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Prologue

Remembering Steve Fienberg

Obit for Stephen E. Fienberg written by Alicia Carriquiry, and reprinted with
permission from the ISBA Bulletin, Vol. 24, No. 1, 2017.

Stephen E. Fienberg passed away on December 14, 2016, shortly after turning
74 years of age. He had been diagnosed with cancer about four years earlier, but
kept such a demanding and productive schedule in spite of the disease that most of
us were convinced that he would prevail in the end. Steve’s death was a tremendous
loss for statistics and for science in general, and he will be sorely missed.

Steve was born in Toronto, Canada, on November 27, 1942. In high school, it
became obvious to him that he was good at, and greatly enjoyed, the sciences, in
particular the mathematical sciences. Steve liked to tell that while his mother (who
passed away in Toronto less than two years ago) thought that he was a genius, he
was just a good student with an aptitude for mathematics and a passion for ice
hockey. Steve went on to the University of Toronto, where he obtained a degree in
mathematics in 1964. He applied to, and was admitted into, the doctoral program in
statistics at Harvard University, and finished his PhD in 1968, under the supervision
of Fred Mosteller.

Meeting Fred Mosteller and working closely with him in a variety of different
projects was a life-changing experience for Steve. Mosteller at the time was a rare
statistician in that he was genuinely driven by interesting applied projects. The fact
that statistics could be brought to bear on so many other disciplines and to such good
effect was a revelation, and these early experiences had a lasting impact on Steve’s
professional life. Steve had a profound respect and deep affection for Mosteller,
and often spoke of how much he had learned from his years as a graduate student
working with him.

After completing his PhD, Steve was recruited by William Kruskal, then Chair of
the Department of Statistics at the University of Chicago, and began his career as an
assistant professor. Kruskal, much like Mosteller, was also attracted to applications,
and introduced Steve to many different faculty in a wide range of disciplines with
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viii Prologue

whom Steve began collaborating. In those days, political polling was becoming
widespread, but polling methodology was not yet fully developed. Steve became
intrigued by the political polling carried out by a local newspaper, and this interest
led in part to many years of research in different aspects of survey sampling.

Even though Steve enjoyed his years in Chicago, he and his wife Joyce moved
to Minnesota, largely for personal reasons. In Minnesota, Steve held his first
administrative position as Chair of the Department of Applied Statistics at the Saint
Paul campus of the University of Minnesota. From Minnesota, Steve and Joyce
moved to Carnegie Mellon University, which Steve called his academic home and
where he spent the rest of his professional life. Steve joined the Department of
Statistics at CMU in 1980, and with the exception of a short stint as Provost of York
University in Canada, he never left. A “Conversation with Steve” by two of Steve’s
dearest friends, Miron Straf and Judy Tanur, was published in Statistical Science in
2013, and is reprinted in this volume and includes many biographical details about
Steve. It also paints a wonderfully warm picture of Steve as a person.

Steve’s first research contributions were largely based on his dissertation
research. Mosteller introduced Steve to a National Research Council study that was
known as the “National Halothane Study,” and which Steve described as a “giant
contingency table.” For his dissertation, Steve developed loglinear model theory
and methods useful for the analyses of categorical data such as those collected in the
study, and together with Yvonne Bishop and Paul Holland (also Mosteller students)
published the well-known book Discrete Multivariate Analysis (1975), with the
green covers. Throughout his career, Steve continued to advance the theory and
implementation of loglinear models, but also built world-class research programs in
privacy and confidentiality, machine learning, and algebraic statistics.

Steve was already interested in Bayesian theory by the time he arrived at CMU,
but his career as a Bayesian statistician really took off then. Steve joined Jay Kadane
and Morrie DeGroot when he came to CMU, and the three of them contributed to
making the department a destination for Bayesians from all over the world. In the
Mosteller and Kruskal tradition, Steve developed an interest in a wide variety of
problems in other disciplines, and was instrumental in the creation and editing of
journals with a focus on the principled application of statistics. These included the
Annals of Applied Statistics, the Journal of Privacy and Confidentiality, and more
recently, The Annual Review of Statistics and Its Application. Bayesians have much
for which to be thankful to Steve. He was the second President of ISBA, and was
largely responsible for attracting the funding for the ISBA 2000 World Meeting in
Crete. He contributed the first article in the first issue of Bayesian Analysis, entitled
“When did Bayesian inference become Bayesian?”, a historical recount of the most
important developments in Bayesian statistics between the time when Bayes’ opus
was published posthumously and the end of the last century. During what he called
“the Bayesian Renaissance,” Steve became a tireless and effective promoter of the
Bayesian paradigm worldwide.

Possibly because of Mosteller’s and Kruskal’s influences, Steve’s passion was to
advance the principled and constructive use of statistics to solve real problems in
other disciplines, preferably when those problems had a public policy implication.
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Not long ago, Eric Lander, the renowned scientist and co-Chair of President
Obama’s Council of Advisors on Science and Technology (PCAST), referred to
Steve as follows:

Steve Fienberg is not just a statistician–he is a public statistician. He has brought his
considerable statistical prowess to bear on problems of great public importance (emphasis
added).

Steve’s first forays into public policy began shortly after he arrived at CMU: he
became involved with various government agencies on matters of data collection and
data sharing, and joined the Committee on National Statistics (CNSTAT) soon after
it was established. Through his work with CNSTAT (which continued throughout his
career), Steve had an opportunity to positively impact the work at most (if not all)
federal agencies in charge of collecting, synthesizing, and sharing official statistics.

After CMU, the institution in the US that most benefited from Steve’s knowledge
and dedication was the National Academies of Science, Engineering and Medicine
(NASEM). Steve began participating in NASEM’s activities in the mid-1980s, but
became truly involved after his election to the National Academy of Sciences in
1999 (one of Steve’s proudest professional accomplishments). Not only did Steve
focus much of his efforts on the NASEM, he also motivated many of us to follow
in his footsteps and view the NASEM as an effective vehicle to introduce positive
change in society through science-based public policy and decision-making. Steve
served the Academies in a variety of roles, but possibly the most consequential of
those was his co-chairing of the Report Review Committee, which Steve viewed as
an efficient means to ensure that every report published by the Academies was based
on solid science and (as appropriate) on sound statistical reasoning.

I have had the privilege of calling Steve a friend for over 25 years, and his
mentoring and efforts on my behalf changed the course of my professional life.
A few years ago, Steve encouraged me (and Hal Stern and Karen Kafadar) to
submit a proposal to establish a NIST Center of Excellence in Forensic Statistics,
which would be located at our four institutions, with “headquarters” at Iowa State.
Surprisingly to me (but not to Steve!) we were successful and obtained the funds to
create the center in 2015. Steve was the intellectual leader, the one with the grand
vision and the far-reaching ideas, and I have great hopes that the work on which
we have embarked at the center will have a positive impact on society, because
Steve was instrumental in setting us off on the right path. Hal, Karen, and I are
tremendously thankful to Bill Eddy, who was Steve’s close friend and colleague,
for jumping in and picking up where Steve left off.

Steve was an affectionate and loyal friend, and he seemed to know everyone. But
his world revolved around his wife Joyce and the rest of his family. Steve adored
his grandchildren and loved spending time with them. He was particularly fond of
having them all descend upon him and Joyce for extended summer visits. While
not religious in the usual sense, Steve was proud of his Jewish heritage and culture
and strongly believed in keeping the rituals and traditions, and in observing the
holidays, as a means to nurture his sense of belonging and reinforce his ties to the
Jewish community to which he felt so close.
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Among his many other interests and activities, Steve always found time for his
other “passions”: ice hockey (which he continued practicing even into his 70s) and
the New York Times crossword puzzle. He loved good food and fine wine (and single
malt scotch) and was the instigator of the “Saturday Night Extravagant Dining”
group (Jim Berger, Susie Bayarri, Merlise Clyde, Ed George, Dick De Veaux, Robert
Wolpert (emeritus), Veronika Rockova, myself, and anyone else reckless enough
to join us) during the Joint Statistical Meetings (JSM). But he was determined
to encourage good dining habits among JSM goers long before then; remember
Belizaire, anyone ?

Steve had a marshmallow core even though on occasion he could unsheathe
the fangs. He was immensely patient with young faculty and students and with
anyone who was really trying, but he did not suffer fools gladly. He loved a good
competition but did his best to have the last word. He could be demanding, but he
gave of himself generously and never ever expected anything in return. He was well
respected by some, idolized by others, and ignored by no one, and sometimes he
seemed invincible. His many friends will miss him dearly, for perhaps ever.
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In Memory of Joyce Fienberg

Much has happened since Steve died. Most horrifically, his wife of over 50 years,
Joyce Libman Fienberg, was murdered in the worst anti-Semitic attack to be
committed in the United States, when a gunman opened fire at the Tree of Life
Synagogue in Pittsburgh on Saturday, October 27, 2018. Her funeral, on October
31, drew 1000 mourners.

Joyce and Steve met at the University of Toronto in 1963, where they were both
enrolled. They married two years later and had two sons, Anthony and Howard.
With boys in tow, Joyce and Steve traveled the world on behalf of Steve’s career to
various academic posts, conferences, research centers, and more.

Joyce earned a degree in social psychology at the University of Toronto, and
in 1983 joined the Learning Research and Development Center (LRDC) at the
University of Pittsburgh as a research specialist, analyzing learning in classrooms
and museums, and studying the practices of highly effective teachers. Even though
she held a full-time job until her retirement in 2008, she dedicated time to support
Steve’s career. While Steve worked tirelessly to bring out the best in his PhD
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students, Joyce focused on making those students, and departmental post-docs and
new faculty, feel more than welcome – special! – in what, for some, was a strange
and unknown land: Pittsburgh, PA. Her home and her heart were always open to
everyone, but in particular to anyone who was new in Pittsburgh and needed a friend.
Students fondly remember the warmth of Joyce’s gatherings in celebration of the
Jewish holidays, where there was always a place at the Seder table regardless of
religious affiliation.

Anyone who had the privilege of meeting Joyce was shocked and saddened
by her death. Dr Gaea Leinhardt, who was Joyce’s research partner for decades
and her close friend, echoed the sentiments of many when she said: “Joyce was a
magnificent, generous, caring and profoundly thoughtful human being.”

On April 20, 2019, in honor of both Joyce and Steve, the Carnegie Mellon
Department of Statistics and Data Science hosted the Stephen E. and Joyce Fienberg
Memorial Lecture at CMU with guest lecturer Sir David Spiegelhalter. Later that
year, the Stephen E. and Joyce Fienberg Professorship in Statistics and Data Science
was conferred upon Rebecca Nugent, associate department head and co-director of
undergraduate studies. It was a fitting tribute not only to Steve but also to Joyce,
who was such a consequential member of the CMU community.

Joyce was Steve’s rock, and the family they raised together was his greatest
source of pride.

A Special Recognition for Margaret L. Smykla

While Carriquiry, Eddy, and Tanur are the editors of this volume, Margaret L.
Smykla’s contribution was critical to the success of the project and deserves special
recognition. Margie met Steve earlier than several of us did and worked with him
for decades. Her knowledge of the Department of Statistics and Data Science at
Carnegie Mellon and of its inhabitants past and present is encyclopedic, and was a
tremendous resource as we assembled the pieces for the book.

We are deeply grateful to Margie for her dedication and her efforts in support of
this volume honoring Steve and Joyce.

The Genesis of This Book

Steve Fienberg produced a tremendous corpus of work in statistics and the social
sciences writ large. His contribution is broad and deep, and laid the groundwork for
the work of many others – students, colleagues, and total strangers alike. A quick
search online results in over 72,000 (!) citations of his work and an h-index of 89. In
the last year of his life, the number of citations his work received exceeded 20,000,
confirming that Steve was at the top of his game until the very end.
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We thought that editing a volume that included an eclectic but high-quality mix of
contributions by a wide range of authors would honor Steve’s legacy. In mid-2017,
we contacted Donna Chernyk, an Editor with Springer Nature, who encouraged us
to work on such a volume. While we had hopes of completing this project over a
year ago, we are now delighted to see the light at the end of the tunnel and look
forward to seeing the book in print before long.

We have organized the contributions into six sections:

• Theory and Methods for Categorical Data
• Bayesian Theory and Applications
• Statistics and the Law
• Causal Analyses
• Surveys and Censuses
• Official Statistics

A seventh section, entitled “Steve and Joyce As We Knew Them”, includes
short contributions by some of Steve and Joyce’s closest friends, reminiscences
contributed by former students, colleagues, and assorted others, and a collection
of photographs to remember them by.

We are tremendously grateful to everyone who contributed a chapter for this
volume. Steve would have loved to read every single one and would have found
much to like. A huge proportion of those we approached with an invitation to write
accepted and followed through. Because of page limits, there were countless other
friends and colleagues of Steve’s whom we did not contact. To everyone who would
have liked to participate in this project, we apologize! If enough of you request a
re-do, perhaps we can convince Springer to let us publish a Volume II with another
25 contributions!

While working to put this volume together, Judy, Bill, Margie, and Alicia spent
a lot of time on zoom, discussing this project but also many other things. It is fair to
say that we have all four enjoyed each other’s company, have grown closer, and are
grateful to have shared so much during the past three years. Steve would have been
pleased.

The Ides of March, 2022
Alicia L. Carriquiry, William F. Eddy, Judith M. Tanur, and Margie Smykla
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Part I
Introduction: Theory and Methods for

Categorical Data

William F. Eddy

When Steve and his family moved to Pittsburgh in 1980, the first problem he talked
to me about was inference in a 2 × 2 table (with ordered margins). I had always
been interested in ordering problems, such as the distribution of order statistics
and related matters. Superficially the parenthetical addition “with ordered margins”
to the text description in the original problem Steve posed is only the slightest
generalization of Steve’s original research problem (1968, 1970 with John Gilbert)
of inference in a 2 × 2 table. That original problem stemmed from US Census
work by Deming and Stephan (1940) “On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known.”

In order to better understand the problem and Steve’s focus on geometry when
we met in 1980, I went home from that initial meeting, and in my basement I
built a physical geometric model of the basic 2 × 2 tetrahedron (with barycentric
coordinates) out of coat hangers using a tin-like solder to hold it together. Then
I added the surfaces of independence using colored thread (red, white, blue, and
black). If I remember correctly, those surfaces are hyperbolic paraboloids (or is it
parabolic hyperboloids?). I was impressed by the geometry. That object (the coat
hangers and thread) remained in my office until I retired in mid-2020. Early on it
took regular trips to Steve’s office as our discussions continued; later on it took
longer forays down to Teddy Seidenfeld’s office (I think Teddy used it as a teaching
tool), but it always returned to its home.

Unfortunately, Steve and I never finished the project; I had drifted to some other
things, and I didn’t return with him to the original problem. I had gotten interested
in the distribution of extremes of samples in two (and higher) dimensions (an
order statistic sort of problem which led me to convex hulls and a whole different
geometric world than the one that Steve was following). Steve maintained his
interest in his original problem which fostered a whole generation of research and
researchers. I do not know that Steve’s ordering problem has ever been completely
resolved.

Analysis of categorical data was Steve’s starting point and had always been one
of his primary interests since 1968. This section of the book contains three papers
that revolve around that focus. The papers each stem directly from Steve’s lifelong



2 I Introduction: Theory and Methods for Categorical Data

interest. The three problems are wildly different, reflecting the diversity of Steve’s
approaches to the underlying common problem.

LarryWasserman has chosen to branch out from the “usual” statistical problem in
categorical data which consider inference, and Larry rather thinks about prediction.
The prediction problem is different primarily because “point” prediction is simple in
this discrete setting. This has led Larry to think about prediction of sets rather than
points. He considers both asymptotically correct and exact methods and applies his
ideas to several specific problems: including multinomials, regression models, and
log-linear models.

Without covariates the problem is especially difficult; Larry points out that in
the case of a uniform distribution, informative predictions are impossible. When the
probability distribution is far from uniform and the sample size is large, then the
confidence set concentrates on the “right” answer.

In Sect. 1.4 he turns to regression models. Because the object is to predict the
set to which an observation belongs based on the observed values of the regressors,
this becomes a classification problem. He has shown that many different estimators
are successful; a parametric approach leads to logistic regression. An apparent
problem with the approach occurs when the prediction set is empty. Larry considers
estimators which produce non-empty sets, but he also argues that producing empty
sets when the predictors attain rare values is a kind of warning sign concerning
outliers.

In Sect. 1.5 he turns to Steve’s favorite example: log-linear models. In this
very interesting section, he argues that (a) sparse log-linear models lead to better
interpretability and simultaneously conditional independence models (a goal of log-
linear modeling) are not especially important to prediction. In Sect. 1.6 he focuses
on random effects models and considers the problem of predicting a future set of
observations, and in Sect. 1.7 he briefly considers a Bayesian method. Larry argues
that his approach provides a useful fusion of frequentist and Bayes methods.

Capture-recapture (or “dual systems” estimation) has its roots in the classic prob-
lem of estimating how many fish are in a lake. It became of more general interest to
statisticians because of the diversity of potential applications. The Lincoln-Petersen
estimator, based on the hypergeometric distribution, is well described in Seber’s
book on animal abundance. It was used first by the Census in the evaluation of the
1950 US Census undercount and became a standard tool of Census evaluations. By
the 1980s, many generalizations had been studied. So much so that the term “wily
trout” became a not uncommon descriptor of members of a population with different
probabilities of capture; I recall discussions with Steve and Bob Groves (later head
of the Census Bureau) around that time or a little later that mentioned the wily trout.
The NYT had used the term on August 12, 1964: “When an Angler Is After a Wily
Trout, Patience Is Often His Best Weapon.” And, I even just found, a previously
unknown (to me) reference “Note. The Census Adjustment Case: Hunt for the Wily
Trout” by James Pack, 1996, Jurimetrics, 31:1 35–51.

The paper by Manrique-Vallier, Ball, and Sadinle is a thorough review of the
recent literature on this general problem and its application to estimation of war
casualties. They begin by discussing the two basic assumptions of (1) independence
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of samples and (2) homogeneity of rates. In Sect. 2.2, they explicitly discuss list
dependence in the casualty estimation application, and also discuss the problem of
homogeneity (the wily trout). In Sect. 2.3, they review some of the unresolved issues
particularly in the current context of casualty estimation.

One final side note, I even found a reference to what I believe is a now defunct
winery and restaurant in Canberra, Australia, called the Poachers Pantry that served
a wine known as the Wily Trout. My geography is poor, but I believe the vineyard
extended into the neighboring area of Murrumbateman. Steve would have loved the
existence of the Poachers Pantry, and Belizaire (see the paper in this volume by
Madansky) would have instigated a trip to sample the wine.

The paper by Gross, Karwa, and Petrovic provides the reader with an introduction
to algebraic statistics, that part of statistics that uses the terminology and methods of
modern algebra to gain insight into the structure and calculations of mathematical
statistics. In the first section of this paper, they provide us with an introduction to
Steve’s view of the problems. As with any new topic, learning the language is the
important first step, and Gross et al. provide a very nice summary of the basic ideas
and terminology in Sect. 3.2. The novice reader will have to do some work to really
“get” this unfamiliar territory.

Exponential random graph models (ERGMs) for the log-linear case are intro-
duced in Sect. 3.3. These are, in general, network models and are the heart of the
paper. A careful reading reveals that Fienberg worked on these models for most
of his career. His early readers need to look more carefully here to see that he
has continued to look at the same problems over and over. One can see that he
understood more and more about these models as his vision clarified. Section 3.4 is
the generalization beyond simple graphs, and yet here Fienberg puts his efforts into
a problem that he was working on before he moved to Pittsburgh in 1980.

After defining log-liner ERGMs, the authors consider the special case of
stochastic block models. For you, fans of the log-linear models, as popularized by
Bishop, Fienberg, and Holland, these models have been around since the 1985 paper
by Fienberg, Meyer, and Wasserman. The use of Markov bases made the connection
between log-linear models and the non-negativity constraints mandatory until the
2010 paper with Petrovic, Rinaldo, and Fienberg obviated that constraint. Finally,
near the end of this section, the authors show how Fienberg was able to introduce
data into the algebraic framework. This has led to the development of Monte Carlo
methods for fitting models.

Finally, in Sect. 3.4 the authors move beyond simple graphs. Through two
examples they show that Fienberg’s ideas applied to multiple authorship data lead to
further insight. This allows the production of new algorithms for fitting these models
to real data. The work started by Fienberg will clearly be continued by others.



Chapter 1
Prediction for Categorical Data

Larry Wasserman

1.1 Introduction

Steve Fienberg was well-known for his pioneering work on categorical data analysis.
Based on his work, there was an explosion of papers on this topic. Most of this work
focuses on questions related to inference. A problem that has received less attention
is prediction. In this paper we review two methods for prediction of categorical data.
However, our goal is not point prediction, but set-valued prediction as we explain in
Sect. 1.2.

We consider several versions of this problem including: unstructured multino-
mials, multinomial regression, log-linear models, and random effects models. We
mostly pursue frequentist approaches. But we also discuss an approach that fuses
Bayesian and frequentist approaches in Sect. 1.7.

The Basic Idea Before plunging into the details, we first give a quick overview of
the ideas. We will use an example where the data are continuous but the rest of the
article is devoted to discrete data.

Suppose we observe n iid data points Y1, . . . , Yn where Yi ∈ R. Our goal is to
construct a set Cn such that P(Yn+1 ∈ Cn) ≥ 1−α. Define residuals Ri = |Yi −Y |.
One approach is to set Cn = [Yn − c, Y n + c] where c is the 1 − α quantile of the
residuals. Under some conditions on P , we have that P(Yn+1 ∈ Cn) → 1 − α as

L. Wasserman (�)
Department of Statistics and Data Science, Carnegie Mellon University,
Pittsburgh, PA, USA
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n → ∞. Note that we have made no parametric model assumptions. We can use
any definition of “residual’ that we like. The choice does not affect coverage but it
does affect the length of the interval.

In fact, we could use a parametric model (Pθ ∈ �) to define residuals such as
Ri = 1/p

θ̂
(Yi). If the model is correct, we will get intervals that are nearly as short

as possible. But the coverage is correct even if we have the model wrong.
However, if the model is complex (think high dimensional), then this approach

fails. Sect. 1.2 considers an approach called conformal prediction that provides
coverage under any conditions over all distributions. The idea is simple. We
take a guess y at the value of Yn+1. We form residuals on the augmented data
(Y1, . . . , Yn, Yn+1) where Yn+1 = y. We can then use the residuals to test H0 :
Yn+1 = y. This gives a p-value π(y). The process is repeated for every y. Now we
invert the test to get Cn = {y : π(y) ≥ 1− α}. Then P(Yn+1 ∈ C) ≥ 1− α. This
gives us the desired prediction set Cn without any assumptions on P .

These two approaches are explained in more detail in the rest of the paper.

Outline In Sect. 1.2 we review two methods for set-valued prediction. We apply
the methods to unstructured multinomials in Sect. 1.2. We shall see that this is
a nearly impossible problem unless the multinomial is mostly concentrated on a
small set. In Sect. 1.2 we discuss categorical regression where the methods work
very well. In Sect. 1.5 we briefly discuss log-linear models. Here we see that
conditional independence—so vital for inference—does not help with prediction.
We discuss random effects models in Sect. 1.6. In Sect. 1.7 we discuss prediction
from a Bayesian point of view. Section 1.8 contains a discussion.

1.2 Two Prediction Methods

Here we review two methods for prediction. The common thread is that neither
makes strong assumptions. Both methods start with a working model but the model
is not assumed to be correct. Let

Y1, . . . , Yn ∼ P

be iid observations from a distribution P . Our goal is to construct set Cn which will
be a function of Y1, . . . , Yn. We would like Cn to have the property

P(Yn+1 ∈ Cn) ≈ 1− α

for some pre-specified confidence level α. Here Yn+1 is a new observation.
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The Asymptotic Method

The first method is an asymptotic method. Consider a parametric model P =
(pθ ; θ ∈ �). Let θ̂ be an estimate of θ such as the maximum likelihood estimator.
We regard P as a working model. We do not require the model to be correct.

Given that we assume that the model may be wrong, how do we construct a
prediction set? We can use a method proposed in Dunn and Wasserman (2018)
which we now review. We make three assumptions:

(A1: Quasi-Consistency) There exists some θ∗ ∈ � such that θ̂
P→ θ∗.

(A2: Smoothness) There exists L > 0 and ε1 > 0 such that, whenever ||θ1 − θ2|| ≤
ε < ε1, ||pθ1 − pθ2 ||∞ ≤ Lε.

(A3: Smoothness of Level Sets.) There exists c > 0 and ε0 > 0 such that, for every
t and every θ, θ ′, for which ||θ − θ ′|| ≤ ε < ε0,

μ(M(θ, t)�M(θ ′, t)) ≤ cε,

where μ is Lebesgue measure, � denotes the set difference, and M(θ, t) = {y :
pθ(y) > t}. The value θ∗ in (A1) is usually the minimizer of the KL distance of∫

p(x) logp(x)/pθ (x)dx but this is not required. Conditions (A2) and (A3) are
smoothness assumptions that hold for typical parametric families.

