
Chapter 11
Statistical Issues in Assessing the
Reliability of Eyewitness Identification

Karen Kafadar

11.1 Introduction

Eyewitness identification (EWI) plays a critical role in criminal cases, from the
investigation of the event to the courtroom trial. Almost no other evidence can be as
powerful to a jury as a victim who points to a defendant and says, “Yes, he’s the one
who raped me.” Yet, as we all know from our own personal experiences, memory can
be fallible. The Innocence Project found that over ∼70% of 375+ DNA exoneration
cases involved mistaken eyewitness identifications.1 Wells et al. [43], Clark et al. [9]
as the source of filler error rates (eyewitness mistakenly identifies a known-innocent
filler as the perpetrator) is as high as 21.2% when the true perpetrator was present
and 34.5% when the true perpetrator was absent. For a procedure commonly used in
law enforcement proceedings, these error rates are frighteningly high. What factors
lead to such high error rates? Can the levels of any of those factors be controlled by
law enforcement to ensure lower error rates?

Errors in EWI can arise from: (a) identifying an innocent suspect from a lineup
(false positive), or (b) failure to identify the correct perpetrator from a lineup when
the perpetrator is present (false negative). Either error has severe consequences: the
innocent suspect goes to jail and the true perpetrator is free to commit further crimes.

A tragic, yet not rare, example of memory infidelity arose in the case of Jennifer
Thompson who, on a July evening in 1984 as a college student in North Carolina,
was sexually assaulted. From Thompson’s sketch, the police collected a series of
potential suspects and asked her to identify her attacker from a photo lineup. She

1innocenceproject.org, accessed 1 September 2021.
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tentatively selected Ronald Cotton from the lineup. The police detective asked,
“You’re sure?” She replied, “Positive. Did I do OK?” The detective reassured her:
“You did great.” Later, Thompson was asked again to identify her attacker from
a second, physical lineup of potential suspects, in which only Ronald Cotton was
included from the first lineup. Not surprisingly, only Cotton looked familiar to her
(from the previous lineup), and she confidently picked the same man. Ronald Cotton
spent over 10 years in prison before he was exonerated by DNA evidence in 1995.2

The processes of encoding the event, consolidating the information in the brain,
and reconstructing it at a later time, are all imperfect, leading to memory degradation
and misconstructed events. When those imperfect memories lead to misidentifica-
tions, the consequences are serious, both in convicting innocent suspects and in
freeing the true culprit to commit further crimes.

Despite much research on memory, relatively few factors have been considered
in eyewitness identification (EWI) research, especially in view of its critical role in
criminal cases. It can be the most heavily weighted evidence in a case where the
available forensic evidence is either lacking (e.g., insufficient biological material
for a DNA analysis) or has questionable probative value (e.g., bite marks). In view
of law enforcement’s reliance on eyewitnesses, the National Academy of Sciences
convened a Committee in 2013 to conduct an in-depth study of its procedures and
practices, to better assess EWI error rates, and especially to identify the factors
that contribute to its reliability or lead to misidentifications. The Committee issued
its report in October 2014 ([31] hereafter, “NAS report”) and described aspects of
vision and memory, environmental factors, and law enforcement procedures, all of
which influence the accuracy of eyewitness identification. The report also discussed
the use of eyewitnesses in judicial proceedings and evaluated the laboratory studies
that had been conducted to date, as well as the statistical methods used to analyze
the data from them and to draw conclusions from them. This chapter discusses these
aspects, with particular emphasis on the design of experiments and the statistical
methods that have been, and can be, used to analyze data from EWI experiments.

I chose this topic for this special volume dedicated to Steve Fienberg because of
his decades-long work on statistical methods that he developed for data to ensure the
equitable administration of justice, and because of his important role on the National
Academy of Sciences’ Report Review Committee that led to a far better report than
would have been possible without him. I will end this chapter by talking about that
role, and all that I learned from him during the course of writing the NAS report.

11.2 Memory and Vision

While one may believe that one’s memory can be faithfully recalled like a
photograph, in fact, memory is fallible and can be influenced by many factors.
Memories of events involve three processes: encoding (placing aspects of the

2For the heartbreaking details of this case, see www.thestory.org/stories/2013-06/jennifer-
thompson.

www.thestory.org/stories/2013-06/jennifer-thompson
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event into memory), storage (maintaining the aspects in memory), and retrieval
(subsequent recall of aspects from memory). Each stage of memory is subject to
degradation:

1. Encoding: Events may not be fully captured or encoded at the time of their
occurrence due to limited extent of short-term memory, distortion and interfer-
ence from effects of previous and/or subsequent events (including emotional,
behavioral, sensory, observational effects), visual acuity, passage of time, and
environmental conditions (e.g., poor lighting), among other factors.

