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Abstract Contamination of EEG by ocular artifacts (EOG) is the major artifact that
reduces the accuracy of applications using Electroencephalogram (EEG) signal. To
resolve this issue, Independent Component Analysis (ICA) is a common method
to remove EOG artifacts from EEG recordings, by decomposing multichannel EEG
signals intomaximally IndependentComponents (ICs). ICs representingocular activ-
ities can be identified visually, then be eliminated to reconstruct EOG-free EEG
signals. However, this approach requires prior domain knowledge, and hence, under-
mine reliability and reproducibility. To address this, our study proposed a method to
remove EOG contamination by applying machine learning techniques. We acquired
an EEG database of 20 healthy subjects using Alice 5 Polysomnography system to
record signals from 12 electrodes. Randomly selected 15-s data segments from EEG
channels were used to run ICA, which resulted in 10 ICs. For each IC, we plotted
its topography map and labelled whether this IC is “EOG” or “non-EOG”. A total
of 612 labelled data points of ICs, topography maps and labels were collected. After
applying several classifiers for model training and evaluation using cross-validation,
the best classifier, Extremely Randomized Tree, achieved an average accuracy of
92%, precision of 83%, recall of 71%, and F1 score of 76%. In conclusion, the
proposed method showed promising results in identifying EOG components and
attenuating ocular activity on reconstructed EEG signals. Compared with existing
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automated solutions, our proposedmethod only used a small number of channels and
had the potential to be applied in real-time applications due to its fast computation.

Keywords Independent component analysis · ICA · Ocular artifact · EOG ·
Classification models · Extra Trees Classifiers

1 Introduction

EEG signal (Electroencephalogram) has represented its unique role in neuroscience,
clinical engineering, psychiatry studies as well as rehabilitation engineering with its
non-invasive, inexpensive high temporal resolution technique [1–3]. Compared to
other neuroimaging methods such as fMRI and PET, brain electrical signals have
higher temporal resolution. This advantage of EEG signal enables various studies
of cognitive processes. Different from conventional diagnostic tools used in mental
and psychiatric studies such as questionnaires, EEG signals are more quantitative.
Specifically, robust features from EEG signals that can be used for classification
of different mental states or cognitive processes mainly fall in higher frequencies
ranging from 30 to 80 Hz (gamma band) [4–6].

Due to its low amplitude, the EEG signal is sensitive to various noise sources
coming from biological artifacts and the environment. This problem hinders doctors
and researchers from obtaining good diagnostic information without excluding valu-
able EEG signals. For instance, power-line artifacts, as well as biological artifacts
stemming from the subject including electrical signals frommuscle tension, contrac-
tions of the heart and respiration, can also contaminate EEG signals [7]. EOG artifact
is the most common source of artifacts that is affecting EEG signals and overlapping
frequency spectrum. More specifically, Freeman and his colleagues have demon-
strated that higher frequencies, e.g. gamma band or higher, are most easily overshad-
owed by EOG artifacts [8]. Hence, apart from rigorous experimental design for data
collection, an algorithm for EOG artifact removal is imperative in most parts of EEG
studies to eliminate undesired artifacts.

Many techniques have been proposed for EOG artifacts removal. These methods
can be primarily separated into two categories: either by estimation of the arti-
fact signals using reference channels or by decomposing the EEG signal into other
domains [7]. Linear Regression is a method using reference channels that assumes
that each EEG channel is the sum of the non-noisy source signal and a fraction of the
source artifact that is available through a reference channel(s) [9]. While regression
methods are simple and reduce computational demands, they still need good regres-
sion reference channels [9]. On the other hand, the Wavelet Transform algorithm
decomposes the signal into a set of coefficients, for various scales, which represent
the similarity of the signal with the wavelet at that scale. Nevertheless, it fails to iden-
tify EOG signals completely that overlap with the spectral properties [9]. Another
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decomposing method, Empirical mode Decomposition (EMD) is a fully data-driven
method for decomposingmulticomponent signals into a set of amplitude& frequency
modulated (AM/FM) components known as intrinsic mode functions (IMFs) [10].
This method is sensitive to noise because it could not work effectively with multi-
dimensional signals [11]. On the other hand, because mutually independent sources
generate EOG artifacts such as eye movements, eye blinks, Blind Source Separa-
tion (BSS) methods, especially Independent Component Analysis (ICA) can remove
EOG with great accuracy [7].