Let Zj = p
θ̂
(Yj ) and let Z(1) ≤ · · · ≤ Z(n) be the corresponding order statistics.

Let Cn = {y : p
θ̂
(y) ≥ t̂} where t̂ = Z(m) and m = �nα�. Then Dunn and

Wasserman (2018) show that
∫
Cn

dP = 1 − α + oP (1). Hence, P(Yn+1 ∈ Cn) =
1− α + oP (1). Note that Cn can be quite different from the set Dn = {y : p

θ̂
> u}

where u is chosen so that
∑

y∈Dn
p

θ̂
≈ 1− α. The difference is that the validity of

Dn depends on the model being correct. In contrast, Cn is valid even if the model
is wrong. However, if the model is wrong, the set Cn may be large. In other words,
validity of Dn depends on the correctness of the model. But model correctness only
affects the size of Cn not its validity.

An Exact Method

An exact prediction set can be defined using conformal prediction (Lei and
Wasserman 2014; Vovk et al. 2005). The idea is to start with a guess y for Yn+1.
We then test the hypothesis H0 : Yn+1 = y at level α. We do this for every y ∈ Y
where Y is the sample space for Y . Then we invert the tests to get a confidence set
for Yn+1. Here are the steps in the procedure:

1. For each y do the following:

(a) Let A(y) = {Y1, . . . , Yn, Yn+1} where Yn+1 = y. The set A(y) is called the
augmented dataset.
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(b) For each i, compute a (permutation invariant) score Ri(y) = φ(Yi,A(y)).
(c) Compute the p-value

π(y) = 1

n + 1

n+1∑

i=1

I (Ri ≥ Rn+1).

2. Set Cn = {y : π(y) ≥ α}.
The set A(y) is called the augmented dataset. The set Cn has the remarkable

property that P(Yn+1 ∈ Cn) ≥ 1 − α for every distribution P . There is much
flexibility in the choice of score φ(Yi,A(y)). Again, we can use a working model
(pθ : θ ∈ �) and take φ(Yi,A(y)) = 1/p

θ̂(y)
(Yi) where θ̂ (y) is the MLE based on

Y1, . . . , Yn, y.
A question in all these methods is how to choose α. One approach is to treat

the prediction problem like a typical estimation problem which suggests choosing
α = 0.1 or α = 0.05. Another recommended choice is α = 0.5 in which case, for
obvious reasons, we call Cn the median prediction set.

1.3 Multinomials

Unstructured multinomials are one of the hardest cases for prediction sets. Imagine,
for example, trying to predict Yn+1 when the distribution is uniform over {1, . . . , k}.
Constructing a reliable prediction set is virtually impossible unless we set Cn =
{1, . . . , k}. However, if the multinomial is sparse, there is some hope as we shall
see. By a sparse multinomial we mean that the probability function is mostly
concentrated on a small subset of the support.

Let Y1, . . . Yn where Yi ∈ {1, . . . , k}. The distribution is multinomial with
probability function p = (p1, . . . , pk). Let p̂ = (p̂1, . . . , p̂k) be the MLE. Hence,
p̂j = nj/n where nj =∑

i I (Yi = j) for j = 1, . . . , k.
If n is large compared to k and minj pj > 0, then the asymptotic method is very

simple. (Lebesgue measure has to be replaced by counting measure in (A3).) Define

t̂α = sup
{
t :

∑

j

I (p̂j ≥ t) ≥ 1− α
}
.

Let Cn = {j : p̂j ≥ t̂α}. Then, from the result in Sect. 1.2, P(Yn+1 ∈ Cn) =
1− α + o(1).

If p is far from uniform Cn will be non-trivial in the sense that Cn can be much
smaller than {1, . . . , k} and if further the pj ’s are distinct, then Cn asymptotically
concentrates on the deterministic set 	 = {j : pj ≥ tα} where tα = sup{t :∑

j I (p̂j ≥ t) ≥ 1− α}.
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As mentioned above, if p is close to uniform, no useful predictions can be made.
Indeed, if p is uniform, then, with very high probability, Cn = {1, . . . , k}. There is
a nonzero but vanishingly small probability that Cn can have fewer than k elements.
But, as a random set, Cn is uniform over sets of size r , for every r . In any case,
informative prediction is hopeless in this case.

1.4 Regression Models

So far we have only discussed unsupervised cases where there are no covariates.
But often we have access to covariates in which case the data are of the form
(X1, Y1), . . . , (Xn, Yn) where Xi ∈ R

d and Yi ∈ {1, . . . , k}. In this case the task
is a bit different. We need to construct a function Cn mapping R

d to subsets of
{1, . . . , k}. We require Cn to satisfy P(Yn+1 ∈ Cn(Xn+1)) ≥ 1− α.

Unlike the unstructured multinomial case, these multinomial regression problems
are an example where categorical prediction is very successful. Note that this is just
classification. The set-valued prediction problem was studied in detail in Sadinle
et al. (2017) (referred to as SLW in what follows). In this section we review the
results in that paper.

Suppose that, in addition to the coverage requirement we want to minimize
E|Cn(Xn+1)| where |A| denotes the number of points in the set. Then SLW showed
that the optimal set is

C(x) = {y : p(y|x) ≥ tα}, (1.1)

where

tα = sup{t : P(p(y|x) ≥ t) ≥ 1− α}.

This is an oracle prediction set since it requires knowing p(x, y). In practice, we
have to estimate p. The easiest approach is to form an estimate p̂(y|x) and plug this
into (1.1). SLW consider a variety of estimators such as nearest neighbors and local
polynomials. A parametric approach is to use the multinomial logistic model

pθ(y|x) = exT θy

1+ exT θy
.

The extra error incurred by having to estimate p(y|x) is O(εn + k
√
log n/n) where

εn is the error in estimating p(y|x). This reveals an interesting fact: the number of
classes k can increase with n as long as kn = o(

√
n/ log n).

The above methods provide asymptotically correct coverage. Also, the multino-
mial logistic method requires that the model is correctly specified. An alternative is



10 L. Wasserman

to use the exact method described earlier. It is straightforward to adapt this to the
regression case. The steps are as follows:

1. For each (x, y) do the following:

(a) Let A(x, y) = {(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)} where Xn+1 = x

and Yn+1 = y.
(b) For each i, compute a (permutation invariant) score Ri(y) = φ((Xi, Yi),

A(x, y)).
(c) Compute the p-value

π(x, y) = 1

n + 1

n+1∑

i=1

I (Ri ≥ Rn+1).

2. Set Cn(x) = {y : π(x, y) ≥ α}.
We then have that P(Yn+1 ∈ Cn(Xn+1)) ≥ 1 − α for all P . Hence, we have

exact, finite sample coverage. An example of a score is Ri = 1/p
θ̂
(y|x). Another

useful score is the residual Ri = |1− p̂
θ̂
(j |x)| for Yi = j .

There is one drawback to all of these methods. For some values of x we might
have Cn(x) = ∅. This is a consequence of trying to minimize E|Cn(X)|. SLW
provide two approaches to fix this problem. Our goal is to eliminate the set {x :
Cn(x) = ∅}.

The first method proposed in SLW is to complete the set-valued classifier with
a given baseline classifier, such as the Bayes classifier. Thus, let c(·) be a simple
classifier such that |c(x)| = 1 for all x, and define

C†(x) =
{

C(x) if C(x) �= ∅
c(x) if C(x) = ∅.

The second approach is called accretive completion. To explain this approach
we need to use a modified version of validity, namely P(Y ∈ C|Y = y) = αy

where the αy’s are class specific confidence levels. Given t = (t1, . . . , tK), denote
Ct = {(x, y) : p(y|x) ≥ ty}. For any {αy}ky=1, the optimal solution to the problem
is Ct with t chosen such that P {Y ∈ Ct (X)|Y = y} = 1− αy . Under this solution,
empty sets occur when

∑
y ty > 1. Therefore, a sufficient condition for Ct to avoid

empty sets is that
∑k

y=1 ty ≤ 1.

The method in SLW is to search for a set of thresholds {ty}Ky=1 that has the lowest
ambiguity and guarantees no empty predictions as well as nominal coverage of Ct :

min
t

E{|Ct (X)|} subjectto ty ≤ t (0)y ,∀y;
∑

y

ty ≤ 1 .

Solving this problem exactly is difficult. SLW provide a greedy method that
approximates the solution. Basically each ty is changed slightly, while increasing
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the size of the prediction sets as little as possible. The process is repeated until there
are no empty set predictions.

The bottom line is that there are effective methods to avoid null predictions.
On the other hand, this can be seen as a feature rather than a bug. For example,

suppose we observe an Xn+1 which is anomalous in the sense that we have not seen
any Xi’s close to Xn+1 before. In this case, we might want to output the empty
set since we should not extrapolate to outlying observations. In fact, Hechtlinger
et al. (2018) show that using the score p(x|y) instead of p(y|x) actually encourages
empty set predictions for outliers.

1.5 Log-Linear Models

In this section we consider prediction for log-linear models. Let x = (x1, . . . , xd).
Recall that the model is

logpθ(x1, . . . , xd) =
∑

A

ψθA
(xA),

where A varies over all subsets of {1, . . . , d}. The definitive reference on log-linear
models is Bishop et al. (1975).

The saturated model corresponds to the unstructured multinomial as in Sect. 1.3
which, as we saw, is a difficult problem.

Usually, for log-linear models, the focus is on model selection corresponding
to setting many of the higher-order terms (such as higher-order interactions) to 0.
For inferential purposes this is crucial. Log-linear models can be represented as
undirected graphs. Setting many terms to 0 leads to sparse and more interpretable
graphs. In other words, sparsity leads to better interpretability.

Interestingly, sparseness does not necessarily help with prediction. To see this,
suppose that we have two variables X1 and X2 where X1, X2 ∈ {1, . . . , d}. The
log-linear model is

logpθ(x1, . . . , xd) = φ∅ + φ1(x1) + φ2(x2) + φ12(x1, x2).

Now suppose we conduct model selection and conclude that the interaction
φ12(x1, x2) = 0. This implies that X1 and X2 are independent which inferentially
is an important finding. But if X1 and X2 both have a uniform distribution, then the
joint distribution is uniform and informative prediction is impossible.

On the other hand, if the marginal distributions of X1 and X2 are far from
uniform, then the joint distribution is highly concentrated and informative prediction
sets are possible. Indeed, the oracle set {(x1, x2) : p(x1, x2) ≥ t} can be small. This
simple example makes clear that it is the shape of the probability function that is
crucial. Conditional independence—the main focus of log-linear models—is not
central to prediction.
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1.6 Random Effects

Random effects models provide interesting challenges for prediction. Suppose we
have N data sets X1, . . . ,XN where Xj = {Xj1, . . . , Xnnj

}. We assume that each
variable is categorical taking values in {1, . . . , k}. The distribution of the j th dataset
is the multinomial pj = (pj1, . . . , pjk). Denote the empirical distribution by p̂j .
For simplicity we will assume that n1 = · · · = nN = n.

There are two different prediction problems. The first is to predict a new
observation on an existing distribution. This is where familiar tools like shrinkage
come into play. The second, which we will focus on, is to predict a future set of
observations p̂N+1.

Each p̂j is a point on the simplex Sk . So the goal is to predict a new observation
on Sk given N observations on Sk .

We can use the exact method in Sect. 1.2. A natural residual is ||p̂j − p||1
where p is the average of the augmented data {p̂1, . . . , p̂N , p}. Unfortunately, the
method requires repeating the calculations for every p on the simplex which is
computationally infeasible.

A fast approximation is available. Let p = N−1∑N
j=1 p̂j . Let Ri = ||p̂j −p||1.

Let tα denote the α upper quantile of the Ri’s. Finally, define CN = {p : ||p −
p||1 ≤ tα}. If N and n are large, then P(p̂n+1 ∈ CN) ≈ 1− α.

The set CN is an L1 neighborhood around p on the simplex. A challenge—which
is faced whenever data are on the simplex—is to find a way to visualize the set CN .

If a parametric model is available, then the problem gets much simpler. Suppose
the model has the form P = {pθ : θ ∈ �}. First assume that the θj ’s are known.
Then the problem is to predict θN+1 from θ1, . . . , θN . We use the exact method to get
a 1−β prediction set AN for θN+1 using the augmented dataset θ1, . . . , θN , θ . Now
define CN =⋃

θ∈AN
Lθ where Lθ is a level set of the multinomial with probability

content 1 − γ . By the union bound, the coverage of CN is at least 1 − (γ + β).
Hence, choosing γ +β ≤ α gives a 1−α prediction set. In practice, we use the θ̂j ’s
rather than the θj ’s. This induces an error of OP (minj n−1

j ).
As before, CN is likely to be very large for the pure multinomial case. But

the above method generalizes easily to the multinomial regression case where
highly informative prediction sets are possible. See Dunn and Wasserman (2018)
for examples in the case that Y is continuous.

1.7 Bayes

Steve Fienberg was, at heart, a Bayesian. But he was not dogmatic and was happy
to use any tools that were useful for solving a problem. In that spirit, I will discuss
a simple way to fuse Bayesian and frequentist inference.
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Suppose we have a parametric model P = (pθ : θ ∈ �). Given a prior π(θ) we
can, of course, compute the posterior π(θ |Y1, . . . , Yn) = L(θ)π(θ)/

∫
L(s)π(s)ds

where L(θ) =∏
i pθ (Yi).

Now consider the predictive distribution

π(y|Y1, . . . , Yn) =
∫

pθ(y)π(θ |Y1, . . . , Yn)dθ.

Let Du = {y : π(y|Y1, . . . , Yn) ≥ u}. We can choose u such that P(Yn+1 ∈
Du|Y1, . . . , Yn) ≥ 1− α. Then Du is a 1− α Bayesian predictive region.

But now consider the question: what is the frequentist probability that Yn+1 is
in Du? If the model is wrong or the prior conflicts with the likelihood, then the
frequentist probability P(Yn+1 ∈ Du) can be much lower than 1− α.

This is where the Bayesian-frequentist fusion comes in. Recall that the predictive
sets Cn from Sect. 1.2 give regions with valid coverage for any choice of score
function. So we can use Ri = π(Yi |Y1, . . . , Yn) as a score and then apply either
method from Sect. 1.2. If the prior and model are well chosen, then Cn will be
similar to Duα . But if the model is wrong or the prior conflicts with the likelihood,
the set Cn gets larger to compensate. This gives us the best of both worlds. Well
specified models cause Cn to be close to the Bayesian solution. Otherwise, Cn still
has coverage validity by essentially expanding the Bayes prediction set. Thus we
have achieved a nice fusion of Bayesian and frequentist ideas for prediction.

1.8 Conclusion

Prediction used to be a small subset of inference. But these days, prediction has a
much larger role in data analysis.

In this paper, we have reviewed techniques for prediction in models with
categorical data. Our emphasis has been on set-valued prediction rather than point-
valued prediction. This allows us to attach a confidence level to the predictions. We
have even seen that it is possible to fuse frequentist ideas with Bayesian inference.
I think Steve would have liked that.

Looking forward, there are many possible extensions of these ideas. For example,
Hechtlinger et al. (2018) have applied these methods to deep neural nets. It would
be nice to see more work in that setting. It would also be interesting to extend the
methods in a way that is robust to outliers.
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Chapter 2
Capture-Recapture for Casualty
Estimation and Beyond: Recent
Advances and Research Directions

Daniel Manrique-Vallier, Patrick Ball, and Mauricio Sadinle

2.1 Introduction

“How many people were killed?” This is perhaps the most basic quantitative
question about the consequences of armed conflicts. While many groups attempt
to create tallies of victims, these lists are usually subject to incomplete and
non-representative registration. Difficulties faced by data-collection efforts include
destroyed infrastructure, danger to field workers, suspicion of data collection by
victim communities, among other factors. The result of such an approach can only
be taken as an incomplete, non-representative sample with unknown biases, and it
can only lead to a lower bound on the total number of casualties.

Capture-Recapture (CR), also known as Multiple Systems Estimation (MSE) in
the context of human populations, is a family of statistical methods for estimating
the size of closed populations, which can take advantage of the existence of multiple
incomplete lists of casualties. CR methods vary in details and complexity, but they
all rely on analyzing the patterns of inclusion-exclusion of individuals in the samples
to estimate the probability of not being observed, and then the number of unobserved
individuals. In the context of conflict casualty estimation, they were first used in
Guatemala by Ball (2000), where researchers used three incomplete sources of
information, which jointly documented more than 54,000 unique killings, and used
CR to estimate the total to be more than 132,000. This analysis and several follow-
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on projects helped support the case that the Guatemalan Army committed acts of
genocide against the indigenous Mayan population (see Ball and Price (2018)).
Other applications include deaths in the Kosovo war (Ball et al. 2002), in Peru (Ball
et al. 2003), and Bosnia (Zwierzchowski and Tabeau 2010); see a review in Ball and
Price (2019).

CRmethods are best known for their application to animal abundance estimation,
where they have developed considerably; see e.g. Otis et al. (1978) for a classic
survey of methods in this domain. However, variants of these methods for estimating
human populations have been in use for a long time—indeed the first documented
application of a CR-like method, estimating the population of France, dates all the
way back to the eighteenth century (Laplace 1786; Amorós 2014). In epidemiology
CR has been applied to the estimation of prevalence of rare diseases and at-
risk populations (e.g. International Working Group for Disease Monitoring and
Forecasting 1995a;b; Okiria et al. 2019). CR is also used in census correction using
post-enumeration sample surveys and dual-system estimators (Mulry and Spencer
1991), and administrative data and MSE (Zaslavsky and Wolfgang 1993). See Bird
and King (2017) for a recent review.

As in many other areas of statistical methodology and practice, Steve Fienberg
made crucial contributions to the development and adoption of CR. Prior to Steve’s
work, many researchers had expressed concerns about the ubiquitous assumption
of independence between samples. However, it was not until the 1970s with the
development of methods for discrete multivariate analysis (in which Steve also
played a pivotal role) that Fienberg (1972) introduced the use of log-linear models
as a feasible way to account for dependence among the samples. His log-linear CR
approach has since become a standard part of the applied toolbox, especially in
the estimation of human population sizes. Steve was also a champion of the use of
CR as a tool for census correction, an area and debate in which he made important
contributions (e.g. Darroch et al. 1993; Anderson and Fienberg 1999). In the specific
application to casualty estimation in armed conflicts, Steve played a behind-the-
scenes but direct role, as an advisor and mentor to many researchers, including two
of the authors of this piece.

Several challenges arise when using CR methodologies for casualty estimation.
Many of these problems are common to other applications, and there are readily
available methodologies to address them. For example, dependence between lists
can be addressed using a log-linear CR approach (Fienberg 1972; Bishop et al.
1975). Other problems in casualty estimation differ substantially from other con-
texts. For example, while several models for controlling individual heterogeneity in
capture have been proposed in the ecology (e.g. Agresti 1994) and census correction
(e.g. Darroch et al. 1993) literatures, most of them assume a symmetrical form of
heterogeneity (for example, the Rasch model) which is not realistic in our context
as lists are not exchangeable.

In this article we discuss the challenges of applying CR methods to the problem
of estimating the total number of deaths in armed conflicts, and explore the advances
of the last 15 years in the area. We also describe outstanding challenges and
speculate possible solutions.
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2.2 Capture-Recapture in Casualty Estimation: Challenges
and Developments

The Capture-Recapture Approach

Consider a closed population of N individuals, and J ≥ 2 incomplete lists taken
from that population. In this contextN will be the unknown number of victims of the
armed conflict, and J the number of partial lists available. Let xij = 1 if individual
i is recorded in list j and xij = 0 otherwise. We arrange all these indicators into
individual-level vectors to form N individual capture patterns xi = (xi1, . . . xiJ ),
one for each element of the population. For example, a pattern xi = (0, 0, 1, 1)
indicates that individual i was recorded by lists 3 and 4, but missed by the first two.
We note that even though each individual has a capture pattern, any individual with
pattern 0 = (0, . . . , 0) is by definition unobserved. Our objective is to produce an
estimate of how many individuals in the population belong to that class.

Capture-Recapture estimation of N is based on estimating the probability mass
function f (x|θ) for the capture patterns x ∈ {0, 1}J from a sample truncated at
x = 0. We then use that model to predict f (0|θ), and then N . In order for this to
be possible it is necessary, at the very least, that whatever the model f (x|θ) is, it
can be estimated from the data, which, by definition, will never include the capture
patterns 0. Conversely, even though we cannot observe 0, the model should make it
possible to evaluate f (0|θ). The model’s other assumptions are mostly related to the
specific form of the data generation process, and these will be encoded as specific
parametric assumptions in f (·|θ).

Two assumptions are commonly associated with CR estimation. The first one,
independence, states that the probability of appearing in one list is not affected by
having appeared in another list. The second one, homogeneity, requires that this
probability distribution is the same for each individual in the population. These two
can be expressed as the so-called independence model:

xi
iid∼

J∏

j=1

p
xij

j (1− pj )
1−xij , i = 1, . . . , N, (2.1)

where pj is the probability of appearing in list j . The independence model lies
behind the earliest and most famous CR techniques, for example, the Petersen
estimator,

N̂ = nA · nB

nAB

, (2.2)

where nA and nB are, respectively, the number of observed individuals in lists A
and B, and nAB is the number of individuals in common between the two.

Independence estimators like Petersen’s are still occasionally useful—for
instance, when both lists are independent simple random samples from the
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population—but their assumptions are unrealistic in the casualty estimation
setting. Specifically, probabilities of capture tend to vary, sometimes greatly, from
individual to individual. From qualitative conversations with victim communities
and grassroots human rights activists documenting abuses, we have learned that the
two primary factors that affect the probability that an event will be observed are trust
and logistics. Interviewers are asking survivors to relate events that are among the
most traumatic situations that can happen to anyone. The survivors’ willingness to
report these events requires them to trust the interviewers. Conversely, if survivors
perceive the interviewers as from rival political positions, they may choose not
to disclose information to protect themselves. The second major influence on
documentation dynamics is the logistical capability of each organization. Can the
groups conducting documentation access the affected communities? Much mass
violence occurs in remote areas. Groups that have interviewers willing to make
arduous journeys may be better able to capture information in those locations.
High-resource groups may be able to afford more and more adaptable vehicles, or
in the case of the UN, helicopters.

List Dependence

Violations of the assumptions underlying (2.1) in the form of dependence between
lists are common in casualty estimation. In the original Guatemala analysis (Ball
2000), researchers observed a form of negative dependence between two of the
lists. The first of these dependent lists was the result of a qualitative investigation
that took testimonies among Catholic religious communities conducted in the mid-
1990s; the second was gathered by a coalition of NGOs, or nongovernmental
organizations, mostly associated with the political left which took testimonies in
the early 1990s among communities which had been part of the guerrillas’ civilian
base. Researchers noted that people in the religious communities that trusted the
Catholic researchers would be less likely to report to the NGOs, and vice versa.
In this scenario, individual witnesses prefer one documentation project to another,
leading to negative list dependence.

Fienberg (1972) proposed to account for list dependencies through their explicit
modeling as list-by-list interactions in log-linear models (see also Bishop et al.
1975). For example, using Bishop et al. (1975) notation, a model accounting for
dependence between lists 1 and 2 when three lists are available would be

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij),

where mijk = E[nijk] and nijk is the number of individuals with capture pattern
(i, j, k) ∈ {0, 1}3. A conditional maximum likelihood estimator for the undercount
is given by the formula
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n̂000 = m̂001m̂010m̂100m̂111

m̂011m̂101m̂110
. (2.3)

This formula results from a no-second-order interaction assumption in the log-linear
model, that is, u123(ijk) = 0, necessary to ensure that the model is identifiable and
that f (0|θ) can be calculated.

Log-linear CR is a mature technology that has been used in several casualty
estimation projects; e.g. Kosovo 2002 (Ball et al. 2002), Peru 1980–2000 (Ball
et al. 2003), Guatemala 1982–1983 (Ball and Price 2018), and Bosnia in 1992–
1995 (Zwierzchowski and Tabeau 2010). Nevertheless, this approach has several
important limitations, and we will discuss some of them later in this article.

Heterogeneity

Differences in the probabilities of being listed due to individual traits are referred
in the CR context as heterogeneity of capture probabilities (or “heterogeneity,” for
short). As discussed in the introduction, our experience has led us to believe that
heterogeneity is the primary problem in CR applied to casualty estimation. Victims
and witnesses of violence are subject to individual attributes that affect the listability
of victims. We mentioned the problem of the degree of trust that witnesses put in
different projects as one reason. Another important aspect is the social visibility
of victims. Adults tend to be better known by their communities than children;
authorities and famous people tend to be reported more than regular people; victims
in remote rural locations tend to be less frequently reported than people in cities.
All of these, and other more locally specific or less describable factors, contribute to
the violation of the “equal distribution” assumption in model (2.1) and need special
treatment. We now describe two approaches to deal with the effects of heterogeneity
in CR.

