
Chapter 3
Algebraic Statistics, Tables, and
Networks: The Fienberg Advantage

Elizabeth Gross, Vishesh Karwa, and Sonja Petrović

3.1 Introduction

Stephen Fienberg’s early work on contingency tables [BFH74] relies on using
intrinsic model geometry to understand the behavior of estimation algorithms,
asymptotics, and model complexity. For example, in [Fie70], Fienberg gives a
geometric proof of the convergence of the iterative proportional fitting algorithm for
tables with positive entries. The result in [Fie70] relies on his study of the geometry
of r × c tables in [Fie68] and his and Gilbert’s geometric study of 2 × 2 tables
[FG70]. This approach to understanding models would eventually fit within the
field of algebraic statistics, a general research direction that would take hold in the
2000s, over 25 years after the publication of [Fie70] and the 1974 edition of Bishop,
Fienberg, and Holland’s book [BFH74], whose cover displayed the independence
model for 2 × 2 tables as an algebraic surface.

The term “algebraic statistics” was coined in 2001 [PRW01] and generally refers
to the use of broader algebraic—non-linear—and geometric—non-convex—tools in
statistics. While the use of algebra and geometry had been long present in statistics,
before the 2000s, linear algebra and convex geometry were the main tools used
consistently. The field of algebraic statistics is now a branch of mathematical statis-
tics that relies on insights from computational algebraic geometry, combinatorial
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geometry, and commutative algebra to improve statistical inference. As algebraic
statistics matured and caught the attention of many researchers, Fienberg and his
students and collaborators reformulated several fundamental statistical problems,
e.g. existence of maximum likelihood estimators and ensuring data privacy, into
the language of polyhedral and algebraic geometry. Today Fienberg’s intuition and
influence remain central to one of the principal applications in algebraic statistics:
testing goodness of fit of log-linear models for discrete data. Within the last decade
or so, much of his work in this area focused on log-linear network models. In this
regard, Fienberg defined new models, explained how to represent relational data
as contingency tables in order to apply tools from categorical data analysis, and
addressed the problems of estimation, model fit, and model selection. This paper
presents a brief overview of this line of work heavily influenced by Fienberg’s
vision, which continues to inspire us.

3.2 Geometry and Algebra of Log-Linear Models

Let us recall the basics and fix notation. Let I = [d1] × · · · × [dk] be a finite set
that indexes cells in a contingency table u ∈ Z

d1×···×dk

≥0 . The (i1, . . . , ik)-cell counts
the number of occurrences of the event {X1 = i1, . . . , Xk = ik} for k categorical
random variables with Xi taking values on a finite set [di] := {1, . . . , di}. Log-linear
models are probability distributions on the discrete set I whose sufficient statistics
are given by marginals, i.e. subtables of the table u obtained by summing u across a
subset the index set I; since marginalization is a linear map, it can be presented as
matrix multiplication. Specifically, a log-linear model for I is a linear exponential
family defined by an m×|I| matrix A, called the design matrix, taking the following
form:

Pθ(U = u) = exp{〈Au, θ〉 − ψ(θ}, (3.1)

where θ ∈ R
m is the vector of model parameters and ψ(θ) the normalizing constant.

Note that specifying the matrix A completely specifies the contingency table model
for X1, . . . , Xk , as it determines the vector of minimal sufficient statistics Au for
the linear exponential family in (3.1). As is customary in algebraic statistics, we
will denote the model (3.1) by MA.

Let us consider one of Fienberg’s early favorite examples: the model of indepen-
dence of two categorical random variables X1 and X2. Here, A is a (d1 +d2)×d1d2
matrix of the following form, where the first d1 rows each have d2 ones and the last
d2 rows contain d1 copies of the d2 × d2 identity matrix:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1

1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sufficient statistic for MA is the vector of marginal counts (that is, table row
and column sums). For a contingency table u, these counts are computed as:

A

⎡
⎢⎣

u11
...

ud1d2

⎤
⎥⎦ = [

u1+ . . . u+d2

]
. (3.2)

In [Fie68], Fienberg describes the geometry of MA in detail, describing the model
of independence as the intersection of the manifold of independence with the
probability simplex. In algebraic geometry, the manifold of independence is a Segre
variety, a categorical product, which Fienberg describes explicitly by detailing the
linear spaces corresponding to the product fibers, or in other words, every preimage
of the map described by Eq. (3.2). In addition, the defining equations of the Segre
variety corresponding to the independence model are stated in [Fie68] in statistical
terms (see Section 4 of [Fie68]). These equations, which are polynomial equations
in indeterminates that represent joint cell probabilities, are a key ingredient to
assessing model fit.

