Chapter 4 ®
Colorful Stars and Black Boxes: Bayesian g
Analysis of Stellar Populations

Paul D. Baines, Xiao-Li Meng, Andreas Zezas, and Vinay Kashyap

4.1 Stellar Archeology

This article details a statistical analysis of a complex problem in astronomy and
astrophysics, with a broader aim to suggest strategies and methodologies for similar
“black-box” problems in physical sciences and beyond. For reasons that will
become clear, the specific problem we address is sometimes known as the “stellar
archeology” problem. The archeological analogy provides a nice overview of the
scientific objective: we are interested in estimating the age of objects (stars) from
measurements of their attributes (brightness).
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Astronomy has a long history of using and developing statistical methodology to
analyze experimentally collected data (e.g., see [8]). Despite the inability to directly
manipulate the processes being studied, astronomers and astrophysicists have
amassed a large body of knowledge by both indirect observation of the underlying
processes and the construction of physics-based models. As the understanding of
underlying physical systems develops, observed data typically can be characterized
as noisy observations of a complex physical process involving the parameters of
inferential and scientific importance. The link between parameters of interest and
observed data is provided by problem-specific knowledge, often in the form of a
system of partial differential equations (PDEs). This characterization is common
in many problems in astronomy, as well as other scientific fields such as the
environmental sciences. When the driving systems cannot be solved analytically, or
are particularly computationally expensive, the relevant community often relies on
lookup tables, describing the expected observation (i.e., mean) for a variety of input
parameters. Given the huge amount of expertise devoted to developing these models,
the analysis of observed data often lags behind. Statistics can play an important
role in such settings, although the resulting computation can be challenging.
There has been increased interest in this type of problem, where one or more
components in the model are a “black-box,” lookup table, or computer-model output
[3, 4,17, 20].

In this article, we present an example of such a problem: a hierarchical Bayesian
analysis of photometric data. The objective is to infer stellar properties such as
the mass, age, and metallicity of individual and collections of stars. The mapping
between the scientifically interesting properties (mass, age, and metallicity) and the
observed data (photometric measurements) is governed by a series of isochrone
tables: lookup tables derived under an assumed physics model. Isochrone tables are
traditionally named after the location of the research groups that computed them:
commonly used versions include the Geneva [13], Padova [14], and Dartmouth [6]
isochrones. The highly structured mapping poses challenges for traditional compu-
tational methods, as discussed in Sect.4.2. In Sect.4.3 we present a generalizable
and robust algorithm for posterior sampling that does not rely on any specific
properties of the isochrone mapping. By avoiding the use of isochrone-specific fixes,
we seek an algorithm that can successfully adapt to new lookup tables and could be
applied to a wider class of problems. Combining the ideas of different augmentation
schemes in [22] with an energy-based partition proposal distribution in the spirit
of the Equi-Energy sampler [11], our “Equi-Expectation” MCMC scheme is both
efficient and scalable to large datasets. The performance of competing sampling
schemes is detailed in Sect.4.4, together with an application to the 47 Tucanae
dataset. In practice there are often uncertainties in the choice of deterministic
physical model, and hence we investigate the issue of selecting between competing
sets of isochrones in Sect. 4.5. The rest of Sect. 4.5 discusses some future directions
and concludes.
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4.2 Color-Magnitude Diagrams and Isochrone Tables

Photometric measurements are obtained by a detector, pointed at a particular region
of the sky. Sources such as stars emit photons, which, together with additional
background photons are counted whenever they pass through the detector. In crude
terms, by counting the number and energy of photon arrivals at a particular detector
location in a particular time interval, the photon counts can be calibrated to obtain
the spectrum of a given source. The spectrum of a source represents the intensity
across a continuous range of wavelengths and, as such, these observations can be
expensive to obtain. An alternative is to use optical filters that allow only photons
within a specified wavelength band/range to pass through. The measurements can
then be thought of as estimating the integral of the spectrum over a small wavelength
range. Depending on the number of bands, this approach yields a small number
of measurements representing the brightness of the source that are both cheaper
to obtain and simpler to analyze than their spectral counterparts. The brightness
of a source in a photometric band such as B (blue) is also known as its B-band
magnitude. Colors can be obtained as differences between magnitudes: for example,
the color B — V represents the difference in B- and V-band (visual) magnitudes. In
light of this property we are able to freely switch between colors and magnitudes,
and the analysis of Sect.4.3 can be conducted across different combinations of
colors and magnitudes.

To relate observed photometric data to the relevant physical quantities such as the
age, mass, and metallicity of the stars, we use a theoretical collection of isochrones.
The term “isochrone” is typically used to refer to the curve defined by tracing out the
expected color and magnitude for stars of a fixed age and metallicity, for different
initial masses. More generally, an isochrone can be viewed as a function that, given
the physical properties of the star (mass, age, metallicity), returns the brightness
of the star in a variety of different photometric bands. The metallicity of a star
describes the relative abundance of elements such as oxygen and iron with respect
to hydrogen.

The top panel of Fig.4.1 displays all of the combinations of initial mass and
age that appear in the (Padova) isochrone tables. The bottom panel of Fig.4.1
displays the expected V-band magnitude and B — V color of stars with a metallicity
Z = 0.004, at each of the tabulated points of the isochrones. These plots
correspond to the input and output spaces, with the isochrone mapping (i.e., the
“black box”) between them. The color of each point in the plot indicates the
age of the star, with younger stars typically being hotter and brighter than their
older counterparts. The plot of color against magnitude is known as the Color-
Magnitude Diagram (CMD), and forms the basis of the use of photometric data to
infer stellar properties. Here, however, we use CMD to refer to the more general
setting including higher-dimensional photometry and arbitrary (non-degenerate)
color-magnitude combinations.