The first approach to deal with heterogeneity is stratification (Sekar and Deming
1949). The idea is to use a discrete covariate that is known or suspected to be related
to the source of heterogeneity to segment the population into homogeneous (or at
least more homogeneous) sub-populations and estimate within them separately. A
common choice in this context is place of death. For example, in Ball et al. (2003)
researchers resorted to expert knowledge for dividing the Peruvian territory into
59 geographic strata roughly corresponding to known insurgent-counterinsurgent
conflict dynamics, which were then treated separately. Other typical choices in
casualty estimation are perpetrator agent (Ball et al. 2003) and period (Ball et al.
2002).

When properly executed, stratification can greatly help reduce the impact of
heterogeneity; however, it also has important limitations. The most obvious one is
the reduction of within-strata sample sizes. This reduces inferential power and can
lead to identifiability problems. Another one is the need of data for the stratification
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and of specialized knowledge about the relationship between heterogeneity and the
available covariates.

A second, complementary approach to dealing with heterogeneity is through
modeling. Sometimes heterogeneity manifests itself as list dependency and can
be dealt with using log-linear and related methods. For example, even though we
presented the case of Guatemala as an illustration of list dependency, a closer look
reveals that the driver of said dependency were differences of listability due to
individual traits, i.e. the level of trust each individual had on each documentation
project.

A more direct modeling strategy is to directly represent the individual traits
that lead to the differential capturability. This approach was first introduced by
Sanathanan (1973) and was greatly developed in the context of animal abundance
estimation as the model Mh and its variants (Otis et al. 1978). All these approaches
have in common to introduce some form of individual-level random effectωi driving
capturability:

xi |θ, ωi
ind∼ f (·|θ, ωi), ωi

iid∼ H.

Most of the models developed in the animal estimation literature assume symmetric
heterogeneity effects, that is, ωi affects all lists in the same direction. An example of
this structure is the Rasch model (Agresti 1994; Fienberg et al. 1999). This makes
sense in ecology applications: if animals possess characteristics that make them
difficult (or easy) to capture in general, they should be so for any trapping occasion.

Symmetric heterogeneity does not hold in casualty estimation. Different doc-
umentation projects often have different objectives, capabilities, and sympathies,
resulting in different access to different types of victims. This means that the
same individual traits ωi may have different effects on different lists, sometimes in
opposite directions. A dramatic case was observed in Peru (Ball et al. 2003). There
victims of the Shining Path tended not to be captured by NGOs or the Ombudsman
office, while victims of the armed forces tended to be favored by NGOs. In these
cases symmetric effect models, like Rasch models, would be inadequate.

Models that allow for less constrained forms of heterogeneity have been pro-
posed for casualty CR estimation. Manrique-Vallier (2016) proposed the use
of Dirichlet process mixtures of independence models (NPLCM model). These
models have been successfully used for re-analyzing heterogeneous data previously
analyzed with log-linear models in Peru (Manrique-Vallier et al. 2019) and Kosovo
(Manrique-Vallier 2016). It has also been used to estimate the total number of people
who disappeared in the final 3 days of the Sri Lankan civil war (Ball and Harrison
2018); the number of women held as sexual slaves by Japanese authorities during
World War 2 in Palembang, Indonesia (Ball et al. 2018); the number of people killed
in drug-related violence in the National Capital Region of the Philippines (Ball et al.
2019a); and the number of social movement leaders killed in Colombia in 2016–
2017 (Ball et al. 2019b). We discuss more about them in Sect. 2.3.
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We believe that the use of flexible models that directly address heterogeneity, like
NPLCM, is preferable to techniques that address the induced list dependency, like
log-linear models. In Manrique-Vallier et al. (2019) we re-analyzed the Peruvian
data from Ball et al. (2003) (plus an extra data source) using LCMCR and log-
linear models. We noted that in cases in which results from the two approaches
diverged, log-linear models were complex and required many interaction terms.
We attribute this behavior to the fact that log-linear models can only address
heterogeneity through its approximation using interaction terms and the no-highest-
order interaction assumption. While in some cases a simple log-linear representation
exists (as in the Guatemala and Kosovo cases), in others the necessary models will
be highly complex and not identifiable. For a study on the relationship between
LCMCR-type mixtures and log-linear models see Johndrow et al. (2017).

Model Selection

Even after selecting a family of models for CR estimation (e.g. log-linear), it
is usually necessary to choose among many competing models. As in any other
statistical problem, model selection can be performed using both knowledge about
the problem and by formal model selection techniques.

An example of the use of substantive knowledge to guide model selection is
presented in (Zwierzchowski and Tabeau 2010) for Bosnia and Herzegovina. There
analysts for the International Criminal Tribunal for the Former Yugoslavia used
twelve data sources (including eight enumerations of the names of people reported
as dead) in a log-linear model to estimate the total of war casualties. They started
by making dual-system estimates between pairs of systems. They noted which pairs
seemed to produce plausible estimates, and which lead to substantially greater or
lower than the plausible middle estimates. They decided that the pairs of lists
that produced greater or lower estimates were those with substantial interactions.
In the discussion, they describe how specific pairs of lists might be positively or
negatively interacting. For example, they noted two projects that were both based
in Sarajevo and both sampled deaths from Sarajevo with greater probability than
deaths elsewhere. In the log-linear model, they included all the pairwise log-linear
terms for the lists that they argued had substantial interactions. Naturally, such an
approach is difficult to justify from a formal statistical point of view.

Formal model selection procedures have been prominently featured in casualty
estimation studies using log-linear CR. The earliest of these (e.g. Ball et al. 2002;
2003) relied on exhaustive searches within the space of hierarchical log-linear
models and were conducted based on the minimization of indexes that balanced
parsimony with fit, like the BIC or the χ2/df statistic. Although this is common
practice in applied statistics and in CR in particular, the approach presents some
important limitations. First, even though the model search is data-based (and
therefore subject to sampling variability), estimation is performed conditioning
on the selected model. This neglects the uncertainty associated with the model
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selection process itself. Second, in many cases equally plausible models can produce
substantially different results with no clear way of choosing one over the other.
Finally, some families of models (like log-linear with a large number of lists) can be
too large to fully evaluate.

Bayesian model averaging (BMA) avoids the model selection issue altogether.
Instead of selecting one single “best” model, we average the posterior distributions
of interest (in this case over the population size) over all models of a family,
weighting by the posterior probability of the models themselves. Lum et al. (2010)
used a BMA approach proposed by Madigan and York (1997) to estimate the
number of fatal human rights violations in the department of Casanare, Colombia,
in the period 1998–2007. The method of Madigan and York (1997) uses BMA in the
space of decomposable graphical models, which is itself a sub-family of hierarchical
log-linear models. Madigan and York (1997)’s method works in practice because
discrete decomposable graphical models allow posterior estimation in closed form,
and the number of models is not too large to evaluate provided the number of
lists is small. However, BMA can become computationally challenging with large
numbers of lists. Furthermore, as decomposable graphical models are a sub-family
of hierarchical log-linear models, they also share some of their limitations; in
particular, they might not be sufficiently flexible for modeling dependence induced
by heterogeneity.

A different approach was taken by Manrique-Vallier (2016), who proposed the
use of Dirichlet process mixtures of product-Bernoulli (independence) models. In
this case the model is theoretically infinite-dimensional but has a structure that
modulates the complexity of the mixture to what is needed to adjust well to the data.
Similarly to BMA, this approach has the advantage of avoiding the model selection
problem but avoids having to deal with several models to begin with. It also has the
advantage of being computationally tractable, scaling easily to very large numbers
of lists.

Recent advances notwithstanding, the problem of model selection in CR estima-
tion presents a unique challenge. Any formal model selection procedure can only
ensure that the models under consideration fit the observed data well enough to some
criterion. However, since capture pattern 0 is unobservable by definition, there is no
way of ensuring that a model that fits the observed part of the data well enough will
lead to recovery of the true value of fT (0|θT ) under the true model fT (·|θT ). This
is a well-known problem (see e.g. the discussion section in Bishop et al. (1975), Ch.
6) and the ultimate reason why the non-parametric CR problem is unidentifiable.

Practical Invisibility: α-Observability

An important assumption for CR estimation is that every individual in the population
of interest must have a positive probability of being listed. With perhaps the
exception of projects actively refusing to register particular victims or types of
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victims, this condition is not difficult to meet in the context of casualty estimation:
it is implausible that people can die or disappear without anybody at all noticing.

A related but less explored problem is when some individuals’ probability of
being listed is indeed positive, but very small. In these cases, even though the
classical assumption of positive probability is satisfied, some individuals might
be practically invisible to the sampling efforts. This phenomenon is especially
problematic in heterogeneous populations, where it might be the case that we
have several lists with plenty of data from individuals from easily observable sub-
populations, but very few or none from less observable groups.

This problem was studied by Johndrow et al. (2019). They noted that this is
an intrinsic problem in CR estimation under heterogeneity, and that an important
consequence is that the estimation risk of the population size can, in many cases,
be unbounded. As a compromise solution they proposed to abandon the objective
of estimating the true population size and re-define the problem as estimating the
number of individuals with a probability greater than an arbitrary threshold α of
being observed (“α-observable”).

2.3 Some Open Problems and Research Directions

Models and Extrapolation Assumptions

CR estimation is in its essence an extrapolation problem: use data from capture
patterns in {0, 1}J \ {0} to estimate f (0|θ). Since 0 is unobservable by definition,
the way to project to this probability will be completely determined by the model
f (·|θ); this also means that truly non-parametric CR estimation is essentially
impossible; see discussion in Manrique-Vallier (2016). Conversely, the way in
which the probability f (0|θ) relates to the rest of f (x|θ), x �= 0, can neither be
learned from data nor tested. The projection of the joint model to the unobservable
part is related to the concept of extrapolation distribution in the missing data
literature (Hogan and Daniels 2008).

Since statistical inference on the way in which observable patterns relate to
the unobserved is impossible, selecting an appropriate model or family of models
should be done in a way that best resembles the actual data generation process and
with understanding of the implied extrapolation assumption. An important example
is hierarchical log-linear models. As discussed in Sect. 2.2, log-linear models for
J lists require an assumption of no (J − 1)th-order interaction in order to be
identifiable from data with capture patterns {0, 1}J \ {0}. This condition itself
defines the extrapolation assumption (from which the estimator in (2.3) is derived).
The question then becomes: is this particular way of extrapolating reasonable for
casualty estimation?

As explained in Sect. 2.2, we believe that in most casualty estimation problems,
heterogeneity is the main driver of departures from the independence model and
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so, with some exceptions, log-linear models are just an approximation to the true
joint distribution of data. Therefore, even if the models fit the observed data well,
the extrapolation assumption might not be appropriate for this problem. On the
other hand, models that directly represent plausible heterogeneity structures, like
NPLCM, might be more appropriate. Which models and extrapolation assumptions
are better for different scenarios in casualty estimation is an open question that
would benefit from additional research.

Data-Based Stratification

Stratification is often used as a first approach to tackle heterogeneity (see Sect. 2.2).
The usual practice consists in using qualitative expert knowledge to find a partition
of the population that could result in homogeneous sub-populations and estimate
within each of them separately. Oftentimes, after trying a stratification scheme, some
strata will still exhibit signs of residual heterogeneity. In these cases researchers
sometimes revise the stratification scheme, adjust, and try again. For example,
in Peru (Ball et al. 2003) researchers determined regional conflict dynamics and
stratified accordingly. Then, after noting that model fitting in some of the regions
was poor, they sub-divided them into smaller pieces forming a finer stratification
scheme.

This iterative procedure seems natural and intuitive but is statistically problem-
atic. Specifically, the process of looking at the results obtained under a stratification
scheme to modify it is itself a data-based decision that is likely to alter the validity of
inferences—similar to the so-called p-hacking problem (Gelman and Loken 2013).
Manrique-Vallier et al. (2019) noted this problem in their re-analysis of the Peruvian
data. They addressed it using a partial blinding procedure: two of the authors
performed the calculations without sharing the results with the third, while the latter
proposed sub-stratification schemes only based on external qualitative knowledge.
This procedure partially addressed the risk of cherrypicking results based on what
the researchers would want to see. However, the selection of which regions to sub-
divide was still based on data-based evaluations of model fitting.

A possible alternative is to formally incorporate the stratification process into
the modeling and estimation procedures. Let Y = {y1, y2, . . . , yM } be the finest
partition of the population we are willing to consider, determined from subject
matter knowledge. Let us call these partitions atomic strata. Taking Y as the
stratification scheme is equivalent to fitting M models f (·|θy1), . . . , f (·|θyM

) to
each atomic stratum. On the other extreme, we can think of unstratified estimation as
making the parameters of all M models equal, i.e. θy1 = θy1 = · · · = θ . In between,
we can represent different stratification schemes as different agglomerations of
atomic strata, where parameters are equal. For example, if we wanted to create
a stratum that combines strata 1, 2, and 3, we would represent it by enforcing
the restriction θy1 = θy2 = θy3 . Using this idea we can think of performing
simultaneous estimation of the stratification scheme and CR parameters (including
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the population size) by specifying prior distributions that put positive mass into
relevant groupings of atomic strata by enforcing equality on their parameters. This
idea is similar to the method of Price et al. (2019) for the automatic combination
of categories in logistic regression. This construction can also allow enforcing
meaningful structures, like geographic or temporal contiguity by appropriately
allowing equality among neighboring atomic strata.

Missing Data

As noted by Fienberg and Manrique-Vallier (2009), CR can be seen itself as a
missing data problem. Indeed, many estimation methods are based on data- or
sample-augmentation schemes that represent unobserved individuals as missing
records—see e.g. Manrique-Vallier (2016). This makes it natural to combine CR
with other forms of missing data problems and methods.

A frequent scenario in casualty estimation is when data for stratification is
missing for some individuals. For example, in the study of the Peruvian conflict
(Ball et al. 2003; Manrique-Vallier et al. 2019), about 10% of the records missed
perpetrator attribution. As noted by Zwane and van der Heijden (2007)—who
studied the problem for the special case of variables completely missing in some
of the lists—in these cases the common practices of ignoring incomplete covariates,
creating a special category out of them, or imputing “reasonable” values can be a
source of either biases or too optimistic precision.

Manrique-Vallier et al. (2019) proposed a framework for Bayesian stratified CR
estimation with incomplete stratification information in one covariate. They com-
bined it with the model fromManrique-Vallier (2016) and used the resulting method
to estimate deaths in the Peruvian conflict. The method is based on using a data-
augmentation representation for both the unobserved individuals and the missing
stratification which is then estimated using Markov Chain Monte Carlo simulation.
At its core this method is based on a Missing at Random assumption (Little and
Rubin 2002) whereby the information used to infer the missing stratification is
obtained from records with similar capture patterns. A natural extension of this idea
is to complement the information from the capture patterns with other variables.
For example, in Manrique-Vallier et al. (2019) researchers had access to covariates
that were not used in stratification (like age) which might be related to the missing
stratification labels and could be used to better estimate them.

Data Copying Between Lists

An important exception to our belief of heterogeneity being the main driver of
dependence between lists in casualty estimation is the case of sharing or copying
of records between documentation projects. In these cases, in addition to gathering
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first-hand information about casualties of a conflict, some projects directly incorpo-
rate data obtained by other projects into their listings. In our experience this is not
a prevalent problem across the casualty estimation projects in which we have been
involved. However, when it happens, its effect is noticeable. One example occurs
in the conflict in Syria, where the Human Rights Data Analysis Group (HRDAG)
has longitudinal access to lists put together by different projects. The databases are
shared multiple times over time, as they are updated when new deaths are known and
when additional information about previously reported deaths becomes available. In
some cases, the overlap between two lists increases substantially between updates,
where the newly overlapping records are found not to be present in one of the
databases in the previous iteration, and the new records match exactly records in the
other database. HRDAG, in conversation with one of the groups, learned that they
copy published records from the others. This is a reasonable strategy for a group
trying to maintain a comprehensive list, but it creates a strong positive dependence
between the lists.

Copying of records between lists that also directly gather first-hand information
is problematic in CR because it superimposes and confounds two data generation
processes: the capture of individuals by documentation projects, and the relationship
between those projects. From these, only the former process is useful for inferring
the population size. Thus we need to somehow disentangle them. An ideal situation
is that projects record the source(s) of each record so that we can identify which
records have only been copied and remove them prior to statistical analysis.
In the absence of such information we may try to model the copying process.
This strategy will likely require external sources of information and/or strong
and untestable assumptions to overcome non-identifiability. One of such possible
additional sources of information can result from integrating the CR estimation and
the record linkage process.

Internal Duplication

Typical multi-list CR methods (like all the ones that have been used for casualty
estimation studies so far) only work with information about presence or absence in
lists, in the form of vectors in {0, 1}J \ {0}. These vectors are usually the result of
J -way record linkage among J lists, where individual lists are assumed to be free of
duplicated records. In fact, in most projects an important part of the data preparation
is making sure that the internal duplication within lists has been eliminated.

Internal duplication within lists carries plenty of useful information that can be
lost during the “cleanup” process. In the same way in which the presence of an
individual in more than one list is usually interpreted as an indication of a higher
probability of being observed, repeated presence in the same list (or “duplication”)
can also contribute to the same conclusion. To take advantage of these data we
need to create methods in which the multivariate capture patterns are not simply
strings of zeros or ones, but of natural numbers, x ∈ {0, 1, 2 . . .}J . A simple
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version of such a model, assuming independence between two lists, has been
proposed by Lerdsuwansri and Böhning (2018). However, the casualty estimation
context is likely to require much more sophisticated multi-list models that represent
plausible data generation scenarios and that can be integrated with other sources
of information. An additional level of complication comes from the fact that, in
practice, there will be uncertainty on which records are duplicates within a single
dataset, that is, the counts x ∈ {0, 1, 2 . . .}J will be known with error (see e.g.
Sadinle 2014; Steorts et al. 2016).

Record Linkage Errors

The capture patterns xi ∈ {0, 1}J \ {0} are the essential input for all CR techniques.
To obtain these we need to identify individuals that appear in multiple lists by
linking their corresponding records. In the context of armed conflicts, witnesses, or
victims of violence may report an event to different organizations at different points
in time and with different degrees of detail. Unfortunately, reporting or collecting
unique identifiers, such as national identification numbers, is rare in this context.
This means that even the more basic question of how many unique casualties were
reported to any one group cannot be easily answered, as it is often difficult to
determine which records belong to the same individuals.

Probabilistic record linkage techniques (see e.g. Fellegi and Sunter 1969; Win-
kler 1988; Jaro 1989; Larsen and Rubin 2001; Sadinle and Fienberg 2013; Steorts
et al. 2016; Sadinle 2017) take advantage of imperfect partial identifiers collected
on the individuals, such as names and demographic information, dates and locations
of the events. These pieces of information are usually subject to typographical
and other types of errors, which lead to uncertainty in the correct way of linking
the records. The result of the record linkage process will typically contain errors
termed false links and false non-links, that is, records that were incorrectly linked
and records that were incorrectly left unlinked, respectively. A false non-link can,
for example, lead to a true capture pattern (0, 0, 1, 1) being incorrectly registered
as two capture patterns (0, 0, 0, 1) and (0, 0, 1, 0); conversely, a false link can, for
example, lead to two capture patterns (0, 0, 0, 1) and (0, 0, 1, 0) being incorrectly
counted as (0, 0, 1, 1). Similar errors appear when record linkage techniques are
used for duplicate detection within each list.

The effect of linkage errors is clearly seen in the Petersen estimator (2.2) in the
case of two lists. Between the lists, false links will lead to higher nAB and thereby
lower population size estimates, whereas false non-links will lead to lower nAB

and higher population size estimates. Within each list, false links will lead to lower
nA and nB and therefore lower population size estimates, whereas false non-links
will lead to higher nA and nB and therefore higher population size estimates. For
multiple lists, the specific impact of linkage errors will depend on the models being
used.
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Broadly speaking, the output of a linkage procedure can be seen as an estimator
for the underlying correct way of linking the records. As every estimation procedure,
the linkage is subject to sampling variability, and we are interested in “transferring”
this “linkage uncertainty” into the population size estimation, with the goal of
having final estimates that reflect the fact that the linkage is subject to error.
Two strategies come to mind: a joint modeling strategy for both the linkage
and the population size estimation, and a two-stage strategy where the output of
probabilistic linkage is fed into the population size estimation. The first approach
has been undertaken by Liseo and Tancredi (2011) and Tancredi and Liseo (2011),
who created a joint Bayesian modeling strategy that combines a model for record
linkage with a model for population size estimation; although their work focuses on
the case of two lists, their strategy could in principle be extended to more general
models. The second approach was undertaken by Sadinle (2018), who proposed
a procedure called linkage-averaging, where the linkage and the population size
estimation can be carried out in two separate stages, while still leading to proper
Bayesian inferences under some conditions.

A characteristic of the joint modeling strategy is that the analyst will have to run
the record linkage and the CR model jointly for each different CR model, which
can be computationally intensive, whereas in the two-stage strategy the results
from record linkage can be reused with different CR models. Another characteristic
of both of these approaches is that their success is determined by the success
of their record linkage and CR components. For example, if the record linkage
model over-links or under-links, then the population size estimates will be lower
or higher, respectively, with respect to what we would obtain under the correct
linkage, regardless of whether one uses a joint model or a two-stage approach.
Similarly, if the model for population size estimation is wrong, our estimates will be
deficient regardless of whether one uses that model in a joint model or in a two-stage
approach. Further research should be devoted to better understanding the properties
of these strategies and to develop alternatives.

2.4 Final Comments

Our goal in this discussion was not to be exhaustive but rather to present some of the
challenges, approaches, and directions we are most familiar with. CR for casualty
estimation could benefit from developments in many other areas of statistics,
such as model selection in regression problems, post-selection inference, small
area estimation, and spatio-temporal modeling, just to name a few. Furthermore,
CR techniques that are developed for estimating animal abundance in ecology,
for corrections to census enumerations, or for disease prevalence estimation in
epidemiology will also continue to be potentially useful for casualty estimation.

CR for casualty estimation is an area of research posing several technical chal-
lenges that have traditionally been bypassed in applications via ad-hoc solutions.
More adequate solutions should account for the uncertainty in the correct ways of
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modeling, extrapolating, stratifying, handling missing data, and deduplicating and
linking records. Unfortunately, the flip side of better handling of these issues is
that we will necessarily obtain casualty estimates with much broader uncertainty
intervals. This can potentially mean that in certain situations the intervals will
become too large to be practically useful. Nevertheless, it is desirable to have
estimation methodologies that provide us with honest assessments of uncertainty
and thereby avoid misleading and overconfident results.
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Chapter 3
Algebraic Statistics, Tables, and
Networks: The Fienberg Advantage

Elizabeth Gross, Vishesh Karwa, and Sonja Petrović

3.1 Introduction

Stephen Fienberg’s early work on contingency tables [BFH74] relies on using
intrinsic model geometry to understand the behavior of estimation algorithms,
asymptotics, and model complexity. For example, in [Fie70], Fienberg gives a
geometric proof of the convergence of the iterative proportional fitting algorithm for
tables with positive entries. The result in [Fie70] relies on his study of the geometry
of r × c tables in [Fie68] and his and Gilbert’s geometric study of 2 × 2 tables
[FG70]. This approach to understanding models would eventually fit within the
field of algebraic statistics, a general research direction that would take hold in the
2000s, over 25 years after the publication of [Fie70] and the 1974 edition of Bishop,
Fienberg, and Holland’s book [BFH74], whose cover displayed the independence
model for 2× 2 tables as an algebraic surface.

The term “algebraic statistics” was coined in 2001 [PRW01] and generally refers
to the use of broader algebraic—non-linear—and geometric—non-convex—tools in
statistics. While the use of algebra and geometry had been long present in statistics,
before the 2000s, linear algebra and convex geometry were the main tools used
consistently. The field of algebraic statistics is now a branch of mathematical statis-
tics that relies on insights from computational algebraic geometry, combinatorial
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geometry, and commutative algebra to improve statistical inference. As algebraic
statistics matured and caught the attention of many researchers, Fienberg and his
students and collaborators reformulated several fundamental statistical problems,
e.g. existence of maximum likelihood estimators and ensuring data privacy, into
the language of polyhedral and algebraic geometry. Today Fienberg’s intuition and
influence remain central to one of the principal applications in algebraic statistics:
testing goodness of fit of log-linear models for discrete data. Within the last decade
or so, much of his work in this area focused on log-linear network models. In this
regard, Fienberg defined new models, explained how to represent relational data
as contingency tables in order to apply tools from categorical data analysis, and
addressed the problems of estimation, model fit, and model selection. This paper
presents a brief overview of this line of work heavily influenced by Fienberg’s
vision, which continues to inspire us.