Indeed, assessing model fit for log-linear models, and consequently, log-linear
network models, is possible due to a fundamental result in algebraic statistics that
establishes a connection between model-defining polynomials and sampling from
the conditional distributions of log-linear models. The model-defining polynomials
of interest are generating sets of polynomial ideals called toric ideals [Stu96], §4
and §5. The essential component, which binds together the statistical and algebraic,
is the vector of (minimal) sufficient statistics for the log-linear exponential family,
the vector Au in the definition above.

One way to perform goodness-of-fit testing for log-linear models, especially
in sparse settings such as networks, is to perform Fisher’s exact test (see e.g.
Section 2.6 in [Agr92]). In many cases, however, it is infeasible to compute the
exact conditional p-value, thus it is estimated using a Markov chain Monte Carlo
(MCMC) method. The exact conditional p-value of a contingency table u is the
probability that the Pearson’s χ2 statistic of a random data table is larger than
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the Pearson’s χ2 statistic of the table u, conditional on the observed values of the
sufficient statistics. The set of all tables with the same sufficient statistics as u is
called the fiber of u under the model MA and is defined as follows:

FA(u) := {v ∈ Z
d1×...×dk

≥0 : Au = Av}.

The naming of the reference set FA(u) is derived from algebraic geometry: a fiber
of a point of the linear map defined by A is its preimage under that map; in this
case, we are considering the set of non-negative integer points in the preimage of
the sufficient statistics Au. In order to perform the MCMC method to estimate the
exact conditional p-value, a set of moves must be given, and this set of moves must
connect all elements in the fiber FA(u) so that the conditional distribution on the
fiber can be sampled properly. Such a set of moves is called a Markov basis.

Definition 2.1 A Markov basis of the model MA is a set of tables B :=
{b1, . . . , bn} ⊂ Z

d1×...×dk for which

Abi = 0

and such that for any contingency table u ∈ Z
d1×...×dk

≥0 and for any v ∈ FA(u), there
exist bi1 , . . . , biN ∈ B that can be used to reach v from u:

u + bi1 + . . . + biN = v

while remaining in the fiber at each step:

u +
N∑

j=0

bij ∈ FA(u), for j = 1 . . . N.

Note that the last requirement simply means that each move needs to preserve non-
negativity of cells. As an example, let us consider the independence model with
N = 2, d1 = 3, and d2 = 3. Then the fiber FA(u) for any u is a collection of 3 × 3
tables. Examples of three different Markov moves for the independence model in
this setting are

1 −1 0
−1 1 0
0 0 0

,
−1 0 1
0 0 0
1 0 −1

,
0 0 0
0 1 −1
0 −1 1

.

It is hard to check a priori whether a given set of moves does in fact form
a Markov basis for the model. However, the following foundational result from
algebraic statistics allows one to compute a Markov basis by computing a generating
set of a polynomial ideal.



3 Algebraic Statistics, Tables, and Networks: The Fienberg Advantage 37

Theorem 2.2 ([DS98]) A set of vectors B = {b1, . . . , bn} is a Markov basis of
the log-linear model MA if and only if the corresponding set of binomials {xb+

i −
xb+

i }i=1,...,n generates the toric ideal IA := (xu − xv : u − v ∈ kerZ A).

Considering again the independence model with N = 2, d1 = 3, and d2 = 3, the
binomials associated with the three tables above are

x11x22 − x12x21, x13x31 − x11x33, x22x33 − x23x32.

One can check that these three polynomials are not enough to generate the ideal IA,
and thus more moves are needed for a Markov basis.

Theorem 2.2 is a powerful result that connects categorical data analysis to
algebra. By connecting network analysis to categorical data analysis, Fienberg was
able to use the full force of this theorem for testing model fit of statistical network
models.

