim, except that it uses the knowledge of
t and rb to construct [cb] as [cb] ← Comck(b // 0; rb). More precisely, it works as
Sim, except that Line 1 in Fig. 2 is replaced with the following three steps:

for i ∈ [1 .. N] do Δi ← Qi − y
∏i

j=1 ti
for i ∈ [1 .. N − 1] do bi ← Δi+1 − ti+1Δi − τi+1

∏i
j=1 tj

[cb] ← Comck(b // 0; rb);

Clearly, the output of Simt comes from the same distribution as the output
of Sim, but it has constructed [cb] as needed due to the knowledge of t and rt.

Finally, clearly Simt chooses the values from the same distribution as the real
prover (given that y and z are chosen randomly), but in a different order. ��

Complexity. Clearly, the prover’s computational complexity is dominated by
three ≈N -wide multi-exponentiations, while the verifier’s computational com-
plexity is dominated by one ≈N -wide multi-exponentiation. The communication
complexity is dominated by ≈2N elements of Zq.

More Efficient Shuffle Argument from Unique Factorization 265

4 A Characterization of Permutation Matrices

Next, we prove the following theorem that generalizes a result from [32].
Namely, [32] let the verifier to choose N random values X1, . . . , XN . To reduce
communication (by avoiding sending all N variables to the prover), they used a
pseudo-random number generator to obtain N values Xi out of a short seed X0.
Our result shows that the pseudo-random number generator can be replaced by
a what we call PM-evidential family of multivariate polynomials. On top of the
efficiency aspect, we obtain a novel mathematical characterization of permuta-
tion matrices of independent interest.

Definition 2 (PM-evidential). Let F be a field. A family of N -degree ν-
variate polynomials {ψi(X)}N

i=1, ψi ∈ F[X1, . . . , Xν], is PM-evidential over F,
if for Ψ(X) :=

∏N
i=1 ψi(X),

(i) ψi(X) �= 0 for each i,
(ii) for each a ∈ F

n with wt(a) > 1,
(

∑N
i=1 aiψi(X)

)

� Ψ(X), and

(iii) (ψi(X))2 � Ψ(X) for each i.

One can use PM-evidential polynomials to efficiently check whether a matrix
is a permutation matrix, as explained by the following result.

Lemma 2. Let F be a field. Let M be an N × N matrix over F, let X =
(X1, . . . , Xν) be a vector of ν ≤ N indeterminates, and let {ψi(X)}N

i=1

be PM-evidential over F. Let ψ(X) := (ψ1(X), . . . , ψN (X))�, ΨM (X) :=
∏N

i=1〈M�
i ,ψ(X)〉, and Ψ(X) :=

∏N
i=1 ψi(X) in F[X]. Then M is a permu-

tation matrix iff ΨM (X) = Ψ(X) and M · 1N = 1N .

Proof. (⇒) Assume M is a permutation matrix. Then clearly, ΨM (X) = Ψ(X)
(since then ΨM (X) is a product of ψi-s in a permuted order) and M ·1N = 1N .
(⇐) Assume that ΨM (X) = Ψ(X). Consider the following three cases. First, if
some row M i is a zero vector, then ΨM is a zero polynomial, and thus Ψ(X) = 0,
a contradiction to Item i in Definition 2. Second, if the ith row M i contains more
than one non-zero element, then (

∑

Mijψj(X)) | ΨM (X), where wt(M i) > 1.
A contradiction with Item ii in Definition 2. Third, if the jth column M (j)

contains more than one non-zero element, then—since each row contains exactly
one non-zero element—ψ2

j (X) | ΨM (X), contradicting Item iii in Definition 2).
Hence, each row and column of M have exactly one non-zero element. Finally,

since M · 1N = 1N , the non-zero elements of M must equal one. ��
Intuitively, Terelius and Wikström proved that the family {ψi(X) = Xi} is

PM-evidential. Next, we construct a simple family of PM-evidential polynomials,
where the number of indeterminates is just two. More precisely, we show that
the family of polynomials {ψk(X,Y) = Xk +Y }N

k=0 in F[X,Y] is PM-evidential.

Lemma 3. The family of polynomials {ψk}N
k=1, where ψk(X,Y) = Xk−1 + Y ,

is PM-evidential.

266 T. Krips and H. Lipmaa

To prove Lemma 3, we need to show that the polynomials Xk + Y are irre-
ducible. For the latter, we will use the well-known Eisenstein’s criterion.

Proposition 1 (Eisenstein’s Criterion [24]). Let V be a unique factorization
domain. Let p(X) =

∑k
i=0 aiX

i ∈ V[X]. Then p(X) is irreducible in V[X] if
there exists an irreducible element s ∈ V such that the following three conditions
hold:

(i) s | ai for every i ∈ [0 .. k − 1],
(ii) s � ak,
(iii) s2

� a0

Proof (Proof of Lemma 3). Items i of Definition 2 holds trivially.
To show that Items ii and iii hold, we first use Eisenstein’s criterion to show

Xk + Y is irreducible, for k ∈ [0 .. N − 1]. Think of Xk + Y as a polynomial in
V[X], where V = F[Y]. Then, a0 = Y , ai = 0 for i ∈ [1 .. k − 1] and ak = 1.
Taking s = Y , it is easy to see that the three conditions of the Eisenstein’s
criterion are satisfied. Thus, Xk + Y is irreducible.

To see that Item ii holds, suppose that
∑N−1

i=1 aiψi(X,Y) = L(X,Y) , (8)

where L(X,Y) | Ψ(X,Y). Since F[X,Y] is a unique factorization domain and
ψk are all irreducible, we get that L(X,Y) is a product of some of ψi. Since on
the left hand side of Eq. (8), the degree of Y is 1, then also also the degree of
Y on the right hand is also 1. Thus, L(X,Y) = ψj(X,Y) for some j, and hence,
∑N−1

i=1 aiψi(X,Y) = ψj(X,Y). Because they have distinct degrees, ψi(X,Y) are
linearly independent. Thus we get that ai = 0 if i �= j and aj = 1. Thus,
wt(a) = 1 and Item ii holds.

Finally, Item iii follows from the fact that ψi(X,Y) are irreducible and dis-
tinct. ��

While we believe that the proposed solution is close to optimal, we leave it as
an open question of whether some other families give even better communication
and computational complexity for the final shuffle argument.

Additionally, in the proof of the new shuffle argument of Sect. 5, we will need
to invert a certain matrix (ψi(xj))i,j obtained by rewinding the argument. We
need to show that the probability that this matrix is invertible is overwhelming.
For that analysis, we give the following definition.

Definition 3. Define

ni(ψ , σx, q) := max
x0,...,x N −2

⎧
⎨

⎩
Pr

x N −1
[(ψi(xj))i,j is not invertible] |

x0,i, . . . , xN−1,i are

pairwise different

for every i

⎫
⎬

⎭
.

Here, we assume that x0, . . . ,xN −1 ∈ {0, . . . , σx − 1}ν .

More Efficient Shuffle Argument from Unique Factorization 267

For good values in the proof, we want to make this value as small as possible.

Lemma 4. Let x1, . . . , xN be distinct random elements of {0, . . . , σx − 1}, and
let y1, . . . , yN be distinct random elements of {0, . . . , σx−1}. Let M be the matrix
with elements (xj−1

i +yi)N
i,j=1 in Zq. Then, det(M) = 0 with probability at most

1/q. Additionally, for fixed distinct x1, . . . , xN and fixed distinct y1, . . . , yN−1,
there exists at most one yN , such that M is not invertible.

Proof. Let the determinant of M be D. Denote x = (x1, . . . , xN) and S :=
[1 .. N]. For a subset S′ ⊆ S, let MS be the matrix, where the ith row is
(xj−1

i)N
j=1, if i ∈ S′, and (yi)N

j=1, if i /∈ S′. Since det
(

A
b+c
D

)

= det
(

A
b
D

)

+det
(

A
c
D

)

,
we get by induction that D =

∑

S′⊆S det(MS′).
Moreover, if |S′| < N −1, then det(MS′) = 0. Really, in this case, there exist

at least two rows i and j, where the elements are just yi and yj . The determinant
of every 2×2-submatrix from these two rows is 0. Thus, by the cofactor expansion
of a determinant, det(MS′) = 0. Thus, D = det(MS)+

∑N
i=1 det(MS\{i}). Now,

MS is a Vandermonde matrix and thus det(MS) =
∏

1≤i<j≤N (xj − xi) �= 0.
On the other hand, observe that det(MS\{i}) is equal to yi times Pi(x) for

some polynomial Pi. There are two possible cases. Either Pi(x) = 0, for all i, or
at least one Pi(x) is nonzero. In the first case, D = det(MS) �= 0. Note that then,
there exists no yI such that det(MS) = 0. In the second case, say PI(x) �= 0
holds for a concrete I. Then, D = 0 iff yI = −(det(MS)+

∑

i�=I yiPi(x))/PI(x),
which is true for precisely one value of yI .

Thus, presuming that x1, . . . , xN are pairwise different and taking the prob-
ability over the choice yN ,

Pr[D = 0] = 0 · Pr[∀i ∈ S, Pi(x) = 0] + 1
q · (1 − Pr[∀i ∈ S, Pi(x) = 0]) ≤ 1

q .

This proves the claim. ��

5 Shuffle Argument

Let N be the number of shuffled ciphertexts, let [w] and [ŵ] be two tuples of
the ciphertexts. Assume that pk is the public key of an additively homomorphic
(in our case, the lifted Elgamal [11]) cryptosystem. In a shuffle argument, the
prover aims to convince the verifier that, for a fixed pk, he knows a permutation
π ∈ SN and a vector of randomizers s ∈ Z

N
q , such that [ŵi] = [wπ−1(i)] +

Encpk(0; sπ−1(i)). Formally, it is an argument for the relation

Rpk :=

{

(([w], [ŵ]), (π, s) ∈ SN × Z
N
q) :

∀i ∈ [1 .. N], [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i))

}

.

Before going on, we recall that if for some matrix M ∈ Z
N×N
q , [ui] =

Comck(M (i); r̂i), then for any t ∈ Z
N
q ,

268 T. Krips and H. Lipmaa

〈[u], t〉 =
∑N

i=1 ti[ui] = Comck

(∑N
i=1 M (i)ti;

∑N
i=1 r̂iti

)
= Comck(M t; 〈r̂, t〉) . (9)

Next, we will give a short explanation of the argument on Fig. 3. The prover P
and the verifier V do the following:

(1) P commits to the permutation matrix M , where [ui] is a commitment to
M (i) for i < N , and [uN] is homomorphically computed as a commitment
to 1N − ∑N−1

i=1 M (i). (This guarantees that
∑N

i=1 M (i) = 1N .)
(2) V chooses x after P committed to M . Let t = ψ(x). Both parties compute

a permuted vector t̂, t̂i = tπ−1(i), of the vector t.
(3) P proves that he knows how to open 〈t, [u]〉 as a commitment of Mt.
(4) P proves, by using the coefficient-product argument, that

∏N
i=1 t̂i =

∏N
i=1 ti.

Hence, the verifier is convinced (via Lemma 2) that M is a permutation
matrix. Thus, t̂ is a permutation of t.
The coefficient-product argument is interleaved with the main argument for
efficiency reasons. For easier readability, we have added the symbol($) to
the lines in Fig. 3 that contain the coefficient-product argument.

(5) Finally, P proves that he used the same matrix M (together with some
additional randomness) to form [ŵ] from [w]. Since M is a permutation
matrix, the shuffle argument is sound (more precisely, has witness-extended
emulation).

Construction. The new shuffle argument Πsh is depicted by Fig. 3. Here, we
assume σx, σy, σz ≥ 2λ, G is a group of order q, and N is the number of ciphertexts
with N < 20.5λ Fix a family of PM-evidential polynomials ψi ∈ Z[X1, . . . , Xν]
for some ν ≤ N , such that ni(ψ, σx, q) is negligible. The common inputs of the
prover and the verifier are the ciphertext tuples [w] = ([w1], . . . , [wN]) and [ŵ] =
([ŵ1], . . . , [ŵN]), with [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)). The prover’s witness
is (π, s) ∈ SN × Z

N
q . The CRS consists of pk = [1 // h], and ck = [h1, . . . , hN] as

in the extended Pedersen.
We will use the terms and algorithms from the coefficient-product argument

and we will add a subscript G to them to distinguish them from the analogous
terms in the main argument.

Theorem 2 (Security of the shuffle argument). Πsh is perfectly complete
and perfectly SHVZK. If the commitment scheme is computationally binding
then this shuffle argument has witness-extended emulation. More precisely, let
d = maxi deg ψi(X) and dsum =

∑N
i=1 deg ψi(X). Let ε ≥ ζ+1/σz be the success

probability of P∗ to make V to accept, ε ≥ ε′ ≥ ε−1/σz, and ζ = ni+ N(N−1)
2σν

x
+ N

σy
.

The emulator either recovers the witness or breaks the binding property of the
commitment scheme with probability at least 1 − dsum/σx − N/σy − 1/σz and
makes ≤ (2N + 1)/(ε′ − ζ) queries to V , where ζ is defined as above.

More Efficient Shuffle Argument from Unique Factorization 269

1. The prover P(crs, ([w], [w]), (π,s)) does:

(a) For i ∈ [1 .. N − 1]: ri ←$Zq; [ui] ← Comck(eπ(i); rπ(i))//;= [hπ(i)] + rπ(i)[1]

(b) [uN] ← Comck(1N ; 0) − N−1
i=1 [ui].

(c) Sample τ ←$Z
N
q , t ←$Zq, f ←$Zq.($)

(d) Set [cτ] ← Comck(τ ; t) . ($)

(e) Set Δ1 ← τ1, ΔN ← 0. For i ∈ [2 .. N − 1]: sample Δi ←$Zq.($)
(f) For i ∈ [1 .. N − 1]: set βi ← −τi+1Δi.($)
(g) Sample b ←$Zq. Denote β = (β1, . . . , βN−1) .

(h) Compute [cβ] ← Comck(β // 0; b) .($)

(i) Set [Fω] ← N
i=1 τi[wi] + Encpk(0; − f). // The only online step

(j) Send ([u1], . . . , [uN−1], [cτ], [cβ], [Fω]) to the verifier.
2. The verifier generates random x ← {0, . . . , σx −1}ν . He sends x to the prover.

For i ∈ [1 .. N]: set ti ← ψi(x).
3. The prover does the following:

(a) For i ∈ [1 .. N]: set ti ← ψi(x).
(b) For i ∈ [1 .. N]: set t̂i ← tπ−1(i).
(c) X0 ← 1. For i = [1 .. N − 1]: Xi ← Xi−1 t̂i, bi ← Δi+1 − t̂i+1Δi −

τi+1Xi.($)

(d) Let b := (b1, . . . , bN−1) . Sample rb ←$Zq. Set [cb] ← Comck(b // 0; rb) .
(e) Send [cb] to the verifier.

4. The verifier generates random y ← {1, . . . , σy}. He sends y to the prover.
5. The prover does:

(a) Set rt t̂, r , rf t, s .
(b) Compute t∗ ← ŷt + τ , r∗

t ← yrt + t, r∗
f ← yrf + f .($)

(c) Set b∗ ← yb + β ∈ Z
N−1
q , r∗

b ← yrb + b.($)
(d) Send (t∗, r∗

t , r∗
f , b∗, r∗

b) to the verifier.

6. The verifier sets γ ← N
i=1 ti, [uN] ← Comck(1N ; 0) − N−1

i=1 [ui],

[ĉt] ← t, [u] , [F] ← t, [w] . (10)

He generates a random z ← {0, . . . , σz − 1} for batch verification. He checks:

y[F] + [Fω] =?
N
i=1 t

∗
i [wi] + Encpk(0;−r∗

f) , (11)

y[ĉt] + [cτ] + z(y[cb] + [cβ]) =? Comck(t
∗ + z(b∗ // 0); r∗

t + zr∗
b) .($) (12)

Set Q1 ← t∗1, Q2 ← (t∗2Q1+b∗
1)/y, . . . , QN ← (t∗NQN−1+b∗

N−1)/y. He checks
that QN =? yγ.($)
Return (acc, z) iff all checks accept. Otherwise, return (rej, z).

Fig. 3. The new shuffle argument Πsh. Dashed / Dotted formulas correspond to expen-

sive (≈N fixed-base / multi exponentiations) computations only. A twice boxed for-
mula signifies ≈2N operations.

270 T. Krips and H. Lipmaa

Proof. First, if [ui] are honestly generated, then from Eq. (9) we get that [ĉt] =
〈[u], t〉 = Comck(

∑N
i=1 tieπ(i);

∑N
i=1 tirπ(i)) = Comck(

∑

tπ−1(i)ei;
∑

tirπ(i)) =
Comck(̂t; rt) for t̂, rt defined as in Items 3b and 5a in Fig. 3.

Completeness: assume that [wi] = Encpk(mi;Ri) and [ŵi] = Encpk(mπ−1(i);
Rπ−1(i) + sπ−1(i)) for some (possibly unknown) mi, Ri, and si. According to Eq.
(10), [F] = 〈t, [w]〉 = Encpk(〈t,m〉; 〈t,R〉), and according to Item li,

[Fω] =
∑N

i=1 τi[ŵi] + Encpk(0;−�f)

=
∑N

i=1 τi · Encpk(mπ−1(i);Rπ−1(i) + sπ−1(i)) + Encpk(0;−�f)

=Encpk(〈τ , m̂〉; 〈τ , ̂R + ŝ〉 − �f) ,

where ŝi = sπ−1(i) and ̂Ri = Rπ−1(i). Denoting m̂i = mπ−1(i), y[F] + [Fω] +
Encpk(0; r∗

f) = Encpk(y〈t,m〉 + 〈τ , m̂〉; y〈t,R〉 + 〈τ , ̂R + ŝ〉 − �f + �f) =
Encpk(〈t∗, m̂〉; 〈t∗, ̂R + ŝ〉), which is equal to 〈t∗, [ŵ]〉 as required by Eq. (11).

Next, if M is the permutation matrix corresponding to the permutation π,
then Mij = 1 iff i = π(j). Hence, M (j) = eπ(j) and [ui] = Comck(eπ(i); r̂i) =
Comck(M (i); r̂i). According to Eq. (10), [ĉt] = 〈t, [u]〉 = Comck(Mt; 〈r̂, t〉) =
Comck(̂t; 〈r̂, t〉), where t̂i = tπ−1(i). According to Items 1d and 5b, y[ĉt] + [cτ] =
Comck(ŷt + τ ; yrt + �t) = Comck(t∗; r∗

t). According to Items 1h, 3d and 5c,
y[cb] + [cβ] = Comck((yb + β) // 0; yrb + �b) = Comck(b∗ // 0; r∗

b). Thus, y[ĉt] +
[cτ] + z(y[cb] + [cβ]) = Comck(t∗ + z(b∗ // 0); r∗

t + zr∗
b). Hence, Eq. (12) holds.

Perfect HVZK: Assume that we are given t and y. For fixed t, y, z, the simu-
lator is depicted in Fig. 4. Clearly, the verifier of Fig. 3 will accept the simulated
proof (this is taken care of by Lines 2, 3 and 5, together with the definition of
b∗

i and QN).
Similarly to the proof of Theorem 1, we can argue that the output of the

simulator Sim follows the correct distribution (we first change Line 4 , obtaining
a hybrid simulator Simt, and then argue that the outputs of Sim and Simt come
from the same distribution, and the output of Simt and the real protocol come
from the same distribution). Thus, we get a simulator for the shuffle argument.

Witness-extended emulation: As in the proof of Theorem 1, from Eq. (12)
it follows—since this is a standard batch verification, [2]—that with probability
1−1/σz, Eq. (7) holds. Hence, as in the case of the coefficient-product argument,
we define another shuffle argument Π ′

sh that is exactly the same as Πsh, except
that the verifier accepts not when Eq. (12) holds but Eq. (7) holds (that is,
we do not use batch verification.) It is clear that if an adversary succeeds with
probability ε against Πsh, then it succeeds with probability not larger than ε′,
ε ≥ ε′ ≥ ε − 1/σz, against Π ′

sh. Let V′ be the verifier of Π ′
sh.

Let P∗ be a prover that makes V′ to accept with probability ε′. We first run
the argument and obtain one accepting transcript tr. If P∗ fails to produce an
acceptable transcript, then we reject. Assume now that the transcript is accept-
able. In this case we need to extract a witness (π, s) that ([ŵi]) is a shuffle

More Efficient Shuffle Argument from Unique Factorization 271

Compute (x, y, z) from ωV;
Set ti ← ψi(x); γ ← N

i=1 ti;
for i ∈ [1 .. N − 1] do sample ri ←$Zq; set [ui] ← Comck(ei; ri);

Set [uN] ← Comck(1N ; 0) − N−1
i=1 [ui]; Set [ĉt] t, [u] ;

Sample t∗ ←$Z
N
q , r∗

t ←$Zq;
2 Set [cτ] ← Comck(t∗; r∗

t) − y[ĉt]; // need: y[ĉt] + [cτ] =? Comck(t∗; r∗
t)

Set [F] t, [w] ; Sample r∗
f ←$Zq ;

3 Set [Fω] t∗, [w] + Encpk(0;−r∗
f) − y[F];

// need: y[F] + [Fω] =? t∗, [w] + Encpk(0;−r∗
f);

Set Q1 ← t∗1, Qi ←$Zq for i ∈ {2, . . . , N − 1}, and QN ← yγ;
Sample b∗

1 ←$Zq; Set b∗
2 ← yQ2 − t∗2Q1, . . . , b∗

N ← yQN − t∗NQN−1;
Sample r∗

b ←$Zq; Sample rb ←$Zq;
4 Set [cb] ← Comck(0N ; rb);
5 Set [cβ] ← Comck(b∗ // 0; r∗

b) − y[cb] // need: y[cb] + [cβ] =? Comck(b∗ // 0; r∗
b);

Return ([u1], . . . , [uN−1], [cτ], [cβ], [Fω]; x; [cb]; y; t∗, r∗
t , r

∗
f , b∗, r∗

b ; acc, z);

Fig. 4. The simulator Sim(crs, inp = ([w], [ŵ]); ωV) in the proof of Theorem 2.

of ([wi]). For this, we rewind the argument to get more transcripts with ran-
domly chosen challenges x, y, and use the witness-extended emulator of Π ′

cpa to
get openings of [ct]. We repeat this until we obtain N + 1 acceptable tran-
scripts. Let tr1 = tr, and let the additional transcripts be trj , j > 1, where trj =

(([w, ŵ])N
i=1; ([ui])N−1

i=1 ; [cτ , cβ , Fω]; xj ; [cb:j]; yj ; t∗j , r
∗
t:j , r

∗
f :j ,b

∗
j , r

∗
b:j ; acc, zj) .

Clearly, the expected number of rewindings for this is N/ε. However, since we
only need to extract a witness when the transcript is acceptable, the expected
number of rewindings is only N . (As in [21], one can argue that combining
expected polynomial-time algorithms results in an expected polynomial-time
argument.) Since the emulator uses an expected polynomial number of rewind-
ings, with an overwhelming probability it is the case that either (1) the argument
is not acceptable, or (2) the argument is acceptable, but no event with negligible
probability (like breaking the binding property of the commitment scheme or
having collisions among randomly chosen challenges) occurs. Assume from now
on that either (2) holds.

Let us show that Emul obtains the witness. Let tj = ψ(xj) and [ĉt:j] =
〈tj , [u]〉. From Eq. (7) (left) and the jth transcript, we get

yjt�j [u] + [cτ] = yj〈tj , [u]〉 + [cτ] = yj [ĉt:j] + [cτ] = 〈t∗j , [h]〉 + r∗
t:j [1] .

Hence,
(yjt�j − y1t�1)[u] = 〈t∗j , [h]〉 + r∗

t:j [1] .

Denote T y = (y2t2 − y1t1‖ . . . ‖yN+1tN+1 − y1t1)� and T ∗ = (y2t∗2 −
y1t∗1‖ . . . ‖yN+1t∗N+1 − y1t∗1)

�. Since T = (t1‖ . . . ‖tN) is invertible with (this
follows from Lemma 4), then also T y is invertible with overwhelming probabil-
ity. Define M := T −1

y T ∗. Thus, T y[u] = T ∗[h] + (r∗
t − r∗

11N)[1], and thus

[u] = M [h] + T −1
y (r∗

t − r∗
11N)[1] .

272 T. Krips and H. Lipmaa

Denote [Ej] := Encpk(0; r∗
f :j). From Eq. (11) (left), we have yjt�j [w]+[Fω] =

(t∗j)
�[ŵ] + [Ej], and thus (yjtj − y1tj)�[w] = (t∗j − t∗1)

�[ŵ] + [Ej − E1]. Thus,
T y[w] = T ∗[ŵ] + [E] − 1N [E1] and thus

[w] = M [ŵ] + T −1
y ([E] − 1N [E1]) .

Hence, assuming M is a permutation matrix, we have recovered a permutation
π and a randomness s, such that [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)).

Next, we argue that M is a permutation matrix. Assume that P∗ has a
non-negligible success probability 1/f(λ), for a polynomial f(X), to produce an
acceptable argument. We run P∗ and rewind to get N + 2 random challenges.
We extract M and other values from the first N + 1 transcripts as above.

Consider the (N + 2)th argument. Define t̂N+2 := M�tN+2. Thus,
∏N

i=1〈M (i),ψ(xN+2)〉 =
∏N

i=1〈M (i), tN+2〉 =
∏N

i=1 t̂N+2:i. Since Πcpa has
witness-extended emulation, then its emulator returns an opening of [ĉt:N+2]
whose coefficient-product is equal to γN+2 :=

∏N
i=1 tN+2:i. Since the com-

mitment scheme is binding and [ĉt:N+2] = t�N+2[u], the opening is equal to
M�tN+2 = t̂N+2. Thus, by the soundness of the coefficient-product emula-
tion,

∏N
i=1 t̂N+2:i =

∏N
i=1 tN+2:i. Hence,

∏N
i=1〈M (i),ψ(xN+2)〉 =

∏N
i=1 tN+2:i =

∏N
i=1 ψi(xN+2:i). Due to the Schwartz-Zippel lemma, from this it follows with an

overwhelming probability that
∏N

i=1〈M (i),ψ(XN+2)〉 =
∏N

i=1 ψi(XN+2:i) as a
polynomial.

The ith row of M · 1N is
∑N

j=1 Mij = 1 due to the choice of [uN], and thus
M̂ · 1N = 1N . It follows now from Lemma 2 that M̂ is a permutation matrix.
Thus, with an overwhelming probability, the emulator has extracted π ∈ SN ,
the permutation corresponding to M̂ , such that t̂i = tπ−1(i). ��

6 Efficiency

Recall that one N -wide multi-exponentiation and N fixed-base exponentiations
by �-bit exponent can be done significantly faster than N arbitrary exponentia-
tions. Importantly, in the new shuffle argument, neither the prover or the verifier
has to execute the latter.

Clearly, the prover’s computation in the shuffle argument of Fig. 3 is
dominated by four (≈N)-wide multi-exponentiations and N fixed-base expo-
nentiations. The verifier’s computation is dominated by six ≈N -wide multi-
exponentiations. The communication is dominated by ([u1], . . . , [uN−1],b∗), that
is, by (�G + log q)N + O(λ) bits, where �G is the number of bits it takes to rep-
resent an element of G. In practice, we can assume log q = 128 and �G = 256,
in this case the communication is dominated by 388N bits. (Note that in the
introduction, we already gave an extensive comparison with other shuffles.)

Online Computation. As remarked in [33], online computational complexity
(i.e., computation done after the input data—in this case, the ciphertexts—
has arrived) is an important separate measure of the shuffle arguments. In the

More Efficient Shuffle Argument from Unique Factorization 273

online phase of the protocol on Fig. 3, the prover’s computation is dominated
by two (≈N)-wide multi-exponentiations (computation of [Fω]), and the veri-
fier’s computation is dominated by four (≈N)-wide multi-exponentiations (the
computation of [F] and the verification of [Fω]).

The Case of Larger Ciphertexts. We assumed that each ciphertext [wi]/[ŵi]
corresponds to one Elgamal ciphertext. However, in practice it might be
the case—say, if the ballot is complex—that each [wi]/[ŵi] corresponds to
m > 1 Elgamal ciphertexts. This only changes the “type” of [wi]/[ŵi] in
Fig. 3. Efficiency-wise, the prover then has to perform 2 m + 2 (≈N)-wide multi-
exponentiations and N fixed-base exponentiations, while the verifier has to per-
form 4 m + 2 (≈N)-wide multi-exponentiations.

7 Discussions

Comparison to Bayer-Groth. All shuffle arguments mentioned in Table 1
have linear argument size. Bayer and Groth [1] proposed a shuffle argument that
achieves sublinear argument size but pays with higher computation. While sublin-
ear argument size is an excellent property to have, its influence is decreased because
the storage of ciphertexts makes the communication and storage requirements lin-
ear anyhow. Computation-wise, Bayer and Groth [1] include a comparison with
Verificatum [32], claiming that the total computation of the prover and the verifier
in Verificatum is 20N exponentiations, and in Bayer-Groth it is 16N exponentia-
tions. [1] does not distinguish fixed-base exponentiations, multi-exponentiations,
and “usual” exponentiations, Hence, we expect it to be slower than both [21] and
the new shuffle, especially since the latter shuffles do not include any “usual” expo-
nentiations. Finally, the optimized version of the Bayer and Groth shuffle takes
nine rounds, compared to the five rounds in the new shuffle.

PM-Evidential Polynomials and Random Oracle Model. In practice,
one would use the Fiat-Shamir heuristic to modify the shuffle argument to be
non-interactive, which results in the security proof being in the random oracle
model. A natural question that may arise is the necessity of minimizing the
verifier’s communication in that case since one would use a random oracle to
generate the verifier’s response. In a setting like in [32], the standard approach
is to generate N random strings by applying the random oracle N times. In the
new shuffle, one only has to apply the random oracle twice instead of N times.

Bellare and Rogaway [5] argue that it is better to rely less on random oracles.
Quoting [5],

But there may remain some lingering fear that the concrete hash function
instantiates the random oracle differs from a random function in some
significant way. So it is good to try to limit reliance on random oracles.

We refer to [5] for more discussion.

274 T. Krips and H. Lipmaa

Acknowledgments. We thank Douglas Wikström and Janno Siim for helpful discus-
sions. The authors were partially supported by the Estonian Research Council grant
(PRG49).

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280 (2012)

2. Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryp-
tography and checking. In: LATIN 1998. LNCS, vol. 1380, pp. 170–191 (1998)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: CRYPTO’92.
LNCS, vol. 740, pp. 390–420 (1992)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 93, pp. 62–73 (1993)

5. Bellare, M., Rogaway, P.: Minimizing the use of random oracles in authenticated
encryption schemes. In: ICICS 97. LNCS, vol. 1334, pp. 1–16 (1997)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112 (1986)

7. Brands, S.: Rapid demonstration of linear relations connected by Boolean opera-
tors. In: EUROCRYPT’97. LNCS, vol. 1233, pp. 318–333 (1997)

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218 (1988)

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: CRYPTO’94. LNCS, vol. 839, pp.
174–187 (1994)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: CRYPTO’84. LNCS, vol. 196, pp. 10–18 (1984)

12. Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without
random oracles. In: CT-RSA 2016. LNCS, vol. 9610, pp. 200–216 (2016)

13. Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based shuffle argu-
ment. In: ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 97–127 (2017)

14. Fauzi, P., Lipmaa, H., Zajac, M.: A shuffle argument secure in the generic model.
In: ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 841–872 (2016)

15. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. In: ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 649–678 (2019)

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO’86. LNCS, vol. 263, pp. 186–194 (1986)

17. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
88-A(1), 172–188 (2005)

18. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: CRYPTO
2001. LNCS, vol. 2139, pp. 368–387 (2001)

19. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115 (2003)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304 (1983)

21. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptol. 23(4),
546–579 (2010)

More Efficient Shuffle Argument from Unique Factorization 275

22. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 253–280 (2015)

23. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67 (2007)

24. Hungerford, T.W.: Algebra. 8 edn. Graduate Texts in Mathematics, vol. 73.
Springer, New York (1980)

25. Khazaei, S., Moran, T., Wikström, D.: A mix-net from any CCA2 secure cryp-
tosystem. In: ASIACRYPT 2012. LNCS, vol. 7658, pp. 607–625 (2012)

26. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
In: CRYPTO 2001. LNCS, vol. 2139, pp. 171–189 (2001)

27. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: SCN 12. LNCS, vol. 7485, pp. 477–502 (2012)

28. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS
2001, pp. 116–125 (2001)

29. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO’91. LNCS, vol. 576, pp. 129–140 (1991)

30. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

31. Straus, E.G.: Addition chains of vectors. Amer. Math. Monthly 70, 806–808 (1964)
32. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: AFRICACRYPT 10.

LNCS, vol. 6055, pp. 100–113 (2010)
33. Wikström, D.: A commitment-consistent proof of a shuffle. In: ACISP 2009. LNCS,

vol. 5594, pp. 4007–421 (2009)
34. Wikström, D.: How to Implement a Stand-alone Verifier for the Verificatum Mix-

Net. Version 1.4.1 (2015). http://www.verificatum.org
35. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: EUROSM 1979.

LNCS, vol. 72, pp. 216–226 (1979)

http://www.verificatum.org

Cryptanalysis of a Dynamic Universal
Accumulator over Bilinear Groups

Alex Biryukov1, Aleksei Udovenko2, and Giuseppe Vitto1(B)

1 DCS&SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
{alex.biryukov,giuseppe.vitto}@uni.lu

2 CryptoExperts, Paris, France
aleksei@affine.group

Abstract. In this paper we cryptanalyse the two accumulator variants
proposed by Au et al. [1], which we call the α-based construction and
the common reference string-based (CRS-based) construction. We show
that if non-membership witnesses are issued according to the α-based
construction, an attacker that has access to multiple witnesses is able
to efficiently recover the secret accumulator parameter α and completely
break its security. More precisely, if p is the order of the underlying bilin-
ear group, the knowledge of O(log p log log p) non-membership witnesses
permits to successfully recover α. Further optimizations and different
attack scenarios allow to reduce the number of required witnesses to
O(log p), together with practical attack complexity. Moreover, we show
that accumulator’s collision resistance can be broken if just one of these
non-membership witnesses is known to the attacker. We then show how
all these attacks for the α-based construction can be easily prevented by
using instead a corrected expression for witnesses.

Although outside the original security model assumed by Au et al.
but motivated by some possible concrete application of the scheme
where the Manager must have exclusive rights for issuing witnesses (e.g.
white/black list based authentication mechanisms), we show that if non-
membership witnesses are issued using the CRS-based construction and
the CRS is kept secret by the Manager, an attacker accessing multiple
witnesses can reconstruct the CRS and compute witnesses for arbitrary
new elements. In particular, if the accumulator is initialized by adding
m secret elements, the knowledge of m non-membership witnesses allows
to succeed in such attack.

Keywords: Accumulator · Universal · Dynamic · Cryptanalysis ·
Anonymous credentials

This work was supported by the Luxembourg National Research Fund (FNR) project
FinCrypt (C17/IS/11684537).

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 276–298, 2021.
https://doi.org/10.1007/978-3-030-75539-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_12

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 277

1 Introduction

A cryptographic accumulator scheme permits to aggregate values of a possibly
very large set into a short digest, which is commonly referred to as the accu-
mulator value. Unlike hash functions, where, similarly, (arbitrary) long data is
mapped into a fixed length digest, accumulator schemes permit to additionally
show whenever an element is accumulated or not, thanks to special values called
witnesses. Depending on the accumulator design, we can have two kinds of wit-
nesses: membership witnesses, which permit to show that an element is included
into the accumulator, and non-membership witnesses, which, on the contrary,
permit to show that an element is not included. Accumulator schemes which
support both are called universal and the possibility to dynamically add and
delete elements, give them the name of dynamic accumulators.

The first accumulator scheme was formalized by Benaloh and De Mare [3] in
1993 as a time-stamping protocol. Since then, many other accumulator schemes
have been proposed and they play an important role in various protocols from
set membership, authentication to (anonymous) credentials systems and cryp-
tocurrency ledgers. However, there is only a small set of underlying crypto-
graphic assumptions on which such accumulator primitives are based. Currently,
three main families of accumulators can be distinguished in literature: schemes
designed in groups of unknown order [2,3,6,10,14,15,19], schemes designed in
groups of known order [1,11,12,18] and hash-based constructions [5,7–9,16]. Rel-
evant to this paper are the schemes belonging to the second of these families,
where the considered group is a prime order bilinear group. Moreover, when it
comes to Dynamic Universal Accumulators (namely those that support dynamic
addition and deletion of members and can maintain both membership and non-
membership witnesses) we are down to just a few schemes.

In this paper we cryptanalyse one of these universal scheme proposed for
bilinear groups, namely the Dynamic Universal Accumulator by Au et al. [1],
which is zero-knowledge friendly and stood unscathed for 10 years of public
scrutiny. This scheme comes in two variants which we called the α-based con-
struction and the CRS-based construction, respectively. For the first one, we
show that the non-membership mechanism, designed to allow for more efficiency
on the accumulator manager side, has a subtle cryptographic flaw which enables
the adversary to efficiently recover the secret of the accumulator manager given
just several hundred to few thousand non-membership witnesses (regardless of
the number of accumulated elements).

As a consequence, the attacker can fully break the security of the scheme.
Moreover, we show that given only one non-membership witness generated with
this flawed mechanism, it is possible to efficiently invalidate the assumed collision
resistance property of the accumulator by creating a membership witness for a
non-accumulated element. Despite the presence of a valid security proof, this
is possible because the provided security reduction covers the non-membership
mechanism of the CRS-based construction only and it doesn’t take into account
non-membership definition given for the α-based construction, which, in fact,
resulted to be weak.

278 A. Biryukov et al.

The second part of the paper investigates the CRS-based variant: motivated
by some concrete applications of the scheme where the Manager must have
exclusive rights for issuing witnesses (e.g. white-/black-list based authentication
mechanisms), we show that an adversary having access to a sufficient amount of
witnesses is able to compute valid witnesses for unauthorized elements even when
the Accumulator manager keeps secret all the information needed to compute
such witnesses, i.e. the CRS. In particular, if the accumulator is initialized by
adding m secret elements, an attacker that has access to m non-membership
witnesses would succeed in reconstructing the CRS and will then become able
to issue membership and non-membership witnesses for any accumulated and
non-accumulated elements, respectively.

In Sect. 2 we recall both variants of Au et al. accumulator scheme along
with the security model and our attack scenarios. In Sect. 3 we detail how colli-
sion resistance does not hold when non-membership witnesses are issued accord-
ingly to the α-based construction, while in Sect. 4 we present our first attack
for the α-based construction which allows to fully recover the accumulator’s
secret α. In Sect. 4.3 we provide a complexity analysis in terms of time and non-
membership witnesses needed and in Sect. 5 we discuss some further improve-
ments to the α-recovery attack which lead, under different hypothesis, to two
new attacks: a random-ysieving attack and a chosen-ysieving attack, described
in Sects. 5.1 and 5.2, respectively. We implemented all these attacks and we com-
pare, in Sect. 6, their success probability as a function of the total number of
known witnesses needed. We further report another minor design vulnerabil-
ity for the α-based construction in Sect. 7. Finally, in Sect. 8 we investigate the
security of the CRS-construction under some concrete attack scenarios and we
present, in Sect. 8.2, the Witness Forgery Attack as well as possible countermea-
sures. A summary of our main contributions can be found in Table 1.

Table 1. Time and non-membership witnesses required in our attacks on the Au et
al. accumulator scheme for both α-based and CRS-based construction. In this table, p
denotes the order of the underlying bilinear group, m denotes the number of (secret)
elements with which the accumulator is initialized, � denotes the number of accumula-
tions occurred in between the issues of non-membership witnesses. In the CRS-based
construction the CRS is unknown to the attacker.

Construction Ref. Scenario Witnesses Time Attack result

α-based

Sect. 4 Random-y O(log p log log p) O(log2 p) Recovery of α

Sect. 5.1 Random-y O(log p log log p) O((1 + �/ log log p) log2 p) Recovery of α

Sect. 5.2 Chosen-y O(log p) O(� log2 p/ log log p) Recovery of α

Sect. 3 Random-y 1 O(1) Break collision

Resistance

CRS-based Sect. 8.2 Random-y m O(m2) Issue witnesses

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 279

2 Au et al. Dynamic Universal Accumulator

In their paper, Au and coauthors propose two different constructions for their
Dynamic Universal Accumulator, depending on whether information is made
available to the accumulator managers. The first requires the accumulator’s
secret parameter α and is suitable for a centralized entity which efficiently
updates the accumulator value and issues witnesses to the users. The second
instead, requires a common reference string CRS and allows to update the accu-
mulator value and to issue witnesses without learning α, but less efficiently. We
will refer to the first one as the α-based construction, while we will refer to the
latter as the CRS-based construction.

These two are interchangeable, in the sense that witnesses can be issued
from time to time with one or the other construction. Moreover, we note that
all operations done with the common reference string CRS, can be done more
efficiently by using α directly: hence, if the authority which generates α coincides
with the Accumulator Manager, it is more convenient for the latter to always use
the secret parameter α to perform operations and thus we will refer to the two
constructions mainly to indicate the different defining equations for witnesses
(in particular, non-membership witnesses).

We now detail a concrete instance of Au et al. accumulator scheme by using
Type-I elliptic curves1. Where not explicitly stated, each operation refers to both
the α-based and CRS-based constructions.

Generation. Let E be an elliptic curve of embedding degree k over Fq, which
is provided with a symmetric bilinear group G = (p,G1, GT , P, e) such that
e : G1 × G1 → GT is a non-degenerate bilinear map, G1 is a subgroup of E
generated by P , GT is a subgroup of (Fqk)∗ and |G1| = |GT | = p is prime.
The secret accumulator parameter α is randomly chosen from Z/pZ

∗. The set
of accumulatable elements is ACC = Z/pZ \ {−α}.

– CRS-based construction. Let t be the maximum number of accumulatable
elements. Then the common reference string CRS is computed as

CRS = {P, αP, α2P, . . . , αtP }

Accumulator Updates

– α-based construction. For any given set YV ⊆ ACC let fV (x) ∈ Z/pZ[x]
represent the polynomial

fV (x) =
∏

y∈YV

(y + x)

Given the secret accumulator parameter α, we say that an accumulator value
V ∈ G1 accumulates the elements in YV if V = fV (α)P .

1 We note that Au et al. accumulator scheme and our attacks as well can be defined
to work with any bilinear group.

280 A. Biryukov et al.

An element y ∈ ACC\YV is added to the accumulator value V , by computing
V ′ = (y + α)V and letting YV ′ = YV ∪ {y}. Similarly, an element y ∈ YV

is removed from the accumulator value V , by computing V ′ = 1
(y+α)V and

letting YV ′ = YV \ {y}.

– CRS-based construction. For any given set YV ⊆ ACC such that |YV | ≤ t,
let fV (x) ∈ Z/pZ[x] represent the polynomial

fV (x) =
∏

y∈YV

(y + x) =
|YV |∑

i=0

cix
i

Then, the accumulator value V which accumulates the elements in YV is
computed using the CRS as V =

∑|YV |
i=0 ci · αiP .

Witnesses Issuing

– α-based construction. Given an element y ∈ YV , the membership witness
wy,V = C ∈ G1 with respect to the accumulator value V is issued as

C =
1

y + α
V

Given an element y ∈ ACC\YV , the non-membership witness w̄y,V = (C, d) ∈
G1 × Z/pZ with respect to the accumulator value V is issued2 as

d =
(
fV (α) mod (y + α)

)
mod p, C =

fV (α) − d

y + α
P

– CRS-based construction. Given an element y ∈ YV , let c(x) ∈ Z/pZ[x] be
the polynomial such that fV (x) = c(x)(y +x). Then, the membership witness
wy,V for y with respect to the accumulator value V is computed using the
CRS as wy,V = c(α)P .
Given an element y ∈ ACC \ YV , apply the Euclidean Algorithm to get the
polynomial c(x) ∈ Z/pZ[x] and the scalar d ∈ Z/pZ such that fV (x) =
c(x)(y + x) + d. Then, the non-membership witness w̄y,V for y with respect
to the accumulator value V is computed from the CRS as wy,V = (c(α)P, d).

Witness Update. When the accumulator value changes, users’ witnesses are
updated accordingly to the following operations:

2 We assume that here fV (α) =
∏

y∈YV
(y + α) is computed over Z. Alternatively, if

this computation is done modulo p, then d would be equal to fV (α) mod p for a
large fraction of elements y ∈ ACC \ YV and α can be easily recovered by factoring
fV (x) − d over Z/pZ[x].

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 281

– On Addition: suppose that a certain y′ ∈ ACC \ YV is added into V . Hence
the new accumulator value is V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ = (y′ − y)C + V

and letting wy,V ′ = C ′.
If, instead, y ∈ ACC \ YV with y �= y′, its non-membership witness w̄y,V =
(C, d) is updated to w̄y,V ′ = (C ′, d · (y′ − y), where C ′ is computed in the
same way as in the case of membership witnesses.

– On Deletion: suppose that a certain y′ ∈ YV is deleted from V . Hence the
new accumulator value is V ′ = 1

y′+αV and YV ′ = YV \ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′

and letting wy,V ′ = C ′.
If, instead, y ∈ ACC \ YV , its witness w̄y,V = (C, d) is updated to w̄y,V ′ =
(C ′, d · 1

y′−y , where C ′ is computed in the same way as in the case of mem-
bership witnesses.

We note that in both cases the added or removed element y′ has to be public
in order to enable other users to update their witnesses.

Verification. A membership witness wy,V = C with respect to the accumulator
value V is valid if it verifies the pairing equation e(C, yP + αP) = e(V, P).
Similarly, a non-membership witness w̄y,V = (C, d) is valid with respect to V if
it verifies e(C, yP + αP)e(P, P)d = e(V, P).

2.1 Security Model and Attack Scenarios

The security of the above accumulator scheme is intended in terms of collision
resistance: in [1], this security property is shown under the t-SDH assumption
[4]. Informally, collision resistance ensures that an adversary has negligible prob-
ability in forging a valid membership witness for a not-accumulated element and,
respectively, a non-membership witness for an already accumulated element. In
the following, we briefly recall its formal definition due to Derler et al. and we
refer to [13] for more details:

Definition 1. (Collision Freeness [13]) A cryptographic dynamic universal
accumulator is collision-free if for any probabilistic polynomial time adversary
A the following probability

P

⎛

⎝
(skacc, pkacc) ← Gen(1λ) , (y, wy, w̄y,Y, VY) ← AO(pkacc) :

(Verify(pkacc, VY , wy, y, IsMembWit) = true ∧ y /∈ Y) ∨
(Verify(pkacc, VY , w̄y, y, IsNonMembWit) = true ∧ y ∈ Y)

⎞

⎠

is a negligible function in the security parameter λ and O is an oracle returning

282 A. Biryukov et al.

– the accumulator value VY resulting from the accumulation of elements of any
given input set Y,

– the membership witnesses wy∗ for any accumulated element y∗,
– the non-membership witnesses w̄y∗ for any freely chosen non accumulated

element y∗.

By using a secret and public accumulator key pair (skacc, pkacc), this def-
inition captures the trapdoor nature of Au et al. constructions: in fact, the
secret accumulator parameter α corresponds to the formal accumulator secret
key skacc, while pkacc represents the public information, i.e. the bilinear group
definition and the group elements needed for public witness verification. Further-
more, due to a result of Vitto and Biryukov [20, Lemma 1], the possibility to
arbitrary query the above oracle O is equivalent to the knowledge of the common
reference string CRS, hence both variants can be restated in terms of the above
definition and are substantially equivalent in terms of information the attacker
has access to.

In next Sections we will show that the non-membership witness definition of
the α-based construction is flawed and allows a probabilistic polynomial time
attacker to recover the secret accumulator parameter α and thus break collision
resistance. This flaw is not present in the non-membership witness definition of
the CRS-based construction −which, in fact, fully satisfy the security reduc-
tion under the t–SDH assumption− and hence the α-based construction can be
easily fixed by using, instead, the non-membership witness defining equation of
the other CRS–based variant. In other words, a “fixed” α-based construction
will correspond to a slightly more time-efficient (but asymptotically equivalent)
version of the CRS–based construction, where the CRS is not directly given to
the attacker but can be computed in polynomial time [20, Lemma 1].

Motivated by this observation and by concrete applications of the scheme
where the attacker cannot arbitrarily query an oracle returning witnesses for
any freely chosen element, we show, in Sect. 8, that even when the Accumulator
Manager keeps the CRS secret, the attacker is be able to efficiently recover it by
accessing few non-membership witnesses, thus making him able to issue mem-
bership and non-membership witnesses accordingly to the CRS–based defining
equations, but not able to break collision resistance for this variant. We remark
that this scenario is outside Au et al. security model −where such CRS is always
available to the attacker which can further obtain witnesses from the oracle−
but becomes relevant in all those concrete scenarios where the Manager wishes
to have exclusive rights for issuing witnesses (and thus keeps the CRS secret),
such us authentication mechanisms where witnesses are used as black-/white-list
authentication tokens.

3 Breaking Collision Resistance in the α-Based
Construction

In the α-based construction, the knowledge of a single non-membership witness
is enough to break the (assumed) collision resistance property of the accumulator

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 283

scheme when the polynomial fV (x) ∈ Z/pZ[x] is fully known or, equivalently,
the set of all accumulated elements is publicly known (which is typically the
case).

In the security reduction provided in [1], it is required that given a non-
accumulated element y ∈ ACC \ YV and its non-membership witness w̄y,V =
(Cy, dy) with respect to the accumulator value V , the element d̃y ∈ Z/pZ verifies

(
fV (x) − d̃y mod (y + x)

) ≡ 0 (mod p)

which in turn corresponds to d̃y ≡ fV (−y) (mod p), a condition enforced by the
CRS–based construction non-membership witness definition.

By using, instead, the defining equation for dy provided in the α-
based construction, the partial non-membership witness for y equals dy =(
fV (α) mod (y + α)

)
mod p and thus

dy ≡ d̃y (mod p) ⇒ (
fV (−y) mod (y + α)

) ≡ fV (−y) (mod p)

holds only when fV (−y) < y+α, i.e. with negligible probability if V accumulates
more than one element chosen uniformly at random from Z/pZ.

Now, if dy �≡ d̃y mod p, we have fV (x) − dy �≡ 0 mod (y + x), and we can
use Euclidean algorithm to find a polynomial c(x) ∈ Z/pZ[x] and r ∈ Z/pZ

such that fV (x) − dy = c(x)(y + x) + r in Z/pZ[x]. Then, by recalling that
Cy = fV (α)−dy

y+α P , under the t–SDH assumption, the attacker uses the available
CRS = {P, αP, . . . , αtP} to compute c(α)P and obtains a membership witness
with respect to V for an arbitrary non accumulated element y as

Cy +
dy

r

(
Cy − c(α)P

)
= Cy +

dy

r

(
Cy − Cy − r

y + α
P

)
=

fV (α)
y + α

P =
1

y + α
V

thus breaking the assumed collision resistance property. We note that this result
doesn’t invalidate the security proof provided by Au et al. in [1]: indeed, the
reduction to the t-SDH assumption is shown for (non-membership) witnesses
generated accordingly to the CRS-based construction only, and thus, collision
resistance can be guaranteed only for this latter construction.

We speculate that this flaw comes from the wrong assumption that
(
fV (x) mod (y + x)

) ≡ (
fV (α) mod (y + α)

)
(mod p)

which, if true, would have implied security of non-membership witnesses issued
accordingly to the α-based construction as well. The authors also declare [1,
Sect. 2.2] that by using the secret accumulator value α, the Accumulator Man-
ager can compute membership and non-membership witnesses in O(1) time: this
clearly cannot be true, since, regardless of the variant considered, the evaluation
of the polynomial fV (x) and its reduction modulo a ∼ log p-bits integer requires
(at least) O(deg fV) time.

In the next Sections we will show that within the α-based construction, an
attacker can efficiently recover the secret accumulator parameter α by accessing

284 A. Biryukov et al.

multiple non-membership witnesses, thus making him able to break collision
resistance by computing membership witnesses for non-accumulated elements
similarly as above, but also non-membership witnesses for accumulated elements.

4 The α-Recovery Attack for the α-Based Construction

From now on, we assume the secret parameter α and the accumulator value V
along with the set of currently accumulated elements YV to be fixed.

The following attack on the α-based construction consists of two phases:
the retrieval of the value fV (α) ∈ Z used to compute non-membership witnesses
modulo many small primes and the full recovery of the accumulator secret param-
eter α.

4.1 Recovering fV (α)

Let dy =
(
fV (α) mod (y+α)

)
mod p be a partial non-membership witness with

respect to V for a certain element y ∈ ACC \ YV , and let d̃y denote the integer
fV (α) mod (y + α). We then have dy = d̃y mod p, and we are interested in how
often dy equals d̃y as integers. Attacker benefits from the cases when y + α < p,
since the reduction modulo p does nothing and dy = d̃y for all y.

The worst case happens when α is maximal, i.e. α = p − 1. Indeed, in this
case, if y = 0 then y + α < p and dy = d̃y with probability 1; if instead y > 0
and y �= p − α = 1 the probability that dy = d̃y is p

y+α and, hence, is minimal
when compared to smaller values of α. Thus, with α = p − 1 the probability
that dy equals d̃y as integers ranges from 1 (when y = 0) to almost 1/2 (when
y = p − 1). Assuming that y is sampled uniformly at random, we can obtain the
following lower bound on the probability (for arbitrary α):

P
y∈{0,...,p−1}

y �=p−α
fV (α)∈Z

(dy = d̃y) ≥ 1
p − 1

⎛

⎝1 + p

p−1∑

ỹ=2

1
ỹ + p − 1

⎞

⎠

=
p

p − 1

(
2p−2∑

i=1

1
i

−
p−1∑

i=1

1
i

)
=

p

p − 1
(H2p−2 − Hp−1)

=
(

1 +
1

p − 1

)
·
(

ln 2 − 1
4(p − 1)

+ o
(
p−1

))

= ln 2 +
4 ln 2 − 1
4(p − 1)

+ o(p−1)

> ln 2. (1)

where Hn denotes the n–th Harmonic number, and the last inequality holds for
all values of p used in practice.

Assume that q|(y + α) for a small prime q ∈ Z such that q � y + α. If
dy = d̃y we have fV (α) ≡ dy (mod q) with probability 1, otherwise it happens

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 285

with probability 0 since then fV (α) ≡ dy + p (mod q). If instead q � (y + α), we
assume dy mod q to be random in Z/qZ and thus fV (α) ≡ dy (mod q) happens
with probability close to 1

q .
More precisely,

P
(
fV (α) ≡ dy (mod q)

)
> ln 2 · 1

q
+

q − 1
q2

=
(ln 2 + 1)q − 1

q2

while for any other c ∈ Z/qZ such that c �≡ dy (mod q) we have

P
(
fV (α) ≡ c (mod q)

)
< (1 − ln 2) · 1

q
+

q − 1
q2

=
(2 − ln 2)q − 1

q2

In other words, the value dy mod q has a higher chance to be equal to
fV (α) mod q compared to any other value in Z/qZ.

We will use this fact to deduce fV (α) modulo many different small primes.
More precisely, suppose that an attacker has access to the elements y1, . . . , yn

together with the respective partial non-membership witnesses

dyi
≡ (

fV (α) mod (yi + α)
)

mod p

If q is a small prime and n is sufficiently large (see Sect. 4.3 for the analysis),
fV (α) mod q can be deduced by simply looking at the most frequent value among

dy1 mod q, . . . , dyn
mod q

Once we compute fV (α) modulo many different small primes q1, . . . , qk such
that q1 · . . . · qk > p, we can proceed with the next phase of the attack: the full
recovery of the secret parameter α.

4.2 Recovering α

If the discrete logarithm of any accumulator value is successfully retrieved mod-
ulo many different small primes whose product is greater than p, α can be
recovered with (virtually) no additional partial non-membership witnesses. The
main observation we will exploit is the following:

Observation 1. Let q be an integer and let y ∈ ACC \YV be a non-accumulated
element such that its partial non-membership witness with respect to V satisfies
dy = d̃y. Then dy �≡ fV (α) (mod q) implies that q � (y + α), or, equivalently,
α �≡ −y (mod q).

From (1) it follows that for any given q ∈ Z and non-accumulated element y
such that (fV (α) − dy) �≡ 0 (mod q), we have

P
(
α �≡ −y (mod q) | fV (α) �≡ dy (mod q)

)
> 1 − (1 − ln 2)q

q2 − (1 + ln 2)q + 1
≈ 1 − 1 − ln 2

q

286 A. Biryukov et al.

By considering all available non-membership witnesses, if q is small and n is
sufficiently larger than q (see Sect. 4.3), we can deduce α mod q as the element
in Z/qZ which is the least frequent −or not occurring at all− among the residues

−yi1 mod q , . . . , −yij
mod q

such that (fV (α) − dyik
) �≡ 0 mod q for all k = 1, . . . , j.

It follows that, if q1, . . . , qk are small primes such that q1 · . . . · qk > p,
from the values fV (α) mod qi −computed according to Sect. 4.1− and the values
α mod qi, with i ∈ [1, k], α ∈ Z can be obtained by using the Chinese Remainder
Theorem.

4.3 Estimating the Minimum Number of Witnesses Needed

We now give an asymptotic estimate of the minimum number of non-membership
witnesses needed so that both phases of the above attack succeed with high
probability. We will use the multiplicative Chernoff bound, which we briefly
recall.

Theorem 2. (Chernoff Bound) Let X1, . . . , Xn be independent random vari-
ables taking values in {0, 1} and let X = X1 + . . . + Xn. Then, for any δ > 0

P
(
X ≤ (1 − δ)E[X]

) ≤ e− δ2μ
2 0 ≤ δ ≤ 1

P
(
X ≥ (1 + δ)E[X]

) ≤ e− δ2μ
2+δ 0 ≤ δ

Proof. See [17, Theorem 4.4, Theorem 4.5]. ��
Our analysis will proceed as follows: first, we introduce two random variables

to model, for a given small prime q, the behaviour of the values fV (α) mod q.
Then, we will use Chernoff bound to first estimate the probability of wrongly
guessing fV (α) mod q, and then deduce a value for n so that such probability is
minimized for all primes q considered in the attack.

Let q ∈ Z be a fixed prime and let Xg be a random variable which counts
the number of times fV (α) mod q is among the values d1 mod q, . . . , dn mod q.
Similarly, let Xb be a random variable which counts the number of times a certain
residue t ∈ Z/qZ not equal to fV (α) mod q is among the values d1 mod q, . . . ,
dn mod q. Then

E[Xg] = n · (ln 2 + 1)q − 1
q2

≈ (ln 2 + 1)
n

q

E[Xb] = n · (2 − ln 2)q − 1
q2

≈ (2 − ln 2)
n

q

By applying Theorem 2, we can estimate the probability that Xg and Xb

crosses E[Xg]+E[Xb]
2 = 3n

2q as

P

(
Xg ≤ 3n

2q

)
= P

(
Xg ≤

(
1 − 2 ln 2 − 1

2 ln 2 + 2

)
E[Xg]

)
< e− n

91q
.= eq,g

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 287

P

(
Xb ≥ 3n

2q

)
= P

(
Xb ≥

(
1 +

2 ln 2 − 1
4 − 2 ln 2

)
E[Xb]

)
< e− n

76q
.= eq,b

and we minimize these inequalities by requiring that

1 − (1 − eq,g)(1 − eq,b)q−1 ≈ eq,g + (q − 1)eq,b
.= sq

is small for each prime q considered in this attack phase. Thus, if q =
max(q1, . . . , qk), we can bound the sum

k∑

i=1

sqi
≤ qsq = q(e− n

91q + (q − 1)e− n
76q) ≈ e− n

91q +log q + e− n
76q +2 log q

and we make it small by taking n = O(q log q).
In order to apply the Chinese Remainder Theorem for the full recovery of α

we need that q1 · . . . · qk > p. If q1, . . . , qk are chosen to be the first k primes,
we can use an estimation for the first Chebyshev function growth rate to obtain
ln(q1 · ... · qk) = (1 + o(1)) · k ln k ∼ qk by Prime Number Theorem and thus
qk > ln p. We then conclude that

n = O(log p log log p)

non-membership witnesses are enough to recover fV (α) mod q1 · . . . ·qk with high
probability.

We note that by using Chernoff bound in order to estimate the minimum
number of witnesses needed to recover α, it can be shown, similarly as done
above for fV (α), that O(log p log log p) non-membership witnesses are enough to
identify with high probability α mod q1 · . . . · qk = α.

The time complexity is dominated by

(# primes q) × (# witnesses) = O

(
log p

log log p

)
× O(log p log log p)

which is equal to O(log2 p).

5 Improving the α-Recovery Attack

We will now improve the α-Recovery Attack outlined in Sect. 4 by giving
some variants under two different attack scenarios, depending on whether the
attacker has access to non-membership witnesses for random-y or chosen-y.3

These improvements will further reduce the number of non-membership wit-
nesses needed to fully recover the secret accumulator parameter α to a small
multiple of log p.

The main idea behind the improved attack is to keep removing wrong can-
didates for α mod q for small primes q (sieving), until only the correct one is
left. As in the previous attack, full value of α is then reconstructed using the
Chinese Remainder Theorem.
3 We observe that according to Definition 1, the attacker has access to an oracle which

returns witnesses for any chosen-y. However, in concrete instances of the accumulator
scheme, an attacker might have access only to witnesses for random values y.

288 A. Biryukov et al.

Collecting Witnesses Issued at Different States. In the α-Recovery Attack
described in Sect. 4, O(log p log log p) non-membership witnesses issued with
respect to the same accumulator value V are needed in order to fully recover
α. In the following attacks we drop this condition and allow non-membership
witnesses to be issued with respect to different accumulator values f1(α)P = V1,
. . . , f�(α)P = V�, but we require that no deletions occur between the accumu-
lator states V1 and V�. In this case, since the sequence of elements added must
be public to permit witness updates, we have that the polynomial functions
gi,j(x) ∈ Z/pZ such that fj(α) = gi,j(α)fi(α) for any α ∈ Z/pZ, can be publicly
computed for any i, j ∈ [1, �]. It follows that, given a small prime q, once α mod q
and fi(α) mod q for some i ∈ [1, �] are correctly computed, fj(α) mod q can be
computed as gi,j(α)fi(α) mod q for any j ∈ [1, �] such that j > i.

The requirement that no deletion operation should occur if the collected wit-
nesses were issued at different states, comes from the fact that the accumulator
can be initialized by accumulating some values which are kept secret by the
Accumulator Manager.

It follows that, whenever the polynomial f1(x) ∈ Z/pZ is publicly known (or,
equivalently, the set of all accumulated elements YV1) for a certain accumulator
value V1, we can remove the condition that no later deletion operations occur
during attack execution, since the knowledge of α mod q is enough to compute
fi(α) mod q for any i ∈ [1, �]. Thus any non-membership witnesses issued from
V1 on can be used to recover α.

Removing Reduction Modulo p. We show that, under some practical
assumptions, it is possible to eliminate with high probability the noise given
by the reduction modulo p performed by the Accumulator Manager when he
issues a non-membership witness. That is, we recover d̃yi

= fVj
(α) mod (yi +α)

for a large fraction of pairs (yi, Vj), given the partial non-membership witnesses
dyi

=
(
fVj

(α) mod (yi + α)
)

mod p collected with respect to different accumu-
lator values Vj with j > 1.

Aiming at this, we first observe that from the fact that 0 ≤ y, α < p for any
given y ∈ ACC \ YV , the partial non-membership witness dy for y with respect
to V can be expressed in terms of d̃y in one of the following way:

(1) dy = fV (α) mod (y + α) = d̃y,

(2) dy =
(
fV (α) mod (y + α)

) − p = d̃y − p.

Since p is odd, whenever y + α is even, these two cases can be easily distin-
guished modulo 2: indeed, in the first case dy ≡ fV (α) (mod 2), while in the
second case dy �≡ fV (α) (mod 2).

This observation effectively allows to correctly compute d̃y half of the times
given a correct guess for α mod 2 and fV (α) mod 2. Indeed, given a set of partial
non-membership witnesses dy1 , . . . , dyn

with respect to V , each guess of α mod 2
and fV (α) mod 2 will split the witnesses in two subsets, namely one where the
corresponding elements yi satisfy yi + α ≡ 0 (mod 2) (and thus d̃yi

can be
correctly recovered), and the other where this doesn’t happen.

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 289

Checking if α mod 2 and fV (α) mod 2 were actually correct guesses can be
done observing how the attacks described in Sects. 5.1 and 5.2 (or in Sect. 4 if
witnesses are issued with respect to the same accumulator value) behaves with
respect to the subset of witnesses that permitted to recover the values d̃yi

. In
case of a wrong guess, indeed, it will not possible to distinguish α and fVi

(α)
modulo some different small primes q: in this case the attack can be stopped
and a new guess should be considered. On the other hand, a correct guess will
permit to correctly recover α and fVi

(α) modulo few more primes q greater than
2. Since, whenever α mod q and fV (α) mod q are known, d̃y can be correctly
recovered, analogously to the modulo 2 case, for all those y such that y + α is
divisible by q, this implies that it is possible to iteratively recover more and more
correct values d̃yi

given the initial set of considered witnesses.
Repeating this procedure for small primes q up to r, it allows to recover d̃yi

for those yi that are divisible by at least one prime not exceeding r. This fraction
tends to 1 − ϕ(r#)/(r#) as yi tend to infinity, where ϕ is the Euler’s totient
function and r# denotes the product of all primes not exceeding r. For example,
setting r = 101 allows to recover d̃yi

for about 88% of all available witnesses.
We conclude that d̃yi

can be recovered for practically all i ∈ [1, n].
In the case where witnesses are issued with respect to different accumu-

lator values V1, . . . , V�, as remarked above, the knowledge of α mod q and
fV1(α) mod q allows to compute fVj

(α) mod q for all Vj with j > 1, so the
modulo p noise reduction can be easily performed independently on when the
witnesses are issued.

5.1 The Random-y Sieving Attack

In this scenario we assume that all elements yi for which the partial non-
membership witnesses dyi

are available to the adversary, are sampled uniformly
at random from Z/pZ. Furthermore these witnesses are pre-processed accord-
ingly to the method described above, in order to eliminate the noise given by
reduction modulo p.

Recovering α mod q. Let q be a small prime, i.e. q = O(log p), and let Yα be
the set containing all pairs (yi, d̃yi

) such that yi + α ≡ 0 (mod q) for a certain
guess α mod q. If the latter is guessed wrongly, then the values d̃yi

modulo q
are distributed uniformly and independently from the values fVi

(α) mod q. On
the other hand, if the guess is correct, then d̃yi

≡ fVi
(α) (mod q).

Even in the case when fV1(α) mod q is unknown, fVi
(α) mod q can be

recovered from the first occurrence of yi in the set Yα and verified at all further
occurrences, since all fVj

(α) mod q can be computed for any j ≥ i. It follows
that we can easily distinguish if a guess for α mod q is either correct or not.

The attack succeeds if for every wrong guess α× of α mod q we observe a
contradiction within the pairs in Yα× . It’s easy to see that if |Yα× | = t, the
probability to observe at least one contradiction is 1−1/qt−1. Thus, by ensuring
a constant number t of elements in Yα× given each α× �= α mod q is sufficient

290 A. Biryukov et al.

to make the probability of false positives negligible. This requires availability of
O(q log q) witnesses in total.

Recovering α. The final step is the same as in the previous attacks: the secret
value α is recovered by repeating the process for different small primes q and
then by applying the Chinese Remainder Theorem. Furthermore, if for some
primes q there are multiple candidates of α mod q, such primes can be simply
omitted from the application of the Chinese Remainder Theorem. In this case,
in order to fully recover α ∈ Z, the maximum prime q that has to be considered
must be larger than ln p by a constant factor. We conclude that O(q log q) =
O(log p log log p) witnesses are sufficient for full recovery of α with overwhelming
probability.

The time complexity of the attack is dominated by guessing α mod q for
each q considered. Note that for a wrong guess of α mod q, we can expect
on average a constant amount of witnesses to check before an inconsistency is
observed; this amount is thus enough to identify the correct value. For each
such guess, nearly all accumulator states in the history have to be considered
in order to take into account all additions to the accumulator. However, the
non-membership witnesses issued in each state can be classified by guesses of α
mod q in a single scan for each prime q.

We conclude that the time complexity is dominated by

(# primes q) × (q guesses of α mod q) × (# of accumulator states)

and by classifying all non-membership witnesses for each prime q

(# primes q) × (# witnesses)

The final complexity is O((1 + �/ log log p) log2 p).

5.2 The Chosen-y Sieving Attack

If the adversary is allowed to choose the elements yi for which the partial non-
membership witnesses are issued, no matter with respect to which accumulator
state, the amount of required witnesses can be further reduced by a log log p
factor.

First, we assume that the adversary chooses the elements yi non-adaptively,
i.e. before the accumulator is initialized. The idea is simply to use consecutive
values, that is y0 = r, y1 = r + 1, . . . , yi = r + i, . . . , for some r ∈ Z/pZ.
This choice fills equally all sets Yα̃ for all α̃ ∈ Z/qZ and small q, where α̃
represents either a correct guess for α mod q or a wrong guess α×. As a result,
t = O(q) elements are enough to make the size of each set Yα̃ at least equal to
t. The full total number of required non-membership witnesses is then reduced
to O(q) = O(log p). The time complexity then is improved by a factor log log p
in the case when � is small: O(� log2 p/ log log p).

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 291

We now consider the case when the adversary can adaptively chose the ele-
ments yi. Note that, on average, we need only 2 + 1/(q − 1) elements in each set
Yα× to discard the wrong guess of α mod q, for all q. The adaptive choice allows
to choose yi such that (yi +α×) ≡ 0 (mod q) specifically for those α× which are
not discarded yet. Furthermore, the Chinese Remainder Theorem allows us to
combine such adaptive queries for all chosen primes q simultaneously. As a result,
approximately 2 ln p witnesses for adaptively chosen elements are sufficient for
the full recovery of α. This improves the constant factor of the non-adaptive
attack in term of number of non-membership witnesses required.

Remark 1. As described at the beginning of this Section, non-membership wit-
nesses can be issued with respect to different successive accumulator values
V1, . . . , V�, within which no deletion operation occurs. If the value fV1(x) ∈ Z[x]
is known to the adversary (or equivalently the set of all accumulated elements in
V1), only ln p non-membership witnesses issued for adaptively chosen elements
are sufficient to recover α. In this case, indeed, instead of verifying uniqueness
of elements in the set Yα× , we can directly compare our guess to the value
fVj

(α) mod q given from fV1(α), thus requiring 1 + 1/(q − 1) elements on aver-
age.

6 Experimental Results

We implemented the α-Recovery Attack from Sect. 4 and both the random-y and
the non-adaptive chosen-y sieving attacks from Sects. 5.1 and 5.2.

For the verification purpose we used a random 512-bit prime p. We measured
the success rate of the attacks with respect to the number of available non-
membership witnesses. The α-Recovery Attack applies to a single accumulator
state, and for the sieving attacks, the number of state changes of the accumulator
was 10 times less than the number of issued witnesses. The initial state of the
accumulator in all attacks was assumed to be secret. Each attack was executed
100 times per each analyzed number of available non-membership witnesses. The
sieving attacks were considered successful if at most 210 candidates for α were
obtained and the correct α was among them. The results are illustrated in Fig. 1.

The α-Recovery Attack, while being simple, requires a significant amount of
witnesses to achieve a high success rate, more than 20000 ≈ 10 ln p ln ln p wit-
nesses and finishes in less than 5 s. The random-y sieving attack achieves almost
full success rate with about 6000 ≈ 3 ln p ln ln p available witnesses and completes
in less than 10 s. The chosen-y sieving attack requires less than 2000 ≈ 4 ln p wit-
nesses to achieve almost perfect success rate and completes in less than 4 s. All
timings include the generation of witnesses. The experiments were performed on
a laptop with Linux Mint 19.3 OS and an Intel Core i5-10210U CPU clocked at
1.60 GHz.

292 A. Biryukov et al.

Fig. 1. Attacks experimental success rate as a function of the total number of available
witnesses.

7 Weak Non-membership Witnesses

In the α-based construction, non-membership witness definition is affected by
another minor design vulnerability: given a non-membership witness w̄y,V =
(Cy, dy) with respect to an accumulator value V , if dy ≡ fV (α) mod p, then
Cy = O.

Those “weak non-membership witnesses” are issued with non-negligible prob-
ability in the security parameter λ when only one element is accumulated.
Assume, indeed, that V = (y′ + α)P for a certain element y′ ∈ ACC. Then,
for any element y ∈ ACC such that y′ < y, the corresponding non-membership
witness w̄y,V with respect to V is issued as

dy =
(
y′ + α mod (y + α)

)
mod p = (y′ + α) mod p

and thus Cy = O. In this case, as soon as the element y′ becomes public (e.g.
is removed), the accumulator secret parameter can be easily obtained as α =
(dy − y′) mod p.

8 Preventing Witness Forgery in the CRS-Based
Construction

All the attacks we have presented so far are ineffective when witnesses (more pre-
cisely, non-membership witnesses) are issued according to the defining equations
given for the CRS-based construction.

We note that the knowledge of the CRS is functionally equivalent to the
knowledge of α when the set of currently accumulated elements is fully known:
indeed, besides accumulator updates, the CRS permits to issue both membership
and non-membership witnesses for arbitrary elements, with the difference that
the knowledge of α permits to break collision-resistance, while the knowledge
of the CRS does not. Furthermore, despite what we saw in Sect. 3, witnesses

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 293

definition in the CRS-based construction satisfy the hypothesis for the t–SDH
security reduction provided by Au et al., i.e. collision-resistance is enforced when
the CRS is used to issue witnesses.

Depending on the use-case application of the accumulator scheme, the pos-
sibility to publicly issue witnesses for arbitrary elements could be undesirable:
for example, this is relevant when the accumulator scheme is used as a privacy-
preserving authorization mechanism, i.e. an Anonymous Credential System. Sup-
pose, indeed, that in this scenario the accumulator value V accumulates revoked
users’ identities and the non-revoked ones authenticate themselves showing the
possession of a valid non-membership witness w̄y,V for an identity y, both issued
by a trusted Authentication Authority. If an attacker has access to the CRS,
he will be able to forge a random pair of credentials (y′, wy′,V) and then he
could authenticate himself, even if the Authentication Authority never issued
the identity y′ nor the corresponding witness. This is especially the case when a
zero knowledge protocol is instantiated during users’ credentials verification since
it is impossible to distinguish between a zero knowledge proof for an authorized
identity y and a proof for the never issued, but valid, identity y′.

In the following we will investigate the CRS-based construction under this
scenario, i.e. assuming the Accumulator Manager to be the only authority
allowed to issue witnesses. We stress that resistance to witness forgeries is out-
side the security model provided by Au et al. where the attacker can generate
as many witnesses as he wishes, and the attacks described in the following do
not break any security properties assumed for the CRS–based construction by
the respective authors.

In the next two Sections, we will discuss how witness forgery for never-
authorized elements can be prevented, namely: a) the manager constructs the
set YV of currently accumulated elements in such a way that it is infeasible to
fully reconstruct it; b) the common reference string CRS is not published and
an attacker cannot reconstruct it.

8.1 How to Ensure Some Accumulated Elements Remain Unknown

Given an accumulator value V , assume YV is the union of the disjoint sets YV0 ,
whose elements are used exclusively to initialize the accumulator value from P
to V0, and Yid = YV \ YV0 , the set of currently accumulated elements for which
a membership witness have been issued.

Since the elements in Yid must be public to enable users to update their
witnesses4, the reconstruction of YV = YV0 ∪ Yid can be prevented only if YV0

remains, at least partially, unknown.

4 The very first element for which a membership witness is issued can remain unknown
if there are no other users which need to update their witnesses. In this case, we
assume that this elements belongs to Y0.

294 A. Biryukov et al.

From YV = YV0 ∪Yid and YV0 ∩Yid = ∅, it follows that the polynomial fV (x)
can be written as

fV (x) = f0(x) · fid(x) =
∏

yi∈YV0

(yi + x)
∏

yj∈Yid

(yj + x)

When non-membership witnesses are generated according to the CRS-con-
struction, as soon as an attacker has access to deg(fid) ≥ deg(f0), |YV0 | partial
non-membership witnesses for the elements y1, . . . , y|YV0 |, i.e.

dyi
≡ fV (−yi) ≡ f0(−yi) · fid(−yi) (mod p)

he will be able to reconstruct the unknown set YV0 . Indeed, with the knowledge
of Yid, the polynomial fid(x) can be easily obtained and it is then possible to
compute the |YV0 | pairs

(
− yi, f0(−yi)

)
=

(
−yi,

dyi

fid(−yi)

)

With these pairs, the attacker is able to uniquely interpolate, using for example
Lagrange interpolation, the monic polynomial f0(x) mod p whose roots are the
elements in YV0 .

5

The reconstruction of the set YV can be prevented by initializing the accu-
mulator with a number of random elements which is greater than the total
number of issuable non-membership witnesses: this clearly avoids the possibility
to interpolate f0(x), even in the case when the attacker has access to all issued
non-membership witnesses.

We note, however, that this approach has some disadvantages. First of all,
the maximum number of issuable non-membership witnesses has to be set at
generation time and cannot be increased once the first witness is issued, since all
further accumulated elements will be public to allow witness updates. When this
number is reasonable big, let’s say 1 billion, the Accumulator Manager needs
to evaluate at least a 1-billion degree polynomial when issuing any new non-
membership witnesses, an operation that becomes more and more expensive as
the number of accumulated elements increases. On the other hand, by decreasing
it, the Accumulator Manager can issue the non-membership witnesses in a less
expensive way, but only to a smaller set of users.

8.2 Recovering the CRS
Alternatively to the countermeasure proposed in Sect. 8.1, it’s natural to wonder
if unauthorized witness forgery can be prevented by just keeping the CRS secret
from the attacker.

We will now show that by executing what we will refer to as The Witness
Forgery Attack, an attacker that has access to multiple witnesses can successfully
recover the CRS, even if the Accumulator Manager keeps it secret.
5 Since f0(x) is monic, only deg(f0) evaluations are needed to uniquely interpolate it.

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 295

The main observation on which this attack is based on is that given any
partial witness Cy (no matter if it is a membership or a non-membership one)
for an element y with respect to the accumulator value V , it can be expressed as
Cy = gy(α)P for a polynomial gy(x) ∈ Z/pZ[x] which depends on y and fV (x)
(i.e. fV (x) = gy(x)(y + x) + dy for some dy ∈ Z/pZ).

Assume the attacker has access to n ≥ |YV | = m partial non-membership
witnesses

Cy1 = g1(α)P, . . . , Cyn
= gn(α)P

with respect to V . From Sect. 8.1, we know that he is able to fully recover the
polynomial fV (x) and so he can explicitly compute from the elements y1, . . . , yn

the n polynomials g1(x), . . . , gn(x) in Z/pZ[x], each of degree m − 1. We note
that by randomly choosing m out of these n polynomials, they will be linearly
independent with probability

1
pm2 ·

m−1∏

k=0

(pm − pk) =
m∏

k=1

(
1 − 1

pk

)
≈ 1

and so we assume, without loss of generality, that g1(x), . . . , gm(x) are indepen-
dent. It follows that for any fixed i ∈ [0, . . . , m − 1], there exist computable
not-all-zero coefficients a1, . . . , am ∈ Z/pZ such that

xi = a1g1(x) + . . . + amgm(x)

and so
αiP = a1Cy1 + . . . + amCym

In other words, the partial common reference string

CRSm
.= {P, αP, . . . , αm−1P}

can be obtained from these witnesses and this will enable the attacker to compute
membership and non-membership witnesses with respect to V for any accumu-
lated and non-accumulated element, respectively.

We note that it is more convenient to execute the above attack with respect
to the accumulator value V0 and the polynomial fV0(x): in fact, any non-
membership witness for a never added element which is issued with respect to a
later accumulator value than V0, can be iteratively transformed back to a non-
membership witness with respect to V0 by just inverting the non-membership
witness update formula outlined in Sect. 2. Once both fV0(x) and CRS |YV0 | are
computed, the attacker can issue witnesses with respect to V0 for elements in
and not in YV0 and update them with respect to the latest accumulator value
as usual. Clearly, since it is possible to issue many different non-membership
witnesses with respect to V0, this implies that by updating them, these non-
membership witnesses can be used to iteratively expand the previously computed
partial common reference string CRS |YV0 |.

296 A. Biryukov et al.

Attack 1: The Witness Forgery Attack
Input : n ≥ |YV0 | non-membership witnesses for never accumulated elements,

the accumulator history (accumulator values and added/removed
elements)

Output: a non-membership witness for a non-accumulated element or a
membership witness for an accumulated one with respect to V

1 Un-update all non-membership witnesses with respect to V0 inverting witness
update formula and using accumulator history.

2 Interpolate the polynomial fV0(x) =
∏

yi∈YV0
(yi + x) from witnesses.

3 Use Euclidean Algorithm to find gi(x) and dyi such that
fV0(x) = gi(x)(yi + x) + dyi for every element yi, i = 1, . . . , n

4 Use linear algebra to write xj as a linear combinations of g1(x), . . . , gn(x) for
any j = 0, . . . , |YV0 | − 1

5 Obtain CRS|YV0 | from witnesses.

6 Use CRS|YV0 | and fV0(x) to issue many different non-membership witnesses
with respect to V0.

7 Use the additional non-membership witnesses issued to expand the common
reference string to CRS|YV |.

8 Issue membership and non-membership witnesses with respect to the
accumulator value V .

More precisely, given an accumulator value V we know that

V =

⎛

⎝
∏

yi∈YV \YV0

(y + α)

⎞

⎠ V0 = fV (α)P

where fV (x) can be publicly computed from the published witness update infor-
mation if the monic polynomial fV0(x) is recovered by the attacker through
interpolation, as outlined in Sect. 8.1.

Once the attacker successfully computes CRS |YV0 |, they use it to issue (a
multiple of) |YV | − |YV0 | additional non-membership witnesses for random ele-
ments with respect to V0, he updates them with respect to V and expands its
starting set of elements and witnesses. Then, for each element yi in this big-
ger set, he computes the corresponding polynomial gi(x) of degree deg(fV) − 1
such that fV (x) = gi(x)(yi + x) + dyi

. At this point and similarly as before, the
attacker can explicitly write a linear combinations of computable polynomials
which equals xi for any i such that deg(fV0)−1 < i ≤ deg(fV)−1, and thus can
expand the previously computed CRSdeg(fV0)

to CRSdeg(fV). In conclusion, an
attacker would be able to forge witnesses with respect to the latest accumulator
value by accessing only |YV0 | non-membership witnesses. The whole attack is
summarized in Attack 1.

Similarly as discussed in Sect. 8.1, this attack can be prevented if the total
number of issued non-membership witnesses is less than |YV0 |.

Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups 297

9 Conclusions

In this paper, we cryptanalysed the Dynamic Universal Accumulator scheme
proposed by Au et al. [1], investigating the security of the two constructions
proposed, to which we refer as the α-based and the CRS-based construction.

For the first construction we have shown several attacks which allow to
recover the accumulator secret parameter α and thus break its collision resis-
tance. More precisely, if p is the order of the underlying bilinear group, an
attacker that has access to O(log p log log p) non-membership witnesses for ran-
dom elements will be able to fully recover α, no matter how many elements are
accumulated. If instead the elements can be chosen by the attacker, the num-
ber of required witnesses reduces down to just O(log p), thus making the attack
linear in the size of the accumulator secret α. Furthermore, we showed how accu-
mulator collision resistance can be broken in the α-based construction given one
non-membership witness and we described also another minor design flaw.

For the second, i.e. the CRS-based construction, we investigated resistance
to witness forgeries under the hypothesis that the Accumulator Manager has
the exclusive right to issue witnesses (as in authentication mechanisms) and
thus keeps the CRS private. We have shown that an attacker that has access
to multiple witnesses is able to reconstruct the Accumulator Manager CRS,
which would then enable him to compute witnesses for arbitrary elements. In
particular, if the accumulator is initialized by accumulating m secret elements,
m witnesses suffices to recover the secret CRS.

Countermeasures We have shown that the α-based construction of Au et al.
Dynamic Universal Accumulator is insecure, however one can still use the witness
defining equations provided in the alternative CRS-based construction, which is
collision-resistant under the t-SDH assumption. There is one caveat: knowledge
of CRS will enable an attacker to issue witnesses for arbitrary elements. If this
needs to be avoided (ex. in authentication mechanisms), then CRS should be
kept secret and the accumulator properly initialized. Namely, the accumulator
manager needs to define an upper limit m to the total number of issuable non-
membership witnesses and has to initialize the accumulator by adding m + 1
secret elements in order to prevent Attack 1.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
and suggestions. This work was supported by the Luxembourg National Research Fund
(FNR) project FinCrypt (C17/IS/11684537).

References

1. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
ddh groups and their application to attribute-based anonymous credential systems.
In: CT-RSA, Springer LNCS, vol. 5473, pp. 295–308 (2009)

2. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: EUROCRYPT, pp. 480–494 (1997)

298 A. Biryukov et al.

3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: EUROCRYPT, pp. 274–285 (1993)

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

5. Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their
applications. In: International Conference on the Theory and Application of Cryp-
tology and Information Security, pp. 42–62 (2014)

6. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188 (2018)

7. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using unde-
niable attestations. In: ACM CCS, vol. 9–17 (2000)

8. Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications
to accountable certificate management. J. Comput. Secur. 10, 2002 (2002)

9. Camacho, P., Hevia, A., Kiwi, M.A., Opazo, R.: Strong accumulators from collision-
resistant hashing. In: ISC, Springer LNCS, vol. 4222, pp. 471–486 (2008)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO, pp. 61–76 (2002)

11. Camenisch, J., Soriente, C.: An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In: PKC 2009, Springer LNCS, vol. 5443,
pp. 481–500 (2009)

12. Damg̊ard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-
map accumulators. IACR Cryptology ePrint Archive, vol. 538 (2008)

13. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: CT-RSA 2015, pp. 127–144
(2015)

14. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: ACNS, Springer LNCS, vol. 4521, pp. 253–269 (2007)

15. Lipmaa, H.: Secure Accumulators from euclidean rings without trusted setup. In:
ACNS, Springer LNCS, vol. 7341, pp. 224–240 (2012)

16. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology - CRYPTO
1989, pp. 218–238 (1989)

17. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge(2005)

18. Nguyen, L.: Accumulators from bilinear pairings and applications. In: CT-RSA,
Springer LNCS, vol. 3376, pp. 275–292 (2005)

19. Sander, T.: Efficient accumulators without trapdoor. In: ICICS, pp. 252–262 (1999)
20. Vitto, G., Biryukov, A.: Dynamic universal accumulator with batch update over

bilinear groups. In: IACR Cryptology ePrint Archive, vol. 777 (2020)

FAN: A Lightweight Authenticated
Cryptographic Algorithm

Lin Jiao1(B) , Dengguo Feng1,2, Yonglin Hao1, Xinxin Gong1,
and Shaoyu Du1

1 State Key Laboratory of Cryptology, Beijing 100878, China
2 State Key Laboratory of Computer Science, ISCAS, Beijing, China

Abstract. The wide application of the low-end embedded devices has
largely stimulated the development of lightweight ciphers. In this paper,
we propose a new lightweight authenticated encryption with additional
data (AEAD) algorithm, named as Fan, which is based on a first non-
Grain-like small-state stream cipher that adopts a novel block-wise struc-
ture, inspired by the 4-blade daily electric fan. It takes a 128-bit key, a
64-bit initial vector (IV), and a 192-bit state, promising 128-bit security
and up to 72-bit authentication tag with the IV-respecting restriction. It
consists of a nonlinear spindle, four linear blades and an accumulator, and
updates by constant mutual feedbacks between the linear and nonlinear
parts, which rapidly provides highly confused level by parallel diffusing
the fastest-changing state of spindle. The key is used both in the initial-
ization and generation phases as part of input and state respectively,
making Fan suitable for resource-constrained scenarios with internal
state diminishment but no security loss. A thorough security evaluation
of the entire AEAD mode is provided, which shows that Fan can achieve
enough security margin against known attacks. Furthermore, Fan can
be implemented efficiently not only in hardware environments but also
in software platforms, whose operations are carefully chosen for bit-slice
technique, especially the S-box is newly designed efficiently implemented
by logic circuit. The hardware implementation requires about 2327 GE
on 90 nm technology with a throughput of 9.6 Gbps. The software imple-
mentation runs about 8.0 cycle/byte.

Keywords: Lightweight design · Authenticated encryption · Stream
cipher · Small-state · Implementation efficiency

1 Introduction

There are several emerging areas (e.g. Radio Frequency Identification, sensor
networks, distributed control systems, and Internet of Things etc.) progressing
rapidly, in which highly-constrained devices are interconnected, typically com-
municating wirelessly with one another, and working in concert to accomplish

Supported by the National Natural Science Foundation of China (No. 61902030,
62002024, 62022018).

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 299–325, 2021.
https://doi.org/10.1007/978-3-030-75539-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_13&domain=pdf
http://orcid.org/0000-0001-6394-6619
https://doi.org/10.1007/978-3-030-75539-3_13

300 L. Jiao et al.

some task. These new cryptography scenarios have similar features as extremely
limited area size, power or energy, but needs to maintain enough high secure
level and efficient communication between networked smart objects. Therefore,
the majority of current cryptographic algorithms that were designed for desk-
top/server environments do not fit any more, and it is necessary to research on
lightweight ciphers suited for resource-constraint applications.

Lightweight block ciphers have already possessed many successful designs,
such as LED, SIMON, SPECK, PRESENT and etc., while lightweight stream
ciphers hit a bottleneck of large internal state size to resist time-memory-data
tradeoff (TMDTO) attacks [5]. Then there comes a solution that using the cipher
key stored in non-volatile memory of devices not only for initialization phase but
during the encryption process as well. This helps to save resources against certain
TMDTO, and also allows for a stronger key involvement to achieve higher secu-
rity. It has been investigated from a view of practical engineering, and resulted in
that it is better to access and involve the key from all types of non-volatile mem-
ory continuously [18]. Here, this design principle is named as CKU (Continuous-
Key-Use) for simplicity. However, the immediate CKU-based designs, such as
Sprout, Fruitv2 and Plantlet [3,4,18] are all adopting the Grain-like structure
[12], which has recently been reported vulnerable to the correlation attack [21].
Thus, we are motivated to design a new and first CKU-based lightweight stream
cipher with entirely different structure, and support integrated encryption and
authentication functionality.

Firstly, we adopt byte-wise operations intending to offer a balanced perfor-
mance in software and hardware implementations. Secondly, we propose a novel
structure inspired by the shape of electric fan, which consists of a nonlinear
spindle, four linear blades and an accumulator, and updates by constant mutual
feedbacks between the linear and nonlinear parts rapidly providing highly con-
fused level in parallelly diffusing manner. Thirdly, the use of underlying compo-
nents, such as S-box layer and L-layer, all represent the trade-off between security
and performance, especially the S-box is newly designed efficiently implemented
by logic circuit for small area requirements. In addition, we import the idea
of FP(1)-mode [11], a recently suggested principle for initialization phase of
stream ciphers, to protect the security of authentication from internal state col-
lision. A counter is used for dividing different work phases and providing round
constants. The cipher key is injected into the internal state proportionally and
continually in the encryption phase. Thus, it results the new lightweight authen-
ticated encryption with additional data (AEAD) algorithm, named as Fan. It is
a CKU-based lightweight cipher, which takes a 128-bit key, a 64-bit initial vector
(IV), and a 192-bit state, promising 128-bit security and up to 72-bit authen-
tication tag with the IV-respecting restriction. A thorough security analysis of

FAN: A Lightweight Authenticated Cryptographic Algorithm 301

the entire AEAD mode is provided, which shows that Fan can achieve enough
security margin against known attacks, such as cube attack, correlation attack,
guess-and-determine attack, time-memory-data tradeoffs and related-key attacks
etc. It offers efficient implementations not only in hardware environments but
also in software platforms, which requires 2327 GE on 90 nm technology with a
throughput of 9.6 Gbps, and runs 8.0 cycle/byte using Intel Haswell processor.

This paper is organized as follow. The specification is introduced in Sect. 2.
The design rationale is given in Sect. 3. The security is discussed in Sect. 4. The
performance is given in Sect. 5. A conclusion is provided in Sect. 6.

2 Specification of FAN

Fan supports 128-bit key, 64-bit IV, up to 72-bit authentication tag. It is
expected to maintain security as long as the IV is unique (not repeated under
the same key). Fan has two work modes: self-synchronizing stream cipher and
AEAD algorithm1. The maximum amount of inputs (plaintext, associated data)
that can be securely encrypted under the same key-IV pair is 264 bits. If veri-
fication fails, the new tag and the decrypted ciphertext should not be given as
output. The security goal of Fan is 128-bit confidentiality and ≤ 72-bit integrity.

The specification of Fan consists of three parts: a list view of notations, a
description of state and update functions, a full process of initialization, pro-
cessing associated data, encryption and finalization.

2.1 Notations

Operations used in Fan:

⊕: bit-wise exclusive OR &: bit-wise AND
|: bit-wise OR NAND: bit-wise NAND
‖: concatenation mod: modulo operation
≪ (≫): rotation to the left (right) � (�): shift to the left (right)
� �: ceiling operation |x|: the bit length of a string x

#{ }: the cardinality of a set GF(): finite field
F

n
2 : n-dimension binary vector space Bn: n-variate boolean functions

1 Since the self-synchronizing stream cipher mode can be seen as part of the AEAD
mode, we do not describe this work mode separately in the following text.

302 L. Jiao et al.

Variables used in Fan2:

0n (1n): n-bit 0 (n-bit 1) rc: 8-bit state of the counter

t: the round number xt: variable x at t-th round

b: four 4-byte states of the blades bi: 4-byte state of the blade i

a: 4-byte state of the accumulator s: 4-byte state of the spindle

P : the plaintext Np: number of padded plaintext blocks

AD: the associated data Nad: number of padded associated data blocks

pt: 24-bit plaintext block at t adt: 24-bit associated data block at t

zt: 24-bit keystream block at t ct: 24-bit ciphertext block at t

mt: 24-bit message block at t T : authentication tag

K: 16-byte key (K15, . . . , K1, K0) kt: 24-bit subkey at t

IV : 8-byte IV (IV7, . . . , IV1, IV0) S: the S-box permutation

L: the L-layer transformation

ω, μ, ν: three 32-bit intermediate states for S-P-S used in algebraic attack.

2.2 State and Functions

Fan has 192-bit internal state, which is composed of three parts: four blades, one
accumulator and one spindle. Let these four blades be b = (b3, b2, b1, b0), where
each blade consists of four bytes, denoted as bi = (bi,3‖bi,2‖bi,1‖bi,0), i = 0, 1, 2, 3.
The accumulator consists of four bytes, denoted as a = (a3‖a2‖a1‖a0). The
state of the spindle contains four bytes, denoted as s = (s3‖s2‖s1‖s0), where
si = (si,7‖si,6‖si,5‖si,4‖si,3‖si,2‖si,1‖si,0) and si,0 is the least significant bit.
Besides, there is one-byte counter in Fan, denoted as3

rc = (rc7‖rc6‖rc5‖rc4‖rc3‖rc2‖rc1‖rc0).
A complete description of the main functions in Fan is given by the following

pseudo-code, where mt = (mt
2‖mt

1‖mt
0) is a 24-bit message block injected at t-

th round, zt = (zt
2‖zt

1‖zt
0) is the corresponding 24-bit keystream block, and

kt = (kt
2, k

t
1, k

t
0) denotes the round key at t-th round:

KeystreamOutput(s, a)

/ ∗ output keystream block ∗ /

z2 ← s3 ⊕ s2 ⊕ a3; z1 ← s1 ⊕ s0 ⊕ a2; z0 ← s0 ⊕ a1 ⊕ a0; z
t ← z2‖z1‖z0; output zt.

StateUpdate(b, a, s, rc, mt, kt)

2 mt can be adt, pt or some padding constant given in the following description.
3 rc7 is used as an initialization/encryption indicator.

FAN: A Lightweight Authenticated Cryptographic Algorithm 303

/ ∗ update the internal state ∗ /

bi,(i+1)mod4 ← bi,(i+1)mod4 ⊕ si, i = 0, 1, 2, 3;

bi,(i+2)mod4 ← (
bi,(i+2)mod4 ⊕ ai

)
≪(2i+1)

, i = 0, 1, 2, 3;

ai ← ai ⊕ bi,(i+3)mod4, i = 0, 1, 2, 3;

s3 ← s3 ⊕ b3,3 ⊕ rc, si ← si ⊕ bi,i ⊕ mt
i ⊕ kt

i , i = 0, 1, 2;

si ← S[si], i = 0, 1, 2, 3; (s3‖s2‖s1‖s0) ← L(s3‖s2‖s1‖s0); si ← S[si], i = 0, 1, 2, 3;

(b3, b2, b1, b0) ← (b0, b3, b2, b1).

/ ∗ update the counter ∗ /

if rc6 = 0, (rc5‖rc4‖rc3‖rc2‖rc1‖rc0) ← (rc4‖rc3‖rc2‖rc1‖rc0‖rc5 ⊕ rc0);

rc6 ← rc5&rc4&rc3&rc2&rc1&rc0;

else (rc6‖rc5‖rc4‖rc3‖rc2‖rc1‖rc0) ← (17);

Specifically, the components used above are defined as follows.

(1) L-layer. L: 4 bytes → 4 bytes
The input is transformed using the MDS matrix adopted in the MixColumn
operation of AES [19] given by L(x3‖x2‖x1‖x0) = (y3‖y2‖y1‖y0):

⎡
⎢⎢⎣

y3
y2
y1
y0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x3

x2

x1

x0

⎤
⎥⎥⎦ ,

where each byte represents an element from GF(28) with the following poly-
nomial for field multiplication X8 + X4 + X3 + X + 1.

(2) S-box. S: 8 bits → 8 bits
{01, 02, 0d, f3, 31, 73, 2f, df, c1, ec, 89, 4f, bb, d6, e5, 2c,
03, 00, 0e, b4, 72, 30, 6d, d8, c7, aa, 8e, 4c, fd, d0, a2, 6e,
69, 2a, 76, 92, 09, 0b, 05, ee, a6, 9b, f9, 74, 8d, f0, c5, 46,
9c, e1, 37, bf, b7, 8a, 44, c3, 68, 2b, 94, 35, 08, 0a, a8, 07,
9a, a7, d5, 5c, f1, 8c, e9, 7e, 11, 12, 1e, fe, 21, 63, 7d, 82,
62, 20, 3f, 84, 13, 10, 1d, b8, b6, 8b, af, 3c, 9d, e0, d3, 5f,
79, 3a, 25, cf, 19, 1b, 17, e3, ed, c0, f5, 27, d7, ba, 99, 54,
18, 1a, a4, 15, 78, 3b, c8, 66, fc, d1, 56, 9e, c6, ab, 64, b2,
41, 38, 4d, 8f, 6b, 52, 75, f8, 81, 86, c9, 67, a1, e7, ff, 1f,
87, 80, ce, 24, e6, a0, b9, 1c, 43, 7a, 4e, 88, 29, 50, 36, be,
16, e2, fa, bd, 3e, 85, cb, cd, e4, 2d, 5b, 32, c2, 45, 60, 49,
a5, 14, fb, bc, 83, 7c, ca, cc, 6f, a3, 71, 58, 47, c4, 4a, 23,
96, 91, 2e, de, f7, b1, 06, a9, 33, 5a, 98, 55, 48, 61, ae, 3d,
7f, e8, 22, 4b, 57, 9f, 59, 70, ef, 04, f6, b0, d9, 6c, 97, 90,
b5, 0f, ad, ea, 93, 77, dd, db, 65, b3, 39, 40, 5d, d4, 53, 6a,

da, dc, 95, 34, eb, ac, f2, 0c, 51, 28, 5e, d2, 7b, 42, 26, f4}
(3) Counter. The counter updates in the control of its indicative bit rc6. If rc6

equals 0, the last six bits of counter update as a linear feedback shift register:

304 L. Jiao et al.

(rc5‖rc4‖rc3‖rc2‖rc1‖rc0) are shifted one bit to the left with the new value
to rc0 being computed as rc5 ⊕ rc0 at each round, which corresponds to
a minimum generate polynomial of GF(26): X6 + X5 + 1, then they are
ANDed together to update rc6. Once rc6 arrives at 1, (rc6‖rc5‖ . . . ‖rc0) do
not change any more and fix at (17). It means that, rc6 can indicate the end
of initialization rounds. In addition, the counter state is always added to the
first byte of spindle as a round constant. Here, rc7 is additionally defined
as follows to separate the processing associated data and encryption phases,
that is, to prevent using part of the associated data as plaintext/ciphertext,

rc7 ←
{

0 , before encryption;
1 , from the beginning of encryption.

(4) Constant mutual feedback structure.
– The four bytes of each blade are updated as: one adds a feedback from

the accumulator and rotates with some parameter, one adds a feedback
from the spindle; the other two are invariant. Finally these four blades
run a wholly blade-wise right rotation.

– The accumulator concentrates the confused properties from the entire
state and disseminates back to the state for fast diffusion, by linearly
accumulating one of the invariant bytes from each blade on different
units. The output function linearly extracts three bytes of the spindle
and accumulator for each output byte, which maintain a highly confused
level.

– The spindle provides the only nonlinear operations to the whole cipher.
The other invariant byte from each blade is added back to the spin-
dle separately on different units. The update function of spindle takes
a Substitution-Permutation-Substitution network (S-P-S) with the S-box
and L-layer.

– The subkey sequence and the message blocks are defined different in each
process and take part in the state update by adding to the last three
bytes of spindle.

2.3 Initialization

Divide the 64-bit IV into 8 bytes, IV = IV7‖ . . . ‖IV1‖IV0, and divide the 128-bit
key into 16 bytes K = K15‖ . . . ‖K1‖K0. The initialization phase in Fan works
as the following pseudo-code:

/ ∗ load key and IV into internal state at t = −52 ∗ /

bi,j ← K4i+j , i = 0, 1, 2, 3, j = 0, 1, 2, 3; ai ← IV4+i, i = 0, 1, 2, 3; si ← IVi, i = 0, 1, 2, 3;

/ ∗ initialize the counter ∗ /

rc ← (00110011);

for t = −52 to − 1 do

/ ∗ update the internal state and counter ∗ /

StateUpdate(b, a, s, rc, m
t
, k

t
);

end for

We briefly illustrate the initialization phase here.

FAN: A Lightweight Authenticated Cryptographic Algorithm 305

– It loads the key and IV into the internal state first, and then updates 52
rounds and generates the initial internal state of Fan without output.

– The last six bits of counter are initialized to (110011). After 52 rounds update,
these six bits run to (111111), and the indicative bit rc6 arrives at 1 at the
first time, which indicates the end of initialization. Here, rc7 is initialized to
0 and remains 0.

– Let mt = 024, t = −52,−51, . . . ,−1, and kt = 024, t = −52,−51, . . . ,−1.
That is, neither subkey sequence nor message blocks take part in the state
update in this phase.

The state update functions in initialization is shown in Fig. 1.

Fig. 1. The state update functions in the initialization.

2.4 Processing Associated Data

After the initialization, Fan is ready to process the associated data as the fol-
lowing pseudo-code:

for t = 0 to Nad − 1 do

/ ∗ update the internal state and counter ∗ /

StateUpdate(b, a, s, rc,mt, kt);

end for

We briefly illustrate the processing associated data phase here.

– Fan processes the associated data in block of 24 bits. It appends a single 1
and the smallest number of 0s to the end of AD to obtain a multiple of 24 bits
and split it into Nad blocks of 24 bits. In case the associated data is empty,
no padding is applied and Nad = 0.

ad0, ad1, . . . , adNad−1 ←
{

24-bit block of AD‖1‖024−1−(|AD|mod24) , if |AD| > 0;
ø , if |AD| = 0.

306 L. Jiao et al.

– Let mt = adt, t = 0, 1, . . . , Nad−1 and kt = 024, t = 0, 1, . . . , Nad−1. That
is, only the associated data takes part in the state update in this phase but
not the subkey.

– The state of counter fix at (01111111) in this phase.

The state update functions in processing associated data phase is shown in Fig. 2.

Fig. 2. The state update functions in the processing associated data.

Fig. 3. The state update functions in the encryption/decryption.

2.5 Encryption

Next, Fan processes the plaintext and generates the keystream according to the
pseudo-code as follows:

FAN: A Lightweight Authenticated Cryptographic Algorithm 307

/ ∗ change the separated bit of counter ∗ /

rc7 ← 1;
for t = Nad to Nad + Np − 1 do

/ ∗ output keystream block ∗ /

KeystreamOutput(s, a);
/ ∗ encrypt plaintext block into ciphertext block ∗ /

ct ← pt ⊕ zt;
/ ∗ update the internal state and counter ∗ /

StateUpdate(b, a, s, rc,mt, kt);

end for

We briefly illustrate the encryption phase here.

– Fan processes the plaintext in blocks of 24 bits. The padding process appends
a single 1 and the smallest number of 0s to P until the padded length is 16
mod 24. The last byte of the padded plaintext is used to record the length of
authentication tag to be generated in big-endian binary. That is

P‖1‖ 0 . . . 0︸ ︷︷ ︸
σ

‖(one byte for |T |), where (plen + 1 + σ + 8) mod 24 = 0.

The resulting padded plaintext is with the length of a multiple of 24 bits, and
split into Np blocks of 24 bits as

p0, p1, . . . , pNp−1 ← 24-bit block of P‖1‖0 . . . 0‖(one byte for |T |).

– Let mt = pt−Nad , t = Nad, Nad+1, . . . , Nad+Np−1,
and kt

i = K(3×(t−Nad)+i)mod16, i = 0, 1, 2, t = Nad, Nad+1, . . . , Nad+Np−1,
where the subkeys are simply cyclically selected as the next three consecu-
tive bytes of the cipher key. That is the 128-bit key affect the internal state
proportionally and continually, and the subkeys circulate in a period of 16
rounds in this phase.

– Each round in this phase generates a keystream block using KeystreamOutput
function, and then generates the ciphertext block using this keystream block.

– Next, update the internal state. Both the plaintext blocks and subkeys join
in the update of spindle in this phase.

– The state of counter remains (11111111) in this phase, where rc7 is changed
to 1 for separating the associated data and plaintext.

The state update functions in encryption is shown in Fig. 3. To make differences
of all phases more clear, we present a comparison diagram in Appendix 3.

308 L. Jiao et al.

2.6 Finalization

After encrypting all the plaintext blocks, Fan generates the authentication tag
by the following pseudo-code:

/ ∗ reload (add) key-IV pair to the internal state ∗ /

bi,j ← bi,j ⊕ k4i+j , i = 0, 1, 2, 3, j = 0, 1, 2, 3;
ai ← ai ⊕ IV4+i, i = 0, 1, 2, 3; si ← si ⊕ IVi, i = 0, 1, 2, 3;
/ ∗ do the re-initialization phase ∗ /

rc ← (10001011)
for t = Nad+Np to Nad+Np+28−1, do

StateUpdate(b, a, s, rc,mt, kt);
end for

/ ∗ generate the authentication tag ∗ /

for t = Nad+Np+28 to Nad+Np+28+�|T |/24�−1 do

KeystreamOutput(s, a); StateUpdate(b, a, s, rc,mt, kt);
end for

T ←
(
zNad+Np+28‖ · · · ‖zNad+Np+28+�|T |/24�−1

)
trunc by |T |

;

We briefly illustrate the finalization phase here.

– In the finalization, the key-IV is re-XORed to the internal state at first. Then
the internal state is updated 28 rounds using the iteration in the initialization.
The counter is re-initialized with (10001011). After 28 rounds update, the last
seven bits of counter run to (1111111) one more time, which indicates that
Fan is ready to generate the authentication tag.

– Next, Fan generates the authentication tag using the iteration in keystream
generation, and finally truncates the keystream blocks according to the length
of authentication tag required. In this part, the state of counter remains
(11111111).

– Let mt = 024, t = Nad+Np, . . . , Nad+Np+28+�|T |/24�−1,
kt

i = 024, t = Nad+Np, . . . , Nad+Np+28−1, and
kt

i = K(3×(t−Nad−28)+i)mod16, i = 0, 1, 2, t = Nad+Np+28, . . . , Nad+Np+28+
�|T |/24�−1.
It means that no message blocks take part in the update of internal state in
this phase. The subkeys only join in the update part when to generate the
authentication tag, and are picked in the subsequence to the last selection of
the cipher key bytes in the encryption phase.

2.7 Decryption and Verification

The exact values of key, IV, and tag length should be known to the decryption
and verification processes. The decryption-orientation starts with the initial-
ization and processing of associated data. Then the ciphertext is decrypted as

FAN: A Lightweight Authenticated Cryptographic Algorithm 309

pt = ct ⊕ zt, since the keystream block zt is generated without the influence of
the plaintext block pt in the same round, thus it is able to decrypt the ciphertext
into the plaintext in the sequence block by block. The update function in the
decryption is the same as that in the encryption.

The finalization in the decryption-orientation is the same as that in the
encryption-orientation. It needs to emphasize that if the verification fails, the
ciphertext and the newly generated authentication tag should not be given as
output; otherwise, the state of Fan is vulnerable to known-plaintext or chosen-
ciphertext attacks (using a fixed IV).

The overall workflow and test vectors are shown in Fig. 4 and Appendix 1.

P/K

T
K

Initialization

Finalization
Initialization

Tag Generation

K/IV

Processing associated data

Encryption

rc: (00110011) (01111111)

rc: (01111111)

rc: (11111111)

rc: (10001011) (11111111)

rc: (11111111)

C

AD

Fig. 4. The overall workflow. Fig. 5. Design prototype

3 Design Rationale

The main goal of Fan is to achieve high performance and strong security.

3.1 Structure

To resist the traditional attacks (correlation attacks and algebraic attacks) on
stream ciphers, the internal state of Fan is wholly updated in a nonlinear way,
and every state byte affects the whole state quickly. The structure of Fan is
inspired by the shape of electric fan (Fig. 5), which aims to be a simple but
efficient design that rapidly provides highly confused level by parallel constant
mutual feedbacks between the nonlinear spindle and each linear blade. Here, the
spindle updates by an S-P-S network, which rotates fastest of the whole state and
provides the only nonlinear transformation, considered both good cryptographic
properties and low cost; the four blades clockwise rotate without interactions,
which is in order to diffuse synchronously with the spindle (accumulator); the
accumulator generates the output just with the spindle, which act as a barretter
that maintain the confused level of the keystream blocks. The taps are chosen

310 L. Jiao et al.

carefully for sufficient diffusions of different components after a few rounds. To
offer a balanced performance in software and hardware implementations, Fan
adopts byte-wise operations like the ISO standard lightweight stream cipher Eno-
coro4 [14]. To implement efficient in hardware, operations are carefully chosen
as XOR, rotation, S-box and L-layer as follows.

3.2 S-Box

Since Fan is byte oriented, it naturally takes identical 8 × 8 S-boxes. In the
pursuit of hardware efficiency and especially with a focus on the area, we newly
design and exploit a logic circuit based 8×8 S-box with relatively good properties.
It is constructed by a three-round balanced-Feistel structure with three different
functions of 4-bit input and 4-bit output, and a bit shuffle to make the terms dis-
tributed as evenly as possible. Let x = (xL‖xR) = (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0).
Then, (y7‖y6‖y5‖y4‖y3‖y2‖y1‖y0)

S← (x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0):

yR ← f0(xL) ⊕ xR; yL ← f1(yR) ⊕ xL; yR ← f2(yL) ⊕ yR;
y ← (y7‖y3‖y6‖y2‖y5‖y1‖y4‖y0).

Here, (v3‖v2‖v1‖v0)
f← (u3‖u2‖u1‖u0), where u3‖u2‖u1‖u0 and v3‖v2‖v1‖v0

denote the input and the output variables of the function f , and the compo-
nent output function and the truth table are as follows

f0:

v2 ← u0&u2 ⊕ u1 ⊕ u2;

v3 ← (v2 ⊕ u3)&(u0 ⊕ u2 ⊕ u3);

v1 ← (u0&u2 ⊕ u1)&u3;

v0 ← (u0 ⊕ u3)&v2,

i.e. {0, 0, 4, 13, 12, 0, 0, 5,

8, 0, 7, 6, 5, 10, 2, 4}.

f1:

v3 ← u1&u0 ⊕ u3;

v2 ← v3&u0 ⊕ u2;

v1 ← v3&v2 ⊕ u1;

v0 ← v2&v1 ⊕ u0,

i.e. {0, 1, 2, 13, 4, 5, 7, 11,

14, 10, 3, 15, 9, 12, 6}.

f2:

v3 ← u3&u1 ⊕ (u2&(u1 ⊕ u0));

v2 ← u2&(u3 ⊕ u1);

v1 ← u3&(u1 ⊕ u0);

v0 ← (u0 NAND (u2 ⊕ u1)),

i.e. {1, 1, 1, 0, 1, 8, 13, 5,

1, 3, 11, 8, 5, 14, 3, 9}.

Here f0 and f2 are almost perfect nonlinear (APN) functions. f0 and f1 are
referred to [7], while f2 is newly introduced. The properties of the newly
constructed S-box are

– Maximum differential probability: p = max
a�=0,b

#{x∈F
n
2 |S(x)⊕S(x⊕a)=b}

2n = 2−5;

– Maximum linear probability: q = max
Γa,Γb �=0

(
#{x∈F

n
2 |Γa·x=Γb·S(x)}

2n−1 − 1
)2

= 2−4;

– Algebraic degree for the components: (4, 5, 4 ,5, 5, 5, 5, 6);

4 FAN’s structure is fundamentally different from Enocoro’s, rather than incremental
push. FAN divides the buffer in Enocoro into four blades to confuse entire state
rapidly by parallel constant mutual feedbacks between nonlinear and linear parts;
FAN adds a new component-accumulator to concentrate and maintain the properties
from entire state, further disseminate back and participate in keystream generation;
FAN’s spindle updates by S-P-S network rather than the S-XOR mode in Enocoro;
FAN is a CKU cipher. Above all, to provide same security level but much better
performance, FAN’s state is 196-bit, much smaller than Enocoro128v2’s 272-bit.

FAN: A Lightweight Authenticated Cryptographic Algorithm 311

Fig. 6. S-box for fan

– Algebraic immunity: AI(S) = 2, NU(S) = 19, where AI(F) = min{deg g |
0 �= g ∈ Bn, g(gr(F)) = 0} and gr(F) = {(x, F (x)) | x ∈ F

n} ⊆ F
2n, NU(F)

is the number of linear independent gs with the degree of AI(F).

The above properties are not the best, but provide a trade-off between security,
area cost and speed.

For hardware implementation, the digital circuit of the S-box used in Fan is
shown in Fig. 6, which totally calls for 12 AND2 gates, 25 XOR2 gates, 1 NAND2 gate,
equivalent to 79 GE on 90 nm CMOS technology5. For software implementation,
the S-box used in Fan can be operated as a table lookup, or bit-slice for case that
many independent blocks needed to be processed simultaneously, which simulates
a hardware implementation in software as a sequence of logical operations.

3.3 L-Layer

In the aspect of security requirement and to achieve enough active S-boxes in
smallest initial rounds, we choose the 4×4 byte-wise permutation with the maxi-
mum differential and linear branch numbers of 5. Two kinds of such permutations
have been detected, one is SM4-like that is implemented by 128 rotational-XOR
gates, while another is the 4 × 4 MDS matrix in AES, which has a compact
implementation with 92 XOR gates (i.e. 230 GE) and depth 6 referred to [17].
The specific implementation is given in Appendix 2.6 In addition, the 4×4 MDS
matrix in AES has standardized implementation on the lastest Intel and AMD
microprocessors as AES-NI instructions. Thus for the sake of low memory foot-
print in hardware and high efficiency in software, we choose the well-analyzed
5 S-box of AES is not used in Fan for its large area requirement of 195 GE on 90 nm

CMOS technology to implement its core operation - the inverse function.
6 AES-NI implements full AES rounds in a single instruction. Here, we use only the

linear layer of AES, but not the S-box layer, hence we cannot simply use an AES-NI
instruction by itself. However, combining AESENC and AESDECLAST yields the
MixColumns layer. This still provides a large performance boost: in our experiments,
the cost of one AES-NI instruction is similar to three simple XORs.

312 L. Jiao et al.

primitive in AES. Moreover, since it takes S-P-S network in the spindle for fast
confusion, it is the optimal choice to use two layers of S-boxes of sub-optimal
properties but less cost, and one L-layer of best properties with acceptable cost
here by overall consideration.

3.4 AEAD Mode

To achieve strong initialization security, we ensure that the internal state is
randomized after the initialization rounds. Firstly, we consider IV-key differences
propagation and check the resistance by the probability of differentially active
S-boxes using mixed integer linear programming model (MILP) as follows:

1. Objective function: minimize the number of differentially active S-boxes.

2. For x ⊕ y = z, it has Δx + Δy + Δz ≥ 2d, Δx ≤ d, Δy ≤ d, Δz ≤ d.

For x = y = z, it has Δx == Δy, Δy == Δz.

For (y0, y1, y2, y3) = L(x0, x1, x2, x3), it has
∑3

i=0
Δxi +

∑3

i=0
Δyi ≥ 5h; Δxi ≤ h, i = 0, 1, 2, 3; Δyi ≤≤ h, i = 0, 1, 2, 3;

3. Assumption of input differences (chosen IV related key):
15∑

i=0

Δki +
7∑

i=0

ΔIVi ≥ 1.

It derives that there are at least 32 active S-box in 26 initialization rounds
by Gurobi, where the differential probability of a possible differential path is
not bigger than 2−160. To achieve enough generous security margin, we set the
initialization rounds by double 26 to 52 rounds. Secondly, in the aspect of linear
bias, we test Fan for probability of linearly active S-boxes using the MILP dually
similar with that above.

1. Objective function: minimize the number of linearly active S-boxes.

2. For x = y = z, it has Γx + Γy + Γz ≥ 2d, Γx ≤ d, Γy ≤ d, Γz ≤ d.

For x ⊕ y = z, it has Γx == Γy , Γy == Γz .

For (y0, y1, y2, y3) = L(x0, x1, x2, x3), it has

3∑

i=0

Γxi +

3∑

i=0

Γyi ≥ 5h;Γxi ≤ h, i = 0, 1, 2, 3;Γyi ≤≤ h, i = 0, 1, 2, 3;

3. Assumption of input maskings (chosen IV related key):
∑15

i=0
Γki

+
∑7

i=0
ΓIVi

≥ 1.

It also derives that there are at least 32 active S-box in 26 initialization
rounds by Gurobi, where the probability of possible linear path is not bigger
than 2−128. In Fan, there are 26 more initialization rounds in the initialization.
Thus, we expect the initialization of Fan is strong.

Fan injects message into the state so that it could obtain authentication
security almost for free. In order to divide different work phases, a counter is
set: it provides changed round constant in the initialization to prevent the sliding
of the states, and indicates the end of initialization; it separates the processing of
associated data and plaintext by setting as different unchange constants. In addi-
tion, we import the idea of FP(1)-mode [11], a recently suggested construction

FAN: A Lightweight Authenticated Cryptographic Algorithm 313

principle for the state initialization of stream ciphers, which has three main steps
referred as Loading-Mixing-Hardening, to protect the security of authentication
from internal state collision.

To achieve strong encryption security and exploit 192-bit internal state to
resist to TMDTO attacks on 128-bit key, the cipher key also participates in
the output generation phases. It is the first time to design an authenticated
encryption cipher with the small-state method, and also a CKU stream cipher
with non-Grain-like structure.

4 Security Analysis

We analyze the security of the initialization at first.

4.1 Related Key Chosen IV Attack

For the trivium differential attack using both IV-key differences as the threat
to the initialization of Fan, a difference would eventually propagate into the
ciphertexts, and thus it may be possible to apply a differential attack against
Fan. As derived in Sect. 3.4 that there are at least 32 active S-box in 26 initial-
ization rounds, where the differential probability of possible differential path is
not bigger than 2−160. In Fan, there are 26 more initialization rounds in the ini-
tialization. We expect that a differential attack against the initialization would
be more expensive than exhaustive key search. It is also hard to control and
eliminate the difference to the keystream by associated data or plaintext.

For the linear cryptanalysis of Fan in the initialization, it may lead to a
bias of the ciphertexts. As mentioned in Sect. 3.4, there are at least 32 active
S-box in 26 initialization rounds, where the probability of possible linear path
is not bigger than 2−128. Actually, it is hard to find an available linear path
reached the probability. In Fan, there are 26 more initialization rounds in the
initialization. We expect that a linear attack against the initialization would be
more expensive than exhaustive key search.

For the sliding attack against Fan, we expect it is invulnerable for two rea-
sons: Firstly, we attach a changed counter to the update function in the initial-
ization, which is a simple and efficient countermeasure; Secondly, the different
work phases are separated by different constants, and whether reusing the key
as part of the state update.

4.2 Cube Attack

Cube attack is a general cryptanalytic technique, whose main idea is to compress
the initialization functions f(k,v) to a low-degree or linear polynomial about the
key in set J by selecting appropriate IV set I [8]. Recently, cube attack based
on division property has got a lot of attention. Unlike the traditional experi-
mental cube attack, it explores the internal trails of integral property according
to propagation rules for different operations expressed with some (in)equalities,

314 L. Jiao et al.

and models the attacks as MILP problems solving by optimization tools, such
as Gurobi and Cplex [20,23].

Here, we use the method in [23], which introduces the “flag” to capture effects
of non-cube IV bits and “degree evaluation” to upper bound the algebraic degree
d, to evaluate the resistance of Fan against cube attacks as follows:

1. Build MILP model:

M.con ← vi = 1, vi.F = δ, i ∈ I;

M.con ← vi = 0, vi.F = 1c(if IV [i] = 1),

or 0c(if IV [i] = 0), i ∈ ({1, 2, . . . , |IV |} − I).

M.con ←
∑n

i=1
xi = 1, xi.F = δ, i ∈ {1, . . . , |K|}.

2. For a
COPY−−−−−→ (b1, b2, . . . , bm), it has

M.var ← a.val, b1.val, . . . , bm.val as binary.

M.con ← a.val = b1.val + · · · + bm.val

a.F = b1.F = . . . = bm.F

3. For (a1, a2, . . . , am)
XOR−−−−→ b, it has

M.var ← a1.val, . . . , am.val, b.val as binary.

M.con ← a1.val + · · · + am.val = b.val

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

4. For (a1, a2, . . . , am)
AND−−−−→ b, it has

M.var ← a1.val, . . . , am.val, b.val as binary.

M.con ← b.val ≥ ai.val for all i ∈ {1, 2, . . . , m}
b.F = a1.F × a2.F × · · · am.F

M.con ← b.val = 0 if b.F = 0c

5. Solve MILP model M until it is unfeasible, return J :

Pick index j ∈ {1, 2, . . . , |K|}s.t.xj = 1, J = J ∪ {j}; M.con ← xj = 0.

With J , I and d, the superpoly, usually containing 1 bit of secret-key-related
information, can be recovered with complexity 2|I| × (|J|

≤d

)
. The MILP model for

R-round Fan is constructed, and the parameters of our evaluations are listed
in Table 1. According to our evaluation, for R < 4, the cube summations are
constantly 0. For R ≥ 4, the superpoly becomes extremely complicated with
all 128 key bits involved and superpoly degrees larger than 52. The superpoly-
recovery attacks have complexities much larger than 2128 which means the key-
recovery cube attacks are computationally infeasible. Therefore, 52 initialization
rounds are quite sufficient for Fan to resist division property based cube attacks.

Next, we evaluate the security of encryption process.

FAN: A Lightweight Authenticated Cryptographic Algorithm 315

Table 1. Cube attacks on R-round Fan

Round R ≤3 4 5 6
Cube size |I| 64 64 64 64
Degree d 0 52 81 128
Involved key size |J | 0 128 128 128
Time complexity – 2250.4141 2255.9987 2256

4.3 Randomness Test

Fan has passed the randomness test of keystream, such as frequency test, runs
test, binary matrix rank test, etc., with two samples size of 1010 keystream bits
(1.16 GB) generated by IV = 064, k = 0128, P = 010000000000, and IV =
164, k = 1128, P = 110000000000.

4.4 Guess-and-Determine Attack

In a guess-and-determine attack, the attacker guesses part of the internal state
and aims to recover the remaining parts by combining with the state relations
and keystream with an overall effort lower than brute force. To estimate the
resistance of Fan to this attack, we conduct a byte-oriented heuristic guess-and-
determine attack (HGD) [2] on Fan.

Specifically, we describe Fan with its state update function and output func-
tion of multiple times at first. Denote the intermediate variables as

ut
3 = S[bt

3,3 ⊕ st
3 ⊕ rc], ut

i = S[bt
i,i ⊕ st

i ⊕ kt
i ⊕ pt

i], i = 0, 1, 2

(vt
3, v

t
2, v

t
1, v

t
0) = L(ut

3, u
t
2, u

t
1, u

t
0).

Next, we index the variables shown up in the equation system and transform
the system into indices table. An index can be removed only if it is guessed
or it is uniquely determined by some function with remaining known variables.
A basis is identified if it removes all indices in the indices table, or it recovers
the 128-bit key. The priority criteria is defined as to maximize the number of
removed indices in the indices table for one guess. Finally, we represent all the
indices as nodes in a trellis diagram, and run for guessing path step by step.

The best result we derived is that for 7 24-bit keystream words, it needs to
guess 21 bytes according to the guessing path (shown in Table 1) to recover the
whole internal state (take the 128-bit key as part of unknown state).

Although the guess-and-determine attack derived in this way cannot imply
the best, its complexity remains a redundancy more than 240 compared with the
128-bit security bound.

4.5 Time-Memory-Data Tradeoff Attack

It is well known that the cipher is weak to TMDTO attack if the size of its
internal state is not at least twice of the security level. Similar to Sprout,

316 L. Jiao et al.

Table 2. Guess-and-determine path for Fan

No. G. D. No. G. D.

1 b40,2, b
5
1,2 a4

0, b
6
2,2 17 k9 u3

0, u
3
1, u

3
2, u

3
3, v

3
6 , k11, b

3
3,3, s

4
2,

2 b11,2 b22,2, b
3
3,2, s

3
3, v

2
7 b22,3, b

4
0,3, a

4
3, k14, a

2
2, b

1
1,3, b

5
1,3,

3 a5
0 b40,1, b

5
1,1, b

6
2,1 b33,0, b

4
3,0, a

1
2, b

6
2,3, b

2
2,0, b

4
0,0,

4 b33,1 a3
3, s

3
2, v

2
6 b40,0, b

3
2,0, b

5
0,0, b

1
2,0, k12, b

5
1,0,

5 v1
6 s22, b

2
2,1, b

1
1,1, b

0
0,1 b61,0, b

6
2,0

6 v1
7 s23, a

2
3, b

2
3,0, b

3
0,0, b

4
1,0 18 k10 b31,1, b

2
0,1, b

4
2,1, a

2
0, b

5
3,1, s

2
0, b

2
0,2,

7 b23,1 b30,1, a
3
0, b

4
1,1, b

5
2,1 b60,1, s

2
1, v

1
4 , b

2
0,3, v

1
5 , b

2
1,0, b

1
3,3,

8 k8 u2
2 u1

0, u
1
1, u

1
2, u

1
3, b

1
0,0, b

0
2,3, s

1
3,

9 v2
4 s30, u

2
0, u

2
1, u

2
3, v

2
5 , a

3
1, b

2
3,3, s

3
1, b

1
2,3, b

3
0,3, b03,0, a

0
2, v

0
7 , b

1
3,2, b

0
2,2

a3
2, b

4
1,3 19 k3 s10, s

1
1, a

1
0, v

0
4 , b

1
0,3, k4, v

0
5 , b

1
1,0,

10 b31,2 a4
1, b

4
2,2, s

4
0, b

5
2,3, b

5
3,2, v

3
4 , b

6
3,3 a0

0, b
1
0,1, b

1
0,2, b

0
3,3, b

0
0,0, s

0
0, b

0
0,2,

11 b52,0 s41, a
4
2, v

3
5 , b

3
2,3, b

4
3,3, b

5
0,3 b21,1, s

0
1, b

0
0,3, k7, b

3
2,1, b

0
1,0, b

4
3,1,

12 u4
1 k13 b50,1, a

6
0, b

6
1,1, s

6
0, s

6
1, v

5
4 , v

5
5

13 b01,2 b12,2, b
2
3,2, b

3
0,2, b

4
1,2, a

5
1, b

5
2,2, s

5
0, a

6
1, b

6
3,2, 20 k0 u0

0, u
5
1, u

0
1, u

0
2, u

0
3, v

0
6 , u

5
0, u

5
2,

v4
4 , b

6
1,3 v5

6 , v
5
7 , s

0
3, s

1
2, k15, k1, s

6
2, s

6
3,

14 v4
5 s51, a

5
2, b

4
2,3, a

6
2, b

6
3,0, b

3
1,3, b

5
3,3, b

6
0,3 b03,2, a

1
3, k5, b

1
2,1, b

0
1,1, a

6
3, a

0
3,

15 v4
7 s53, u

4
0, u

4
2, u

4
3, v

4
6 , u

5
3, b

6
0,2, s

4
3, s

5
2, b13,0, b

1
3,1, b

5
3,0, s

0
2, b

0
3,1, b

0
2,0,

v3
7 , a

5
3, b

6
3,1 b20,0, b

4
2,0, b

6
0,0, k2, b

0
2,1, k6, b

3
1,0

16 b50,2 b61,2, b
4
3,2, b

3
2,2, b

2
1,2, a

2
1, a

1
1, b

2
1,3, a

0
1, b

0
1,3

Fruit-v2 and Plantlet, Fan benefits the key as part of internal state in the state
update of encryption phase. The effective internal states are 320 bits, which
exceeds the lower bound of internal state size of 256 bits. Another necessary
condition of such stream cipher to be resistant to TMDTO attack is that the
key should affect the internal state proportionally and continually as the other
internal state. Since 24 key bits are involved in the state update in each round
orderly, and the 128-bit key is injected into the internal state circularly, hence
propagates to the keystream, we do not see a possibility for these attacks similar
to Sprout to be still effective [9,24].

