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Abstract Brain-computer interface (BCI) provides opportunities for patients with
severe motor impairment to regain their motor controls by decoding and converting
Electroencephalogram (EEG) signals into the motor control signal. Existing
processing schemes, including artifact removal and band-pass filtering, usually cause
leakage of EOG artifacts. Hence, the preprocessing order in this paper was optimized
for artifact removal in event-related desynchronization. To address this challenge, we
implemented an algorithm to classify four different motor imagery tasks, including
the left hand, right hand, both feet, and tonguemovements. Here, we use Graz dataset
A published in the BCI competition IV in 2008. Band-pass filter (7–30 Hz) with 5th
orderButterworth IIR combinedwith linear regressionwas applied to remove the arti-
fact of the signal. Mutual Information Best Individual Features (MIBIF) and Linear
Discriminant Analysis (LDA) algorithms were used for selecting features and clas-
sifying the classes. The mean training kappa of our classifier is 0.57, and the mean
evaluated kappa is 0.41. Besides, the application of the Common Spatial Pattern
enhanced the kappa score (from 0.33 to 0.41). Those results are comparable to those
from the BCI competition (range from 0.29 to 0.57). Hence, our approach could
be the foundation for further development of motor imagery based BCI research.
For future works, we propose to create an algorithm for the automatic procedure by
automatically choosing proper frequency bands for band power features.
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1 Introduction

With the development of non-invasive techniques, electroencephalography (EEG)
plays an important role in the research of neuroscience, cognitive science, and cogni-
tive psychology, especially in the Brain-Computer Interface (BCI). EEG-based BCI
system mainly relies on modulating the responses of large populations of neurons,
either through a training period time or using external stimuli [1]. An important
advantage of EEG is the extremely low risk to the subjects, compared to other inva-
sive and semi-invasive techniques, such as electrocorticography (ECoG) [2]. Besides,
EEG has an extremely high temporal resolution on milliseconds level, and its signals
can be divided into several different frequency patterns (e.g. mu, beta) which can
present different characteristics, patterns and access different functional brain states
[3, 4]. Many factors are contaminating EEG signals, including both objective factors
(e.g. environmental noises, faulty electrodes) and subjective factors [e.g. electroocu-
lography (EOG)]. These factors result in various undesired artifacts, which reduce
the classification accuracy in the BCI system, alter the characteristics of neurolog-
ical phenomena, and make significant mistakes in controlling the BCI system [5,
6]. Therefore, it is important to apply the artifact removal and band-pass filtering to
avoid causing leakage of EOG artifacts and gains meaningful EEG signals.

Through modulation of brain signals, such as motor imaginary (MI), BCI can be
applied to both medical and non-medical fields. Applications in medicine, including
cochlear implants for the deaf, deep brain stimulation for Parkinson’s disease has
become more and more popular in medical treatments [7, 8]. Besides, scientists
and engineers have also investigated various non-medical BCI products such as lie
detector, alertness monitor, games, e-learning system, etc. [9–12]. As an important
role in BCI, EEG-based BCI systems have strong opportunities to help patients with
severemotor impairment regain theirmotor controls such as cursor control, prosthetic
control, and speller [13–15]. EEG in BCI also has applications in interacting with a
Web browser, controlling robots as well as lie detector [16, 17]. Commonly, a BCI
systemworks based on detecting changes in brain activity when the brain responds to
voluntary or involuntary mental commands. Motor Imagery Brain-Computer Inter-
face (MI-BCI) is the most popular used to detect EEG signals through imagined
movements. When subjects imagine moving a particular part in the body, the neural
activity in the sensorimotor cortex will be spatiotemporally similar to the activity
during performing the real movement. Therefore, this type of neural response allows
us to discriminate and match the EEG signals with each imagined body movement
[18]. The biggest challenge in MI-BCI system is the difficulty in feature extrac-
tion, which needs making the selective features robust, informative, and discrimina-
tive. The motor imagery frequencies have both inter- and intra-subject variabilities,
leading to low accuracy in this system [19, 20].

Related to EEG recording and motor imaginary system, Hans Berger has already
described and discovered the oscillations in alpha waves during closed and open eyes
in the 1930s [21]. This is a commonphenomenonobserved in theEEGexperiments.A
phenomenon like event-related desynchronization (ERD) and synchronization (ERS)
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was introduced to investigate the dynamics of EEG oscillations [22]. By imagining
themovementwith EEG andEMG recording, these phenomena can be able to change
the power of the mu (8–13 Hz) and beta (13–30 Hz) bands [23, 24].