3.3 Log-Linear ERGMs and Goodness-of-Fit Testing

As stated in the editorial piece [PSY19], Fienberg took joy in rediscovering old
concepts from new points of view that gave them new interpretations and wider
applicability; this was evident not only from his research articles and conference
presentations, but various interviews, see, for example, [Vie15]. We follow his lead
in the way we define log-linear network models.

Generally, a statistical network model is a collection of probability distributions
over Gn, the set of all (un)directed graphs on n vertices. The Fienberg approach to
the analysis of statistical network models, dating back to the late ‘70s and early ‘80s,
relies on explicitly making the connection to categorical data analysis by viewing
graphs as contingency tables. For example, in [FW81a], Fienberg and Wasserman
view a directed graph with n vertices as a n × n × 2 × 2 table Y where Yij00 = 1
if there is no edge between vertex i and j , Yij11 = 1 if there is a reciprocated
edge between i and j , Yij10 = 1 if there is a non-reciprocated edge from i to j ,
and Yij01 = 1 if there is a non-reciprocated edge from j to i, and all entries are 0
otherwise. Using this n × n × 2 × 2 table, Fienberg and Wasserman then describe
nine variants of a simple statistical network model, called the p1 model [HL81], in
terms of table marginals and show how these models can be fit using a version of
iterative proportional scaling for multidimensional contingency tables. In addition,
they also develop a variant of the p1 model for K subgroups determined by nodal
attributes, by collapsing the n × n × 2 × 2 into a K × K × 2 × 2 table; a precursor
to the directed stochastic blockmodels.

The p1 model and its variants described by Fienberg and Wasserman in [FW81b]
are examples of log-linear ERGMs. Log-linear ERGMs are exponential family
random graph models with a log-linear interpretation. Another example of log-linear
models is stochastic blockmodels, which are given a contingency representation in
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[FMW85]. Following the contingency table framework of the Fienberg approach, to
define a log-linear ERGM, one chooses an embedding φ : Gn → R

� such that for all
G = (V ,E) we have φ(G) = ∑

e∈E φ(e), and implicitly uses the embedding φ to
represent G as a vector. For example, for directed graphs, a reasonable embedding
would embed Gn into R

n2
and G would be represented by its vectorized adjacency

matrix, while for undirected graphs R(n
2) would work equally well. For directed

graphs, a suitable embedding rooted in [FW81a] (see also [FW81b]) maps Gn into
R

n×n×2×2 by representing graphs by their vectorized n × n × 2 × 2 Fienberg-
Wasserman table as described above or a vectorized table of size

(
n
2

) × 2 × 2 after
removing redundant cells. These embeddings allow us to refer to graphs as vectors.

An exponential family random graph model, or an ERGM for short, is a
collection of probability distributions on Gn that places the following probability
on each graph G ∈ Gn:

Pθ(G) = Z(θ)eθ ·t (G), (3.3)

where G is uniquely represented as a vector in R
�, θ is a row vector of parameters

of length q, the map t : R
� → R

q computes the sufficient statistics, and Z(θ)

is a normalizing constant. The image of the sufficient statistic map t is a vector in
which each entry is a network statistic used to specify the model, such as edge count,
degree of a given vertex, number of edges in a given block of vertices, etc. When the
sufficient statistic is a linear function on the entries of a natural contingency table
representation of the graph, as in degree-based models or stochastic blockmodels,
then the sufficient statistic map t can be described with a design matrix A and the
model (3.3) takes the form of (3.1). When this happens, we call the model a log-
linear ERGM.

Definition 3.1 We call an exponential family random graph model a log-linear
ERGM if the sufficient statistic map t in the ERGM specification (3.3) is a linear
map t : R� → R

q from the space of graphs to the space of the minimal sufficient
statistics of the model.

Log-linear ERGMs include degree-based models such as the β-model, models
that include effects for reciprocity, such as p1 models, and models for data with
categorical nodal attributes, such as stochastic blockmodels. Since the sufficient
statistic t is a linear map, dyadic independence is implied for a log-linear ERGM.
Dyadic independence is another way to say that for each pair of vertices, i and j , the
edge configuration (e.g. no edge between i and j , directed edge from i to j , directed
edge from j to i, bidirected edge between i to j ) is independent from the edge
configuration between any other pair of vertices. Thus, we can fully specify a log-
linear ERGM by specifying the distribution over each set of dyadic configurations.