4.6 Differential Attack

Under the security claim that each key-IV pair should be used to protect only
one message, it is impossible to conduct classic differential attacks on Fan in
the encryption phase. Considering the near-collision attack, since every state
bit affects the whole state in at most 8 rounds and the S-boxes are used as
nonlinear components, any internal state difference will propagate quickly and
become complicated. Thus it is hard to statistics analyze the relation between
keystream difference and internal state difference, and finally recover the internal
state with low-degree equation system.

4.7 Correlation Attack

The traditional correlation attacks [21] against stream ciphers almost exploit the
linear update function which at least independently operate on partial internal

FAN: A Lightweight Authenticated Cryptographic Algorithm 317

state in stream ciphers. The state of Fan is totally updated in a nonlinear way,
so we expect Fan is strong against those powerful correlation attacks on stream
ciphers.

Moreover, it is difficult to apply a linear approximation attack to recover
the secret state, since the S-P-S network used in the update function makes
the approximation bias extremely small, and the dependency of internal state
variables makes it hard to eliminate the nonlinear part.

4.8 Algebraic Attack

The general idea of algebraic attacks is to establish low degree over-defined
system of multivariate algebraic equations of the key or internal states and
keystream at certain time interval, and then solve the equation system to obtain
the key or internal state using some traditional methods, like linearization,
Gröbner basis, XL method.

We first present the low degree description of the S-box. The algebraic immu-
nity of S-box is 2, and the number of independent implicit equations in input and
output variables with the degree of 2 is 19. The independent implicit equations
fully describe the S-box, and totally contain 38 quadratic items.

Next, we present the algebraic structure of Fan. It initially has 320 binary
variables, which is composed of 192-bit internal and 128-bit keys, where the
key bytes are gradually injected into the internal state. To keep the degree of
algebraic system without growth, and reduce the number of items, we have
to introduce some intermediate binary variables in each round. The algebraic
system is as follows by rounds:

1. The output function generates 24 linear equations:

z
t
2 = s

t
3 ⊕ s

t
2 ⊕ a

t
3; z

t
1 = s

t
1 ⊕ s

t
0 ⊕ a

t
2; z

t
0 = a

t
1 ⊕ a

t
0 ⊕ s

t
0;

2. We introduce 32 intermediate binary variables denoted by ω,
t
, and generates 32

linear equations: ω,
t
3 = b

t
3,3 ⊕ s

t
3 ⊕ rc;ω,

t
2 = b

t
2,2 ⊕ s

t
2 ⊕ k

t
2;ω,

t
1 = b

t
1,1 ⊕ s

t
1 ⊕ k

t
1 ⊕ p

t
1;

ω,
t
0 = b

t
0,0 ⊕ s

t
0 ⊕ k

t
0 ⊕ p

t
0.

3. One S-box layer introduces 32 intermediate binary variables denoted by μ
t
(s

t+1
),

and generates 76 quadratic equations and 152 quadratic items:

μ
t
i = S[ω,

t
i], i = 0, 1, 2, 3. (s

t+1
i = S[ν

t
i], i = 0, 1, 2, 3.)

4. The L-layer introduces 32 intermediate binary variables denoted by ν
t
, and generates

32 linear equations: (ν
t
3‖ν

t
2‖ν

t
1‖ν

t
0) = L(μ

t
3‖μ

t
2‖μ

t
1‖μ

t
0).

We analyze the increasing trend of the number of variables and equations.
From Table 3, we can see that at time t = 3, the number of total equations is
over the number of variables in the equations. For solving m boolean multivari-
ate quadratic equations in n variables when n = m, [10] presents a Las-Vegas
quantum algorithm that requires O(20.462n) quantum gates on average, which is
claimed the fastest algorithm now. It calls for a complexity of at least 2300. More-
over, at this moment, the number of variables and quadratic equations is more
than 1500, and the coefficient matrix of equations is not in any special mode.
According to the XL algorithm, it is still hard to solve the equations in the com-
plexity under the security bound. Besides, we consider in the linearization of

318 L. Jiao et al.

Table 3. Algebraic structure of Fan

t 0 1 2 3 4 5 6 7 8 9 10

Item mono. 192 344 496 648 800 952 1088 1216 1344 1472 1600
quad. 0 304 608 912 1216 1520 1824 2128 2432 2736 3040
total 192 648 1104 1560 2016 2472 2912 3344 3776 4208 4640

Equa. linear. 0 88 176 264 352 440 528 616 704 792 880
quad. 0 152 304 456 608 760 912 1064 1216 1368 1520
total 0 240 480 720 960 1200 1440 1680 1920 2160 2400

quadratic items. The number of variables expands more quickly than the num-
ber of equations by introducing more intervals, which leads to non-deterministic
solution. In summary, we expect that algebraic attack on this system is very
unlikely to be faster than an exhaustive search for the key.

4.9 Side-Channel Attack

Side-channel analysis is an important issue for the security of embedded cryp-
tographic devices. It is expected that bitslice implementation offers resistance
to side channel attacks such as cache timing attacks and cross-VM attacks in a
multi-tenant cloud environment. Since the only nonlinear components S-boxes
in Fan can be computed using bit-logical instructions rather than table lookups,
Fan shows the great potential in fast and timing-attack resistant software imple-
mentations.

Finally, we present the security analysis of message authentication. To ana-
lyze the authentication of the Fan, we will compute the probability that a forged
message would bypass the verification.

4.10 Internal State Collision

Construction of internal state collision is a typical method used in attacking
the message authentication. Here we only consider the case that the tag length
is 72-bit since it implies the security of the cases with shorter tag length. For
Fan, since the key takes part in the tag generation, it is necessary to consider
the internal state collision under the single key. Moreover, since IV should not
be reused without changing the key, for one fixed key, the queries of IV and
plaintext pairs are no more than 264. Any internal collision through birthday
attack requires 296 encryptions, for the internal state size is 192-bit. Thus it
cannot be fulfilled, and Fan is resistant to the trivial birthday attack.

Another method to construct an internal state collision is to inject a message
difference at a certain step and cancel it at a later step. A simple description of
our analysis is given below. We notice that the first difference being injected into
the message cannot be fully eliminated in up to 6 rounds; it would pass through 7

FAN: A Lightweight Authenticated Cryptographic Algorithm 319

rounds before the difference of overall internal state eliminated, and there are at
least 25 active S-boxes being involved; it could pass through 12 rounds or more
before the difference of overall internal state eliminated, and there are at least 20
active S-boxes being involved. If we consider only a single differential path, the
probability of the difference cancellation in the state is less than 2−5×20 = 2−100.
Thus generating a state collision in the verification process requires at least 2100

modifications to the ciphertext. Multiple differential paths would not have a
significant effect on the forgery attack here, since each differential path has to
cancel its own differences being left in the state. It shows that Fan is strong
against forgery attack when the ciphertext or tag gets modified.

4.11 Attacks on the Finalization

In addition to the internal state collision, it also needs to consider the situation
that there is a difference in the internal state before the finalization. Thus we
redo the initialization phase here. It involves 15 active S-boxes in 14 rounds, and
the differential probability must be far less than 2−75 after the double rounds,
i.e. the given 28 rounds. Hence, the difference of the tag is unpredictable.

Moreover, the authentication tag length is padded in the message block,
that is able to invent the forge of an authentication tag based on a known
authentication tag of smaller length for a same plaintext.

5 Performance

5.1 Software Performance

For some resource-constraint environments, such as smart card and sensor net-
working system, the embedded CPU is usually 8-bit oriented microcontroller,
which is just fit to use the byte-based design of Fan in such software platform.

In addition, for the parallel design of Fan, its internal state can be rear-
ranged in 32-bit unit and equivalent to the structure in Fig. 7. Accordingly, it
can be implemented by 32-bit unit. Moreover, the S-P-S permutation in the
round function can be combined together and realized as lookup tables.

Fig. 7. The equivalent structure of Fan

320 L. Jiao et al.

For further optimization, it can be accelerated by bitslice technique using
AVX instruction set and AES-NI instructions introduced in Haswell microar-
chitecture, since the only nonlinear S-box is designed by logic circuit and the
L-layer is chosen from AES round function, which is in the prediction of 4–8×
speedup.

We implemented Fan in C code, and tested the speed on Intel Core i7-
4790 3.6 GHz processor running 32-bit Windows 7 with VS2010, without any
optimizations for fair comparison conventionally. It takes about 8.0 cycle/byte for
encryption. We present a software performance comparison of Fan and mainly
standard lightweight stream ciphers in Table 4, with comparable implemented
platforms7.

5.2 Hardware Performance

We implemented Fan in Verilog and synthesized it on 90 nm CMOS technol-
ogy to check for its hardware complexity. In this implementation, we imple-
ment the eight S-boxes of round function in parallel. It occupies about 2327
Gate-Equivalent(GE) and the speed is 9.6 Gbps. Table 5 compares the hardware
performances of Fan with other lightweight stream ciphers.

In the above implementation for Fan, the area requirement is according to
the 90 nm Digital Standard Cell Library referred to [22] (Specifically illustrate
in Appendix 4). We do not consider any costs for storing the non-volatile key
because we assume that it has to be provided by the device anyway, independent
of whether it needs to load the key only once for initialization or requires constant
access during the encryption as discussed in [18]. Due to the fact that Fan
sequentially accesses and simply reads out the key bytes, it is reasonable to reuse

Table 4. Software performance comparison

Cipher Security (bits) Authentication Performance

(cycles/byte)

Platform Reference

Trivium 80 No 5.1 2017 Intel Core

i7-7567U 3.5

GHz

[1]

Enocoro-128v2 128 No 17.4 Intel Core 2Duo

E6600 2.4 GHz

[14]

Acornv3 128 Yes 6.0 2017 Intel Core

i7-7567U 3.5

GHz

[1]

Grain-128a 128 Yes 11.7 Intel Core 2Duo

E6550 2.35 GHz

[16]

Fan 128 Yes 8.0 Intel Core

i7-4790 3.6 GHz

This

7 We normalize the measurement of software implementation rate by cycles/byte to
reduce the impact of the CPUs. Here we only consider the performance of confiden-
tiality without integrity for uniform comparison with other stream ciphers.

FAN: A Lightweight Authenticated Cryptographic Algorithm 321

Table 5. Hardware performance comparison

Cipher Security

(bits)

Area

(kGE)

Bits/cycle Throughput

(Gbps)

Throughput/

area

Technology

(nm)

Lib. Ref.

Trivium 80 2.599 1 1.95 0.75 130 Std [6]

Enocoro-128v2 128 4.100 8 3.52 0.86 90 Std [14]

Acornv3 128 2.412 8 9.09 3.77 65 Std [15]

Grain-128AEAD 128 4.017 2 1.18 0.29 65 Std [13]

Fan 128 2.327 24 9.64 4.13 90 Std This

the existing mechanisms for no needs of multiplexers for selecting the subkeys,
and to achieve a high throughput.

From Table 5, we can find that Fan has the best value of Throughput/Area,
which is an important parameter no matter what technology is taken. Com-
pared with Acorn, Fan’s internal state is more than 100 bits smaller, which is
much lighter for the highly-constrained devices. For the differences in technol-
ogy, using a newer technology such as 65 nm NANGATE open-source library
could have been better speed for Fan, which makes it more competitive. Here,
we conservatively used 90 nm Digital Standard Cell Library as the contrast.

Hence, Fan can achieve competitive hardware and software performances
compared with other known lightweight stream ciphers.

6 Conclusion

In this paper we propose a new AEAD algorithm Fan, which takes a 128-bit
key, a 64-bit IV, and a 192-bit state, promising 128-bit security and up to 72-
bit authentication tag with the IV-respecting restriction. Our design goal is to
provide cryptography security for resource-constraint environments. Moreover,
compared with other lightweight stream ciphers, the proposal achieves better
hardware performance and also have good software efficiency. Therefore, in the
design of Fan, we employ a novel byte-wise structure, inspired by the 4-blade
daily electric fan. It is the first non-Grain-like small-state stream cipher and also
the first small-state cipher with authentication function. Furthermore, the com-
ponents are designed with the consideration of both security and implementation
efficiency in mind. Especially, we present a new appropriate low-area 8×8 S-box
design. Our hardware implementation of Fan requires about 2327 GE on 90 nm
technology with a throughput of 9.6 Gbps, which satisfies the regular limitation
of 3000 GE in lightweight applications, and the software implementation runs
about 8.0 cycle/byte. We also evaluate the security of Fan and our cryptanalytic
results show that Fan achieves enough security margin against known attacks.
In the end, we strongly encourage helpful comments to the new design with
CKU method. We expect our work can push forwards such small-state designs
to a wider and multiple perspectives, and inspire further research or in-depth
exploration.

322 L. Jiao et al.

7 Appendix 1: Test Vector

Test vectors for Fan are shown in hexadecimal notation as follows:

1. For Ki = 0x00 for i = 0, 1, . . . , 15, IVi = 0x00 for i = 0, 1, . . . , 7, AD =
0x00,...,0x00 with the length of 1000 bits, and P = 0x00,...,0x00 with the
length of 1000 bits, the 43 ciphertext blocks are
e29535,b2b2ea,50e2ef,1b5efa,c60360,cb0f96,8befa5,a0320e,7aebab,487cb6,

3c1b7f,c59257,9dfb14,b11fec,6a5d00,0d9e2d,e90c43,d764f5,aeeeb8,16d92b,

dbef72,b18a89,5f3c53,63458e,c5598a,05192d,60a802,eaf8af,23cd9d,dfd45e,

d5861c,351acc,2c65ce,42ceed,4c6bf9,a1d5a7,9bca1a,76eeaf,f57e22,dc6a35,

982ede,9be801,4f4359, and the 72-bit tag is 3a4003,dfd872,051da1.

2. For Ki = 0xff for i = 0, 1, . . . , 15, IVi = 0xff for i = 0, 1, . . . , 7, AD =
0xff,...,0xff with the length of 1000 bits, and P = 0xff,...,0xff with the
length of 1000 bits, the 43 ciphertext blocks are
2ee752,8fc727,71e76c,8ef6f2,35ba5d,766f7b,950166,f57fa4,aecc81,e8ec28,

1c5146,a5a477,9ad473,835004,169666,1fd55d,3e2df9,866f6a,744317,99f6c8,

083573,9cbb54,6a3003,e16638,f67cb5,3ec873,ea2220,dab472,f8fdeb,9dba39,

88f6d6,784c90,9f1875,34b40d,8547b1,9cc976,12d5b5,a43ed9,f62af8,160427,

b0cdd1,b71eff,c3761e, and the 72-bit tag is a8255a,f41333,05928c.

8 Appendix 2: AES MixColumn with 92 XOR Gates

The compact implementation of AES MixColumn with 92 XOR gates and depth
6 [17] is shown as follows.

9 Appendix 3: Comparison Outline Diagram for Different
Phases

To show the differences for all phases, we focus on the spindle shown in Fig. 8,
since the blades and accumulator update part are not differing much from each
other.

FAN: A Lightweight Authenticated Cryptographic Algorithm 323

Fig. 8. The main difference: state update function of the spindle in different phases.

10 Appendix 4: Gate Count for FAN

For the hardware implementation of Fan, the area requirement is occupied as
shown in Table 7, according to the 90 nm Digital Standard Cell Library given in
Table 6 referred to [22].

Table 6. Reference of 90 nm digital standard cell library

GATE NAND AND2 AND3 XOR2 XOR3 MUX DFF

Area (μm2) 2.8224 3.528 4.2336 5.6448 13.4064 6.3504 15.5232
GE 1 1.25 1.5 2 4.75 2.25 5.5
1 Gate-Equivalent (GE) is measured with NAND as the unit.
2OPERATION2/3 denotes a two/three-input bit-wise operation.
3MUX is a bit-control multiplexer; D-Flip Flop (DFF) applies for bit-
wise storage.

324 L. Jiao et al.

Table 7. Gate count for Fan

Function Gate

z2 ← s3 ⊕ s2 ⊕ a3; z1 ← s1 ⊕ s0 ⊕ a2; z0 ← a1 ⊕ a0 ⊕ s0; 24XOR3

bi,(i+1)mod4 ← bi,(i+1)mod4 ⊕ si; 96XOR2

bi,(i+2)mod4 ←
(
bi,(i+2)mod4 ⊕ ai

)
≪(2i+1)

;

ai ← ai ⊕ bi,(i+3)mod4, i = 0, 1, 2, 3;

s3 ← s3 ⊕ b3,3 ⊕ rc, si ← si ⊕ bi,i ⊕ mt
i ⊕ kt

i , i = 0, 1, 2; 32XOR3, 24XOR2

si ← S[si], i = 0, 1, 2, 3; 4×(12AND2, 25XOR2, 1NAND)

(s3‖s2‖s1‖s0) ← L(s3‖s2‖s1‖s0); 92XOR2

si ← S[si], i = 0, 1, 2, 3; 4×(12AND2, 25XOR2, 1NAND)

if rc6 = 0, 1MUX

(rc5‖rc4‖rc3‖rc2‖rc1‖rc0) ← (rc4‖rc3‖rc2‖rc1‖rc0‖rc5 ⊕ rc0); 1XOR2, 2AND3, 1AND2

rc6 ← rc5&rc4&rc3&rc2&rc1&rc0;

store b, a, s, rc 200 D-Flip Flop

Total 2327 GE

References

1. ebacs: Ecrypt benchmarking of cryptographic systems. https://bench.cr.yp.to/
results-stream.html

2. Ahmadi, H., Eghlidos, T.: Heuristic guess-and-determine attacks on stream ciphers.
IET Inf. Secur. 3(2), 66–73 (2009). https://doi.org/10.1049/iet-ifs.2008.0013

3. Aminghafari, V., Hu, H.: Fruit: ultra-lightweight stream cipher with shorter inter-
nal state. IACR Cryptology ePrint Archive 2016, 355 (2016). http://eprint.iacr.
org/2016/355

4. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Fast Software Encryption - 22nd International Workshop, FSE 2015,
Istanbul, Turkey, 8–11 March 2015, Revised Selected Papers, pp. 451–470 (2015).
https://doi.org/10.1007/978-3-662-48116-5 22

5. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

6. Canniere, C.D., Preneel, B.: Trivium specifications. eSTREAM, ECRYPT Stream
Cipher Project, Citeseer (2005)

7. Canteaut, A., Duval, S., Leurent, G.: Construction of lightweight s-boxes using
Feistel and MISTY structures. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015.
LNCS, vol. 9566, pp. 373–393. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31301-6 22

8. Dinur, I., Shamir, A.: Cube attacks on Tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

9. Esgin, M.F., Kara, O.: Practical cryptanalysis of full sprout with TMD tradeoff
attacks. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp.
67–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 4

10. Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.:
Fast quantum algorithm for solving multivariate quadratic equations. CoRR
abs/1712.07211 (2017). http://arxiv.org/abs/1712.07211

11. Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptogr. Commun.
10(5), 959–1012 (2018). https://doi.org/10.1007/s12095-018-0294-5

https://bench.cr.yp.to/results-stream.html
https://bench.cr.yp.to/results-stream.html
https://doi.org/10.1049/iet-ifs.2008.0013
http://eprint.iacr.org/2016/355
http://eprint.iacr.org/2016/355
https://doi.org/10.1007/978-3-662-48116-5_22
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/978-3-319-31301-6_22
https://doi.org/10.1007/978-3-319-31301-6_22
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-319-31301-6_4
http://arxiv.org/abs/1712.07211
https://doi.org/10.1007/s12095-018-0294-5

FAN: A Lightweight Authenticated Cryptographic Algorithm 325

12. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: New Stream Cipher Designs - The eSTREAM Finalists, pp. 179–190
(2008). https://doi.org/10.1007/978-3-540-68351-3 14

13. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: An AEAD variant
of the grain stream cipher. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.)
C2SI 2019. LNCS, vol. 11445, pp. 55–71. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16458-4 5

14. Hitachi, L.: Stream cipher Enocoro specification ver. 2.0 and evaluation report.
CRYPTREC submission package (2010). http://www.hitachi.com/rd/yrl/crypto/
enocoro/

15. Kumar, S., Haj-Yihia, J., Khairallah, M., Chattopadhyay, A.: A comprehensive
performance analysis of hardware implementations of CAESAR candidates. IACR
Cryptol. ePrint Arch. 2017, 1261 (2017). http://eprint.iacr.org/2017/1261

16. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. The eSTREAM Final-
ists. LNCS, vol. 4986. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68351-3

17. Maximov, A.: AES mixcolumn with 92 XOR gates. Cryptology ePrint Archive,
Report 2019/833 (2019). https://eprint.iacr.org/2019/833

18. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access
the non-volatile key. IACR Transactions on Symmetric Cryptology 2016(2), 52–
79 (2016). https://doi.org/10.13154/tosc.v2016.i2.52-79

19. National Institute of Standards and Technology: Advanced encryption standard.
NIST FIPS PUB 197 (2001)

20. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

21. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited: cryptanalysis on full grain-128a, grain-128, and grain-v1. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 129–159. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 5

22. TSMC: TSMC 90nm cln90g process sage-xtm v3.0 standard cell library databook
(March 2005 Release 11)

23. Wang, Q., et al.: Improved division property based cube attacks exploiting alge-
braic properties of superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 275–305. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 10

24. Zhang, B., Gong, X.: Another tradeoff attack on sprout-like stream ciphers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 561–585.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 23

https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-030-16458-4_5
https://doi.org/10.1007/978-3-030-16458-4_5
http://www.hitachi.com/rd/yrl/crypto/enocoro/
http://www.hitachi.com/rd/yrl/crypto/enocoro/
http://eprint.iacr.org/2017/1261
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/978-3-540-68351-3
https://eprint.iacr.org/2019/833
https://doi.org/10.13154/tosc.v2016.i2.52-79
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-662-48800-3_23

Related-Key Analysis of Generalized
Feistel Networks with Expanding Round

Functions

Yuqing Zhao1,2, Wenqi Yu1,2, and Chun Guo1,2,3(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao,
Shandong, China

{yqzhao,wenqiyu}@mail.sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry

of Education, Shandong University, Qingdao 266237, Shandong, China
chun.guo@sdu.edu.cn

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. We extend the prior provable related-key security analy-
sis of (generalized) Feistel networks (Barbosa and Farshim, FSE 2014;
Yu et al., Inscrypt 2020) to the setting of expanding round functions,
i.e., n-bit to m-bit round functions with n < m. This includes Expanding
Feistel Networks(EFNs) that purely rely on such expanding round func-
tions, and Alternating Feistel Networks(AFNs) that alternate expanding
and contracting round functions. We show that, when two independent
keys K1, K2 are alternatively used in each round, (a) 2�m

n
�+2 rounds are

sufficient for related-key security of EFNs, and (b) a constant number of
4 rounds are sufficient for related-key security of AFNs. Our results com-
plete the picture of provable related-key security of GFNs, and provide
additional theoretical support for the AFN-based NIST format preserving
encryption standards FF1 and FF3.

Keywords: Blockcipher · Expanding Feistel Networks · Alternating
Feistel Networks · Related-key attack · CCA-security · H-coefficient
technique

1 Introduction

Generalized Feistel Networks. The well-known Feistel blockciphers, includ-
ing the Data Encryption Standard (DES) [25], rely on the Feistel permuta-
tion ΨF (A,B) := (B,A ⊕ F (B)), where F : {0, 1}n → {0, 1}n is a domain-
preserving round function. This structure has been generalized along multiple
axes, providing much more choices for the involved parameters and possibil-
ities of applications. In particular, the so-called Contracting Feistel Networks

Y. Zhao and W. Yu—are co-first authors of the article.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 326–350, 2021.
https://doi.org/10.1007/978-3-030-75539-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_14

Related-Key Analysis of Generalized Feistel Networks 327

(CFNs) employ contracting round functions G : {0, 1}m → {0, 1}n, m > n [44],
while Expanding Feistel Networks (EFNs) employ the opposite expanding round
functions F : {0, 1}n → {0, 1}m [44]. In some cases, the two sorts of round
functions are executed in a alternating manner [2,33], yielding Alternating Feis-
tel Networks (AFNs). Following [28], these are now known as generalized Feis-
tel networks. Well-known blockciphers that follow these Feistel variants include
the Chinese standard SMS4 [19] (contracting) and BEAR/LION/LIONESS [2]
(alternating). Besides, CFNs have supported full-domain secure encryption
schemes [35], while AFNs have been proposed as blockcipher modes-of-operation
for format-preserving encryption (FPE) [8,13,14] and adopted by the NIST
format-preserving encryption standard FFX [23], in order to encrypt non-binary
alphabet [23] or database records [18] into ciphertexts of the same format.

Provable security of Feistel networks and their variants was initiated by Luby
and Rackoff [32]. The approach is to model the round functions as pseudoran-
dom functions (PRFs). Via a generic standard-to-ideal reduction, the schemes
are turned into networks using secret random round functions, for which infor-
mation theoretic indistinguishability is provable, i.e., no distinguisher is able to
distinguish the Feistel network from a random permutation on 2n-bit strings.
With this model, Luby and Rackoff proved CCA security for 4-round bal-
anced Feistel networks, and subsequent works extended this direction to refined
results [28,37,39,43] or to cover the aforementioned generalized Feistel networks
[2,8,13,28,33,35,38,41,48]. It has been proved that CFNs, EFNs, and AFNs could
all achieve CCA security up to nearly 2(n+m) adversarial queries [28,45], at the
cost of a logarithmic number of rounds.

Related-Key Security. The above PRF or secret random function-based secu-
rity argument assumed the network using a fixed secret key. We will henceforth
refer to this as the Single-Key (SK) setting. The adversarial model, however,
usually violates this assumption. In particular, the Related-Key Attacks (RKAs),
first identified by Biham [9] and Knudsen [30], consider a setting where an adver-
sary might be able to run a cryptosystem on multiple keys satisfying known or
chose relations (due to key update [24,29] or fault injection [3]). Compared to
the classical “single-key” setting, the increased adversarial power enables much
more effective attacks against quite a number of blockciphers [10,21].

On the other hand, security against RKAs has become a desirable goal, par-
ticularly for blockciphers, as it increases the robustness of the primitive and eases
its use. In this respect, Bellare and Kohno [7] initiated the theoretical treatment
of security under related-key attacks by proposing definitions for RKA secure
pseudorandom functions (PRFs) and pseudorandom permutations (PRPs), for-
malizing the adversarial goal as distinguishing the cipher oracles with related-
keys from independent random functions or permutations, and presenting pos-
sibility and impossibility results. Since then, follow up works have established
various important positive results for provably RKA secure constructions of com-
plicated cryptographic primitives [1,5,6,26]. In particular, Barbosa and Farshim
established RKA security for 4 rounds balanced Feistel networks with two

328 Y. Zhao et al.

master keys K1 and K2 alternatively used in each round [5], and Guo established
RKA security for the so-called Feistel-2 or key-alternating Feistel ciphers [26].

RKA Security of GFNs. GFNs remain far less understood in the RKA model.
To our knowledge, this was only partly addressed in [47], which established RKA
security for contracting Feistel networks using two keys alternatively. In contrast,
the generalized Feistel variants using expanding round functions have never been
analyzed w.r.t. RKAs. This includes expanding EFNs and alternating AFNs.

As already observed [33,36], expanding round functions are attractive in
theory, in the sense that the amount of randomness needed to define an ideal
expanding function is less than that of the contracting ones.1 The shortage is
that, information theoretic security is limited by the input size n of the round
function, and turns vanishing for small n (8 bits for example). Though, even
in this case, provable security is usually viewed as theoretical support for the
structure (see e.g., [16]).2 As such, expanding round functions are still used in
practice. For example, EFNs can be made practical via storing truly random
expanding functions for small input size n (e.g., 8 bits), as done in the hash
function CRUNCH [31]. Meanwhile, as mentioned before, AFNs have been the
structure of the NIST format-preserving encryption standards [23]. The con-
tracting round functions are built from AES-CBC, while the expanding are from
AES-CTR.

Regarding provable security, the landscape is very subtle. For EFNs, it was
shown that 2�m

n � + 4 rounds suffice for the classical SK CCA security up to
2n/2 queries (generic attacks have been exhibited in [42,46]). For AFNs, it was
shown that 12�m

n � + 6 rounds suffice for SK CCA security up to 2m/2 queries,
which is birthday bound of the parameter m (m is larger than n). With fewer
rounds, provable results were restricted to weaker models such as CPA security
(3 rounds [33]) or key recovery security (4 rounds [33,34]).3 In all, for EFNs and
AFNs, while asymptotically optimal bounds have been proved, it remains unclear
what’s the minimal number of rounds necessary for CCA security.

Our Results. As mentioned before, in the regime of RKA security, GFNs with
contracting round functions have been studied in [47]. This paper aims to inves-
tigate GFNs with expanding round functions to complete the picture.

RKA Security of 2�m
n � + 2-Round EFN. In detail, we first consider expand-

ing Feistel networks using a keyed round function F : K × {0, 1}n → {0, 1}m,
where m > n. We first pinpoint the number of rounds that appear sufficient.
In this respect, we note that the proof framework for balanced Feistel, con-
tracting Feistel, and Naor-Reingold views the scheme as several middle rounds
sandwiched by a number of outer rounds: the outer rounds ensure some sort
of full diffusion, while the middle rounds ensure pseudorandomness of the final
1 It consumes n · 2m bits to describe the table of a contracting random function from

{0, 1}m to {0, 1}n, while m · 2n bits for an expanding one from {0, 1}n to {0, 1}m.
2 For AFN-based modes we might have n = 128, and the bound would be meaningful.

We hope to see concrete designs.
3 Although many have mentioned the possibility of CCA security on 4 rounds [33].

Related-Key Analysis of Generalized Feistel Networks 329

outputs. This framework has also been used for the RKA security of 3-round
Even-Mansour cipher [17]. Following this idea, we identify that the number of
expanding Feistel rounds sufficient for full diffusion is �m

n �. We also observe
that two middle rounds are sufficient as the randomness source. Therefore, we
pinpoint 2�m

n � + 2 as the number of rounds plausible for CCA security. This
improves upon the aforementioned SK CCA result with 2�m

n � + 4 rounds [28].
The improvement stems from the fine-grained H-coefficient-based analysis rather
than the NCPA(Non-adaptive CPA)-to-CCA transformation used in [28].

The next step is to pinpoint a plausible correlated key assignment—as
observed in the context of balanced Feistel networks [5,7], independent round
keys actually admit related-key attacks. A natural idea is to alternate two inde-
pendent keys K1,K2 ∈ K in each round, as in [5] and in some practical block-
ciphers [4,27]. Note that an odd number of Feistel rounds with such alternating
key assignment yields an (insecure) involution.4

Fortunately, the aforementioned number of rounds 2�m
n � + 2 is even. There-

fore, we focus on this alternating key assignment, and prove that the 2�m
n � + 2

rounds are sufficient for the classical birthday security, i.e., for RKA security
up to 2n/2 adversarial queries.

RKA Security of 4-Round AFN. We then consider alternating Feistel net-
works, in which the odd rounds use contracting G : K × {0, 1}m → {0, 1}n

while the even rounds use expanding F : K × {0, 1}n → {0, 1}m. Somewhat
interestingly,—and in contrast to contracting and expanding Feistel networks
(see [47] for discussion on the former),—the number of rounds suffice for CCA
security in an AFN is always 4, independent of the ratio m/n. Briefly, the reason
is that AFNs actually behave quite similarly to the classical balanced Feistel
networks, except that the domain and range of the round functions are different.

To achieve RKA security, again we have to resort to non-independent key
assignments. We consider again the aforementioned key assignment. With the
above, we prove that the 4-round AFN (Fig. 1) using round keys (K1,K2,K1,K2)
is RKA secure up to 2n/2 queries, which is the birthday bound with respect to
the parameter n.

For AFN there is another interesting property, i.e., if all the round keys are
identical, then an odd number of rounds constitutes an involution (not CCA
secure), while an even number of rounds is not. As we are trying to establish
security for 4 rounds, it seems appealing to employ such identical round keys.
Unfortunately, another subtle issue hinders this attempt. In detail, technically,
the classical generic standard-to-ideal reduction is unable to handle two differ-
ent keyed functions using the same secret key: the reduction is just unable to
simulate the other primitive with the target secret key. On the positive side,
this issue can be overcame by using a tweakable keyed function that behaves as
contracting for tweak input 0 while expanding for tweak 1. For the AFN using

4 By this, even number of rounds are likely vulnerable to recent advanced slide
attacks [20]. Though, we remark that slide attacks typically require at least 2n/2

complexities [11,12,20,22], and thus do not violate our birthday provable bounds.
Seeking for beyond-birthday provable bounds is a promising future direction.

330 Y. Zhao et al.

such a tweakable keyed function as the round function, the reduction is able to
handle the case of identical round keys (it just idealizes all round functions “once
for all’). Interestingly, this model appears closer to FF1 and FF3. Our analysis is
easily adapted to this 4-round AFN variant, indicating RKA CCA security up to
2n/2 queries. For clearness, we summarize our new results and relevant existing
results in Table 1.

As mentioned before, our results complete the picture of RKA security of
generalized Feistel networks. They also provide additional theoretical support for
the NIST standards FF1 and FF3. However, we remark important caveats. The
concrete parameters involved in FF1 and FF3 are rather small, and our provable
bounds (in fact, any information theoretic provable bounds) are too weak to
be meaningful. FF1 and FF3 are intended to resist attacks with complexity far
beyond the information theoretic upper bound. Therefore, the number of rounds
have to be determined by cryptanalytic results rather than the provable ones.
In fact, recently, FF1 and FF3 have been found insufficient.

We also mention that the blockcipher LIONESS of Anderson and Biham uses
4 independent keys in its two calls to a stream cipher and two calls to a hash
function [2]. Our result can be applied to halve the amount of keys while boosting
provable security (i.e., boosting birthday-bound CCA security to birthday-bound
RKA CCA security).

Table 1. Provable security results on expanding and alternating Feistel networks.
The scheme AFN∗ is the aforementioned tweakable function-based AFN. The second
column lists the security models, where SK is the abbreviation of Single-Key. The
third column list the number of rounds required by the provable results. The fourth
column list the key assignment in use: Independent means independent round keys,
Alternating means (our) alternating two keys, and Identical means identical round
keys. Parameter m > n, m is the output length of the expanding function and the input
length of the contracting function. Parameter n is the input length of the expanding
function and the output length of the contracting function. The parameter t is an
integer and determines the number of rounds.

Scheme Model Rounds Round keys Security Ref.

EFN SK CCA 2�m
n

� + 4 Independent n/2 [28,45]

EFN SK CCA 4t + 2�m
n

� + 1 Independent tn/(t + 1) [45]

EFN RKA CCA 2�m
n

� + 2 Alternating n/2 Theorem 1

AFN Key recovery 3 – – [33,34]

AFN SK CPA 3 Independent n/2 [33]

AFN SK CCA 12�m
n

� + 6 Independent m/2 [28]

AFN SK CCA (12�m
n

� + 2)t + 5 Independent tm/(t + 1) [45]

AFN RKA CCA 4 Alternating n/2 Theorem 2

AFN∗ RKA CCA 4 Identical n/2 Corollary 1

Related-Key Analysis of Generalized Feistel Networks 331

Organization. We serve necessary notations and definitions in Sect. 2. After
that, we serve the RKA security analysis for EFN in Sect. 3. In the full version,
we serve the analysis of the simplest setting of 6-round EFN as an instructive
example. We then present the analysis for 4-round AFN in Sect. 4. We finally
conclude in Sect. 5.

G
m,n
K1

F
n,m
K2

X1[1, n] X1[n + 1, n + m]

G
m,n
K1

F
n,m
K2

TF
m,n,0
K

TF
m,n,1
K

TF
m,n,0
K

TF
m,n,1
K

X2[1, n]

X3[1, n]

X4[1, n]

X5[1, n]

X2[n + 1, n + m]

X3[n + 1, n + m]

X4[n + 1, n + m]

X5[n + 1, n + m]

X1[1, n]

X2[1, n]

X3[1, n]

X4[1, n]

X5[1, n]

X1[n + 1, n + m]

X2[n + 1, n + m]

X3[n + 1, n + m]

X4[n + 1, n + m]

X5[n + 1, n + m]

Fig. 1. (Left) The 4-round alternating Feistel network AFNGm,n,Fn,m,4 using a con-
tracting round function Gm,n and an expanding round function F n,m and two keys
K1, K2. (Right) The 4-round alternating Feistel network AFNTFm,n,4 using a tweak-
able round function TF m,n and a single key K.

2 Preliminaries

For two bit strings X,Y of any length, we denote by X‖Y their concatenation.
For X ∈ {0, 1}m, we denote by X[a, b] the string consisting of the b − a + 1 bits
between the a-th position and the b-th position. This means X = X[1, i]‖X[i +
1,m] for any i ∈ {1, ...,m − 1}. For example, if X = 0xA5A5 (in hexadecimal
form), then X[1, 3] = 0x5, while X[4, 16] = 0x05A5.

Two of our three results focus on using two independent keys K1,K2 in the
round functions. In this respect, we denote the master key of the network by
K = (K1,K2) ∈ K2, i.e., a vector of dimension 2. We denote by K[i] its i-th
coordinate, where i = 1 or 2. We further denote by

KA(K) = (Ki1 , ...,Kit)

the round key assignment of the network, where i1, ..., it are fixed indices in
{1, 2}. For such a vector of round keys KA(K), we denote by KA(K)[j] the j-
th round key Kij . Thereby, a related-key derivation function φ maps a certain
master key K = (K1,K2) to a new master key K′ = (K ′

1,K
′
2). We will write

EFNKA(K) and AFNKA(K) for the corresponding construction using the master
key K and the key assignment KA.

For the case K = (K1,K2), we will specially pay attention to the alter-
nating key assignment Alter(K) = (K1,K2,K1,K2, ...). Formally, Alter(K) :=
(Ki1 , ...,Kit), where ij = 1 for j odd and ij = 2 for j even.

332 Y. Zhao et al.

2.1 (Multi-user) RKA Security

The RKA security notion is parameterized by the so-called related-key deriving
(RKD) sets. Formally, an ν-ary RKD set Φ consists of RKD functions φ mapping
a ν-tuple of keys (K1, ...,Kν) in some key space Kν to a new ν-tuple of key in
Kν , i.e., φ : Kν → Kν .

We need to formalize the multi-user RKA security model5 (i.e., the model
involving multiple independent secret keys) for the keyed round functions and
the classical (single-user) RKA CCA security model for the blockcipher/Feistel
networks. For the former, let F : K × {0, 1}n → {0, 1}m be a keyed function,
and fix a key K ∈ K. We define the Φ-restricted related-key oracle RK[FK],
which takes a RKD function φ ∈ Φ and an input X ∈ {0, 1}n as input, and
returns RK[FK](φ,X) := Fφ(K)(X). Then, we consider a Φ-restricted related-
key adversary D which has access to u related-key oracles instantiated with either
F or an ideal keyed function RF : K × {0, 1}n → {0, 1}m, and must distinguish
between two worlds as follows:

– the “real” world, where it interacts with RK[FK1], ...,RK[FKu
], and K1, ...,Ku

are randomly and independently drawn from K;
– the “ideal” world, where it interacts with RK[RFK1], ...,RK[RFKu

], and K1,...,
Ku are randomly and independently drawn from K.

The adversary is adaptive. Note that in the ideal world, each oracle RK[RFKi
]

essentially implements an independent random function for each related-key
φ(Ki). Formally, D’s distinguishing advantage on F is defined as

Adv
Φ-rka[u]
F (D) :=

∣
∣
∣ PrRF,K1,...,Ku

[
DRK[RFK1],RK[RFK1]−1,...,RK[RFKu],RK[RFKu]−1

= 1
]

− PrK1,...,Ku

[
DRK[FK1],RK[FK1]−1,...,RK[FKu],RK[FKu]−1

= 1
]

∣
∣
∣ .

It was proved that, under some natural restrictions on RKD sets, the single-
user and multi-user RKA notions are equivalent up to a factor of u. Moreover,
our subsequent sections mainly focus on the case of u = 2. We refer to [5] for
details.

Similarly, a blockcipher E : Kν ×{0, 1}m → {0, 1}m shall be comparable with
an ideal cipher. Formally, D’s distinguishing advantage on E is defined as

Adv
Φ-rka[1]
E (D) :=

∣
∣
∣ PrIC,K

[

DRK[ICK],RK[ICK]−1
= 1

] − PrK
[

DRK[EK],RK[EK]−1
= 1

]
∣
∣
∣,

where RK[EK]−1(φ, Y) := E−1
φ(K)(Y).

As already noticed in [7], Φ-RKA security is achievable only if the RKD set Φ
satisfies certain conditions that exclude trivial attacks. For this, we follow [5] and

5 This was termed multi-key RKA security in [5]. As we refer to the classical security
model with a single “static” secret key as “single-key (CCA) model”, we use the
terms single-user and multi-user here for distinction.

Related-Key Analysis of Generalized Feistel Networks 333

characterize three properties. Firstly, the output unpredictability (UP) advantage
of an adversary A against an RKD set Φ is

Advup
Φ (A) := Pr

[∃(φ,K∗) ∈ L1 × L2 s.t. φ(K) = K∗ : K ←$ K; (L1, L2) ← A]

.

Secondly, the claw-freeness (CF) advantage of an adversary A against an RKD
set Φ is

Advcf
Φ(A) := Pr

[∃φ1, φ2 ∈ L s.t. φ1(K) = φ2(K) ∧ φ1 �= φ2 : K ←$ K; L ← A]
.

Finally, when the master key is the aforementioned vector K = (K1,K2), the
switch-freeness (SF) advantage of an adversary A against an RKD set Φ is

Advsf
Φ(A) := Pr

[

(∃φ1, φ2 ∈ L)(∃i �= j ∈ {1, 2}) s.t. φ1(K)[i] = φ2(K)[j] :

K ←$ K; L ← A]

.

We require the three advantages to be sufficiently small. The necessity of
UP and CF has already been noticed in [7]: if A is able to figure out φ ∈ Φ
such that φ(K) = c for some constant c or φ(K) = φ′(K) for some φ′ �= φ,
then distinguishing is always possible by comparing RK[EK](φ,X) with Ec(X)
or with RK[EK](φ′,X) respectively. On the other hand, the SF property aims to
ensure a definitive distinction between the round functions using K1 and those
using K2. I.e., once a master key K = (K1,K2) is fixed, a round function using
K1 will never use K2 for some RKD function φ.

2.2 The H-Coefficient Technique

The core step of our proofs consists of analyzing information theoretic indis-
tinguishability of EFNs and AFNs built upon ideal keyed functions, which will
employ the H-coefficient technique [15,40]. To this end, we assume a determin-
istic distinguisher that has unbounded computation power, and we summarize
the information gathered by the distinguisher in a tuple

Q =
(
(φ1,X1, Y1), . . . , (φq,Xq, Yq)

)

called the transcript, meaning that the j-th query was either a forward query
(φj ,Xj) with answer Yj , or a backward query (φj , Yj) with answer Xj .

To simplify the definition of “bad transcripts”, we reveal the key K to the
distinguisher at the end of the interaction. This is wlog since D is free to ignore
this additional information to compute its output bit. Formally, we append K to
τ and obtain what we call the transcript τ = (Q,K) of the attack. With respect
to some fixed distinguisher D, a transcript τ is said attainable, if there exists
oracles IC such that the interaction of D with the ideal world RK[ICK] yields Q.
We denote T the set of attainable transcripts. In all the following, we denote
Tre, resp. Tid, the probability distribution of the transcript τ induced by the
real world, resp. the ideal world (note that these two probability distributions
depend on the distinguisher). By extension, we use the same notation for a
random variable distributed according to each distribution.

With the above, the main lemma of H-coefficient technique is: (see [15]).

334 Y. Zhao et al.

Lemma 1. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the
set of attainable transcripts T . Assume that there exists ε1 such that for any
τ ∈ Tgood, one has

Pr[Tre = τ]
Pr[Tid = τ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Given a transcript Q, a blockcipher E, and a key K ∈ Kν , we say the related-
key oracle RK[EK] extends Q, denoted RK[EK] � Q, if Eφ(K)(X) = Y for all
(φ,X, Y) ∈ Q. It is easy to see that for any attainable transcript τ = (Q,K),
the interaction of the distinguisher with oracles RK[EK] produces (Q,K) if and
only if K is sampled in the interaction and RK[EK] � τ . We refer to [15] for a
formal argument. With these, it is not hard to see that,

Pr
[
Tid = τ

]
= Pr[K] · Pr

[
RK[ICK] � Q

]
≤ Pr[K] ·

(
1

2n+m − q

)q

, (1)

where n + m is the block size of the resulting (n + m)-bit generalized Feistel
network, and Pr[K] = PrK∗ [K∗ = K]. Similarly,

Pr
[
Tre = τ

]
= Pr[K] · Pr

[
RK[EK] � Q

]
, (2)

and the analysis of Pr
[
RK[EK] � Q

]
will constitute the core of the subsequent

proofs.

3 Security Analysis of Expanding Feistel Networks

Let m and n be positive integers such that m > n. In this section, we consider
the t-round EFNFn,m,t

KA(K) using an expanding round function Fn,m. Formally, for
X ∈ {0, 1}n+m and i ∈ {1, ..., t}, the ith round of the EFN uses the round key
Ki, and is defined as

Ψ
Fn,m

Ki (X) := Fn,m
Ki

(
X[1, n]

)
⊕ X[n + 1, n + m]

∥
∥ X[1, n].

The t-round EFN
Fn,m,2�m

n �+2

KA(K) using the key assignment KA(K) = (K1, ...,Kt) is
a composition of t such rounds, i.e.,

EFNFn,m,t
KA(K) (X) := ΨFn,m

Kt ◦ ... ◦ ΨFn,m
K1 (X).

As mentioned in the Introduction, for such EFNs, 2�m
n � + 2 rounds and the

alternating key assignment Alter(K) = (K1,K2,K1,K2, . . .) would ensure RKA
security.

Related-Key Analysis of Generalized Feistel Networks 335

Theorem 1. For any distinguisher D making at most q queries to the oracles
RK[EFNFn,m,2�m

n �+2

Alter(K)] and RK[EFNFn,m,2�m
n �+2

Alter(K)]−1 in total, it holds

AdvΦ-rka[1]

EFN
Fn,m,2� m

n
�+2

Alter(K)

(D) ≤ AdvΦ-rka[2]
Fn,m (D) + Advcf

Φ(D) + Advsf
Φ(D)

+
(�m

n � + 1)2q2

2n
+

q2

2n+m
. (3)

The bound appears independent of the unpredictability advantage Advup
Φ (D).

Though, Advup
Φ (D) shall be small in order to ensure that AdvΦ-rka[2]

Fn,m (D) is
sufficiently small.

The proof starts with a generic standard-to-ideal reduction, which replaces
the keyed expanding round function Fn,m with an ideal keyed expanding func-
tion RFn,m : K × {0, 1}n → {0, 1}m. Clearly (see [5, Theorem 2] for a more
detailed formalism),

∣
∣
∣ AdvΦ-rka[1]

EFN
RFn,m,2� m

n
�+2

Alter(K)

(D) − AdvΦ-rka[1]

EFN
Fn,m,2� m

n
�+2

Alter(K)

(D)
∣
∣
∣ ≤ AdvΦ-rka[2]

Fn,m (D),

and we could focus on analyzing AdvΦ-rka[1]

EFN
RFn,m,2� m

n
�+2

Alter(K)

(D) for the idealized EFN.

We’ll employ the H-coefficient technique, define and analyze bad transcripts, and
show that the probabilities to obtain any good transcript in the real world and
the ideal world are sufficiently close.

3.1 Bad Transcripts

Definition 1. An attainable transcript τ = (Q,K) is bad, if either of the fol-
lowing conditions is fulfilled:

(B-1) Claw in τ : there exist two triples (φ1,X1, Y1) and (φ2,X2, Y2) in Q such
that φ1 �= φ2, while φ1(K) = φ2(K);

(B-2) Switch in τ : there exist two triples (φ1,X1, Y1) and (φ2,X2, Y2) in Q and
two distinct indices i, j ∈ {1, 2} such that φ1(K)[i] = φ2(K)[j].

Otherwise we say τ is good.

It is clear that Pr[(B-1)] ≤ Advcf
Φ(D): an adversary against the claw-freeness

of the RKD set Φ could simulate the related-key oracle with Φ against the
distinguisher D, collecting D’s transcript of queries and responses, and use the
records in Q to break the claw-freeness of Φ. Similarly, Pr[(B-2)] ≤ Advsf

Φ(D),
and thus

Pr
[
Tid ∈ Tbad] = Pr

[
(B-1) ∨ (B-2)

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (4)

336 Y. Zhao et al.

3.2 Analyzing Good Transcripts

Fix a good transcript τ . The ideal world probability simply follows from Eq. (1),
and it remains to analyze Pr

[
RK[EFNRFn,m,2�m

n �+2

Alter(K)] � Q
]
, i.e., an ideal keyed

function RFn,m satisfying RK[EFNRFn,m,2�m
n �+2

Alter(K)] � Q. We proceed in two steps.
First, given an ideal keyed function RFn,m, it is possible to derive the (�m

n � + 1)
th and (�m

n � + 2) th round intermediate values involved during evaluating the
queries in τ . We thus define a “bad predicate” BadF(RFn,m) on RFn,m, such
that once BadF(RFn,m) is not fulfilled, the event Tre = τ is equivalent to RFn,m

satisfying 2q distinct equations on these intermediate values, the probability of
which is close to the ideal world probability. The bound then follows from some
simple probabilistic arguments.

Formally, given an ideal keyed function RFn,m, for every (φi,Xi, Yi) ∈ τ ,
we define the induced intermediate values in a “meet-in-the-middle” manner. In
detail, we first define X1,i := Xi, and

X�,i := RFn,m
Alter(φi(K))[�−1]

(
X�−1,i[1, n]

)
⊕ X�−1,i[n + 1, n + m]

∥
∥ X�−1,i[1, n]

(5)

for � = 2, ..., �m
n � + 1. We then define X2�m

n �+3,i := Yi, and

X�,i := X�+1,i[m + 1, n + m]
∥
∥ RFn,m

Alter(φi(K))[�]

(
X�+1,i[m + 1, n + m]

)
⊕ X�+1,i[1,m] (6)

for � = 2�m
n � + 2, 2�m

n � + 1, ..., �m
n � + 3.

Bad Predicate. Informally, the conditions capture “unnecessary” collisions
among calls to the round function RFn,m during evaluating the q queries.

Definition 2. Given a function RFn,m, the predicate BadF(RFn,m) is fulfilled,
if any of the following �m

n � + 3 conditions is fulfilled.

– (C-[�]) For � = 1, ..., �m
n �, the � th condition addresses the � + 1 th and

2�m
n �+2−� th round function “inputs”: there exists two indices i, j ∈ {1, ..., q}

such that
• there exists �′ ∈ {1, ..., �} such that

(
Alter(φi(K))[� + 1],X�+1,i[1, n]

)
=(

Alter(φj(K))[�′],X�′,j [1, n]
)
; or

• there exists �′ ∈
{
2�m

n � + 3 − �, ..., 2�m
n � + 3

}
such that

(
Alter(φi(K))[� +

1],X�+1,i[1, n]
)

=
(
Alter(φj(K))[�′ − 1],X�′,j [m + 1, n + m]

)
; or

• there exists an index �′ ∈ {1, ..., �+1} such that
(
Alter(φi(K))[2�m

n �+2−
�],X2� m

n �+3−�,i[m + 1, n + m]
)

=
(
Alter(φj(K))[�′],X�′,j [1, n]

)
; or

• there exists �′ ∈
{
2�m

n � + 4 − �, ..., 2�m
n � + 3

}
such that

(
Alter(φi(K))

[2�m
n �+2−�],X2� m

n �+3−�,i[m+1, n+m]
)

=
(
Alter(φj(K))[�′−1],X�′,j [m+

1, n + m]
)
.

Related-Key Analysis of Generalized Feistel Networks 337

– (C-[�m
n � + 1]) There exists distinct i, j ∈ {1, ..., q} and � ∈ {1, ..., �m

n �}
such that

(
Alter(φi(K))[�],X�,i[1, n]

)
�=

(
Alter(φj(K))[�],X�,j [1, n]

)
, while

X�+1,i[1, n] = X�+1,j [1, n];
– (C-[�m

n � + 2]) There exists two distinct indices i, j ∈ {1, ..., q} and an index
� ∈ {�m

n � + 4, ..., 2�m
n � + 3} such that

(
Alter(φi(K))[� − 1],X�,i[m + 1, n +

m]
)

�=
(
Alter(φj(K))[� − 1],X�,j [m + 1, n + m]

)
, yet X�−1,i[m + 1, n + m] =

X�−1,j [m + 1, n + m];
– (C-[�m

n � + 3]) There exists two distinct indices i, j ∈ {1, ..., q} such
that either

(
Alter(φi(K))[�m

n � + 1],X� m
n �+1,i[1, n]

)
=

(
Alter(φj(K))[�m

n � +
1],X� m

n �+1,j [1, n]
)
, or

(
Alter(φi(K))[�m

n � + 2],X� m
n �+3,i[m + 1, n + m]

)
=(

Alter(φj(K))[�m
n � + 2],X� m

n �+3,j [m + 1, n + m]
)
.

To bound Pr[BadF(RFn,m)], we consider the conditions in turn.

Condition (C-[�]), � = 1, ..., �m
n

�. Consider any such two indices i, j ∈
{1, ..., q}. We distinguish two cases.

Case 1 : � is odd. In this case, the �+1 th round function uses the keys φi(K)[2]
and φj(K)[2], while the 2�m

n � + 2 − � th uses φi(K)[1] and φj(K)[1]. Note that
for �′ �= � + 1,

(
Alter(φi(K))[� + 1],X�+1,i[1, n]

)
=

(
Alter(φj(K))[�′],X�′,j [1, n]

)

only if �′ is even (so that Alter(φi(K))[�+1] = Alter(φj(K))[�′] means φi(K)[2] =
φj(K)[2]), as otherwise the condition (B-2) is fulfilled and τ is not good. By this,
the 1st subcondition is simplified as

X�+1,i[1, n] ∈
{
X2,j [1, n],X4,j [1, n], ...,X�−1,j [1, n]

}
.

This is yet another composed condition. In this respect, we first consider the
probability to have X�+1,i[1, n] = X2,j [1, n]. By construction, this means

(
RFn,m

φi(K)[1]

(
X�,i[1, n]

)
⊕ X�,i[n + 1, n + m]

)[
1, n

]

=
(
RFn,m

φj(K)[1]

(
X1,j [1, n]

)
⊕ X1,j [n + 1, n + m]

)[
1, n

]
,

where
(
X�,i[n + 1, n + m]

)[
1, n

]
further depends some function values in the set

S�,1 :=
{
RFn,m

φj(K)[1]

(
X1,j [1, n],RFn,m

φj(K)[1]

(
X3,j [1, n]

)
, ...,RFn,m

φi(K)[1]

(
X�−2,i[1, n]

)}
.

Conditioned on ¬(C-[� − 1]), it holds X�,i[1, n] /∈ {X1,j [1, n],X3,j [1, n], ...,X�−2,i

[1, n]}. By this,
(
RFn,m

φi(K)[�]

(
X�,i[1, n]

))[
1, n

]
is independent of the function val-

ues in S�,1, and is uniformly distributed in {0, 1}n. Therefore, the probability to
have X�+1,i[1, n] = X2,j [1, n] is 1/2n.

We then consider the next equality X�+1,i[1, n] = X4,j [1, n], which means
(
RFn,m

φi(K)[1]

(
X�,i[1, n]

)
⊕ X�,i[n + 1, n + m]

)[
1, n

]

=
(
RFn,m

φj(K)[1]

(
X3,j [1, n]

)
⊕ X3,j [n + 1, n + m]

)[
1, n

]
.

338 Y. Zhao et al.

where
(
X�,i[n + 1, n + m]

)[
1, n

]
and

(
X3,j [n + 1, n + m]

)[
1, n

]
further depend

on some function values in the set S�,1 defined as before. Again, conditioned on
¬(C-[�−1]),

(
RFn,m

φi(K)[�]

(
X�,i[1, n]

))
[1, n] is independent of the function values in

S�,1, and is uniform in {0, 1}n. Therefore, the probability to have X�+1,i[1, n] =
X4,j [1, n] is 1/2n. Similar reasoning holds for the next (� − 1)/2 − 2 equations
X�+1,i[1, n] = X6,j [1, n], ...,X�+1,i[1, n] = X�−1,j [1, n], and thus

Pr
[
X�+1,i[1, n] ∈

{
X2,j [1, n],X4,j [1, n], ...,X�−1,j [1, n]

}]
=

(� − 1)
2n+1

.

We then consider the equality X�+1,i[1, n] = X2�m
n �+4−�,j [m + 1, n + m] due

to the 2nd subcondition, which means
(
RFn,m

φi(K)[1]

(
X�,i[1, n]

) ⊕ X�,i[n + 1, n + m]
)[

1, n
]

=
(
RFn,m

φj(K)[1]

(
X2�m

n �+5−�,j [m + 1, n + m]
) ⊕ X2�m

n �+5−�,j [1, m]
)[

m − n + 1, m
]
.

Again, X�,i[1, n] �= X2�m
n �+5−�,i[1, n] conditioned on ¬(C-[� − 1]), and thus the

values
(
RFn,m

φi(K)[1]

(
X�,i[1, n]

))[
1, n

]
and

(
RFn,m

φj(K)[1]

(
X2� m

n �+5−�,j [1, n]
))[

m −
n + 1,m

]
are independent and uniform. Therefore, the probability of

X�+1,i[1, n] = X2�m
n �+4−�,j [m + 1, n + m] is 1/2n.

Similar reasoning holds for the next (� − 1)/2 equations, except for the last
one X�+1,i[1, n] = X2�m

n �+3,j [m + 1, n + m], which translates into

(
RFn,m

φi(K)[1]

(
X�,i[1, n]

)
⊕ X�,i[n + 1, n + m]

)[
1, n

]
= X2�m

n �+3,j [m + 1, n + m],

and which is clearly 1/2n due to the independence between RFn,m
φi(K)[1]

(
X�,i[1, n]

)

and X2�m
n �+3,j [m + 1, n + m]. Summing over the (� + 1)/2 equations, it can be

seen that the probability of the 2nd subcondition is (�+1)
2n+1 .

The analyses for the 3rd and 4th subconditions are similar by symmetry, and
also give rise to probabilities (�+1)

2n+1 and (�−1)
2n+1 resp. By the above, we eventually

reach the union bound 2(� − 1)/2n+1 + 2(� + 1)/2n+1 ≤ 2�/2n.

Case 2 : � is even. While being different in details, this case is in general similar
to Case 1 by symmetry.

With all the above discussion, the probability that one of the four types of
collisions occur with respect to a certain pair of indices (i, j) is at most 2�/2n.
Since the number of such pairs is at most q2, we have

Pr
[
(C-[�]) | ¬(C-[� − 1])

]
≤ 2�q2

2n
. (7)

Conditions (C-[�m
n

� + 1]) and (C-[�m
n

� + 2]). Consider (C-[�m
n �+1]) first,

and consider any such three indices i, j ∈ {1, ..., q} and � ∈ {1, ..., �m
n �}. The

equality X�+1,i[1, n] = X�+1,j [1, n] translates into

Related-Key Analysis of Generalized Feistel Networks 339

(
RFn,m

Alter(φi(K))[�]

(
X�,i[1, n]

)
⊕ X�,i[n + 1, n + m]

)[
1, n

]

=
(
RFn,m

Alter(φj(K))[�]

(
X�,j [1, n]

)
⊕ X�,j [n + 1, n + m]

)[
1, n

]
.

Since
(
Alter(φi(K))[�],X�,i[1, n]

)
�=

(
Alter(φj(K))[�],X�,j [1, n]

)
, the two values

RFn,m
Alter(φi(K))[�]

(
X�,i[1, n]

)
and RFn,m

Alter(φj(K))[�]

(
X�,j [1, n]

)
are uniform in {0, 1}m

and independent. Therefore, the probability to have X�+1,i[1, n] = X�+1,j [1, n]
is 1/2n. Summing over the

(
q
2

)
· �m

n � ≤ q2

2 �m
n � choices of i, j, �, we reach

Pr
[
(C-[�m

n
� + 1])

]
≤

�m
n �q2

2n+1
. (8)

The analysis for (C-[�m
n � + 2]) is similar by symmetry, yielding

Pr
[
(C-[�m

n
� + 2])

]
≤

�m
n �q2

2n+1
. (9)

Condition (C-[�m
n

� + 3]). Consider any distinct (φi,Xi, Yi), (φj ,Xj , Yj) ∈ Q.

We consider the probability to have
(
Alter(φi(K))[�m

n � + 1],X� m
n �+1,i[1, n]

)
=(

Alter(φj(K))[�m
n � + 1],X� m

n �+1,j [1, n]
)

first. Wlog, assume that �m
n � is even, as

the case of �m
n � odd exhibits no essential difference (as shown before). In this

case, we have Alter(φi(K))[�m
n � + 1] = φi(K)[1] and Alter(φj(K))[�m

n � + 1] =
φj(K)[1], and the condition is fulfilled only if φi(K)[1] = φj(K)[1]. With this in
mind, we distinguish two cases.

Case 1 : φi �= φj . Then since τ is good and is claw-free, it holds φi(K) �= φj(K),
which further implies φi(K)[2] �= φj(K)[2]. By this, the probability to have
X�m

n �+1,i[1, n] = X�m
n �+1,j [1, n], or to have

(
X�m

n �,i[n + 1, n + m] ⊕ RFn,m
φi(K)[2]

(
X�m

n �,i[1, n]
))[

1, n
]

=
(
X�m

n �,j [n + 1, n + m] ⊕ RFn,m
φj(K)[2]

(
X�m

n �,j [1, n]
))[

1, n
]
, (10)

is 1/2n, since RFn,m
φi(K)[2] and RFn,m

φj(K)[2] can be viewed as two independent random
functions from {0, 1}n to {0, 1}m.

Case 2 : φi = φj . For clearness we let φ = φi = φj . Let Δ1 := X1,i ⊕X1,j . Since
D does not make redundant queries, it has to be Δ1 �= 0. We further distinguish
two subcases.

– Subcase 2.1: Δ1[1, �m
n � · n] �= 0. Then, let � ∈ {0, ..., �m

n � − 1} be the small-
est index such that Δ1[�n + 1, (� + 1)n] �= 0. By construction, this means
X�+1,i[1, n] �= X�+1,j [1, n]. Conditioned on ¬(C-[�m

n �+1]), this further implies
X�+2,i[1, n] �= X�+2,j [1, n], ..., and eventually X�m

n �+1,i[1, n] �= X�m
n �+1,j [1, n].

340 Y. Zhao et al.

– Subcase 2.2: Δ1[1, �m
n � · n] = 0. Then it has to be Δ1[�m

n � · n + 1, n + m] �= 0,
which necessarily implies X�m

n �+1,i[1, n] �= X�m
n �+1,j [1, n] by construction.

Therefore, conditioned on ¬(C-[�m
n � + 1]), it is not possible to have

X�m
n �+1,i[1, n] = X�m

n �+1,j [1, n] for any two distinct indices (i, j).

The analysis for
(
Alter(φi(K))[�m

n � + 2],X� m
n �+3,i[m + 1, n + m]

)
=(

Alter(φj(K))[�m
n � + 2],X� m

n �+3,j [m + 1, n + m]
)

is similar by symmetry. More
concretely, for any such two triples (φi,Xi, Yi), (φj ,Xj , Yj) such that φi(K)[2] =
φj(K)[2], we have:

– If φi �= φj , then it holds φi(K)[1] �= φj(K)[1] by the claw-freeness and by
φi(K)[2] = φj(K)[2], and thus the probability to have X�m

n �+3,i[m + 1, n +
m] = X�m

n �+3,j [m + 1, n + m] or
(

X� m
n

�+4,i[1, m] ⊕ RFn,m
φi(K)[1]

(

X� m
n

�+4,i[m + 1, n + m]
))[

m − n + 1, m
]

=
(

X� m
n

�+4,j [1, m] ⊕ RFn,m
φj(K)[1]

(

X� m
n

�+4,j [m + 1, n + m]
))[

m − n + 1, m
]

(11)

is 1/2n due to the independence between RFn,m
φi(K)[1] and RFn,m

φj(K)[1].

– If φi = φj , then it is not possible to have X� m
n

�+3,i[m + 1, n + m] = X� m
n

�+3,j [m +
1, n + m] conditioned on ¬(C-[�m

n
� + 2]).

In all, for each pair (i, j) of distinct indices, the probability to have
X�m

n �+1,i[1, n] = X�m
n �+1,j [1, n] or X�m

n �+3,i[m + 1, n + m] = X�m
n �+3,j [m +

1, n + m] is no larger than 2/2n. Taking a union bound for the
(
q
2

)
≤ q2/2

choices of (i, j) yields

Pr
[
(C-[�m

n
� + 3]) | ¬(C-[1]) ∧ ... ∧ ¬(C-[�m

n
� + 2])

]
≤ q2

2n
. (12)

Gathering Eqs. (7), (8), (9), and (12), we reach

Pr
[

BadF(RFn,m)]

≤
(

∑

�=1,...,� m
n

�
Pr

[

(C-[�]) | ¬(C-[� − 1])
]
)

+ Pr
[

(C-[�m

n
� + 1])

]

+ Pr
[

(C-[�m

n
� + 2])

]

+ Pr
[

(C-[�m

n
� + 3]) | ¬(C-[1]) ∧ ... ∧ ¬(C-[�m

n
+ 2�])

]

≤
(

∑

�=1,...,� m
n

�

2�q2

2n

)

+
�m

n
�q2

2n+1
+

�m
n

�q2

2n+1
+

q2

2n
≤ (�m

n
� + 1)2q2

2n
. (13)

Completing the Proof. Consider any good transcript τ = (Q,K), where
Q =

(
(φ1,X1, Y1), ..., (φq,Xq, Yq)

)
. With the values defined in Eqs. (5) and (6),

Related-Key Analysis of Generalized Feistel Networks 341

it can be seen that, the event RK[EFNRFn,m,2�m
n �+2

Alter(K)] � Q is equivalent to 2q
equations as follows.

RFn,m
φi(K)[b1]

(
X�m

n �+1,i[1, n]
)

=
(
X�m

n �+1,i[n + 1, 2n] ⊕ X�m
n �+3,i[m + 1, n + m]

)

∥
∥
∥

(
X�m

n �+1,i[2n + 1, n + m] ⊕ X�m
n �+3,i[1,m − n]

⊕ RFn,m
φi(K)[b2]

(
X�m

n �+3,i[m + 1, n + m]
)
[1,m − n]

)
for i = 1, ..., q,

(14)

RFn,m
φi(K)[b2]

(
X�m

n �+3,i[m + 1, n + m]
)
[m − n + 1,m]

=
(
X�m

n �+1,i[1, n] ⊕ X�m
n �+3,i[m − n + 1,m]

)
for i = 1, ..., q, (15)

where b1 = 2, b2 = 1 when �m
n � is odd, and b1 = 1, b2 = 2 when �m

n � is even. We
refer to Fig. 2 for illustration.

RFn,m
φi(K)[b1]

RFn,m
φi(K)[b2]

X� m
n

�+1[1, n] X� m
n

�+1[n + 1, 2n]X� m
n

�+1[2n + 1, n + m]

X� m
n

�+3[1,m − n] X� m
n

�+3[m − n + 1,m] X� m
n

�+3[m + 1, n + m]

Fig. 2. The middle �m
n

� + 1 th and �m
n

� + 2 th rounds of EFN
RFn,m,2� m

n
�+2

Alter(K) .

We remark that, the equation on RFn,m
φi(K)[b1]

(
X�m

n �+1,i[1, n]
)

depends on the
m−n output bits RFn,m

φi(K)[b2]

(
X�m

n �+3,i[m+1, n+m]
)
[1,m−n]. Since the first m−

n bits and the last n bits of the random function value RFn,m
φi(K)[b2]

(
X�m

n �+3,i[m+
1, n+m]

)
are independent, the probability to have Eqs. (14) and (15) is 1

2m × 1
2n =

1
2n+m for every i ∈ {1, ..., q}.

Then, for any RFn,m, as long as BadF(RFn,m) is not fulfilled, the above ran-
dom variables {RFn,m

φi(K)[b1]

(
X�m

n �+1,i[1, n]
)
}i=1,...,q and {RFn,m

φi(K)[b2]

(
X�m

n �+3,i

[m+1, n+m]
)
[m−n+1,m]}i=1,...,q are 2q distinct and independent ones, as other-

wise (C-[�m
n �+3]) is fulfilled. Furthermore, these random variables are not affected

by the randomness inRFn,m that determines the satisfiability ofBadF(RFn,m) (i.e.,
the values

{
RFn,m

Alter(φi(K))[�](X�,i[1, n])
}

i∈{1,...,q},�∈{1,...,�m
n �,�m

n �+3,...,2�m
n �+2}), as

otherwise (C-[�m
n �]) is fulfilled. Therefore, by Eq. (13), the real world probability

342 Y. Zhao et al.

has

Pr
[
RK[EFNRFn,m,2�m

n �+2

Alter(K)] � Q
]

≥ Pr
[
RK[EFNRFn,m,2�m

n �+2

Alter(K)] � Q ∧ ¬BadF(RFn,m)
]

= Pr
[
RK[EFNRFn,m,2�m

n �+2

Alter(K)] � Q | ¬BadF(RFn,m)
]
·
(

1 − Pr
[
BadF(RFn,m)

]
)

≥
(
1 −

(�m
n � + 1)2q2

2n

)
·
(1

2n+m

)q

In all, we have the probability

Pr
[
Tre = τ

]

Pr
[
Tid = τ

] ≥
(
1 −

(�m
n � + 1)2q2

2n

)
·
(1

2n+m

)q
/(

1
2n+m − q

)q

≥
(
1 − q

2n+m

)q

·
(
1 −

(�m
n � + 1)2q2

2n

)

≥ 1 −
(q2

2n+m
+

(�m
n � + 1)2q2

2n

)
. (16)

Gathering Eqs. (4) and (16) yields Eq. (3).

4 Security Analysis of Alternating Feistel Networks

Let m and n be positive integers such that m ≥ n. In this section, we will first
consider AFNs using a contracting round function Gm,n and an expanding round
function Fn,m.6 Formally, for X ∈ {0, 1}n+m and i odd, the ith round of the
AFN using the key Ki employs Gm,n, and is defined as

Ψ
Gm,n

Ki (X) := Gm,n
Ki

(
X[n + 1, n + m]

)
⊕ X[1, n]

∥
∥ X[n + 1, n + m].

On the other hand, for i even, the ith round using the key Ki employs Fn,m,
and is defined as

Ψ
Fn,m

Ki (X) := X[1, n]
∥
∥ Fn,m

Ki

(
X[1, n]

)
⊕ X[n + 1, n + m].

Then, the t-round AFN is a composition of such t rounds.
As mentioned in the introduction, 4-round AFN with the alternating key

assignment Alter is always RKA secure, regardless of the ratio m/n. Formally,

Theorem 2. For any distinguisher D making at most q queries to the oracles
RK[AFNGm,n,Fn,m,4

Alter(K)] and RK[AFNGm,n,Fn,m,4
Alter(K)]−1 in total, it holds

AdvΦ-rka[1]

AFNGm,n,Fn,m,4
Alter(K)

(D) ≤ AdvΦ-rka[1]
Gm,n (D) + AdvΦ-rka[1]

Fn,m (D) + Advcf
Φ(D)

+
q2

2n+m
+

3q2

2n
. (17)

6 We stress that Gm,n and F n,m must be “independent”, in the sense that
(Gm,n

K1
, F n,m

K2
) using independent keys K1, K2 is indistinguishable from a pair of inde-

pendent ideal keyed functions (RGm,n,RFn,m). For example, Gm,n and F n,m cannot
be built from the same primitive such as the AES.

Related-Key Analysis of Generalized Feistel Networks 343

The proof flow is similar to Theorem 1. We also start with a generic two-step
standard-to-ideal reduction. In the first step, we replace the keyed contracting
round function Gm,n with an ideal keyed contracting function RGm,n : K ×
{0, 1}m → {0, 1}n. This clearly introduces a gap of at most AdvΦ-rka[1]

Gm,n (D).
We then replace the expanding round function Fn,m with the ideal RFn,m :
K × {0, 1}n → {0, 1}m, with an additional gap of AdvΦ-rka[1]

Fn,m (D). As discussed
in the introduction, the independence between the two involved keys K1 and K2

is crucial for this reduction.
Then, we focus on analyzing AdvΦ-rka[1]

AFNRGm,n,RFn,m,4
Alter(K)

(D) for the idealized AFN.

We also use the H-coefficient technique, and follow the same (though simpler)
flow as Theorem 1.

4.1 Bad Transcripts

An attainable transcript τ = (Q,K) is bad, if a claw exists τ , i.e., there exist
two triples (φ1,X1, Y1) and (φ2,X2, Y2) in Q such that φ1 �= φ2, while φ1(K) =
φ2(K). Otherwise we say τ is good. And it holds

Pr
[
Tid ∈ Tbad] ≤ Advcf

Φ(D). (18)

Compared with Sect. 3.1, it is natural to ask why switch-freeness turns useless
here. Informally, switch-freeness prevents collisions between keys used in different
rounds, i.e., φi(K)[1] = φj(K)[2] for some (φi,Xi, Yi) and (φj ,Xj , Yj). But such
a collision is harmless here due to the different round functions in use.

4.2 Analyzing Good Transcripts

Fix a good transcript τ . The ideal world probability simply follows from Eq. (1),
and it remains to analyze Pr

[
RK[AFNRGm,n,RFn,m,4

Alter(K)] � Q
]
. Similarly to Sect. 3.2,

we define a “bad predicate” BadF(RGm,n,RFn,m) on RGm,n and RFn,m, such
that once BadF(RGm,n,RFn,m) is not fulfilled, the event Tre = τ is equivalent
to RGm,n and RFn,m satisfying 2q distinct equations, the probability of which is
close to the ideal world probability. This will enable the argument.

In detail, given a pair of ideal keyed functions (RGm,n,RFn,m), for every
(φi,Xi, Yi) ∈ τ , define

X1,i := Xi, X5,i := Yi,

X2,i := X1,i[1, n] ⊕ RGm,n
φi(K)[1]

(
X1,i[n + 1,m + n]

) ∥
∥ X1,i[n + 1,m + n],

X4,i := X5,i[1, n]
∥
∥ X5,i[n + 1,m + n] ⊕ RFn,m

φi(K)[2]

(
X5,i[1, n]

)
. (19)

Bad Predicate. Informally, the conditions capture “unnecessary” collisions
among calls to the round functions RGm,n and RFn,m while evaluating the q
queries.

344 Y. Zhao et al.

Definition 3. Given a pair of random functions (RGm,n,RFn,m), the predicate
BadF(RGm,n,RFn,m) is fulfilled, if any of the following four conditions is fulfilled.

(C-1) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[2],X2,i[1, n]) = (φj(K)[2],X5,j [1, n]).

(C-2) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[1],X4,i[n + 1, n + m]) = (φj(K)[1],X1,j [n + 1, n + m]).

(C-3) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K)[2],X2,i[1, n]) = (φj(K)[2],X2,j [1, n]).

(C-4) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K)[1],X4,i[n + 1, n + m] = (φj(K)[1],X4,j [n + 1, n + m]).

Consider the conditions in turn. First, for (C-1), note that X2,i[1, n] =
X1,i[1, n] ⊕ RGm,n

φi(K)[1]

(
X1,i[n + 1,m + n]

)
, where RGm,n

φi(K)[1]

(
X1,i[n + 1,m + n]

)

is uniformly distributed and independent of X5,j [1, n] which is specified in τ .
Therefore, the probability to have X2,i[1, n] = X5,j [1, n] for any i, j is 1/2n,
and thus Pr[(C-1)] ≤ q2/2n. Similarly by symmetry, X4,i[n + 1, n + m] =
X5,i[n + 1,m + n] ⊕ RFn,m

φi(K)[2]

(
X5,i[1, n]

)
, which means the probability to have

X4,i[n + 1, n + m] = X1,j [n + 1, n + m] is 1/2m, and further Pr[(C-2)] ≤ q2/2m.
The condition (C-3) is slightly more cumbersome. Consider any such two

triples (φi,Xi, Yi), (φj ,Xj , Yj) ∈ Q. The condition is fulfilled only if φi(K)[2] =
φj(K)[2]. With this in mind, we distinguish two cases.

Case 1 : φi �= φj . Then since τ is good and is claw-free, it holds φi(K) �= φj(K),
which further implies φi(K)[1] �= φj(K)[1]. By this, the probability to have
X2,i[1, n] = X2,j [1, n], or to have

X1,i[1, n] ⊕ RGm,n
φi(K)[1]

(
X1,i[n + 1,m + n]

)

= X1,j [1, n] ⊕ RGm,n
φj(K)[1]

(
X1,j [n + 1,m + n]

)
, (20)

is 1/2n, since RGm,n
φi(K)[1] and RGm,n

φj(K)[1] can be viewed as two independent ran-
dom functions from {0, 1}m to {0, 1}n.

Case 2 : φi = φj . For clearness we let φ = φi = φj . Then we further distinguish
two subcases.

– Subcase 2.1: X1,i[n + 1,m + n] �= X1,j [n + 1,m + n]. Then the proba-
bility to have X2,i[1, n] = X2,j [1, n], or to have Eq. (20), is 1/2n, since
RGm,n

φ(K)[1]

(
X1,i[n + 1,m + n]

)
and RGm,n

φ(K)[1]

(
X1,j [n + 1,m + n]

)
are inde-

pendent and uniform in {0, 1}n;
– Subcase 2.2: X1,i[n+1,m+n] = X1,j [n+1,m+n]. Then since the distinguisher

does not make redundant queries, it has to be X1,i[1, n] �= X1,j [1, n], which
means it is impossible to have X2,i[1, n] = X2,j [1, n] or Eq. (20).

Related-Key Analysis of Generalized Feistel Networks 345

Therefore, for each pair (i, j) of indices, the probability to have X2,i[1, n] =
X2,j [1, n] is no larger than 1/2n. Summing over the

(
q
2

)
≤ q2/2 choices, we reach

Pr[(C-3)] ≤ q2/2n+1.

The analysis for (C-4) is similar by symmetry, yielding Pr[(C-4)] ≤ q2/2m+1.
Summing over the four probabilities and using n ≤ m, we reach

Pr
[
BadF(RGm,n,RFn,m)] ≤ q2

2n
+

q2

2m
+

q2

2n+1
+

q2

2m+1
≤ 3q2

2n
. (21)

Completing the Proof. Consider any good transcript τ = (Q,K), where
Q =

(
(φ1,X1, Y1), ..., (φq,Xq, Yq)

)
. With the values defined in Eq. (19), it can

be seen that, the event RK[AFNRGm,n,RFn,m,4
Alter(K)] � Q is equivalent to 2q equations

as follows.

RFn,m
φi(K)[2](X2,i[1, n]) = X2,i[n + 1, n + m] ⊕ X4,i[n + 1, n + m] for i = 1, ..., q,

RGm,n
φi(K)[1](X4,i[n + 1, n + m]) = X2,i[1, n] ⊕ X4,i[1, n] for i = 1, ..., q.

For any RGm,n and RFn,m, as long as BadF(RGm,n,RFn,m) is not fulfilled,
the above random variables {RFn,m

φi(K)[2](X2,i[1, n])}i=1,...,q are q distinct ones,
and {RGm,n

φi(K)[1](X4,i[n + 1, n + m])}i=1,...,q are also distinct, as otherwise either
(C-3) or (C-4) will be fulfilled. Moreover, these random variables are not affected
by the randomness in RGm,n and RFn,m that determines the satisfiability of
BadF(RGm,n,RFn,m) (i.e., the values {RGm,n

φi(K)[1](X1,i[n+1, n+m])}i=1,...,q and
{RFn,m

φi(K)[2](X5,i[1, n])}i=1,...,q), as otherwise either (C-1) or (C-2) will be fulfilled.
Therefore, by Eq. (21), we have

Pr
[
RK

[
AFNRGm,n,RFn,m,4

Alter(K)

]
� Q

]

≥ Pr
[
RK

[
AFNRGm,n,RFn,m,4

Alter(K)

]
� Q | ¬BadF(RGm,n,RFn,m)

]

·
(
1 − Pr

[
BadF(RGm,n,RFn,m)

])

≥
(1

2n+m

)q

·
(
1 − 3q2

2n

)
.

With this, and further using Eqs. (1) and (2), we reach

Pr
[
Tre = τ

]

Pr
[
Tid = τ

] ≥
(1

2n+m

)q

·
(
1 − 3q2

2n

)/(
1

2n+m − q

)q

≥
(
1 − q

2n+m

)q

·
(
1 − 3q2

2n

)
≥ 1 −

(q2

2n+m
+

3q2

2n

)
. (22)

Gathering Eqs. (18) and (22) yields Eq. (17).

346 Y. Zhao et al.

4.3 AFN Using a Tweakable Round Function and Single Key

While the standard-to-ideal reduction couldn’t handle two different functions
that use the same secret key, the situation could be remedied by using a tweakable
round function. In detail, consider a tweakable round function TFm,n that has
a tweak input of 1 bit, such that TFm,n(0, ·) maps (K,x) ∈ K × {0, 1}m to
x ∈ {0, 1}n and TFm,n(1, ·) maps (K,x) ∈ K × {0, 1}n to x ∈ {0, 1}m. This
is quite different from the standard notion of tweakable blockciphers, as the
domain of the standard formalism typically don’t vary with the tweak. Here,
however, depending on whether the tweak input is 0 or 1, the round function
varies between contracting and expanding.

The security of such tweakable round function TFm,n shall be measured by
its deviation from the ideal counterpart RTFm,n that is uniformly picked from
all the functions that have exactly the same signature as TFm,n. Note that
this means RTFm,n(0, ·) and RTFm,n(1, ·) are independent ideal keyed functions.
Further define

Iden(K) = (Ki1 , ...,Kit), where Ki1 = ... = Kit = K.

Now, for the 4-round AFN using TFm,n as the round function and identical
round key, a RKA security proof is possible.

Corollary 1. For any distinguisher D making at most q queries to
RK[AFNTFm,n,4

Iden(K)] and RK[AFNTFm,n,4
Iden(K)]−1 in total, it holds

AdvΦ-rka[1]

AFNTFm,n,4
Iden(K)

(D) ≤ AdvΦ-rka[1]
TFm,n (D) + Advcf

Φ(D) +
q2

2n+m
+

3q2

2n
, (23)

where AdvΦ-rka[1]
TFm,n (D) =

∣
∣
∣ PrK

[
DRK[TFm,n

K],RK[RTFm,n
K]−1

= 1
]
− PrK,RTF

[
DRK[RTFm,n

K],RK[RTFm,n
K]−1

= 1
] ∣

∣
∣.

Proof (Sketch). The proof turns possible simply because a single standard-to-
ideal reduction already suffices to turn AFNTFm,n,4

Iden(K) into the ideal AFNRTFm,n,4
Iden(K) .

The subsequent analysis for AdvΦ-rka[1]

AFNRTFm,n,4
Iden(K)

(D) basically follows the previous for

AdvΦ-rka[1]

AFNRGm,n,RFn,m,4
Iden(K)

(D), and we sketch the crucial points below. Concretely, the

definition and probability of bad transcripts here are the same as Sect. 4.1.
Whereas the definition of BadF(RTFm,n) is a slight modification of

Definition 3 as follows.

Definition 4. Given a tweakable function RTFm,n, the predicate BadF(RTFm,n)
is fulfilled, if any of the following four conditions is fulfilled.

(C-1) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K),X2,i[1, n]) = (φj(K),X5,j [1, n]).

Related-Key Analysis of Generalized Feistel Networks 347

(C-2) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K),X4,i[n + 1, n + m]) = (φj(K),X1,j [n + 1, n + m]).

(C-3) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K),X2,i[1, n]) = (φj(K),X2,j [1, n]).

(C-4) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K),X4,i[n + 1, n + m] = (φj(K),X4,j [n + 1, n + m]).

The analyses for the conditions simply exclude the case of φi �= φj , which implies
φi(K) �= φj(K) due to claw-freeness and excludes the possibility of collisions.
Anyway, the bound Pr

[
BadF(RTFm,n)] ≤ 3q2/2n remains, and the subsequent

analysis just follows. ��

5 Conclusion

We study provable related-key security (RKA security) of expanding Feistel net-
works and alternating Feistel networks. For the former built upon a round func-
tion F : K×{0, 1}n → {0, 1}m, we prove that 2�m

n �+2 rounds with the alternat-
ing key assignment suffice for RKA security; for the latter that alternate round
functions F : K × {0, 1}n → {0, 1}m and G : K × {0, 1}m → {0, 1}n, we prove
that 4 rounds with the alternating key assignment suffice. These complete the
picture of provable RKA security of generalized Feistel networks, and provide
further insights into the NIST standards FF1 and FF3.

Provable security of EFNs is limited by the input size of F . On the other
hand, provable security of AFNs is upper bounded by G. We thus leave beyond
n-bit RKA security of AFNs as an open question.

Acknowledgments. This work was partly supported by the Program of Qilu Young
Scholars (Grant No. 61580089963177) of Shandong University, the National Natural
Science Foundation of China (Grant No. 62002202), the National Key Research and
Development Project under Grant No.2018YFA0704702, and the Shandong Nature
Science Foundation of China (Grant No. ZR2020ZD02, ZR2020MF053).

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 5

2. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 48

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Security Protocols, 5th International Workshop, Paris, France, April 7–9, 1997,
Proceedings, pp. 125–136 (1997). https://doi.org/10.1007/BFb0028165

4. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

https://doi.org/10.1007/978-3-662-44371-2_5
https://doi.org/10.1007/3-540-60865-6_48
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/978-3-662-48800-3_17

348 Y. Zhao et al.

5. Barbosa, M., Farshim, P.: The related-key analysis of Feistel constructions. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 265–284. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 14

6. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

7. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

8. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05445-7 19

9. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994). https://doi.org/10.1007/BF00203965

10. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES-256 variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 15

11. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

12. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

13. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

14. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th NISSC Proceedings (1997). http://csrc.nist.gov/nissc/
1997

15. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

16. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based
on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 24

17. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-Mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 23

18. Council, P.S.S.: Payment card industry (PCI) data security standard: require-
ments and security assessment procedures, version 1.2.1. (2009). www.
pcisecuritystandards.org

19. Diffie, W., (translators), G.L.: SMS4 encryption algorithm for wireless networks.
Cryptology ePrint Archive, Report 2008/329 (2008). http://eprint.iacr.org/2008/
329

https://doi.org/10.1007/978-3-662-46706-0_14
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/978-3-642-13190-5_15
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
http://csrc.nist.gov/nissc/1997
http://csrc.nist.gov/nissc/1997
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-662-46800-5_23
www.pcisecuritystandards.org
www.pcisecuritystandards.org
http://eprint.iacr.org/2008/329
http://eprint.iacr.org/2008/329

Related-Key Analysis of Generalized Feistel Networks 349

20. Dunkelman, O., Keller, N., Lasry, N., Shamir, A.: New slide attacks on almost
self-similar ciphers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 250–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 10

21. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849
(2014)

22. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the even-Mansour encryp-
tion scheme. J. Cryptol. 28(1), 1–28 (2015)

23. Dworkin, M.: Recommendation for block cipher modes of operation: methods for
format-preserving encryption. NIST Special Publication 800–38G (2016). https://
doi.org/10.6028/NIST.SP.800-38G

24. EMVCo: EMV Integrated Circuit Card Specifications for Payment Systems, Book
2, Security and Key Management (2008). Version 4.2

25. Feistel, H., Notz, W.A., Smith, J.L.: Some cryptographic techniques for machine-
to-machine data communications. Proc. IEEE 63(11), 1545–1554 (1975)

26. Guo, C.: Understanding the related-key security of Feistel ciphers from a provable
perspective. IEEE Trans. Inf. Theor. 65(8), 5260–5280 (2019). https://doi.org/10.
1109/TIT.2019.2903796

27. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

28. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

29. Iwata, T., Kohno, T.: New security proofs for the 3GPP confidentiality and
integrity algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
427–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 27

30. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (Dec (1993).
https://doi.org/10.1007/3-540-57220-1 62

31. Goubin, L., et al.: Crunch. Submission to NIST (2008)
32. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-

dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
33. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,

vol. 1039, pp. 189–203. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60865-6 53

34. Maines, L., Piva, M., Rimoldi, A., Sala, M.: On the provable security of BEAR and
LION schemes. Appl. Algebra Eng. Commun. Comput. 22(5–6), 413–423 (2011).
https://doi.org/10.1007/s00200-011-0159-z

35. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03356-8 17

36. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers - Security Proofs and Cryptanal-
ysis. Cryptology, Springer, Cham (2017)

37. Nandi, M.: On the optimality of non-linear computations of length-preserving
encryption schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 113–133. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 5

https://doi.org/10.1007/978-3-030-45721-1_10
https://doi.org/10.1007/978-3-030-45721-1_10
https://doi.org/10.6028/NIST.SP.800-38G
https://doi.org/10.6028/NIST.SP.800-38G
https://doi.org/10.1109/TIT.2019.2903796
https://doi.org/10.1109/TIT.2019.2903796
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/s00200-011-0159-z
https://doi.org/10.1007/978-3-642-03356-8_17
https://doi.org/10.1007/978-3-662-48800-3_5
https://doi.org/10.1007/978-3-662-48800-3_5

350 Y. Zhao et al.

38. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

39. Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 7

40. Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04159-4

41. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. Cryptology ePrint Archive, Report 2010/293 (2010). http://eprint.iacr.
org/2010/293

42. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76900-2 20

43. Sadeghiyan, B., Pieprzyk, J.: A construction for super pseudorandom permutations
from a single pseudorandom function. In: Rueppel, R.A. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 267–284. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-47555-9 23

44. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60865-6 49

45. Shen, Y., Guo, C., Wang, L.: Improved security bounds for generalized Feistel
networks. IACR Trans. Symm. Cryptol. 2020(1), 425–457 (2020)

46. Volte, E., Nachef, V., Patarin, J.: Improved generic attacks on unbalanced Feistel
schemes with expanding functions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 94–111. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 6

47. Yu, W., Zhao, Y., Guo, C.: Provable Related-key Security of Contracting Feistel
Networks. In: Inscrypt 2020 (to appear, 2020)

48. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 42

https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-642-04159-4
http://eprint.iacr.org/2010/293
http://eprint.iacr.org/2010/293
https://doi.org/10.1007/978-3-540-76900-2_20
https://doi.org/10.1007/978-3-540-76900-2_20
https://doi.org/10.1007/3-540-47555-9_23
https://doi.org/10.1007/3-540-47555-9_23
https://doi.org/10.1007/3-540-60865-6_49
https://doi.org/10.1007/978-3-642-17373-8_6
https://doi.org/10.1007/978-3-642-17373-8_6
https://doi.org/10.1007/0-387-34805-0_42
https://doi.org/10.1007/0-387-34805-0_42

The Key-Dependent Message Security
of Key-Alternating Feistel Ciphers

Pooya Farshim1, Louiza Khati2, Yannick Seurin2, and Damien Vergnaud3(B)

1 Department of Computer Science, University of York, York, UK
2 ANSSI, Paris, France

3 Sorbonne Université, LIP6 and Institut Universitaire de France, Paris, France
damien.vergnaud@lip6.fr

Abstract. Key-Alternating Feistel (KAF) ciphers are a popular variant
of Feistel ciphers whereby the round functions are defined as x �→ F(ki ⊕
x), where ki are the round keys and F is a public random function. Most
Feistel ciphers, such as DES, indeed have such a structure. However,
the security of this construction has only been studied in the classical
CPA/CCA models. We provide the first security analysis of KAF ciphers
in the key-dependent message (KDM) attack model, where plaintexts can
be related to the private key. This model is motivated by cryptographic
schemes used within application scenarios such as full-disk encryption or
anonymous credential systems.

We show that the four-round KAF cipher, with a single function F
reused across the rounds, provides KDM security for a non-trivial set
of KDM functions. To do so, we develop a generic proof methodology,
based on the H-coefficient technique, that can ease the analysis of other
block ciphers in such strong models of security.

1 Introduction

The notion of key-dependent message (KDM) security for block ciphers was
introduced by Black, Rogaway, and Shrimpton [5]. It guarantees strong con-
fidentiality of communicated ciphertexts, i.e., the infeasibility of learning any-
thing about plaintexts from the ciphertexts, even if an adversary has access to
encryptions of messages that may depend on the secret key. This model captures
practical settings where possibly adversarial correlations between the secret key
and encrypted data exist, as is for example the case in anonymous credential
and disk encryption systems; see [2,5,13,18] and references therein.

Typically, block ciphers are based on well-known iterative structures such as
substitution-permutation or Feistel networks. The Feistel network, introduced in
the seminal Luby–Rackoff paper [20], is a construction that builds an (n1 + n2)-
bit pseudorandom permutation family from a smaller random function family
that takes n1-bit inputs and gives n2-bit outputs. The general network is a rep-
etition of a simple network (the one-round Feistel network as shown in Fig. 1)
based on pseudorandom functions, which can be the same or different for different
rounds. Starting from the Luby–Rackoff result that the 3-round Feistel scheme is
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 351–374, 2021.
https://doi.org/10.1007/978-3-030-75539-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_15

352 P. Farshim et al.

a pseudorandom permutation [20], Patarin [24] proved that four rounds is indis-
tinguishable from a strong pseudorandom permutation, where chosen-ciphertext
attacks (CCAs) are considered. Other analyses gave better bounds for r rounds
with r ≥ 4; see for example [22,23,26]. Dai and Steinberger [10] proved that
the 8-round Feistel network is indifferentiable from a random permutation, and
Barbosa and Farshim gave an analysis in the related-key attack model [3].

Some Feistel networks are balanced in that the input is split into two equal-
length values L and R and use an n-bit to n-bit round function. For instance,
DES and Simon [4] are balanced. Other designs, notably BEAR, LION [1],
MISTY [21] and RC6 [17], are unbalanced [16]. Usually, the round functions
of a practical block cipher are instantiated with a single public random function
and a round key as shown in Fig. 1. This design is known as the key-alternating
Feistel (KAF) cipher [19] and is of interest due to its practical use cases. For
instance, DES is a 16-round balanced KAF where all round functions are iden-
tical and where each round key is derived from a master key.

Fig. 1. Round functions of the Feistel network (left) and the KAF network (right).

More formally, a KAF cipher is a Feistel network where the i-th round func-
tion Fi is instantiated by Fi(ki, x) = fi(ki ⊕ x) where the round functions fi

are public. The KAF construction is said to be idealized when the public func-
tions fi are modelled as random functions. Lampe and Seurin [19] analyzed the
indistinguishability of this construction and proved a security bound up to 2

rn
r+1

for 6r rounds using the coupling technique. In these settings the adversary has
to distinguish two systems (KAF, f1, . . . , fr) and (P, f1, . . . , fr) where fi are the
public random functions and P is a random permutation. They also observed
that two rounds of a KAF can be seen as a singly keyed Even–Mansour cipher.
Guo and Lin [14] proved that the 21-round KAF∗ construction, a variant of
KAF whereby the key ki is xored after the application of the functions fi, is
indifferentiable from a random permutation. A recent work [15] analyzes the
KAF construction with respect to short keys and in a multi-user setting. In the
following, we consider only balanced KAFs.

Key-Dependent Message (KDM) Security. As mentioned above, the KDM
model gives the adversary the possibility of asking for encryptions of functions
φ of the encryption key k (without knowing this key). An encryption scheme

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 353

is said to be KDM secure with respect to some set Φ of functions φ mapping
keys to messages, if it is secure against an adversary that can obtain encryption
of φ(k) for any function φ ∈ Φ. KDM security for symmetric encryption was
defined by Black, Rogaway and Shrimpton [5] and subsequently analyses for
both symmetric and asymmetric constructions were done in this model; see,
e.g., [2,5–7,13].

The KDM security of the ideal cipher and the Even–Mansour construc-
tion [11] were recently analyzed by Farshim, Khati, and Vergnaud [13]. They
showed that the ideal cipher is KDM secure with respect to a set Φ of claw-
free functions, i.e., a set where distinct functions have distinct outputs with
high probability when run on a random input. The Even–Mansour (EM) is an
iterated block cipher based on public n-bit permutation. Farshim et al. proved
that the 1-round EM construction already achieves KDM security under chosen-
ciphertext attacks if the set of functions available to the attacker is both claw-free
and offset-free. The latter property requires that functions do not offset the key
by a constant. On the other hand, the 2-round EM construction achieves KDM
security if the set of functions available to the attacker is only claw-free (as long
as two different permutations are used). To achieve these results, Farshim et
al. introduced a so-called “splitting and forgetting” technique which is general
enough to be applied to other symmetric constructions and/or other security
models. Unfortunately, the analysis of KAF with r ≥ 4 rounds and a unique
round function makes this technique difficult to use.

Contributions. In this paper, we provide the first analysis of the KAF in the
key-dependent message attack model. To do so, we develop a generic proof strat-
egy, based on the H-coefficient technique of Patarin [9,24,25,28], to analyze the
KDM security of block ciphers. We show how to adapt the H-coefficient tech-
nique to take KDM queries into account. We show that the 4-round KAF, where
the internal functions are reused, is KDM secure for KDM sets Φ that are claw-
free, offset-free, and offset-xor free. The latter property requires that functions
do not offset the xor of two round keys by a constant. Although our security
proofs are somewhat intricate, they still simplify the “splitting and forgetting”
technique of [13].

In order to allow a convenient application of the H-coefficient technique when
proving the KDM security of a block cipher, we introduce an intermediate world
(in addition to the classical ideal world and real world), that we call the per-
fect world (pw) which dispenses with the key. We believe this technique (whose
game-based analogues appear in [13]) might be of independent interest and can
potentially be applied in other settings. In particular, using our techniques we
give an arguably simpler proof of the KDM-security of the 1-round EM con-
struction (which was analyzed in [13]) with respect to claw-free and offset-free
functions (see the paper full version [12]).

Moreover, we show in Sect. 5 that if the adversary is only constrained to claw-
free functions, it can indeed break the KDM indistinguishability game. We also
give sliding KDM attacks on the basic KAF configuration with a single internal

354 P. Farshim et al.

public function and either a single or two intervening keys, that recovers the
key(s) and is adaptable for any number of rounds.

2 Preliminaries

Notation. Given an integer n ≥ 1, the set of all functions from {0, 1}n to
{0, 1}n is denoted Func(n). We let N := {0, 1, . . . } denote the set of non-negative
integers, and {0, 1}∗ denote the set of all finite-length bit strings. For two bit
strings X and Y , X|Y (or simply XY when no confusion is possible) denotes
their concatenation and (X,Y) denotes a uniquely decodable encoding of X
and Y . By x ←← S we mean sampling x uniformly from a finite set S. The
cardinality of the set S, i.e., the number of elements in the set S, is denoted |S|.
We let L ← [] denote initializing a list to empty and L : X denote appending
element X to list L. A table T is a list of pairs (x, y), and we write T (x) ← y
to mean that the pair (x, y) is appended to the table. We let Dom(T) denote
the set of values x such that (x, y) ∈ T for some y and Rng(T) denote the
set of values y such that (x, y) ∈ T for some x. Given a function F, we let
Fi(x) := F ◦ · · · ◦ F(x) denote the i-th iterate of F. For integers 1 ≤ b ≤ a, we
will write (a)b := a(a − 1) · · · (a − b + 1) and (a)0 := 1 by convention. Note that
the probability that a random permutation P on {0, 1}n satisfies q equations
P (xi) = yi for distinct xi’s and distinct yi’s is exactly 1/(2n)q.

Block Ciphers. Given two non-empty subsets K and M of {0, 1}∗, called the
key space and the message space respectively, we let Block(K,M) denote the
set of all functions E : K × M → M such that for each k ∈ K the map E(k, ·)
is (1) a permutation on M and (2) length preserving in the sense that for all
p ∈ M we have that |E(k, p)| = |p|. Such an E uniquely defines its inverse
D : K × M → M. A block cipher for key space K and message space M is a
triple of efficient algorithms BC := (K,E,D) such that E ∈ Block(K,M) and
its inverse is D. In more detail, K is the randomized key-generation algorithm
which returns a key k ∈ K. Typically K = {0, 1}k for some k ∈ N called the
key length, and K endows it with the uniform distribution. Algorithm E is the
deterministic enciphering algorithm with signature E : K × M → M. Typically
M = {0, 1}n for some n ∈ N called the block length. (3) D is the deterministic
deciphering algorithm with signature D : K×M → M. A block cipher is correct
in the sense that for all k ∈ K and all p ∈ M we have that D(k,E(k, p)) = p.
A permutation on M is simply a block cipher with key space K = {ε}. We
denote a permutation with P and its inverse with P−. A permutation can be
trivially obtained from a block cipher (by fixing the key). For a block cipher
BC := (K,E,D), notation ABC denotes oracle access to both E and D for A.
We abbreviate Block({0, 1}k, {0, 1}n) by Block(k, n) and Block({ε}, {0, 1}n) by
Perm(n).

Key-Alternating Feistel (KAF) Ciphers. For a given public function F ∈
Func(n) and a key k ∈ {0, 1}n, the one-round KAF is the permutation P ∈
Func(2n) defined via

PF
k(LR) := R|F(k ⊕ R) ⊕ L .

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 355

The values L and R are respectively the left and right n-bit halves of the input.
The left and right n-bit halves of the output are usually denoted S and T
respectively. Given r public functions F1,F2, . . . ,Fr and r keys k1, k2, . . . , kr,
the r-round KAF is defined as

KAFF1,F2,...,Fr

k1,k2,...,kr
(LR) := PFr

kr
◦ · · · ◦ PF1

k1
(LR) .

In the following, we write keys k1, k2, . . . , kr as a key vector k = (k1, k2, . . . , kr).
When a single public function F is used we write r-round KAF as KAFF

k.

H-coefficient. The H-coefficient technique [28] was introduced by Patarin
and is widely used to prove the security of block cipher constructions such as
the Even–Mansour cipher [8] or Feistel schemes [27]. Consider a deterministic
adversary A that takes no input, interacts with a set of oracles w (informally
called a world or a game), and returns a bit b. We write this interaction as
Aw ⇒ b. Given two worlds w0 and w1, offering the same interfaces, the advantage
of A in distinguishing w0 and w1 is defined as

Advw0,w1(A) := |Pr[Aw0 ⇒ 1] − Pr[Aw1 ⇒ 1]| .

A transcript τ consists of the list of all query/answer pairs respectively made
by the adversary and returned by the oracles. Let XA,w be the random variable
distributed as the transcript resulting from the interaction of A with world w.
A transcript τ is said to be attainable for A and w if this transcript can be the
result of the interaction of A with world w, i.e., when Pr[XA,w = τ] > 0.

Lemma 2.1 (H-coefficient). Let w0 and w1 be two worlds and A be a distin-
guisher. Let T be the set of attainable transcripts for A in w0, and let Tgood and
Tbad be a partition of T such that T = Tgood ∪ Tbad. Then if for some εbad

Pr[XA,w0 ∈ Tbad] ≤ εbad ,

and for some εgood we have that for all τ ∈ Tgood

Pr[XA,w1 = τ]
Pr[XA,w0 = τ]

≥ 1 − εgood ,

then Advw0,w1(A) ≤ εgood + εbad.

For a given transcript QF and a function F, we say that F extends QF and
write F � QF if v = F(u) for all (u, v) ∈ QF.

3 KDM Security and a Generic Lemma

3.1 Definitions

KDM functions. A key-dependent-message (KDM) function for key space K
and message space M is a function φ : K → M computed by a deterministic

356 P. Farshim et al.

and stateless circuit. A KDM set Φ is a set of KDM functions φ on the same key
and message spaces. We let ΦM denote the set of all constant KDM functions,
i.e., KDM functions φ such that for some x ∈ M and ∀ k ∈ K, φ : k → x. We
denote such functions by φ : k → x and assume that the constant value x can be
read-off from (the description of) φ. We also assume membership in KDM sets
can be efficiently decided. In what follows, even though we work in an idealized
model of computation where all parties have access to some oracle O, we do not
consider KDM functions computed by circuits with O-oracle gates. We start by
defining the following three properties for KDM sets.

Definition 3.1 (Claw-freeness). Let Φ be a KDM set for key space K and
message space M. The claw-freeness of Φ is defined as

cf(Φ) := max
φ1 �=φ2∈Φ

Pr[k ←← K : φ1(k) = φ2(k)] .

Definition 3.2 (Offset-freeness). Fix integers n, � > 0. Let Φ be a KDM set
for key space K = ({0, 1}n)� and message space M = {0, 1}n. The offset-freeness
of Φ is defined as

of(Φ) := max
i∈{1,...,�}

φ∈Φ, x∈{0,1}n

Pr[(k1, . . . , k�) ←← K : φ(k1, . . . , k�) = ki ⊕ x] .

Definition 3.3 (Offset-xor-freeness). Fix integers n, � > 0. Let Φ be a KDM
set for key space K = ({0, 1}n)� and message space M = {0, 1}n. The offset-
xor-freeness of Φ is defined as

oxf(Φ) := max
i�=j∈{1,...,�}

φ∈Φ, x∈{0,1}n

Pr[(k1, . . . , k�) ←← K : φ(k1, . . . , k�) = ki ⊕ kj ⊕ x] .

Example KDM Set. One may ask whether or not there are any KDM sets
that satisfy the above three conditions. Suppose K = {0, 1}k. Let Φd be the
sets of all functions mapping (k1, . . . , k�) to P (k1, . . . , k�) where P is a multi-
variate polynomial over GF(2k) of total degree at most d, with ⊕ being field
addition and multiplication defined modulo a fixed irreducible polynomial. We
consider a subset of Φd consisting of all P such that P (k1, . . . , k�) ⊕ ki and
P (k1, . . . , k�) ⊕ ki ⊕ kj are non-constant for any distinct i and j. Then a direct
application of the (multi-variate) Schwartz-Zippel lemma [29] shows that this
KDM set satisfies the above three properties, with all advantages upper bounded
by d/2k, where d is the total degree of P . Note that this term is negligible for
total degree up to d = 2k−ω(log k).

KDM Security. Consider a block cipher BCO := (K,EO,DO) with key space K
and message space M based on some ideal primitive O sampled from some oracle
space OSp. We formalize security under key-dependent message and chosen-
ciphertext attacks (KDM-CCA) as a distinguishing game between two worlds
that we call the real and ideal worlds. Given a KDM set Φ, the adversary A
has access to a KDM encryption oracle KDEnc which takes as input a function

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 357

φ ∈ Φ and returns a ciphertext y ∈ M, a decryption oracle Dec which takes as
input a ciphertext y ∈ M and returns a plaintext x ∈ M, and the oracle O. We
do not allow the adversary to ask for decryption of key-dependent ciphertexts as
we are not aware of any use cases where such an oracle is available. In the real
world, a key k is drawn uniformly at random from K and KDEnc(φ) returns
EO(k, φ(k)) while Dec(y) returns DO(k, y). The ideal world is similar to the
real world except that E(k, ·) and D(k, ·) are replaced by a random permutation
P and its inverse. To exclude trivial attacks, we do not allow decryption of
ciphertexts that were obtained from the encryption oracle and such queries are
answered by ⊥ in both worlds. (Otherwise the key can be recovered by decrypting
the encryption of φ(k) if φ is easily invertible.) The real and ideal world are
formally defined in Fig. 2 (ignore the additional world pw for now). The KDM-
CCA advantage of an adversary A against BC with respect to Φ is defined as

Advkdm-cca
BCO (A,Φ) := Adviw,rw(A) .

Without loss of generality we assume throughout the paper that the adversary
does not place repeat queries to its oracles. This is indeed without loss of gen-
erality since all oracles are deterministic and repeat queries can be handled by
keeping track of queries made so far.

3.2 A Generic Lemma

In order to allow a convenient application of the H-coefficient technique when
proving the KDM security of a block cipher BCO, we introduce an intermediate
world, called the perfect world (pw), defined in Fig. 2. Note that this world
does not involve any key. The encryption and decryption oracles lazily sample
two independent random permutations stored respectively in tables Tenc and
Tdec, except that consistency is ensured for constant functions φ ∈ ΦM: when a
decryption query Dec(y) is made with y /∈ Dom(Tdec), a plaintext x is sampled
from M\Rng(Tdec) and the world assigns Tdec(y) := x and Tenc(φ) := y, where
φ is the constant function k → x.

The following lemma upper-bounds the distinguishing advantage between
the ideal and the perfect worlds. It does not depend on the block cipher at
hand (neither the ideal nor the perfect world depends on it) nor on the oracle O
(since neither in the ideal nor in the perfect world the encryption and decryption
oracles depend on it). For specific block ciphers, this allows us to focus on the
distinguishing advantage between the perfect and the real worlds, since by the
triangular inequality

Adviw,rw(A) ≤ Adviw,pw(A) + Advpw,rw(A) . (1)

Lemma 3.1. Let Φ be a KDM set for key space K and message space M. Let
A be an adversary making at most q queries to KDEnc or Dec. Then

Adviw,pw(A) ≤ q2 · cf(Φ) +
q2

|M| − q
.

358 P. Farshim et al.

Fig. 2. The real world rw (left) and the ideal world iw (right) defining KDM-CCA
security. The intermediate perfect world pw (middle) is used in Lemma 3.1. Here K
denotes a key-generation algorithm.

Proof. We apply the H-coefficient technique with w0 := pw and w1 := iw. Fix
a, without loss of generality, deterministic distinguisher A making at most q
encryption or decryption queries. We assume, without loss of generality, that

– the adversary never repeats a query;
– the adversary never queries the constant function φ : k → x to KDEnc if it

has received x as answer to some query Dec(y) before (since in both worlds
such a query would be answered by y); and

– the adversary never queries y to Dec if it has received y as answer to
some query KDEnc(φ) before (since in both worlds such a query would be
answered by ⊥).

We will refer to this as the no-pointless-query assumption.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 359

We record the queries of the adversary to oracles KDEnc or Dec in a list
QBC: it contains all tuples (+, φ, y) such that A queried KDEnc(φ) and received
answer y, and all tuples (−, x, y) such that A queried Dec(y) and received answer
x. The queries of the adversary to oracle O are recorded in a list QO. After the
adversary has finished querying the oracles, we reveal the key k in case the
adversary interacts with the ideal world, while in the perfect world we reveal a
uniformly random key independent of the oracle answers. Hence, a transcript is
a triple (QBC,QO, k).

Let T be the set of attainable transcripts for A and pw. An attainable tran-
script τ = (QBC,QO, k) is said to be bad iff any of the following holds.

(C-1) there exist (+, φ, y) �= (+, φ′, y′) ∈ QBC such that
(a) φ(k) = φ′(k) or
(b) y = y′;

(C-2) there exist (+, φ, y), (−, x, y′) ∈ QBC such that
(a) φ(k) = x or
(b) y = y′;

(C-3) there exist (−x, y) �= (−, x′, y′) ∈ QBC such that
(a) x = x′ or
(b) y = y′.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad. We first
upper bound the probability of getting a bad transcript in the perfect world.

Claim. Pr[XA,pw ∈ Tbad] ≤ q2 · cf(Φ) + q2/(|M| − q).

Proof. We consider the probability of each condition in turn. Recall that in the
perfect world, the key k is drawn at random independently of the oracle answers.

(C-1) Fix two queries (+, φ, y) �= (+, φ′, y′) ∈ QBC.
(a) By Definition 3.1, φ(k) = φ′(k) with probability at most cf(Φ) over

the choice of a random key k.
(b) By the no-pointless-queries assumption, φ �= φ′ and hence necessarily

y �= y′.
Summing over all possible pairs, (C-1) happens with probability at most
q2/2 · cf(Φ).

(C-2) Fix two queries (+, φ, y), (−, x, y′) ∈ QBC.
(a) If query (+, φ, y) came first, then x is uniformly random in a set of

size at least |M| − q and independent of φ(k). Hence φ(k) = x with
probability at most 1/(|M| − q). If query (−, x, y′) came first, then
by the no-pointless-query assumption, φ �= (k → x), so that φ(k) = x
with probability at most cf(Φ) (otherwise it would constitute a claw
with the constant function). All in all, φ(k) = x with probability at
most 1/(|M| − q) + cf(Φ).

(b) If query (+, φ, y) came first, then by the no-pointless-query assumption
y′ �= y. If query (−, x, y′) came first, then y is uniformly random in a
set of size at least |M| − q and independent of y′. Hence y = y′ with
probability at most 1/(|M| − q).

360 P. Farshim et al.

Summing over all possible pairs of queries, (C-2) happens with probability at
most q2/2 · (2/(|M| − q) + cf(Φ)).

(C-3) Fix two queries (−, x, y) �= (−, x′, y′) ∈ QBC. Then, by the no-pointless-
queries assumption, y �= y′ and hence x �= x′, so that condition (C-3) cannot
hold.

The result follows by applying the union bound.

Claim. Fix a good transcript τ = (QBC,QO, k). Then

Pr[XA,iw = τ]
Pr[XA,pw = τ]

≥ 1 .

Proof. Let qenc, resp. qdec, denote the number of queries to KDEnc, resp. Dec,
in QBC (with qenc + qdec = q). In the perfect world, queries to KDEnc and Dec
are answered by lazily sampling two independent injections Ienc : [qenc] → M and
Idec : [qdec] → M. This follows from the no-pointless-queries assumption which
implies that for any query KDEnc(φ) we have φ /∈ Dom(Tenc) and for any
query Dec(y) we have y /∈ Dom(Tdec). Hence, letting Qenc and Qdec respectively
denote the set of encryption and decryption queries in QBC and K the key-
generation algorithm we have

Pr[XA,pw = τ] = Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O � QO] · Pr
Ienc

[Ienc � Qenc] · Pr
Idec

[Idec � Qdec]

= Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O � QO] · 1
(|M|)qenc · (|M|)qdec

.

We now compute the probability of obtaining a good transcript τ in the
ideal world. Consider the modified transcript Q′

BC containing pairs (x, y) ∈
M2 constructed from QBC as follows. For each triplet (+, φ, y) ∈ QBC, append
(φ(k), y) to Q′

BC and for each (−, x, y) ∈ QBC, append (x, y) to Q′
BC. Then, for

any (x, y) �= (x′, y′) ∈ Q′
BC, we have x �= x′ (as otherwise condition (C-1a), (C-

2a), or (C-3a) would be met) and y �= y′ (as otherwise condition (C-1b), (C-2b),
or (C-3b) would be met). Hence,

Pr[XA,iw = τ] = Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O � QO] · Pr
P←←Perm(M)

[P � Q′
BC]

= Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O � QO] · 1
(|M|)q

.

Thus,
Pr[XA,iw = τ]
Pr[XA,pw = τ]

=
(|M|)qenc · (|M|)qdec

(|M|)q
≥ 1 ,

where the inequality follows from qenc + qdec = q.

Lemma 3.1 follows by combining the above two claims with Lemma 2.1.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 361

4 Four-Round KAF

In this section we study the 4-round KAF cipher with a single round function
F : {0, 1}n → {0, 1}n and key k = (k1, k2, k3, k4) ∈ ({0, 1}n)4 where k1 and
k4 are uniformly random. Our results do not rely on any assumptions on the
distributions of k2 and k3 (which could be, for example, both set to 0). Given a
KDM function φ with range {0, 1}2n, we let φL and φR to respectively denote
the functions that return the n leftmost and the n rightmost bits of φ. Given a
KDM set Φ for message space M = {0, 1}2n, we define ΦL := {φL : φ ∈ Φ} and
ΦR := {φR : φ ∈ Φ}.

The theorem below states that the 4-round KAF with the same round func-
tion and uniformly random round keys k1 and k4 is KDM-CCA secure if the set
Φ of key-dependent functions has negligible claw-freeness (cf. Definition 3.1) and
ΦR has negligible offset-freeness and offset-xor-freeness (cf. Definition 3.2 and
Definition 3.3).

Theorem 4.1. Let KAFF
k be the 4-round key-alternating Feistel cipher based on

a single round function F : {0, 1}n → {0, 1}n where the key k = (k1, k2, k3, k4)
is such that k1 and k4 are uniformly random and independent. Let A be an
adversary making at most q ≤ 2n queries to KDEnc or Dec and at most qf

queries to F, which is modeled as a random oracle. Then,

Advkdm-cca
KAFF

k
(A,Φ) ≤ q2 ·

(
2·cf(Φ)+3/2·oxf(ΦR)+22/2n

)
+qqf ·

(
of(ΦR)+7/2n

)
.

Proof. Fix an adversary A attempting to distinguish the real and ideal worlds
defined in Fig. 2, where OSp := Func(n) and BC = KAFF. Assume that A makes
at most q ≤ 2n queries to KDEnc or Dec and qf queries to F. By Eq. 1 and
Lemma 3.1, we have

Advkdm-cca
KAFF

k
(A,Φ) ≤ q2 · cf(Φ) + q2/(|M| − q) + Advpw,rw(A)

≤ q2 · cf(Φ) + q2/2n + Advpw,rw(A) ,

where we used that |M| = 22n and 1/(22n − q) ≤ 1/2n. Hence, it remains to
upper bound Advpw,rw(A). We prove below that

Advpw,rw(A) ≤ q2 · (cf(Φ) + 3/2 · oxf(ΦR) + 21/2n) + qqf · (of(ΦR) + 7/2n) ,
(2)

from which the result follows.
The remainder of this section is devoted to the proof of Eq. 2. Without loss

of generality, we make the same no-pointless-query assumption that we made
in the proof of Lemma3.1. Our proof will use the H-coefficient technique. A
transcript τ is a tuple (QBC,QF,k), where QBC is the list of all forward queries
(+, φ, ST), with φ ∈ Φ the query to KDEnc and ST the corresponding answer,
together with all backward queries (−, L′R′, S′T ′) with L′R,S′T ′ ∈ ({0, 1}n)2

and L′R′ the answer of Dec when called on S′T ′. List QF contains queries
(u, v) ∈ ({0, 1}n)2 to the public function F, where v is the answer of the oracle

362 P. Farshim et al.

F when called on input u. The key k is only revealed to the adversary after
it has finished its queries, and is drawn independently of the oracle answers in
the perfect world using the key-generation algorithm K (whose first and fourth
components are uniform but not necessarily its second or third components).

We first define bad transcripts and upper bound the probability of obtaining
such a transcript in the perfect world. Informally, a transcript is said to be
bad if an unexpected collision occurs in the set of all inputs to the first or the
fourth round functions. Note that the adversary can let some inputs collide with
probability 1, for example by querying Dec(ST) and Dec(ST ′); bad transcripts
only capture collisions that happen “by chance.” We formalize this next.

Definition 4.1. A transcript τ = (QBC,QF,k) with k = (k1, k2, k3, k4) in the
perfect world is said to be bad iff any of the following holds.

(C-1) there exist (+, φ, ST) ∈ QBC and (u, v) ∈ QF such that
(a) φR(k) ⊕ k1 = u or
(b) S ⊕ k4 = u;

(C-2) there exist (−, LR, ST) ∈ QBC and (u, v) ∈ QF such that
(a) R ⊕ k1 = u or
(b) S ⊕ k4 = u;

(C-3) there exist (+, φ, ST) �= (+, φ′, S′T ′) ∈ QBC such that
(a) φ(k) = φ′(k) or
(b) S = S′;

(C-4) there exist (+, φ, ST), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such
that φR(k) ⊕ k1 = S′ ⊕ k4;

(C-5) there exist (−, LR, ST) �= (−, L′R′, S′T ′) ∈ QBC such that R = R′;
(C-6 there exist (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct)

such that R ⊕ k1 = S′ ⊕ k4;
(C-7) there exist (+, φ, ST), (−, L′R′, S′T ′) ∈ QBC such that

(a) φ(k) = L′R′ or
(b) ST = S′T ′ or
(c) φR(k) ⊕ k1 = S′ ⊕ k4 or
(d) S ⊕ k4 = R′ ⊕ k1.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad.

Lemma 4.1. Let A be a distinguisher making at most q ≤ 2n queries to KDEnc
or Dec and qf queries to F. With Tbad defined as above,

Pr[XA,pw ∈ Tbad] ≤ q2 · (cf(Φ) + 3/2 · oxf(ΦR) + 6/2n) + qqf · (of(ΦR) + 3/2n) .

Proof. We compute the probability of each condition in turn. Recall that in pw,
the key k = (k1, k2, k3, k4) is drawn at random and independently of all oracle
answers at the end.

(C-1) Fix an encryption query (+, φ, ST) ∈ QBC and a query to the public
function (u, v) ∈ QF.

(a) By Definition 3.2, φR(k) = k1 ⊕ u with probability at most of(ΦR);

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 363

(b) Since k4 is uniformly random and independent of the query transcript,
k4 = S ⊕ u with probability at most 1/2n.

Summing over all possible pairs, condition (C-1) happens with probability at
most qqf(of(ΦR) + 1/2n).

(C-2) Fix a decryption query (−, LR, ST) ∈ QBC and a query to F (u, v) ∈ QF.
(a) Since k1 is uniformly random and independent of the query transcript,

R ⊕ u = k1 with probability at most 1/2n.
(b) Since k4 is uniformly random and independent of the query transcript,

S ⊕ u = k4 with probability at most 1/2n.
Summing over all possible pairs, condition (C-2) happens with probability at
most 2qqf/2n.

(C-3) Fix two queries (+, φ, ST) �= (+, φ′, S′T ′) ∈ QBC. Since the adversary
never repeats queries, we have φ �= φ′.

(a) By Definition 3.1, φ(k) = φ′(k) with probability at most cf(Φ) over
the choice of a random k.

(b) Since φ �= φ′, the output S′T ′ is sampled uniformly at random in a set
of size at least 22n − q and independently of ST . Thus S = S′ with
probability at most 2n/(22n − q) ≤ 1/(2n − 1) ≤ 2/2n.

Summing over all possible distinct pairs, condition (C-3) happens with prob-
ability at most q2/2 · (cf(Φ) + 4/2n).

(C-4) Fix two queries (+, φ, ST), (+, φ′, S′T ′) ∈ QBC. By Definition 3.3, φR(k) =
S′ ⊕k1 ⊕k4 with probability at most oxf(ΦR) over the choice of k. Summing
over all possible pairs, condition (C-4) happens with probability at most q2 ·
oxf(ΦR).

(C-5) Fix two decryption queries (−, LR, ST) �= (−, L′R′, S′T ′) ∈ QBC. The
value L′R′ is sampled uniformly at random in a set of size at least 22n −q and
independently of LR. Thus, R = R′ with probability at most 2n/(22n − q) ≤
1/(2n − 1) ≤ 2/2n. Summing over all possible distinct pairs, condition (C-5)
happens with probability at most q2/2n.

(C-6) Fix two decryption queries (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC. As k1

and k4 are randomly sampled, R ⊕ S′ = k1 ⊕ k4 with probability at most
1/2n. Summing over all possible distinct pairs, condition (C-6) happens with
probability at most q2/2n.

(C-7) Fix an encryption query (+, φ, ST) ∈ QBC and a decryption query
(−, L′R′, S′T ′) ∈ QBC.

(a) By Definition 3.1, φ(k) = L′R′ with probability at most cf(Φ).
(b) We distinguish two cases. If the encryption query occurs before the

decryption query, then necessarily ST �= S′T ′ due to the no-pointless-
query assumption (the adversary cannot ask Dec to decrypt a value
that was received as an answer to the KDEnc oracle). If the decryption
query occurs before the encryption query, then ST is uniformly random
in a set of size at least 22n − q and independent of S′T ′. Hence, the
condition occurs with probability at most 1/(22n − q) ≤ 1/2n.

(c) By Definition 3.3, φR(k) = S′ ⊕ k1 ⊕ k4 with probability at most
oxf(ΦR) over the choice of k.

364 P. Farshim et al.

(d) Since k1 and k4 are drawn uniformly at random and independently of
the query transcript, the probability that k1 ⊕ k4 = S ⊕ R′ is at most
1/2n.

Summing over all possible distinct pairs, condition (C-7) happens with prob-
ability at most q2/2 · (cf(Φ) + oxf(ΦR) + 4/2n).

The result follows by applying the union bound over conditions (C-1) to
(C-7).

We now lower bound Pr[XA,rw = τ]/Pr[XA,pw = τ] for a good transcript τ .
To this end, we introduce the following definition of a bad function F with respect
to a good τ . Informally, this definition states that there is a collision among the
set of all inputs to the second or third-round functions (conditions (C′-3), (C′-
5), and (C′-7)) or among these and direct, first-round, or second-round queries
(conditions (C′-1) and (C′-2)).

Definition 4.2. Fix a good transcript τ = (QBC,QF,k). Let

Dom(F) := {u ∈ {0, 1}n : ∃(u, v) ∈ QF}, and

Dom′(F) :=

⎧
⎪⎪⎨

⎪⎪⎩
u ∈ {0, 1}n :

∃(+, φ, ST) ∈ QBC, u = φR(k) ⊕ k1 ∨
∃(+, φ, ST) ∈ QBC, u = S ⊕ k4 ∨
∃(−, LR, ST) ∈ QBC, u = R ⊕ k1 ∨
∃(−, LR, ST) ∈ QBC, u = S ⊕ k4

⎫
⎪⎪⎬

⎪⎪⎭
.

A function F is said to be bad with respect to τ , denoted Bad(F, τ), iff any
of the following holds.

(C′-1) there exists (+, φ, ST) ∈ QBC such that
(a) φL(k) ⊕ F(φR(k) ⊕ k1) ⊕ k2 ∈ Dom(F) ∪ Dom′(F) or
(b) T ⊕ F(S ⊕ k4) ⊕ k3 ∈ Dom(F) ∪ Dom′(F);

(C′-2) there exists (−, LR, ST) ∈ QBC such that
(a) L ⊕ F(R ⊕ k1) ⊕ k2 ∈ Dom(F) ∪ Dom′(F) or
(b) T ⊕ F(S ⊕ k4) ⊕ k3 ∈ Dom(F) ∪ Dom′(F);

(C′-3) there exist (+, φ, ST) �= (+, φ′, S′T ′) ∈ QBC such that
(a) φL(k) ⊕ F(φR(k) ⊕ k1) = φ′

L(k) ⊕ F(φ′
R(k) ⊕ k1) or

(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4);
(C′-4) there exist (+, φ, ST), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such

that φL(k) ⊕ F(φR(k) ⊕ k1) ⊕ k2 = T ′ ⊕ F(S′ ⊕ k4) ⊕ k3;
(C′-5) there exist (−, LR, ST) �= (−, L′R′, S′T ′) ∈ QBC such that

(a) L ⊕ F(R ⊕ k1) = L′ ⊕ F(R′ ⊕ k1) or
(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4);

(C′-6) there exist (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct)
such that L ⊕ F(R ⊕ k1) ⊕ k2 = T ′ ⊕ F(S′ ⊕ k4) ⊕ k3;

(C′-7) there exist (+, φ, ST), (−, L′R′, S′T ′) ∈ QBC such that
(a) φL(k) ⊕ F(φR(k) ⊕ k1) = L′ ⊕ F(R′ ⊕ k1) or
(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4) or
(c) φL(k) ⊕ F(φR(k) ⊕ k1) ⊕ k2 = T ′ ⊕ F(S′ ⊕ k4) ⊕ k3 or
(d) T ⊕ F(S ⊕ k4) ⊕ k3 = L′ ⊕ F(R′ ⊕ k1) ⊕ k2.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 365

Lemma 4.2. Fix a good transcript τ = (QBC,QF,k). Then

Pr
F←←Func(n)

[Bad(F, τ) |F � QF] ≤ 4 · qqf/2n + 14 · q2/2n .

Proof. First, note that |Dom(F)| = qf and |Dom′(F)| ≤ 2q. We now consider each
condition in turn.1

(C′-1) Fix an encryption query (+, φ, ST) ∈ QBC.
(a) By ¬(C-1a), φR(k) ⊕ k1 is a fresh input for the function F and hence

F(φR(k)⊕k1) is uniformly random. Thus, φL(k)⊕F(φR(k)⊕k1)⊕k2 ∈
Dom(F) ∪ Dom′(F) with probability at most (qf + 2q)/2n.

(b) By ¬(C-1b), S ⊕k4 is a fresh input for the function F and hence F(S ⊕
k4) is uniformly random. Thus, T ⊕F(S ⊕k4)⊕k3 ∈ Dom(F)∪Dom′(F)
with probability at most (qf + 2q)/2n.

Summing over all encryption queries, condition (C′-1) happens with proba-
bility at most 2q(qf + 2q)/2n.

(C′-2) Fix a decryption query (−, LR, ST) ∈ QBC.
(a) By ¬(C-2a), R⊕k1 is a fresh input for the function F and hence F(R⊕

k1) is uniformly random. Thus, L⊕F(R⊕k1)⊕k2 ∈ Dom(F)∪Dom′(F)
with probability at most (qf + 2q)/2n.

(b) By ¬(C-2b), S ⊕ k4 is a fresh value for the function F and hence T ⊕
F(S⊕k4)⊕k3 ∈ Dom(F)∪Dom′(F) with probability at most (qf+2q)/2n.