Event-related desynchronization (ERD) is a neurological phenomenon that was
introduced by Gert Pfurtscheller and colleagues in the 1970s [25]. This can be used
in BCI to classify different motor imagery classes. In the case of a subject imagine
about a limb movement, event-related desynchronization will happen. It leads to a
drop in the mu and beta waves’ power. Otherwise, the event-related synchronization
(ERS) increases the power of mu and beta waves when the imaginary movement
stops.

The band power is themost commonmethodology used to determine event-related
desynchronization and synchronization. First, the signal is filtered in distinct bands
such as 8–14 Hz, 24–30 Hz…, then the influence level of the ERD/ERS effect was
represented with different frequency components (e.g. in 8–14 Hz, the ERD effect
occurs the most clearly). In the same frequency bands, the effect of ERD/ERS does
not perform similarly for each subject, so it is recommended to select the frequency
bands for individual participants. Then, the signal will be converted from frequency
bands into power values. It means that the ERD/ERS alters when the power changes
[26]. In an experiment, we perform various trials to get the final results, so the
resulting signal is the average value over trials. This above information describes
how to detect and quantify the effect of ERD/ERS by the band power method.

In this paper, we used the BCI Competition IV 2008 dataset IV 2a that contains the
EEG signal recording of 9 subjects. This dataset includes 18 files of data recordings
(nine files for the training set and nine files for the evaluation set) and 18 files of
true labels for the evaluation step. The dataset was divided into four classes that are
four different motor imaginary tasks (left hand, right hand, both feet, and tongue)
[27]. This work is aimed to build an algorithm that is utilized to distinguish four
above different motor imagery tasks. Normally, multichannel electroencephalogram
(EEG) signals give fuzzy images of brain activity due to its low signal-to-noise
ratio (SNR) [28]. This is the reason why it is required to filter signals before usable
in BCI applications. In our proposed algorithm, we applied numerous methods to
detect and remove all unwanted factors to get clean EEG signals. First, EEG signals
were filtered by bandpass filter in the frequency band between 7 and 30 Hz with 5th
order Butterworth IIR. Besides, we also applied linear regression and down-sampling
62.5 Hz in preprocessing.

In comparisonwith other techniques such aswavelet-based filter, linear regression
is a simpler method that allows us to easily predict the effect of the filtering [29]. Due
to its efficiency and reliability, these methods are extremely helpful to the signal-to-
noise ratio improvement. In the feature extraction, the common spatial pattern (CSP)
method was introduced. CSP is the most efficient and common method in BCI that is
used to extract the discriminability classes fromEEG signals [30, 31]. This algorithm
is a spatial filtering method that can be able to optimize the discriminability of two
classes [30].

Furthermore, the number of features CSP components can be reduced by the CSP
method; it leads to optimize differences between motor imagery classes. After that,
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Mutual Information Best Individual Features (MIBIF) was used to select the best
features for classification. The combination of CSP and MIBIF can raise the classi-
fication accuracy and Kappa score. In classification algorithms, linear discriminant
analysis (LDA) was used to classify features and reduce the dimension of the feature
vector.

2 Materials and Methods

In this work, we aim to translate the signal from the brain into a typical movement.
To reach this goal, a set of processing phases is required to create the control signal,
which comprises pre-processing, feature extraction, feature selection, and classifi-
cation. An illustration of the processing scheme has been shown in Fig. 1 and the
detail of each stage is represented in the following sections.

2.1 Data Acquisition and Dataset

The dataset used for this work is the dataset 2a from BCI Competition IV in 2008
[27]. This data set is provided by the Institute for Knowledge Discovery (Laboratory
of Brain-Computer Interfaces), Graz University of Technology, (Clemens Brunner,
Robert Leeb, Gernot Müller-Putz, Alois Schlögl, Gert Pfurtscheller).

The dataset 2a includesEEGdata of 9 subjects. For each subject, two sessionswere
recorded on different days. There are six runs for each session, and each run consisted
of 48 trials for four classes which means a single session during the experiment
consisted of 288 trials. The cue of each trial was related to four different motor
imaginary tasks of the left hand (class 1), right hand (class 2), foot (class 3), and
tongue (class 4). The trial begins with a warning tone and a fixation cross displayed
on the computer screen at the same time. After two seconds, a cue was shown as
a small arrow pointing to the left, right, up, and down, and lasted for 1.25 s. The
subjects were prompted to perform the imaginary movement task until the fixation
cross disappeared from the screen at t = 6 s. After that, there was a short break.
Figure 2 illustrates the paradigm of a single trial.