The initial mass of a star is a crucial factor in determining the evolution of the
star. As stars age they burn off their component elements in order from the lightest



56 P. D. Baines et al.

Fig. 4.1 Tsochrone plot for Tabulated Points: Isochrones (padova)
(Top) the input/parameter
space: initial mass and age, 100 -
and, (Bottom) the
output/observation-space:
V-magnitude and B — V 80 -
photometry, for stars of
metallicity Z = 0.004 from
the Padova isochrones. The 2 60 -
color of each point represents g
the age in log;y-years (i.e., =
from 1050 to 10192 years), £ 40
with the color-scale given on -
the right-hand side of each
plot 20
0 -
I I ] ]
7 8 9 10
log_{10} (Age)
Isochrones: Metallicity = 0.004 (padova)
10 10
B T e .'1-..;'.'1..»‘ .
-5 SRSt Ba g TYTA L Ll
> 07
5 -
10 -
I I I ] ] ]
-0.5 0.0 0.5 1.0 1.5 2.0



4 Colorful Stars and Black Boxes: Bayesian Analysis of Stellar Populations 57

to the heaviest, beginning with hydrogen and helium fusion. Since the chemical
composition of the star is one of the determining factors in its photometry, and we
have a physics model for the stellar evolution process, we can attempt to infer the
age, initial mass, and metallicity of the star from observed data.

The bottom-left portion of the CMD (Fig. 4.1, bottom) is known as the main
sequence. This is where stars spend most of their lives, usually before evolving
into either a brown or white dwarf. On the main sequence, there are many
different combinations of mass, age, and metallicity that produce the same expected
photometry, leading to a degeneracy in measurements. Therefore, taken in isolation,
the mass and age of a given star may or may not be identifiable. The applications we
consider are those where we are interested in estimating the properties of a “cluster”
of stars. Typically, by a cluster of stars we mean a collection of stars located in a
similar physical location, and at a similar distance from the detector. Despite the
individual-level potential non-identifiability, by combining observations, we can
proceed to draw inference about both cluster-level and individual stellar properties.
In addition to these challenges with identifiability, small changes in mass and
age can potentially produce large changes in expected photometry, depending on
the region of the CMD in which the star falls. These problems all add to the
complexity of both the physical modeling and statistical analysis, but they are by
no means unique to stellar archeology. We therefore believe that the strategies and
methodologies in this article have general implications.

4.3 Hierarchical Modeling and Computation

Model Specifications

A photometric observation of source i, typically a star, is a vector of observed values
in a combination of colors and magnitude bands, denoted by ¥; € R?, where p is the
number of bands. The (Gaussian) measurement errors from the detector are typically
well understood, in the sense that variances are traditionally taken to be known for
each band. Without loss of generality, we can assume unit variance (i.e., working
with standardized Y;). Here we allow for the measurement errors to be correlated
across bands or colors: the correlation structure is assumed to be constant among all
stars and is modeled with a weakly informative prior. Given the intrinsic properties
of the stars, the measurement errors are assumed independent across different stars.
The lower-level data generating process is thus given by

YoM A 2" N (F My, AL Z) R =1, (4.1)

where M; and A; are the (initial) mass and age of the star, Z is the metallicity of
the cluster and f(M;, A;, Z) is a vector of the expected photometry of the star,
found from the isochrone tables, and is standardized the same way as Y; is. For
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all applications here we consider Z to be known from external knowledge, as is
standard in the astrophysics literature, although extending the model to include
unknown metallicity is conceptually straightforward. The correlation matrix R is
assumed to be the same across all observations, following a common strategy for
balancing between model adequacy and model complexity (e.g., [2, 12]).

The literature on CMDs has assumed almost exclusively that stars in the same
subpopulation (e.g., cluster) have the same age, and sought the best-fit isochrone
based on this single age (e.g., [21]). This comes despite knowledge in many contexts
that the spread in stellar ages is sizable. Our approach remedies this problem
but retains model simplicity by placing a common structure on the ensemble of
star ages. Allowing flexibility of individual parameters yet utilizing the common
structure motivates the following model. We assume the “population” of log; ages
for a given cluster to be Gaussian (equivalently, age is log;y-normal, not standard
log-normal):

o
Ailpa, 02 "= N(ua, o), (4.2)

where 104/ is the age of the star in years. The traditional single-age approach
amounts to imposing ai = 0 and finding a “best” choice of 4, the parameter
of primary inferential importance. Here w4 characterizes the theoretical mean
age (on the log;,-scale) of the collection of stars, while ai specifies the intra-
cluster variability of the individual ages. By modeling the distribution of individual
star ages, we can potentially detect outlying stars or multi-cluster populations
corresponding to multi-burst star formation processes. Although such discoveries
are feasible when we move beyond the single-age paradigm, estimation in multi-
clusters contexts should be redone with explicit multi-cluster models, as we discuss
in Sect. 4.3.
To complete the model specification, we use the conjugate hyperprior:

MA|U/%. ~ N (uo, af\//co) , ai ~ Ian:rse—)(2 (vo, 002> . 4.3)

Typically we have prior knowledge that the stars in a given dataset are all of a
similar, though not necessarily identical, age. The prior mean and variance for af‘
are my = voog /(vo — 2) and rg = Zm% /(vo — 4), respectively. Therefore, in
this setting oi is given a prior where vy is large, and 002 is set to the expected
within-cluster variance of the individual stellar ages. The isochrone mapping is
both highly nonlinear and degenerate in that many different parameter values
lead to the same expected photometry. As a result, there is typically insufficient
information in the data alone to give meaningful answers. The inclusion of external
knowledge from previous literature or standard astrophysics theory is an important
tool in breaking these degeneracies. Indeed, the entire statistical model represents
a translation of scientific understanding into a collection of modeling assumptions,
and the Bayesian framework makes this task relatively straightforward. But we are
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mindful of the need to check prior sensitivity and more appropriately to quantify
inferential uncertainty.