Example 3.2 (Stochastic Blockmodels) Extremely popular in practice, this family
of log-linear ERGMs models networks whose nodes are partitioned into groups–
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blocks—according to some nodal attributes. For a directed network, each dyad can
be in one of four states represented as follows: (0, 0) represents no edge, (1, 0) an
edge from i to j , (0, 1) an edge from j to i, and (1, 1) a bidirected edge. Note that
if the network is undirected, the model simply collapses to having only two dyadic
states: (0,0) and (1,1). Denote by pijkl the probability of the dyad (i, j) to be in state
(k, l).

Edge formation is governed by what Fienberg and Wasserman call choice
parameters, denoted by δrs , and reciprocity effects ρrs . These parameters are
defined on the level of blocks. In addition, Fienberg liked the use of an additional
set of parameters λij for normalization: ensuring that each dyad is observed in only
one state at a time. Specifically, the model was defined in [FMW85] as follows:

log pij00 = λij (3.4)

log pij10 = λij + δb(i)b(j)

log pij01 = λij + δb(j)b(i)

log pij11 = λij + δb(i)b(j) + δb(j)b(i) + ρb(i)b(j),

where each node in the graph belongs to one of K blocks, B1, . . . , BK , and b(i)

denotes the (known) block assignment of vertex i.
There are various special cases of stochastic blockmodels. For example, we can

choose δrs = δ + αr + βs and ρrs = ρ, as in ([FMW85], Equation (2.10)). Then
the model is the following special case:

log pij00 = λij (3.5)

log pij10 = λij + δ + αb(i) + βb(j)

log pij01 = λij + δ + αb(j) + βb(i)

log pij11 = λij + 2δ + αb(i) + αb(j) + βb(j) + βb(i) + ρ.

In this setting, the sufficient statistics counted by the map t are the number of
configurations for each dyad, the total number of edges, block in-degrees, block
out-degrees, and the total number of reciprocated edges in the network. Here, the
in-degree of block Bj (the number of edges that enter the block) is computed by
adding in-degrees of all the nodes in the block, din

Bj
= ∑

i∈Bj
din
i . The out-degree is

defined similarly.
Let us consider the space of directed graphs on n = 3 vertices V = {1, 2, 3} with

block structure B1 = {1, 2}, B2 = {3}, the design matrix A defining the linear map
t would be as follows:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2
0 1 1 2 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1
0 1 1 2 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let G be represented as a vector of length 12, where the first four entries correspond
to the four possible dyadic configurations between vertices 1 and 2, the second four
correspond to the four possible dyadic configurations between vertices 1 and 3, and
the third four correspond to the four possible dyadic configurations between vertices
2 and 3. Then the first three rows of A count the number of configurations for each
dyad (for simple graphs this count should always be one), the fourth row of A counts
the total number of edges in G, the fifth and sixth rows count the block in-degrees,
the seventh and eighth rows count the block out-degrees, and last row counts the
total number of reciprocated edges in the network.

Example 3.3 (p1 Models) The p1-model for directed graphs was introduced by
Holland and Leinhardt [HL81] and extended by Fienberg and Wasserman [FW81b].
It is a model that includes two nodal effects, one for popularity and another for
expansiveness, and a reciprocation effect. Following Example 3.2, we denote pijkl

the probability of the dyad (i, j) to be in state (k, l) ∈ {0, 1}2. The dyadic
probabilities for the p1-model are specified as follows:

log pij00 = λij , (3.6)

log pij10 = λij + αi + βj + δ,

log pij01 = λij + αj + βi + δ,

log pij11 = λij + αi + αj + βj + βj + 2δ + ρij .