In our study, we used the MNE library implementation of ICA to decompose
EEG signals to their independent components (ICs). From said components, MNE
provides us with a scalp topography map of each IC. With the topography map, we
were able to identify which IC represents ocular activity. However, ICA requires the
need for visual inspection by experts to classify EOG and EEG. Hence, in this paper,
we propose a new automatic EOG removal technique that uses ICA to decompose
EEG signals into ICs then apply Machine Learning algorithms to detect EOG from
these ICs. The algorithms will take the topography map of each IC as an input
vector to predict whether the IC should be rejected. This new technique gives us the
advantage of removing EOG artifacts without a reference channel, while requiring
a low number of electrodes, and short computing time.

2 Materials and Methods

2.1 Experiment and Database

The full database of EEG signal was obtained from the Alice 5 Polysomnography
system using 10 EEG channels including Fp1, Fp2, F3, F4, F7, F8, T5, T6, O1 and
O2 with the ground electrodes Fpz at the forehead, M1 and M2 channels on the
mastoid bones (Fig. 1).

20 Subjects were undergraduate students between the ages of 18–22 years at the
time of the research study. All subjects were chosen based on exclusion criteria
include (i) smokers, (ii) left-handers, (iii) native English speakers, (iv) those with a
vision that was not corrected to normal, (v) antihistamine, glucocorticoid or asthma
medication users, (vi) those with exposure to general anaesthesia in the last year,
(vii) those with a personal or first degree family diagnosis of a DSM-IV, axis I
disorder (a list of these disorders was given at the time of initial inquiry), and (viii)
those with endocrine abnormalities. These exclusion criteria were self-affirmed by
the prospective participants.
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Fig. 1 Electrode mapping using the 10–5 system. The EEG database includes ten channels: Fp1,
Fp2, F3, F4, F7, F8, T5, T6, O1, O2

2.2 Pre-processing

Since EEG signals have low amplitudes and are easily affected when processed, in
this paper, baseline correction and bandpass filtering were used as standardized EEG
preprocessing methods to avoid losing useful information. First, all original EEG
recordings were bandpass filtered with cut-off frequencies at 0.5 and 45 Hz using
one-dimension with an IIR or FIR filter. All functions were adapted from the Python
library SciPy [12]. Second, baseline correction was applied in which the data after
bandpass subtract to their average value to remove the baseline drift.

2.3 Independent Component Analysis

ICA is a generative model describing how the data are generated by the process
of mixing the components x = As. ICA computes both mixing matrix A and inde-
pendent components so that s is maximally independent. In this study, the goals of
utilizing ICA are to calculate the independent components and topography map of
each component across electrodes, and then to use them as input for classification
models discussed in Sect. 2.4. This paper utilized the MNE library’s implementation
of ICA, using ‘extended infomax’ [13].
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Fig. 2 Calculating the independent component’s topography map. Pi is the signal power of compo-
nent ith; Mi is topography map of component ith, representing activity level of the component on
the scalp

After applying ICA for each 15-s chunk of preprocessed EEG signal, we had a
matrix consisting of 10 ICs time series (s) and mixing matrix (A). From the matrix
of ICs, we calculated power spectrum density (PSD) for each component. From the
mixing matrix, we extracted the topography map for each component, as followed
Fig. 2.

2.4 Classification Models

Four supervised learning models were used for comparison: support vector machine
(SVM), random forest (RF), extremely randomized trees (ExTrees) and extreme
gradient boosting (XGBoost). For the former three, the implementations from the
Python library sci-kit-learn [14] are used, and for the latter, there is a dedicated library
called xgboost [2].