3.2 Geometry and Algebra of Log-Linear Models

Let us recall the basics and fix notation. Let I = [d1] × · · · × [dk] be a finite set
that indexes cells in a contingency table u ∈ Z

d1×···×dk

≥0 . The (i1, . . . , ik)-cell counts
the number of occurrences of the event {X1 = i1, . . . , Xk = ik} for k categorical
random variables withXi taking values on a finite set [di] := {1, . . . , di}. Log-linear
models are probability distributions on the discrete set I whose sufficient statistics
are given by marginals, i.e. subtables of the table u obtained by summing u across a
subset the index set I; since marginalization is a linear map, it can be presented as
matrix multiplication. Specifically, a log-linear model for I is a linear exponential
family defined by anm×|I|matrixA, called the design matrix, taking the following
form:

Pθ(U = u) = exp{〈Au, θ〉 − ψ(θ}, (3.1)

where θ ∈ R
m is the vector of model parameters and ψ(θ) the normalizing constant.

Note that specifying the matrix A completely specifies the contingency table model
for X1, . . . , Xk , as it determines the vector of minimal sufficient statistics Au for
the linear exponential family in (3.1). As is customary in algebraic statistics, we
will denote the model (3.1) byMA.

Let us consider one of Fienberg’s early favorite examples: the model of indepen-
dence of two categorical random variables X1 and X2. Here, A is a (d1+d2)×d1d2
matrix of the following form, where the first d1 rows each have d2 ones and the last
d2 rows contain d1 copies of the d2 × d2 identity matrix:
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1

1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The sufficient statistic forMA is the vector of marginal counts (that is, table row
and column sums). For a contingency table u, these counts are computed as:

A

⎡

⎢
⎣

u11
...

ud1d2

⎤

⎥
⎦ = [

u1+ . . . u+d2

]
. (3.2)

In [Fie68], Fienberg describes the geometry of MA in detail, describing the model
of independence as the intersection of the manifold of independence with the
probability simplex. In algebraic geometry, the manifold of independence is a Segre
variety, a categorical product, which Fienberg describes explicitly by detailing the
linear spaces corresponding to the product fibers, or in other words, every preimage
of the map described by Eq. (3.2). In addition, the defining equations of the Segre
variety corresponding to the independence model are stated in [Fie68] in statistical
terms (see Section 4 of [Fie68]). These equations, which are polynomial equations
in indeterminates that represent joint cell probabilities, are a key ingredient to
assessing model fit.

Indeed, assessing model fit for log-linear models, and consequently, log-linear
network models, is possible due to a fundamental result in algebraic statistics that
establishes a connection between model-defining polynomials and sampling from
the conditional distributions of log-linear models. The model-defining polynomials
of interest are generating sets of polynomial ideals called toric ideals [Stu96], §4
and §5. The essential component, which binds together the statistical and algebraic,
is the vector of (minimal) sufficient statistics for the log-linear exponential family,
the vector Au in the definition above.

One way to perform goodness-of-fit testing for log-linear models, especially
in sparse settings such as networks, is to perform Fisher’s exact test (see e.g.
Section 2.6 in [Agr92]). In many cases, however, it is infeasible to compute the
exact conditional p-value, thus it is estimated using a Markov chain Monte Carlo
(MCMC) method. The exact conditional p-value of a contingency table u is the
probability that the Pearson’s χ2 statistic of a random data table is larger than
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the Pearson’s χ2 statistic of the table u, conditional on the observed values of the
sufficient statistics. The set of all tables with the same sufficient statistics as u is
called the fiber of u under the model MA and is defined as follows:

FA(u) := {v ∈ Z
d1×...×dk

≥0 : Au = Av}.

The naming of the reference set FA(u) is derived from algebraic geometry: a fiber
of a point of the linear map defined by A is its preimage under that map; in this
case, we are considering the set of non-negative integer points in the preimage of
the sufficient statistics Au. In order to perform the MCMC method to estimate the
exact conditional p-value, a set of moves must be given, and this set of moves must
connect all elements in the fiber FA(u) so that the conditional distribution on the
fiber can be sampled properly. Such a set of moves is called a Markov basis.

Definition 2.1 A Markov basis of the model MA is a set of tables B :=
{b1, . . . , bn} ⊂ Z

d1×...×dk for which

Abi = 0

and such that for any contingency table u ∈ Z
d1×...×dk

≥0 and for any v ∈ FA(u), there
exist bi1 , . . . , biN ∈ B that can be used to reach v from u:

u + bi1 + . . . + biN = v

while remaining in the fiber at each step:

u +
N∑

j=0

bij ∈ FA(u), for j = 1 . . . N.

Note that the last requirement simply means that each move needs to preserve non-
negativity of cells. As an example, let us consider the independence model with
N = 2, d1 = 3, and d2 = 3. Then the fiber FA(u) for any u is a collection of 3× 3
tables. Examples of three different Markov moves for the independence model in
this setting are

1 −1 0
−1 1 0
0 0 0

,
−1 0 1
0 0 0
1 0 −1

,
0 0 0
0 1 −1
0 −1 1

.

It is hard to check a priori whether a given set of moves does in fact form
a Markov basis for the model. However, the following foundational result from
algebraic statistics allows one to compute a Markov basis by computing a generating
set of a polynomial ideal.
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Theorem 2.2 ([DS98]) A set of vectors B = {b1, . . . , bn} is a Markov basis of
the log-linear model MA if and only if the corresponding set of binomials {xb+i −
xb+i }i=1,...,n generates the toric ideal IA := (xu − xv : u − v ∈ kerZ A).

Considering again the independence model with N = 2, d1 = 3, and d2 = 3, the
binomials associated with the three tables above are

x11x22 − x12x21, x13x31 − x11x33, x22x33 − x23x32.

One can check that these three polynomials are not enough to generate the ideal IA,
and thus more moves are needed for a Markov basis.

Theorem 2.2 is a powerful result that connects categorical data analysis to
algebra. By connecting network analysis to categorical data analysis, Fienberg was
able to use the full force of this theorem for testing model fit of statistical network
models.

3.3 Log-Linear ERGMs and Goodness-of-Fit Testing

As stated in the editorial piece [PSY19], Fienberg took joy in rediscovering old
concepts from new points of view that gave them new interpretations and wider
applicability; this was evident not only from his research articles and conference
presentations, but various interviews, see, for example, [Vie15]. We follow his lead
in the way we define log-linear network models.

Generally, a statistical network model is a collection of probability distributions
over Gn, the set of all (un)directed graphs on n vertices. The Fienberg approach to
the analysis of statistical network models, dating back to the late ‘70s and early ‘80s,
relies on explicitly making the connection to categorical data analysis by viewing
graphs as contingency tables. For example, in [FW81a], Fienberg and Wasserman
view a directed graph with n vertices as a n × n × 2 × 2 table Y where Yij00 = 1
if there is no edge between vertex i and j , Yij11 = 1 if there is a reciprocated
edge between i and j , Yij10 = 1 if there is a non-reciprocated edge from i to j ,
and Yij01 = 1 if there is a non-reciprocated edge from j to i, and all entries are 0
otherwise. Using this n × n × 2 × 2 table, Fienberg and Wasserman then describe
nine variants of a simple statistical network model, called the p1 model [HL81], in
terms of table marginals and show how these models can be fit using a version of
iterative proportional scaling for multidimensional contingency tables. In addition,
they also develop a variant of the p1 model for K subgroups determined by nodal
attributes, by collapsing the n × n × 2× 2 into a K × K × 2× 2 table; a precursor
to the directed stochastic blockmodels.

The p1 model and its variants described by Fienberg and Wasserman in [FW81b]
are examples of log-linear ERGMs. Log-linear ERGMs are exponential family
random graph models with a log-linear interpretation. Another example of log-linear
models is stochastic blockmodels, which are given a contingency representation in
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[FMW85]. Following the contingency table framework of the Fienberg approach, to
define a log-linear ERGM, one chooses an embedding φ : Gn → R

� such that for all
G = (V ,E) we have φ(G) = ∑

e∈E φ(e), and implicitly uses the embedding φ to
represent G as a vector. For example, for directed graphs, a reasonable embedding
would embed Gn into R

n2 and G would be represented by its vectorized adjacency
matrix, while for undirected graphs R(n

2) would work equally well. For directed
graphs, a suitable embedding rooted in [FW81a] (see also [FW81b]) maps Gn into
R

n×n×2×2 by representing graphs by their vectorized n × n × 2 × 2 Fienberg-
Wasserman table as described above or a vectorized table of size

(
n
2

) × 2 × 2 after
removing redundant cells. These embeddings allow us to refer to graphs as vectors.

An exponential family random graph model, or an ERGM for short, is a
collection of probability distributions on Gn that places the following probability
on each graph G ∈ Gn:

Pθ(G) = Z(θ)eθ ·t (G), (3.3)

where G is uniquely represented as a vector in R
�, θ is a row vector of parameters

of length q, the map t : R
� → R

q computes the sufficient statistics, and Z(θ)

is a normalizing constant. The image of the sufficient statistic map t is a vector in
which each entry is a network statistic used to specify the model, such as edge count,
degree of a given vertex, number of edges in a given block of vertices, etc. When the
sufficient statistic is a linear function on the entries of a natural contingency table
representation of the graph, as in degree-based models or stochastic blockmodels,
then the sufficient statistic map t can be described with a design matrix A and the
model (3.3) takes the form of (3.1). When this happens, we call the model a log-
linear ERGM.

Definition 3.1 We call an exponential family random graph model a log-linear
ERGM if the sufficient statistic map t in the ERGM specification (3.3) is a linear
map t : R� → R

q from the space of graphs to the space of the minimal sufficient
statistics of the model.

Log-linear ERGMs include degree-based models such as the β-model, models
that include effects for reciprocity, such as p1 models, and models for data with
categorical nodal attributes, such as stochastic blockmodels. Since the sufficient
statistic t is a linear map, dyadic independence is implied for a log-linear ERGM.
Dyadic independence is another way to say that for each pair of vertices, i and j , the
edge configuration (e.g. no edge between i and j , directed edge from i to j , directed
edge from j to i, bidirected edge between i to j ) is independent from the edge
configuration between any other pair of vertices. Thus, we can fully specify a log-
linear ERGM by specifying the distribution over each set of dyadic configurations.

Example 3.2 (Stochastic Blockmodels) Extremely popular in practice, this family
of log-linear ERGMs models networks whose nodes are partitioned into groups–
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blocks—according to some nodal attributes. For a directed network, each dyad can
be in one of four states represented as follows: (0, 0) represents no edge, (1, 0) an
edge from i to j , (0, 1) an edge from j to i, and (1, 1) a bidirected edge. Note that
if the network is undirected, the model simply collapses to having only two dyadic
states: (0,0) and (1,1). Denote by pijkl the probability of the dyad (i, j) to be in state
(k, l).

Edge formation is governed by what Fienberg and Wasserman call choice
parameters, denoted by δrs , and reciprocity effects ρrs . These parameters are
defined on the level of blocks. In addition, Fienberg liked the use of an additional
set of parameters λij for normalization: ensuring that each dyad is observed in only
one state at a time. Specifically, the model was defined in [FMW85] as follows:

logpij00 = λij (3.4)

logpij10 = λij + δb(i)b(j)

logpij01 = λij + δb(j)b(i)

logpij11 = λij + δb(i)b(j) + δb(j)b(i) + ρb(i)b(j),

where each node in the graph belongs to one of K blocks, B1, . . . , BK , and b(i)

denotes the (known) block assignment of vertex i.
There are various special cases of stochastic blockmodels. For example, we can

choose δrs = δ + αr + βs and ρrs = ρ, as in ([FMW85], Equation (2.10)). Then
the model is the following special case:

logpij00 = λij (3.5)

logpij10 = λij + δ + αb(i) + βb(j)

logpij01 = λij + δ + αb(j) + βb(i)

logpij11 = λij + 2δ + αb(i) + αb(j) + βb(j) + βb(i) + ρ.

In this setting, the sufficient statistics counted by the map t are the number of
configurations for each dyad, the total number of edges, block in-degrees, block
out-degrees, and the total number of reciprocated edges in the network. Here, the
in-degree of block Bj (the number of edges that enter the block) is computed by
adding in-degrees of all the nodes in the block, din

Bj
=∑

i∈Bj
din
i . The out-degree is

defined similarly.
Let us consider the space of directed graphs on n = 3 vertices V = {1, 2, 3} with

block structure B1 = {1, 2}, B2 = {3}, the design matrix A defining the linear map
t would be as follows:
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2
0 1 1 2 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1
0 1 1 2 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let G be represented as a vector of length 12, where the first four entries correspond
to the four possible dyadic configurations between vertices 1 and 2, the second four
correspond to the four possible dyadic configurations between vertices 1 and 3, and
the third four correspond to the four possible dyadic configurations between vertices
2 and 3. Then the first three rows of A count the number of configurations for each
dyad (for simple graphs this count should always be one), the fourth row of A counts
the total number of edges in G, the fifth and sixth rows count the block in-degrees,
the seventh and eighth rows count the block out-degrees, and last row counts the
total number of reciprocated edges in the network.

Example 3.3 (p1 Models) The p1-model for directed graphs was introduced by
Holland and Leinhardt [HL81] and extended by Fienberg and Wasserman [FW81b].
It is a model that includes two nodal effects, one for popularity and another for
expansiveness, and a reciprocation effect. Following Example 3.2, we denote pijkl

the probability of the dyad (i, j) to be in state (k, l) ∈ {0, 1}2. The dyadic
probabilities for the p1-model are specified as follows:

logpij00 = λij , (3.6)

logpij10 = λij + αi + βj + δ,

logpij01 = λij + αj + βi + δ,

logpij11 = λij + αi + αj + βj + βj + 2δ + ρij .

The parameters αi and βi record the rates at which the node i sends and receives
links, while ρij controls reciprocation. Note that the model specification includes
additional parameters. Namely, there is δ, a density parameter and

(
n
2

)
dyadic effects,

λij , which are normalizing constants as described in Example 3.2.
The p1 model has three main variants that capture different reciprocation effects:

zero reciprocation, constant reciprocation, and dyad-specific reciprocation, also
referred to as differential reciprocity. For example, in the constant reciprocation
case, ρij = ρ for all i, j . The sufficient statistics for the p1-model with constant
reciprocation consists of the number of edges, the in-degree sequence, the out-
degree sequence, and the number of reciprocated edges.

The design matrix A for several small examples can be found in [PRF10].
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While Fienberg’s work allows for a transfer of technology from the contingency
table literature to networks, the interpretability of models and model equivalence
was not always immediate and required additional insight. As noted in [Hab81]
and reiterated by Fienberg and co-authors in [FPR10], even simple ERGMs, such
as the p1 model, pose fundamental challenges to the practitioner even within
the contingency table setting, especially when testing model goodness of fit. For
example, as pointed out by Fienberg and co-authors in [PRF10], many network
models such as the p1 model are theoretically problematic, since, in these models,
the number of parameters depends on the number of vertices. This means that as
the population size grows, the model complexity also increases, unlike traditional
statistical models, where the complexity is often fixed and independent of the sample
size. Another challenge to using existing traditional methods from categorical
data analysis in goodness-of-fit testing and model selection is that the data are
naturally sparse, making standard asymptotic methods unreliable. Under such
conditions, exact conditional tests are preferred for model selection and goodness-
of-fit testing. However, as mentioned in the previous section, exact conditional tests
pose their own difficult problems for networks, mainly since the exact distribution
is over a space that is combinatorially large, and in most cases, innumerable.
Finally, the contingency tables described by Fienberg and Wasserman are highly
redundant and are subject not only to symmetric constraints but also product
multinomial constraints, e.g. since each dyad can only be in one of the four possible
configurations Yij00 + Yij10 + Yij01 + Yij00 = 1 for all i �= j .

Fienberg was able to provide a work-around to the difficulties posed by exact
conditional tests by using Markov bases and algebraic statistics. In 1998, Sturmfels
and Diaconis published Theorem 2.2 [DS98]. Afterwards, the idea of using toric
ideals for goodness-of-fit testing for various log-linear models gained traction,
and about 10 years later, Fienberg, Petrović, and Rinaldo applied Theorem 2.2 to
three of the main variants of the p1 model in [PRF10], essentially introducing
algebraic statistics to the field of network analysis. In particular, they describe
Markov moves for each variant and its corresponding simplified model (the model
obtained after forgetting the normalizing parameters). The work not only provided
a breakthrough in goodness-of-fit testing for log-linear ERGMs but also had an
impact in combinatorial commutative algebra. The toric ideals corresponding the
p1 model are connected to toric ideals of graphs, defined in [SVV94] (see also
[Vil95] and [OH00]) and more generally, toric ideals of hypergraphs. Indeed, the
results of [PRF10] provided an applied motivation for the systematic study of toric
ideals of hypergraphs in the field of combinatorial commutative algebra (see e.g.
[GP13, HT08, PS14, PTV19]).

Before [PRF10], Markov bases were always used in the setting where the only
constraints on the contingency tables were that every entry needed to be non-
negative. However, in the network setting, particularly in the case of a single
sociometric relation, cells of the contingency tables are either 0 or 1 and there is
only a single observation for each dyad. This was the first time in the Markov
bases literature that sampling constraints of this form were directly incorporated
in the study of Markov bases (note that related work [HT10], and relevant for the
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problem here, on connecting tables with 0/1 entries appeared in the same volume).
Fienberg and co-authors were able to effectively handle the network constraints by
computing a minimal generating set of this ideal first and then by removing basis
elements that violate the condition of one observation per dyad, which results in a
product multinomial sampling scheme. Fienberg’s idea of adding the normalizing
parameters λij s to the models directly enforced the 0/1 constraint in sampling. In
particular, if a move produced by a Markov basis computation is applicable to the
observed network, in that it does not attempt to remove edges that are not present,
then it will follow the sampling constraint in that it will not add an edge where there
is one already. Examples of applicable and inapplicable moves for the p1 model and
the Sampson data depicted in Fig. 3.1 are shown in Figs. 3.2, 3.3, and 3.4.

It should be noted that Fienberg’s idea to prune non-applicable moves was novel
and paved the way for practical implementation of a goodness-of-fit test for log-
linear ERGMs [GPS16]. Indeed, in [DFR+08], Fienberg and co-authors observed
that Markov bases are data independent, meaning that they describe all the moves
required to guarantee connectedness of any fiber; in other words, Markov bases do
not depend on the observed network, only the model. This observation can help
transform otherwise unwieldly sets of Markov moves into smaller and easier to
manipulate sets of moves. For example, without pruning, the naive computation of a
Markov basis for the p1 model with constant reciprocation with 4 nodes has 80,610
moves, while the pruned Markov basis consisting of only elements applicable
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Fig. 3.1 The directed graph representation of Sampson’s monastery dataset [Sam69]
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Fig. 3.2 A move from the Markov basis for the p1 model with zero reciprocation. Left: Edges to
remove. Right: Edges to add. This move can be applied to the network in Fig. 3.1 as it preserves
node in-degrees and out-degrees. Note that edge 4 ← 10 is reciprocated in the data, so after the
move is applied, the total number of reciprocated edges is reduced by 1
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Fig. 3.3 A move from the Markov basis for the p1 model with zero reciprocation. Left: Edges to
remove. Right: Edges to add. However, this move cannot be applied to the network in Fig. 3.1 as
the dyad (3, 12) is observed in the state (0, 0) rather than (1, 0); that is, the edge 12 → 3 is not
present, so it cannot be removed
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Fig. 3.4 Amove from the Markov basis for the p1 model with constant reciprocation. Left: Edges
to remove. Right: Edges to add. This move can be applied to the network in Fig. 3.1. It preserves
the number of reciprocated edges: the dyad (4, 10) changes from reciprocated to directed edge, but
the dyad (6, 10) changes from directed to reciprocated
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to simple networks and decomposed into essential building blocks, computed in
[PRF10], has about 10 moves.

This idea was a starting point of departure from the algebraic status-quo
approach, which is traditionally blind to data and as such leads to slow mixing
times of the resulting Markov chains. After Fienberg’s work in [PRF10], the main
computational challenge remained open to make the theory useful for network data
in practice. To this end, working within the data dependent paradigm, [GPS16]
developed an algorithm to approximate the exact conditional p-value for log-
linear ERGMs and implemented the algorithm for the p1 model. The algorithm
approximates the exact conditional p-value by using applicable Markov moves
generated on an as-needed basis to move around the fiber. At each network in the
chain, a goodness-of-fit statistic is computed and compared to the observed network.
This adapted Metropolis-Hastings algorithm is described in detail in [GPS16].

For exposition and illustration of theoretical ideas, Fienberg saw great value in
small data; for example, Sampson’s monastery dataset [Sam69] (see Fig. 3.1) was
the running example in [ABFX09] and also was an example dataset in Fienberg’s
survey of statistical network models with Goldenberg et al. [GZFA10]. Thus, the
paper [GPS16] revisited the Sampson’s monastery dataset and tested the fit of the
p1 model. The Sampson’s monastery dataset, in Fienberg’s words, was one of the
reasons behind the construction of the Holland-Leinhardt p1 model in the first place.
However, this is not to say that Fienberg was not concerned with challenging big
data problems, and the ideas described here do scale, e.g. [KP16] tests model fit for
the β and p1 models on co-authorship and citation networks of statisticians [JJ16]
of about 3000 authors and 3000 papers. Finally, Fienberg was also an avid supporter
of applications of statistics; it was he who suggested to the third author to study the
Japanese corporate data set from The New York Times back in 2014 from the point
of view of the p1 model. As [Pet19] illustrates, the goodness-of-fit test confirms the
Japanese Prime Minister’s intuition.

3.4 Beyond Simple Graphs

The rapid increase of data-collecting mechanisms in recent decades has resulted in
complex forms of network data, including multivariate and multi-agent networks.
Still, in the growing field of network science, such data are still often represented
in the form of a simple graph, mainly because simple random graph models are
assumed to be easier to estimate and fit. However, such simplifications are not
necessary with Fienberg’s view of networks as contingency tables. This is because
neither multiple observations on a single dyad, which increase cell counts in
the table, nor multiway interactions, which increase table dimensions, present an
additional layer of difficulty for estimation or testing model fit. On the contrary, the
sampling algorithms based on Markov bases become easier, because the sampling
constraint is relaxed.
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One example of this simplification is when experiment data consisting of
multiple observations is summarized as a simple graph by way of thresholding—
preserving an edge between two nodes only if it was observed at least a fixed
number of times. This happens very often in neuroscience and chemical reaction
experiments. It is also often applied to social interactions data such as the co-
authorship network in Fig. 3.5 below. In the co-authorship network, an edge (i, j)

is present in the co-authorship graph if at least 4 joint papers were written by
authors i and j . Why 4? This thresholding number of choices seems arbitrary at
best (changing it may drastically change the structure of the graph), is done out of
convenience, and in many applications results in significant information loss.

In [FMW80] and [FMW85], Fienberg, Meyer, and Wasserman set up the log-
linear framework for multivariate directed graphs. We can think of a multivariate
graph as a multi-layered network. For example, in the technical paper [FMW80],
Fienberg, Meyer, andWasserman consider a community of individuals and networks
formed by three relations, information, money, and support; these relations are
referred to as sociometric generators. In [FMW85], the authors develop extensions
of [FMW80] to allow for covariates. Motivated by this, [RPF13] (see also [RPF10]
for further details) study the generalized β-model for random graphs. They consider
the log-linear model for undirected graphs whose sufficient statistics are node
degrees, but they allow for the possibility that each dyad in the network be sampled
a different number of times. Applying the geometric and combinatorial properties
of log-linear models under product multinomial sampling schemes from [FR12],
they derive necessary and sufficient conditions for MLE existence and discuss its
asymptotics.

The second example of data simplification is also well illustrated using co-
authorship data: it is common for multiway interactions to be collapsed to their

Fig. 3.5 The graph and the hypergraph representing the same co-authorship data. In the graph on
the left, it is not clear at all that the data corresponds to exactly 3 published papers, for example,
which is clear in the hypergraph on the right. Graphs in the figure adapted from [KP16]
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induced pairwise interactions. However, most of the time, capturing the multiway
interaction is more realistic and informative. Figure 3.5 shows how the information
from data that naturally comes in form of a hypergraph is obscured when represented
by the underlying graph. Indeed, once the first co-authorship network data for
statisticians was collected and released in [JJ16], the last two authors set out to
explore the effects of these data summaries. In [KP16], it is shown what information
is lost by reducing the data to a simple graph by presenting multi-observation table
data summaries, core-decomposition summaries, and hypergraph data summaries,
all of which suggest possibly different conclusions than those from the derived
simple graphs. For example, the authors considered the inner-most clique, that is,
the largest completely connected subgraph, of the co-authorship graph where there
is an edge between two authors if they coauthored at least 4 joint papers. While
these authors have many neighbors, i.e. their nodes have a high degree, we argue
that degree-based modeling on the simple graph does not capture everything behind
the data. Specifically, Fig. 3.6 shows that the secret behind these cliques is a single
many-author paper in both cases.