Summing over all decryption queries, condition (C′-2) happens with proba-
bility at most 2q(qf + 2q)/2n.

(C′-3) Fix (+, φ, ST) �= (+, φ′, S′T ′) ∈ QBC.
(a) By ¬(C-1a), we have φR(k) ⊕ k1 /∈ Dom(F) and φ′

R(k) ⊕ k1 /∈ Dom(F).
Moreover, by ¬(C-3a), we have that φ(k) �= φ′(k). We distinguish two
cases. If φR(k) �= φ′

R(k), then F(φR(k) ⊕ k1) and F(φ′
R(k) ⊕ k1) are

uniformly random and independent, so that φL(k) ⊕ F(φR(k) ⊕ k1) =
φ′

L(k) ⊕ F(φ′
R(k) ⊕ k1) with probability 1/2n. If φR(k) = φ′

R(k), then
necessarily φL(k) �= φ′

L(k), so that the condition cannot hold. Hence,
this condition holds with probability at most 1/2n.

(b) By ¬(C-1b), S ⊕ k4 /∈ Dom(F) and S′ ⊕ k4 /∈ Dom(F); moreover, by
¬(C-3b), S �= S′, so that F(S ⊕ k4) and F(S′ ⊕ k4) are uniformly
random and independent; hence, T ⊕F(S ⊕ k4) = T ′ ⊕F(S′ ⊕ k4) with
probability at most 1/2n.

Summing over all possible pairs of distinct encryption queries, condition (C′-
3) happens with probability at most q2/2n.

(C′-4) Fix two (possibly equal) encryption queries (+, φ, ST), (+, φ′, S′T ′) ∈
QBC. By ¬(C-1a), φR(k) ⊕ k1 /∈ Dom(F) and by ¬(C-1b), S′ ⊕ k4 /∈ Dom(F);
moreover, by ¬(C-4), we have φR(k)⊕k1 �= S′⊕k4, so that F(φR(k)⊕k1) and
F(S′ ⊕k4) are uniformly random and independent; hence, φL(k)⊕F(φR(k)⊕
k1)⊕ k2 = T ′ ⊕F(S′ ⊕ k4)⊕ k3 with probability at most 1/2n. Summing over
all possible pairs, condition (C′-4) happens with probability at most q2/2n.

1 In what follows, we will argue using the fact that the transcript is good by referring
to which specific condition defining a bad transcript would hold, saying e.g., “By
¬(C-ix), . . . ”.

366 P. Farshim et al.

(C′-5) Fix two decryption queries (−, LR, ST) �= (−, L′R′, S′T ′) ∈ QBC.
(a) By ¬(C-2a), R ⊕ k1 /∈ Dom(F) and R′ ⊕ k1 /∈ Dom(F); moreover,

by ¬(C-5), R �= R′ so that F(R ⊕ k1) and F(R′ ⊕ k1) are uniformly
random and independent. Hence, L⊕F(R⊕k1) = L′ ⊕F(R′ ⊕k1) with
probability at most 1/2n.

(b) By ¬(C-2b), S ⊕ k4 /∈ Dom(F) and S′ ⊕ k4 /∈ Dom(F). We distinguish
two cases. If S �= S′ then F(S ⊕ k4) and F(S′ ⊕ k4) are uniformly
random and independent and hence T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4)
with probability at most 1/2n. If S = S′ then necessarily T �= T ′ since
the adversary does not repeat queries and hence the condition cannot
hold. In all cases, the conditions hold with probability at most 1/2n.

By summing over all possible pairs of distinct decryption queries, condition
(C′-5) happens with probability at most q2/2n.

(C′-6) Fix two (possibly
equal) decryption queries (−, LR, ST), (−, L′R′, S′T ′) ∈ QBC. By ¬(C-2a),
R ⊕ k1 /∈ Dom(F) and by ¬(C-2b), S′ ⊕ k4 /∈ Dom(F); moreover, by ¬(C-6),
R ⊕ k1 �= S′ ⊕ k4 so that F(R ⊕ k1) and F(S′ ⊕ k4) are uniformly random and
independent; hence, L⊕F(R⊕k1)⊕k2 = T ′ ⊕F(S′ ⊕k4)⊕k3 with probability
at most 1/2n. Summing over all possible pairs, condition (C′-6) happens with
probability at most q2/2n.

(C′-7) Fix an encryption query (+, φ, ST) ∈ QBC and a decryption query
(−, L′R′, S′T ′) ∈ QBC. By respectively ¬(C-1a), ¬(C-1b), ¬(C-2a), and
¬(C-2b), φR(k) ⊕ k1, S ⊕ k4, R′ ⊕ k1, and S′ ⊕ k4 are all fresh input val-
ues to F.

(a) By ¬(C-7a), φ(k) �= L′R′. We distinguish two cases. If φR(k) �= R′,
then F(φR(k)⊕k1) and F(R′ ⊕k1) are uniformly random and indepen-
dent and thus φL(k)⊕F(φR(k)⊕k1) = L′ ⊕F(R′ ⊕k1) with probability
at most 1/2n. If φR(k) = R′, then necessarily φL(k) �= L′ and hence
the condition cannot hold. In all cases, the condition holds with prob-
ability at most 1/2n.

(b) By ¬(C-7b), ST �= S′T ′. If S �= S′, then F(S ⊕ k4) and F(S′ ⊕ k4)
are uniformly random and independent and hence T ⊕ F(S ⊕ k4) =
T ′⊕F(S′⊕k4) with probability at most 1/2n. If S = S′, then necessarily
T �= T ′ and the condition cannot hold. In all cases, the condition holds
with probability at most 1/2n.

(c) By ¬(C-7c), φR(k)⊕k1 �= S′ ⊕k4 so that F(φR(k)⊕k1) and F(S′ ⊕k4)
are uniformly random and independent and thus φL(k) ⊕ F(φR(k) ⊕
k1) ⊕ k2 = T ′ ⊕ F(S′ ⊕ k4) ⊕ k3 with probability at most 1/2n.

(d) By ¬(C-7d), S ⊕ k4 �= R′ ⊕ k1 so that F(S ⊕ k4) and F(R′ ⊕ k1) are
uniformly random and independent and thus T ⊕ F(S ⊕ k4) ⊕ k3 =
L′ ⊕ F(R′ ⊕ k1) ⊕ k2 with probability at most 1/2n.

By summing over all possible pairs, condition (C′-7) happens with probability
at most 2q2/2n.

The result follows by applying the union bound over all conditions.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 367

Lemma 4.3. Fix a good transcript τ = (QBC,QF,k). Then

Pr
F←←Func(n)

[KAFF
k � QBC |F � QF ∧ ¬Bad(F, τ)] =

1
(2n)2q

.

Proof. Let qenc and qdec respectively denote the number of queries to KDEnc
and Dec in QBC (with qenc + qdec = q). Using an arbitrary ordering, let

QBC =
[
(+, φ1, S1T1), . . . , (+, φqenc , SqencTqenc),

(−, Lqenc+1Rqenc+1, Sqenc+1Tqenc+1), . . . , (−, LqRq, SqTq)
]

.

For a given function F, let wi and zi be the i-th input to F in the second and
third rounds respectively, i.e.,

wi = φi,L(k) ⊕ F(φi,R(k) ⊕ k1) ⊕ k2 for 1 ≤ i ≤ qenc

= Li ⊕ F(Ri ⊕ k1) ⊕ k2 for qenc + 1 ≤ i ≤ q

zi = Ti ⊕ F(Si ⊕ k4) ⊕ k3 for 1 ≤ i ≤ q .

Then event KAFF
k � QBC is equivalent to

{
F(wi) = φi,R(k) ⊕ Ti ⊕ F(Si ⊕ k4)
F(zi) = Si ⊕ φi,L(k) ⊕ F(φi,R(k) ⊕ k1)

for 1 ≤ i ≤ qenc (3)
{
F(wi) = Ri ⊕ Ti ⊕ F(Si ⊕ k4)
F(zi) = Si ⊕ Li ⊕ F(Ri ⊕ k1)

for qenc + 1 ≤ i ≤ q . (4)

Conditioned on event ¬Bad(F, τ), we have that w1, . . . , wq, z1, . . . , zq are 2q
distinct values as otherwise one of the conditions (C′-3)–(C′-7) would be fulfilled.
Moreover, all these 2q values are distinct from values in Dom(F) ∪ Dom′(F), as
otherwise condition (C′-1) or (C′-2) would be fulfilled. This implies that, even
conditioned on F � QF, the 2q random values F(w1), . . . ,F(wq),F(z1), . . . ,F(zq)
are uniform and independent of F(φi,R(k) ⊕ k1) for 1 ≤ i ≤ qenc, F(Ri ⊕ k1) for
qenc + 1 ≤ i ≤ q, and F(Si ⊕ k4) for 1 ≤ i ≤ q. Hence, Eqs. (3) and (4) hold with
probability (1/2n)2q.

Lemma 4.4. Fix a good transcript τ = (QBC,QF,k). Then,

Pr[XA,rw = τ]
Pr[XA,pw = τ]

≥ 1 − 4 · qqf/2n − 15 · q2/2n .

Proof. Let τ = (QBC,QF,k) with k = (k1, k2, k3, k4) be a good transcript, and
let qenc, resp. qdec, denote the number of queries to KDEnc, resp. Dec, in QBC,
with qenc + qdec = q.

Exactly as in the proof of Lemma 3.1, one can show that

Pr[XA,pw = τ] = Pr
k′←←K

[k′ = k] · 1
(2n)qf

· 1
(22n)qenc

· 1
(22n)qdec

. (5)

where K is the key-generation algorithm.

368 P. Farshim et al.

We now lower bound the probability that XA,rw = τ .

Pr[XA,rw = τ] (6)

= Pr
k′←←K

[k′ = k] · Pr
F←←Func(n)

[KAFF
k � QBC ∧ F � QF]

= Pr
k′←←K

[k′ = k] · Pr
F←←Func(n)

[F � QF] · Pr
F←←Func(n)

[KAFF
k � QBC |F � QF]

= Pr
k′←←K

[k′ = k] · 1
(2n)qf

· Pr
F←←Func(n)

[KAFF
k � QBC |F � QF]

= Pr
k′←←K

[k′ = k] · 1
(2n)qf

· Pr
F←←Func(n)

[KAFF
k � QBC |F � QF ∧ ¬Bad(F, τ)]

· (1 − Pr
F←←Func(n)

[Bad(F, τ) |F � QF]) . (7)

Combining Eq. 7 and Eq. 5 we get

Pr[XA,rw = τ]
Pr[XA,pw = τ]

= (22n)qenc · (22n)qdec · Pr[KAFF
k � QBC |F � QF ∧ ¬Bad(F, τ)]

·(1 − Pr[Bad(F, τ) |F � QF]) ,

where all probabilities are over F ←← Func(n). Using Lemma 4.3 and Lemma 4.2,
we obtain

Pr[XA,rw = τ]
Pr[XA,pw = τ]

≥ (22n)qenc · (22n)qdec

(2n)2q
·
(

1 − 4qqf

2n
− 14q2

2n

)
(8)

=
(

1 − 4qqf

2n
− 14q2

2n

)
·

qenc−1∏

i=0

(
1 − i

22n

)
·

qdec−1∏

i=0

(
1 − i

22n

)

(9)

≥
(

1 − 4qqf

2n
− 14q2

2n

)
·
(

1 − q2
enc

2 · 22n

)
·
(

1 − q2
dec

2 · 22n

)
(10)

≥ 1 − 4qqf

2n
− 15q2

2n
. (11)

Combining Lemma 2.1 with Lemma 4.1 and Lemma 4.4, we finally obtain
Eq. 2, which concludes the proof of Theorem 4.1.

5 Attacks

5.1 Necessity of Offset-Freeness

We start by showing that the condition that ΦR is offset-free is necessary for
the KDM-CPA security of 4-round KAF (with the same round function F and
independent keys k = (k1, k2, k3, k4)).2 This attack takes advantage of a collision
at the inputs to the third-round F within two encryption queries:
2 Note that for a set Φ, if ΦR is offset-free then so is Φ, but not necessary the other

way round.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 369

– Adversary A chooses two distinct values x and x′ and obtains F(x), F(x′),
F2(x) and F2(x′) and builds the values

ΔL := F2(x) ⊕ x,ΔR := F(x),Δ′
L := F2(x′) ⊕ x′,Δ′

R := F(x′) .

– A then calls the KDEnc oracle twice on inputs φ = (φL, φR) and φ′ =
(φ′

L, φ′
R) where

φL(k) := k2 ⊕ ΔL and φR(k) := k1 ⊕ ΔR ,

φ′
L(k) := k2 ⊕ Δ′

L and φ′
R(k) := k1 ⊕ Δ′

R .

The adversary receives ST and S′T ′ as the respective answers. Note that any
set ΦR containing both φR and φ′

R is not offset-free.
– A returns 1 iff S ⊕ S′ = x ⊕ x′.

The adversary returns 1 with probability 1 in the real world whereas it returns 1
with probability 1/2n in the ideal world. To see the former, note that the input
k2 ⊕ F2(x) ⊕ x|k1 ⊕ F(x) is processed though the first three rounds as follows:

k2 ⊕ F2(x) ⊕ x|k1 ⊕ F(x)
↓

k1 ⊕ F(x)|x ⊕ k2

↓
x ⊕ k2|k1

↓
k1|x ⊕ k2 ⊕ F(k1 ⊕ k3).

Thus the left half of the output is x ⊕ k2 ⊕ F(k1 ⊕ k3). Hence the xor of the left
halves of two encryptions with constants x and x′ is x⊕x′. Note that this attack
triggers a collision in the third round function.

5.2 Sliding Attacks

We now analyze the most simple KAF configuration whereby all round functions
and keys are identical. This construction is already known to be insecure in the
CPA model for any number of rounds: using two encryption queries we have
KAF(LR) = ST and KAF(TS) = LR, which is unlikely for the ideal cipher. In
the KDM model, however, we are able to give a stronger key-recovery attack
using a single query. The adversary chooses an arbitrary value Δ ∈ {0, 1}n and
calls KDEnc on function φ, where

φR(k) := k ⊕ F(Δ) ⊕ F
(
F2(Δ) ⊕ Δ

)

∗φL(k) := k ⊕ F2(Δ) ⊕ Δ ⊕ F
(
F(Δ) ⊕ F(F2(Δ) ⊕ Δ)

)
.

It receives a value ST as the answer and returns T as its guess for the k. This
attack is depicted in Fig. 4.

370 P. Farshim et al.

Fig. 3. Backwards construction of inputs leading to a particular output.

Fig. 4. Sliding attack on 4-round KAF with reuse of keys and round functions.

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 371

This attack can be generalized for any number of rounds. Instead of giving
a direct expression for any number of rounds r (which we believe would be
somewhat hard to read) we give a recursive definition based on Fig. 4. The idea
is that we arrange an input Lr|Rr to the r-round KAF so that its output S|T is
L0|R0 = k ⊕ Δ|k. To this end, following the decryption circuit (see Fig. 3), for
i > 0 we define

Li+1 | Ri+1 := F(Li ⊕ k) ⊕ Ri | Li .

Observe that Lr|Rr corresponds to the decryption of L0|R0 and hence an encryp-
tion of Lr|Rr will result in L0|R0. We also let L∗

0 | R∗
0 := Δ | 0n and similarly

define

L∗
i+1 | R∗

i+1 := F(L∗
i) ⊕ R∗

i | L∗
i .

We claim that for any i ≥ 0,

Li | Ri = L∗
i ⊕ k | R∗

i ⊕ k .

Now since L∗
i+1|R∗

i+1 is independent of k, we can define two maps φL(k) :=
L∗

r ⊕ k and φR(k) := R∗
r ⊕ k that offset the key by constants. Next we query

KDEnc on (φL, φR), which corresponds to encrypting Lr|Rr, the result of which
will be L0|R0, and from which the key k can be read off.

We now prove the claim inductively. The claim trivially holds for i = 0.
Suppose now that the claim holds for i. We show that it holds for i + 1:

Li+1 | Ri+1 = F(Li ⊕ k) ⊕ Ri | Li

= F(L∗
i ⊕ k ⊕ k) ⊕ R∗

i ⊕ k | L∗
i ⊕ k

= F(L∗
i) ⊕ R∗

i ⊕ k | L∗
i ⊕ k

= L∗
i+1 ⊕ k | R∗

i+1 ⊕ k .

In the above, the first equality is by the definition of Li+1 | Ri+1, the second by
the induction hypothesis, and the last by the definition of L∗

i+1 | R∗
i+1.

The attack generalizes further to r-round KAF where two keys k1 and k0 are
alternatively used in odd and even-numbered rounds. We define L0 := kr mod 2 ⊕
Δ,R0 := kr+1 mod 2, L

∗
0 := Δ, and R∗

0 := 0n . Following the decryption circuit
we set

Li+1 | Ri+1 := F(Li ⊕ ki+r mod 2) ⊕ Ri | Li, and
L∗

i+1 | R∗
i+1 := F(L∗

i) ⊕ R∗
i | L∗

i .

Note, once again, that L∗
i+1 | R∗

i+1 is independent of the key and the sequence
can be computed via access to F. We prove inductively that

Li | Ri = L∗
i ⊕ ki+r mod 2 | R∗

i ⊕ ki+r+1 mod 2 .

372 P. Farshim et al.

This is trivial when i = 0. Furthermore,

Li+1 | Ri+1 = F(Li ⊕ ki+r mod 2) ⊕ Ri | Li

= F(L∗
i ⊕ ki+r mod 2 ⊕ ki+r mod 2) ⊕ R∗

i ⊕ ki+r+1 mod 2

| L∗
i ⊕ ki+r mod 2

= F(L∗
i) ⊕ R∗

i ⊕ ki+r+1 mod 2 | L∗
i ⊕ ki+r mod 2

= L∗
i+1 ⊕ k(i+1)+r mod 2 | R∗

i+1 ⊕ k(i+1)+r+1 mod 2 .

Hence keys k1 and k0 can be extracted by querying KDEnc(φL, φR), where
φL(k) := L∗

r ⊕k0 and φR(k) := R∗
r ⊕k1 as the response will be L0|R0 = kr mod 2⊕

Δ|kr+1 mod 2.

6 Discussion

We developed a generic proof strategy, based on the H-coefficient technique to
analyze the KDM security of block ciphers. In the full version of the paper [12],
we show that our technique can be applied in other settings and we revisit
the KDM security of the basic Even–Mansour cipher with only a single round
[13, Section 6.1]. We obtain another (arguably simpler) proof of the KDM secu-
rity of the 1-round EM construction if the set of functions available to the attacker
is claw-free and offset-free.

We studied the KDM-CCA security of the 4-round KAF cipher with a single
round function if the set of key-dependent functions has negligible claw-freeness,
offset-freeness and offset-xor-freeness. An important open problem is to find
the minimal k such that the k-round KAF cipher with a single round func-
tion achieves KDM-CCA security assuming only that the set of key-dependent
functions has (only) negligible claw-freeness. Our attack shows that necessarily
k ≥ 5. Our proof strategy does go through directly for k ∈ {5, 6, 7} since an
adversary can cause a collision in inputs to the first and third round function
if it can use offsets as key-dependent functions. We do not claim that k-round
KAF for k ∈ {5, 6, 7} are KDM-CCA-insecure for some class of claw-free key-
dependent functions but only that our technique cannot disprove it. It seems
doable to prove the security of 8-round KAF in this setting using our technique
but the proof would be much harder along lines we have considered.

References

1. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 48

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

3. Barbosa, M., Farshim, P.: The related-key analysis of feistel constructions. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 265–284. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 14

https://doi.org/10.1007/3-540-60865-6_48
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-662-46706-0_14

The Key-Dependent Message Security of Key-Alternating Feistel Ciphers 373

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013 (2013). http://eprint.iacr.org/2013/404

5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

7. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

8. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-round
even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 39–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 3

9. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

10. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

12. Farshim, P., Khati, L., Seurin, Y., Vergnaud, D.: The key-dependent message secu-
rity of key-alternating Feistel ciphers 2021. IACR Cryptol. ePrint Arch (2021)

13. Farshim, P., Khati, L., Vergnaud, D.: Security of Even-Mansour ciphers under
key-dependent messages. IACR Trans. Symm. Cryptol. 2017(2), 84–104 (2017)

14. Guo, C., Lin, D.: On the indifferentiability of key-alternating feistel ciphers with no
key derivation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
110–133. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 6

15. Guo, C., Wang, L.: Revisiting key-alternating feistel ciphers for shorter keys and
multi-user security. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 213–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 8

16. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

17. Iwata, T., Kurosawa, K.: On the pseudorandomness of the AES finalists - RC6 and
Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 231–243. Springer,
Heidelberg (2001)

18. Khati, L., Mouha, N., Vergnaud, D.: Full disk encryption: bridging theory and
practice. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 241–257.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 14

http://eprint.iacr.org/2013/404
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-662-46494-6_6
https://doi.org/10.1007/978-3-662-46494-6_6
https://doi.org/10.1007/978-3-030-03326-2_8
https://doi.org/10.1007/978-3-030-03326-2_8
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-319-52153-4_14

374 P. Farshim et al.

19. Lampe, R., Seurin, Y.: Security analysis of key-alternating feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46706-0 13

20. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp.
447–447. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X 34

21. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052334

22. Maurer, U.M.: A simplified and generalized treatment of Luby-Rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
47555-9 21

23. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-
random permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 34

24. Patarin, J.: Pseudorandom permutations based on the D.E.S. scheme. In: Cohen,
G., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54303-1 131

25. Patarin, J.: New results on pseudorandom permutation generators based on the
des scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 25

26. Patarin, J.: About feistel schemes with six (or more) rounds. In: Vaudenay, S. (ed.)
FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998). https://doi.
org/10.1007/3-540-69710-1 8

27. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 7

28. Patarin, J.: The “Coefficients H” technique (invited talk). In: Avanzi, R.M., Keli-
her, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04159-4 21

29. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM (JACM) 27(4), 701–717 (1980)

https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/BFb0052334
https://doi.org/10.1007/BFb0052334
https://doi.org/10.1007/3-540-47555-9_21
https://doi.org/10.1007/3-540-47555-9_21
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/3-540-54303-1_131
https://doi.org/10.1007/3-540-46766-1_25
https://doi.org/10.1007/3-540-69710-1_8
https://doi.org/10.1007/3-540-69710-1_8
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-642-04159-4_21

Mesh Messaging in Large-Scale Protests:
Breaking Bridgefy

Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková(B)

Royal Holloway, University of London, London, UK
{martin.albrecht,jorge.blascoalis,rikke.jensen,lenka.marekova}@rhul.ac.uk

Abstract. Mesh messaging applications allow users in relative proxim-
ity to communicate without the Internet. The most viable offering in this
space, Bridgefy, has recently seen increased uptake in areas experiencing
large-scale protests (HongKong, India, Iran,US, Zimbabwe,Belarus), sug-
gesting its use in these protests. It is also being promoted as a communi-
cation tool for use in such situations by its developers and others. In this
work, we report on a security analysis of Bridgefy. Our results show that
Bridgefy, as analysed, permitted its users to be tracked, offered no authen-
ticity, no effective confidentiality protections and lacked resilience against
adversarially crafted messages. We verified these vulnerabilities by demon-
strating a series of practical attacks on Bridgefy. Thus, if protesters relied
on Bridgefy, an adversary could produce social graphs about them, read
their messages, impersonate anyone to anyone and shut down the entire
network with a single maliciously crafted message.

Keywords: Mesh messaging · Bridgefy · Security analysis

1 Introduction

Mesh messaging applications rely on wireless technologies such as Bluetooth Low
Energy (BLE) to create communication networks that do not require Internet
connectivity. These can be useful in scenarios where the cellular network may
simply be overloaded, e.g. during mass gatherings, or when governments impose
restrictions on Internet usage, up to a full blackout, to suppress civil unrest.
While the functionality requirements of such networks may be the same in both
of these scenarios – delivering messages from A to B – the security requirements
for their users change dramatically.

In September 2019, Forbes reported “Hong Kong Protestors Using Mesh
Messaging App China Can’t Block: Usage Up 3685%” [45] in reference to an
increase in downloads of a mesh messaging application, Bridgefy [1], in Hong
Kong. Bridgefy is both an application and a platform for developers to create
their own mesh network applications.1 It uses BLE or Bluetooth Classic and
is designed for use cases such as “music festivals, sports stadiums, rural com-
munities, natural disasters, traveling abroad”, as given by its Google Play store
1 As we discuss in Sect. 2.4, alternatives to Bridgefy are scarce, making it the predom-

inant example of such an application/framework.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 375–398, 2021.
https://doi.org/10.1007/978-3-030-75539-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_16

376 M. R. Albrecht et al.

description [20]. Other use cases mentioned on its webpage are ad distribution
(including “before/during/after natural disasters” to “capitalize on those mar-
kets before anybody else” [1]) and turn-based games. The Bridgefy application
has crossed 1.7 million downloads as of August 2020 [57].

Though it was advertised as “safe” [20] and “private” [18] and its creators
claimed it was secured by end-to-end encryption [45,51,67], none of the afore-
mentioned use cases can be considered as taking place in adversarial environ-
ments, such as situations of civil unrest where attempts to subvert the appli-
cation’s security are not merely possible, but to be expected, and where such
attacks can have harsh consequences for its users. Despite this, the Bridgefy
developers advertised the application for such scenarios [45,71,73,74] and media
reports suggest the application is indeed relied upon.

Hong Kong. International news reports of Bridgefy being used in anti-extradition
law protests in Hong Kong began around September 2019 [17,45,59,81], report-
ing a spike in downloads that was attributed to slow mobile Internet speeds
caused by mass gatherings of protesters [22]. Around the same time, Bridgefy’s
CEO reported more than 60,000 installations of the application in a period of
seven days, mostly from Hong Kong [59]. However, a Hong Kong based report
available in English [15] gave a mixed evaluation of these claims: in the midst of
a demonstration, not many protesters appeared to be using Bridgefy. The same
report also attributes the spike in Bridgefy downloads to a DDoS attack against
other popular communication means used in these protests: Telegram and the
Reddit-like forum LIHKG.

India. The next reports to appear centred on the Citizenship Amendment Act
protests in India [10] that occurred in December 2019. Here the rise in downloads
was attributed to an Internet shutdown occurring during the same period [47,63].
It appears that the media narrative about Bridgefy’s use in Hong Kong might
have had an effect: “So, Mascarenhas and 15 organisers of the street protest
decided to take a leaf out of the Hong Kong protesters’ book and downloaded
the Bridgefy app” [54]. The Bridgefy developers reported continued adoption in
summer 2020 [75].

Iran. While press reports from Iran remain scarce, there is evidence to suggest
that some people are trying to use Bridgefy during Internet shutdowns and
restrictions: the rise of customer support queries coming from Iran and a claim
by the Bridgefy CEO that it is being distributed via USB devices [48].

Lebanon. Bridgefy now appears among recommended applications to use during
an Internet shutdown, e.g. in the list compiled by a Lebanese NGO during the
October 2019 Lebanon protests [62]. A media report suggests adoption [67].

US. The Bridgefy developers reported uptake of Bridgefy during the Black Lives
Matter protests across the US [74,76]. It is promoted for use in these protests
by the developers and others on social media [68,69,74].

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 377

Zimbabwe. Media and social media reports advertised Bridgefy as a tool to
counter a government-mandated Internet shutdown [46,49] in summer 2020. The
Bridgefy developers reported an uptick in adoption [77].

Belarus. Social media posts and the Bridgefy developers suggest adoption in
light of a government-mandated Internet shutdown [78].

Thailand. Social media posts encouraged student protesters to install the Bri-
dgefy application during August 2020 [70].

1.1 Contributions

We reverse engineered Bridgefy’s messaging platform, giving an overview in
Sect. 3, and in Sect. 4 report several vulnerabilities voiding both the security
claims made by the Bridgefy developers and the security goals arising from its
use in large-scale protests. In particular, we describe various avenues for track-
ing users of the Bridgefy application and for building social graphs of their
interactions both in real time and after the fact. We then use the fact that Bri-
dgefy implemented no effective authentication mechanism between users (nor a
state machine) to impersonate arbitrary users. This attack is easily extended to
an attacker-in-the-middle (MITM) attack for subverting public-key encryption.
We also present variants of Bleichenbacher’s attack [12] which break confiden-
tiality using ≈ 217 chosen ciphertexts. Our variants exploit the composition of
PKCS#1 v1.5 encryption and Gzip compression in Bridgefy. Moreover, we utilise
compression to undermine the advertised resilience of Bridgefy: using a single
message “zip bomb” we could completely disable the mesh network, since clients
would forward any payload before parsing it which then caused them to hang
until a reinstallation of the application.

Overall, we conclude that using Bridgefy, as available prior to our work,
represented a significant risk to participants of protests. In October 2020 and
in response to this work, the Bridgefy developers published a revision of their
framework and application adopting the Signal protocol. We discuss our findings
and report on the disclosure process in Sect. 5.

2 Preliminaries

We denote concatenation of strings or bytes by ||. Strings of byte values are
written in hexadecimal and prefixed with 0x, in big-endian order.

We analysed the Bridgefy apk version 2.1.28 dated January 2020 and avail-
able in the Google Play store. It includes the Bridgefy SDK version 1.0.6. In what
follows, when we write “Bridgefy” we mean this apk and SDK versions, unless
explicitly stated otherwise. As stated above, the Bridgefy developers released an
update of both their apk and their SDK in response to a preliminary version
of this work and our analysis does not apply as is to these updated versions
(cf. Sect. 5).

378 M. R. Albrecht et al.

2.1 Reverse Engineering

Since the Bridgefy source code was not available, we decompiled the apk to
(obfuscated) Java classes using Jadx [61]. The initial deobfuscation was done
automatically by Jadx, with the remaining classes and methods being done by
hand using artefacts left in the code and by inspecting the application’s execu-
tion.

This inspection was performed using Frida, a dynamic instrumentation
toolkit [28], which allows for scripts to be injected into running processes, essen-
tially treating them as black boxes but enabling a variety of operations on them.
In the context of Android applications written in Java, these include tracing
class instances and hooking specific functions to monitor their inputs/outputs
or to modify their behaviour during runtime.

2.2 Primitives Used

Message Encoding. To encapsulate Bluetooth messages and their metadata,
Bridgefy uses MessagePack [29], a binary serialisation format that is more com-
pact than and advertised as an alternative to JSON.

It is then compressed using Gzip [39], which utilises the widely-used
DEFLATE compressed data format [38]. The standard implementation found
in the java.util.zip library is used in the application. A Gzip file begins with a
10-byte header, which consists of a fixed prefix 0x1f8b08 followed by a flags byte
and six additional bytes which are usually set to 0. Depending on which flags
are set, optional fields such as a comment field are placed between the header
and the actual DEFLATE payload. A trailer at the end of the Gzip file consists
of two 4-byte fields: a CRC32 and the length, both over the uncompressed data.

RSA PKCS#1 v1.5. Bridgefy uses the (now deprecated) PKCS#1 v1.5 [40]
standard. This standard defines a method of using RSA encryption, in particular
specifying how the plaintext should be padded before being encrypted. The
format of the padded data that will be encrypted is 0x0002 || <random non-zero
bytes> || 0x00 || <message>. If the size of the RSA modulus and hence the size
of the encryption block is k bytes, then the maximum length of the message is
k − 11 bytes to allow for at least 8 bytes of padding.

This padding format enables a well-known attack by Bleichenbacher [12]
(for variants/improvements of Bleichenbacher’s attack see e.g. [6,7,14,44]). The
attack requires a padding oracle, i.e. the ability to obtain an answer to whether
a given ciphertext decrypts to something that conforms to the padding for-
mat. Sending some number of ciphertexts, each chosen based on previous oracle
responses, leads to full plaintext recovery. For RSA with k = 128, the number
of chosen ciphertexts required has been shown to be between 212 and 216 [16].

In more detail, let c be the target ciphertext, n the public modulus, and (e, d)
the public and private exponents, respectively. We have pad(m) = cd mod n
for the target message m. The chosen ciphertexts will be of the form c∗ = se · c
mod n for some s. If c∗ has correct padding, we know the first two bytes of

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 379

s · pad(m), and hence a range for its possible values. The attack thus first finds
small values of s which result in a positive answer from the oracle and for each
of them computes a set of ranges for the value of pad(m). Once there is only one
possible range, larger values of s are tried in order to narrow this range down to
only one value, which is the original message.

2.3 Related Work

Secure Messaging. Message layer security has received renewed attention in
the last decade, with an effort to standardise a protocol – simply dubbed Mes-
saging Layer Security (MLS) – now underway by the IETF [66], with several
academic works proposing solutions or analysing security [4,5,23]. The use of
secure messaging by “high-risk users” is considered in [26,34]. In particular,
those works analyse interviews with human rights activists and secure messag-
ing application developers to establish common and diverging concerns.

Compression in Security. The first compression side channels in the context of
encryption were described by [43], based on the observation that the compression
rate can reveal information about the plaintext. Since then, there have been
practical attacks exploiting the compression rate “leakage” in TLS and HTTP,
dubbed CRIME [25] and BREACH [32], which enabled the recovery of HTTP
cookies and contents, respectively. Similarly, [31] uses Gzip as a format oracle in a
CCA attack. Beyond cryptography, compression has also been utilised for denial
of service attacks in the form of so-called “zip bombs” [27], where an attacker
prepares a compressed payload that decompresses to a massive message.

Mesh Networking Security. Wireless mesh networks have a long history, but
until recently they have been developed mainly in the context of improving or
expanding Wi-Fi connectivity via various ad hoc routing protocols, where the
mesh usually does not include client devices. Flood-based networks using Blue-
tooth started gaining traction with the introduction of BLE, which optimises for
low power and low cost, and which has been part of the core specification [13]
since Bluetooth 4.0. BLE hardware is integrated in all current major smart-
phone brands, and the specification has native support in all common operating
systems.

Previous work on the security analysis of Bluetooth focused on finding vulner-
abilities in the pairing process or showing the inadequacy of its security modes,
some of which have been fixed in later versions of the specification (see [24,35]
for surveys of attacks focusing on the classic version of Bluetooth). As a more
recent addition, BLE has not received as much comprehensive analysis, but gen-
eral as well as IoT-focused attacks exist [41,56,60,80]. Research on BLE-based
tracking has looked into the usage of unique identifiers by applications and IoT
devices [9,82]. The literature on security in the context of BLE-based mesh
networks is scarce, though the Bluetooth Mesh Profile [58] developed by the
Bluetooth SIG is now beginning to be studied [2,3].

380 M. R. Albrecht et al.

2.4 Alternative Mesh Applications

We list various alternative chat applications that target scenarios where Internet
connectivity is lacking, in particular paying attention to their potential use in a
protest setting.

FireChat. FireChat [52] was a mobile application for secure wireless mesh net-
working meant for communication without an Internet connection. Though it
was not built for protests, it became the tool of choice in various demonstrations
since 2014, e.g. in Iraq, Hong Kong and Taiwan [8,11,42], and since then was
also promoted as such by the creators of the application. However, it had not
received any updates in 2019 and as of April 2020, it is no longer available on
the Google Play store and its webpage has been removed, so it appears that its
development has been discontinued.

BLE Mesh Networking. Bluetooth itself provides a specification for build-
ing mesh networks based on Bluetooth Low Energy that is referred to as the
Bluetooth Mesh Profile [58]. While it defines a robust model for implementing
a flood-based network for up to 32,000 participating nodes, its focus is not on
messaging but rather connectivity of low-power IoT devices within smart homes
or smart cities. As a result, it is more suitable for networks that are managed
centrally and whose topology is stable over time, which is the opposite of the
unpredictable and always-changing flow of a crowd during a mass protest. Fur-
ther, it makes heavy use of the advertising bearer (a feature not widely available
in smartphones), which imposes constraints on the bandwidth of the network
– messages can have a maximum size of 384 bytes, and nodes are advised to
not transmit more than 100 messages in any 10 s window. The profile makes
use of cryptography for securing the network from outside observers as well as
from outside interference, but it does expect participating nodes to be benign,
which cannot be assumed in the messaging setting. From within the network, a
malicious node can not only observe but also impersonate other nodes and deny
them service.

HypeLabs. The Hype SDK offered by HypeLabs [37] sets out a similar goal as
Bridgefy, which is to offer secure mesh networks for a variety of purposes when
there is no Internet connection. Besides Bluetooth, it also utilises Wi-Fi, and
supports a variety of platforms. Among its use cases, the Hype SDK whitepa-
per [36] lists connectivity between IoT devices, social networking and messaging,
distributed storage as well as connectivity during catastrophes and emergency
broadcasting. While an example chat application is available on Google Play
(with only 100+ downloads), HypeLabs does not offer the end-user solutions
for those use cases themselves, merely offering the SDK as a paid product for
developers. There is no information available on what applications are using the
SDK, if any.

Briar. Briar [55] describes itself as “secure messaging, anywhere” [55] and is
referenced in online discussions on the use of mesh networking applications in
protests [50]. However, Briar does not realise a mesh network. Instead it opens

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 381

point-to-point sockets over a Bluetooth Classic (as opposed to Low Energy) chan-
nel to nearby nodes. Its reach is thus limited to one hop unless users manually
forward messages.

Serval. Serval Mesh [30] is an Android application implementing a mesh network
using Wi-Fi that sets its goal as enabling communication in places which lack
infrastructure. Originally developed for natural disasters, the project includes
special hardware Mesh Extenders that are supposed to enhance coverage. While
the application is available for download, it cannot be accessed from Google Play
because it targets an old version of Android to allow it to run on older devices
such as the ones primarily used in rural communities. Work on the project is still
ongoing, as it is not ready for deployment at scale. Hence its utility in large-scale
protests where access to technology itself is not a barrier is currently limited.

Subnodes. The use of additional hardware devices enables a different approach
to maintaining connectivity, which is taken by the open source project Subn-
odes [65]. It allows local area wireless networks to be set up on a Raspberry
Pi, which then acts as a web server that can provide e.g. a chat room. Multiple
devices can be connected in a mesh using the BATMAN routing protocol [53],
which is meant for dynamic and unreliable networks. However, setting up and
operating such a network requires technical knowledge. In the setting of a protest,
even carrying the hardware device for one of the network’s access points could
put the operator at risk.

3 Bridgefy Architecture

In this section, we give an overview of the Bridgefy messaging architecture.
The key feature of Bridgefy is that it exchanges data using Bluetooth when an
Internet connection is not available. The application can send the following kinds
of messages:

– one-to-one messages between two parties
• sent over the Internet if both parties are online,
• sent directly via Bluetooth if the parties are in physical range, or
• sent over the Bluetooth mesh network, and

– Bluetooth broadcast messages that anyone can read in a special “Broadcast
mode” room.

Note that the Bluetooth messages are handled separately from the ones
exchanged over the Internet using the Bridgefy server, i.e. there is no support
for communication between one user who is on the Internet and one who is on
the mesh network.

3.1 Bluetooth Messages

Bridgefy supports connections over both BLE and Bluetooth Classic, but the
latter is a legacy option for devices without BLE support, so we focus on BLE.

382 M. R. Albrecht et al.

How the Generic Attribute Profile (GATT) protocol is configured is not relevant
for our analysis, so we only consider message processing starting from and up to
characteristic read and write requests. BLE packet data is received as an array
of bytes, which is parsed according to the MessagePack format and processed
further based on message type. At the topmost level, all messages are represented
as a BleEntity which has a given entity type et. Table 1 matches the entity type
to the type of its content ct and the class that implements it. Details of all classes
representing messages can be found in the full version of this paper2.

Table 1. Entity types.

BleEntity types

et content class for ct

0 Handshake BleHandshake
1 Direct message BleEntityContent
3 Mesh message ForwardTransaction

AppEntity types

et content extending class

0 Encrypted handshake AppEntityHandShake
1 Any message AppEntityMessage
4 Receipt AppEntitySignal

Encryption Scheme. One-to-one Bluetooth (mesh and direct) messages in Bri-
dgefy, represented as MessagePacks, are first compressed using Gzip and then
encrypted using RSA with PKCS#1 v1.5 padding. The key size is 2048 bits and
the input is split into blocks of size up to 245 bytes and encrypted one-by-one
in an ECB-like fashion using Java SE’s “RSA/ECB/PKCS1Padding”, produc-
ing output blocks of size 256 bytes. Decryption errors do not produce a user or
network visible direct error message.

Direct Messages. Messages sent to a user who is in direct Bluetooth range have
et = 1 and so ct is of type BleEntityContent. Upon reception, its payload is
decrypted, decompressed and then used to construct the content of a Message
object. Note that the receiver does not parse the sender ID from the message
itself. Instead, it sets the sender to be the user ID which corresponds to the device
from which it received the message. This link between user IDs and Bluetooth
devices is determined during the initial handshake that we describe in Sect. 3.2.

The content of the Message object is parsed into an AppEntity, which also
contains an entity type et that determines the final class of the message. A
direct message has et = 1 here as well, so it is parsed as an AppEntityMessage.
Afterwards, a delivery receipt for the message that was received is sent and the
message is displayed to the user. Receipts take the format of AppEntitySignal:
one is sent when a message is delivered as described above, and another one
when the user views the chat containing the message.
2 Available at https://eprint.iacr.org/2021/214.

https://eprint.iacr.org/2021/214

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 383

Mesh Messages. Bridgefy implements a managed flood-based mesh network, pre-
venting infinite loops using a time-to-live counter that is decremented whenever
a packet is forwarded; when it reaches zero the packet is discarded. Messages
that are transmitted using the mesh network, whether it is one-to-one messages
encrypted to a user that is not in direct range, or unencrypted broadcast mes-
sages that anyone can read, have et = 3. Such a BleEntity may hold multiple
mesh messages of either kind. We note that these contain the sender and the
receiver of one-to-one messages in plaintext.

The received one-to-one mesh messages are processed depending on the
receiver ID – if it matches the client’s user ID, they will try to decrypt the
message, triggering the same processing as in the case of direct messages, and
also send a special “mesh reach” message that signals that the encrypted mes-
sage has found its recipient over the mesh. If the receiver ID does not match,
the packet is added to the set of packets that will be forwarded to the mesh.

The received broadcast messages are first sent to the mesh. Then the client
constructs AppEntityMessages and processes them the same as one-to-one mes-
sages before displaying them.

3.2 Handshake Protocol

Clients establish a session by running a handshake protocol, whose messages
follow the BleEntity form with et = 0. The content of the entity is parsed as a
BleHandshake which contains a request type rq and response rp. The handshake
protocol is best understood as an exchange of requests and responses such that
each message consists of a response to the previous request bundled with the
next request. There are three types of requests:

– rq = null: no request,
– rq = 0: general request for user’s information,
– rq = 1: request for user’s public key.

The first handshake message that is sent when a new BLE device is detected,
regardless of whether they have communicated before, has rq = 0 and also con-
tains the user’s ID, supported versions of the SDK and the CRC32 of the user’s
public key. The processing of received handshake messages depends on whether
the two users know each other’s public keys (either because they have connected
before, or because they are contacts and the server supplied the keys when they
were connected to the Internet).

Key Exchange. In the case when the parties do not have each other’s public
keys, this exchange is illustrated in Fig. 1: Ivan is already online and scanning
for other users when Ursula comes into range and initiates the handshake. The
protocol can be understood to consist of two main parts, first the key exchange
that occurs in plaintext, and second an encrypted “application handshake” which
exchanges information such as usernames and phone numbers. Before the second

384 M. R. Albrecht et al.

part begins, the devices may also exchange recent mesh messages that the device
that was offline may have missed.3

I U

et=0, BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=0, BleHS(rq=1, Rp(type=0, uidI, crc(pkI)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=0, BleHS(rq=1, Rp(type=1, uidU, crc(pkU), pkU))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=0, BleHS(rq=null, Rp(type=1, uidI, crc(pkI), pkI))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=1, AppHS(ARq(tp=0), null)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=1, AppHS(ARq(tp=0), ARp(tp=0, uidI, unI, vrf=1))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

et=1, AppHS(null, ARp(tp=0, uidU, unU, vrf=1))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
et=1, AppHS(null, ARp(tp=2, uidU))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1. Handshake protocol including key exchange between Ivan and Ursula. We abb-
reviate HandShake with HS. Here uidI, uidU are user IDs, pkI, pkU are the public keys
and unI, unU are usernames of Ivan and Ursula, and crc(pkU) > crc(pkI). Messages in
italics are encrypted.

In Fig. 1 some fields of the objects are omitted for clarity. Rp represents a
response object (ResponseJson) while ARq and ARp are application requests and
responses (AppRequestJson and AppResponseJson). The AppHandShake(rq, rp)
object is wrapped in an AppEntityHandShake which forms the content of the
Message that is actually compressed and encrypted. Note that the order of who
initialises the BleHandshake depends on which user came online later, while the
first AppHandShake is sent by the party whose CRC32 of their public key has a
larger value. We are also only displaying the case when a user has not verified
their phone number (which is the default behaviour in the application), i.e.
vrf = 1. If they have, AppHandShake additionally includes a request and a
response for the phone number.

3 This is facilitated by the dump flag in ForwardTransaction, but we omit this exchange
in the figure as it is not relevant to the actual handshake protocol.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 385

Known Keys. In the case when both parties already know each other’s public
keys, there are only two BleHandshake messages exchanged, and both follow the
format of the first message shown in Fig. 1, where rq = 0. The exchange of
encrypted AppHandShake messages then continues unchanged.

Conditions. When two devices come into range, the handshake protocol is exe-
cuted automatically and direct messages can only be sent after the handshake
is complete. Only clients in physical range can execute the BleHandShake part
of the protocol. Devices that are communicating via the mesh network do not
perform the handshake at all, so they can only exchange messages if they already
know each other’s keys from the Bridgefy server or because they have been in
range once before.

3.3 Routing via the Bridgefy Server

An Internet connection is required when a user first installs the application,
which registers them with the Bridgefy server. All requests are done via HTTPS,
the APIs for which are in the package me.bridgefy.backend.v3.

The BgfyUser class that models the information that is sent to the server
during registration contains the user’s chosen name, user ID, the list of users
blocked by this user, and if they are “verified” then also their phone number.
Afterwards, a contacts request is done every time an Internet connection is avail-
able (regardless of whether a user is verified or not) and the user refreshes the
application. The phone numbers of the user’s contacts are uploaded to the server
to obtain a list of contacts that are also Bridgefy users. BgfyKeyApi then provides
methods to store and retrieve the users’ public keys from the server.

Messages sent between online users are of a simpler form than the Bluetooth
messages: an instance of BgfyMessage contains the sender and receiver IDs, the
RSA encryption of the text of the message and some metadata, such as a times-
tamp and the delivered/read status of the message in plaintext. The server will
queue messages sent to users who are not currently online until they connect to
the Internet again.

4 Attacks

In this section, we show that Bridgefy does not provide confidentiality of mes-
sages and also that it does not satisfy the additional security needs arising in a
protest setting: privacy, authenticity and reliability in adversarial settings.

4.1 Privacy

Here, we discuss vulnerabilities in Bridgefy pertaining to user privacy in con-
trast to confidentiality of messages. We note that Bridgefy initially made no
claim about anonymity in its marketing but disabled mandating phone number
verification to address anonymity needs in 2019 [72].

386 M. R. Albrecht et al.

Local User Tracking. To prevent tracking, Bluetooth-enabled devices may use
“random” addresses which change over time (for details on the addressing scheme
see [13, Section 10.8]). However, when a Bridgefy client sends BLE ADV IND
packets (something that is done continuously while the application is running),
it transmits an identifier in the service data that is the CRC32 value of its user
ID, encoded in 10 bytes as decimal digits. The user ID does not change unless the
user reinstalls the application, so passive observation of the network is enough
to enable tracking all users.

In addition, the automatic handshake protocol composed with public-key
caching provides a mechanism to perform historical contact tracing. If the devices
of two users have been in range before, they will not request each other’s public
keys, but they will do so automatically if that has not been the case.

Participant Discovery. Until December 2019 [72], Bridgefy required users to
register with a phone number. Users still have the option to do so, but it is
no longer the default. If the user gives the permission to the application to
access the contacts stored on their phone, the application will check which of
those contacts are already Bridgefy users based on phone numbers and display
those contacts to the user. When Bridgefy is predominantly installed on phones
of protesters, this allows the identification of participants by running contact
discovery against all local phone numbers. While an adversary with significant
control over the network, such as a state actor, might have alternative means
to collect such information, this approach is also available to e.g. employers or
activists supporting the other side.

Social Graph. All one-to-one messages sent over the mesh network contain
the sender and receiver IDs in plaintext, so a passive adversary with physical
presence can build a social graph of what IDs are communicating with whom.
The adversary can further use the server’s API to learn the usernames corre-
sponding to those IDs (via the getUserById request in BgfyUserApi). In addition,
since three receipts are sent when a message is received – “mesh reach” in clear,
encrypted “delivery” receipt, encrypted “viewed” receipt – a passive attacker can
also build an approximate, dynamic topology of the network, since users that
are further away from each other will have a larger delay between a message and
its receipts.

4.2 Authenticity

Bridgefy does not utilise cryptographic authentication mechanisms. As a result,
an adversary can impersonate any user.

The initial handshake through which parties exchange their public keys or
identify each other after coming in range relies on two pieces of information to
establish the identities: a user ID and the lower-level Bluetooth device address.
Neither of these is an actual authentication mechanism: the user ID is public
information which can be learned from observing the network, while [56] shows
that it is possible to broadcast with any BLE device address.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 387

However, an attacker does not need to go to such lengths. Spoofing can be
done by sending a handshake message which triggers the other side to overwrite
the information it currently has associated with a given user. Suppose there are
two users who have communicated with each other before, Ursula and Ivan, and
the attacker wishes to impersonate Ivan to Ursula. When the attacker comes
into range of Ursula, she will initiate the handshake. The attacker will send a
response of type 1, simply replacing its own user ID, public key and the CRC of
its public key with Ivan’s, and also copies Ivan’s username, as shown in Fig. 2.

This works because the processing of handshakes in Bridgefy is not stateful
and parts of the handshake such as the request value rq and type of rp act as
control messages. This handshake is enough for Ursula’s application to merge the
attacker and Ivan into one user, and therefore show messages from the attacker as
if they came from Ivan. If the real Ivan comes in range at the time the attacker
is connected to Ursula, he will be able to communicate with her and receive
responses from her that the attacker will not be able to decrypt. However, he
will not be able to see the attacker’s presence. We implemented this attack and
verified that it works, see Sect. 4.3.

The messages exchanged over the mesh network (when users are not in direct
range) merely contain the user ID of the sender, so they can be spoofed with
ease. We also note that although the handshake protocol is meant for parties in
range, the second part of the handshake (i.e. AppHandshake) can also be sent
over the mesh network. This means that users can be convinced to change the
usernames and phone numbers associated with their Bridgefy contacts via the
mesh network.

A U

BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BleHS(rq=1, Rp(type=1, uidI, crc(pkI), pkI))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

BleHS(rq=null, Rp(type=1, uidU, crc(pkU), pkU))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. Impersonation attack, with attacker modifications in bold.

4.3 Confidentiality

Confidentiality of message contents is both a security goal mentioned in Bri-
dgefy’s marketing material and relied upon by participants in protests. In this
section, we show that the implemented protections are not sufficient to satisfy
this goal.

388 M. R. Albrecht et al.

IND-CPA. Bridgefy’s encryption scheme only offers a security level of 264 in a
standard IND-CPA security game, i.e. a passive adversary can decide whether
a message m0 or m1 of its choosing was encrypted as c. The adversary picks
messages of length 245 bytes and tries all 2558 possible values for PKCS#1 v1.5
padding until it finds a match for the challenge ciphertext c.

Plaintext File Sharing. Bridgefy allows its users to send direct messages com-
posed of either just text or containing a location they want to share. The latter
is processed as a special text message containing coordinates, and so these two
types are encrypted, but the same is not true for any additional data such as
image files. Only the payload of the BleEntityContent is encrypted, which does
not include the byte array BleEntity.data that is used to transmit files. While
the application itself does not currently offer the functionality to share images
or other files, it is part of the SDK and receiving media files does work in the
application. The fact that files are transmitted in plaintext is not stated in the
documentation, so for developers using the SDK it would be easy to assume that
files are shared privately when using this functionality.

MITM. This attack is an extension of the impersonation attack described in
Sect. 4.2 where we convince the client to change the public key for any user ID
it has already communicated with. Suppose that Ivan is out of range, and the
attacker initiates a handshake with Ursula where rq = null, rp is of type 0 and
contains the CRC of the attacker’s key as well as Ivan’s user ID as the sender
ID (the user ID being replaced in all following handshake messages as well).
The logic of the handshake processing in Ursula’s client dictates that since the
CRC does not match the CRC of Ivan’s key that it has saved, it has to make
a request of type 1, i.e. a request for an updated public key. Then the attacker
only needs to supply its own key, which will get associated with Ivan’s user ID,
as shown in Fig. 3. Afterwards, whenever Ursula sends a Bluetooth message to
Ivan, it will be encrypted under the attacker’s key. Further, Ursula’s client will
display messages from the attacker as if they came from Ivan, so this attack
also provides impersonation. If at this stage Ivan comes back in range, he will
not be able to connect to Ursula. The attack is not persistent, though – if the
attacker goes out of range, Ivan (when in range) can run a legitimate handshake
and restore communication.

We verified this and the previous impersonation attack in a setup with four
Android devices, where the attacker had two devices running Frida scripts that
modified the relevant handshake messages. Two attacker devices were used to
instantiate a full attacker in the middle attack, which is an artefact of us hot-
patching the Bridgefy application using Frida scripts: one device to communicate
with Ursula on behalf of Ivan and another with Ivan on behalf of Ursula.

We also note that since the Bridgefy server serves as a trusted database of
users’ public keys, if compromised, it would be trivial to mount an attacker in the
middle attack on the communication of any two users. This would also impact
users who are planning to only use the application offline since the server would
only need to supply them the wrong keys during registration.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 389

A U

BleHS(rq=null, Rp(type=0, uidI, crc(pkA)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
BleHS(rq=1, null)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BleHS(rq=null, Rp(type=1, uidI, crc(pkA), pkA))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 3. One side of the MITM attack, with attacker modifications in bold.

Padding Oracle Attack. The following chosen ciphertext attack is enabled by
the fact that all one-to-one messages use public-key encryption but no authen-
tication, so we can construct valid ciphertexts as if coming from any sender. We
can also track BLE packets and replay them at will, reordering or substituting
ciphertext blocks.

We instantiate a variant of Bleichenbacher’s attack [12] on RSA with
PKCS#1 v1.5 padding using Bridgefy’s delivery receipts. This attack relies
on distinguishing whether a ciphertext was processed successfully or not. The
receiver of a message sends a message status update when a message has been
received and processed, i.e. decrypted, decompressed and parsed. If there was an
error on the receiver’s side, no message is sent. No other indication of successful
delivery or (type of) error is sent. Since the sender of a Bridgefy message can-
not distinguish between decryption errors or decompression errors merely from
the information it gets from the receiver, we construct a padding oracle that
circumvents this issue.

Suppose that Ivan sends a ciphertext c encrypting the message m to Ursula
that we intercept. In the classical Bleichenbacher’s attack, we would form a new
ciphertext c∗ = se · c mod n for some s where n is the modulus and e is the
exponent of Ursula’s public key. Now suppose that c∗ has a correct padding. Since
messages are processed in blocks, we can prepend and append valid ciphertexts.
These are guaranteed to pass the padding checks as they are honestly generated
ciphertexts (we recall that there is no authentication). We will construct these
blocks in such a way that decompression of the joint contents will succeed with
non-negligible probability, and therefore enable us to get a delivery receipt which
will instantiate our padding oracle.

The Gzip file format [39] specifies a number of optional flags. If the flag
FLG.FCOMMENT is set, the header is followed by a number of “comment” bytes,
terminated with a zero byte, that are essentially ignored. In particular, these
bytes are not covered by the CRC32 checksum contained in the Gzip trailer.
Thus, we let c0 be the encryption of a 10-byte Gzip header with this flag set
followed by up to 245 non-zero bytes, and let c1 be the encryption of a zero byte
followed by a valid compressed MessagePack payload (i.e. of a message from the
attacker to Ursula) and Gzip trailer.

390 M. R. Albrecht et al.

When put together, c0||c∗||c1 encrypts a correctly compressed message as
long as unpad(s · pad(m)) (which is part of the comment field) does not contain
a zero byte, and therefore Ursula will send a delivery receipt for the attacker’s
message. The probability that the comment does not contain a zero byte for
random s is ≥ (1 − 1

256)245 ≈ 0.383.
To study the number of adaptively chosen ciphertexts required, we adapted

the simulation code from [16] for the Bleichenbacher-style oracle encountered in
this attack: a payload will pass the test if it has valid padding for messages of any
valid length (“FFT” in [7] parlance) and if it does not contain a zero byte in the
“message” part after splitting off the padding. We then ran a Bleichenbacher-
style attack 4, 096 times (on 80 cores, taking about 12h in total) and recorded
how often the oracle was called in each attack. We give a histogram of our data
in Fig. 4. The median is 216.75, the mean 217.36. Our SageMath [64] script, based
on Python code in [16], and the raw data for Fig. 4 are attached to the electronic
version of this document.

1 2 3 4 5
·105

200

400

600

Number of oracle queries

Fr
eq
ue

nc
y

Fig. 4. Density distribution for number of ciphertexts required to mount a padding-
oracle attack via Gzip comments.

We have verified the applicability of this attack in Bridgefy using ciphertexts
c∗ constructed to be PKCS#1 v1.5-conforming (i.e. where we set s = pad(m)−1 ·
pad(r) mod n where r is 245 random bytes). We used Frida to run a script on
the attacker’s device that would send c0||c∗||c1 to the target Bridgefy user via
Bluetooth, and record whether it gets a delivery receipt for the message contained
in c1 or not. The observed frequency of the receipts matched the probability
given earlier. This oracle suffices to instantiate Bleichenbacher’s original attack.
In our preliminary experiments we were able to send a ciphertext every 450 ms,

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 391

suggesting 50% of attacks complete in less than 14 h. We note, however, that our
timings are based on us hotpatching Bridgefy to send the messages and that a
higher throughput might be achievable.

Padding Oracles from a Timing Side-Channel. Our decompression oracle
depends on the Bridgefy SDK processing three blocks as a joint ciphertext. While
we verified that this behaviour is also exhibited by the Bridgefy application, the
application itself never sends ciphertexts that span more than two blocks as it
imposes a limit of 256 bytes on the size of the text of each message. Thus, a
stopgap mitigation of our previous attack could be to disable the processing of
more than two blocks of ciphertext jointly together.

We sketch an alternative attack that only requires two blocks of ciphertext
per message. It is enabled by the fact that when a receiver processes an incorrect
message, there is a difference in the time it takes to process it depending on
what kind of error was encountered. This difference is clearly observable for
ciphertexts that consist of at least two blocks, where the error occurs in the
first block. We note that padding errors occurring in the second block can be
observed by swapping the blocks, as they are decrypted individually.

Figure 5 (raw data is attached to the electronic version of this document)
shows the differences for experiments run on the target device, measured using
Frida. A script was injected into the Bridgefy application that would call the
method responsible for extracting a message from a received BLE packet (includ-
ing decryption and decompression) on given valid or invalid data. The execution
time of this method was measured directly on the device using Java.

If multiple messages are received, they are processed sequentially, which
enables the propagation of these timing differences to the network level. That is,
the attacker sends two messages, one consisting of c∗||c′ where c∗ = se ·c mod n
is the modified target ciphertext and c′ is an arbitrary ciphertext block, and one
consisting of some unrelated message, either as direct messages one after another
or a mesh transaction containing both messages among its packets. The side-
channel being considered is then simply the time it takes to receive the delivery
receipt on the second valid message.

We leave exploring whether this could be instantiated in practice to future
work, since our previous attacks do not require this timing channel. We note,
though, that an adversary would likely need more precise control over the timing
of when packets are released than that offered by stock Android devices in order
to capture the correct difference in a BLE environment.

4.4 Denial of Service

Bridgefy’s appeal to protesters to enable messaging in light of an Internet shut-
down makes resilience to denial of service attacks a key concern. While a flood-
based network can be resilient as a consequence of its simplicity, some particu-
larities of the Bridgefy setup make it vulnerable.

392 M. R. Albrecht et al.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

Time (ms)

Fr
eq
ue

nc
y

padding error
gzip error

error type N μ σ σ/
√

N

bad padding 1360 33.882956 3.137260 0.085071
gzip error 1508 42.557275 4.273194 0.110040

Fig. 5. Execution time of ChunkUtils.stitchChunksToEntity for 2 ciphertext blocks in
milliseconds. In the table, N is the number of samples in each experiment.

Broad DoS. Due to the use of compression, Bridgefy is vulnerable to “zip
bomb” attacks. In particular, compressing a message of size 10 MB containing
a repeated single character results in a payload of size 10 KB, which can be
easily transmitted over the BLE mesh network. Then, when the client attempts
to display this message, the application becomes unresponsive to the point of
requiring reinstallation to make it usable again. Sending such a message to the
broadcast chat provides a trivial way of disabling many clients at the same
time, since clients will first forward the message further and only then start
the processing to display it which causes them to hang. As a consequence, a
single adversarially generated message can take down the entire network. We
implemented this attack and tested it in practice on a number of Android devices.

Targeted DoS. A consequence of the MITM attack from Sect. 4.3 is that it
provides a way to prevent given two users from connecting, even if they are in
Bluetooth range, since the attacker’s key becomes attached to one of the user
ids.

5 Discussion

While our attacks reveal severe deficiencies in the security of both the Bridgefy
application (v2.1.28) and the SDK (v1.0.6), it is natural to ask whether they are
valid and what lessons can be drawn from them for cryptographic research.

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 393

Given that most of our attacks are variants of attacks known in the literature,
it is worth asking why Bridgefy did not mitigate against them. A simple answer
to this question might be that the application was not designed for adversarial
settings and that therefore our attacks are out of scope, externally imposing
security goals. However, such an account would fail to note that Bridgefy’s secu-
rity falls short also in settings where attacks are not expected to be the norm,
i.e. Bridgefy does not satisfy standard privacy guarantees expected of any mod-
ern messaging application. In particular, prior to our work, Bridgefy developers
advertised the app/SDK as “private” and as featuring end-to-end encryption;
our attacks thus broke Bridgefy’s own security claims.

More importantly, however, Bridgefy is used in highly adversarial settings
where its security ought to stand up to powerful nation-state adversaries and the
Bridgefy developers advertise their application for these contexts [45,71,73,74].
Technologies need to be evaluated under the conditions they are used in. Here,
our attacks highlight the value of secure by design approaches to development.
While designers might envision certain use cases, users, in the absence of alter-
natives, may reach for whatever solution is available.

Our work thus draws attention to this problem space. While it is difficult to
assess the actual reliance of protesters on mesh communication, the idea of resilient
communication in the face of a government-mandated Internet shutdown is
present throughout protests across the globe [8,10,11,42,45,46,70,73,74,76,78].
Yet, these users are not well served by the existing solutions they rely on. Thus,
it is a pressing topic for future work to design communication protocols and
tools that cater to these needs. We note, though, that this requires understand-
ing “these needs” to avoid a disconnect between what designers design for and
what users in these settings require [26,34].

5.1 Responsible Disclosure

We disclosed the vulnerabilities described in this work to the Bridgefy develop-
ers on 27 April 2020 and they acknowledged receipt on the same day. We agreed
on a public disclosure date of 24 August 2020. Starting from 1 June 2020, the
Bridgefy team began informing their users that they should not expect confiden-
tiality guarantees from the current version of the application [79]. On 8 July 2020,
the developers informed us that they were implementing a switch to the Signal
protocol to provide cryptographic assurances in their SDK. On 24 August 2020,
we published an abridged4 version of this paper in conjunction with a media
article [33]. The Bridgefy team published a statement on the same day [19]. On
30 October 2020, an update finalising the switch to Signal was released [21].
If implemented correctly, it would rule out many of the attacks described in
this work. Note, however, that we have not reviewed these changes and we rec-
ommend an independent security audit to verify they have been implemented
correctly.

4 We had omitted details of the Bridgefy architecture, as the attacks had not been
mitigated at that point in time.

394 M. R. Albrecht et al.

Acknowledgements. Part of this work was done while Albrecht was visiting the
Simons Institute for the Theory of Computing. The research of Mareková was supported
by the EPSRC and the UK Government as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London (EP/P009301/1). We thank
Kenny Paterson and Eamonn Postlethwaite for comments on an earlier version of this
paper.

References

1. Bridgefy, April 2020. https://web.archive.org/web/20200411143157/www.
bridgefy.me/

2. Adomnicai, A., Fournier, J.J.A., Masson, L.: Hardware security threats against
Bluetooth mesh networks. In: 2018 IEEE Conference on Communications and Net-
work Security, CNS 2018, Beijing, China, 30 May–1 June 2018, pp. 1–9. IEEE
(2018). https://doi.org/10.1109/CNS.2018.8433184

3. Álvarez, F., Almon, L., Hahn, A., Hollick, M.: Toxic friends in your network: break-
ing the Bluetooth Mesh friendship concept. In: Mehrnezhad, M., van der Merwe,
T., Hao, F. (eds.) Proceedings of the 5th ACM Workshop on Security Standardisa-
tion Research Workshop, London, UK, 11 November 2019, pp. 1–12. ACM (2019).
https://doi.org/10.1145/3338500.3360334

4. Alwen, J., et al.: Keep the dirt: Tainted TreeKEM, an efficient and provably secure
continuous group key agreement protocol. Cryptology ePrint Archive, Report
2019/1489 (2019). https://eprint.iacr.org/2019/1489

5. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. Cryptology ePrint Archive,
Report 2019/1189 (2019). https://eprint.iacr.org/2019/1189

6. Aviram, N., et al.: DROWN: breaking TLS using SSLv2. In: Holz, T., Savage, S.
(eds.): USENIX Security 2016, pp. 689–706. USENIX Association, August 2016

7. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 36

8. BBC News: Iraqis use FireChat messaging app to overcome net block, June
2014. http://web.archive.org/web/20190325080943/https://www.bbc.com/news/
technology-27994309k

9. Becker, J.K., Li, D., Starobinski, D.: Tracking anonymized Bluetooth devices. In:
Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 50–65 (2019)

10. Bhavani, D.K.: Internet shutdown? Why Bridgefy app that enables offline
messaging is trending in India, December 2019. http://web.archive.org/web/
20200105053448/https://www.thehindu.com/sci-tech/technology/internet-
shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/
article30336067.ece

11. Bland, A.: FireChat - the messaging app that’s powering the Hong Kong protests,
September 2014. http://web.archive.org/web/20200328142327/https://www.
theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-
kong-protests

12. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

https://web.archive.org/web/20200411143157/www.bridgefy.me/
https://web.archive.org/web/20200411143157/www.bridgefy.me/
https://doi.org/10.1109/CNS.2018.8433184
https://doi.org/10.1145/3338500.3360334
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://doi.org/10.1007/978-3-642-32009-5_36
http://web.archive.org/web/20190325080943/https://www.bbc.com/news/technology-27994309k
http://web.archive.org/web/20190325080943/https://www.bbc.com/news/technology-27994309k
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200105053448/https://www.thehindu.com/sci-tech/technology/internet-shutdown-why-bridgefy-app-that-enables-offline-messaging-is-trending-in-india/article30336067.ece
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
http://web.archive.org/web/20200328142327/https://www.theguardian.com/world/2014/sep/29/firechat-messaging-app-powering-hong-kong-protests
https://doi.org/10.1007/BFb0055716

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 395

13. Bluetooth SIG: Core specification 5.1, January 2019. https://www.bluetooth.com/
specifications/bluetooth-core-specification/

14. Böck, H., Somorovsky, J., Young, C.: Return of Bleichenbacher’s oracle threat
(ROBOT). In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018, pp. 817–849.
USENIX Association, August 2018

15. Borak, M.: We tested a messaging app used by Hong Kong protesters that
works without an internet connection, September 2019. http://web.archive.
org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-
messaging-app-used-hong-kong-protesters-works-without-internet-connection/
article/3025661

16. Boyle, G.: 20 Years of Bleichenbacher attacks. Technical Reports RHUL-ISG-2019-
1. Information Security Group, Royal Holloway University of London (2019)

17. Brewster, T.: Hong Kong protesters are using this ‘mesh’ messaging app–
but should they trust it? September 2019. http://web.archive.org/web/
20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/
hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-
it/

18. Bridgefy: Developers (2018). https://blog.bridgefy.me/developers.html, https://
archive.vn/yjg9f

19. Bridgefy: Bridgefy’s commitment to privacy and security, August 2020. http://web.
archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-
privacy-and-security/

20. Bridgefy: Offline messaging, April 2020. https://web.archive.org/20200411143133/
play.google.com/store/apps/details?id=me.bridgefy.main

21. Bridgefy: Technical article on our security updates, November 2020. http://web.
archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-
security-updates/

22. Cortés, V.: Bridgefy sees massive spike in downloads during Hong Kong protests,
August 2019. http://web.archive.org/web/20191013072633/www.contxto.com/
en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-
protests/

23. Cremers, C., Hale, B., Kohbrok, K.: Efficient post-compromise security beyond
one group. Cryptology ePrint Archive, Report 2019/477 (2019). https://eprint.
iacr.org/2019/477

24. Dunning, J.P.: Taming the blue beast: a survey of Bluetooth based threats. IEEE
Secur. Priv. 8(2), 20–27 (2010). https://doi.org/10.1109/MSP.2010.3

25. Duong, T., Rizzo, J.: The CRIME attack. Presentation at Ekoparty Security Con-
ference (2012)

26. Ermoshina, K., Halpin, H., Musiani, F.: Can Johnny build a protocol? Co-
ordinating developer and user intentions for privacy-enhanced secure messaging
protocols. In: 2nd IEEE European Symposium on Security and Privacy (EuroS&P
2017) (2017)

27. Fifield, D.: A better zip bomb. In: 13th USENIX Workshop on Offensive Technolo-
gies (WOOT 2019), Santa Clara. USENIX Association, August 2019

28. Frida: A dynamic instrumentation framework, v12.8.9, February 2020. https://
frida.re/

29. Furuhashi, S.: MessagePack (2008). https://msgpack.org/
30. Gardner-Stephen, P.: The Serval Project (2017). http://www.servalproject.org/
31. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the lip

of the volcano: chosen ciphertext attacks on Apple iMessage. In: Holz, T., Savage,
S. (eds.): USENIX Security 2016, pp. 655–672. USENIX Association, August 2016

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191206182048/https://www.abacusnews.com/digital-life/we-tested-messaging-app-used-hong-kong-protesters-works-without-internet-connection/article/3025661
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
http://web.archive.org/web/20191219071731/https://www.forbes.com/sites/thomasbrewster/2019/09/04/hong-kong-protesters-are-using-this-mesh-messaging-app-but-should-they-trust-it/
https://blog.bridgefy.me/developers.html
https://archive.vn/yjg9f
https://archive.vn/yjg9f
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
http://web.archive.org/web/20200826183604/https://bridgefy.me/bridgefys-commitment-to-privacy-and-security/
https://web.archive.org/20200411143133/play.google.com/store/apps/details?id=me.bridgefy.main
https://web.archive.org/20200411143133/play.google.com/store/apps/details?id=me.bridgefy.main
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20201102093540/https://bridgefy.me/technical-article-on-our-security-updates/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
http://web.archive.org/web/20191013072633/www.contxto.com/en/mexico/mexican-bridgefy-sees-massive-spike-in-downloads-during-hong-kong-protests/
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://doi.org/10.1109/MSP.2010.3
https://frida.re/
https://frida.re/
https://msgpack.org/
http://www.servalproject.org/

396 M. R. Albrecht et al.

32. Gluck, Y., Harris, N., Prado, A.: BREACH: reviving the CRIME attack. Black
Hat USA (2013)

33. Goodin, D.: Bridgefy, the messenger promoted for mass protests, is a privacy dis-
aster, August 2020. https://arstechnica.com/features/2020/08/bridgefy-the-app-
promoted-for-mass-protests-is-a-privacy-disaster/

34. Halpin, H., Ermoshina, K., Musiani, F.: Co-ordinating developers and high-risk
users of privacy-enhanced secure messaging protocols. In: Cremers, C., Lehmann,
A. (eds.) SSR 2018. LNCS, vol. 11322, pp. 56–75. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-04762-7 4

35. Hassan, S.S., Bibon, S.D., Hossain, M.S., Atiquzzaman, M.: Security threats in
Bluetooth technology. Comput. Secur. 74, 308–322 (2018). https://doi.org/10.
1016/j.cose.2017.03.008

36. HypeLabs: The Hype SDK: a technical overview (2019). https://hypelabs.io/
documents/Hype-SDK.pdf

37. HypeLabs (2020). https://hypelabs.io
38. IETF: DEFLATE compressed data format specification version 1.3, May 1996.

https://tools.ietf.org/html/rfc1951
39. IETF: GZIP file format specification version 4.3, May 1996. https://tools.ietf.org/

html/rfc1952
40. IETF: PKCS #1: RSA encryption version 1.5, March 1998. https://tools.ietf.org/

html/rfc2313
41. Jasek, S.: GATTacking Bluetooth smart devices (2016). https://github.com/

securing/docs/raw/master/whitepaper.pdf
42. Josh Horwitz, T.i.A.: Unblockable? Unstoppable? FireChat messaging app unites

China and Taiwan in free speech. . . and it’s not pretty, March 2014. http://
web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-
unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-
its-not-pretty/

43. Kelsey, J.: Compression and information leakage of plaintext. In: Daemen, J., Rij-
men, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 263–276. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45661-9 21

44. Kĺıma, V., Pokorný, O., Rosa, T.: Attacking RSA-based sessions in SSL/TLS. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 426–440.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6 33

45. Koetsier, J.: Hong Kong protestors using mesh messaging app China can’t block:
usage up 3685%, September 2019. https://web.archive.org/web/20200411154603/
www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-
mesh-messaging-app-china-cant-block-usage-up-3685/

46. Magaisa, A.T.: https://twitter.com/wamagaisa/status/1288817111796797440.
http://archive.today/DVRZf, July 2020

47. Mihindukulasuriya, R.: FireChat, Bridgefy see massive rise in downloads amid
internet shutdowns during CAA protests, December 2019. http://web.archive.org/
web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-
rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/

48. Mohan, P.: How the internet shutdown in Kashmir is splintering India’s
democracy, March 2020. http://web.archive.org/web/20200408111230/https://
www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-
splintering-indias-democracy

https://arstechnica.com/features/2020/08/bridgefy-the-app-promoted-for-mass-protests-is-a-privacy-disaster/
https://arstechnica.com/features/2020/08/bridgefy-the-app-promoted-for-mass-protests-is-a-privacy-disaster/
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1016/j.cose.2017.03.008
https://doi.org/10.1016/j.cose.2017.03.008
https://hypelabs.io/documents/Hype-SDK.pdf
https://hypelabs.io/documents/Hype-SDK.pdf
https://hypelabs.io
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313
https://github.com/securing/docs/raw/master/whitepaper.pdf
https://github.com/securing/docs/raw/master/whitepaper.pdf
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
http://web.archive.org/web/20141027180653/https://www.techinasia.com/unblockable-unstoppable-firechat-messaging-app-unites-china-and-taiwan-in-free-speech-and-its-not-pretty/
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1007/978-3-540-45238-6_33
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://twitter.com/wamagaisa/status/1288817111796797440
http://archive.today/DVRZf
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200109212954/https://theprint.in/india/firechat-bridgefy-see-massive-rise-in-downloads-amid-internet-shutdowns-during-caa-protests/340058/
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy
http://web.archive.org/web/20200408111230/https://www.fastcompany.com/90470779/how-the-internet-shutdown-in-kashmir-is-splintering-indias-democracy

Mesh Messaging in Large-Scale Protests: Breaking Bridgefy 397

49. Mudzingwa, F.: This offline messenger that might keep you connected if the govt
decides to shut down the internet, August 2020. https://web.archive.org/web/
20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-
that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/

50. News, H.: Hong Kong protestors using Bridgefy’s Bluetooth-based mesh network
messaging app, August 2019. https://web.archive.org/web/20191016114954/news.
ycombinator.com/item?id=20861948

51. Ng, B.: Bridgefy: a startup that enables messaging without internet, August
2019. http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/
article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-
internet

52. Open Garden: FireChat, October 2019. http://web.archive.org/web/
20200111174316/https://www.opengarden.com/firechat/

53. Open Mesh: B.A.T.M.A.N. Advanced (2020). https://www.open-mesh.org/
projects/batman-adv/wiki

54. Purohit, K.: Whatsapp to Bridgefy, what Hong Kong taught India’s leaderless
protesters, December 2019. http://web.archive.org/web/20200406103939/https://
www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-
hong-kong-taught-indias-leaderless

55. Rogers, M., Saitta, E., Grote, T., Dehm, J., Wieder, B.: Briar, March 2018. https://
web.archive.org/web/20191016114519/briarproject.org/

56. Ryan, M.: Bluetooth: with low energy comes low security. In: Proceedings of the
7th USENIX Conference on Offensive Technologies (WOOT 2013), p. 4. USENIX
Association, USA (2013)

57. Schwartz, L.: The world’s protest app of choice, August 2020. https://restofworld.
org/2020/the-worlds-protest-app-of-choice/, http://archive.today/5kOhr

58. SIG, B.: Mesh profile specification 1.0.1, January 2019. https://www.bluetooth.
com/specifications/mesh-specifications/

59. Silva, M.D.: Hong Kong protestors are once again using mesh networks to preempt
an internet shutdown, September 2019. http://archive.today/2019.09.20-220517/
https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-
shutdown/

60. Sivakumaran, P., Blasco, J.: A study of the feasibility of co-located app attacks
against BLE and a large-scale analysis of the current application-layer security
landscape. In: Heninger, N., Traynor, P. (eds.) USENIX Security 2019, pp. 1–18.
USENIX Association, August 2019

61. Skylot: Jadx - Dex to Java decompiler, v1.1.0, December 2019. https://github.
com/skylot/jadx

62. SMEX: Lebanon protests: how to communicate securely in case of a network dis-
ruption, October 2019. https://smex.org/lebanon-protests-how-to-communicate-
securely-in-case-of-a-network-disruption-2/, http://archive.today/hx1lp

63. Software Freedom Law Centre, India: Internet shutdown tracker (2020). https://
internetshutdowns.in/

64. Stein, W., et al.: Sage mathematics software version 9.0. The Sage Development
Team (2019). http://www.sagemath.org

65. Subnodes: Subnodes (2018). http://subnodes.org/
66. Sullivan, N., Turner, S., Kaduk, B., Cohn-Gordon, K., et al.: Messaging Layer

Security (MLS), November 2018. https://datatracker.ietf.org/wg/mls/about/

https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20200816101930/www.techzim.co.zw/2020/07/bridgefy-is-an-offline-messenger-that-might-keep-you-connected-if-the-govt-decides-to-shut-down-the-internet/
https://web.archive.org/web/20191016114954/news.ycombinator.com/item?id=20861948
https://web.archive.org/web/20191016114954/news.ycombinator.com/item?id=20861948
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://archive.today/2020.06.07-120425/https://www.ejinsight.com/eji/article/id/2230121/20190826-bridgefy-a-startup-that-enables-messaging-without-internet
http://web.archive.org/web/20200111174316/https://www.opengarden.com/firechat/
http://web.archive.org/web/20200111174316/https://www.opengarden.com/firechat/
https://www.open-mesh.org/projects/batman-adv/wiki
https://www.open-mesh.org/projects/batman-adv/wiki
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
http://web.archive.org/web/20200406103939/https://www.scmp.com/week-asia/politics/article/3042633/whatsapp-bridgefy-what-hong-kong-taught-indias-leaderless
https://web.archive.org/web/20191016114519/briarproject.org/
https://web.archive.org/web/20191016114519/briarproject.org/
https://restofworld.org/2020/the-worlds-protest-app-of-choice/
https://restofworld.org/2020/the-worlds-protest-app-of-choice/
http://archive.today/5kOhr
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
http://archive.today/2019.09.20-220517/https://qz.com/1701045/hong-kong-protestors-use-bridgefy-to-preempt-internet-shutdown/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://smex.org/lebanon-protests-how-to-communicate-securely-in-case-of-a-network-disruption-2/
https://smex.org/lebanon-protests-how-to-communicate-securely-in-case-of-a-network-disruption-2/
http://archive.today/hx1lp
https://internetshutdowns.in/
https://internetshutdowns.in/
http://www.sagemath.org
http://subnodes.org/
https://datatracker.ietf.org/wg/mls/about/

398 M. R. Albrecht et al.

67. Teknologiia Lebanon: Lebanese protesters are using this ‘Bridgefy’ messaging app
– what is it? January 2020. https://medium.com/@teknologiialb/lebanese-
protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197,
https://archive.vn/udqly

68. The Stranger: How to message people at protests even without internet access, June
2020. https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-
people-at-protests-even-without-internet-access, http://archive.is/8UrWQ

69. Twitter: Bridgefy search, June 2020. https://twitter.com/search?q=bridgefy,
http://archive.today/hwklY

70. Twitter - B1O15J, August 2020. https://twitter.com/B1O15J/status/
1294603355277336576, https://archive.vn/dkPqD

71. Twitter - Bridgefy, November 2019. https://twitter.com/bridgefy/status/
1197191632665415686, http://archive.today/aNKQy

72. Twitter - Bridgefy, December 2019. https://twitter.com/bridgefy/status/
1209924773486170113, http://archive.today/aQZDL

73. Twitter - Bridgefy, January 2020. https://twitter.com/bridgefy/status/
1216473058753597453, http://archive.today/x1gG4

74. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1268905414248153089. http://archive.today/odSbW

75. Twitter - Bridgefy, July 2020. https://twitter.com/bridgefy/status/
1287768436244983808, https://archive.vn/WQfZm

76. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1268015807252004864, http://archive.today/uKNRm

77. Twitter - Bridgefy, August 2020. https://twitter.com/bridgefy/status/
1289576487004168197, https://archive.vn/zbxgR

78. Twitter - Bridgefy, August 2020. https://twitter.com/bridgefy/status/
1292880821725036545, https://archive.vn/tKr0t

79. Twitter - Bridgefy, June 2020. https://twitter.com/bridgefy/status/
1267469099266965506, http://archive.today/40pzC

80. Uher, J., Mennecke, R.G., Farroha, B.S.: Denial of sleep attacks in Bluetooth
Low Energy wireless sensor networks. In: Brand, J., Valenti, M.C., Akinpelu, A.,
Doshi, B.T., Gorsic, B.L. (eds.) 2016 IEEE Military Communications Conference,
MILCOM 2016, Baltimore, MD, USA, 1–3 November 2016, pp. 1231–1236. IEEE
(2016). https://doi.org/10.1109/MILCOM.2016.7795499

81. Wakefield, J.: Hong Kong protesters using Bluetooth Bridgefy app, Septem-
ber 2019. http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/
news/technology-49565587

82. Zuo, C., Wen, H., Lin, Z., Zhang, Y.: Automatic fingerprinting of vulnerable BLE
IoT devices with static UUIDs from mobile apps. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1469–1483.
ACM (2019)

https://medium.com/@teknologiialb/lebanese-protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197
https://medium.com/@teknologiialb/lebanese-protesters-are-using-this-bridgefy-messaging-app-what-is-it-74614e169197
https://archive.vn/udqly
https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-people-at-protests-even-without-internet-access
https://www.thestranger.com/slog/2020/06/03/43829749/how-to-message-people-at-protests-even-without-internet-access
http://archive.is/8UrWQ
https://twitter.com/search?q=bridgefy
http://archive.today/hwklY
https://twitter.com/B1O15J/status/1294603355277336576
https://twitter.com/B1O15J/status/1294603355277336576
https://archive.vn/dkPqD
https://twitter.com/bridgefy/status/1197191632665415686
https://twitter.com/bridgefy/status/1197191632665415686
http://archive.today/aNKQy
https://twitter.com/bridgefy/status/1209924773486170113
https://twitter.com/bridgefy/status/1209924773486170113
http://archive.today/aQZDL
https://twitter.com/bridgefy/status/1216473058753597453
https://twitter.com/bridgefy/status/1216473058753597453
http://archive.today/x1gG4
https://twitter.com/bridgefy/status/1268905414248153089
https://twitter.com/bridgefy/status/1268905414248153089
http://archive.today/odSbW
https://twitter.com/bridgefy/status/1287768436244983808
https://twitter.com/bridgefy/status/1287768436244983808
https://archive.vn/WQfZm
https://twitter.com/bridgefy/status/1268015807252004864
https://twitter.com/bridgefy/status/1268015807252004864
http://archive.today/uKNRm
https://twitter.com/bridgefy/status/1289576487004168197
https://twitter.com/bridgefy/status/1289576487004168197
https://archive.vn/zbxgR
https://twitter.com/bridgefy/status/1292880821725036545
https://twitter.com/bridgefy/status/1292880821725036545
https://archive.vn/tKr0t
https://twitter.com/bridgefy/status/1267469099266965506
https://twitter.com/bridgefy/status/1267469099266965506
http://archive.today/40pzC
https://doi.org/10.1109/MILCOM.2016.7795499
http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/news/technology-49565587
http://web.archive.org/web/20200305062625/https://www.bbc.co.uk/news/technology-49565587

Inverse-Sybil Attacks in Automated
Contact Tracing

Benedikt Auerbach(B) , Suvradip Chakraborty, Karen Klein,
Guillermo Pascual-Perez , Krzysztof Pietrzak, Michael Walter ,

and Michelle Yeo

IST Austria, Klosterneuburg, Austria
{bauerbac,schakrab,kklein,gpascual,pietrzak,mwalter,myeo}@ist.ac.at

Abstract. Automated contract tracing aims at supporting manual con-
tact tracing during pandemics by alerting users of encounters with
infected people. There are currently many proposals for protocols (like
the “decentralized” DP-3T and PACT or the “centralized” ROBERT
and DESIRE) to be run on mobile phones, where the basic idea is to
regularly broadcast (using low energy Bluetooth) some values, and at
the same time store (a function of) incoming messages broadcasted by
users in their proximity. In the existing proposals one can trigger false
positives on a massive scale by an “inverse-Sybil” attack, where a large
number of devices (malicious users or hacked phones) pretend to be the
same user, such that later, just a single person needs to be diagnosed
(and allowed to upload) to trigger an alert for all users who were in
proximity to any of this large group of devices.

We propose the first protocols that do not succumb to such attacks
assuming the devices involved in the attack do not constantly communi-
cate, which we observe is a necessary assumption. The high level idea of
the protocols is to derive the values to be broadcasted by a hash chain,
so that two (or more) devices who want to launch an inverse-Sybil attack
will not be able to connect their respective chains and thus only one of
them will be able to upload. Our protocols also achieve security against
replay, belated replay, and one of them even against relay attacks.

Keywords: Automated contact tracing · Replay attacks · Relay
attacks · Inverse sybil attacks

1 Introduction

1.1 Automated Contact Tracing

One central element in managing the current Covid-19 pandemic is contact trac-
ing, which aims at identifying individuals who were in contact with diagnosed

Guillermo Pascual-Perez and Michelle Yeo were funded by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sk�lodowska–Curie Grant
Agreement No. 665385; the remaining contributors to this project have received fund-
ing from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (682815 - TOCNeT).

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 399–421, 2021.
https://doi.org/10.1007/978-3-030-75539-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_17&domain=pdf
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0001-8630-415X
http://orcid.org/0000-0003-3186-2482
https://doi.org/10.1007/978-3-030-75539-3_17

400 B. Auerbach et al.

people so they can be warned and further spread can be prevented. While contact
tracing is done mostly manually, there are many projects which develop auto-
mated contact tracing tools leveraging the fact that many people carry mobile
phones around most of the time.

While some early tracing apps used GPS coordinates, most ongoing efforts
bet on low energy Bluetooth to identify proximity of devices. Some of the larger
projects include east [2,9] and west coast PACT [11], Covid Watch [1], DP-
3T [16], Robert [5], its successor Desire [10] and Pepp-PT [3]. Google and
Apple [4] released an API for Android and iOS phones which solves some issues
earlier apps had (in particular, using Bluetooth in the background and synchro-
nising Bluetooth MAC rotations with other key rotations). As this API is fairly
specific its use is limited to basically the DP-3T protocol.

In typical contact-tracing schemes users broadcast messages to, and process
messages received from other users in close proximity. If a user is diagnosed she
prepares a report message and sends it to the backend server. The server uses
the message to generate data which allows other users in combination with their
current internal state to evaluate whether they were in contact with an infected
person.

Coming up with a practical protocol is challenging. The protocol should be
simple and efficient enough to be implemented in short time and using just
low energy Bluetooth. As the usage of an app should be voluntarily, the app
should provide strong privacy and security guarantees to not disincentivize
people from using it.

1.2 False Positives

One important security aspect is preventing false positives, that is, having a
user’s device trigger an alert even though she was not in proximity with a diag-
nosed user. Triggering false positives cannot be completely prevented, a dedi-
cated adversary will always be able to e.g. “borrow” the phone of a person who
shows symptoms and bring it into proximity of users he wants to get alerted.
What is more worrying are attacks which either are much easier to launch or
that can easily be scaled. If such large scale attacks should happen they will
likely undermine trust and thus deployment of the app. There are individuals
and even some authoritarian states that actively try to undermine efforts to con-
tain the epidemic, at this point mostly by disinformation,1 but potential low-cost
large-scale attacks on tracing apps would also make a worthy target.

Even more worrying, such attacks might not only affect the reputation and
thus deployment of the app, but also external events like elections; Launching
false alerts on a large scale could keep a particular electorate from voting.2

1 https://www.aies.at/download/2020/AIES-Fokus-2020-03.pdf.
2 https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-

downplay-possible-election-threat-identified-in-their-covid-19-tracing-software.

https://www.aies.at/download/2020/AIES-Fokus-2020-03.pdf
https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-downplay-possible-election-threat-identified-in-their-covid-19-tracing-software
https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-downplay-possible-election-threat-identified-in-their-covid-19-tracing-software

Inverse-Sybil Attacks in Automated Contact Tracing 401

Replay Attacks. One type of such attack are replay attacks, where an adver-
sary simply records the message broadcasted by the device of a user Alice, and
can later replay this broadcast (potentially after altering it) to some user Bob,
such that Bob will be alerted should Alice report sick. Such an attack is clearly
much easier to launch and scale than “borrowing” the device of Alice. One way
to prevent replay attacks without compromising privacy but somewhat losing in
efficiency and simplicity is by interaction [17] or at least non-interactive message
exchange [7,10]. The Google-Apple API [4] implicitly stores and authenticates
the epoch of each encounter (basically, the time rounded to 15 min) to achieve
some security against replay attacks, thus giving up a lot in privacy to prevent
replaying messages that are older than 15 min. This still leaves a lot of room for
replays, in particular if combined with relaying messages as discussed next. A
way to prevent replay attacks by authenticating the time of the exchange without
ever storing this sensitive data, termed “delayed authentication”, was suggested
in [15]. Iovino et al. [14] show that the Google-Apple API also succumbs to so
called belated replay attacks. That is, adversaries that are able to control the
targeted device’s internal clock can trigger false positives by replaying report
messages already published by the server.

Relay Attacks. Even if replay attacks are not possible (e.g. because one uses
message exchange [7,10,17] or a message can only trigger an alert if replayed
right away [15]) existing schemes can still succumb to relay attacks, where the
messages received by one device are sent to some other device far away, to be
replayed there. This attack is more difficult to launch than a replay attack, but
also more difficult to protect against. The only proposals we are aware of which
aim at preventing them [13,15,17] require some kind of location dependent value
like coarse GPS coordinates or cell tower IDs.

Inverse-Sybil Attacks. While replay and relay attacks on tracing apps have
already received some attention, “inverse-Sybil” attacks seem at least as devas-
tating but have attained little attention so far. In such attacks, many different
devices pretend to be just one user, so that later it’s sufficient that a single per-
son is diagnosed and can upload its values in order to alert all users who were
in proximity to any of the many devices. The devices involved in such an attack
could belong to malicious covidiots, or to honest users whose phones got hacked.
In this work we propose two protocols that do not succumb to inverse-Sybil
attacks. Below we first shortly discuss how such attacks affect the various types
of tracing protocols suggested, the discussion borrows from Vaudenay [18], where
this attack is called a “terrorist attack”. The attacks are illustrated in Fig. 1.

Decentralized. In so called decentralized schemes like DP-3T [16], devices reg-
ularly broadcast ephemeral IDs derived from some initial key K, and also
store IDs broadcasted by other devices in their proximity. If diagnosed, the
devices upload their keys K to a backend server. The devices daily download
keys of infected users from the server and check if they have locally stored

402 B. Auerbach et al.

any of the IDs corresponding to those keys. If yes, the devices raise an alert.3

It’s particularly easy to launch an inverse-Sybil attack against decentralized
schemes, one just needs to initialize the attacking devices with the same initial
key K.

Centralized. Centralized schemes like Robert [5] and CleverParrot [8] are sim-
ilar, but here an infected user uploads the received (not the broadcasted)
IDs to the server, who then informs the senders of those broadcasts about
their risk. To launch an inverse-Sybil attack against such schemes the attack-
ing devices don’t need to be initialized with the same key, in fact, they don’t
need to broadcast anything at all. Before uploading to the server, the attacker
simply collects the messages received from any devices he gets his hands on,
and uploads all of them.
As in centralized schemes the server learns the number of encounters, he can
set an upper bound on the number of encounters a single diagnosed user can
upload, which makes an inverse-Sybil attack much less scalable.

Non-interactive Exchange. Schemes including Desire [10] and Pronto-C2 [7]
require the devices to exchange messages (say X and Y) at an encounter, and
from these then compute a shared token S = f(X,Y).4

In Desire and Pronto-C2 the token is derived by a non-interactive key
exchange (NIKE), concretely, a Diffie-Hellman exchange X = gx, Y = gy, S =
gxy. The goal is to prevent a user who passively records the exchange to learn
S.
Our first protocol also uses an exchange, but for a different goal, and for us
it’s sufficient to just use hashing S = H(X,Y) to derive the token.
The inverse-Sybil attack as described above also can be launched against
schemes that use a non-interactive exchange, but now the attack devices
need to be active (i.e., broadcast, not just record) during the attack also for
centralized schemes like Desire.

While recently formal models of integrity properties of contact trac-
ing schemes have been proposed, they either do not consider inverse-Sybil
attacks [12], or only do so in the limited sense of imposing upper bounds on
the number of alerts a single report message to the server can trigger [8].

Modeling Inverse-Sybil Attacks. We first discuss a simple security notion
for inverse-Sybil attacks that considers an adversary which consists of four parts
(A0,A1,A2,A3) where

3 This oversimplifies things, in reality a risk score is computed based on the number,
duration, signal strength etc., of the encounters, which then may or may not raise
an alert. How the risk is computed is of course crucial, but not important for this
work.

4 In Desire it’s called a “private encounter token” (PET), and is uploaded to the server
for a risk assessment (so it’s a more centralized scheme), while in Pronto-C2 only
diagnosed users upload the tokens, which are then downloaded by all other devices
to make the assessment on their phones (so a more decentralized scheme).

Inverse-Sybil Attacks in Automated Contact Tracing 403

Fig. 1. (top left) Illustration of a successful inverse-Sybil attack: both bobs trigger an
alert even though they interacted with different devices A1,A2. (rest) The attacks on
the various protocol types outlined in Sect. 1.2.

– A0 chooses initial states for A1,A2.
– A1 and A2 interact with honest devices bob1 and bob2.
– A1 and A2 pass their state to A3.
– A3 is then allowed to upload some combined state to the backend server (like

a diagnosed user).
– The adversary wins the game if both, bob1 and bob2, raise an alert after

interacting with the backend server.

The notions we achieve for our actual protocols are a bit weaker, in particular,
in Protocol 1 the adversary can combine a small number of received random
beacons from two devices (basically the encounters in the first epoch) and in our
Protocol 2 we need to assume that the locations of the devices in the future are
not already known when the attack starts.

On the Assumption that Devices Can’t Communicate. Let us stress
that in the security game above we do not allow A1 and A2 to communicate.
The reason is that a successful inverse-Sybil attack seems unavoidable (while
preserving privacy) if such communication was allowed: A1 can simply send its
entire state to A2 after interacting with bob1, who then interacts with bob2. The
final state of A2 has the distribution of a single device C first interacting with
bob1 then with bob2, and if this was the case we want both bobs to trigger an

404 B. Auerbach et al.

alert, this is illustrated in Fig. 2. Thus, without giving up on privacy (by e.g.
storing location data and checking movement patterns), presumably the best we
can hope for is a protocol which prevents an inverse-Sybil attack assuming the
devices involved in the attack do not communicate. Such an assumption might
be justified if one considers the case where the attack is launched by hacked
devices, as such communication might be hard or at least easily detectable.

bob1 A1 bob2 A2A0 A3 bob1 C bob2

∼
encounter

encounter

upload
(if diagnosed)

check risk/alert

Fig. 2. If the attacking devices A1,A2 could communicate during the attack (arrow
in red), they can emulate the transcript (shown in green) of a single honest device C
interacting with bob1, bob2 and the server. As such a C can make both bobs trigger an
alert by running the honest protocol, the adversary can always win the game. (Color
figure online)

If we can’t exclude communication, we note that the security of our schemes
degrades gracefully with the frequency in which such communication is possible.
Basically, in our first protocol, at every point in time at most one of the devices
will be able to have interactions with other devices which later will trigger an
alert, and moving this “token” from one device to another requires communi-
cation between the two devices. In our second protocol the token can only be
passed once per epoch, but on the downside, several devices can be active at the
same time as long as they are at the same location dependent coordinate.

Only under very strong additional assumptions, in particular if the devices
run trusted hardware, inverse-Sybil attacks can be prevented in various ways,
even if the devices can communicate.

Using Hash Chains to Prevent Inverse-Sybil Attacks. Below we outline
the two proposed protocols which do not succumb to inverse-Sybil attacks. The
basic idea is to force the devices to derive their broadcasted values from a hash
chain. If diagnosed, a user will upload the chain to the server, who will then
verify it’s indeed a proper hash chain.

The main problem with this idea is that one needs to force the chains of
different attacking devices to diverge, so later, when the adversary can upload a
chain, only users who interacted with the device creating that particular chain
will raise an alert. To enforce diverting chains, we will make the devices infuse
unpredictable values to their chains. We propose two ways of doing this, both

Inverse-Sybil Attacks in Automated Contact Tracing 405

protocols are decentralized (i.e., the risk assessment is done on the devices), but
it’s straightforward to change them to centralized variants.

Protocol 1 (Sect. 2, decentralized, non-interactive exchange) The basic
idea of our first proposal is to let devices exchange some randomness at an
encounter, together with the heads of their hash chains. The received ran-
domness must then be used to progress the hash chain. Should a user be
diagnosed and her hash-chain is uploaded, the other device can verify that
the randomness it chose was used to progress that chain from the head it
received. A toy version of this protocol is illustrated in Fig. 3 (the encounter)
and 4 (report and alert).

Protocol 2 (Sect. 4, decentralized, location based coordinate) Our sec-
ond protocol is similar to simple protocols like the unlinkable DP-3T, but the
broadcasted values are derived via a hash-chain (not sampled at random).
We also need the device to measure some location dependent coordinate with
every epoch which is then infused to the hash chain at the end of the epoch.
Apart from the need of a location dependent coordinate, the scheme is basi-
cally as efficient as the unlinkable variant of DP-3T. In particular, no message
exchanges are necessary and the upload by a diagnosed user is linear in the
number of epochs, but independent of the number of encounters. This comes
at the cost of weaker security against inverse-Sybil attacks compared to Pro-
tocol 1, since we need the location coordinate to be unpredictable for the
protocol to be secure, cf. Fig. 10.

The Privacy Cost of Hash Chains. In our protocols diagnosed users must
upload the hash chain to the backend server, that then checks if the uploaded val-
ues indeed form a hash chain. This immediately raises serious privacy concerns,
but we’ll argue that the privacy cost of our protocols is fairly minor; apart from
the fact that the server can learn an ordering of the uploaded values (which then
would give some extra information should the server collude with other users),
the protocols provide the same privacy guarantees as their underlying proto-
cols without the chaining (which do not provide security against inverse-Sybil
attacks).

2 Protocol 1: Decentralized, Non-Interactive Exchange

In this section we describe our first contact tracing protocol using hash chains
which does not succumb to inverse-Sybil attacks. To illustrate the main idea
behind the protocol, in Sect. 2.1 we’ll consider a toy version of the protocol which
assumes a (unrealistic) restricted communication model. We will then describe
and motivate the changes to the protocol required to make it private and correct
in a general communication model.

406 B. Auerbach et al.

Alice Bob

// hA current hash value // hB current hash value

ρA ←$ {0, 1}r ρB ←$ {0, 1}r

hA, ρA

hB , ρB

store (hA, ρB) in Lrep
A store (hB , ρA) in Lrep

B

store (hB , ρA) in Leval
A store (hA, ρB) in Leval

B

hA ← H(hA, ρB) hB ← H(hB , ρA)

Fig. 3. Broadcast/receive phase of the toy protocol.

Alice Server Bob

// L
rep report list // L

ser server list // L
eval evaluation list

. report infection .

Lrep

((h1, ρ1), . . . , (hn, ρn)) ← Lrep

for i in {1, . . . , n − 1}
if hi+1 �= H(hi, ρi)

reject report
Lser ← Lser ∪ Lrep

. evaluate risk .

Lser

if Lser ∩ Leval �= ∅
return “contact”

return “no contact”

Fig. 4. Report/risk-evaluation phase of the toy protocol.

2.1 Toy Protocol

The description of our toy protocol is given below, its broadcast/receive phase
is additionally depicted in Fig. 3, and its report/evaluate phase in Fig. 4. To
analyze it, we’ll make the (unrealistic) assumptions that all parties proceed in
the protocol in a synchronized manner, i.e., messages between two parties are
broadcast and received at the same time, and consider a setting where users
meet in pairs: a broadcasted message from user A is received by at most one
other user B, and in this case also A receives the message from B.

– (setup) Users sample a genesis hash value h1 and set the current head of
the hash chain to h ← h1. Then they initialize empty lists Lrep and Leval

which are used to store information to be reported to the backend server in
case of infection or used to evaluate whether contact with an infected person
occurred, respectively.

– (broadcast) In regular intervals each user samples a random string
ρ ←$ {0, 1}r and broadcasts the message (h, ρ) where h is the current head of
the hash chain.

Inverse-Sybil Attacks in Automated Contact Tracing 407

– (receive broadcast message) When Alice with current hash value hA receives
a broadcast message (hB , ρB) from Bob she proceeds as follows. She appends
the pair (hA, ρB) to Lrep and stores (hB , ρA) in Leval. Then she computes the
new head of the hash chain as hA ← H(hA, ρB).

– (report message to backend server) When diagnosed users upload the list
Lrep = ((h1, ρ1), . . . , (hn, ρn)) to the server. The server verifies that the
uploaded values indeed form a hash chain, i.e., that hi+1 = H(hi, ρi) for all
i ∈ {1, . . . , n − 1}. If the uploaded values pass this check the server includes
all elements of Lrep to the list Lser.

– (evaluate infection risk) After downloading Lser from the server users check
whether Lser contains any of the hash-randomness pairs stored in Leval. If
this is the case they assume that they were in contact with an infected party.

Security. The toy protocol does not succumb to inverse-Sibyl attacks. In Sect. 3
we provide a formal security model for inverse-Sybil attacks and give a security
proof for the full protocol described in Sect. 2.2.

Correctness. Assume that Alice and Bob met and simultaneously exchanged
messages (hA, ρA) and (hB , ρB). Then the pair (hA, ρB) is stored by Alice in
Lrep and by Bob in Leval. If Alice later is diagnosed and uploads Lrep, Bob will
learn that he was in contact with an infected person.

This toy protocol cannot handle simultaneous encounters of more than two
parties. For example, assume both, Bob and Charlie, received Alice’s message
(hA, ρA) at the same time. Even if Alice records messages from both users, it’s
not clear how to process them. We could let Alice process both sequentially, say
first Bob’s message as h′

A ← H(hA, ρB), and then Charlie’s h′′
A ← H(h′

A, ρC).
Then later, should Alice be diagnosed and upload (hA, ρB), (h′

A, ρC), Charlie
who stored (hA, ρC) will get a false negative and not recognize the encounter.

Our full protocol overcomes this issue by advancing in epochs. The random-
ness broadcast by other parties is collected in a pool that at the end of the
current epoch is used to extend the hash chain by one link.

Privacy. The toy protocol is a minimal solution to prevent inverse-Sybil attacks
but has several weaknesses regarding privacy. Below, we discuss some privacy
issues of the toy protocol, and how they are addressed in Protocol 1

(i) Problem (Reconstruction of chains): After learning the list Lser from the
server, a user Bob is able to reconstruct the hash chains contained in this
list even if the tuples in Lser are randomly permuted: check for each pair
(h, ρ), (h′, ρ′) ∈ Lser if h′ = H(h, ρ) to identify all chain links. If a recon-
structed chain can be linked to a user, this reveals how many encounters this
user had. Moreover a user can determine the position in this chain where it
had encounters with this person.
Solution (Keyed hash function): We use a keyed hash function so Bob can’t
evaluate the hash function. Let us stress that this will not improve privacy

408 B. Auerbach et al.

against a malicious server because the server is given the hashing key as it
must verify the uploaded values indeed form a chain. Leakage of the order-
ing of encounters to the server is the price we pay in privacy for preventing
inverse-Sybil attacks.

(ii) Problem (Correlated uploads): Parallel encounters are not just a problem
for correctness as we discussed above, but also privacy. If both Bob and
Charlie met Alice at the same time, both will receive the same message
(hA, ρA). Bob will then store (hB , ρA) and Charlie (hC , ρA) in their Lrep

list. This is bad for privacy, for example if both, Bob and Charlie, later are
diagnosed and upload their Lrep lists, (at least) the server will see that they
both uploaded the same ρA, and thus they must have been in proximity.
Solution (Unique chaining values): The chaining value (σA in Fig. 5 below)
in Protocol 1 is not just the received randomness as in the toy protocol, but
a hash of the received randomness and the heads of the hash chains of both
parties. This ensures that all the Lrep lists (containing the chains users will
upload if diagnosed) simply look like random and independent hash chains.

2.2 Description of Protocol 1

We now describe our actual hash-chain based protocol. Unlike the toy protocol it
proceeds in epochs. Users broadcast the same message during the full duration
of an epoch and pool incoming messages in a set that is used to update the
hash chain at the beginning of the next epoch. The protocol makes use of three
hash functions H1, H2, and H3. It is additionally parametrized by an integer γ
that serves as an upper limit on the number of contacts that can be processed
per epoch. Its formal description is given below. Its broadcast/receive phase is
additionally depicted in Fig. 5, and its report/evaluate phase in Fig. 6.

– (setup) Alice samples a key kA and a genesis hash value h1. She sets the
current head of the hash chain to h ← h1. Then she initializes empty lists Lrep

and Leval which are used to store information to be reported to the backend
server in case of infection or used to evaluate whether contact with an infected
person occurred, respectively.

– (broadcast) At the beginning of every epoch Alice samples a random string
ρA ←$ {0, 1}r and sets C to the empty set. She broadcasts the message
(hA, ρA) consisting of the current head of the hash chain and this randomness
during the full duration of the epoch.

– (receive broadcast message) Let hA denote her current head of the hash chain.
Whenever she receives a broadcast message (hB , ρB) from Bob she proceeds
as follows. She computes σA ← H2(hA, hB , ρB) and adds σA to the set C.
Then she computes the value σ′

A ← H3(hB , hA, ρA) and stores it in Leval.
– (end of epoch) When the epoch ends (we discuss below when that should

happen), Alice appends the tuple (hA, C) to Lrep and updates the hash chain
using C as hA ← H1(kA, hA, C), but for efficiency reasons only if she received
at least one broadcast, i.e., C �= ∅.

Inverse-Sybil Attacks in Automated Contact Tracing 409

Alice our protocol Other parties

// kA hash key, hA current hash value

// τ, γ, max. time & encounters per epoch

. epoch t .

C ← ∅
ρA ←$ {0, 1}r

hA, ρA

broadcast during full epoch

hB , ρB

σA ← H2(hA, hB , ρB)
C ← C ∪ σA

σ′
A ← H2(hB , hA, ρA)

store H3(hB , σ′
A) in Leval

A

hC , ρC

σA ← H2(hA, hC , ρC)
C ← C ∪ σA

σ′
A ← H2(hC , hA, ρA)

store H3(hC , σ′
A) in Leval

A

...

. if τ seconds passed or |C| = γ .

if C �= ∅ // progress chain

store (hA, C) in Lrep

hA ← H1(kA, hA, C)

. epoch t + 1 .

Fig. 5. Broadcast/receive phase of Protocol 1

– (report message to backend server) If diagnosed, Alice is allowed to upload
her key kA and the list Lrep = ((h1, C1), . . . , (hn, Cn)) to the server. The
server verifies that the uploaded values indeed form a hash chain, i.e., that
hi+1 = H(kA, hi, Ci) for all i ∈ {1, . . . , n − 1}. If the uploaded values pass
this check the server updates its list Lser as follows. For every set Ci it adds
the hash value H3(hi, σ) to Lser for all σ ∈ Ci.

– (evaluate infection risk) After downloading Lser from the server a user Bob
will check whether Lser contains any of the pairs stored in Leval (of the last
two weeks say, older entries are deleted). If this is the case he assumes that
he was in proximity to another infected user.

Efficiency. In Protocol 1 the amount of data a diagnosed user has to upload, and
more importantly, every other user needs to download, is linear in the number of
encounters a diagnosed user had. In the full version of this work [6] we describe a
variant of Protocol 1 where the up and downloads are independent of the number
of encounters, but which has weaker privacy properties.

410 B. Auerbach et al.

Alice Server Bob

// L
rep report list // L

ser server list // L
eval evaluation list

// k private key

. report infection. .

k, Lrep

((h1, C1), . . . , (hn, Cn)) ← Lrep

for i in {1, . . . , n − 1}
if hi+1 �= H1(k, hi, Ci)

reject report // invalid chain

for i in {1, . . . , n}
if |Ci| > γ

reject report // too many encounters

for σ ∈ Ci

store H3(hi, σ) in Lser

. evaluate risk .

Lser

if Lser ∩ Leval �= ∅
return “contact”

return “no contact”

Fig. 6. Report/risk-evaluation phase of Protocol 1

Epochs. As the hash chain only progresses if the device received at least one
message during an epoch, we can choose fairly short epochs, say τ = 60 seconds,
without letting the chain grow by too much, but it shouldn’t be too short so
that we have a successful encounter (i.e., one message in each direction) of close
devices within each sufficiently overlapping epochs with good probability. Choos-
ing a small τ also gives better security against replay attacks, which are only
possible within an epoch. Another advantage of a smaller τ is that it makes
tracing devices using passive recording more difficult as the broadcasts in con-
secutive epochs cannot be linked (except retroactively by the server after a user
reports). We also bound the maximum number of contacts per epoch to some
γ. We do this as otherwise an inverse-Sybil attack is possible by simply never
letting the attacking devices progress the hash chain. With this bound we can
guarantee that in a valid chain all but at most γ of the encounters must have
been received by the same device.

Correctness. Consider two parties A and B who meet, and where B receives
(hA, ρA) from A, and A receives (hB , ρB) from B. Then (by construction) B
stores H3(hA, σ) ∈ Leval where σ = H2(hA, hB , ρB), while A stores (hA, C) ∈
Lrep where σ ∈ C. Should A be diagnosed and upload Lrep, B will get a Lser

which contains H3(hA, σ), and thus B will raise a contact alert as this value is
in its Leval list.

Privacy. We briefly discuss the privacy of users in various cases (user diagnosed
or not, server privacy breached or not).

Inverse-Sybil Attacks in Automated Contact Tracing 411

Non-diagnosed user. As discussed in Sect. 2.1, as we use a keyed hash function
a device just broadcasts (pseudo)random and unlinkable values. Thus, as long
as the user isn’t diagnosed and agrees to upload its Lrep list, the device gets
hacked or is seized, there’s no serious privacy risk.

Diagnosed user. We now discuss what happens to a diagnosed user who agrees
to upload its Lrep list.

– Server view: As the chaining values are just randomized hashes, from
the server’s perspective the lists Lrep uploaded by diagnosed users just
look like random and independent hash chains. In particular, the server
will not see which chains belong to users who had a contact. What the
chains do leak, is the number of epochs with non-zero encounters, and
the number of encounters in each epoch.

– Other users’ view: A user who gets the Lser list from the server only learns
the size of this list, and combined with its locally stored data this only
leaks what it should: the size of the intersection of this list with his Leval

list, which is the number of exchanges with devices of later diagnosed
users.

– Joint view of Server and other users: If the view of the server and the
data on the device X is combined, one can additionally deduce where in
an uploaded chain an encounter with X happened.

The above discussion assumes an honest but curious adversary,5 once we consider
active attacks, tracking devices, etc., privacy becomes a much more complex
issue. Discussions on schemes similar to ours are in [7,10,18]. We will not go
into this discussion and rather focus on the main goal of our schemes, namely
robustness against false positives.

Security. As triggering an alert requires that the hash chain includes a value
broadcasted by the alerted device, Protocol 1 does not succumb to replay attacks
and belated replay attacks. In the next section we show that, most importantly,
it also is secure against inverse-Sybil attacks.

3 Security of Protocol 1

We now discuss the security of Protocol 1 against inverse-Sybil attacks. As a first
observation, note that two rogue devices could broadcast the same value (h, ρ)
in the first epoch, and later combine their respective lists (h,C1), (h,C2) for this
epoch into a report list Lrep = ((h,C = C1 ∪ C2)) and upload it. As it consists
of a single link, Lrep will pass the server’s verification of the hash chain. Thus,
assuming that C1 and C2 jointly do not contain more than γ elements, all users
who interacted with one of the devices will raise an alert.

Below we will show that this restricted attack is basically the only possi-
ble inverse-Sybil attack against Protocol 1. In more detail, consider an attack
5 And some precautions we didn’t explicitly mention, like the necessity to permute the
Lser list and let the devices store the Leval list in a history independent datastructure.

412 B. Auerbach et al.

ISA=(A0,A1,...,Ak,Ak+1)
γ

(τ1, . . . , τk) ←$ A0

for i ∈ {1, . . . , k} do

bi ← 0

τ ′
i ←$ Abobi oracles

i (τi)

Lrep ←$ Ak+1(τ ′
1, . . . , τ

′
k)

send Lrep to backend server

server processes Lrep, computes Lser

for i ∈ {1, . . . , k} do

ai ← 0

for j ∈ {1, . . . , bi } do

bobi,j evaluates risk w.r.t. Lser

if bobi,j evaluates to “contact”

ai ← ai + 1

if ai1 > 0 and ai2 > 0 for some i1 �= i2 and
∑

i

ai > γ

return 1

else

return 0

bobi setup()

bi ← bi + 1

bobi,bi ←$ setup

return 1

bobi receive(j, m)

if bi < j

return ⊥
run bobi,j

receive procedure

return 1

bobi broadcast(j)

if bi < j

return ⊥
m ← run bobi,j

broadcast procedure

return m

Fig. 7. Inverse-Sybil security game

where the adversary initiates a large number of devices (that cannot commu-
nicate during the attack), and later combines their states into a hash chain
Lrep = (h1, C1), (h2, C2), . . . , (hn, Cn) to upload. Assume this upload later alerts
users bob1, bob2, . . . , bobt because they had an encounter with one of the devices.
Then, as we show below, with overwhelming probability one of two cases holds:

1. There was no inverse-Sybil attack, that is, all alerted bob’s encountered the
same device.

2. All the encounters of the bobs that trigger an alert are recorded in the same
Ci and all other Cj , j �= i contain only values that cannot trigger an alert.

While the 2nd point means an inverse-Sybil attack is possible, it must be
restricted to an upload which in total can only contain γ values that will actually
raise an alert.

3.1 Security Game

We now give a formal description of the inverse-Sybil security game ISA
γ against

which Protocol 1 is secure. The game is given in Fig. 7. It is parameterized by an
integer γ and defined with respect to adversary A = (A0,A1, . . . ,Ak,Ak+1), k

Inverse-Sybil Attacks in Automated Contact Tracing 413

being the number of independently acting devices used in the attack. Adver-
sary A0 sets up states to be used by these devices. More precisely, A0 for
i ∈ {1, . . . , k} generates initial states τi. Then Ai is run on input τi. Each Ai has
access to three oracles. The jth call to oracle bobi setup sets up a user bobi,j .
Oracle bobi receive on input of index j and message m results in bobi,j receiv-
ing and processing m. Finally, bobi broadcast on input of index j runs bobi,j ’s
broadcast procedure and returns the corresponding message.

At the end of the game A1, . . . ,Ak output states, on input of which Ak+1

generates a single report message Lrep which in turn is processed by the backend
server. Then all bobi,j evaluate their risks status with respect to the resulting
Lser. The attack is considered to have been successful if (a) at least two bobs
that interacted with different Ai raise an alert and (b) the overall number of
alerts raised exceeds γ.

3.2 Security of Protocol 1

We obtain the following.

Theorem 1. If H1,H2,H3 are modeled as random oracles with range {0, 1}w,
any adversary A making at most a total of q queries to H1,H2,H3 and having
at most t interactions with the bobs in total, can win the ISA

γ game against

Protocol 1 with probability at most t2+tq
2r + 2q2+2qt+tq(q+t)

2w , where r is the length
of the random values ρ broadcast during the protocol execution.

Proof. Let A = (A0, . . . ,Ak+1) be an adversary that wins the ISA
γ game. Note

that in order to win, the adversary must have initiated bobi,j for at least γ + 1
different values (i, j) and made them raise an alert. Thus, for these (i, j) the
report list Lrep = ((h1, C1), . . . , (hn, Cn)) uploaded by Ak+1 must contain C�i,j

and σ�i,j ∈ C�i,j such that H3(h�i,j , σ�i,j) ∈ Leval
bobi,j

.
Next, we will show that with overwhelming probability all values stored in

the evaluation lists Leval
bobi,j

are pairwise distinct. To this end, recall that the
lists Leval

bobi,j
contain hash values of the form H3(hA,H2(hA, hB , ρB)), where ρB is

sampled uniformly at random from {0, 1}r. With probability at least 1−t2/2r all
ρB are distinct. Thus with probability at least (1 − t2/2r)(1 − q2/2w) all values
H2(hA, hB , ρB), are distinct and in turn with probability at least

(1 − t2/2r)(1 − q2/2w)2 ≥ 1 − t2/2r − 2q2/2w

all values in {Leval
bobi,j

}i,j are distinct.
In turn, as the server when processing Lrep verifies that all C� satisfy |C�| ≤ γ,

there must exist �1 < �2 such that C�1 and C�2 contain values resulting in an
alert of some bobi,j . Further, A winning the inverse-Sybil game implies that the
i values of at least two bobs raising an alert differ. So there exist i1 �= i2, j1, j2
and σ�1 ∈ C�1 , σ�2 ∈ C�2 such that

H3(h�1 , σ�1) ∈ Leval
bobi1,j1

and H3(h�2 , σ�2) ∈ Leval
bobi2,j2

.

414 B. Auerbach et al.

Note that H3(h�1 , σ�1) depends on randomness ρ�1 that was generated by bobi1,j1

and hence is not known to adversary Ai2 who had to send the value h�2 to bobi2,j2

via oracle bobi2 broadcast(j2). Since the server verifies that Lrep forms indeed a
hash chain under H1, in order to win Ak+1 needs to find inputs to a hash chain
under H1 from some (k, h�1 , C�1) to h�2 , where C�1 contains a value generated
independently from h�2 . If H1,H2 and H3 are random oracles, this is infeasible
with polynomially many oracle calls, as we show next.

For i ∈ {0, . . . , k + 1} let Qi denote the queries of Ai to random ora-
cles H1,H2,H3 and qi = |Qi|. For i ∈ {1, . . . , k} let Ti be the values h′

Ai
sent

by Ai as part of a query bobi receive(j, (h′
Ai

, ρ′
Ai

)) for some j, and let ti = |Ti|.
Finally, we define Ij = {0, . . . , k} \ {j} and

Qj =
⋃

i∈Ij

Qi ,

i.e. Qj contains all queries made by A except the ones by Aj and Ak+1. We
next argue that with overwhelming probability there is no query (k, h�1 , C�1) to
H1 in Qi1 . Recall that C�1 contains a value σ�1 such that H3(h�1 , σ�1) = σB

for some σB = H3(hA,H2(hA, hB , ρB)) ∈ Leval
bobi1,j1

, where ρB is sampled uni-
formly at random by bobi1,j1 . Since bobi1,j1 only interacts with Ai1 , with prob-
ability at least 1 − q/2r there is no query (hA, hB , ρB) to oracle H2 in Qi1 .
Conditioned on no such query being made, since H2 is modeled as a random
oracle, with probability at least 1 − q/2w the set Qi1 contains no query of the
form (hA,H2(hA, hB , ρB)) to H3. Finally, as H3 is modeled as a random ora-
cle, in this case σB looks uniformly random to all Ai with i ∈ Ii1 . Note that
Qi1 containing the query (k, h�1 , C�1) to H1 implies that the adversary found
a preimage of σB under H3. Thus, the probability of this event is bounded by
q/2w. Summing up, the probability that (k, h�1 , C�1) is queried to H1 in Qi1 is
at most q/2r + 2q/2w.

Assuming that no such query is made, since H1 is modeled as a random oracle,
the link hi1+1 of the hash chain looks uniformly random to all adversaries Ai

with i ∈ Ii1 and in particular is independent from h�2 ∈ Ti2 . So, to construct a
hash chain from h�1+1 to h�2 it is necessary that some query in Qi1 ∪Qk+1 \Qi1

for H1 collides with one in Ti2 or any of the queries in Qi1 . The probability of
this event is at most q(q + t)/2w. Finally, we get another multiplicative factor of
t by taking the union bound over all possible σ�2 resulting in an upper bound of

t2

2r
+ 2

q2

2w
+ t ·

(
q

2r
+

2q

2w
+

q(q + t)
2w

)

on A’s probability to win game ISA
γ . 	

4 Protocol 2: Decentralized, Using Location for Chaining

In this section we describe our second protocol, which requires that the devices
have access to some location based coordinate. This coordinate is infused into the

Inverse-Sybil Attacks in Automated Contact Tracing 415

hash-chain so chains of different devices (at different coordinates) will diverge,
and thus prevent an inverse-Sybil attack. Possible coordinates are coarse grained
GPS location, cell tower IDs or information from IP addresses.

The protocol progresses in epochs (say of τ = 60 seconds), where at the
beginning of an epoch the device samples randomness ρ and its coordinate �. It
then broadcasts ρ together with the head h of its hash chain. If during an epoch
at least one message was received, the hash chain is extended by hashing the
current head with a commitment of the location � using randomness ρ.

4.1 Protocol Description

The protocol makes use of collision resistant hash functions H1 to progress the
chain, and a hash function H2 which is basically used as a commitment scheme
(and we use notation H2(m; ρ) to denote it’s used as commitment for message m
using randomness ρ), but we need H2 to be hiding even if the same randomness
is used for many messages. For this it’s sufficient that H2 is collision resistant
(for binding), and for a random ρ, H2(· ; ρ) is a PRF with key ρ.

A formal description of Protocol 2 is given below. The broadcast/receive
phase is additionally depicted in Fig. 8, and its report/evaluate phase in Fig. 9.

– (setup) Users sample a key k and a genesis hash value h1, and set the current
head of the hash chain to h ← h1. Then they initialize empty lists Lrep

and Leval which are used to store information to be reported to the backend
server in case of infection or used to evaluate whether contact with an infected
person occurred, respectively.

– (epoch starts) An epoch starts every τ seconds, and the epoch number t is
the number of epochs since some globally fixed timepoint (say Jan. 1st 2020,
12am CEST). At the beginning of every epoch the device samples a random
string ρ ←$ {0, 1}r and retrieves its current coordinate � ← get Coordinate.

– (broadcast) During the epoch the device regularly broadcasts the head h of
its current chain together with ρ.

– (receive broadcast message) Whenever the device receives a message (hB , ρB)
it computes a commitment to the current coordinate and time (i.e., epoch
number t) using the received randomness σB ← H2(�, t; ρB), and stores the
tuple (hB , σB) in Leval.

– (epoch ends) If at the end of the epoch there was at least one message received
during this epoch (contact= 1), the device computes a commitment σ ←
H2(�, t; ρ) to its coordinate and time using randomness ρ, it appends this σ
and the head h of the chain to the list Lrep (of values to be reported in case
of being diagnosed), and progresses its hash chain as h ← H1(k, h, σ).

– (report message to backend server) If diagnosed users upload their key k and
the list Lrep = ((h1, σ1), . . . , (hn, σn)) to the server. The server verifies that
the uploaded values indeed form a hash chain, i.e., that hi+1 = H1(k, hi, σi)
for all i ∈ {1, . . . , n − 1}. If the uploaded values pass this check the server
updates its list Lser by adding Lrep to it.

416 B. Auerbach et al.

Alice our protocol Other parties

// kA key

// hA current hash value

. epoch t (t time in τ second units) .

ρA ←$ {0, 1}r

�A ← get Coordinate
hA, ρA

broadcast during full epoch

hB , ρB

contact ← 1
store (hB , H2(�A, t ; ρB)) in Leval

A

hC , ρC

store (hC , H2(�A, t ; ρC)) in Leval
A

...

. after τ seconds .

if contact = 1 // progress chain

σA ← H2(�A, t ; ρA)
store (hA, σA) in Lrep

hA ← H1(kA, hA, σA)
contact ← 0

. epoch t + 1 .

Fig. 8. Broadcast/receive phase of Protocol 2

– (evaluate risk) After downloading Lser from the server users check whether
Lser contains any of the pairs stored in Leval. If this is the case they assume
that they were in contact with an infected party. As the user learns the size
of the intersection, a more sophisticated risk evaluation is also possible.

4.2 Correctness, Privacy and Epochs

Correctness. Consider two devices A and B who measured locations �A and
�B and are in epochs tA and tB , and where A receives (hB , ρB) from B and thus
stores (hB , σ = H2(�A, tA; ρB)) in Leval

A . Assume B receives at least one message
during this epoch, then it will store (hB , σ′ = H2(�B , tB ; ρB)) in its Lrep

B list.
If later B is diagnosed it uploads its Lrep

B list to the server. At its next risk
evaluation A will receive Lser (which now contains Lrep

B) from the server. It will
report a contact if Lser ∩ Leval

A �= ∅ which holds if σ′ = σ or equivalently

(hB ,H2(�B , tB ; ρB) = (hB ,H2(�A, tA; ρB))

which is implied by (�A, tA) = (�B , tB). Summing up, in the setting above A will
correctly report a contact if

Inverse-Sybil Attacks in Automated Contact Tracing 417

Alice Server Bob

// L
rep report list // L

ser server list // L
eval evaluation list

// k private key

. report infection .

k, Lrep

((h1, σ1), . . . , (hn, σn)) ← Lrep

for i in {1, . . . , n − 1}
if hi+1 �= H1(k, hi, σi)

reject report
store Lrep in Lser

. .evaluate risk. .

Lser

if Lser ∩ Leval �= ∅
return ”contact”

return ”no contact”

Fig. 9. Report/risk-evaluation phase of Protocol 2

1. A and B are synchronised, i.e., in the same epoch tA = tB .
2. B received at least one message during epoch tB .
3. A and B were at the same locations (i.e., �A = �B) at the beginning of the

epoch.

Condition 2. should be satisfied in most cases simply because the fact that A
received a message from B means B should also have received a message from
A. This condition only exists because we let the devices progress their chains
only in epochs where encounters happened.6

Epochs. As epochs are synchronized, even if the coordinates of the devices
change frequently because the devices are moving, two devices will still have the
same coordinate as long as they were at the same coordinate at the beginning of
an epoch, think of two passengers in a moving train. But we can have a mismatch
(and thus false negative) if two devices meet that were at different coordinates
at the beginning of an epoch, e.g., two people meet at a train station, where at
the beginning of the epoch, one person was in the moving train, while the other
was waiting at the platform. To address this problem one should keep the epochs
sufficiently short, in particular, much shorter than the exposure time that would
raise an alert.

Privacy. Our Protocol 2 is similar to the unlinkable variant of DP-3T, and thus
has similar privacy properties. In particular, the only thing non-diagnosed users
6 The reason for only progressing if there was an encounter is that this way the chain

is shorter (thus there’s less to up and download), the chain reveals less information
(i.e., even the server can’t tell where the empty epochs were) and tracing using
passive recording devices becomes more difficult.

418 B. Auerbach et al.

broadcast are pseudorandom and unlinkable beacons. But there are two privacy
issues that arise in our protocol which DP-3T does not have. The first is because
we use chaining, the second because we use coordinates:

1. (Server can link) Even though the beacons broadcasted by a diagnosed user
are not linkable by other users (assuming the server permutes the Lser list
before other users can download it), the server itself can link the beacons
(it gets them in order and also the hash key to verify this). So – similar to
Protocol 1 – compared to DP-3T we put more trust in the server concerning
this privacy aspect.

2. (Digital evidence) When discussing privacy, one mostly focuses on what infor-
mation can be learned about a user. But there’s a difference between learning
something, and being able to convince others that this information is legit.
While in decentralized protocols like DP-3T a malicious device can easily
learn when and where an encounter with a later diagnosed user happened
by simply storing the recorded beacons together with the time and location,
it’s not clear how the device would produce convincing evidence linking the
uploaded beacon with this time and location.

In a protocol that uses time and location, like our Protocol 2, one can produce
such evidence by basically time-stamping the entire transcript of an encounter
(e.g. by posting a hash of it on a blockchain), and later, when a user is diagnosed
and its encounter tokens become public, use this time-stamped data as evidence
of the encounter. This problem already arises when one uses time to prevent
replay attacks, and location to prevent relay attacks as discussed in [15] for
details.