The initial mass of a star, together with its metallicity, is one of the primary
factors that determine how that star will evolve. The initial masses of stars are known
to have a distribution, or initial mass function (IMF) that, for stars above a threshold
My, typically around one solar mass, is described by a power-law with parameter
o = 2.5 [18]. For stars below the threshold, the distribution of masses is considered
to be uniform. However, we are interested in placing a prior on a star in our dataset,
not the population of all stars. For a star of a given age we know a priori that for a
star of that age to potentially be observed, it must have a mass within a certain range
of values. As can be seen in the top panel of Fig. 4.1, stars with a large initial mass
have a shorter lifespan than those with smaller initial mass. This leads to constraints
on the support of the joint distribution of mass and age, with the support defined
by the tabulation in Fig.4.1. In light of this, and to ensure our prior includes only
feasible (M;, A;) pairs we assume a distribution of the form:

0 M,' < Mmin
p(M;lA;) = k Mumin < M; < My , (4.4)
) —o
:2,7_”1,, (MMm[l‘n> Mbrk < Ml S Mmax(Al)

where M,,4x(A;) is the maximum possible mass for an “observable” star of age A;,
as determined by the theoretical isochrones. M,,;, is selected to be the minimum
mass that is scientifically reasonable for the dataset, or from the set of theoretical
isochrones (usually 0.8 solar masses) and does not vary with age. The prior
distribution on R is taken to be uniform across all positive definite correlation
matrices. Note that this is not uniform on the correlation parameters, but will
typically be close to uniform since the number of observed bands, p, is relatively
small (e.g., single digit); see [2].

Posterior Inference and Sampling

The model specified by (4.1)—(4.4) yields a joint posterior distribution of dimension
d=2(n+1)4+0.5p(p — 1). In practice, however, we are typically most interested
in the marginal posterior distribution of p4 and af‘. In real applications, n is
usually on the order of tens of thousands, although the size of dataset can be
anywhere from hundreds to millions of stars. The large amount of structure among
the posterior distributions of the parameters poses a challenge to standard methods
of approximating posterior quantities of interest. We now describe a Markov chain
Monte Carlo (MCMC) scheme to sample from the posterior distribution. We utilize
a Metropolis-within-Gibbs scheme, which sequentially draws from the d — n full
conditional distributions of each component of R, of {(M;, A;),i = 1,...,n}, and
of (ua, ai); here we have only d —n full conditional distributions because we draw
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(M;, A;) jointly. Performing the first and last of these updates is straightforward.
Hence, the greater interest is in sampling the mass and age of individual stars, given
the observed photometry and stellar cluster parameters.

First we describe updates for the hyperparameters (1 4, ai) and the correlation
matrix R. By conjugacy, the full conditional posterior distributions of the cluster-
level parameters reduce to

V008 + 83 (1a) + Ko(pa — M0)2>

oﬁWA,AN Invelrse—)(2 (v0+n, -

alog, A~ N (KOMO +nA’ % ) ,
Ko +n Ko+ n
where A = {A;,i =1,...,n}, S3(na) = Y1 (Ai —pa)’,and A= L3 A,

To draw R, we use component-wise Metropolis—Hastings updates, with a
uniform proposal over the range of values that result in a valid (positive definite)
correlation matrix. It is shown in [2] that when we change one correlation at a time,
the positive definiteness constraints reduce to solving a quadratic equation to find
the conditional support of the correlation. While this method can be inefficient for
large correlation matrices, typically the number of observed bands is small in our
application, and hence the proposal is rapid to compute and performs well in most
settings.

To sample from the conditional posterior distributions p(M;, A;|®a, oi, Y) for
i =1,...,n, we need to construct a proposal that is robust to both multi-modality
and many different types of nonlinear dependencies that can be induced by different
regions of the CMD. Figure 4.2 displays the “likelihood” of an old star as a function
of initial mass and age, i.e., the contribution to the posterior from Eq. (4.1).

Ideally, to achieve this, we would utilize an energy-based sampler in the spirit
of the Equi-Energy sampler of [11]. In its full incarnation the Equi-Energy sampler
proceeds by constructing “energy bands” that attempt to empirically partition the
full parameter space into posterior contours. Given the dimensionality, constructing
such energy rings for the full 2(n 4+ 1) 4+ 0.5p(p — 1) dimensional posterior is
infeasible in practice, as is constructing full energy bands for subsets of conditional
distributions. Since the contours of the conditional posterior distributions depend on
the conditioned values, it would be necessary to re-compute the partition for every
star across every iteration. Nevertheless, we now describe how we can explicitly
utilize the tabulated component of the posterior distribution to pre-compute a
single partition that can be used across all conditional distributions (M;, A;),
independently of the conditioning variables. By constructing the partition in this
way, we retain the fundamental location-independent nature of the Equi-Energy
sampler.
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Fig. 4.2 The “likelihood” surface as a function of initial mass and age for a typical observation of
an old star (10'° years)

A Partition Strategy Inspired by Equi-Energy Sampler

To avoid the additional complications of the CMD application, we first describe
the construction of the proposal distribution for a simplified example. Consider two
input (physical) parameters x and y that are related to two output quantities u and
v on which measurements (with error) can be made. In the context of the CMD
example x and y might correspond to the mass and age of an individual star, and
u and v might correspond to two photometric bands. Suppose that the expected
output for each of 2601 different combinations of input parameters (a regular grid
of 51 unique values for each parameter) are given in a lookup table. The grid of
input values is shown in the left-hand panel of Fig.4.3. Our proposal distribution
will be constructed from a partition of the parameter space: typically formed by
polygons with corners at tabulated input points. The right-hand panel of Fig.4.3
shows a possible partition of the input grid, obtained by Delaunay triangulation [16].
For each distinct polygon (triangle) we take the centroid as a “representative” of that
region. Next, we compute the output value corresponding to the centroid. Since each
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Tabulated points in the parameter space (x,y) Delaunay triangulation
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Fig. 4.3 (L) Tabulated combinations of the input parameters x and y. (R) Partition of the
parameter space (x, y) into non-overlapping triangles, and centroids of those triangles. The right
plot depicts only a subset of the parameter space, as the triangulation is regular. Vertices of the
partitioning triangles are tabulated (x, y) points

vertex is a tabulated input point, the interpolated output value corresponding to the
centroid is a distance-weighted average of the output values at the vertices.