2. Storage: The long-term retention of events can be reduced by the mere passage
of time, effects of intervening experiences that replace existing memories,
advancing age, and degree of associated emotion when the events occurred: “The
emotional content of stored memories is a factor that appears to promote long-
term retention; memories of highly arousing emotional stimuli, such as those
associated with a witnessed crime, tend to be more enduring than memories of
non-arousing stimuli” [31, p43].

3. Retrieval: Errors arise at this stage from many sources, including similarities
to aspects of previously encoded and stored memories (leading to confusion
between the events), loss of information about source of memory, and time.
Retrieving memory of events from many decades ago may be harder for some
people than those that occurred only last year; the opposite may be true for other
people. Some aspects of the event may be improperly solidified into memory by
the comments of others who unconsciously reinforce one’s erroneous statements
about the event.

In all phases, environmental conditions and behavioral factors (e.g., stress), as well
as the passage of time, can lead to further degradation in the accuracy of a witnessed
event.

With all these potential effects leading to memory degradation, why is eyewitness
identification even used? For some crimes, it may be the only evidence available.
For some crimes, latent fingerprints cannot be captured with sufficient quality to be
identifiable nor can DNA, even in trace amounts, be obtained; both can be expected
to have more reliability (consistency) and greater accuracy (fewer false positives and
false negatives) than EWI. Moreover, eyewitness testimony has been shown to be
extremely powerful in the courtroom: jurors are highly affected by the victim who
points to a defendant and says, “He is the one who attacked me. I am one hundred
percent confident.” But can eyewitness identification ever be one hundred percent
accurate and routinely trustworthy?

In 2014, the National Academies released a report, Identifying the Culprit:
Assessing Eyewitness Identification [31]. The report explained features of vision
and memory, and summarized much of the research that had been conducted on
factors affecting the accuracy and reliability of EWI. The report also discussed the
study designs that had been used for EWI experiments and the statistical methods
that have been used to analyze the data from these experiments. This chapter
describes some of the findings in that report, as well as subsequent studies that
have been conducted. This field of inquiry demonstrates the enormous value of
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cross-disciplinary research, which Steve Fienberg championed throughout his life
and impressed upon his students and collaborators all over the world.

11.3 Challenges in Assessing EWI Reliability

The study that led to the report [31] included psychologists, legal professionals, and
law enforcement personnel, as well as one lone statistician. Per the charge from the
Laura and John Arnold Foundation (now Arnold Ventures), the report discussed the
following issues [31, p.12].

1. Assess the existing body of scientific research related to EWI;
2. Identify research gaps in the current literature, and suggest appropriate research

questions to pursue that will further our understanding of EWI and that might
offer additional insight into law enforcement and courtroom practice;

3. Identify relevant research from fields outside of existing EWI research;
4. Offer recommendations to law enforcement for best practices and procedures for

conducting and reporting eyewitness identifications;
5. Offer recommendations for developing jury instructions;
6. Offer advice regarding the scope of a Phase II consideration of neuroscience

research and other areas of research that might affect EWI accuracy and
reliability.

Briefly, the report noted these issues:

1. Much of the published literature in this field comes from researchers in university
departments of psychology.

2. The existing studies have been conducted using college students or online
platforms (e.g., Qualtrics©, or Amazon Mechanical Turk©); neither is likely to
recreate the stress of a real-life incident. For example, the college student who
must participate in an EWI experiment as a psychology course requirement, or
the online participant who views a video of an attempted robbery (for a modest
participation fee), is not likely to experience the same degree of anxiety and stress
as would occur to a victim or witness of a real-life crime. These online platforms
for conducting experiments are popular, however, because many participants can
be recruited in a short period of time.

3. Most experiments in this field examine only one factor at a time, thereby prevent-
ing the exploration of interaction among factors that influence EWI reliability.
Even slightly more sophisticated designs, such as factorial and fractional factorial
experiments, were rarely conducted. (Admittedly, complex designs on human
subjects can be more difficult to execute than on components in production
environments.)

4. More statistical methods could be, but have not been, applied to analyze the
data from these experiments, and thus useful data are often ignored, because
researchers could not agree on how to incorporate the extra data.