Fig. 1 The workflow of the experiment
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Fig. 2 Timing scheme of the experimental paradigm

Twenty-two EEG channels were recorded using Ag/AgCl electrodes. The specific
challenge of this dataset is the eye movement artifact, so three monopolar electro
oculographic (EOG) channels were added for artifact processing purposes. The
signals were sampled at 250 Hz and bandpass filtered between 0.5 and 100 Hz
with 50 Hz notch filtered.

2.2 Preprocessing

Artifact Removal

As the output of this proposed method is the four different motor imagery classes,
the frequency band of brain rhythm is within the ERD/ERS information. A 5th order
Butterworth infinite impulse response (IIR) filter with the passband in the range 7–
30Hz to concentrate on themu (8–13Hz) and beta (13–30Hz) rhythms.Additionally,
three EOG components were used to utterly “subtract” the EOG artifacts in the EEG
signals by linear regression [32]. We assume the regression model as follow:

X = E + kO (1)

Accordingly, X is the recorded EEG which presented as a matrix of N channels
X = [x1, x2, x3, … xN ], E denotes the uncontaminated EEG signal without eye
movement artifact, O denotes the pure EOG channel, and k denotes the weight of
EOG artifact affecting on N component of EEG signal.

The dataset includes EOG channels for each subject (which electrodes are
placed adjacent to the eye to avoid other artifacts). To compute the unknown k, a
multiplication of (1) with OT , where T denotes the recording time-points, yields:

〈OT .X〉 = 〈OT .E〉 + k〈OT .O〉 (2)
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As we can assume that the EEG without artifacts and EOG signal have no
correlation, the 〈OT . E〉 is equal to zero, and coefficient k becomes:

k = 〈OT .X〉 = 〈OT .O〉−1 (3)

And the uncontaminated EEG signal can be found according to:

E = X − kO (4)

This method is also called the “multiple least-squares approaches” since it can
removemore than one EOG component. In Graz Dataset 2a, there are 3 EOG channel
recordings for each subject, so the algorithmwas applied respectively to each channel
in order to choose k at the minimum mean square of E.

Resampling

This step lessens the time spent on processing the signal and limits small variations
in the data. Regarding the Nyquist theorem [33], the highest frequency of the input
signal accounts for half of the sampling rate. Thus, the filtered signalmust be sampled
more than 60 Hz. One-fourth of the original sampling rate was applied for our work.

Fig. 3 An illustration of the preprocessing method. a Original EEG signal of the channel from
subject 1. b The filtered signal. c The downsampled signal
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A visualization of the preprocessing step is presented in Fig. 3. This figure shows
the period time from 225 to 240 s of the first channel of subject 1.

2.3 Feature Extraction

Common Spatial Pattern (CSP)

This algorithm canmagnify the discriminative of classes by optimizing the variances
of the filtered data [34]. Let WT is a N × M matrix (M spatial filters for N samples)
with T denotes recording time-points and E(t) is the input EEG signal, the CSP
model is as follow:

ECS(t) = WT E(t) (5)

In terms of the spatial filter, covariance matrices Rc under the c ∈ {1,2} conditions
havebeen shown in the belowequation.Thoughmultiple conditionswere used for this
proposed method, two conditions were applied for the simplicity of the illustration.

Rc = 1

K

∑

i

Zi
c

(
Zi
c

)T
(6)

Zc
i denotes the EEG data in the i-th trial at the condition c. Moreover, the CSP

also estimates:

WT RcW = τc (7)

τ1 + τ2 = I (8)

The sum of two diagonal matrices τ 1 and τ 2 is the identity matrix I. This result
illustrates the sum variances must be 1. Thus, if the variance of class 1 is high, the
variance of class 2 is accordingly low and vice versa. The results of CSP are estimated
by the mean of diagonalization of covariance matrices for two classes.

Band Power and Time Domain Parameters

Band power features were extracted in this method by applying the BioSig library
[35] to calculate the target bandwidths by bandpass filtering the signal. Our target
frequency bands are 8–14, 19–24, and 24–30 Hz. The signal was filtered by the 5th
order Butterworth IIR bandpass filter. The bandpass frequencies of this filter are our
target bands. To prevent leakage effects that reduce the quality of the processing
signal, we apply the smoothing window of 2 s by continue implementing the filter.
Finally, natural logarithms of output signals are calculated to enhance to performance
of linear classification.
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2.4 Feature Selection

Feature selection is a critical step in the classification problem. Some extracted
features are irrelevant to the output variable. They do not contribute much to model
performance but take time for training. Furthermore, the high dimensionality of
data will lead to complicated computation and overfitting results. Therefore, feature
selection methods are applied to reduce dimensions of input while maintaining the
essential information for classification.