5 Security of Protocol 2

5.1 Security Against Replay and Relay Attacks

The protocol is secure against replay, belated replay, and relay attacks in the
following sense: Assume Alice is at location �A and epoch tA, broadcasts (hA, ρA)
and thus stores (hA, σA = H2(�A, tA; ρA)) ∈ Lrep. Now, assume an adversary
replays the message with potentially changed randomness (hA, ρ′

A) to user Bob
who is at a different location and/or epoch (�B , tB) �= (�A, tA) than Alice was.
Bob then stores (hA, σB = H2(�B , tB ; ρ′

A)) ∈ Leval. Should Alice later upload
her Lrep list, then the replayed message will trigger a contact warning for Bob
if σA = σB , i.e.,

H2(�A, tA; ρA) = H2(�B , tB ; ρ′
A),

and this condition is necessary as long as Leval does not contain a pair (h′
A, σ′

A)
with h′

A = hA and σ′
A �= σA. Since the latter happens only with negligible proba-

bility, this implies that Bob must break the binding property of the commitment
scheme.

Inverse-Sybil Attacks in Automated Contact Tracing 419

5.2 Security Against Inverse-Sybil Attacks

Protocol 2 achieves weaker security against inverse-Sybil attacks since there is
less interaction: the randomness chosen by the users in Protocol 1 is replaced by
location to defend somewhat against inverse-Sybil attacks. Accordingly, we need
to weaken the model in order to prove security. In particular, we cannot let the
adversary have control of the locations, otherwise it can trivially carry out an
attack. So we assume that the locations of the encounters with the bobs follow
some unpredictable distributions Pi. The formal security game weak-ISA

P1,P2
can

be found in Fig. 10. We believe that whenever the location coordinates are not
chosen too coarse, this still implies a meaningful security guarantee.

weak-ISA=(A0,A1,A2,A3)
P1,P2

τ1, τ2 ←$ A0

for i ∈ {1, 2} do

bobi ←$ setup

τ ′
i ←$ Abobi oracles

i (τi)

Lrep ←$ A3(τ ′
1, τ

′
2)

send Lrep to backend server

server processes Lrep, computes Lser

for i ∈ {1, 2} do

bobi evaluates risk w.r.t. Lser

if both bobs evaluate to “contact”

return 1

else

return 0

bobi receive(hA, ρA)

� ←$ Pi

run bobi receive procedure with coordinate �

return �

bobi broadcast

� ←$ Pi

run bobi broadcast procedure with coordinate �

return the result and �

Fig. 10. Weak inverse-Sybil security game

For Protocol 2 we obtain the following theorem.

Theorem 2. If H1 is modeled as a random oracle, H2 is ε-collision-resistant,
and P1,P2 are independent and have min-entropy at least k, then any adversary
A making at most q queries to H1 : {0, 1}∗ → {0, 1}w and having at most t
interactions with the bobs can win the weak-ISA

P1,P2
game against Protocol 2

with probability at most q+1
2k

+ 2q2

2w + ε.

Proof. Let A = (A0,A1,A2,A3) be an adversary that wins the weak-ISA
P1,P2

game with non-negligible advantage. We assume that the first samples from P1

and P2 are different, which happens with probability at least 1 − 2−k. Further-
more, since both bobs evaluate to “contact”, we must have that for both of them
Lser ∩Leval �= ∅, i.e. Lser contains pairs (hA1 , σA1) and (hA2 , σA2) such that dur-
ing the game bobj received hAj

and ρAj
at epoch tj and coordinate �j and it

holds σAj
= H2(�j , tj ; ρAj

), where j ∈ {1, 2}. Then, since the server verifies the

420 B. Auerbach et al.

hash chain, we must have that τ3 consists of a key k and a list L of pairs (hi, σi)
such that hi+1 = H1(k, hi, σi) and (hA1 , σA1), (hA2 , σA2) ∈ L.

We consider two cases: First, assume case 1) (hA1 , σA1) = (hA2 , σA2). Since
hA1 = hA2 , either exactly the same sequence of coordinates were infused into
the hash chain to obtain hA1 and hA2 , or A found a collision for H1 or H2. Fur-
thermore, since σA1 = σA2 either the coordinates where the adversaries Ai meet
the respective bobi coincide as well, or A found a collision for H2. Thus, either
the location histories of A1 and A2 coincide, which happens with probability at
most 2−k, or A found a collision for H1 or H2, which happens with probability
at most ε + q2/2w.

Now, let’s assume case 2) (hA1 , σA1) �= (hA2 , σA2). We assume that A does
not find a collision for H2, since this case would already be covered by the upper
bound for case 1. W.l.o.g. assume that (hA1 , σA1) appears before (hA2 , σA2) in
L. Note that A2 outputs hA2 without knowing (hA1 , σA1) and P1 has entropy
k. So A3 needs to find inputs to a hash chain from (hA1 , σA1) that collides with
hA2 . Similar to the proof of Protocol 1, let Qi be the queries of Ai to H1 and
qi = |Qi|. Furthermore, let h = H1(k, hA1 , σA1). Since (hA1 , σA1) is not known
to A2, we have (k, hA1 , σA1) /∈ Q0 ∪ Q2 except with probability (q0 + q2)/2k . So
except with this probability h looks uniformly random to A0 and A2, because
H1 is modeled as a RO. Accordingly, h is independent of any of the queries
in Q0 ∪ Q2 . So constructing a hash chain between h and any of the values in
Q0 ∪Q2 requires that the value of H1 under some query in Q1 ∪Q3 collides with
(the first entry of) any of the queries in Q0 ∪ Q2. The probability of this event
is less than (q1 + q3) · q0+q2

2w . Thus, in case 2) the probability of τ3 causing an
alert for bob1 and bob2 is at most q0+q2

2k
+ (q1+q3)(q0+q2)

2w . By setting q =
∑

i qi

and combining the two cases, we get an upper bound of q+1
2k

+ 2q2

2w + ε. 	

References

1. Covid watch (2020). https://www.covidwatch.org/
2. Pact: Private automated contact tracing (2020). https://pact.mit.edu/
3. Pepp-pt: Pan-european privacy-preserving proximity tracing (2020). https://

github.com/pepp-pt
4. Privacy-preserving contact tracing (2020). https://www.apple.com/covid19/

contacttracing
5. Robert: Robust and privacypreserving proximity tracing (2020). https://github.

com/ROBERT-proximity-tracing
6. Auerbach, B., et al.: Inverse-sybil attacks in automated contact tracing. Cryptology

ePrint Archive, Report 2020/670 (2020). https://eprint.iacr.org/2020/670
7. Avitabile, G., Botta, V., Iovino, V., Visconti, I.: Towards defeating mass surveil-

lance and sars-cov-2: The pronto-c2 fully decentralized automatic contact tracing
system. Cryptology ePrint Archive, Report 2020/493 (2020). https://eprint.iacr.
org/2020/493

8. Canetti, R., et al.: Privacy-preserving automated exposure notification. Cryptology
ePrint Archive, Report 2020/863 (2020). https://eprint.iacr.org/2020/863

https://www.covidwatch.org/
https://pact.mit.edu/
https://github.com/pepp-pt
https://github.com/pepp-pt
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://github.com/ROBERT-proximity-tracing
https://github.com/ROBERT-proximity-tracing
https://eprint.iacr.org/2020/670
https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/863

Inverse-Sybil Attacks in Automated Contact Tracing 421

9. Canetti, R., Trachtenberg, A., Varia, M.: Anonymous collocation discovery: tam-
ing the coronavirus while preserving privacy. CoRR ArXiv:abs/2003.13670 (2020).
https://arxiv.org/abs/2003.13670

10. Castelluccia, C., et al.: DESIRE: a third way for a european exposure notifica-
tion system leveraging the best of centralized and decentralized systems. CoRR
ArXiv:abs/2008.01621 (2020). https://arxiv.org/abs/2008.01621

11. Chan, J., et al.: PACT: privacy sensitive protocols and mechanisms for mobile
contact tracing. CoRR ArXiv:abs/2004.03544 (2020). https://arxiv.org/abs/2004.
03544

12. Danz, N., Derwisch, O., Lehmann, A., Puenter, W., Stolle, M., Ziemann, J.: Secu-
rity and privacy of decentralized cryptographic contact tracing. Cryptology ePrint
Archive, Report 2020/1309 (2020). https://eprint.iacr.org/2020/1309

13. Gvili, Y.: Security analysis of the covid-19 contact tracing specifications by apple
inc. and google inc. Cryptology ePrint Archive, Report 2020/428 (2020). https://
eprint.iacr.org/2020/428

14. Iovino, V., Vaudenay, S., Vuagnoux, M.: On the effectiveness of time travel to inject
covid-19 alerts. Cryptology ePrint Archive, Report 2020/1393 (2020). https://
eprint.iacr.org/2020/1393

15. Pietrzak, K.: Delayed authentication: preventing replay and relay attacks in pri-
vate contact tracing. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 3–15. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-65277-7 1

16. Troncoso, C., et al.: Dp3t: decentralized privacy-preserving proximity tracing
(2020). https://github.com/DP-3T

17. Vaudenay, S.: Analysis of dp3t. Cryptology ePrint Archive, Report 2020/399
(2020).https://eprint.iacr.org/2020/399

18. Vaudenay, S.: Centralized or decentralized? the contact tracing dilemma. Cryptol-
ogy ePrint Archive, Report 2020/531 (2020). https://eprint.iacr.org/2020/531

http://arxiv.org/abs/abs/2003.13670
https://arxiv.org/abs/2003.13670
http://arxiv.org/abs/abs/2008.01621
https://arxiv.org/abs/2008.01621
http://arxiv.org/abs/abs/2004.03544
https://arxiv.org/abs/2004.03544
https://arxiv.org/abs/2004.03544
https://eprint.iacr.org/2020/1309
https://eprint.iacr.org/2020/428
https://eprint.iacr.org/2020/428
https://eprint.iacr.org/2020/1393
https://eprint.iacr.org/2020/1393
https://doi.org/10.1007/978-3-030-65277-7_1
https://doi.org/10.1007/978-3-030-65277-7_1
https://github.com/DP-3T
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531

On the Effectiveness of Time Travel
to Inject COVID-19 Alerts

Vincenzo Iovino1, Serge Vaudenay2(B), and Martin Vuagnoux3

1 University of Salerno, Fisciano, Italy
2 EPFL, Lausanne, Switzerland

serge.vaudenay@epfl.ch
3 base23, Geneva, Switzerland

Abstract. Digital contact tracing apps allow to alert people who have
been in contact with people who may be contagious. The Google/Apple
Exposure Notification (GAEN) system is based on Bluetooth proximity
estimation. It has been adopted by many countries around the world.
However, many possible attacks are known. The goal of some of them is
to inject a false alert on someone else’s phone. This way, an adversary
can eliminate a competitor in a sport event or a business in general.
Political parties can also prevent people from voting.

In this report, we review several methods to inject false alerts. One of
them requires to corrupt the clock of the smartphone of the victim. For
that, we build a time-traveling machine to be able to remotely set up the
clock on a smartphone and experiment our attack. We show how easy
this can be done. We successfully tested several smartphones with either
the Swiss or the Italian app (SwissCovid or Immuni). We confirm it also
works on other GAEN-based apps: NHS COVID-19 (in England and
Wales), Corona-Warn-App (in Germany), and Coronalert (Belgium).

The time-machine can also be used in active attack to identify smart-
phones. We can recognize smartphones that we have passively seen in
the past. We can passively recognize in the future smartphones that we
can see in present. We can also make smartphones identify themselves
with a unique number.

Finally, we report a simpler attack which needs no time machine but
relies on the existence of still-valid keys reported on the server. We
observed the case in several countries. The attack is made trivial in
Austria, Denmark, Spain, Italy, the Netherlands, Alabama, Delaware,
Wyoming, Canada, and England & Wales. Other regions are affected by
interoperability too.

1 Introduction

Google and Apple deployed together the Exposure Notification (GAEN) system
as a tool to fight the pandemic [3]. The goal of an GAEN-based app is to alert

Videos are available on https://vimeo.com/477605525 (teaser) and https://vimeo.com/
476901083. A full version of this paper is available on Eprint [19].

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 422–443, 2021.
https://doi.org/10.1007/978-3-030-75539-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_18&domain=pdf
https://vimeo.com/477605525
https://vimeo.com/476901083
https://vimeo.com/476901083
https://doi.org/10.1007/978-3-030-75539-3_18

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 423

people who have been in close proximity for long enough with someone who was
positively tested with COVID-19 and who volunteered to report. How a user
responds to such alert is up to the user, but one would expect that such user
would contact authorities and be put in quarantine for a few days. In Switzerland,
the alerted user is eligible to have a free COVID-19 test but the result of the
test would not change his quarantine status.

GAEN is provided by default in all recent Android or iOS smartphones which
are equipped with Bluetooth (except Chinese ones due to US regulation). It is
installed without the consent of the user. However, it remains inactive until the
user activates it (and possibly install an app which depends on the region).1

Once activated, GAEN works silently. A user who is tested positive with
COVID-19 is expected to contribute by reporting through GAEN. This may
have the consequence of triggering an alert on the phones of the GAEN users
whom the COVID-positive user met.

Assuming an alerted user is likely to self-quarantine, and possibly make a
test and wait for the result, this alerted user may interrupt his activities for a
few days. A malicious adversary could take advantage of making some phones
raise an alert. In a sport competition (or any other competition), an alerted
competitor would stay away for some time. Malicious false alert injections could
be done at scale to disrupt the activities of a company or an organization. This
could be done to deter people from voting [17].

False injection attacks have been well identified for long [24,25]. It was some-
times called the lazy student attack where a lazy student was trying to escape
from an exam by putting people in quarantine [15]. Nevertheless, the GAEN
protocol was deployed without addressing those attacks.

In most of cases, those attacks require to exploit a backdoor in the system,
or to corrupt the health authority infrastructure, or to corrupt a diagnosed user.
Our goal is to show how easily and inexpensively we can make an attack which
requires no such corruption.

Another important goal of GAEN is privacy preservation. Smartphones con-
stantly broadcast random-looking numbers which are changing every few min-
utes. They are made to be unlinkable and unpredictable. It is already known
that unlinkability is broken for positive cases who report, due to the so-called
paparazzi attack [24]. Linkability is also sometimes harmed by that rotation of
values and addresses is not well synchronized.2 Another goal of our work it to
be able to recognize that two broadcasts which were obtained at different time
come from the same smartphone and also to identify smartphones, even though
the user did not report.

Our Contribution. In this paper, we analyze possible false alert injection attacks.
We focus on one which requires to corrupt the clock of the victim and to literally
make it travel through time. By doing so, we can replay Bluetooth identifiers

1 Throughout this paper, when we use “GAEN ” as a noun, we mean a process which
runs in the phone. Otherwise, we refer to the “GAEN system”, the “GAEN infras-
tructure”, or the “GAEN protocol” interchangeably.

2 Little Thumb attack: https://vimeo.com/453948863.

https://vimeo.com/453948863

424 V. Iovino et al.

which have just been publicly reported but that the victim did not see yet. We
replay them by making the victim go to the time corresponding to the replayed
identifier then coming back to present time. We show several ways to make a
smartphone travel through time and to make it receive an alert when it comes
back to present time.

In the easiest setting, we assume that the victim and the adversary are con-
nected to the same Wi-Fi network. This network does not need be administrated
by the adversary. Essentially, the network tells the current time to the phone.
We report on our successful experiments.

Fig. 1. Raspberry Pi Zero W

In Sect. 6.1 we describe the equipment we used in the experiments: a Rasp-
berry Pi Zero W (Fig. 1) and a home-assembled device endowed with an ESP32
chipset (Fig. 2), both available on the market for about 10$. It takes less than a
minute to run the attack. In favorable cases (specifically, with the variant using
a rogue base station), the attack duration can be reduced to one second. The
attacks possibly works on all GAEN-based systems. We mostly tested it on the
Swiss and Italian systems (SwissCovid and Immuni). We also verified on other
apps. We conclude that such attacks are serious threats to society.

Fig. 2. Our ESP32-based device

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 425

Our attacks experimentally confirm the evidence that the GAEN infrastruc-
ture offers no protection even against (traditional) replay attacks. Switzerland
reports 1 750 000 daily activations, which represents 20% of the population.
There are millions of users in other countries too. Hence, many potential vic-
tims. They can be attacked from far away. Although the authorized Bluetooth
maximum range is of 100 m, boosting it with a 10 kW amplifier in 2.4 GHz would
enlarge the radius to many kilometers easily. Actually, commercial products are
available [12].

Our technique can be also used to debug the notification mechanism of GAEN
without directly involving infected individuals; this is a step forward in disclos-
ing the GAEN’s internals since GAEN is closed source and not even debuggable.
(Precisely, to experiment with the GAEN system, you need a special authoriza-
tion.)

In Sect. 7, we observe that several regions do post on their servers keys which
are still valid and can be replayed with no time machine. This is the case of
Austria, Denmark, Spain, Italy, the Netherlands. However, other regions like
Canada and England & Wales post keys which have just expired and which are
still accepted in replay attacks. In other regions, the existence of such keys in
any interoperable region may be usable in a replay attack too.

In Sect. 8, we adapt the time-machine attack to break privacy. If an adversary
has passively seen a smartphone in the past, it can recognize it in present using
an active attack: namely, by making it replay the broadcast from the past. If an
adversary wants to passively recognize a smartphone in the future, he can make
it play the future broadcast immediately. Finally, by using a reference date in
the far future and making the smartphone broadcast the key of this date, the
adversary make smartphone identify themselves with a unique number.

Disclaimer. We did a responsible disclosure. We first reported and discussed the
attack with the Italian Team of Immuni on September 24, 2020.3 Few days after
we received an answer from an account administrated by the team stating:

“thank you for reporting this replay attack. Unfortunately we believe that
this is an attack against GAEN rather than Immuni and so it should be
resolved by a protocol implementation update. Should you have suggestions
for our own code base to prevent or mitigate the attack, please let us know
and we will evaluate them.”

We reported the attack in Switzerland on October 5, 2020.4 We received an
acknowledgement on October 10 stating:

“The NCSC considers the risk in this case as acceptable. The risk assess-
ment must also take into account whether there is a benefit and a ROI for

3 https://github.com/immuni-app/immuni-app-android/issues/278.
4 Registered incident INR 8418 by the National Cyber Security Center (NCSC)

https://www.ncsc.admin.ch/dam/ncsc/de/dokumente/2020/SwissCovid Public
Security Test Current Findings.pdf.download.pdf/SwissCovid Public Security
Test Current Findings.pdf.

https://github.com/immuni-app/immuni-app-android/issues/278
https://www.ncsc.admin.ch/dam/ncsc/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.ncsc.admin.ch/dam/ncsc/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf
https://www.ncsc.admin.ch/dam/ncsc/de/dokumente/2020/SwissCovid_Public_Security_Test_Current_Findings.pdf.download.pdf/SwissCovid_Public_Security_Test_Current_Findings.pdf

426 V. Iovino et al.

someone who takes advantage of it. Especially since an attacker typically
must be on site.”

We also reported a detailed attack scenario to Google on October 8.5 We received
the following response:

“At first glance, this might not be severe enough to qualify for a reward,
though the panel will take a look at the next meeting and we’ll update you
once we’ve got more information.”

(They subsequently offered a $500 bug bounty reward.) The attack was also
mentioned in the Swiss press and in an official document by Italian authorities. In
24 Heures on October 86, the representative of EPFL declared that the described
attack is technically possible but would require too much resources and efforts.

The Italian “Garante della Privacy” (the national data protection officer)7

commented that replay attacks with the purpose of generating fake notifications
do not represent a serious vulnerability since they require the attacker to take
possession of the victim’s phone. Since both traditional replay attacks and the
variants of replay attacks we show in this paper can be performed without tak-
ing possession of the victim’s phone, we contacted the aforementioned Italian
authorities to provide clarifications about replay attacks and to ask whether
they are aware of the fact that replay attacks can be performed without taking
possession of the victim’s phone but at time of writing we did not receive any
answer.

Contrary to the reports in the news, we show here that time-travel attacks
are easy to perform and effective.

2 How GAEN Works

In short, GAEN selects every day a random key called TEK (as for Temporary
Exposure Key). Given the daily TEK, it deterministically derives some ephemeral
keys called RPI (as for Rolling Proximity Identifier). Each RPI is emitted over
Bluetooth several times per second during several minutes. Additionally, GAEN
scans Bluetooth signals every 3–5 min and stores all received RPIs coming from
other phones. If the user is diagnosed, the local health authorities provide an
access code (which is called a covidcode in Switzerland). This is a one-time access
code which is valid for 24 h which can be used to report. If GAEN is instructed to
report, it releases every TEK which was used in the last few days which the user
allows to publish. At this point, a TEK is called a diagnosis key. The report and
access code are sent to a server which publishes the diagnosis keys. Once a while,
GAEN is also provided with the published diagnosis keys on the server. GAEN

5 Reference 170394116 for component 310426.
6 https://www.24heures.ch/les-quatre-failles-qui-continuent-de-miner-swisscovid-

348144831017.
7 https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9468919.

https://www.24heures.ch/les-quatre-failles-qui-continuent-de-miner-swisscovid-348144831017
https://www.24heures.ch/les-quatre-failles-qui-continuent-de-miner-swisscovid-348144831017
https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9468919

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 427

Server

Alice Bob Charly

Hospital

RPIA‖AEMA

RPIB‖AEMB

RPIB‖AEMB

RPIC‖AEMC

covidcode

TE
KA

, τ
A

co
vid

co
de T

E
K

A
, τ

A

TEK
A , τ

A

Fig. 3. Exposure notification infrastructure

re-derives the RPI from those diagnosis keys and compares with the stored RPI
of encounters. Depending on how many are in common, an alert is raised.

In Fig. 3, we have three users with their smartphones: Alice, Bob, and Charly.
Bob meets the two others but Alice and Charly do not meet each other. They
exchange their RPI. After a while, Alice gets positive and receives a covidcode.
She publishes her TEK using her covidcode. Other participants see the diagnosis
key from Alice. They compare the derived RPI with what they have received.
Only Bob finds a match and raises an alert. AEM and τ are defined below.

More precisely, we set
RPI = f(TEK, t)

where t is the time when RPI is used for the first time and f is a cryptographic
function based on AES [3]. In the GAEN system, time is encoded with a 10-
minute precision. Actually, the value of t is just incremented from one RPI to
the next one, starting from the time when TEK is used for the first time. There
is also an Associated Encrypted Metadata (AEM) which is derived by

AEM = g(TEK,RPI) ⊕ metadata

where ⊕ denotes the bitwise exclusive OR operation, metadata encodes the power
π used by the sender to emit the Bluetooth signal, and g is a similar crypto-
graphic function.

We list below a few important details.

– What is sent over Bluetooth is the pair (RPI,AEM).
– Received (RPI,AEM) pairs are stored with the time of reception t and the

power p of reception.

428 V. Iovino et al.

Alice
TEKA τA
TEK′

A τ ′
A

...
...

(sent)

Server
TEKA τA
TEK′

A τ ′
A

...
...

(posted)

Bob
RPIA AEMA tA pA

RPIC AEMC tC pC

...
...

(received)

TEKA derives RPIA
attenuation: πA − pA

Charly
RPIB AEMB tB pB

...
...

(received)

Fig. 4. Matching TEK from server to captured RPI

– What is published on the server are pairs (TEK, τ) where τ is the time when
TEK was used for the first time. (See Fig. 4.)

– New (TEK, τ) pairs are posted on the server with a date of release (not shown
on the picture). Since they are posted when the user reports, the posting date
can be quite different from τ . This posting date is used to retrieve only newly
uploaded pairs. Hence, the downloaded τ do not come in order.

– When GAEN gets the downloaded diagnosis key TEK and derives the RPI,
the time is compared with what is stored with a tolerance of ±2 h. If it
matches, the receiver can decrypt AEM to recover the metadata, deduce the
sending power π, then compare with the receiving power p to deduce the
signal attenuation π − p.

– For Switzerland, the attenuation is compared with two thresholds which are
denoted as t1 and t2 in the reference document [10]. If larger than t2, it
is considered as too far and ignored. If between t1 and t2, the duration is
divided by two to account that the distance is not so close. If lower than t1,
the encounter is considered as very close and the duration is fully counted.
SwissCovid was launched on June 25, 2020 and the sensibility of parameters
has been increased twice. Since September 11, 2020, the parameters are t1 =
55 dB, t2 = 63 dB [10].
With those parameters, in lab experimental settings [10], the probability to
catch an encounter at various distances is as follows:

Distance of encounter 1.5 m 2 m 3 m

Pr[attenuation < t1] 57.3% 51.6% 45.6%

Pr[attenuation < t2] 89.6% 87.5% 84.2%

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 429

– For Italy, only one threshold of 73 dB is used [21]. The same lab experiment
as above indicate probabilities of 100%. Since July 9, the unique threshold
was changed to 63 dB.

– Every scan which spotted an encounter counts for the rounded number of
minutes since the last scan with a maximum of 5 min (possibly divided by two
as indicated above). The total sum is returned and compared to a threshold
of 15 min.

3 Summary of Techniques for False Alert Injection

We list here several strategies to inject false alerts.

Injection with Real Encounters. The adversary encounters the victim normally
and the victim records the sent RPI. If the adversary manages to fill a false report
with his TEK, this will cause an alert for the victim [24]. Filling a false report
can done

– either due to a bug in the system
– or by corrupting the health authority system
– or by corrupting a user who received the credentials to report.

Switzerland corrected one bug: the ability for the reporter to set verification
algorithm to “none” in the query, instructing the server not to verify creden-
tials [1]. This is actually a commonly known attack on implementations using
JWT (JSON Web Tokens) which is based on a dangerous default configura-
tion [22].

A corruption system was fully detailed and analyzed by Avitabile, Friolo,
and Visconti [14]. Either positive people who receive a covidcode could sell it to
buyers who would want to run the attack, or just-tested positive people could
be paid for reporting a TEK provided by an attacker. The system could be made
in such a way that buyers and sellers would never meet, their anonymity would
be preserved, and their transaction would be secured. The infrastructure for this
black business would collect a percentage on the payment. It would run with
smart contracts and cryptocurrencies.

Injection with Simulated GAEN. We assume that the adversary uses a device (for
instance, a laptop computer with a Bluetooth dongle) which mimics the behavior
of the GAEN system. One difference is that this device sends Bluetooth signal
with high power but announces them with a low power in AEM. This way, he
can send the signal from far away and the computed attenuation will be low,
like in a close proximity case. The victim can receive an RPI which is sent from
the device and believe in a proximity. Reporting the TEK could be done like
for the real encounter attack. The device can be attached to a running dog or
a drone [15,18]. The attack can be done by a real infected person as a trolling
attack [18].

A second advantage of this attack is that the sending device could be synchro-
nized in its simulation with several other devices. (Synchronization would mean

430 V. Iovino et al.

to use the same TEK.) This could be used by a group of adversaries (terrorists,
activists, gang) to inject false alerts in many victims [25]. All members of the
group would be considered as a single person by the GAEN system and all their
encounters would receive the same keys. In this case, it could also make sense to
have one member of the group (a kamikaze) to genuinely become positive and
report. The goal of such attack would be to sabotage the digital contact tracing
infrastructure, to lock ships in harbors (by targeting sailors), or to paralyze a
city in quarantine [15].

Injection with Replay Attack. Another false encounter injection attack consists
of replaying the RPI of someone else. Due to the GAEN infrastructure, the RPI
is valid for about two hours. One strategy consists of capturing the RPI of people
who are likely to be reported soon. It could be people going to a test center, or
people who are known to have symptoms but who did not get their test results
yet [24]. Capturing their RPI can be done from far away with a good Bluetooth
receiver. The malleability of the metadata in AEM can also be exploited to
decrease the announced sending power [16,26].

Injection with Belated Replay Attack. Another form of replay attack consists of
replaying the RPI which are derived from the publicly posted diagnosis keys [24].
Because GAEN only tries to match new diagnosis keys, the adversary can try
with recently updated TEKs which have not been downloaded yet by the vic-
tim. This is doable since the app checks only a few times for newly uploaded
keys during the day. Those keys are however outdated and would normally be
discarded when GAEN compares RPI with the ones derived from the diagnosis
keys. However, we could send the phone of the victim in the past then send the
outdated RPI to the phone. When the phone would be brought back to present,
it would eventually raise an alert. Sending a phone in the past requires no time
travel machine. It suffices to corrupt its internal clock.

A variant of this attack which surprisingly works uses no time machine but
replays keys which are posted on the public server and still valid.

Attack Model. In the rest of the paper, we consider the following attack model.
The adversary has the ability to control the clock of the victim (this ability will
not be used in Sect. 7). We do not assume any other ability such as changing the
clock on the server, forging covidcodes, or corrupting people. Except in Sect. 8,
the goal is to inject an alert on the phone of the victim without the victim
having encountered a contagious person. In Sect. 8, the goal is to defeat the
unlinkability protection in the GAEN system and to infer if two phones which
have been encountered are the same. Except in Sect. 7, we do not rely on any
specific implementation of digital contact tracing. We use GAEN as it is specified
and implemented in commonly available phones.

4 Time-Traveling Phones

Several techniques to corrupt the date and time of a smartphone have been iden-
tified (see Park et al. [23] for detailed information). In this section, we describe

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 431

four of them. Modern smartphone operating systems use at boot time NTP
(Network Time Protocol) if network access is provided. NITZ (Network Iden-
tity and Time Zone) may be optionally broadcasted by mobile operators. GNSS
(Global Navigation Satellite System) such as GPS can also be used. Finally, the
clock can be manually set. The priority of these clock sources depends on the
smartphone vendors. Some of them can be disabled by default, but in general,
the priority (which we deduced by experiment on our phones) is MANUAL >
NITZ > NTP > GNSS.

4.1 Set Clock Manually

This is technically the easiest attack, but it requires a physical access to the
smartphone.8 An adversary picks a newly published TEK and computes one RPI
for a date and time in the past. The adversary physically accesses the smartphone
and sets the corresponding clock. Then, he replays the RPI for 15 min using a
Bluetooth device such as a smartphone or a laptop. Finally, the adversary sets
the time back to present. As soon as the smartphone updates the new TEK list,
an alert is raised.

A single RPI is generally not supposed to be repeated during 15 min as its
rotation time is shorter (typically: 10 min). It seems that implementations do
not care if it is the case. However, we can also use two consecutive RPI from the
same TEK and repeat them for their natural duration time.

Observe that in some circumstances the purpose of the attacker can be to
send a fake notification to his own phone, in which case the assumption that the
adversary has physical access to the phone of the victim makes perfect sense.
This self-injection attack can be done to scare friends and family members, to get
the permission of staying home from work, or to get priority for the COVID-19
test.9 Furthermore, in the case of the Italian app Immuni, each risk notification
is communicated to the Italian Ministry of Health: the Italian authorities keep
a counter on how many risk notifications have been sent to Immuni’s users.10

Therefore, sending fake notifications even to phones controlled by the adversary
represents a serious attack in itself since it allows the attacker to inflate the
official counter arbitrarily.

The Italian’s counter of risk notifications only takes into account notifications
sent from phones endowed with the “hardware attestation” technology, a service
offered by Google. So, our attacks show a way to bypass this trusted computing
mechanism to manipulate the official counters.

8 It can be done without this assumption by using a vulnerability of the phone allowing
to execute a code remotely.

9 Indeed, in Switzerland a risk notification has legal value in the sense that it gives
priority for the COVID-19 test, a free test, and also subsidies when the employer
does not give a salary to stay home without being sick.

10 https://www.immuni.italia.it/dashboard.html.

https://www.immuni.italia.it/dashboard.html

432 V. Iovino et al.

4.2 Rogue NTP Server

If the smartphone is connected on the Internet on Wi-Fi, it may use NTP (Net-
work Time Protocol) to synchronize clock information. If the adversary connects
to the same Wi-Fi network of the victim, he may set an ARP-spoofing attack to
redirect all NTP queries to a rogue server. Since NTP authentication is optional,
the response from the rogue NTP server will be accepted and then, the adversary
can remotely set the date and time of the smartphone.

If the adversary owns the Wi-Fi network (what we call a rogue Wi-Fi net-
work), the attack is even simpler as it no longer requires any ARP-spoofing.
Instead, the adversary sets up an NTP server and controls time.

If the mobile network has a priority over NTP, we may assume that the
victim is not connected to the mobile network. Otherwise, the adversary may
have to jam it.

Depending on the smartphone vendors, NTP is used permanently or only
at the boot time, then every 24 h. Sometimes, third-party apps force constant
NTP synchronization. The adversary may wait until an NTP request is sent
to trigger the whole attack. Otherwise, the adversary must make the victim’s
smartphone reboot. Making a target to reboot can be done by social engineering
(by convincing the victim to reboot). Another way is to use a Denial-of-Service
attack. With DoS, the adversary can remotely reboot a smartphone.

4.3 Rogue Base Station

NITZ messages are sent by mobile operator to synchronize time and date when
a smartphone is connected to a new mobile network. This is generally used to
set new time zone when roaming on another country.

Since the adversary must be physically close to the victim to broadcast
replayed RPI, he may also set up a rogue mobile network base station to send
corrupt NITZ message. Thus, when the victim is connected to the rogue mobile
network, the date and time is modified. Compared to previous techniques, the
adversary can now modify clock information at any time by disconnecting and
reconnecting the smartphone at will. Note that since the adversary also controls
mobile data, he may block update or NTP Requests to avoid potential issues.

Making sure that the victim connects to the rogue base station may require
to jam the signal of the one it uses and to impersonate the network it subscribed
to. Since there is no authentication of the base station, this is easily done.

4.4 Rogue GNSS

The last technique is to send a fake GNSS signal to modify internal clock of
smartphones. Open source tools are available to generate GPS signals [7]. This
attack is less practical, since smartphones may not accept GNSS as trusted
source clock by default. Moreover, NITZ and NTP take precedence over GNSS.

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 433

5 Master of Time Attack

A limitation of the attacks described above is the need to stay for at least 15 min
close to the victim to replay RPI. However, GAEN is not continuously scanning
Bluetooth broadcast (because of power consumption). Indeed, only 5 s of scan
is performed regularly by the smartphone.11 The duration between two scans
is random but typically in the 3–5 min range. Since the adversary is able to
modify the date and time at any time, we define an improvement, called Master
of Time, to accelerate the alert injection process.

The goal of the improvement is to trigger the 5-s scans more quickly. The
adversary first goes in the past to the corresponding time and date of the replayed
RPI. This generally triggers a 5-s scan. After that, a random delay is selected by
the phone. However, the adversary updates the time again, but to 5 min later.
The phone realizes it missed to scan and this triggers an immediate opportunistic
scan. After this new 5-s scan, the adversary updates the time to 5 min later again
and a third scan is launched. Finally in 15 s, the adversary can trigger enough
5-s scans to simulate an exposure of more than 15 min. This improvement can
be applied to all the techniques described above.

There is actually no need to wait for the entire duration of a scan. We can
actually reduce the duration between time jumps to 200 ms but we should also
increase the frequency of sending RPI. Hence, we broadcast over Bluetooth every
30 ms. Since the duration of a time jump using a rogue base station takes 100 ms,
the entire attack takes less than one second in total.

6 Experiments

In this section, we give a detailed description of the Rogue NTP Server Attack
and the Rogue Base Station Attack with threat model, experimental setup and
results. We tested all options of the attack we mention. We should stress that
attacks are not always stable (our success rate is at least 80%) but failure cases
are often due to bugs in the phone (in the app, in GAEN, or in the operating sys-
tem). We found workaround to increase the reliability. However, this technology
is a living matter and so are the workarounds we found.

6.1 Rogue NTP Server

We list here a few assumptions.

– The adversary must be within the Bluetooth range of the victim.12

– The adversary must access to the same Wi-Fi network of the smartphone and
redirect data traffic (by using ARP spoofing attack or rogue Wi-Fi network).

11 Technically, the scan listens for 4 s but an extra second may be needed to activate
the scan.

12 This range could be enlarged using a 2.4 GHz amplifier.

434 V. Iovino et al.

– If NITZ has a priority over NTP, we assume that the victim is not connected
to the mobile network. Otherwise, the adversary may have to jam it.

– Depending on the smartphone model, the adversary may need to force NTP
as explained in Sect. 4.2.

– We also assume that the victim has not pulled yet the last updated TEK-list
which is used by the adversary. (Otherwise, the victim will not try to match
it and the attack fails.)

The hardware needed for this attack is relatively simple. Only Wi-Fi and
Bluetooth are needed. We tested several smartphones (Motorola z2 force, Sam-
sung Galaxy S6, Samsung Galaxy A5; in Sect. 6.3 we tested with a more recent
phone.). We used a Raspberry Pi Zero W (Fig. 1) to host a rogue NTP server. We
use a custom Python-based NTP server to deliver the date and time retrieved
from the selected TEK.

We also tested using a different hardware platform. We used an home-
assembled device endowed with an ESP32 chipset available on Amazon for about
10 Euros. Full fledged devices with the ESP32 chipset are available in different
sizes, for instance in watches13, and as such are easily concealable by an attacker.

In rogue Wi-Fi settings, we set up the device as a rogue Wi-Fi access point.
Then, we redirect all UDP connections on port 123 to the rogue NTP server
(hosted on the same device). We also configure the access point to block TEK-
list queries by the smartphone to avoid potential issues. When using a genuine
Wi-Fi network, we use ARP spoofing to redirect to the rogue NTP server and
also to block Internet access to the victim’s phone so as to prevent the download
of the TEK-list during the critical phases of the attack.

The attack then works as follows.

1. The adversary retrieves the updated TEK-list (which is publicly available)
from the official server.

2. He picks a new TEK and derives an RPI and AEM. The emission power in
AEM is set to low to improve the chances for the RPI to be accepted.

3. The adversary waits for an NTP request from the smartphone14. He replies
to NTP requests with the date and time of the RPI (i.e. in the past).

4. He sends for at least 15 min the RPI‖AEM using the Raspberry Pi Zero W
and Bluez tools.

5. The active part of the attack can stop here. The adversary can wait for the
smartphone to restore the date and time by itself, then update the TEK-list
and raise an alert. Alternately, the adversary can set the clock back to normal
then wait for the TEK-list update.

We tested all variants of the attacks described above with success. Sometimes
the smartphone has issues to update the TEK-list and it may need up to 12 h to
trigger the alert.
13 https://www.banggood.com/it/LILYGO-TTGO-T-Watch-2020-ESP32-Main-Chip-

1 54-Inch-Touch-Display-Programmable-Wearable-Environmental-Interaction-
Watch-p-1671427.html.

14 He can also trigger it with a Denial-of-Service attack to reboot the smartphone.

https://www.banggood.com/it/LILYGO-TTGO-T-Watch-2020-ESP32-Main-Chip-1_54-Inch-Touch-Display-Programmable-Wearable-Environmental-Interaction-Watch-p-1671427.html
https://www.banggood.com/it/LILYGO-TTGO-T-Watch-2020-ESP32-Main-Chip-1_54-Inch-Touch-Display-Programmable-Wearable-Environmental-Interaction-Watch-p-1671427.html
https://www.banggood.com/it/LILYGO-TTGO-T-Watch-2020-ESP32-Main-Chip-1_54-Inch-Touch-Display-Programmable-Wearable-Environmental-Interaction-Watch-p-1671427.html

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 435

Fig. 5. Screen captures of SwissCovid raising an alert

The experiment was performed for SwissCovid and Immuni. Figure 5 shows
screenshots of an alert on SwissCovid and Fig. 6 shows pictures of an alert on
Immuni. Observe that while SwissCovid allows to take screenshots of alerts,
Immuni prevents that for security reasons.

6.2 Rogue Base Station

We list here a few assumptions.

– The victim must be within the range of the adversary rogue base station and
Bluetooth USB dongle (this range can be enlarged using amplifiers).

– The victim smartphone is registered to the rogue base station.
– We also assume that the victim has not pulled yet the last updated TEK-list

which is used by the adversary. (Otherwise, the victim will not try to match
it and the attack fails.)

For this attack we used a mini PC Fitlet2 (Intel J3455) with a Bluetooth USB
dongle and the Software Defined Radio (SDR) USRP B200-mini (Fig. 7). We
used several open source projects such as Osmocom suite [4], OpenBTS [8],
YateBTS [11] and srsLTE [9]. We eventually setup a 2G rogue base station
because of the lack of mutual authentication. Our tests were realized in a Faraday
cage to comply with legal regulations. Since the rogue base station also manages
network access, we block TEK-list updates and NTP requests. Note that the
cost of the attack can be significantly reduced by using a modified Motorola
C123 mobile phone as the SDR [5] or even a USB-to-VGA dongle [6]! Below we
describe our attack with the Master of Time variant, Hence, the whole attack
takes less than a second.

1. The adversary retrieves the updated TEK-list (which is publicly available)
from the official server.

436 V. Iovino et al.

Fig. 6. Pictures of immuni raising an alert

2. He picks a new TEK and derives an RPI and AEM. The emission power is set
to low to improve the chances for the RPI to be accepted.

3. Using NITZ message, the adversary sends the smartphone to the past at the
corresponding date and time of the RPI.

4. He sends the RPI‖AEM using the Bluetooth USB dongle, following the Master
of Time attack with NITZ. This requires less than a second.

5. The active part of the attack can stop here. The adversary can wait for the
smartphone to restore date and time by disconnecting it from the rogue base
station or sets the clock back to normal on the smartphone with a last NITZ
message.

6. The app eventually updates the TEK-list. The replayed RPI will be considered
as genuine since the exposure duration is more than 15 min, within the defined
time frame and emitted with low power. Hence, an alert will be raised.

The attack using a 2G rogue base station is common. As all phones are com-
patible with 2G, it may only require to jam 3G/4G signals. Most likely, 2G will
phase out from smartphones way later than the virus. If not, rogue 3G/4G base
stations can be made too, but it would require to bypass authentication (at least,
on phones which use it [23]).

6.3 Experimenting the Attack with a Journalist

A demo of the attack on the Immuni’s app was carried out in presence of a
journalist of the Italian television RAI who was seemingly interested in mak-
ing the public aware of the danger of replay attacks in general. (The demo and
the interview did not focus on time-traveling phones and the more sophisticated
technicalities we show in this paper). For this, the journalist bought a new smart-
phone (Samsung Galaxy A21S) on October 16, 2020 and we used it as a target.
At the end of the demo, the journalist saw an alert for a close contact which was
supposed to have occurred on October 14, two days before the smartphone was

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 437

Fig. 7. Rogue base station USRP B200-Mini with a Fitlet2

bought! Every step, from the purchase of the phone to the display of the alert,
was filmed by the journalist.15

6.4 Other GAEN-based Apps

We tried few other GAEN-based apps with success. With NHS COVID-19 (the
app which is used in England and Wales), the app puts the user in quarantine
and releases it after a few days (we used our time machine to check it). The
app also shows at-risk areas (like BR1 which is in London). Figure 8 also shows
Corona-Warn-App (the app in Germany) and Coronalert (Belgium).

7 KISS Attack

GAEN was developed with the Keep It Stupid Simple (KISS) principle. We can
have false alert injection attacks following this principle too: by replaying keys
which are publicly available.

7.1 Still-Valid Keys

The previous attack uses reported keys which are outdated and needs a time
machine to replay them. Sometimes, as it is allowed by the GAEN infrastruc-
ture, diagnosed users also want to report on the server for some RPIs that they
15 https://www.rai.it/programmi/report/.

https://www.rai.it/programmi/report/

438 V. Iovino et al.

NHS COVID-19 Corona-Warn-App Coronalert

Fig. 8. Screen captures of various GAEN-based apps raising an alert

have broadcasted in the last minutes. These are keys derived by the currently
used TEK which is valid for the rest of the day. Hence, we sometimes find on
the server some TEKs which are still active. It is a bit surprising because this
potential attack was already mentioned in a report disclosed the 8th of April [24,
Section 4.3].

Sometimes, regions are careful not to post still-valid keys but they publish
just-expired ones which are still accepted due to the tolerance of GAEN with
the validity period.

We monitored the existence of still-valid or just-expired keys in GAEN-based
systems. During a few days, we regularly checked if the server were suggesting
TEKs which were still active in many regions. Our results are as follows:

– Regions we tested (23): AT, BE, CA, CH, CZ, DE, DK, EE, ES, FI, GI,
IE, IT, LV, MT, NL, PL, PT, USAL (Alabama), USDE (Delaware), USWY
(Wyoming), UKEW (England & Wales), UKNI (North Ireland).

– Regions providing still-valid TEKs as we observed (8): AT, DK, ES, IT, NL,
USAL (Alabama), USDE (Delaware), USWY (Wyoming).

– Regions providing just-expired TEKs as we observed (2): CA, UKEW (Eng-
land & Wales).

In all regions with valid TEKs observed, we successfully injected false alerts
without any time machine. More screen captures are shown on Fig. 9.

To monitor reported TEKs on servers, we used the information collected
by the TACT project by Leith and Farrell [20] and some of the scripts they
developed.16

16 https://github.com/sftcd/tek transparency/.

https://github.com/sftcd/tek_transparency/

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 439

AT ES NL CA

DK LV USDE EE

Fig. 9. Screen captures of more GAEN-based apps raising an alert

7.2 Consequences of Interoperability

The interoperability infrastructure in Europe is based on a Federation Gateway
Service. As of 19 October 202017, the following regions in Europe are part of it:

Germany
Ireland
Italy
Republic of Latvia
Spain

Denmark
Croatia
Poland
The Netherlands
Cyprus

The system works as follows [2]: a user selects the regions he visited or he is
visiting on his home app. In the case the user is diagnosed and reports, the

17 https://ec.europa.eu/health/sites/health/files/ehealth/docs/gateway jointcontrolle
rs en.pdf.

https://ec.europa.eu/health/sites/health/files/ehealth/docs/gateway_jointcontrollers_en.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/gateway_jointcontrollers_en.pdf

440 V. Iovino et al.

app will indicate the regions visited by the user (as declared). His home server
will forward to the Federation Gateway Service. Each server retrieves from this
service the keys they are interested in. This could mean all keys. When the app
wants to check exposure, it retrieves from its home server the keys of relevant
regions. This is how the systems works with Immuni in Italy. Things could be a
bit different in other countries.

When a still-valid key is discovered in any region A of the interoperable
system, users of any other region B of the system may be subject to the attack
if the key is transferred from A to B. For instance, we observed that still-valid
keys are never transferred to Germany.

However, as soon as we observe a valid key in—say—Italy, we can start
replaying it in any country and hope it will be transferred there. With a Blue-
tooth dongle, we can replay 100–200 different RPI during a 4-s Bluetooth scan.
They will all count for a few minutes encounter. Hence, we can blindly try all the
still-valid keys from any country and hope that one will appear on the server.
During our monitoring period, we found from 200 to 500 still-valid keys every
day in the indicated countries.

We list below the transfers of still-valid keys which we observed:

– Regions reporting transferred still-valid keys: DK, ES, IT, NL, LV, PL, IE.
– Region reporting transferred just-expired keys: DE.

8 My-Number Attack

On Android, GAEN cleans up its list of TEKs when they are older than 14
days. This operation is done once a while or when the smartphone is rebooted.
However, TEKs are immediately generated as soon as they are needed, i.e. when
the date is modified or at midnight. Interestingly, if a TEK has been already
picked for this day, it will be reused, as well as the RPIs.

An adversary controlling the time can exploit these principles to identify
smartphones. We list below several attacks which have been successfully tested.

To mitigate the attack, we can inspire from those verses:

You don’t have my number
We don’t need each other now
Foals — My Number

Back to the Past. The adversary wants to recognize a smartphone which sent an
RPI in the recent past (less than 14 days old) at a specific date and time. Alter-
nately, a forensic attack on a smartphone wants to recognize its past encounters
by the stored RPIs. The adversary wonders if the smartphone to recognize is
currently around. He uses a time machine to send the surrounding smartphones
to the specific date and time. Then, he compares collected RPIs. If the same RPI
is received, the smartphone is identified. Clearly, this breaks the unlinkability
claims of the GAEN protocol.

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 441

Back to the Future. The adversary wants to identify smartphones around him
during a future event which will occur at a given date. For this, the adversary
can identify smartphones in the present and send them to this future date to
collect the RPIs they will use. Then, when the even occurs, these smartphones
will repeat the collected RPIs and the adversary will associate them with an
identity.

Back to the Far Future. To identify smartphones on request, the adversary can
send them systematically to a specific date in the far future, such as 12.9.2021. By
moving into a fixed date in the far future, GAEN will create a TEK for this date
and it will stay in memory until 14 days after this date, which could practically
mean “forever”. Hence, every smartphone will advertise itself by broadcasting a
unique RPI which will always be the same until 26.9.2021.

Note that we were able to create TEKs for the year of 2150, but the operating
system became unstable. In particular, a value containing the number of days
since epoch (coded with 2 bytes) was overflowed.

9 Countermeasures

Clearly, GAEN was developed under the assumption that phones have a reliable
clock. Our attacks show that phones do not have a reliable clock, that it can be
controlled by an adversary, and that it can be exploited to break GAEN.

As a countermeasure, we would urge operating systems developers to
strengthen the security of the clock, or at least to implement detection of time-
travel attacks. Clearly, a dirty quick fix could be to keep record of past clocks
and to check that the clock value only increases. GAEN should not proceed if
the clock is rewinded. However, this would open the door to denial-of-services
attacks. Ideally, such monitoring should be done at the operating system level.

If there is no way to rely on a clock, the GAEN infrastructure should be
revisited. Ideally, the server should not give information helping the adversary
to replay beacons. To avoid more possible replay attacks, the encounter could
rely on an interactive protocol which would make replay impossible. This would
require to reopen the debate on centralized versus decentralized systems and
about third ways in between [25]. Some alternate solutions exist such as Pronto-
C2 [13].

As for the KISS attack, clearly, TEKs must be better filtered. Countries
should never post a key which is still active or just expired. They should further
monitor if countries in the same federation do so and filter the dangerous TEKs
they would publish.

10 Conclusion

In this paper, we demonstrate that alert injections against the GAEN infras-
tructure of Google and Apple are easy to achieve even without collaboration
or corruption of infected individual, Apple, Google, or health authorities. The

442 V. Iovino et al.

attack requires little equipment, is fast, and can be done by anyone. It could be
done at scale too.

Moreover, people can generate alert injections on their own phones motivated
by different purposes: e.g., frightening their own family members or friends,
showing the alert to their employers to be exempted by work, or simply to have
priority to the COVID-19 test with the terrible side effect of congesting the
health system. We point out that in Italy the Ministry of Health does receive
a notification when a user is alerted and being such notifications anonymous is
impossible for the authorities to distinguish genuine alerts from fake ones; terror-
ists and criminals could generate fake alerts on phones controlled by themselves
to make the Italian health authorities believe that there are much more at-risk
individuals, so to induce Italian authorities to take drastic political decisions.

The time machine can also be used to break privacy and identify smart-
phones. In an active attack, we can recognize smartphones from the past, smart-
phones in the future, or even make them identify with a unique number.

The time machine’s techniques we describe in this work are also useful to
test the GAEN system offline and to figure out details that are not public since
GAEN is not open source and Google and Apple restrict access to the GAEN’s
API to health authorities.

Acknowledgements. The authors thank Biagio Pepe, Mario Ianulardo, and Shinjo
Park for useful suggestions and technical advice. We also thank Doug Leith and Stephen
Farrell for their script and help to test our attacks in some regions.

References

1. CVE-2020-15957. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
15957

2. eHealth Network Guidelines to the EU Member States and the European Com-
mission on Interoperability specifications for cross-border transmission chains
between approved apps. Detailed interoperability elements between COVID+ Keys
driven solutions. V1.0 16 June 2020. https://ec.europa.eu/health/sites/health/
files/ehealth/docs/mobileapps interoperabilitydetailedelements en.pdf

3. Exposure Notification. Cryptography Specification. v1.2 April 2020. Apple &
Google. https://www.google.com/covid19/exposurenotifications/

4. Osmocom Suite. https://osmocom.org/
5. OsmocomBB. https://projects.osmocom.org/projects/baseband
6. osmo-fl2k. https://osmocom.org/projects/osmo-fl2k
7. osqzss. https://github.com/osqzss/gps-sdr-sim
8. Range Networks. OpenBTS. http://openbts.org
9. srsLTE. https://www.srslte.com/

10. SwissCovid Exposure Score Calculation. Version of 11 September 2020.
https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-
ExposureScore.pdf

11. Yate. YateBTS. https://yatebts.com
12. Dallon Adams, R.: 20-mile Bluetooth beacon? Apptricity announces Ultra Long-

Range device. TechRepublic 2020. https://www.techrepublic.com/article/20-mile-
bluetooth-beacon-apptricity-announces-ultra-long-range-device/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15957
https://ec.europa.eu/health/sites/health/files/ehealth/docs/mobileapps_interoperabilitydetailedelements_en.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/mobileapps_interoperabilitydetailedelements_en.pdf
https://www.google.com/covid19/exposurenotifications/
https://osmocom.org/
https://projects.osmocom.org/projects/baseband
https://osmocom.org/projects/osmo-fl2k
https://github.com/osqzss/gps-sdr-sim
http://openbts.org
https://www.srslte.com/
https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-ExposureScore.pdf
https://github.com/admin-ch/PT-System-Documents/blob/master/SwissCovid-ExposureScore.pdf
https://yatebts.com
https://www.techrepublic.com/article/20-mile-bluetooth-beacon-apptricity-announces-ultra-long-range-device/
https://www.techrepublic.com/article/20-mile-bluetooth-beacon-apptricity-announces-ultra-long-range-device/

On the Effectiveness of Time Travel to Inject COVID-19 Alerts 443

13. Avitabile, G., Botta, V., Iovino, V., Visconti, I.: Towards defeating mass surveil-
lance and SARS-CoV-2: The Pronto-C2 fully decentralized automatic contact trac-
ing system. Cryptology ePrint Archive: Report 2020/493. IACR. http://eprint.iacr.
org/2020/493

14. Avitabile, G., Friolo, D., Visconti, I.: TEnK-U: terrorist attacks for fake expo-
sure notifications in contact tracing systems. Cryptology ePrint Archive: Report
2020/1150. IACR. http://eprint.iacr.org/2020/1150

15. Bonnetain, X., et al.: Le traçage anonyme, dangereux oxymore. Analyse de risques
à destination des non-spécialistes. (English version: Anonymous Tracing, a Dan-
gerous Oxymoron – A Risk Analysis for Non-Specialists.). https://risques-tracage.
fr/

16. Dehaye, P.-O., Reardon, J.: SwissCovid: a critical analysis of risk assessment by
Swiss authorities. Preprint arXiv:2006.10719 [cs.CR] (2020). https://arxiv.org/
abs/2006.10719

17. Gennaro, R., Krellenstein, A., Krellenstein, J.: Exposure notification system
may allow for large-scale voter suppression. https://static1.squarespace.com/
static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/
Exposure Notification.pdf

18. Gvili, Y.: Security Analysis of the COVID-19 Contact Tracing Specifications by
Apple Inc. and Google Inc., Cryptology ePrint Archive: Report 2020/428. IACR.
http://eprint.iacr.org/2020/428

19. Iovino, V., Vaudenay, S., Vuagnoux, M.: On the effectiveness of time travel to inject
COVID-19 alerts. Cryptology ePrint Archive: Report 2020/1393. IACR. http://
eprint.iacr.org/2020/1393

20. Leith, D.J., Farrell, S.: Testing Apps for COVID-19 Tracing (TACT). Research
project. https://down.dsg.cs.tcd.ie/tact/

21. Leith, D.J., Farrell, S.: Measurement-based evaluation Of Google/Apple exposure
notification API for proximity detection in a light-rail tram. PLoS ONE 15(9)
(2020). https://doi.org/10.1371/journal.pone.0239943

22. Li, V.: Hacking JSON Web Tokens (JWTs), 27 October 2019. https://medium.
com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a

23. Park, S., Shaik, A., Borgaonkar, R., Seifert, J.: White rabbit in mobile: effect
of unsecured clock source in smartphones. In: Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM@CCS 2016,
Vienna, Austria, 24 October 2016, pp. 13–21. ACM (2016.) https://doi.org/10.
1145/2994459.2994465

24. Vaudenay, S.: Analysis of DP3T – between Scylla and Charybdis. Cryptology
ePrint Archive: Report 2020/399. IACR. http://eprint.iacr.org/2020/399

25. Vaudenay, S.: Centralized or decentralized? The contact tracing dilemma. Cryp-
tology ePrint Archive: Report 2020/531. IACR. http://eprint.iacr.org/2020/531

26. Vaudenay, S., Vuagnoux, M.: Analysis of SwissCovid. https://lasec.epfl.ch/people/
vaudenay/swisscovid/swisscovid-ana.pdf

http://eprint.iacr.org/2020/493
http://eprint.iacr.org/2020/493
http://eprint.iacr.org/2020/1150
https://risques-tracage.fr/
https://risques-tracage.fr/
http://arxiv.org/abs/2006.10719
https://arxiv.org/abs/2006.10719
https://arxiv.org/abs/2006.10719
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
https://static1.squarespace.com/static/5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/1598531714869/Exposure_Notification.pdf
http://eprint.iacr.org/2020/428
http://eprint.iacr.org/2020/1393
http://eprint.iacr.org/2020/1393
https://down.dsg.cs.tcd.ie/tact/
https://doi.org/10.1371/journal.pone.0239943
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a
https://doi.org/10.1145/2994459.2994465
https://doi.org/10.1145/2994459.2994465
http://eprint.iacr.org/2020/399
http://eprint.iacr.org/2020/531
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf

SoK: How (not) to Design and Implement
Post-quantum Cryptography

James Howe1 , Thomas Prest1(B) , and Daniel Apon2

1 PQShield, Oxford, UK
{james.howe,thomas.prest}@pqshield.com

2 National Institute of Standards and Technology, Gaithersburg, USA
daniel.apon@nist.gov

Abstract. Post-quantum cryptography has known a Cambrian explo-
sion in the last decade. What started as a very theoretical and math-
ematical area has now evolved into a sprawling research field, com-
plete with side-channel resistant embedded implementations, large scale
deployment tests and standardization efforts. This study systematizes
the current state of knowledge on post-quantum cryptography. Com-
pared to existing studies, we adopt a transversal point of view and cen-
ter our study around three areas: (i) paradigms, (ii) implementation,
(iii) deployment. Our point of view allows to cast almost all classical and
post-quantum schemes into just a few paradigms. We highlight trends,
common methodologies, and pitfalls to look for and recurrent challenges.

1 Introduction

Since Shor’s discovery of polynomial-time quantum algorithms for the factoring
and discrete logarithm problems, researchers have looked at ways to manage
the potential advent of large-scale quantum computers, a prospect which has
become much more tangible of late. The proposed solutions are cryptographic
schemes based on problems assumed to be resistant to quantum computers,
such as those related to lattices or hash functions. Post-quantum cryptography
(PQC) is an umbrella term that encompasses the design, implementation, and
integration of these schemes. This document is a Systematization of Knowledge
(SoK) on this diverse and progressive topic.

We have made two editorial choices. First, an exhaustive SoK on PQC could
span several books, so we limited our study to signatures and key-establishment
schemes, as these are the backbone of the immense majority of protocols. This
study will not cover more advanced functionalities such as homomorphic encryp-
tion schemes, threshold cryptography, etcetera.

Second, most surveys to-date are either (i) organized around each family [26]
– (a) lattices, (b) codes, (c) multivariate equations, (d) isogenies, (e) hash and
one-way functions – or (ii) focused on a single family [88,151]. Our study instead
adopts a transversal approach, and is organized as follows: (a) paradigms, (b)
implementation, and (c) deployment. We see several advantages to this approach:
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 444–477, 2021.
https://doi.org/10.1007/978-3-030-75539-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_19&domain=pdf
http://orcid.org/0000-0002-6498-3099
http://orcid.org/0000-0003-1445-6212
https://doi.org/10.1007/978-3-030-75539-3_19

SoK: How (not) to Design and Implement Post-quantum Cryptography 445

– Compared to previous surveys, it provides a new point of view that abstracts
away much of the mathematical complexity of each family, and instead
emphasizes common paradigms, methodologies, and threat models.

– In practice, there are challenges that have been solved by one family of scheme
and not another. This document’s structure makes it easy to highlight what
these problems are, and how they were solved. Consequently, it aims to pro-
vide specific direction for research; i.e., (i) problems to solve, and (ii) general
methodologies to solve them.

– If a new family of hardness assumptions emerges – as isogeny-based cryptog-
raphy recently has – we hope the guidelines in this document will provide a
framework to safely design, implement, and deploy schemes based on it.

1.1 Our Findings

A first finding is that almost all post-quantum (PQ) schemes fit into one of
four paradigms: Fiat-Shamir signatures, Hash-then-sign, Diffie-Hellman key-
exchange, and encryption. Moreover, the same few properties (e.g., homomor-
phism) and folklore tricks are leveraged again and again.

Successful schemes do not hesitate to bend paradigms in order to preserve the
security proof and the underlying assumption. In contrast, forcing an assumption
into a paradigm may break the assumption, the security proof, or both.

Our second finding is that many PQ schemes fell short in secure, isochronous
implementations which in turn lead to undeserved opinions on side-channel vul-
nerabilities. We also find some PQ schemes are significantly more amenable to
implementations in hardware, software, their efficiencies with masking, which
then translates into how performant they are in various use-cases.

Our last finding (see the full version [114]) is that all real-world efforts to
deploy post-quantum cryptography will have to contend with new, unique prob-
lems. They may require a diverse combination of computational assumptions
woven together into a single hybrid scheme. They may require special attention
to physical management of sensitive state. And they have very unbalanced per-
formance profiles, requiring different solutions for different application scenarios.

2 The Raw Material: Hard Problems

We first present the raw material from which cryptographic schemes are made of:
hard problems. Although there exists a myriad of post-quantum hard problems,
many of them share similarities that we will highlight.

2.1 Baseline: Problems that are not Post-quantum

We first present problems that are classically hard but quantumly easy. The
first family of problems relates to the discrete logarithm in finite groups; that is,
the Discrete Logarithm (DLOG) problem, the Decisional Diffie-Hellman (DDH),
and the Computational Diffie-Hellman (CDH) problems.

446 J. Howe et al.

Definition 1 (DLOG/DDH/CDH). Let G be a cyclic group of generator
g. The discrete logarithm problem (DLOG) and the decisional/computational
Diffie-Hellman problems (DDH/CDH) are defined as follows:

– DLOG: Given ga for a random a ∈ |G|, find a.
– DDH: Given ga, gb and gc for random a, b ∈ |G|, determine if c = ab.
– CDH: Given ga, gb for random a, b ∈ |G|, compute gab.

In cryptography, G is usually the ring Zp for a large prime p, or the group
of rational points of an elliptic curve. The following algebraic relations are
extremely useful to build cryptosystems, for example Schnorr signatures [173]
use (1) and (2) whereas the Diffie-Hellman key-exchange [77] uses (2):

ga · gb = ga+b, (1)

(ga)b =
(
gb

)a
= gab. (2)

The second family of problems relates to factoring.

Definition 2 (RSA and Factoring). Let p, q be large prime integers, N = p·q
and e be an integer.

– Factoring: Given N , find p and q.
– RSA: Efficiently invert the following function over a non-negligible fraction

of its inputs:
x ∈ ZN �→ xe mod N. (3)

For adequate parameters, the problems in Definition 1 and 2 are believed hard
to solve by classical computers. However, Shor has shown that they are solvable
in polynomial time by a quantum computer [177]. As these problems underlie
virtually all current public-key cryptosystems, Shor’s discovery motivated the
following research for alternative, quantum-safe problems.

2.2 Problems on Lattices

The most well-known problems based on lattices are Learning With Errors
(LWE) [138,163], Short Integer Solution (SIS) [3,135] and “NTRU” [111].

Definition 3 (SIS, LWE, and NTRU). Let R = Zq[x]/(φ(x)) be a ring,
and A ∈ Rn×m be uniformly random. The Short Integer Solution (SIS) and
Learning with Errors (LWE) problems are defined as follows:

– SIS: Find a short nonzero v ∈ Rm such that Av = 0.
– LWE: Let b = Ats + e, where s ∈ Rn and e ∈ Rm are sampled from the

‘secret’ distribution and ‘error’ distribution, respectively.
• Decision: Distinguish (A,b) from uniform.
• Search: Find s.

– NTRU: Let h = f/g ∈ R, where f, g ∈ R are ‘short.’ Given h, find f, g.

SoK: How (not) to Design and Implement Post-quantum Cryptography 447

SIS, LWE, and NTRU exist in many variants [135,138,155,163], obtained by
changing R, n,m, or the error distributions. To give a rough idea, a common
choice is to take R = Zq[x]/(xd + 1), with d a power-of-two, and n,m such that
nd and md are in the order of magnitude of 1000. The versatility of SIS, LWE,
and NTRU is a blessing and a curse for scheme designers, as it offers freedom
but also makes it easy to select insecure parameters [153].

We are not aware of closed formulae for the hardness of SIS, LWE, and
NTRU. However, the most common way to attack these problems is to interpret
them as lattice problems, then run lattice reduction algorithms [7,9]. For exam-
ple, the BKZ algorithm [174] with a blocksize B ≤ nd is estimated to solve these
in time Õ(20.292·B) classically [21], and Õ(20.265·B) quantumly [132] via Grover’s
algorithm.

2.3 Problems on Codes

Error-correcting codes provide some of the oldest post-quantum cryptosystems.
These usually rely on two problems:

– The Syndrome Decoding (SD) problem, see Definition 4.
– Hardness of distinguishing a code in a family F from a pseudorandom one.

We first present SD. Note that it is similar to SIS (Definition 3).

Definition 4 (SD). Given a matrix H ∈ F
k×n
2 and a syndrome s ∈ F

k
2 , the

Syndrom Decoding (SD) problem is to find e ∈ F
n
2 of Hamming weight w such

that He = s.

Since 1962, several algorithms have been presented to solve the SD problem,
their complexity gradually improving from 20.1207n [160] to 20.0885n [42]. These
algorithms share similarities in their designs and [182] recently showed that when
w = o(n), they all have the same asymptotic complexity ≈ 2w log2(n/k). For
many of these algorithms, quantum variants have been proposed. They achieve
quantum complexities that are essentially square roots of the classical ones, by
using either Grover or quantum walks.

The second problem is not as clearly defined, as it is rather a class of prob-
lems. Informally, it states that for a given family C = (Ci)i of codes, a matrix
G generating a code Ci ∈ C is hard to distinguish from a random matrix. For
example, two variants of BIKE [11] assume that it is hard to distinguish from
random either of these quasi-cyclic codes (or QC codes):

h0/h1 (4)
g, g · h0 + h1 (5)

where g, h0, h1 ∈ F2[x]/(xr − 1), g is random and h0, h1 have small Hamming
weight. Note that (4) and (5) are reminiscent of NTRU and (ring-)LWE, respec-
tively (see Definition 3). Hence all the lattice problems we have defined have
code counterparts, and reciprocally. Besides the QC codes of (4)–(5), another
popular family of codes are Goppa codes [28,59,140].

448 J. Howe et al.

2.4 Problems on Multivariate Systems

The third family of problems is based on multivariate systems. In practice, only
multivariate quadratics (i.e., of degree 2) are used. They are the Multivariate
Quadratic (MQ) and Extended Isomorphism of Polynomials (EIP) problems.

Definition 5 (MQ and EIP). Let F be a finite field. Let F : F
n → F

m of
the form F(x) = (f1(x), . . . , fm(x)), where each fi : Fn → F is a multivariate
polynomial of degree at most 2 in the coefficients of x.

– MQ: Given y ∈ F
m and the map F:

• Decision: Is there an x such that F(x) = y?
• Search: Find x such that F(x) = y.

– EIP: Let S : Fn → F
n and T : Fm → F

m be uniformly random affine maps.
Given P = S ◦ F ◦ T and the promise that the map F is in a publicly known
set F , find F.

Note that MQ is solvable in polynomial time for m2 = O(n) or n2 = O(m);
therefore this problem is more interesting when n = Θ(m), which we assume
henceforth. Also note that EIP can be parameterized by the set F to which the
secret map F belongs. For example, the Unbalanced Oil and Vinegar (UOV) and
Hidden Field Equation (HFEv) problems, used by Rainbow [79] and GeMSS [46]
respectively, are instantiations of the EIP “framework”.

Algorithms for solving MQ or EIP include F4/F5 [86], XL [60,76] or Cross-
bred [126]. The best algorithms [33,126,186] combine algebraic techniques – e.g.,
solving Gröbner bases – with exhaustive search, which can be sped up using
Grover’s algorithm in the quantum setting, see [27] as an example. The asymp-
totic complexities of these algorithms are clearly exponential in n, but we did not
find simple formulae to express them (either classically or quantumly), except
for special cases (q = 2 and n = m) which do not accurately reflect concrete
instantiations such as the signature schemes Rainbow [79] and MQDSS [171].

2.5 Problems on One-Way and Hash Functions

The most peculiar family of PQ problems relates to properties of (generic) one-
way and hash functions. These problems are algebraically unstructured, which
is desirable security-wise, but tends to imply more inefficient schemes.

Definition 6 (Problems on hash functions). Let H : X → Y be a function,
where Y = 2n.

– Preimage: Given y ∈ Y , find x ∈ X such that H(x) = y.
– Second preimage: Given x1 ∈ X, find x2 �= x1 such that H(x1) = H(x2).
– Collision: Find x1 �= x2 such that H(x1) = H(x2).

The best classical algorithm against (second) preimage is exhaustive search,
hence a complexity O(2n). Grover’s famous quantum algorithm [102] performs
this search with a quadratic speed-up, hence a complexity O(2n/2). Regarding
collision, the best classical algorithm is the birthday attack with a complexity
O(2n/2), and (disputed) results place the complexity of the best quantum attack
between O(22n/5) [51] and Θ(2n/3) [189].

SoK: How (not) to Design and Implement Post-quantum Cryptography 449

2.6 Problems on Isogenies

Isogeny problems provide a higher-level twist on Definition 1. Elliptic curve
cryptography posits that when given g and ga, with g being a point on an
elliptic curve E, it is hard to recover a. Similarly, isogeny-based cryptography
posits that given elliptic curves E and E′ over Fp2 , it is hard to find a surjective
group morphism (or isogeny, in this context) φ : E → E′.

Isogeny-based cryptography is a fast-moving field. Elliptic curves can be ordi-
nary (E[p] 	 Zp) or supersingular (E[p] 	 {0}). Recall that the torsion subgroup
E[n] is the kernel of the map P ∈ E �→ [n]P . Most isogeny schemes work with
supersingular curves, which parameters scale better. Two problems (or variations
thereof) have emerged. Definition 7 provides simplified descriptions of them.

Definition 7 (Problems on isogenies). We define the Supersingular Isogeny
Diffie-Hellman (SIDH) and Commutative SIDH (CSIDH) problems as follows:

– SIDH: Given two elliptic curves E,EA and the value of an isogeny φ : E →
EA on E[�e], find φ.

– CSIDH: Given two elliptic curves E,EA, find an efficiently computable
isogeny φ ∈ C�(O) s.t. EA = φ · E, where C�(O) is the class group of
O = Z[

√−p].

Note that the CSIDH problem adapts DDH to the isogeny setting, and one
can similarly adapt CDH (see Definition 1). Note that both problems are quan-
tumly equivalent [94], whereas CDH and DDH are not known to be classically
equivalent, except in special cases.

For SIDH, the best classical attack is via a claw-finding algorithm due
to van Oorschot-Wiener [183]. Surprisingly, a recent result [124] shows that
the best known quantum attack performs worse than [183]. The hardness of
CSIDH reduces to solving a hidden shift problem, for which Kuperberg proposed
quantum sub-exponential algorithms [130,131]. The actual quantum security of
CSIDH is still being debated [40,152].

2.7 Summary of Problems

Figure 1 summarizes the classical and quantum hardness estimates of the prob-
lems we presented. Quantum estimates are particularly prone to change, notably
due to (a) the lack of clear consensus on the cost of quantum memory, (b) the
prospect of future algorithmic improvements.

3 Paradigms are Guidelines, not Panaceas

In the classical world, there are two paradigms for signing:

– Fiat-Shamir (FS) [90], proven in the random oracle model (ROM) by [158].
One example is Schnorr signatures and (EC)DSA.

450 J. Howe et al.

Fig. 1. Classical and quantum hardness of some problems.

– Hash-then-sign. The most prominent formalization of this paradigm is the
Full Domain Hash [24] (FDH), proven in the ROM by [25,58]. Numerous
instantiations exist, such as RSA-PSS and Rabin signatures.

There are also two paradigms for key establishment:

– Public-key encryption, like El Gamal [83] or RSA [165].
– Diffie-Hellman (DH) key-exchange [77].

At a conceptual level, this section shows that most PQ signature or key establish-
ment schemes can be cast under one of these four paradigms. This is summarized
by Table 1, which also provides us with two open questions:

(Q1) Can we have isogeny-based Hash-then-sign schemes?
(Q2) Can we have multivariate key establishment schemes?

The prospect that we will have practical key establishment schemes based on
symmetric primitives only seems unlikely, see [16]. For (Q1) and (Q2), we hope
that the guidelines provided in this section will help to answer them.

Table 1. Correspondence between post-quantum schemes and problems.

Signature Key establishment

Hash-&-Sign Fiat-Shamir DH-style PKE

Lattices [54,161] [39,139] [154] [67,175,190]

Codes [73] [179,185] [1] [11,28]

Isogenies ? [36,69] [48,70,122] [123]

Multivariate [46,79] [171] ? ?

Symmetric [120] [35,188] – –

Our main takeaway is that scheme designers should treat paradigms as guide-
lines. In particular, a fruitful approach is to weaken some properties, as long as
the final scheme achieves meaningful security notions. For example:

– Efficient PQ variants of the FDH framework discards trapdoor permutations
for weakened definitions, which suffice for signatures, see Sect. 3.4.

– Fiat-Shamir with Aborts changes the protocol flow and may only prove knowl-
edge of an approximate solution. This suffices for signatures, see Sect. 3.1

SoK: How (not) to Design and Implement Post-quantum Cryptography 451

On the other hand, fitting a problem into a predefined paradigm is an interesting
first step, but may result in impractical (if not broken) parameters, that are
usually resolved by slight paradigm tweaks. Examples are rigid adaptations of:

– DH with lattices [107] and isogenies [70], see Sect. 3.5.
– FDH with codes [59] or lattices [112], see Sect. 3.4.

3.1 Schnorr Signatures over Lattices

Figure 2 recalls the structure of an identification scheme, or ID scheme. Any ID
scheme can be converted into a signature via the Fiat-Shamir transform [90]. A
efficient ID scheme is Schnorr’s 3-move protocol [173]. It instantiates Fig. 2 with
the parameters in Table 2 (column 2). It also requires additive and multiplicative
properties similar to (1)–(2).

Fig. 2. A (2n + 1)-move ID scheme. Fig. 3. SQISign.

Fortunately, lattice and code problems do have properties similar to (1)–
(2). An early attempt to propose Schnorr lattice signatures is NSS [110], which
was broken by statistical attacks [98]. The high-level explanation is that the ID
scheme in NSS did not satisfy the honest verifier zero-knowledge (HVZK) prop-
erty. Each transcript leaked a bit of information about sk, which [98] exploited to
recover sk. This was fixed by Lyubashevsky’s scheme [137], by giving the prover
the possibility to abort the protocol with a probability chosen to factor out the
dependency to sk from the signature. This changes the flow of the ID scheme, but
allows to prove HVZK. It is also invisible to the verifier as the signer will simply
restart the signing procedure in case of an abort. An example instantiation is
shown in Table 2 (column 3).

On the other hand, properties of lattices enable specific tricks tailored to
this setting. For example, for LWE, least significant bits (LSBs) do not really
matter. Let �u�b be a lossy representation of u that discards the b LSBs for each
coefficient of u. Finding a search-LWE solution (s1, s2) for (A, �t�b) implies a
solution (s1, s′

2) for (A, t), with ‖s2 − s′
2‖∞ ≤ 2b. This indicates that, as long as

b is not too large, LSBs are not too important for LWE.
This intuition was formalized by [15], who show that dropping z2 and check-

ing only the high bits of com allowed to reduce the signature size by about 2,

452 J. Howe et al.

Table 2. Instantiations of Schnorr Signatures.

Element Schnorr Lyubashevsky (w/ LWE)

sk Uniform x Short (s1, s2)

pk g, h = gx A, t = A · s1 + s2

com gr for uniform r A · r1 + r2 for short (r1, r2)

chal Uniform c Short c

rsp r − cx (z1, z2) = (r1 − cs1, r2 − cs2)

cond com = grsp · hc (com = Az1 + z2 − ct) ∧ ((zi)i short)

Abort? No Yes

for essentially the same (provable) security guarantees. Similarly, [103] applied
this idea to reduce the public key size. The idea was refined by Dilithium [139].
However, qTESLA [39] shows what can go wrong when applying this idea with-
out checking that the security proof is preserved (in this case, soundness), as it
was shown to be completely insecure.

3.2 The SQISign Approach for Signatures

SQISign [71] applies the Fiat-Shamir transform to the ID scheme in Fig. 3. Given
a public elliptic curve E, the private key is an isogeny φsk : E → Epk and the
public key is Epk. The prover commits to Ecom, the challenge is a description of
φchal : Ecom → Echal and the response is an isogeny φrsp : Epk → Echal.

A valuable (and unique over isogeny-based signatures) feature of SQISign is
the high soundness of each round, which makes it require only a single round.
On the other hand, computing φrsp requires a lot of care in order for the HVZK
property to hold, as shown by [71].

3.3 Beyond High Soundness Signatures

For the (vast majority of) problems that do not possess the (algebraic) proper-
ties needed to provide high soundness (thus few-rounds) signatures, there still
exist several tricks that enable efficient FS signatures. Scheme designers need to
consider two things:

– The soundness error ε of the ID protocol is often too large. For example,
Stern’s protocols [179] have ε ≥ 1/2. A solution is to repeat the protocol k
times so that εk ≤ 2−λ for bit-security λ, but this is not a panacea.

– For some problems, a 3-move ID protocol may be less efficient than an n-move
protocol with n > 3, or may even not be known.

We first elaborate on the first point. When the soundness ε of an ID protocol
is too small, the protocol is repeated k times. Typically, all k iterations are
performed in parallel (as opposed to sequentially). Parallel repetition is often

SoK: How (not) to Design and Implement Post-quantum Cryptography 453

expected by scheme designers to provide exponential soundness εk, however it is
not the case in general; it is proven effective for 3-move interactive protocols, but
counter-examples exist for higher-move protocols [23,127], see also Remark 1.

Next, we present 3-moves and 5-moves ID schemes. As long as the underlying
problem admits some linearity properties, one can build an ID scheme on it [14].
It is the case of all the schemes presented below.

PKP: A 5-move protocol based on the Permuted Kernel Problem (PKP) was
proposed in [176], with a soundness error of p

2p−2 ≈ 1/2, where p is the cardinal
of the underlying ring. It was later instantiated by PKP-DSS [38].

MQ: The first ID schemes for MQ were proposed by [169]. A key idea of [169]
was to use the polar form of F: G(x1,x2) = F(x1 + x2) − F(x1) − F(x2).

G is bilinear, and this was exploited to propose a 3-move protocol with soundness
error 2/3, and a 5-move one with soundness error 1/2 + 1/q ≈ 1/2. The latter
protocol was instantiated by MQDSS [53,171] using the Fiat-Shamir transform.

Codes: Many code-based schemes derive from Stern’s elegant protocols [179,180],
which are based on the SD problem. Stern proposed a 3-move with soundness
error 2/3, and a 5-move protocol with soundness error 1/2. The 3-move version
was improved by Veron [185] using the generator matrix of a code instead of its
parity check matrix, hence it is often seen as a dual of Stern’s protocol. However,
most derivatives of Stern’s protocol are based on the 5-move variant.

Isogenies: The CSIDH problem has been used to propose an ID scheme that,
interestingly, is very similar to the well-known proof of knowledge for graph
isomorphism. A useful trick used by SeaSign [69] is to use n public keys; this
improves the soundness error down to 1

n+1 . CSI-Fish [36] improved it to 1
2n+1 by

using symmetries specific to isogenies. Both schemes combine this with Merkle
trees, which provides a trade-off between signing time and soundness error.

Cut-and-Choose: This generic technique [129] provides a trade-off between sign-
ing time and soundness error. It had been used by [34] to provide MQ-based and
PKP-based signatures that are more compact than MQDSS and PKP-DSS.

Remark 1. [127] shows that for 5-round ID schemes with k parallel repetitions,
the soundness error may be larger than εk, and provides a combinatorial attack
against MQ-based schemes of [53,171] and the PKP-based scheme of [38]. It
warns that it might apply on 5-round variants of Stern’s protocol. This shows
that “intuitive” properties may not always be taken for granted.

3.4 Full Domain Hash Signatures

Hash-then-sign schemes are among the most intuitive schemes at a high level. A
standard way to construct them is via the Full Domain Hash (FDH) framework.
We note D(X) a distribution over a set X, U(Y) the uniform distribution over
a set Y and ≈s for statistical indistinguishability. Let (sk, pk) be an asymmetric
keypair. Associate to it a pair (fpk, gsk) of efficiently computable functions fpk :
X → Y (surjective) and gsk : Y → X (injective). Consider these properties:

454 J. Howe et al.

(T1) Given only pk, fpk is computationally hard to invert on (almost all of) Y .
(T2) fpk◦gsk is the identity over Y , and X = Y (hence fpk, gsk are permutations).
(T3) There exists a distribution D(X) over X such that for almost any y ∈ Y :

{x ← D(X), conditioned on fpk(x) = y} ≈s {x ← gsk(y)}.
(T4) {(x, y)|x ← D(X), y ← fpk(x)} ≈s {(x, y)|y ← U(Y), x ← gsk(y)}.

We say that (fpk, gsk) is:

– A trapdoor permutation (TP) if it satisfies (T1), (T2);
– A trapdoor preimage sampleable function (TPSF) if it satisfies (T1), (T3);
– An average TPSF if it satisfies (T1), (T4).

Note that since (T2) ⇒ (T3) ⇒ (T4)1, we have the following relation:

TP ⇒ TPSF ⇒ Average TPSF.

The FDH framework [24,25] allows, in its original form, to build hash-then-sign
schemes from a hash function and a TP family as in Fig. 4. Note that the function
of (3) induces a RSA-based TP if one knows the factorization N = p · q.

Fig. 4. The Full-Domain Hash (FDH) framework.

Notable efforts at transposing the FDH framework in a post-quantum setting
are the code-based schemes CFS [59] and RankSign [93]. The bit-security of
CFS scales logarithmically in its parameters, making the scheme impractical,
and [87] showed that its security proof requires infeasible parameters. Similarly,
[74] showed that RankSign’s proposed parameters made the underlying problem
easy, and that it required impractical parameters for the scheme to be secure.
Both CFS and RankSign indicate that a rigid transposition of FDH framework
(using TP) in a post-quantum setting seems highly non-trivial

Early lattice-based attempts such as GGHSign [100] and NTRUSign [112]
instead chose to replace TPs with trapdoor one-way functions (with |X| � |Y |),
that only satisfied (T1) and a weakened form of (T2) (dropping the requirement
X = Y). In particular, this weaker form of (T2) no longer implied (T3). However,
(T3) plays an important role in the original security proof of the FDH, which
did no longer apply. More critically, each y ∈ Y now admitted many xi ∈ X
such that fpk(xi) = y, and the xi picked by the signing algorithm depended of

1 (T2) implies (T3) with D(X) = U(X).

SoK: How (not) to Design and Implement Post-quantum Cryptography 455

sk. This dependency was exploited by learning attacks [82,146] to recover the
signing key.

For lattices, the first real progress was done by [97]. Its main contribution
was to introduce TPSFs, to prove that they can be used to instantiate the FDH,
and to propose provably secure lattice-based TPSFs. Several follow-up schemes
have been proposed [81,142], including Falcon [161].

However, it is not known how to instantiate efficient TPSFs from code-based
assumptions. Hence the work of [50,73] relaxed – again – this notion by propos-
ing average TPSFs, showed that they suffice to instantiate the FDH frame-
work, and proposed a signature scheme based on code-based average TPSFs,
Wave [73]. Interestingly, this idea was proposed independently by [54], which
show that lattice-based average TPSFs require milder parameters than TPSFs,
hence improving upon the efficiency of some TPSF-based lattice signatures [32].

Multivariate schemes encountered and solved this problem independently. It
was first noticed in [168] that some multivariate hash-then-sign schemes relied on
a trapdoor function that only verified (T1) and a weak form of (T2). Hence [168]
introduced of a salt during the signing procedure in order to satisfy (T3) and
enable a FDH-style proof. This solution is used by GeMSS [46] and Rainbow [79].

3.5 Diffie-Hellman and El Gamal

The Diffie-Hellman (DH) key-exchange protocol [77] and the derived encryption
scheme by El Gamal [83] are staples of classical public key cryptography. El
Gamal has been notably easier to adapt to PQ assumptions than DH. Classically,
DH relies on (2), which provides a simple way for two parties to agree on a shared
secret gab, by instantiating Fig. 5 with Fig. 6 (column 2). Unfortunately, such a
simple relation is harder to obtain with PQ assumptions, as we will see.

Isogenies over elliptic curves are natural candidates to instantiate Fig. 5, with
Alice (resp. Bob) knowing a private isogeny φA : E → EA (φB : E → EB) and
sending EA (resp. EB) to the other party. Unfortunately, existing instantiations
requires either ordinary curves [61,167] – which parameters don’t scale well [70]
–, or supersingular curves with a restricted class of isogenies like CSIDH [48] –
which quantum security is debated [40,152]. SIDH [89,122] uses supersingular
curves of smooth order, which security scales well but, unlike [48,61,70,167],
don’t provide a clean relation similar to (2).

For SIDH to work, Alice needs to transmit, in addition to EA, the image
φA(E2) of its private isogeny φA : E → EA over the torsion subgroup E2 =
E[2�2]. Similarly, Bob applies φB to E3 = E[3�3]. With this extra information,
the two parties can agree on a common curve EAB . A mild constraint of this
solution is that, prior to the protocol, each party must “pick a side” by agreeing
who picks E2 or E3. Alternatively, one can apply the protocol twice.

A straightforward adaptation of DH to codes and lattices is challenging as
well, this time due to noise. For example, a rigid transposition with LWE gives:

(st
a · A + et

a)sb ≈ st
a(A · sb + eb) (6)

456 J. Howe et al.

Fig. 5. DH with reconciliation Fig. 6. Instantiations of Fig. 5.

Both parties would end up with “noisy secrets” that differ on their lower bits,
which is problematic. In a purely non-interactive setting, this approach does not
seem to work, except if q is very large, say q ≥ 2λ, which is impractical [107].
This is resolved in [78,154] by having Bob send a hint indicating “how to round
the noisy secret”. Note that this solution seems to preclude non-interactivity, as
h depends on what Alice sent to Bob.

Figure 6 summarizes the two approaches to achieve “post-quantum DH”
(besides CSIDH). These solutions cannot be used with static key shares, as it
would enable key-recovery attacks [91,95]. The last one is also interactive. Thus
they cannot be used as drop-in replacements to (non-interactive) (semi-)static
DH.

Many desirable properties of classical DH are lost in translation when trans-
posing it to a PQ setting. As such, most practical schemes take El Gamal as
a starting point instead, replacing DLOG with LWE [145,175], LWR [67], or
SIDH [123]. Schemes that rely on “trapdoors” – like McEliece [28,140] or BIKE-
2 [11] – are more akin to RSA encryption, though this analogy is a weaker one.

4 Return of Symmetric Cryptography

Another takeaway is that, despite PQC being mostly a public-key matter, sym-
metric cryptography plays a surprisingly important role and should not be
neglected. In particular, two families of signatures based on one-way and hash
functions have emerged, with two radically different philosophies:

– Hash-based signatures treat hash functions as black boxes and build signatures
using only generic data structures and combinatorial tricks, see Sect. 4.1.

– Signatures based on zero-knowledge proofs treat one-way functions as white
boxes and leverage knowledge of their internal structure to maximize their
efficiency, see Sect. 4.2.

Interestingly, some techniques developed by these schemes have also benefited
more “standard” schemes. Examples are Merkle trees, used by multivariate [37]
and isogeny-based [36,69] schemes, or the cut-and-choose technique [129].

SoK: How (not) to Design and Implement Post-quantum Cryptography 457

4.1 Hash-Based Signatures

Hash-based signatures (HBS) are a peculiar family of schemes for two reasons;
(a) they rely solely on the hardness properties of hash functions, (b) they follow
a paradigm of their own. At a high level:

– The public key pk commits secret values using one or more hash functions.
– Each signature reveals (intermediate) secret values that allow to recompute
pk and convince the verifier that the signer does indeed know sk.

Lamport’s HBS [134] epitomizes this idea. In its simplest form, the public key is:
pk = (pki,0, pki,1)i∈[λ] = (H(ski,0),H(ski,1))i∈[λ], and the signature of a message
msg = (bi)i ∈ {0, 1}λ is sig = (ski,bi)i. The verifier can then hash sig component-
wise and check it against pk. It is easily shown that Lamport’s signature scheme
is secure under the preimage resistance of H. However, there are two caveats:

– pk and sig require O(λ2) bits, which is rather large.
– It is a one-time signature (OTS), meaning it is only secure as long as it

performs no more than one signature.

For four decades, several tricks have been proposed to mitigate these caveats.
Because of the unstructured nature of hash functions, these tricks typically rely
on combinatorics and/or generic data structures.

Generic Structures: One line of research proposes efficient data structures that
use OTS as building blocks. By hashing public keys into a tree, Merkle trees [141]
allow to improve efficiency and sign more than one message. Goldreich trees [99]
use trees’ leaves to sign other trees’ roots. Both ideas can be combined, as done
by SPHINCS(+) [30,31,120]. Finally, efficient Merkle tree traversal algorithms
were proposed [181].

OTS: Another line of research proposed more efficient OTS. The most efficient
one so far is a variant of Winternitz’s OTS (see [45,141]), called WOTS+ [119],
which uses bitmasks to rely on second-preimage resistance – instead of collision
resistance for the original scheme. Stateless few-time signatures (FTS) were also
proposed, such as BiBa [156], HORS (Hash to Obtain Random Subsets) [164],
a HORS variant with trees, HORST [30], one with PRNGs, PORS [13], and
another one with forests, FORS [31,120]. These can be used to build stateless
signatures, discussed below.

These tools allow to build hash-based stateful and stateless signatures.
Stateful schemes require the signer to maintain an internal state in order

to keep track of the key material used. This encompasses XMSS, its multi-tree
variant XMSSMT and LMS, all recently standardized by NIST [56]. Stateful
schemes can be efficient but their statefulness is often an undesirable property.

Stateless signatures set their parameters so that, even without maintaining
a state, signing many messages will preserve security with overwhelming prob-
ability. As a result, they are less efficient than their stateful counterparts, but
more flexible. For example, SPHINCS+ [31,120] combines Merkle and Goldreich
trees with WOTS+ as an OTS, FORS as a FTS, plus a few other tricks.

458 J. Howe et al.

4.2 Signatures Based on ZKPs and OWFs

Signatures based on zero-knowledge proofs (ZKPs) and one-way functions
(OWFs) leverage this principle:

– The public key is pk = F (sk), where F is a OWF.
– A signature is a ZKP that pk = F (sk); using the MPC-in-the-head [121].

Note that all Fiat-Shamir signatures can already be interpreted as ZKP that
pk = F (sk), however they usually leverage algebraic structure to gain efficiency,
and as a result rely on assumptions that are algebraic in nature.

The protocols discussed here are fully generic as they work with any OWF.
This is done by leveraging the MPC-in-the-head technique [121]. This technique
creates non-interactive proofs for an arbitrary circuit (Boolean or arithmetic), by
simulating the execution of an MPC (multiparty computation) protocol, commit-
ting to the execution, and revealing the state of a subset of the parties in order
to let the verifier (partially) check correctness of the execution. Two parallel yet
connected lines of research turned this abstract idea into a reality.

Protocols: The first line of research provides protocols for generic statements.
These have only recently become practical, see ZKB++ [52] and KKW [129]. For
bit-security λ and a circuit with |C| AND gates, total proof sizes are O(λ|C|), for
ZKB++, and O(λ|C|/ log n), for KKW, respectively, where the cut-and-choose
approach of KKW allows a trade-off between signing and signature size, via the
parameter n. For boolean (resp. arithmetic) circuits of cryptographic sizes, these
two schemes (resp. the sacrificing method [19]) are the current state of the art.

Circuits: The second line of research provides circuits with low multiplicative
complexity. Because of their unusual constraints, their internal structure is typ-
ically very different from classical symmetric primitives and they require new
approaches to be studied. Prominent examples are LowMC [8], which has been
extensively studied [80,125,136], or the Legendre PRF [63,101]. Note that these
primitives have applications that go far beyond PQC; for example, the Legendre
PRF is used by the Ethereum 2.0 protocol.

Combining these two lines of research, one obtain signature schemes. For
example, Picnic [188] combines LowMC with either ZKB++ or KKW, and
LegRoast [35] combines the Legendre PRF with the sacrificing method [19]. Due
to the novely of this approach, it is likely that we will see many more schemes
based on it in the future. Two works instantiate F with AES: BBQ [72] uses
KKW, and Banquet [20] improves efficiency via amortization techniques.

5 The Implementation Challenges in PQC

This section discusses the implementation challenges in PQC; specifically dis-
cussing attacks via implementation pitfalls and side-channels, countermeasures,
and finally the jungle of embedded devices and use-cases for PQC schemes. We
somewhat focus on NIST PQC candidates due to similarities in the operations
each PQC family requires.

SoK: How (not) to Design and Implement Post-quantum Cryptography 459

5.1 Decryption Failures and Reaction Attacks

Attacks based on decryption failures – also known as reaction attacks – were first
discovered about 20 years ago, with an attack [108] on the McEliece [140] and
Ajtai-Dwork [4] cryptosystems, and another [117] on NTRU [111]. They were
forgotten for more than a decade before being recently rediscovered. It is clear
by now that designers of noisy cryptosystems, such as lattice-based and code-
based, need to take these into account. We explain how reaction attacks work and
how to thwart them. At a high level, all lattice-based and code-based encryp-
tion schemes follow this high-level description: ct = pk · e + e′ + Encode(msg),
where Encode(msg) is an encoding of msg and (e, e′) is a noisy error vector. The
decryption key sk is used to obtain Encode(msg) plus some noise, then recover
msg. However, this may fail for a small portion of the admissible (e, e′), and this
portion depends on sk. The high-level strategy of reaction attacks uses:

– Precomputation. Precompute “toxic” errors (e, e′) that have a high prob-
ability of leading to decryption failures;

– Query. Use these toxic errors to send ciphertexts to the target; observe
decryption failures.

– Reconstruction. Deduce sk from the decryption failures.

Note that reaction attacks are CCA attacks. In CCA schemes, (e, e′) is generated
by passing msg and/or pk into a pseudo-random generator (PRG), so adversaries
have to find toxic vectors through exhaustive search. Hence precomputation is
often the most computationally intensive phase.

Reaction attacks have been proposed against code-based schemes in the Ham-
ming metric [105], in the rank metric [170], and for lattice-based schemes [65,
66,106]. Interestingly, attacks against schemes that use lattices or the Hamming
metric are very geometric (learning the geometry of the private key), whereas
those that target rank metric schemes learn algebraic relations.

For lattice-based schemes, directional failure boosting [64] allows, once a toxic
error (e, e′) has been found, to find many more at little cost. Therefore, lattice
schemes must keep their failure probability negligible, as they are otherwise
directly vulnerable to reaction attacks. No such conclusion has been made for
code-based schemes yet, but we recommend scheme designers to err on the safe
side. Scheme designers need to consider two things with respect to reaction
attacks. First, the probability of decryption failures should be negligible.

– This can be achieved by selecting the parameters accordingly, as done by
Kyber [175], Saber [67], and FrodoKEM [145]. One may even eliminate them
completely like NTRU [190] and NTRU Prime [29], but this may result in
slightly larger parameters.

– Another solution is to use redundancy; KEMs need to encapsulate a symmet-
ric key of λ bits, however schemes can often encrypt a much larger message
msg. One can use the extra bits to embed an error-correcting code (ECC).
However, this solution has two caveats. First, the ECC should be constant-
time (e.g., XEf [190] and Melas codes [109]), as timing attacks have been

460 J. Howe et al.

observed when that was not the case [68]. Second, this requires to perform
a tedious analysis of the noise distribution; incorrect analyses have led to
theoretical attacks [65,106].

Second, schemes with decryption failures – even negligible – should use CCA
transforms that take these into account. In effect, most PQ KEMs in this situ-
ation use variants of the transforms described [113], which do handle them.

5.2 Implementation Attacks in PQC

Isochrony: Before NIST began their PQC standardization effort, many PQC
schemes were susceptible to implementation attacks; meaning that due to bad
coding practices, some attack vectors were found which led to successful attacks.
Definition 5 in [115] provides a fairly formal definition for isochronous algo-
rithms (i.e., an algorithm with no timing leakage) which allows us to differenti-
ate between these initial implementation attacks, of which many did not qualify.
Good programming practices exist for ensuring timing analysis resilience and
have been well discussed before1. These practices cover much more low-level
instances of isochronous designs; as conditional jumps, data-dependent branch-
ing, and memory accesses of secret information can also lead to detrimental
attacks. Some tools such as ctgrind, ctverif, and flow-tracker exist to check
whether functions are isochronous, however with operations in PQC such as
rejection sampling it is not clear how effective these tools will be. Thus, it would
also be prudent to check post-compilation code of the sensitive operations within
an implementation.

Implementation Attacks: The first types of implementation attacks on PQC were
mainly on the BLISS signature scheme and exploited the cache-timing leakages
from the Gaussian samplers, as they mostly operate by accessing pre-computed
values stored in memory [44,157]. The attacks use the FLUSH+RELOAD [187]
technique and exploit cache access patterns in the samplers to gain access to
some coefficients of values that are added during the signature’s calculation.
However, optimisations to the Gaussian samplers, such as using guide-tables,
and non-isochronous table access enabled these attacks. More leakage sources
and implementation attacks against the StrongSwan implementation of BLISS
were also found [84], which range from data dependent branches present in the
Gaussian sampling algorithm to using branch tracing in the signature’s rejection
step. These attacks can be mitigated by bypassing conditional branches; that is,
using a consistent access pattern (e.g., using linear searching of the table) and
having isochronous runtime. In particular, making Gaussian samplers provably
secure and statistically proficient have been researched [115] and thus should be
followed for secure implementations of lattice-based schemes such as Falcon and
FrodoKEM or more advanced primitives such as IBE and FHE.

Sensitive Modules: Although these attacks are on a scheme’s implementation,
rather than something inherently insecure in its algorithm, they have acted as a
1 See for example https://www.bearssl.org/constanttime.html.

https://www.bearssl.org/constanttime.html

SoK: How (not) to Design and Implement Post-quantum Cryptography 461

cautionary note for how some schemes have operations, which do not use secret
information, but could be described as sensitive as if they are implemented
incorrectly, they can lead to a successful attack. A clear example of this is for
Gaussian samplers, which is why they were not used in Dilithium. Once an
attacker finds the error vector, e, using these side-channels from a LWE equation
of the form b = A × s + e mod q, then gaining the secret can be achieved
using Gaussian elimination. Moreover, it is not always necessary to find the
entire secret, as was the case in the past for RSA [57], and side-channels can be
combined with lattice reduction algorithms efficiently to significantly improve
attacks on post-quantum schemes. This has been built into a framework [62],
which builds in side information into lattice reduction algorithms in order to
predict the performance of lattice attacks and estimate the security loss for
given side-channel information.

Attacks on Sparse Multipliers: Some of the timing leakage found in Strong
Swan’s BLISS implementation [84] exploited the sparseness of one of the polyno-
mials in the multiplication. The NIST PQC candidate HQC [2] was also suscep-
tible to a similar attack during decryption. At one point in time they proposed a
sparse-dense multiplier to improve the performance, however the multiplication
would only access the secret-key polynomial h times, for a secret-key contain-
ing only h 1’s. To shield this algorithm they then proposed to permute on the
memory-access locations, however the secret can also be recovered by observing
the memory cells.

FO Transform Attacks: A sensitive component that can potentially affect all
PQC candidates is in the Fujisaki-Okamoto (FO) transformation, required in
most PQ KEMs in order to covert the CPA-secure part into an IND-CCA secure
scheme. However, it has been shown that this operation is also sensitive to timing
attacks, even though the operations do not use any secret information. This
attack [104] was shown on FrodoKEM, and was enabled due to its use of non-
isochronous memcmp in the implementation of the ciphertext comparison step,
which allows recovery of the secret key with about 230 decapsulation calls. This
attack is directly applied to FrodoKEM, but is likely that other PQC candidates
such as BIKE, HQC, and SIKE are also susceptible. Initial fixes of this were also
shown to be vulnerable in FrodoKEM2 and SIKE3.

A component of the FO transform is Keccak (more specifically SHAKE)
which was standardized by NIST in FIPS-202 for SHA-3 and is used extensively
within NIST PQC candidates for so-called seed-expansion and computation of
the shared secret. This symmetric operation is also sensitive to side-channels and
could potentially lead to recovery of the shared-secret generated in the KEM. In
particular, a single trace attack was demonstrated on the Keccak permutation
in the ephemeral key setting [128], but seemingly realistic only on 8-bit devices.

Decryption in BIKE: The BIKE decryption algorithm is designed to proceed
in a repetitive sequence of steps, whereby an increase in repetitions increases
2 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME.
3 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/QvhRo7T2OL8.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/QvhRo7T2OL8

462 J. Howe et al.

the likelihood of proper decryption. This makes the procedure inherently non-
isochronous, unlikely other NIST PQC candidates. Thus, it was proposed to arti-
ficially truncate this procedure at some fixed number. Experimentally, a round-
count as small as 10 is sufficient to guarantee proper decryption. However, unlike
lattice-based KEMs, there is no mathematical guarantee that this is sufficient to
reduce the decryption failure rate below 2λ, where λ ∈ {128, 192, 256} is the con-
crete security parameter.4 Thus, despite BIKE being designed as CPA scheme
as well as a CPA-to-CCA scheme, they have only formally claimed CPA-security
(ephemeral keys) for their construction, as opposed to CCA-security (long-term
keys). It remains open to provide the proper analysis to solve this issue.

5.3 Side-Channels and Countermeasures

In the Status Report on the Second Round of the NIST Post-Quantum Cryp-
tography Standardization Process [5] it is stated that:

NIST hopes to see more and better data for performance in the third round.
This performance data will hopefully include implementations that protect
against side-channel attacks, such as timing attacks, power monitoring
attacks, fault attacks, etc.

In their initial submission requirements [147] NIST also noted “schemes that can
be made resistant to side-channel attacks at minimal cost are more desirable than
those whose performance is severely hampered by any attempt to resist side-
channel attacks”. Thus, some of the remaining candidates have offered masked
implementations, or this has been done by the research community. Also, see [10]
for an extensive summary of attacks against NIST PQC third round candidates.

Masking Dilithium: Migliore et al. [143] demonstrate DPA weaknesses in the
unmasked Dilithium implementation, and in addition to this provide a masking
scheme using the ISW probing model following the previous techniques for mask-
ing GLP and BLISS [17,18]. Like the previous provably secure masking schemes,
they alter some of the procedures in Dilithium by adding in efficient masking of
its sensitive operations. Moreover, some parameters are changed to gain extra
performance efficiencies in the masked design, such as making the prime modulus
a power-of-two, which increases the performance by 7.3–9× compared to using
the original prime modulus during masking. A power-of-two modulus means the
optimised multiplication technique, the NTT multiplier, is no longer possible so
they proposed Karatsuba multiplication. The results for key generation and sign-
ing are between 8–12× slower for order 2 masking and 13–28× slower for order
3 masking, compared to the reference implementations. This is also backed-up
by experimental leakage tests on the masked designs.

Masking Saber: Verhulst [184] provides DPA on Saber, as well as developing a
masking scheme for its decryption protocol, which is later extended in [22]. The
masking schemes only use additive first-order masking which thus makes it only
4 Known, formal analyses guarantees are closer to 2−40 at 128-bit security.

SoK: How (not) to Design and Implement Post-quantum Cryptography 463

2-2.5x slower than being unprotected. However it is probably still vulnerable to
template attacks [148]. Saber lends itself to practical masking due to its use of
LWR, as opposed to other KEMs using (M-)LWE. However, Saber uses a less
efficient multiplication method (a combination of Toom-Cook, Karatsuba, and
schoolbook multiplication) compared to schemes which use NTT; thus it is an
interesting open question as to whether NTT is the most practical multiplication
method (due to its conflict with efficient masking) and how these masked PQC
schemes practically compare, particularly with the recent research improving the
performance of Saber and others using NTTs [55].

DPA on Multiplication: NTRU and NTRU Prime can both use a combination
of Toom-Cook and Karatsuba to speed-up their polynomial multiplication, thus
whether they can reuse techniques from Saber’s masked implementation is an
important research question. NTRU Prime in particular requires masking since
some power analysis attacks can read off the secret key with the naked eye
[118]. Attacks on these multiplication methods, which are in the time-domain,
are likely to be simpler than those in the NTT or FFT domains as there is only
one multiplication per coefficient of the secret, which thus makes protection of
this multipliers more urgent. A single-trace power analysis attack on FrodoKEM
exploits the fact that the secret matrix is used multiple times during the matrix
multiplication operation, enabling horizontal differential power analysis [41].

Correlation power analysis and algebraic key recovery attacks have also
been shown on the schemes Rainbow and UOV [149] by targeting the secret
maps within the MQ signature schemes, during the matrix-vector computations.
This attack is relevant for many MQ schemes that use the affine-substitution
quadratic-affine (ASA) structure. They also discuss countermeasures to SPA
and DPA attacks by using standard methods seen before such as shuffling of the
indices or adding a pseudo-random matrix (i.e., additive masking).

Attacks on Syndrome Decoding: A variant of McEliece PKE, QcBits, was shown
to be susceptible to DPA [166]. The attack partially recovers the secret key
during the syndrome computation of the decoding phase. They also propose
a simple countermeasure for the syndrome calculation stage, which exploits the
fact that since QC-MDPC codes are linear, the XOR of two codewords is another
codeword. Thus, a codeword can be masked by XORing it with another random
codeword before the syndrome calculation.

This attack was then extended [178] to recover the full secret of QcBits, with
more accuracy, using a multi-trace attack. Moreover, using the DPA counter-
measures proposed in [166] and in the ephemeral key setting, they provide a
single-trace attack on QcBits. Lastly and most interestingly, they describe how
these attacks can be applied to BIKE, by targetting the private syndrome decod-
ing computation stage where long-term keys are utilized. For ephemeral keys,
the multi-target attacks are not applicable, however the single-trace attack can
be applied to recover the private key and also the secret message.

Classic McEliece is also not immune from side-channel attacks targeting this
operation. A reaction attack [133] using iterative chunking and information set
decoding can enable recovery of the values of the error vector using a single

464 J. Howe et al.

decryption oracle request. A recent attack has also shown vulnerabilities in Clas-
sic McEliece’s syndrome computation to fault attacks [49].

Masking Matrix Multiplication: Masking schemes which use matrix multiplica-
tion have the potential to be efficiently masked using affine masking (i.e., a
combination of additive and multiplicative masking) similarly used in AES [92].
First-order additive masking has already been proposed for FrodoKEM [116].
Warnings for side-channel protection were also seen in Picnic, where the attack
was able to recover the shared secret and the secret key, by targetting the MPC-
LowMC block cipher, a core component to the signature scheme [96].

Cold-Boot Attacks: PQC schemes have also been shown to be susceptible to cold-
boot attacks [6,159], which was previously shown on NTRU [150]. Cold-boot
attacks exploit the fact that secret data can remain in a computer’s memory
(DRAM) after it is powered down and supposedly deleted. Albrecht et al. [6]
describe how to achieve this by attacking the secret-keys stored for use in the
NTT multiplier in Kyber and NewHope, and after some post-processing using
lattice reductions, is able to retrieve the secret-key.

Fault Attacks: Fault attacks have also been investigated for PQC schemes. One
of the most famous (microarchitectural) fault attacks is the Rowhammer exploit
(CVE-2015-0565), which allows unprivileged attackers to corrupt or change data
stored in certain, vulnerable memory chips, and has been extended to other
exploits such as RAMBleed (CVE-2019-0174). QuantumHammer [144] utilises
this exploit to recover secret key bits on LUOV, a second round NIST PQC can-
didate for multivariate-quadratic signatures. The attack does somewhat exploit
the ‘lifted’ algebraic structure that is present in LUOV, so whether this attack
could be applied to other PQC schemes is an open question.

Determinism in signatures is generally considered preferable from a security
perspective, as attacks are possible on randomly generated nonces (e.g., [85]).
This prompted EdDSA, which uses deterministically generated nonces. NIST
[5] noted the potential for nonce reuse in PQC schemes such as Kyber. Indeed,
fault attacks which exploit the scheme’s determinism have been demonstrated on
SPHINCS+ [47] and Dilithium [43,162], with EdDSA also showing susceptibility
to DPA [172]. As such, some PQC candidates offer an optional non-deterministic
variant, such as SPHINCS+ using OptRand, or random salt used in Dilithium,
Falcon, GeMSS, Picnic, and Rainbow.

Hedging: An interesting alternative to mitigating these fault attacks (and ran-
domness failures) is by using hedging, which creates a middle-ground between
fully deterministic and fully probabilistic signatures, by deriving the per-
signature randomness from a combination of the secret-key, message, and a
nonce. This is formalized for Fiat-Shamir signatures and apply the results to
hedged versions of XEdDSA, a variant of EdDSA used in the Signal messaging
protocol, and to Picnic2, and show hedging mitigates many of the possible fault
attacks [12].

SoK: How (not) to Design and Implement Post-quantum Cryptography 465

Key Reuse: These attacks, which have been shown to cause issues for real-world
implementations in EMV [75], are also applicable in PQC; such as lattice-based
schemes [91], supersingular isogeny-based schemes [95], and potentially more.

We continue the practical discussions on PQC in the full version of this paper
[114], focusing on embedded implementations and use cases, and then providing
an overview of how PQC is being standardized, what new protocols are being
designed, and any large scale experiments that have been conducted thus far.

References

1. Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zemor, G.: Noisy Diffie-
Hellman protocols. Rump session of PQCrypto (2010). https://www.yumpu.com/
en/document/view/53051354/noisy-diffie-hellman-protocols

2. Melchor, C.A., et al.: HQC. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press, May 1996. https://doi.org/10.1145/
237814.237838

4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: 29th ACM STOC, pp. 284–293. ACM Press, May 1997. https://
doi.org/10.1145/258533.258604

5. Alagic, G., et al.: status report on the second round of the NIST post-quantum
cryptography standardization process. Technical report, NIST (2020)

6. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR TCHES 2018(3), 173–213 (2018). https://doi.
org/10.13154/tches.v2018.i3.173-213. https://tches.iacr.org/index.php/TCHES/
article/view/7273. ISSN 2569–2925

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015). http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

8. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

9. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

10. Apon, D., Howe, J.: Attacks on NIST PQC 3rd round candidates. In: IACR Real
World Crypto Symposium, January 2021. https://iacr.org/submit/files/slides/
2021/rwc/rwc2021/22/slides.pdf

11. Aragon, N., et al.: BIKE. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

12. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of Hedged
Fiat-Shamir signatures under fault attacks. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 644–674. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 23

https://www.yumpu.com/en/document/view/53051354/noisy-diffie-hellman-protocols
https://www.yumpu.com/en/document/view/53051354/noisy-diffie-hellman-protocols
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/258533.258604
https://doi.org/10.1145/258533.258604
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.13154/tches.v2018.i3.173-213
https://tches.iacr.org/index.php/TCHES/article/view/7273
https://tches.iacr.org/index.php/TCHES/article/view/7273
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-319-98113-0_19
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-45721-1_23

466 J. Howe et al.

13. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0 12

14. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir Zoo: relating
the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03638-6 10

15. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

16. Barak, B., Mahmoody-Ghidary, M.: Merkle’s key agreement protocol is optimal:
an O(n2) attack on any key agreement from random oracles. J. Cryptol. 30(3),
699–734 (2017). https://doi.org/10.1007/s00145-016-9233-9

17. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.-A., Rossi, M., Tibouchi, M.:
GALACTICS: Gaussian sampling for lattice-based constant-time implementation
of cryptographic signatures, revisited. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS, pp. 2147–2164. ACM Press, November 2019. https://
doi.org/10.1145/3319535.3363223

18. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

19. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

20. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. PKC (2021). https://eprint.
iacr.org/2021/068

21. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R., (ed.)
SODA, pp. 10–24. SIAM (2016). https://doi.org/10.1137/1.9781611974331.ch2.
https://doi.org/10.1137/1.9781611974331.ch2

22. Van Beirendonck, M., D’Anvers, J.-P., Karmakar, A., Balasch, J., Verbauwhede,
I.: A side-channel resistant implementation of SABER. Cryptology ePrint
Archive, Report 2020/733 (2020). https://eprint.iacr.org/2020/733

23. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in
computationally sound protocols? In: 38th FOCS, pp. 374–383. IEEE Computer
Society Press, October 1997. https://doi.org/10.1109/SFCS.1997.646126

24. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS, vol. 93, pp. 62–73. ACM Press, November 1993. https://
doi.org/10.1145/168588.168596

25. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

26. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography
(2009). https://doi.org/10.1007/978-3-540-88702-7

27. Bernstein, D.J., Yang, B.-Y.: Asymptotically faster quantum algorithms to solve
multivariate quadratic equations. Cryptology ePrint Archive, Report 2017/1206
(2017). https://eprint.iacr.org/2017/1206

https://doi.org/10.1007/978-3-319-76953-0_12
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/s00145-016-9233-9
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-030-45374-9_17
https://eprint.iacr.org/2021/068
https://eprint.iacr.org/2021/068
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://eprint.iacr.org/2020/733
https://doi.org/10.1109/SFCS.1997.646126
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-540-88702-7
https://eprint.iacr.org/2017/1206

SoK: How (not) to Design and Implement Post-quantum Cryptography 467

28. Bernstein, D.J., et al.: Classic McEliece. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

29. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime. Technical report, National Institute of Standards and Technology (2019).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

30. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

31. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (ed.) ACM CCS, pp. 2129–2146. ACM Press, November 2019. https://
doi.org/10.1145/3319535.3363229

32. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation
of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 13

33. Bettale, L., Faugère, J.-C., Perret, L.: Solving polynomial systems over finite
fields: improved analysis of the hybrid approach. In: ISSAC, pp. 67–74. ACM
(2012)

34. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3 7

35. Beullens, W., Delpech de Saint Guilhem, C.: LegRoast: efficient post-quantum
signatures from the Legendre PRF. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto
2020. LNCS, vol. 12100, pp. 130–150. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44223-1 8

36. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

37. Beullens, W., Preneel, B., Szepieniec, A.: Public key compression for constrained
linear signature schemes. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC. LNCS, vol.
11349, pp. 300–321. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-10970-7 14

38. Beullens, W., Faugère, J.-C., Koussa, E., Macario-Rat, G., Patarin, J., Perret,
L.: PKP-based signature scheme. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.)
INDOCRYPT 2019. LNCS, vol. 11898, pp. 3–22. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-35423-7 1

39. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

40. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

41. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Assessing the
feasibility of single trace power analysis of Frodo. In: Cid, C., Jacobson Jr., M.J.
(eds.) SAC. LNCS, vol. 11349, pp. 216–234. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-10970-7 10

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-319-79063-3_13
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-44223-1_8
https://doi.org/10.1007/978-3-030-44223-1_8
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-10970-7_14
https://doi.org/10.1007/978-3-030-10970-7_14
https://doi.org/10.1007/978-3-030-35423-7_1
https://doi.org/10.1007/978-3-030-35423-7_1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-030-10970-7_10

468 J. Howe et al.

42. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 2

43. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice
signatures. IACR TCHES 2018(3), 21–43 (2018). https://doi.org/10.13154/
tches.v2018.i3.21-43. https://tches.iacr.org/index.php/TCHES/article/view/
7267. ISSN 2569–2925

44. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
- a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

45. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 11. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 23

46. Casanova, A., Faugère, J.-C., Macario-Rat, G., Patarin, J., Perret, L., Ryck-
eghem, J.: GeMSS. Technical report, National Institute of Standards and Technol-
ogy (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions

47. Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: a fault attack against
the SPHINCS framework. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 165–184. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 8

48. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

49. Cayrel, P.-L., Colombier, B., Dragoi, V.-F., Menu, A., Bossuet, L.: Message-
recovery laser fault injection attack on the classic Mceliece cryptosystem. In:
EUROCRYPT (2021)

50. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures
based on average trapdoor preimage sampleable functions and applications to
code-based signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 453–479. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6 16

51. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

52. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS, pp. 1825–1842. ACM Press, October/November 2017. https://doi.
org/10.1145/3133956.3133997

53. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
Pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 5

54. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-

https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.13154/tches.v2018.i3.21-43
https://doi.org/10.13154/tches.v2018.i3.21-43
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-21969-6_23
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-319-79063-3_8
https://doi.org/10.1007/978-3-319-79063-3_8
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-662-53890-6_5

SoK: How (not) to Design and Implement Post-quantum Cryptography 469

ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 1

55. Chung, C.-M.M., Hwang, V., Kannwischer, M.J., G., Seiler, M.J., Shih, C.-J.,
Yang, B.-Y.: NTT multiplication for NTT-unfriendly rings. Cryptology ePrint
Archive, Report 2020/1397 (2020). https://eprint.iacr.org/2020/1397

56. Cooper, D., Apon, D., Dang, Q., Davidson, M., Dworkin, M., Miller, C.: Recom-
mendation for stateful hash-based signature schemes (2020). https://doi.org/10.
6028/NIST.SP.800-208

57. Coppersmith, D.: Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997). https://doi.org/10.1007/
s001459900030

58. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

59. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 10

60. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

61. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). http://eprint.iacr.org/2006/291

62. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 12

63. Damg̊ard, I.B.: On the randomness of Legendre and Jacobi sequences. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 163–172. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 13

64. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrap-
ping the search for failures in lattice-based encryption schemes. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 1

65. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 6

66. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based
schemes. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

67. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical
report, National Institute of Standards and Technology (2019). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions

68. D’Anvers, J.-P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum schemes. In: Bilgin, B., Petkova-Nikova,
S., Rijmen, V. (eds.) TIS@CCS, pp. 2–9. ACM (2019). https://doi.org/10.1145/
3338467.3358948. https://doi.org/10.1145/3338467.3358948

https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://eprint.iacr.org/2020/1397
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45539-6_27
http://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/0-387-34799-2_13
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-17259-6_19
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948

470 J. Howe et al.

69. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-
4 26

70. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03332-3 14

71. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

72. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES
in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 27

73. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trap-
door one-way preimage sampleable functions based on codes. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34578-5 2

74. Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes:
RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03326-2 3

75. Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the
joint security of encryption and signature in EMV. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 116–135. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27954-6 8

76. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30539-2 23

77. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

78. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). http://eprint.iacr.org/2012/688

79. Ding, J., Chen, M.-S., Petzoldt, A., Schmidt, D., Yang, B.-Y.: Rainbow. Technical
report, National Institute of Standards and Technology (2019). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions

80. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-
alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 12

81. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

82. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-3-540-30539-2_23
http://eprint.iacr.org/2012/688
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27

SoK: How (not) to Design and Implement Post-quantum Cryptography 471

83. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

84. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Side-channel attacks on
BLISS lattice-based signatures: exploiting branch tracing against strongSwan
and electromagnetic emanations in microcontrollers. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, pp. 1857–1874. ACM Press,
October/November 2017. https://doi.org/10.1145/3133956.3134028

85. fail0verflow. Console Hacking 2010: PS3 Epic Fail. In: 27th Chaos Communica-
tions Congress (2010)

86. Faugère, J.C.: A new efficient algorithm for computing gröbner bases without
reduction to zero (f5). In: ISSAC 2002, pp. 75–83. Association for Computing
Machinery, New York (2002). ISBN 1581134843. https://doi.org/10.1145/780506.
780516

87. Faugère, J.-C., Gauthier-Umaña, V., Otmani, A., Perret, L., Tillich, J.-P.: A dis-
tinguisher for high-rate Mceliece cryptosystems. IEEE Trans. Inf. Theory 59(10),
6830–6844 (2013)

88. Feo, L.D.: Mathematics of isogeny based cryptography (2017)
89. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)
90. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

91. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/
085

92. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

93. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: an efficient signature
algorithm based on the rank metric. In: Mosca, M. (ed.) PQCrypto 2014. LNCS,
vol. 8772, pp. 88–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11659-4 6

94. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the
DLP and CDHP for group actions. Cryptology ePrint Archive, Report 2018/1199
(2018). https://eprint.iacr.org/2018/1199

95. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 3

96. Gellersen, T., Seker, O., Eisenbarth, T.: Differential power analysis of the picnic
signature scheme. Cryptology ePrint Archive, Report 2020/267 (2020). https://
eprint.iacr.org/2020/267

97. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407

98. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signa-
ture scheme (NSS) from Eurocrypt 2001. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45682-1 1

https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-319-11659-4_6
https://doi.org/10.1007/978-3-319-11659-4_6
https://eprint.iacr.org/2018/1199
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://eprint.iacr.org/2020/267
https://eprint.iacr.org/2020/267
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-45682-1_1
https://doi.org/10.1007/3-540-45682-1_1

472 J. Howe et al.

99. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 8

100. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

101. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS, pp. 430–443. ACM Press, October 2016.
https://doi.org/10.1145/2976749.2978332

102. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
28th ACM STOC, pp. 212–219. ACM Press, May 1996. https://doi.org/10.1145/
237814.237866

103. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryp-
tography: a signature scheme for embedded systems. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

104. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its appli-
cation on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1 13

105. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 29

106. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34578-5 4

107. Guo, S., Kamath, P., Rosen, A., Sotiraki, K.: Limits on the efficiency of (Ring)
LWE based non-interactive key exchange. In: Kiayias, A., Kohlweiss, M., Wallden,
P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 374–395. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9 13

108. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystems. In: Varadharajan, V., Yi, M. (eds.) ICICS 99. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999)

109. Hamburg, M.: Three Bears. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

110. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: An NTRU lattice-based signature
scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–
228. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 14

111. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

112. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36563-X 9

https://doi.org/10.1007/3-540-47721-7_8
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1145/2976749.2978332
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-45374-9_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/3-540-44987-6_14
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9

SoK: How (not) to Design and Implement Post-quantum Cryptography 473

113. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

114. Howe, J., Prest, T., Apon, D.: SOK: how (not) to design and implement post-
quantum cryptography. Cryptology ePrint Archive, Report 2021 (2021). https://
eprint.iacr.org/2021/

115. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 5

116. Howe, J., Martinoli, M., Oswald, E., Regazzoni, F.: Optimised Lattice-Based Key
Encapsulation in Hardware. In: NIST’s Second PQC Standardization Conference
(2019)

117. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

118. Huang, W.-L., Chen, J.-P., Yang, B.-Y.: Power Analysis on NTRU Prime. IACR
TCHES 2020(1) (2020). ISSN 2569–2925

119. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

120. Hulsing, A., et al.: SPHINCS+. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

121. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC,
pp. 21–30. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250794

122. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

123. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

124. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-
finding attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 2

125. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles
for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 10

126. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial sys-
tems. Cryptology ePrint Archive, Report 2017/372 (2017). http://eprint.iacr.org/
2017/372

127. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed
from five-pass identification schemes. Cryptology ePrint Archive, Report 2020/837
(2020). https://eprint.iacr.org/2020/837

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2021/
https://eprint.iacr.org/2021/
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-642-25405-5_2
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-45724-2_10
http://eprint.iacr.org/2017/372
http://eprint.iacr.org/2017/372
https://eprint.iacr.org/2020/837

474 J. Howe et al.

128. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR
TCHES 2020(3), 243–268 (2020). https://doi.org/10.13154/tches.v2020.i3.243-
268. https://tches.iacr.org/index.php/TCHES/article/view/8590. ISSN 2569–
2925

129. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS, pp. 525–537. ACM Press, October 2018. https://doi.
org/10.1145/3243734.3243805

130. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.
1137/S0097539703436345

131. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: Severini, S., Brandão, F.G.S.L. (eds.) TQC, volume
22 of LIPIcs, pp. 20–34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013).
https://doi.org/10.4230/LIPIcs.TQC.2013.20

132. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. Des. Codes Cryptogr. 77(2–3), 375–400 (2015). https://
doi.org/10.1007/s10623-015-0067-5. https://doi.org/10.1007/s10623-015-0067-5

133. Lahr, N., Niederhagen, R., Petri, R., Samardjiska, S.: Side channel information set
decoding using iterative chunking. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 881–910. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 29

134. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October
1979

135. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4. https://doi.org/10.1007/s10623-014-9938-4

136. Liu, F., Isobe, T., Meier, W. Cryptanalysis of full LowMC and LowMC-M
with algebraic techniques. Cryptology ePrint Archive, Report 2020/1034 (2020).
https://eprint.iacr.org/2020/1034

137. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

138. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

139. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS-DILITHIUM. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

140. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report 44, 05 (1978)

141. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.
1007/0-387-34805-0 21

142. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 41

https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://eprint.iacr.org/2020/1034
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

SoK: How (not) to Design and Implement Post-quantum Cryptography 475

143. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking dilithium. In:
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21568-2 17

144. Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on the
LUOV signature scheme. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM
CCS 2020, pp. 1071–1084. ACM Press, November 2020. https://doi.org/10.1145/
3372297.3417272

145. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

146. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

147. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf

148. Oswald, E., Mangard, S.: Template attacks on masking–resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). https://doi.org/10.1007/11967668 16

149. Park, A., Shim, K.-A., Koo, N., Han, D.-G.: Side-channel attacks on post-
quantum signature schemes based on multivariate quadratic equations. IACR
TCHES 2018(3), 500–523 (2018). https://doi.org/10.13154/tches.v2018.i3.500-
523. https://tches.iacr.org/index.php/TCHES/article/view/7284. ISSN 2569–
2925

150. Paterson, K.G., Villanueva-Polanco, R.: Cold boot attacks on NTRU. In: Patra,
A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 107–125.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1 6

151. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015). http://eprint.iacr.org/2015/939

152. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

153. Peikert, C.: How (Not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

154. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

155. Peikert, C., Pepin, Z.: Algebraically structured LWE, revisited. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 1–23. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36030-6 1

156. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Reiter, M.K., Samarati, P. (eds.) ACM CCS, pp. 28–37. ACM Press, November
2001. https://doi.org/10.1145/501983.501988

157. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking
strongSwan’s implementation of post-quantum signatures. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, pp. 1843–1855. ACM
Press, October/November 2017. https://doi.org/10.1145/3133956.3134023

https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1145/3372297.3417272
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/11761679_17
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/11967668_16
https://doi.org/10.13154/tches.v2018.i3.500-523
https://doi.org/10.13154/tches.v2018.i3.500-523
https://tches.iacr.org/index.php/TCHES/article/view/7284
https://doi.org/10.1007/978-3-319-71667-1_6
http://eprint.iacr.org/2015/939
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-030-36030-6_1
https://doi.org/10.1145/501983.501988
https://doi.org/10.1145/3133956.3134023

476 J. Howe et al.

158. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

159. Polanco, R.L.V.: Cold Boot Attacks on Post-Quantum Schemes. Ph.D. thesis,
Royal Holloway, University of London (2018)

160. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

161. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

162. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Exploiting
determinism in lattice-based signatures: practical fault attacks on PQM4 imple-
mentations of nist candidates. In: AsiaCCS, pp. 427–440 (2019)

163. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005. https://doi.org/10.1145/1060590.1060603

164. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast
signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol.
2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45450-0 11

165. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. Assoc. Comput. Machinery 21(2),
120–126 (1978)

166. Rossi, M., Hamburg, M., Hutter, M., Marson, M.E.: A side-channel assisted crypt-
analytic attack against QcBits. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 3–23. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66787-4 1

167. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/2006/
145

168. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE
signature schemes against chosen-message attack. In: Yang, B.-Y. (ed.) PQCrypto
2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25405-5 5

169. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 40

170. Samardjiska, S., Santini, P., Persichetti, E., Banegas, G.: A reaction attack against
cryptosystems based on LRPC codes. In: Schwabe, P., Thériault, N. (eds.) LAT-
INCRYPT 2019. LNCS, vol. 11774, pp. 197–216. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30530-7 10

171. Samardjiska, S., Chen, M.-S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS.
Technical report, National Institute of Standards and Technology (2019). https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

172. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519
in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 1

173. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1109/TIT.1962.1057777
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/978-3-319-66787-4_1
https://doi.org/10.1007/978-3-319-66787-4_1
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-030-30530-7_10
https://doi.org/10.1007/978-3-030-30530-7_10
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-319-76953-0_1
https://doi.org/10.1007/0-387-34805-0_22

SoK: How (not) to Design and Implement Post-quantum Cryptography 477

174. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Program. 66, 181–199 (1994).
https://doi.org/10.1007/BF01581144. https://doi.org/10.1007/BF01581144

175. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

176. Shamir, A.: An efficient identification scheme based on permuted kernels
(extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
606–609. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 54

177. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November
1994. https://doi.org/10.1109/SFCS.1994.365700

178. Sim, B.-Y., Kwon, J., Choi, K.Y., Cho, J., Park, A., Han, D.-G.: Novel side-
channel attacks on quasi-cyclic code-based cryptography. IACR TCHES 2019(4),
180–212 (2019). https://doi.org/10.13154/tches.v2019.i4.180-212. https://tches.
iacr.org/index.php/TCHES/article/view/8349. ISSN 2569–2925

179. Stern, J.: A new identification scheme based on syndrome decoding. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 2

180. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996). https://doi.org/10.1109/18.556672. https://doi.org/10.
1109/18.556672

181. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24676-3 32

182. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-
linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp.
144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 10

183. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

184. Verhulst, K.: Power Analysis and Masking of Saber. Master’s thesis, KU Leuven,
Belgium (2019)

185. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996). https://doi.org/10.1007/
s002000050053. https://doi.org/10.1007/s002000050053

186. Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park,
C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005). https://doi.org/10.1007/11496618 7

187. Yarom, Y., Falkner, K., FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) USENIX Security, pp. 719–732.
USENIX Association, August 2014

188. Zaverucha, G., et al.: Picnic. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

189. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015)

190. Zhang, Z., et al.: NTRUEncrypt. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/0-387-34805-0_54
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.13154/tches.v2019.i4.180-212
https://tches.iacr.org/index.php/TCHES/article/view/8349
https://tches.iacr.org/index.php/TCHES/article/view/8349
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1109/18.556672
https://doi.org/10.1109/18.556672
https://doi.org/10.1109/18.556672
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/s002000050053
https://doi.org/10.1007/s002000050053
https://doi.org/10.1007/s002000050053
https://doi.org/10.1007/11496618_7
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Dual Lattice Attacks for Closest Vector
Problems (with Preprocessing)

Thijs Laarhoven1 and Michael Walter2(B)

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Institute of Science and Technology Austria, Klosterneuburg, Austria

michael.walter@ist.ac.at

Abstract. The dual attack has long been considered a relevant attack
on lattice-based cryptographic schemes relying on the hardness of learn-
ing with errors (LWE) and its structured variants. As solving LWE corre-
sponds to finding a nearest point on a lattice, one may naturally wonder
how efficient this dual approach is for solving more general closest vector
problems, such as the classical closest vector problem (CVP), the variants
bounded distance decoding (BDD) and approximate CVP, and prepro-
cessing versions of these problems. While primal, sieving-based solutions
to these problems (with preprocessing) were recently studied in a series of
works on approximate Voronoi cells [Laa16b,DLdW19,Laa20,DLvW20],
for the dual attack no such overview exists, especially for problems with
preprocessing. With one of the take-away messages of the approximate
Voronoi cell line of work being that primal attacks work well for approx-
imate CVP(P) but scale poorly for BDD(P), one may further wonder if
the dual attack suffers the same drawbacks, or if it is perhaps a better
solution when trying to solve BDD(P).