For this example, we consider the following (isochrone) mapping from parame-
ters to data space:

= a,(y =)’ +sin(y) — |y +x| (4.5)
v = ay(x — ¢p)* +sin(x) + |y — x|, (4.6)
where we select a, = 0.8, a, = 1.2, ¢, = —0.55, and ¢, = 0.05. Here we take

the dimension of the data space to match the dimension of the parameter space,
although this is not required. The mapping for an arbitrary point in the input, (x, y)-
space, to the output, (1, v)-space, is done by interpolating the points in (u, v)-space
corresponding to nearby points in (x, y)-space. For the interpolation to make sense
in practice we require local continuity of the mapping between neighboring points,
i.e., the tabulation must be sufficiently high resolution to enable safe interpolation
of nearby values. This is not a restrictive requirement; all methods of analysis for
CMDs rely upon sufficiently high-resolution tables. For the toy example, we now
proceed as if the functional form of the mapping were not known: only tabulated
values and interpolation are used.

Figure 4.4 illustrates some of the properties of the functional mapping from the
parameters to the data. Firstly, as with the isochrone tables, the mapping is non-
invertible: multiple (x, y)-values can lead to the same (u, v)-value, as manifested by
intersecting cross-sections in the bottom panel of the figure. As with the isochrone
tables, portions of the mapping are potentially invertible, but we want to derive a
general method that does not rely on this fact. Secondly, as a result of this non-
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Fig. 4.4 (Top) Cross-sections of the parameter space, colored according to the fixed value of x.
(Bottom) Each of the cross-sections maps to a curve in (1, v) = f(x,y) as defined in Eqgs.4.5
and 4.6, where each curve is plotted in the same color as its corresponding cross-section
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invertibility, similar observed data can arise from disjoint regions of the parameter
space, hence the need to construct an efficient proposal distribution. Also, the
mapping is not differentiable along the planes x — y = 0 and x + y = 0, also
mimicking similar behavior to the isochrone tables.

The centroids of the input partition have their corresponding counterparts in the
output space, shown in Fig.4.5. The important observation is that, in a likelihood
setting, similar expected values in the output space correspond to similar values of
the target distribution. Hence, regions in the input space that correspond to nearby
centroids in the output space will have similar likelihood values. In mapping back to
the input space, we have essentially constructed a crude approximation to the inverse
of the (many-to-one) mapping from input to output. The primary advantage of these
“Equi-Expectation” contours is that they are expressed in a functional form. That is,
given an arbitrary input point (xg, yo), we have instant access to a set of points with
“similar” expected values, without knowledge of the observed data or conditioning
parameters.

Exact contours of the likelihood surface depend on the observed data, and
hence require fresh computation for each observation. However, we can form
a random-walk style proposal in the output space that produces approximately
location-independent moves in the input space. For sufficiently high-resolution
tables, the regions of the input space that are nearby in terms of their expected output
value will have similar values of the likelihood. Larger distances between points in
the output space correspond to larger differences in likelihood, with the Euclidean
distance providing a natural metric when observations are made with Gaussian
measurement errors. In practice, computing distances between all of the (u, v)-
centroids is computationally expensive if the tables are very high resolution, as the
isochrones tables are. So, to reduce the computational burden, we define “similar”
in this context by running a clustering algorithm on the centroids in (u, v)-space,
and tracking the accompanying (x, y)-clusters. In the CMD example, these clusters
correspond to values of mass and age that have similar expected photometry:
essentially the banded inversion of the isochrone mapping, f, as in (4.1). In general,
the dimensions of the input and the output spaces do not need to match, and we can
have input parameters defined on R¥ mapping to an output space on R” or subsets
thereof.

A Proposal Distribution for (M;, A;) via Ancillary
Augmentation

Now we return to the CMD example and address additional implementation
challenges. Unlike the toy example, the isochrones are given on an irregular
(m, a) grid, so the choice of partition is not immediate. The partition can either
be constructed manually or using a standard technique such as the Delaunay
triangulation [16] of the input vertices; we use the latter method for all applications
presented here. Figure 4.6 shows an example of the partition formed using Delaunay
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Partition of (mass,age)-space
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Fig. 4.6 (Top) Partition of the parameter space using the Delaunay triangulation, and (Bottom)

a close-up of the partition. Note that blank regions in the upper right of each plot correspond to
infeasible mass-age combinations
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triangulation for the Geneva isochrones. Note that the tabulation is very irregular,
with much higher resolution tabulation for masses close to the maximum allowable
mass for each given age. Each corner of the polygon corresponds to a tabulated
value that has a corresponding vector of expected photometric values. As discussed,
assuming the isochrone tabulation is of sufficiently high resolution, the implied
isochrone values within a given polygon can be approximated by interpolation of
the (vector) values at the corner points. Next, taking the centroid of each polygon
as a representative of that particular region of the parameter space, we proceed
to construct approximate “contours” of the conditional posterior distributions that
correspond to these centroid values. Each centroid is comprised of two components:
(1) a pair of mass and age values (m, a;), and (ii) an (interpolated) isochrone value
describing the expected photometry with the given mass and age f(m;,a;) € RP.