With the issues illustrated in [KP16] in mind, Fienberg and co-authors introduce
the β model for random hypergraphs in [SSR+14], which builds upon and general-
izes the well-studied β model for random graphs. Directly motivated by Fienberg’s
earlier foundational work, the authors provide two algorithms for fitting the model
parameters, an iterative proportional scaling algorithm, and a fixed point algorithm.
Furthermore, Fienberg and co-authors prove that both algorithms converge if the
maximum likelihood estimator (MLE) exists, and they provide algorithmic and
geometric ways of dealing the issue of MLE existence—one of Fienberg’s favorite
problems.

Fig. 3.6 The inner-most clique of each of the two co-authorship graphs studied in [JJ16]: each
corresponds to a many-author paper. Graphs in the figure adapted from [KP16]
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3.5 Closing Remarks

Fienberg always used to say how problems never go away, one just sees them under
a new light. In this survey of Fienberg’s work connecting categorical data analysis
and algebraic statistics to network science, we hope we illustrated, in essence, this
sentiment of continual discovery and rediscovery.
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Petrović was partially supported by NSF DMS-1522662. Karwa was partially supported by NSF
TRIPODS+X grant number 1947919.

References

ABFX09 Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed
membership stochastic blockmodels. In Advances in Neural Information Processing
Systems, pages 33–40, 2009.

Agr92 Alan Agresti. A survey of exact inference for contingency tables. Statistical Science,
7(1):131–153, 1992.

BFH74 Yvonne M. Bishop, Stephen E. Fienberg, and Paul W. Holland.Discrete Multivariate
Analysis: Theory and Practice. Springer, 1974.

DFR+08 Adrian Dobra, Stephen E. Fienberg, Alessandro Rinaldo, Aleksandra Slavković, and
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PS14 Sonja Petrović and Despina Stasi. Toric algebra of hypergraphs. Journal of Algebraic
Combinatorics, 39(1):187–208, 2014.
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Part II
Introduction: Bayesian Theory and

Applications

Alicia L. Carriquiry

Steve was an extraordinary statistician. What made him really stand out even among
the upper echelon of his peers were his command of both statistical theory and
methods and his profound commitment to expanding the principled use of statistics
in other disciplines. His interest in the application of statistics in other fields
predated – by decades – what the profession has come to accept: that statistics is the
common language of science and as such plays an important role in the scientific
and the policy realms.

During his long career, Steve worked on a broad set of problems, which
sometimes were of mainly scientific interest, but other times arose from practical
questions in public policy. Indeed, he often found a role for statistics and statisticians
in areas where some of us found none. I clearly remember, when in the early
2000s, Steve and his then student Adrian Dobra set out to estimate the size of the
World Wide Web! The common thread in much of Steve’s work begins with a good
understanding of the subject matter area, and ends with relevant findings that address
the questions posed by the investigator. Along the way, Steve and collaborators
often had to develop “fit-for-purpose” statistical tools when none existed. Steve had
an almost unlimited capacity to learn about new areas and quickly grasp where
statistics would be helpful; therefore, he really excelled when playing in a wide
variety of sandboxes. Steve was a committed Bayesian, but his main goal was
always to answer the question of interest to the best of his ability. If that involved
using frequentist methods when those were more appropriate (or convenient), he
was happy to do so.

The four manuscripts in this section of the book would have been of great
interest to Steve. Like Steve’s work, they represent a broad array of topics and
approaches, but what they have in common is the levelheaded, forward-looking use
of statistics to answer a challenging question. Steve was good friends with most of
the contributors in this section. His relationship with Tom Louis, Julia Mortera, and
Philip Dawid went back 40 years, and while the friendship with Ed George, Xiao-Li
Meng, and Veronika Rockova was “only” about 20–25 years old, he had enormous
affection and respect for all of them equally. He would have been delighted to know
that his friends had contributed great papers to the volume in his memory.
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Baines et al. work on an astrophysics problem, where the data consist of noisy
observations arising from a complex process described by a deterministic system. In
their specific application, the question is how to model photometric measurements
of stars as a function of properties including mass, age, and metallicity of the stars.
The state of the art requires using a series of look-up tables in the calculations, which
decrease efficiency and contributes to underestimation of uncertainties. The authors
present a flexible Bayesian hierarchical model to analyze stellar populations that
avoids the tables, but that requires the development of a computational framework
that is up to the task.

Louis’ wonderful contribution makes us think once again about the advantages
of “going the ways of Bayes.” Why isn’t everyone a Bayesian? This was the
question posed by Efron in 1986, to which Louis provides a clear, nuanced, multipart
response that is fun to read and touches upon many important topics including
p-values, multiple testing, and model diagnostics. The final sections of the paper
describe a major project in which both Louis and Fienberg participated and that has
major policy implications. The Center for Medicare and Medicaid Services (CMS)
provides risk-adjusted, hospital-specific measures to compare the performance of a
hospital to a national standard. This is clearly a difficult endeavor and a prime target
for criticisms by stakeholders ranging from patient advocates to the corporations
with an interest in hospital care. To shore up its methodology and avoid some
of the criticism, CMS partnered with the Committee of Presidents of Statistical
Societies (COPSS) to address the statistical issues and make recommendations.
Louis includes a step-by-step description of the process followed by the committee
that brings the committee’s work to life and provides a wonderful example of the
type of principled, well-reasoned, science-based approach that characterized all of
Steve Fienberg’s contributions.

Mortera and Dawid revisit a problem in which Steve worked many years ago
and that involves the evaluation of the uncertainty associated to forecasts. They
consider both the case of a single forecaster and that of opinion pools, where
the forecasts of multiple experts are combined in some way, and that typically
leads to better prediction. In the last part of the manuscript, Mortera and Dawid
discuss prediction markets, where individuals trade predictions on future events
with unknown outcome, much like other financial instruments are traded in their
respective markets. They consider different scenarios regarding the order in which
the various traders reveal their probability of a future event, and where the
information used by each of the traders may or may not be available to everyone else.

Finally, Rockova and George revisit the problem of model selection using a novel
approach that involves determinantal point processes to construct a discrete prior
distribution for the regression coefficients in the model. The prior they propose
is derived from the spike and slab prior, obtained by rescaling the spike and slab
prior by a factor proportional to the determinant of a kernel matrix that decreases
the probability of subsets of similar variables. The resulting prior favors small
models, but in addition penalizes sets of explanatory variables that exhibit high
collinearity. As is the case with the other contributions in this section, the Rockova
and George paper is novel, is readable, and introduces methodology that will have
wide application.



Chapter 4
Colorful Stars and Black Boxes: Bayesian
Analysis of Stellar Populations

Paul D. Baines, Xiao-Li Meng, Andreas Zezas, and Vinay Kashyap

4.1 Stellar Archeology

This article details a statistical analysis of a complex problem in astronomy and
astrophysics, with a broader aim to suggest strategies and methodologies for similar
“black-box” problems in physical sciences and beyond. For reasons that will
become clear, the specific problem we address is sometimes known as the “stellar
archeology” problem. The archeological analogy provides a nice overview of the
scientific objective: we are interested in estimating the age of objects (stars) from
measurements of their attributes (brightness).
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Astronomy has a long history of using and developing statistical methodology to
analyze experimentally collected data (e.g., see [8]). Despite the inability to directly
manipulate the processes being studied, astronomers and astrophysicists have
amassed a large body of knowledge by both indirect observation of the underlying
processes and the construction of physics-based models. As the understanding of
underlying physical systems develops, observed data typically can be characterized
as noisy observations of a complex physical process involving the parameters of
inferential and scientific importance. The link between parameters of interest and
observed data is provided by problem-specific knowledge, often in the form of a
system of partial differential equations (PDEs). This characterization is common
in many problems in astronomy, as well as other scientific fields such as the
environmental sciences. When the driving systems cannot be solved analytically, or
are particularly computationally expensive, the relevant community often relies on
lookup tables, describing the expected observation (i.e., mean) for a variety of input
parameters. Given the huge amount of expertise devoted to developing these models,
the analysis of observed data often lags behind. Statistics can play an important
role in such settings, although the resulting computation can be challenging.
There has been increased interest in this type of problem, where one or more
components in the model are a “black-box,” lookup table, or computer-model output
[3, 4, 17, 20].

In this article, we present an example of such a problem: a hierarchical Bayesian
analysis of photometric data. The objective is to infer stellar properties such as
the mass, age, and metallicity of individual and collections of stars. The mapping
between the scientifically interesting properties (mass, age, and metallicity) and the
observed data (photometric measurements) is governed by a series of isochrone
tables: lookup tables derived under an assumed physics model. Isochrone tables are
traditionally named after the location of the research groups that computed them:
commonly used versions include the Geneva [13], Padova [14], and Dartmouth [6]
isochrones. The highly structured mapping poses challenges for traditional compu-
tational methods, as discussed in Sect. 4.2. In Sect. 4.3 we present a generalizable
and robust algorithm for posterior sampling that does not rely on any specific
properties of the isochrone mapping. By avoiding the use of isochrone-specific fixes,
we seek an algorithm that can successfully adapt to new lookup tables and could be
applied to a wider class of problems. Combining the ideas of different augmentation
schemes in [22] with an energy-based partition proposal distribution in the spirit
of the Equi-Energy sampler [11], our “Equi-Expectation” MCMC scheme is both
efficient and scalable to large datasets. The performance of competing sampling
schemes is detailed in Sect. 4.4, together with an application to the 47 Tucanae
dataset. In practice there are often uncertainties in the choice of deterministic
physical model, and hence we investigate the issue of selecting between competing
sets of isochrones in Sect. 4.5. The rest of Sect. 4.5 discusses some future directions
and concludes.
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4.2 Color-Magnitude Diagrams and Isochrone Tables

Photometric measurements are obtained by a detector, pointed at a particular region
of the sky. Sources such as stars emit photons, which, together with additional
background photons are counted whenever they pass through the detector. In crude
terms, by counting the number and energy of photon arrivals at a particular detector
location in a particular time interval, the photon counts can be calibrated to obtain
the spectrum of a given source. The spectrum of a source represents the intensity
across a continuous range of wavelengths and, as such, these observations can be
expensive to obtain. An alternative is to use optical filters that allow only photons
within a specified wavelength band/range to pass through. The measurements can
then be thought of as estimating the integral of the spectrum over a small wavelength
range. Depending on the number of bands, this approach yields a small number
of measurements representing the brightness of the source that are both cheaper
to obtain and simpler to analyze than their spectral counterparts. The brightness
of a source in a photometric band such as B (blue) is also known as its B-band
magnitude. Colors can be obtained as differences between magnitudes: for example,
the color B − V represents the difference in B- and V -band (visual) magnitudes. In
light of this property we are able to freely switch between colors and magnitudes,
and the analysis of Sect. 4.3 can be conducted across different combinations of
colors and magnitudes.

To relate observed photometric data to the relevant physical quantities such as the
age, mass, and metallicity of the stars, we use a theoretical collection of isochrones.
The term “isochrone” is typically used to refer to the curve defined by tracing out the
expected color and magnitude for stars of a fixed age and metallicity, for different
initial masses. More generally, an isochrone can be viewed as a function that, given
the physical properties of the star (mass, age, metallicity), returns the brightness
of the star in a variety of different photometric bands. The metallicity of a star
describes the relative abundance of elements such as oxygen and iron with respect
to hydrogen.

The top panel of Fig. 4.1 displays all of the combinations of initial mass and
age that appear in the (Padova) isochrone tables. The bottom panel of Fig. 4.1
displays the expected V -band magnitude and B−V color of stars with a metallicity
Z = 0.004, at each of the tabulated points of the isochrones. These plots
correspond to the input and output spaces, with the isochrone mapping (i.e., the
“black box”) between them. The color of each point in the plot indicates the
age of the star, with younger stars typically being hotter and brighter than their
older counterparts. The plot of color against magnitude is known as the Color-
Magnitude Diagram (CMD), and forms the basis of the use of photometric data to
infer stellar properties. Here, however, we use CMD to refer to the more general
setting including higher-dimensional photometry and arbitrary (non-degenerate)
color-magnitude combinations.

The initial mass of a star is a crucial factor in determining the evolution of the
star. As stars age they burn off their component elements in order from the lightest
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Fig. 4.1 Isochrone plot for
(Top) the input/parameter
space: initial mass and age,
and, (Bottom) the
output/observation-space:
V -magnitude and B − V

photometry, for stars of
metallicity Z = 0.004 from
the Padova isochrones. The
color of each point represents
the age in log10-years (i.e.,
from 106.0 to 1010.2 years),
with the color-scale given on
the right-hand side of each
plot
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to the heaviest, beginning with hydrogen and helium fusion. Since the chemical
composition of the star is one of the determining factors in its photometry, and we
have a physics model for the stellar evolution process, we can attempt to infer the
age, initial mass, and metallicity of the star from observed data.

The bottom-left portion of the CMD (Fig. 4.1, bottom) is known as the main
sequence. This is where stars spend most of their lives, usually before evolving
into either a brown or white dwarf. On the main sequence, there are many
different combinations of mass, age, and metallicity that produce the same expected
photometry, leading to a degeneracy in measurements. Therefore, taken in isolation,
the mass and age of a given star may or may not be identifiable. The applications we
consider are those where we are interested in estimating the properties of a “cluster”
of stars. Typically, by a cluster of stars we mean a collection of stars located in a
similar physical location, and at a similar distance from the detector. Despite the
individual-level potential non-identifiability, by combining observations, we can
proceed to draw inference about both cluster-level and individual stellar properties.
In addition to these challenges with identifiability, small changes in mass and
age can potentially produce large changes in expected photometry, depending on
the region of the CMD in which the star falls. These problems all add to the
complexity of both the physical modeling and statistical analysis, but they are by
no means unique to stellar archeology. We therefore believe that the strategies and
methodologies in this article have general implications.

4.3 Hierarchical Modeling and Computation

Model Specifications

A photometric observation of source i, typically a star, is a vector of observed values
in a combination of colors and magnitude bands, denoted by Yi ∈R

p, where p is the
number of bands. The (Gaussian) measurement errors from the detector are typically
well understood, in the sense that variances are traditionally taken to be known for
each band. Without loss of generality, we can assume unit variance (i.e., working
with standardized Yi). Here we allow for the measurement errors to be correlated
across bands or colors: the correlation structure is assumed to be constant among all
stars and is modeled with a weakly informative prior. Given the intrinsic properties
of the stars, the measurement errors are assumed independent across different stars.
The lower-level data generating process is thus given by

Yi

∣
∣Mi,Ai, Z

ind∼ N (f (Mi,Ai, Z),R) i = 1, . . . , n, (4.1)

where Mi and Ai are the (initial) mass and age of the star, Z is the metallicity of
the cluster and f (Mi,Ai, Z) is a vector of the expected photometry of the star,
found from the isochrone tables, and is standardized the same way as Yi is. For
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all applications here we consider Z to be known from external knowledge, as is
standard in the astrophysics literature, although extending the model to include
unknown metallicity is conceptually straightforward. The correlation matrix R is
assumed to be the same across all observations, following a common strategy for
balancing between model adequacy and model complexity (e.g., [2, 12]).

The literature on CMDs has assumed almost exclusively that stars in the same
subpopulation (e.g., cluster) have the same age, and sought the best-fit isochrone
based on this single age (e.g., [21]). This comes despite knowledge in many contexts
that the spread in stellar ages is sizable. Our approach remedies this problem
but retains model simplicity by placing a common structure on the ensemble of
star ages. Allowing flexibility of individual parameters yet utilizing the common
structure motivates the following model. We assume the “population” of log10 ages
for a given cluster to be Gaussian (equivalently, age is log10-normal, not standard
log-normal):

Ai |μA, σ 2
A

iid∼ N(μA, σ 2
A), (4.2)

where 10Ai is the age of the star in years. The traditional single-age approach
amounts to imposing σ 2

A = 0 and finding a “best” choice of μA, the parameter
of primary inferential importance. Here μA characterizes the theoretical mean
age (on the log10-scale) of the collection of stars, while σ 2

A specifies the intra-
cluster variability of the individual ages. By modeling the distribution of individual
star ages, we can potentially detect outlying stars or multi-cluster populations
corresponding to multi-burst star formation processes. Although such discoveries
are feasible when we move beyond the single-age paradigm, estimation in multi-
clusters contexts should be redone with explicit multi-cluster models, as we discuss
in Sect. 4.3.

To complete the model specification, we use the conjugate hyperprior:

μA|σ 2
A ∼ N

(
μ0, σ

2
A/κ0

)
, σ 2

A ∼ Inverse−χ2
(
ν0, σ

2
0

)
. (4.3)

Typically we have prior knowledge that the stars in a given dataset are all of a
similar, though not necessarily identical, age. The prior mean and variance for σ 2

A

are m0 ≡ ν0σ
2
0 /(ν0 − 2) and τ 20 ≡ 2m2

0/(ν0 − 4), respectively. Therefore, in
this setting σ 2

A is given a prior where ν0 is large, and σ 2
0 is set to the expected

within-cluster variance of the individual stellar ages. The isochrone mapping is
both highly nonlinear and degenerate in that many different parameter values
lead to the same expected photometry. As a result, there is typically insufficient
information in the data alone to give meaningful answers. The inclusion of external
knowledge from previous literature or standard astrophysics theory is an important
tool in breaking these degeneracies. Indeed, the entire statistical model represents
a translation of scientific understanding into a collection of modeling assumptions,
and the Bayesian framework makes this task relatively straightforward. But we are
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mindful of the need to check prior sensitivity and more appropriately to quantify
inferential uncertainty.

The initial mass of a star, together with its metallicity, is one of the primary
factors that determine how that star will evolve. The initial masses of stars are known
to have a distribution, or initial mass function (IMF) that, for stars above a threshold
Mbrk, typically around one solar mass, is described by a power-law with parameter
α = 2.5 [18]. For stars below the threshold, the distribution of masses is considered
to be uniform. However, we are interested in placing a prior on a star in our dataset,
not the population of all stars. For a star of a given age we know a priori that for a
star of that age to potentially be observed, it must have a mass within a certain range
of values. As can be seen in the top panel of Fig. 4.1, stars with a large initial mass
have a shorter lifespan than those with smaller initial mass. This leads to constraints
on the support of the joint distribution of mass and age, with the support defined
by the tabulation in Fig. 4.1. In light of this, and to ensure our prior includes only
feasible (Mi,Ai) pairs we assume a distribution of the form:

p(Mi |Ai) =

⎧
⎪⎨

⎪⎩

0 Mi < Mmin

k Mmin < Mi ≤ Mbrk

α−1
Mmin

(
Mi

Mmin

)−α

Mbrk < Mi ≤ Mmax(Ai)

, (4.4)

where Mmax(Ai) is the maximum possible mass for an “observable” star of age Ai ,
as determined by the theoretical isochrones. Mmin is selected to be the minimum
mass that is scientifically reasonable for the dataset, or from the set of theoretical
isochrones (usually 0.8 solar masses) and does not vary with age. The prior
distribution on R is taken to be uniform across all positive definite correlation
matrices. Note that this is not uniform on the correlation parameters, but will
typically be close to uniform since the number of observed bands, p, is relatively
small (e.g., single digit); see [2].

Posterior Inference and Sampling

The model specified by (4.1)–(4.4) yields a joint posterior distribution of dimension
d = 2(n+ 1)+ 0.5p(p − 1). In practice, however, we are typically most interested
in the marginal posterior distribution of μA and σ 2

A. In real applications, n is
usually on the order of tens of thousands, although the size of dataset can be
anywhere from hundreds to millions of stars. The large amount of structure among
the posterior distributions of the parameters poses a challenge to standard methods
of approximating posterior quantities of interest. We now describe a Markov chain
Monte Carlo (MCMC) scheme to sample from the posterior distribution. We utilize
a Metropolis-within-Gibbs scheme, which sequentially draws from the d − n full
conditional distributions of each component of R, of {(Mi,Ai), i = 1, . . . , n}, and
of (μA, σ 2

A); here we have only d−n full conditional distributions because we draw
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(Mi,Ai) jointly. Performing the first and last of these updates is straightforward.
Hence, the greater interest is in sampling the mass and age of individual stars, given
the observed photometry and stellar cluster parameters.

First we describe updates for the hyperparameters (μA, σ 2
A) and the correlation

matrix R. By conjugacy, the full conditional posterior distributions of the cluster-
level parameters reduce to

σ 2
A|μA,A ∼ Inverse−χ2

(

ν0 + n,
ν0σ

2
0 + S2

A(μA) + κ0(μA − μ0)
2

ν0 + n

)

μA|σ 2
A,A ∼ N

(
κ0μ0 + nĀ

κ0 + n
,

σ 2
A

κ0 + n

)

,

where A = {Ai, i = 1, . . . , n}, S2
A(μA) =∑n

i=1(Ai − μA)2, and Ā = 1
n

∑n
i=1 Ai .

To draw R, we use component-wise Metropolis–Hastings updates, with a
uniform proposal over the range of values that result in a valid (positive definite)
correlation matrix. It is shown in [2] that when we change one correlation at a time,
the positive definiteness constraints reduce to solving a quadratic equation to find
the conditional support of the correlation. While this method can be inefficient for
large correlation matrices, typically the number of observed bands is small in our
application, and hence the proposal is rapid to compute and performs well in most
settings.

To sample from the conditional posterior distributions p(Mi,Ai |μA, σ 2
A,Y) for

i = 1, . . . , n, we need to construct a proposal that is robust to both multi-modality
and many different types of nonlinear dependencies that can be induced by different
regions of the CMD. Figure 4.2 displays the “likelihood” of an old star as a function
of initial mass and age, i.e., the contribution to the posterior from Eq. (4.1).

Ideally, to achieve this, we would utilize an energy-based sampler in the spirit
of the Equi-Energy sampler of [11]. In its full incarnation the Equi-Energy sampler
proceeds by constructing “energy bands” that attempt to empirically partition the
full parameter space into posterior contours. Given the dimensionality, constructing
such energy rings for the full 2(n + 1) + 0.5p(p − 1) dimensional posterior is
infeasible in practice, as is constructing full energy bands for subsets of conditional
distributions. Since the contours of the conditional posterior distributions depend on
the conditioned values, it would be necessary to re-compute the partition for every
star across every iteration. Nevertheless, we now describe how we can explicitly
utilize the tabulated component of the posterior distribution to pre-compute a
single partition that can be used across all conditional distributions (Mi,Ai),
independently of the conditioning variables. By constructing the partition in this
way, we retain the fundamental location-independent nature of the Equi-Energy
sampler.
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Fig. 4.2 The “likelihood” surface as a function of initial mass and age for a typical observation of
an old star (1010 years)

A Partition Strategy Inspired by Equi-Energy Sampler

To avoid the additional complications of the CMD application, we first describe
the construction of the proposal distribution for a simplified example. Consider two
input (physical) parameters x and y that are related to two output quantities u and
v on which measurements (with error) can be made. In the context of the CMD
example x and y might correspond to the mass and age of an individual star, and
u and v might correspond to two photometric bands. Suppose that the expected
output for each of 2601 different combinations of input parameters (a regular grid
of 51 unique values for each parameter) are given in a lookup table. The grid of
input values is shown in the left-hand panel of Fig. 4.3. Our proposal distribution
will be constructed from a partition of the parameter space: typically formed by
polygons with corners at tabulated input points. The right-hand panel of Fig. 4.3
shows a possible partition of the input grid, obtained by Delaunay triangulation [16].
For each distinct polygon (triangle) we take the centroid as a “representative” of that
region. Next, we compute the output value corresponding to the centroid. Since each
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Fig. 4.3 (L) Tabulated combinations of the input parameters x and y. (R) Partition of the
parameter space (x, y) into non-overlapping triangles, and centroids of those triangles. The right
plot depicts only a subset of the parameter space, as the triangulation is regular. Vertices of the
partitioning triangles are tabulated (x, y) points

vertex is a tabulated input point, the interpolated output value corresponding to the
centroid is a distance-weighted average of the output values at the vertices.

For this example, we consider the following (isochrone) mapping from parame-
ters to data space:

u = au(y − cu)
2 + sin(y) − |y + x| (4.5)

v = av(x − cv)
2 + sin(x) + |y − x|, (4.6)

where we select au = 0.8, av = 1.2, cu = −0.55, and cv = 0.05. Here we take
the dimension of the data space to match the dimension of the parameter space,
although this is not required. The mapping for an arbitrary point in the input, (x, y)-
space, to the output, (u, v)-space, is done by interpolating the points in (u, v)-space
corresponding to nearby points in (x, y)-space. For the interpolation to make sense
in practice we require local continuity of the mapping between neighboring points,
i.e., the tabulation must be sufficiently high resolution to enable safe interpolation
of nearby values. This is not a restrictive requirement; all methods of analysis for
CMDs rely upon sufficiently high-resolution tables. For the toy example, we now
proceed as if the functional form of the mapping were not known: only tabulated
values and interpolation are used.