Mutual Information Best Individual Features

Mutual information is a quantity that computes the relationship or correlation
between two random variables [36]. The formula of mutual information between
two variable X and Y is given by:

I(X,Y) =
∑

x∈X

∑

y∈Y
P(x, y)

P(x, y)

P(x)P(y)
(9)

In which, P(X) and P(Y) are the marginal distributions of X and Y.

The Mutual Information (MI) Function

The MI algorithms were developed by Räsänen [37].
The function MI estimates the mutual information and uses the number of vari-

ables ranking to score the weight of features based on their individual mutual infor-
mation with four output classes. The more weight the feature has, the better the
performance is when applied to the model.

From the previous step, 24 features corresponding to 3 bandwidths 8–14, 19–24,
2430 Hz are extracted. Mutual information of 24 features is calculated and weighted.
Through the experiment, 15 largest-score features are collected.

2.5 Classification

Linear discriminant analysis (LDA) is implemented in our experiment.
Although multiple category classification was done in this work, an illustration

for the principle of the LDA algorithm is binary classification due to its simplicity.
Specifically, in order to discriminate two classes X and Y, LDA algorithms define
a line w such that when the projection of each value of both classes onto the line
satisfy two following conditions:

• Maximize the distance between the means of given classes.
• Minimize the variation within each class.
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Fig. 4 The projection of red and blue data points representing two classes of the label in the dataset
onto different vectors w, is done by the LDA classifier. a Scatter plot representing data of the two
classes. b Projection of each data point onto new vector w. c Separation of data points of the two
classes done by line l

By projecting each value onto line w, data of the two classes are presented in a
new axis which is easier to establish the decision boundary l to discriminate them
(Fig. 4).

Agoodmodelwill induce a large distance between the two classeswhenprojecting
these data points two classes onto vector w. Therefore, a threshold can be defined to
separate the two classes and used to predict new data points.

Regarding the implementation of LDA algorithm on the classification of four
mentioned imaginary motor tasks, function fitcdiscr of MATLAB is used in
classification tasks with:

• Bayesian optimization.
• Iterations: 30.

Through each time of iteration, the optimizer algorithm automatically changes the
shape of the objective function model by changing the hyperparameters to obtaining
the best fit to the observed data points. Therefore, the classification performance of
the model is improved.

3 Evaluation Metric

Cohen’s kappa coefficients were calculated to evaluate the performance of the clas-
sification model. Kappa scores are considered a robust evaluation of categorized
discrimination against the problem as it not only takes into account the percentage
of the agreement but also the possibility of chance agreement. Kappa statistics focus
on the object-class distribution and ignore the number of features used to find out
this distribution, so this measure is useful for imbalanced datasets.

Cohen’s kappa equation [38] is defined as:
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k = Pr(a) − Pr(e)

1 − Pr(e)
(10)

Pr(a) the relative observed agreement among raters.
Pr(e) the hypothetical probability of chance agreement that is calculated as the

probabilities of each observer randomly seeing each category using observed
data.

4 Result and Discussion

As mentioned in the evaluation metrics part, the kappa value is suggested to address
several accuracy validation problems in BCI research. The different trials can result
in different kappa values, so we took the average results of several trials to get a more
representative kappa; also, the kappa value will be more general. This paper reached
a 0.57 score of mean kappa when using the Graz dataset 2a to train this model.
Additionally, we added the testing set from a similar dataset to evaluate our model,
and we observed that the mean of evaluation kappa was 0.41, which approaches the
training result. Consequently, our model is considered reliable. Table 1 summarizes
the kappa coefficient of the training and evaluating set are represented.

Improvement. To compare the efficiency of our method with traditional methods,
we propose two other models. The first model is artifact removal without linear
regression, and another is feature extraction without CSP. Figure 5 illustrates that
the best model is applying our method (k = 0.41), while the model applying linear
regression algorithm in artifact removal is less efficient (k = 0.39). This experiment
also proves that the CSP which is used to extract the features improved the kappa
score (from 0.33 to 0.41).