In classification tasks, true positive refers to the number of correctly classified
positive points (in this case, the number of correctly classified EOGs), false positive
is the number of incorrectly classified EOGs. Similarly, true negative means the
number of correctly classified non-EOGs and false-negative represents the samples
that are incorrectly classified as non-EOGs. The metrics used in the experiment are
solely based on these four elements.

Accuracy is calculated as the fraction of the labels that exactly match the ground
truth.

accuracy = TruePosi tives + TrueNegatives

TruePosi tives + TrueNegatives + FalsePosi tives + FalseNegatives
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Precision is the fraction of correctly classified positives (among the samples
classified as positive)

precision = TruePosi tives

T ruePosi tives + FalsePosi tives

Recall (or sensitivity) is the fraction of correctly classified positives (among all
the true positive samples).

recall = TruePosi tives

TruePosi tives + FalseNegatives

F1-score is the weighted average of precision and recall

F1 = 2× precision × recall

precision + recall

Accuracy can be a good metric for balanced datasets (where the number of posi-
tives and negatives are roughly equal). However, the metric suffers from imbalanced
classes (where the class distribution is not uniform). If a dataset has 100 samples
with only 10 out of them are EOGs then a model that only predicts non-EOG for all
sampleswould still have an accuracy of 90%, but suchmodelwould not be considered
‘good’ since it fails to recognize any of the EOG samples (recall = 0). In our study,
there were only a few EOG samples compared to the large number of non-EOGs.
This is an example of an imbalanced dataset, where precision, recall and F1-score
can be particularly useful for model evaluation.

These subsections give a brief overview of the methods we used.

Support vector machine
Support vector machine (SVM) [15] is one of the commonly-used machine learning
algorithms in EEG classification. In classification context, SVM tries to find a hyper-
plane, which can be a line in 2-dimensional space or a plane in 3-dimensional space,
that maximizes the margins—the distances between the hyperplane and the closest
points to such hyperplane in each class. Since the dataset we needed to classify is not
linearly separable, SVMwith a non-linear kernel is used to map the data into a high-
erdimensional space where linear separability can be obtained. In our experiment,
the radial basis function (RBF) kernel was used.

Random forest
Random forest (RF) is a type of ensemble learning model. The main idea of the
method is to take advantage of many decision trees, where each tree is built from a
bootstrap sample (random sample drawn with replacement) taken from the data, and
to build each treewith all or a random subset of variables. The randomness introduced
above will help decrease variance and thus prevent model overfitting, which is one of
the main drawbacks of vanilla decision trees. The random forest implementation in
scikit-learn calculates the predicted output by averaging the probabilistic predictions.
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Since decision trees are non-linear as there is no formal equation to express the
relationship between the features and the target, the random forest is expected to be
able to solve the problem of non-linearly separability of the dataset.

Extremely randomized trees
Extremely randomized trees (ExTree) was first introduced in 2006 by Pierre Geurts,
Damien Ernst and Louis Wehenkel [16]. Though the algorithm is similar to the
random forest, the difference between these two ensemble learning models lies in
the level of randomness. In node splitting, while the random forest model tries to
find the best split, ExTrees chooses the variable splitting value randomly. This can
normally reduce the variance of themodel evenmore, but at the cost of increased bias,
according to the authors. Like random forest and other tree-based models, ExTrees
is non-linear and is expected to solve the problem of non-linearly separability.

Extreme gradient boosting
Extreme gradient boosting (XGBoost), is a scalable implementation of the gradient
boosting algorithm [17]. Gradient boosting is, like random forest and extremely
randomized trees, an ensemble learning method in a sense that the predicted output
will be based on an ensemble of many models. The difference between boosting and
bagging, which is the technique used in random forest and extremely randomized
trees, is that the bootstrap samples are weighted so that the samples with which the
model incorrectly predicted get higher weights and thus be sampled more often.
The idea behind weighing samples is that the model would focus more on ‘diffi-
cult’ samples. The gradient is used when optimizing the training loss. Hence the
name gradient boosting. XGBoost further improves the original boosting method by
introducing second-order gradients and regularization that help prevent overfitting.