In this work we provide an overview of cost estimates for dual
algorithms for solving these “classical” closest lattice vector problems.
Heuristically we expect to solve the search version of average-case CVPP
in time and space 20.293d+o(d) in the single-target model. The distinguish-
ing version of average-case CVPP, where we wish to distinguish between
random targets and targets planted at distance (say) 0.99 · gd from the
lattice, has the same complexity in the single-target model, but can be
solved in time and space 20.195d+o(d) in the multi-target setting, when
given a large number of targets from either target distribution. This
suggests an inequivalence between distinguishing and searching, as we
do not expect a similar improvement in the multi-target setting to hold
for search-CVPP. We analyze three slightly different decoders, both for
distinguishing and searching, and experimentally obtain concrete cost
estimates for the dual attack in dimensions 50 to 80, which confirm

Thijs Laarhoven and Michael Walter—TL is supported by an NWO Veni grant
(016.Veni.192.005). MW is supported by the European Research Council, ERC con-
solidator grant (682815 – TOCNeT). Part of this work was done while both authors
were visiting the Simons Institute for the Theory of Computing at the University of
California, Berkeley.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 478–502, 2021.
https://doi.org/10.1007/978-3-030-75539-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_20&domain=pdf
http://orcid.org/0000-0002-2369-9067
http://orcid.org/0000-0003-3186-2482
https://doi.org/10.1007/978-3-030-75539-3_20

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 479

our heuristic assumptions, and show that the hidden order terms in the
asymptotic estimates are quite small.

Our main take-away message is that the dual attack appears to mirror
the approximate Voronoi cell line of work – whereas using approximate
Voronoi cells works well for approximate CVP(P) but scales poorly for
BDD(P), the dual approach scales well for BDD(P) instances but per-
forms poorly on approximate CVP(P).

Keywords: Lattice-based cryptography · Lattice algorithms ·
Primal/dual attacks · Closest vector problem (CVP) · Bounded
distance decoding (BDD)

1 Introduction

Post-Quantum Cryptography. Ever since the breakthrough work of Shor in the
1990s [Sho94], revealing how quantum computers pose a major threat to cur-
rently deployed cryptographic primitives, researchers have been studying alterna-
tive approaches which have the potential to be resistant against quantum attacks.
Over the past few decades, the field of “post-quantum cryptography” [BBD09]
has gained in popularity, and the recent NIST standardization process [oSN17]
has further focused the attention of the cryptographic community on preparing
for a future where large-scale quantum computers are a reality.

Lattice-Based Cryptography. Out of all proposed alternatives for “classical” cryp-
tography, lattice-based cryptography has emerged as a prime candidate for secure
and efficient cryptography in the post-quantum era. Many basic primitives are
simple and efficient to realize with e.g. learning with errors (LWE) and its ring
variants [Reg05,SSTX09,Reg10], while more advanced cryptographic primitives
(such as fully homomorphic encryption [Gen09]) can also be constructed using
lattices. By far the most schemes submitted to the NIST competition base their
security on the hardness of hard lattice problems.

Closest Vector Problems. Various hard lattice problems have been considered
over time, with the two classical hard problems being the shortest vector prob-
lem (SVP) and the closest vector problem (CVP). The latter problem asks to
find a nearest lattice point to an arbitrary target, and is arguably the hardest.
CVP algorithms appear in various cryptographic contexts, both directly and
indirectly (as a subroutine within another algorithm). Closely related to CVP
are easier variants, such as bounded distance decoding (BDD) and approximate
CVP, preprocessing versions of these problems, and modern related variants such
as learning with errors (LWE) and structured variants.

Primal Attacks. For solving CVP and its variants, various approaches have been
studied to date. Lattice enumeration [Kan83,MW15,AN17] was long consid-
ered the most practical, with a low memory requirement and fast heuristics.

480 T. Laarhoven and M. Walter

Babai’s polynomial time algorithms for the easiest CVP variants [Bab86] can be
viewed as based on enumeration as well. Lattice sieving methods [AKS01,MV10,
BDGL16,DLdW19,Laa20,DLvW20] make use of so-called approximate Voronoi
cells, and achieve a superior asymptotic scaling of the time complexity. With
recent advances in sieving [BDGL16,ADH+19,DSvW21,svp20] this likely is the
method of choice when assessing the hardness of these problems in cryptographi-
cally relevant dimensions. The line of work on approximate Voronoi cells showed
that while results for preprocessing problems are promising both for average-
case CVPP and approximate CVPP, the results were somewhat disappointing
for BDDP. An open question was raised whether this is inherent to the primal
approach, and if other approaches were more suitable for BDDP.

Dual Attacks. An alternative approach for solving hard lattice problems (and
in particular closest vector problems) is based on the dual lattice [AR04]. Using
short vectors from the dual lattice, and computing dot products with a target
vector, one can obtain probabilistic evidence indicating whether the target vector
lies close to the lattice. Using many dual vectors, one can then construct both
distinguishers and search algorithms using a gradient ascent approach [LLM06,
DRS14]. The dual attack has mostly been considered in the context of LWE and
BDD [LP11,APS15,HKM18,ADH+19], which suggests the dual approach may
work better for the BDD regime and worse for the approximate CVP regime. To
this date several open questions remain however, such as a thorough heuristic
overview of the costs of the dual attack for classical lattice problems (i.e. not
LWE), as well as an experimental assessment of the practicality of the dual
attack for solving such closest vector problems. Moreover, the preprocessing
setting has not yet been studied from a heuristic point of view, in the way that
the approximate Voronoi cell approach has been studied recently.

1.1 Contributions

Revisiting the Dual Attack. In this work we give a thorough, but practical
overview of the strengths and weaknesses of the dual attack for solving most
closest vector problems. Starting from a generalized model which covers most
variants of CVP(P) (Sect. 2.4), we study algorithms both for distinguishing and
searching for nearby vectors in high-dimensional lattices (Sect. 3). We provide
a heuristic complexity analysis of these algorithms, both with and without free
preprocessing (Sect. 4), and we verified the heuristics and obtain more concrete
cost estimates with experimental results (Sect. 5).

Decoders. Concretely, in terms of algorithms we provide three different decoders
for combining dot products of different dual vectors with the target vector.
The Aharonov–Regev decoder was presented in [AR04] and finds its motiva-
tion in approximating Gaussians over the lattice via the Fourier transform. Our
Neyman–Pearson decoder follows from applying the celebrated Neyman–Pearson
lemma [NP33] to the considered problem, and results in a slightly different, but
asymptotically equivalent decoder. The third decoder is a simpler alternative

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 481

to the previous two decoders, which conveniently requires no knowledge of the
estimated distance from the lattice, and which appears to perform reasonably
well in practice.

Algorithms. For our search algorithm we use the classical gradient ascent app-
roach, previously studied in [LLM06,DRS14], but here instantiated in a more
practical manner. We implemented this search algorithm (as well as distinguish-
ers) in dimensions 50 to 80, showing that the actual performance closely matches
theoretical predictions, with fast convergence for most BDD instances. To the
best of our knowledge this is the first time concrete experimental results are
reported for the dual attack for finding closest vectors in moderate dimensions.

Asymptotics. Theoretically, we show optimality of the Neyman–Pearson decoder
within our model, thereby showing optimality of the associated heuristics using
the proposed decoders. For preprocessing problems, we can solve BDDP with
radius r · gd (with gd the Gaussian heuristic) in time edr2(1+o(1))/e2

for small
r. For r close to 1, distinguishing many targets as either BDD samples or ran-
dom vectors can be done in time ed(1+o(1))/e2 ≈ 20.195d+o(d), while finding a
nearest vector or distinguishing based on only few target vectors requires time
20.293d+o(d). The results for the preprocessing setting are shown in Figs. 1a–1b.
For the setting where preprocessing is not free, taking into account basis reduc-
tion costs leads to Figs. 1c–1d. These sketch the same picture as the preprocessing
results: the dual attack seems complementary to the primal attack, with the dual
attack scaling well for r ≤ 1 and the primal attack scaling well for r ≥ 1.

Experiments. To validate the heuristic, theoretical claims, as well as to get an
idea how well the dual attack really works for solving these problems in practice,
we implemented and tested our algorithms as well, focusing on the BDD(P)
regime with radius slightly below the Gaussian heuristic. The performance of
the distinguishers and search algorithms is remarkably close to our theoretical
predictions, even when the preprocessing simply consists of a lattice sieve.

Take-Away Message. Summarizing, in practice the dual attack seems to perform
as good as can be expected from the theoretical estimates. Whereas a primal
approach works better for approximate CVP(P), the dual attack is arguably the
right solution for solving BDD(P). With the approximate Voronoi cell approach
and the dual attack working well in disjoint regimes, one could say the dual
attack is a complementary solution to the primal attack.

Open Problems. Recently, algorithms for CVP(P) have found further applica-
tions, besides for studying the hardness of lattice problems [BKV19,PMHS19].
One application that may be of interest is in a hybrid with lattice enumera-
tion [DLdW20]. Within the enumeration tree, various CVP instances appear on
the same lattice, one of which leads to the solution. Rather than solving CVP
for each of these targets, a distinguisher may be sufficient for discarding the
majority of targets. We leave a study of this hybrid for future work.

482 T. Laarhoven and M. Walter

Fig. 1. Asymptotic complexities for primal and dual attacks, with (a, b) and without
preprocessing (c, d), in the regimes of exponential (a, c) and arbitrary time complexity
scalings (b, d). The radius r denotes the multiplicative factor in front of the Gaus-
sian heuristic for the distance from the target to the planted nearby lattice point.
The dual attack (blue) represents distinguishing and searching costs for one target.
The primal attack (red) covers approaches based on approximate Voronoi cells. When
distinguishing a large number of targets, and using only one dual vector, we obtain
slightly improved results for the preprocessing regime (cyan). The dual attack works
well for BDD(P) (the regime r ≤ 1), while the primal attack works well for approximate
CVP(P) (the regime r ≥ 1). The dual attack for BDDP becomes polynomial-time for
radius r ·gd when r = O(

√
log d/d). The primal attack for approximate CVPP becomes

polynomial-time when r = O(
√

d/ log d). (Color figure online)

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 483

2 Preliminaries

Notation. Reals and integers are denoted by lower case letters and distributions
by upper case letter. Bold letters are reserved for vectors (lower case) and matri-
ces (upper case). The i-th entry of a vector v is denoted by vi and the j-th
column vector of a matrix B by bj . We denote the d-dimensional ball of radius
r by Bd(r) and the unit-sphere by Sd−1, which are always centered at 0 unless
stated otherwise. We may omit the dimension d if clear from context.

2.1 Lattices

Basics. Given a set B = {b1, . . . , bm} ⊂ R
d of linearly independent basis vec-

tors (which can equivalently be represented as a matrix B ∈ R
d×m with the

vectors bi as columns), the lattice generated by B is defined as L = L(B) :=
{Bx : x ∈ Z

d}. In case m = d we say the lattice is full-rank, and unless oth-
erwise stated, throughout the paper we will implicitly assume m = d. We write
Vol(L) := det(BTB)1/2 for the volume of a lattice L, and w.l.o.g. through-
out the paper we will assume that L is normalized to have volume one (i.e. by
multiplying B by the appropriate scalar multiple). Given a basis B, we write
B∗ = {b∗

1, . . . , b
∗
m} for its Gram–Schmidt orthogonalization. We write Dt+L,s

for the discrete Gaussian distribution on t + L with probability mass func-
tion satisfying Pr[X = x] ∝ ρs(x) := exp(−π‖x‖2/s2), normalized such that∑

x∈t+L Pr[X = x] = 1. We define λ1(L) := minv∈L\{0} ‖v‖ and for t ∈ R
d we

define dist(t,L) := minv∈L ‖t − v‖, where all norms are Euclidean norms.

Dual Lattices. Given a lattice L, its dual lattice L∗ contains all vectors w ∈ R
d

such that 〈v,w〉 ∈ Z for all primal lattice vectors v ∈ L. This set of vectors again
forms a lattice, and for full-rank primal lattices L a basis of this dual lattice is
given by B−T . Since Vol(L∗) = 1/Vol(L), if L is normalized to have volume 1,
then also L∗ has volume 1. We commonly denote primal lattice vectors by v,
and dual vectors by w.

Lattice Problems. Given a description of a lattice L, the shortest vector prob-
lem (SVP) asks to find a shortest non-zero lattice vector s ∈ L, satisfying
‖s‖ = λ1(L). For approximate versions of this problem (SVPr with r ≥ 1),
returning any non-zero lattice vector v ∈ L of norm ‖v‖ ≤ r · λ1(L) suf-
fices as a solution. A different relaxation of SVP is unique SVP (uSVPr with
r ≤ 1), where one is tasked to find the shortest non-zero vector in a lattice
with the guarantee that there is one particularly short vector s in the lattice:
‖s‖ ≤ r ·minv∈L,v �=λ·s ‖v‖. Given a description of a lattice L and a target vector
t ∈ R

d, the closest vector problem (CVP) is to find a lattice vector s ∈ L sat-
isfying ‖t − s‖ = dist(t,L). Similarly, we may define approximate CVP (CVPr

with r ≥ 1) as the approximate version of CVP, where any vector s ∈ L with
‖t − s‖ ≤ γ · dist(t,L) qualifies as a solution. The analogue of uSVP for the
inhomogeneous setting is often called bounded distance decoding (BDDr with
r ≤ 1), where one is tasked to find the closest vector with the guarantee that it
lies within radius r · λ1(L) of the lattice.

484 T. Laarhoven and M. Walter

2.2 Heuristic Assumptions

Before describing and analyzing dual lattice attacks, let us first describe the
heuristic assumptions we will use to model the problems. Under this heuristic
model we will be able to obtain sharp bounds on the costs of dual attacks, at the
cost of no longer having a proof of correctness – for exotic, non-random lattices
these bounds may well be too optimistic, and even for average-case lattices we
can only “prove” the resulting complexities under these additional assumptions.

The Gaussian Heuristic. The determinant det(L) = Vol(L) describes the volume
of the fundamental domain, as well as the density of lattice points in space. This
metric indicates that if we have a random, large region R ⊂ R

d of volume
Vol(R), then the number of lattice points contained in R can be estimated as
Vol(R)/Vol(L). Since a ball of radius r has volume Vol B(r) = rdVd(1), with
Vd(1) = (2πe/d)d/2+o(d) the volume of the ball with unit radius, we expect for
any constant ε > 0 with overwhelming probability the ball of radius r around
a point in space to contain no lattice points if r < (1 − ε)gd, and to contain
many lattice points if r > (1 + ε)gd. Here, gd =

√
d/(2πe) · (1 + O

(
1
d

))
denotes

the Gaussian heuristic in dimension d. Putting such a ball around the origin, we
expect a shortest non-zero vector in the lattice to have norm λ1(L) = gd(1+o(1)),
and similarly for random target vectors t ∈ R

d we expect the closest vector in
the lattice to t to lie at distance dist(t,L) = gd(1 + o(1)).

Distributions of Lattice Points. Building upon the Gaussian heuristic, we further
estimate the distribution of lattice points in space as follows: there is one lattice
point 0 of norm 0, and for any α ≥ 1 we expect there to be αd+o(d) lattice
vectors of norm αgd(1 + o(1)). The Euclidean norm of the n-th shortest vector
in a lattice of volume 1 can therefore be estimated as n1/dgd(1 + o(1)).

The Geometric Series Assumption. In the context of lattice basis reduction, we
rely on the geometric series assumption [SE94], which states that the norms of
the Gram–Schmidt vectors of a block reduced basis form a geometric sequence,
i.e. ‖b∗

i ‖ = δd−2i+1. Here, δ > 1 indicates the quality of the basis: the smaller
δ, the better the quality of the basis, and the harder these bases generally are
to obtain. For block reduced bases with block size k, we obtain the commonly
known estimate δ = δk = g

1/(k−1)
k = 1 + O (log k/k) (see e.g. [APS15,MW16]).

This estimate is mostly accurate when k � d, as for k ≈ d the shape of the
basis is expected to be an average-case HKZ-shape for which the Gram–Schmidt
norms do not exactly follow a geometric sequence anymore.

2.3 Lattice Algorithms and Cost Models

The Cost of SVP. To solve SVP, several heuristic methods are known, and
most belong to either the class of enumeration algorithms (running in super-
exponential time and polynomial space) [Kan83,MW15,AN17] or sieving algo-
rithms (running in 2O(d) time and space) [AKS01,Laa16a,BDGL16]. As in our

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 485

analysis we are interested in minimizing the asymptotic time complexity, we will
model the cost of solving SVP by the cost of the best heuristic sieve in dimen-
sion d [BDGL16], which classically runs in time TSVP(d) = (3/2)d/2+o(d) ≈
20.292d+o(d). Apart from solving SVP, sieving algorithms are actually expected
to return all the (4/3)d/2 ≈ 20.208d+o(d) shortest non-zero vectors in the lattice;
compared to the best sieving algorithms for finding only one short vector, the
overhead in the time complexity is only a factor 2o(d) [Duc18]. To find even more
short lattice vectors, one may use a relaxed sieve [Laa16b, Algorithm 5].

The Cost of Approximate SVP. To approximate the shortest vector in a lattice
and obtain a basis following the GSA, one commonly uses block reduction with
the block size k determining the parameter δ = δk [Sch87,SE94,GN08,MW16].
The cost of block reduction is usually modeled as the cost of solving SVP in
dimension k, via TBKZ(k) = dO(1) · TSVP(k), with some overhead which is poly-
nomial in d. Together with the geometric series assumption, this describes a
trade-off between the time complexity for the basis reduction and the quality of
the reduced basis.

The Cost of BDD. To the best of our knowledge, the most efficient way to solve
BDD is through Kannan’s embedding [Kan87]. In the full version we briefly
sketch the analysis and derive the following result using our heuristic assump-
tions. (We do not claim novelty; this is just for convenience of the reader.)

Corollary 1 (Solving BDD with sieving and BKZ). Let r = da be a radius
for some constant a < 1

2 . Solving BDD with radius r using Kannan’s embedding
and lattice reduction with sieving has complexity 2

0.292
2(1−a)d+o(d) under suitable

heuristics.

The Cost of BDDP. The situation is less clear in the preprocessing setting. The
above embedding approach is unlikely to be able to make much use of the free
preprocessing. The obvious approach would be to strongly reduce the basis before
embedding the target vector. But since the goal is to apply block reduction using
sieving to the final basis, the preprocessing might as well directly precompute
many short vectors for the individual blocks that will be considered during the
reduction. Once the target is embedded, block reduction will successively pass
it through the blocks and attempt to shorten it using the precomputed vectors.
This is essentially an instance of the approximate Voronoi cell algorithm for
which we know that its complexity does not scale well with the radius in the
BDD parameter range (see Fig. 1a).

Another approach for BDDP is to strongly reduce the basis and perform
enumeration to decode the target. While this might be an efficient way to tackle
the problem for small instances in practice, it is asymptotically inefficient for
the parameter ranges considered in this work. As shown by [HKM18], there is
a very narrow range in the target distance parameter where the running time
of enumeration switches from polynomial to super-exponential. (The analysis of
enumeration in [HKM18] is in a somewhat different setting but carries to ours as

486 T. Laarhoven and M. Walter

well.) The parameters for which enumeration solves the problem in polynomial
time are very small (r = da for constant a < 0), which is outside the scope of
this work for BDDP. Super-exponential running times are clearly asymptotically
worse than what can already be achieved in the non-preprocessing setting.

The Cost of Approximate CVP(P). If sufficient amount of memory is available,
the asymptotically most efficient methods to solve approximate CVP(P) are
based on using a large database of short primal lattice vectors and applying a
slicing procedure to move the target into the Voronoi cell defined by the vectors
in the database. The more short vectors the database contains, the closer this
Voronoi cell approximates the Voronoi cell of the lattice. If this approximation
held with equality, this would solve CVP exactly (which corresponds to the
adequately called Voronoi cell algorithm [MV10]). The coarser the approximation
of the lattice’s Voronoi cell is, the worse the approximation factor. Unfortunately,
it is unclear how the approximate Voronoi cell algorithm might take advantage of
a guarantee that the target vector is close to the lattice. For this reason, solving
BDD(P) with this method is effectively as hard as solving CVP(P). See Fig. 1c
and 1a for concrete complexities.

2.4 Model

We only summarize our model due to space constraints such that the remaining
part of this work should be intelligible. For details and clarifications we refer to
the full version. To formalize different versions of CVP we define two distribu-
tions: the planted target distribution and the random target distribution. Both
are defined by choosing some lattice vector v ∈ L (the exact distribution for
this is not important for this work, since all our algorithms are invariant under
shifts of lattice vectors) and adding some noise e ∈ R

d, to form a target vector
t = v + e. In the case of the planted target, the noise e is chosen uniformly
at random from the sphere rgdSd−1, while in the random case the noise is cho-
sen uniformly at random from the fundamental parallelepiped generated by the
lattice basis. This also corresponds to the limit of the planted distribution for
r → ∞. We define the distinguishing version of our problems as distinguishing
between samples (multi-target) or one sample (single target) from the two dis-
tributions. The search version in the single target (multi-target) setting is to
recover a lattice point within distance rgd given a sample (multiple samples,
resp.) from the planted target distribution. For r � 1 we refer to these prob-
lems as BDD problems, for r ≈ 1 as “average case” CVP, and for r � 1 as
approximate CVP. We also consider the preprocessing versions of these prob-
lems: BDDP, “average case” CVPP and approximate CVPP, resp., where one is
given the lattice basis ahead of time and is allowed arbitrary computation on the
lattice for “free” before receiving the target(s). The complexity of an algorithm
is then measured in the complexity of the query phase only.

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 487

3 Algorithms

In this section we will describe algorithms for solving closest vector problems
using vectors from the dual lattice, both for distinguishing between a planted
distribution and the random distribution, and for actually finding a nearby lat-
tice vector to a (planted) target vector. The heuristic analysis of these algorithms
will follow in Sect. 4, and results of experiments are reported in Sect. 5.

3.1 The Aharonov–Regev Decoder

We will start with the Fourier-based derivation of the dual attack, which natu-
rally results in a decoder similar to the one described by Aharonov–Regev [AR04]
(and later used in [LLM06,DRS14]). First, suppose we have a target vector t,
and let c denote the closest lattice point to t. Then by using (asymptotic) prop-
erties of Gaussians, we can derive the following approximations for the mass of
a discrete Gaussian at c − t:

ρs(c − t) ≈
∑

v∈L
ρs(v − t) ≈

∑

v∈L
ρs(v + t)

/
∑

v∈L
ρs(v). (1)

The first approximation relies on c being significantly closer to t than all other
vectors, so that ρs(c − t) � ρs(v − t) for all other lattice vectors v ∈ L \ {c}.
In that case the sum essentially collapses to the biggest term ρs(c − t). The
second approximation relies on s ≤ 1 being sufficiently small, so that the sum
in the denominator is approximately equal to 1.1 Next, applying the Fourier
transform [AR04], we translate the latter term to a function on the dual lattice:

ρs(c − t) ≈
∑

w∈L∗
ρ1/s(w) cos(2π〈w, t〉)

/
∑

w∈L∗
ρ1/s(w). (2)

Finally, we can approximate this infinite sum over dual vectors by only taking
the sum over a set W ⊂ L∗ of short dual vectors (e.g. those of norm at most
some radius R), which contribute the most to the numerator above. For this
approximation to be accurate we require that the infinite sum over w ∈ L∗ is
well approximated by the finite sum over only vectors w ∈ W:

ρs(c − t) ≈ 1
M

∑

w∈W
ρ1/s(w) cos(2π〈w, t〉), M =

∑

w∈L∗
ρ1/s(w). (3)

Note that while the initial function ρs(c−t) cannot be evaluated without knowl-
edge of c, this last term is a finite sum over dot products of dual lattice vectors
with the target vector, scaled with a constant M which does not depend on the
target t. In particular, disregarding the scaling factor 1/M , the finite sum can
be seen as an indicator to the magnitude of ρs(c − t), which itself is large if t

1 For the method to work we only need the denominator to be constant in t.

488 T. Laarhoven and M. Walter

lies close to the lattice (to c) and small if t lies far from the lattice. This finite
sum can therefore be used to assess if t lies close to the lattice:

f
(W)
AR (t) :=

∑

w∈W
ρ1/s(w) cos(2π〈w, t〉). (4)

This quantity can be seen as an instantiation of [AR04, Lemma 1.3] on W ⊂ L∗:
sampling from a discrete Gaussian restricted to W and taking the sum of cosines
is equivalent to sampling from a uniform distribution over W and weighing
the terms with appropriate Gaussian weights. The above decoder computes the
expected value of this sum exactly, as f

(W)
AR (t) = Ew∼W [ρ1/s(w) cos(2π〈w, t〉)].

Note that there is one unspecified parameter s > 0 above, which corresponds
to both the width of the Gaussian over the primal lattice and the reciprocal of
the width of the Gaussian over the dual lattice. For the series of approximations
to hold, we need both s and 1/s to be small enough, so that in the primal lattice
the mass of the entire sum over v ∈ L is concentrated around c, and the sum
over all dual vectors is well approximated by the sum over only a finite subset
W ⊂ L∗.

3.2 The Neyman–Pearson Decoder

While the above derivation of the Aharonov–Regev decoder is quite straight-
forward, it is unclear whether this decoder is actually optimal for trying to
distinguish (or search) using dual lattice vectors. Furthermore, the role of the
parameter s remains unclear; s should neither be too small nor too large, and
finding the optimal value is not obvious. Both Aharonov–Regev [AR04] and
Dadush–Regev–Stephens-Davidowitz [DRS14] fixed s = 1, but perhaps one can
do better (in theory and in practice) with a better choice of s.

In the full version we prove the following lemma, showing that from a prob-
abilistic point of view, the following Neyman–Pearson decoder is optimal.

Lemma 1 (Optimal decoder). Let r > 0 be given. Suppose we wish to distin-
guish between samples from the random target distribution and samples from the
planted target distribution with radius r · gd, given a set of dual vectors W ⊂ L∗,
and based only on dot products 〈w, t〉 mod 1. Let s > 0 be defined as:

s = r · gd ·
√

2π

d
. (5)

Then an optimal distinguisher consists of computing the following quantity and
making a decision based on whether this quantity exceeds a threshold η:

f
(W)
NP (t) :=

∑

w∈W
ln

(

1 + 2
∞∑

k=1

ρ1/s(kw) cos(2πk〈w, t〉)
)

. (6)

At first sight this decoder shares many similarities with the Aharonov–Regev
decoder, in the form of the sum over Gaussian weights and cosines with dot

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 489

products. The relation with the Aharonov-Regev decoder can be formalized (see
full version) to show that, up to order terms, they are scalar multiples:

f
(W)
NP (t) ∼ 2 · f

(W)
AR (t). (7)

In contrast to the Aharonov–Regev decoder however, the Neyman–Pearson
decoder comes with a guarantee of optimality within the model described in
Sect. 2.4. Moreover, this decoder comes with an explicit description of the opti-
mal parameter s to use to achieve the best performance. We will later use this
as a guideline for choosing a parameter s for the Aharonov–Regev decoder in
practice.

Using the asymptotic (heuristic) relation gd ≈ √
d/(2πe), the above optimal

parameter s is approximately s ≈ r/
√

e. For BDD problems with radius close to
the average-case CVP radius, we have r ≈ 1 and s ≈ 1/

√
e. As the BDD radius

decreases, the optimal value s decreases linearly with r as well, and thus the
width 1/s of the Gaussian in the dual increases and scales as 1/r. As r decreases,
the Gaussian over the dual becomes flatter and flatter, and most terms in the
summations will roughly have equal weights. This suggests that at least for the
easier BDD instances of small radius, using equal weights in the summation may
be almost as good as using Gaussian weights.

3.3 The Simple Decoder

While the Neyman–Pearson decoder is in a sense a more complicated decoder
than the Aharonov–Regev decoder, attempting to achieve a superior theoretical
performance, the third decoder we consider favors simplicity over optimality.

In most applications, the set W will consist of short dual vectors, which will
mostly have similar Euclidean norms. For instance, if W is the output of a sieve,
we expect the ratio between the norm of the shortest and longest vectors in W
to be approximately

√
4/3, i.e. at most a 16% difference in norms between the

shortest and longest vectors in W. As all norms are very similar anyway, one
may attempt to simplify the decoder even further by removing this weighing
factor, and using the following “simple” decoder instead:

f
(W)
simple(t) :=

∑

w∈W
cos(2π〈w, t〉). (8)

From an alternative point of view, this simple decoder can be seen as the limiting
case of the Aharonov–Regev decoder where we let s → 0+. For small s, the width
of the dual Gaussian 1/s increases, and all vectors will essentially have the same
probability mass after normalization. As the optimal parameter s decreases with
the BDD radius r for the Neyman–Pearson decoder, this limiting case may be
most relevant for BDD instances with small radius.

Although this decoder may not come with the same optimality guarantees as
the Neyman–Pearson decoder, and only approximates it, this decoder does have
one particularly convenient property: it can be computed without knowledge

490 T. Laarhoven and M. Walter

Algorithm 1. A dual distinguisher
Require: A target t ∈ R

d, a set of dual vectors W ⊂ L∗, a decoder f
Ensure: The boolean output estimates whether t lies close to the lattice or not
1: Choose a threshold η > 0
2: return f (W)(t) > η

Algorithm 2. A dual search algorithm
Require: A target t ∈ R

d, a set of dual vectors W ⊂ L∗, a decoder f
Ensure: The output vector is an estimate for the closest lattice vector to t
1: Choose a step size parameter δ > 0
2: while ‖Babai(t) − t‖ > 1

2λ1(L) do � any bound 0 < R ≤ 1
2λ1(L) works

3: t ← t + δ · ∇f (W)(t)

4: return Babai(t)

of r! Whereas the other decoders require knowledge of r to compute the optimal
Gaussian width s, the simple decoder is a function only of W and t. This might
make this decoder more useful in practice, as r may not be known.

3.4 Distinguishing Algorithms

As already described above, given any decoder f we can easily use this decoder
as a distinguisher to decide if we are close to the lattice or not, by evaluating
it at t and seeing whether the resulting value is small or large. Formally, this
approach is depicted in Algorithm1. Besides the decoder f and the set of dual
vectors W, the only parameter that needs to be chosen is the threshold η, which
controls the trade-off between the false positive (deciding t lies close to the lattice
when it does not) and false negative error probabilities. Increasing η decreases
the false positive rate and increases the number of false negatives.

3.5 Search Algorithms

To actually find the closest vector to a target vector, we will use the classical
gradient ascent approach, which was previously used in [LLM06,DRS14]. Recall
that up to scaling, all decoders approximate a Gaussian mass at c − t:

exp
(
− π

s2
‖c − t‖2

)
= ρs(c − t) ≈ C · f (W)(t). (9)

Computing the gradient of the Gaussian as a function of t, we obtain the relation:

2π

s2
(c − t) exp

(
− π

s2
‖c − t‖2

)
= ∇ρs(c − t) ≈ C · ∇f (W)(t). (10)

For the exact Gaussian mass function we can isolate c, which then gives us an
approximation for c in terms of f and its gradient:

c = t +
s2

2π
· ∇ρs(c − t)

ρs(c − t)
≈ t +

s2

2π
· ∇f (W)(t)

f (W)(t)
. (11)

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 491

Here the direction ∇f (W)(t) can be seen as an approximation to the direction we
need to move in, starting from t, to move towards the closest vector c. The scalar
s2/(2πf (W)(t)) controls the step size in this direction; this would be our best
guess to get as close to c in one step as possible. In practice one may choose to use
a smaller step size δ, and repeatedly iterate replacing t by t′ = t + δ · ∇f (W)(t)
to slowly move towards c. Ideally, iterating this procedure a few times, our
estimates will get more accurate, and t′ will eventually lie close enough to c for
polynomial-time closest vector algorithms (e.g. Babai’s algorithms [Bab86]) to
recover c. This is formalized in Algorithm2.

For illustration, note that we can compute gradients for the decoders explic-
itly. For instance, for the Aharonov–Regev decoder we have:

∇f
(W)
AR (t) = −2π

∑

w∈W
ρ1/s(w) sin(2π〈w, t〉) · w. (12)

Our best guess for the nearest lattice point c, given t and W, would be:

c
(W)
AR = t − s2 ·

∑
w∈W ρ1/s(w) sin(2π〈w, t〉) · w
∑

w∈W ρ1/s(w) cos(2π〈w, t〉) . (13)

For the Neyman–Pearson decoder and simple decoder we can similarly derive
explicit expressions for the gradient, and obtain preliminary estimates for c
based on the provided evidence.

3.6 Choosing the Set of Dual Vectors W
Although some long dual vectors may contribute more to the output of the
decoders if they happen to be almost parallel to t− c, overall the largest contri-
bution to the sums appearing in all three decoders comes from the shortest dual
vectors. Some logical choices for W would therefore be:

1. W = {s∗}, where s∗ is a shortest non-zero vector of L∗;
2. W = L∗ ∩ B(R · gd), i.e. all dual lattice vectors of norm at most R · gd;
3. W = Sieve(L∗), i.e. the output of a lattice sieve applied to (a basis of) L∗;
4. W = BKZSieve(L∗, k), i.e. running a sieving-based BKZ algorithm with block

size k on a basis of L∗, and outputting the database of short vectors found
in the top block of the basis [ADH+19].

The first choice commonly does not suffice to actually distinguish for one target
vector, but the distinguishing advantage per vector is maximized for this option
(for more details we refer to the full version). This choice of W is often considered
in cryptanalytic contexts when studying the performance of dual attacks on
LWE. The second choice is a more realistic choice when we actually wish to
distinguish or find a closest lattice point to a single target vector, rather than
just maximizing the distinguishing advantage. Computing this set W may be
costly (see [DLdW19] for a preprocessing method attempting to achieve this),
but in preprocessing problems this is likely the best set W one can possibly use.

492 T. Laarhoven and M. Walter

The third option is an approximation to the second approach, and may make
more sense in practical contexts. The fourth option is a more sensible option
when the costs of the preprocessing phase are taken into account as well, as then
we commonly wish to balance the preprocessing costs and the costs of the dual
attack via a suitable choice of the block size k.

4 Asymptotics

To study the performance of the algorithms from the previous section, we will
first analyze the distributions of the output of the decoder, when the target is
either planted or random. Then we will analyze how this can be used to assess
the costs of distinguishing and searching for nearest vectors.

4.1 Output Distributions of the Decoders

From the definition of the planted target distribution with radius r ·gd, the target
is of the form t = c + e where c ∈ L and e is sampled uniformly at random
from the sphere of radius r · gd. All decoders consider dot products between the
target and dual lattice vectors, for which we have:

〈t,w〉 = 〈c + e,w〉 = 〈c,w〉 + 〈e,w〉 ∈ 〈e,w〉 + Z. (14)

Here 〈c,w〉 ∈ Z since c ∈ L and w ∈ L∗. As in all decoders the quantity 〈t,w〉
is the argument of a cosine, with multiplicative factor 2π, we are interested in
the distribution of 〈t,w〉 mod 1, which equals the distribution of 〈e,w〉 mod 1.

Now, by assumption the distribution of e is independent from w. By either
assuming the distribution of e is spherically symmetric or the distribution of w
is spherically symmetric2, we can rewrite the above as follows:

〈e,w〉 = ‖e‖ · ‖w‖ ·
〈

e
‖e‖ , w

‖w‖
〉

∼ ‖e‖ · ‖w‖ · 〈r1, r2〉 , r1, r2 ∼ Sd−1. (15)

Here r1, r2 are drawn uniformly at random from Sd−1. Without loss of gener-
ality we may fix r1 = e1 as the first unit vector, so that the dot product is
the first coordinate of the random unit vector r2. In high dimensions the uni-
form distribution on the unit sphere is essentially equivalent to sampling each
coordinate independently from a Gaussian with mean 0 and variance 1/d (and
normalizing3), so up to order terms the distribution of the first coordinate of r2
is equal to the Gaussian distribution with mean 0 and variance 1/d. So focusing
on the regime of large d, it follows that:

〈e,w〉 ∼ N (
0, 1

d · ‖w‖2 · ‖e‖2) . (16)

2 The following argument therefore holds not only if t is from the planted target
distribution, but also if t is fixed and the distribution of the dual vectors is modeled
via the Gaussian heuristic.

3 For large d the squared norm of such a vector follows a chi-squared distribution,
which is closely concentrated around 1.

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 493

For the original dot product, taken modulo 1, we thus obtain:

(〈t,w〉 mod 1) ∼ N (
0, 1

d · ‖w‖2 · ‖e‖2) mod 1. (17)

This distribution is sketched in Fig. 2a.

0.5 0.25 0 0.25 0.5
0

0.5

1

1.5

random

planted

(a) Density of Gaussians modulo 1.

random planted

(b) Output distributions of decoders.

Fig. 2. A graphical sketch of Gaussian densities modulo 1, with varying planted tar-
get radii, and the output distributions of the three decoders. We wish to distinguish
between Gaussians with similar standard deviations but different means.

In the full version, we further study the output distribution of each decoder
by deriving the following expressions for the means μ and variances σ2 for each
of the decoders from the previous section, assuming that t was sampled from
the planted target distribution for radius r. We remark that some of the analysis
for μsimple and σsimple was also recently carried out in [EJK20] in the context of
analyzing small secret LWE.

E[f (W)
AR (t)] ≈

∑

w∈W
ρ1/s(w)2, Var[f (W)

AR (t)] ≈ 1
2

∑

w∈W
ρ1/s(w)2, (18)

E[f (W)
NP (t)] ≈ 2

∑

w∈W
ρ1/s(w)2, Var[f (W)

NP (t)] ≈ 2
∑

w∈W
ρ1/s(w)2, (19)

E[f (W)
simple(t)] ≈

∑

w∈W
ρ1/s(w), Var[f (W)

simple(t)] ≈ 1
2

∑

w∈W
1. (20)

The above expressions are over the randomness of t drawn from the planted
target distribution with radius r. If instead we consider targets r from the ran-
dom target distribution, then for all three decoders we have E[f (W)(r)] = 0 and
Var[f (W)(r)] ≈ Var[f (W)(t)] with t again from the planted distribution with
radius r. Figure 2b thus illustrates the situation well, in that in both cases the
output distribution follows a Gaussian with the same variance, but the mean
depends on whether t was planted or random.

In all applications we try to distinguish/search for a closest vector using
a large number of samples 〈w, t〉, either using many dual vectors w or many
targets t, and taking appropriate sums as defined in the decoders. As the terms

494 T. Laarhoven and M. Walter

of the summation are approximately identically distributed4, by the central limit
theorem we expect the output of the decoder to be approximately Gaussian, with
the above means and variances.

Assuming that the output distributions are perfectly Gaussian, as sketched
in Fig. 2b, we can distinguish with constant errors iff μ/σ is at least constant,
with the ratio implying the distinguishing advantage. Considering the squares
of this quantity for convenience, for the AR and NP decoders we have:

E

[
f
(W)
AR (t)

]2

Var
[
f
(W)
AR (t)

] ≈
E

[
f
(W)
NP (t)

]2

Var
[
f
(W)
NP (t)

] ≈ 2
∑

w∈W
ρ1/s(w)2. (21)

As long as this quantity is at least constant, we can confidently distinguish
between planted and random targets. For the simple decoder we get a slightly
different expression for this ratio:

E

[
f
(W)
simple(t)

]2

Var
[
f
(W)
simple(t)

] ≈ 2
|W|

(
∑

w∈W
ρ1/s(w)

)2

. (22)

Observe that the Cauchy–Schwarz inequality applied to the |W|-dimensional
vectors x = (1)w∈W and y = (ρ1/s(w))w∈W shows that this quantity for the
simple decoder is never larger than for the other two decoders, with equality
only iff the weights ρ1/s(w) are all the same. As we wish to maximize this ratio
to maximize our distinguishing advantage, the simple decoder is not better than
the other decoders, and is not much worse if vectors in W have similar norms.

A similar argument can be used to analyze the costs of the gradient ascent
approach. To make progress, we need the gradient to point in the direction of
c, starting from t: as long as the gradient is pointing in this direction, a small
step in the direction of the gradient will bring us closer to c. Studying the
associated random variable 〈∇f (W)(t), t − c〉, we again see that by the central
limit theorem this will be approximately Gaussian (see full version for details).
Considering the ratio between the means and standard deviations, for the AR
decoder this quantity scales as:

E

[
〈∇f

(W)
AR (t), t − c〉

]2

Var
[
〈∇f

(W)
AR (t), t − c〉

] = 4πs2
∑

w∈W
‖w‖2ρ21/s(w). (23)

Up to polynomial factors in d (e.g. s2 and ‖w‖2), this is equivalent to the con-
dition for the distinguisher to succeed.

4 For the simple decoder indeed the distribution of each term is identical. Due to the
weighing factors ρ1/s(w) in the other two decoders, the terms are not quite identically
distributed. However, in most cases of interest, the important contribution to the
output distribution comes from a subset of vectors of W with almost equal norms.

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 495

4.2 Closest Vector Problems with Preprocessing

We study two separate applications: (i) we are given a large number of target
vectors, and we wish to decide whether they come from the planted target distri-
bution or from the random distribution; and (ii) we have only one target vector
and we either want to distinguish correctly or find a closest lattice point to it.
The former problem has a lower asymptotic complexity, as it allows us to reuse
the shortest dual vector for different targets.

Lemma 2 (Multi-target distinguishing, with preprocessing). Suppose
an arbitrary number of targets t1, t2, . . . is given, which are either all from the
random target distribution or all from the planted target distribution with given
radius r · gd, for arbitrary r > 0. Let w ∈ L∗ be the shortest dual vector of
norm ‖w‖ = gd(1 + o(1)), and suppose w is known. Then heuristically we can
distinguish between these two cases using w in time:

T = 2r2(d+o(d))/(e2 ln 2) ≈ 20.195r2(d+o(d)). (24)

For r = 1 we need 20.195d+o(d) target vectors to distinguish planted targets from
random. This only works when using many targets, as otherwise the dual vectors
increase in length and increase the asymptotic complexity. Note that we do not
claim to find a closest vector to any of the targets in this amount of time.

We stress that even for r � 1 we obtain a non-zero distinguishing advantage;
as described in the full version, this is because even when planting a target at
distance 10·λ1(L), the resulting distribution is slightly different from the uniform
distribution (modulo the fundamental domain). As expected, we do observe that
for large r the distribution becomes almost indistinguishable from random.

Lemma 3 (Single-target distinguishing, with preprocessing). Suppose
we are given a single target t from either the random target distribution or
the planted target distribution with radius r · gd, with r > 0 known. Let
w1,w2, · · · ∈ L∗ be the (given) shortest vectors of the dual lattice, and suppose
their norms follow the Gaussian heuristic prediction, ‖wn‖ = n1/dgd(1 + o(1)).
Then heuristically we can distinguish whether t is random or planted in time:

T = αd+o(d), (with α := min{β : e2 ln β = β2r2}.) (25)

For what approximately corresponds to average-case CVPP, substituting
r = 1 leads to α ≈ 1.2253 and T ≈ 20.293d+o(d), where we stress that the
constant 0.2931 . . . is not the same as the log2(3/2)/2 ≈ 0.2924 . . . exponent of
sieving for SVP. For smaller radii the complexities decrease quickly, and simi-
lar to the multi-target distinguishing case the complexity scales as expO(r2d),
with the complexity for BDD with preprocessing becoming polynomial when
r = O(

√
(ln d)/d). This is depicted in Figs. 1a and 1b.

For finding closest vectors, Algorithm 2 gives a natural heuristic approach
based on a gradient ascent. As argued above, the quantity 〈∇f (W)(t), t−c〉 may
be of particular interest. This quantity is sufficiently bounded away from 0 for

496 T. Laarhoven and M. Walter

similar parameters as for distinguishing to work, thereby suggesting that similar
asymptotics likely hold for searching and distinguishing. After all, if we can use
a distinguisher to correctly determine when we are close to the lattice or not,
using it as a black box we can take small steps in well-chosen directions starting
from t and determine if we are making progress or not. In the next section we
will compare experimental results for searching and distinguishing to further
strengthen the following claim.

Lemma 4 (Single-target searching, with preprocessing). Heuristically
we expect to be able to solve the planted closest vector problem with preprocessing
with radii r · gd for r < 1 with similar complexities as Lemma3.

Finally, while the above results cover distinguishing planted cases at arbitrary
radii, and searching close vectors for radii r < 1, this does not give any insights
how to solve the search version of approximate CVPP. Experimentally, as well
as intuitively, it is unclear if any guarantees can be given on the quality of the
output of such a gradient ascent method if the algorithm fails to find the nearest
lattice point. This may be inherent to the dual approach, similar to how the
poor performance for BDD with preprocessing may be inherent to the primal
approximate Voronoi cell approach. Note however that we can always achieve the
same complexities for approximate CVPP as for “average-case CVPP” (BDDP
with radius approaching gd) as indicated in Figs. 1a and 1b). We leave it as
an open problem to study if the dual attack can be improved for approximate
CVPP, compared to exact CVPP.

4.3 Closest Vector Problems Without Preprocessing

While the previous results focused on being given the short dual vectors, here
we will take into account the costs for generating these dual vectors as well. We
will focus on using some form of sieving based block reduction, which covers the
most sensible, efficient choices of preprocessing before running the dual attack.

Lemma 5 (Single-target searching, without preprocessing). Heuristi-
cally we expect to be able to solve the planted closest vector problem (without
preprocessing) with target radius r · gd for r = dα, α < 0, in time T as follows:

T = (3/2)(d+o(d))/(2−4α) ≈ 20.292(d+o(d))/(1−2α). (26)

As for the other results, a derivation can be found in the full version. The
resulting trade-offs between the radius r and the time complexity T are depicted
in Figs. 1c and 1d. These figures are similar to the plots for the preprocessing
case, except that the x-axes have been stretched out significantly; to reduce the
constant in the exponent one needs r to scale polynomially with d (as opposed to
r = O(1) for the preprocessing case), and to achieve polynomial time complexity
one needs r = 2−O(d) (cf. r = O(

√
log d/d) for the preprocessing case). Note

that the latter regime matches what we intuitively expect; a BDD instance with

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 497

exponentially small radius can also be solved in polynomial time using LLL basis
reduction followed by one of Babai’s algorithms.

Finally, similar to the preprocessing case we do not expect the dual approach
to work well for solving approximate CVP. Finding a way to give better guar-
antees for approximate CVP(P), or showing that the dual attack is unable to
solve this problem efficiently, is left as an open problem.

5 Experiments

5.1 Setup

To verify our assumptions and the heuristic estimates, we conducted the follow-
ing experiments. We used G6K [ADH+19] to compute a large set of short vectors
Wd for the SVP challenge lattice (seed 0) in dimension d ∈ {55, 60, 65, 70, 75, 80}
by extracting the vectors in the sieving database after a full sieve on these lat-
tices. In the full version we give some more details on the databases we used. We
treated the challenge lattices as the dual of the lattices we target to solve BDD
for and created samples from the planted target distribution with parameter
r · gd, where we arbitrarily fixed the closest lattice point to be 0.

5.2 Evaluating the Distinguishers

Our first experiment was targeted at verifying the heuristic complexity of the
distinguishing algorithms and comparing the three different score functions. For
this, we chose 1000 different targets of length rgd for various r ∈ [0.5, 0.9]. For
each of them, we computed the score functions fj for j ∈ {simple,AR,NP} using
the i shortest vectors of Wd. We denote the resulting set of scores as f i

j(Wd, r).
(For practicality reasons we only computed f i

j(Wd, r) for i being multiples of
100.) Additionally, we computed the score functions f̂ i

j(Wd, r) for targets from
the random target distribution, i.e. we chose 〈t,w〉 uniformly at random from
[−0.5, 0.5] for all dual vectors w. We now evaluated how well the score functions
can distinguish between targets at distance rgd from the random target distri-
bution. Let p ∈ [0, 0.5) be a parameter. For each r we computed the minimal
i such that f i

j(Wd, r) and f̂ i
j(Wd, r) overlap by at most a p-fraction. In other

words, we computed the minimal i such that the p-percentile of f i
j(Wd, r) is

larger than the (1 − p)-percentile of f̂ i
j(Wd, r). Additionally, we computed two

types of predictions for the distinguishing complexity. First, we used the vectors
in Wd to predict the complexity of the fAR distinguisher by assuming that the
result of the score function under the planted and random target distributions
was a perfect Gaussian. We call this the data dependent (d.d.) estimate. Sec-
ond, we also estimated the complexity in a similar way, but by assuming that
Wd contained all the shortest vectors in the dual lattice and that the lengths of
these followed the distribution given by the Gaussian heuristic. We denote this
by the data independent (d.i.) estimate. The results show that the estimates are
very close to the experimental data, which in turn verifies the assumption that

498 T. Laarhoven and M. Walter

the result of the score function can indeed be well approximated by a Gaussian.
For fsimple this was independently verified in [EJK20] in a similar setting.

Exemplary results are plotted in Figs. 3a and 3b, for varying radius and
dimension, respectively, and p = 0.1. They represent typical examples from our
data sets. We fitted models to the curves to evaluate the dependency of the
practical complexity on r (d, resp.). Figure 1a suggests that at least for r not
too close to 1, the dependency on r should be roughly quadratic. If all dual
vectors in the database had length ‖w‖ = gd, we would expect a curve of the
form exp((d/e2)r2) + O(1). However, there are longer vectors in our sets Wd,
and the vectors are used in increasing length. This has a progressively negative
effect on the complexity, which explains the worse constants computed for the
curves in Fig. 3a. On the other hand, the curves in Fig. 3b adhere very closely
to the heuristic value computed in Lemma 3. The slight variances in the leading
constant in the exponent can be easily explained with the small set of data
points used to fit the curves. Finally, we see that the score functions all perform
similarly well. Since fsimple is the fastest to compute, this will likely give the best
results in practice for distinguishing.

5.3 Evaluating the Search Algorithms

In the second part of our experiments, we evaluated the decoding algorithm
based on gradient ascent. During our experiments we noticed that fAR and
fsimple perform similarly well, so we arbitrarily choose to report the results for
fAR. We chose the step size such that the update corresponds to (13) as a
sensible first guess. Otherwise, the methodology was similar to the previous set
of experiments. We only performed one step of the gradient ascent algorithm
and declared success if it resulted in a target closer to the lattice than the initial
target. Intuitively, since after a successful first step the problem becomes easier,
this should be a good proxy for the success probability of the full algorithm.
Exemplary results are given in Figs. 3c and 3d again depending on r and the
dimension d, respectively. The results are similar to the distinguishing case,
with close adherence to the heuristic estimate of Lemma 3 w.r.t. the dependence
on d. As expected, the success probability only affects constant factors in the
complexity.

In the previous experiments, we only considered the gradient ascent method
with a fixed step size given by the analysis in Sect. 3.5. Since we only compute
an approximation of the true step, it stands to reason that in some cases a poor
approximation may lead to failure of the algorithm, even though the computed
update is roughly pointing in the right direction. One may hope to reduce the
number of such cases by reducing the step size. This should give a trade-off
between the success probability of the algorithm and the running time. In order
to evaluate the potential of this approach, we repeated the above experiments,
but we now deemed any trial successful where the first update u satisfied 〈u,e〉 <
0, where e is the error vector of the target. If this is satisfied, this implies that
there is a step size such that the update succeeds in reducing the distance to
the lattice. The results are shown in Figs. 3e and 3f, analogously to the ones

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 499

(a) Complexity of distinguishing the
planted target distribution with radius
r · gd from the random target distribu-
tion with success probability 0.90 in di-
mension 80.

(b) Complexity of distinguishing a
planted target with radius 0.75 · gd from
a random target with success probabil-
ity 0.90. The theoretical estimate from
Lemma 3 is exp(0.0913d+ o(d)).

(c) Complexity of decoding a target at
distance r · gd with success probability p
in dimension 80.

(d) Complexity of decoding a target with
radius 0.75 · gd with success probability
p. Lemma 4 predicts exp(0.0913d+o(d)).

(e) “Lower bound” for complexity of de-
coding a target with radius r · gd in di-
mension 80 with success probability p.

(f) “Lower bound” for complexity of de-
coding a target with radius 0.75 ·gd with
success probability p.

Fig. 3. Exemplary results, for distinguishing (a, b), decoding (c, d), and a “lower
bound” (e, f). Left (a, c, e): d = 80 fixed, varying r. Right (b, d, f): r = 0.75 fixed,
varying d.

500 T. Laarhoven and M. Walter

above. They show that the results only differ in small constant factors (� e). In
practice, it might be worth exploring this trade-off, but we leave this for future
work. In the full version we give some additional results regarding the number
of steps required to recover the target vector.

Acknowledgments. The authors thank Sauvik Bhattacharya, Léo Ducas, Rachel
Player, and Christine van Vredendaal for early discussions on this topic and on pre-
liminary results.

References

[ADH+19] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 25

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: STOC, pp. 601–610 (2001)

[AN17] Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration
with discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 3

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9, 1–38 (2015)

[AR04] Aharonov, D., Regev, O.: Lattice problems in NP∩coNP. In: FOCS, pp.
362–371 (2004)

[Bab86] Babai, L.: On Lovasz lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986)

[BBD09] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-quantum Cryp-
tography. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
88702-7

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: SODA, pp. 10–24
(2016)

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. Cryptology ePrint
Archive, Report 2019/498 (2019)

[DLdW19] Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vec-
tors using approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 3–22. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 1

[DLdW20] Doulgerakis, E., Laarhoven, T., de Weger, B.: Sieve, enumerate, slice, and
lift: hybrid lattice algorithms for SVP via CVPP. In: Nitaj, A., Youssef,
A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 301–320. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51938-4 15

[DLvW20] Ducas, L., Laarhoven, T., van Woerden, W.P.J.: The randomized slicer
for CVPP: sharper, faster, smaller, batchier. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 3–36.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 1

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-030-25510-7_1
https://doi.org/10.1007/978-3-030-51938-4_15
https://doi.org/10.1007/978-3-030-45388-6_1

Dual Lattice Attacks for Closest Vector Problems (with Preprocessing) 501

[DRS14] Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector
problem with a distance guarantee. In: CCC, pp. 98–109 (2014)

[DSvW21] Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on
GPUs, with tensor cores. Cryptology ePrint Archive, Report 2021/141
(2021). https://eprint.iacr.org/2021/141

[Duc18] Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 5

[EJK20] Espitau, T., Joux, A., Kharchenko, N.: On a hybrid approach to solve small
secret LWE. Cryptology ePrint Archive, Report 2020/515 (2020). https://
eprint.iacr.org/2020/515

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GN08] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within mordell’s
inequality. In: STOC, pp. 207–216. ACM (2008)

[HKM18] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. Des. Codes Crypt. 86, 55–83 (2018)

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In: STOC, pp. 193–206 (1983)

[Kan87] Kannan, R.: Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12(3), 415–440 (1987)

[Laa16a] Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven
University of Technology (2016)

[Laa16b] Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 28

[Laa20] Laarhoven, T.: Approximate Voronoi cells for lattices, revisited. J. Math.
Cryptol. 15(1), 60–71 (2020)

[LLM06] Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decod-
ing for general lattices. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 450–461. Springer,
Heidelberg (2006). https://doi.org/10.1007/11830924 41

[LP11] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19074-2 21

[MV10] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algo-
rithm for most lattice problems based on Voronoi cell computations. In:
STOC, pp. 351–358 (2010)

[MW15] Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal
overhead. In: SODA, pp. 276–294 (2015)

[MW16] Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 31

[NP33] Jerzy Neyman and Egon Sharpe Pearson: On the problem of the most effi-
cient tests of statistical hypotheses. Phil. Trans. R. Soc. Lond. A 231(694–
706), 289–337 (1933)

[oSN17] The National Institute of Standards and Technology (NIST). Post-quantum
cryptography (2017)

https://eprint.iacr.org/2021/141
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://eprint.iacr.org/2020/515
https://eprint.iacr.org/2020/515
https://doi.org/10.1007/978-3-319-69453-5_28
https://doi.org/10.1007/11830924_41
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31

502 T. Laarhoven and M. Walter

[PMHS19] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with
pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 24

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC, pp. 84–93 (2005)

[Reg10] Regev, O.: The learning with errors problem (invited survey). In: CCC, pp.
191–204 (2010)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoret. Comput. Sci. 53(2–3), 201–224 (1987)

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66(2–3),
181–199 (1994)

[Sho94] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and
factoring. In: FOCS, pp. 124–134 (1994)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

[svp20] SVP challenge (2020). http://latticechallenge.org/svp-challenge/

https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
http://latticechallenge.org/svp-challenge/

On the Hardness of Module-LWE
with Binary Secret

Katharina Boudgoust(B), Corentin Jeudy, Adeline Roux-Langlois,
and Weiqiang Wen

Univ Rennes, CNRS, IRISA, Rennes, France
katharina.boudgoust@irsia.fr

Abstract. We prove that the Module Learning With Errors (M-LWE)
problem with binary secrets and rank d is at least as hard as the stan-
dard version of M-LWE with uniform secret and rank k, where the rank
increases from k to d ≥ (k +1) log2 q +ω(log2 n), and the Gaussian noise
from α to β = α · Θ(n2

√
d), where n is the ring degree and q the modu-

lus. Our work improves on the recent work by Boudgoust et al. in 2020
by a factor of

√
md in the Gaussian noise, where m is the number of

given M-LWE samples, when q fulfills some number-theoretic require-
ments. We use a different approach than Boudgoust et al. to achieve this
hardness result by adapting the previous work from Brakerski et al. in
2013 for the Learning With Errors problem to the module setting. The
proof applies to cyclotomic fields, but most results hold for a larger class
of number fields, and may be of independent interest.

Keywords: Lattice-based cryptography · Module learning with
errors · Binary secret

1 Introduction

Lattice-based cryptography has become more and more popular over the past
two decades as lattices offer a variety of presumed hard problems as security foun-
dations for public-key cryptographic primitives. Lattices, which are discrete sub-
groups of the Euclidean space, provide several computational problems that are
conjectured to be hard to solve with respect to both classical and quantum com-
puters. One central problem is the Shortest Vector Problem (SVP), which asks to
find a shortest non-zero vector from the given lattice. SVP also appears in a deci-
sional variant (GapSVP), and its approximate counterpart (GapSVPγ). The lat-
ter asks to decide if the norm of such a vector is less than a threshold r or greater
than γr for a factor γ ≥ 1. The security of most lattice-based primitives are how-
ever based on average-case problems, such as the Learning With Errors (LWE)
problem introduced by Regev [Reg05,Reg09]. This problem emerges in two
versions: its search variant asks to find the secret s ∈ Z

n
q given samples of

the form (a, q−1〈a , s〉 + e), where a is uniform over Z
n
q and e a small error

over T = R/Z. The decisional variant asks to distinguish between such samples
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 503–526, 2021.
https://doi.org/10.1007/978-3-030-75539-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_21

504 K. Boudgoust et al.

for a uniform s ∈ Z
n
q , and uniformly random samples in Z

n
q ×T. We use LWE to

denote the latter. The error is usually sampled from a Gaussian distribution Dα

of parameter α > 0. The appeal of the LWE problem comes from its ties with
well-known lattice problems like GapSVPγ . It enjoys both quantum [Reg05] and
classical [Pei09,BLP+13] worst-case to average-case reductions from GapSVPγ ,
making it a firm candidate for cryptographic constructions. The LWE problem
opened the way to a wide variety of simple to advanced cryptographic primitives
ranging from public-key encryption [Reg05,GPV08,MP12], fully-homomorphic
encryption [BGV12,BV14,DM15], recently to non-interactive zero-knowledge
proofs [PS19], and many others.

Although LWE provides provably secure cryptosystems, all these schemes
lack efficiency which motivates the research around structured variants. These
variants gain in efficiency by considering the ring of integers of a number field
(R-LWE) [LPR10,RSW18], a ring of polynomials (P-LWE) [SSTX09] or a mod-
ule over a number field (M-LWE) [BGV12,LS15]. In this work, we focus on the
latter as it offers a nice security-efficiency trade-off by bridging LWE and R-LWE.
Let K be a number field of degree n and R its ring of integers. We use d to
denote the module rank and q for the modulus. We also define the quotient
ring Rq = R/qR, the real tensor field KR = K⊗QR and the torus TR∨ = KR/R∨,
where R∨ is the dual ideal of R. The secret is now chosen in (R∨

q)d, and the error
from a distribution ψ over KR. The Search-M-LWE problem asks to recover the
secret s ∈ (R∨

q)d from arbitrarily many samples (a, q−1〈a,s〉 + e mod R∨), for a
uniformly random over Rd

q and e sampled from ψ. In this work, we only con-
sider the decisional variant denoted by M-LWE, where one has to distinguish
such samples for a uniformly random secret s ∈ (R∨

q)d, from uniformly ran-
dom samples in Rd

q × TR∨ . It also benefits from a worst-case to average-case
reduction, first shown by Langlois and Stehlé [LS15] through a quantum reduc-
tion, and recently by Boudgoust et al. [BJRW20] through a classical reduction
for a module rank d ≥ 2n, where n is the ring degree. The underlying lattice
problems are though restricted to module lattices, which correspond to finitely
generated R-modules, where R is the ring of integers of a number field.

In practice, the LWE problem is often used with a small secret, i.e., Gaussian
(Hermite-Normal-Form-LWE) or even binary (bin-LWE). The latter corresponds
to choosing the secret s in {0, 1}n, and it is particularly interesting as it sim-
plifies computations and thus increases efficiency. Modulus-rank switching tech-
niques [BLP+13,AD17,WW19] rely on using small secrets as it keeps the noise
blowup to a minimum. The binary secret variant also happens to be essential for
some FHE schemes as in [DM15]. First studied by Goldwasser et al. [GKPV10],
it is later improved by Brakerski et al. [BLP+13] and Micciancio [Mic18] using
more technical proofs. Recent work by Brakerski and Döttling [BD20] extends
the hardness to more general secret distributions. The question of whether these
hardness results for bin-LWE carry over to the module setting was left open.
As part of the proof of the classical hardness of M-LWE, a first reduction was
proposed from M-LWE to bin-M-LWE using the Rényi divergence by Boudgoust
et al. [BJRW20]. The reduction increases the module rank from k to d by roughly

On the Hardness of Module-LWE with Binary Secret 505

a log2 q factor, which allows to preserve the complexity of an exhaustive search,
while increasing the noise by a factor n2d

√
m, where m is the number of sam-

ples, n the ring degree and d the final module rank. Another very recent paper
by Lin et al. [LWW20] uses the noise lossiness argument from [BD20] to prove
the hardness of M-LWE for general entropic distributions.

Our Contributions. In this paper, we give an alternative approach to prove
the hardness of M-LWE with binary secrets over cyclotomic fields. The result is
summarized in an informal way in the following. For a more formal statement,
we refer to Theorem 2.

Theorem 1 (Informal). For a cyclotomic field of degree n, the bin-M-LWE
problem with rank d and Gaussian parameter less than β is at least as hard
as M-LWE with rank k and Gaussian parameter α, if d ≥ (k+1) log2 q+ω(log2 n)
and β/α = Θ(n2

√
d), where q is a modulus such that the cyclotomic polynomial

has a specific splitting behavior in Zq[x].

Note that the increase in the noise does not depend on the number of pro-
vided bin-M-LWE samples, in contrast to [BJRW20]. In the hope of achieving
better parameters than [BJRW20], which is inspired by the proof of [GKPV10],
we follow the proof idea of Brakerski et al. [BLP+13] by introducing the
two intermediate problems first-is-errorless M-LWE and ext-M-LWE. We first
reduce M-LWE to the first-is-errorless M-LWE variant, where the first sample is
not perturbed by an error. We then reduce the latter to ext-M-LWE, which can
be seen as M-LWE with an extra information on the error vector e given by 〈e,z〉
for a uniformly chosen z in the set of binary ring elements set Z = (R∨

2)d. In the
work of Alperin-Sheriff and Apon [AA16] for their reduction from M-LWE to
the deterministic variant Module Learning With Rounding, the authors intro-
duce a variant of ext-M-LWE that gives Tr(〈e,z〉) to the attacker instead. This
variant is not suited for our reduction due to our lossy argument in Lemma17.
The field trace does not provide enough information to reconstruct NT z from
the hint, where N is our Gaussian matrix. We discuss further the differences
in Sects. 3.2 and 3.3. We then use a lossy argument, relying on the newly
derived ext-M-LWE hardness assumption and a ring version of the leftover hash
lemma, to reduce ext-M-LWE to bin-M-LWE. An overview of the full reduction
is provided in Fig. 1.

The main challenge is the use of matrices composed of ring elements. The
proof in [BLP+13, Lemma 4.7] requires the construction of unimodular matri-
ces which is not straightforward to adapt in the module setting because of
invertibility issues. The construction in Lemma 15 relies on units of the quo-
tient ring R/qR, which are much harder to describe than the units of Z/qZ to
say the least. This is the reason why we need to control the splitting structure of
the cyclotomic polynomial modulo q. Lemma 2 [LS18, Theorem 1.1] solves this
issue but requires q to satisfy certain number-theoretic properties and to be
sufficiently large so that all the non-zero binary ring elements are units of Rq.
The second complication comes from using both the coefficient embedding and

506 K. Boudgoust et al.

Fig. 1. Summary of the proof of Theorem 2, where B = maxx∈R2‖σ(x)‖∞ and σ is
the canonical embedding. In cyclotomic fields, we have B ≤ n. Note that Lemma 17
uses d samples from ext-M-LWE, where d is the module rank in bin-M-LWE. The
assumptions on q concern the splitting behavior of the cyclotomic polynomial in Zq[x],
and are discussed in Sect. 3.3.

the canonical embedding. Even though some manipulations on Gaussian distri-
butions require the use of the canonical embedding, we choose the secret to be
binary in the coefficient embedding rather than the canonical embedding. As
discussed in Sect. 3.1 for power-of-two cyclotomics, using the canonical embed-
ding for binary secrets requires the rank d to be larger by a factor n than when
using the coefficient embedding.

In the whole reduction, the ring degree n, number of samples m and mod-
ulus q are preserved, where m needs to be larger than d and q needs to be
a prime satisfying certain number-theoretic properties. With the help of the
modulus-switching technique of Langlois and Stehlé [LS15, Theorem 4.8], we
can then relax the restriction on the modulus q to be any polynomially large

On the Hardness of Module-LWE with Binary Secret 507

modulus, at the expense of a loss in the Gaussian noise. The ranks must sat-
isfy d ≥ (k + 1) log2 q + ω(log2 n), in the same manner as in [BJRW20]. How-
ever, our noise growth is smaller as our Gaussian parameter only increases by
a factor n

√
2d

√
4n2 + 1 = Θ(n2

√
d) for cyclotomics. Our reduction removes

the dependency in m in the noise ratio n2d
√

m present in [BJRW20], which is
more advantageous as we usually take m = O(n log2 n) samples, and also gains
an extra factor

√
d. As we directly show the hardness of decision bin-M-LWE

one does not need the extra search-to-decision step in [BJRW20] which over-
all improves their classical hardness proof. Our result implies the hardness
of M-LWE with a small (with respect to coefficients) secret and a moderate
rank (e.g., ω(log2 n)), which holds even with arbitrarily many samples. For a
flexible choice of parameters (allowing efficiency optimizations), NIST candi-
dates [BDK+18,DKL+18] considered M-LWE variants with a small secret and
also a small rank, while restricting the number of samples to be small (e.g., linear
in n) for ruling out the BKW type of attacks [KF15]. It is difficult to compare
our result to the work by Lin et al. [LWW20] as their reduction does not use the
coefficient embedding for the entropic secret distribution. Additionally, when
bridging to LWE, the noise ratio is improved to

√
10d as our construction in

Lemma 15 matches the one from [BLP+13, Claim 4.6]. Our work thus matches
the results from Brakerski et al. [BLP+13] when we take the ring R to be of
degree 1.

The entire reduction is so far limited to cyclotomic fields due to Lemmas 14
and 15. However, the other results are proven for a larger class of number fields,
namely for the number fields K = Q(ζ) such that their ring of integers is R =
Z[ζ], where ζ is an algebraic number. It ensures that R and its dual R∨ are linked
by the equality R∨ = (f ′(ζ))−1R, where f is the minimal polynomial of ζ, and
it also ensures the unique factorization of ideals. This class includes cyclotomic
fields, quadratic fields K = Q(

√
d) for square-free d with d �= 1 mod 4, and

number fields with f of square-free discriminant. These parts of the reduction can
be extended to other number fields by using the quantity B = maxx∈R2‖σ(x)‖∞
introduced in Sect. 2.1, which we use throughout Sects. 3.3 and 3.4. The infinity
norm here is simply the infinity norm over C

n, and σ the canonical embedding.
We discuss how to upper-bound B in Lemma 1, but in the case of cyclotomic
fields we simply have B ≤ n. Extending Lemmas 14 and 15 to this broader class
of number fields may however require additional constraints.

Open Problems. In this paper, most of our results rely on the class of number
fields K = Q(ζ) where the ring of integers is R = Z[ζ]. Although this class
includes all cyclotomic fields, we leave as an open problem to generalize these
results to a larger class of number fields.

The leftover hash lemma used in the reduction of Lemma 17 requires the mod-
ule rank d to be super-logarithmic in n. The proof of hardness of M-LWE with
binary secret thus remains open for a lower module rank. In practice, a constant
rank is used for increased efficiency, like the CRYSTALS-Kyber [BDK+18] candi-
date at the NIST standardization competition [NIS]. The interest in a lower mod-

508 K. Boudgoust et al.

ule rank also stems from the extreme case d = 1 which corresponds to R-LWE.
The hardness of bin-R-LWE remains an open problem.

The construction in Lemma 15 seems optimized in terms of its impact on the
Gaussian parameter. However, its invertibility restricts the underlying number
field, as well as the structure of the chosen modulus q. A better understanding of
the unit group of Rq for general cyclotomic fields and other number fields might
help relax the restrictions on the modulus q for the reduction to go through.

2 Preliminaries

Throughout the paper, q denotes a positive integer, Zq denotes the ring of inte-
gers modulo q. In a ring R, we write (p) for the principal ideal generated by p ∈ R,
and Rp for the quotient ring R/(p) = R/pR. For simplicity, we denote by [n]
the set {1, . . . , n} for any positive integer n. Vectors and matrices are written in
bold and their transpose (resp. Hermitian) is denoted by superscript T (resp. †).
We denote the Euclidean norm and infinity norm of C

n by ‖·‖2 and ‖·‖∞ respec-
tively. We also define the spectral norm of any matrix A ∈ C

n×m by ‖A‖2 =
maxx∈Cm\{0}‖Ax‖2/‖x‖2, and the max norm as ‖A‖max = maxi∈[n],j∈[m]|ai,j |.
The statistical distance between two discrete distribution P and Q over a count-
able set S is defined by Δ(P,Q) = 1

2

∑
x∈S |P (x) − Q(x)|, with integration for

continuous distributions. The uniform distribution over a finite set S is denoted
by U(S), and we use x ←↩ P to denote sampling x according to P .

2.1 Algebraic Number Theory Background

A complex number ζ is called an algebraic number if it is root of a polynomial
over Q. The monic polynomial f of minimal degree among such polynomials
is called the minimal polynomial or defining polynomial of ζ, and is unique. If
the minimal polynomial of ζ only has integer coefficients, then ζ is called an
algebraic integer. A number field K = Q(ζ) is the finite field extension of the
rationals by adjoining the algebraic number ζ. Its degree is defined as the degree
of the minimal polynomial of ζ. We define the tensor field KR = K ⊗Q R which
can be seen as the finite field extension of the reals by adjoining ζ. The set of
all algebraic integers in K is a ring called the ring of integers, and we denote
it by R. We always have Z[ζ] ⊆ R, but only special classes of number fields
verify Z[ζ] = R. Among them, there are cyclotomic fields, which correspond to
number fields where ζ is a primitive ν-th root of unity, for an integer ν. The ν-th
cyclotomic number field has degree n = ϕ(ν), where ϕ is Euler’s totient function.
In this case, the minimal polynomial is f = Φν =

∏
j∈[n](x − αj), where the αj

are the distinct primitive ν-th roots of unity. For the power-of-two cyclotomic
field where ν = 2�+1, it yields n = ϕ(ν) = 2�, and Φν = xn + 1.

The Space H. We use t1 to denote the number of real roots of the minimal
polynomial of the underlying number field, and t2 the number of pairs of complex
conjugate roots, which yields n = t1 +2t2. The space H ⊆ C

n is defined by H =

On the Hardness of Module-LWE with Binary Secret 509

{
x ∈ R

t1 × C
2t2 : ∀j ∈ [t2], xt1+t2+j = xt1+j

}
. We can verify that H is a R-vector

space of dimension n with the columns of H as orthonormal basis, where

H =

⎡

⎢
⎣

It1 0 0
0 1√

2
It2

i√
2
It2

0 1√
2
It2

−i√
2
It2

⎤

⎥
⎦ , with Ik the identity matrix of size k.

Coefficient Embedding. A number field K = Q(ζ) of degree n can be seen
as a Q-vector space of dimension n with basis {1, ζ, . . . , ζn−1}. Hence, every
element x ∈ K can be written as x =

∑n−1
j=0 xjζ

j , with xj ∈ Q. The coefficient
embedding is the isomorphism τ between K and Q

n that maps every x ∈ K
to its coefficient vector τ(x) = [x0, . . . , xn−1]T . We also extend the coefficient
embedding to KR, which yields an isomorphism between KR and R

n.

Canonical Embedding. All the following definitions extend to KR in the obvi-
ous way. A number field K = Q(ζ) with defining polynomial f of degree n
has exactly n field homomorphisms σi : K → C that map ζ to each of the
distinct roots of the defining polynomial. We denote by σ1, . . . , σt1 the real
embeddings (i.e. the embeddings that map ζ to one of the real roots of f)
and σt1+1, . . . , σt1+2t2 the complex ones. Since f is in Q[x], the fundamental
theorem of algebra states that the complex roots come as conjugate pairs, and
therefore σt1+t2+j = σt1+j for all j ∈ [t2]. The canonical embedding σ is the field
homomorphism from K to C

n defined as σ(x) =
[
σ1(x), . . . , σn(x)

]T , where the
addition and multiplication of vectors is performed component-wise. The range
of σ is a subset of H, and therefore we can map any x ∈ K to R

n via the
map σH defined by σH(x) = H† · σ(x) for all x ∈ K. We also mention that
the extension of σ to KR is an isomorphism from KR to H. Multiplication is no
longer component-wise with σH but it can be described by a left multiplication,
namely σH(x · y) = H† · diag(σ(x)) · HσH(y), for any x, y ∈ K. Note that for
any x ∈ K, H† · diag(σ(x)) · H ∈ R

n×n, and has the |σj(x)| as singular values.
We define the trace Tr : K → Q of K by Tr(x) =

∑
j∈[n] σj(x) for any x ∈ K.

We use it to define the dual of R as R∨ = {x ∈ K : Tr(xR) ⊆ Z}. For the class
of number fields for which we have R = Z[ζ], we have R∨ = λ−1R where λ =
f ′(ζ) ∈ C. In particular, for power-of-two cyclotomics λ = n. We also define the
norm N : K → Q of K by N(x) =

∏
j∈[n] σj(x) for any x ∈ K.

Distortion Between Embeddings. Both embeddings play important roles
in this paper, and we recall how to go from one to the other. By applying σ
to an element x =

∑n−1
i=0 xiζ

i ∈ K, we see that σ(x) and τ(x) are linked
through a linear operator which is the Vandermonde matrix of the roots of
the defining polynomial f . For j ∈ [n], we let αj = σj(ζ) be the j-th root of f .
Then, we obtain that σ(x) = Vτ(x), where V =

[
αj−1

i

]

i,j∈[n]
. This transforma-

tion does not necessarily carry the structure from one embedding to the other,
e.g., a binary vector in the coefficient embedding need not to be binary in the
canonical embedding. Changing the embedding also impacts the norm, which
is captured by the inequalities ‖V−1‖−1

2 ‖τ(x)‖2 ≤ ‖σ(x)‖2 ≤ ‖V‖2‖τ(x)‖2.

510 K. Boudgoust et al.

Hence, ‖V‖2 and ‖V−1‖2 help approximating the distortion between both
embeddings. Roşca et al. [RSW18] give additional insight on this distortion for
specific number fields. Throughout this paper, we are interested in the parameter
defined by B = maxx∈R2‖σ(x)‖∞ that is inherent to the ring. This parameter
intervenes in the proof of Lemmas 15 and 17, where we need an upper-bound
on ‖σ(x)‖∞, for x ∈ R2, that is independent of x. Recall that if x is in R2, then
its coefficient vector τ(x) is in {0, 1}n. Here, we provide an upper-bound on B,
that is further simplified for cyclotomic number fields. The proof can be found
in the full version [BJRW21].

Lemma 1. Let K be a number field of degree n, and R its ring of integers. Let V
be the transformation between both embeddings. Then, B = maxx∈R2‖σ(x)‖∞ ≤
n‖V‖max. In particular, for cyclotomic fields, it yields B ≤ n.

Ideals and Units. An ideal I is principal if it is generated by a single element u,
meaning I = uR = (u). We extend the field norm and define the norm of an
ideal N(I) as the index of I as an additive subgroup of R, which corresponds
to N(I) = |R/I|. The norm is still multiplicative and verifies N((a)) = |N(a)| for
any a ∈ K. We also define the dual of an ideal I by I∨ = {x ∈ K : Tr(xI) ⊆ Z}.
In the construction of Lemma 15, we need a condition for binary elements of R2 =
R/(2) to be invertible in Rq for a specific q. To do so, we rely on the small norm
condition proven in [LS18, Theorem 1.1].

Lemma 2 (Theorem 1.1 [LS18]). Let K be the ν-th cyclotomic field, with ν =∏
i pei

i be its prime-power factorization, with ei ≥ 1. We denote R the ring
of integers of K. Also, let μ =

∏
i pfi

i for any fi ∈ [ei]. Let q be a prime
such that q = 1 mod μ, and ordν(q) = ν/μ, where ordν is the multiplicative
order modulo ν. Then, any element y of Rq = R/qR satisfying 0 < ‖τ(y)‖∞ <
q1/ϕ(μ)/s1(μ) is a unit in Rq, where s1(μ) denotes the largest singular value of
the Vandermonde matrix of the μ-th cyclotomic field.

In the case where ν is a prime power, then so is μ and then [LPR13] states
that s1(μ) =

√
μ if μ is odd, and s1(μ) =

√
μ/2 otherwise. For more general

cases, we refer to the discussions from Lyubashevsky and Seiler [LS18, Conj.
2.6]. We also refer to [LS18, Theorem 2.5] that establishes the density of such
primes q for specific values of ν and μ.

We also recall two results from [WW19] that we need in the proof of
Lemma 14 to construct a matrix of U ∈ Rk×k

q that is invertible in Rq, i.e., such
that there exists a matrix U−1 ∈ Rk×k

q that verifies UU−1 = Ik mod qR =
U−1U. This requires the prime q to be unramified in the cyclotomic field,
which comes down to it not dividing the discriminant ΔK . In cyclotomics, this
is equivalent to q not dividing ν. The condition from Lemma2 subsumes this
one as q = 1 mod μ entails that q is not a prime factor of ν. We say that
the vectors a1, . . . ,ai ∈ Rk

q are Rq-linearly independent if for all x1, . . . , xi ∈
Rq,

∑
j∈[i] xjaj = 0 mod qR implies x1 = . . . = xi = 0.

On the Hardness of Module-LWE with Binary Secret 511

Lemma 3 (Lemma9 [WW19]). Let K be the cyclotomic field of degree n =
ϕ(ν), and R its ring of integers. Let q, k be positive integers such that q is a prime
that verifies q ≥ n and q � ν. Then for any i ∈ {0, . . . , k − 1} and Rq-linearly
independent vectors a1, . . . ,ai ∈ Rk

q , the probability of sampling a vector b ←↩

U(Rk
q) such that a1, . . . ,ai,b are Rq-linearly independent is at least 1 − n

q .

Lemma 4 (Lemma18 [WW19]). Let K be the cyclotomic field of degree n =
ϕ(ν), and R its ring of integers. Let q, k be positive integers such that q is a
prime that verifies q ≥ n and q � ν. Let A = [a1, . . . ,ak] ∈ Rk×k

q . Then, A is
invertible modulo qR if and only if a1, . . . ,ak are Rq-linearly independent.

2.2 Lattices

A lattice Λ is the set of integer combinations of a basis B = [bi]i∈[r] ∈ R
n×r,

i.e. Λ =
∑

i∈[r] Z · bi. In this work, we only consider full-rank lattices, namely
lattices for which r = n. We define the dual lattice of a lattice Λ by Λ∗ = {x ∈
Span(Λ) : ∀y ∈ Λ, 〈x,y〉 ∈ Z}. We denote by λ∞

1 (Λ) the first minimum of the lat-
tice Λ with respect to the infinity norm, i.e., the infinity norm of a shortest non-
zero vector of Λ. Any ideal I embeds into a lattice σ(I) in H, and a lattice σH(I)
in R

n, which we call ideal lattices. For an R-module M ⊆ Kd, (σ, . . . , σ)(M) is a
lattice in Hd and (σH , . . . , σH)(M) is a lattice in R

nd, both of which are called
module lattices. The positive integer d is the module rank. To ease readability,
we simply use I (resp. M) to denote the ideal lattice (resp. the module lattice).
Note that the ideal lattice σ(I∨) corresponding to the dual ideal I is the same
as the dual lattice up to complex conjugation, i.e., σ(I∨) = σ(I)∗. We also note
that if Id denotes I × . . . × I, then λ∞

1 (Id) = λ∞
1 (I). For a vector x ∈ Kd, we

define ‖x‖∞ = maxk∈[n],i∈[d]|σk(xi)|, and ‖x‖2,∞ = maxk∈[n]

√∑
i∈[d]|σk(xi)|2.

2.3 Probabilities

Gaussian Measures. For a positive definite matrix Σ ∈ R
n, a vector c ∈ R

n,
we define the Gaussian function by ρc,

√
Σ(x) = exp(−π(x − c)T Σ−1(x − c))

for all x ∈ R
n. We extend this definition to the degenerate case, i.e., positive

semi-definite, by considering the generalized Moore-Penrose inverse. For con-
venience, we use the same notation as the standard inverse. We then define
the continuous Gaussian probability distribution by its density Dc,

√
Σ(x) =

(det(Σ))−1/2ρc,
√

Σ(x). By abuse of notation, we call Σ the covariance matrix,
even if in theory the covariance matrix of Dc,

√
Σ is Σ/(2π). If Σ is diagonal

with diagonal vector r2 ∈ (R+)n, we simply write Dc,r, and if c = 0, we omit
it. When Σ = α2In, we simplify further to Dc,α. We then define the discrete
Gaussian distribution by conditioning x to be in a lattice Λ, i.e. DΛ,c,

√
Σ(x) =

Dc,
√

Σ(x)/Dc,
√

Σ(Λ) for all x ∈ Λ, and where Dc,
√

Σ(Λ) =
∑

y∈Λ Dc,
√

Σ(y).
The smoothing parameter of a lattice Λ denoted by ηε(Λ) for some ε > 0,

introduced in [MR07], is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε. It

512 K. Boudgoust et al.

represents the smallest Gaussian parameter s > 0 such that the discrete Gaus-
sian DΛ,c,s behaves like a continuous Gaussian distribution. We recall the fol-
lowing bound on the smoothing parameter that we need throughout this paper.

Lemma 5 (Lemma 3.5 [Pei08]). For an n-dimensional lattice Λ and ε > 0,
we have ηε(Λ) ≤ √

ln(2n(1 + 1/ε))/π/λ∞
1 (Λ∗).

Lemma 6 (Lemma 4.1 [MR07]). Let Λ be an n-dimensional lattice, ε > 0,
and α > ηε(Λ). Then the distribution of the coset e + Λ, where e ←↩ Dα, is
within statistical distance ε/2 of the uniform distribution over the cosets of Λ.

We now extend a result on the sum of a continuous Gaussian and a discrete one
to more general Gaussian distributions. In particular, the lemma works for two
elliptical Gaussians, which we use in the proof of Lemma 11. The proof can be
found in the full version [BJRW21].

Lemma 7 (Adapted from Lemma 2.8 [LS15] & Claim 3.9 [Reg09]). Let Λ
be an n-dimensional lattice, a ∈ R

n, R,S two positive semi-definite matrices
of R

n×n, and T = R + S. We also define U =
(
R−1 + S−1

)−1, and we assume
that ρ√

U−1(Λ∗ \ {0}) ≤ ε for some ε ∈ (0, 1/2). Consider the distribution Y
on R

n obtained by adding a discrete sample from DΛ+a,
√

R and a continuous
sample from D√

S. Then we have Δ(Y,D√
T) ≤ 2ε.

Lemma 8 (Lemma 2.10 [BLP+13] & Theorem 3.1 [Pei10]). Let Λ be an n-
dimensional lattice, ε ∈ (0, 1/2], and β, r > 0 such that r ≥ ηε(Λ). Then the
distribution of x+y, obtained by first sampling x from Dβ, and then y sampled
from DΛ,x,r, is within statistical distance 8ε of D

Λ,
√

β2+r2 .

Module Gaussians. As introduced in [LPR10] for Gaussians over KR, we define
general Gaussian distributions over Kd

R
through their embedding to R

nd. It is
obtained by sampling y(H) ∈ R

nd according to D√
Σ for some positive semi-

definite matrix Σ in R
nd×nd and then mapping it back to Kd

R
by y = σ−1

H (y(H)).
To ease readability, we denote the described distribution of y ∈ Kd

R
by D√

Σ. In
the proof of Lemma 16, we also need the distribution of y = Ue for an arbitrary
matrix U and a Gaussian vector e ∈ Kd

R
with independent coefficients. To do

so, we need the ring homomorphism θ : Kk×�
R

→ C
nk×n� defined by

θ(A) =

⎡

⎣
D1,1 − D1,�

| � |
Dk,1 − Dk,�

⎤

⎦ , with Di,j = diag(σ(ai,j)) ∈ C
n×n.

Lemma 9. Let K be a number field of degree n, and d a positive integer. Let S ∈
R

nd×nd be a positive semi-definite matrix, and U ∈ Kd×d
R

. We denote Σ =
(
H

†θ(U)H
)

S
(
H

†θ(U)H
)† ∈ R

nd×nd, where H = diag(H, . . . ,H) ∈ C
nd×nd,

with H the matrix form of the basis of the space H previously defined. Then,
the distribution of y = Ue, where e ∈ Kd

R
is distributed according to D√

S
, is

exactly D√
Σ.

On the Hardness of Module-LWE with Binary Secret 513

Proof. Let e = [ei]i∈d ∈ Kd
R

be a Gaussian vector distributed according to D√
S
.

For all i ∈ [d], we have yi =
∑

j∈[d] ui,jej and thus σ(yi) =
∑

j∈[d] σ(ui,j)�σ(ej),
where � denotes the Hadamard product. The Hadamard product a � b of two
vectors a and b can also be expressed as the matrix-vector product diag(a) · b.
It results in

σ(y) =

⎡

⎣
σ(y1)

|
σ(yd)

⎤

⎦ = θ(U)σ(e),

where θ(U) is the block matrix [diag(σ(ui,j))]i,j∈[d] ∈ C
nd×nd. As we have seen

before, we can decompose σ on the basis of H and get σ(yi) = Hy(H)
i (respec-

tively σ(ei) = He(H)
i) for all i ∈ [d]. By using the block matrix product, we end

up with

σ(y) =

⎡

⎣
H

�

H

⎤

⎦

⎡

⎢
⎣

y(H)
1

|
y(H)

d

⎤

⎥
⎦ = Hy(H).

Thus Hy(H) = θ(U)He(H), which leads to y(H) = H
†θ(U)He(H). Now notice

that the blocks of H
†θ(U)H are the H†diag(σ(ui,j))H which correspond to the

matrix form of the multiplication by ui,j in the basis of the space H and thus is
in R

n×n. Hence H
†θ(U)H ∈ R

nd×nd.
By definition, e(H) is distributed according to D√

S
. Thus y(H) is also distributed

along a 0-centered Gaussian over R
nd, but with covariance matrix

Σ =
(
H

†θ(U)H
)

S
(
H

†θ(U)H
)†

.

��
In particular, when S = diag(r21, . . . , r

2
1, . . . , r

2
d, . . . , r2d) for some positive

reals r1, . . . , rd, then
√

S commutes with H and the covariance simplifies to Σ =
H

†
ŨŨ

†
H, with Ũ = [diag(σ(rjui,j))]i,j∈[d]. We also need two other lemmata

related to the inner product of Kd
R

(which results in an element of KR) between
a Gaussian vector and an arbitrary one. In particular, we use Lemma11 in the
proof of Lemma 17 in order to decompose a Gaussian noise into an inner product.

Lemma 10 (Lem. 2.13 [LS15]). Let r ∈ (R+)n ∩ H, z ∈ Kd fixed and e ∈ Kd
R

sampled from D√
Σ, where

√
Σ = [δi,jdiag(r)]i,j∈[d] ∈ R

nd×nd. Then 〈z ,e〉 =
∑

i∈[d] ziei is distributed according to Dr′ with r′
j = rj

√∑
i∈[d]|σj(zi)|2.

Lemma 11 (Adapted from Corollary 3.10 [Reg09]). Let M ⊂ Kd be an R-
module (yielding a module lattice), let u, z ∈ Kd be fixed, and let β, γ > 0.
Assume that (1/β2 + ‖z‖22,∞/γ2)−1/2 ≥ ηε(M) for some ε ∈ (0, 1/2). Then the
distribution of 〈z,v〉+e where v is sampled from DM+u,β and e ∈ KR is sampled
from Dγ , is within statistical distance at most 2ε from the elliptical Gaussian Dr

over KR, where rj =
√

β2
∑

i∈[d]|σj(zi)|2 + γ2 for j ∈ [n].

514 K. Boudgoust et al.

Proof. Consider h ∈ (KR)d distributed according to Dr′,...,r′ , where r′ is given
by r′

j = γ/
√∑

i∈[d]|σj(zi)|2 for j ∈ [n]. Then by Lemma 10, 〈z,h〉 is distributed

as Dγ and therefore Δ(〈z,v〉+ e,Dr) = Δ(〈z,v+h〉,Dr). Now, we denote t such

that tj =
√

β2 + (r′
j)2 for j ∈ [n]. Note that by assumption

min
j∈[n]

βr′
j/tj = (1/β2 + max

j∈[n]

∑

i∈[d]

|σj(zi)|2/γ2)−1/2

= (1/β2 + ‖z‖22,∞/γ2)−1/2 ≥ ηε(M).

Lemma 7 therefore applies and yields that v + h is distributed as Dt,...,t, within
statistical distance at most 2ε. By applying once more Lemma 10 and notic-
ing that the statistical distance does not increase when applying a function
(here the scalar product with z), then we get that 〈z ,v + h〉 is distributed
as Dr within statistical distance at most 2ε, where rj = tj

√∑
i∈[d]|σj(zi)|2 =

√
β2

∑
i∈[d]|σj(zi)|2 + γ2 for j ∈ [n]. ��

2.4 Ring Leftover Hash Lemma

The proof of Lemma 17 also requires a leftover hash lemma over rings, where the
vector contains binary polynomials. We use the following adaption of [Mic07]
proven by Boudgoust et al. [BJRW20].

Lemma 12 (Lemma 7 [BJRW20]). Let q be prime and n, k and d be positive
integers. Further, let f be the defining polynomial of degree n of the number
field K ∼= Q[x]/(f) such that its ring of integers is given by R = Z[x]/(f). We

set Rq = R/qR and R2 = R/2R. Then, Δ ((C,Cz), (C, s)) ≤ 1
2

√(
1 + qk

2d

)n

− 1,

where C ←↩ U((Rq)k×d), z ←↩ U((R2)d) and s ←↩ U((Rq)k).

2.5 Module Learning with Errors

The LWE problem over modules was first defined by Brakerski et al. [BGV12]
and studied at length by Langlois and Stehlé [LS15]. We consider a number
field K of degree n, R its ring of integers, and let d denote the module rank.
Let ψ be a distribution on KR and s ∈ (R∨

q)d be a vector. We let A
(Rd)
s,ψ denote

the distribution on (Rq)d × TR∨ obtained by choosing a vector a ←↩ U((Rq)d),
an element e ← ψ and returning (a, q−1〈a,s〉 + e mod R∨).

Definition 1. Let q, d be positive integers with q ≥ 2. Let Υ be a distribution
on a family of distributions on KR. The problem M-LWEn,d,q,Υ is as follows:
Sample s ←↩ U((R∨

q)d) and ψ ←↩ Υ . The goal is to distinguish between arbitrarily

many independent samples from A
(Rd)
s,ψ and the same number of independent

samples from U((Rq)d × TR∨). If the number of samples m is fixed, we denote
it by M-LWEn,d,m,q,Υ .

On the Hardness of Module-LWE with Binary Secret 515

When the error distribution is a Gaussian distribution of parameter α > 0, we
write M-LWEn,d,m,q,α, and if the Gaussian is elliptical bounded by β, i.e., Dr

for r ∈ (R+)n such that ‖r‖∞ ≤ β, we write M-LWEn,d,m,q,≤β . The same goes
for other variants of M-LWE. For the M-LWE problem and its variants that
we introduce later, we denote by Adv[A] the advantage of an adversary A in
distinguishing between the two distributions of the problem.

Binary Secret. Another possibility is to change the distribution of the secret.
We focus on the case where the secret is chosen to be binary in the coeffi-
cient embedding. We thus define bin-M-LWEn,d,m,q,Υ to be the M-LWE prob-
lem where the secret s is sampled uniformly in (R∨

2)d. We justify this choice of
embedding in Sect. 3.1.

3 Hardness of M-LWE with Binary Secret

In this section, we prove our main contribution which is a reduction from M-LWE
with rank k to bin-M-LWE with rank d satisfying d ≥ (k + 1) log2 q + ω(log2 n),
for cyclotomic fields. The reduction preserves the modulus q, that needs to be
prime satisfying number-theoretic restrictions, the ring degree n and the number
of samples m, but the noise is increased by a factor of n

√
2d

√
4n2 + 1. Our proof

follows the same idea as in [BLP+13] that we adapt over modules. The noise ratio
is polynomial in n, but smaller than n2d

√
m in [BJRW20]. Not only does it no

longer depend on the number of samples m, which becomes more advantageous
as the typical choice for m is m = O(n log2 n), but we also gain a factor of

√
d. For

the reduction, m also needs to be larger than the target module rank d, and at
most polynomial in n because of the hybrid argument used for ext-M-LWE with
multiple secrets. The reduction in Theorem2 works for all cyclotomic fields, but
most results apply for all number fields K = Q(ζ) such that the ring of integers
is R = Z[ζ], the bottleneck being the construction in Lemma15.

Theorem 2. Let ν =
∏

i pei
i , K be the cyclotomic field of degree n = ϕ(ν),

and R its ring of integers. Let μ =
∏

i pi and q be a prime number such
that q = 1 mod μ, ordν(q) = ν/μ and q > max(2n, s1(μ)ϕ(μ)), where s1(μ)
denotes the largest singular value of the Vandermonde matrix of the μ-th cyclo-
tomic field. Further, let k, d,m be three positive integers such that d ≥ (k +
1) log2 q + ω(log2 n), and d ≤ m ≤ poly(n). Let α ≥ q−1

√
ln(2nd(1 + 1/ε))/π

and β ≥ α · n
√

2d
√

4n2 + 1. Then there is a reduction from M-LWEn,k,m,q,α

to bin-M-LWEn,d,m,q,≤β, such that if A solves the latter with advantage Adv[A],
then there exists an algorithm B that solves the former with advantage

Adv[B] ≥ 1
3m

(

Adv[A] − 1
2

√(

1 +
qk+1

2d

)n

− 1

)

− 37ε

2
.

The noise ratio β/α contains three main terms. The factor n encapsulates the
norm distortion between the coefficient and the canonical embedding, as well as
the actual length of the binary vectors. The second term

√
2d stems from the

516 K. Boudgoust et al.

masking of z when introduced in the first hybrid in the proof of Lemma17. The
last factor

√
4n2 + 1 solely represents the impact of giving information on the

error in the ext-M-LWE problem.

3.1 Choice of Embedding for Binary Secrets

As mentioned in the introduction, the variant of M-LWE using a binary secret
requires the choice of an embedding in which the secret is binary. As praised
in [LPR10,LPR13], the canonical embedding has nice algebraic and geometric
properties that make it a good choice of embedding. However, in this section, we
justify our choice of the coefficient embedding, by analyzing the set of secrets that
are binary in the canonical embedding in the case of power-of-two cyclotomics.
The conjugation symmetry of the canonical embedding first restricts the choice
of secrets to (σ−1({0, 1}n ∩ H))d, where d denotes the module rank and the
space H is the range of σ. In addition, the tightest worst-case to average-case
reductions for M-LWE require s to be taken from (R∨

q)d. However, σ−1 maps H
to KR but not necessarily to R or to R∨. We thus have to further restrict the set
of secrets to Z = (R∨

q ∩σ−1({0, λ−1}n ∩H))d, where λ is such that R∨ = λ−1R.
In the case of power-of-two cyclotomics, λ = n is real and therefore yields λZ =
(Rq ∩ σ−1({0, 1}n ∩ H))d.

Lagrange Basis. As opposed to R2 which corresponds to binary vectors in the
coefficient embedding, the power basis is not adapted to describe the set λZ.
We thus introduce the Lagrange basis. We denote by αj = σj(ζ) the j-th root of
the defining polynomial f . Recall that we assume that αj is real for j ∈ [t1], and
that we have αt1+j = αt1+t2+j ∈ C for j ∈ [t2]. Applying σj to an element r =
∑n−1

i=0 riζ
i ∈ KR comes down to evaluating the polynomial pr =

∑n−1
i=0 rix

i at αj .
We use this polynomial interpretation to define elements of KR that form a basis
of σ−1({0, 1}n ∩ H).

Lagrange interpolation defines polynomials that map a set of distinct ele-
ments to 0 and 1. Since the αj are distinct as f is irreducible, we can apply a simi-
lar method and define Lk =

∏
j∈[n]\{k}

x−αj

αk−αj
for k ∈ [t1], which is real due to the

conjugation symmetry of the roots. For k ∈ {t1 + 1, . . . , t1 + t2}, we define Lk =
∏

j∈[n]\{k}
x−αj

αk−αj
+

∏
j∈[n]\{k+t2}

x−αj

αk+t2−αj
= 2R

(∏
j∈[n]\{k}

x−αj

αk−αj

)
. Hence the

polynomials lie in R[x] and we have Lk(αj) = δk,j for (k, j) ∈ [t1] × [n],
and Lk(αj) = δk,j + δk+t2,j for (k, j) ∈ {t1 + 1, . . . , t1 + t2} × [n].

Therefore, by defining the Lagrange basis l with the corresponding lk ∼=
Lk(ζ) ∈ KR, we have linear independence and σ−1({0, 1}n ∩ H) =∑

k∈[t1+t2]
{0, 1} · lk, because σ(lk) = ek if k ∈ [t1] and σ(lk) = ek + ek+t2

if k ∈ {t1 + 1, . . . , t1 + t2}. As far as we are aware, this is the first time that the
Lagrange basis is used in the setting of structured lattice-based cryptography.
We now need to determine which of these combinations lie in Rq in order to
properly define the set of secrets.

Power-of-Two Cyclotomics. We now look at the Lagrange basis in the specific
case where n is a power of two.

On the Hardness of Module-LWE with Binary Secret 517

Lemma 13. Let R be the cyclotomic ring of integers of degree n = 2�. Then,
for any integer q ≥ 1, the set Rq ∩ σ−1({0, 1}n ∩ H) contains only 0 and 1.

Proof. Recall that in cyclotomic fields, we have t1 = 0 and t2 = n/2. We know
that the defining polynomial is xn + 1 and therefore we can re-index the roots
as αj = exp(i(2j + 1)π/n), j now ranging from 0 to n − 1. We can therefore
study the complex product. We look at the constant coefficient of Lk, i.e., Ak =
Lk(0) = 2R

(∏
0≤j<n,j
=k

−αj

αk−αj

)
. To ease notation, we write j �= k instead

of j ∈ {0, . . . , n − 1} \ {k} for the product indexes. We first look at the product
for a fixed k ∈ {0, . . . , n/2 − 1}.

∏

j
=k

(αk − αj) = αn−1
k

∏

j
=k

(1 − αj/αk) = −α−1
k

∏

j
=k

(1 − ei2π(j−k)/n)

= −α−1
k

n−1∏

l=1

(1 − ei2πl/n),

using the fact that αn
k +1 = 0 and the circularity of the complex exponential. Yet,

we also have
∏n−1

l=0 (x−ei2πl/n) = xn −1 = (x−1)
∑n−1

l=0 xl. By simplifying both
sides by x−1 and then evaluating at 1, we have

∏n−1
l=1 (1−ei2πl/n) =

∑n−1
l=0 1l = n.

The product of the numerators in the definition of Ak is (−1)n−1αk because we
can pair all of the roots αj with their conjugates, which gives αjαj = |αj |2 =
1, except for αk. Hence, Ak = 2R(−αk/(−n/αk)) because n is even, which
yields Ak = 2

n . Now we take a subset S ⊆ {0, . . . , n/2−1} and we study
∑

k∈S Lk.
Note that the case of S = {0, . . . , n/2−1} corresponds to adding all the Lagrange
basis elements which results in 1, and the case S = ∅ results in 0 by convention.
So we now assume that 0 < |S| < n/2. The constant coefficient of

∑
k∈S Lk

is 2|S|/n ∈ (0, 1) and is therefore not an integer. Hence,
∑

k∈S Lk /∈ Z[x] which
means that the element

∑
k∈S lk is not in R nor Rq for any q ≥ 1.

It proves that the only binary combination of the Lagrange basis that are in R
are 0 and 1, and the same conclusion is valid for Rq for any q ≥ 1. ��
Hence to preserve the complexity of a brute force attack when comparing the
two embeddings, the module rank would have to be increased by a factor n in
the case where we take the canonical embedding to represent binary secrets. In
this case, the (dual of the) secrets are from {0, 1}d and therefore discard most
of the available ring structure as opposed to Rd

2. We remark that this issue
hasn’t been addressed by [LWW20]. It seems that for too narrow bounds on the
entropic secret distribution, the number of available secrets is much smaller in
the canonical embedding compared to the number with regard to the coefficient
embedding.

3.2 First-is-Errorless M-LWE

We follow the same idea as Brakerski et al. [BLP+13] by gradually giving more
information to the adversary while proving that this additional information does

518 K. Boudgoust et al.

not increase the advantage too much. We define the module version of first-
is-errorless LWE, from [BLP+13], where the first equation is given without
error. A similar definition and reduction from M-LWE are given in [AA16]. The
only difference between the two reductions comes from the pre-processing step,
which is simplified in our case due to the further restrictions on q of our overall
reduction.

Definition 2 (First-is-errorless M-LWE). Let K be a number field of
degree n and R its ring of integers. Let q, k be positive integers. We denote
by Rq = R/qR, KR = K ⊗Q R, and TR∨ = KR/R∨ as usual.

Let Υ be a distribution over a family of distributions over KR. The first-is-
errorless variant of the M-LWE problem is to distinguish between the following
cases. On the one hand, the first sample is uniform over (Rq)k × q−1R∨/R∨

and the rest are uniform over (Rq)k × TR∨ . On the other hand, there is some
unknown s uniformly sampled over (R∨

q)k and ψ sampled from Υ such that the

first sample is from A
(Rk)
s,{0} and the rest are distributed as A

(Rk)
s,ψ , where {0} is the

distribution that is deterministically 0.
We denote it by first-is-errorless M-LWEn,k,q,Υ or, when the number of sam-
ples m is fixed, first-is-errorless M-LWEn,k,m,q,Υ .

Lemma 14 (Adapted from Lemma 4.3 [BLP+13]). Let K be the cyclotomic
field of degree n = ϕ(ν), and R its ring of integers. Let q ≥ 2n be a prime integer
such that q � ν, k a positive integer, and Υ a distribution over a family of dis-
tributions over KR. There is a polynomial-time reduction from M-LWEn,k−1,q,Υ

to the variant first-is-errorless M-LWEn,k,q,Υ .

Proof. The reduction first chooses a′ ←↩ U((Rq)k) and then b2, . . . ,bk i.i.d.
from U((Rq)k) such that a′,b2, . . . ,bk are Rq-linearly independent. Each time
we draw a uniformly random column, the probability that the new column is Rq-
linearly independent with the previous ones is at least 1 − n/q for q ≥ n by
Lemma 3. Since we require q ≥ 2n, this probability is at least 1/2. Therefore, we
only need a polynomial number of uniformly sampled columns in Rk

q to construct
a matrix of Rk×k

q invertible modulo qR.
The preprocessing step results in a matrix U =

[
a′, b2, . . . , bk

] ∈ (Rq)k×k

that is invertible modulo qR according to Lemma 4. Then, sample s0 uniformly
in R∨

q . The reduction is as follows. For the first sample, it outputs (a′, q−1·s0 mod
R∨) ∈ (Rq)k × q−1R∨/R∨. The other samples are produced by taking (a, b) ∈
(Rq)k−1×TR∨ from the M-LWE challenger, picking a fresh randomly chosen a′′ ∈
Rq, and outputting (U(a′′|a), b + q−1(s0 · a′′) mod R∨) ∈ (Rq)k × TR∨ , with the
vertical bar denoting concatenation. We now analyze correctness. First note that
the first component is uniform over (Rq)k. Indeed, a′ is uniform over (Rq)k for
the first sample, and since a is uniform over (Rq)k−1, a′′ is uniform over Rq,
and U is invertible in (Rq)k×k, then U(a′′|a) is uniform over (Rq)k as well.

If b is uniform, the first sample yields q−1s0 mod R∨ uniform over q−1R∨/R∨.
For the other samples, b + q−1(s0 · a′′) mod R∨ is uniform over TR∨ and inde-
pendent of U(a′′|a) but also independent from the first sample because b

On the Hardness of Module-LWE with Binary Secret 519

masks q−1(s0 · a′′). If b = q−1〈a,s〉 + e mod R∨ for some uniform s ∈ (R∨
q)k−1

and e ←↩ ψ for some ψ ←↩ Υ , then q−1s0 = q−1〈e1 , (s0|s)〉 = q−1〈Ue1 ,
U−T (s0|s)〉 = q−1〈a′ ,U−T (s0|s)〉, where e1 = [1, 0, . . . , 0]T . For the other sam-
ples, we have b + q−1(s0 · a′′) mod R∨ = q−1〈U(a′′|a),U−T (s0|s)〉 + e mod R∨.
Note that (s0|s) is uniform over (R∨

q)k so U−T (s0|s) is also uniform over (R∨
q)k

because U−T is invertible in Rq. Therefore the reduction outputs samples accord-
ing to first-is-errorless M-LWE with secret s′ = U−T (s0|s). ��

3.3 Extended M-LWE

We now define the module version of the Extended LWE problem introduced
in [BLP+13], where the adversary is allowed a hint on the errors. As opposed
to [AA16], we allow for multiple secret and one single hint vector z, as required
by our final reduction of Lemma17.

Definition 3 (Extended M-LWE). Let K be a number field of degree n,
and R its ring of integers. Let m, q, k, t be positive integers. Let Z ⊆ (R∨)m

and ψ a discrete distribution over q−1(R∨)m. The Extended M-LWE prob-
lem, denoted by ext-M-LWEt

n,k,m,q,ψ,Z , is as follows. The algorithm first sam-
ples z ∈ Z and then receives a tuple (A, (bi)i∈[t], (〈ei ,z〉)i∈[t]), over (Rq)k×m ×
(
(q−1R∨/R∨)m

)t × (q−1R∨)t. Its goal is to distinguish between the following
cases. On one side, A is sampled uniformly over (Rq)k×m, and for all i ∈
[t], ei ∈ q−1(R∨)m are independent and identically distributed from ψ, and
define bi = q−1AT si + ei mod R∨ for some uniformly chosen si ∈ (R∨

q)k. On
the other side, everything is identical except that the bi are sampled uniformly
over (q−1R∨/R∨)m, independently from A and the error vectors.

By a standard hybrid argument, ext-M-LWE1 reduces to ext-M-LWEt while
reducing the advantage by a factor t, for any polynomially bounded t, and
choice of parameters n, k,m, q, ψ and Z. For simplicity in what follows, for a
matrix A ∈ Rm×m, we denote by A⊥ ∈ Rm×(m−1) the submatrix of A obtained
by removing the leftmost column. Our reduction from first-is-errorless M-LWE
to ext-M-LWE in Lemma 16 requires the construction of a matrix Uz ∈ Rm×m,
for all vectors z ∈ Z = (R∨

2)m, satisfying several properties. This matrix allows
us to transform samples from a first-is-errorless M-LWE challenger into samples
that we can give to an oracle for ext-M-LWE. The largest singular value of its
submatrix U⊥

z (when embedded with θ), controls the increase in the Gaussian
parameter. We propose a construction for which we bound the largest singular
value above by a quantity independent on z, as needed in the reduction.

Lemma 15. Let ν =
∏

i pei
i , K be the cyclotomic field of degree n = ϕ(ν),

and R its ring of integers. Let μ =
∏

i pi and q be a prime number such that q =
1 mod μ, ordν(q) = ν/μ and q > s1(μ)ϕ(μ), where s1(μ) denotes the largest
singular value of the Vandermonde matrix of the μ-th cyclotomic field. Finally,
let m be a positive integer, and Z = (R∨

2)m, and we recall the ring parameter B =
maxx∈R2‖σ(x)‖∞. For all z ∈ Z, there is an efficiently computable matrix Uz ∈

520 K. Boudgoust et al.

Rm×m that is invertible modulo qR and that verifies the following: z is orthogonal
to the columns of U⊥

z , and the largest singular value of θ(U⊥
z) ∈ C

mn×(m−1)n is
at most ξ = 2B.

Proof. Recall that for these number fields, we have R∨
p = λ−1Rp for any p ∈ Z

with λ = f ′(ζ). Let z ∈ Z and denote z̃ = λz ∈ Rm
2 . First, we construct Uz

in the case where all the z̃i are non-zero. To do so, we define the intermediate
matrices A, and B of Rm×m, all unspecified entries being zeros:

The matrix Uz is invertible in modulo qR only if all the z̃i (except z̃m) are
in R×

q . Yet, since they are all non-zero binary polynomials (elements of R2), we
have that for all i in [m], ‖τ(z̃i)‖∞ = 1, where τ is the coefficient embedding.
By Lemma 2, since q verifies the algebraic conditions taking all fi = 1 and
q1/ϕ(μ)/s1(μ) > 1, all the z̃i are in R×

q .
By construction, the last m − 1 columns of Uz are orthogonal to z̃. Let U⊥

z

be the submatrix of Uz obtained by removing the leftmost column as shown
above. Since θ is a ring homomorphism, we have θ(U⊥

z) = θ(A⊥) + θ(B⊥). We
now need to bound the spectral norm of these two matrices, and use the triangle
inequality to conclude. For any vector x ∈ C

(m−1)n, we have that ‖θ(A⊥)x‖2 =√∑
i∈[m−1]

∑
j∈[n]|σj(z̃i)|2|xj+n(i−1)|2 ≤ B‖x‖2, because each z̃i is in R2. This

yields ‖θ(A⊥)‖2 ≤ B. A similar calculation on B⊥ leads to ‖θ(B⊥)‖2 ≤ B, thus
resulting in ‖θ(U⊥

z)‖2 ≤ 2B.
Now assume that z̃i0 , . . . , z̃m are zeros for some i0 in [m]. If the zeros do not

appear last in the vector z̃, we can replace z̃ with Sz̃, where S ∈ Rm×m swaps the
coordinates of z̃ so that the zeros appear last. Since S is unitary, it preserves the
singular values as well as invertibility. Then, the construction remains the same
except that the z̃i0 , . . . , z̃m on the diagonal are replaced by 1. The orthogonality
is preserved, and ‖θ(U⊥

z)‖2 can still be bounded above by 2B. ��
Notice that when the ring is of degree 1, the constructions in the different cases
match the ones from [BLP+13, Claim 4.6]. So do the singular values as B ≤ n =
1 by Lemma 1. Also, the construction differs from the notion of quality in [AA16]
due to the discrepancies between the two definitions of ext-M-LWE.

Lemma 16 (Adapted from Lemma4.7 [BLP+13]). Let ν =
∏

i pei
i , K be

the cyclotomic field of degree n = ϕ(ν), and R its ring of integers. Let μ =
∏

i pi

and q be a prime such that q = 1 mod μ, ordν(q) = ν/μ and q > s1(μ)ϕ(μ),
where s1(μ) denotes the largest singular value of the Vandermonde matrix of
the μ-th cyclotomic field. Let m, k positive integers, Z = (R∨

2)m, ε ∈ (0, 1/2)
and α ≥ q−1

√
ln(2mn(1 + 1/ε))/π. Then, there is a probabilistic reduction from

On the Hardness of Module-LWE with Binary Secret 521

first-is-errorless M-LWEn,k,m,q,α to ext-M-LWEn,k,m,q,α
√
4B2+1,Z that reduces

the advantage by at most 33ε/2, where B = maxx∈R2‖σ(x)‖∞.

Note that by the transference theorems, we have λ∞
1 (R) ≥ N(R)1/n = 1. So,

using the fact that (qΛ)∗ = q−1Λ∗, we have

λ∞
1 ((q−1(R∨)m)∗) = λ∞

1 (q((R∨)m)∗) = qλ∞
1 (((R∨)m)∗) = qλ∞

1 (R) ≥ q,

which together with Lemma 5 yields q−1
√

ln(2mn(1 + 1/ε))/π ≥ ηε(q−1(R∨)m).

Proof. Assume we have access to an oracle O for ext-M-LWE
n,k,m,q,α

√
ξ2+1,Z .

We take m samples from the first-is-errorless challenger, resulting in (A,b) ∈
(Rq)k×m × ((q−1R∨/R∨)× T

m−1
R∨). Assume we need to provide samples to O for

some z ∈ Z. By Lemma 15 we can efficiently compute a matrix Uz ∈ Rm×m

that is invertible modulo qR, such that its submatrix U⊥
z is orthogonal to z,

and that θ(U⊥
z) has largest singular value less than ξ = 2B. The reduction

first samples f ∈ Km
R

from the continuous Gaussian distribution of covari-
ance matrix α2(ξ2Imn − H

†θ(U⊥
z)θ(U⊥

z)†
H) ∈ R

mn×mn, where H is defined
as in Sect. 2.3. Note that H is unitary and therefore preserves the largest
singular value. The reduction then computes b′ = Uzb + f and samples c
from Dq−1(R∨)m−b′,α, and finally gives the following to O

(A′ = AUT
z ,b′ + c mod R∨, 〈z,f + c〉).

Note that this tuple is in (Rq)k×m × (q−1R∨/R∨)m × q−1R∨, as required. We
now prove correctness. First, consider the case where A is uniformly random
over Rk×m

q and b = q−1AT s + e mod R∨ for some uniform s ∈ (R∨
q)k, and e

sampled from {0} × Dm−1
α where {0} denotes the distribution that is deter-

ministically 0. Since Uz is invertible modulo qR, A′ = AUT
z is also uniform

over (Rq)k×m as required. From now on we condition on an arbitrary A′ and ana-
lyze the distribution of the remaining components. We have b′ = q−1UzAT s +
Uze + f = q−1(A′)T s + Uze + f . Since the first coefficient of e is determinis-
tically 0 the first column is ignored in the covariance matrix, and then Uze is
distributed as the Gaussian over Km

R
of covariance matrix α2

H
†θ(U⊥

z)θ(U⊥
z)†

H

by Lemma 9. Hence the vector Uze+f is distributed as the Gaussian over Km
R

of
covariance matrix α2

H
†θ(U⊥

z)θ(U⊥
z)†

H+α2(ξ2Imn −H
†θ(U⊥

z)θ(U⊥
z)†

H) which
is identical to Dm

αξ. Since q−1(A′)T s ∈ q−1(R∨)m, the coset q−1(R∨)m − b′ is
the same as q−1(R∨)m − (Uze + f), which yields that c can be seen as being
sampled from Dq−1(R∨)m−(Uze+f),α. By the remark made before the proof, we
have α ≥ ηε(q−1(R∨)m), so by Lemma 8, the distribution of Uze+f +c is within
statistical distance 8ε of D

q−1(R∨)m,α
√

ξ2+1
, which shows that the second com-

ponent is correctly distributed up to 8ε. Note that Uze =
∑

i∈[m] ei ·ui is in the
space spanned by the columns of U⊥

z because e1 = 0. This yields 〈z,Uze〉 = 0
as z is orthogonal to the columns of U⊥

z . This proves that the third component
equals 〈z,Uze + f + c〉 and is thus correctly distributed.
Now consider the case where both A and b are uniform. First, observe that α ≥
ηε(q−1(R∨)m) and therefore by Lemma 6, the distribution of (A,b) is within

522 K. Boudgoust et al.

statistical distance ε/2 of the distribution of (A, e′+e) where e′ ∈ (q−1R∨/R∨)m

is uniform and e is distributed from {0} × Dm−1
α . So we can assume our input

is (A, e′ + e). A′ is uniform as before, and clearly independent of the other
two components. Moreover, since b′ = Uze′ + Uze + f and Uze′ ∈ q−1(R∨)m,
then the coset q−1(R∨)m − b′ is identical to q−1(R∨)m − (Uze + f). For the
same reasons as above, Uze + f + c is distributed as D

q−1(R∨)m,α
√

ξ2+1
within

statistical distance of at most 8ε, and in particular independent of e′. So the third
component is correctly distributed because once again 〈z ,Uze〉 = 0. Finally,
since e′ is independent of the first and third components, and that Uze′ is
uniform over (q−1R∨/R∨)m as Uz is invertible modulo qR, it yields that the
second component is uniform and independent of the other ones as required. ��

Instantiation in Power-of-Two Cyclotomics. The condition on the modu-
lus q in Lemmas 15 and 16 stems from the invertibility result from Lyubashevsky
and Seiler [LS18]. This result can be simplified in the power-of-two case [LS18,
Corollary 1.2] where it is conditioned on the number κ > 1 of splitting factors
of xn + 1 in Zq[x]. Choosing κ as a power of two less than n = 2�, q now has
to be a prime congruent to 2κ + 1 modulo 4κ. The invertibility condition then
becomes 0 < ‖τ(y)‖∞ < q1/κ/

√
κ for any y in Rq. The upper bound is decreas-

ing with κ so the smaller κ, the more invertible elements. The smallest choice
for κ is κ = 2, which leads to choosing a prime q = 5 mod 8. In our context,
having q1/2/

√
2 > 1 is sufficient as our elements have binary coefficients. This

requires q > 2 which is subsumed by q = 5 mod 8.

3.4 Reduction to bin-M-LWE

We now provide the final step of the overall reduction, by reducing to the
binary secret version of M-LWE using a sequence of hybrids. The idea is to
use the set Z of the ext-M-LWE problem as our set of secrets. The prob-
lem ext-M-LWEm

n,k,d,q,α,{0}d mentioned in the lemma statement is trivially
harder than ext-M-LWEm

n,k,d,q,α,(R∨
2)d , that is also why it is not specified in

Fig. 1.

Lemma 17 (Adapted from Lemma 4.9 [BLP+13]). Let K = Q(ζ) be a num-
ber field of degree n, such that its ring of integers is R = Z[ζ], with defining
polynomial f . Let q be a prime modulus. Let k,m, d be positive integers such
that d ≥ k log2 q+ω(log2 n) Further, let ε ∈ (0, 1/2) and α, γ, β, δ be positive reals
such that α ≥ q−1

√
2 ln(2nd(1 + 1/ε))/π, γ = αB

√
d, β = αB

√
2d, where B =

maxx∈R2‖σ(x)‖∞, and δ = 1
2

√
(1 + qk/2d)n − 1. Then there is a reduction

from ext-M-LWEm
n,k,d,q,α,(R∨

2)d , M-LWEn,k,m,q,γ and ext-M-LWEm
n,k,d,q,α,{0}d

to bin-M-LWEn,d,m,q,≤β, such that if B1, B2 and B3 are the algorithms obtained
by applying these hybrids to an algorithm A, then

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 2mε + δ.

On the Hardness of Module-LWE with Binary Secret 523

Proof. For x ∈ R∨, we denote x̃ = λx ∈ R as before, where λ = f ′(ζ).
We extend this notation to vectors and matrices in the obvious way. We
consider z ←↩ U((R∨

2)d) and e ∈ Km
R

sampled from the continuous Gaus-
sian Dm

r with parameter vector r with r2j = γ2 + α2
∑

i|σj(z̃i)|2. Yet, we

have ‖r‖∞ =
√

γ2 + α2‖z̃‖22,∞, as well as ‖z̃‖22,∞ ≤ ∑
i∈[d]‖σ(z̃i)‖2∞. Recall-

ing the parameter B = maxx∈R2‖σ(x)‖∞, that can be bounded above by n for
cyclotomics by Lemma 1, we get ‖r‖∞ ≤

√
γ2 + B2dα2 = B

√
2dα = β. In addi-

tion, we sample A uniformly over (Rq)d×m and define b = q−1AT z+e mod R∨.
First hybrid. We denote by H0 the distribution of (A,b) and H1 the distribution
of (A, q−1AT z − λNT z + ê mod R∨), where N ←↩ Dd×m

q−1R∨,α and ê ←↩ Dm
γ . By

looking at each component of the vectors we claim that Δ([−NT z̃+ ê]i, ei) ≤ 2ε.
Indeed, (1/α2+‖z̃‖22,∞/γ2)−1/2 ≥ α/

√
2 and α/

√
2 ≥ ηε(q−1(R∨)d) as explained

for Lemma 16. If ni ∈ q−1(R∨)d denotes the i-th column of N, Lemma 11 yields
the claim as [−NT z̃ + ê]i = 〈ni ,−z̃〉 + êi, thus giving Δ(−NT z̃ + ê, e) ≤ 2mε.

|Pr(A(H0)) − Pr(A(H1))| ≤ 2mε. (1)

Second Hybrid. We define H2 to be the distribution of (Â, q−1ÂT z − λNT z +
ê mod R∨) = (Â, q−1(λB)T Cz + ê mod R∨) where B is uniformly sampled
over (R∨

q)k×m, C uniformly sampled over Rk×d
q and Â = λq(q−1CT B + N mod

R∨). We argue that a distinguisher between H1 and H2 can be used to derive an
adversary B1 for ext-M-LWEm

n,k,d,q,α,(R∨
2)d with the same advantage. To do so, B1

transforms the samples from the challenger of the ext-M-LWE problem to sam-
ples defined in H1 or the ones in H2 depending on whether or not the received
samples are uniform. In the uniform case, (C, (λq)−1A,NT z) can be efficiently
transformed into a sample from H1. Note that (λq)−1A indeed corresponds to
the uniform case of ext-M-LWE, because A is uniform over Rq and (λq)−1Rq

can be seen as q−1R∨/R∨. In the other case, if we apply the same transformation
to the ext-M-LWE sample (C, q−1CT B+N mod R∨,NT z), it leads to a sample
from H2. Hence, B1 is a distinguisher for ext-M-LWEm

n,k,d,q,α,(R∨
2)d , and

|Pr(A(H1)) − Pr(A(H2))| = Adv[B1]. (2)

Third Hybrid. Next we define H3 to be the distribution of (Â, q−1B̃T s +
ê mod R∨), where B̃ = λB ∈ Rk×m

q , and s is uniform over (R∨
q)k. By the

Ring Leftover Hash Lemma stated in Lemma 12, we have that (C,Cz̃) is within
statistical distance at most δ from (C, s̃). By multiplying by λ−1 and using
the fact that a function does not increase the statistical distance, we have
that Δ((C,Cz), (C, s)) ≤ δ. Note that the condition d ≥ k log2 q + ω(log2 n)
implies δ ≤ n−ω(1). This yields

|Pr(A(H2)) − Pr(A(H3))| ≤ δ. (3)

Fourth Hybrid. We then replace the second component by the uniform as we
define H4 to be the distribution of (Â,u), with u ←↩ U(Tm

R∨). A distinguisher

524 K. Boudgoust et al.

between H3 and H4 can be used to derive an adversary B2 for M-LWEn,k,m,q,γ .
For that, B2 applies the efficient transformation to the samples from the M-LWE
challenger, which turns (B̃,u) into a sample from H4 in the uniform case,
and (B̃, q−1B̃T s+ ê mod R∨) into a sample from H3 in the M-LWE case. There-
fore, B2 is a distinguisher for M-LWEn,k,m,q,γ such that

|Pr(A(H3)) − Pr(A(H4))| = Adv[B2]. (4)

Last Hybrid. We now change Â back to uniform by defining H5 to be the dis-
tribution of (A,u). With the same argument as for the second hybrid, we can
construct an adversary B3 for ext-M-LWEm

n,k,d,q,α,{0}d (which corresponds to
multiple-secret M-LWE without additional information on the error) based on
a distinguisher between H4 and H5. It transforms (C, (λq)−1Â,NT 0) into a
sample from H4 (M-LWE case) and (C, (λq)−1A,NT 0) into a sample from H5

(uniform case). We then get

|Pr(A(H4)) − Pr(A(H5))| = Adv[B3]. (5)

Putting Eqs. 1, 2, 3, 4, 5 altogether yields the result. ��

Acknowledgments. This work was supported by the European Union PRO-
METHEUS project (Horizon 2020 Research and Innovation Program, grant 780701).
It has also received a French government support managed by the National Research
Agency in the “Investing for the Future” program, under the national project RISQ
P141580-2660001/DOS0044216. Katharina Boudgoust is funded by the Direction
Générale de l’Armement (Pôle de Recherche CYBER). We thank our anonymous ref-
erees of Indocrypt 2020 and CT-RSA 2021 for their thorough proof reading and con-
structive feedback.