To recognize the role of linear regression and CSP on improving the kappa score,
the Kruskal–Wallis test [39] was utilized to compare the difference between themean

Table 1 The final training
and evaluation kappa scores
for each subject

Subjects Training kappa Evaluating kappa

1 0.72 0.70

2 0.50 0.11

3 0.78 0.52

4 0.35 0.21

5 0.38 0.10

6 0.38 0.18

7 0.76 0.66

8 0.74 0.59

9 0.47 0.61

Mean ± SEM 0.57 ± 0.061 0.41 ± 0.084
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Fig. 5 Comparison of the
effects of linear regression
and CSP to kappa score

value of 3 statistical models. The first reason is that the population data has a small
size with nine subjects per each group method and another reason is the non-normal
distribution of this data, according to the Levene test (p = 0.025) [39, 40]. In the
average ranks (see Table 2), the feature extraction without CSP was worth ranked
bottom, which proves that the CSP plays an important role in improving our model.
On the other hand, using the linear regression method just makes a small impact
on the mean value compared to the method without using CSP. Furthermore, Fig. 5
shows that when applying both linear regression and CSP, the mean kappa score was
enhanced. Nevertheless, no significant difference in the mean is observed among the
three approaches (p = 0.641).

Confusion Matrix

To describe the effect of a 4-class classification problem, we use the confusionmatrix
which illustrates the relationship between the predicted classes (intended labels by
user) and the true classes (known labels). Table 3 shows the proportion of samples
from evaluation data predicted by the proposed model based on the ground truth, in
which the bold ones illustrate the correct classifier. The higher the bold values of the
confusion matrix, the more efficient model.

Table 2 The Kruskal–Wallis
test summarizes the mean
rank of 3 methods

Method Mean rank

Proposed method 15.33

Artifact removal without linear regression 14.67

Feature extraction without CSP 12.00
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Table 3 Confusion matrix of the evaluation data

Predicted class

Left hand Right hand Both Feet Tongue

True class Left hand 0.64 0.25 0.08 0.03

Right hand 0.133 0.851 0.009 0.007

Both feet 0.03 0.04 0.79 0.14

Tongue 0.004 0.002 0.116 0.878

According to Table 3, tongue motor imagery got the best result with 87.8%. In
contrast, the left-handmotor imagery just reached 64% accurate prediction; this class
still was significantly confused back and forth with the right-hand class when being
predicted (25% left-hand class was labeled right-hand motor imagery). Meanwhile,
feet and right-hand motor imagery got considerable results, 79% and 85.1% sequen-
tially. Overall, our model is considered good working in classifying four-class motor
imagery (79% in the average).

Comparison with the BCI Competition IV (2008)

Compare with the BCI Competition IV (2008) on the same Graz dataset 2a, our work
with removing eye artifact and applyingMutual InformationBest Individual Features
(MIBIF) and LDA algorithm has yielded promising results. Our kappa is higher than
that of the 3rd prize in the competition, which is respectively 0.41 and 0.31 [41] (see
Table 4). By using the Filter Bank CSP and Naive Bayes Parzen Window technique,
K. K. Ang et al. won the first prize with the 0.57 kappa value [42]. Similar to the
proposedmethod, LiuGuangquan et al. also applied the LDAalgorithm, however, the
combination of it with the Log variance of the best eight components and Bayesian
is the reason why this kappa value holds more weight than the proposed method (k
= 0.52) [43].

Table 4 The comparison kappa values of 9 subjects with the three best competitors

Subjects Kai Keng Ang Liu Guangquan Wei Song Proposed method

1 0.68 0.69 0.38 0.70

2 0.42 0.34 0.18 0.11

3 0.75 0.71 0.48 0.52

4 0.48 0.44 0.33 0.21

5 0.40 0.16 0.07 0.10

6 0.27 0.21 0.14 0.18

7 0.77 0.66 0.29 0.66

8 0.75 0.73 0.49 0.59

9 0.61 0.69 0.44 0.61

Mean 0.57 0.52 0.31 0.41
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Code Deposit

Our code has been uploaded on the Github: https://github.com/nganluu0903/BCI_
project.

Limitation and Future Steps

In this proposed method, the utilized techniques in signal processing procedure
(including feature extractions, feature selection, and classification) are considered
to be very common. Therefore, the future steps are to select and apply recent advan-
tage techniques (e.g. recurrent neuronal network) to improve the quality of this study.
Furthermore, there are various limitations in the evaluated dataset—Graz dataset A
which was published in 2008. So, recent datasets or a self-constructed dataset are
highly recommended to approach in the next work.

