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Abstract Early and accurate diagnosis of Alzheimer’s disease (AD) is especially
important for neurodegenerative disorders allowing patients, who exhibit different
patterns of severity and progression risks, to take prevention and treatments before
brain damages are shaped. Functional Near-Infrared Spectroscopy (fNIRS), as a clin-
ical test, can be employed in an ecological setting to support AD diagnosis at early
stages. In this study, we aimed to comprehensively study the hemodynamic response
patterns among four subject groups from 140 participants by visualizing the 4-class
distributions based on t-SNE visualization techniques and showing the fNIRS topo-
graphic mapping to have a pictorial representation on the surface of the prefrontal
cortex region. We demonstrated that the changes in hemodynamic concentrations of
oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) from healthy
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controls to three stages of AD did exist during four stages of our experimental proto-
cols. Results also revealed that various machine learning techniques were capable of
both analyzing AD patterns and its related features and classifying multiple patho-
physiologic mechanisms with the highest accuracies of 74.39 ± 4.7% and 84.91 ±
4.01% corresponding to raw and SMOTE-based features, respectively. These find-
ings demonstrate the feasibility of fNIRS-based approaches to investigate the stages
of AD progression.

Keywords fNIRS · Alzheimer’s disease ·Machine learning ·Multi-class
classification

1 Introduction

Alzheimer’s disease (AD), the most common cause of dementia accounting for 60–
80% cases worldwide [1], is an irreversible and chronic progressive neurodegener-
ative brain disease that is characterized by progressive impairments in the cogni-
tive abilities and memory [2]. By a significant loss of neurons in the neurotrans-
mitter systems, the present proteins such as amyloid-beta deposits and neurofibrillary
tangles may disrupt the communication with nerve cells, damage cells and lead to
the development of AD [3]. AD patients typically suffer from several symptoms of
functional impairments, includingmemory, communication, reasoning, and behavior
functions which interfere with them in daily life while there are currently no medica-
tion therapies or treatments being able to halt the disease’s progression [4]. Hence, a
significant effort has been made to develop the strategies for early detection, partic-
ularly at a presymptomatic stage, with the hope that the intervention can delay or
even prevent those clinical symptoms.

Since the diagnosis of AD primarily relies on patients’ medical history, neuropsy-
chological examinations or clinical rating scoreswhich require experienced clinicians
and exhaustive clinical tests, it has been upgraded by adopting brain imaging tech-
niques such asmagnetic resonance imaging (MRI), single-photon emission computed
tomography (SPECT), positron emission tomography (PET) and electroencephalog-
raphy (EEG) introduced in recent years. Functional brain imaging tests are modified
from a non-paced stage of administration and free doctor-patient interaction tasks to
a paradigm event where an automated stimulation can replace doctors [5–7]. Despite
the usefulness of these modifications from a neuroimaging standpoint, they still alter
the ecology of the interaction between doctors and patients. With this in mind, Func-
tional Near-Infrared Spectroscopy (fNIRS), which is a scalp-located non-invasive
method recording neural activity and oscillation within the oxygenated (HbO) and
deoxygenated (Hb) hemoglobin in the brain basedon theBloodOxygenLevelDepen-
dent (BOLD) effect [8], is one of the most suitable neuroimaging techniques that are
feasible for an outpatient environment.
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fNIRS offers various benefits over the aforementioned techniques by its higher
temporal resolution, high portability, relatively low cost, lightweight measure-
ment, lower susceptibility to motion artifacts, lack of ionizing radiation, and fewer
constraints to the subjects during experiments. It can integrate with a mechanical
structure resembling EEG [9] thus being appropriate for measurements during clin-
ical administration tests. Furthermore, several studies have examined the feasibility
of fNIRS to differentiate the hemodynamic responses between healthy controls and
AD patients [10]. fNIRS is also able to successfully monitor AD treatment in the
clinic which was reported by [11] showing a significant difference in cerebral blood
flows and the effect of memantine on AD patients. These investigations showed
that AD patients had lower levels of activation at specific regions in the brain
compared to healthy controls during cognitive experiments. However, although these
previous studies denote the potential of fNIRS on measuring the differences between
healthy and AD groups, there are still various AD stages remaining unknown. It
requires the recruitment of several participants at different stages of AD to compre-
hensively compare and evaluate the efficiency of fNIRS in therapeutic monitoring
and diagnosis. Besides, the pathological mechanism of AD progression has not yet
been thoroughly documented and investigated, which is expected to have an intact
experimental design dealing with multiple subject groups.

To address the challenges, we comprehensively investigate the hemodynamic
responses of healthy subjects and patients with three degrees of AD. In detail, the
classification studies will be described, including seven machine learning methods
that generally require four main components: feature extraction, feature selection,
reduction of dimensionality, and processed feature-based classification algorithms.
Due to our imbalanced datasets, a preprocessing step called SyntheticMinorityOver-
sampling Technique (SMOTE) [12] was used to improve multi-class classification
accuracies.