The parameters αi and βi record the rates at which the node i sends and receives
links, while ρij controls reciprocation. Note that the model specification includes
additional parameters. Namely, there is δ, a density parameter and

(
n
2

)
dyadic effects,

λij , which are normalizing constants as described in Example 3.2.
The p1 model has three main variants that capture different reciprocation effects:

zero reciprocation, constant reciprocation, and dyad-specific reciprocation, also
referred to as differential reciprocity. For example, in the constant reciprocation
case, ρij = ρ for all i, j . The sufficient statistics for the p1-model with constant
reciprocation consists of the number of edges, the in-degree sequence, the out-
degree sequence, and the number of reciprocated edges.

The design matrix A for several small examples can be found in [PRF10].
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While Fienberg’s work allows for a transfer of technology from the contingency
table literature to networks, the interpretability of models and model equivalence
was not always immediate and required additional insight. As noted in [Hab81]
and reiterated by Fienberg and co-authors in [FPR10], even simple ERGMs, such
as the p1 model, pose fundamental challenges to the practitioner even within
the contingency table setting, especially when testing model goodness of fit. For
example, as pointed out by Fienberg and co-authors in [PRF10], many network
models such as the p1 model are theoretically problematic, since, in these models,
the number of parameters depends on the number of vertices. This means that as
the population size grows, the model complexity also increases, unlike traditional
statistical models, where the complexity is often fixed and independent of the sample
size. Another challenge to using existing traditional methods from categorical
data analysis in goodness-of-fit testing and model selection is that the data are
naturally sparse, making standard asymptotic methods unreliable. Under such
conditions, exact conditional tests are preferred for model selection and goodness-
of-fit testing. However, as mentioned in the previous section, exact conditional tests
pose their own difficult problems for networks, mainly since the exact distribution
is over a space that is combinatorially large, and in most cases, innumerable.
Finally, the contingency tables described by Fienberg and Wasserman are highly
redundant and are subject not only to symmetric constraints but also product
multinomial constraints, e.g. since each dyad can only be in one of the four possible
configurations Yij00 + Yij10 + Yij01 + Yij00 = 1 for all i �= j .

Fienberg was able to provide a work-around to the difficulties posed by exact
conditional tests by using Markov bases and algebraic statistics. In 1998, Sturmfels
and Diaconis published Theorem 2.2 [DS98]. Afterwards, the idea of using toric
ideals for goodness-of-fit testing for various log-linear models gained traction,
and about 10 years later, Fienberg, Petrović, and Rinaldo applied Theorem 2.2 to
three of the main variants of the p1 model in [PRF10], essentially introducing
algebraic statistics to the field of network analysis. In particular, they describe
Markov moves for each variant and its corresponding simplified model (the model
obtained after forgetting the normalizing parameters). The work not only provided
a breakthrough in goodness-of-fit testing for log-linear ERGMs but also had an
impact in combinatorial commutative algebra. The toric ideals corresponding the
p1 model are connected to toric ideals of graphs, defined in [SVV94] (see also
[Vil95] and [OH00]) and more generally, toric ideals of hypergraphs. Indeed, the
results of [PRF10] provided an applied motivation for the systematic study of toric
ideals of hypergraphs in the field of combinatorial commutative algebra (see e.g.
[GP13, HT08, PS14, PTV19]).

Before [PRF10], Markov bases were always used in the setting where the only
constraints on the contingency tables were that every entry needed to be non-
negative. However, in the network setting, particularly in the case of a single
sociometric relation, cells of the contingency tables are either 0 or 1 and there is
only a single observation for each dyad. This was the first time in the Markov
bases literature that sampling constraints of this form were directly incorporated
in the study of Markov bases (note that related work [HT10], and relevant for the



42 E. Gross et al.

problem here, on connecting tables with 0/1 entries appeared in the same volume).
Fienberg and co-authors were able to effectively handle the network constraints by
computing a minimal generating set of this ideal first and then by removing basis
elements that violate the condition of one observation per dyad, which results in a
product multinomial sampling scheme. Fienberg’s idea of adding the normalizing
parameters λij s to the models directly enforced the 0/1 constraint in sampling. In
particular, if a move produced by a Markov basis computation is applicable to the
observed network, in that it does not attempt to remove edges that are not present,
then it will follow the sampling constraint in that it will not add an edge where there
is one already. Examples of applicable and inapplicable moves for the p1 model and
the Sampson data depicted in Fig. 3.1 are shown in Figs. 3.2, 3.3, and 3.4.