References

[AA16] Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE
to LWR. IACR Cryptology ePrint Archive 2016:589 (2016)

[AD17] Albrecht, M.R., Deo, A.: Large modulus ring-LWE ≥ module-LWE. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 10

[BD20] Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distribu-
tions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12106, pp. 551–575. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45724-2 19

[BDK+18] Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based
KEM. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, 24–26 April 2018, pp. 353–367
(2018)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp.
309–325 (2012)

https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-030-45724-2_19
https://doi.org/10.1007/978-3-030-45724-2_19

On the Hardness of Module-LWE with Binary Secret 525

[BJRW20] Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical
hardness of module-LWE: the linear rank case. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 289–317. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 10

[BJRW21] Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of
module-lwe with binary secrets. IACR Cryptology ePrint Archive 2021:265
(2021)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Symposium on Theory of Computing
Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584
(2013)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[DKL+18] Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature
scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268
(2018)

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 24

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: Proceedings of the Innovations
in Computer Science - ICS 2010, Tsinghua University, Beijing, China, 5–7
January 2010, pp. 230–240. Tsinghua University Press (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, 17–20 May 2008, pp. 197–206. ACM (2008)

[KF15] Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 3

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.
1007/s10623-014-9938-4

[LS18] Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 8

[LWW20] Lin, H., Wang, Y., Wang, M.: Hardness of module-LWE and ring-LWE on
general entropic distributions. IACR Cryptology ePrint Archive 2020:1238
(2020)

[Mic07] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Comput. Complex. 16(4), 365–411 (2007)

https://doi.org/10.1007/978-3-030-64834-3_10
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8

526 K. Boudgoust et al.

[Mic18] Micciancio, D.: On the hardness of learning with errors with binary secrets.
Theory Comput. 14(1), 1–17 (2018)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[NIS] NIST. Post-quantum cryptography standardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization

[Pei08] Peikert, C.: Limits on the hardness of lattice problems in lp norms. Comput.
Complex. 17(2), 300–351 (2008)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vec-
tor problem: extended abstract. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
31 May–2 June 2009, pp. 333–342 (2009)

[Pei10] Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 5

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 4

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 34:1–34:40 (2009)

[RSW18] Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 6

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

[WW19] Wang, Y., Wang, M.: Module-LWE versus ring-LWE, revisited. IACR
Cryptology ePrint Archive 2019:930 (2019)

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Multi-party Revocation in Sovrin:
Performance through Distributed Trust

Lukas Helminger1,2, Daniel Kales1, Sebastian Ramacher3 ,
and Roman Walch1,2(B)

1 Graz University of Technology, Graz, Austria
{lukas.helminger,daniel.kales,roman.walch}@iaik.tugraz.at

2 Know-Center GmbH, Graz, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

sebastian.ramacher@ait.ac.at

Abstract. Accumulators provide compact representations of large sets
and compact membership witnesses. Besides constant-size witnesses,
public-key accumulators provide efficient updates of both the accumula-
tor itself and the witness. However, bilinear group based accumulators
come with drawbacks: they require a trusted setup and their performance
is not practical for real-world applications with large sets.

In this paper, we introduce multi-party public-key accumulators
dubbed dynamic (threshold) secret-shared accumulators. We present an
instantiation using bilinear groups having access to more efficient witness
generation and update algorithms that utilize the shares of the secret
trapdoors sampled by the parties generating the public parameters.
Specifically, for the q-SDH-based accumulators, we provide a maliciously-
secure variant sped up by a secure multi-party computation (MPC) pro-
tocol (IMACC’19) built on top of SPDZ and a maliciously secure thresh-
old variant built with Shamir secret sharing. For these schemes, a perfor-
mant proof-of-concept implementation is provided, which substantiates
the practicability of public-key accumulators in this setting.

We explore applications of dynamic (threshold) secret-shared accumu-
lators to revocation schemes of group signatures and credentials system.
In particular, we consider it as part of Sovrin’s system for anonymous
credentials where credentials are issued by the foundation of trusted
nodes.

Keywords: Multiparty computation · Dynamic accumulators ·
Distributed trust · Threshold accumulators

1 Introduction

Digital identity management systems become an increasingly important corner
stone of digital workflows. Self-sovereign identity (SSI) systems such as Sovrin1

1 https://sovrin.org/.

The full version is available online at: https://eprint.iacr.org/2020/724

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 527–551, 2021.
https://doi.org/10.1007/978-3-030-75539-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_22&domain=pdf
http://orcid.org/0000-0003-1957-3725
https://sovrin.org/
https://eprint.iacr.org/2020/724
https://doi.org/10.1007/978-3-030-75539-3_22

528 L. Helminger et al.

are of central interest as underlined by a recent push in the European Union for
a cross-border SSI system.2 But all these systems face a similar issue, namely
that of efficient revocation. Regardless of whether they are built from signatures,
group signatures or anonymous credentials, such systems have to consider mecha-
nisms to revoke a user’s identity information. Especially for identity management
systems with a focus on privacy, revocation may threaten those privacy guaran-
tees. As such various forms of privacy-preserving revocations have emerged in
the literature including approaches based on various forms of deny- or allowlists
including [3,13,31] among many others.

One promising approach regarding efficiency is based on denylists (or
allowlists) via cryptographic accumulators which were introduced by Benaloh
and de Mare [11]. They allow one to accumulate a finite set X into a succinct
value called the accumulator. For every element in this set, one can efficiently
compute a witness certifying its membership, and additionally, some accumu-
lators also support efficient non-memberships witnesses. However, it should be
computationally infeasible to find a membership witness for non-accumulated
values and a non-membership witness for accumulated values, respectively. Accu-
mulators facilitate privacy-preserving revocation mechanisms, which is espe-
cially relevant for privacy-friendly authentication mechanisms like group sig-
natures and credentials. For a denylist approach, the issuing authority accu-
mulates all revoked users and users prove in zero-knowledge that they know
a non-membership witness for their credential. Alternatively, for a allowlist
approach, the issuing authority accumulates all users and users then prove in
zero-knowledge that they know a membership witness. As both approaches may
involve large lists, efficient accumulator updates as well as efficient proofs are
important for building an overall efficient system. For example, in Sovrin [37]
and Hyperledger Indy3 such an accumulator-based approach with allowlists fol-
lowing the ideas of [31] is used. Their credentials contain a unique revocation
ID attribute, iR, which are accumulated. Each user obtains a membership wit-
ness proving that their iR is contained in the accumulator. Once a credential is
revoked, the corresponding iR gets removed from the accumulator and all users
have to update their proofs accordingly. The revoked user is no longer able to
prove knowledge of a verifying witness and thus verification fails.

Accumulators are an important primitive and building block in many cryp-
tographic protocols. In particular, Merkle trees [44] have seen many applica-
tions in both the cryptographic literature but also in practice. For example,
they have been used to implement Certificate Transparency (CT) [38] where
all issued certificates are publicly logged, i.e., accumulated. Accumulators also
find application in credentials [13], ring, and group signatures [26,39], anony-
mous cash [45], among many others. When looking at accumulators deployed in
practice, many systems rely on Merkle trees. Most prominently we can observe
this fact in CT. Even though new certificates are continuously added to the log,

2 https://essif-lab.eu/.
3 https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-

revocation/README.html.

https://essif-lab.eu/
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html

Multi-party Revocation in Sovrin: Performance through Distributed Trust 529

the system is designed around a Merkle tree that gets recomputed all the time
instead of updating a dynamic public-key accumulator. The reason is two-fold:
first, for dynamic accumulators to be efficiently computable, knowledge of the
secret trapdoor used to generate the public parameters is required. Without this
information, witness generation and accumulator updates are simply too slow for
large sets (cf. [35]). Secondly, in this setting it is of paramount importance that
the log servers do not have access to the secret trapdoor. Otherwise malicious
servers would be able to present membership witnesses for every certificate even
if it was not included in the log.

The latter issue can also be observed in other applications of public-key accu-
mulators. The approaches due to Garman et al. [31] and the one used in Sovrin
rely on the Strong-RSA and q-SDH accumulators, respectively. Both these accu-
mulators have trapdoors: in the first case the factorization of the RSA modulus
and in the second case a secret exponent. Therefore, the security of the sys-
tem requires those trapdoors to stay secret. Hence, these protocols require to
put significant trust in the parties generating the public parameters. If they
would act maliciously and not delete the secret trapdoors, they would be able
to break all these protocols in one way or another. To circumvent this prob-
lem, Sander [47] proposed a variant of an RSA-based accumulator from RSA
moduli with unknown factorization. Alternatively, secure multi-party computa-
tion (MPC) protocols enable us to compute the public parameters and thereby
replace the trusted third party. As long as a large enough subset of parties is
honest, the secret trapdoor is not available to anyone. Over the years, efficient
solutions for distributed parameter generation have emerged, e.g., for distributed
RSA key generation [16,17,29], or distributed ECDSA key generation [41].

Based on the recent progress in efficient MPC protocols, we ask the following
question: what if the parties kept their shares of the secret trapdoor? Are the
algorithms of the public-key accumulators exploiting knowledge of the secret
trapdoor faster if performed within an (maliciously-secure) MPC protocol than
their variants relying only on the public parameters?

1.1 Our Techniques

We give a short overview of how our construction works which allows us to
positively answer this question for accumulators in the discrete logarithm setting.
Let us consider the accumulator based on the q-SDH assumption which is based
on the fact that given powers gsi ∈ G for all i up to q where s ∈ Zp is unknown,
it is possible to evaluate polynomials f ∈ Zp[X] up to degree q at s in the
exponent, i.e., gf(s). This is done by taking the coefficients of the polynomial, i.e.,
f =

∑q
i=0 aiX

i, and computing gf(s) as
∏q

i=0(g
si

)ai . The accumulator is built by
defining a polynomial with the elements as roots and evaluating this polynomial
at s in the exponent. A witness is simply the corresponding factor canceled out,
i.e., gf(s)(s−x)−1

. Verification of the witness is performed by checking whether
the corresponding factor and the witness match gf(s) using a pairing equation.

If s is known, all computations are more efficient: f(s) can be directly evalu-
ated in Zp and the generation of the accumulator only requires one exponentiation

530 L. Helminger et al.

in G. The same is true for the computation of the witness. For the latter, the
asymptotic runtime is thereby reduced from O(|X |) to O(1). This improvement
comes at a cost: if s is known, witnesses for non-members can be produced.

On the other hand, if multiple parties first produce s in an additively secret-
shared fashion, these parties can cooperate in a secret-sharing based MPC pro-
tocol. Thereby, all the computations can still benefit from the knowledge of s.
Indeed, the parties would compute their share of gf(s) and gf(s)(s−x)−1

respec-
tively and thanks to the partial knowledge of s could still perform all operations
– except the final exponentiation – in Zp. Furthermore, all involved computa-
tions are generic enough to be instantiated with MPC protocols with different
trust assumptions. These include the dishonest majority protocol SPDZ [21,24]
and honest majority threshold protocols based on Shamir secret sharing [48].

1.2 Our Contribution

Starting from the very recent treatment of accumulators in the UC model [15]
by Baldimtsi et al. [4], we introduce the notion of (threshold) secret-shared accu-
mulators. As the name suggests, it covers accumulators where the trapdoor is
available in a (potentially full) threshold secret-shared fashion with multiple par-
ties running the parameter generation as well as the algorithms that profit from
the availability of the trapdoor. Since the MPC literature discusses security in
the UC model, we also chose to do so for our accumulators.

Based on recent improvements on distributed key generation of discrete loga-
rithms, we provide dynamic public-key accumulators without trusted setup. Dur-
ing the parameter generation, the involved parties keep their shares of the secret
trapdoor. Consequently, we present MPC protocols secure in the semi-honest
and the malicious security model, respectively, implementing the algorithms for
accumulator generation, witness generation, and accumulator updates exploiting
the shares of the secret trapdoor. Specifically, we give such protocols for q-SDH
accumulators [25,46], which can be build from dishonest-majority full-threshold
protocols (e.g., SPDZ [21,24]) and from honest-majority threshold MPC proto-
cols (e.g., Shamir secret sharing [48]). In particular, our protocol enables updates
to the accumulator independent of the size of the accumulated set. For increased
efficiency, we consider this accumulator in bilinear groups of Type-3. Due to
their structure, the construction nicely generalizes to any number of parties.

We provide a proof-of-concept implementation of our protocols in two MPC
frameworks, MP-SPDZ [36] and FRESCO.4 We evaluate the efficiency of our
protocols and compare them to the performance of an implementation, hav-
ing no access to the secret trapdoors as usual for the public-key accumulators.
We evaluate our protocol in the LAN and WAN setting in the semi-honest and
malicious security model for various choices of parties and accumulator sizes. For
the latter, we choose sizes up to 214. Specifically, for the q-SDH accumulator,
we observe the expected O(1) runtimes for witness creation and accumulator
updates, which cannot be achieved without access to the trapdoor. Notably, for

4 https://github.com/aicis/fresco.

https://github.com/aicis/fresco

Multi-party Revocation in Sovrin: Performance through Distributed Trust 531

the tested numbers of up to 5 parties, the MPC-enabled accumulator creation
algorithms are faster for 210 elements in the LAN setting than its non-MPC
counterpart (without access to the secret trapdoor). For 214 elements the algo-
rithms are also faster in the WAN setting.

Finally, we discuss how our proposed MPC-based accumulators might impact
revocation in distributed credential systems such as Sovrin [37]. In this scenario,
the trust in the nodes run by the Sovrin foundation members can further be
reduced. In addition, this approach generalizes to any accumulator-based revo-
cation scheme and can be combined with threshold key management systems.
We also discuss applications to CT and its privacy-preserving extension [35].

1.3 Related Work

When cryptographic protocols are deployed that require the setup of public
parameters by a trusted third party, issues similar to those mentioned for public-
key accumulators may arise. As discussed before, especially cryptocurrencies had
to come up with ways to circumvent this problem for accumulators but also the
common reference string (CRS) of zero-knowledge SNARKs [14]. Here, trust in
the CRS is of paramount importance on the verifier side to prevent malicious
provers from cheating. But also provers need to trust the CRS as otherwise
zero-knowledge might not hold. We note that there are alternative approaches,
namely subversion-resilient zk-SNARKS [9] to reduce the trust required in the
CRS generator. Groth et al. [33] recently introduced the notion of an updatable
CRS where first generic compilers [1] are available to lift any zk-SNARK to
an updatable simulation sound extractable zk-SNARK. There the CRS can be
updated and if the initial generation or one of the updates was done honestly,
neither soundness nor zero-knowledge can be subverted. In the random oracle
model (ROM), those considerations become less of a concern and the trust put
into the CRS can be minimized, e.g., as done in the construction of STARKs [10].

Approaches that try to fix the issue directly in the formalization of accu-
mulators and corresponding constructions have also been studied. For example,
Lipmaa [42] proposed a modified model tailored to the hidden order group set-
ting. In this model, the parameter setup is split into two algorithms, Setup and
Gen where the adversary can control the trapdoors output by Setup, but can nei-
ther influence nor access the randomness used by Gen. However, constructions in
this model so far have been provided using assumptions based on modules over
Euclidean rings, and are not applicable to the efficient standard constructions
we are interested in. More recently, Boneh et al. [12] revisited the RSA accu-
mulator without trapdoor which allows the accumulator to be instantiated from
unknown order groups without trusted setup such as class groups of quadratic
imaginary orders [34] and hyperelliptic curves of genus 2 or 3 [27].

The area of secure multiparty computation has seen a lot of interest both
in improving the MPC protocols itself to a wide range of practical applications.
In particular, SPDZ [21,24] has seen a lot of interest, improvements and exten-
sions. This interest also led to multiple MPC frameworks, e.g., MP-SPDZ [36],

532 L. Helminger et al.

FRESCO and SCALE-MAMBA,5 enabling easy prototyping for researchers as
well as developers. For practical applications of MPC, one can observe first MPC-
based systems turned into products such as Unbound’s virtual hardware security
model (HSM).6 For such a virtual HSM, one essentially wants to provide dis-
tributed key generation [29] together with threshold signatures [22] allowing to
replace a physical HSM. Similar techniques are also interesting for securing wal-
lets for the use in cryptocurrencies, where especially protocols for ECDSA [32,41]
are of importance to secure the secret key material. Similarly, such protocols are
also of interest for securing the secret key material of internet infrastructure such
as DNSSEC [20]. Additionally, addressing privacy concerns in machine learning
algorithms has become increasingly popular recently, with MPC protocols being
one of the building blocks to achieve private classification and private model
training as in [50] for example. Recent works [49] also started to generalize the
algorithms that are used as parts of those protocols allowing group operations
on elliptic curve groups with secret exponents or secret group elements.

2 Preliminaries

In this section, we introduce cryptographic primitives we use as building blocks.
For notation and assumptions, we refer to the full version.

2.1 UC Security and ABB

In this paper, we mainly work in the UC model first introduced by Canetti [15].
The success of the UC model stems from its universal composition theorem,
which, informally speaking, states that it is safe to use a secure protocol as
a sub-protocol in a more complex one. This strong statement enables one to
analyze and proof the security of involved protocols in a modular way, allowing
us to build upon work that was already proven to be secure in the UC model.

The importance of the UC model for secure multiparty computation stems
from the arithmetic black box (ABB) [23]. The ABB models a secure general-
purpose computer in the UC model. It allows performing arithmetic operations
on private inputs provided by the parties. The result of these operations is then
revealed to all parties. Working with the ABB provides us with a tool of abstract-
ing arithmetic operations, including addition and multiplication in fields.

2.2 SPDZ, Shamir, and Derived Protocols

Our protocols build upon SPDZ [21,24] and Shamir secret sharing [48], con-
crete implementations of the abstract ABB. SPDZ itself is based on an additive
secret-sharing over a finite field Fp with information-theoretic MACs making
the protocol statistically UC secure against an active adversary corrupting all

5 https://homes.esat.kuleuven.be/∼nsmart/SCALE/.
6 https://www.unboundtech.com/usecase/virtual-hsm/.

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://www.unboundtech.com/usecase/virtual-hsm/

Multi-party Revocation in Sovrin: Performance through Distributed Trust 533

but one player. On the other hand, Shamir secret sharing is a threshold shar-
ing scheme where k ≤ n out of n parties are enough to evaluate the protocol
correctly. Therefore, it is naturally robust against parties dropping out during
the computation; however, it assumes an honest-majority amongst all parties
for security. Shamir secret sharing can be made maliciously UC secure in the
honest-majority setting using techniques from [18] or [40].

We will denote the ideal functionality of the online protocol of SPDZ and
Shamir secret sharing by FAbb. For an easy use of these protocols later in our
accumulators, we give a high-level description of the functionality together with
an intuitive notation. We assume that the computations are performed by n
(or k) parties and we denote by 〈s〉 ∈ Fp a secret-shared value between the
parties in a finite field with p elements, where p is prime. The ideal functionality
FAbb provides us with the following basis operations: Addition 〈a + b〉 ← 〈a〉 +
〈b〉 (can be computed locally), multiplication 〈ab〉 ← 〈a〉 · 〈b〉 (interactive 1-
round protocol), sampling 〈r〉 ←R

Fp, and opening a share 〈a〉. For convenience,
we assume that we have also access to the inverse function 〈a−1〉. Computation
of the inverse can be efficiently implemented using a standard form of masking
as first done in [5]. Given an opening of 〈z〉 = 〈r · a〉, the inverse of 〈a〉 is then
equal to z−1〈r〉. However, there is a small failure probability if either a or r is
zero. In our case, the field size is large enough that the probability of a random
element being zero is negligible.

There is one additional sub-protocol which we will often need. Recent
work [49] introduced protocols – in particular based on SPDZ – for group oper-
ations of elliptic curve groups supporting secret exponents and secret group
elements. For this work, we only need the protocol for exponentiation of a pub-
lic point with a secret exponent. Let G be a cyclic group of prime order p and
g ∈ G. Further, let 〈a〉 ∈ Fp be a secret-shared exponent.

ExpG(〈a〉, g) : The parties locally compute 〈ga〉 ← g〈a〉.

Since the security proof of this sub-protocol in [49] does not use any exclusive
property of an elliptic curve group, it applies to any cyclic group of prime order.

All protocols discussed so far are secure in the UC model, making them safe
to use in our accumulators as sub-protocols. Therefore, we will refer to their
ideal functionality as FABB+. As a result, our protocols become secure in the
UC model as long as we do not reveal any intermediate values.

2.3 Accumulators

We rely on the formalization of accumulators by Derler et al. [25]. We recall
definitions of static and dynamic accumulators in the full version.

2.4 Pairing-Based Accumulator

We recall the q-SDH-based accumulator from [25], which is based on the accumu-
lator by Nguyen [46]. The idea here is to encode the accumulated elements in a

534 L. Helminger et al.

Gen(1κ, q) : Let BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Choose s ←R Z
∗
p and

return skΛ ← s and pkΛ ← (BG, (gsi

1)q
i=1, g

s
2).

Eval((skΛ, pkΛ), X) : Parse X ⊂ Z
∗
p. Choose r ←R Z

∗
p. If skΛ �= ∅, compute ΛX ←

g
r

∏
x∈X (x+s)

1 . Otherwise, expand the polynomial
∏

x∈X (x + X) =
∑n

i=0 aiX
i,

and compute ΛX ← ((
∏n

i=0 gsi

1)ai)r. Return ΛX and aux ← (add ← 0, r, X).
WitCreate((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X). If x �∈ X , return ⊥. If

skΛ �= ∅, compute and return witx ← Λ
(x+s)−1

X . Otherwise, run (witx, . . .) ←
Eval((skΛ, pkΛ), X \ {x}; r), and return witx.

Verify(pkΛ, ΛX ,witx, x) : Return 1 if e(ΛX , g2) = e(witx, gx
2 · gs

2), otherwise return
0.

Add((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X). If x ∈ X , return ⊥. Set X ′ ←
X ∪{x}. If skΛ �= ∅, compute and return ΛX ′ ← Λx+s

X and aux′ ← (r, X ′, add ←
1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ), X ′; r) with aux extended with
(add ← 1, ΛX , ΛX ′).

Delete((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X). If x �∈ X , return ⊥. Set X ′ ← X \
{x}. If skΛ �= ∅, compute and return ΛX ′ ← Λ

(x+s)−1

X and aux′ ← (r, X ′, add ←
−1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ), X ′; r) with aux extended with
(add ← 0, ΛX , ΛX′).

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse aux as (⊥, ⊥, add, ΛX , ΛX ′). If add =

0, return ⊥. Return ΛX · witx−xi
xi

if add = 1. If instead add = −1, return

(Λ−1
X ′ ·witxi)

(x−xi)
−1

. In the last two cases in addition return aux ← (add ← 0).

Scheme 1: q-SDH-based accumulator in the Type-3 setting.

polynomial. This polynomial is then evaluated for a fixed element and the result
is randomized to obtain the accumulator. A witness consists of the evaluation
of the same polynomial with the term corresponding to the respective element
cancelled out. For verification, a pairing evaluation is used to check whether the
polynomial encoded in the witness is a factor of the one encoded in the accumu-
lator. As it is typically more efficient to work with bilinear groups of Type-3 [30],
we state the accumulator as depicted in Scheme 1 in this setting. Correctness
is clear, except for the WitUpdate subroutine: To update witness witxi

of the
element xi after the element x was added to the accumulator ΛX to create the
new accumulator ΛX ′ = Λ

(x+s)
X , one computes:

ΛX · wit(x−xi)
xi

= Λ
(xi+s)·(xi+s)−1

X · Λ
(x−xi)·(xi+s)−1

X

= Λ
(x+s)·(xi+s)−1

X = Λ
(xi+s)−1

X ′

which results in the desired updated witness. Similar, if the element x gets
removed instead, one computes the following to get the desired witness:

(Λ−1
X ′ · witxi

)(x−xi)
−1

= Λ
−(xi+s)·(xi+s)−1·(x−xi)

−1

X ′ · Λ
(x+s)·(xi+s)−1·(x−xi)

−1

X ′

= Λ
(xi+s)−1·(x−xi)

−1·(x−xi+s−s)
X ′ = Λ

(xi+s)−1

X ′

Multi-party Revocation in Sovrin: Performance through Distributed Trust 535

The proof of collision freeness follows from the q-SDH assumption. For com-
pleteness, we still restate the theorem from [25] adopted to the Type-3 setting.
For the proof, we refer to the full version.

Theorem 1. If the q-SDH assumption holds, then Scheme 1 is collision-free.

Remark 1. Note that for support of arbitrary accumulation domains, the accu-
mulator requires a suitable hash function mapping to Z

∗
p. For the MPC-based

accumulators that we will define later, it is clear that the hash function can be
evaluated in public. For simplicity, we omit the hash function in our discussion.

2.5 UC Secure Accumulators

Only recently, Baldimtsi et al. [4] formalized the security of accumulators in the
UC framework. Interestingly, they showed, that any correct and collision-free
standard accumulator is automatically UC secure. We, however, want to note,
that their definitions of accumulators are slightly different then the framework by
Derler et al. (which we are using). Hence, we adapt the ideal functionality FAcc

from [4] to match our setting: First our ideal functionality FAcc consists of two
more sub-functionalities. This is due to a separation of the algorithms responsible
for the evaluation, addition, and deletion. Secondly, our FAcc is simplified to our
purpose, whereas FAcc from Baldimtsi et al. is in their words “an entire menu of
functionalities covering all different types of accumulators”. Thirdly, we added
identity checks to sub-functionalities (where necessary) to be consistent with the
given definitions of accumulators.

The resulting ideal functionality can be found in the full version. Note that
the ideal functionality has up to three parties. First, the party which holds
the set X is the accumulator manager AM, responsible for the algorithms
Gen,Eval,WitCreate,Add and Delete. The second party H owns a witness and
is interested in keeping it updated and for this reason, performs the algorithm
WitUpdate. The last party V can be seen as an external party. V is only able to
use Verify to check the membership of an element in the accumulated set.

In the following theorem we adapt the proof from [4] to our setting:

Theorem 2. If ΠAcc = (Gen,Eval,WitCreate,Verify,Add,Delete,WitUpdate) is
a correct and collision-free dynamic accumulator with deterministic Verify, then
ΠAcc UC emulates FAcc.

For the proof we refer to the full version. As a direct consequence of Theorems
1 and 2, the accumulator from Scheme 1 is also secure in the UC model of [4]
since it is correct and collision-free:

Corollary 1. Scheme 1 emulates FAcc in the UC model.

3 Multi-Party Public-Key Accumulators

With the building blocks in place, we are now able to go into the details of
our construction. We first present the formal notion of (threshold) secret-shared
accumulators, their ideal functionality, and then present our constructions.

536 L. Helminger et al.

For the syntax of the MPC-based accumulator, which we dub (threshold)
secret-shared accumulator, we use the bracket notation 〈s〉 from Sect. 2.2 to
denote a secret shared value. If we want to explicitly highlight the different
shares, we write 〈s〉 = (s1, . . . , sn), where the share si belongs to a party Pi. We
base the definition on the framework of Derler et al. [25], where our algorithms
behave in the same way, but instead of taking an optional secret trapdoor, the
algorithms are given shares of the secret as input. Consequently, Gen outputs
shares of the secret trapdoor instead of the secret key. The static version of the
accumulator is defined as follows:

Definition 1 (Static (Threshold) Secret-Shared Accumulator). Let us
assume that we have a (threshold) secret sharing-scheme. A static (threshold)
secret-shared accumulator for n ∈ N parties P1, . . . , Pn is a tuple of PPT algo-
rithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, q) : This algorithm takes a security parameter κ and a parameter q.
If q �= ∞, then q is an upper bound on the number of elements to be
accumulated. It returns a key pair (ski

Λ, pkΛ) to each party Pi such that
skΛ = Open(sk1Λ, . . . , skn

Λ), denoted by 〈skΛ〉. We assume that the accumu-
lator public key pkΛ implicitly defines the accumulation domain DΛ.

Eval((〈skΛ〉, pkΛ),X) : This algorithm takes a secret-shared private key 〈skΛ〉 a
public key pkΛ and a set X to be accumulated and returns an accumulator
ΛX together with some auxiliary information aux to every party Pi.

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private
key 〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux
and a value x. It returns ⊥, if x /∈ X , and a witness witx for x otherwise to
every party Pi.

Verify(pkΛ, ΛX ,witx, x) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witx and a value x. It returns 1 if witx is a witness for x ∈ X
and 0 otherwise.

In analogy to the non-interactive case, dynamic accumulators provide additional
algorithms to add elements to the accumulator and remove elements from it,
respectively, and update already existing witnesses accordingly.

Definition 2 (Dynamic (Threshold) Secret-Shared Accumulator). A
dynamic (threshold) secret-shared accumulator is a static (threshold) secret-
shared accumulator with an additional tuple of PPT algorithms (Add,Delete,
WitUpdate) which are defined as follows:

Add((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x ∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X ∪ {x} and
updated auxiliary information aux′ to every party Pi.

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x �∈ X , it returns ⊥ to every party Pi.

Multi-party Revocation in Sovrin: Performance through Distributed Trust 537

Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X \ {x} and
updated auxiliary information aux′ to every party Pi.

WitUpdate((〈skΛ〉, pkΛ),witxi
, aux, x) : This algorithm takes a secret-shared pri-

vate key 〈skΛ〉 a public key pkΛ, a witness witxi
to be updated, auxiliary infor-

mation aux and an element x which was added to/deleted from the accumu-
lator, where aux indicates addition or deletion. It returns an updated witness
wit′xi

on success and ⊥ otherwise to every party Pi.

Correctness and collision-freeness naturally translate from the non-
interactive accumulators to the (threshold) secret-shared ones.

For our case, the ideal functionality for (threshold) secret-shared accumu-
lators, dubbed FMPC-Acc is more interesting. FMPC-Acc is very similar to FAcc

and can be found in the full version. The only difference in describing the ideal
functionality for accumulators in the MPC setting arises from the fact that we
now have not only one accumulator manager but n, denoted by AM1, . . . ,AMn.
More concretely, whenever a sub-functionality of FMPC-Acc – that makes use of
the secret key – gets a request from a manager identity AMi, it now also gets a
participation message from the other managers identities Aj for j �= i. Further-
more, the accumulator managers take the role of the witness holder. The party
V, however, stays unchanged.

3.1 Dynamic (Threshold) Secret-Shared Accumulator from the
q-SDH Assumption

For the generation of public parameters Gen, we can rely on already established
methods to produce ECDSA key pairs and exponentiations with secret expo-
nents, respectively. These methods can directly be applied to the accumulators.
Taking the q-SDH accumulator as an example, the first step is to sample the
secret scalar s ∈ Zp. Intuitively, each party samples its own share si and the
secret trapdoor s would then be s = Open(s1, . . . , sn). The next step, the calcu-
lation of the basis elements gsj

for j = 1, . . . , q, is optional, but can be performed
to provide public parameters, that are useful even to parties without knowledge
of s. All of these elements can be computed using ExpG and the secret-shared
s, respectively its powers. For the accumulator evaluation, Eval, the parties first
sample their shares of r. Then, they jointly compute shares of r ·f(s) using their
shares of r and s. The so-obtained exponent and ExpG produce the final result.

For witness creation, WitCreate, it gets more interesting. Of course, one could
simply run Eval again with one element removed from the set. In this case, we can
do better, though. The difference between the accumulator and a witness is that
in the latter, one factor of the polynomial is canceled. Since s is available, it is
thus possible to cancel this factor without recomputing the polynomial from the
start. Indeed, to compute the witness for an element x, we can compute (s+x)−1

and then apply that inverse using ExpG to the accumulator to get the witness.
Note though, that before the parties perform this step, they need to check if
x is actually contained in X . Otherwise, they would produce a membership
witness for a non-member. In that case, the verification would check whether

538 L. Helminger et al.

f(s)(s+x)−1(s+x) matches f(s), which of course also holds even if s+x is not a
factor of f(s). In contrast, when performing Eval with only the publicly available
information, this issue does not occur since there the witness will not verify. Add
and Delete can be implemented in a similar manner. When adding an element
to the accumulator, the polynomial is extended by one factor. Removal of an
element requires that one factor is canceled. Both operations can be performed
by first computing the factor using the shares of s and then running ExpG.

Now, we present the MPC version of the q-SDH accumulator in Scheme 2
following the intuition outlined above. Note, that the algorithm for WitUpdate is
unlikely to be faster than its non-MPC version from Scheme 1. Indeed, the non-
MPC version requires only exponentiations in G1 and a multiplication without
the knowledge of the secret trapdoor. We provide the version using the trapdoor
for completeness but will use the non-MPC version of the algorithm in practical
implementations. Note further that we let Gen choose the bilinear group BG, but
this group can already be fixed a priori.

Gen(1κ, q) : BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Compute 〈skΛ〉 ←
sRand(Z∗

p). Compute h ← Open(g〈skΛ〉
2). Return pkΛ ← (BG, h).

Eval((〈skΛ〉, pkΛ), X) : Parse pkΛ as (BG, h) and X as subset of Z∗
p. Choose 〈r〉 ←

sRand(Z∗
p). Compute 〈q〉 ← ∏

x∈X (x + 〈skΛ〉) ∈ Z
∗
p and 〈t〉 ← 〈q〉 · 〈r〉. The

algorithm returns ΛX ← Open(g〈t〉
1) and aux ← (add ← 0, X).

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x /∈ X . Otherwise, 〈z〉 ← 〈(x +

〈skΛ〉)−1〉. Return witx ← Open(Λ〈z〉
X).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (BG, h). If e(ΛX , g2) = e(witx, gx
2 · h) holds,

return 1, otherwise return 0.
Add((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x ∈ X . Otherwise set X ′ ← X ∪ {x}.

Return ΛX ′ ← Λx
X · Open(Λ〈skΛ〉

X) and aux ← (add ← 1, X ′).
Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : If x /∈ X , return ⊥. Otherwise set X ′ ← X \ {x},

and compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return ΛX ′ ← Open(Λ〈y〉
X) and aux ←

(add ← −1, X ′).
WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : Parse aux as (add, X). Return ⊥ if add = 0

or xi /∈ X . In case add = 1, return witxi ← witxxi
· Open(wit〈skΛ〉

xi) and aux ←
(add ← 0, X). If instead add = −1, it compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return

witxi ← Open(wit〈y〉
xi) and aux ← (add ← 0, X).

Scheme 2: MPC-q-SDH: Dynamic (threshold) secret-shared accumulator from
q-SDH for n ≥ 2 parties.

Theorem 3. Scheme 2 UC emulates FAcc-MPC in the FABB+-hybrid model.

Proof. At this point, we make use of the UC model. Informally speaking, accu-
mulators are UC secure, and SPDZ, Shamir secret sharing, and the derived
operations UC emulate FABB+. Therefore, according to the universal composi-
tion theorem, the use of these MPC protocols in the accumulator Scheme 2 can

Multi-party Revocation in Sovrin: Performance through Distributed Trust 539

be done without losing UC security. For a better understanding, we begin by
showing the desired accumulator properties for Scheme 2.

The proof of the correctness follows directly from the correctness proof from
Scheme 1 for the case where the secret key is known. Collision-freeness is also
derived from the non-interactive q-SDH accumulator. (It is true that now each
party has a share of the trapdoor, but without the other shares no party can
create a valid witness.) Since Verify is obviously deterministic, Scheme 2 fulfills
all necessary assumption of Theorem 2. After applying Theorem 2, we get a
simulator SAcc interacting with the ideal functionality FAcc. Since we now also
have to simulate the non-interactive sub-protocols, we have to extend SAcc. We
construct SAcc-MPC by building upon SAcc and in addition internally simulate
FABB+. As described in Sect. 2.2, the MPC protocols used in the above algo-
rithms are all secure in the UC model. Since we do not open any secret-shared
values besides uniformly random elements and the output or values that can
be immediately derived from the output, the algorithms are secure due to the
universal composition theorem. �
Remark 2. In Gen of Scheme 2 we explicitly do not compute hi ← gsi

1 . Hence,
using Eval without access to s is not possible. But the public key is significantly
smaller and so is the runtime of the Gen algorithm. If, however, these values
are needed to support a non-secret-shared Eval, one can modify Gen to also
compute the necessary values enabling trade-offs between an efficient Eval and
an inefficient Gen. Updates to this accumulator then still profit from the efficiency
of the secret shared trapdoor. Additionally, q gives an upper bound on the size
of the accumulated sets, and thus needs to be considered in the selection of the
curves even though the powers of g1 are not placed in the public key.

3.2 SPDZ vs. Shamir Secret Sharing

In this section, we want to compare two MPC protocols on which our MPC-q-
SDH Accumulator can be based on, namely SPDZ and Shamir secret sharing.
Both protocols allow us to keep shares of the secret trapdoor and improve per-
formance compared to the keyless q-SDH Accumulator. However, in relying on
these protocols for security, the trust assumptions of the MPC-q-SDH Accumu-
lator also have to include the underlying protocols’ trust-assumptions.

SPDZ is a full-threshold dishonest-majority protocol that protects against
n − 1 corrupted parties. Therefore, an honest party will always detect malicious
behavior. However, full-threshold schemes are not robust; if one party fails to
supply its shares, the computation always fails.

On the contrary, Shamir secret sharing is an honest-majority threshold pro-
tocol. It is more robust than SPDZ since it allows k ≤ n−1

2 corrupted parties
while still being capable of providing correct results. This also means, if some
parties (k ≤ n−1

2) fail to provide their shares, the other parties can still compute
the correct results without them. Thus, no accumulator manager on its own
is a single point of failure. However, if more than k parties are corrupted, the
adversaries can reconstruct the secret trapdoor and, therefore, compromise the
security of our MPC-q-SDH Accumulator.

540 L. Helminger et al.

Table 1. Performance of the accumulator algorithms without access to the secret
trapdoors. Time in milliseconds averaged over 100 executions.

Accu. |X | Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Scheme 1 210 649 1 117 1 116 1 116 0.6 1 120 0.7

214 9 062 116 031 115 870 115 575 0.6 116 154 0.7

Merkle-Tree 210 − 1.12 0.05a 1.12 0.05a 1.12 0.05a

214 − 15.53 0.83a 15.53 0.83a 15.53 0.83a

aAssuming that the full Merkle-tree is known as auxiliary data.

4 Implementation and Performance Evaluation

We implemented the proposed dynamic (threshold) secret-shared accumulator
from q-SDH and evaluated it against small to large sets.7 Our primary imple-
mentations are based on SPDZ with OT-based preprocessing and Shamir secret
sharing in the MP-SPDZ [36]8 framework. However, to demonstrate the usability
of our accumulator, we additionally build an implementation in the malicious
security setting with dishonest-majority based on the FRESCO framework. We
discuss the benchmarks for the MP-SPDZ implementation in this section. For a
discussion of the FRESCO benchmarks we refer the reader to the full version.

Remark 3. We want to note, that in our benchmarks we test the performance
of the MPC variant of WitUpdate from Scheme 2, even though in practice the
non-MPC variant from Scheme 1 should be used.

MP-SPDZ implements the SPDZ protocol with various extensions, as well
as semi-honest and malicious variants of Shamir secret sharing [18,19,40]. For
pairing and elliptic curve group operations, we rely on relic9 and integrate ExpG,
Output-G, and the corresponding operations to update the MAC described
in [49] into MP-SPDZ. We use the pairing friendly BLS12-381 curve [7], which
provides around 120 bit of security following recent estimates [6]. For complete-
ness, we also implemented the q-SDH accumulator from Scheme 1 and a Merkle-
tree accumulator using SHA-256. This enables us to compare the performance in
cases where the secret trapdoors are available in the MPC case and when they
are not. In Table 1, we present the numbers for various sizes of accumulated sets.

The evaluation of the MPC protocols was performed on a cluster with a
Xeon E5-4669v4 CPU, where each party was assigned only 1 core. The hosts
were connected via a 1 Gbit/s LAN network, and an average round-trip time
of <1 ms. For the WAN setting, a network with a round-trip time of 100 ms
and a bandwidth of 100 Mbit/s was simulated. We provide benchmarks for both
preprocessing and online phases of the MPC protocols, where the cost of the pre-
processing phase is determined by the number of shared multiplications, whereas
the performance of the online phase is proportional to the multiplicative depth
of the circuit and the number of openings.
7 The source code is available at https://github.com/IAIK/MPC-Accumulator.
8 https://github.com/data61/MP-SPDZ.
9 https://github.com/relic-toolkit/relic.

https://github.com/IAIK/MPC-Accumulator
https://github.com/data61/MP-SPDZ
https://github.com/relic-toolkit/relic

Multi-party Revocation in Sovrin: Performance through Distributed Trust 541

Table 2. Number of Beaver triples, shared random values, and opening rounds required
by MPC-q-SDH.

Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Beaver triplesa 0 |X | 1 0 0 1 1

Random values 1 1 1 0 0 1 1

Opening rounds 1 �log2(|X | + 1)� + 1 3 1 1 3 3
aNote, semi-honest Shamir secret sharing does not require Beaver triples.

4.1 Evaluation of MPC-q-SDH

In the offline phase of the implemented MPC protocols, the required Beaver
triples [8] for shared multiplication and the pre-shared random values are gen-
erated. A shared inverse operation requires one multiplication and one shared
random value. In Table 2, we list the number of triples required for each operation
for the MPC-q-SDH accumulator. Except for Eval they require a constant num-
ber of multiplications and inverse operations and, therefore, a constant number
of Beaver triples and shared random elements. In Eval, the number of required
Beaver triples is determined by |X |. Furthermore, Table 2 lists the number of
opening rounds (including openings in multiplications, excluding MAC-checks)
of the online phase of the MPC-q-SDH accumulator allowing one to calculate
the number of communication rounds for different sharing schemes.

As discussed in Remark 2, Gen is not producing the public parameters hi.
If Eval without MPC is desired, the time and communication of Eval for the
respective set sizes should be added to the time and communication of Gen to
obtain an estimate of its performance.

Dishonest-Majority Based on SPDZ. Table 3 compares the offline performance
of the MPC-q-SDH accumulator based on SPDZ in different settings. We give
both timings for the accumulation of |X | elements in Eval and the necessary
pre-computation for a single inversion, which is used in several other operations
(e.g., WitCreate). Additionally we also give the time for pre-computing a single
random element, which is required to generate the authenticated share of the
secret-key in Eval. Further note that batching the generation of many triples
together like for the Eval phase is more efficient in practice than producing a
single triple and as these triples are not dependent on the input, all parties can
continuously generate triples in the background for later use in the online phase.

In Table 4, we present the online performance of our MPC-q-SDH accumula-
tor based on SPDZ for different set sizes, parties, security settings, and network
settings. It can clearly be seen, that – except for the Eval operation – the run-
time of each operation is independent of the set size. In other words, after an
initial accumulation of a given set, every other operation has constant time. In
comparison, the runtime of the non-MPC accumulators without access to the
secret trapdoor, as depicted in Table 1, depends on the size of the accumulated
set. Our MPC-accumulator outperforms the non-MPC q-SDH accumulators the
larger the accumulated set gets. In the LAN setting MPC-q-SDH’s Eval is faster

542 L. Helminger et al.

Table 3. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor based on MP-SPDZ. Time in milliseconds.

Operation |X| LAN setting WAN setting

n = 2 3 4 5 2 3 4 5

BaseOTs 210, 214 0.03 0.08 0.14 0.23 0.14 0.31 0.56 0.84

Semi-honest Inverse 210, 214 0.78 1.72 3.06 4.03 209.9 227.5 322.8 331.0

Gen 210, 214 0.44 1.21 1.76 3.01 207.7 223.6 325.9 332.0

Eval 210 189 397 706 959 4 695 8 215 13 680 25 725

214 4000 8 308 14 380 17 928 55 542 109 720 214 585 356 330

Malicious Inverse 210, 214 4.34 7.93 11.5 15.3 840.5 1 262 1 538 1 914

Gen 210, 214 2.56 4.23 6.80 9.32 841.3 1 235 1 540 1 856

Eval 210 1 601 2 849 4 345 6 227 25 737 45 254 87 328 141 181

214 31 099 62 978 89 132 145 574 412 747 682 033 1 364 660 2 236 860

than the non-MPC version for all benchmarked players, even in the WAN settings
it outperforms the non-MPC version in the two player case. For 214 elements,
it is even faster for all benchmarked players in all settings, including the WAN
setting. In any case, the witnesses have constant size contrary to the log2(|X |)
sized witnesses of the Merkle-tree accumulator.

The numbers for the evaluation of the online phase in the WAN setting are
also presented in Table 4. The overhead that can be observed compared to the
LAN setting is influenced by the communication cost. Since our implementation
implements all multiplications in Eval in a depth-optimized tree-like fashion, the
overhead from switching to a WAN setting is not too severe.

On the first look, one can observe an irregularity in our benchmarks. More
specifically, notice that for four or more parties, the maliciously secure evaluation
of the Eval online phase is consistently faster than the semi-honest evaluation
of the same phase. However, this is a direct consequence of a difference in how
MP-SPDZ handles the communication in those security models, where commu-
nication is handled in a non-synchronized send-to-all approach in the malicious
setting and a synchronized broadcast approach in the semi-honest setting. The
synchronization in the latter case scales worse for more parties and, therefore,
introduces some additional delays.

Finally, Table 5 depicts the size of the communication between the parties for
both offline and online phases. The communication of Eval has to account for a
number of multiplications dependent on X and therefore scales linearly with its
size. As we already observed for the runtime of MPC-q-SDH, also the communi-
cation of WitCreate, Add, Delete and WitUpdate is independent of the size of the
accumulated set, and additionally less than 200 kB for all algorithms. Combined
with the analysis of the runtime, we conclude that the performance of the oper-
ations that might be performed multiple times per accumulator is very efficient
in both runtime and communication. When compared to the performance of the
non-MPC accumulators in Table 1, we see that the performance of operations
that benefit from access to the secret trapdoor are multiple orders of magnitude
faster in the MPC accumulators and, in the LAN setting, even come close to the

Multi-party Revocation in Sovrin: Performance through Distributed Trust 543

Table 4. Online phase performance of the MPC-q-SDH accumulator with access to
the secret trapdoor based on SPDZ implemented in MP-SPDZ, for both the LAN and
WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Operation |X| Semi-honest Malicious

LAN setting WAN setting LAN setting WAN setting

n = 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Gen 210 4 4 7 19 53 110 170 219 11 13 25 37 169 278 395 505

214 4 4 9 20 56 111 172 220 11 13 28 48 179 280 396 506

Eval 210 3 13 58 231 635 1 277 1 916 2 558 10 17 50 131 966 1 327 1 669 1 995

214 26 47 117 315 949 1 948 3 166 4 571 89 94 174 225 1 297 1 979 2 830 3 872

WitCreate 210 2 2 32 39 168 320 482 645 5 10 35 75 372 606 823 1 050

214 2 2 28 51 168 320 473 638 5 6 28 80 365 606 835 1 052

Add 210 2 2 8 17 47 107 166 213 5 5 17 31 170 273 388 499

214 2 2 5 14 50 108 170 214 5 5 17 42 173 271 383 491

WitUpdateAdd 210 2 2 5 30 60 108 154 214 5 7 12 34 159 276 390 495

214 2 2 3 20 60 107 152 217 5 6 10 54 154 275 390 500

Delete 210 2 2 21 58 156 319 488 639 5 10 47 78 379 598 818 1 034

214 2 2 23 55 158 318 489 642 5 6 38 87 385 603 822 1 033

WitUpdateDelete 210 2 2 52 47 165 320 475 643 5 10 26 100 374 604 828 1 044

214 2 4 43 57 162 323 475 639 5 10 35 74 365 599 827 1 048

Table 5. Communication cost (in kB per party) of the MPC-q-SDH accumulator with
access to the secret trapdoor based on SPDZ implemented in MP-SPDZ.

Operations |X | Semi-honest Malicious

Offlinea Online Offlinea Online

Gen 210, 214 20 0.10 86 0.24

Eval 210 12 571 66 79 549 66

214 200 823 1 049 1 271 484 1 049

WitCreate, Delete, WitUpdateDelete 210, 214 33 0.15 164 0.37

Add, WitUpdateAdd 210, 214 4 0.05 4 0.14
aIncludes BaseOTs for a new connection

performance of the standard Merkle-tree accumulator, for both the semi-honest
and malicious variant.

Honest-Majority Threshold Sharing based on Shamir Secret Sharing. In this
section, we discuss the benchmarks of our implementation based on Shamir
secret sharing. MP-SPDZ implements semi-honest Shamir secret sharing based
on [19] and a maliciously secure variant following [40]10. In Table 6, we present
the offline phase runtime, in Table 7 we show the runtime of the online phase,
and in Table 8 we depict the size of the communication between the parties for
the 3-party case.

10 A newer version of MP-SPDZ now implements maliciously secure Shamir secret
sharing following [18].

544 L. Helminger et al.

Table 6. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor in the semi-honest (SH) and malicious threshold
setting implemented in MP-SPDZ. Time in milliseconds.

Operation |X | LAN setting WAN setting

n = 3 4 5 3 4 5

SH Inverse 210, 214 6 9 14 473 585 998

Malicious Inverse 210, 214 7 9 17 1 036 1 231 2 136

Gen 210, 214 6 11 17 1 008 1 256 2 233

Eval 210 20 29 48 1 232 2 089 2 629

214 218 245 510 3 431 8 130 8 519

The most expensive part of the SPDZ offline phase is creating the Beaver
triples required for the Eval operation. As Table 6 shows, this step is several
orders of magnitudes cheaper in the Shamir-based implementation. This is espe-
cially true in the semi-honest setting, in which no Beaver triples are required in
the Shamir-based implementation. The offline runtime of the other operations is
similar to the SPDZ-based implementations.

The Shamir-based implementation’s online runtime is slightly cheaper than
the runtime of the SPDZ-based implementation, except for the Eval operation.
However, the difference in runtime of the Eval operation is also not significant,
especially when considering the trade for the much cheaper offline phase.

Similar behavior can be seen for the communication cost, as depicted in
Table 8. Offline communication is several orders of magnitude smaller in the

Table 7. Online phase performance of the MPC-q-SDH accumulator with access to the
secret trapdoor in the threshold setting implemented in MP-SPDZ, for both the LAN
and WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Operation |X| Semi-honest Malicious

LAN setting WAN setting LAN setting WAN setting

n = 3 4 5 3 4 5 3 4 5 3 4 5

Gen 210 5 5 7 109 111 118 7 7 14 112 119 228

214 5 5 7 110 111 120 7 7 14 113 120 230

Eval 210 5 6 9 1 278 1 314 2 474 9 9 16 1 285 1 422 2 578

214 33 40 77 1 788 2 776 3 831 80 84 161 2 018 3 938 4 636

WitCreate 210 2 2 3 317 319 440 3 3 5 324 336 648

214 2 2 3 318 321 443 3 3 5 323 332 642

Add 210 2 2 3 109 108 114 3 3 5 109 111 215

214 2 2 3 107 108 113 3 3 5 110 112 220

WitUpdateAdd 210 2 2 3 107 107 112 3 3 5 107 112 217

214 2 2 3 107 108 114 3 3 5 108 114 220

Delete 210 2 2 3 320 321 438 3 3 5 320 332 642

214 2 2 3 317 321 439 3 3 5 321 331 642

WitUpdateDelete 210 2 2 3 320 321 441 3 3 5 321 333 647

214 2 2 3 316 320 441 3 3 5 320 332 645

Multi-party Revocation in Sovrin: Performance through Distributed Trust 545

Shamir-based implementation than in SPDZ, while online communication is sim-
ilar to the SPDZ based version. Only the Eval operation requires about twice as
much online communication in the Shamir-based implementation. To summarize,
our honest-majority threshold implementation based on Shamir secret sharing
provides much better offline phase performance, with similar online performance
compared to our dishonest majority full-threshold implementation.

4.2 Further Improvement

The maliciously secure MPC protocols we use in this work delay the MAC check
to the output phase after executing the Open subroutine. This means, it is pos-
sible for intermediate results to be wrong due to tampering of an attacker; how-
ever, since honest parties only reveal randomized values during the openings in
a multiplication, no information about secret values can be gained by attackers.

Similar to threshold signature schemes [20,28,32], the protocols can be opti-
mized by skipping the MAC checks at the end of WitCreate, Add, Delete, and
WitUpdate and use the Verify step of the accumulator to check for correctness
instead. The only feasible attack on this optimization is to produce invalid accu-
mulators/witnesses without leaking information on the secret trapdoor; however,
false output values can be detected during verification. Therefore, we can exe-
cute the semi-honest online phase and call Verify at the end, while still protecting
against malicious parties. This trades the extra round of communication in the
MAC check for an evaluation of a bilinear pairing (≈ 10ms on our benchmark
platform) which results in a further speedup, especially in the WAN-setting.

5 Applications

5.1 Credential Revocation in Distributed Credential Systems

As first application of MPC-based accumulators, we focus on distributed cre-
dential systems [31], and in particular, on the implementation in Sovrin [37]. In
general, anonymous credentials provide a mechanism for making identity asser-
tions while maintaining privacy, yet, in classical, non-distributed systems require

Table 8. Communication cost (in kB per party) of the MPC-q-SDH accumulator in
the 3-party threshold setting implemented in MP-SPDZ.

Operation |X | Semi-honest Malicious

Offline Online Offline Online

Gen 210, 214 0.26 0.20 0.65 0.20

Eval 210 0.26 66 459 131

214 0.26 1 049 7 340 2 097

WitCreate, Delete, WitUpdateDelete 210, 214 0.26 0.23 1.1 0.3

Add, WitUpdateAdd 210, 214 0 0.11 0 0.11

546 L. Helminger et al.

a trusted credential issuer. This central issuer, however, is both a single point of
failure and a target for compromise and can make it challenging to deploy such
a system. In a distributed credential system, on the other hand, this trusted
credential issuer is eliminated, e.g., by using distributed ledgers.

We shortly recall how Sovrin implements revocation. When issuing a creden-
tial, every user gets a unique revocation identifier iR. All valid revocation IDs
are accumulated using a q-SDH accumulator which is published. Additionally,
the users obtains a witness certifying membership of its iR in the accumulator.
Whenever a user shows their credential, they have to prove that they know this
witness for their iR with respect to the published accumulator. When a new user
joins, the accumulator has to be updated. Consequently, all the witnesses have
to be updated as well, as otherwise they would no longer be able to provide a
valid proof. Similar, in the case that a user is revoked and thus removed from
the accumulator, all other users have to update their witnesses accordingly. Also,
the verifiers always have to check for updated accumulators.

Now, recall that the q-SDH accumulator supports all required operations
without needing access to the trapdoor. Hence, all operations can be performed
and, especially, the users can update their witnesses on their own if the corre-
sponding iRs are published on the ledger. While functionality-wise all operations
are supported, performance-wise a large number of users becomes an issue. With
potentially millions to billions of users, adding and deleting members from the
accumulator becomes increasingly expensive (cf. Table 1). Hence, at a certain
size, having access to the trapdoor would be beneficial. But, on the other side,
generating membership witnesses for non-members would then become possible.

The latter is also an issue during the setup of the system. Trusting one third
party to generate the public parameters of the accumulator might be undesired
in a distributed system as in this case. The special structure of the Sovrin ecosys-
tem with their semi-trusted foundation members, however, naturally fits to our
multi-party accumulator. First, the foundation members can setup the public
parameters in a distributed manner. Secondly, as all of them have shares of the
trapdoor, they can also run the updates of the accumulator using the MPC-q-
SDH-accumulator. Additionally, using a threshold secret sharing scheme can add
robustness against foundation members failing to provide their shares for compu-
tations. The change to this accumulator is completely transparent to the clients
and verifiers and no changes are required there. Furthermore, the Verify step of
the MPC-q-SDH-accumulator is equal to the Verify operation of the non-MPC
q-SDH-accumulator. Therefore, the same efficient zero-knowledge proofs [2] can
be used to prove knowledge of a witness without revealing it. These proofs are
significantly more efficient then proving witnesses of a Merkle-Tree-accumulator,
even when SNARK-friendly hash functions are used.

5.2 Privacy-Preserving Certificate-Transparency Logs

We finally look at the application of accumulators in the CT ecosystem. Certifi-
cate Authorities request the inclusion of certificates in the log whenever they sign
a new certificate. Once the certificate was included in the log, auditors can check

Multi-party Revocation in Sovrin: Performance through Distributed Trust 547

the consistency of this log. Additionally, TLS clients also verify whether all cer-
tificates that they obtain were actually logged, thereby ensuring that log servers
do not hand out promises of certificate inclusion without following through.
Technically, the CT log is realized as a Merkle-tree accumulator containing all
certificates. As certificates need to be added continuously, it is made dynamic by
simply recalculating the root hash and all the proofs. Functionality wise, dynamic
accumulators would perfectly fit this use-case. However, their real-world perfor-
mance without secret trapdoors is not good enough – recalculating hash trees is
just more efficient. Knowledge of the secret trapdoors would however be catas-
trophic for this application, as the guarantees of the whole system break down:
log servers could produce witnesses for any certificate they get queried on, even
if it was never submitted to the log servers for inclusion.

In the CT ecosystem, the clients need to contact the log servers for the inclu-
sion proof, and therefore verifying certificates has negative privacy implications,
as this query reveals the browsing behavior of the client to the log server. Based
on previous work by Lueks and Goldberg [43], Kales et al. [35] proposed to
rethink retrieval of the inclusion proofs by employing multi-server private infor-
mation retrieval (PIR) to query the proofs. To further improve performance, the
accumulator is split into sub-accumulators based on, e.g., time periods. All sub-
accumulators are then accumulated in a top-level accumulator. Consequently,
the witnesses with respect to the sub-accumulator stay constant and can be
embedded in the server’s certificate and only the membership-proofs of the sub-
accumulators need to be updated when new certificates are added to the log.
Only these top-level proofs have to be queried using PIR, thus greatly improving
the overall performance, as smaller databases are more efficient to query.

However, one drawback of this solution is the increase in certificate size if
one were to include this static membership witness for the sub-accumulator in
the certificate itself. Kales et al. [35] propose to build sub-accumulators per
hour, which would result in sub-accumulators that hold about 216 certificates.
A Merkle-tree membership proof for these sub-accumulators is 512 bytes in size
when using SHA-256. In contrast, a membership proof for the q-SDH accumu-
lator is only 48 bytes in size (with the curve used in our implementation). A
typical DER-encoded X509 certificate using RSA-2048 as used in TLS is about
1–2 KB in size, meaning inclusion of the Merkle-tree sub-accumulator member-
ship proof would increase the certificate size by 25–50%, whereas the q-SDH
sub-accumulator membership proof only increases the size by 2.5–5%.

We can now leverage the fact that their solution already requires two non-
colluding servers for the multi-server PIR. These servers hold copies of the
Merkle-tree accumulator and answer private membership queries for the top-level
accumulator. Switching the used accumulators to our MPC-q-SDH accumulator
would give the benefit of small, constant size membership proofs, while still being
performant enough to accumulate and produce witnesses for all elements of a
sub-accumulator in one hour.

548 L. Helminger et al.

Acknowledgments. This work was supported by EU’s Horizon 2020 project under
grant agreement n◦825225 (Safe-DEED) and n◦871473 (KRAKEN), and EU’s Hori-
zon 2020 ECSEL Joint Undertaking grant agreement n◦783119 (SECREDAS), and by
the “DDAI” COMET Module within the COMET – Competence Centers for Excel-
lent Technologies Programme, funded by the Austrian Federal Ministry for Transport,
Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital and Eco-
nomic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the province
of Styria (SFG) and partners from industry and academia. The COMET Programme
is managed by FFG.

References

1. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable snarks generically. In: CCS, pp. 1987–2005.
ACM (2020)

2. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-prove revocation. In:
Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 189–196. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 15

3. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: EuroS&P, pp. 301–315. IEEE (2017)

4. Badimtsi, F., Canetti, R., Yakoubov, S.: Universally composable accumulators. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 638–666. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 27

5. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC, pp. 201–209. ACM (1989)

6. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019)

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

9. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

11. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

12. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

https://doi.org/10.1007/978-3-642-39884-1_15
https://doi.org/10.1007/978-3-030-40186-3_27
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20

Multi-party Revocation in Sovrin: Performance through Distributed Trust 549

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

14. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: attacks and payments for services. In: ACM CCS, pp.
229–243. ACM (2017)

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE (2001)

16. Chen, M., et al.: Multiparty generation of an RSA modulus. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 64–93. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1 3

17. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a
dishonest majority. IACR Cryptol. ePrint Arch. 2020, 374 (2020)

18. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

19. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

20. Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC
keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 654–673. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 32

21. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

22. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 10

23. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 15

24. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

25. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 7

26. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

27. Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyperelliptic
curves. IACR ePrint 2020, 196 (2020)

https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/3-540-44987-6_10
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-79063-3_20

550 L. Helminger et al.

28. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: IEEE S&P, pp. 1051–1066. IEEE (2019)

29. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

30. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

31. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS.
The Internet Society (2014)

32. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM CCS, pp. 1179–1194. ACM (2018)

33. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

34. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 18

35. Kales, D., Omolola, O., Ramacher, S.: Revisiting user privacy for certificate trans-
parency. In: EuroS&P, pp. 432–447. IEEE (2019)

36. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: CCS,
pp. 1575–1590. ACM (2020)

37. Khovratovich, D., Law, J.: Sovrin: digitial signatures in the blockchain area (2016).
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

38. Laurie, B.: Certificate transparency. ACM Queue 12(8), 10–19 (2014)
39. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-

based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

40. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: CCS, pp. 259–276.
ACM (2017)

41. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM CCS, pp. 1837–
1854. ACM (2018)

42. Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7 14

43. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–
186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 10

44. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

45. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: IEEE S&P, pp. 397–411. IEEE (2013)

46. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

https://doi.org/10.1007/978-3-319-96881-0_12
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/3-540-44448-3_18
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-662-47854-7_10
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-540-30574-3_19

Multi-party Revocation in Sovrin: Performance through Distributed Trust 551

47. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0 21

48. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
49. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol. In:

Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 342–366. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 17

50. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. PoPETs 2019(3), 26–49 (2019)

https://doi.org/10.1007/978-3-540-47942-0_21
https://doi.org/10.1007/978-3-030-35199-1_17

Balancing Privacy and Accountability
in Blockchain Identity Management

Ivan Damg̊ard1, Chaya Ganesh2, Hamidreza Khoshakhlagh1(B),
Claudio Orlandi1, and Luisa Siniscalchi1

1 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
hamidreza@cs.au.dk

2 Indian Institute of Science, Bangalore, Bangalore, India

Abstract. The lack of privacy in the first generation of cryptocurrencies
such as Bitcoin, Ethereum, etc. is a well known problem in cryptocur-
rency research. To overcome this problem, several new cryptocurrencies
were designed to guarantee transaction privacy and anonymity for their
users (examples include ZCash, Monero, etc.).

However, the anonymity provided by such systems appears to be
fundamentally problematic in current business and legislation settings:
banks and other financial institutions must follow rules such as “Know
Your Customer” (KYC), “Anti Money Laundering” (AML), etc. It is also
well known that the (alleged or real) anonymity guarantees provided by
cryptocurrencies have attracted ill-intentioned individuals to this space,
who look at cryptocurrencies as a way of facilitating illegal activities
(tax-evasion, ransom-ware, trading of illegal substances, etc.).

The fact that current cryptocurrencies do not comply with such reg-
ulations can in part explain why traditional financial institutions have
so far been very sceptical of the ongoing cryptocurrency and Blockchain
revolution.

In this paper, we propose a novel design principle for identity man-
agement in Blockchains. The goal of our design is to maintain privacy,
while still allowing compliance with current regulations and preventing
exploitations of Blockchain technology for purposes which are incompat-
ible with the social good.

1 Introduction

Early applications of blockchain to payment systems such as Bitcoin do not
guarantee privacy. In the Bitcoin blockchain, blocks posted on the public ledger
consist of transactions, making Bitcoin transparent – transactions are there for

Research supported by: the Concordium Blockchain Research Center (COBRA),
Aarhus University, Denmark; the Carlsberg Foundation under the Semper Ardens
Research Project CF18-112 (BCM); the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme under grant
agreement No. 669255 (MPCPRO); the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant
agreement No. 803096 (SPEC).

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 552–576, 2021.
https://doi.org/10.1007/978-3-030-75539-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_23

Balancing Privacy and Accountability in Blockchain Identity Management 553

everybody to see. However, the identities are pseudonymous, and not tied to real
world identities. Consequently, Bitcoin has the property that while the ownership
of money is implicitly anonymous, the flow of money is globally visible. While
this was perceived to be truly anonymous early on, there have been several works
that deanonymize Bitcoin flow by analysing the payment graph [30]. To overcome
the problem of lack of privacy in the first generation of cryptocurrencies such
as Bitcoin, Ethereum, etc., new systems were designed to guarantee transaction
privacy and anonymity for their users [6,24,35]. Systems like Zerocash [6] fully
hide both the value inside a transaction, and the sender and receiver identities.
Most blockchain use-cases, however, are hindered by complete privacy as they
need accountability and identity management. Privacy-preserving systems like
ZCash are not designed with accountability in mind1. In order to conform with
regulations like “Know your customer” (KYC) and “Anti-money laundering”
(AML), a legal authority should be able to learn the value and identities of
the parties involved in any transaction; this requirement seems to be at odds
with privacy. The seemingly contradictory requirements of transaction privacy
& user anonymity, and regulatory requirements such as KYC/AML imposed on
financial and banking institutions is a major hurdle in widespread adoption of
the blockchain.

Our Contribution. In this work, we address the problem of balancing account-
ability with privacy in blockchain-based systems. We propose a new architectural
design of an “identity layer” that will provide privacy for its users – that is, no
one, observing the network transactions and the status of the Blockchain should
be able to learn about the identity of the owner of any account in the system. At
the same time, the identity layer achieves accountability in the sense that in the
presence of a reasonable suspicion, law-enforcement agencies (or other authorized
parties), will be able to access the transaction history of a given user and/or block
its funds, in a way similar to what is guaranteed today by traditional financial
institutions. We develop cryptographic mechanisms that enhance accountability
measures against misuse of the blockchain, while still providing privacy. Towards
this end, we employ cryptographic techniques to design provably secure proto-
cols, with both privacy and accountability guarantees. We prove the security
of our constructions in the Universal Composability (UC) framework. We pro-
vide a high-level overview of the design of the system, and then discuss the
techniques and cryptographic tools used. We believe that such an identity layer
design will make Blockchain and cryptocurrencies more attractive for regulators,
public institutions and traditional businesses which are interested in complying
with existing legislation. In fact, the identity layer of Concordium2, an upcoming
major Blockchain project, is based on the design presented in this paper.

Overview of the System. In the proposed system, the identity and credentials of
each participant in the network are initially verified and stored by authorized
1 Zcash considers solutions to implement AML and KYC controls [1], however this

solution requires trust on a single party.
2 concordium.com.

https://concordium.com/

554 I. Damg̊ard et al.

parties called Identity Providers (IPs). Each user can open a limited number of
accounts where an account has an identifier that is derived from a PRF applied
to a value that is between 1 and the maximal number of accounts, say n. The
PRF key K is held by the user. When a user registers with an IP, K is encrypted
through a threshold encryption scheme, and this ciphertext is stored with the IP.
This is set up such that an appropriate number of Anonymity Revokers (ARs)
would be able to decrypt. Standard anonymous credentials are used to certify
additional attributes of the user.

When a user creates an account, they prepare some data to be published
on the blockchain. This includes a threshold encryption of the account holder’s
public key (that was also stored with the IP at registration time). It also includes
zero-knowledge proofs that the attributes the user chooses to publish in the
account have been signed by the IP, and that the account identifier has been
correctly computed. Thus, an account may contain complete identification of the
account holder, if the user chooses to include it, or it may reveal less information,
for instance the citizenship and age of the account holder.

Finally, an account includes various account specific public keys. Using
the corresponding secret keys, the account holder can then perform transac-
tions anonymously in the network. Depending on the key material included in
accounts, several different ways to do transactions can be realized – this is a
problem orthogonal to that of implementing the identity layer, and we give
some informal examples of how this could be done in the full version [18].

If it is suspected that an account is used for fraudulent purposes, the
encrypted account information can be decrypted by a qualified set of the ARs,
and an anonymous account can be linked (via the public key) to an id provided
by the IP. On the other hand, if a particular user is suspected of fraud, the IP
can provide its record for this user, and a qualified set of ARs can decrypt the
information to learn the PRF key K. Now, they can generate the set of all values
PRFK(x) for x = 1, . . . , n which are all the possible values for an account identi-
fier. One can then identify all accounts of the user by searching the blockchain
for accounts with these identifiers. Privacy is therefore guaranteed for all users,
except those whose anonymity is revoked by a sufficient number of ARs.

Note that the above also implies that we have a mechanism for preventing a
user from opening an unbounded number of accounts using a single certificate
from the IP: if this were possible, it would open the door for attacks where an
individual registers with an IP and then allow other individuals to open accounts
in their name, perhaps after payment of a small sum of money. On the other
hand, we do not want the account holder to have to interact with the IP for every
new account it wants to create, as this would affect efficiency. While the concrete
number of accounts allowed per user is an implementation dependent parameter,
our technique allows to achieve a reasonable tradeoff. The zero-knowledge proofs
force the user to compute the account id’s correctly, which only allows n different
id’s. Thus, if one attempts to open more accounts than allowed, this must result
in a pre-existing account identifier, and the Blockchain will reject it.

Balancing Privacy and Accountability in Blockchain Identity Management 555

We prove security of the system when either any number of account holders
are actively corrupt, or when the identity providers are semi-honest corrupt. Note
that, similar to certification authorities in standard PKI, we need some trust in
the IPs: a malicious identity provider (equivalently, a malicious account holder
colluding with a semi-honest IP and therefore learning the key), could produce
certificates containing false identities, therefore undermining the system. Finally,
depending on which properties we want to emphasize, we could tolerate different
corruption levels among the anonymity revokers. Thus our system is secure in the
presence of actively corrupt users and a threshold number of passively corrupt
anonymity revokers; or, in the presence of passively corrupt identity-provider and
a threshold number of passively corrupt anonymity revokers. In our design it is
paramount that the service provided by the anonymity revokers to be available,
and we want to emphasize privacy. Thus, we opt for assuming a majority of
semi-honest ARs. Using standard methods, we could instead tolerate a minority
of actively corrupted ARs.

Overview of Technical Ideas. We use cryptographic schemes such as Pedersen
commitments [34], Dodis-Yampolskiy PRF [21], Pointcheval-Sanders (PS) signa-
ture scheme [36], CL encryption scheme [12]. We use zkSNARKs in combination
with commitments and signatures in the spirit of [2,10]: the PS blind signa-
ture we use is defined using groups of a certain prime order, and when a user
proves knowledge of a signature, the message that is signed is committed to
using a Pedersen-type commitment in such a group. Now, we can use standard
sigma-protocols to provide commitments to individual attributes of the user in
the same group, and finally use SNARKs on committed messages to show state-
ments such as “the age attribute of the user is a number greater than 18”. In this
way, we only need to use SNARKs on rather small circuits, and we can achieve
much greater efficiency than if we had to convert large statements involving,
e.g., group operations into a Boolean circuit to be evaluated inside the SNARK.
In this way, creating an account requires a constant number of exponentiations
(i.e., independent of the security parameter), and likewise, the number of group
elements in an account is constant.

We provide a generic lifting transformation for Fiat Shamir NIZKs for DL-
languages into UC NIZKs. While such a transformation by encrypting the wit-
ness under a key that is part of the CRS (and the secret key part of the CRS
trapdoor) is folklore [20], using the CL encryption scheme allows us to efficiently
prove statements about values in the exponent, which is novel to the best of our
knowledge.

Related Work. The cryptographic tools used in building our solution, like com-
mitment schemes, blind signatures, zero-knowledge proofs, and threshold encryp-
tion are based on anonymous credentials technology. Anonymous credentials [14]
allow a party to prove to a verifier that one has a set of credentials without reveal-
ing anything beyond this fact. Revocable anonymity [9,28] allows a trusted third
party to discover the identity of all otherwise anonymous participants. Condi-
tional anonymity requires that a user’s transactions remain anonymous until

556 I. Damg̊ard et al.

certain conditions are violated [7,8,17]. In [17], an unclonable identification
scheme is introduced, that is, roughly, an identification scheme where honest
users can identify themselves anonymously as members of a group, but where
clones of users can be detected and have their identities revealed if they identify
themselves simultaneously. This was extended from one-time authentication to
n-times anonymous authentication in [7] where a certain number of unlinkable
accounts are derived that can later be efficiently traced. The works of [4,32,40,41]
addressed related problems of allowing a user to show a credential anonymously
and unlinkably up to n times to a particular verifier. The potential for abuse of
unconditional anonymity by misbehaving users has been articulated in the con-
text of group signatures. In a group signature scheme, each group member can
sign a message on behalf of a group such that anyone can verify that the group
signature is produced by someone in the group, but not who exactly. Our idea for
identifying all accounts of a user in case of revocation by using a PRF to gener-
ate account identifiers is reminiscent of the work of traceable signatures [15] that
enable a tracing agent to identify all signatures produced by a particular mem-
ber. The idea of deriving a certain number of unlinkable accounts that can later
be efficiently traced has been used in various forms in the anonymous credential
literature [5,7,15] for the purposes of balancing accountability and anonymity.

Unfortunately none of the previous works seem to fit our intended use case,
which motivated us to design the system described in this paper. Moreover, the
toolbox of efficient tools available to the protocol designer has grown in recent
years (e.g., the CL encryption scheme, advances in SNARKs, etc.), which also
motivates exploring new designs.

The zkLedger protocol [31] is an asset transfer scheme that hides transaction
amounts and sender-receiver relationship, and supports auditing. The protocol
is for a setting where the transacting parties are banks, and requires the par-
ticipation of the banks for an audit to take place. The work of [3] presents a
privacy-preserving token management system that supports auditing in permis-
sioned blockchains. The system of [3] is in the UTXO framework, where users own
tokens that are certified, and prove ownership of tokens in a privacy-preserving
manner. In contrast, we work in the account-based model; and our design is
modular – the identity layer is separate from the transaction layer. One main
difference of our work from the works of [31] and [3] is that while both these works
assume that the entire system is permissioned, again our design is more modu-
lar: our ID layer obviously assumes that IPs and ARs are known (and trusted to
some extent) and is therefore in some sense permissioned. However, the ID layer
can work on top of the consensus mechanism of a permissionless blockchain, i.e.,
any blockchain that can be abstracted using the ledger functionality, that we
define of our full version.

Finally, Solidus [13] is a privacy-preserving system that allows customers
of financial institutions (e.g., banks) to transfer assets and ensures that only
the banks of the sender and receiver learn the transaction details. While there
is no explicit audit functionality in Solidus, banks can reveal the content of a

Balancing Privacy and Accountability in Blockchain Identity Management 557

suspicious transaction to the authorized auditors. However this approach requires
to trust a single party (i.e., the bank).

2 Preliminaries and Building Blocks

2.1 Notation

For any positive integer n, [n] denotes the set {1, . . . , n}. We write f(λ) ≈λ g(λ)
if the difference between f and g is negligible in λ. We use DPT (resp. PPT) to
mean a deterministic (resp. probabilistic) polynomial time algorithm. We denote
by Y ←$ F(X) a probabilistic algorithm F that on input X outputs Y . Similarly,
notation Y ← F(X) is used for a deterministic algorithm with input X and
output Y . All adversaries will be stateful. We use the identifier AH for account
holder, IP for identity provider and AR for anonymity revoker. By an identifier,
we mean an arbitrary string that uniquely identifies a party. Throughout the
paper, Fq will denote the field with q elements.

2.2 Pseudorandom Functions

We define a weak notion of PRF robustness, meaning that is should be hard to
find a key that produce collisions with the PRF evaluation of an honest user.
Our definition is similar to the one in [22], but here one of the two keys is chosen
honestly.

Definition 2.1 (Weakly Robust PRF). A PRF is weakly robust if:

Pr[K ←$ Gen(1λ), (x∗,K∗) ←$ APRFK(·)(1λ) : ∃(x, y) ∈ Q,PRFK∗(x∗) = y] ≈λ 0

where Q is the set of inputs/outputs of the oracle available to the adversary.

Instantiation with Dodis-Yampolskiy PRF. We use the PRF of Dodis
and Yampolskiy [21] that operates in a group G of order q with generator g.
On input x and the PRF key K ←$Fq, PRFK(x) = g1/K+x. This is shown to
be pseudorandom under the Decisional Diffie-Hellman Inversion assumption in
group G. Note that the security holds only for small domains, namely inputs that
are slightly superlogarithmic in the security parameter, but this is sufficient for
our work, as the maximum number of accounts a user can open is less than a
constant MaxACC. It can also be easily shown that the Dodis-Yampolskiy PRF
is weakly robust: using the PRF assumption, we can replace the output of the
PRF oracle with random group elements. If the adversary outputs an input x∗

and key K∗ that are compatible with one of the output of the oracles, we can
compute the discrete logarithm of that element as 1/(K∗ + x∗).

558 I. Damg̊ard et al.

2.3 Blind Signature Schemes

We adapt the notation of [38] to two-round blind signature schemes.

Definition 2.2 (Blind Signature Schemes). An interactive signature
scheme between a signer S and user U consists of a tuple of efficient algorithms
BS = (Setup,KeyGen,Sign1,Sign2,Unblind,VerifySig) where

– Setup(1λ), on input the security parameter 1λ outputs pp, which is given
implicitly as input to all other algorithms, even when omitted.

– KeyGen(pp), on input the public parameter pp generates a key pair (sk, pk)
for security parameter λ.

– Sign1(pk,m), which is run by U , takes as input pk and a message m ∈ {0, 1}∗

and outputs sign1 and ω (wlog ω can be thought of as the randomness used
to run Sign1).

– Sign2(sk, sign1), which is run by S, takes as input sk and sign1 and outputs
sign2.

– Unblind(sign2, ω), which is run by U , takes as input sign2, ω and outputs σ.
– VerifySig(pk,m, σ) outputs a bit.

Remark 2.1. Note that a blind signature scheme implicitly defines a normal sig-
nature scheme as well, where the signing algorithm Sign(sk,m) simply emulates
a blind signature protocol and outputs the resulting signature σ.

The correctness property of the scheme requires that the following holds:
for any (pp) ←$ Setup(1λ), (sk, pk) ←$ KeyGen(pp), any message m ∈ {0, 1}∗,
if (sign1, ω) ←$ Sign1(pk,m), sign2 ←$ Sign2(sk, sign1), σ = Unblind(sign2, ω)
then VerifySig(pk,m, σ) = 1 with overwhelming probability over λ ∈ N.

We require the standard notion of existential unforgeability under chosen
message attacks (EUF-CMA) [27]. The blind signature scheme we use should
additionally satisfy two properties, namely Blindness and simulatability, where
the second is an ad-hoc definition required for our UC proof of security that
ensures the existence of an additional simulation algorithm Sim that can sim-
ulate sign2. The formal definition of these properties can be found in the full
version [18].

2.4 (Ad-Hoc) Threshold Encryption Scheme

Definition 2.3. A (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc,
ShareDec,TCombine) over message space M consists of the following algorithms:

– TKeyGen(1λ) is a randomized key generation algorithm that takes the security
parameter λ as input and returns a private-public key pair (sk, pk).

– TEncn,d
pkR

(m), a probabilistic encryption algorithm that encrypts a message
m ∈ M to a set of public keys pkR = {pki}i∈R in such a way that any
size d + 1 subset of the recipient set should jointly be able to decrypt. We
sometimes write TEncn,d

pkR
(m; r) when we want to be able to fix the value of

the randomness r to a specific value.

Balancing Privacy and Accountability in Blockchain Identity Management 559

– ShareDecn,d
pkR,ski

(ct), on input a ciphertext ct and a secret key ski, outputs a
decryption share μi.

– TCombinen,d
pkR

(ct, {μi}i∈I), a deterministic algorithm that takes a subset I ⊂
[n] with size d + 1 of decryption shares {μi}i∈I and outputs either a message
m ∈ M or ⊥.

We use the static security definition of Reyzin et al. [37] for threshold encryp-
tion schemes which requires two properties, namely static semantic security and
partial decryption simulatability as defined in appendix of the full version [18].

For the definitions of Commitments scheme, Secret Sharing and Zero-
Knowledge proofs, we refer the reader to the full version [18].

3 System Design

We give a high-level overview of the design of the identity layer in terms of the
entities involved, data objects and protocols between the entities.

Entities Involved. The following entities are involved in our design:

– Account Holders (AH): those are individuals who hold accounts on the block-
chain. We assume AHs possess some mean for performing legal identification
(e.g., a passport), in the country where they live. They are interested in
opening accounts and performing transactions on the blockchain but, before
doing so, they have to register with an Identity Provider (IP).

– Identity Provider (IP): an identity provider is an entity that, as the name sug-
gests, can provide a digital identity to an AH. The identity provider “autho-
rizes” a user to open accounts on the blockchain, and therefore to perform
transactions. Jumping ahead, when observing transactions on the blockchain,
it should not be possible to find out the identity of an AH (not even for the
IP itself), while everyone should be able to see which IP has authorized a
given account, thus creating trust in the account.

– Anonymity Revoker (AR): anonymity revokers are parties which are involved
in case where law-enforcement or other authorized entities need to be able to
extract the identity of the owner of some account on the blockchain. We can
make threshold assumptions on the AR and e.g., require that at least d + 1
ARs must give an approval before the anonymity of a user is revoked.

Data Objects. We now describe the data objects that are held by the entities.

Account Holder Certificate (AHC). After an account holder registers with an
identity provider, the AH obtains a certificate containing:

– A public identity credential IDcredPUB and a secret identity credential IDcredSEC.
– A key K for a pseudorandom function PRF.
– One or more attribute lists AL such as some identifier, age, citizenship, expi-

ration date, etc.

560 I. Damg̊ard et al.

– A signature on (IDcredSEC,K,AL) that can be checked using pkIP. A valid
signature proves that an AH with attributes as in AL has registered with IP
and has proved knowledge of IDcredSEC corresponding to IDcredPUB.

Account Creation Information (ACI). Given an AHC, an account holder can
create new accounts and post the corresponding ACI on the ledger, containing:

– RegIDACC, an account registration ID. This is defined to be RegIDACC =
PRFK(x) where K is a key held by AH and signed by the IP, and where
the account in question is the x’th account opened by the AH based on a
given AHC. If AH behaves honestly, then RegIDACC is unique for the account,
and x ≤ MaxACC. The latter condition is enforced by the proof below, the
former can be checked publicly.

– Anonymity revocation data: this is a threshold encryption EID =
TEncn,d

PKAR
(IDcredPUB), where any subset of size d + 1 of anonymity revokers

are able to decrypt EID and obtain IDcredPUB.
– The identity IP of the identity provider who did the signature in the AHC

used for this account.
– An account specific public key pkACC. It will be used, for instance, to verify

transactions related to the account.
– A policy P, which asserts some information about the attribute list AL.
– A proof π that can be checked using pkIP and verifies that ACI can only be

created by an AH that has obtained an AHC from IP, such that P(AL) = 	,
where AH knows the secret keys corresponding to pkACC, as well as IDcredSEC
corresponding to the IDcredPUB that was presented to the IP, and where
RegIDACC,EID and ERegID = TEncn,d

PKAR
(K) are correctly generated.

Identity Provider’s information on Account Holder (IPIAH). This is the data
record that the IP stores after an AH has registered. It contains:

– The name AH of the account holder and its public identity credential
IDcredPUB.

– A set of anonymity revokers AR1, ...,ARn with public keys PKAR and an
encryption ERegID = TEncn,d

PKAR
(K). Here, K is the PRF key chosen by the

AH at registration time.

Protocols. The following are the main protocols in our design.

Account Holder Registration. The protocol takes place between an IP and an
AH who owns a key pair (IDcredSEC, IDcredPUB) and an attribute list AL. At the
end of the protocol, the AH receives an AHC and the IP obtains a IPIAH as
described above. The AH sends their attribute list AL to IP and proves (via non-
cryptographic means) their identity to IP. More concretely, this means that the
IP must verify that the entity it is talking to indeed has the name AH and hence
it received AL from the correct entity. It should also verify that the attributes in
AL are correct w.r.t. the AH. The AH also sends to IP their public key IDcredPUB

Balancing Privacy and Accountability in Blockchain Identity Management 561

and an encryption ERegID = TEncn,d
PKAR

(K) where K is a PRF key. Next, AH and
IP engage in a blind signature scheme, which allows AH to receive a signature
on (IDcredSEC,K,AL) that is generated under the secret key skIP of the IP. In
addition, AH proves (cryptographically, in ZK) that they know IDcredSEC corre-
sponding to IDcredPUB, that the same IDcredSEC was input to the blind signature,
and that the encryption contains the same K that was input to the blind signa-
ture scheme. IP stores IPIAH = (IDAH, IDcredPUB,AL,ERegID,AR1, . . . ,ARn).

Create New Account. An account holder AH wants to create an account that
satisfies some policy P (e.g., above 18, resident in country X, etc.). They
take as input an AHC, a policy P and the public key pkAR of one (or more)
anonymity revoker(s) with name AR. At the end, AH produces some ACI that
can be posted to the blockchain. They also need to store secret key skACC
that is specific to the account. The protocol works as follows: AH generates
an account key pair (pkACC, skACC) and an encryption of their public identity
credential IDcredPUB under the public key of the anonymity revokers’ PKAR, i.e.,
EID = TEncn,d

PKAR
(IDcredPUB). Next, AH calculates RegIDACC = PRFK(x), where we

assume this is the x’th account that is opened using the AHC that is input. At
last, AH produces a non-interactive zero-knowledge (NIZK) proof of knowledge
proving that everything was computed correctly e.g., the predicate satisfies the
attributes, the signature, keys, and encryptions are valid, and x is below MaxACC.

Revoke Anonymity of Account. Revocation of the anonymity of an account can
be done by at least d + 1 of the n ARs involved in the set-up of the account,
working together with the IP with whom the AH registered. The input is an
account identifier RegIDACC and the output is the name AH of the account
holder. The protocol proceeds as follows: Given an account RegIDACC whose
anonymity needs to be revoked, the ARs find the ACI containing RegIDACC on
the blockchain, collaborate to decrypt EID and learn IDcredPUB. The registration
information also contains the public name IP of the identity provider who reg-
istered IDcredPUB. The AR’s contact this IP who then locates the IPIAH = (AH,
IDcredPUB,AL,ERegID,AR1, ...,ARn) record that contains the IDcredPUB that was
decrypted. This record also includes AH, thus IP and the set of ARs have now
identified the AH.

Trace Accounts of User. If a user with a given name AH is suspected of engaging
in illegal activities, the IP and a set of at least d+1 ARs can identify all accounts
of that user. The IP searches its database to locate the IPIAH = (AH, IDcredPUB,
AL,ERegID,AR1, ...,ARn) containing the relevant AH. This record also contains
the names of the relevant AR’s. A qualified set of these could decrypt the ERegID

to learn the PRF key K and generate all values PRFK(x) for x = 1, . . . ,MaxACC in
public. However, due to technicalities in the security reduction, this would require
the PRF to satisfy some form of “selective opening attack” security. Instead, we
let the AR’s decrypt the ciphertext and evaluate the PRF on x = 1, . . . ,MaxACC
inside an MPC protocol, so that K is never revealed to anyone. Either way, the
produced values are all the possible values for RegIDACC that the AH could have
used to form valid accounts, so one can now search the blockchain for accounts
with these registration IDs.

562 I. Damg̊ard et al.

Informal Analysis of the Design. If an AH misbehaves and opens more
accounts than they are allowed to, this must result in two or more accounts with
the same RegIDACC. This can be publicly detected by the blockchain, and the
second account will be discarded. We note that for this to work, we assume that
incentives have been created so that some parties will indeed observe the dupli-
cates and alert the relevant entities. Moreover, the construction satisfies revo-
cability and traceability, meaning a malicious AH cannot create a valid account
such that the anonymity revokers together with the identity provider are unable
to revoke its anonymity or trace it. This follows from the soundness of the
underlying zero-knowledge proofs which imply EID = TEncn,d

PKAR
(IDcredPUB) and

ERegID = TEncn,d
PKAR

(K). Thus, any subset of size d + 1 of anonymity revokers
can decrypt EID (resp. ERegID) and revoke the AH’s anonymity (resp. trace all
the AH’s accounts). Lastly, due to the security of the underlying PRF and the
threshold encryption scheme and also the ZK property of the proof π ∈ ACI, our
design supports anonymity of the account holders, in the sense that a malicious
identity provider even by cooperating with d anonymity revokers and other dis-
honest account holders cannot link a valid account to an account holder. Since
we are using a Blockchain e.g., an imperfect bulletin board, we also need to worry
that a malicious AH cannot “rush” and steal an honest user account number by
maliciously choosing a PRF key K which “hits” some of the account numbers of
the honest users which have not yet been finalized by the Blockchain. In order
to do this, we define and use a weakly robust PRF.

4 ID-Layer Formalization

We use the UC-security [11] framework with static corruption. In the following,
the reader is assumed to be familiar with the basic concepts of UC security and
is referred to [11] for a more detailed description.

In the rest of the section we describe the main ideal functionalities in our
construction. We defer other (standard) ideal functionalities used by our protocol
to the full version [18].

4.1 The ID Layer Functionality

The functionality Fid-layer captures the security properties offered by the design of
our identity layer while hiding the implementation details. After the functionality
is initialized, it allows identity providers IP to issue credentials to account holders
AH based on their attribute lists AL. At the level of the ideal functionality, a
credential is just a pointer to a record storing the tuple (AH, IP,AL). Armed
with a credential, an AH can create up to MaxACC accounts. When creating an
account, the AH can choose a predicate P of their attributes to be made public
(e.g., “I am over 18, I am resident of country X” etc.) which, together with the IP
who authorized this account, are the only information which are made public. We
capture this by having the functionality leak only the fact that an account was

Balancing Privacy and Accountability in Blockchain Identity Management 563

created and not the identity of the AH.3 Moreover, when creating an account,
the AH also registers a key-pair associated to this account. The functionality
is parametrized by any key-pair relation, which allows our ideal functionality
to be used as a building block in more complex protocols, where the AH then
can use those keys for authentication, encryption, etc. Our functionality also
exposes some of the details about the underlying ledger on top of which it is
implemented, thus new accounts are added to a buffer which can be permuted
by the adversary before becoming finalized. This is inevitable as we run this on
top of a ledger which has the same properties. The final two commands of the
ideal functionality, revoke and trace, allow a qualified set of anonymity revokers
AR and an IP to respectively disclose the AH behind a given account, or to find
all accounts belonging to a certain AH.

Functionality Identity layer Fid-layer

We assume that {IP1, . . . , IPm,AR1, . . . ,ARn} is the set of identifiers for
identity providers and anonymity revokers. The functionality is parameter-
ized by values m, n and threshold d, together with an NP (key-pair) relation
RACC such that when parties input CreateACC, they also specify a key-pair
and the functionality verifies if the key-pair satisfies RACC. Moreover, the
functionality maintains the following initially empty records: Count, where
Count[cid] counts the number of accounts created by certificate cid, and
two records Cert and ACC, respectively for keeping track of certificates and
accounts and a list L of public account information.

Initialize
On (INITIALIZE) from party P ∈ {IP1, . . . , IPm,AR1, . . . ,ARn}, output
to A (INITIALIZED, P).
If all parties have been initialized, store (READY).

Issue
On (ISSUE, IP,AL) from an honest account holder AH (or the adversary
in the name of corrupted account holder AH) and input (ISSUE,AH)
from identity provider IP:

– If not (READY), then ignore.

3 Note that the environment provides all inputs and sees all outputs. It can therefore
observe that an account is created right after it instructed an account holder to create
an account, and can make the connection between the two. This corresponds to the
fact that in a real application an adversary may know that in a long time interval,
only one user creates an account, and so the next account that shows up on chain
must belong to that user. Of course, our system cannot prevent this - the best we can
do is to make sure that the account itself is anonymous. This follows in our model
because the ideal adversary - the simulator - will not learn the identity of the holder
and will still have to produce account information which are indistinguishable from
the real protocol, thus proving that the account information leaks no information
about its holder.

564 I. Damg̊ard et al.

– If there is already a cid with Cert[cid] = (AH, IP, ·, ·), then abort;
otherwise, if IP is honest (resp. corrupt), then send (ISSUE) (resp.
(ISSUE,AH, IP,AL)) to A.

– Upon receiving (cid, ISSUE) from A, if cid = ⊥ (in the case of cor-
rupt IP) or if there already exists cid s.t. Cert[cid]
= ⊥, then abort.
Otherwise, set Cert[cid] ← (AH, IP,AL) and output (ISSUED, cid) to
AH.

Account Creation
Upon inputs (CreateACC, cid,P, (skACC, pkACC)) from honest account
holders AH (or the adversary in the name of corrupted account holder
AH), if not (READY), then ignore. Else, proceed as follows:

– If Cert[cid] = ⊥ then abort, else retrieve (AH′, IP,AL) ← Cert[cid].
– Check if AH′ = AH and Count[cid] < MaxACC and that AL satisfies

the policy P.
– Verify that the key pair (skACC, pkACC) satisfies the relation RACC

and abort otherwise.
– Output (CreateACC,P, pkACC, IP) to A.
– Receiving a response (CreateACC, aid) from A, if aid = ⊥ or

ACC[aid]
= ⊥, then abort, else do the followings:
• set ACC[aid] ← (cid,P, skACC).
• set Count[cid] ← Count[cid] + 1.
• add the tuple (aid,P, pkACC, IP) to the account buffer.

– Return (Created, aid) to AH.
Account Buffer Release

Upon input (RELEASE,Π) from the adversary A, remove all tuples from
the account buffer and add the permuted tuples (aid,P, pkACC, IP) of
accounts to the account list L.

Accounts Retrieve
On (RETRIEVE) from an account holder or party P ∈ {IP1, . . . , IPm,
AR1, . . . ,ARn}, output a list including all existing tuples (aid,P,
pkACC, IP) in the account list L.

Revoke
Upon input (REVOKE, aid) from a (possibly corrupt) identity provider IP
and a set of (possibly corrupt) anonymity revokers {ARi}i∈I⊆[n], proceed
as follows:

– If ACC[aid] = ⊥ then return ⊥. Otherwise, retrieve (cid,P, skACC) ←
ACC[aid].

– If IP is the same as the identity provider in Cert[cid] and |I| > d,
then return (aid,AH) to the IP and {ARi}i∈I . Otherwise, return ⊥.
Moreover, if the identity provider or at least one anonymity revoker
is corrupt, output (aid,AH) to A as well.

Trace
Upon input (TRACE,AH) from a (possibly corrupt) identity provider IP
and a set of (possibly corrupt) anonymity revokers {ARi}i∈I , proceed
as follows:

Balancing Privacy and Accountability in Blockchain Identity Management 565

– If there is no record (AH, IP, ·, ·) in Cert, then return ⊥. Otherwise,
retrieve (AH, IP, ·) ← Cert[cid].

– If |I| > d, return to IP and {ARi}i∈I the list of all aid’s such that
ACC[aid] = (cid, ·, ·). Moreover, if the identity provider or at least
one anonymity revoker is corrupt, return the list to A as well.

4.2 Issuing Credentials – The Functionality

We describe here Fissue, an ideal functionality capturing the desired properties
of the issue protocol, which allows an identity provider to issue credentials to
account holders. Note that the functionality can be seen as an augmented blind
signature functionality: the account holder receives a signature (under the secret
key of the identity provider) on a secret message m (as in blind signatures) but
also on some public auxiliary information aux and on a secret key chosen by the
account holder. The identity provider is not supposed to learn m (as in blind
signatures), but in addition the identity provider learns a ciphertext which is
guaranteed to contain an encryption of m and the public key corresponding to
the secret key which is being signed.

Functionality Issue FR,TE,SIG
issue

The functionality is parametrized by an NP relation R correspond-
ing to the account holders key pair, a signature scheme SIG =
(Setup,KeyGen,Sign,VerifySig) and a (n, d)-threshold encryption scheme
TE = (TKeyGen,TEnc,TDec). We assume that {IP1, . . . , IPm} is the set
of identifiers for identity providers.

Setup
– Upon input (SETUP) from any party, and only once, run
pp ←$ Setup(1λ) and return (SETUPREADY, pp) to all parties.

Initialize
– Upon input (INITIALIZE, (skIP, pkIP)) from identity provider IP,

ignore if the party is already initialized or if SETUPREADY has not
been returned yet. Otherwise, if (skIP, pkIP) is a valid key pair accord-
ing to the relation defined by KeyGen(pp), store (skIP, pkIP) for this
party and output (INITIALIZED, pkIP, IP) to A.

– If all parties have been initialized, store (READY).
Issue

On input
(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
from account

holder AH and input (ISSUE,AH, pkAR) from identity provider IP:
– If not (READY), then ignore.
– If (skAH, pkAH)
∈ R or ct
= TEncn,d

PKAR
(m; r) then abort.

– Otherwise compute σ ←$ Sign((skAH,m, aux), skIP).
– Output σ to AH and (pkAH, aux, ct) to IP.

566 I. Damg̊ard et al.

5 Formal Protocols Specifications

5.1 Identity Layer Protocol

The protocol Πid-layer is run by parties interacting with ideal functionalities
Freg,Fissue,Fnizk, Fcrs, Fledger and Fmpc-prf . Let R and RACC be NP relations
corresponding to the account holders’ key-pair and accounts’ key-pair, respec-
tively. Let TE = (TKeyGen,TEnc,TDec) denote a threshold encryption scheme,
PRF a pseudorandom function and SIG = (KeyGen,Sign,VerifySig) a signature
scheme. Protocol Πid-layer proceeds as follows.

Protocol Identity layer Πid-layer

Parameters for ideal functionalities.

– We use a Fledger that implements the following VALIDATE predicate: the
predicate accepts if the NIZK proof π is valid and if RegIDACC has not
been seen before.

– We use a Fcrs functionality that outputs the public parameters for the
signature scheme and the threshold encryption scheme.

The protocol description for an account holder AH.

– On input (ISSUE, IP,AL), retrieve the public key PKIP of identity
provider IP and the vector PKAR of all public keys of the anonymity
revokers via Freg and proceed as follows:

• Generate a key pair (IDcredSEC, IDcredPUB) satisfying R.
• Choose a random key K for PRF and compute the encryption

ERegID = TEncn,d
PKAR

(K; r) with randomness r.

• Call FR,TE,BS
issue on input

(
ISSUE, (ERegID,K, r,PKAR),AL, (IDcredSEC,

IDcredPUB), IP
)
. After receiving the response σ from FR,TE,BS

issue , set
cid = (IP,AL, IDcredSEC, σ,K).

– On input (CreateACC, cid,P), proceed as follows
• If there is no record cid = (IP,AL, IDcredSEC, σ,K), then abort.
• Generate an account key pair (pkACC, skACC) satisfying RACC.
• Compute EID = TEncn,d

PKAR
(IDcredPUB; r′).

• Compute RegIDACC = PRFK(x), where this is x’th account that is
created using cid.

• Produce a NIZK π by calling Fnizk for statement

st = (P,EID,RegIDACC, IP, pkACC)

using secret witness

w = (σ, x, r′, IDcredSEC,K,AL, skACC, IDcredPUB)

for the relation R(st, w) that outputs 	 if:

Balancing Privacy and Accountability in Blockchain Identity Management 567

1. The signature σ is valid for (IDcredSEC,K,AL) under pkIP.
2. AL satisfies the policy i.e., P(AL) = 	.
3. RegIDACC = PRFK(x) for some 0 < x ≤ MaxACC.
4. EID = TEncn,d

PKAR
(IDcredPUB; r′).

5. (pkACC, skACC) is a valid key pair according to RACC.
6. (IDcredSEC, IDcredPUB) is a valid key pair according to R

• Let ACI = (RegIDACC,EID, IP, pkACC,P, st, π) and SIACC = skACC.
Send the input (APPEND,ACI) to Fledger.

• Store tuple (ACI,SIACC) internally and return (Created,RegIDACC).
– On input (RETRIEVE), call Fledger on input RETRIEVE. After receiving

(RETRIEVE, L) from Fledger, output L.

The protocol description for identity providers and anonymity
revokers.

– On input INITIALIZE from P ∈ {IP1, . . . , IPm}, obtain crs from Fcrs,
generate key pair (skIP, pkIP) ←$ KeyGen(1λ) and input (INITIALIZE,
(skIP, pkIP)) to FR,TE,SIG

issue .
– On input INITIALIZE from P ∈ {AR1, . . . ,ARn}, obtain crs from Fcrs,

generate key pair (skAR, pkAR) ←$ TKeyGen(1λ) and input (REGISTER,
skAR, pkAR) to Freg.

– On input (ISSUE,AH) from identity provider IP, call FR,TE,SIG
issue with input

(ISSUE,AH, pkAR). After receiving the response (IDcredPUB,AL,ERegID)
from FR,TE,SIG

issue , set IPIAH = (AH, IDcredPUB,AL,ERegID).
– On input (RETRIEVE), call Fledger on input RETRIEVE. After receiving

(RETRIEVE, L) from Fledger, output L.
– On input (REVOKE,RegIDACC) from an identity provider IP and a set of

anonymity revokers {ARi}i∈I⊆[n], proceed as follows:
• Anonymity revokers call Fledger on input RETRIEVE. After receiving

(RETRIEVE, L) from Fledger, they first look up ACI in L that contains
RegIDACC. Next, each ARi decrypts the EID of the ACI by computing
μi = ShareDecn,d

pkI ,ski
(EID). Finally, all anonymity revokers combine

their shares and compute IDcredPUB = TCombinen,d
pkI

(EID, {μi}i∈I) and
return IDcredPUB to the IP.

• The ACI contains the public name IP of the identity provider who
registered IDcredPUB. If IP is different from the requester, then ignore.
Else, the IP locates the IPIAH = (AH, IDcredPUB,AL,ERegID) record,
containing the IDcredPUB that was decrypted and outputs AH.

– On input (TRACE,AH) from an identity provider IP and a set of
anonymity revokers {ARi}i∈I⊆[n], proceed as follows:

• IP searches the database to locate the IPIAH = (AH, IDcredPUB,AL,
ERegID) containing the relevant AH and sends ERegID via Fsmt to the
set of anonymity revokers.

568 I. Damg̊ard et al.

• Each ARi computes Ki = ShareDecn,d
pkI ,ski

(ERegID). Then, they call
Fmpc-prf on input (COMPUTE,Ki) and receive all values PRFK(x) for
x = 1, . . . ,MaxACC. These values are all the possible values for
RegIDACC that the AH could have used to form valid accounts.

5.2 Proof of Security for Identity Layer

Tolerated Corruptions. We prove security in two separate cases: with arbi-
trarily many malicious AHs and up to threshold semi-honest ARs, or with semi
honest IP and up to threshold semi-honest ARs. Note that for technical reasons
we cannot let the IP be corrupt (even if only semi-honest) at the same time with
a malicious AH, since in this case the (monolithic) adversary would learn the
secret key of the corrupt IP and would be able to forge invalid credentials for
the corrupt AH’s.

Assumptions on the Environment. We consider executions with restricted
adversaries and environments, that only input attribute lists AL in the ISSUE
command which are valid with respect to the account holder. This restriction
captures the fact that an honest IP in the real world is trusted to check (by non-
cryptographic means) that an account holder AH actually satisfies the claimed
attribute list AL.

Theorem 5.1. Suppose that TE is a (n, d)-threshold encryption scheme, PRF
is a weakly robust pseudorandom function, R a hard relation, and SIG =
(KeyGen,Sign,VerifySig) is a EUF-CMA signature scheme, then Πid-layer, for all
restricted environment (as defined above), securely implements Fid-layer in the
{Fcrs,Freg,Fnizk,Fsmt,FR,TE,SIG

issue ,Fledger,Fmpc-prf}-hybrid model in the presence of
an actively corrupted AH, and d semi-honest anonymity revokers AR1, . . . ,ARd,
or semi-honest IP and d semi-honest anonymity revokers AR1, . . . ,ARd.

The simulator Sim emulates internally functionalities Fcrs,Freg,Fnizk,

Fsmt,FR,TE,SIG
issue ,Fledger,Fmpc-prf . At the start Sim initializes empty lists listissue,

listacc, listledger, listh-aid, listh-pk, listh-sig. Here is the description of the
simulator:

– Command INITIALIZE. Sim emulates Fcrs and generates public parameters
for the signature scheme and threshold encryption scheme. Every time an
honest or semi-honest IP or AR invokes the initialize command, the simulator
generates a key-pair for them.

– Command ISSUE. Passively corrupted IP, honest AH. The simulator receives
(ISSUE,AH, IP,AL) in case of corrupt IP from the ideal functionality Fid-layer,
and has to produce a view indistinguishable from the protocol which is con-
sistent with this. The simulator does so by emulating the output Fissue for IP
namely (IDcredPUB,AL,ERegID) to IP where the simulator encrypts a dummy

Balancing Privacy and Accountability in Blockchain Identity Management 569

value for ERegID and IDcredPUB is generated according to R. The simulator
adds ERegID to listh-ct and IDcredPUB to listh-pk. Sim adds to listissue the
entry 〈(AH,AL, IP); (ERegID, IDcredPUB,AL)〉.
Malicious AH, honest IP. When a corrupt AH invokes FR,TE,SIG

issue on com-

mand
(
ISSUE, (ERegID,K, r,PKAR), AL, (IDcredSEC, IDcredPUB), IP

)
, Sim aborts

if ERegID is not an encryption of K or if (IDcredSEC, IDcredPUB) is not a valid
keypair; Sim outputs fail if ERegID ∈ listh-ct or if IDcredPUB ∈ listh-pk.
Otherwise, Sim calls command ISSUE of the functionality on input (IP,AL)
and returns cid = (IP,AL, IDcredSEC, σ,K) to AH where σ is a signature
computed by Sim using Sign of SIG (since the simulator is internally emu-
lating the honest IP w.r.t. the corrupt account holder AH). Sim adds
(σ; (IDcredSEC,K,AL); IP) to listh-sig.

– Command CreateACC. Malicious AH. When a corrupt AH invokes Fledger

on input ACI = (st, π) (where st = (P,EID,RegIDACC, IP, pkACC)), the sim-
ulator Sim uses Fnizk to extract the witness w = (σ, x, r′, IDcredSEC,K,AL,
skACC, IDcredPUB) (or abort if the proof doesn’t verify). If the simulator
sees a repeated account (RegIDACC,EID, IP, pkACC,P, π) ∈ listacc. Other-
wise, the simulator outputs fail if one of the following condition holds:
(σ; (IDcredSEC,K,AL); IP)
∈ listh-sig, if IDcredPUB ∈ listh-pk, if EID ∈ listh-ct,
if RegIDACC ∈ listh-aid, or if x > MaxACC. Otherwise the simulator inputs
the CreateACC(cid,P, (skACC, pkACC)) command to the ideal functionality and,
when asked, inputs aid = RegIDACC to the ideal functionality.
Honest AH. For an honest AH, the simulator upon receiving (CreateACC,P,
pkACC, IP) from the ideal functionality, picks a random aid in the domain of
the PRF and forwards it to the functionality (also adds it into listh-aid).
Then, the simulator prepares st = (P,EID,RegIDACC = aid, IP, pkACC) where
EID is an encryption of a dummy value (and is added to listh-ct), simulates
a proof π via Fnizk and appends (st, π) to the buffer of the ledger.
Add entry (RegIDACC,EID, IP, pkACC,P, π) in listacc.

– Command RELEASE. the simulator simulates these commands directly simu-
lating the calls to Fledger e.g., when the adversary invokes (RELEASE,Π) adds
the permuted buffer to the list listledger and then resets the buffer.

– Command RETRIEVE. Sim emulates the retrieve command in Fledger and gives
as output listledger.

– Command REVOKE. Semi-honest IP and up to d AR, honest AH. When the
IP and a qualified set of AR (of which up to d are corrupt) invoke REVOKE,
the simulator Sim obtains RegIDACC = aid and AH from the input/output
of the functionality Fid-layer. Now Sim, using RegIDACC, searches listacc and
retrieves the corresponding EID. Similarly, using (AH, IP), searches listissue
and retrieves the corresponding IDcredPUB. Then the simulator Sim equivocates
the decryption of EID to IDcredPUB using SimShare (defined in the simulatability
property of the threshold encryption scheme).
Malicious AH and up to d AR. The simulator receives (RegIDACC,AH) from
the ideal functionality, looks up the ciphertext EID corresponding to RegIDACC

and runs the threshold decryption protocol as honest parties would do.

570 I. Damg̊ard et al.

– Command TRACE. Semi-honest IP and up to d AR, honest AH. When the IP
and a qualified set of AR (of which up to d are corrupt) invoke TRACE, the sim-
ulator Sim receives AH and a list listRegIDACC

of aid’s from the input/output
of the functionality Fid-layer. Now Sim recovers the ciphertext ERegID. Finally
Sim programs the output of Fmpc-prf to be consistent with listRegIDACC

.
Malicious AH and up to d AR. The simulator receives AH and a list of accounts
{RegIDACC} from the ideal functionality. The simulator looks up the cipher-
text ERegID corresponding to AH and emulates Fmpc-prf to output the list
{RegIDACC}.

We show in the full version [18] that the view of the environment in the real world
and in the ideal world with the simulator described above are indistinguishable
via a series of hybrids. The main idea is the following: we start by arguing that the
probability that the simulator outputs fail is negligible, since this immediately
leads to an attack on one of the underlying primitives. (Essentially ruling out
fail rules out all ways in which a malicious AH can open an invalid account). We
then change the way in which the simulator produces accounts for the honest AH
piece by piece, and at every step we argue that indistinguishability follows from
the security of one of the underlying primitives, until we reach the distribution
of the real protocol.

5.3 Credential Issue Protocol

The issue protocol Πissue uses as its main ingredient a two-round blind signature
scheme (as defined in Sect. 2.3), augmented with a NIZK that proves that the
input to the blind-signature protocol is consistent with the ciphertext and the
public-key that the account holder sends to the identity provider.

Protocol Issue Πissue

The protocol operates in the {Fcrs,Freg,Fnizk,Fsmt}-hybrid model. Let BS =
(Setup,KeyGen,Sign1,Sign2,Unblind,VerifySig) be a blind signature scheme
and TE = (TKeyGen,TEnc,TDec) be a (n, d)-threshold encryption scheme,
and R an NP relation corresponding to the account holder’s key pair.

– Upon input (SETUP), use FSetup
crs to generate pp ←$ Setup(1λ) and publi-

cize it to all parties.
– Upon input (INITIALIZE, (skIP, pkIP)), the identity provider IP checks if

the key pair has a correct distribution with respect to the KeyGen(pp).
If yes, stores (skIP, pkIP) and sends (REGISTER, skIP, pkIP) to Freg.

– Upon an input
(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
to the

account holder AH and an input (ISSUE,AH, pkAR) to an identity
provider IP, proceed as follows:
1. AH retrieves pkIP from Freg, computes sign1 = Sign1(pkIP, (skAH,

m, aux), pp; r′) and sends (PROVE, st, w) to Fnizk for statement st =

Balancing Privacy and Accountability in Blockchain Identity Management 571

(pkAH, sign1, ct, aux, pp) using secret witness w = (skAH,m, r′, r) for
the relation R1(st, w) that outputs 	 if:
(a) (skAH, pkAH) ∈ R.
(b) sign1 = Sign1(pkIP, (skAH,m, aux), pp; r′).
(c) ct = TEncn,d

PKAR
(m; r)

2. Upon receiving the proof π, AH sends (SEND, IP, (st, π)) to Fsmt.
3. Upon receiving (SENT,AH, (st, π)) from Fsmt, IP inputs

(VERIFY, st, π) (for relation R1) to Fnizk. If they pass, IP com-
putes and sends (through Fsmt) sign2 ← Sign2(skIP, sign1).
AH runs Unblind(sign2, r

′) and obtains a signature σ on
(skAH,m, aux).

5.4 Proof of Security for Issue Protocol

Theorem 5.2. Assume that BS = (Setup,KeyGen,Sign1,Sign2,Unblind,
VerifySig) is a blind signature scheme. Then, Πissue securely implements Fissue in
the {Fcrs,Freg,Fnizk,Fsmt}-hybrid model in the presence of an actively corrupted
AH or a passively corrupted IP.

Security follows from the properties of the blind signature scheme: when the
AR is corrupt the simulator extracts the adversary’s secret values and random-
ness from the NIZK, submits them to the ideal functionality and then simulates
sign2 using the simulatability of the blind signature, which is therefore indistin-
guishable; when IP is corrupt the simulator learns its inputs/outputs from the
ideal functionality, computes sign1 on dummy inputs (which is indistinguishable
thanks to the blindness property), and “simulates” the NIZK (which is trivial
in the hybrid model). We defer the proof to the full version [18].

6 Putting Everything Together

We presented all components of the system in a modular way. We now describe
how to instantiate each of the components needed in the ID-layer.

UC-NIZK. We use two different types of non-interactive zero knowledge proofs
in our implementation. One is based on Σ-protocols made non-interactive with
the Fiat-Shamir (FS) transform [25], and the other is preprocessing-based
zkSNARKs [26,33] in the crs model. Unfortunately, known instantiations of both
types of NIZKs do not satisfy UC-security.

In order to lift SNARK to be UC-secure we use the transformation of Kosba
et al. [29]. At a high level, the transformation works having the prover prove an
augmented relation RL′ that is given in appendix of the full version [18]. A pair
of one-time signing/verification keys are generated for each proof. The prover
is additionally required to show that a ciphertext encrypts the witness of the

572 I. Damg̊ard et al.

underlying relation RL, or the PRF was correctly evaluated on the signature
key under a committed key. Then the prover is required to sign the statement
together with the proof of L′. Since our goal is to use SNARKs on small circuits
for the purposes of prover efficiency, we treat the augmented relation RL′ as
a composite statement [2,10] and use a combination of SNARKs and sigma
protocols to prove the augmented relation of the transformation. We use the CL
scheme [12] for encryption, and fk : x → H(x)k, for k ∈ Zq as the PRF where H
maps bit strings to group elements. This PRF can be shown to be secure under
the DDH assumption where H is modeled as a random oracle. We can use a
sigma protocol to prove correct evaluation of the PRF given public input, public
output, and committed key gk. A standard sigma protocol proof of equality of
discrete logarithms can be used to prove equality of CL encrypted and Pedersen
committed messages. The composition theorem from [2] can be invoked to argue
security of the NIZK for the composite statement formed as the AND of the
statements of the lifting transformation.

As shown in the full version [18], a simulation-sound NIZK (such as Fiat-
Shamir as shown in [23]) and a perfectly correct CPA-secure encryption scheme
are sufficient to instantiate a simulation-extractable NIZK by transforming the
relation to include a ciphertext encrypting the witness. While this lifting tech-
nique for transforming a (sound) NIZK to a knowledge-sound NIZK is folklore,
the use of CL encryption scheme [12] for this goal is novel up to our knowl-
edge. Our choice of the CL encryption scheme in the transformation means that
we can at the same time encrypt messages in the same plaintext space as the
commitment schemes (thus allowing for efficient proofs of equality of discrete log-
arithms), and guarantee efficient decryption by the extractor. This is as opposed
to using e.g., Pailler (where we could have efficient decryption but would need
range proofs to prove equality of exponents in different groups) or ElGamal “in
the exponent” (where the group order could be the same but efficient decryption
can only be achieved by encrypting the witness in short chunks).

Implementation of Πissue. We instantiate the blind signature scheme BS by
the Pointcheval-Sanders (PS) signature scheme [36]. We recall the PS scheme
in the full version [18], and prove that it satisfies the definitions of Blindness
(here we prove a stronger variant than what given in the original paper) and
Simulatability (which we define, as it is needed for proving UC security of the
overall construction). We adopt the threshold encryption TE scheme described
in [19] which follows the share and encrypt paradigm. We use the CL encryption
scheme [12] to encrypt. Once again, our choice of CL encryption scheme means
that we can at the same time encrypt messages in the same plaintext space as
the commitment schemes (for efficient equality proofs) and guarantee efficient
decryption when needed in the TRACE command by the ARs.

We now describe the Σ-protocols we use to prove relation R1 in Πissue. We
let R be the discrete log relation where pk = gsk. Then, we can prove that public
keys and secret keys satisfy R using standard Σ-protocols. The message output
by Sign1 in the PS blind signature is essentially a Pedersen commitment for
vectors. So we prove that Sign1 was executed correctly using a Sigma protocol

Balancing Privacy and Accountability in Blockchain Identity Management 573

(note that due to the homomorphic nature of Pedersen commitment we don’t
need to prove that the values in the AL which are leaked to the IP are correct,
since both parties can add those to the commitment “in public”). Finally, we
use a sigma protocol for proving that the ciphertext encrypts the right value,
and use standard “AND” composition of Σ-protocols to assert that the values
appearing in different proofs are consistent.

Implementation of Πid−layer. We instantiate the weakly robust PRF scheme
(Definition 2.1) with Dodis-Yampolskiy PRF [21]. In this case we use ElGamal
as the base encryption scheme for the “share-and-encrypt” ad-hoc threshold
encryption scheme TE (Definition 2.4). This is because we are encrypting the
public key as a group element, which can also be seen as an encryption of the
secret key for “ElGamal in the exponent”. Note that this allows to both easily
prove knowledge of the secret key, and to make sure that the ARs will only learn
the AH public key when decrypting. Due to the algebraic nature of the DY PRF,
we can efficiently evaluate it inside an MPC protocol as required to implement
Fmpc-prf using techniques described in [16,39].

When creating a new account, we use both SNARKs and Sigma protocols for
proving a single composite statement consisting of a circuit-part and an algebraic
part using the technique of [2] to obtain SNARK on algebraically committed
input. This commitment is used to tie the witness of the Sigma protocol to the
witness used in the SNARK. We describe briefly how we use a combination of Σ-
protocols and SNARKs in order to prove relation R in Πid−layer. We use SNARKs
on committed input to prove that account holder’s attribute list satisfies a certain
policy, and for proving that x ≤ MaxACC for committed x and public MaxACC.
Note that all the Σ-protocol proofs are made non-interactive using Fiat-Shamir.
All the sigma protocols above are described in the full version [18].

Implementation of a Transaction Layer. We include a high-level description
of a method for transferring money on the ledger in the accounts-based model
in the full version of the paper [18].

Acknowledgements. The authors would like to thank all members of the Con-
cordium Blockchain Research Center and the Concordium AG for useful feedback, and
in particular: Matthias Hall-Andersen, Jesper Buus Nielsen, Torben Pedersen, Daniel
Tschudi.

References

1. Zcash Regulatory and Compliance Brief. https://z.cash/wp-content/uploads/
2020/07/Zcash-Regulatory-Brief-062020.pdf. Accessed 01 June 2020

2. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 22

https://z.cash/wp-content/uploads/2020/07/Zcash-Regulatory-Brief-062020.pdf
https://z.cash/wp-content/uploads/2020/07/Zcash-Regulatory-Brief-062020.pdf
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22

574 I. Damg̊ard et al.

3. Androulaki, E., Camenisch, J., Caro, A.D., Dubovitskaya, M., Elkhiyaoui, K.,
Tackmann, B.: Privacy-preserving auditable token payments in a permissioned
blockchain system. In: Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies, pp. 255–267 (2020)

4. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

5. Au, M.H., Susilo, W., Mu, Y., Chow, S.S.: Constant-size dynamic k-times anony-
mous authentication. IEEE Syst. J. 7(2), 249–261 (2012)

6. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. IEEE Computer Society Press
(May 2014)

7. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication. In:
ACM CCS 2006. ACM Press (October/November 2006)

8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

9. Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive
anonymity-revoking trustees. In: Bertino, E., Kurth, H., Martella, G., Montolivo,
E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 33–43. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61770-1 26

10. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: ACM CCS 2019. ACM Press (November
2019)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS. IEEE Computer Society Press (October 2001)

12. Das, P., Jacobson, M.J., Scheidler, R.: Improved efficiency of a linearly homomor-
phic cryptosystem. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI
2019. LNCS, vol. 11445, pp. 349–368. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16458-4 20

13. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: confiden-
tial distributed ledger transactions via PVORM. In: ACM CCS 2017. ACM Press
(October/November 2017)

14. Chaum, D.: Blind signature system. In: CRYPTO 1983. Plenum Press, New York
(1983)

15. Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05445-7 6

16. Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC
keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 654–673. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 32

17. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable group identification. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 33

18. Damg̊ard, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balanc-
ing privacy and accountability in blockchain identity management. IACR Cryptol.
ePrint Arch. 2020, vol. 1511 (2020). https://eprint.iacr.org/2020/1511

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/3-540-61770-1_26
https://doi.org/10.1007/978-3-030-16458-4_20
https://doi.org/10.1007/978-3-030-16458-4_20
https://doi.org/10.1007/978-3-642-05445-7_6
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/11761679_33
https://eprint.iacr.org/2020/1511

Balancing Privacy and Accountability in Blockchain Identity Management 575

19. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: CCA2-secure threshold broadcast
encryption with shorter ciphertexts. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec
2007. LNCS, vol. 4784, pp. 35–50. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75670-5 3

20. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion (extended abstract). In: 33rd FOCS. IEEE Computer Society Press (October
1992)

21. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

22. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

23. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

24. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anony-
mous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34578-5 23

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

27. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

28. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

29. Kosba, A., et al.: How to use SNARKs in universally composable protocols. Cryp-
tology ePrint Archive, Report 2015/1093 (2015). http://eprint.iacr.org/2015/1093

30. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140 (2013)

31. Narula, N., Vasquez, W., Virza, M.: zkLedger: privacy-preserving auditing for dis-
tributed ledgers. Cryptology ePrint Archive, Report 2018/241 (2018). https://
eprint.iacr.org/2018/241

32. Nguyen, L., Safavi-Naini, R.: Dynamic k -times anonymous authentication. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
318–333. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 22

33. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical ver-
ifiable computation. In: 2013 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press (May 2013)

34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-540-75670-5_3
https://doi.org/10.1007/978-3-540-75670-5_3
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-540-24676-3_34
http://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2018/241
https://eprint.iacr.org/2018/241
https://doi.org/10.1007/11496137_22
https://doi.org/10.1007/3-540-46766-1_9

576 I. Damg̊ard et al.

35. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential
assets. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 43–63. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 4

36. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

37. Reyzin, L., Smith, A., Yakoubov, S.: Turning HATE into LOVE: homomorphic
ad hoc threshold encryption for scalable MPC. Cryptology ePrint Archive, Report
2018/997 (2018). https://eprint.iacr.org/2018/997

38. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 39

39. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 342–366. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 17

40. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

41. Teranishi, I., Sako, K.: k -times anonymous authentication with a constant prov-
ing cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 34

https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://eprint.iacr.org/2018/997
https://doi.org/10.1007/978-3-642-30057-8_39
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/11745853_34
https://doi.org/10.1007/11745853_34

Non-interactive Half-Aggregation
of EdDSA and Variants
of Schnorr Signatures

Konstantinos Chalkias1(B), François Garillot1, Yashvanth Kondi2,
and Valeria Nikolaenko1

1 Novi/Facebook, Menlo Park, USA
2 Northeastern University, Boston, USA

Abstract. Schnorr’s signature scheme provides an elegant method to
derive signatures with security rooted in the hardness of the discrete log-
arithm problem, which is a well-studied assumption and conducive to effi-
cient cryptography. However, unlike pairing-based schemes which allow
arbitrarily many signatures to be aggregated to a single constant sized
signature, achieving significant non-interactive compression for Schnorr
signatures and their variants has remained elusive. This work shows how
to compress a set of independent EdDSA/Schnorr signatures to roughly
half their naive size. Our technique does not employ generic succinct
proofs; it is agnostic to both the hash function as well as the specific
representation of the group used to instantiate the signature scheme.
We demonstrate via an implementation that our aggregation scheme
is indeed practical. Additionally, we give strong evidence that achiev-
ing better compression would imply proving statements specific to the
hash function in Schnorr’s scheme, which would entail significant effort
for standardized schemes such as SHA2 in EdDSA. Among the oth-
ers, our solution has direct applications to compressing Ed25519-based
blockchain blocks because transactions are independent and normally
users do not interact with each other.

Keywords: Schnorr · EdDSA · Signatures · Aggregation

1 Introduction

Schnorr’s signature scheme [57] is an elegant digital signature scheme whose
security is rooted in the hardness of computing discrete logarithms in a given
group. Elliptic curve groups in particular have found favour in practical instanti-
ations of Schnorr as they are secured by conservative well-studied assumptions,
while simultaneously allowing for fast arithmetic. One such instantiation is the
EdDSA signature scheme [10], which is deployed widely across the internet (in
such protocols as TLS 1.3, SSH, Tor, GnuPGP, Signal and more).

Y. Kondi—did part of this work during an internship at Novi Financial/Facebook
Research.

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 577–608, 2021.
https://doi.org/10.1007/978-3-030-75539-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_24

578 K. Chalkias et al.

However, the downside of cryptography based on older assumptions is that it
lacks the functionality of modern tools. In this work, we are concerned with the
ability to aggregate signatures without any prior interaction between the signers.
Informally speaking, an aggregate signature scheme allows a set of signatures to
be compressed into a smaller representative unit, which verifies only if all of
the signatures used in its generation were valid. Importantly, this aggregation
operation must not require any secret key material, so that any observer of a
set of signatures may aggregate them. Quite famously, pairing-based signatures
[12,14] support compression of an arbitrary number of signatures into a constant
sized aggregate. Thus far, it has remained unclear how to achieve any sort of
non-trivial non-interactive compression for Schnorr signatures without relying
on generic tools such as SNARKs.

In order to make headway in studying how to compress Schnorr signatures,
we loosely cast this problem as an issue of information optimality. We first recap
the structure of such a signature in order to frame the problem.

Structure of Schnorr signatures. Assume that we instantiate Schnorr’s signature
scheme in a group (G,+) with generator B ∈ G of prime order q. A signer pos-
sesses a secret key sk ∈ Zq for which the corresponding public key is pk = sk ·B.
In order to sign a message m, the signer samples r ← Zq, and computes R = r ·B
and S = sk · H(R, pk,m) + r. The signature itself is σ = (R,S). This format
of Schnorr signature is employed in EdDSA [10]. The original form of Schnorr
signatures are slightly different: σ = (H(R, pk,m), S), the verification rederives
R and verifies the hash. Schnorr signatures of this format can be shortened by a
quarter via halving the output of the hash function [48,57], but this format does
not allow for half-aggregation, thus we are focusing on the Schnorr-type signa-
tures in the (R,S) format. We enumerate most of the popular Schnorr variants
in Appendix A.3 discussing compatibility with our aggregation approach.

In practice, the groups that are used to instantiate Schnorr signatures are
elliptic curves which are believed to be ‘optimally hard’, i.e. no attacks better
than generic ones are known for computing discrete logarithms in these curves
groups. As an example, the Ed25519 curve which requires 256 bits to represent
a curve point is believed to instantiate an optimal 128-bit security level. Con-
sequently, elliptic curve based Schnorr signatures are quite compact: at a λ-bit
security level, instantiation with a 2λ-bit curve yields signatures that comprise
only 4λ bits. Note that we ignore the few bits of overhead/security loss due to
the specific representation of the curve.

Schnorr Signatures are Not Information Optimal. Given a fixed public key, a
fresh Schnorr signature carries only 2λ bits of information. Indeed for a 2λ-bit
curve, there are only 22λ pairs of accepting (R,S) tuples. It seems unlikely that
we can achieve an information-optimal representation for a single signature1.

1 Even for shortened Schnorr signatures σ = (H(R, pk, m), S), where the output of
the hash function is halved, signatures are at least 3λ bits, i.e. 50% larger than the
amount of information they carry.

Non-interactive Half-Aggregation of EdDSA 579

However we can not rule out this possibility when transmitting a larger number
of signatures. Transmitting n Schnorr signatures at a λ-bit security level naively
requires 4nλ bits, whereas they only convey 2nλ bits of information. Therefore
we ask:

How much information do we need to transmit in order to aggregate the
effect of n Schnorr signatures?

We specify that we are only interested in aggregation methods that are agnostic
to the curve and the hash function used for Schnorr - in particular aggregation
must only make oracle use of these objects. This is not merely a theoretical
concern, as proving statements that depend on the curve or code of the hash
function can be quite involved in practice.

Related work is covered in Appendix A where we discuss existing security
proofs for Schnorr signatures, multi-signatures, other variants of Schnorr and
prior work on non-interactive aggregation of signatures.

1.1 Our Contributions

This works advances the study of non-interactive compression of Schnorr signa-
tures.

Simple Half-Aggregation. We give an elegant construction to aggregate n
Schnorr signatures over 2λ bit curves by transmitting only 2(n + 1)λ bits of
information - i.e. only half the size of a naive transmission. This effectively cuts
down nearly all of the redundancies in naively transmitting Schnorr signatures.
Our construction relies on the Forking Lemma for provable security and con-
sequently suffers from a quadratic security loss similar to Schnorr signatures
themselves. Fortunately, this gap between provably secure and actually used
parameters in practice has thus far not been known to induce any attacks. We
also show how this aggregation method leads to a deterministic way of verifying
a batch of Schnorr signatures.

Almost Half-Aggregation with Provable Guarantees. In light of the lossy
proof of our half-aggregation construction, we give a different aggregation scheme
that permits a tight reduction to the unforgeability of Schnorr signatures. How-
ever this comes at higher cost, specifically 2(n+ε)λ bits to aggregate n signatures
where ε ∈ O(λ/ log λ) is independent of n. This construction is based on Fis-
chlin’s transformation [28], and gives an uncompromising answer to the security
question while still retaining reasonable practical efficiency. More concretely the
compression rate of this construction passes 40% as soon as we aggregate 128
signatures, and tends towards the optimal 50% as n increases.

Implementations. We implement and comprehensively benchmark both con-
structions. We demonstrate that the simple half-aggregation construction is
already practical for wide adoption, and we study the performance of our almost
half-aggregation construction in order to better understand the overhead of prov-
able security in this setting.

580 K. Chalkias et al.

A Lower Bound. Finally, we give strong evidence that it is not possible to
achieve non-trivial compression beyond 2nλ bits without substantially higher
computation costs, i.e. our half-aggregation construction is essentially optimal
as far as generic methods go. In particular, we show that aggregating Schnorr
signatures from different users (for which no special distribution is fixed ahead of
time) at a rate non-trivially better than 50% must necessarily be non-blackbox
in the hash function used to instantiate the scheme.

In summary, we propose a lightweight half-aggregation scheme for Schnorr
signatures, a slightly worse performing scheme which settles the underlying the-
oretical question uncompromisingly, and finally strong evidence that achieving
a better compression rate is likely to be substantially more computationally
expensive.

2 Proof-of-knowledge for a Collection of Signatures

In this section we first briefly recall the Schnorr and EdDSA signatures. We
then construct a three-move protocol for the proof of knowledge of a collection
signatures, we then discuss two ways to make it non-interactive with different
security/efficiency trade-offs.

2.1 Schnorr/EdDSA Signatures

We explore Schnorr signatures in the form that generalizes the EdDSA signa-
tures [10]. We use EdDSA, in particular Ed25519, for the purpose of benchmarks
as it is the most widely deployed variant of Schnorr today. The exact algorithm
for EdDSA signatures can be found in the original paper or in the Appendix B.
Appendix A provides more information on other forms of Schnorr signatures.