2 Materials and Methods

2.1 Participants and Data Preprocessing

In this study, 140 subjects dwelling in Gwangju city in South Korea and the adja-
cent cities were recruited from the Chonnam National University Hospital and the
National Research Center for Dementia (Gwangju, South Korea). A set of medical
examinations–Mini-Mental State Examination (MMSE), MRI, PET, and individual
interview– was conducted to adequately analyze and diagnose different AD stages.
Four categories were subsequently divided among them: HC class: Normal AD
biomarkers, cognitively unimpaired (72.7 ± 5.3 years, 21 M/32F), asymptomatic
AD (aAD) class: VerymildMCIwith the cognitive decline onmemory and executive
functions (74.5 ± 4.3 years, 15 M/13F), prodromal AD (pAD) class: Explicit brain
dysfunction symptoms (75.8 ± 3.9 years, 33 M/17F), AD Dementia (ADD) class:
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Severe deterioration of memory, language, and social abilities (75.4 ± 6.8 years,
4 M/5F). The subject with a mental and behavioral disorder was disregarded in
this cohort. All subjects underwent our experimental protocol without any previous
experience. No subject had any previous experience with our experimental protocol.
Each subject was fully informed of the purpose of research and consent forms prior
to conducting experiments. Table 1 summarizes the demographic information of all
subjects (SD: Standard Deviation).

To curtail any environmental disturbance, the experiments were carried out in a
confined room. Subjects were requested to seat in a chair and rest by calmly watching
a white cross that occurred on the monitor screen during resting periods. Then, they
underwent a series of three tasks: (i) Oddball which is a cognitive ability test, (ii) 1-
backwhich is amemory ability test, and (iii)Verbal fluencywhich is a language ability
test. Six fNIRS channels measuring in the frontal cortex area were recorded. Each
channel was visually inspected, and channels with large spikesweremarked as noises
and excluded from our studies. The concentration changes in hemoglobin, HbO, Hb,
and total hemoglobin (THb), were calculated based on the Modified Beer-Lambert
Law [13]. A low-pass filter with a cut-off frequency of 0.5 Hz was used to remove
artifacts. Figure 1 shows the imbalanced datasets and the complexity of distributions

Table 1 Participant Information

HC aAD pAD ADD

Number of subjects 53 28 50 9

Age ± SD 72.7 ± 5.3 74.5 ± 4.3 75.8 ± 3.9 75.4 ± 6.8

Gender (M/F) 21/32 15/13 31/17 4/5

MMSE ± SD 27.0 ± 4.2 26.9 ± 2.5 26.0 ± 3.2 20.2 ± 4.8

Education ± SD 9.8 ± 4.7 10.2 ± 5.2 10.6 ± 5.2 8.5 ± 5.3

Fig. 1 t-SNE Visualization from 6 channels of HbO signals
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among the four classes (i.e., HC, aAD, pAD and ADD) from HbO signals by using
the t-Stochastic Neighbor Embedding (t-SNE) visualization technique.

2.2 Experimental Protocol

Figure 2a represents the fNIRS device setup. The transmitter (LED), the detector
(photodiode), and the channel (CH) are denoted as the red circle, the black circle,
and the green rectangular, respectively. The distance between the transmitter and
the detector is 30 mm. Figure 2b displays the experimental protocol, and there are
four main stages in our experiments. After finishing recording the fNIRS data, we
segmented trial sections corresponding to the experimental stages. Each section was
segmented by 60 s. To sum up all four sections, we had a resting section (60 s),
the Oddball stage (300 s), the 1-back stage (270 s), and the Verbal stage (390 s).
Therefore, the total experimental time for one trial was 1020 s.

Fig. 2 a fNIRS device setup; b experimental protocol (R: Resting, P: phonemic, S: semantic)
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2.3 Classification Algorithms

The following seven supervised machine learning classifiers was selected to classify
the four categories:

• Gaussian Discriminant Analysis (GDA) [14]:With a set of samples (each belongs
to each class), the intra-class and inter-class matrices were calculated, and the
linear transformation was obtained based on solving the generalized eigenvalues.
Then, the classification task was performed on the transformed space using
Euclidean distance after 200 epochs.

• K-Nearest Neighbor (KNN) [15]: K= 4 was chosen as the most optimal value to
reduce errors and allow the algorithm to calculate the distance between each data
point and the cluster centroid by Euclidean distance. KNN was trained with 200
epochs.

• Gaussian Naïve Bayes (GNB) [16]: The conditional probability for each class
was computed based on the prior and the posterior probability. The class showing
the highest probability was considered as the final predicted class.

• Support Vector Machine (SVM) [17]: The decision hyperplane was constructed
when the margin of the classifier was maximized from support vectors to sepa-
rate four classes. A sigmoid kernel was specified for the non-linearly separation
problem. SVM would stop training whenever the margin error was trivial, and no
further optimization is needed.