It should be noted that Fienberg’s idea to prune non-applicable moves was novel
and paved the way for practical implementation of a goodness-of-fit test for log-
linear ERGMs [GPS16]. Indeed, in [DFR+08], Fienberg and co-authors observed
that Markov bases are data independent, meaning that they describe all the moves
required to guarantee connectedness of any fiber; in other words, Markov bases do
not depend on the observed network, only the model. This observation can help
transform otherwise unwieldly sets of Markov moves into smaller and easier to
manipulate sets of moves. For example, without pruning, the naive computation of a
Markov basis for the p1 model with constant reciprocation with 4 nodes has 80,610
moves, while the pruned Markov basis consisting of only elements applicable
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Fig. 3.1 The directed graph representation of Sampson’s monastery dataset [Sam69]
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Fig. 3.2 A move from the Markov basis for the p1 model with zero reciprocation. Left: Edges to
remove. Right: Edges to add. This move can be applied to the network in Fig. 3.1 as it preserves
node in-degrees and out-degrees. Note that edge 4 ← 10 is reciprocated in the data, so after the
move is applied, the total number of reciprocated edges is reduced by 1
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Fig. 3.3 A move from the Markov basis for the p1 model with zero reciprocation. Left: Edges to
remove. Right: Edges to add. However, this move cannot be applied to the network in Fig. 3.1 as
the dyad (3, 12) is observed in the state (0, 0) rather than (1, 0); that is, the edge 12 → 3 is not
present, so it cannot be removed
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Fig. 3.4 A move from the Markov basis for the p1 model with constant reciprocation. Left: Edges
to remove. Right: Edges to add. This move can be applied to the network in Fig. 3.1. It preserves
the number of reciprocated edges: the dyad (4, 10) changes from reciprocated to directed edge, but
the dyad (6, 10) changes from directed to reciprocated
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to simple networks and decomposed into essential building blocks, computed in
[PRF10], has about 10 moves.

This idea was a starting point of departure from the algebraic status-quo
approach, which is traditionally blind to data and as such leads to slow mixing
times of the resulting Markov chains. After Fienberg’s work in [PRF10], the main
computational challenge remained open to make the theory useful for network data
in practice. To this end, working within the data dependent paradigm, [GPS16]
developed an algorithm to approximate the exact conditional p-value for log-
linear ERGMs and implemented the algorithm for the p1 model. The algorithm
approximates the exact conditional p-value by using applicable Markov moves
generated on an as-needed basis to move around the fiber. At each network in the
chain, a goodness-of-fit statistic is computed and compared to the observed network.
This adapted Metropolis-Hastings algorithm is described in detail in [GPS16].

For exposition and illustration of theoretical ideas, Fienberg saw great value in
small data; for example, Sampson’s monastery dataset [Sam69] (see Fig. 3.1) was
the running example in [ABFX09] and also was an example dataset in Fienberg’s
survey of statistical network models with Goldenberg et al. [GZFA10]. Thus, the
paper [GPS16] revisited the Sampson’s monastery dataset and tested the fit of the
p1 model. The Sampson’s monastery dataset, in Fienberg’s words, was one of the
reasons behind the construction of the Holland-Leinhardt p1 model in the first place.
However, this is not to say that Fienberg was not concerned with challenging big
data problems, and the ideas described here do scale, e.g. [KP16] tests model fit for
the β and p1 models on co-authorship and citation networks of statisticians [JJ16]
of about 3000 authors and 3000 papers. Finally, Fienberg was also an avid supporter
of applications of statistics; it was he who suggested to the third author to study the
Japanese corporate data set from The New York Times back in 2014 from the point
of view of the p1 model. As [Pet19] illustrates, the goodness-of-fit test confirms the
Japanese Prime Minister’s intuition.