This chapter describes these findings in more detail.
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11.4 Factors that Affect EWI Accuracy

Statisticians are accustomed to approaching problems by first identifying the task at
hand and then listing possible sources of variation that can affect the outcome. In
this case, the task can be described as one of binary classification:

Eyewitness Classification
“Guilty” “Innocent”

True status Guilty True+ False –
of suspect Innocent False + True –

In actual practice, a law enforcement officer invites the eyewitness to identify
the perpetrator from a lineup, which can be conducted in several ways. Thus,
the accuracy of each “binary classifier” (eyewitness) depends on many factors,
including both those that can be controlled by the law enforcement officer (e.g.,
procedures for conducting the lineup) and those that are beyond the control of law
enforcement (e.g., distance between eyewitness and the culprit at the time of the
crime). In the statistics design literature, the former factors are often called “signal
variables” (levels can be adjusted for maximizing the outcome) and the latter factors
are “noise variables.” In the EWI literature, the terms are “system variables” (signal)
and “estimator variables” (noise). Some of these factors include:

Signal (system) variables: Under control of law enforcement

• Protocol for lineup (e.g., live or photo; present simultaneously or sequentially)
• Number of people or photos in lineup (suspect plus “fillers”)
• Degree of similarities between suspect and fillers (“fair lineup” if very similar;

“biased lineup” if suspect stands out)
• Nature of instructions to eyewitness (e.g., delivered orally or in writing; short

or long)
• Presence or absence of feedback to eyewitness
• Request for confidence in identification (e.g., “How sure are you?” or “On a

scale of 0–5, how confident are you?”)
• Administering official is/is not “blind” (not involved) to the circumstances

of the event, including the eyewitness, crime type, location, and potential
suspects.

Noise (estimator) variables: Beyond control of law enforcement

• Eyewitness’s level of stress or trauma at time of incident
• Conditions affecting visibility (e.g., light or dusk or dark)
• Distance between eyewitness and perpetrator
• Presence/absence of threat (e.g., weapon)
• Presence/absence of distinctive feature (e.g., scar)
• Presence/absence of other distractions (e.g., people, physical structures)
• Common/Different race or ethnicity
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• Time between incident & report (retention interval)
• Age of eyewitness.

An important goal for law enforcement officers is to conduct EWI procedures
using levels of the signal variables that maximize accuracy while minimizing
variability, irrespective of the operating levels of noise variables in any given
situation. Thus, it is important to design experiments that vary more than one
factor at a time, especially because variables may not operate independently (Box,
Hunter, Hunter 2005). However, most studies vary only one factor at a time; e.g.,
lineup format (sequential versus simultaneous: [23, 30]) delay between incident
and the eyewitness’s identification for the police officers (Deffenbacher et al. [10],
Kensinger et al. [20]; Dodson et al. [12]), presence or absence of a weapon [14],
same versus different race [28], process instructions to eyewitness (fair versus
biased: [8]), and age [35]. Very few studies have varied multiple factors: distinctive
feature and lineup format [4, 5]; distinctive feature and weapon focus [6]; lineup
format, weapon focus, and distinctive feature [6]; and lineup format, weapon focus,
distinctive feature, cross/same race, and target present/absent [12]. The NAS report
[31] encouraged more factorial experiments.

Factorial experiments are common in several scientific fields, but they are
relatively (and surprisingly) sparse in the eyewitness literature. One reason for their
sparsity may lie in the need for advanced statistical methods to analyze the data
from them, methods that may be unfamiliar to researchers in the field. The next
section describes the most commonly used methods, followed by methods that can
take account of multiple factors (which also require adjustment for multiple testing).

11.5 Statistical Methods: “Sequential” versus
“Simultaneous”

As noted above, most studies evaluate the effect of a single factor on EWI accuracy,
and often by comparing only two levels of that factor. Many of the studies were
limited to considering the accuracy of identifications arising from only two levels
of a single “system variable”: photo lineup format is either “sequential” versus
“simultaneous;” i.e., photographs are presented to the eyewitness either one at a
time or all together in a “photo array.”3 In a simultaneous lineup, the witness
views all individuals at the same time, and either identifies one as the perpetrator
or reports that the person seen at the crime scene was not in the lineup. In a
sequential procedure, the witness views individuals one at a time and reports
whether or not each one is the person from the crime scene. The sequential

3See http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-
witness-identification-116329 for an example of a simultaneous lineup. The article notes the
challenges in constructing a fair lineup, which include the potential bias from different background
colors for all photographs and the instructions given to the eyewitness.

http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-witness-identification-116329
http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-witness-identification-116329
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procedure had been in practice for decades as a possible way to reduce false
identification rates, particularly after the supporting research by Lindsay and Wells
[23], who “concluded that sequential presentation of lineups can reduce false
identifications of innocent suspects by reducing eyewitnesses’ reliance on relative-
judgment processes.” In the intervening years, an extensive literature has compared
witness identification performance using simultaneous and sequential procedures.
These comparisons typically have used photo-arrays.