After running the clustering algorithm on the photometry vectors at the cen-
troids, each cluster is simply a list of polygons defining a collection of possibly
disconnected regions of the parameter space. For computational simplicity, we use
k-means clustering to form C clusters. Given a set of C clusters of polygons,
we can quantify approximate measures of the “distance” between points in each
pair of distinct clusters. Finally, after reparameterization, we ensure that nearby
clusters, as quantified by their distance in the observed photometric bands, will
provide similar values of the conditional posterior—yielding a proposal that enables
both location-independent movement throughout the mass-age parameterization,
and approximate contour-based sampling for all of the n independent conditional
distributions p(M;, A;lua, a%, Y). As presented however, the motivation for the
partitions was that they allow location-independent exploration of multiple modes
and diverse regions of the parameter space. However, in our hierarchical model we
must deal with the additional contributions from the informative prior distributions
in Egs.(4.2) and (4.4). To do this, we perform the proposal using the ancillary
parameterization [22]. For applications where the lowest mass stars are above the
IMF break-point My, = M, this becomes

—(a=1) —(a—1)
- A; — - M . — M
Ai = (Z—M> s Mi = —(a:nll)n i , (47)
0A Mmin - Mmax(Ai)_(a_l)

where @ (x) is the CDF for the standard normal variable. Under this augmentation
scheme the model becomes

YIMLA R s, 0f ~ N (f 01, Ar. jiaso). R). (4:8)
Aila, o2 ~ Unif[0, 1], M;|A;, ua, o3 ~ Unif[0, 1], (4.9)

/LA|J§ ~ N (/Lo, ai//q)) , aﬁ ~ Inverse—x2 (vo, 002) . 4.10)
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Hence, the conditional distribution of any given individual mass-age pair reduces to
1 - -
P, Bilia, 0, V) o exp {_5“ (RIF")} L LA €101, @11
where
F o 2 N S\ T
F, = <Yi — fm,a;, pna, O'A)) <Yi — f(m;,a;, 14, o'A)) . 4.12)

By essentially placing all of the additional non-likelihood terms inside the mapping
between sufficient and ancillary augmentation, we can help facilitate the improved
performance of our likelihood-based proposal distribution. The impact of the trans-
formation can be seen by the relative differences in areas between corresponding
regions of the parameter space, i.e., the Jacobian. If the current state of the MCMC
chain for star i is (m;, a;), which is contained in polygon k, in cluster /, then we
implement the partition-based proposal as follows:

Algorithm 1 [For Computing the Proposal Distribution]

1. Select a cluster * with probability pﬁ*.
2. Select a polygon k* from within cluster /* with probability pl‘ZY o
3. Propose a point (m}, a;) uniformly within polygon k*, and map to (7, a’).

O

By encouraging moves between nearby clusters we can effectively explore
different regions of the parameter space with similar photometry, and hence, similar
likelihood. Note that although the partition is constructed in terms of the stellar mass
and age, the transformation defined by Algorithm 1 is one-to-one and monotonic,
and hence it forms a valid partition in the ancillary parameterization for any values
of wa and oi. However, the transformation is not affine and the partition no longer
consists of polygons. The transition probability corresponding to Algorithm 1 is
given by ¢ ((rﬁ,',d[), (m},af ) = pg*plvfk*u(nﬁ,', a;)|/|Ugx|, where J(m;, a;) is
the Jacobian of the transformation from the sufficient to ancillary augmentation
evaluated at the proposed state, and |Uy+| is the area (in the sufficient augmentation)
of the k*-th unique polygon within cluster /*. There is some freedom in choosing
both the cluster-to-cluster and within-cluster proposal probabilities. For the cluster-
to-cluster probabilities we compute the centroid of all centroids of polygons within
the cluster, providing an approximate “center” of the cluster (in R”) and then
compute Euclidean distances between all cluster centers. The cluster-to-cluster
proposal probabilities are then selected to be p;+ = exp {—d2 (x1, x1+)/ ,3}, where
d(-, ) is the Euclidean distance, x; and x;+ are the cluster centroids in photometric-
space, and S is a tuning parameter controlling how freely we propose to move to
nearby clusters.

All distances here are computed with respect to the Euclidean norm in
photometric-space independently of the mass-age location, thus imitating the
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posterior distribution and allowing free movement across modes in terms of the
stellar mass and age. For example, two distant regions of the parameter space that
produce the same expected photometry would be placed in the same cluster, and
the proposal distribution as constructed provides a high probability of proposing to
move between these disconnected regions. We note that the acceptance probability
is strongly influenced by the area of the polygon in the ancillary scheme; an artifact
of the ancillary transformation (4.7). This choice of cluster-to-cluster probabilities
mimics a random-walk Metropolis proposal, “centering” the proposal around the
current cluster, and proposing to move to regions of the parameter space with a
probability that reflects the similarity of the photometry to the photometry at the
current state.

As discussed, the size of the polygon in the ancillary parameterization is a
function of the hierarchical structure and could also be accounted for in selecting the
within-cluster probabilities if desired. For example, if the within-cluster proposal
probability is chosen to be proportional to the area of the region in the ancillary
parameterization, then it yields a uniform proposal over the area defined by the clus-
ter. In practice this is implemented by computing the polygon areas in the sufficient
parametrization and incorporating the Jacobian term. If this approach is taken then,
since the mapping between parametrizations depends on the hyperparameters 14
and ai, the Jacobian terms within the cluster would need to be recomputed at each
iteration. Uniform proposals across the cluster do not require this extra computation
but can be less efficient. In practice we combine this proposal distribution with
a random-walk proposal of the form: (m], a;k)—r ~ N((m;,a;)", Diag(r1, A2)),
where A ; are proposal variances that can be tuned to achieve desired acceptance
rates. This combination of proposal helps to facilitate both rapid local and global
exploration of the posterior distribution. Since the correlation between mass and age
depends on the region of the CMD, we do not attempt to approximate the correlation
between the variables. In our experience, there is little performance change when
using either the cluster-based or random-walk proposal distributions between 20—
80% of the time.