We assume the scheme to be defined for a group G where the discrete log is
hard with the scalar field Zq, we will denote the designated base point of order
q to be B ∈ G. We will use additive notation to represent the group operation.

Algorithm 1. Schnorr in (R,S)-format and EdDSA signatures

KeyGen(): sample a random scalar s
$←− Zq, output a secret key sk = s and a public

key pk = s · B.

Sign(sk, m): sample a random scalar r
$←− Zq (in EdDSA r is deduced from the secret

key and the message), compute R = r · B and S = r + H0(R, A, m) · s, output
σ = (R, S).

Verify(m, pk, σ): for σ = (R, S) and pk = A accept if S · B = R + H0(R, A, m) · A.

Non-interactive Half-Aggregation of EdDSA 581

2.2 Three-Move (Sigma) Protocol

The construction takes inspiration from the batching of Sigma protocols for
Schnorr’s identification scheme [33].

A Sigma protocol is a three-move protocol run by a prover P and a verifier
V for some relation R = {(x,w)}, for (x,w) ∈ R, x is called an instance and
w is called a witness. R ⊆ {0, 1}∗ × {0, 1}∗, where there exists a polynomial p
such that for any (x,w) ∈ R, the length of the witness is bounded |w| ≤ p(|x|).
Often-times, x is a computational problem and w is a solution to that problem.
In the Sigma protocol the prover convinces the verifier that it knows a witness
of an instance x known to both of them. The protocol produces a transcript
of the form (a, e, z) which consists of (in the order of exchanged messages): the
commitment a sent by P , the challenge e sent by V and the response z sent by P .
The verifier accepts or rejects the transcript. A Sigma protocol for the relation
R with n-special soundness guarantees the existence of an extractor Ext which
when given valid transcripts (accepted by the verifier) with different challenges
(a, e1, z1), (a, e2, z2), . . . (a, en, zn) for an instance x, produces (with certainty) a
witness w for the statement, s.t. (x,w) ∈ R. We will not be concerned with the
zero-knowledge property of the protocol for our application.

For a group G with generator B ∈ G of order q ∈ Z, define the relation
RDL = {(pk, sk) ∈ (G,Zq) : pk = sk·B}. Schnorr’s identification protocol [57] is a
two-special sound Sigma protocol for the relation RDL: given two transcripts with
the same commitment and different challenges, the secret key (discrete logarithm
of pk) can be extracted. It is known how to compress n instances of Schnorr’s
protocol to produce an n-special sound Sigma protocol at essentially the same
cost [33], we use similar ideas to derive a Sigma protocol for the aggregation of
Schnorr signatures, i.e. for the following relation (with hash function H0):

Raggr = {(x,w) | x = (pk1,m1, . . . , pkn,mn), w = (σ1, . . . , σn),
Verify(mi, pki, σi) = true for ∀i ∈ [n]} =

= {(x,w) | x = (A1,m1, . . . , An,mn), w = (R1, S1, . . . , Rn, Sn),
Si · B = Ri + H0(Ri, Ai,mi) · Ai for i = 1..n}

Theorem 1. Protocol 2 is an n-special sound Sigma protocol for Raggr.

Proof. Completeness is easy to verify. Extraction is always successful due to the
following: let F ∈ G[X] be the degree n − 1 polynomial where the coefficient
of xi−1 is given by Ri + H(Ri, pki,mi) · pki for each i ∈ [n]. Define f ∈ Zq[X]
as the isomorphic degree n − 1 polynomial over Zq such that the coefficient of
xi−1 in f is Si (the discrete logarithm of the corresponding coefficient in F).
Observe that f(x) · B = F (x) for each x ∈ Zq. Given a transcript (a, e, z), VΣ

accepts iff z · B = F (e), which is true iff z = f(e). Therefore n valid transcripts
(a, e1, z1), . . . , (a, en, zn) define n distinct evaluations of f (which has degree
n − 1) allowing for recovery of coefficients [Si]i∈[n] efficiently. This is precisely

582 K. Chalkias et al.

Protocol 2. Sigma protocol for a collection of signatures Raggr

For instance x = {(pki = Ai, mi)}n
i=1 and witness w = {σi = (Ri, Si)}n

i=1

Prover PΣ(x, w):
1. Commitment: a = [R1, . . . , Rn]

2. Challenge: e
$←− Z

∗
q

3. Response: z =
∑

i∈[n] Si · ei−1

Verifier VΣ(x, (a, e, z)): Output 1 iff z · B =
∑

i∈[n] e
i−1(Ri + H0(Ri, Ai, mi) · Ai)

Extractor ExtΣ((a, e1, z1), . . . , (a, en, zn)): Define the n×n matrix E = [ej
i]i,j∈[n] and

the column vector Z = ([zi]i∈[n])
T . Output [S1, . . . , Sn] = (E−1Z)T .

the operation carried out by ExtΣ , expressed as a product of matrices. Note that
E = [ej

i]i,j∈[n] is always invertible; each ei is known to be distinct, and so E is
always a Vandermonde matrix. ��

2.3 Proof-of-knowledge

A proof-of-knowledge for a relation R = {(x,w)} is a protocol that realizes the
following functionality:

FR((x,w), x) = (∅, R(x,w))

i.e. the prover and verifier have inputs (x,w) and x respectively, and receive
outputs ∅ and R(x,w) respectively. This definition is taken from Hazay and
Lindell [35,36] who show it to be equivalent to the original definition of Bellare
and Goldreich [5]. We additionally let a corrupt verifier learn aux(w) for some
auxiliary information function aux. As we do not care about zero-knowledge at
all (only compression) this can simply be the identity function, i.e. aux(w) = w.

Proofs-of-knowledge allow for the drop-in replacement mechanism that we
desire: instead of an instruction of the form “A sends n signatures to B” in a
higher level protocol, one can simply specify that “A sends n signatures to FR,
and B checks that its output from FR is 1”.

Among the several landmark transformations of a Sigma protocol into a
non-interactive proof [27,28,51], the most commonly used is the Fiat-Shamir
transform [27]: for a relation R a valid transcript of the form (a, e, z) can be
transformed into a proof by hashing the commitment to generate the challenge
non-interactively: proof = (a, e = H1(a, x), z). Unfortunately, this transforma-
tion induces a security loss, applied directly to the n-sound Sigma protocol for
the relation Raggr from the previous section (Protocol 2), the prover will have to
be rewinded n times to extract the witness. This transformation however gives
a more efficient construction for non-interactive aggregation of signatures that
we discuss in Sect. 3.

To achieve tighter security reduction, we look into the literature on proof-of-
knowledge with online extractions [51]. There extractors can output the witness
immediately without rewinding, in addition to the instance and the proof the

Non-interactive Half-Aggregation of EdDSA 583

extractors are given all the hash queries the prover made. We achieve a proof-of-
knowledge for the relation Raggr which immediately gives an aggregate signature
scheme whose security can be tightly reduced to unforgeability of Schnorr’s sig-
natures as we discuss in Sect. 3.3. We present both protocols in this Section.

Protocol 3. Non-interactive proof-of-knowledge for Raggr

Parameters: A curve group G with generator B ∈ G of order q ∈ Z. For instance
x = {(pki = Ai, mi)}n

i=1 and witness w = {σi = (Si, Ri)}n
i=1 we define three

algorithms. Hash function H1 modeled as a Random-Oracle.
Prover P (x, w) → proof:

1. Compute the scalar e = H1(R1, A1, m1, . . . , Rn, An, mn)
2. Compute the scalar Saggr =

∑n
i=1 ei−1 · Si.

3. Output the proof σaggr = [R1, . . . , Rn, Saggr].
Verifier VRO(x, proof = [R1, . . . , Rn, Saggr]) ← 0/1:

1. Compute the scalar e = H1(R1, A1, m1, . . . , Rn, An, mn).
2. If

∑n
i=1 ei−1 (Ri + H0(Ri, Ai, mi) · Ai) = Saggr · B, output true,

3. otherwise output false.

2.3.1 Fiat-Shamir Transformation

Theorem 2. For every prover P that produces an accepting proof with probabil-
ity ε and runtime T having made a list of queries Q to RO, there is an extractor
Ext that outputs a valid signature for each pki ∈ pkaggr in time nT +poly(λ), with
probability at least ε− (n ·Q)2/2h+1, where h is the bit-length of the H1’s output.
It follows that the scheme (P, V,Ext) is a non-interactive proof-of-knowledge for
the relation Raggr in the random oracle model.

Proof. The extractor Ext runs the adversary n times programming the random
oracle to output fresh random values on each run, giving n proofs that can be
used to obtain n accepting transcripts (a, ei, zi) for i ∈ [n] and invokes ExtΣ
once they are found. Ext runs in time nT , and additionally poly(κ) to run ExtΣ .
The extractor fails in case not all of the ei are distinct which happens with
probability at most (n · Q)2/2h+1 by the birthday bound when we estimate the
probability of at least one hash-collision between the queries of n runs of the
adversary. ��

Another form of the protocol with the challenges derived with independent
hashes allows for extraction of any single signature with a single rewinding.
This protocol is a foundation for the half-aggregation construction for Schnorr
signatures described in Sect. 3.3. To construct an extractor we use a variant of
the Forking Lemma. Originally the Forking Lemma was introduced in the work
of Pointcheval and Stern [53]. We use a generalized version described in [7].

584 K. Chalkias et al.

Protocol 4. Non-interactive proof-of-knowledge for Raggr

Parameters: A curve group G with generator B ∈ G of order q ∈ Z. For instance
x = {(pki = Ai, mi)}n

i=1 and witness w = {σi = (Si, Ri)}n
i=1 we define three

algorithms. Hash function H1 modeled as a Random-Oracle.
Prover P (x, w) → proof:

1. For i ∈ [n] compute the scalars ei = H1(R1, A1, m1, . . . , Rn, An, mn, i)
2. Compute the scalar Saggr =

∑n
i=1 ei · Si.

3. Output the proof σaggr = [R1, . . . , Rn, Saggr].
Verifier VRO(x, proof = [R1, . . . , Rn, Saggr]) ← 0/1:

1. For i ∈ [n] compute the scalars ei = H1(R1, A1, m1, . . . , Rn, An, mn, i).
2. If

∑n
i=1 ei (Ri + H0(Ri, Ai, mi) · Ai) = Saggr · B, output true,

3. otherwise output false.

[7] Generalized Forking Lemma. Fix an integer q ≥ 1 and a set H of size
h ≥ 2. Let A be a randomized algorithm. The algorithm A is given an input
in = (pk, h1, . . . , hq) and randomness y, it returns a pair, the first element of
which is an integer I and the second element of which is a side output proof:

(I, proof) ← A(in; y).

We say that the algorithm A succeeds if I ≥ 1 and fails if I = 0. Let IG be a
randomized input generator algorithm. We define the success probability of A as:

acc = Pr[I ≥ 1; input $←− IG; (h1, . . . , hq)
$←− H; (I, proof) $←− A(input, h1, . . . , hq)].

We define a randomized generalized forking algorithm FA that depends on A:

FA(input) forking algorithm:

1. Pick coins y for A at random
2. h1, . . . , hq

$←− H
3. (I, proof) := A(x, i, h1, . . . , hq; y)
4. If I = 0 then return (0,⊥,⊥)

5. h′
1, . . . , h

′
q

$←− H

6. (I ′, proof ′) := A(x, i, h1, . . . , hI−1, h
′
I , . . . , h

′
q; y)

7. If (I = I ′ and hI �= h′
I) then return (1, proof, proof ′)

8. Else return (0,⊥,⊥).

Let frk = Pr[b = 1; input $←− IG; (b, proof, proof ′) $←− FA(i, x)].

Then frk ≥ acc ·
(

acc
q − 1

h

)
.

Theorem 3. For every prover P that produces an accepting proof for a col-
lection of n signatures with probability ε and runtime T having made a list of
queries Q to RO (H1), there is an extractor Ext that given i∗ ∈ [n] outputs an

Non-interactive Half-Aggregation of EdDSA 585

i∗-th signature that is valid under pki∗ for message mi∗ in time 2T · n, with
probability at least ε · (ε/(n · Q) − 1/2h), where h is the bit-length of the H1’s
output.

Proof. The extractor will run the prover P for the same input twice to obtain
two proofs that differ on the last component:

proof = [R1, . . . , Rn, Saggr] and proof′ = [R1, . . . , Rn, S′
aggr]

it will then be able to extract a signature on pki∗ .
We first wrap the prover P into an algorithm A to be used in the Forking

Lemma. The algorithm A takes input in = ({(pki,mi)}n
i=1, i

∗, h1, . . . , hq), for
q = (Q + 1) · n, and a random tape y, it runs the prover P and programs its H1

random oracle outputs as follows: on the input that was already queried before,
output the same value (we record all the past H1 queries). In case the query can
not be parsed as (R1, A1,m1, . . . , Rn, An,mn, j) ∈ (G×G×{0, 1}∗)n × [n] or in
case the public key Ai∗ does not match the one in the input: Ai∗ �= pki∗ , pro-
gram the oracle to the next unused value of y. Otherwise, if Ai∗ = pki∗ and the
query is of the form (R1, A1,m1, . . . , Rn, An,mn, j) ∈ (G × G × {0, 1}∗)n × [n],
do the following: (1) for each i ∈ [n]\i∗ program the oracle on index i, i.e.
on input (R1, A1,m1, . . . , Rn, An,mn, i), to the next unused value of y, (2)
program the oracle on index i∗, i.e. on input (R1, A1,m1, . . . , Rn, An,mn, i∗),
to the next unused value of h: ht and (3) record the index into the table
T [R1, A1,m1, . . . , Rn, An,mn, i∗] := t.

Note that when the oracle is queried on some (R1, A1,m1, . . . , Rn, An,mn, j),
all the related n queries are determined, those are queries of the form (R1, A1,m1,
. . . , Rn, An,mn, i) for i ∈ [n], so we program all those n queries ahead of time,
when a fresh tuple (R1, A1,m1, . . . , Rn, An,mn) is queried to the H1 oracle (i.e.
on one real query, we program n related queries). The index t recorded in the
table T is the potential forking point, so we program the queries (R1, A1,m1, . . . ,
Rn, An,mn, i) for i ∈ [n]\i∗ first, to the values of y, making sure that those values
of y 2 are read before the forking point (the positions of y that are used here
are therefore the same between rewindings), we finally program (R1, A1,m1, . . . ,
Rn, An,mn, i∗) to the next value of h (the potential forking point, therefore an
oracle query at this value may differ between rewindings). Note also that in the
process of programming we ignore the index j where the real query has been
asked, it is only being used to give back the correct programmed value.

When the prover outputs a proof = [R1, . . . , Rn, Saggr], the algorithm A per-
forms additional queries H1(R1, A1,m1, . . . , Rn, An,mn, j) for all j ∈ [n], making
sure those are defined, and if the proof is valid, it outputs I = T [R1, A1,m1, . . . ,
Rn, An,mn, i∗] and proof, otherwise it outputs (0,⊥).

Next we use the forking lemma to construct an algorithm FA that produces
two valid proofs proof and proof′ and an index I. Since the same randomness
and the same oracle values were used until index I, it must be the case that two
proofs satisfy:
2 An anonymous reviewer suggested a PRF could be used to derive the values of y

from a single seed in order to save space for an implementation of the reduction.

586 K. Chalkias et al.

proof = [R1, . . . , Rn, Saggr],
n∑

i=1

ei (Ri + H0(Ri, Ai,mi) · Ai) = Saggr · B, (1)

proof′ = [R1, . . . , Rn, S′
aggr],

n∑
i=1

e′
i (Ri + H0(Ri, Ai,mi) · Ai) = S′

aggr · B,

where ei∗ �= e′
i∗ and for ∀i �= i∗ei = e′

i,

since the latter are programmed before the forking point I. (2)

Subtracting the two equations (Eq. 1 and Eq. 2) we extracted a signature
(S = Saggr − S′

aggr, Ri) on message mi under the public key Ai.
The success probability of A is ε, hence the probability of successful extrac-

tion according to the Forking Lemma is ε · (ε/(n ·Q)−1/2h). The extractor runs
the prover twice and on each one random oracle query programs at most n − 1
additional random oracle queries. ��

Note that Ext extracts a single signature at a specified position. To extract
all of the n signatures, the prover needs to be rewinded n times.

Corollary 1. For every prover P that produces an accepting proof with probabil-
ity ε and runtime T having made a list of queries Q to RO, there is an extractor
Ext that outputs a full witness (i.e. all valid signatures for all pki ∈ pkaggr) in
time (n + 1)Tn, with probability at least

(
ε · (ε/(n · Q) − 1/2h)

)n, where h is the
bit-length of the H1’s output. It follows that the scheme (P, V,Ext) is a non-
interactive proof-of-knowledge for the relation Raggr in the random oracle model.

2.3.2 Fischlin’s Transformation
Pass [51] was the first to formalize the online extraction problem in the random
oracle model and give a generic transformation from any 2-special sound sigma
protocol to a non-interactive proof-of-knowledge with online extraction. Intu-
itively, Pass’s transformation is a cut-and-choose protocol where each challenge
is limited to a logarithmic number of bits. The prover can therefore compute
transcripts for all of the challenges (since there are a polynomial number of
them), put the transcripts as leaves of the Merkle tree and compute the Merkle
root. The extractor will see all of the transcripts on the leaves since it can exam-
ine random-oracle queries. The prover may construct an actual challenge by
hashing the root of the tree and the original commitment, map the result to one
of the leaves and reveal the Merkle path as a proof of correctness which induces a
logarithmic communication overhead. Fischlin’s transformation [28] implements
essentially the same idea (albeit for a specific class of Sigma protocols) where
the transcripts for opening the cut-and-choose are selected at constant com-
munication overhead, however at the expense of at least twice the number of
hash queries in expectation. Roughly, the selection process works by repeatedly
querying (a, ei, zi) to RO until one that satisfies RO(a, ei, zi) = 0� is found.

A proof-of-knowledge that permits an online extractor is very easy to use in a
larger protocol; it essentially implements an oracle that outputs 1 to the verifier

Non-interactive Half-Aggregation of EdDSA 587

iff the prover gives it a valid witness. A reduction that makes use of an adversary
for a larger protocol simply receives the witness on behalf of this oracle, while
incurring only an additive loss of security corresponding to the extraction error.
This is the design principle of Universal Composability [17] and permits modular
analysis for higher level protocols, which in this case means that invoking the
aggregated proof oracle is “almost equivalent” to simply sending the signatures
in the clear.

We construct a non-interactive version of our aggregation protocol with ideas
inspired by Fischlin’s transformation, so that proofs produced by our protocol
will permit online extraction. There are various subtle differences from Fischlin’s
context, such as different soundness levels for the underlying and compiled pro-
tocols to permit compression, and the lack of zero-knowledge, and so we specify
the non-interactive protocol directly in its entirety below, and prove it secure
from scratch.

Protocol 5. Non-interactive proof-of-knowledge for Raggr

Prover PRO(x, w) → proof:
1. Initialize an array of curve points, a = [R1, . . . , Rn].
2. Initialize empty arrays of scalars: e = [⊥]r and z = [⊥]r; e, z ∈ (Zq ∪ ⊥)r.
3. Set ind = 1, e = 1.
4. While ind ≤ r, do:

(a) Compute z =
∑

i∈[n] Si · ei−1.

(b) If RO(a, ind, e, z)
?
= 0�:

– Set eind = e and zind = z
– Increment the ind counter and reset e = 1

(c) Else: increment e
5. Output the proof (a, e, z)

Verifier VRO(x, proof = (a, e, z)) ← 0/1:
1. Output 1 (accept) if both of the following equalities hold for every ind ∈ [r]:

RO(a, ind, eind, zind) = 0�
∧

zind · G =
∑

i∈[n]

ei−1
ind (Ri + H(Ri, pki, mi) · pki)

2. Output 0 (reject) if even one test does not pass.

The parameters �, r are set to achieve λ bits of security, and adjusted as a
tradeoff between computation and communication cost. In particular, the scheme
achieves r(� − log2(n)) = λ bits of security, proofs are of size n curve points and
r field elements, and take r · 2� hash queries to produce (in expectation).

Theorem 4. The scheme (P, V,Ext) is a non-interactive proof-of-knowledge for
the relation Raggr in the random oracle model. Furthermore for every prover P ∗

that produces an accepting proof with probability ε and runtime T having made
a list of queries Q to RO, the extractor Ext given Q outputs a valid signature for
each pki ∈ pkaggr in time T + poly(λ), with probability at least ε − T · 2−λ.

588 K. Chalkias et al.

Proof.
Completeness. It is easy to verify that when P terminates by outputting a
proof, V accepts this proof string. P terminates once it has found r indepen-
dent pre-images of 0� per RO; in expectation, this takes r · 2� queries, which is
polynomial in λ as � ∈ O(log λ) and r ∈ O(poly(λ)). The prover therefore runs
in expected polynomial time.

Proof of Knowledge. The extractor Ext works by inspecting queries to RO to
find n accepting transcripts (a, ei, zi) and invoking ExtΣ once they are found.
First note that Ext runs in at most |Q| ≤ T steps to inspect queries to RO,
and additionally poly(λ) to run ExtΣ . We now focus on bounding the extraction
error. As ExtΣ works with certainty when given (a, e1, z1), . . . , (a, en, zn), it only
remains to quantify the probability with which Ext will succeed in finding at least
n accepting transcripts in the list of RO queries. The event that the extractor
fails is equivalent to the event that P ∗ is able to output an accepting proof
despite querying fewer than n valid transcripts (prefixed by the same a) to RO;
call this event fail. Define the event faila as the event that P ∗ is able to output an
accepting proof (a, e, z) despite querying fewer than n valid transcripts (prefixed
specifically by a) to RO. Define faila,ind as the event that P ∗ queries fewer than
n valid transcripts to RO prefixed specifically by a, ind, for each ind ∈ [r]. Let
Qind,1, . . . , Qind,m index the valid transcripts queried to RO with prefix a, ind.
The event faila,ind occurs only when m < n, and so the probability that faila,ind

occurs for a given ind can therefore be computed as follows:

Pr[faila,ind] = Pr[RO(Qind,1) = 0� ∨ · · · ∨ RO(Qind,m) = 0�] ≤
∑

j∈[m]

Pr[RO(Qind,j) = 0�]

≤
∑

j∈[n]

Pr[RO(Qind,j) = 0�] =
∑

j∈[n]

1

2�
=

n

2�
=

1

2�−log2(n)

Subsequently to bound faila itself, we make the following observations:

– For faila to occur, it must be the case that faila,ind occurs for every ind ∈ [r].
This follows easily, because every transcript prefixed by a, ind is of course
prefixed by a.

– Each event faila,ind is independent as the sets of queries they consider are
prefixed by different ind values and so are completely disjoint.

The probability that faila occurs can hence be bounded as follows:

Pr[faila] ≤ Pr[faila,1 ∧ · · · ∧ faila,r] =
∏

i∈[r]

Pr[faila,i] ≤
∏

i∈[r]

1

2�−log(n)
= 2−r(�−log(n))

The parameters r, � are set so that r(� − log(n)) ≥ λ and so the above prob-
ability simplifies to 2−λ. As P ∗ runs in time T , in order to derive the overall
probability of the extractor’s failure (i.e. event fail) we take a union bound over
potentially T unique a values, finally giving us Pr[fail] ≤ T ·2−λ which proves the
theorem. ��

Non-interactive Half-Aggregation of EdDSA 589

3 Non-interactive Half-Aggregation of Schnorr/EdDSA
Signatures

Following the definition of Boneh et al. [12], we say that a signature scheme
supports aggregation if given n signatures on n messages from n public keys
(that can be different or repeating) it is possible to compress all these signa-
tures into a shorter signature non-interactively. Aggregate signatures are related
to non-interactive multisignatures [38,46] with independent key generations. In
multisignatures, a set of signers collectively sign the same message, producing a
single signature, while here we focus on compressing the signatures on distinct
messages. Our aggregation could be used to compress certificate chains, signa-
tures on transactions or consensus messages of a blockchain, and everywhere
where a batch of signatures needs to be stored efficiently or transmitted over a
low-bandwidth channel. The aggregation that we present here can in practice be
done by any third-party, the party does not have to be trusted, it needs access
to the messages, the public keys of the users and the signatures, but it does not
need to have access to users’ secret keys.

The aggregate signature scheme consists of five algorithms: KeyGen, Sign,
Verify, AggregateSig, AggregateVerify. The first three algorithms are the same as
in the ordinary signature scheme:

KeyGen(1λ): given a security parameter output a secret-public key pair (sk, pk).
Sign(sk,m): given a secret key and a message output a signature σ.
Verify(m, pk, σ): given a message, a public key and a signature output accept or

reject.
AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn)) → σaggr: for an input set of n

triplets –message, public key, signature, output an aggregate signature σaggr.
AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr) → {accept/reject}: for an input

set of n pairs –message, public key– and an aggregate signature, output accept
or reject.

Some schemes may allow an aggregation of the public keys as well,
AggregatePK, but we do not focus on such schemes here.

We recall the EUF-CMA security and Strong Binding Security (SBS) of
the single signature scheme in Appendix C. Intuitively, EUF-CMA (existen-
tial unforgeability under chosen message attacks) guarantees that any efficient
adversary who has the public key pk of the signer and received an arbitrary num-
ber of signatures on messages of its choice: {mi, σi}N

i=1, cannot output a valid
signature σ∗ for a new message m∗ /∈ {mi}N

i=1 (except with negligible proba-
bility). An SBS guarantees that the signature is binding both to the message
and to the public key, e.g. no efficient adversary may produce two public keys
pk, pk′, two signatures m,m′, s.t. (pk,m) �= (pk′,m′) and a signature σ that
verifies successfully under (pk,m) and (pk′,m′).

3.1 Aggregate Signature Security

Intuitively, the aggregate signature scheme is secure if no adversary can produce
new aggregate signatures on a sequence of chosen keys where at least one of the

590 K. Chalkias et al.

keys is honest. We follow the definition of [12], the attacker’s goal is to produce
an existential forgery for an aggregate signature given access to the signing
oracle on the honest key. An attacker A plays the following game parameterized
by n, that we call chosen-key aggregate existential forgery under chosen-message
attacks (CK-AEUF-CMA).

GCK-AEUF-CMA
A (n) security game:

1. (pk∗, sk∗) ← KeyGen()
2. ((m1, pk1), . . . , (mn, pkn), σaggr) ← AOSign(sk∗,·)(pk∗),
3. accept if ∃i ∈ [n] s.t. pk∗ = pki , and mi /∈ LSign, and

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)

OSign(sk∗,m) constructs the set LSign:
σ ← Sign(sk∗,m); LSign ← LSign ∪ m; return σ
In this game an attacker is given an honestly generated challenge public key

pk∗, he can choose all of the rest public keys, except the challenge public key,
and may ask any number of chosen message queries for signatures on this key, at
the end the adversary should output a sequence of n public keys (including the
challenge public key), a sequence of n messages and an aggregate signature where
the message corresponding to the public key pk∗ did not appear in the signing
queries done by the adversary. The adversary wins if the forgery successfully
verifies.

Definition 1. An attacker A, (t, ε)-breaks a CK-AEUF-CMA security of aggre-
gate signature scheme if A runs in time at most t and wins the CK-AEUF-CMA
game with probability ε. An aggregate signature scheme is (t, ε)-CK-AEUF-CMA-
secure if no forger (t, ε)-breaks it.

More broadly, we say that an aggregate signature scheme is CK-AEUF-CMA-
secure if no polynomial-time (in the security parameter) adversary may break the
scheme other than with the negligible probability. Nonetheless, to instantiate the
scheme with some concrete parameters, we will use a more rigid definition stated
above. If the scheme is (t, ε)-CK-AEUF-CMA-secure, we say that it provides
log2(t/ε)-bits of security.

Note that the adversary has the ability to derive the rest of the public keys
from the honest key pk∗ in hope to cancel out the unknown components in
the aggregate verification. Our constructions naturally prevent these attacks,
otherwise generic methods of proving the knowledge of the secret keys could be
used [46]. Note also that the original definition of Boneh et al. [12] places the
honest public key as the first key in the forged sequence, since their scheme is
agnostic to the ordering of the keys, our case is different and thus we give an
adversary the ability to choose the position for the honest public key in the
sequence.

In our constructions of aggregate Schnorr signatures we show that a valid
single-signature forgery can be extracted from any adversary on the aggregate
scheme.

Non-interactive Half-Aggregation of EdDSA 591

The SBS definition translates to the aggregate signature defined as follows.
GCK-ASBS

A (n) security game:

1. ((m1, pk1), . . . , (mn, pkn), (m′
1, pk

′
1), . . . , (m

′
n, pk′

n), σaggr) ← A(n),
2. accept if [(m1, pk1), . . . , (mn, pkn)] �= [

(m′
1, pk

′
1), . . . , (m

′
n, pk′

n)
] ∧

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr)∧
AggregateVerify((m′

1, pk
′
1), . . . , (m

′
n, pk′

n), σaggr)

Definition 2. An attacker A, (t, ε)-breaks a CK-ASBS security of aggregate
signature scheme if A runs in time at most t and wins the CK-ASBS game
with probability ε. An aggregate signature scheme is (t, ε)-CK-ASBS-secure if no
forger (t, ε)-breaks it.

3.2 Half-Aggregation

The half-aggregation scheme for Schnorr’s/EdDSA signatures runs the proof-of-
knowledge protocol (Protocol 4 from Sect. 2) to obtain a proof that would serve
as an aggregate signature. We present the construction for completeness here in
Algorithm 6.

Algorithm 6. Half-aggregation of EdDSA signatures

AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn)) → σaggr:
1: Parse the signature as the group element and the scalar: σi = (Ri, Si).
2: Parse the public key as a group element: pki = Ai.
3: For i ∈ 1..n compute the scalars ei ← H1(R1, A1, m1, . . . , Rn, An, mn, i).
4: Compute an aggregate scalar Saggr =

∑n
i=1 ei · Si.

5: Output an aggregate signature σaggr = [R1, . . . , Rn, Saggr].

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr) → 0/1:
1: Parse the aggregate signature as σaggr = [R1, . . . , Rn, Saggr].
2: Parse each public key as a group element pki = Ai.
3: Compute ei ← H1(R1, A1, m1, . . . , Rn, An, mn, i) for i ∈ 1..n
4: If

∑n
i=1 ei (Ri + H0(Ri, Ai, mi) · Ai) = Saggr · B, output true,

5: otherwise output false.

Note that the scheme of Algorithm 6 compresses n signatures by a factor of
2 + O(1/n): it takes n signatures, where each of them is one group element and
one scalar, it compresses the scalars into a single scalar, therefore the resulting
aggregate signature is comprised of one scalar and n group elements, compared
to n scalar and n group elements before aggregation.

Note that the set of R-s can be pre-published as part of the public key or
part of previously signed messages, the aggregate signature becomes constant
size, but signatures become stateful, as it should be recorded which R-s have
already been used. Reuse of R leads to a complete leak of the secret key. Even
small biasis in R weakens the security of the scheme [1]. This approach departs

592 K. Chalkias et al.

from the deterministic nature of deriving nonces in EdDSA, loosing its potential
security benefits, though it will go unnoticed for the verifier.

Note also that for large messages the following optimized aggregation
could be used to speed-up the verifier: each ei could be computed as
ei = H1(H0(R1, A1,m1), . . . , H0(Rn, An,mn), i), since the verifier computes
H0(Ri, Ai,mi) anyway, it can reuse those values to compute the coefficients
for the aggregation, thus making the length of the input to H1 smaller. Though
this optimization will only work for the form of Schnorr signature where the
public key, Ai, is hashed.

Theorem 5. If there is an adversary Adv1 that can (t, ε)-break the CK-AEUF-
CMA security of the aggregate signature scheme in Algorithm 6, then this adver-
sary can be transformed into an adversary Adv2 that can (2tn, ε·(ε/(nt)−1/2h))-
break the EUF-CMA security of the underlying signature scheme, where h is the
bit-length of the H1’s output.

The proof of this Theorem is very similar to the proof of Theorem 3 and can
be found in the full-version of this paper. The only caveat here is that to apply
the extractor from Theorem 3, it is required to know the index of pk∗ in a list of
public keys, but this index can be obtained from examining the position of pk∗

in the random oracle queries to H1.

Theorem 6. No adversary running in time t may break the CK-ASBS secu-
rity of the aggregate signature scheme described in Algorithm 6, other than with
probability at most t2/22λ+1.

The proof of this Theorem can be found in Appendix D

Parameter selection and benchmarks. Theorem 5 has a quadratic security loss
in its time-to-success ratio: assuming that EUF-CMA provides 128-bits of secu-
rity (which is the case for example for Ed25519 signature scheme) the theorem
guarantees only 64-bits security for CK-AEUF-CMA with 128-bits H1-hashes;
and assuming that EUF-CMA provides 224-bits of security (which is the case for
example for Ed448 signature scheme) the theorem guarantees 112-bits security
for CK-AEUF-CMA with 256-bits H1-hashes3. A similar loss in the reduction
from single Schnorr/EdDSA signature security to a discrete logarithm problem
was not deemed to require the increase in the hardness of the underlying prob-
lems (i.e. the discrete logarithm problem). The proof that reduces security of
Schnorr/EdDSA to the discrete logarithm problem also uses the Forking Lemma,
but no attacks were found to exploit the loss suggested by such proof. Research
suggests that the loss given by the Forking Lemma is inevitable for the proof of
security of Schnorr/EdDSA signatures [29,58], whether it is likewise inevitable
for non-interactive half-aggregation of Schnorr/EdDSA signatures remains an
open question.

3 Note that additionally 2 log2(n) + 1 bits of security will be lost due to n.

Non-interactive Half-Aggregation of EdDSA 593

Table 1. For n individual signatures we compare batch-verification, aggregate-
verification and aggregation with 128,256,512-bits output for H1, for Ed25519 sig-
natures. SHA-256 cropped to 128-bits used for 128-bits H1, SHA-256 used for 256-bits
H1, SHA-512 used for 512-bits H1. The benchmarks are run using the ed25519-dalek
library.

n Sequential Batch AggregateVerify AggregateSig

verification verification 128 256 512 128 256 512

16 0.8ms 0.39ms 0.37ms 0.43ms 0.44ms 9.75µs 10.6µs 16.98µs

32 1.6ms 0.75ms 0.68ms 0.79ms 0.83ms 19.25µs 21.5µs 33.02µs

64 3.2ms 1.39ms 1.35ms 1.52ms 1.58ms 39.35µs 41.4µs 67.63µs

128 6.4ms 2.73ms 2.61ms 2.95ms 3.04ms 78.6µs 84.9µs 134.44µs

256 12.8ms 4.86ms 4.69ms 5.41ms 5.54ms 151.6µs 165.6µs 260.36µs

512 25.7ms 8.92ms 8.00ms 9.86ms 9.54ms 316.1µs 341.7µs 526.50µs

1024 51.5ms 16.15ms 15.25ms 17.46ms 18.31ms 613.5µs 657.9µs 1088.0µs

131072 6.59 s 1.98 s 1.71 s 2.11 s 2.09 s 80.21ms 84.60ms 133.96ms

We benchmark [18] the scheme to understand the effect of using 128-bits of
H1 output vs. 256-bits of H1 output and present the results in Table 1.4 Note
that the performance loss in aggregate signature’s verification between the two
approaches is only about 15%, which might not justify the a use of smaller
hashes. We also benchmark the use of 512-bits hashes of H1, same-size scalar
are used in the EdDSA signature scheme, the advantage of this approach is
that the scalars generated this way are distributed uniformly at random (within
negligible statistical distance from uniform).

3.3 Half+ε-Aggregation

The half+ε-aggregation scheme for EdDSA/Schnorr’s signatures runs the proof-
of-knowledge protocol (Protocol 5 from Sect. 2) to obtain a proof that would
serve as an aggregate signature. For completeness we present the constructions
in Algorithm 7.

Theorem 7. If there is an adversary Adv1 that can (t, ε)-break the CK-AEUF-
CMA security of the aggregate signature scheme defined in Algorithm 7 making
Q oracle queries to H1, then this adversary can be transformed into an adver-
sary Adv2 that can (t + poly(λ), ε − t · 2−λ)-break the EUF-CMA security of the
underlying signature scheme.

The theorem is a simple corollary of Theorem 4.

4 The ‘curve25519-dalek’ and ‘ed25519-dalek’ libraries were used for the benchmark of
this entire section, which ran on a AMD Ryzen 9 3950X 16-Core CPU. We used the
scalar u64 backend of the dalek suite of libraries, to offer comparable results across
a wide range of architectures, and the implementation does make use of Pippenger’s
bucketization algorithm for multi-exponentiation.

594 K. Chalkias et al.

Algorithm 7. Almost-half-aggregation of EdDSA signatures

AggregateSig((m1, pk1, σ1), . . . , (mn, pkn, σn)) → σaggr:
1: Let σi = (Ri, Si).
2: Compute the hash ha = H2(R1, · · · , Rn).
3: Set the empty arrays of scalars e := [⊥]r and z := [⊥]r; e, z ∈ (Zq ∪ ⊥)r.
4: Set the counter j := 1.
5: Set the scalar e := 1.
6: while j ≤ r do
7: Compute z :=

∑n
i=1 Si · ei−1.

8: if H1(ha, j, e, z) = 0� then
9: Set ej := e; set zj := z; increment the counter j; reset the scalar e = 1.

10: else
11: Increment the scalar e.
12: Output the aggregate signature σaggr = ([R1, · · · , Rn], e, z).

AggregateVerify((m1, pk1), . . . , (mn, pkn), σaggr) → 0/1:
1: Let σaggr = ([R1, · · · , Rn], e, z).
2: Compute ha = H2(R1, · · · , Rn).
3: Output 1 (accept) if both of the following equalities hold for every j ∈ 1..r:

H1(ha, j, ej , zj) = 0� and zj · G =

n∑

i=1

ei−1
j (Ri + H0(Ri, pki, mi) · pki)

4: Output 0 (reject) if the test does not pass for some j.

Theorem 8. If there is an adversary Adv1 that can (t, ε)-break the CK-ASBS-
CMA security of the aggregate signature scheme defined in Algorithm 7 making Q
oracle queries to H1, then this adversary can be transformed into an adversary
Adv2 that can (t + poly(λ), (ε − t · 2−λ)2)-break the EUF-CMA security of the
underlying signature scheme.

The proof can be found in Appendix E
The security loss in this construction is much smaller, for example, the secu-

rity remains at 128-bits for 128-bits output H1-hash for Ed25519 signature
scheme, and at 224-bits for 256-bits output H1 for Ed448 signature scheme.
But the compression rate for this aggregate signature scheme here is worse than
for the previous scheme: the aggregated signature has n group elements, r full
scalars and r small scalars of length � in expectation, therefore the size of the
signature is n group elements plus r · λ + r · � bits. If we set λ and r to be con-
stants and increase n, set � = log2(n) + λ/r, the size of the aggregate signature
will be n group elements plus O(log(n)) bits, therefore the compression of the
aggregation approaches 50% as n grows.

In Appendix F we explain a methodology for picking parameters to optimize
for aggregator’s time. Table 2 shows a selection of values across different trade-
offs. Note that despite the aggregation time being rather slow, as the aggregator

Non-interactive Half-Aggregation of EdDSA 595

has to do many oracle-queries, it is highly parallelizable which is not reflected
in our benchmarks: given M ≤ r2� processors it is straightforward to parallelize
aggregation into M threads.

4 Deterministic Batch Verification of Schnorr Signatures

As another application of the proof-of-knowledge techniques we present deter-
ministic batch verification. Batch verification is a technique that allows to verify
a batch of signatures faster than verifying signatures one-by-one. Not all of the
Schnorr’s signatures’ variants support batch verification, only those that trans-
mit R instead of the hash H(..) do.

Bernstein et al. [10] built and benchmarked an optimized variant for batch
verification for EdDSA signatures utilizing the state-of-the-art methods for
scalar-multiplication methods. To batch-verify a set of signatures (Ri, Si) for
i = 1..n corresponding to the set of messages {mi}i=1..n and the set of public
keys Ai, they propose to choose “independent uniform random 128-bit integers
zi” and verify the equation

(−
∑

i

ziSi mod �)B +
∑

i

ziRi +
∑

i

(ziH0(Ri, Ai,mi) mod �)Ai = 0. (3)

As we explain in the next paragraph with many real-world examples, it
is often dangerous to rely on randomness in cryptographic implementations,
particularly so for deployments on a cloud. It would thus be desirable to

Table 2. The compression rate, the computation cost (for aggregation and aggregate-
verification) for aggregating n Ed25519 signatures with SHA-256 hash function used
for H1. The � is set to be � = log2(n) + 128/r. The benchmarks are run using the
ed25519-dalek library.

Compression n r AggregateVerify AggregateSig

0.52 512 16 134.11 ms 197.89 s

1024 32 516.55 ms 76.857 s

0.53 256 16 74.449 ms 62.649 s

512 32 291.04 ms 25.272 s

0.57 128 16 41.565 ms 12.007 s

256 32 147.48 ms 6.1843 s

0.63 32 8 5.7735 ms 46.330 s

64 16 23.007 ms 4.2622 s

128 32 82.235 ms 1.3073 s

0.77 16 8 2.9823 ms 12.455 s

32 16 10.377 ms 1.2994 s

64 32 42.807 ms 403.55 ms

596 K. Chalkias et al.

make protocols not utilize randomness in secure-critical components, such as
signature-verifications. We note that batch verification (Eq. 3) is a probabilistic
version of the Algorithm 6 for verification of half-aggregation of EdDSA sig-
natures. From the security proof of half-aggregation it therefore follows that
batch verification can be made deterministic by deriving scalars with hashes as
zi = H1(R1, A1,m1, . . . , Rn, An,mn, i).

Note that particularly for Ed25519 signature scheme it is advised [19] to
multiply by a cofactor 8 in single- and batch- verification equations (when batch
verification is intended to be used).

Determinism’s Value in Blockchains The history of the flaws of widely-deployed,
modern pseudo-random number generator (PRNG) has shown enough variety in
root causes to warrant caution, exhibiting bugs [47,61], probable tampering [20],
and poor boot seeding [37]. Yet more recent work has observed correlated low
entropy events in public block chains [15,21], and attributed classes of these
events to PRNG seeding.

When juxtaposed with the convenience of deployment afforded by public
clouds, often used in the deployment of blockchains, this presents a new chal-
lenge. Indeed, deploying a cryptographic algorithm on cloud infrastructure often
entails that its components will run as guest processes in a virtualized envi-
ronment of some sort. Existing literature shows that such guests have a lower
rate of acquiring entropy [26,42], that their PRNG behaves deterministically on
boot and reset [25,55], and that they show coupled entropy in multi-tenancy
situations [40].

We suspect the cloud’s virtualized deployment context worsen the biases
observed in PRNG, and hence recommend the consideration of deterministic
variants of both batch verification and aggregation.

The kind of aggregated signature verification in this paper may also be avail-
able to deterministic runtimes, which by design disable access to random gen-
erator apis. One such example is DJVM [22], where a special Java ClassLoader
ensures that loaded classes cannot be influenced by factors such as hardware ran-
dom number generators, system clocks, network packets or the contents of the
local filesystem. Those runtimes are relevant for blockchains, which despise non-
determinism including RNG invocations to avoid accidental or malicious misuse
in smart contracts that would break consensus. Nonetheless, all blockchains sup-
port signature verification. A deterministic batch verifier would hence be very
useful in these settings, especially as it applies to batching signatures on different
messages too (i.e., independent blockchain transactions).

5 Impossibility of Non-interactive Compression by More
Than a Half

Given that we have shown that it is possible to compress Schnorr signatures
by a constant factor, it is natural to ask if we can do better. Indeed, the exis-
tence of succinct proof systems where the proofs are smaller than the witnesses

Non-interactive Half-Aggregation of EdDSA 597

themselves indicates that this is possible, even without extra assumptions or
trusted setup if one were to use Bulletproofs [16] or IOP based proofs [8,9] for
instance. This rules out proving any non-trivial lower bound on the communica-
tion complexity of aggregating Schnorr’s signatures. However, one may wonder
what overhead is incurred in using such generic SNARKs, given their excellent
compression. Here we make progress towards answering this question, in partic-
ular we show that non-trivially improving on our aggregation scheme must rely
on the hash function used in the instantiation of Schnorr’s signature scheme.

We show in Theorem 9 that if the hash function used by Schnorr’s signature
scheme is modeled as a random oracle, then the verifier must query the nonces
associated with each of the signatures to the random oracle. Given that each
nonce has 2λ bits of entropy, it is unlikely that an aggregate signature non-
trivially smaller than 2nλ can reliably induce the verifier to query all n nonces.

The implication is that an aggregation scheme that transmits fewer than 2nλ
bits must not be making oracle use of the hash function; in particular it depends
on the code of the hash function used to instantiate Schnorr’s scheme. To our
knowledge, there are no hash functions that are believed to securely instantiate
Schnorr’s signature scheme while simultaneously allowing for succinct proofs
better than applying generic SNARKs to their circuit representations. Note that
the hash function must have powerful properties in order for Schnorr’s scheme
to be proven secure, either believed to be instantiating a random oracle [54] or
having strong concrete hardness [48]. Given that the only known techniques for
making use of the code of the hash function in this context is by using SNARKs
generically, we take this to be an indication that compressing Schnorr signatures
with a rate better than 50% will incur the overhead of proving statements about
complex hash functions. For instance compressing n Ed25519 signatures at a
rate better than 50% may require proving n instances of SHA-512 via SNARKs.

For “self-verifying” objects such as signatures (aggregate or otherwise) one
can generically achieve some notion of compression by simply omitting O(log λ)
bits of the signature string, and have the verifier try all possible assignments of
these omitted bits along with the transmitted string, and accept if any of them
verify. Conversely, one may instruct the signer to generate a signature such that
the trailing O(log λ) bits are always zero (similarly to blockchain mining) and
need not be transmitted (this is achieved by repeatedly signing with different
random tapes). There are two avenues to apply these optimizations:

1. Aggregating optimized Schnorr signatures. One could apply these opti-
mizations to the underlying Schnorr signature itself, so that aggregating them
even with our scheme produces an aggregate signature of size 2n(λ−O(log λ))
which in practice is considerably better than 2nλ as n scales. In the rest of
this section we only consider the aggregation of Schnorr signatures that are
produced by the regular unoptimized signing algorithm, i.e. where nonces
have the full 2nλ bits of entropy. This quantifies the baseline for the most
common use case, and has the benefit of a simpler proof. However, it is simple
to adapt our proof technique to show that aggregation with compression rate

598 K. Chalkias et al.

non-trivially greater than 50% is infeasible with this optimized Schnorr as
the baseline as well.

2. Aggregating unoptimized Schnorr signatures. One could apply this
optimization to save O(log λ) bits overall in the aggregated signature. In this
case, O(log λ) is an additive term in the aggregated signature size and its effect
disappears as n increases, and so we categorize this a trivial improvement.

Proof Intuition. Our argument hinges on the fact that the verifier of a Fiat-
Shamir transformed proof must query the random oracle on the ‘first message’
of the underlying sigma protocol. In Schnorr’s signature scheme, this represents
that the nonce R must be queried by the verifier to the random oracle. It then
follows that omitting this R value for a single signature in the aggregate signature
with noticeable probability will directly result in an attack on unforgeability of
the aggregate signature.

We give this question a formal treatment in Appendix G.

Acknowledgement. The authors would like to thank Payman Mohassel (Novi/
Facebook) and Isis Lovecruft for insightful discussions at the early stages of this work;
and all anonymous reviewers of this paper for comments and suggestions that greatly
improved the quality of this paper.

Appendix A Related work

Appendix A.1 Security Proofs

Schnorr signatures were proposed by Claus Schnorr [57], and in the original paper
a compact version was proposed, which outputted signatures of size 3λ, where
λ is the provided security level (i.e. 128). In 1996, Pointcheval and Stern [53]
applied their newly introduced Forking Lemma to provide the first formal secu-
rity for a 2λ-bit ideal hash assuming the underlying discrete logarithm is hard.
In [59] the first proof of Schnorr’s ID against active attacks is provided in the
GGM (Generic Group Model), but without focus on Fiat-Shamir constructions.

A significant contribution from Neven et al. [48] was to apply the GGM and
other results of [7] to prove security using a λ-bit hash function. Briefly, in their
proof, hash functions are not handled as random oracles, but they should offer
specific properties, such as variants of preimage and second preimage resistance;
but not collision resistance. However, as we mention in Section A.3, most of the
real world applications do not assume honest signers, and thus non-repudiation
is an important property, which unfortunately requires a collision resistant H0.

Finally, the works from Backendal et al. [2] clarified the relation between
the UF-security of different Schnorr variants, while in [31] a tight reduction of
the UF-security of Schnorr signatures to discrete log in the Algebraic Group
Model [30] (AGM)+ROM was presented.

Non-interactive Half-Aggregation of EdDSA 599

Appendix A.2 Multi-signatures

One of the main advantages of Schnorr signatures compared to ECDSA is its
linearity which allows to add two (or more) Schnorr signatures together and
get a valid compact aggregated output indistinguishable from a single signature.
The concept of multi-signature is to allow co-signing on the same message. Even
if the messages are different, there are techniques using indexed Merkle tree
accumulators to agree on a common tree root and then everyone signs that
root. However, just adding Schnorr signatures is not secure as the requirement
to protect against rogue key and other similar attacks is essential, especially in
blockchain systems.

There is indeed a number of practical proposals that require two or three
rounds of interaction until co-signers agree on a common R and public key
A value [3,7,11,23,41,43,45,49,50,56,60]. One of the most recent is the com-
pact two-round Musig2 [49] which also supports pre-processing (before co-signers
learn the message to be signed) of all but the first round, effectively enabling
a non-interactive signing process. Musig2 security is proven in the AGM+ROM
model and it relies on the hardness of the OMDL problem.

Another promising two-round protocol is FROST [41] which has a similar
logic with Musig2, but it utilizes verifiable random functions (VRFs) and mostly
considers a threshold signature setting.

Note that even with pre-processing, Musig2 requires an initial setup with
broadcasting and maintaining state. Compared to half-aggregation which can
work with zero interaction between signers, Musig2 and FROST have a huge
potential for controlled environments (i.e., validator sets in blockchains), but
might not be ideal in settings where the co-signers do not know each other in
advance or when public keys and group formation are rotated/updated very
often.

Appendix A.3 Schnorr signature variants

There exist multiple variants of the original Schnorr scheme and the majority of
them are incompatible between each other. Some of the most notable differences
include:

– H0 is not binding to the public key and thus it’s computed as H0(R||m)
instead of H0(R||A||m) [32,57]. Note that these signatures are malleable as
shown in the EdDSA paper (page 7, Malleability paragraph) [10].

– H0 changing the order of inputs in H0, such as H0(m||R). Note that protocols
in which m is the first input to the hash function require collision resistant
hash functions, as a malicious message submitter (who doesn’t know R), can
try to find two messages m0 and m1 where H0(m0) = H0(m1). This is the
main reason for which the Pure EdDSA RFC 8032 [39] suggests H0(R||A||m)
versus any other combination.

– H0 takes as inputs only the x-coordinate of R, such as the EC-SDSA-opt
in [32] and BIP-Schnorr [52].

600 K. Chalkias et al.

– send the scalar H0 instead of the point R. This variation (often referred to
as compact) was proposed in the original Schnorr paper [57] and avoids the
minor complexity of encoding the R point in the signature, while it allows for
potentially shorter signatures by 25%. The idea is that only half of the H0

bytes suffice to provide SUF-CMA security at the target security level of 128
bits. While this allows 48-byte signatures, there are two major caveats:

• according to Bellare et al. [6] (page 39), the (R,S) version (mentioned as
BNN in that paper) achieves semi-strong unforgeability, while the origi-
nal 48-byte Schnorr only normal unforgeability. In short, because finding
collisions in a short hash function is easy, a malicious signer can break
message binding (non-repudiation) by finding two messages m0 and m1

where truncated(H(R||A||m0)) == truncated(H(R||A||m1))
• as mentioned, collisions in 128-bit truncated H0 require a 64-bit effort.

But because the SUF-CMA model assumes honest signers, in multi-sig
scenarios where potentially distrusting signers co-sign, some malicious
coalition can try to obtain a valid signature on a message that an honest
co-signer did not intend to sign.

Due to the above, and because compact signatures do not seem to support
non-interactive aggregation or batch verification, it is clear that this work is
compatible with most of the (R,S) Schnorr signature variants, EdDSA being
one of them. Also note that half-aggregation achieves an asymptotic 50% size
reduction and compares favorably against multiple compact Schnorr signatures.

Appendix A.4 Non-Schnorr schemes

Some of the best applications of non-interactive signature aggregation include
shortening certificate chains and blockchain blocks. Putting Schnorr variants
aside, there is a plethora of popular signature schemes used in real world appli-
cations including ECDSA, RSA, BLS and some newer post-quantum schemes
i.e., based on hash functions or lattices. Regarding ECDSA, although there
exist interactive threshold schemes, to the best of our knowledge there is no
work around non-interactive aggregation, mainly due to the modular inversion
involved [44]. Similarly, in RSA two users cannot share the same modulus N ,
which makes interactivity essential; however there exist sequential aggregate
RSA signatures which however imply interaction [13]. Along the same lines,
we are not aware of efficient multi-sig constructions for Lamport-based post-
quantum schemes.

On the other hand, BLS is considered the most aggregation and blockchain
friendly signature scheme, which by design allows for deriving a single signa-
ture from multiple outputs without any prior interaction and without proving
knowledge or possession of secret keys [11]. The main practicality drawback of
BLS schemes is that they are based on pairing-friendly curves and hashing to
point functions for which there are on-going standardization efforts and limited
HSM support. Also, the verification function of a rogue-key secure BLS scheme
is still more expensive than Schnorr (aggregated or not) mainly due to the slower
pairing computations.

Non-interactive Half-Aggregation of EdDSA 601

Appendix A.5 Schnorr batching and aggregation

Similar approaches to generating linear combinations of signatures have been
used for batch verification in the past as shown in Sect. 4. The original idea of
operating on a group of signatures by means of a random linear combination of
their members is due to Bellare et al. [4]. Other approaches consider an aggre-
gated signature from public keys owned by the same user, which removes the
requirement for rogue key resistance. For instance, in [33] an interactive batching
technique is provided resulting to faster verification using higher degree polyno-
mials.

Half-aggregation has already been proposed in the past, but either in its
simple form without random linear combinations [24] (which is prone to rogue
key attacks) or using non-standard Schnorr variants that are not compatible
with EdDSA. Γ -signatures [62] are the closest prior work to our approach,
also achieving half aggregation, but with a significantly modified and slightly
slower Schnorr scheme. Additionally, their security is based on the custom non-
malleable discrete logarithm (NMDL) assumption, although the authors claim
that it could easily be proven secure against the stronger explicit knowledge-of-
exponent assumption EKEA. On the other hand, we believe that our security
guarantees are much more powerful as they are actually a proof of knowledge of
signatures, which means that they can be used as a drop-in replacement in any
protocol (where having the exact original signature strings is not important),
without changing any underlying assumptions; and therefore be compliant with
the standards.

Appendix B EdDSA signatures

EdDSA signature [10] is originally defined over Curve25519 in its twisted
Edwards form and is often called Ed25519. The scheme provides ∼ 128 bits
of security. The general name, EdDSA, refers to instantiation of the scheme over
any compatible elliptic curve. Another notable instantiation is Ed448 [34,39]
offering ∼ 224 bits of security. A concrete instantiation of the scheme would
depend on the elliptic curve and the security level. The Algorithm 8 is given in
the most general form.

Algorithm 8. EdDSA Algorithm

KeyGen(1λ): Sample uniformly random sk $←− {0, 1}2λ. Expand the secret with a hash
function that gives 4λ-bits outputs: (s, k) ← H1(sk). Interpreting s as a scalar,
compute the public key pk = A, where A = s · B.

Sign((s, k), m): Generate a pseudorandom secret scalar r := H2(k, m), compute a curve
point: R := r · B. Compute the scalar S := (r + H0(R, A, M) · s) and output
σ = (R, S).

Verify(m, pk, σ = (R, S)): Accept if S · B = R + H0(R, A, M) · A.

602 K. Chalkias et al.

Appendix C Single signature security

An attacker A plays the following game:
GEUF-CMA

A () security game:

1. (pk∗, sk∗) ← KeyGen()
2. (m,σ) ← AOSign(sk∗,·)(pk∗)
3. accept if

mi /∈ LSign ∧ Verify(m, pk∗, σ)

OSign(sk∗,·), the signing oracle, constructs the set LSign:

1. On input m, compute σ ← Sign(sk∗,m)
2. LSign ← LSign ∪ m
3. return σ

Definition 3. An attacker A, (t, ε)-breaks a EUF-CMA security of the signature
scheme if A runs in time at most t and wins the EUF-CMA game with probability
ε. A signature scheme is (t, ε)-EUF-CMA-secure if no forger (t, ε)-breaks it.

Likewise, if the scheme is (t, ε)-EUF-CMA-secure, we say that it achieves
log2(t/ε)-bits security level.

Note also that there is an additional requirement on single signature security
which becomes increasingly important especially in blockchain applications is
Strong Binding [19], it prevents a malicious signer from constructing a signature
that is valid against different public keys and/or different messages. We define
the associated game:

GSBS
A () security game:

1. (pk,m, pk′,m′, σ) ← A()
2. accept if (pk,m) �= (pk′,m′) ∧ Verify(m, pk, σ) ∧ Verify(m′, pk′, σ)

Definition 4. An attacker A, (t, ε)-breaks SBS security of the signature scheme
if A runs in time at most t and wins the SBS game with probability ε. A signature
scheme is (t, ε)-SBS-secure if no forger (t, ε)-breaks it.

Appendix D Proof of Theorem 6

Proof. By statistical argument we show that the adversary may only pro-
duce an SBS forgery with negligible probability. For a successful forgery
((A1,m1), . . . , (An,mn), σaggr) �= ((A′

1,m
′
1), . . . (A

′
2,m

′
2), σaggr), all 2n underly-

ing signatures can be extracted: σ1, . . . , σn, σ′
1, . . . , σ

′
n. All of those signatures

have the same R components (since those are part of σaggr), but possibly differ-
ent S components. When a query is made to the random oracle H1(R1, A1,m1,
. . . , Rn, An,mn, i), denote the output by hj

i , where j is the incrementing counter
for the unique tuples (R1, A1,m1, . . . , Rn, An,mn) queried to the random oracle.
Denote by sj

i the discrete log of R1 + H0(Ri, Ai,mi)Ai (here we work under the

Non-interactive Half-Aggregation of EdDSA 603

assumption that the discrete log can always be uniquely determined). Without
loss of generality we assume that the adversary verifies the forgery, therefore
for some two indices j′ and j′′ (that correspond to the SBS forgery output by
the adversary) it must hold that the linear combination of the {sj′

i }n
i=1’s with

coefficients {hj′
i }n

i=1 is equal to the linear combination of {sj′′
i }n

i=1’s with coef-
ficients {hj′′

i }n
i=1. Having that in the RO-model, we can assume that the values

{hj′
i }n

i=1 and {hj′′
i }n

i=1 are programmed to uniformly random independent val-
ues after the s’s values are determined. Each h randomizes the non-zero value
of s to an exponent indistinguishable from random, therefore creating a random
element as a result of a linear combination. Therefore the probability of a suc-
cessful forgery for the adversary must be bounded by the collision probability
Q2/(2 · |G|), where Q ≤ t is the number of H1-queries and |G| is the size of the
group (for prime order groups, or an order of a base point). ��

Appendix E Proof of Theorem 8

Proof. From the forgery produced by the adversary Adv1: ((m1, pk1),
. . . , (mn, pkn), (m′

1, pk
′
1), . . . , (m

′gn, pk′
n), σaggr), we extract two sets of signa-

tures by running the extractor of Theorem 4: (σ1, . . . , σn) and (σ′
1, . . . , σ

′
n).

Those signatures have the same R-components (R1, . . . , Rn), but possibly differ-
ent S-components (S1, S

′
1, . . . , Sn, S′

n) when aggregated those components pro-
duce the same signature σ, therefore for some random e �= e′, it holds that∑n

i=1 Si · ei−1 =
∑n

i=1 S′
i · e′i−1 which may happen with probability at most 2λ

when (S1, . . . , Sn) �= (S′
1, . . . , S

′
n). Assuming that (S1, . . . , Sn) = (S′

1, . . . , S
′
n),

but [(m1, pk1), . . . , (mn, pkn)] �= [
(m′

1, pk
′
1), . . . , (m

′
n, pk′

n)
]
, as required for the

forgery of Adv1 to be successful, it follows that at some position i ∈ [n]
where the equality breaks, a successful single SBS-forgery can be constructed:
(mi, pki,m

′
i, pk

′
i, σ = (Ri, Si)). ��

Appendix F Parameter selection for almost-half-
aggregation

In this section we explain a methodology of picking parameters for aggregation
scheme described in Algorithm 7.

However, as we explain next, it is more efficient to do the aggregation in
batches, i.e. aggregate some fixed constant number of signatures, choosing this
number to achieve a desired trade-off between compression rate, aggregation time
and verification time. The computational complexity of the aggregator is O(r ·n ·
2�) and of the verifier is O(n·r). In fact, in this scheme the verifier is about r/2 >
1 times less efficient than verifying signatures iteratively one-by-one, therefore
this compression scheme will always sacrifice verifier’s computational efficiency
for compressed storage or network bandwidth for transmission of signatures. The
aggregator’s complexity is by far greater than the verifier’s, we approximate it

604 K. Chalkias et al.

next through compression rate c and batch size n. The compression rate can be
approximated as

c = (256 · n + r · 256 + r · �)/(512 · n) ≈ (n + r)/(2n).

We can estimate the aggregator’s time through r = n(2c − 1) as O(n3 · (2c −
1) · 2λ/n/(2c−1)). For a fixed compression rate c it achieves minimum at a batch-
size n shown on Fig. 1 for λ = 128. The verifier’s time can be estimated through
compression rate as O(n2(2c−1)), it is therefore most optimal to select an upper
bound on the batch size according to Fig. 1 and lower the batch-size to trade-
off between aggregator’s and verifier’s runtime. We report optimal aggregation
times for the given compression rate in Fig. 2 for Ed25519 signature scheme.
Amortized verification per signature is constant for constant r, amortized opti-
mal aggregation per signature is linear in the batch size n.

Appendix G Formal analysis for the impossibility of
non-interactive compression by more than a
half

This section expands on the impossibility of non-interactive compression by more
than half and extends Sect. 5. We first fix the exact distribution of signatures that
must be aggregated, and then reason about the output of any given aggregation
scheme on this input.
GenSigs(n, 1λ):

1. For each i ∈ [n], sample (pki, ski) ← KeyGen(1λ) and ri ← Fs, and compute
Ri = ri · B and σi = ski · RO(pki, Ri, 0) + ri

2. Output (pki, Ri, σi)i∈[n]

Fig. 1. Optimal batch size to achieve the
minimum aggregation time.

Fig. 2. Aggregation and verification
time amortized per signature. Param-
eters n, r are set to achieve the small-
est aggregation time: n is chosen from
Fig. 1, r = 30.

Non-interactive Half-Aggregation of EdDSA 605

The GenSigs algorithm simply creates n uniformly sampled signatures on the
message ‘0’.

Theorem 9. Let (AggregateSig,AggregateVerify) characterize an aggregate sig-
nature scheme for KeyGen,Sign,Verify as per Schnorr with group (G, B, q) such
that |q| = 2λ. Let QV be the list of queries made to RO by

AggregateVerifyRO(AggregateSigRO({pki, Ri, σi}i∈[n]))

where (pki, Ri, σi)i∈[n] ← GenSigs(n, 1λ). Then for any n, max((Pr[(pki, Ri, 0) �∈
QV])i∈[n]) is negligible in λ.

Proof. Let ε = max((Pr[(pki, Ri, 0) �∈ QV])i∈[n]), and let j ∈ [n] be the corre-
sponding index. We now define an alternative signature generation algorithm as
follows,
GenSigs∗(n, j, pkj , 1λ):

1. For each i ∈ [n]\j, sample (pki, ski) ← KeyGen(1λ) and ri ← Fs, and compute
Ri = ri · B and σi = ski · RO(pki, Ri, 0) + ri

2. Sample σj ← Fs and ej ← Fs

3. Set Rj = σi · B − ej · pkj

4. Output (pki, Ri, σi)i∈[n]

Observe the following two facts about GenSigs∗: (1) it does not use skj , and
(2) the distributions of GenSigs and GenSigs∗ appear identical to any algorithm
that does not query (pki, Ri, 0) to RO. The first fact directly makes GenSigs∗
conducive to an adversary in the aggregated signature game: given challenge
public key pk, simply invoke GenSigs∗ with pkj = pk to produce (pki, Ri, σi)i∈[n]

and then feed these to AggregateSig5. The advantage this simple adversary is
given by the probability that the verifier does not notice that that GenSigs∗ did
not supply a valid signature under pk∗ to AggregateSig, and we can quantify this
using the second fact as follows:

Pr[AggregateVerifyRO(AggregateSigRO(GenSigs∗(n, j, pkj , 1λ))) = 1]

= Pr[AggregateVerifyRO(AggregateSigRO(GenSigs(n, 1λ))) = 1] − Pr[(pki, Ri, 0) ∈ QV]

= 1 − Pr[(pki, Ri, 0) ∈ QV]

= 1 − (1 − ε) = ε

Assuming unforgeability of the aggregated signature scheme, ε must be
negligible. ��

References

1. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged fiat-
shamir signatures under fault attacks. In: Eurocrypt (2020)

5 If necessary, intercept (pkj , Rj , 0) queried by AggregateSig to RO, and respond with
ej as set by GenSigs∗.

606 K. Chalkias et al.

2. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The fiat-shamir zoo: relating the
security of different signature variants. In: Nordic Conference on Secure IT Sys-
tems, pp. 154–170. Springer (2018)

3. Bagherzandi, A., Cheon, J.-H., Jarecki, S.: Multisignatures secure under the dis-
crete logarithm assumption and a generalized forking lemma. In: ACM CCS (2008)

4. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
Advances in Cryptology - CRYPTO’92. Lecture Notes in Computer Science, vol.
740, pp. 390–420. Springer, Heidelberg (1993)

6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. J. Cryptol. 22(1), 1–61 (2009)

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM CCS (2006)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Eurocrypt (2019)

10. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: CHES (2011)

11. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Asiacrypt (2018)

12. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Eurocrypt (2003)

13. Boneh, D., Gentry, C., Shacham, H., et al.: A survey of two signature aggregation
techniques, Ben Lynn (2003)

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Asiacrypt (2001)

15. Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: International Conference on Financial
Cryptography and Data Security, pp. 3–20. Springer (2019)

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P, pp. 315–334
(2018)

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

18. Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: ed25519-dalek-fiat,
branch:half-aggregation (2021). https://github.com/novifinancial/ed25519-dalek-
fiat/tree/half-aggregation

19. Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many EDDSAS. Technical
Report, Cryptology ePrint Archive, Report 2020/1244 (2020). https://eprint.iacr.
org/2020/1244

20. Checkoway, S., et al.: A systematic analysis of the juniper dual EC incident. In:
ACM CCS (2016)

21. Courtois, N.T., Emirdag, P., Valsorda, F.: Private key recovery combination
attacks: on extreme fragility of popular bitcoin key management, wallet and cold
storage solutions in presence of poor RNG events (2014)

https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://eprint.iacr.org/2018/046
https://github.com/novifinancial/ed25519-dalek-fiat/tree/half-aggregation
https://github.com/novifinancial/ed25519-dalek-fiat/tree/half-aggregation
https://eprint. iacr. org/2020/1244
https://eprint. iacr. org/2020/1244

Non-interactive Half-Aggregation of EdDSA 607

22. Djvm - the deterministic JVM library (2020)
23. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE

Symposium on Security and Privacy (SP), pp. 1084–1101. IEEE (2019)
24. Dryja, T.: Per-block non-interactive Schnorr signature aggregation (2017)
25. Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-So-Random

numbers in virtualized linux and the whirlwind RNG. In: 2014 IEEE Symposium
on Security and Privacy, pp. 559–574. IEEE (May 2014)

26. Fernandes, D.A.B., Soares, L.F.B., Freire, M.M., Inacio, P.R.M.: Randomness in
virtual machines. In: 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing, pp. 282–286. IEEE (Dec 2013)

27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Crypto (1987)

28. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Crypto (2005)

29. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019)

30. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Crypto (2018)

31. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed elga-
mal encryption in the algebraic group model. In: Eurocrypt (2020)

32. Bundesamt für Sicherheit in der Informationstechnik (BSI). Elliptic curve cryptog-
raphy, Technical Guideline TR-03111 (2009)

33. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.S.: Batching Schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Asiacrypt (2004)

34. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625

35. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Con-
structions, 1st edn. Springer-Verlag, Berlin (2010)

36. Hazay, C., Lindell, Y.: A note on zero-knowledge proofs of knowledge and the
ZKPOK ideal functionality. IACR Cryptol. ePrint Arch. 2010, 552 (2010)

37. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: USENIX Security
Symposium (2012)

38. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. In: NEC Research & Development (1983)

39. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA)
(2017)

40. Kerrigan, B., Chen, Yu.: A study of entropy sources in cloud computers: random
number generation on cloud hosts. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 286–298. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33704-8 24

41. Komlo, C., Goldberg, I.: Frost: flexible round-optimized Schnorr threshold signa-
tures. IACR Cryptol. ePrint Arch (2020)

42. Kumari, R., Alimomeni, M., Safavi-Naini, R.: Performance analysis of linux RNG
in virtualized environments. In: ACM Workshop on Cloud Computing Security
Workshop (2015)

43. Ma, C., Weng, J., Li, Y., Deng, R.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Designs Codes Cryptograph. 54(2),
121–133 (2010)

http://eprint.iacr.org/2015/625
https://doi.org/10.1007/978-3-642-33704-8_24
https://doi.org/10.1007/978-3-642-33704-8_24

608 K. Chalkias et al.

44. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018).
https://eprint.iacr.org/2018/068

45. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Designs Codes Cryptograph. 87(9), 2139–2164 (2019)

46. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: ACM
CCS (2001)

47. Michaelis, Kai., Meyer, Christopher, Schwenk, Jörg: Randomly failed! the state
of randomness in current java implementations. In: Dawson, Ed (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 129–144. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36095-4 9

48. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. J. Math. Cryptol. 3(1), 69–87 (2009)

49. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round Schnorr multi-
signatures. IACR Cryptol. ePrint Arch. Technical Report (2020)

50. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: Musig-dn: Schnorr multi-signatures
with verifiably deterministic nonces. In: ACM CCS (2020)

51. Pass, R.: On deniability in the common reference string and random oracle model.
In: Crypto (2003)

52. Pieter, W., Jonas, N., Tim.: BIP: 340, Schnorr signatures for secp256k1 (2020)
53. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Eurocrypt

(1996)
54. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-

natures. J. Cryptol. 13(3), 361–396 (2000)
55. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset

vulnerabilities and hedging deployed cryptography. In: NDSS (2010)
56. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty

signatures against rogue-key attacks. In: Eurocrypt (2007)
57. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),

161–174 (1991)
58. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle

model. In: Eurocrypt (2012)
59. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Euro-

crypt (1997)
60. Syta, E.: Keeping authorities “honest or bust” with decentralized witness cosigning.

In: IEEE S&P (2016)
61. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are

public: Results from the 2008 Debian OpenSSL vulnerability. In: ACM SIGCOMM
Internet Measurement Conference IMC (2009)

62. Zhao, Y.: Aggregation of gamma-signatures and applications to bitcoin. IACR
Cryptol. ePrint Arch. 2018, 414 (2018)

https://eprint.iacr.org/2018/068
https://doi.org/10.1007/978-3-642-36095-4_9
https://doi.org/10.1007/978-3-642-36095-4_9

A Framework to Optimize
Implementations of Matrices

Da Lin, Zejun Xiang(B), Xiangyong Zeng, and Shasha Zhang

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied
Mathematics, Hubei University, Wuhan, China

linda@stu.hubu.edu.cn, {xiangzejun,xzeng}@hubu.edu.cn

Abstract. In this paper, we propose several reduction rules to opti-
mize the given implementation of a binary matrix over F2. Moreover, we
design a top-layer framework which can make use of the existing search
algorithms for solving SLP problems as well as our proposed reduction
rules. Thus, efficient implementations of matrices with fewer Xor gates
can be expected with the framework. Our framework outperforms algo-
rithms such as Paar1, RPaar1, BP, BFI, RNBP, A1 and A2 when tested
on random matrices with various densities and those matrices designed in
recent literature. Notably, we find an implementation of AES MixColumns
using only 91 Xors, which is currently the shortest implementation to
the best of our knowledge.

Keywords: Binary matrix · SLP · Xor gate · AES MixColumns

1 Introduction

As the main role to provide diffusion, which is proposed by Shannon [33] as one
of the fundamental design principles of cryptographic primitives, the linear layer
has been widely concerned and designed elaborately. The linear layer of a cipher
can be generally represented by a linear function from F

n
2 to F

m
2 , which takes

(x0, x1, · · · , xn−1) as the input and (y0, y1, · · · , ym−1) as the output.
A linear layer with good cryptographic properties can help to resist some

well-known attacks, such as differential attack [8] and linear attack [24]. Fol-
lowing the wide trail design strategy, a maximum distance separable (MDS for
short) matrix is adopted by AES [13] to provide optimal resistance to differen-
tial attack and linear attack. Meanwhile, lightweight cryptography has received
a lot of attention in the past decade as the resource constrained devices have
been used in a wide range. The software or hardware or both of them need to be
considered in the design of lightweight cryptographic primitives. Thus, this has
inspired the design of lightweight components, which could be used to design
lightweight ciphers [14,17,20–23]. On the other hand, optimizing the implemen-
tation of various components already used in standard ciphers is another line of
research, which could largely reduce the cost of a cipher and is of much practical
significance [2,19,40].
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 609–632, 2021.
https://doi.org/10.1007/978-3-030-75539-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_25

610 D. Lin et al.

Owing to the comprehensive researches on S-box, there are some tools or
platforms [3,7,15,17,27,36] can be used to search for optimized implementation
of S-box focusing on various criteria, for instance, bitslice gate complexity, gate
equivalent complexity, multiplicative complexity and depth complexity. Gate
equivalent complexity and depth complexity have also been discussed in linear
layers. In order to optimize the gate equivalent complexity of a matrix, one should
consider the implementation of this matrix with the smallest Xor-gate count.
However, if the depth complexity is considered, the longest path connecting the
input and the output should be minimized.

The problem of finding the implementation of a matrix with the fewest Xor
gates is NP-hard [9,10]. Thus, the SAT-based method [36] and LIGHTER [17]
can provide optimal implementation for small matrices but may fail for large
domain size. However, there are still many heuristics that could give quite good
implementations. The two mostly used heuristics were proposed in [28] and [11].
It is worth noting that Paar’s algorithms [28] are cancellation-free, which means
the operands in the gates sharing no common variable. Besides, Boyar-Peralta’s
(BP) algorithm [11] would be time-consuming when the matrix is dense. To rem-
edy this, Visconti et al. computed the targets by creating a complement instance
of the given matrix and generating a “common path” [38]. This improvement
of BP algorithm is based on the fact that the complement of a dense matrix is
sparse. There are many other variants of BP algorithm which differ in the tie-
breaking phase [2,21,26,29,37]. In [29], three algorithms named Improved-BP,
Shortest-Dist-First and Focused-Search were proposed. With the attention paid
to the construction of lightweight involutory MDS matrices, Li et al. introduced
the depth into BP algorithm to search implementations with limited depth in
[21]. The constraint on circuit depth has also been discussed in [26], where Maxi-
mov and Ekdahl required that each input or output bit has its own delay. Given a
matrix M , a new method based on BP algorithm that left-multiplying and right-
multiplying M with randomly generated permutation matrices was introduced
in [2] by Banik et al., the best result will be kept after running the algorithm
multiple times. In the following, we will use BFI to denote Banik et al.’s method
for short. In CHES-2020 [37], Tan and Peyrin presented several improved BP
algorithms (RNBP, A1 and A2) by inducing randomisation or focusing on the
nearest target in a way different from Shortest-Dist-First algorithm proposed in
[29]. Recently, a quite different heuristic based on the decomposition of matrix
was proposed in [40]. The cost of a matrix is equivalently treated as the num-
ber of type-3 elementary matrices, thus, optimizing a matrix is to find a matrix
decomposition with fewest type-3 elementary matrices. Similar to BFI, we will
denote Xiang et al.’s heuristic by XZLBZ in this paper. In addition to those
heuristics focusing on 2-input Xor gates, there are also researches take the 3-
input Xor gates into consideration [1,2]. Besides BFI algorithm, Banik et al.
also proposed a graph based heuristic in [2] to find a circuit occupies less area,
the implementation produced in this way is constructed by using both 2-input
and 3-input Xor gates. Not long afterward, Baski et al. introduced 3-input Xor
into BP algorithm in [1] and improved the implementation of AES MixColumns
based on the algorithms RNBP and BFI.

A Framework to Optimize Implementations of Matrices 611

Contributions. In this paper we propose a top-layer framework for searching
optimized implementation of matrices. Our framework consists of two building
blocks, one of which is the combination of several mostly used heuristics for
optimizing matrix implementation. Another building block is a reduction proce-
dure we proposed to further reduce the cost of a given matrix implementation.
These two building blocks are combined in an interactive way such that it could
produce better implementation in a wide range compared with previous results.
Specifically, we first generate an implementation of a given matrix by one of
the heuristics embedded in our framework, then our reduction procedure is per-
formed to further reduce the cost. These two steps will be executed iteratively
in a way that part of the implementation is replaced by an equivalent one using
again one of the heuristics embedded in our framework. Note that we can choose
different heuristics each time when necessary within the search process. Thus,
one of the advantages of this framework is that it can inherently inherit the
merits of all heuristics. Moreover, due to the modular design of our framework,
it enjoys the extra advantage that other heuristics for optimizing matrix imple-
mentation can be easily incorporated into our framework, even for heuristics
that might be proposed in the future.

In order to prove the effectiveness of our reduction procedure, we fix the
heuristic and use our framework to search for further improvements of the imple-
mentations provided by RNBP, A1 and A2. The experimental results shown in
Fig. 1 reveal that even though RNBP, A1 or A2 can provide quite good imple-
mentations, Xor count can still be reduced by the reduction procedure of our
framework. Moreover, we test the whole framework on these matrices with the
same running time as in [37]. The results show that our framework can find
the best implementation with an overwhelming percentage, especially for small
matrices (i.e., 15×15 and 16×16). The results are shown in Table 4. We also test
our framework on those recently proposed matrices. Compared with the imple-
mentations of [2,19,40], the results in Table 5 show that our framework can
further reduce the cost in most cases. For most matrices from [14], our frame-
work outperforms BP, Paar2, RSDF, RNBP, A1 and A2 in most cases (20 out of
24 matrices). Finally, the framework is used to implement the matrices used in
block ciphers or hash functions and the results are given in Table 7. Even though
the AES MixColumns has been widely optimized, it can still be improved by our
framework. As a new record, an implementation of AES MixColumns requiring
only 91 Xors (beating all previous records) is first reported in this paper (shown
in Table 8).

Organization. The rest of the paper is organized as follows. Section 2 presents
some notations and several heuristics in the open literature. In Sect. 3, a reduc-
tion procedure for optimizing a given matrix implementation is proposed. In
Sect. 4, we present our general search framework. We present the applications
of this framework on various matrices in Sect. 5. Finally, Sect. 6 concludes the
paper.

612 D. Lin et al.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field with two elements 0 and 1, and F
n
2 denote the

n-dimensional vector space over F2. Let X = (x0, x1, · · · , xn−1) ∈ F
n
2 denote

an n-bit vector, where xi is the ith coordinate of X. We use F2s to denote the
finite field with 2s elements. Mm×n denotes an m × n matrix over F2. We use
⊕ and & to represent Xor and And operations over F2. The Hamming weight
of a matrix M is denoted by wt(M), which counts the number of 1’s contained
in M .

2.2 Existing Heuristics for Optimizing Matrix Implementation

We give a brief overview in this subsection of several open heuristics for searching
optimized matrix implementation under different metrics. The g-Xor metric of
a matrix counts the number of operations xi = xj ⊕ xk (0 ≤ j, k < i and
i = n, n + 1, · · · , t − 1) that implement the corresponding linear transformation,
and the s-Xor metric of a matrix counts the number of operations xi = xi ⊕ xj

(0 ≤ i, j < n − 1 that implement the corresponding linear transformation.

Paar’s Algorithm. In [28], Paar studied how to find efficient arithmetic for
Reed-Solomon encoders which were based on feed-back shift registers. Two algo-
rithms were proposed to optimize the multiplication with a constant in F2n .

Given a binary matrix over F2, the first algorithm, known as Paar1, pre-
compute the bitwise And of all possible pairs of column ci and cj , where i �= j
and i, j ∈ {0, 1, · · · , n − 1}. The product of ci&cj with the maximal Hamming
weight will be kept as a new column and be added to the right of the matrix, and
the columns ci and cj are updated as ci ⊕ (ci&cj) and cj ⊕ (ci&cj) respectively.
Then the above steps are repeated on this new matrix until the Hamming weight
of each row equals 1.

However, there might be multiple pairs of columns such that whose bitwise
And have the same maximal Hamming weight. If this situation occurs, Paar1
will select the one appears first while the second algorithm Paar2 will try all
candidate pairs. As a result, Paar2 is more time-consuming than Paar1 but
may yield an implementation with a lower cost. However, as mentioned in [37],
Paar2 may not be efficient as the dimension of the matrices increases due to the
exhaustive search. Therefore, we consider the randomised version of the Paar1
(i.e., RPaar1 in [37], which takes the candidates leading to the same maximal
Hamming weight with equal possibility) rather than Paar2 in this paper.

BP Algorithm. Boyar and Peralta proposed a new heuristic in [11] for mini-
mizing the number of Xor gates needed to implement a matrix.

Denote x0, x1, · · · , xn−1 and y0, y1, · · · , ym−1 the n input bits and the m
output bits of an m × n matrix M . Thus, yi’s can be expressed as linear
Boolean functions over xj ’s. Boyar and Peralta’s heuristic defined two param-
eters. One parameter is the base S which records the set of known vari-
ables (or expressions). Another parameter is the distance vector Dist[], and

A Framework to Optimize Implementations of Matrices 613

Dist = (δ(S, y0), δ(S, y1), · · · , δ(S, ym−1)), where δ(S, yi) indicates the minimum
number of Xors required that can obtain yi from S.

Initially, the heuristic first include all input variables x0, x1, · · · , xn−1 into
the base S, and the distance vector Dist[] is initialized as the Hamming weight
of each row minus one, i.e., Dist[i] = δ(S, yi) = wt(Mi)−1, i ∈ [0,m−1], where
Mi denotes the ith row of M . Then the heuristic picks two variables from S and
denotes the sum of these two variables by a new variable, such that if this new
variable is added into S, the sum of the new distance vector can be minimized.
BP algorithm performs the above steps until all elements of Dist[] are zero.
In each step when choosing a new base element, if there are more than one
candidates that can minimize the sum of the new distance vector, the Euclidean
Norm will be utilized to resolve ties, only the one that maximizes the Euclidean
Norm of the updated vector Dist[] can be added to S.

BP algorithm is not that efficient as Paar1, since the process of picking
new base element is time-consuming. The strategy of pre-emptive, which usually
improves running time without increasing the cost, is given in [11] that the Xor
of two base element S[i] and S[j] will be picked directly if S[i] ⊕ S[j] is equal to
an output bit.

Banik et al.’s Algorithm. Banik et al. proposed a new idea based on BP
algorithm in [2]. For a given matrix M , Banik et al. first randomly generated
two permutation matrices P and Q. Then, they computed MR = P · M · Q and
took MR as the input of BP algorithm. In order to find an implementation with
fewer Xor gates, the algorithm will be run multiple times with new randomly
generated permutation matrices each time.

BFI algorithm is based on the fact that the order of rows/columns does no
change the underlying linear system, thus the cost for implementing matrices M
and MR are the same. More specifically, left-multiplying a permutation matrix P
is equivalent to rearranging the rows of M , while right-multiplying a permutation
Q is equivalent to rearranging the columns of M . These operations only change
the orders of the inputs and the outputs of matrix M , but may influence the
implementation given by BP algorithm.

Tan and Peyrin’s Algorithm. Tan and Peyrin proposed three modified non-
deterministic global heuristics in [37] to find optimized implementation of matri-
ces: RNBP, A1 and A2, which are variants of BP heuristic.

The RNBP (Randomised-Normal-BP) differs in the tie-breaking phase with
BP algorithm. In the original BP algorithm, if there are multiple candidates
which all minimize the sum of the distance vector, one should compute the
Euclidean Norm of these distance vectors and choose the candidate with the
maximal Euclidean Norm. However, if there are still more than one candidates
with the same maximal Euclidean Norm, BP algorithm will choose the first can-
didate or use some randomisation. Boyar and Peralta introduced randomisation
in this phase in [11], where the first appeared candidate is chosen (or discarded)
with probability 1/2, and process the second candidate in a similar way if the first
candidate is discarded. However, this leads to an unequal probability of choosing

614 D. Lin et al.

these equally good candidates. For this reason, RNBP treats these candidates
equally and each one is chosen with a same probability.

The A1 algorithm is performed in four steps: Filtering, Selecting, Tie-breaker
and Randomisation. In the Filtering step, the candidates that can reduce at
least one of the nearest targets (whose corresponding value in Dist vector is
minimal and non-zero) are kept. Then, select the candidates in selecting phase
that minimize the sum of distance vectors from those passing the filtering phase.
If more than one candidates pass the first two steps, the Euclidean Norm will be
used as a tie-breaker (i.e., choose the one with a maximal Euclidean Norm). If
the tie-breaker fails to resolve the tie, the remaining candidates will be randomly
picked with equal probability.

Algorithm A1 and A2 are approximately the same with the only difference
that the Tie-breaker step is skipped in A2. A2 seems to provide more randomi-
sation compared with A1, this may explain why A2 can get better results than
A1 in most cases.

Xiang et al.’s Algorithm. In [40], Xiang et al. proposed a quite different
heuristic based on matrix decomposition to search optimized implementation
of invertible matrices. The authors first decomposed a given invertible matrix
as a product of elementary matrices, and they showed that the implementation
cost of the matrix is only related to the number of type-3 elementary matrices
within the matrix decomposition if s-Xor metric is considered. Note that a type-
3 elementary matrix in F2 is a matrix produced by adding a row (column) of the
identity matrix to another row (column). Based on this observation, the authors
converted the problem of optimizing matrix implementation to the problem of
finding a matrix decomposition with as fewer type-3 elementary matrices as
possible. Thus, the authors presented three strategies to decompose a matrix
based on the theory of linear algebra. Moreover, the authors also presented seven
rules of elementary matrix multiplication over F2 in order to further reduce the
number of type-3 elementary matrices. Combined with these seven rules, the new
heuristic can be roughly divided into two steps. The first step is to decompose
the given matrix into a product of elementary matrices, and the second step is
to build a lot of equivalent decompositions to be optimized by using the seven
rules. However, this heuristic can be only applied to invertible matrices since only
invertible matrices can be decomposed as a product of elementary matrices.

2.3 Techniques for Optimizing a Given Implementation

Although searching an optimized implementation of a matrix has been studied
extensively (see Sect. 2.2), however, there is still room for further improvements
by directly optimizing a given matrix implementation.

Tan and Peyrin introduced two local optimization techniques in [37]. The
first technique called swapping orders is to identify and rearrange the opera-
tions within a special part of an implementation aiming at finding some repeat
operations as well as reducing the gate depth. In the second technique, an imple-
mentation is represented by a tree, and each Xor operation is stored in a binary

A Framework to Optimize Implementations of Matrices 615

tree with three nodes. Then, an exhaustive search is performed on a partial tree.
Note that the tree structure of a matrix implementation is usually too large to
perform exhaustive search on the whole tree.

In order to derive all the potential reduction rules in the swapping orders tech-
nique, we list in the following table all possible cases after swapping orders tech-
nique under different constraints on depth based on the sequence given in [37].

Table 1. Three possible sequences after swapping orders.

Given seq Case 1 Case 2 Case 3

if depth(e)<max{depth(b), depth(c)} if depth(e) ≥
max{depth(b), depth(c)}

if depth(b)<depth(c) if depth(b) ≥ depth(c) Remain unchanged

.

a = b ⊕ c a = e ⊕ b a = e ⊕ c a = b ⊕ c

d = a ⊕ e d = a ⊕ c d = a ⊕ b d = a ⊕ e

f = b ⊕ e f = b ⊕ e f = b ⊕ e f = b ⊕ e

.

3 New Reduction for a Given Matrix Implementation

In this section, we first introduce several reduction rules to reduce the cost of a
given implementation. Then, we present a reduction procedure based on these
rules. For an m × n matrix M over F2, an implementation of M (in terms of
g-Xor metric) is a sequence of l operations ti = tj⊕tk, (i = n, n+1, · · · , n+l−1
and j, k < i), where ti are the n input bits for i = 0, 1, · · · , n−1 and each of the m
output bits equals to some ti for i = 0, 1, · · · , n+ l−1. To simplify the represen-
tation, we will denote ti = tj⊕tk by ti,j,k for short. Thus, an implementation of a
matrix Mm×n can be represented as seq = tn,j0,k0 , tn+1,j1,k1 , · · · , tn+l−1,jl−1,kl−1 .

Reduction Rules. Given an implementation seq of matrix Mm×n with l Xor
gates. Let tu, tv, tw, ta, tb, tc be registers used for implementing Mm×n, where
n � u < v < w � n + l − 1 and a �= b �= c. Then the following reduction rules
hold.

1. If operations tu,a,b and tv,a,u are contained in seq, then the values stored in tv
and tb are identical, since tv = ta ⊕ tu = ta ⊕ (ta ⊕ tb) = tb. Thus tv,a,u can be
removed and therefore reducing one Xor in seq. We would like to emphasis
that before we delete tv,a,u, we need to scrutinize all the operations besides
tu,a,b and tv,a,u in seq, and replace tv by tb. Moreover, if tu is only used in
tv,a,u, we can further reduce the implementation cost by removing tu,a,b. The
corresponding reduction rules are listed as R1 and R2 in Table 2.

616 D. Lin et al.

2. If operations tu,a,b, tv,c,u and tw,a,c are contained in seq. We can observe that
the value stored in tv can also be obtained by tb ⊕ tw with the condition that
tw has to be generated before tv (Note that this is always true, since ta, tc
are generated before tv). If tu is only used in tv,c,u, we can remove tu and
replace tv,c,u by tv,b,w, which leads to the reduction of one Xor gate as show
with R3 in Table 2.

3. If operations tu,a,b, tv,a,c and tw,c,u are contained in seq. The value stored in
tw can also be obtained by tb ⊕ tv. If tu is only used in tw,c,u, one Xor can be
saved by removing tu and replacing tw,c,u by tw,b,v. The procedure is shown
in Table 2 with R4.

4. If operations tu,a,b, tv,a,c and tw,b,v are contained in seq. Note that tw can
also be generated by tc ⊕ tu. We can remove tv and replace tw,b,v by tw,c,u if
tv is only used in tw,b,v. The reduction rule is listed as R5 in Table 2.

5. If operations tu,a,b, tv,c,u and tw,a,v are contained in seq. The value stored
in tw is equal to tb ⊕ tc, and we can replace tw,a,v by tw,b,c. Clearly, we
can remove tv if tv is only used in tw,a,v (see R6 in Table 2). Otherwise, tv
should be kept. However, we can utilize tw to generate tv by tv = ta ⊕ tw.
In this case, the order of generating tv and tw is changed, and this requires
the condition tw has to be generated before tv. This may make us achieve an
possible improvement by removing tu if tu is only used in tv,c,u and replacing
tv,c,u by tv,a,w (R7 in Table 2). Specially, if both tu and tv are only used once
(i.e. tu is only used in tv,c,u and tv is only used in tw,a,v), we can delete both
of them, thus reduce the implementation cost by 2 Xors (R8 in Table 2).

6. If operations tu,a,b, tv,a,c and tw,u,v are contained in seq, clearly we have
tw = tb ⊕ tc. If tu is only used in tw,u,v, one Xor can be saved by removing tu
and replacing tw,u,v by tw,b,c (R9 in Table 2). If tv is only used in tw,u,v, we
can remove tv and replace tw,u,v by tw,b,c to save one Xor (R10 in Table 2).
Specially, if both tu and tv are only used once, it will save 2 Xors by removing
tu and tv (R11 in Table 2).

Note that the prerequisite that these reduction rules hold is the output of
each deleted Xor operation cannot be the output of the matrix. The core idea
of the reduction rules is that Xoring the same value will cancel each other in
F2. Note that the order of operations might be changed within several rules,
such as R3 and R7, which rearrange the order of tv and tw. This is based on
the fact that the newly generated value can never be used before. Thus, we can
safely move it forward if the two operands on the right have been obtained. Take
R3 as an example, the original value stored in tv is tc ⊕ tu, which means tc has
been generated before tv. Similarly, ta has been generated before tu. Thus, it is
available to use ta and tc to obtain tw right before tv.

Meanwhile, the order of operations may affect the reduction. Indeed, our pro-
posed rules have taken the order of operations into consideration. We can notice
that the three operations in R3 and R4 are similar except the order, both of them
can help to reduce one Xor but produce different resulting implementations.

Reduction Rules Derived from [37]. Given the sequence as in Table 1, we can find
that our proposed rule R3 will provide the same sequence as swapping orders

A Framework to Optimize Implementations of Matrices 617

Table 2. The reduction rules to reduce gate count.

Xor Gates R1 R2 R3 R4

original

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tu

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tu

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tc

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tc ⊕ tu

· · ·

reduced

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tu

tv = tb
· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tu

tv = tb
· · ·

· · ·
tu = ta ⊕ tb

· · ·
tw = ta ⊕ tc
tv = tc ⊕ tu
tv = tb ⊕ tw

· · ·
tw = ta ⊕ tc

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tc ⊕ tu
tw = tb ⊕ tv

· · ·
condition none tu is only used in tv,a,u tu is only used in tv,c,u tu is only used in tw,c,u

Xor Gates R5 R6 R7 R8

original

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tb ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tv

· · ·

reduced

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tb ⊕ tv
tw = tc ⊕ tu

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tv
tw = tb ⊕ tc

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tw = tb ⊕ tc
tv = tc ⊕ tu
tv = ta ⊕ tw

· · ·
tw = ta ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = tc ⊕ tu

· · ·
tw = ta ⊕ tv
tw = tb ⊕ tc

· · ·

condition tv is only used in tw,b,v tv is only used in tw,a,v tu is only used in tv,c,u
tu is only used in tv,c,u
tv is only used in tw,a,v

Xor Gates R9 R10 R11

original

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv

· · ·

reduced

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv
tw = tb ⊕ tc

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv
tw = tb ⊕ tc

· · ·

· · ·
tu = ta ⊕ tb

· · ·
tv = ta ⊕ tc

· · ·
tw = tu ⊕ tv
tw = tb ⊕ tc

· · ·
condition tu is only used in tw,u,v tv is only used in tw,u,v

tu is only used in tw,u,v

tv is only used in tw,u,v

618 D. Lin et al.

under the condition depth(b)<depth(c) and depth(e)<max{depth(b), depth(c)}
(as case 1 shown in Table 1). In this case, our rule R3 is the same as the swap-
ping orders technique. Besides, as mentioned in [37], the swapping orders tech-
nique focus on the gate depth, which means the reduction procedure shown in
Table 1 are based on the condition that depth(e)<max{depth(b), depth(c)}, but if
depth(e) ≥ max{depth(b), depth(c)}, the given sequence will remain unchanged,
and swapping orders will cause no reduction (see case 3 in Table 1). Since we
focus only on the Xor count, R3 will reduce one Xor in any case, i.e. we do
not consider the depth. Therefore, R3 is a variant of swapping orders but more
general. As well as R4 and R5, for the reason that they can be seen as contain-
ing the same gates with R3 but only differ in gate order. The rest rules listed in
Table 2 can help to reduce the cost in a way different from the swapping orders
technique, which can be verified in a similar way as above.

Reduction Procedure. We present in Algorithm 1 a reduction procedure which
exploits the reduction rules listed in Table 2 to optimize a given implementation.

A toy example is listed here to illustrate the usage of Algorithm 1.

Example 1. Given a matrix M ,

M =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1

⎤
⎥⎥⎦

and its implementation seq which is shown in the column “Given seq” of Table 3,
we have seq = t4,2,3, t5,1,3, t6,0,3, t7,4,5, t8,4,6, t9,4,7, t10,3,7, t11,7,8, t12,10,11 initially.
Algorithm 1 will perform the loop to find reductions and update seq as follows:

– The operation tuple (t4,2,3, t5,1,3, t7,4,5) satisfies R10. Thus, we can remove t5,
and replace t7,4,5 by t7,1,2. seq is updated as seq = t4,2,3, t6,0,3, t7,1,2, t8,4,6,
t9,4,7, t10,3,7, t11,7,8, t12,10,11;

– The operation tuple (t4,2,3, t6,0,3, t8,4,6) satisfies R10, and we can remove t6
and replace t8,4,6 by t8,0,2. seq is updated as seq = t4,2,3, t7,1,2, t8,0,2, t9,4,7,
t10,3,7, t11,7,8, t12,10,11;

– The operation tuple (t4,2,3, t7,1,2, t9,4,7) satisfies R9. We can remove t4 and
replace t9,4,7 by t9,1,3. seq is updated as seq = t7,1,2,t8,0,2,t9,1,3,t10,3,7,t11,7,8,
t12,10,11;

– The operation tuple (t7,1,2, t8,0,2, t11,7,8) satisfies R10. We can remove t8, and
replace t11,7,8 by t11,0,1. seq is updated as seq = t7,1,2, t9,1,3, t10,3,7, t11,0,1,
t12,10,11;

There is no longer any tuple satisfying R1-R11 at this point, thus, the optimized
implementation of M is shown in the column “Optimized seq” of Table 3.

A Framework to Optimize Implementations of Matrices 619

Table 3. The implementation of M .

No. Given seq Optimized seq No. Given seq Optimized seq

1 t4 = t2 ⊕ t3 Removed 6 t9 = t4 ⊕ t7 [y3] t9 = t1 ⊕ t3 [y3]

2 t5 = t1 ⊕ t3 Removed 7 t10 = t3 ⊕ t7 t10 = t3 ⊕ t7

3 t6 = t0 ⊕ t3 Removed 8 t11 = t7 ⊕ t8 [y0] t11 = t0 ⊕ t1 [y0]

4 t7 = t4 ⊕ t5 [y1] t7 = t1 ⊕ t2 [y1] 9 t12 = t10 ⊕ t11 [y2] t12 = t10 ⊕ t11 [y2]

5 t8 = t4 ⊕ t6 Removed

Algorithm 1. Cost Reduction for a Given Matrix Implementation
Input: The implementation seq = tn,j0,k0 , tn+1,j1,k1 , · · · , tn+l−1,jl−1,kl−1 for a given m × n

matrix M ;
Output: Reduced implementation Reduce(seq) of M ;
1: flag ← True;
2: l ← |seq|; � Xor count of seq

3: while flag do
4: flag ← False;

5: for u = n, n + l − 2 do

6: for v = u + 1, n + l − 1 do
7: if the operations in tu and tv match R1 or R2 in Section 3 then
8: reduce seq and update seq;

9: l ← |seq|;
10: flag ← True;

11: break;
12: end if
13: for w = v + 1, n + l − 1 do

14: if the operations in tu, tv , tw match one of R3-R11 in Section 3 then

15: reduce seq and update seq;
16: l ← |seq|;
17: flag ← True;

18: break;
19: end if

20: end for
21: if flag then
22: break;

23: end if
24: end for
25: if flag then
26: break;
27: end if
28: end for

29: end while
return seq;

4 A General Framework of Optimization

Algorithm 1 presented in Sect. 3 can be used to possibly reduce the cost of any
given implementation of matrices. However, if we only apply Algorithm1 to the
resulting implementations of existing heuristics (i.e., Paar1, RPaar1, BP, BFI,

620 D. Lin et al.

RNBP, A1, A2 and Xiang et al.’s heuristic), the optimization effect may not be
very satisfactory. There are two reasons for this. Since there are seven heuristics
available for us, we can only apply Algorithm1 to at most seven (Xiang et al.’s
heuristic cannot be used if the matrix considered is not invertible) instances of
implementation of a given matrix, and it is likely that there are not so many
reductions with such a few instances. Another reason is due to the inherent
optimization of those heuristics. For example, the A1 algorithm may run the
procedure multiple times and return the best one. This optimized implemen-
tation is hard for us to further reduce the cost. Thus, we present a framework
in this section which is able to combine the existing heuristics and generate a
sufficiently large number of implementations of a given matrix. Then, we apply
Algorithm 1 to those implementations and keep the best record. It should be
noted that BFI algorithm shuffles the rows and columns of the target matrix,
and then applies BP algorithm (Paar’s algorithms for large matrices) to find
a better solution. In fact, we can take the product matrix obtained by left-
mutiplying and right-multiplying random permutation matrices with the target
matrix as the input of any other heuristics introduced in Sect. 2.2. Therefore,
in this paper we modify BFI algorithm, and combine their method with all the
other heuristics.

Note that Xiang et al.’s heuristic has used the idea of generating a lot of
decompositions of a given matrix. The authors achieved this idea by picking
out a segment from the decomposition and replacing this part by another one
which was considered as the equivalent decomposition of the chosen segment.
Clearly, due to the feature of their heuristic by using s-Xor metric and matrix
decomposition, the product of any selected segment is an invertible matrix with
the same size of the original matrix. In the following, we extend this technique
in a more general and elaborate way.

Given an m × n matrix M and its implementation with l Xor operations
seq = tn,j0,k0 , tn+1,j1,k1 ,· · · ,tn+l−1,jl−1,kl−1 , which is generated by using one of
the heuristics introduced in Sect. 2.2. We pick a set of consecutive Xor oper-
ations of seq with length g and denote those picked Xor operations tn+i,ji,ki

,
tn+i+1,ji+1,ki+1 ,· · · ,tn+i+g−1,ji+g−1,ki+g−1 as seq′, where 0 � i � l − g. It is clear
that such a sequence of Xor operations can define a matrix M ′. It is worth
noting that such a matrix M ′ is not necessary an invertible matrix, nor even
a square matrix. With this recovered matrix M ′, we can use again one of the
heuristics to find an implementation of M ′ which is then inserted into the orig-
inal implementation sequence seq. Thus, an equivalent implementation of the
original matrix M is generated. Since we can pick an arbitrary number (less
than the total length of seq) of consecutive Xor operations from any part of
seq, we can generate sufficiently many implementations from which it may yield
a good one by applying Algorithm1. We illustrate in Algorithm2 our general
framework, where Imp(M) returns an implementation of M using one of the
heuristics, and Recover(seq) returns a matrix defined by seq.

Issues of Recovering M ′. Intuitively, for any Xor operation xi = xj ⊕ xk within
seq′, the two operands on the right side of the Xor operation is the inputs of

A Framework to Optimize Implementations of Matrices 621

Algorithm 2. Search Optimized Matrix Implementation
Input: An m × n matrix M or

An implementation seq = tn,j0,k0 , tn+1,j1,k1 , · · · , tn+l−1,jl−1,kl−1 of a matrix;
Output: Optimized implementation;
1: if M is the input then
2: seq ← Imp(M); � by Paar1 or RPaar1 or BP or BFI or RNBP or A1 or A2
3: end if
4: seq ← Reduce(seq); � Algorithm 1
5: l ← |seq|; � Xor count of seq
6: g ← l;
7: while g ≥ 2 do
8: g = g − 1;
9: for i = 0, l − g do

10: seq1 = tn,j0,k0 , tn+1,j1,k1 , · · · , tn+i−1,ji−1,ki−1 ;
11: seq2 = tn+i,ji,ki , tn+i+1,ji+1,ki+1 , · · · , tn+i+g−1,ji+g−1,ki+g−1 ;
12: seq3 = tn+i+g,ji+g,ki+g , tn+i+g+1,ji+g+1,ki+g+1 , · · · , tn+l−1,jl−1,kl−1 ;
13: M ′ = Recover(seq2);

14: seq
′
2 =Imp(M ′);� by Paar1 or RPaar1 or BP or BFI or RNBP or A1 or A2

15: seq′ = seq1 + seq′
2 + seq3;

16: seq∗ ← Reduce(seq′) � Algorithm 1
17: if |seq| > |seq ∗ | then
18: seq = seq∗;
19: l = |seq ∗ |;
20: g ← l;
21: break;
22: end if
23: end for
24: end while

return seq;

M ′, and the operand on the left side is the output of M ′. However, we will show
that it is a quite tricky process to identify the real inputs and the real outputs
of M ′. We first initialize two empty sets Si and So. Then all the operands on
the left side of the Xor operations within seq′ are added to So. To identify the
real outputs, we have to check each operand in So whether it is equal to some
output bit of M or it is used anywhere in seq while outside seq′, we can remove
it from So if neither of these happens. After this process, So contains all the real
outputs. Then, for each operand in So, we compute its linear expression over the
inputs of the original matrix M by tracing backward according to seq and add
the variables in the expression to Si, i.e., the real inputs for a picked segment are
a subset of the input of matrix M . Once the real inputs and the real outputs are
identified, each operand in the real output set So can be expressed as a linear
combination of the operands in Si.

To elaborate the procedure of recovering the matrix M ′, we take the imple-
mentation of the matrix listed in Table 3 as an example.

622 D. Lin et al.

Example 2. Let’s consider the implementation listed in the column “Given seq”
of Table 3, and we choose t5,1,3, t6,0,3, t7,4,5, t8,4,6 as a consecutive segment. Firstly
we initialize So = {t5, t6, t7, t8}. Then, we keep t7 as a real output since it stores
the value of the output bit y1. t5 and t6 should be removed because they are only
used to generate t7 and t8 respectively, and never be used outside the segment.
Thus the real outputs are So = {t7, t8}. Note that t7 = t4⊕ t5, where t4 = t2⊕ t3
and t5 = t1 ⊕ t3 are intermediate values. Thus, t7 can be iteratively expressed
as t7 = t2 ⊕ t3 ⊕ t1 ⊕ t3 = t1 ⊕ t2, which indicates that t1, t2 should be included
in the real inputs. Similarly, t8 = t2 ⊕ t3 ⊕ t0 ⊕ t3 = t0 ⊕ t2. Therefore the real
inputs are Si = {t1, t2} ∪ {t0, t2} = {t0, t1, t2}, and the temporary matrix M ′ is

[
0 1 1
1 0 1

]
.

The equivalent matrix recovered in Example 2 verifies that we cannot always
obtain an invertible matrix (nor even a square matrix), which restricts ourselves
to Paar1, RPaar1, BP, BFI, RNBP, A1 and A2 for finding an implementation
for the recovered matrix M ′.

Note that each heuristic adopts randomisation within itself, thus it will gener-
ate different implementations for different calls even for the same matrix. There-
fore, each time when Algorithm 2 is called it may obtain different results. Thus,
we can run the procedure several times and keep the best one.

Advantage. Our framework is a unified framework to search optimized imple-
mentation of matrices. All heuristics are used as sub-modules in our framework,
this makes our framework enjoy the advantage that anyone can easily incorpo-
rate his own heuristic into our framework as a sub-module, and make use of
the reduction procedure (Algorithm1) and our iterative search idea to further
reduce the cost. In addition, our framework provides a lot of flexibility within
itself. We do not fix which heuristic is used when necessary. For instance, one
can use a fixed heuristic each time when it needed in our framework to get an
implementation of a matrix. This situation is necessary when someone wants to
compare the optimization effect of different heuristics. Besides, we can use this
framework by randomly choosing a heuristic each time. Since each heuristic has
its own advantages, this hybrid and combinatorial usage of random choices of
heuristics may utilize the advantages of all heuristics.

The Implementation of Our Framework. Our framework is constructed based on
the existing heuristics proposed in [2,11,28,37] and we use some openly avail-
able implementations for these heuristics. For BP and Paar1 algorithms, we use
the implementations that are provided in the GitHub repository stated in [19].
RPaar1, which takes a candidate with equal possibility, is implemented by a
slight tweaking of Paar1. As to RNBP, A1 and A2, we use the implementations
given by Tan and Peyrin as they mentioned in [37]. In order to implement BFI
algorithm, we generate two permutation matrices randomly and use them as the
authors did in [2].

A Framework to Optimize Implementations of Matrices 623

All the source codes of our framework are available at: https://github.com/
DaLin10512/framework.

5 Applications

In this section, we apply our framework to a large number of matrices and com-
pare the results with various search algorithms. We first introduce the following
three functionalities that our framework can provide, which are based on the
tweakable features described in Sect. 4.

1. Direct Optimization - Given a matrix, our framework can provide imple-
mentations with good performance in terms of Xor count using one of the
heuristics embedded in our framework. This is a direct reapplication of the
previous heuristics presented in [2,11,28,37];

2. Further Reduction - Any given implementation can be loaded to Algo-
rithm2 as an input, thus, our framework can be used to search possible
improvements of the given implementation;

3. Iterative Optimization - This functionality is almost the same as Further
Reduction, the only difference is that the matrix is taken as the input of
Algorithm 2 in this method.

Our framework can be used to search possible better implementations by run-
ning Algorithm 2 multiple times. Therefore, the approaches Further Reduction
and Iterative Optimization may cost more time than the first method but a
potentially better implementation can be expected in some situations.

5.1 Applications to Random Matrices

Tan and Peyrin tested their heuristics on a large number of random square
matrices in [37]. More specifically, for a given size (range from 15 to 20) and
density (range from 0.1 to 0.9), 10 matrices were randomly generated and then
tested. The authors run their procedure multiple times in a given time.

We first evaluate the effectiveness of our proposed reduction procedure and
apply the framework on random matrices used in [37] by using Further Reduc-
tion functionality. To this end, we try to optimize the implementations provided
by RNBP, A1 and A2 given in [37] and evaluate the average cost that saved com-
paring with the BP heuristic. In order to have a fair comparison, we use the same
fixed heuristic in our framework when optimizing the implementations given by
different heuristics, i.e., we only use RNBP (A1, A2) to search the implemen-
tation of recovered matrices (generated in the framework) when optimizing the
implementations provided by RNBP (A1, A2). It is worth mentioning that the
implementations given by RNBP, A1 and A2 are obtained by running the algo-
rithms for a given time. We allocate our framework the same time for the given
matrix as in [37] and keep RNBP (A1, A2) running during the phase that our
framework is being used for further reduction. The results are shown in Fig. 1,

https://github.com/DaLin10512/framework
https://github.com/DaLin10512/framework

624 D. Lin et al.

where RNBP (A1, A2) denotes the results obtained by using the correspond-
ing algorithms proposed in [37] and RNBP-Opt (A1-Opt, A2-Opt) denotes the
results returned by our framework when taking the optimized implementation of
RNBP (A1, A2) as the input. As show in Fig. 1, even though Tan and Peyrin’s
heuristics can get better implementation compared with BP heuristic, the costs
can still be reduced by our general framework.

15 16 17 18 19 20
Matrix size

0

1

2

3

4

5

A
ve

ra
ge

 s
av

ed
 X

or
 g

at
e

RNBP
RNBP-Opt
A1
A1-Opt
A2
A2-Opt

Fig. 1. Average Xor count saved for various algorithms compared with BP.

In addition, we apply our framework with random choices of heuristics to
these random matrices by using Iterative Reduction functionality, and com-
pare the results with Paar1, RPaar1, BP, BFI, RNBP, A1 and A2. All the matri-
ces are allocated the same running time given in [37] except Paar1, RPaar1 and
BP. As in [37], we run RPaar1 10000 times for each matrix due to its efficiency
and pick the best implementation. The percentages of the best implementation
given by different methods are shown in Table 4. The experiment results show
that our framework has an overwhelming advantage.

5.2 Applications to Cipher Matrices

We tested our general framework on some recently designed matrices which have
been optimized in [2,19,37,40]. Note that [40] reported several best implemen-
tations on those matrices, however, the optimizing algorithm can only apply to
invertible matrices, thus it is not applicable to those intermediately recovered
matrices in our framework. We can only use the Further Reduction function-
ality of our framework to try to further reduce the cost of the implementations

A Framework to Optimize Implementations of Matrices 625

Table 4. Percentage of the best implementation produced by various algorithms for
various square matrix sizes.

Matrix

size

Paar1 [28] RPaar1 [37] BP [11] BFI [2] RNBP [37] A1 [37] A2 [37] Our

framework

Sect. 4

15 13.33 13.33 14.44 18.89 23.33 32.22 44.44 100.00

16 11.11 14.44 17.78 22.22 22.22 27.78 37.78 96.67

17 8.89 10.00 12.22 21.11 14.44 26.67 26.67 93.33

18 10.00 11.11 11.11 13.33 13.33 25.56 38.89 96.67

19 7.78 7.78 14.44 15.56 22.22 34.44 54.44 86.67

20 8.89 10.00 13.33 15.56 18.89 36.67 58.89 73.33

given by [40]. Moreover, we also applied the Iterative Optimization function-
ality to these matrices. The experiment results show that most matrices can
be further optimized by our framework. The details are listed in the columns
“FurOpt” and “IterOpt” in Table 5. In order to obtain the implementations given
by different heuristics, we allocated various times from several hours to several
days for those tested matrices. It should be noted that for 8 × 8 matrices over
GL(8,F2), only [19] (use Paar1 and BP) and [2] (use BFI) have reported imple-
mentations of these six matrices ([40] have reported an implementation of one
matrix, which is designed by [35]). Thus, we only list the results on matrices of
size 16 × 16 and 32 × 32 in Table 5 for better comparison.

Besides, we also applied our framework to those MDS matrices constructed
specially in [14] with functionality Iterative Optimization. As Tan and Peyrin
did in [37], we allocated 15000 s for each of the 12 matrices with size 16 × 16
and 5 days for each of the 12 matrices with size 32 × 32 tested in this paper.
The results are shown in Table 6. What we need to emphasize here is that the
authors in [14] applied Yosys synthesis tool [39] and the authors in [37] applied
LocalOpt & Yosys technique to improve their optimized implementation. How-
ever, neither Yosys synthesis tool nor LocalOpt & Yosys technique is applied
to the implementations returned by our framework, thus we only compare the
results before Yosys synthesis tool and LocalOpt & Yosys technique are used
for further optimization. Nevertheless, further optimization may be expected if
they are applied to our results. Comparing the costs of these 24 matrices under
various global optimization algorithms (BP, Paar2, RSDF, RNBP, A1 and A2),
our framework can find better implementations for 20 matrices. Furthermore, we
note that the costs given in [14] for implementing these MDS matrices, which are
generated along with the construction for their optimized implementation, have
been improved to a certain extend as listed in the column “Const.” of Table 6,
our framework can still find better implementations than [14] for 10 matrices.

626 D. Lin et al.

Our general framework has also been applied to matrices used in several
block ciphers and hash functions as did in [2,19,40]. Since our framework can
independently call different heuristics to optimize a matrix implementation, it
will be never worse than previous results. [2,19,40] tested 24 matrices, our frame-
work can find better implementations for 6 matrices of all the 24 matrices, and
Table 7 list the corresponding results. The improvement achieved by our frame-
work is not that significant in this case. Although the reason for this is not clear,
this might be caused by the fact that matrices used in block ciphers and hash
functions are denser than those newly designed matrices. Thus, limited by the
solution speed of BP algorithm and its variants for large/dense matrices, the
improvement of our framework on these matrices might be affected. Neverthe-
less, our framework can still return an implementation of AES MixColumns with
only 91 Xors, which beats all records, and its implementation details can be
found in Table 8.

Table 5. Implementation cost of newly designed matrices.

Matrix Paar1

[28]

Paar2

[28]

BP [11] BFI [2] XZLBZ

[40]

RNBP

[37]

A1 [37] A2 [37] FurOpt† IterOpt†

4 × 4 matrices over GL (4, F2)

[35] 50 48 48 46 44 46 46 46 – 44/7

[23] 49 46 44 44 44 43 43 43 – 43/4

[22] 48 47 44 44 44 43 44 43 43/4 43/4

[6] 48 47 42 42 41 40 41 40 40/5 40/7

[30] 46 45 43 42 41 41 41 41 – 40/7

[17] 48 47 43 42 41 42 41 40 40/7 40/6

[35]* 52 48 48 47 44 46 45 44 – 43/8

[22]* 51 48 48 46 44 47 45 45 – 43/8

[30]* 50 48 42 40 38 39 39 38 – 37/7

[17]* 51 47 47 46 41 45 43 43 – 41/10

4 × 4 matrices over GL (8, F2)

[35] 100 98 100 94 90 94 92 93 – 91/7

[23] 116 116 112 110 121 108 108 109 108/8 107/6

[22] 102 102 102 102 104 99 99 99 99/4 99/5

[6] 116 112 110 108 114 106 106 106 105/8 105/7

[30] 110 108 107 104 114 103 102 102 101/11 100/9

[17] 96 95 86 86 82 84 82 82 80/7 80/6

[35]* 104 101 100 94 91 92 92 92 – 89/8

[22]* 101 97 91 90 87 89 89 88 – 86/9

[30]* 110 109 100 98 93 97 99 97 92/8 95/7

[17]* 102 100 91 92 83 89 86 86 – 84/6

8 × 8 matrices over GL (4, F2)

[35] 210 209 194 192 170 176 – – 169/20 172/10

[31] 205 205 201 203 183 180 – – 178/10 177/10

[35]* 222 222 217 212 185 182 – – 178/17 172/22

∗ Involutory matrix.

† We only present depths in these columns, since the results given in [2,19,40] only list Xor count.

A Framework to Optimize Implementations of Matrices 627

Table 6. Implementation costs (Xor/depth) of matrices of size 16 × 16 and 32 × 32
in [14].

Matrix Instantiation

(α, β, γ)

Const.∗
[14]

BP [14] Paar2

[14]

RSDF

[37]

RNBP

[37]

A1 [37] A2 [37] Our

frame-

work

Sect. 4

M
9,3
4,5 (A4, −, −) 39/5 38/7 45/5 38/8 38/7 39/9 38/8 35/9

M
9,3
4,5 (A−1

4 , −, −) 39/5 40/4 46/4 39/9 39/7 38/6 36/6 35/6

M
8,3
4,6 (A4, −, −) 35/5 38/7 45/5 39/8 38/8 39/10 38/6 35/9

M
8,3
4,6 (A−1

4 , −, −) 35/6 40/4 46/4 37/9 39/7 38/5 36/6 35/6

M
8,3
4,5 (A−1

4 , A4, A−2
4) 36/6 40/6 47/4 40/17 39/7 39/11 39/9 36/9

M
9,4
4,4 (A4, −, −) 40/4 41/9 47/5 42/14 40/10 39/9 39/9 38/7

M
9,3
4,4 (A4, A−1

4 , A2
4) 40/4 40/7 43/4 40/10 39/7 42/10 41/7 38/7

M
8,4
4,4 (A4, −, −) 38/4 40/7 43/5 41/10 39/8 40/7 40/7 38/6

M
8,4

′
4,4 (A4, −, −) 38/4 43/6 41/4 40/6 42/6 41/7 40/6 38/5

M
8,4

′′
4,4 (A4, −, −) 37/4 40/5 43/5 41/12 40/6 40/6 39/7 37/6

M
9,5
4,3 (A4, −, −) 41/3 40/4 43/4 43/7 40/5 41/7 40/5 39/5

M
9,5
4,3 (A−1

4 , −, −) 41/3 43/5 44/3 44/10 41/6 41/7 40/6 40/5

M
9,3
4,5 (A8, −, −) 75/5 74/5 88/4 82/12 69/6 79/9 70/6 67/5

M
9,3
4,5 (A−1

8 , −, −) 75/5 71/6 89/5 89/15 69/6 80/7 68/7 67/5

M
8,3
4,6 (A8, −, −) 67/5 74/5 88/4 85/18 68/6 79/8 71/8 67/5

M
8,3
4,6 (A−1

8 , −, −) 67/5 71/6 89/5 85/15 69/6 80/7 68/7 67/6

M
8,3
4,5 (A−1

8 , A8, A−2
8) 68/5 75/6 77/4 84/16 75/6 74/8 71/6 68/6

M
9,4
4,4 (A8, −, −) 76/4 77/6 92/4 89/14 76/6 76/7 77/7 76/5

M
9,3
4,4 (A8, A−1

8 , A2
8) 76/4 76/6 83/6 85/16 75/8 78/8 76/8 74/8

M
8,4
4,4 (A8, −, −) 70/4 72/5 74/4 90/17 70/6 70/7 70/7 70/7

M
8,4

′
4,4 (A8, −, −) 70/4 81/7 79/5 89/10 79/6 75/8 74/6 72/7

M
8,4

′′
4,4 (A8, −, −) 69/4 72/6 85/5 90/14 70/6 77/6 70/6 69/6

M
9,5
4,3 (A8, −, −) 77/3 76/7 86/4 87/10 76/6 77/7 76/6 75/5

M
9,5
4,3 (A−1

8 , −, −) 77/3 79/5 86/4 91/14 77/6 77/7 77/5 77/6

∗ This column presents the results listed in the column “Ours” of Table 5 in [14].

Table 7. Implementation costs of cipher matrices.

Cipher Paar1

[28]

Paar2

[28]

BP [11] BFI [2] XZLBZ

[40]

RNBP

[37]

A1 [37] A2 [37] FurOpt† IterOpt†

Aes [13] 108 108 97 95 92 95 95 94 91/7 93/6

Anubis [5] 121 121 106 102 98 100 103 105 96/11 97/12

Clefia M0
[34]

121 121 106 102 98 100 103 105 96/11 97/12

Clefia M1
[34]

121 121 111 110 103 108 108 109 – 108/7

Fox mu4

[18]

144 143 137 131 136 132 135 135 130/9 131/9

Twofish

[32]

151 149 129 125 111 124 122 – – 121/14

Joltik [16] 52 48 48 47 44 46 45 44 – 43/8

SmallScale

Aes [12]

54 54 47 45 43 46 44 45 – 43/5

Whirlwind

M0 [4]

218 218 212 210 183 188 – – – 183/16

Whirlwind

M1 [4]

246 244 235 234 190 188 – – – 180/17

† We only present depths in these columns, since the results given in [2,19,40] only list Xor count.

628 D. Lin et al.

Table 8. An implementation of AES MixColumns with 91 Xors, where x0, x1, · · · , x31

are the 32 input bits, y0, y1, · · · , y31 are the 32 output bits.

t32 = x23 + x31 t51 = x2 + t42 t70 = t32 + t40 t89 = x29 + t38 t108 = t102 +

t107[y3]

t33 = x15 + x31 t52 = x25 + t47 t71 = x8 +

t70[y16]

t90 = t87 +

t89[y29]

t109 = t61 + t52

t34 = x4 + x12 t53 = t41 +

t47[y0]

t72 = t46 +

t70[y8]

t91 = t78 +

t89[y13]

t110 = t53 +

t55[y24]

t35 = x13 + x21 t54 = t32 + t41 t73 = t41 + t69 t92 = x2 + t48 t111 = t109 +

t110[y25]

t36 = x9 + x17 t55 = t33 + t40 t74 = t66 +

t73[y28]

t93 = t36 +

t92[y10]

t112 = t51 +

t63[y18]

t37 = x11 + x27 t56 = t32 + t45 t75 = x29 + t35 t94 = t33 + t49 t113 = t52 +

t97[y17]

t38 = x4 + x28 t57 = x7 + t43 t76 = t34 +

t75[y5]

t95 = x7 +

t94[y23]

t114 = t54 +

t57[y7]

t39 = x5 + x21 t58 = t39 + t49 t77 = x28 + t69 t96 = t40 + t71 t115 = t56 +

t57[y15]

t40 = x0 + x24 t59 = x3 + x27 t78 = t39 + t77 t97 = t42 + t96 t116 = t88 +

t106[y22]

t41 = x7 + x15 t60 = x25 + t36 t79 = t76 +

t78[y21]

t98 = x10 + t92 t117 = t97 +

t62[y9]

t42 = x1 + x9 t61 = x1 + t60 t80 = t33 + t37 t99 = t51 +

t98[y2]

t118 = t56 +

t95[y31]

t43 = x6 + x14 t62 = t46 + t60 t81 = t38 + t80 t100 = t48 + t68 t119 = t93 +

t63[y26]

t44 = x16 + x24 t63 = t50 + t61 t82 = t74 +

t81[y4]

t101 = t67 +

t100[y11]

t120 = t58 +

t116[y30]

t45 = x6 + x22 t64 = t35 + t45 t83 = x27 + t68 t102 = t37 + t100 t121 = t62 +

t110[y1]

t46 = x16 + t33 t65 = x30 +

t64[y14]

t84 = x20 + t83 t103 = x19 +

t102

t122 = t108 +

t67[y27]

t47 = x8 + t44 t66 = t33 + t59 t85 = t77 +

t84[y20]

t104 = x3 +

t103[y19]

t48 = x18 + x26 t67 = t50 + t66 t86 = t81 +

t84[y12]

t105 = t39 + t65

t49 = x22 + x30 t68 = x19 + t32 t87 = x5 + t75 t106 = t43 +

t105[y6]

t50 = x10 + x26 t69 = x20 + t34 t88 = t45 + t87 t107 = t54 + t98

6 Conclusion and Future Work

In this work, we proposed several reduction rules for reducing the cost of a matrix
implementation. Different from the reduction rules proposed in [40], we do not
require that the operations that meet our rules must be adjacent. Based on these
rules we designed a framework which combines several state-of-the-art heuristics
and our proposed reduction procedure. Thus, our framework can expect better
implementations compared with previous search algorithms. Our experimental

A Framework to Optimize Implementations of Matrices 629

results on a large range of matrices verify that, our framework performs better
on average, especially for small and (or) sparse matrices. Moreover, our frame-
work provides a lot of tweakable features that one can easily handle to meet his
own need. As an application, our framework finds an implementation of AES
MixColumns with only 91 g-Xor operations for the first time. In the following,
we discuss several possible directions for future researches.

Dense Matrices. Being embedded with the heuristics of BP, BFI, RNBP, A1 and
A2, our framework is time-consuming for large dense matrices, even though it
can give shorter implementations than previous works in most cases. However,
Paar’s algorithm can make up for this to some extend. Thus, we can for example
fix a bound for the density and/or size of matrices, and use Paar’s algorithms
to find the implementation of a matrix if its density and/or size is beyond this
bound.

Depth Complexity. In this paper, we do not focus on depth complexity. But as a
main parameter determining the circuit delay, the depth of an implementation
cannot be neglected. The focus of the reduction procedure is the Xor count,
however, it might be possible to take the depth into consideration, such as in
[21,26]. Although our framework focuses on Xor count, the depth of the imple-
mentation for implementing AES MixColumns given in Table 8 is 7, which is a
little higher than the results with depth 6 given in [25,40] but lower than the
implementation with depth 9 given in [37].

3-input Xor. Even though a 3-input Xor gate can be realized by two 2-input
Xor gates, the hardware cost of one 3-input Xor gate is much lower than two
2-input Xor gates. Whether the reduction rules given in Sect. 3 can be extended
to 3-input Xor gates is a possible direction for further researches, as well as new
reduction rules for 3-input Xor gates.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work was supported by the Application
Foundation Frontier Project of Wuhan Science and Technology Bureau (Grant No.
2020010601012189) and the National Natural Science Foundation of China (Grant No.
61802119).