Until recently, most studies compared the performance of simultaneous and
sequential procedures in terms of a ratio of correct identifications (i.e., ‘hit rate’)
to false identifications (i.e., ‘false alarm rate’), a measure known in the eyewitness
identification literature as the “diagnosticity ratio” (DR). (The “diagnosticity ratio”
is also known in other disciplines by other names; e.g., “positive likelihood ratio”
or “LR+ = Likelihood Ratio of a Positive Call”; see [22] Section 4.1.) The ratio
corresponds roughly to confirming a positive ID; i.e., the diagnosticity ratio is
related to the probability that an eyewitness who makes a positive identification
correctly selected the true perpetrator. Most laboratory-based studies and systematic
reviews showed that, with standard lineup instructions informing the witness that the
perpetrator may or may not be present, the sequential procedure produced a higher
diagnosticity ratio. That is, when a “witness” (study participant) viewed a video of
a crime being committed, and later was asked to identify the culprit from a lineup,
the ratio of correct to false identifications was often higher with the sequential than
with the simultaneous procedure. Later research (e.g., [30]) proposed that the metric
used to assess EWI accuracy was incomplete; using a different metric, simultaneous
lineups led to higher accuracy. Which was correct?

A higher diagnosticity ratio (hit rate/false alarm rate) could result from a higher
hit rate, a lower false alarm rate, or some combination of the two (or from
some factors that affect either rate). Some early papers suggested that sequential
procedures lead to fewer false alarms without changing the hit rate, which results
in a higher diagnosticity ratio. More recent laboratory-based studies and systematic
reviews typically show that sequential procedures are associated with a somewhat
reduced hit rate accompanied by a larger reduction in the false alarm rate, thereby
yielding a higher diagnosticity ratio than for the simultaneous procedure. (Results
from these studies using the diagnosticity ratio have not been uniform: a recent field-
based study comparing sequential to simultaneous procedures in a limited number
of jurisdictions revealed a modest diagnosticity ratio advantage for the simultaneous
procedure; cf. [43].) In light of this laboratory-based evidence showing a higher
diagnosticity ratio for sequential lineups, many police agencies and policy makers
adopted sequential lineups as their preferred EWI procedures.

However, comparisons based on a single diagnosticity ratio collapsed over all
participants in that treatment arm (e.g., DR for sequential and DR for simultaneous)
typically do not definitively reveal whether one procedure is “better” than the other.
The EWI literature noted that a single diagnosticity ratio is affected by many factors,
most importantly (a) how well a witness can discriminate the suspect from innocent
members of the lineup and (b) by the witness’s tendency to pick or not to pick
someone from the lineup; this tendency is often termed response bias. In general,
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given the same hit rate, more conservative responding will tend to lead to fewer
false alarms than more liberal responding and hence produce a higher diagnosticity
ratio. Thus, a single diagnosticity ratio can be an incomplete performance measure,
because it fails to account for an important variable, namely response bias. As
noted earlier, a higher diagnosticity ratio (hit rate/false alarm rate) could result
from a higher hit rate, or from a lower false alarm rate (caused by “conservative”
responding), or both [29, 30, 32, 44]. The important point is that another variable
(here, response bias) affects the measure being used to compare performance,
and failure to take this variable into account can lead to naive comparisons. The
receiver operating characteristic (ROC) curve was proposed as a way to account for
“response bias” by using “expressed confidence level” (ECL) as a proxy for it. The
ROC curve here is a plot of the DR’s numerator, hit rate (HR, y-axis), versus the
DR’s denominator, false alarm rate (FAR, x-axis), calculated from the responses of
participants who expressed different levels of confidence in the identification. (In
general, the ROC curve is a plot of sensitivity versus (1 – specificity), for different
levels of a third variable; see; e.g., [2, 21].

Recognized, but often to a much lesser extent, is the fact that many other variables
besides a proxy for “response bias” could easily affect sensitivity, specificity, or the
diagnosticity ratio (see Sect. 11.6). Moreover, ECLs (expressed confidence levels)
may have severe shortcomings as a “proxy” for “response bias” that render it
insufficient for comparing two procedures, only some of which are listed below.