3 Results

3.1 Preprocessing of EEG signal

Bandpass-filter with cut-off frequencies at 0.5 and 45 Hz and baseline correction
were applied for each chunk of 15 s original EEG signals.

To understand the changes in raw EEG signals after our preprocessing, we
compared raw EEG data (Fig. 3a) and preprocessed EEG data (Fig. 3b). The noise
was reduced by the bandpass filter as indicated by the reduced thickness of the data
line, especially at channels Fp1, Fp2 (Fig. 3a, b). Baseline drifts were removed in
data lines after the baseline correction (Fig. 3c).

Nevertheless, the general waveforms of processed EEG recordings still kept their
origins, which proved that EEG signals do not lose their representative information
after the preprocessing step.



1008 T. T. Do et al.

Fig. 3 Preprocessing of EEG signals. a A 15 s segment of raw EEG data (top) and EOG data
(bottom). b the same segment of EEG data of figure a after band-pass filtering and baseline correc-
tion. Black arrows mark EOG peaks in EEG signal (above), white arrows mark EOG peaks in EOG
reference’s channel. c Another 15 s segment of raw EEG data—channel O2 after bandpass filtering
and baseline correction

3.2 Independent Component Analysis of EEG Signal

To acquire the training dataset of ICs signal, its topography map, and its label,
we divided our preprocessed EEG signal into chunks of 15 s. For each chunk of
15 s preprocessed EEG signal, ICA was used to calculate a matrix consisting of
10 ICs time series (s) and mixing matrix (A). From the matrix of ICs, the power
spectrum density (PSD) for each component is calculated. From the mixing matrix,
we extracted the topography map for each component. Upon visual inspection of the
topographymap and the IC itself, ICs that represent ocular activity are labelled 1, and
other ICs were labelled 0. We observed that ICA did not always successfully isolate
EOG artifacts from EEG signals. For successful cases, ICs were very distinguishable
from each other (Fig. 4a, c, e). In this successful case, therewas one IC (ICA000)with
waveform resembling EOG artifacts when comparing with EOG reference channels
(Fig. 4a). Each EOG peak was marked with a black arrow for the IC and white
arrow for the EOG reference channels. The topography of this IC represents activity
exclusively in the frontal lobe area (Fig. 4c), which is expected for eye-derived
electrical activity. From the PSD (Fig. 4e), we could see these ICs carry very little
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Fig. 4 Comparison of different ICA-related features. a, b Signal of independent components (ICs)
from an example in which ICA successfully separated EOG artifact from EEG signal (a) or not
(b). EOG reference channels are shown at the bottom. Black arrows mark EOG peaks in IC signal;
white arrows mark EOG peak in EOG channels. c, d Topography maps corresponding to the ICs in
A and B. e, f Power spectrum density plots of each ICs in A and B
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bio-signal in the range 0–40 Hz. For unsuccessful cases, ICs were indistinguishable
from each other. More specifically, EOG artifacts were not separated from the EEG
signal and existed in several ICs (Fig. 4b).

Additionally, none of the topography exclusively represents activity in the frontal
lobe area (Fig. 4d). For our training dataset, we only included cases in which ICA
successfully separates EOG artifacts from the EEG signal. This training dataset was
utilized for training several classifiers to detect EOG components in our ICs.

3.3 Applying Machine Learning for Automatic Removal
of EOG Artifact

Once the topographymapdata has been successfully extracted from ICA,weobtained
a dataset of 612 data points, each of which is a feature vector of raw IC features plus
the map components we chose. Visually, one could notice a clear distinction between
EOG and non-EOG components by looking at the topography maps of the samples.
Still, we would like to find out how the learning models will perform with this
particular dataset.