3.4 Beyond Simple Graphs

The rapid increase of data-collecting mechanisms in recent decades has resulted in
complex forms of network data, including multivariate and multi-agent networks.
Still, in the growing field of network science, such data are still often represented
in the form of a simple graph, mainly because simple random graph models are
assumed to be easier to estimate and fit. However, such simplifications are not
necessary with Fienberg’s view of networks as contingency tables. This is because
neither multiple observations on a single dyad, which increase cell counts in
the table, nor multiway interactions, which increase table dimensions, present an
additional layer of difficulty for estimation or testing model fit. On the contrary, the
sampling algorithms based on Markov bases become easier, because the sampling
constraint is relaxed.
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One example of this simplification is when experiment data consisting of
multiple observations is summarized as a simple graph by way of thresholding—
preserving an edge between two nodes only if it was observed at least a fixed
number of times. This happens very often in neuroscience and chemical reaction
experiments. It is also often applied to social interactions data such as the co-
authorship network in Fig. 3.5 below. In the co-authorship network, an edge (i, j)

is present in the co-authorship graph if at least 4 joint papers were written by
authors i and j . Why 4? This thresholding number of choices seems arbitrary at
best (changing it may drastically change the structure of the graph), is done out of
convenience, and in many applications results in significant information loss.

In [FMW80] and [FMW85], Fienberg, Meyer, and Wasserman set up the log-
linear framework for multivariate directed graphs. We can think of a multivariate
graph as a multi-layered network. For example, in the technical paper [FMW80],
Fienberg, Meyer, and Wasserman consider a community of individuals and networks
formed by three relations, information, money, and support; these relations are
referred to as sociometric generators. In [FMW85], the authors develop extensions
of [FMW80] to allow for covariates. Motivated by this, [RPF13] (see also [RPF10]
for further details) study the generalized β-model for random graphs. They consider
the log-linear model for undirected graphs whose sufficient statistics are node
degrees, but they allow for the possibility that each dyad in the network be sampled
a different number of times. Applying the geometric and combinatorial properties
of log-linear models under product multinomial sampling schemes from [FR12],
they derive necessary and sufficient conditions for MLE existence and discuss its
asymptotics.

The second example of data simplification is also well illustrated using co-
authorship data: it is common for multiway interactions to be collapsed to their

Fig. 3.5 The graph and the hypergraph representing the same co-authorship data. In the graph on
the left, it is not clear at all that the data corresponds to exactly 3 published papers, for example,
which is clear in the hypergraph on the right. Graphs in the figure adapted from [KP16]
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induced pairwise interactions. However, most of the time, capturing the multiway
interaction is more realistic and informative. Figure 3.5 shows how the information
from data that naturally comes in form of a hypergraph is obscured when represented
by the underlying graph. Indeed, once the first co-authorship network data for
statisticians was collected and released in [JJ16], the last two authors set out to
explore the effects of these data summaries. In [KP16], it is shown what information
is lost by reducing the data to a simple graph by presenting multi-observation table
data summaries, core-decomposition summaries, and hypergraph data summaries,
all of which suggest possibly different conclusions than those from the derived
simple graphs. For example, the authors considered the inner-most clique, that is,
the largest completely connected subgraph, of the co-authorship graph where there
is an edge between two authors if they coauthored at least 4 joint papers. While
these authors have many neighbors, i.e. their nodes have a high degree, we argue
that degree-based modeling on the simple graph does not capture everything behind
the data. Specifically, Fig. 3.6 shows that the secret behind these cliques is a single
many-author paper in both cases.

With the issues illustrated in [KP16] in mind, Fienberg and co-authors introduce
the β model for random hypergraphs in [SSR+14], which builds upon and general-
izes the well-studied β model for random graphs. Directly motivated by Fienberg’s
earlier foundational work, the authors provide two algorithms for fitting the model
parameters, an iterative proportional scaling algorithm, and a fixed point algorithm.
Furthermore, Fienberg and co-authors prove that both algorithms converge if the
maximum likelihood estimator (MLE) exists, and they provide algorithmic and
geometric ways of dealing the issue of MLE existence—one of Fienberg’s favorite
problems.

Fig. 3.6 The inner-most clique of each of the two co-authorship graphs studied in [JJ16]: each
corresponds to a many-author paper. Graphs in the figure adapted from [KP16]
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3.5 Closing Remarks

Fienberg always used to say how problems never go away, one just sees them under
a new light. In this survey of Fienberg’s work connecting categorical data analysis
and algebraic statistics to network science, we hope we illustrated, in essence, this
sentiment of continual discovery and rediscovery.
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