1. ECL is likely to be only an imperfect measure of response bias. A good measure
of response bias is essential for ensuring ROC is appropriate for comparing
performance of procedures. Little research has explored whether other measures
would be more sensitive, and less variable, in capturing the tendency toward
“conservative” versus “liberal” responding, nor how variable ECL might be
for an individual presented with exactly the same circumstances and the same
instructions at a later time.

2. Discriminability involves not only making a correct identification but also
making a correct exclusion. As a plot of hit rate versus false alarm rate, the ROC
curve captures the first aspect: the slope of this curve is the diagnosticity ratio at
different ECLs. The second aspect involves the ratio specificity/(1 – sensitivity),
or, using the terminology in the eyewitness literature, (1−FAR)/(1−HR); see
Sect. 11.6.

3. The ECL responses in a laboratory experiment are likely to be much different in
real-life, highly stressful conditions, which are very difficult (if not impossible)
to replicate in an academic setting.

4. An eyewitness’s ECL of “50%” might mean something different under one
procedure (e.g., “sequential”) versus another (e.g., “simultaneous”); that is, the
third variable on which the ROC is based could well depend on the procedures
that the ROC curves are designed to compare.

5. More than just ECL may affect the diagnosticity ratio; an ROC curve that
accounts for other variables may be more useful in evaluating two procedures
than an ROC curve based on only ECL (Sect. 11.6).
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6. In real life, law enforcement officials recognize the impracticality of asking an
eyewitness to quantify his/her stated ECL as “10%”, “20%”, . . . , “100%” and
rather will invite the eyewitness to express confidence in his/her own words. The
translation of a response such as “pretty confident” might indicate a “5” on a 5-
point scale for one law enforcement officer but a “4” for another officer, adding
to the uncertainty in ECL.

7. The use of ECL to distinguish diagnosticity ratios via an ROC curve is sensible
if ECL is related to accuracy. One would hope a more confident witness is more
accurate, but recent research acknowledges that the strength of this association
between ECL and accuracy likely depends on many factors, such as some of the
system and estimator variables already presented in the previous section (and
discussed further below); see also [36].

8. The points on an ECL-based ROC curve (false alarm rate, hit rate) for respon-
dents that expressed at least a stated level of confidence are estimates of “true”
proportions; a new sample of study participants will yield a different false alarm
rate, different hit rate, and different number of participants in that ECL category.
The uncertainties in these proportions are rarely displayed, but they should be,
and they can indicate different conclusions; see below.

9. Finally, ROC curves are often constructed by plotting the “hit rate” versus
“false alarm rate” at different levels of ECLs across all subjects in the study.
In laboratory experiments where the majority of eyewitness identification studies
have been conducted (and sometimes in field studies), the same subject might
be asked to view more than one condition, responding “10% confident” in one
condition but “50% confident” in another condition. The effects of this lack of
independence among subjects on the bias and variability in the estimated ROC
curve (which requires estimates of “hit rate” = sensitivity and “false alarm rate” =
1 – specificity) have yet to be quantified. Moreover, the plotted points themselves
have uncertainty (see below).

Incidentally, the procedures governing the administration of “sequential lineups”
that are used in laboratory settings may differ in substantive ways from those in
real life. For example, in a lab setting, the “eyewitness” sees each photo only once
and cannot “go back” to previous photos. Conversely, in a real-life setting, a real
eyewitness may ask to see a previously viewed photo, and the law enforcement
officer (who is administering the lineup) often will allow him/her to go back and
view previously shown photographs. This discrepancy in the procedures between
lab and real life is one of the reasons why the generalization of inferences from
lab experiments to real-life practice may be questionable. The inability to faithfully
replicate in a lab the stress of the scene on the eyewitness is another reason for the
disconnect between lab experiments and real-life incidents.

Potential Uncertainties in ECL-based ROC Curve
The construction of the ECL-based ROC curve requires study participants to