Checking the Effectiveness of Our Proposal

To understand the impact of the transformation, and the resulting proposal dis-
tribution, we begin by examining the components of the posterior distribution
within the original (m, a)-parametrization. Figure 4.7 shows the prior (Top) and
posterior (Bottom) surfaces for an individual star. The posterior surface is obtained
by combining the likelihood surface in Fig.4.2 with the prior as shown. As we
can see from the bottom panel of Fig.4.7, the posterior surface is challenging
to sample efficiently from, particularly given that the presence and scale of any
large-scale ellipsoidal trends can vary dramatically across stars. In light of this,
to retain computational robustness to the form of isochrone being used, and
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Fig. 4.7 (Top) Conditional prior surface for (Mo, Ao)|Y, ita, 0, and, (Bottom) conditional

posterior surface for (Mg, Ao)|Y, ia, %2' The corresponding likelihood surface is given in Fig. 4.2
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to maintain generality for non-isochrone settings, we avoid making observation-
specific approximations to these conditional posterior distributions.

Our alternative approach, using the ancillary transformation, is depicted in
Fig.4.8. The top plot displays the transformation of the posterior distribution in
Fig.4.7 to the ancillary parametrization. Since the posterior distribution in the
ancillary parametrization is simply a rescaling of the likelihood surface, we can
observe the similarity in structure to Fig.4.2. The bottom plot of Fig. 4.8 displays
a proposal distribution obtained using our algorithm. The current state of the chain
is highlighted by the black dot, and the proposal the proposal distribution mimics
the contours of the ancillary posterior, albeit wrongly centered around the current
state of the MCMC algorithm due to the random-walk style as implemented here.
However, for this particular example the variance of our proposal is considerably
greater than is desirable. This is the result of the observation falling in a region
of insufficiently high resolution relative to the observational errors. This lack of
resolution also illustrates the limitation of the “equi-expectation” approximation for
low-resolution tables. Given higher resolution tables (or observations with higher
measurement variance), and thus a higher resolution polygon-cluster proposal
distribution, we will steadily obtain more appropriate contours and variance in the
proposal.

As an analogous alternative to the random-walk style proposal, an independence
style proposal could also be used where the cluster weights are proposed based
on the distance between the observed photometry and the cluster centroids. This
strategy would likely be more effective than the cluster-based alternative, but the
large amount of computation required for each star and at each iteration renders
it considerably more computationally expensive. In seeking the optimal trade-off
between improved mixing and implementation speed, we elect not to pursue this
further.

Although the clustering of polygons is not, in principle, necessary, the large
number of polygons (>200,000) makes the construction of a polygon-to-polygon
proposal more challenging, more memory-intensive, and more time-consuming.
By adding the clustering of polygons, we need only store the much smaller
B x B cluster-to-cluster proposal probability matrix, and possibly the within-cluster
proposal probabilities (although this is not required for uniform proposals within
the cluster).

Addressing Block Correlations

The proposal distribution for the individual stellar masses and ages is useful only in
helping to sample efficiently from the series of conditional posteriors. As should be
anticipated from the hierarchical specification of the model, there remains a large
posterior correlation between (4, af‘) and (A, ..., Ay).

To help address these problems, we embed our sampler within a parallel temper-
ing (PT) framework [9] to facilitate easier movement around the posterior space.
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To sample p(0) with energy H(#) = —log p(0), PT proceeds by constructing
a sequence of tempered distributions, {p1(@), ..., pn(0)} of the form p;(0)
exp{—H(®)/Tj}, with Ty > ... > T} = 1. By applying a series of monotonic
transformations to the full posterior density, the full conditional densities in the
Gibbs sampler are also transformed in an identical manner. An attractive feature of
parallel tempering is that the modified conditional distributions require only trivial
modifications. The tempered conditional posterior of (w4, og) is given by

1 n
Pja- 05 IM. A, R.Y) ocexp {‘ ol [vw& +roa — 1) + Y (A — MA)2j| ]
Jj%A i=1

5 *(”%)
'(UA)

The conjugate marginal/conditional formulation can be shown to yield:

2 2 Kon_ (¢ x 2
vooy + (n — 1)s5 + (A — 1o)
oiIM, A, R, Y ~ Inverse—x° (ﬁ, 0 AT iotn ’
T; Vn
4.13)
A Tio?
MAIUK,M,A,R,Y~N(K°“°+'1 , o4 ) (4.14)
Ko+ n Ko+ n

where v, = vo+n+3(1 —Tj) and s3 = L 37| (4; - A)z. Since v, cannot be
negative, we must impose max ; T; < (vo +n + 3)/3. Typically either n, vy or both
are large, and hence this condition is not generally restrictive.

4.4 Empirical Investigations

Simulation Studies

Given the complex properties of the isochrone tables, it is important to validate that
the sampling algorithm can reliably converge to the correct posterior distribution.
See [21] for an illustration of typical complications when using MCMC with
isochrone tables. We approach this with an aggregate check of coverage properties.
That is, we simulate many datasets from the model, and we then fit the model to
obtain posterior intervals and check nominal and actual coverage are consistent.
This is a special case of the more general framework in [5]. For this aggregate check
we simulate 1000 datasets from the model for each of the parameter configurations
detailed in Table 4.1.
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Table 4.1 Details of coverage simulations used to validate the algorithm described in Sect. 4.3

Sim. | n p | Bands o (702 Vo Ko Number of datasets
100 3 | M(U),B,V) |81 |0.01 |1,000,000.0 1.0 | 1000

2 1000 3 | M(@U),B,V) |9.2 [0.05 |1000.0 100.0 | 1000

3 100,000 |3 |(M(U),B,V) |6.6 |0.16 |1000.0 10.0 | 1000

Table 4.2 Coverage properties of the different sampling algorithms for simulation configuration
1 (uo =8.1)