Figure 5 shows the data points in a 2-dimensional space. The map features were

Fig. 5 Topographicmapdata visualized in2-dimensional space after PrincipalComponentAnalysis
(PCA). EOG components are presented as dark rectangles, and non-EOG components are presented
as white circles
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transformed from 10 dimensions into two dimensions using Principal Component
Analysis (PCA). PCA is a widely used linear dimensionality reduction technique
that aims to project multi-dimensional data into a lower-dimensional space and to
retain maximum variance between data points [18]. Since Fig. 5 suggested our data
is not linearly separable, we were tempted to use non-linear models for the dataset.

The data was standardized so that each component to have a mean of 0 and a
standard deviation of 1 before being trained by the models. For each model, 3-fold
cross-validation was used. The experiment on each model was repeated ten times
with different random number generators for cross-validation splitting in order. The
metrics were averaged across ten runs. The comparison boxplots for different metrics
of themodelswith raw ICA features included alongwithmap features used in training
are shown in Fig. 5. The results in Fig. 5 suggested that all the models do not perform
well when the raw ICA features are included along with topo map features in the
training step. The best-performing model in this experiment was XGBoost with the
top score in all metrics. While all models still managed to have accuracy above
0.8, only XGBoost had F1-score higher than 0.5 (0.59 ± 0.01). The rest failed to
detect most EOGs, with the most extreme cases being ExTrees and SVM, which
had precision, recall and F1-score of 0. We hypothesised that too many predictors
as in the case of ICA features with 7500 dimensions would create the problem of
high dimensionality, where the predictive power can at first increase along with more
features, but then decreases when the number of observations is fixed [19].

To enhance the performance of the models, we selected another approach, which
only included map features in training. From the results in Fig. 7, we observed
that all models managed to have a high accuracy of over 0.9. ExTrees significantly
outperformed other models in terms of F1-score and recall (p= 0.001 and p= 0.022)
with the average F1-score of 0.77 ± 0.009 and the average recall of 0.71 ± 0.01.
In terms of precision, Random Forest produced the results with the highest score
(0.85± 0.01), but the score was not significantly better than that of ExTrees (0.84±
0.008) (p > 0.05). Both SVM and XGBoost fell behind RF and ExTrees with clearer
differences in the precision score.

To reconstruct EOG free signal from preprocessed EEG signals, we used ICA
to decompose ten channels of EEG signal into a matrix of 10 ICs. With the trained
classifiermentioned earlier, wewere able to detect ICs representing EOGactivity.We
then proceeded to set the value of this IC in the matrix to zero. With this new matrix,
we were able to inverse transform to EOG free signal [20]. Figure 8 demonstrated
the result of the algorithm successfully removing EOG peaks from the signal while
preserving other bio-signals. The black arrows on Fig. 8a marked EOG peaks that
were removed by the algorithm. EOG-free EEG signals were shown in Fig. 8b.

In addition to evaluating the performance of EOG classification, we were also
interested in investigating the computation time, which is an important factor for a
scalable pipeline. We executed the pipeline from initial processing to EOG removal
of a segment ten times and took the average computation time. The pipeline scriptwas
run on a laptop with 16 Gb of memory and a Core i5 processor. As Table 1 suggested,
the total pipeline takes around 5 s on average, with most of the computation time
being from the ICA processing step.
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Table 1 The computation
time of the steps in the
preprocessing pipeline.
Computations are executed
ten times on a single machine
with 16 Gb of RAM and an
Intel Core i5 processor

Task Time (s) (mean ± SEM)

Bandpass filter 0.017 ± 0.002

Baseline correction 0.004 ± 0.0004

ICA 4.941 ± 0.251

EOG classification 0.115 ± 0.003

EOG removal 0.005 ± 0.001

Total 5.083

4 Discussion

To summarize, the proposed approach to EOGartifact removal consists of three steps:
preprocessing signal, decomposing preprocessed signals into components, and using
a classifier to detect components that represent EOG activity. Firstly, baseline correc-
tion and bandpass filtering were proven to be an effective preprocessing method to
remove powerline noise while preserving EEG waveforms. Secondly, the indepen-
dent component analysis showed the capacity to isolate EOG artifacts from EEG
signals. However, for certain cases, EOG artifact and EEG signals were still mixed
in one or many ICs. And finally, several machine learning classifiers were applied to
detect components representing ocular activities. However, the classifier was not yet
able to detect IC with mixed signals from EOG artifact and EEG signal, which left
room for improvement in the future.