answer after each of their choices, “How confident are you in your decision?”
Examples of scales for their responses are (1) 11-point scale “0%, 10%, 20%,
. . . , 100%”, (2) 7-point scale of 1 (not confident at all) to 7 (highly confident),
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or (3) 6-point scale “0%, 20%, 40%, 60%, 80%, 100%”. For example, Brewer and
Wells ([3], Table 9, p.24) conducted an experiment with 1200 recruited participants
(undergraduates and from the local community) who watched a video of a thief in
a restaurant and later were asked to identify the thief from a simultaneous lineup of
eight color photographs. Roughly 300 participants viewed a lineup with a “foil” that
had either high or low similarity to the culprit, and where the true culprit was either
present or absent.4 They calculated different DRs depending on the ECL category:
3.5 (“0–20%”), 3.3 (“30–40%”), 5.9 (“50–60%”), 13.6 (“70–80%”), 38.3 (“90–
100%”), for the 524 participants who chose a suspect from the lineup. (Interestingly,
the DRs change little across these five ECL categories for the 676 participants
who declined to choose any suspect: 1.0, 0.9, 1.2, 1.8, 2.3, respectively.) Mickes
et al. [30, Table 1, p.367] then calculated the DRs using slightly different categories
and found that they varied, mostly in the last (90–100%) category: 9.0 (“< 0%”),
9.3 (“< 30”), 10.7 (“< 50%”), 16.0 (“< 70%”), 43.2 (“< 90%”). Similar to the use
of receiver operating characteristics (ROCs) used in diagnostic medicine to compare
different diagnostic test modalities, these authors argued that, by plotting the hit rate
(sensitivity) versus the false alarm rate (1 – specificity) collapsed over participants
who express a given ECL or higher, the area under the resulting ROC curve (AUC)
provides a more appropriate metric for comparison. In doing so, a comparison of
AUCs in experiments comparing sequential (seq) and simultaneous (sim) lineups,
AUC(sim)> AUC (seq). Notice that the slope of the ROC curve at the plotted point
is the DR for that ECL category (“at least x% confident”); hence, a straight line
would indicate no effect of ECL on DR.

Figure 11.1 shows data published from a similar (thief) experiment in Mickes et
al. ([30] “Experiment 1a” in Table 3) that plots the hit rate (HR) versus the false
alarm rate (FAR) for sequential (Q) versus simultaneous (M) lineups. Their plot
(Fig. 11.6a, p.371) has been enhanced here in Fig. 11.1 by the addition of two curves
that represent very optimistic standard errors on the data points (binomial variation
in the reported HR and FAR). Indeed, simultaneous (M) appears to have a higher
AUC than sequential (Q), especially at higher levels of HR and FAR. Data from
another experiment analyzed in Liu [26] also indicated the possible superiority of
simultaneous over sequential. But data from other experiments are far less clear:
Fig. 11.2 shows the same type of curve, for data from “Experiment 2” in Mickes et
al. [30, Table 3]. Suddenly, now, the advantages of simultaneous (M) over sequential
(Q) are not so clear.

Does Higher Confidence Lead to Greater Accuracy?
The underlying premise of the ROC approach over the single collapsed DR is

based on the theory that increased accuracy is associated with increased confidence
in the eyewitness’s identification. (Recall from paragraph 2 of this section that DR

4The actual counts in Table 2 in Brewer and Wells [3] are: 299 (high similarity, target present);
300 (low similarity, target present); 301 (high similarity, target absent); 300 (low similarity, target
absent). In each of these four conditions, ∼150 participants viewed a “biased” lineup and the other
half viewed an “unbiased” (sometimes called “fair”) lineup.
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Fig. 11.1 “ROC curve” (hit rate = sensitivity versus false alarm rate = 1 – specificity), using data
from Experiment 1A in [30, p.372]. Based on 598 participants who chose a suspect from one of two
lineups: Sequential (Q) or Simultaneous (M). Shown with (optimistic) limits of one standard error
in the estimated HR and FAR rates. Points on ROC curve refer to “At least 10% confident,” . . . , “At
least 90% confident,” “At least 100% confident”. Figure C-3 from [31], p.148: Reproduced with
permission from the National Academy of Sciences, Courtesy of the National Academies Press,
Washington, D.C.

is the same as the “positive likelihood ratio” LR+.) Data from several experiments
suggest that such an association may exist. For example, Figs. 11.3 and 11.4 are
plots of DR versus ECL using the same data from [30] as in Figs. 11.1 (“Experiment
1a”) and 11.2 (“Experiment 2”) above, respectively; see also [11]. However, studies
are not consistent in this relationship; e.g., see Juslin et al. [19]. Further, given the
multiple sources of variation that can affect ECL, the association is likely to vary
greatly depending on the eyewitness, conditions of the event, and other factors yet
to be identified.