5 Conclusion

The EEG-based BCI is known as the non-invasive method that is growing signifi-
cantly and bringing many advantages as well as challenges in EEG signal processing
[44]. From recent studies,motor imagery basedBCI (MI-BCI) has become a common
approach; however, it is challenging to classify imaginary motor tasks [32].

In this paper, the proposed algorithm works on the event-related resynchroniza-
tion (ERD) phenomenon to categorize four different motor imagery classes. We
implemented band power features, time-domain parameters, and the common spatial
patterns (CSP) to extract features whileMutual Information Best Individual Features
was considered in feature selection. Besides, the linear discriminant analysis (LDA)
classifier was utilized to classify four classes. The proposed algorithm was evaluated
using the kappa score. The kappa value was obtained from the confusion matrix that
evaluates the effectiveness of the algorithm and supports to compare the accuracy of
models with other ones easily. Besides, the spatial filter is recommended to enhance
the kappa score and increase the reliability of the model.

For future work, it is recommended to focus on raising the performance of the
MIBCI algorithm by utilizing different techniques in encoding the EEG signal. In
this paper, some factors influence the performance of the proposed algorithm. For
instance, frequency band selection for each subject is necessary since the effect of
the ERD/ERS phenomenon is different for each individual. To optimize this system
quality, an automatic method for selecting the frequency bands should be consid-
ered before performing preprocessing. Furthermore, another method named the filter
bank common spatial patterns (FBCSP) algorithm should be considered for feature
extraction in separated smaller frequency bands.

Acknowledgements The Ministry of Science and Technology funds this research, Grant # KC-
4.007/19-25.

Conflicts of Interest The authors have no conflict of interest to declare.

https://github.com/nganluu0903/BCI_project


776 N. T. Luu et al.

References

1. Rao RPN (2013) Brain-computer interfacing: an introduction. Cambridge University Press,
Cambridge

2. Panoulas KJ, Hadjileontiadis LJ, Panas SM (2010) Brain-Computer Interface (BCI): types,
processing perspectives and applications. In: TsihrintzisGA, Jain LC (eds)Multimedia services
in intelligent environments: integrated systems. Springer, Berlin, Heidelberg, pp 299–321

3. Gu X, Cao Z, Jolfaei A, Xu P, Wu D, Jung T-P, Lin C-T (2020) EEG-based Brain Computer
Interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational
intelligence approaches and their applications

4. Zhang X, Yao L, Huang C, Gu T, Yang Z, Liu Y (2019) DeepKey: an EEG and gait based
dual-authentication system. arXiv:1706.01606 [cs]

5. Jiang X, Bian G-B, Tian Z (2019) Removal of artifacts from EEG signals: a review. Sensors
19:987. https://doi.org/10.3390/s19050987

6. MannanMMN, KamranMA, Kang S, JeongMY. Effect of EOG signal filtering on the removal
of ocular artifacts and EEG-based brain-computer interface: a comprehensive study. https://
www.hindawi.com/journals/complexity/2018/4853741/

7. Deep brain stimulation: BCI at large, where are we going to? https://www.researchgate.net/
publication/51596032_Deep_brain_stimulation_BCI_at_large_where_are_we_going_to

8. RoyD,HashL (2016)Advisor: study of brain computer interfacing (BCI)with cochlear implant
as an example

9. WangH, ChangW, Zhang C (2016) Functional brain network andmultichannel analysis for the
P300-based brain computer interface system of lying detection. Expert Syst Appl 53:117–128.
https://doi.org/10.1016/j.eswa.2016.01.024

10. Maksimenko VA, Runnova AE, Zhuravlev MO, Makarov VV, Nedayvozov V, Grubov VV,
Pchelintceva SV, Hramov AE, Pisarchik AN (2017) Visual perception affected by motivation
and alertness controlled by a noninvasive brain-computer interface. PLoS ONE 12:e0188700.
https://doi.org/10.1371/journal.pone.0188700

11. Finke A, Lenhardt A, Ritter H (2009) The MindGame: a P300-based brain–computer interface
game. Neural Netw 22:1329–1333. https://doi.org/10.1016/j.neunet.2009.07.003

12. Marchesi M, Riccò B (2013) BRAVO: a brain virtual operator for education exploiting
braincomputer interfaces. Presented at the Apr 27

13. Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C (2010) An EEG-based BCI system for
2-D cursor control by combining mu/beta rhythm and P300 potential. IEEE Trans Biomed Eng
57:2495–2505. https://doi.org/10.1109/TBME.2010.2055564

14. Guger C, Harkam W, Hertnaes C, Pfurtscheller G (1999) Prosthetic control by an EEG-based
brain-computer interface (BCI). In: Proceedings AAATE 5th European conference for the
advancement of assistive technology

15. Chen X, Chen Z, Gao S, Gao X (2014) A high-ITR SSVEP-based BCI speller. Brain-Comput
Interfaces 1:181–191. https://doi.org/10.1080/2326263X.2014.944469

16. Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M, Bogdan M, Rosenstiel W,
Birbaumer N (2007) Nessi: an EEG-controlled web browser for severely paralyzed patients.
Comput Intell Neurosci 2007:e71863. https://doi.org/10.1155/2007/71863

17. Chae Y, Jeong J, Jo S (2012) Toward brain-actuated humanoid robots: asynchronous direct
control using an EEG-based BCI. IEEE Trans Rob 28:1131–1144. https://doi.org/10.1109/
TRO.2012.2201310

18. dos Santos EM, Cassani R, Falk TH, Fraga FJ (2020) Improved motor imagery brain-computer
interface performance via adaptive modulation filtering and two-stage classification. Biomed
Signal Process Control 57:101812. https://doi.org/10.1016/j.bspc.2019.101812

19. A review on motor imagery signal classification for BCI. https://www.cscjournals.org/library/
manuscriptinfo.php?mc=SPIJ-284

20. HerscheM,Benini L,RahimiA (2020)Binarymodels formotor-imagery brain–computer inter-
faces: sparse random projection and binarized SVM. Presented at the 2nd IEEE international
conference on artificial intelligence circuits and systems (AICAS 2020)

http://arxiv.org/abs/1706.01606
https://doi.org/10.3390/s19050987
https://www.hindawi.com/journals/complexity/2018/4853741/
https://www.researchgate.net/publication/51596032_Deep_brain_stimulation_BCI_at_large_where_are_we_going_to
https://doi.org/10.1016/j.eswa.2016.01.024
https://doi.org/10.1371/journal.pone.0188700
https://doi.org/10.1016/j.neunet.2009.07.003
https://doi.org/10.1109/TBME.2010.2055564
https://doi.org/10.1080/2326263X.2014.944469
https://doi.org/10.1155/2007/71863
https://doi.org/10.1109/TRO.2012.2201310
https://doi.org/10.1016/j.bspc.2019.101812
https://www.cscjournals.org/library/manuscriptinfo.php%3Fmc%3DSPIJ-284


Classification of Four-Class Motor-Imagery Data … 777

21. Lemm S, Müller K-R, Curio G (2009) A generalized framework for quantifying the dynamics
of EEG event-related desynchronization. PLoS Comput Biol 5:e1000453. https://doi.org/10.
1371/journal.pcbi.1000453

22. Schlögl A, Supp G (2006) Analyzing event-related EEG data with multivariate autoregressive
parameters. Prog Brain Res 159:135–147. https://doi.org/10.1016/S00796123(06)59009-0

23. ToroC,Deuschl G, Thatcher R, Sato S, Kufta C,HallettM (1994) Event-related desynchroniza-
tion and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr Clin
Neurophysiol/Evoked Potentials Sect 93:380–389. https://doi.org/10.1016/0168-5597(94)901
26-0

24. Percio CD, Infarinato F, Iacoboni M, Marzano N, Soricelli A, Aschieri P, Eusebi F, Babiloni
C (2010) Movement-related desynchronization of alpha rhythms is lower in athletes than
non-athletes: a high-resolution EEG study. Clin Neurophysiol 121:482–491. https://doi.org/
10.1016/j.clinph.2009.12.004

25. Klimesch W, Pfurtscheller G, Mohl W, Schimke H (1990) Event-related desynchronization,
ERD-mapping and hemispheric differences for words and numbers. Int J Psychophysiol 8:297–
308. https://doi.org/10.1016/0167-8760(90)90020-E

26. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. http://doi.org/10.
1016/S1388-2457(99)00141-8

27. Brunner C, Leeb R,Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI competition 2008—
Graz data set A. Institute for KnowledgeDiscovery (Laboratory of Brain-Computer Interfaces),
Graz University of Technology, 16