Figure 4.4 illustrates some of the properties of the functional mapping from the
parameters to the data. Firstly, as with the isochrone tables, the mapping is non-
invertible: multiple (x, y)-values can lead to the same (u, v)-value, as manifested by
intersecting cross-sections in the bottom panel of the figure. As with the isochrone
tables, portions of the mapping are potentially invertible, but we want to derive a
general method that does not rely on this fact. Secondly, as a result of this non-
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Fig. 4.4 (Top) Cross-sections of the parameter space, colored according to the fixed value of x.
(Bottom) Each of the cross-sections maps to a curve in (u, v) = f (x, y) as defined in Eqs. 4.5
and 4.6, where each curve is plotted in the same color as its corresponding cross-section
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invertibility, similar observed data can arise from disjoint regions of the parameter
space, hence the need to construct an efficient proposal distribution. Also, the
mapping is not differentiable along the planes x − y = 0 and x + y = 0, also
mimicking similar behavior to the isochrone tables.

The centroids of the input partition have their corresponding counterparts in the
output space, shown in Fig. 4.5. The important observation is that, in a likelihood
setting, similar expected values in the output space correspond to similar values of
the target distribution. Hence, regions in the input space that correspond to nearby
centroids in the output space will have similar likelihood values. In mapping back to
the input space, we have essentially constructed a crude approximation to the inverse
of the (many-to-one) mapping from input to output. The primary advantage of these
“Equi-Expectation” contours is that they are expressed in a functional form. That is,
given an arbitrary input point (x0, y0), we have instant access to a set of points with
“similar” expected values, without knowledge of the observed data or conditioning
parameters.

Exact contours of the likelihood surface depend on the observed data, and
hence require fresh computation for each observation. However, we can form
a random-walk style proposal in the output space that produces approximately
location-independent moves in the input space. For sufficiently high-resolution
tables, the regions of the input space that are nearby in terms of their expected output
value will have similar values of the likelihood. Larger distances between points in
the output space correspond to larger differences in likelihood, with the Euclidean
distance providing a natural metric when observations are made with Gaussian
measurement errors. In practice, computing distances between all of the (u, v)-
centroids is computationally expensive if the tables are very high resolution, as the
isochrones tables are. So, to reduce the computational burden, we define “similar”
in this context by running a clustering algorithm on the centroids in (u, v)-space,
and tracking the accompanying (x, y)-clusters. In the CMD example, these clusters
correspond to values of mass and age that have similar expected photometry:
essentially the banded inversion of the isochrone mapping, f , as in (4.1). In general,
the dimensions of the input and the output spaces do not need to match, and we can
have input parameters defined on R

k mapping to an output space on R
p or subsets

thereof.

A Proposal Distribution for (Mi,Ai) via Ancillary
Augmentation

Now we return to the CMD example and address additional implementation
challenges. Unlike the toy example, the isochrones are given on an irregular
(m, a) grid, so the choice of partition is not immediate. The partition can either
be constructed manually or using a standard technique such as the Delaunay
triangulation [16] of the input vertices; we use the latter method for all applications
presented here. Figure 4.6 shows an example of the partition formed using Delaunay
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triangulation for the Geneva isochrones. Note that the tabulation is very irregular,
with much higher resolution tabulation for masses close to the maximum allowable
mass for each given age. Each corner of the polygon corresponds to a tabulated
value that has a corresponding vector of expected photometric values. As discussed,
assuming the isochrone tabulation is of sufficiently high resolution, the implied
isochrone values within a given polygon can be approximated by interpolation of
the (vector) values at the corner points. Next, taking the centroid of each polygon
as a representative of that particular region of the parameter space, we proceed
to construct approximate “contours” of the conditional posterior distributions that
correspond to these centroid values. Each centroid is comprised of two components:
(i) a pair of mass and age values (mj , aj ), and (ii) an (interpolated) isochrone value
describing the expected photometry with the given mass and age f (mj , aj ) ∈ R

p.
After running the clustering algorithm on the photometry vectors at the cen-

troids, each cluster is simply a list of polygons defining a collection of possibly
disconnected regions of the parameter space. For computational simplicity, we use
k-means clustering to form C clusters. Given a set of C clusters of polygons,
we can quantify approximate measures of the “distance” between points in each
pair of distinct clusters. Finally, after reparameterization, we ensure that nearby
clusters, as quantified by their distance in the observed photometric bands, will
provide similar values of the conditional posterior—yielding a proposal that enables
both location-independent movement throughout the mass-age parameterization,
and approximate contour-based sampling for all of the n independent conditional
distributions p(Mi,Ai |μA, σ 2

A,Y). As presented however, the motivation for the
partitions was that they allow location-independent exploration of multiple modes
and diverse regions of the parameter space. However, in our hierarchical model we
must deal with the additional contributions from the informative prior distributions
in Eqs. (4.2) and (4.4). To do this, we perform the proposal using the ancillary
parameterization [22]. For applications where the lowest mass stars are above the
IMF break-point Mbrk = Mmin, this becomes

Ãi = �

(
Ai − μA

σA

)

, M̃i = M
−(α−1)
min − M

−(α−1)
i

M
−(α−1)
min − Mmax(Ai)−(α−1)

, (4.7)

where �(x) is the CDF for the standard normal variable. Under this augmentation
scheme the model becomes

Yi |M̃, Ã,R, μA, σ 2
A ∼ N

(
f (M̃i, Ãi , μA, σA),R

)
, (4.8)

Ãi |μA, σ 2
A ∼ Unif [0, 1] , M̃i |Ãi , μA, σ 2

A ∼ Unif [0, 1] , (4.9)

μA|σ 2
A ∼ N

(
μ0, σ 2

A/κ0

)
, σ 2

A ∼ Inverse−χ2
(
ν0, σ

2
0

)
. (4.10)
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Hence, the conditional distribution of any given individual mass-age pair reduces to

p(m̃i, ãi |μA, σ 2
A,Y) ∝ exp

{

−1

2
tr
(
R−1F̃i

)}

, (M̃i, Ãi) ∈ [0, 1]2 , (4.11)

where

F̃i =
(
yi − f (m̃i, ãi , μA, σ 2

A)
) (

yi − f (m̃i, ãi , μA, σ 2
A)
)�

. (4.12)

By essentially placing all of the additional non-likelihood terms inside the mapping
between sufficient and ancillary augmentation, we can help facilitate the improved
performance of our likelihood-based proposal distribution. The impact of the trans-
formation can be seen by the relative differences in areas between corresponding
regions of the parameter space, i.e., the Jacobian. If the current state of the MCMC
chain for star i is (mi, ai), which is contained in polygon k, in cluster l, then we
implement the partition-based proposal as follows:

Algorithm 1 [For Computing the Proposal Distribution]

1. Select a cluster l∗ with probability pC
ll∗ .

2. Select a polygon k∗ from within cluster l∗ with probability pW
l∗k∗ .

3. Propose a point (m∗
i , a

∗
i ) uniformly within polygon k∗, and map to (m̃∗

i , ã
∗
i ).

��
By encouraging moves between nearby clusters we can effectively explore

different regions of the parameter space with similar photometry, and hence, similar
likelihood. Note that although the partition is constructed in terms of the stellar mass
and age, the transformation defined by Algorithm 1 is one-to-one and monotonic,
and hence it forms a valid partition in the ancillary parameterization for any values
of μA and σ 2

A. However, the transformation is not affine and the partition no longer
consists of polygons. The transition probability corresponding to Algorithm 1 is
given by q

(
(m̃i, ãi ), (m̃

∗
i , ã

∗
i )
) = pC

ll∗p
W
l∗k∗ |J (m̃i, ãi )|/|Uk∗ |, where J (m̃i, ãi ) is

the Jacobian of the transformation from the sufficient to ancillary augmentation
evaluated at the proposed state, and |Uk∗ | is the area (in the sufficient augmentation)
of the k∗-th unique polygon within cluster l∗. There is some freedom in choosing
both the cluster-to-cluster and within-cluster proposal probabilities. For the cluster-
to-cluster probabilities we compute the centroid of all centroids of polygons within
the cluster, providing an approximate “center” of the cluster (in R

p) and then
compute Euclidean distances between all cluster centers. The cluster-to-cluster
proposal probabilities are then selected to be pll∗ = exp

{−d2(xl, xl∗)/β
}
, where

d(·, ·) is the Euclidean distance, xl and xl∗ are the cluster centroids in photometric-
space, and β is a tuning parameter controlling how freely we propose to move to
nearby clusters.

All distances here are computed with respect to the Euclidean norm in
photometric-space independently of the mass-age location, thus imitating the
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posterior distribution and allowing free movement across modes in terms of the
stellar mass and age. For example, two distant regions of the parameter space that
produce the same expected photometry would be placed in the same cluster, and
the proposal distribution as constructed provides a high probability of proposing to
move between these disconnected regions. We note that the acceptance probability
is strongly influenced by the area of the polygon in the ancillary scheme; an artifact
of the ancillary transformation (4.7). This choice of cluster-to-cluster probabilities
mimics a random-walk Metropolis proposal, “centering” the proposal around the
current cluster, and proposing to move to regions of the parameter space with a
probability that reflects the similarity of the photometry to the photometry at the
current state.

As discussed, the size of the polygon in the ancillary parameterization is a
function of the hierarchical structure and could also be accounted for in selecting the
within-cluster probabilities if desired. For example, if the within-cluster proposal
probability is chosen to be proportional to the area of the region in the ancillary
parameterization, then it yields a uniform proposal over the area defined by the clus-
ter. In practice this is implemented by computing the polygon areas in the sufficient
parametrization and incorporating the Jacobian term. If this approach is taken then,
since the mapping between parametrizations depends on the hyperparameters μA

and σ 2
A, the Jacobian terms within the cluster would need to be recomputed at each

iteration. Uniform proposals across the cluster do not require this extra computation
but can be less efficient. In practice we combine this proposal distribution with
a random-walk proposal of the form: (m∗

i , a
∗
i )� ∼ N((mi, ai)

�,Diag(λ1, λ2)),
where λj are proposal variances that can be tuned to achieve desired acceptance
rates. This combination of proposal helps to facilitate both rapid local and global
exploration of the posterior distribution. Since the correlation between mass and age
depends on the region of the CMD, we do not attempt to approximate the correlation
between the variables. In our experience, there is little performance change when
using either the cluster-based or random-walk proposal distributions between 20–
80% of the time.

Checking the Effectiveness of Our Proposal

To understand the impact of the transformation, and the resulting proposal dis-
tribution, we begin by examining the components of the posterior distribution
within the original (m, a)-parametrization. Figure 4.7 shows the prior (Top) and
posterior (Bottom) surfaces for an individual star. The posterior surface is obtained
by combining the likelihood surface in Fig. 4.2 with the prior as shown. As we
can see from the bottom panel of Fig. 4.7, the posterior surface is challenging
to sample efficiently from, particularly given that the presence and scale of any
large-scale ellipsoidal trends can vary dramatically across stars. In light of this,
to retain computational robustness to the form of isochrone being used, and
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to maintain generality for non-isochrone settings, we avoid making observation-
specific approximations to these conditional posterior distributions.

Our alternative approach, using the ancillary transformation, is depicted in
Fig. 4.8. The top plot displays the transformation of the posterior distribution in
Fig. 4.7 to the ancillary parametrization. Since the posterior distribution in the
ancillary parametrization is simply a rescaling of the likelihood surface, we can
observe the similarity in structure to Fig. 4.2. The bottom plot of Fig. 4.8 displays
a proposal distribution obtained using our algorithm. The current state of the chain
is highlighted by the black dot, and the proposal the proposal distribution mimics
the contours of the ancillary posterior, albeit wrongly centered around the current
state of the MCMC algorithm due to the random-walk style as implemented here.
However, for this particular example the variance of our proposal is considerably
greater than is desirable. This is the result of the observation falling in a region
of insufficiently high resolution relative to the observational errors. This lack of
resolution also illustrates the limitation of the “equi-expectation” approximation for
low-resolution tables. Given higher resolution tables (or observations with higher
measurement variance), and thus a higher resolution polygon-cluster proposal
distribution, we will steadily obtain more appropriate contours and variance in the
proposal.

As an analogous alternative to the random-walk style proposal, an independence
style proposal could also be used where the cluster weights are proposed based
on the distance between the observed photometry and the cluster centroids. This
strategy would likely be more effective than the cluster-based alternative, but the
large amount of computation required for each star and at each iteration renders
it considerably more computationally expensive. In seeking the optimal trade-off
between improved mixing and implementation speed, we elect not to pursue this
further.

Although the clustering of polygons is not, in principle, necessary, the large
number of polygons (>200,000) makes the construction of a polygon-to-polygon
proposal more challenging, more memory-intensive, and more time-consuming.
By adding the clustering of polygons, we need only store the much smaller
B×B cluster-to-cluster proposal probability matrix, and possibly the within-cluster
proposal probabilities (although this is not required for uniform proposals within
the cluster).

Addressing Block Correlations

The proposal distribution for the individual stellar masses and ages is useful only in
helping to sample efficiently from the series of conditional posteriors. As should be
anticipated from the hierarchical specification of the model, there remains a large
posterior correlation between (μA, σ 2

A) and (A1, . . . , An).
To help address these problems, we embed our sampler within a parallel temper-

ing (PT) framework [9] to facilitate easier movement around the posterior space.
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To sample p(θ) with energy H(θ) = − logp(θ), PT proceeds by constructing
a sequence of tempered distributions, {p1(θ), . . . , pN(θ)} of the form pj (θ) ∝
exp

{−H(θ)/Tj

}
, with TN > . . . > T1 = 1. By applying a series of monotonic

transformations to the full posterior density, the full conditional densities in the
Gibbs sampler are also transformed in an identical manner. An attractive feature of
parallel tempering is that the modified conditional distributions require only trivial
modifications. The tempered conditional posterior of (μA, σ 2

A) is given by

pj (μA, σ 2
A|M,A,R,Y) ∝ exp

⎧
⎨

⎩
− 1

2Tj σ 2
A

⎡

⎣ν0σ
2
0 + κ0(μA − μ0)

2 +
n∑

i=1

(Ai − μA)2

⎤

⎦

⎫
⎬

⎭

· (σ 2
A)

−
(

1+ (ν0+n+3−2Tj )/Tj
2

)

The conjugate marginal/conditional formulation can be shown to yield:

σ 2
A|M,A,R,Y ∼ Inverse−χ2

(
νn

Tj

,
ν0σ

2
0 + (n − 1)s2A + κ0n

κ0+n
(Ā − μ0)

2

νn

)

,

(4.13)

μA|σ 2
A,M,A,R,Y ∼ N

(
κ0μ0 + nĀ

κ0 + n
,

Tjσ
2
A

κ0 + n

)

, (4.14)

where νn = ν0 + n+ 3(1− Tj ) and s2A = 1
n−1

∑n
i=1

(
Ai − Ā

)2
. Since νn cannot be

negative, we must impose maxj Tj < (ν0 + n+ 3)/3. Typically either n, ν0 or both
are large, and hence this condition is not generally restrictive.

4.4 Empirical Investigations

Simulation Studies

Given the complex properties of the isochrone tables, it is important to validate that
the sampling algorithm can reliably converge to the correct posterior distribution.
See [21] for an illustration of typical complications when using MCMC with
isochrone tables. We approach this with an aggregate check of coverage properties.
That is, we simulate many datasets from the model, and we then fit the model to
obtain posterior intervals and check nominal and actual coverage are consistent.
This is a special case of the more general framework in [5]. For this aggregate check
we simulate 1000 datasets from the model for each of the parameter configurations
detailed in Table 4.1.
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Table 4.1 Details of coverage simulations used to validate the algorithm described in Sect. 4.3

Sim. n p Bands μ0 σ 2
0 ν0 κ0 Number of datasets

1 100 3 (M(U),B,V) 8.1 0.01 1,000,000.0 1.0 1000

2 1000 3 (M(U),B,V) 9.2 0.05 1000.0 100.0 1000

3 100,000 3 (M(U),B,V) 6.6 0.16 1000.0 10.0 1000

Table 4.2 Coverage properties of the different sampling algorithms for simulation configuration
1 (μ0 = 8.1)

1% 2.5% 5% 25% 50% 75% 95% 97.5% 99%

Mi

MH 0.8 2.1 4.3 24.4 49.0 73.9 94.0 96.9 99.0

MH+ PT 0.7 2.0 4.1 23.4 49.0 74.2 94.9 97.6 99.1

PC 0.7 2.1 4.3 24.3 48.8 74.2 94.4 97.1 99.0

Ai

MH 1.7 3.4 5.5 25.2 48.0 72.3 92.5 95.2 96.9

MH+ PT 1.2 2.9 5.0 26.2 49.4 75.2 94.7 97.6 98.9

PC 1.2 2.8 4.9 25.4 49.3 75.4 95.0 97.6 99.0

μa

MH 1.7 2.9 5.0 24.8 46.9 72.0 91.6 94.7 96.3

MH+ PT 0.7 2.2 4.3 25.8 49.3 76.5 95.3 97.7 99.2

PC 0.7 1.9 4.2 25.1 48.1 75.0 94.6 97.3 99.0

σ 2
a

MH 0.7 1.8 3.4 24.2 48.0 75.1 95.2 97.1 99.1

MH+ PT 0.7 1.5 2.8 21.5 45.9 72.4 95.0 97.0 99.5

PC 0.7 1.7 3.4 23.8 48.2 75.2 95.1 97.3 99.2

For each of the three settings, there are four different MCMC schemes:

1. (MH): Vanilla scheme using only random-walk proposals for the individual
masses and ages, without tempering,

2. (MH+PT): As in (MH), with additional parallel tempering,
3. (PC): The Polygon-Cluster scheme of Algorithm 1, without tempering,
4. (PC+PT): As in (PC), with additional parallel tempering.

Due to limited computational resources, we did not implement the 4th scheme. In
all cases we combine the results from four chains, and each algorithm is run for
approximately the same total CPU time across the four chains. Remaining tuning
parameters such as the variance of the random-walk proposal, the number of clusters
and the cluster-to-cluster “variance” parameter β were chosen after pilot runs on a
subset of the datasets. Table 4.2 shows the coverage properties for a subset of the
parameters for simulation number 1.

The first, simplest method struggles to effectively sample the tails of the
posterior distributions, particularly for the main parameter of interest, and most
computationally challenging parameter, μa . Adding in tempering we do better
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in many cases, but some potentially worrisome discrepancies between actual and
nominal coverage still remain, even with tempering. The third method, using the
cluster-based partition proposal without tempering appears to do slightly better
than the standard approach both with and without parallel tempering. Although
we do not directly employ the combination of the cluster-based proposal with
parallel tempering across all 1000 datasets, we do recommend such an approach
for the analysis of a single dataset. While on aggregate the differences between
the approaches do not appear to be drastic, the results for any given dataset can
differ by a non-negligible amount. Brute force numerical integration for a subset of
the datasets suggests that the cluster-based proposal and the cluster-based proposal
with tempering better capture the tails of the distribution, although we defer a fuller
analysis for future investigation.

Results from configurations 2 and 3 are very similar to those presented above and
omitted for brevity. One important difference that we note here though is the size
of the dataset; configuration 3 analyzes 1000 datasets of 100,000 observations each:
an important test of the scalability of our approach. We run the analysis for each
dataset for a maximum of 24 h: a reasonable computational cost for such large-scale
analysis.

NGC 104: 47 Tucanae

“47 Tuc” is a globular cluster estimated to be 13,000–17,000 light years away,
originally discovered by Abbe Nicolas Louis de Lacaille in 1751 [7]. Being the
second largest and second brightest globular cluster, it has been extensively studied
in recent years. Examples include [10] and [19]. Here we reanalyze photometric
data to investigate possible age differences within the cluster and to assess the
sensitivity of estimates to the choice of hyperprior. The 47 Tuc data consists of
1,697 observed stars in V and B bands (p = 2), with no missing data. For the
analysis here we consider the distance modulus to be fixed at 13.33, although
the extension to estimating the distance modulus is, in principle, straightforward.
Figure 4.9 shows the data that we analyze: each dot corresponds to a star, with
accompanying measurement error. The colored dots in the figure represent the
theoretical isochrones: our model essentially seeks a distribution over these curves
that best represents the 47 Tucanae cluster. CMD-based estimates of the (single
log10) age of 47 Tuc typically range from 9.95 to 10.10 (9.0−12.5 billion years). In
light of this, we select the hyperparameters for the analysis to reflect the estimates
and uncertainty ranges in the literature:

μ0 = 10.025, κ0 = 9

64
, ν0 = 1000 and σ 2

0 = 0.032. (4.15)
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Fig. 4.9 Color-Magnitude Plot of the 47 Tucanae dataset. Each black dot represents a star in the
dataset, colored points represent tabulated theoretical isochrone values. The color of each point
represents its corresponding age, the mass, and metallicity of each point is not shown

These correspond to approximately

μA ∼ N(10.025, 0.082), σ 2
A ∼ N(0.03, 8.1× 10−10).

The analysis was performed using the Polygon-Cluster proposal distribution for
the individual mass-age distributions, and a ladder of 8 logarithmically spaced
tempering distributions. We run a total of 10 chains, each for approximately 24 h,
and combine the results for estimation. Relevant convergence diagnostics were
checked, but we omit the details for brevity. Figure 4.10 shows the posterior median
and 95% intervals for each of the stars in the dataset, sorted by increasing posterior
median. We clearly see a heavy left-tail: a collection of approximately 100 stars
that appear to have a lower age than the rest of the cluster. An alternative cruder
but simpler visualization is given by simply plotting a histogram of the posterior
medians of the individual stars, as shown in Fig. 4.11.



4 Colorful Stars and Black Boxes: Bayesian Analysis of Stellar Populations 77

0 500 1000 1500

9.
2

9.
4

9.
6

9.
8

10
.0

10
.2

47 Tuc: 95% Posterior Intervals for Star Ages

Index

A
ge

 (l
og

_{
10

} y
ea

rs
)

l

llll
ll
l
lll
lll
llll
llll
lll
llll
llllll
lllll
lllll
lllll
lll
ll
llll
ll
llll
lll
llllll
ll
lll
lll
ll
llll
lllll
llll
llll
lllll
lllllll
lllll
llllll
llllllllll
llllll
llllllllll
llll
llllll
llllllllllll
lllllll
lllllllllllll
llllllllllll
lllllllllllll
lllllllllllllllll
lllllllllllllllllll
llllllllllllllllllllllllllll
lllllllllllllllllllll
lllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllll
llll

0 500 1000 1500

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

47 Tuc: 95% Posterior Intervals for Star Masses

Index

M
as

s 
(S

ol
ar

 M
as

se
s)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll

lllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllll

llllllllllllllllllllll
llllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllll
llllllllllllllllllllll
lllllllllllllllllllll
lllllllllllllll
lllllllllllllll
lllllllllllll
llllll
lllllllll
llllllllllll
llllllll
llll
llll
lll
l
l

lll
l
l

ll

l

Fig. 4.10 Posterior intervals for the individual stellar ages ai (Top) and masses mi (Bottom). The
stars are sorted in order of the posterior median, shown as a black dot: the accompanying 95%
intervals are shown as gray bars
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Fig. 4.11 Histogram of the posterior medians of all stars in the dataset. While providing a simpler
visual, the distribution of posterior medians is a less complete representation than the posterior
intervals of Fig. 4.10

The long-held belief has been that globular clusters are formed in a single burst
from a single cloud of material. Based purely on the data and analysis here, however,
there is a suggestion that 47 Tuc may contain multiple star formation bursts.
Alternative explanations for the phenomena in Fig. 4.10 include contamination
by foreground stars, misspecification or uncertainty in the distance modulus, or
bias induced by extinction: see Sect. 4.5 for more details. Examining Fig. 4.10,
there appear to be two bursts of star formation approximately 3Gyr (billion) years
apart at 7.9Gyr and 11.5Gyr ago, respectively. Recent independent work [1] using
different techniques also suggests multi-burst SF in 47 Tuc, although analysis with
higher quality multi-band photometric data would be required before drawing such
scientific conclusions. Importantly, however, the flexibility in our model provides
sufficient richness to be able to investigate previously untestable assumptions.
Indeed, it is this additional flexibility and the appropriate modeling of uncertainty
that is the primary contribution of statistical research in astrophysics.
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4.5 Extensions and Future Work

Uncertainty in the “Black Box”

All of the previous analysis was predicated on the assumption that the “black box”
describing the relationship between the physical parameters and the observed data
(i.e., the isochrone mapping) is correct. In practice there is also uncertainty in
these mappings, and we now consider some approaches to investigate this. Ideally,
uncertainty in the mappings would be proliferated down through the mapping in
the form of uncertainties in previously fixed quantities, i.e., essentially creating an
expanded black-box/lookup table incorporating both different inputs and different
physical assumptions. In practice, however, this is rarely feasible without access to
the models that generate the lookup tables. In light of this, we consider a simpler
problem: comparing competing sets of isochrones. For simplicity we consider
comparison of two competing black boxes, although the extension to the comparison
of more than two is straightforward.