Thus, even the migration from a single DR to an ECL-based ROC may not
adequately capture all the factors that should be taken into account when comparing
two procedures (such as “simultaneous” versus “sequential” lineups). Incidentally,
few of the articles in the EWI literature take account of multiplicity in hypothesis
testing: adjustment for multiplicity, such as the false discovery rate [1], appears to
be very rare.
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Fig. 11.2 “ROC curve” (hit rate = sensitivity versus false alarm rate = 1 – specificity), using data
from Experiment 2 in [30, p.372]. Based on 556 participants who chose a suspect from one of two
lineups: Sequential (Q) or Simultaneous (M). Shown with (optimistic) limits of one standard error
in the estimated HR and FAR rates. Points on ROC curve refer to “At least 10% confident,” . . . , “At
least 90% confident,” “At least 100% confident”. Figure C-4 from [31], p.140: Reproduced with
permission from the National Academy of Sciences, Courtesy of the National Academies Press,
Washington, D.C.

11.6 Improved Statistical Approaches: PPV and NPV

The primary goal of an eyewitness procedure is to maximize both the Positive
Predictive Value (PPV) as well as the Negative Predictive Value (NPV). Neither can
be observed in real life. We can estimate two of the components in the definitions
of PPV and NPV, namely sensitivity and specificity. Sensitivity is defined as the
probability that an eyewitness, who is shown the true culprit, correctly identifies
him/her as the culprit. Specificity is defined as the probability that an eyewitness,
who is shown the true innocent suspect, correctly does not identify him/her as
the culprit. Both probabilities can be estimated only in a designed study, where
the study facilitators know the true status of the culprit and innocent suspects. In
real life, one does not know the true status. At best, we can only estimate the
probability that a positive ID correctly identified the true culprit (“positive predictive
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specificity), using data from Experiment 1a in [30, p.372]. Based on 598 participants who chose
a suspect from one of two lineups: Sequential (Q) or Simultaneous (M). Shown with (optimistic)
limits of one standard error in the estimated HR and FAR rates

value”, or PPV) and the probability that no ID correctly recognized an innocent
suspect (“negative predictive value”, or NPV). Both PPV and NPV depend on three
quantities (sensitivity; specificity; and prevalence, or the proportion of individuals
that might be the culprit; i.e., 1 out of 6, or 1 out of 100, or . . . .), but in different
ways, as explained below.

Let S denote sensitivity, or “hit rate,” T denote specificity, or “1 – false alarm
rate,” and p denote the probability that the suspect is the perpetrator (prevalence).
Let OR denote the “odds ratio” = (1 − p)/p. Then

PPV = (Sp)/[Sp + (1 − T )(1 − p)] = 1/(1 + OR/d), d = S/(1 − T )

NPV = [T (1 − p)]/[T (1 − p) + (1 − S)p] = 1/[1 + ((1 − S)/T )/OR].

Recall that S/(1 − T ) = (hit rate/false alarm rate) is the same as the diagnosticity
ratio (DR), or, more generally, LR+ = “Likelihood Ratio of a Positive Call;” it
measures roughly the probability of a correct ID. So method 1 is preferred over
method 2 if PPV1 > PPV2; i.e., (OR1/DR1) < (OR2/DR2); i.e., (DR1/OR1) >

(DR2/OR2), where DR1, DR2 denote the diagnosticity ratios for methods 1 and
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2, respectively, under the same circumstances (i.e., OR1 = OR2, same conditions
for both methods, etc.). Thus, a comparison of procedures in terms of criteria based
on the diagnosticity ratio (LR+) is a comparison in terms of PPV , the probability
that an eyewitness’s ID really identified the true culprit.

To take into consideration the second aspect, NPV (probability that a non-ID
correctly recognized an innocent suspect in the lineup), a second ratio is needed.
Corresponding to LR+ = S/(1 − T ), this ratio, (1 − S)/T , is known as LR− =
“Likelihood Ratio of a Negative Call;” it corresponds roughly to the likelihood of
ruling out a suspect ([22] §4.1). A calculation for NPV , similar to the one above
for PPV , shows that method 1 is preferred over method 2 if NPV1 > NPV2;
i.e., T1/(1 − S1) > T2/(1 − S2) = 1/(LR−)1 > 1/(LR−)2 – again, assuming
that the odds ratio (1 − p)/p stays constant in the comparison between the two
procedures (e.g., both the simultaneous and the sequential lineups have the same
number of “foils”). Both the single diagnosticity ratio and the ROC curve (which
shows separate diagnosticity ratios as slopes of the curve at the points corresponding
to different levels of expressed confidence) address the PPV criterion; a separate
analysis is needed for the NPV criterion. (Note that all calculations have variability,
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Fig. 11.5 Plot of Positive Predictive Value (PPV) versus prevalence, for levels of specificity (black
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scales. Note that specificity (color) affects PPV much more than sensitivity (line type), and that
both high specificity and high prevalence are necessary for high PPV

due to uncertainties in estimating S and T .) The effects of sensitivity, specificity,
and prevalence on PPV and NPV are shown in Figs. 11.5 and 11.6, respectively.
The figures show that specificity affects PPV more than sensitivity, that sensitivity
affects NPV more than specificity, and that very high values of both sensitivity and
specificity, as well as very high prevalence, are needed for high PPV and NPV.