1% 2.5% 5% 25% 50% 75% 95% 97.5% 99%

M;

MH 0.8 2.1 4.3 24.4 49.0 739 94.0 96.9 99.0
MH + PT 0.7 2.0 4.1 234 49.0 74.2 94.9 97.6 99.1
PC 0.7 2.1 43 24.3 48.8 74.2 94.4 97.1 99.0
A;

MH 1.7 34 5.5 25.2 48.0 72.3 92.5 95.2 96.9
MH + PT 1.2 2.9 5.0 26.2 494 75.2 94.7 97.6 98.9
PC 1.2 2.8 4.9 254 49.3 75.4 95.0 97.6 99.0
MHa

MH 1.7 2.9 5.0 24.8 46.9 72.0 91.6 94.7 96.3
MH +PT 0.7 2.2 43 25.8 49.3 76.5 95.3 97.7 99.2
PC 0.7 1.9 42 25.1 48.1 75.0 94.6 97.3 99.0
MH 0.7 1.8 34 24.2 48.0 75.1 95.2 97.1 99.1
MH + PT 0.7 1.5 2.8 21.5 45.9 72.4 95.0 97.0 99.5
PC 0.7 1.7 34 23.8 48.2 75.2 95.1 97.3 99.2

For each of the three settings, there are four different MCMC schemes:

1. (MH): Vanilla scheme using only random-walk proposals for the individual
masses and ages, without tempering,

2. (MH +PT): As in (MH), with additional parallel tempering,

3. (PC): The Polygon-Cluster scheme of Algorithm 1, without tempering,

4. (PC+PT): As in (PC), with additional parallel tempering.

Due to limited computational resources, we did not implement the 4th scheme. In
all cases we combine the results from four chains, and each algorithm is run for
approximately the same total CPU time across the four chains. Remaining tuning
parameters such as the variance of the random-walk proposal, the number of clusters
and the cluster-to-cluster “variance” parameter 8 were chosen after pilot runs on a
subset of the datasets. Table 4.2 shows the coverage properties for a subset of the
parameters for simulation number 1.

The first, simplest method struggles to effectively sample the tails of the
posterior distributions, particularly for the main parameter of interest, and most
computationally challenging parameter, u,. Adding in tempering we do better
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in many cases, but some potentially worrisome discrepancies between actual and
nominal coverage still remain, even with tempering. The third method, using the
cluster-based partition proposal without tempering appears to do slightly better
than the standard approach both with and without parallel tempering. Although
we do not directly employ the combination of the cluster-based proposal with
parallel tempering across all 1000 datasets, we do recommend such an approach
for the analysis of a single dataset. While on aggregate the differences between
the approaches do not appear to be drastic, the results for any given dataset can
differ by a non-negligible amount. Brute force numerical integration for a subset of
the datasets suggests that the cluster-based proposal and the cluster-based proposal
with tempering better capture the tails of the distribution, although we defer a fuller
analysis for future investigation.

Results from configurations 2 and 3 are very similar to those presented above and
omitted for brevity. One important difference that we note here though is the size
of the dataset; configuration 3 analyzes 1000 datasets of 100,000 observations each:
an important test of the scalability of our approach. We run the analysis for each
dataset for a maximum of 24 h: a reasonable computational cost for such large-scale
analysis.

NGC 104: 47 Tucanae

“47 Tuc” is a globular cluster estimated to be 13,000-17,000 light years away,
originally discovered by Abbe Nicolas Louis de Lacaille in 1751 [7]. Being the
second largest and second brightest globular cluster, it has been extensively studied
in recent years. Examples include [10] and [19]. Here we reanalyze photometric
data to investigate possible age differences within the cluster and to assess the
sensitivity of estimates to the choice of hyperprior. The 47 Tuc data consists of
1,697 observed stars in V and B bands (p = 2), with no missing data. For the
analysis here we consider the distance modulus to be fixed at 13.33, although
the extension to estimating the distance modulus is, in principle, straightforward.
Figure 4.9 shows the data that we analyze: each dot corresponds to a star, with
accompanying measurement error. The colored dots in the figure represent the
theoretical isochrones: our model essentially seeks a distribution over these curves
that best represents the 47 Tucanae cluster. CMD-based estimates of the (single
log;() age of 47 Tuc typically range from 9.95 to 10.10 (9.0 — 12.5 billion years). In
light of this, we select the hyperparameters for the analysis to reflect the estimates
and uncertainty ranges in the literature:

9
o = 10.025, ko= o W= 1000 and ¢ = 0.032. (4.15)
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Fig. 4.9 Color-Magnitude Plot of the 47 Tucanae dataset. Each black dot represents a star in the
dataset, colored points represent tabulated theoretical isochrone values. The color of each point
represents its corresponding age, the mass, and metallicity of each point is not shown

These correspond to approximately
pwa ~ N(10.025,0.08%), 03 ~ N(0.03,8.1 x 1071),

The analysis was performed using the Polygon-Cluster proposal distribution for
the individual mass-age distributions, and a ladder of 8 logarithmically spaced
tempering distributions. We run a total of 10 chains, each for approximately 24 h,
and combine the results for estimation. Relevant convergence diagnostics were
checked, but we omit the details for brevity. Figure 4.10 shows the posterior median
and 95% intervals for each of the stars in the dataset, sorted by increasing posterior
median. We clearly see a heavy left-tail: a collection of approximately 100 stars
that appear to have a lower age than the rest of the cluster. An alternative cruder
but simpler visualization is given by simply plotting a histogram of the posterior
medians of the individual stars, as shown in Fig. 4.11.
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47 Tuc: 95% Posterior Intervals for Star Ages
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Fig. 4.10 Posterior intervals for the individual stellar ages a; (Top) and masses m; (Bottom). The
stars are sorted in order of the posterior median, shown as a black dot: the accompanying 95%
intervals are shown as gray bars
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47 Tuc: Posterior Median Ages of Individual Stars
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Fig. 4.11 Histogram of the posterior medians of all stars in the dataset. While providing a simpler
visual, the distribution of posterior medians is a less complete representation than the posterior
intervals of Fig.4.10