28. Singla R, Devgan A, Gogna P, Batra A (2014) Fixation of delayed union or non-union posterior
cruciate ligament avulsion fractures. J Orthop Surg. https://doi.org/10.1177/230949901402
200118

29. Fogarty DP, Deering AL, Guo S, Wei Z, Kautz NA, Kandel SA (2006) Minimizing image-
processing artifacts in scanning tunneling microscopy using linear-regression fitting. Rev Sci
Instrum 77. https://doi.org/10.1063/1.2390633

30. Lu H, Plataniotis KN, Venetsanopoulos AN (2009) Regularized common spatial patterns with
generic learning for EEG signal classification. In: 2009 annual international conference of the
IEEE engineering in medicine and biology society, pp 6599–6602

31. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified
theory and new algorithms. IEEE Trans Biomed Eng 58:355–362. https://doi.org/10.1109/
TBME.2010.2082539

32. Wang D, Miao D, Blohm G (2012) Multi-class motor imagery EEG decoding for brain-
computer interfaces. Front Neurosci 6:151

33. Srinivasan R, Tucker DM, Murias M (1998) Estimating the spatial Nyquist of the human EEG.
Behav Res Methods Instrum Comput 30:8–19. https://doi.org/10.3758/BF03209412

34. Rao RPN, Scherer R (2010) Statistical pattern recognition and machine learning in brain–
computer interfaces. In: Statistical signal processing for neuroscience and neurotechnology.
Elsevier, Amsterdam, pp 335–367

35. Vidaurre C, Sander TH, Schlögl A (2011) BioSig: the free and open source software library
for biomedical signal processing. Comput Intell Neurosci 2011

36. Learned-Miller EG (2013) Entropy and mutual information
37. Pohjalainen J, RäsänenO,Kadioglu S (2013) Feature selectionmethods and their combinations

in high-dimensional classification of speaker likability, intelligibility and personality traits.
Comput Speech Lang 29. http://doi.org/10.1016/j.csl.2013.11.004

38. Cohen J (2016) A coefficient of agreement for nominal scales. Educ Psychol Meas. https://doi.
org/10.1177/001316446002000104

39. Stephanie: non parametric data and tests (Distribution Free Tests). https://www.statisticshowto.
com/parametric-and-non-parametric-data/

40. Stephanie: Levene test for equality of variances. https://www.statisticshowto.com/levenetest/
41. TangermannM,MüllerK-R,AertsenA,BirbaumerN,BraunC,BrunnerC, LeebR,MehringC,

Miller KJ, Müller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre

https://doi.org/10.1371/journal.pcbi.1000453
https://doi.org/10.1016/S00796123(06)59009-0
https://doi.org/10.1016/0168-5597(94)90126-0
https://doi.org/10.1016/j.clinph.2009.12.004
https://doi.org/10.1016/0167-8760(90)90020-E
http://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1177/230949901402200118
https://doi.org/10.1063/1.2390633
https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.3758/BF03209412
http://doi.org/10.1016/j.csl.2013.11.004
https://doi.org/10.1177/001316446002000104
https://www.statisticshowto.com/parametric-and-non-parametric-data/
https://www.statisticshowto.com/levenetest/


778 N. T. Luu et al.

C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6. http://
doi.org/10.3389/fnins.2012.00055

42. Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP)
in brain-computer interface. In: 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), pp 2390–2397

43. Liu G. BCI competition IV: results. http://www.bbci.de/competition/iv/results/ds2a/LiuGua
ngquan_desc.txt

44. Machado S, Araújo F, Paes F, Velasques B, Cunha M, Budde H, Basile LF, Anghinah
R, Arias-Carrión O, Cagy M, Piedade R, de Graaf TA, Sack AT, Ribeiro P (2010) EEG-
based brain-computer interfaces: an overview of basic concepts and clinical applications in
neurorehabilitation. RevNeurosci 21:451–468. https://doi.org/10.1515/REVNEURO.2010.21.
6.451

http://doi.org/10.3389/fnins.2012.00055
http://www.bbci.de/competition/iv/results/ds2a/LiuGuangquan_desc.txt
https://doi.org/10.1515/REVNEURO.2010.21.6.451

	 Classification of Four-Class Motor-Imagery Data for Brain-Computer Interfaces
	1 Introduction
	2 Materials and Methods
	2.1 Data Acquisition and Dataset
	2.2 Preprocessing
	2.3 Feature Extraction
	2.4 Feature Selection
	2.5 Classification

	3 Evaluation Metric
	4 Result and Discussion
	5 Conclusion
	References