• Adaptive Boosting (AdaBoost) [18]: A classifier was built by combining 1000
weak classifiers, and the number of estimators is 200. During training, if any
misclassified point was found, the weight of that point was boosted. The new
weight was updated to the next classifier, and the procedure was repeated.

• Neural Network (NN) [19]: Along with an input layer and an output layer (4
neurons), NNwith different settings of hyperparameters was trained until the best
optimal set of hidden neurons was obtained (100–80–50). A ReLU activation
function, 1e-5 learning rate, and 300 epochs were manually chosen to achieve the
highest accuracy.

• Random Forest (RF) [20]: A decision tree was constructed for every sample and
generated output. RF consisted of multiple trees to vote for each predicted output
and select the output with the most votes as the final prediction. RF was trained
several times with the max depth of the tree as 8.

For a fair comparison, fivefold cross-validation was used for each classifier. The
SMOTE step was also applied by over-sampling the minority classes (it drew a line
between a set of neighboring samples in the feature space and over-sampled new
synthetic points along the line) to improve accuracies in the latter part.



Multi-class Classification of Alzheimer’s Disease … 961

3 Experimental Results

The distributions of four classes based on t-SNEvisualization techniques are depicted
inFig. 1. Tohave an apparently pictorial representation on the surface of the prefrontal
cortex, we showed the fNIRS topographic mapping in Fig. 3 taken from the resting
and three ability tests. The white digits being shown in Fig. 3 represent the channel
numbers and their positions on the prefrontal cortex region. The bar graph on the
right side in Fig. 3 denotes the fNIRS signal intensity. It was observed that channels
1, 2, and 3 had a significant impact on HC during Oddball and 1-back and aAD
patients during Oddball and pAD during Verbal. Meanwhile, the activation spots
located at channels 4, 5, and 6 were observed from pAD during 1-back and ADD
patients during Verbal. The local activation regions in the same experimental task
were totally opposite. For example, c hannels 4, 5, and 6 were highlighted in HC
whilst not being spotted in aAD during the Oddball stage, or channels 1, 2, and 3
were dominantly punctuated in HC while those channels are inactivated in pAD.
It induces that each channel owned peculiar characteristics and behaved differently
counting on corresponding experimental tasks; we thereby utilized all channels for
the classification tasks.

Fig. 3 Comparison of activation maps (topographic mapping) using HbO based on four experi-
mental stages measuring from HC subjects and three AD-degree patients during four experimental
stages
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Regarding classification tasks, we evaluated the performances of different classi-
fiers on each experimental task dealing with the original features from HbO, Hb, and
THb. In general, all classifiers performed better on the THb input compared to the
other hemoglobin types. In addition,NNclassifierswith the accuracyof 74.39±4.7%
outperformed the others, followed by SVM, GDA, and RF (see Fig. 4). Compared to
the other classifiers which require to identify features, break down to different parts,
and recombine in the final stages, NN was more flexible since it adopted a sufficient
amount of our original data size without any feature engineering steps and learned
the high-level features in an end-to-end manner. The remaining classifiers obtained
low accuracies. This indicates that the original data was not easily separated using
a convoluted decision boundary in KNN, a probabilistic approach from GNB, or
boosting algorithms from AdaBoost.

Due to the imbalance of our datasets that patients with three stages of AD were
difficult to recruit, SMOTEwas applied tomagnify the number of small aAD samples
and extremely small ADD samples to be balanced with two dominant HC and pAD
classes. As expected, the mean classification accuracies considerably improved up
to 84.91 ± 4.01%, and the efficacy of each classifier on the resampled data behaved
similarly as it applied on the original dataset (see Fig. 5).
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Fig. 4 Classification accuracies of 7 classifiers from three types of hemoglobin when the original
data was used
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Fig. 5 Classification accuracies of 7 classifiers from three types of hemoglobin when SMOTE was
applied

4 Conclusion and Future Works

Emerging evidence yields that exploring alterations ofAD’s progress has great impor-
tance in understanding and timely treatments of this cognitive deficit disease. In
this study, we aimed to access the capability of employing fNIRS as a clinical test
being commonly utilized to diagnose AD. We demonstrated that the changes in
hemodynamic concentrations from healthy controls to the three stages of AD did
exist. We evaluated and optimized the most representative features from three types
of hemoglobin signals recorded from four stages of experiments. Thus, a set of
machine learning classifiers were able to inexpensively and rapidly classify HC with
three stages of AD patients and further supplement the diagnosis of the degree of
dementia in AD. Due to the relatively small sample size of AD patients recruited,
which could easily result in misclassification performances, a larger cohort should
be carried out to validate our present findings. In addition, further advancement of
non-linear classifiers, such as deep learning techniques is an indispensable topic to
address the challenging fNIRS multi-class classification problems.
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