Thus, although the ECL-based ROC curve is an “improvement” over the single
DR collapsed over all subjects, in that it takes into account the eyewitness’s
expressed confidence in the ID (often seen as a proxy for “response bias” and
shown in some studies to be correlated to some degree with accuracy), it focuses
on only PPV and ignores NPV as well as other variables that could be affecting
accuracy. For sufficiently large experiments, one may be able to construct ROC
curves for each participant in the study, characterizing the information in each curve
by a summary measure (such as logarithm of the Area Under the Curve; bigger is
better) as a function of several factors. For example, [42] propose a hierarchical
model for log(AUC) to distinguish within-participant variability from between-
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Fig. 11.6 Plot of Negative Predictive Value (NPV) versus prevalence, for levels of sensitivity
(black = 0.7, red = 0.8, green = 0.9, blue = 0.95, turquoise = 0.99) and specificity (solid = 0.7,
short dash = 0.8, dot = 0.9, dot-dash = 0.95, long dash = 0.99). Both PPV and prevalence are on
logarithmic scales. Note that sensitivity (color) affects NPV much more than specificity (line type),
and that both high sensitivity and low prevalence are necessary for high NPV

participant variability; other effects can be incorporated into the model.5 Shiu and
Gatonis [37] offer a methodology for incorporating bothLR+ andLR− through the
“predictor receiver operating characteristic” (PROC) curve, by plotting PPV versus
1 – NPV. Other researchers have suggested approaches that would be even more
useful, namely bivariate logistic regression models for logit-transformed sensitivity
and specificity [34] generalized by Chu and Cole [7]. DuMouchel [13], Junaidi and
Stojanovski [18], and Luby [27] also propose hierarchical models that are applicable
for data from EWI experiments. See Liu et al. [25, Section 21.4] for further details
about using these models in this context.

As noted at the start of Sect. 11.4, the basic task of the eyewitness is to serve
as a binary classifier. The statistics and computer science literature contains many

5Notice that Wang and Gatsonis use AUC, versus pAUC = partial area under the curve; see
discussions about AUC versus pAUC in the articles by Pepe [33, p.311] and Walter [40].
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proposals for combining the information from binary classifiers; e.g., see [17]. Liu et
al. [25, Section 21.4] successfully use random forests and mention other supervised
methods that can be applied to the comparison of EWI procedures in the presence of
multiple factors, including the “noise” (“estimator”) variables that were mentioned
above (lighting, distance, race, etc.). Probably the simplest approach would be
ordinary logistic regression, which provides a model for the probability of being
accurate in light of other manipulated variables [15]; see also Appendix C in the
[31] report (pages 150–154) for an analysis of data from an experiment conducted
by Carlson and Carlson [6]. The research in the EWI field is yet another example of
the benefits of cross-disciplinary research involving statisticians.

11.7 Conclusion and Postscript

This article describes only briefly the state of the experimental designs and statistical
methods that have been used in the literature on assessing the reliability of
eyewitness identification procedures. The potential for statisticians to contribute to
this field is immense, but not without its challenges.

I chose this topic for this chapter because I encountered these challenges while
serving as a member of the Committee that authored the [31] report. Steve Fienberg
served as co-chair of the Report Review Committee that was in charge of ensuring
“that an independent examination of this report was carried out in accordance with
institutional procedures and that all review comments were carefully considered”
[31, p.xii]. Despite multiple obligations on his plate at the time, Steve was masterful
in his role. At one point, the Committee requested a call with him and his co-Chair,
Dr. David Korn. With no advanced warning of the Committee’s queries to them,
Steve responded thoughtfully, eloquently, and precisely to each question raised by
Committee members regarding various aspects of the review. His explanations of
statistical concepts were crystal clear, emphasizing their complexities and relevance
in an unambiguous but non-condescending manner. As I listened on the phone, I
was wishing I could have recorded the call; it was impressive, even if he had been
forewarned, but nothing short of spectacular in view of the fact that he had no idea
what he would be asked. I always had great admiration for Steve from the time I
met him, but that call impressed me immeasurably. And so it is, whenever I think of
the NRC report, I remember with great fondness the influence that Steve Fienberg
had on it, in ways that no one would ever know.
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