Given two competing models,M1 andM2, differing only by the specific choice
of isochrone table, i.e., f in Eq. (4.1), we specify prior probabilities for each model:
p(M1) and p(M2). In all cases here we begin with a neutral prior, selecting
p(M1) = p(M2) = 0.5. The posterior model probabilities are then given by

p(M1|Y) = 1

1+ p(M2)

p(M1)

∫
p(θ)p(Y|θ,M2)dθ

∫
p(θ)p(Y|θ,M1)dθ

, (4.16)

thus requiring only additional computation of the ratio of normalizing constants
for the two competing posterior distributions. More general model comparisons
allow for different priors p(θ |Mj ), although in our application the prior p(θ) is
the same for both models. Meng and Wong [15] show how one can estimate ratios
of normalizing constants using the bridge sampling identity:

c2

c1
= E1 [q2(θ)α(θ)]

E2 [q1(θ)α(θ)]
, (4.17)

where α is an arbitrary function providing a “bridge” between the two densities.
They also provide a fast-converging iterative scheme to approximate the estimator
under the optimal α. Note that the expectations of each unnormalized posterior are
taken with respect to the other model. Therefore, if posterior samples are available
for the two competing models, then implementing this model comparison boils
down to the evaluation of the unnormalized posterior density for each draw from
its rival model.
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Multi-Cluster Models

As discussed in the context of the 47 Tucanae analysis, there are potentially appli-
cations where we want to allow for the possibility of multiple stellar clusters. The
model defined by (4.1)–(4.4) is explicitly designed for single-cluster populations,
although one possible generalization is conceptually straightforward. We could
consider replacing (4.2) by an alternative mixture distribution:

Ai |Hi, μA,Hi
, σ 2

A,Hi

ind∼ N
(
μA,Hi

, σ 2
A,Hi

)
, Hi ∈ {1, 2, . . . , K} , (4.18)

where Hi is the cluster membership of star i. In most applications Hi would be
given a uniform prior. When combined with identical priors on the cluster-specific
hyperparameters, the posterior is defined only up to label switching. While, in
principle, the number of clusters K could also be estimated, this would likely
be fixed as part of the analysis. The additional computational burden induced
by (4.18) rests primarily in the additional block correlations between the cluster-
and individual-level variables.

Extinction and Non-ignorable Missingness

In many examples it is possible that observations for some stars are either partially
(i.e., one or more bands) or fully (i.e., all bands) missing. The missing data
mechanism for this missingness can potentially depend on the intrinsic brightness
of the stars. That is, brighter stars are more likely to be observed than dimmer ones.
Thus, the missing data mechanism can potentially provide information about the
model parameters. For a given detector the detection/missingness probabilities are
often well understood by careful calibration and testing. In such cases we often
have access to a series of functions that express the probability of missingness
as a function of the brightness of the star, a functional form that can then be
coherently built into our hierarchical model. Again, within the Bayesian framework
the extra layer can be added in a relatively straightforward way, although this
will entail an additional computational burden. The importance of this missingness
mechanism varies depending upon the type of stellar cluster being analyzed, and
thus we currently restrict to those datasets where it is unlikely to affect the resulting
inference.

Going Beyond Stellar Populations

Computer models and “black-box” likelihoods are increasingly common in many
scientific disciplines, and can pose some interesting challenges to traditional com-
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putational methods. In the case of analyzing stellar populations, that the likelihood
is tabulated is both a blessing and a curse. We benefit in that much of the structure
in the model is known a priori, and we show how an effective proposal distribution
can be pre-computed independent of data. However, the black box proves to be
a curse in that understanding and intuition are harder to come by, as are analytic
simplifications and approximations. Despite this, one can construct an efficient and
effective sampling scheme even for highly nonlinear and degenerate likelihoods that
are more robust to the properties of the black box than naive methods.

The frequency of statistical applications involving components of the model that
cannot be written down analytically is likely to increase in the coming years. There
is much work to be done to better understand the computational and inferential
implications of such models, and we hope the strategies and methods explored in
this article can contribute to further research in this area.
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Chapter 5
The Ways of Bayes (In Memory
of Stephen Fienberg)

Thomas A. Louis

5.1 Reminiscence

Steve Fienberg and I were friends and colleagues, from the early 1980s through
his death. He was the consummate academic, interested in ideas, concepts and
principles, thirsting to teach, and yes, to “profess.” But more importantly for
science, policy, and public well being, he was action-oriented, applying his skills
to important public policy issues, promoting the Bayesian viewpoint (see Fienberg
2011), establishing or helping to establish institutions that activate statistics and
statisticians. One of the most recent of these was Steve’s creation of the Annual
Review of Statistics and its Application (ARSIA).

Steve was a Bayesian with encyclopedic knowledge. He had strong opinions,
but liked nothing better than to argue it out, to “disagree agreeably” (approximate
quote of Daniel Patrick Moynihan, former U.S. Senator). I recall many enjoyable
occasions, including gourmet dining in Leiden NL in 1996 (he was a true gourmet),
floating in the Mediterranean off Hersonissos-Heraklion, Crete in 2000 (discussing
Bayes and life), participating in the closing session of the International Year of
Statistics in 2013, and serving together on the COPSS-CMS profiling project and
on the ARSIA editorial board. I miss him, we all miss him, statistics and society
miss him. All have benefitted from his contributions and example.

T. A. Louis (�)
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Baltimore, MD, USA
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5.2 Introduction

The Bayesian approach to design and analysis is making important contributions to
science and policy. While much of the Bayesian advantage comes from success in
dealing with highly complex situations, there are also benefits in basic settings. If
modeling assumptions are not reasonably correct, an approach, Bayes or otherwise,
can perform poorly; and Bayesian modeling relies on additional assumptions. How-
ever, as communicated in subsequent sections, its potential benefits are substantial,
and in many situations it is worth investing the additional effort to “go Bayes.” There
are many benefits including: the approach makes assumptions explicit, the laws
of probability guide the progression from data to evidence, the approach supports
flexible processing to address basic and complex goals, it carries forward all uncer-
tainties, and the posterior distribution can be used to compute expected utilities.
Availability of robust Bayesian models, including semi-parametric approaches, and
efficient computational approaches broaden the domain of applications and add to
the attractiveness of the approach.

I present theory and examples ranging from basic to advanced, showing that
Bayesian approaches can confer substantial benefits, but that care is needed.

Thomas Bayes

The Reverend Thomas Bayes 1701–1761, started the whole thing off with his,
“. . . probability that an event has to happen in given circumstances . . . ” (see Fig. 5.1

Fig. 5.1 Steve converting a then-frequentist Rafa Irizarry at Thomas Bayes’ grave in the noncon-
formist section of Bunhill Fields Burial Ground, London (a short walk from the Royal Statistical
Society’s office)
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for Steve “converting” a then-frequentist Rafa Irizarry at Bayes’ grave during a
lunch break at the wrap-up meeting of the International Year of Statistics, held at
the Royal Statistical Society, November 2013).

5.3 Bayes and Frequentist

Why Is Not Everyone a Bayesian?

In Efron (1986) (a must-read) Brad asked, “Why isn’t everyone a Bayesian?”1 He
notes that Laplace, Gauss, and others endorsed the Bayesian formulation, but that
the twentieth century was frequentist with R. A. Fisher as a leading proponent.
Fisher’s theory was attractive in part because the overhead relative to Bayesian
approaches was low, and methods were relatively straightforward to implement. The
frequentist approach solved a specific problem, for example a confidence interval
for the population median, without requiring a comprehensive model, which is a
far more ambitious goal. The approach was considered “objective,” an apparently
attractive feature. Quoting Efron,

“A prime requirement for any statistical theory intended for scientific use is that it reassures
oneself and others that the data have been interpreted fairly.”

A worthy goal, irrespective of your statistical philosophy, but as Lindley states in
his discussion:

“The objective element is the data: interpretation of the data is subjective, . . . .”

The approach is not without controversy; as Sir Maurice Kendall noted in discussing
the use of prior beliefs,

“If they [Bayesians] would only do as he [Bayes] did and publish posthumously, we should
all be saved a lot of trouble.”

Many would agree that the Bayesian approach is well-adapted to procedure
generation, either to attain frequentist goals (Bayes for frequentist) or Bayesian
goals (Bayes for Bayes). This advantage is especially true in complicated settings
(e.g., synthesizing data sources), complicated designs (e.g., adaptive protocols), or
for complicated goals (e.g., optimizing a non-linear utility). However, irrespective
of the way a design and analysis are generated, understanding frequentist properties,
including model adequacy, is important (see Box 1980, for the frequentist aspects
of a fully Bayesian model).

1Also, see Box (1980) for another pivotal article with illuminating discussion.
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A Few Comparisons

We provide a few comparisons between Bayesian and frequentist concepts and
models with no attempt to be comprehensive.

The (Apparent) Simplicity of Null Hypothesis Significance Testing

Significance testing confers an apparent frequentist advantage, because, as Efron
(2005) states, you need only to assume something about the null model. However, it
is the case that the test statistic implies assumptions about the underlying statistical
model and the alternatives of primary interest (those for which one wants good
power). So, in reality, the approach is not all that simple or objective. This point
segues into the p-value swamp, which I avoid by citing Wasserstein and Lazar
(2016) and Lazar et al. (2019) for discussion of p-values and beyond.

Full Distribution Processing

Full distribution processing is a clear Bayes advantage. It is essential for Bayesians
and very effective for frequentists. The posterior distribution consolidates all
evidence and can be used for inference and prediction. Full distribution thinking
encourages tuning an inference to specific goals rather than using defaults such
as the (posterior) mean and variance. This ability is especially, but not uniquely,
beneficial in addressing complex and non-standard goals such as estimating ranks,
and optimizing complex utilities.

Bayesian processing guided by the laws of probability carries forward full (pos-
terior) distributions in making inferences, a clear Bayesian advantage. Examples
include developing a missing data prediction model that incorporates uncertainty
in estimated parameters. In using data to provide information about a prior
distribution (e.g., a between-unit variance component), Bayes empirical Bayes
transmits uncertainties to the posterior distribution. In a context wherein exposures
are measured with error, rather than computing exposure/response by operating
on a point estimate of exposure, the full posterior distribution of exposure can
be processed by the function. Doing so can change the shape of the (measured
exposure)/response curve, and produce more appropriate risk assessments.

My use of “infer” rather than “estimate” respects that Bayesian output is a joint,
posterior distribution, not a point estimate, and so it delivers uncertainties to the
ultimate inference. Of course, only uncertainties identified by the model will be
carried forward. For example, if model selection is not incorporated in the data
model (incorporation is challenging!), related uncertainties will not be delivered to
the posterior distribution. The bootstrap can be used to deliver these uncertainties,
and the Bayesian bootstrap (sample from the posterior of parameters, then generate
bootstrap data) produces a more “honest” assessment.
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Computational Complexity

The additional computational complexity of the Bayesian approach is a decreasing
advantage of the frequentist approach. Software such as rstan, BUGS, and
JAGS have dramatically reduced the computational challenges, and appropriate
frequentist computations are by no means trivial.

Objectivity/Subjectivity, Opinion/Judgment

A great deal has been written on objectivity and subjectivity, on opinion and
judgment with Brownstein et al. (2019) providing a recent discussion. Pure objec-
tivity is difficult or impossible to obtain, and statistical studies depend on opinion
and judgment in each study phase (conceptualization, design, implementation, and
analysis). Subjectivity and judgment are prima facie necessary in the design
phase; indeed we are all at least informal Bayesians when designing a study.
All evaluations are preposterior, integrating over both the data (a frequentist act)
and the parameters (a Bayesian act). And, all analysis have subjective elements,
including the form of the data model, choice of candidate regressors, of course
guided by statistical best practices. Each phase should be conducted in a scientific
and reproducible manner; conduct and analysis should be protocol-based, with the
analysis protocol allowing/inviting adaption and exploration that go beyond pre-
specification. Similarly, as emphasized by O’Hagan (2019), elicitation of expert
opinion, including which studies are relevant to the design of the current one, should
be scientific, protocol-based, and documented.

Dependence on the Sampling Plan

Some sampling aspects can be ignored in a Bayesian analysis (e.g., stopping rules),
others cannot or should not (e.g., survey weights). For example, the posterior distri-
bution does not depend on the stopping rule, the equivalence of Binomial/(Negative
Binomial) posterior distributions is a popular example. However, some frequentist
and some Bayesian properties of a procedure will depend on the stopping rule, and
stopping rules can degrade Bayesian robustness to departures from assumptions (see
Rubin 1984, for examples).

A Bayesian is not completely relieved of considering sampling, for example
failure to accommodate length-biased sampling will produce biased estimates.
In the survey world, Bayesians need to accommodate sampling weights, with
Little’s design-consistent Bayes (Little 2004, 2012) an attractive approach. And,
as discussed in Sect. 5.6, sample size can be both informative and endogenous.
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Modeling Flexibility

Modeling flexibility is a clear Bayesian advantage. For example, consider estimating
K , unit-specific parameters (θ1, . . . , θK) (e.g., treatment-specific means in an
ANOVA, or small-area true disease rates). In the absence of regressors, the “pure”
frequentist approach operates at two extremes. Either each of the θs stands on its
own (and unit-specific statistical likelihoods provide the information), or all θs are
assumed equal in the null model, {θ1 = . . . = θK = θ} (and a single-θ likelihood
provides the information).

There are connections with the Bayesian formulation. “Every unit on its own”
can be represented by θ -specific priors with no connection among them, and the null
model by a single prior on the common θ . Importantly, the Bayesian approach adds
considerable flexibility to these extremes by supporting the middle-ground model
wherein the unit-specific θk are unique, but they are related (are siblings) in that
they all come from the same prior distribution.

More generally, the prior can include a regression structure, with model lack of fit
(unexplained variation) quantified by the prior variance. The Bayesian formulation
substantially expands modeling flexibility, including the hierarchy of hypotheses,

• H00: Prior variance is 0, all unit-specific parameters (residuals) are equal to the
prior mean.

• H0 or Ha : All unit-specific parameters (residuals) come from the same, non-
degenerate distribution and so are different, but are related.

• Haa : None of the above (“pure” frequentist).

Bayes and Multiplicity

The prior to posterior mapping does not “know about” multiple comparisons. With
additive, component-specific losses, each comparison is conducted separately with
no accounting for the number of comparisons (see Sect. 5.3 for an example of non-
additive loss). There is indirect attention to multiplicity in that the analyst can
choose the number of units (e.g., treatments in an ANOVA) under study. Also,
and importantly, shrinkage toward a common mean (or more generally, a regression
surface) in a Bayes or empirical Bayes analysis calms multiplicity.

The following, basic example is related to the K-ratio procedure (see Brant et al.
1992), additional examples are provided by Scott and Berger (2006). Using the
standard, Gaussian model,

θ1, . . . , θK iid N(μ, τ 2)

[Yik | θk] ind N(θk, σ
2)

[θk | Y.k] ∼ N
(
μ + (1− B)(Y.k − μ), (1− B)σ 2

)

B = σ 2

σ 2 + τ 2
,
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compare treatments 1 and 2 via the posterior distribution test statistic,

ZBayes = (1− B)(Y.1 − Y.2)√
2(1− B)σ 2

= (1− B)
1
2 (Y.1 − Y.2)√
2σ

= (1− B)
1
2 Zf req =

{
(F − 1)+

F

} 1
2

Zf req,

where
F = 1/B̂ = (σ̂ 2 + τ̂ 2)/σ̂ 2

is the F-statistic for testing the null hypothesis that all treatment means are equal.
The frequentist Z-score is attenuated by a function of the F-statistic; the closer F
is to 1.0, the greater the attenuation. Scoping is important because the number and
relations among the units in the analysis determine the value of μ̂ and B̂.

If the global H0 : θ1 = θ2 = . . . = θK (equivalently τ 2 = 0, B = 1) is true, the
overall type I error for an ensemble of contrasts is controlled because F will tend to
be close to 1.0, and all Z-scores will be substantially attenuated. In fact, for large K,
under the global null hypothesis pr(F ≤ 1.0) ≈ 0.5 and so pr(all Zij = 0) ≈ 0.5.
The family-wise rejection rate is much smaller than 0.5 because rejection requires
that an attenuated Z-score exceeds a non-zero testing threshold.

Table 5.1 reports the type I error for a single, one-sided test and for a set of
(K − 1) independent comparisons for nominal level α = 0.05. Even for K = 5,
type I error control is impressive and converges to complete control with increasing
K (the non-monotonicity over the first three rows in the “K − 1 contrasts” column
appears to be correct and not a computational issue). Similar computations show
that when B < 1.0 (τ > 0), statistical power is maintained, though of course not to
the level produced by non-attenuated test statistics.

Table 5.1 Type I error for a one-sided test: for a single comparison, for (K − 1) independent
comparisons, and the probability that pr(B̂ = 1) (equivalently τ̂ 2 = 0). Values are computed by
numerical integration with 50,000 grid points set at the quantiles of the appropriate chi-square
distribution

K Single test K − 1 contrasts pr(B̂ = 1) ×100

5 0.00224 0.00893 59.4

10 0.00116 0.01038 56.3

20 0.00050 0.00943 54.3

30 0.00028 0.00796 53.5

50 0.00012 0.00562 52.7

100 0.00003 0.00267 51.9

500 0.00000 0.00009 50.8

1000 0.00000 0.00001 50.6
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Non-additive Loss

As in Carlin and Louis (2009), consider a situation wherein making two errors incurs
a penalty greater than the sum of the coordinate-specific losses. For example, set
the loss equal to 1.0 for a single error, but a loss greater than 2.0 for two errors,
specifically,

Parameters: θ1, θ2 ∈ {0, 1}
Probabilities: πij = pr[θ1 = i, θ2 = j ]

Decisions: a1, a2 ∈ {0, 1}
Loss(a, θ) : a1(1− θ1) + (1− a1)θ1

+ a2(1− θ2) + (1− a2)θ2

+ γ (1− θ1)(1− θ2)a1a2

The optimal decision rule is,

π1+ ≤ .5, π+1 ≤ .5 a1 = 0, a2 = 0
π1+ ≤ .5, π+1 > .5 a1 = 0, a2 = 1
π1+ > .5, π+1 ≤ .5 a1 = 1, a2 = 0

π1+ > π+1 > .5 a1 = 1

a2 =
{
0, if (2π+1 − 1) < γπ00

1, if (2π+1 − 1) ≥ γπ00.

Frequentist, Bayes, Empirical Bayes, or Bayes Empirical Bayes?

Making inferences solely based on information from a single study/dataset without
incorporating external evidence or professional judgment is prima facie frequentist.
However, as Brownstein et al. (2019) propose, this pure form is difficult if not
impossible to achieve. All other inferential activities entail some degree of formal or
informal Bayesian evaluation. Compound sampling allows replacing some degree of
personal opinion or external data with within-study data. If the number of relevant
data sources is large and provides a large amount of information on the prior
distribution, plug-in empirical Bayes (EB) performs well. Many genomics examples
occupy this domain, and flexible priors are available including using a smoothed,
non-parametric, plug-in prior (see Lin et al. 2006). On the other hand, with only
one “draw” from the prior, if there is to be Bayes, it needs to be high-church Bayes,
driven by personal/expert judgment (see O’Hagan 2019). If the number of relevant
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data sources is moderate, then accommodating uncertainty in the inferred prior and
posterior distributions via an expansion (Morris 1983), the bootstrap, or hyper-prior
Bayes (BayesEB, BEB) is needed. Evaluating whether plug-in is sufficient usually
requires comparing it to an approach that brings in uncertainty in estimating the
prior, and if it has been implemented, then why not use it?

Example: Exponential/Inverse-Gamma

Carlin and Louis (2009) evaluated preposterior CI length and coverage for the
exponential/inverse-gamma model with θ the rate/hazard,

θ1, . . . , θN
iid∼ InvGamma(η, 1)

f (yi | θi) = 1

θi

e−yi/θi , yi > 0

θ̂mle
i = yi,

which produces the marginal distribution and marginal mle,

m(yi | η) = η/(yi + 1)η+1, η̂mmle = N/

N∑

i=1

log(yi + 1).

They compared the frequentist CI to naive EB (plug-in η̂mmle), Laird and Louis
(1987) bootstrap, Carlin and Gelfand (1991) hyper-prior matching using h1(η) = 1
and h2(η) = 1/η, when N = 5 and the true η = 2.

Table 5.2 gives a snippet of their results. The classical interval is well-calibrated,
but extremely long relative to all other methods. The naive EB interval sub-
stantially under-covers; the Laird/Louis bootstrap and the h2-based intervals are
well-calibrated, each with length substantially shorter than the classical. The h2-
based interval is shorter, but the Laird/Louis does not require specifying h. That the
h1-based interval under-covers shows that for small N situations, choice of hyper-
prior matters and care is needed.

Table 5.2 Comparison of simulated unconditional, nominal 95% EB CI length and coverage for
the exponential/inverse-gamma model. See Section 5.4.3 and Table 5.4 in Carlin and Louis (2009)
for full details

Method

Feature ↓ Classical Naive EB Laird/Louis h1 h2

Length 38.80 5.22 7.50 4.51 5.66

Coverage 0.952 0.900 0.954 0.930 0.951
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Robust Bayes

Chen et al. (2015), Jiang et al. (2011) develop “best predictive small area estimation”
that robustifies a core small area estimation model. The idea is as follows. The
posterior mean (PMk) for unit k in a Gaussian/Gaussian model is,

PMk = BkXkβ̂ + (1− Bk)Yk

Bk = σ 2
k /(σ 2

k + τ 2)

a weighted average of the direct estimate (Yk) and a regression prediction (Xkβ) with
largerBk for the relatively unstable direct estimates. On the other hand, β̂ gives more
weight to the units with relatively stable direct estimates and so the high Bk units
that “care about” the regression model have less influence. This is fine if the model
is correctly specified (β̂ will be minimum variance and, approximately, unbiased),
but if the model is mis-specified, PMk will be unfair to the high variance (large Bk

units); the deck may be stacked against them (see Sect. 5.6 for an example where
this unfairness may be in play). The Chen et al. (2015), Jiang et al. (2011) approach
increases the weight on relatively unstable direct estimates when estimating β and
increases variance, but in many contexts improves MSE. Henderson et al. (2020)
expand on this approach, adding a bit more variances, but also increasing robustness.
Enriched covariates, including a flexible function of sample size, can make sample
size uninformative (see Little 2012) and offers another approach to “robustify” an
analysis.

Why Is Not Everyone a Bayesian → Why Not Bayes?

There are risks associated with any design or analysis, but carefully developed and
applied, the Bayesian formalism can be very effective for both Bayes and frequentist
goals. Guided by the laws of probability, it can handle complex models with careful
accounting of uncertainty. As Sect. 5.3 indicates, hybrid approaches with a Bayesian
centerpiece that is robustified by philosophy-free adjustments are very effective.
While the Efron (1986) question is still germane, for me the burden of proof has
switched to “why not Bayes?” or at least “why not eclectic Bayes?”

Purity and Its Discontents

Full Bayes provides a documentary trail, enhancing reproducible research. However,
not everything can be formalized and in practice nothing is “pure” anything, so
designers and analysts must strike trade-offs, and being eclectic is (almost) always
necessary. Indeed, while pure Bayes pairs nicely with Port, when you leave port
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and are on the high seas of applications, some degree of impurity is almost
always necessary. Consequently, Bayesians who engage in important studies use the
paradigm as an (possibly the) aid to navigation, not as a straightjacket. The goal is
to do a good job, and one cannot be (too) doctrinaire. Steve most certainly operated
in this manner.

5.4 Diagnostics

Bayesian diagnostics rely on frequentist concepts and computations; the usual
diagnostics (outlier identification, residual plots, Q-Q plots) are still the lynchpins.
Box (1980) notes that the marginal distribution of observed data (a predictive
distribution) is model assessment-relevant. Bérubé et al. (2019) note that the com-
monly used standardized residuals, Residual= (Observed−Expected)/SD, where
the Expecteds and SDs come from data point-specific predictive distributions, may
be deceptive. Irrespective of model form, if the predictive distributions are well-
calibrated, these residuals are mean 0, variance 1. However, unless their distribution
is close to Gaussian, they would not be N(0, 1). In this case, outlier detection and
model assessments can perform poorly, with poorly calibrated type I error for outlier
detection or low power, and misleading residual plots. Therefore, a standardized
residual that is not tied to normality has the potential to improve performance, and
percentile-based residuals have the potential to provide that improvement.