With the proposed method, we could automatically remove EOG artifacts from
EEG signals without the need for reference channel and domain expertise. Also, by
removing the manual step of determining EOG artifacts, it was more convenient to
implement an online artifact removal implementation using ICA.

In our EEG signal, the numbers of sources were larger than the number of record-
ings, and the EOG artifacts had high magnitude. Therefore, ICA could be applied
successfully to isolate EOG artifacts from EEG signals. However, there were several
shortcomings in the proposed approach. First, our classifier could not determine
componentswithmixedEOGartifacts andEEGsignals fromcomponents that include
purelyEOGartifacts. This results fromour trainingprocess inwhichweonly included
two classes: EOG components—consisting only EOG artifact and non-EOG compo-
nents—consisting only EEG signals. We excluded components with mixed EOG
artifacts and EEG signals from the training dataset. Second, our approach did not
offer to remove EOG artifacts from a signal channel recording of EEG and required a
large resource of computing power. [21] Finally, we would like to discuss the classi-
fication techniques used to determine components representing EOG artifacts. From
the results shown in Figs. 6 and 7, ExTrees gave a significantly better performance in
terms of F1-score and recall. Interestingly, raw ICA features made the models fail to
recognize EOG samples, hypothetically due to the problem of high dimensionality.
Compared to a previous study [22] which used SVM for eye-blink artifact detection
and a fourfold CV, our best classification accuracy was lower (99.3% vs. 93%). One
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Fig. 6 Performance of different machine learning models using both signals from topography map
and raw IC signals as input for training). a Precision. b Accuracy. c F1-score. D) Recall. One-way
ANOVA followed by Kruskal–Wallis multiple comparisons (* p < 0.05; **, p < 0.01; ***, p <
0.001)

potential difference was that our study utilized an imbalance dataset while the dataset
in [22] was perfectly balanced with 100 samples of each class. In another study [23]
that used a similar classification approach, they managed to get high accuracy scores
for eye-blink artifacts with a balanced dataset and more samples (99.39% for eye
blink and 99.62% for eye movement). Given the limited number of samples and the
imbalanced nature of the dataset we have, these results were encouraging.

Future Works
There exists certainly room for improvement in the aspect of F1-score by proper
feature extraction for ICA data, using either statistical features (mean, median,
kurtosis) or some sorts of signal transformations like discrete Fourier transform, or
wavelet transform that might be able to capture the inner nature of the ICA compo-
nents and the difference between EOGs and non-EOGs. Another topic that we would
like to improve in the future is including mixed classes in our training dataset and
curating a balanced dataset for the training. These approaches would help the classi-
fier to determine which components consist of pure EOG artifacts and which compo-
nents consist of both EOG artifacts and EEG signals and improve the accuracy of
the models.
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Fig. 7 Performance of different machine learning models using only the signal from topography
maps as input for training. a Precision.bAccuracy. c F1-score.dRecall. One-wayANOVA followed
by Kruskal–Wallis multiple comparisons (* p < 0.05; **, p < 0.01; ***, p < 0.001)

Fig. 8 Comparison of preprocessed EEG signal and EOG-free signal after using the algorithm.
a 15 s of preprocessed EOG channels (top) and EOG channels (bottom). b The Same segment of
EEG data after the EOG artifact was removed by the algorithm. Black arrows mark EOG peaks in
the EEG channels. White arrows mark EOG peaks in the reference channels
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