References

1. Baksi, A., Karmakar, B., Dasu, V.A., Saha, D., Chattopadhyay, A.: Further insights
on implementation of the linear layer. https://www.esat.kuleuven.be/cosic/events/
silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf

2. Banik, S., Funabiki, Y., Isobe, T.: More results on shortest linear programs. In:
Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 109–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3 7

3. Bao, Z., Guo, J., Ling, S., Sasaki, Y.: PEIGEN - a platform for evaluation, imple-
mentation, and generation of S-boxes. IACR Trans. Symmetric Cryptol. 2019(1),
330–394 (2019). https://doi.org/10.13154/tosc.v2019.i1.330-394

https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf
https://doi.org/10.1007/978-3-030-26834-3_7
https://doi.org/10.13154/tosc.v2019.i1.330-394

630 D. Lin et al.

4. Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind:
a new cryptographic hash function. Des. Codes Cryptogr. 56(2–3), 141–162 (2010).
https://doi.org/10.1007/s10623-010-9391-y

5. Barreto, P.S., Rijmen, V.: The ANUBIS block cipher. In: First Open NESSIE
Workshop (2000)

6. Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in GF (2n) with
applications to MDS matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 23

7. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052352

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

9. Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program
for computing linear forms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 168–179. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85238-4 13

10. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2012). https://doi.org/10.1007/
s00145-012-9124-7

11. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–
189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6 16

12. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11502760 10

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

14. Duval, S., Leurent, G.: MDS matrices with lightweight circuits. IACR Trans. Sym-
metric Cryptol. 2018(2), 48–78 (2018). https://doi.org/10.13154/tosc.v2018.i2.48-
78

15. Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace
attack against midori64 and the resistance criteria for S-box designs. IACR Trans.
Symmetric Cryptol. 2016(1), 33–56 (2016). https://doi.org/10.13154/tosc.v2016.
i1.33-56

16. Jean, J., Nikolić, I., Peyrin, T.: Joltik. Submission to the CAESAR competition
(2014)

17. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of
lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168
(2017). https://doi.org/10.13154/tosc.v2017.i4.130-168

18. Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30564-4 8

19. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line
programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211
(2017). https://doi.org/10.13154/tosc.v2017.i4.188-211

20. Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-MDS
matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017). https://doi.
org/10.13154/tosc.v2017.i1.129-155

https://doi.org/10.1007/s10623-010-9391-y
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/978-3-540-85238-4_13
https://doi.org/10.1007/978-3-540-85238-4_13
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.1007/978-3-540-30564-4_8
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.13154/tosc.v2017.i1.129-155

A Framework to Optimize Implementations of Matrices 631

21. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory MDS
matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2019(1), 84–
117 (2019). https://doi.org/10.13154/tosc.v2019.i1.84-117

22. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 7

23. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 6

24. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

25. Maximov, A.: AES MixColumn with 92 XOR gates. IACR Cryptol. ePrint Arch.
2019, 833 (2019). https://eprint.iacr.org/2019/833

26. Maximov, A., Ekdahl, P.: New circuit minimization techniques for smaller and
faster AES SBoxes. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(4), 91–125
(2019). https://doi.org/10.13154/tches.v2019.i4.91-125

27. Osvik, D.A.: Speeding up serpent. In: The Third Advanced Encryption Standard
Candidate Conference, New York, USA, 13–14 April 2000, pp. 317–329. National
Institute of Standards and Technology (2000)

28. Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: IEEE International
Symposium on Information Theory, p. 250 (1997)

29. Reyhani-Masoleh, A., Taha, M.M.I., Ashmawy, D.: Smashing the implementation
records of AES S-box. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 298–
336 (2018). https://doi.org/10.13154/tches.v2018.i2.298-336

30. Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz matri-
ces. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016). https://doi.org/10.
13154/tosc.v2016.i1.95-113

31. Sarkar, S., Syed, H.: Analysis of toeplitz MDS matrices. In: Pieprzyk, J., Suriadi,
S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 3–18. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59870-3 1

32. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
a 128-bit block cipher (1998)

33. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

34. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

35. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 23

36. Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT
solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 8

37. Tan, Q.Q., Peyrin, T.: Improved heuristics for short linear programs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020(1), 203–230 (2020). https://doi.org/10.
13154/tches.v2020.i1.203-230

38. Visconti, A., Schiavo, C.V., Peralta, R.: Improved upper bounds for the expected
circuit complexity of dense systems of linear equations over GF(2). Inf. Process.
Lett. 137, 1–5 (2018). https://doi.org/10.1016/j.ipl.2018.04.010

https://doi.org/10.13154/tosc.v2019.i1.84-117
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/978-3-662-52993-5_6
https://doi.org/10.1007/3-540-48285-7_33
https://eprint.iacr.org/2019/833
https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/tosc.v2016.i1.95-113
https://doi.org/10.13154/tosc.v2016.i1.95-113
https://doi.org/10.1007/978-3-319-59870-3_1
https://doi.org/10.1007/978-3-319-59870-3_1
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1007/978-3-662-52993-5_8
https://doi.org/10.13154/tches.v2020.i1.203-230
https://doi.org/10.13154/tches.v2020.i1.203-230
https://doi.org/10.1016/j.ipl.2018.04.010

632 D. Lin et al.

39. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys
40. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of

linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145 (2020). https://
doi.org/10.13154/tosc.v2020.i2.120-145

http://www.clifford.at/yosys
https://doi.org/10.13154/tosc.v2020.i2.120-145
https://doi.org/10.13154/tosc.v2020.i2.120-145

Improvements to RSA Key Generation
and CRT on Embedded Devices

Mike Hamburg(B), Mike Tunstall, and Qinglai Xiao

Rambus, Inc., San Jose, USA
{mhamburg,mtunstall,qxiao}@rambus.com

Abstract. RSA key generation requires devices to generate large prime
numbers. The näıve approach is to generate candidates at random, and
then test each one for (probable) primality. However, it is faster to use a
sieve method, where the candidates are chosen so as not to be divisible
by a list of small prime numbers {pi}.

Sieve methods can be somewhat complex and time-consuming, at least
by the standards of embedded and hardware implementations, and they
can be tricky to defend against side-channel analysis. Here we describe
an improvement on Joye et al.’s sieve based on the Chinese Remainder
Theorem (CRT). We also describe a new sieve method using quadratic
residuosity which is simpler and faster than previously known methods,
and which can produce values in desired RSA parameter ranges such
as (2n´1{2, 2n) with minimal additional work. The same methods can be
used to generate strong primes and DSA moduli.

We also demonstrate a technique for RSA private key operations using
the Chinese Remainder Theorem (RSA-CRT) without q´1 mod p. This
technique also leads to inversion-free batch RSA and inversion-free RSA
mod pkq.

We demonstrate how an embedded device can use our key generation
and RSA-CRT techniques to perform RSA efficiently without storing the
private key itself: only a symmetric seed and one or two short hints are
required.

Keywords: RSA · Prime generation

1 Introduction

To generate private keys for the RSA cryptosystem [RSA78], devices must choose
random, secret prime numbers. Prime number generation is also required for
finite-field Diffie-Hellman (DH) and DSA parameter generation [DH76,KG13].
DH and DSA parameter generation has become a more common requirement
since the Logjam attack [ABD+15], which allows multiple DH and DSA keys to
be attacked together if they use the same parameter set.

Prime generation algorithms may use sieving techniques to reduce the num-
ber of candidates that must be tested. [JPV00] describes two sieving meth-
ods: one based on the Chinese Remainder Theorem (CRT) and one based on
c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 633–656, 2021.
https://doi.org/10.1007/978-3-030-75539-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_26

634 M. Hamburg et al.

Carmichael’s λ function; the latter is improved in [JP06]. Here we describe
an improvement to the CRT sieve to mitigate its largest downside, namely a
large precomputed table of CRT coefficients. We also describe a novel sieving
algorithm based on quadratic residuosity, which may be more resistant to side-
channel attack than a CRT-based sieve.

Our improved sieving algorithms work well with the other known techniques
for generating RSA keys, DSA keys and strong primes on embedded devices
[JPV00,JP03]. With some modification, our CRT-based sieve can be used to
efficiently generate safe primes as well.

The RSA private operation is also often implemented using the CRT, which
quarters the computation time. The CRT requires an extra value, q´1 mod p,
which is typically computed during key generation and stored with the private
key. We show how to modify a side-channel countermeasure to perform RSA-
CRT efficiently without this value, simplifying key generation and storage. The
technique generalizes trivially to multi-prime RSA. Less trivially, it generalizes to
inverse-free RSA modulo pkq [Tak98,Tak04], which previously required inversion
not only of q mod p but also of the public encryption exponent e mod p.

In fact, these are instances of a more general batching technique [Ham12]
which we briefly recap in Sect. 3.2. This generalized batching technique has pre-
viously been applied to elliptic curves, but not to RSA. It can also be used to
implement batch RSA [Fia90] without inversion.

For embedded devices whose nonvolatile memory consists only of fuses, the
cost of storing an RSA private key is significant. It would be preferable if the
private key could be expanded from a secret seed—perhaps even a PUF key—
instead of being stored. RSA key generation is slow, but can be skipped by
using one or two short (16-bit) hints which are recorded in nonvolatile memory.
With previous techniques, compressing the keys this way would result in a large
performance loss. But with our new key generation and RSA-CRT techniques,
it only incurs a few percent performance loss, at least for larger RSA keys.

For brevity, this conference version omits the proof of Theorem1. It is found
in AppendixA of the full version, to be found at https://eprint.iacr.org/2020/
1507.

1.1 Notation

Let R denote the real numbers. Let Z and Z{n denote the integers and the ring
of integers mod an integer n, respectively. Let Fpe denote the Galois field of pe

elements. Call two integers (m,n) coprime if their greatest common divisor is
1. Let (Z{n)∗ be the multiplicative group of Z{n, which contains the elements
m P Z{n which are coprime to n.

For positive integers (p, e, n), let p|n or p ffl n mean that p divides or does
not divide n, respectively, and let pe||n mean that pe divides n but pe`1 does
not. In all cases where this notation is used, p is a prime number. For brevity
we sometimes omit that qualification in notations such as “for all pe||n”.

https://eprint.iacr.org/2020/1507
https://eprint.iacr.org/2020/1507

Improvements to RSA Key Generation and CRT on Embedded Devices 635

Let φ(n) and λ(n) denote the Euler and Carmichael totient functions, respec-
tively:

φ(n) :“
∏

pe||n
pe´1 · (p ´ 1) and λ(n) :“ LCM {pe´1 · (p ´ 1) for all pe||n}

For all x P (Z{n)∗, xφ(n) “ xλ(n) “ 1.
For integers (x, p), we say that x is a quadratic residue (resp quadratic non-

residue) mod p if there exists (resp does not exist) an integer y such that x ” y2

mod p. We will only consider quadratic (non)residues modulo prime p.
For any ring R, and any group G with group operation �, and any functions

F1, F2 : G → R, their convolution F1 ∗ F2 is defined as:

(F1 ∗ F2)(x) :“
∑

x1�x2“x

F1(x1) · F2(x2).

The power-convolution F ∗k
1 is defined as the convolution F1 ∗ F1 ∗ . . . ∗ F1 of k

copies of F1.
A probability distribution D on a finite set S may be seen as a stochastic

function S → R, meaning a function such that D(x) ě 0 for each x P S, and∑
xPS D(x) “ 1. If S is a group, then this allows us to convolve distributions.

This gives the distribution of the product of two samples:

D1 ∗ D2 “ {x1 � x2 : x1 ← D1, x2 ← D2}.

The notation x
$←S means to choose an element uniformly at random from

a set S. The notation [A,B] means the interval from A to B, inclusive.
The Montgomery reduction [Mon85] of x mod N is x{R mod N for some

fixed value R ą N which is coprime to N . This is usually implemented for N
odd and R a power of 2, in which case it is typically more efficient than ordinary
reduction (implemented using, e.g., Barrett’s reduction algorithm [Bar87]). The
operation taking (x, y) → xy{R mod N is called Montgomery multiplication.

2 Generating Prime Numbers

2.1 Näıve Algorithm

Generating random prime numbers is, in some sense, simple. There are well-
established probabilistic primality tests1 [Rab80,PSW80,AM93] that work for
large numbers, and an approximately 1{(n ln 2) fraction of the numbers less than
2n are prime. So we can just choose random numbers and test them for (probable)

1 Most of these algorithms exhibit false positives in rare cases. That is, when given a
prime number they always say that it is prime, but they may accept a composite
number as prime with some tiny probability. The present work does not address this
issue.

636 M. Hamburg et al.

primality. If a 1024-bit prime is desired, it will take about 1024 · ln 2 « 710 tries
in expectation, but may take much longer if the generator is unlucky.

This näıve algorithm is shown in Algorithm 1. However, typically the test
“if p is prime” is somewhat slow, requiring an exponentiation in the case of a
Fermat or Miller-Rabin test. The primality test may be sped up somewhat by
using trial division by several small primes {pi} before testing, but this is not
especially fast either. Furthermore, it risks revealing information about p mod
pi via a side-channel such as power consumption.

Algorithm 1. Näıve prime generation
1: procedure PrimeGen(L, H, t) � Try t times to generate a prime in [L, H]
2: for i = 1 to t do
3: p

$←[L, H]
4: if p is prime then return p
5: end for
6: return Failure
7: end procedure

2.2 Sieving Algorithms

The näıve algorithm’s performance can be improved by choosing p in a way that
is guaranteed not to be divisible by small primes; for example, we might choose
x P (Z{M)∗, for a constant M which is divisible by many small primes. Since
we wish to generate primes in a certain range—an interval [L,H]—we can then
adjust x to be in that range without changing its value mod M . This sieving
method is shown in Algorithm 2, which is a variant of Joye et al.’s sieving algo-
rithm [JPV00, Fig. 6]. This algorithm samples from the slightly narrower interval[
L,L ` ⌊

H´L
M

⌋ · M
]
. If this is close enough to H, it may be acceptable; otherwise

we can instead sample from the slightly wider interval
[
L,L ` ⌈

H´L
M

⌉ · M
]

and
reject candidates that are greater than H.

Algorithm 2. Prime generation using sieve [JPV00]
1: procedure PrimeGen(L, H, t) � Try t times to generate a prime in [L, H]
2: Let M be a product of small primes.

3: x
$←(Z{M)∗ � This step is tricky

4: for i = 1 to t do
5: α

$←[0, �(H ´ L){M� ´ 1]
6: p ← L ` (x ´ L mod M) ` αM � Choose p ” x mod M
7: if p is prime then return p

8: x ← Next(x) � May just be x
$←(Z{M)∗ again

9: end for
10: return Failure
11: end procedure

Improvements to RSA Key Generation and CRT on Embedded Devices 637

This sieving algorithm provides a considerable speedup, of approximately
M{φ(M). For example, by taking M the 1019-bit product of the first 131 primes,
this is a factor of « 11.8, improving 1024-bit prime generation from 710 tries to
60 tries in expectation.

To increase performance, the sieving algorithm does not necessarily repeat
the sampling procedure for each candidate p. Instead, it updates the sample
x ← Next(x), where Next is some (possibly randomized) update function.
Joye et al. take Next(x) :“ 2 · x mod M . This forces them to take M odd; to
avoid running the primality test on even p, they add M if p is even. The choice
of a deterministic update function is problematic, because it allows side-channel
attackers to accumulate information about x across several iterations [CC07]. It
also reduces the entropy of the resulting primes, because the algorithm is more
likely to choose primes p such that p{2i mod M is composite for the first few i.

The difficulty remains in sampling efficiently from (Z{M)∗. The samples
should be nearly uniform2 in (Z{M)∗. Rejection sampling would work, but it
is slow for large M , and calculating GCD(x,M) to test coprimality has side-
channel concerns [AGTB19,CAB20].

Joye-Paillier-Vaudenay CRT Sieve. Joye, Paillier and Vaudenay suggest
to sample (Z{M)∗ using the Chinese Remainder Theorem [JPV00, Fig. 3]. Let
�Mi�

n
i“1 be a sequence of mutually coprime integers – Joye et al. take them to be

prime powers. Let M :“ ∏
i Mi, and precompute a sequence �θi�

n
i“1 where θi ” 1

mod Mi and θi ” 0 mod Mj for all j �“ i. Then one can sample x
$←(Z{M)∗ as

x ←
(∑

xi · θi

)
mod M where each xi

$←(Z{Mi)∗.

Here sampling from (Z{Mi)∗ may be much faster and simpler than sampling from
(Z{M)∗. If Mi is a prime power qe, we just need to choose a sample that is not
divisible by q. For Mi of other forms, sampling algorithms will still be simpler and
faster with short Mi (e.g. one machine word) than with long ones. The simplest
approach is just to sample at random and then reject if GCD(Mi, xi) �“ 1.

However, this method has a significant disadvantage: it requires precomput-
ing and storing a list of large numbers �θi�

n
i“1. We are also concerned that the

use of small secrets xi may be vulnerable to template attacks.

Improved CRT Sieve. However, we observe that it is not required to take
θi ” 1 mod Mi. Indeed, it is only required that θi is coprime to Mi, and divisible
by each Mj for j �“ i. So we can instead take θi :“ M{Mi, avoiding the need to
store it. That is, we can take

x ←
(∑

xi · (M{Mi)
)

mod M where each xi
$←(Z{Mi)∗.

2 They need not be cryptographically indistinguishable from uniform. In practice, a
wide variety of not-quite-uniform distributions are used [SNS+16]. This seems to be
sufficient so long as (p, q) are close enough to uniform and are uncorrelated [NSS+17].

638 M. Hamburg et al.

In fact, we can avoid the division by computing the sum iteratively, as shown in
Algorithm 3. This novel algorithm is at least as fast as the Joye-Paillier-Vaudenay
version, but does not require storage of �θi�

n
i“1.

Algorithm 3. Improved sampling from (Z{M)∗ using CRT (new)
1: procedure Sample(�Mi�

n
i“1)

2: x ← 0
3: M ← 1
4: for i “ 1 to n do
5: xi

$←(Z{Mi)
∗

6: x ← (x · Mi ` xi · M) mod (M · Mi)
7: M ← M · Mi

8: end for
9: return x

10: end procedure

We can use a similar technique to improve the Next algorithm, so that it is
randomized to deter side-channel attacks. We can do this by choosing a random
Mi, sampling yi

$←(Z{Mi)∗, and returning

x · (yi · (M{Mi) ` Mi) mod M.

This works because the factor yi · (M{Mi) ` Mi is always coprime to M :

– It is congruent to yi · (M{Mi) mod Mi, and this value is coprime to Mi by
construction.

– It is congruent to Mi mod Mj for j �“ i, and again Mi is coprime to Mj .

Joye-Paillier sieve with Carmichael’s λ. However, we are still concerned
that the small domain of xi may lead to template attacks. It would be preferable
to implement a sieve that uses only large random numbers.

Joye and Paillier suggest to sample from (Z{M)∗ as shown in [JP06, Fig. 4],
reproduced in Algorithm4. This algorithm is based on Carmichael’s observation
that for each prime qe|M ,

xλ(M) mod qe “
{

0 if q|x
1 otherwise

So the update x ← x ` r · (1 ´ xλ(M)) only affects x mod qe if q|x.
The sampling algorithm is somewhat slow: 2.15 iterations are required in

expectation, and each iteration requires an exponentiation mod M . If M is
again the 1019-bit product of the first 131 primes, then λ(M) has 276 bits.
Therefore overall sampling from (Z{M)∗ is about 58% as expensive as a Fermat
or Miller-Rabin primality test of the same size, so sampling independently before
every primality test would cause a noticeable slowdown. Because the performance
decreases as λ(M) increases, this method works best if M has only small prime
factors; or at least if for all primes q|M, q ´ 1 has only small prime factors.

Improvements to RSA Key Generation and CRT on Embedded Devices 639

Algorithm 4. Sampling from (Z{M)∗ using Carmichael’s λ [JP06]
1: procedure Sample(M, λ(M))

2: x
$←Z{M

3: z ← 1 ´ xλ(M) mod M
4: while z �“ 0 do

5: r
$←Z{M

6: x ← x ` rz
7: z ← 1 ´ xλ(M) mod M
8: end while
9: return x

10: end procedure

2.3 New Sampling Algorithm with Quadratic Residuosity

Here we describe a novel sieving algorithm using quadratic residuosity. We expect
this method to resist side-channel attacks because it performs only a few calcu-
lations, and all intermediate values have high entropy.

Let M be an odd number; a good choice is the product of the first n odd
primes, but we can use any odd number of known factorization. Let u be chosen
such that ´u is a quadratic nonresidue mod each prime q|M . Call such a u
“valid” mod M . If the factorization of M is known, then it is straightforward
to find valid u using the Chinese Remainder Theorem, as we will soon describe.
The values (M,u) can be precomputed, and stored in read-only memory (ROM)
on the device that needs to generate primes, or they can be calculated on the
fly to save ROM.

Then for all r P Z, by definition r2 �” ´u mod each q|M . So r2 ` u is not
divisible by any q|M : it is coprime to M . With (M,u) precomputed, the prime
generation algorithm can very easily sample from (Z{M)∗, simply by choosing
r at random and computing r2 ` u mod M . The same technique could be used
with any other polynomial function that does not have a root modulo any q|M ,
such as ur2 ` 1, but r2 ` u is simple and requires only one multiplication.

These samples are not uniformly random: in particular, they cover only about
half of (Z{qe)∗ for each qe||M . So if M is divisible by n distinct primes, the
range is only slightly more than a 2´n fraction of (Z{M)∗. But we will show
that the product of several independent samples approaches a uniformly random
distribution on (Z{M)∗. Since prime generation algorithms usually do not require
perfectly uniform output, a product of between 4 and 10 such samples will be
close enough to uniform for most practical purposes, as shown in Fig. 1. We
suggest using 6 samples, which loses less than 0.11 bits of min-entropy for all
M .

If a system is equipped with a fast random number generator, then the new
sieving technique is fast enough (11 multiplies mod M for 6 samples, compared to
several hundred for Algorithm4) that we do not need to use an update function
Next(x). We can just choose a fresh sample x every time. However, if the random
number generator is somewhat slow, we can set Next(x) “ x · (y2 ` u) mod M ,

640 M. Hamburg et al.

where y is a fresh random sample. This improves on Next(x) “ 2x mod M : it
is more uniform, and it mitigates side-channel leakage related to x. This version
is shown in Algorithm 5. Note that Line 6 guarantees that p is odd and coprime
to M , and that p P [L · 2s, L · 2s ` 2M ´ 1].

Algorithm 5. Prime generation with novel sieving algorithm (new)
1: procedure PrimeGen(L, H, s, t) � Generate a nearly random prime in

[L · 2s, H · 2s]
2: Let M be odd of known factorization, such that M ă H ´ L but only slightly.
3: Choose u so that ´u is a QNR mod all odd primes dividing M .

4: x ← ∏6
j“1(r

2
j ` u) mod M , where each rj

$←Z{M .
5: for i = 1 to t do
6: p ← L · 2s ` (2x ` M ´ L · 2s mod 2M)

7: α
$←[0, s ´ 1]

8: p ← p ` 2Mα
9: if p is prime then return p

10: r
$←Z{M

11: x ← x · (r2 ` u) mod M
12: end for
13: return Failure
14: end procedure

Note also that it is easy to sample r ← Z{M with a high degree of uniformity.
Simply set R to be a power of 2 (or of the machine’s word size) such that

R ą 264 · M (or an even larger bound); choose r
$←[0, R ´ 1]; and then reduce r

mod M .

Variants. With M odd, this approach works with no modifications when using
power-of-2 Montgomery multiplication and Montgomery reduction mod M : if x
is coprime to M , then so is MontReduce(x). Before primality testing, x can
be made odd, or 3 mod 4 for easier Miller-Rabin implementation, by adding a
suitable multiple of M .

On systems where modular multiplication does not use Montgomery reduc-
tion, the modulus 2M can be used instead, and the candidates can then be guar-
anteed to be odd. Specifically, we can sample candidate primes in the residue
class

k∏

i“1

(2(r2i ` u) ` M) mod 2M.

Likewise, x can be constrained to be 3 mod 4. Constrain u to be 1 mod 4, and
sample candidate primes in the residue class

´
k∏

i“1

((2ri)2 ` u) mod 4M.

Improvements to RSA Key Generation and CRT on Embedded Devices 641

Or again, we can sample x from (Z{M)∗ as usual and then test (4x ` cM) mod
4M for primality, where c P {1, 3} is chosen such that cM ” 3 mod 4. The same
techniques can be used to ensure that x ” 2 mod 3, which is required for RSA
with e “ 3.

Uniformity mod M. Algorithm 5 draws samples from the distribution

DM,k,u :“
k∏

i“1

(x2
i ` u) mod M : xi

$←[0,M).

How close is DM,k,u to the uniform distribution UM on (Z{M)∗? We will bound
the maximum difference in probability to sample each x mod a prime power:

‖Dqe,k,u ´ Uqe‖8 :“ max
xP(Z{qe)∗

|Pr[Dqe,k,u “ x] ´ Pr[Uqe “ x]|

This in turn will allow us to bound the L1 distance

‖DM,k,u ´ UM‖1 :“
∑

xP(Z{M)∗
|Pr[DM,k,u “ x] ´ Pr[UM “ x]|

ď
∑

qe||M
φ(qe) · ‖Dqe,k,u ´ Uqe‖8

and the min-entropy loss

δH8 :“ max
xP(Z{M)∗

Pr[DM,k,u “ x]
Pr[UM “ x]

ď
∑

qe||M

φ(qe) · ‖Dqe,k,u ´ Uqe‖8
ln 2

These three measures do not depend on which u is chosen, so long as it is
valid mod M . In practice, min-entropy loss is probably the most relevant: if the
adversary can break a single RSA key with probability ε when p ← UM , then it
will succeed with probability at most ε · 2δH8 when p ← DM,k,u.

We can bound the L1 distance using the following theorem, which we prove
in the full version:

Theorem 1 (Uniformity of DM,k,u). Let M be a positive odd integer, let u
be valid mod M , and let k ě 4. Let UM be the uniform distribution on (Z{M)∗.
Let

εM,k :“
∑

prime q|M

(
2√
q

)�k{2�
.

Then
‖DM,k,u ´ UM‖1 ă εM,k and δH8 ă εM,k

ln 2
.

642 M. Hamburg et al.

Note that for k ą 6, the sum converges for all primes q, so it allows us to prove
a bound that does not depend on M .

For concrete (M,k) this theorem is somewhat loose, so we also took an empir-
ical approach to calculate the L8 distance. For this approach, we calculated the
distribution DM,k,u for k P {1, 2} with M the product of the first 200 or 1000
odd primes. Then for 3 ď k ď 10, we were additionally able to extend the bound
to powers of those primes using an equation from the proof of Theorem1 (found
in the full version of this paper); the bound from this equation does not converge
for k ď 2. Theorem 1 itself then bounds the maximum additional distance that
can be seen with even larger M . The result is shown in Fig. 1.

Fig. 1. Bounds on L1 distance and min-entropy loss between DM,k,u and UM . For
k ě 3, this includes any power of the given primes, but for k P {1, 2} it only includes
the first power. The “all larger primes” column is a bound for M “ ∏

qei
i where all

the prime factors qi are beyond the first thousand odd primes; the bound in Theorem 1
converges for even k ě 6. Note that the L1 distance cannot be greater than 2.

Choosing M. The value of M is relatively unconstrained, beyond being odd
and of known factorization. If p is random in some range and is coprime to M ,
then it is prime with probability about M{(φ(M) ln p), or twice that if M is
odd and p is made odd before testing. For efficiency, M should be chosen as a
multiple of the first several odd primes, so that M{φ(M) is as large as possible.
But suppose we wish to generate primes in an interval [L,H]. We could generate
M by first taking, say, M1 ă (H ´L){232 as a product of the first n odd primes,
and then calculating

M “ M1 ·
⌊

H ´ L

2M1

⌋
.

This would result in an M very close to (H ´ L){2, so that adding 2M · α can
be skipped, and the distribution would still be close to uniform on [L,H]. Or we
could choose M such that (H ´ L){(2M) is very nearly a power of 2, so that at
least sampling α is easier. This improvement is incorporated into Algorithm5.
The flexibility in M is an improvement on the Joye-Paillier sieve, where M
should be chosen smooth so that λ(M) is small.

Improvements to RSA Key Generation and CRT on Embedded Devices 643

Another option is to follow Joye-Paillier by setting M somewhat smaller than
(H ´ L){2, and then adjust L and H to be multiples of M . In that case, α is
not typically chosen from a power-of-2 range, but subtracting 2L mod M can
be skipped.

When generating RSA keys, the range is usually chosen as

[L,H] “ [2(b´1){2, 2b{2 ´ 1]

for some even integer b. That way, if L ď p, q ď H, then 2b´1 ď p · q ă 2b; that
is, N “ pq has exactly b bits. To support this case, we can set M to slightly less
than (H ´ L){2 for the lowest supported value of b. For higher values, H ´ L is
very nearly a power of 2 times M . This makes the sieve efficient in both cases.
This technique is similar to [JP06, Fig. 5].

Choosing u. We must choose a valid u, meaning one such that ´u is a quadratic
nonresidue mod each prime q|M . This can be performed by finding such a uq

mod each q, and then combining these using the CRT. However, we do not need
the full CRT, because we do not care exactly what u is mod q. It is sufficient to
calculate

u “
∑

qe||M
up · (M{qe)2 mod M

where each uq is a quadratic nonresidue mod q. Then for each q|M ,

´u ” ´up · k2
p mod q for some nonzero kq,

so u is also a quadratic nonresidue mod q. This u may also be calculated itera-
tively, much as in Algorithm 3. For each q ” 3 mod 4, we can take uq “ 1.

It is also an interesting question to choose u as small as possible. This issue
is discussed in AppendixB.

Supporting Multiple Parameter Sets with Less Storage. If a device
supports key generation for multiple sizes, it is preferable (but not necessary) to
use a specific M for each size. That is, use larger values of M to generate larger
primes, so that more small divisors can be sieved out. The parameters could be
stored separately for each M , but there is an opportunity to save space as the
larger M values should be (at least nearly) divisible by the smaller ones. So we
can sample mod M1 for the smallest supported parameter size, mod M1 ·M2 for
the next size, and in general mod M “ ∏n

i“1 Mi for the nth smallest size or tier
of sizes.

There are a few different options for how to do this. The simplest is to
store a u which is valid mod all the Mi, and thus mod their product. The u
value can be (Montgomery) reduced modulo M before use. It is also possible
to store a separate ui (or reduce u separately) mod each Mi; we could then
sample separately mod each Mi and combine them into one sample mod M using
Sect. 2.2. This is likely faster for the first sample due to smaller multiplications,
but slower for the Next function if it is used.

644 M. Hamburg et al.

Or we could combine the parameters as

M :“
n∏

i“1

Mi, u :“
n∑

i“1

ui · (M{Mi)2 mod M

and then sample using only the QR sieve mod M .

2.4 Applications

Generating Primes for RSA Keys. Our new sieve simplifies finding primes
in a particular range such as [2(b´1){2, 2b], which is the slowest step in RSA key
generation. Previous work discusses efficient generation of RSA keys once the
prime generation step is done [JP03].

One additional issue with RSA key generation is that we must have e ffl p´1.
When e “ 3 this means that p ” 2 mod 3, which can be accommodated as
discussed in Sect. 2.3. Otherwise it can be accomplished by rejection sampling.
Or if e is coprime to M , one could sample x ← (Z{M)∗ and y ← Z{e such
that both y and yM ´ 1 are coprime to e; and then set the candidate prime to
p ← x · e ` y · M .

Generating DSA Moduli, Safe Primes and Strong Primes. Some stan-
dards require generation of primes with specific properties, such as “strong
primes” where p ` 1 and/or p ´ 1 have large prime factors. Either of our sieve
methods can be used to replace the g function in [JPV00, Figs. 8 and 12] to gen-
erate DSA moduli and strong primes respectively. These both require sampling
candidate primes which are congruent to a mod m for certain (a,m) with m
coprime to M . In particular, DSA moduli are congruent to 1 mod 2q. We can
proceed by computing m̄ “ am´1 mod M , and then to sample values x mod
M . We can then compute candidate primes p ” (x ´ m̄)m ` a mod Mb. By
construction, these are congruent to a mod m, and to xm mod M . If m and M
are coprime, then xm is uniformly random in (Z{M)∗.

Generating “safe primes” p “ 2q ` 1, for which q is also prime, is more
difficult if we wish to sieve both p and q. However, our CRT-based sieve can
be adapted easily enough to match [JPV00, Fig. 10]. Joye et al. solve the CRT
equations x ” xi mod Mi as

x ←
n∑

i“1

xi · θi where θi mod Mj “
{

1 if i “ j
0 if i �“ j

Joye et al. rejection sample each xi such that xi and 2xi `1 are both in (Z{Mi)∗.
We instead compute

x ←
n∑

i“1

xi · θi where θi “
∏

j �“i

Mj

so we need xi and 2(xi · θi) ` 1 both to be in (Z{Mi)∗.

Improvements to RSA Key Generation and CRT on Embedded Devices 645

Blinding Inversions mod M. The sieve can be used for techniques other than
prime generation. For example, if for some algorithm we must invert a value x
modulo a public constant M , we can use this technique to generate a nearly-
uniform r which is coprime to M . We can then compute x´1 ” r · (rx)´1 mod
M to mitigate side-channel attacks on the inversion process.

3 RSA-CRT Without q´1 Mod p

Let (N, e) be an RSA public key. The RSA private permutation computes m “ xd

mod N , where d ” e´1 mod λ(N). However, since the party with the private key
also knows the factorization N “ pq, it is more efficient to compute mp “ xdp

mod p, where dp ” e´1 mod p ´ 1, and likewise with q. This information may
be combined using the Chinese Remainder Theorem (CRT):

m “ ((mp ´ mq) · q´1 mod p) · q ` mq.

This technique is called RSA-CRT. The RSA-CRT computation requires q´1

mod p, which is typically stored as part of the private key; it can also be com-
puted when the key is loaded, but this has performance and potentially side-
channel problems [CAB20].

CRT could also be performed as

m ” (mp · q´1 mod p) · q ` (mq · p´1 mod q) · p mod N

but this appears to require even more information. However, there is a trick to
compute mp · q´1 mod p without knowing q´1 mod p, which is based on the
multiplicative masking in [EL10]. Choose any y P (Z{p)∗ and let

α :“ (xy)e´1 mod p

β :“ (α · y)p´1´dp ” (α · y)´1{e mod p

mp,y :“ β · x ” x1{e · y´1 mod p (1)

This computes mp,y using one long exponentiation and one short one, and three
multiplications. Setting y “ q gives a way to compute RSA-CRT without any
inversions.

For multiplicative masking we can instead set y “ rq where r
$←(Z{N)∗, so

that:3

mp,rq ” xd · (rq)´1 mod p.

We can compute mq,rp analogously, and combine to calculate mr´1 mod N .
That is,

m ” r · (mp,rq · q ` mq,rp · p) mod N.

3 A random r
$←Z{N will be coprime to N with overwhelming probability. But if we

wanted to be sure then we could reuse one of our sieve techniques.

646 M. Hamburg et al.

This allows us to compute RSA-CRT decryption with message blinding, using
only (p, q, e, dp, dq). The technique is compatible with other blinding techniques
for (p, q, dp, dq), such as [EL10], and for techniques which skip the step of con-
verting to Montgomery form.

Our technique generalizes to multi-prime with N “ ∏
pi, where the recon-

struction equation is

m ”
∑

(
mpi

·
(

N

pi

)´1

mod pi

)
· N

pi
mod N.

The inner term mpi
· (N{pi)´1 mod pi can be computed using our blinding and

inversion technique. Here N{pi is perhaps better written as
∏

j �“i pj .

3.1 Inverse-Free RSA Mod pkq

Another fast variant of RSA uses N “ pkq [Tak98]. Our inversion-free CRT
technique applies here as well, apparently trivially: we can use Eq. (1) to compute
xd mod φ(pk) · (qr)´1 mod pk, and combine this with xd mod φ(q) · (pkr)´1 mod q.

However, the point of RSA mod pkq is that xd mod pk can be accelerated.
Instead of computing xd directly mod pk, the technique is to calculate xdp mod
p, where dp ” e´1 mod p ´ 1. This gives a solution to the equation

me
1 ” x mod p1,

which can then be iteratively lifted to a solution me
k ” x mod pk using Hensel’s

lemma. This means that the trivial application of our technique will perform
poorly, and we still need to compute e´1 mod p [Tak04].

We will instead compute xd · y´1, by solving the equation

(ym)e ” x mod pk,

again with Hensel lifting. Given a nonzero solution m� mod p�, we can lift it to
a solution m�`1 mod p�`1 using the Hensel iteration

m�`1 ” m� ` x ´ (ym)e
�

e · ye · me´1
1 mod p

mod p�`1,

whose denominator δ :“ e · ye · me´1
1 mod p is the derivative of (ym)e with

respect to m. We can do this in an inverse-free manner given m1 “ xd · y´1 mod
p and δ´1 mod p, where

δ´1 ” (e · ye · me´1
1)´1 mod p

” (ym)1´e · (ye)´1 mod p

” xd·(1´e) · (ye)´1 mod p

” xd´1 · (ye)´1 ” xd · (yex)´1 mod p

Improvements to RSA Key Generation and CRT on Embedded Devices 647

This value δ´1 ” xd · (yex)´1 mod p can be computed using the blinding and
inversion method from Eq. (1), and from it we can compute m1 ” xd · y´1 ”
δ´1 · ex mod p. As before, we can do this with y :“ qr for random r, to achieve
a blinded, inverse-free CRT algorithm.

Thus, we can extend our technique to inverse-free RSA modulo general prod-
ucts of powers of primes.

3.2 Generalized Batching

Our inverse-free CRT technique was inspired by side-channel countermeasures,
but it is a special case of a framework for inversion and root calculations [Ham12]
including

(x, y) → (x1{e, y´1) mod p

when x and y are nonzero. We can do this by calculating

α :“ (xy)e´1

β :“ (α · y)´1{e ” x1{e´1 · y´1 mod p

x1{e ” β · xy mod p

y´1 ” α · βe mod p

This technique was proposed for elliptic curves, and to our knowledge has
not been applied to RSA before. The principle is to consider the exponential
lattice L of expressions the form xa · yb for a, b P Z. For more inputs, a higher-
dimensional lattice may be used. The target expression(s) such as {x1{e, y´1} lie
in a superlattice L′ of volume 1{e. If (as in this example) L′{L is one-dimensional,
then we can find an element z P L′, such that {x, y, z} span L′, the coefficients
of z are either all positive or all negative, and the target element is spanned by
{x, y, z} with (small) non-negative coefficients. Typically this is best done by
giving z strictly negative coefficients, so that non-negative linear combinations
of {x, y, z} cover all of L′.

Then z can be computed by calculating ˘ez as a non-negative integer combi-
nation of {x, y}, and then applying the ˘1{e map (or more generally, using the
˘k{e map for some integer k coprime to e) at the cost of a single large exponen-
tiation. Since now {x, y, z} span the target expressions with small non-negative
coefficients, these targets can be calculated using only multiplications and small
exponentiations.

This principle generalizes batch RSA [Fia90], Montgomery’s batched inver-
sion, and batch inversion and square root [Ham12]. It directly provides an
inversion-free variant of batch RSA: for example, batching a message m3 “ x

1{3
3

and m5 “ x
1{5
5 can be calculated as:

z :“ (x5
3 · x3

5)
´1{15 “ x

´1{3
3 · x

´1{5
5 ; m3 “ z5 · x2

3 · x5; m5 “ z9 · x3
3 · x2

5.

This can be further optimized with an appropriate addition chain, and possibly
by choosing a different generator z of the lattice.

648 M. Hamburg et al.

These techniques can batch multiple small roots and/or inverses using one
large exponentiation if and only if the roots are of relatively prime degrees.
Otherwise the quotient L′{L has multiple generators, so while a batching tech-
nique might provide a speedup in some cases, it will require more than one large
exponentiation.

We note that batching techniques can also be used to avoid conversions to
Montgomery form. The Montgomery form of a number x is x · R mod p for
some R. Multiplication and exponentiation are typically faster when the inputs
are given in Montgomery form. Division by R mod p is fast: it is Montgomery
reduction. But multiplication by R mod p requires Barrett reduction, which is
slower and more complex in hardware. However, consider that x is itself the
Montgomery form of another number x̂ :“ x{R mod p. So we can compute

x1{e “ (x̂ · R)1{e “ (x̂e´1{R)´1{e · x̂

where the input x̂ is given by its Montgomery form x, and now we are only
dividing by R instead of multiplying by it. This technique may not be worthwhile
by itself, because it requires an extra short exponentiation, but it is essentially
free if batching is already in use. As a special case of this, random blinding values
can be assumed to already be in Montgomery form.

4 RSA with Compressed Private Keys

Our new sieving and RSA-CRT algorithms give an interesting improvement to
compressed RSA private keys for devices with limited nonvolatile storage. This
can be done easily enough just by replacing the random numbers in the usual
RSA key generation algorithm with a pseudorandom generator, and storing only
the secret seed for that generator. The private key can then be regenerated from
the seed whenever it is needed. But RSA key generation is notoriously slow, so
this compression mechanism is usually unacceptable. However, if we record hints
indicating on which iterations hp resp hq we found p resp q, then p and q can
be reconstructed very quickly, skipping all the primality tests. This is easiest if
each iteration samples an independent candidate p, so that only the hpth and
hqth iterations must be performed to reconstruct (p, q).

This technique could have been used with other RSA key generation algo-
rithms, but at a significant cost in efficiency. Algorithm 1 would suffer from long
key generation time. The Joye-Paillier-Vaudenay CRT sieve requires large ROM
storage, whereas their Carmichael λ sieve requires extra large exponentiations
in order to use the key. But with our Algorithms 3 or 5, the performance penalty
to generating and to use the key is very small. With previous techniques, we
also would have needed to avoid RSA-CRT or else compute q´1 mod p, but with
inverse-free RSA-CRT we can also mitigate that performance cost. The other
nontrivial step, computing d from e, has a shortcut for small prime e [JP03].

We work through the details with Algorithm5. In the key generation algo-
rithm we can replace the random number generator with a pseudorandom func-
tion Fk(i, h, j; R). Its arguments are:

Improvements to RSA Key Generation and CRT on Embedded Devices 649

– the secret seed k;
– a flag i P {0, 1} indicating whether we’re generating p or q (or from a larger

domain for multi-prime RSA);
– a hint h P [0, t ´ 1] where t is the maximum number of attempts to find a

prime in key generation (e.g. t “ ln φ(M)
ε·M · ln p for a failure rate near ε);

– a counter j P [0,m] where m is the number of samples required for uniformity
(e.g. m “ 6);

– and the size R of the desired range.

Fk should return a uniformly pseudorandom integer in [0, R ´ 1]. This enables
us to sample pseudorandom integers in [L · 2s,H · 2s] which are coprime to M
using the SieveSample routine shown in Algorithm6.

The secret primes (p, q) can then be represented by the parameters
(L,H, s, e), the secret seed k and the hints hp and hq. The private key can
be reconstructed by calling SieveSample:

p “ SieveSample(L,H, s, k, 0, hp) and q “ SieveSample(L,H, s, k, 1, hq).

The other values in the private key, d mod p ´ 1 and mod q ´ 1, can be recon-
structed efficiently using Arazi’s lemma and Hensel’s lemma as shown in [JP03],
reproduced as DMod. A complete compressed RSA algorithm is shown in Algo-
rithm6. If the negligible probability of failure from line 37 is unacceptable, we
can instead generate (p, q) ” 3 mod 4, and implement that line using Algorithm5
with u “ 1.

Suppose we wish to generate 1536-bit primes for RSA-3072, roughly corre-
sponding to 128-bit security. If M is divisible by the first 180 primes so that
φ(M){M « 0.08, then each candidate will be prime with probability

Pr[prime] « M

1536 · φ(M) · ln 2
« 1

85
.

If we set t “ 216, then CompressedRSA will fail to find a suitable p or q with
probability about 2 · e´t·Pr[prime] ă 2´1111. So a 3072-bit private RSA key may
be compressed to 160 bits with no loss of security: a 128-bit key and two 16-bit
hints.

To prevent mistakes, it may also be useful to store (s, e), or to make the
pseudorandom function F depend on them, or both. In hardware deployed to a
hostile environment, it is also worth adding fault countermeasures, for example
a checksum on (p, q, dp, dq), to prevent fault attacks [ABF+03].

If k is derived—for example from hardware constants, a master key or a
PUF—then only hp and hq need to be stored. If k can be chosen by the generator
(i.e. it is not a derived key), then storage requirements can be further reduced
by removing hp, and instead re-randomizing k in the first loop. Various other
arrangements can be used to trade hint size for key generation performance, such
as using a shorter hint hq and incrementing hp if no prime q can be found.

Combining the new RSA-CRT technique with Algorithm 6, we can implement
RSA efficiently with compressed private keys. For RSA-3072 with e “ 65537, the
calculations of (p, q, dp, dq) and the recovery of the final m costs:

650 M. Hamburg et al.

Algorithm 6. RSA with compressed private keys
1: procedure SieveSample(L, H, s, k, i, h) � Sample a value in [L · 2s, H · 2s] using

Fk(i, h, ·)
2: Let M be a multiple of many small primes, such that M ă H ´ L but only

slightly.
3: Let u be odd such that ´u is a QNR mod all odd primes dividing M .
4: x ← ∏6

j“1

(
Fk(i, h, j; M)2 ` u

)
mod M .

5: α
$← Fk(i, h, 0; s)

6: return p ← L · 2s ` (2x ` M ´ L · 2s mod 2M) ` 2αM
7: end procedure

8: procedure CompressedRSAKeygen(L, H, s, e, t, k)
9: for hp = 0 to t ´ 1 do

10: p ← SieveSample(L, H, s, k, 0, hp)
11: if e ffl p ´ 1 and p is prime then goto line 14
12: end for
13: return Failure
14:
15: for hq = 0 to t ´ 1 do
16: q ← SieveSample(L, H, s, k, 1, hq)
17: if e ffl q ´ 1 and q is prime then goto line 20
18: end for
19: return Failure
20:
21: return public key (p · q, e) and compressed private key (L, H, s, e; k, hp, hq)
22: end procedure

23: procedure DMod(e, φ, H) � Computes e´1 mod φ ă H if e is prime and e ffl φ
24: R ← 2�lg H�

25: ē ← 1
26: for i = 1 to �lg lg R� do � Compute ē ← e´1 mod R

27: ē ← ē · (2 ´ e · ē) mod 22i

28: end for � In practice, share ē for the two calls
29: return (1 ` (´φe´2 mod e) · φ) · ē mod R � Arazi’s lemma
30: end procedure

31: procedure CompressedRSAPrivate((L, H, s, e; k, hp, hq), x))
32: p ← SieveSample(L, H, s, k, 0, hp)
33: q ← SieveSample(L, H, s, k, 1, hq)
34: dp ← DMod(e, p ´ 1, H · 2s)
35: dq ← DMod(e, q ´ 1, H · 2s)
36: N ← pq

37: r
$←(Z{N)∗ � Or r

$←Z{N works with overwhelming probability
38: αp ← (qrx)e´1 mod p
39: mp ← (qr · αp)p´1´dp mod p
40: αq ← (prx)e´1 mod q
41: mq ← (pr · αq)

q´1´dq mod q
42: return rx · (mp · q ` mq · p) mod N � Returns x1{e mod N
43: end procedure

Improvements to RSA Key Generation and CRT on Embedded Devices 651

– 11 multiplications mod M to sample p, and as many for q.
– 4 multiplications mod R, and several smaller ones, to compute dp and dq.
– 19 multiplications mod p, plus one long exponentiation mod p, to compute

q · r, αp ← (x · qr)e´1 and mp “ (qr ·αp)p´1´dp ; and the same to compute mq.
– 2 integer multiplications and two multiplications mod N to calculate the final

output m ” x · r · (mp · q ` mq · p) mod N .

Counting the wider multiplications mod N as four, the additional cost of private
key compression and blinding together is around 72 large multiplications (mostly
squarings) plus a few smaller ones. The exponentiations mod p and q collectively
cost some 12882 or 3715 multiplications with the Montgomery ladder and sliding
window approaches, respectively, meaning that the additional cost is between
0.6% and 3% of the total runtime.

The same techniques generalize naturally to multi-prime RSA and RSA mod
pkq.

5 Performance

We tested our new techniques by modifying OpenSSL 1.1.1j to support the Joye-
Paillier sieve, the quadratic residuosity sieve, inversion-free RSA and compressed
private keys. We tested on a 2.3 GHz Intel Core i3-6100U processor at 2.3 GHz;
this processor is convenient for benchmarks because it does not use TurboBoost.
The OpenSSL big number API does not exactly match our algorithms, and we
adjusted our algorithms to match its API. In particular, we didn’t use Hensel
lifting, and we were not able to avoid many conversions into and out of Mont-
gomery form. The results are shown in Table 1. Note that prime generation is a
Poisson process, so those timings have an enormous variance and the difference
between the Carmichael sieve and the new QR sieve is not significant.

Table 1. Performance comparison of new techniques; timings in thousands or mil-
lions of cycles (k or M). Prime generation is averaged over 2000 trials. Signatures are
averaged over 100,000 trials: 1000 trials for each of 100 different keys, without outliers
more than twice the mean removed. The same 100 keys are used for the standard,
inverse-free and compressed versions.

Operation 1024-bit 2048-bit 3072-bit 4096-bit

Primegen OpenSSL standard 26 M 143 M 400 M 950 M

Primegen Carmichael sieve [JP06] 6 M 60 M 257 M 802 M

Primegen new QR sieve 6 M 58 M 251 M 731 M

RSA-CRT sign standard 305 k 2077 k 6161 k 13992 k

RSA-CRT sign inverse-free 412 k 2248 k 6420 k 14376 k

RSA-CRT sign compressed 532 k 2403 k 6622 k 14644 k

652 M. Hamburg et al.

5.1 Discussion

OpenSSL’s standard key generation uses trial division and not sieving, so a large
performance increase is expected. As expected, Joye-Paillier sieve and quadratic
residuosity sieve have similar performance.

The overhead from inverse-free and compressed signatures is larger than we
expected, amounting to 4% and 7.5% respectively for RSA-3072. Part of this is
due to adjusting our algorithms to the OpenSSL APIs, so the overhead might
be smaller (or larger!) in an embedded environment. Even at 7.5% it might be
worthwhile if nonvolatile memory is limited.

6 Future Work

We leave to future work the task of evaluating the embedded performance, side-
channel resistance and fault resistance of these methods, as well as any applica-
tion to post-quantum RSA [BHLV17,Sch18].

Acknowledgements. Special thanks to Denis Pochuev for feedback on RSA with
pk · q.

Intellectual Property Disclosure. Some of these techniques may be covered by US

and/or international patents.

A Proof of Theorem1

We prove this theorem in the extended version, at https://eprint.iacr.org/2020/
1507.

B Minimizing u

We say that u is “valid” mod M if
(

´u
p

)
“ ´1 for all primes p|M . If M ’s

factorization is known, then it is easy to find a valid up modulo each p|M (e.g.

by checking the Jacobi symbol
(´up

p

)
until a valid up is found), and to combine

them using the Chinese Remainder Theorem. But what is the minimum valid u?
Using a smaller u could allow the same u to be used for several values of M , or
could reduce memory usage and compute time, but mostly it is a mathematically
interesting question. For simplicity, we assume here that M is square-free.

If there are n primes dividing M , then a random element of (Z{M)∗ is valid
with probability 2´n, so we expect the minimum valid u to be around uminexp :“
2n ·M{φ(M). A brute-force strategy would require about uminexp work, which is
infeasible past the first 50 primes or so. But this work can be reduced somewhat,
particularly if we settle for a small but not minimal u.

https://eprint.iacr.org/2020/1507
https://eprint.iacr.org/2020/1507

Improvements to RSA Key Generation and CRT on Embedded Devices 653

B.1 Sparse Solutions to Linear Equations

The most effective method we found was to search for valid u of the form u “
q1 · q2 · · · qm where the qi’s are in some set Q. The validity criterion is that:

for each prime p|M,

(´u

p

)
“

(´1
p

)
·
(

q1
p

)
· · ·

(
qm

p

)
(2)

If each qi is coprime to M , then the Jacobi symbols are all either ´1 or 1;
mapping these to 1 and 0 respectively translates the validity criterion to a system
of affine equations over F2. This allows us to solve for u with xor-list or sparse
solution techniques, such as:

– A birthday attack or stronger collision technique [VOW99] for m “ 2 and Q
a large set (e.g. |Q| « 232).

– Wagner’s xor-list algorithm [Wag02] for m small and Q a large set.
– Information set decoding for large m and a relatively small set Q (e.g. the

first 1000 primes not dividing M).

Using a birthday attack, we discovered that the 59-bit value

u “ 0x4b0555d761f3f52

is valid mod the 383-bit product of the first 59 odd primes. We also used Wagner’s
algorithm to search for u a product of four 32-bit odd numbers, requiring it to
be valid mod at least the first 72 odd primes. We ran the algorithm for a day
on a 64-core Amazon EC2 Graviton2 instance, producing some 5 million results.
Notably,

u “ 0xe3b0f73b0050ab294417001ad1e63d

is valid mod the 729-bit product of the first 99 odd primes. Our search was tuned
to find u relatively close to uminexp; tuning it differently would have been faster
or found valid u mod more primes, but the resulting u would be significantly
larger.

It isn’t necessary to choose M before u. One could start with a small u
which is valid mod the first several primes, and then choose further primes p|M
so that u is valid. This sacrifices some performance, because discarding small
primes reduces M{φ(M). Our search using Wagner’s algorithm found that

u “ 0x23e9ee9bd621b0b248e8b59a4c80bb55

performs well across a range of bit sizes, losing about 0.5% of performance com-
pared to an unconstrained (M,u) at 1024 bits and 3% at 2048 bits.

The quality of results from Wagner’s algorithm should fall off exponentially
with the number of primes dividing M , because at each step the algorithm
multiplies two intermediate values to produce another intermediate that solves
b more equations, for some block size b. So while it performs well for the first
100 primes, ISD appears to perform better for the first 400 primes.

654 M. Hamburg et al.

B.2 Multiple u

Instead of using linear equations to search for a single u, we could choose a few
small u such that at least one of them is valid for every p|M . For example, for
each of the first 133 odd primes, at least one of u P U :“ {1, 2, 5, 19} is valid. We
could factor M into

∏
uPU Mu such that u is valid mod the corresponding Mu.

Then we could sample values xu
$←(Z{Mu)∗ and combine them as in Sect. 2.2.

B.3 Quadratic Minimization

Two other techniques are based on finding small values of quadratic functions
over the integers. One is to factor M as M1 ·M3 where M1 contains the 1-mod-4
factors and M3 contains the 3-mod-4 factors of M . Valid u are of the form u ” x2

mod M3 for some x coprime to M3. We may plug in x “ 	√kM3
 ` 	 for small
positive integers k, 	 as a more efficient brute force technique. This technique
gives many candidate values of u which are around

√
M3 « 4

√
M , but it still

takes exponential time as M increases.
The second approach is to choose small, coprime, square-free positive integers

(α, β), and then partition M as M0 · M1, such that

u “ αM0 ´ βM1

is valid. This will be true if:

1. For all primes p|M , if p|α then p|M0 and likewise if p|β then p|M1.
2. For all other primes p|M0,

(
β
p

)
· ∏

q|M1

(
q
p

)
“ ´1 and vice versa.

These equations are actually affine: switching a prime p from M0 to M1 or back
has the same effect on all the equations regardless of where the other primes
are assigned. They can therefore be solved efficiently for a given (α, β) with
probability about (1 ´ 1

2) · (1 ´ 1
4) · · · « 0.29.

To further reduce u, we make two improvements. First, we extend the equa-
tion to u “ αM0x

2 ´ βM1y
2 where x is coprime to βM1y

2 and vice versa. By
setting x{y as convergents to

√
βM1{(αM0), we can find many valid values of

u « √
α · β · M0 · M1. Furthermore, we don’t need to set M “ M0 · M1 exactly:

it suffices to instead choose M2|M upfront and set M “ M0 · M1 · M2. This
method produces many u which are valid mod M0 · M1, and we can continue
until by chance we find one which is also valid mod M2. Overall, this approach
finds u which are slightly smaller than

√
M , as does ISD, but ISD seems to work

better in practice.

References

[ABD+15] Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in
practice. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5–17.
ACM Press (2015)

Improvements to RSA Key Generation and CRT on Embedded Devices 655

[ABF+03] Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault
attacks on RSA with CRT: concrete results and practical countermeasures.
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 260–275. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36400-5 20

[AGTB19] Aldaya A.C., Garćıa, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing
attacks on RSA key generation. IACR TCHES 2019(4), 213–242 (2019).
https://tches.iacr.org/index.php/TCHES/article/view/8350

[AM93] Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math.
Comput. 61(203), 29–68 (1993)

[Bar87] Barrett, P.: Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In: Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidel-
berg (1987). https://doi.org/10.1007/3-540-47721-7 24

[BHLV17] Bernstein, D.J., Heninger, N., Lou, P., Valenta, L.: Post-quantum RSA.
In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346,
pp. 311–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59879-6 18

[CAB20] Aldaya, A.C., Brumley, B.: When one vulnerable primitive turns viral: novel
single-trace attacks on ECDSA and RSA. In: CHES 2020, p. 03 (2020)

[CC07] Clavier, C., Coron, J.-S.: On the implementation of a fast prime generation
algorithm. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 443–449. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 30

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[EL10] Ebeid, N.M., Lambert, R.: A new CRT-RSA algorithm resistant to powerful
fault attacks. In: WESS 2010, p. 8. ACM (2010)

[Fia90] Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 175–185. Springer, New York (1990). https://doi.org/10.1007/0-
387-34805-0 17

[Ham12] Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology
ePrint Archive, Report 2012/309 (2012). http://eprint.iacr.org/2012/309

[JP03] Joye, M., Paillier, P.: GCD-free algorithms for computing modular inverses.
In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 243–253. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45238-6 20

[JP06] Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices:
an update. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 160–173. Springer, Heidelberg (2006). https://doi.org/10.1007/
11894063 13

[JPV00] Joye, M., Paillier, P., Vaudenay, S.: Efficient generation of prime numbers.
In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 340–354.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 27

[KG13] Kerry, C.F., Gallagher, P.D.: Digital signature standard (DSS). FIPS Pub
186–4 (2013). https://doi.org/10.6028/NIST.FIPS.186-4

[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Math.
Comput. 44(170), 519–521 (1985)

[NSS+17] Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of
Coppersmith’s attack: practical factorization o f widely used RSA moduli.

https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/3-540-36400-5_20
https://tches.iacr.org/index.php/TCHES/article/view/8350
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-319-59879-6_18
https://doi.org/10.1007/978-3-319-59879-6_18
https://doi.org/10.1007/978-3-540-74735-2_30
https://doi.org/10.1007/978-3-540-74735-2_30
https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1007/0-387-34805-0_17
http://eprint.iacr.org/2012/309
https://doi.org/10.1007/978-3-540-45238-6_20
https://doi.org/10.1007/978-3-540-45238-6_20
https://doi.org/10.1007/11894063_13
https://doi.org/10.1007/11894063_13
https://doi.org/10.1007/3-540-44499-8_27
https://doi.org/10.6028/NIST.FIPS.186-4

656 M. Hamburg et al.

In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1631–1648. ACM Press (2017)

[PSW80] Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109.
Math. Comput. 35(151), 1003–1026 (1980)

[Rab80] Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number The-
ory 12(1), 128–138 (1980)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach.
21(2), 120–126 (1978)

[Sch18] Schanck, J.M.: Multi-power post-quantum RSA. Cryptology ePrint
Archive, Report 2018/325 (2018). https://eprint.iacr.org/2018/325

[SNS+16] Svenda, P., et al.: The million-key question - investigating the origins of
RSA public keys. In: Holz, T., Savage, S. (ed.) USENIX Security 2016, pp.
893–910. USENIX Association (2016)

[Tak98] Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055738

[Tak04] Takagi, T.: A fast RSA-type public-key primitive modulo pkq using Hensel
lifting. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(1),
94–101 (2004)

[VOW99] Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptana-
lytic applications. J. Cryptol. 12(1), 1–28 (1999)

[Wag02] Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 19

https://eprint.iacr.org/2018/325
https://doi.org/10.1007/BFb0055738
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

On the Cost of ASIC Hardware Crackers:
A SHA-1 Case Study

Anupam Chattopadhyay1, Mustafa Khairallah1,4, Gaëtan Leurent2,
Zakaria Najm1,3, Thomas Peyrin1,4(B), and Vesselin Velichkov5

1 Nanyang Technological University, Nanyang, Singapore
{anupam,zakaria.najm,thomas.peyrin}@ntu.edu.sg,

mustafam001@e.ntu.edu.sg
2 Inria, Paris, France

gaetan.leurent@inria.fr
3 TU Delft, Delft, The Netherlands

4 Temasek Labs @ NTU, Nanyang, Singapore
5 University of Edinburgh, Edinburgh, UK

vvelichk@staffmail.ed.ac.uk

Abstract. In February 2017, the SHA-1 hashing algorithm was practi-
cally broken using an identical-prefix collision attack implemented on a
GPU cluster, and in January 2020 a chosen-prefix collision was first com-
puted with practical implications on various security protocols. These
advances opened the door for several research questions, such as the
minimal cost to perform these attacks in practice. In particular, one may
wonder what is the best technology for software/hardware cryptanalysis
of such primitives. In this paper, we address some of these questions by
studying the challenges and costs of building an ASIC cluster for per-
forming attacks against a hash function. Our study takes into account
different scenarios and includes two cryptanalytic strategies that can be
used to find such collisions: a classical generic birthday search, and a
state-of-the-art differential attack using neutral bits for SHA-1.

We show that for generic attacks, GPU and ASIC poses a serious
practical threat to primitives with security level ∼ 64 bits, with rented
GPU a good solution for a one-off attack, and ASICs more efficient if
the attack has to be run a few times. ASICs also pose a non-negligible
security risk for primitives with 80-bit security. For differential attacks,
GPUs (purchased or rented) are often a very cost-effective choice, but
ASIC provides an alternative for organizations that can afford the ini-
tial cost and look for a compact, energy-efficient, reusable solution. In
the case of SHA-1, we show that an ASIC cluster costing a few millions
would be able to generate chosen-prefix collisions in a day or even in a
minute. This extends the attack surface to TLS and SSH, for which the
chosen-prefix collision would need to be generated very quickly.

Keywords: SHA-1 · Cryptanalysis · ASIC · Birthday problem · Hash
functions

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 657–681, 2021.
https://doi.org/10.1007/978-3-030-75539-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_27

658 A. Chattopadhyay et al.

1 Introduction

Hardware cryptanalysis has always been an important part of modern cryptog-
raphy. It studies building application-specific electronic machines for performing
cryptanalytic attacks. These machines can use different technologies, starting
from mechanical computers during World War II, to FPGA, GPU or ASIC in
the modern days. A full discussion of the history and state of the art of this
field can be found in [11]. A widely held belief is that FPGAs and GPUs are
suited for small-scale or low-budget computations, while ASIC is predicted to be
better for heavy computational tasks or if the attacker has an important budget
to spend. It is intuitive that a chip that is designed for a specific task is much
more efficient than a general-purpose chip for the same task. However, since
ASIC design has a huge non-recurring cost for fabrication, it is only competitive
when a huge amount of chips is required. Besides, unlike the cryptographic algo-
rithms themselves, which are usually optimized for hardware implementations,
the cryptanalytic algorithms are usually designed for general-purpose computing
machines. Hence, it is not necessarily true that ASIC implementations of such
algorithms are more efficient. In other words, ASIC can always be at least as effi-
cient as general-purpose CPUs or GPUS, as in the worst case the ASIC designer
can simply design a circuit that is similar to the general-purpose one, but the
gap in efficiency between the ASIC and the general-purpose circuit depends on
the algorithm being implemented.

In general, ASIC provides an unfair advantage to players with bigger bud-
gets. This has led to speculation that large intelligence entities may already
possess ASIC hardware crackers that can break some of the widely used crypto-
graphic schemes. In this paper, we address the question of the feasibility of such
machines and whether it is more beneficial to use ASIC for cryptanalysis. The
answer to this question is yes, but only for generic attacks of very large complex-
ities, e.g. > 264. For low scale or more complicated cryptanalytic attacks, GPUs
provide a very competitive option, due to re-usability, mass production and/or
the possibility of renting them.

A relevant topic to our study is blockchain mining. As discussed earlier, big
players can gain a huge advantage by using expensive ASICs. This has been a
trend for Bitcoin specifically, where the introduction of a new ASIC machine
lowers the profitability of older machines significantly. To maintain fairness of
blockchain and cryptocurrency mining, memory-bound and ASIC-resistant hash-
ing algorithms have been used, such as Ethash [23] for the Ethereum cryptocur-
rency and the X16R algorithm [24].

Related Work. COPACOBANA [12] was introduced in CHES 2006 as an FPGA
cluster consisting on 120 FPGAs. It is considered to be the first publicly reported
configurable platform built specifically for cryptanalysis. The design philosophy
behind the architecture depends on three assumptions:

1. Cryptanalytic algorithms are parallelisable.
2. Different nodes need to communicate with each other only for a very limited

amount of time.

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 659

3. Since the target algorithms are computationally intensive, the communication
with the host is very limited compared to the time spent on the computational
tasks.

These assumptions are satisfied by both brute force (generic) and a lot of
cryptanalytic attacks. Hence, the COPACOBANA has been used to accelerate
several attacks [6]. In our study we follow the same assumptions and add one
more assumption:

4. Each node requires a constant/low amount of storage. The overall attack can
be implemented using an almost memory-less algorithm.

This assumption needs to be satisfied by the attack algorithm in order to
make sure that the efficiency due to parallelisation is not lost due to memory
operations. For example, a naive approach to implementing a generic birthday
collision search on m nodes, can lead to only

√
m speed up compared to a single

node if the algorithm doesn’t satisfy this assumption.

Our Contributions. This paper is an attempt at answering three important
research questions:

– Can the cost of the collision attacks against SHA-1 be reduced? There has been
major breakthroughs in the cryptanalysis of SHA-1 over the past few years,
with the first practical identical-prefix collision (IPC) found in February 2017
[17] and the first chosen-prefix collision (CPC) found in January 2020 [14].
While these attacks are practical on general-purpose GPUs, they still take a
few months to generate one collision, by both academic and industrial entities.
Interestingly, the authors of [14] remarked that TLS and SSH connections
using SHA-1 signatures to authenticate the handshake could be attacked with
the SLOTH attack [2] if the chosen-prefix collision can be generated quickly.
Hence, we would like to check if ASIC can provide a better alternative to
speed up the attacks, using larger budgets. We actually show that chosen-
prefix collisions could be generated within a day or even a minute using an
ASIC cluster costing a few dozen Million USD (the amortized cost per chosen-
prefix collision is then much lower).

– What is the difference between generic attacks and cryptanalytic attacks in
terms of cost and implementation? When analyzing a new cipher, any algo-
rithm that has a theoretical time complexity lower than the generic attacks is
considered a successful attack and the cipher is considered broken. For exam-
ple, an n-bit hash function that is collision resistant up to the birthday bound
is considered insecure if there is a cryptanalytic attack that requires less than
20.9n/2 hash calls. Most of the time, researchers only measure time complexity
in terms of function calls and ignore other operations required to perform the
attack if they are much smaller. However, in practice, it can be a lot harder
to implement a cryptanalytic attack compared to a generic attack, even with
lower theoretical complexity. There are countless attacks published every year
with a complexity very close to the generic one, but a natural example of such

660 A. Chattopadhyay et al.

scenarios is the biclique attack against AES [4], where the brute force com-
plexity is reduced only by a small factor from 2128 to 2126.1. However, one
can question if implementing the simple brute force attack would actually be
much less complex in practice. In this paper, we compare the generic 64-bit
birthday CPC attack over a 128-bit hash function to the cryptanalytic CPC
attack against SHA-1 (which costs close to 263.6 operations on GPUs, and of
a lower complexity in theory) showing that in practice, the generic attack
cost is more than 5 times cheaper than the ad-hoc CPC attack. Attacks like
biclique or complex cryptanalysis are even more difficult to implement than
the ad-hoc CPC attack and might require a huge memory, which probably
makes the gap even larger. Hence, we argue that for a cryptanalytic attack
to be competitive against a generic algorithm in practice, one must ensure
a sufficiently large gap, at least of a factor 5, if not more (only an actual
hardware implementation testing or estimation could give accurate bounds
on that factor).

– How secure is an 80-bit collision-resistant hash function? In the NIST
Lightweight Cryptography Workshop 2019, Tom Brostöm proposed an appli-
cation for lightweight cryptography where the SIMON cipher [1] is used in the
Davis-Meyer construction as a secure compression function which is collision-
resistant at most up to 264 computations [19]. Besides, it remains a common
belief that SHA-1 is insecure due to the cryptanalytic attacks against it, but
it would have still been acceptable otherwise. Actually, it is only since 2011
that 80-bit security is not recommended anymore by the NIST, and 80-bit
security for data already encrypted with this level of protection is deemed
acceptable as a legacy feature, accepting some inherent risk. Hence, we study
the cost of implementing the generic 280 birthday collision attack against
SHA-1, showing that it is within our reach in the near future, costing ≈ 61
million USD to implement the attack in 1 month, which is not out of reach of
large budget players, e.g. large government entities, and with the decreasing
cost of ASICs, this will even be within reach of academic/industrial entities
in the near future.

Finally, we argue that ASIC provides the most efficient technology for imple-
menting high complexity and generic attacks, while GPU provides a competitive
option for cryptanalytic and medium/low cost attacks.

2 Hash Functions and Cryptanalysis

Cryptographic hash functions are one of the main and most widely used primi-
tives in symmetric key cryptography. One of their key applications is to provide
data integrity by ensuring each message will lead to a seemingly random digi-
tal fingerprint. They are also used as building blocks of some digital signature
and authentication schemes. A cryptographic hash function takes a message of
arbitrary length as input and returns a fixed-size string, which is called the hash
value/tag. In order for the function to be considered secure, it must be hard to

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 661

find collisions, i.e. two or more different messages that have the same tag. More
specifically, a n-bit cryptographically secure hash function must satisfy at least
the security notion of collision resistance, i.e. finding a pair (M1,M2) of distinct
messages, such that H(M1) = H(M2) must require about 2n/2 computations.

2.1 SHA-1 and Related Attacks.

The SHA-1 hash function defines a generalized-Feistel-based compression func-
tion used inside the Merkle-Damg̊ard (MD) algorithm. It was selected in 1995
as a replacement for the SHA-0 hash function after some weaknesses have been
discovered in the latter. While the two functions are relatively similar, SHA-1
was considered collision resistant till 2005, when Wang et al. proposed the first
cryptanalytic attack on SHA-1 [22]. Since then, a lot of efforts have been targeted
towards making the attack more efficient. In 2015, the authors of [7] provided
an estimation for finding near collisions on SHA-1, which is a critical step in
the collision attacks. The authors provided a design of an Application-Specific
Instruction-set Processor (ASIP), named Cracken, which executes specific parts
of the attack. It was estimated that to execute the free-start collision and real
collision attacks from [16], the attacks will take 46 and 65 d and cost 15 and
121 Million Euros respectively. At Eurocrypt 2019, Leurent and Peyrin [13] pro-
vided a chosen-prefix attacks which uses two parts: first a birthday search to
reach an acceptable set of differences in the chaining variable, and then a dif-
ferential cryptanalysis part that successively generate near-collision blocks to
eventually reach the final collision. The attack was implemented on GPUs and
a first chosen-prefix collision was published in January 2020 [14].

2.2 Birthday Search in Practice.

The efficient design of a collision search algorithm is not a trivial task, especially
if the attacker wants to use parallelization over a set of computing machines. This
issue is discussed in details in [21]. The collision search problem can be treated
as a graph search problem, where the attacker is looking for two edges with the
same endpoint but with different starting points. Pollard’s rho method [15] helps
finding a collision in the functional graph with a small memory requirement. The
underlying idea is to start at any vertex and perform a random walk in the graph
until a cycle is found. Unless the attacker is unlucky to have chosen a starting
point that is part of the cycle, he ends up with a graph that resembles the Greek
letter ρ and the collision is detected. Unfortunately, this method is not efficiently
parallelizable, as it provides only O(

√
m) speed-up when m cores are used. In

[21], the authors proposed a method to achieve O(m) speed-up, using limited
memory and communication requirements. This algorithm leads to very efficient
parallel implementations, and is the basis for our study.

However, in the chosen-prefix collision attack against SHA-1, it is not applied
directly to the compression function of SHA-1, but to a helper function. Let IVi

represent a chaining value to the compression function (reached after processing

662 A. Chattopadhyay et al.

a prefix), x a message block, and H(IVi, x) the application of the SHA-1 com-
pression function. The goal of the birthday phase of CPC attack is to find many
solutions x1 and x2 such that L(H(IV1, x1)) = L(H(IV2, x2)), where L(x) is a
linear function applied to a word x, in order to select some of the output bits of
the compression function. The helper function is defined as:

f(x) =

{
L(H(IV1, x)), if x = 1 (mod 2)
L(H(IV2, x)), otherwise.

(1)

When a collision f(x1) = f(x2) is found, we have x1 �= x2 (mod 2) with proba-
bility one half, and in this case we obtain L(H(IV1, x1)) = L(H(IV2, x2)).

2.3 Differential Cryptanalysis

In this section we briefly describe the algorithms involved in the second part
of the chosen-prefix collision attack: the generation of successive near-collision
blocks to reach the final collision. The details of this differential attack can be
found in [10,13,14,16–18,22]. For each new near-collision block, the attacker has
to go through three main steps:

1. Preparing a fully defined differential path for the SHA-1 compression function
(in particular a non-linear part has to be generated for the first few steps of
the SHA-1 compression function)

2. Find base solutions for the first few steps of this differential path (a base
solution is simply two messages inputs that verify the planned differential
path in the internal state up to the starting step of the neutral bits).

3. Expand those solutions into many solutions using what is known as neutral
bits (in order to amortize the cost of the base solution), and check whether
any of these solutions verify the differential path until the output of the
compression function.

A neutral bit for a step i is a bit (or a combination of bits) of the message such
that when its value is flipped on a base solution valid until step i, the differential
path is still satisfied with high probability until step i. Most of the time, a neutral
bit is a single bit, but it can sometimes be composed of a combination of bits.
A neutral bit for a step i allows to amortize the cost of finding a solution to the
differential path until step i.

The hardware cluster we consider consists of one master node and many slave
nodes. The master builds a proper differential path for the compression function
steps, based on the incoming chaining values, and generates base solutions based
on this path. The slave is then required to expand these base solutions into a
wider set of potential solutions and find out which of them satisfy the differential
path until a certain step r (we selected r = 40 for ASIC for implementation
efficiency purposes, but we remark that r = 61 was selected for GPU even though
it does not have much impact) in the SHA-1 compression function. The master
then aggregates all the solutions that are valid up to step r and exhaustively

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 663

search for solutions that are valid up to step 80. This is repeated several times
until a valid solution for the differential path is found. Consequently, we define a
slave as a dedicated core that is responsible for extending a base solution found
by the master into a set of potential solutions by traversing the tree of solutions
defined by the neutral bits.

Unfortunately, this attack is not hardware-friendly and needs a lot of control
logic. The master has to send to the slave:

1. A base solution, which consists of two message blocks M1 and M2.
2. A set [DP] of differential specifications for the slave to check conformance.
3. A group of neutral bit sets Ni, where the neutral bits in Ni are supposed to

be neutral up to step i.

Combining a base solution (M1,M2) valid at step i and the set Ni, we get
about 2|Ni| new solutions that are valid up to step i, simply by trying all the
possible combinations of the neutral bits in the set. In a naive approach, each
of these partial solutions is expended to 2|Ni+1| by applying combinations of the
next set. Eventually, we would end up with 2

∑
i Ni partial solutions, organised

in a tree as shown in Fig. 1. However, the neutral bits Ni+1 are defined such that
they don’t impact the path up to step i+1. Therefore, if the partial solution does
not satisfy the conditions at step i+1, there is no need to apply the neutral bits
Ni+1, and we can instead cut the corresponding branch from the tree. Indeed,
there is a certain probability that a solution valid at step i will be valid at step
i + 1, according to the SHA-1 differential path selected. With the parameters
used in SHA-1 collision attacks, most subtrees fail.

We can generate the partial solutions using a graph search algorithm to start
navigating the tree from its root, and neglect complete subtrees that are failing.
In this paper we choose Depth-First Search (DFS) graph search, with some
modifications to suit our specific problems, in order to satisfy our assumptions
for the cryptanalytic algorithm, as DFS has low memory requirements.

Our Attack Scenarios. In this paper we consider three attack scenarios:

1. A plain 264 birthday search: a generic birthday attack against a 128-bit hash
function, constructed by selecting only 128 bits out of the 160 output bits of
the SHA-1 compression function.

2. A plain 280 birthday search: a generic birthday search over the full space of
the SHA-1 compression function.

3. The chosen-prefix collision attack on SHA-1 from Leurent and Peyrin [13,14].

These three scenarios cover two generic attacks against two security levels
used in practice and one cryptanalytic attack.

3 Hardware Birthday Cluster

In this section, we describe the hardware core that handles the birthday attack.
First, we define the nodes used in the proposed cluster. Then, we describe the
design of the slave nodes and the communication requirements.

664 A. Chattopadhyay et al.

M

MN0
0

MN0
0+N0

1 MN0
0+N1

1

MN1
0

MN1
0+N0

1 MN1
0+N1

1

MN2
0

MN2
0+N0

1 MN2
0+N1

1

MN3
0

MN3
0+N0

1 MN3
0+N1

1

Fig. 1. Building partial solutions with neutral bits

3.1 Cluster Nodes

The cluster used to apply the parallel birthday search attack consists of two
types of nodes:

1. Master: a software-based CPU that manages the attack from high level and
performs some jobs including choosing the initial prefixes, distributing the
attack loads among slaves, sorting of the outputs and identifying colliding
traces.

2. Birthday Slaves: dedicated cores that can perform different parts of the par-
allel birthday search. Specifically, it compute traces in the functional graph of
the function in question, and once the master has identified colliding traces,
the core also can locate the exact collision in these traces.

3.2 Hardware Design of Birthday Slaves

The design of the proposed birthday slave is shown in Fig. 2. It’s main role is to
iterate the helper function of Eq. 1. It consists of a reconfigurable ROM, where
the initial trace value x0, IV1 and IV2 are loaded, a logic SHA-1 core which
performs the step function of SHA-1, a comparator to compute L(x), x (mod 2)
and check whether a given x is a distinguished point (see [21]) or not, a memory
to store distinguished points and a control unit to handle the communications
with the master, and measure the lengths of different traces.

In order to estimate the cost of the proposed core, the area and speed are
compared to a single, step-based SHA-1 core, which is a standard practice in
estimating the cost of SHA-1 cryptanalytic attacks. We have implemented a
full SHA-1 core and it has an area of 6.2 KGE and 0.21 ns critical path. The
implementation of the core in Fig. 2 using a step-based SHA-1 core requires at
least twice this area. Moreover, its critical path is dominated by the memory and

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 665

SHA-1
Trace

Memory

Comparator

x0 ROM

Control Unit

SPI Interface

Fig. 2. Birthday slave for the parallel collision algorithm

counters in the control logic. Besides, it is not expected that a huge ASIC cluster
will run at a speed higher than 1 GHz, due to the power consumption. Hence, in
order to regain the efficiency lost due to the extra control logic and memories, it
is a good approach to try to use this logic with as many SHA-1 steps as possible.
Given these experiments and the huge cost of the control overhead, we increase
the efficiency by cascading 4 SHA-1 steps instead of one in the SHA-1 core. This
makes the critical path around 1ns, but a full SHA-1 computations takes only 20
cycles instead of 80, and the overhead 25% instead of 100%.

4 Verification

We have verified the attack by finding collisions on a small number of bits using
functional simulation of the hardware implementations. Specifically, we found
collisions on 20 ∼ 330 bits of the output. We have also generated traces for
larger number of bits and compared them to traces generated using software
implementations.

5 Hardware Differential Attack Cluster Design

In this section we discuss the challenges and different trade-offs when imple-
menting the neutral bit search algorithm in ASIC and give a description of the
circuit. The cluster architecture uses 3 types of nodes: master nodes, birthday
slaves (BC), and neutral bit slaves (NB).

5.1 Neutral Bits

One of the trade-offs when implementing the attack is whether to consider neu-
tral bits as only single-bits or to use the more general sets of multi-bits. The
first approach leads to a very small circuit, but it strongly limits the number of
usable neutral bits. This increases the overall work load, as more base solutions

666 A. Chattopadhyay et al.

need to be generated, and more time is spend applying neutral bits. The second
approach is more complex, because multi-bit neutral bits must be represented by
a bit-vector. However, the single-bit neutral bits are not sufficient to implement
an efficient attack, and we have to use the second option:

1. Our simulation results show that the success probability of single-bits is very
low. Hence, any gain achieved by using them is offset due to the huge work
load and high communication cost between the master and slave.

2. In order to achieve significant results, multi-bits are inevitable. In particular,
boomerangs [9] (which can be seen as multi-bit neutral bits with extra condi-
tions to reach a later step) are crucial cryptanalytic tools for a low-complexity
attack against SHA-1. Hence, avoiding multi-bits can lead to a drastic loss in
terms of attack efficiency.

5.2 Storage

Each multi-bit neutral bit is represented by a 512-bit vector, which indicates
the location of the involved bits in the message block (a SHA-1 message block is
indeed 512-bit long). However, we noticed that almost all the neutral bits involve
bits only in the last 6 32-bit words of the message block. Therefore, we reduced
the representation to only 192 bits. Yet, since the original chosen-prefix collision
attack against SHA-1 uses ∼ 60 neutral bits, including boomerangs, this requires
a representation of ∼ 11, 520 bits. Besides, the last few levels of the tree requires
320 bits per neutral bits as the boomerangs can be located as early as step 6. In
addition, for each level of the tree search we need a counter to trace which node
we are testing. The tree used in the attack has ∼ 10 levels, and our experiments
show that the maximum number of neutral bits in one level is ∼ 26 bits. Hence,
the overall size of the counters is ∼ 260 bits. In order to design the circuit that
handles this tree search algorithm, we tried out four different approaches:

1. Generic approach: we assume that each tree level can have ∼ 28 neutral bits
(slightly higher than our experiments for tolerance). Also, assume that these
levels can be related to any step of the SHA-1 compression function between
10 and 26, i.e. 16 possible steps. In total, this requires ∼ 63, 670 memory
locations (Flip-Flops).

2. Statistical approach: from the software experiments and simulations, we iden-
tified an average number of neutral bits per level. In the design, we use the
maximum number of neutral bits we observe for each level (in addition to two
extra bits for tolerance). We observed that only the first few levels require
such a huge storage, while the later levels usually have 3 ∼ 7 bits per level. In
addition, boomerangs are usually 3 ∼ 4 per level. This reduces the memory
requirement by about 50%. However, it remains a huge requirement.

3. Configurable approach: our experiments showed that not only the number of
neutral bits per level can be predicted, but also the values of these bits. In
other words, very few bits have different values for different blocks. Hence, we
can fix each neutral bit to two or three choices and use flip-flops to configure

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 667

which choice is selected during execution. This reduces the cost significantly.
However, the cost is still high as a multiplexer has an area only ∼ 50% of a
flip-flop. Besides, we still need flip-flops for configuring these multiplexers.

4. Another approach is to reduce the cost by fixing the neutral bit values to
a set of statistically dominant values. Indeed, [14] reports using the same
neutral bits for each near-collision bloc. This eliminates the need to store the
neutral-bit reference values.

At the end, we chose the third approach, since our analysis shows that it
captures the reality, while allowing some level of freedom for the attacker to
adjust the attack parameters after fabrication.

5.3 Architecture

Figure 3 shows the architecture of the neutral-bit slave. It consists of a register
file to store the differential path for comparison, a configurable ROM to store
the base solution, a unit to enumerate the different neutral bit patterns and
maintains the tree level for the graph search algorithm, and the SHA-1 step
logic.

SHA-1

SHA-1

Differential
Path

Comparator

Base Solution

Configurable
Enumerator

Success
Report

Fig. 3. Neutral-bit slave hardware architecture

6 Chip Design

In this section, we describe our process for simulating the proposed chips and
the results in terms of power, area and performance for each.

6.1 Chip Architecture

A challenge when designing this cluster is the communication overhead between
the master and the slaves. A 100 MHz SPI bus interface is used as a one-to-
one communication interface with the attack server. A set of ASICs can also
be daisy-chained, thanks to this interface, in such a way to lower the number

668 A. Chattopadhyay et al.

of interconnects with the master. It provides enough bandwidth to handle the
data exchanges between the BD/NB slave cluster and the attack server. The
CU (Control Unit) is responsible for dispatching the 32-bit de-serialized packets
sent by the attack sever to configure the BD/NB slaves. It is also responsible
for daisy-chaining and demultiplexing the output traces of the different BD/NB
slaves to the SPI bus interface before the serialization. Each ASIC also outputs
an asynchronous interrupt signal. The interrupt signal is 1 when at least one
BD/NB slave is done, and an output trace is available. Those interrupt signals
are managed by a set of ZYNQ board cluster interfaces.

Fig. 4. System architecture of the ASIC cluster chip

6.2 ASIC Fabrication and Running Cost

Estimating the cost of fabricating and running an ASIC cluster can be chal-
lenging as many parameters are confidential to the fabs. In order to estimate
the costs of the attacks considered, we developed a methodology based on the
information available publicly. We considered the FD-SOI 28 nm technology from
ST-Microelectronics. For small scale academic projects, the price of a small batch
of up to 100 die, the fabrication cost in US$ can be estimated by:

p100 =

{
125400 + (A − 12) ∗ 7700, if A > 12 mm2

20900 + (A − 2) ∗ 9900, if 2 mm2 ≤ A ≤ 12 mm2

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 669

where A is the die area in mm2 and p100 is the price of the first 100 die in US$s
(USD). For small scale projects with more than 100 die, the price for a lot of
100 extra die is between 21,120 and 38,500 USD depending on the die area and
the number of reticules in a wafer. MPW runs uses Multi Layer Reticule technic
to reduce the overall cost of the mask and additional dies. For our purposes,
we consider a small scale project to be a project with at most 25 wafers [20].
For large scale projects, a market study published at the FDSOI Forum in 2018
showed that the die manufacturing cost per 40 mm2 is 0.9 USD for the 28 nm
technology [8]. Hence, our methodology for estimating the costs consists of the
three parts we explained. In reality, a more accurate methodology is probably
available for the fabs to fill in the gaps. However, we believe that the overall cost
will be in the same range.

On top of the fabrication cost, we need to consider the running cost of the
ASIC cluster, which includes the energy consumption and cooling. We have
performed post-layout extraction and simulation in order to estimate the power
consumption of the different chips. In order to simplify the cost analysis, we
use a figure of 18 cents/KWh, which is higher than the electricity consumption
price in most countries [5]. Hence, we only consider the energy consumption
of the chips and not the cooling cost or other factors that will be added after
fabrication. The performances and power result are provided in Table 1.

6.3 Results

Two different architectures of SHA-1 crackers are compared here. The first archi-
tecture is based on 2 separate ASIC slaves that handle the two parts of the
attack, i.e., the birthday search (BD) and the neutral bits part (NB). The two
phases are performed sequentially. Figure 5 depicts the overall cost required to
build the machine and find the first chosen-prefix collision depending on the
time ratio between the two phases. For ASIC, the overall minimum cost is not
perfectly at 50% ratio. Hence, we consider a two-stage pipeline architecture at
the cost of slightly more hardware to balance the birthday and neutral-bit parts.

Our birthday (BD) core uses 16927.1 gate equivalents (GEs) per SHA-1
rounds., while our neutral-bit core (NB) uses 170442.7 GEs. Our best imple-
mentation is a 4-round SHA-1 unrolled compression function that can be clocked
at 900 MHz at Vcore = 0.92V and Vfbb = 0V. Using body biasing and LVT tran-
sistors for the critical path, we can further decrease the threshold voltage and
increase the running frequency. With Vfbb = +2.0V we can increase the running
frequency of our fastest core by 40%, reaching 1262 MHz with a 2% increase in
dissipated power. The chip can be further over-clocked by increasing Vcore but at
the cost of a quadratic increase in the dissipated power, so a more costly cooling
system. The results of our implementations are shown in Table 1. As shown in
Fig. 19, a BD slave contains up to ∼ 15 BD cores per mm2 while an NB slave
contains ∼ 1.5 NB cores per mm2.

In our study, the overall cost is calculated without the cooling and infrastruc-
ture. Note that as shown in Fig. 6, the total cost required to build an ASIC-based
cracker greatly depends on the die size. This is due to the fact that the initial

670 A. Chattopadhyay et al.

Fig. 5. Impact of the BD/NB time
ratio on the cost

Fig. 6. Impact of the die size and
latency on the HW cost (4 to 100 mm2

28 nm FD-SOI). The top left line in
blue represents 4 mm2 and the bottom
left is 100 mm2.

Table 1. ASIC implementation performances for 2 corners cases: high performance at
900 MHz and high performance with FBB at 1262MHz.

Version 900 MHz 1262MHz

Vfbb= 0V Vfbb= +2V

BD NB BD NB

Power (in mW) 71.1 289 72.6 294

CP delay (in ps) 1110 1110 792 792

Area (in mm2) 0.0650 0.6545 0.0650 0.6545

cost is predominant when the die size is large. The overall hardware cost tends
to the same for any die size when the attack is fast.

6.4 Attack Rates and Execution Time

As shown in Table 2, a single NB slave of 16 mm2 contains up to 24 NB cores
and can generate up to 976 solutions up to step 40 of SHA-1 per second. Each
solution A40 requires 31 Million cycles, on average. A single BD slave of 16 mm2

contains up to 245 BD cores and provides a hash rate of 20.6 GH/s for the fastest
version of our design. As a comparison, as shown in Table 3 and taken from [14],
a single GTX 1060 GPU provides a hash rate of 4.0 GH/s and can generate
2000 A40 solutions per second. If we take the birthday part of the attack as a
reference, the neutral bit part is ten time less efficient in hardware than on GPU.

The second architecture is based on GPU. For GPU, it is cost-wise more
interesting to take advantage of its reconfigurability to minimize the cost. Hence,
we consider in our cost analysis that the chosen-prefix collision is performed
serially by reusing the same GPU for the two attack phases. In Table 4, the cost

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 671

Table 2. Our best 16 mm2 ASIC implementation performances for 2 corners

Parameter 900 MHz 1262 MHz

SHA-1/core/sec 225.8 226.3

SHA-1/core/month 247.1 247.6

SHA-1/chip/month 255.1 255.6

A40 Solutions/core/sec 24.9 25.3

A40 Solutions/core/month 226.1 226.7

A40 Solutions/chip/month 230.8 231.2

Table 3. SHA-1 hash rate from hashcat for various GPU models, as well as measured
rate of solutions at step 33 (A33-solutions). Data taken from [14].

GPU arch Hash Rate A33 rate A40 rate Price Power Rental

GTX 750 Ti Maxwell 0.9 GH/s 62 k/s 250 k/s $144 60W

GTX 1060 Pascal 4.0 GH/s 470 k/s 2 k/s $300 120W $35/month

GTX 1080 Ti Pascal 12.8 GH/s 1500 k/s 6.2 k/s $1300 250W

of the three attack scenarios is provided. We give in this table the cost to build the
ASIC- and GPU-based clusters for 3 different speeds, i.e., one attack per month,
one attack per day and one attack per minute. The latency corresponds to the
delay to get the first collision. For instance, a two-stage ASIC-based machine able
to generate one SHA-1 collision every months, will generate the first collision in
two months. A GPU-based machine generates the first collision in one month for
the same attack rate. Our ASIC-based two stage pipelined architecture has twice
the latency of a sequential GPU-based machine for the same attack rate. Our
benchmark (Figs. 15 and 16) provides a comparison between our ASIC cluster
and two of the most widely spread GPU based machines, i.e., the GTX 1080TI
(CMOS 14 nm) and the GTX 1060 (CMOS 16 nm) for different attack rates.
The numbers for the GTX 750 TI (CMOS 28 nm technology) are also added to
the benchmark as it provides an idea of the performance obtained with a GPU
based on a similar technology node as our ASIC.

Note on the use of FPGAs. Our ASIC design have been tested on FPGA plat-
form. FPGA can be considered as a good alternative to ASIC thanks to its recon-
figurability property. However, one of the largest FPGAs from Xilinx, namely
the Virtex 7 xc7vx330t-3ffg1157 can fit only 20 instances of the Birthday core
running at 135 MHz in one chip. The same FPGA can fit only 16 instances of
the Neutral Bit core running at 133 MHz. In order to do the 264 generic birthday
search, we need 236.6 FPGA-seconds, i.e., in order to do it in one month we need
215.3 FPGAs. As a single FPGA costs around 8000 USD, this attack would cost
around 319 Million USD. This is more than one thousand times the cost of the
same attack on ASIC and 440 times the cost on GPU, making it irrelevant for
the purpose of analyzing SHA-1. Even if FPGAs can be rented, a similar factor is
expected compared to renting GPUs. It is worth mentioning that FPGA-based

672 A. Chattopadhyay et al.

Table 4. Comparison of attack costs with various parameters. Costs are given in USD
(k stands for thousand, M for Million, B for Billion, T for Trillion, Q for Quadrillion).
Amortized cost is the cost per attack assuming that the hardware is used continuously
during three years. Note that it is possible to get slightly more energy efficient platforms
and implementations at the cost of more expensive hardware. We list the cheapest
platform after one attack, energy included.

Platform ASIC GPU rent GPU buy

Attack 64 CPC 80 64 CPC 80 64 CPC 80

Energy Cost $776 $1.6k $50.9M - - - $18k $12k $1.2B

Cluster for 1 attack per month

Latency (month) 1 2 1 1 1 1 1 1 1

Hardware Cost $257k $1.1M $11M - - - $715k $490k $47B

First Attack Cost $257k $1.1M $61.9M $61k $43k $4B $733k $502k $48B

Amortized Cost $7.9k $32.1k $51.2M $61k $43k $4B $38k $26k $2.5B

Cluster for 1 attack per day

Latency (day) 1 2 1 1 1 1 1 1 1

Hardware Cost $1.4M $3.7M $218M - - - $22M $15M $1.4T

First Attack Cost $1.4M $3.7M $269M $61k $43k $4B $22M $15M $1.4T

Amortized Cost $2k $5k $51.1M $61k $43k $4B $38k $26k $2.5B

Cluster for 1 attack per minute

Latency (minute) 1 2 1 1 1 1 1 1 1

Hardware Cost $8.5M $48M $263B - - - $31B $21B $2Q

First Attack Cost $8.5M $48M $263B $61k $43k $4B $31B $21B $2Q

Amortized Cost $781 $1.6k $51M $61k $43k $4B $38k $26k $2.5B

clusters, such as COPACABANA, use cheaper FPGAs. However, they are usu-
ally used for smaller projects and will face the same challenge to scale up to the
level of attacks awe are considering.

7 Cost Analysis and Comparisons

As explained throughout the paper, we have performed several experiments to
identify the different implementation trade-offs for the attack scenarios we con-
sider. In this section, we analyze the cost estimates of implementing these attacks
in ASIC vs. consumer GPU. We consider three attack scenarios that fall into
two categories: generic birthday attacks and differential cryptanalysis of SHA-1.
Before discussing the analysis in more details, here are a few general conclusions
that we reached through our experiments, which can be helpful for building
future hardware crackers:

1. The cost of implementing memoryless generic attacks, such as the parallel
collision search of [21], in hardware can range from 20% to 50% of the overall
ASIC implementation, while the rest is dedicated to the attacked primitive,
e.g. the SHA-1 hash function.

2. For iterative cryptographic algorithms, such as hash functions and block
ciphers, a way to reduce the attack cost is to use unrolling. This approach
is similar to using memoryless algorithms. Instead of computing one step of

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 673

the function every clock cycle, we compute several steps in the same cycle.
This amortizes the costs of the attack logic among several steps. For exam-
ple, implementing the birthday attack using a single-step iterative SHA-1 core
leads to a circuits where only 20% of the area is used by the SHA-1 logic and
80% of the area is due to the attack logic, registers and comparisons. On the
other hand, using a core that computes 4 steps every clock cycles leads to a
circuit with a 50%/50% ratio. While this technique may increase the critical
path of the circuit and reduce the frequency, it also reduces the overall num-
ber of cycles, so the overall time to compute a single SHA-1 per core is almost
constant.

3. For cryptanalytic attacks, the cost is dominated by the attack logic, which
may include a huge number of comparisons, modifications and registers. These
extra operations are usually different from one step to another, so they con-
sume a huge area. Besides, the state machine of these attacks can be very
costly. In such scenarios, the advantage of using ASICs becomes diminished
compared to consumer GPUs, except for very high budgets, especially as the
GPUs are reusable and can be rented.

7.1 264 Birthday Attack

The first attack scenario we consider is attacking a hash function with 264 birth-
day collision complexity. The hash function used is the SHA-1 compression func-
tion reduced to only 128 output bits, as explained in Sect. 2. A single ASIC core
is described in Sect. 3. The time to finish such an attack depends on the number
of chips fabricated and the size of each chip. A single ASIC core running at
1262 MHz contributes 226.33 SHA-1 computations per second. The attack costs
237.67 core-seconds. To reach this complexity, Fig. 6 shows the price required vs.
the estimated time needed to finish the attack, including the fabrication cost of
chips of different sizes and the energy consumption.

To put these numbers into perspective, the NVIDIA GeForce GTX 1080 TI
GPU (14nm technology) can do about 233.6 SHA-1 computations per second, so
implementing the attack on GPU would require 230.4 GPU-seconds. In order to
implement this attack in one month, we need to buy around 550 GPUs costing
around 715k USD and around 18k USD in energy. As shown in Fig. 7, a GTX
1060-based machine is a bit less expensive, costing 525k USD but consuming
around 28k in energy for the same job (using 1750 GPUs).

Besides, as shown in Fig. 7, for any attack rate it is cheaper to buy an ASIC
cluster than a GPU-based cluster. The difference reaches 1 order of magnitude
from a rate of 1 attack per week. Furthermore, the ASIC-based cluster consumes
1 to 2 order of magnitude less energy than any GPU-based solution. As shown in
Table 4, the minimum cost in energy per attack on ASIC is as low as 776 USD.
An ASIC-based cracker able to generate one collision per month would cost 257k
USD. For an attack rate of 1 attack per minute, it would cost 8.5 million USD.

An alternative option is to rent the GPUs. This would cost around $61k per
attack, assuming a rental price of $209/month for a machine with 6 GTX 1060
GPUs. This makes the GPU rental very competitive for a single attack, around 4

674 A. Chattopadhyay et al.

Fig. 7. 264 BD machine price for differ-
ent attack rates: ASIC vs GPU

Fig. 8. Energy cost per 264 BD attack:
ASIC vs GPU

Fig. 9. Total cost (HW+E) for 100 264

BD attack at a given attack rate: ASIC
vs GPU

Fig. 10. Total cost (HW+E) for 100k
264 BD attack at a given attack rate:
ASIC vs GPU

times cheaper than an ASIC cluster. However, the ASIC cluster quickly become
much more cost effective when the attack is repeated (see Fig. 9).

7.2 280 Birthday Attack

In this section, we look at the cost of implementing a generic birthday collision
search for the full SHA-1 output, which requires around 280 SHA-1 computations.
The algorithm is the same as the previous attack, except that we use the full
output of the SHA-1 compression function. Since a single ASIC core performs
226.33 SHA-1 computations per second, the birthday collision search costs 253.67

core-seconds, or around 454 million years on a single core. Fortunately, for a
powerful attacker with enough money, the cost for producing ASICs grows slowly
for large number of chips. The fabrication cost of a hardware cluster to perform
the attack in one month costs only 11 million USD, as opposed to around 34
billion USD for GTX 1060. Hence in this case, for any attack rate as shown in
Graphs 13 and 14 the only realistic option is to build an ASIC cluster.

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 675

Running the attack costs around 50.9 million USD in energy, which matches
the order of magnitude estimated from the bitcoin network: the network cur-
rently computes about 270.2 SHA-256 every ten minutes, for a reward of 12.5
bitcoin, or roughly $85k at the time of writing. This would price a 280 compu-
tation at 75 million USD.

Fig. 11. 280 BD machine price for dif-
ferent attack rates: ASIC vs GPU

Fig. 12. Energy cost per 280 BD
attack: ASIC vs GPU

Fig. 13. Total cost (HW+E) for 100
280 BD attack at a given attack rate:
ASIC vs GPU

Fig. 14. Total cost (HW+E) for 100k
280 attack at a given attack rate: ASIC
vs GPU

7.3 Chosen Prefix Differential Collision Attack

The chosen-prefix collision attack proposed by Leurent and Peyrin [14] consists
of two main parts: a birthday search attack, and a differential collision attack.
The authors provide different trade-offs between the complexity of the two parts.
In their paper, the number of solutions required for the neutral bits up to step

676 A. Chattopadhyay et al.

33 is provided. This number of solutions corresponds to the number of solutions
required to get a valid solution with high probability. Step 33 is chosen because
there is a zero difference at this state, so there is a single path at this step, and
solutions are generated fast enough to measure the rate easily. This configuration
requires to generate about 262.05 SHA-1 computations for the birthday part and
249.78 solutions up to step 33. In this paper, it is cost-wise more interesting for
ASIC to generate solutions for the neutral bits up to step A40. There is a factor
27.91 difference in the number of solutions to generate between step A33 and step
A40. Hence a chosen-prefix collision requires to generate 241.87 solutions. Table 3
provides the hash rates and solution rates numbers used in our estimate for the
cost on GPU. This gives 38 GPU-years for the birthday, and 65 years for the
neutral bits. The estimated cost per attack using GTX 1060 GPU, assuming 209
USD per month for 6 GPU is about 43k USD. The cost of running the attack
in GPU is dominated by the energy consumption. ASIC is much more energy
efficient, as shown in Fig. 16. It can be up to 2 order of magnitude less than using
common consumer GPU. As shown in Fig. 15, ASIC-based SHA-1 cracker that
generate one collision per month, costs about 1.1 million USD, about the same as
the cheapest GPU-based cracker from our benchmark. However, a single attack
on GPU costs about 19000 USD in energy. Hence from 100 attacks as shown in
Figs. 17 and 18 as well as for attack rates greater than 1 attack per week, an
ASIC-based SHA-1 cracker is the only realistic option.

Fig. 15. CPC machine price for differ-
ent attack rates: ASIC vs GPU

Fig. 16. Energy cost per CPC attack:
ASIC vs GPU

7.4 Limitations

While we did our best to estimate the price of the attacks as accurately as pos-
sible, our figures should only be considered as orders of magnitude because the
pricing of hardware and energy can vary significantly. ASIC pricing is not com-
pletely public, and energy prices depend on the country. Moreover, our estimate
only include hardware cost and energy, neglecting other operating costs such as

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 677

Fig. 17. Total cost (HW+E) for 100
CPC attack at a given attack rate:
ASIC vs GPU

Fig. 18. Total cost (HW+E) for 100k
CPC attack at a given attack rate:
ASIC vs GPU

cooling and servers to control the cluster (however, the energy price we use is
somewhat high, so it can be considered as including some operating costs).

Another caveat is that we only consider the computation part of the attacks.
In reality, there is some need for communication between the nodes, and some
steps of the attacks must be done sequentially. Concretely, the generic birthday
attacks must sort the data after computing all the chains, and the CPC attack
must compute several near-collision blocks sequentially. This will likely add some
latency to the computation, and running the attack in one minute will be a huge
challenge, even when the required computational power is available.

8 Conclusion

Our paper provides a precise comparison between ASIC-based and GPU-based
solutions for cryptanalysis, with a case study on generic birthday search and a
case study on the recent chosen-prefix collision on SHA-1. For the former, we show
that generic birthday attacks can be performed very easily with ASICs against
a 128-bit hash function, and that even a 160-bit hash function would not stand
against a huge, yet potentially affordable, ASIC cluster. For the latter, we created
two independent ASICs that handle the two parts separately. Our comparisons
with GPU-based solutions show a clear advantage of ASIC-based solutions. In
particular, we remark that the chosen-prefix collisions for SHA-1 can be generated
in under a minute, with an ASIC cluster that costs a few dozen Millions dollars.
Such ability would allow an attacker to apply the SLOTH attack [2] on TLS
or SSH connections using SHA-1. In the introduction, we posed three research
questions; the first question is related to the cost of attacks on SHA-1. Our study
showed that ASIC is clearly the best choice for very high complexities attacks,

678 A. Chattopadhyay et al.

or for attacks that need to be performed in a short amount of time. However,
for proof-of- concept or cryptographic research in general, where complexities
of 264 or less can be computed in a month or so, renting a set of GPUs seems
to be the best solution. If the attack needs to be repeated multiple times, or
if the speed of the attack is critical, then the initial hardware cost might be
amortized and the energy cost per attack might become important. We note
that the energy cost will be very high on GPU compared to a dedicated ASIC
solution. For a chosen-prefix collision on SHA-1, the energy cost per attack for
our speed-optimized ASIC is 1.6k USD. The best GPU based solution from our
benchmarks consumes about 12k USD per attack. Hence, the cost of the ASIC-
based solution is amortized. Furthermore, when the CPC attack rate becomes
higher than 100 attacks per month, the ASIC solution is cheaper than any GPU-
based solution in our benchmarks. In this case, the cost of the GPU rent is
prohibitive and the ASIC is the only realistic threat. In the second question,
we target the comparison between generic attacks and cryptanalytic attacks for
similar theoretical level of numeric complexity. In our study, we show that for
a similar level of ∼ 264 computations, it is ∼ 75 ∼ 82% cheaper to implement
a generic birthday search, compared to the differential CPC attack on SHA-1.
This means that for these two attacks, the generic attack has an advantage
of 5×. One can study more advanced brute force attacks, such as the biclique
technique, in order to compare with generic ones. A preliminary study have
been published on this topic [3], where the authors compare the cost of building
a brute force machine for AES vs. implementing the biclique. They find that
the cost of implementing the biclique attack is cheaper than brute force, but
slightly worse than what is theoretically expected. However, they only consider
one extreme architecture for the brute force machine, and we believe that this
can be optimized bringing the cost of brute force down to lower than the biclique
attack. However, we leave this hypothesis for future work. Last but not least, the
third question is whether the 80-bit security level is still adequate for practical
use in less demanding applications. Our study is a warning, showing that not
only SHA-1 is indeed practically fully broken, but also that search-based and
memory-less generic attacks with complexity ≤ 280 are within practical reach.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their helpful comments. The authors are supported by a Temasek Labs grant
(DSOCL16194).

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 679

A Chip layout

Fig. 19. SHA-1 cryptanalysis accelerator ASIC Layouts

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference. DAC 2015, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2744769.2747946

2. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication
in TLS, IKE and SSH. In: NDSS 2016. The Internet Society (2016)

3. Bogdanov, A., Kavun, E., Paar, C., Rechberger, C., Yalcin, T.: Better than brute-
force–optimized hardware architecture for efficient biclique attacks on aes-128. In:
ECRYPT Workshop, SHARCS-Special Purpose Hardware for Attacking Crypto-
graphic Systems (2012)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011,
pp. 344–371. Springer, Heidelberg (2011)

5. globalpetrolprices.com: https://www.globalpetrolprices.com

https://doi.org/10.1145/2744769.2747946
https://www.globalpetrolprices.com

680 A. Chattopadhyay et al.

6. Güneysu, T., Kasper, T., Novotnỳ, M., Paar, C., Rupp, A.: Cryptanalysis with
COPACOBANA. IEEE Trans. Comput. 57(11), 1498–1513 (2008)

7. Hassan, M., Khalid, A., Chattopadhyay, A., Rechberger, C., Güneysu, T., Paar,
C.: New asic/fpga cost estimates for sha-1 collisions. In: Digital System Design
(DSD), 2015 Euromicro Conference on, pp. 669–676. IEEE (2015)

8. Jones, H.: FINFET and FD SOI: market and cost analysis. FDSOI
Forum 2018. http://soiconsortium.eu/wp-content/uploads/2018/08/MS-FDSOI9.
1818-cr.pdf (2018)

9. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74143-5 14

10. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 623–642. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 30

11. Khairallah, M., Najm, Z., Chattopadhyay, A., Peyrin, T.: Crack me if you can:
Hardware acceleration bridging the gap between practical and theoretical crypt-
analysis?: a survey. In: Proceedings of the 18th International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation. pp. 167–172.
SAMOS 2018, ACM, New York, NY, USA (2018). http://doi.acm.org/10.1145/
3229631.3239366

12. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking ciphers with
COPACOBANA –a cost-optimized parallel code breaker. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg (2006).
https://doi.org/10.1007/11894063 9

13. Leurent, G., Peyrin, T.: From collisions to chosen-prefix collisions application to full
SHA-1. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
527–555. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 18

14. Leurent, G., Peyrin, T.: Sha-1 is a shambles - first chosen-prefix collision on sha-
1 and application to the pgp web of trust. Cryptology ePrint Archive, Report
2020/014 (2020), https://eprint.iacr.org/2020/014

15. Pollard, J.M.: Monte carlo methods for index computation. Math. Comput.
32(143), 918–924 (1978)

16. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 245–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 15

17. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

18. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 459–483.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 18

19. Brostöm, T.: Lightweight trusted computing. https://www.nist.gov/news-events/
events/2019/11/lightweight-cryptography-workshop-2019 (2019)

20. Tu, Y.M., Lu, C.W.: The influence of lot size on production performance in wafer
fabrication based on simulation. In: Procedia Engineering, 13th Global Congress
on Manufacturing and Management Zhengzhou, China 28–30 November, 2016,
vol. 174, pp. 135–144 (2017). http://www.sciencedirect.com/science/article/pii/
S1877705817301807,

http://soiconsortium.eu/wp-content/uploads/2018/08/MS-FDSOI9.1818-cr.pdf
http://soiconsortium.eu/wp-content/uploads/2018/08/MS-FDSOI9.1818-cr.pdf
https://doi.org/10.1007/978-3-540-74143-5_14
https://doi.org/10.1007/978-3-662-47989-6_30
https://doi.org/10.1007/978-3-662-47989-6_30
http://doi.acm.org/10.1145/3229631.3239366
http://doi.acm.org/10.1145/3229631.3239366
https://doi.org/10.1007/11894063_9
https://doi.org/10.1007/978-3-030-17659-4_18
https://eprint.iacr.org/2020/014
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-662-49890-3_18
https://www.nist.gov/news-events/events/2019/11/lightweight-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/11/lightweight-cryptography-workshop-2019
http://www.sciencedirect.com/science/article/pii/S1877705817301807
http://www.sciencedirect.com/science/article/pii/S1877705817301807

On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study 681

21. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. J. Cryptol. 12(1), 1–28 (1999)

22. Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on sha-1. In: Cryptographic Hash
Workshop hosted by NIST (2005)

23. Wiki, E.: Ethash. GitHub Ethereum Wiki. https://github.com/ethereum/wiki/
wiki/Ethash (2017)

24. X16R: https://en.bitcoinwiki.org/wiki/X16R

https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash
https://en.bitcoinwiki.org/wiki/X16R

Author Index

Abram, Damiano 51
Alaoui, Younes Talibi 1
Albrecht, Martin R. 375
Alpár, Greg 100
Apon, Daniel 444
Aranha, Diego F. 227
Auerbach, Benedikt 399

Baghery, Karim 26
Baum, Carsten 227
Biryukov, Alex 276
Blasco, Jorge 375
Boudgoust, Katharina 503

Chakraborty, Suvradip 399
Chalkias, Konstantinos 577
Chattopadhyay, Anupam 657
Cozzo, Daniele 1

Damgård, Ivan 51, 552
Du, Shaoyu 299

Farshim, Pooya 351
Feng, Dengguo 299

Ganesh, Chaya 552
Garillot, François 577
Gjøsteen, Kristian 227
Gong, Xinxin 299
Guilhem, Cyprien Delpech de Saint 26
Guo, Chun 326

Hamburg, Mike 633
Hao, Yonglin 299
Helminger, Lukas 527
Howe, James 444

Iovino, Vincenzo 422

Jensen, Rikke Bjerg 375
Jeudy, Corentin 503
Jiao, Lin 299

Kales, Daniel 527
Khairallah, Mustafa 657

Khati, Louiza 351
Khoshakhlagh, Hamidreza 552
Klein, Karen 399
Kondi, Yashvanth 577
Krips, Toomas 252

Laarhoven, Thijs 478
Leurent, Gaëtan 657
Li, Muzhou 126
Lin, Da 609
Lipmaa, Helger 252

Mareková, Lenka 375
May, Alexander 75

Najm, Zakaria 657
Nikolaenko, Valeria 577
Niu, Chao 126

Orlandi, Claudio 552
Orsini, Emmanuela 26

Pan, Jiaxin 201
Pascual-Perez, Guillermo 399
Peyrin, Thomas 657
Pietrzak, Krzysztof 399
Poettering, Bertram 148
Prest, Thomas 444

Qian, Chen 201

Ramacher, Sebastian 527
Ringerud, Magnus 201
Rösler, Paul 148
Roux-Langlois, Adeline 503

Sanders, Olivier 177
Schlieper, Lars 75
Scholl, Peter 51
Schwenk, Jörg 148
Schwinger, Jonathan 75
Seurin, Yannick 351
Silde, Tjerand 227
Siniscalchi, Luisa 552
Smart, Nigel P. 1, 26

684 Author Index

Stebila, Douglas 148
Sun, Siwei 126

Tanguy, Titouan 26
Traoré, Jacques 177
Trieflinger, Sven 51
Tunge, Thor 227
Tunstall, Mike 633

Udovenko, Aleksei 276

Vaudenay, Serge 422
Velichkov, Vesselin 657
Venema, Marloes 100
Vergnaud, Damien 351

Vitto, Giuseppe 276
Vuagnoux, Martin 422

Walch, Roman 527
Walter, Michael 399, 478
Wang, Meiqin 126
Wen, Weiqiang 503

Xiang, Zejun 609
Xiao, Qinglai 633

Yeo, Michelle 399
Yu, Wenqi 326

Zeng, Xiangyong 609
Zhang, Shasha 609
Zhao, Yuqing 326

	Preface
	Organization
	Contents
	Secure Fast Evaluation of Iterative Methods: With an Application to Secure PageRank
	1 Introduction
	2 Preliminaries
	3 Banach Fixed Point Theorem and the Power Method
	4 Stability of PageRank
	4.1 Traditional Stability of PageRank
	4.2 Stability Due to Approximate Computations

	5 Effect of Early Termination of PageRank
	6 A Multiparty Actively-Secure Protocol for the PageRank Algorithm
	A Converses to Banach's Fixed Point Theorem
	References

	Compilation of Function Representations for Secure Computing Paradigms
	1 Introduction
	2 M-Circuits
	2.1 Defining an M-Circuit
	2.2 Executing an M-Circuit
	2.3 Compiling M-Circuits
	2.4 Security of M-Circuits

	3 M-Circuits for Multi-party Computation
	4 M-Circuits for MPC-in-the-Head
	4.1 The Underlying MPC Protocol
	4.2 Sub-procedures for MPCitH
	4.3 The Construction of HVZK Argument of Knowledge

	5 Using Different Correlated Randomness Sources
	5.1 Dot-Product Computation
	5.2 Matrix Triples
	5.3 Tiny-Tables

	6 Sacrificing
	7 Executable Gadgets
	References

	Oblivious TLS via Multi-party Computation
	1 Introduction
	2 Notation and Preliminaries
	2.1 An Overview of TLS 1.3
	2.2 Multiparty Computation Protocols

	3 Overview of the Solution
	4 Handshake Operations
	4.1 Diffie-Hellman
	4.2 Signature Generation

	5 Record Layer Operations
	5.1 AES-GCM

	6 Security and Performance
	6.1 Performance

	References

	Noisy Simon Period Finding
	1 Introduction
	2 Simon's Algorithm in the Noisy Case
	3 Quantum Period Finding on IBM-Q16
	3.1 Function Choice
	3.2 Minimizing the Gate Count of fs
	3.3 Experiments on IBM Q 16

	4 Smoothing Techniques
	4.1 Quality Measures Statistics

	5 LSN is Polynomial Time Equivalent to LPN
	6 Theoretical Error Handling for Simon's Algorithm
	7 Practical Error Handling for Simon's Algorithm
	References

	A Bunch of Broken Schemes: A Simple yet Powerful Linear Approach to Analyzing Security of Attribute-Based Encryption
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Details

	2 Preliminaries
	2.1 Formal Definition of (Multi-authority) Ciphertext-Policy ABE
	2.2 The Security Model and Our Attack Models

	3 Warm-Up: Attacking DAC-MACS (YJR+13)
	4 Systematizing Our Methodology
	4.1 The Common Structure Implies a More Concise Notation
	4.2 Modeling Knowledge of Exponents – Extending Zp
	4.3 Formal Definitions of the Attacks in the Concise Notations
	4.4 Definitions of Multi-authority-specific Attacks
	4.5 Our Heuristic Approach

	5 Examples of Our Attacks Demonstrating the Approach
	5.1 Example Without Corruption: The YJR+13 scheme
	5.2 Example with Corruption: The YJ14 scheme
	5.3 Example Without Corruption: The JLWW13 scheme

	6 More Attacks, on Several Other Schemes
	6.1 Single-Authority ABE
	6.2 Multi-authority ABE

	7 Discussion
	References

	Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts and Tweakeys
	1 Introduction
	2 Preliminaries
	3 Zero-Correlation Linear Cryptanalysis with Equal Treatment for Plaintexts, Keys, and Tweaks
	4 Applications
	4.1 Application to TWINE
	4.2 Application to LBlock
	4.3 Application to SKINNY

	5 Conclusion
	A Zero-Correlation Linear Hulls for SKINNY-64/192
	References

	SoK: Game-Based Security Models for Group Key Exchange
	1 Introduction
	1.1 Systemizing Group Key Exchange Models
	1.2 Basic Notions in Group Key Exchange

	2 Syntax Definitions
	2.1 Quantities
	2.2 Setup Assumptions
	2.3 Operations
	2.4 Return Values
	2.5 Our Syntax Proposal

	3 Communication Models
	3.1 Partnering
	3.2 Our Partnering Proposal

	4 Security Definitions
	4.1 Our Security Proposal

	5 Concluding Remarks and Open Problems
	References

	EPID with Malicious Revocation
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	3 Specification of EPID
	3.1 Syntax
	3.2 Security Model

	4 Our First Construction
	4.1 Description
	4.2 Security Proofs

	5 An Efficient Variant with Limited Concurrent Enrolments
	5.1 Description

	6 Conclusion
	References

	Signed Diffie-Hellman Key Exchange with Tight Security
	1 Introduction
	1.1 Our Contribution
	1.2 Protocol Comparison

	2 Preliminaries
	3 Security Model for Two-Message Authenticated Key Exchange
	4 Verifiable Key Exchange Protocols
	4.1 Example: Plain Diffie-Hellman Protocol

	5 Signed Diffie-Hellman, Revisited
	References

	Lattice-Based Proof of Shuffle and Applications to Electronic Voting
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 The Rings R and Rp
	2.2 The Discrete Gaussian Distribution

	3 Lattice-Background: Commitments and ZK Proofs
	3.1 Lattice-Based Commitments
	3.2 Zero-Knowledge Proof of Linear Relations

	4 Protocol: Zero-Knowledge Proof of Correct Shuffle
	5 Applications to Electronic Voting
	5.1 Verifiable Encryption
	5.2 Return Codes
	5.3 The Voting Scheme

	6 Performance
	6.1 Size
	6.2 Timings
	6.3 Comparison

	References

	More Efficient Shuffle Argument from Unique Factorization
	1 Introduction
	2 Preliminaries
	3 Coefficient-Product Argument
	4 A Characterization of Permutation Matrices
	5 Shuffle Argument
	6 Efficiency
	7 Discussions
	References

	Cryptanalysis of a Dynamic Universal Accumulator over Bilinear Groups
	1 Introduction
	2 Au et al. Dynamic Universal Accumulator
	2.1 Security Model and Attack Scenarios

	3 Breaking Collision Resistance in the -Based Construction
	4 The -Recovery Attack for the -Based Construction
	4.1 Recovering fV()
	4.2 Recovering
	4.3 Estimating the Minimum Number of Witnesses Needed

	5 Improving the -Recovery Attack
	5.1 The Random-y Sieving Attack
	5.2 The Chosen-y Sieving Attack

	6 Experimental Results
	7 Weak Non-membership Witnesses
	8 Preventing Witness Forgery in the CRS-Based Construction
	8.1 How to Ensure Some Accumulated Elements Remain Unknown
	8.2 Recovering the CRS

	9 Conclusions
	References

	FAN: A Lightweight Authenticated Cryptographic Algorithm
	1 Introduction
	2 Specification of FAN
	2.1 Notations
	2.2 State and Functions
	2.3 Initialization
	2.4 Processing Associated Data
	2.5 Encryption
	2.6 Finalization
	2.7 Decryption and Verification

	3 Design Rationale
	3.1 Structure
	3.2 S-Box
	3.3 L-Layer
	3.4 AEAD Mode

	4 Security Analysis
	4.1 Related Key Chosen IV Attack
	4.2 Cube Attack
	4.3 Randomness Test
	4.4 Guess-and-Determine Attack
	4.5 Time-Memory-Data Tradeoff Attack
	4.6 Differential Attack
	4.7 Correlation Attack
	4.8 Algebraic Attack
	4.9 Side-Channel Attack
	4.10 Internal State Collision
	4.11 Attacks on the Finalization

	5 Performance
	5.1 Software Performance
	5.2 Hardware Performance

	6 Conclusion
	7 Appendix 1: Test Vector
	8 Appendix 2: AES MixColumn with 92 XOR Gates
	9 Appendix 3: Comparison Outline Diagram for Different Phases
	10 Appendix 4: Gate Count for Fan
	References

	Related-Key Analysis of Generalized Feistel Networks with Expanding Round Functions
	1 Introduction
	2 Preliminaries
	2.1 (Multi-user) RKA Security
	2.2 The H-Coefficient Technique

	3 Security Analysis of Expanding Feistel Networks
	3.1 Bad Transcripts
	3.2 Analyzing Good Transcripts

	4 Security Analysis of Alternating Feistel Networks
	4.1 Bad Transcripts
	4.2 Analyzing Good Transcripts
	4.3 AFN Using a Tweakable Round Function and Single Key

	5 Conclusion
	References

	The Key-Dependent Message Security of Key-Alternating Feistel Ciphers
	1 Introduction
	2 Preliminaries
	3 KDM Security and a Generic Lemma
	3.1 Definitions
	3.2 A Generic Lemma

	4 Four-Round KAF
	5 Attacks
	5.1 Necessity of Offset-Freeness
	5.2 Sliding Attacks

	6 Discussion
	References

	Mesh Messaging in Large-Scale Protests: Breaking Bridgefy
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Reverse Engineering
	2.2 Primitives Used
	2.3 Related Work
	2.4 Alternative Mesh Applications

	3 Bridgefy Architecture
	3.1 Bluetooth Messages
	3.2 Handshake Protocol
	3.3 Routing via the Bridgefy Server

	4 Attacks
	4.1 Privacy
	4.2 Authenticity
	4.3 Confidentiality
	4.4 Denial of Service

	5 Discussion
	5.1 Responsible Disclosure

	References

	Inverse-Sybil Attacks in Automated Contact Tracing
	1 Introduction
	1.1 Automated Contact Tracing
	1.2 False Positives

	2 Protocol 1: Decentralized, Non-Interactive Exchange
	2.1 Toy Protocol
	2.2 Description of Protocol 1

	3 Security of Protocol 1
	3.1 Security Game
	3.2 Security of Protocol 1

	4 Protocol 2: Decentralized, Using Location for Chaining
	4.1 Protocol Description
	4.2 Correctness, Privacy and Epochs

	5 Security of Protocol 2
	5.1 Security Against Replay and Relay Attacks
	5.2 Security Against Inverse-Sybil Attacks

	References

	On the Effectiveness of Time Travel to Inject COVID-19 Alerts
	1 Introduction
	2 How GAEN Works
	3 Summary of Techniques for False Alert Injection
	4 Time-Traveling Phones
	4.1 Set Clock Manually
	4.2 Rogue NTP Server
	4.3 Rogue Base Station
	4.4 Rogue GNSS

	5 Master of Time Attack
	6 Experiments
	6.1 Rogue NTP Server
	6.2 Rogue Base Station
	6.3 Experimenting the Attack with a Journalist
	6.4 Other GAEN-based Apps

	7 KISS Attack
	7.1 Still-Valid Keys
	7.2 Consequences of Interoperability

	8 My-Number Attack
	9 Countermeasures
	10 Conclusion
	References

	SoK: How (not) to Design and Implement Post-quantum Cryptography
	1 Introduction
	1.1 Our Findings

	2 The Raw Material: Hard Problems
	2.1 Baseline: Problems that are not Post-quantum
	2.2 Problems on Lattices
	2.3 Problems on Codes
	2.4 Problems on Multivariate Systems
	2.5 Problems on One-Way and Hash Functions
	2.6 Problems on Isogenies
	2.7 Summary of Problems

	3 Paradigms are Guidelines, not Panaceas
	3.1 Schnorr Signatures over Lattices
	3.2 The SQISign Approach for Signatures
	3.3 Beyond High Soundness Signatures
	3.4 Full Domain Hash Signatures
	3.5 Diffie-Hellman and El Gamal

	4 Return of Symmetric Cryptography
	4.1 Hash-Based Signatures
	4.2 Signatures Based on ZKPs and OWFs

	5 The Implementation Challenges in PQC
	5.1 Decryption Failures and Reaction Attacks
	5.2 Implementation Attacks in PQC
	5.3 Side-Channels and Countermeasures

	References

	Dual Lattice Attacks for Closest Vector Problems (with Preprocessing)
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Lattices
	2.2 Heuristic Assumptions
	2.3 Lattice Algorithms and Cost Models
	2.4 Model

	3 Algorithms
	3.1 The Aharonov–Regev Decoder
	3.2 The Neyman–Pearson Decoder
	3.3 The Simple Decoder
	3.4 Distinguishing Algorithms
	3.5 Search Algorithms
	3.6 Choosing the Set of Dual Vectors W

	4 Asymptotics
	4.1 Output Distributions of the Decoders
	4.2 Closest Vector Problems with Preprocessing
	4.3 Closest Vector Problems Without Preprocessing

	5 Experiments
	5.1 Setup
	5.2 Evaluating the Distinguishers
	5.3 Evaluating the Search Algorithms

	References

	On the Hardness of Module-LWE with Binary Secret
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Number Theory Background
	2.2 Lattices
	2.3 Probabilities
	2.4 Ring Leftover Hash Lemma
	2.5 Module Learning with Errors

	3 Hardness of M-LWE with Binary Secret
	3.1 Choice of Embedding for Binary Secrets
	3.2 First-is-Errorless M-LWE
	3.3 Extended M-LWE
	3.4 Reduction to bin-M-LWE

	References

	Multi-party Revocation in Sovrin: Performance through Distributed Trust
	1 Introduction
	1.1 Our Techniques
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 UC Security and ABB
	2.2 SPDZ, Shamir, and Derived Protocols
	2.3 Accumulators
	2.4 Pairing-Based Accumulator
	2.5 UC Secure Accumulators

	3 Multi-Party Public-Key Accumulators
	3.1 Dynamic (Threshold) Secret-Shared Accumulator from the q-SDH Assumption
	3.2 SPDZ vs. Shamir Secret Sharing

	4 Implementation and Performance Evaluation
	4.1 Evaluation of MPC-q-SDH
	4.2 Further Improvement

	5 Applications
	5.1 Credential Revocation in Distributed Credential Systems
	5.2 Privacy-Preserving Certificate-Transparency Logs

	References

	Balancing Privacy and Accountability in Blockchain Identity Management
	1 Introduction
	2 Preliminaries and Building Blocks
	2.1 Notation
	2.2 Pseudorandom Functions
	2.3 Blind Signature Schemes
	2.4 (Ad-Hoc) Threshold Encryption Scheme

	3 System Design
	4 ID-Layer Formalization
	4.1 The ID Layer Functionality
	4.2 Issuing Credentials – The Functionality

	5 Formal Protocols Specifications
	5.1 Identity Layer Protocol
	5.2 Proof of Security for Identity Layer
	5.3 Credential Issue Protocol
	5.4 Proof of Security for Issue Protocol

	6 Putting Everything Together
	References

	Non-interactive Half-Aggregation of EdDSA and Variants of Schnorr Signatures
	1 Introduction
	1.1 Our Contributions

	2 Proof-of-knowledge for a Collection of Signatures
	2.1 Schnorr/EdDSA Signatures
	2.2 Three-Move (Sigma) Protocol
	2.3 Proof-of-knowledge

	3 Non-interactive Half-Aggregation of Schnorr/EdDSA Signatures
	3.1 Aggregate Signature Security
	3.2 Half-Aggregation
	3.3 Half+-Aggregation

	4 Deterministic Batch Verification of Schnorr Signatures
	5 Impossibility of Non-interactive Compression by More Than a Half
	Appendix A Related work
	Appendix A.1 Security Proofs
	Appendix A.2 Multi-signatures
	Appendix A.3 Schnorr signature variants
	Appendix A.4 Non-Schnorr schemes
	Appendix A.5 Schnorr batching and aggregation

	Appendix B EdDSA signatures
	Appendix C Single signature security
	Appendix D Proof of Theorem 6
	Appendix E Proof of Theorem 8
	Appendix F Parameter selection for almost-half-aggregation
	Appendix G Formal analysis for the impossibility of non-interactive compression by more than a half
	References

	A Framework to Optimize Implementations of Matrices
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Existing Heuristics for Optimizing Matrix Implementation
	2.3 Techniques for Optimizing a Given Implementation

	3 New Reduction for a Given Matrix Implementation
	4 A General Framework of Optimization
	5 Applications
	5.1 Applications to Random Matrices
	5.2 Applications to Cipher Matrices

	6 Conclusion and Future Work
	References

	Improvements to RSA Key Generation and CRT on Embedded Devices
	1 Introduction
	1.1 Notation

	2 Generating Prime Numbers
	2.1 Naïve Algorithm
	2.2 Sieving Algorithms
	2.3 New Sampling Algorithm with Quadratic Residuosity
	2.4 Applications

	3 RSA-CRT Without q-1 Mod p
	3.1 Inverse-Free RSA Mod pk q
	3.2 Generalized Batching

	4 RSA with Compressed Private Keys
	5 Performance
	5.1 Discussion

	6 Future Work
	A Proof of Theorem1
	B Minimizing u
	B.1 Sparse Solutions to Linear Equations
	B.2 Multiple u
	B.3 Quadratic Minimization

	References

	On the Cost of ASIC Hardware Crackers: A SHA-1 Case Study
	1 Introduction
	2 Hash Functions and Cryptanalysis
	2.1 SHA-1 and Related Attacks.
	2.2 Birthday Search in Practice.
	2.3 Differential Cryptanalysis

	3 Hardware Birthday Cluster
	3.1 Cluster Nodes
	3.2 Hardware Design of Birthday Slaves

	4 Verification
	5 Hardware Differential Attack Cluster Design
	5.1 Neutral Bits
	5.2 Storage
	5.3 Architecture

	6 Chip Design
	6.1 Chip Architecture
	6.2 ASIC Fabrication and Running Cost
	6.3 Results
	6.4 Attack Rates and Execution Time

	7 Cost Analysis and Comparisons
	7.1 264 Birthday Attack
	7.2 280 Birthday Attack
	7.3 Chosen Prefix Differential Collision Attack
	7.4 Limitations

	8 Conclusion
	A Chip layout
	References

	Author Index