The long-held belief has been that globular clusters are formed in a single burst
from a single cloud of material. Based purely on the data and analysis here, however,
there is a suggestion that 47 Tuc may contain multiple star formation bursts.
Alternative explanations for the phenomena in Fig.4.10 include contamination
by foreground stars, misspecification or uncertainty in the distance modulus, or
bias induced by extinction: see Sect.4.5 for more details. Examining Fig.4.10,
there appear to be two bursts of star formation approximately 3 Gyr (billion) years
apart at 7.9 Gyr and 11.5 Gyr ago, respectively. Recent independent work [1] using
different techniques also suggests multi-burst SF in 47 Tuc, although analysis with
higher quality multi-band photometric data would be required before drawing such
scientific conclusions. Importantly, however, the flexibility in our model provides
sufficient richness to be able to investigate previously untestable assumptions.
Indeed, it is this additional flexibility and the appropriate modeling of uncertainty
that is the primary contribution of statistical research in astrophysics.
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4.5 Extensions and Future Work

Uncertainty in the “Black Box”

All of the previous analysis was predicated on the assumption that the “black box”
describing the relationship between the physical parameters and the observed data
(i.e., the isochrone mapping) is correct. In practice there is also uncertainty in
these mappings, and we now consider some approaches to investigate this. Ideally,
uncertainty in the mappings would be proliferated down through the mapping in
the form of uncertainties in previously fixed quantities, i.e., essentially creating an
expanded black-box/lookup table incorporating both different inputs and different
physical assumptions. In practice, however, this is rarely feasible without access to
the models that generate the lookup tables. In light of this, we consider a simpler
problem: comparing competing sets of isochrones. For simplicity we consider
comparison of two competing black boxes, although the extension to the comparison
of more than two is straightforward.

Given two competing models, M; and My, differing only by the specific choice
of isochrone table, i.e., f in Eq. (4.1), we specify prior probabilities for each model:
p(Mp) and p(My). In all cases here we begin with a neutral prior, selecting
p(Mi) = p(Mz) = 0.5. The posterior model probabilities are then given by

1

pM) [ @ pM16.M>)d6’
pM) [ p@ pH16.M)do

pMi]Y) =

(4.16)
1+

thus requiring only additional computation of the ratio of normalizing constants
for the two competing posterior distributions. More general model comparisons
allow for different priors p(6|M;), although in our application the prior p(6) is
the same for both models. Meng and Wong [15] show how one can estimate ratios
of normalizing constants using the bridge sampling identity:

@ _ Eilg:(6)a©)] (4.17)

ci - Erq1(@)a@®]

where « is an arbitrary function providing a “bridge” between the two densities.
They also provide a fast-converging iterative scheme to approximate the estimator
under the optimal «. Note that the expectations of each unnormalized posterior are
taken with respect to the other model. Therefore, if posterior samples are available
for the two competing models, then implementing this model comparison boils
down to the evaluation of the unnormalized posterior density for each draw from
its rival model.
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Multi-Cluster Models

As discussed in the context of the 47 Tucanae analysis, there are potentially appli-
cations where we want to allow for the possibility of multiple stellar clusters. The
model defined by (4.1)—(4.4) is explicitly designed for single-cluster populations,
although one possible generalization is conceptually straightforward. We could
consider replacing (4.2) by an alternative mixture distribution:

ind
AlHG iam o3 N (Rams 03 ), Hie (L2, K),  @18)

where H; is the cluster membership of star i. In most applications H; would be
given a uniform prior. When combined with identical priors on the cluster-specific
hyperparameters, the posterior is defined only up to label switching. While, in
principle, the number of clusters K could also be estimated, this would likely
be fixed as part of the analysis. The additional computational burden induced
by (4.18) rests primarily in the additional block correlations between the cluster-
and individual-level variables.

Extinction and Non-ignorable Missingness

In many examples it is possible that observations for some stars are either partially
(i.e., one or more bands) or fully (i.e., all bands) missing. The missing data
mechanism for this missingness can potentially depend on the intrinsic brightness
of the stars. That is, brighter stars are more likely to be observed than dimmer ones.
Thus, the missing data mechanism can potentially provide information about the
model parameters. For a given detector the detection/missingness probabilities are
often well understood by careful calibration and testing. In such cases we often
have access to a series of functions that express the probability of missingness
as a function of the brightness of the star, a functional form that can then be
coherently built into our hierarchical model. Again, within the Bayesian framework
the extra layer can be added in a relatively straightforward way, although this
will entail an additional computational burden. The importance of this missingness
mechanism varies depending upon the type of stellar cluster being analyzed, and
thus we currently restrict to those datasets where it is unlikely to affect the resulting
inference.

Going Beyond Stellar Populations

Computer models and “black-box” likelihoods are increasingly common in many
scientific disciplines, and can pose some interesting challenges to traditional com-
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putational methods. In the case of analyzing stellar populations, that the likelihood
is tabulated is both a blessing and a curse. We benefit in that much of the structure
in the model is known a priori, and we show how an effective proposal distribution
can be pre-computed independent of data. However, the black box proves to be
a curse in that understanding and intuition are harder to come by, as are analytic
simplifications and approximations. Despite this, one can construct an efficient and
effective sampling scheme even for highly nonlinear and degenerate likelihoods that
are more robust to the properties of the black box than naive methods.

The frequency of statistical applications involving components of the model that
cannot be written down analytically is likely to increase in the coming years. There
is much work to be done to better understand the computational and inferential
implications of such models, and we hope the strategies and methods explored in
this article can contribute to further research in this area.
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