Let (Yk,Xk) represent all direct data (dependent variable, covariates) for the
kth sampling unit, and (Y,X) all data. We focus on a scalar Yk , which can
be a unit-specific summary statistic. The analyst produces a working model,
[Yk | Xk, ψ]xwkng with covariates Xk and parameters ψ (all parameters; slopes,
variances, variance components, etc.). Examples include linear and logistic regres-
sion, CART, random forests, and other machine-learning approaches (for these
ψ represents the underlying algorithm’s end result). Data analysis produces the
working predictive cumulative distribution,

Dk(Yk) = Dk(Yk | Xk,Analysis),

but the true predictive distribution is,

Fk(Yk) = F(Yk | Xk,Analysis).

The term “analysis” is quite general. It can mean production of the full posterior
distribution of ψ to be used to generate an in or out of sample predictive distribution
for Yk (e.g., the collection of MCMC samples) can be a basic, plug-in approach
substituting ψ̂ for ψ with no attention to uncertainty in the estimate (consequently,
Dk �= Fk), or the end result of a machine-learning algorithm, with or without
infusion of uncertainty.
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The (O−E)/SD, Standardized Residuals

With Yk = yk , the (Observed−Expected)/SD standardized residuals are,

R∗
k = yk − μ̃k

σ̃k

(5.1)

μ̃k = ED(Yk | Xk,Analysis)

σ̃ 2
k = VD(Yk | Xk,Analysis).

For model criticism, the empirical distribution of the R∗
k is evaluated relative to the

N(0, 1) distribution (e.g., outlier identification, distributional shape); also, plotting
R∗

k versus μ̃k can identify the need for model enhancement. If (μ̃k, σ̃k) = (μk, σk)

(the true values associated with Fk), then the R∗
k have mean 0 and variance 1, but

the full distribution can be far from Gaussian unless the Fk are Gaussian or close to
it via the central limit theorem (CLT).

Percentile-Based Residuals

To relax dependence of performance on the CLT, consider finding the percentile
location of Yk = yk in the working predictive distribution Dk and mapping it to the
associated quantile of a N(0, 1) distribution. With Yk = yk define,

R
‡
k = �−1 {Dk(yk) − 0.5prD(Yk = yk)

}
. (5.2)

= �−1 {Dk(yk)} (for continuous Dk).

If Dk = Fk , irrespective of the form of Fk,R
‡ ∼ N(0, 1). The one-half correction,

termed “medialized” by Good (2007) is needed to balance the assessment for a
discrete distribution. For example, if Dk puts all mass at a single point and yk is that
point, the uncorrected R

‡
k = ∞; the corrected (and correct) R

‡
k = 0. If the direct

estimate is equal to the largest value of the predictive distribution, the correction
brings R‡ from infinity to a finite value. Even for a continuous Dk , either R∗ or R‡

can be±∞, for example if the observed value is beyond the support of the predictive
distribution. So, in practice truncate the values at, for example ±5.0.

5.5 Addressing Non-standard Goals

Bayesian procedure generation is especially effective in addressing non-standard
goals, including determining if a parameter is in a complicated, multivariate region
(see Sect. 5.5); bioequivalence and non-inferiority relations in clinical trials, esti-
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mating ranks and histograms; optimizing non-linear loss functions (see Henderson
and Newton 2016; Lin et al. 2006; Paddock et al. 2006; Paddock and Louis 2011,
for examples of ranking and histogram/cdf estimation).

Determining If a Parameter Is in a Complex Region (R)

Section 203 of the voting rights act provides an excellent example of determining
if a vector parameter is in a complex region. It mandates that a state or political
subdivision must provide language assistance to voters,

If more than 5% of voting age citizens are members of a single language minority group,
and do not, “speak or understand English adequately enough to participate in the electoral
process,” and if the rate of those citizens who have not completed the fifth grade is higher
than the national rate of voting age citizens who have not completed the fifth grade.
A political subdivision is also covered, if more than 10,000 of the voting age citizens
are members of a single language minority group, do not “speak or understand English
adequately enough to participate in the electoral process,” and the rate of those citizens who
have not completed the fifth grade is higher than the national rate of voting age citizens who
have not completed the fifth grade.

To make this determination, Joyce et al. (2014) and Ashmead and Slud (2017)
use Bayes and empirical Bayes methods to stabilize relevant estimates. A worthy
alternative is to compute pr(θ ∈ R | data) and use a value (e.g., 0.5) as the
provide/(no need to provide) decision threshold.

5.6 The COPSS-CMS White Paper

Since 2008, the Center for Medicare and Medicaid Services (CMS) has been
publicly reporting condition-specific outcome measures such as risk-adjusted all-
cause mortality and readmission measures for Acute MI (AMI), Heart Failure (HF),
and Pneumonia. CMS uses random-effects, hierarchical modeling to produce case-
mix risk-adjusted hospital-specific measures that compare a hospital’s performance
to a national standard, and has received considerable push-back from stakeholders as
well as research communities regarding use of this methodology. Principal critiques
are that the CMS approach,

1. Fails to reveal provider performance variation because the shrinkage effect of
hierarchical modeling reduces variation of hospital performance.

2. Masks the performance of small hospitals due to the extreme shrinkage toward
the national mean.

3. Generally, there was (and still is) a considerable lack of consensus regarding
whether to use hierarchical models, to use a random-effects approach, to stabilize
by shrinkage, to use hospital attributes to adjust the risk model and, separately,
to set shrinkage targets, and to use procedure volume as a covariate.
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To address these concerns the CMS supported a committee appointed by the
Committee of Presidents of Statistical Societies (COPSS) to address statistical
issues associated with the foregoing criticisms of CMS’s approach to modeling
hospital quality based on mortality outcomes. Committee members represented
the COPSS societies (Arlene Ash, ASA; Stephen Fienberg, IMS; Sharon-Lise
Normand, ENAR; Thérèse Stukel, SSC; Jessica Utts, WNAR; Thomas Louis, at
large and chair). The review was coordinated by Xihong Lin, and addressed the
charge,

“. . . provide guidance on statistical approaches . . . when estimating performance metrics,”
and “consider and discuss concerns commonly raised by stakeholders [. . . ] about the use of
“hierarchical generalized linear models” in profiling hospital quality.”

The committee report (Ash et al. 2012) detailed our evaluations and recommen-
dations; a subsequent article (Normand et al. 2016) is based on the report.

Goal Identification

As a precursor to addressing the technical aspects, there was confusion/disagreement
(broadly in the stakeholder community and among committee members) regarding
the overall goal of statistical modeling for hospital comparison. Should it be
profiling,

“How does this hospital’s mortality for a particular procedure compare to that predicted
at the national level for the kinds of patients seen for that procedure or condition at this
hospital?”

Or, should it be individual decision-making,

“Given mymedical status and needs, to which hospital should I go for a particular procedure
or treatment?”

The choice between the two matters because, yes, modeling depends on goals.
To address the individual decision-making goal (a worthy goal, directly relevant
to the individual patient), build a rich model for the probability of death (or
other endpoint) that includes patient-specific and hospital-specific characteristics.
However, for profiling, hospital characteristics must be omitted from the model, with
the resulting hospital effects used for comparisons. That is, profiling depends on an
explicit comparison between the target hospital and a counterfactual hospital with
the same case-mix that operates at the national quality level, but it is very unlikely
that there is another hospital with exactly the same case-mix. It is relevant for
quality evaluations, for policy decisions. Resolving this goal issue took considerable
discussion, with Steve’s input essential for clarifying the issues and coming to
consensus.
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The profiling goal depends on the Standardized Mortality Ratio (SMR), equiva-
lently, the indirectly standardized, 30-day death rate (SDR). Specifically, for hospital
“i′′ and each admission condition under consideration, the inferential target is,

SMRi = Ei(#of deaths|case-mix)

Ei,national(#of deaths|same case-mix)
,

or

SDRi = SMRi × (the national-level death rate).

We focus on the SMR, with SMR= 1.0 indicating typical performance relative to
the national standard for the distribution of patients treated at the hospital. Ei,national
is produced by summing up national-level probabilities that depend on an ensemble
of patient-level, pre-admission risk factors for the patients treated in hospital i. Ei
is produced by summing up national-level probabilities that depend on an ensemble
of patient-level, pre-admission risk factors for the patients treated in hospital i, and
a hospital-specific offset (hospital effect).

A direct estimate,

ŜMR
direct

i = Observed(# of deaths in hospital i)

Ei, national(#of deaths | same case-mix)

is attractive because it requires statistical modeling only for the denominator
(Kalbfleisch and Wolfe 2013, advocate this approach), but for many hospitals,
especially those with low volume, the estimate will be very noisy and a stabilized
estimate,

ŜMR
stabilized

i = Stabilized(# of deaths in hospital i)

Ei,national(# of deaths|same case-mix)

is used by the CMS. Stabilization is based on a random-effects, logistic regression
model, with stabilization via Bayesian shrinkage of hospital-specific offsets toward

0, consequently shrinking ŜMR
direct

i toward 1.0 with the degree of shrinkage
greater for the less stable direct estimates. Much of the controversy relates to this
issue, especially the degree of shrinkage for low volume hospitals.

Candidate covariates to the risk model (Enational):

Definite: Pre-admission, patient-level health attributes (i.e., case-mix): To pro-
duce a fair assessment, predictions must account for patient-level,
upon-admission characteristics that associate with outcome.

Never: Post-admission patient attributes including events that coincide with or
might be the result of care (e.g., in-hospital infections or patient length-
of-stay): Including this information would adjust-away part of the
hospital effect. Features that are on the causal pathway from admission
to outcome should not influence the risk adjustment.
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Possibly: Pre- or at-admission, hospital attributes (i.e., presence of cardiac
catheterization laboratories): These can be used to reduce confounding
by hospital (cross-level confounding) in the estimated relation between
patient attributes and the probability of death, but should not influence
shrinkage targets.

The CMS Model and a Generalization

Let Yij = 1 or 0 to indicate whether the event did/(did not) occur for the j th patient
treated at the ith hospital, with xij a vector of patient-specific characteristics, ni

the number of cases treated at hospital i, and zi a vector of hospital-level attributes
that are to be used to develop shrinkage targets for the numerator of the SMR. For
i = 1, 2, · · · , I,

[Yij | β0i , α, xij ] ind∼ Bern(pij ) where logit(pij ) = β0i + αxij

[β0i | μ, τ 2, γ, zi] iid∼ N(μ + γ zi,τ 2).

SMRi =
∑ni

j=1 E(Yij | β0i + αxij + μ + γ zi, τ 2)
∑ni

j=1 E(Yij | β0i + αxij + μ + γ z∗, τ 2)
,

with z∗ chosen to satisfy,

Ȳ =
I∑

i=1

ni∑

j=1

E(Yij | β0i + αxij + μ + γ z∗, τ 2)

Ȳ =
∑

i,j Yij
∑

i ni

(the overall event rate).

The hospital-specific, estimated SMR is based on a counterfactual population of
hospitals having the same case-mix as the target hospital (xij , j = 1, . . . , ni) with
risk effects quantified by the national average. The expectation in the numerator
integrates over the posterior distribution of β0i (inducing shrinkage toward 0
from the directly estimated values). Pair-wise comparison of SMRi to SMRi′ is
meaningful only to the extent that the distributions of xi and x′ are similar.

Here, τ 2 represents between-hospital variation after accounting for at-admission
patient attributes, allowing true, underlying hospital quality to vary around an
overall mean effect denoted by μ. So, if there are no between-hospital differences
in the outcome beyond that captured by the xij , then τ 2 = 0 and β01 = β02 = · · · =
β0I = μ. An implicit assumption is that ni is exogenous, conditional on patient
characteristics. We consider this assumption subsequently.
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Note that the zi influence the prior distribution for the β0i , but the hospital non-
specific z∗ is used in the denominator to match the overall event rate. The current
CMS model (“pure” random effects at the hospital level) is produced by setting zi ≡
0, excluding all hospital-level covariates other than the intercept (μ). A saturated
fixed-effects model (in the spirit of that advocated by Kalbfleisch and Wolfe 2013)
is produced by using (I−1) degrees of freedom in zi , equivalently replacing μ+γ zi
by μi, i = i, . . . , I .

While hospital attributes should not be used in risk adjustment, it can be
beneficial to use them in developing the national-level risk model to reduce potential
confounding induced by correlation between hospital and patient-level attributes.
They should also be considered as inputs to shrinkage targets when stabilizing
SMRs, but care is needed.

Graphical Example Using USRDS Data

We focus on ranking 3459 dialysis providers using 1998 United States Renal Data
System (USRDS). See Lin et al. (2006; 2009), Lockwood et al. (2002), Shen and
Louis (2000) for details. We start with directly estimated Standardized Mortality
Ratios (SMRs). Figure 5.2 reports substantial variation in the direct estimates and
in CI length. Figure 5.3 displays MLEs, posterior means, and standard errors for
the SMR. Note the considerable shrinkage of the centers with long whiskers. SMRs
estimated as 0 have a reported SE also of 0, but for these the figure shows that
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Fig. 5.2 MLEs and exact CIs for the SMR data. Providers are ordered by their MLE, and every
45th value is plotted
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MLE

PM

ESTIMATED SMR

Fig. 5.3 USRDS SMRs: PM is the Posterior Mean, the whisker rising from the MLE line is
proportional to the naively estimated SE of the MLE (e.g., estimated SMR= 0 produces an
estimated SE= 0)

shrinkage varies, in fact roughly proportional to sample size.2 This considerable
shrinkage is the root of most of the controversy surrounding CMS profiling.

Procedure Volume

Stephen Senn once stated something like, “Mathematicians deal with lemmas,
statisticians with dilemmas,” but the low volume issue presents a tri-lemma in that
there are three principal statistical options with associated issues:

1. Set aside “highly variable estimated SMRs,” do not use them in estimating the
model and do not report them:

Implementing this approach requires a definition of “highly variable” and,
especially if there are large number of highly variable estimates, sets aside
a large amount of information that could be used to estimate the model. Also,
these hospitals do require evaluation, and this approach pays no attention to
them.

2It would be more informative to set whisker length proportional to exact CI length.
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2. Report all directly estimated SMRs (no shrinkage) each accompanied by a
confidence interval, some very wide:

The positive is that all hospitals are evaluated and reported; negatives include
that all stakeholders (including statisticians!) have a difficult time tempering
the point estimate in the context of uncertainty. Furthermore, unstable esti-
mates will bounce around considerably from assessment to assessment.

3. Report stabilized (Bayesian) estimates accompanied by a confidence interval.
Shrinkage can either be toward a SMR of 1.0; alternatively toward a regression
surface that depends on hospital-level attributes, for example volume:

The confidence intervals will be relatively narrow, but shrinkage can be
substantial (depending on the model used), energizing one of the criticisms
that led to convening the COPSS panel. If hospital-level attributes contribute
to the shrinkage target, the direct and Bayes estimates can be on different sides
of 1.0, likely generating concern.

Shrinkage Targets Based on Hospital-Level Attributes

Including hospital-level attributes in determining the shrinkage target when stabi-
lizing estimated hospital effects is standard practice in other facility assessment
settings, and the COPSS committee recommended that the CMS give serious
consideration to it. Under the current CMS analysis, volume does have a residual
association with quality, possibly in part due to an inadequate risk adjustment that
disadvantages small hospitals (see Sect. 5.3). Subject to adequate risk adjustment
and other conditions, including it as a regressor to the shrinkage target would validly
address the low volume issue. However, volume has a special status, due to it being
the one attribute that is intimately associated with the degree of shrinkage. More
important, it almost certainly has a combined role as an exogenous attribute that
may be independently associated with quality but not “caused” by quality (e.g.,
practice makes perfect), and an endogenous attribute insofar as today’s low volume
could be a consequence of previously observed poor quality, and therefore, in
the causal pathway to the outcome. This likely dual role generated considerable
committee discussion on whether it should be a regressor in a profiling model.
There is agreement that using volume in an individual decision-making model is
appropriate, but debate continues in the profiling context.

Discussion

Successful preparation of the white paper required deep understanding of the policy
issues and goals, the data collection/sampling process, porting these to candidate
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statistical models, and evaluating these. There were (and are!) substantial policy
implications to our work, and the high consequences generated some disagreements,
so there was also some sociology and psychology in play. Without question, Steve
was best at melding the policy and technical issues, the best understanding of
the full context, including subtle issues of causal analysis, in many ways using
Fienberg (2011) as his guide. He clarified the distinction between the exogenous
and endogenous roles of patient volume. Specifically, was volume a predictor
(exogenous) or a result (endogenous) of performance? The answer is “yes” and
“yes.” This conjunction of the very attribute that produces large shrinkage also
being a predictor of and consequence of performance energizes the debate, with
fully appropriate modeling yet to be developed and implemented.

Though the issue is not settled, there is considerable research addressing
modeling in these situations with Silber et al. (2010) provide an argument in favor
of including volume in determining the shrinkage target. They showed that lower
quality is associated with lower volume, and that the shrinkage target for stabilizing
the numerator of the estimated SMR is substantially modified using a volume-
dependent target. However, the endo/exo issue is still in play. Other relevant research
includes that by Varewyck et al. (2014), Varewyck et al. (2015) and Rompaye et al.
(2015), with George et al. (2017) providing a comprehensive assessment. Yes, the
beat goes on.

5.7 Summary

Carefully developed and applied, the Bayesian formalism adds considerable value,
but care is needed. Even committed Bayesians counsel caution. For example,
as reported by IJ Good, in 1970 Herman Rubin, in an oral statement at the
Symposium on the Foundations of Statistical Inference, Waterloo, Canada, said “A
good Bayesian does better than a non-Bayesian, but a bad Bayesian gets clobbered.”
So, it is important to trade-off some efficiency/optimality for acceptable robustness
to departures from assumptions.

The Bayesian future is bright, the benefits of the approach are substantial, and it
is frequently worth the bother. But, validity and effectiveness require expertise and
care; the approach is by no means a panacea. Computing has enabled accommodat-
ing complex data and implementing models, enabling collaboration on challenging
and important applications. Continued success will depend on “anchored flexibility”
with the Bayesian viewpoint accommodating scientific, policy, and sociological
realities. Eclecticism is (almost) always necessary; however, it is essential to have
a point of view, a framework. Indeed, in applied statistical life nothing is pure
anything; eclecticism, trade-offs and compromises are needed, guided by statistical
principles. The domain of Bayesian approaches steadily expands, but there are
limits; it is unlikely there will ever be a valid, multi/multi/multi/. . . -level model
of a complex system.
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Steve was a committed Bayesian, but had a higher commitment to fair and
effective statistical design, conduct, analysis, and reporting. Consequently, he was
eclectic in practice. I suspect that he would agree with a fair amount of the
foregoing, tolerate some, and have a cringe-reaction to some. His cringes would
be accompanied by an attempt to set me straight using theory and examples, all
buttressed by his encyclopedic knowledge. I cannot predict the outcome and would
surely love to have the interaction, but that is not to be.
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Chapter 6
Probability Forecasts and Prediction
Markets

Julia Mortera and A. Philip Dawid

6.1 Introduction

In this chapter, we give an overview of various topics tied to probability forecasting,
i.e., the use of probability distributions to express uncertainty about future events—
a problem area to which Steve Fienberg made seminal contributions. In particular,
we consider methods for assisting and assessing a single forecaster; methods for
combining the probability forecasts of several forecasters; and prediction markets,
where forecasters take turns to announce their current probabilities, taking into
account previous announcements.

We start, in Sect. 6.2, by reviewing methods for motivating and assessing a single
forecaster. Important tools here include proper scoring rules, which motivate the
forecaster to give honest predictions; calibration, which compares average forecasts
to observed frequencies, and resolution and refinement, which reflect expertise in
the subject area.

In Sect. 6.3, we describe methods for opinion pooling, where a decision-maker
consults a number of experts who give their opinions as probability statements,
and needs to combine these somehow. We consider model-based and axiomatic
approaches and the application of coherence constraints under a specific definition
of what constitutes expertise as seen by you, the decision-maker. These approaches
are illustrated with the linear and logarithmic opinion pools.
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Section 6.4 discusses prediction markets, which are venues where individuals
trade predictions on uncertain future events, and allow participants to stake bets
on future events. The individuals take turns to update their probabilities for a
future event, taking into account the previously announced probabilities of the other
individuals, which may be based on unannounced private information. We show
that there will always be convergence to a limiting value, which may or may not be
the same as the value they could achieve if they were able to pool all their private
information.

Finally, Sect. 6.5 reviews the main contributions of this chapter.

6.2 Evaluating a Single Probability Forecaster

Following Dawid (1986), consider a forecaster F who is required to describe his
uncertainty about some unknown event A (coded A = 1 if A happens, A = 0 if not)
by quoting a value q ∈ [0, 1], intended to be interpreted as his personal probability
for the event A. So long as q �= 0 or 1, one might consider that neither outcome
of A could discredit F ’s quote. Nevertheless, a higher value is clearly better when
A = 1, and a lower value when A = 0. Here we consider ways of motivating and
evaluating F , both for single and for multiple events.

Scoring Rules

To induce F to give an honest prediction, we might penalise him with a loss S(a, q),
depending on his quoted probability forecast q and the eventual outcome a (= 0
or 1) of A. Such a loss function S is termed a scoring rule. We assume that the
forecaster F wishes to minimise his expected loss. Let p = Pr(A = 1) be F ’s true
subjective probability of A. Then when he quotes probability value q, his expected
loss is S(p, q) := pS(1, q) + (1− p)S(0, q). The forecaster should thus choose q

to minimise S(p, q). The scoring rule S is called [strictly] proper if, for any true
probability p, the expected loss S(p, q) is minimised if [and only if] q = p. Under
such a scoring rule, honesty is the best policy.

There is a wide variety of proper scoring rules, which can be tailored to
emphasise different parts of the probability range. Important examples are the
following:

(a) The Brier score or quadratic loss function (Brier 1950; de Finetti 1954):

S(1, q) = (1− q)2

S(0, q) = q2.
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(b) The logarithmic scoring rule (Good 1952):

S(1, q) = − log q

S(0, q) = − log(1− q).

As well as motivating honesty before the event, a proper scoring rule can be used
after the event, to quantify the quality of the forecaster’s performance, in the light
of the observed outcome a, by means of the realised score S(a, q) (a lower value
being better). Different forecasters, with their differing q’s, can thus be compared.

When a forecaster makes a sequence of probability forecasts, for multiple events,
additional evaluation criteria become available. In particular, we can assess the
calibration and resolution of the forecasts issued.

Calibration

Suppose that, over a long sequence, F has issued probability forecast pi for event
Ai . Now choose π ∈ [0, 1], and consider all those occasions i for which pi = π (to
a good enough approximation). Supposing there are many such occasions, let ρ(π)

denote the relative frequency of success (Ai = 1) on these occasions. A plot of ρ(π)

against π is the forecaster’s calibration curve, and the forecaster is said to be well-
calibrated, or probability calibrated, when he is “getting the relative frequencies
right”, i.e., ρ(π) ≈ π for all values of π used. In meteorology, calibration is also
termed validity or reliability, and a well-calibrated forecaster is called perfectly
reliable. It is shown in Dawid (1982) that, when events arise and are predicted in
sequence, probability calibration is a necessary (though not sufficient) requirement
of a good forecaster.

Resolution

Probability calibration is a fairly weak constraint on a forecaster. It will hold for the
“naïve forecaster”, who quotes the same value q for every Ai , so long as q = π0,
the overall relative frequency of success; as well as for the ideal “perfect forecaster”,
who has a crystal ball and so can always give probability 1 to the outcome ai of Ai

that actually occurs (so qi = ai). Although both are well-calibrated, the latter is
doing a much more useful forecasting job than the former.

More generally, a good forecaster should be able to issue many forecasts close
to the extreme values 0 or 1, with few intermediate values, while remaining well-
calibrated. The same criterion can be applied to an uncalibrated forecaster, if we
first replace each issued probability qi by its recalibrated version ri = ρ(qi). The
term “resolution” refers to the extent to which a forecaster’s (possibly recalibrated)
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forecast probabilities are widely dispersed on the unit interval. Thus, a weather
forecaster’s resolution is a reflection of his knowledge of, and skill in, forecasting the
weather, whereas his calibration addresses his entirely different ability to quantify
his uncertainty appropriately.

Resolution can be quantified in various ways, for example by the variance of
the recalibrated forecasts. More generally, let S be an arbitrary proper scoring rule.
We might assess a forecaster’s overall performance, over n events, by his total
achieved penalty score, S+ := ∑n

i=1 S(ai, qi), where qi is his quoted probability
for Ai , and ai = 0 or 1 is the outcome of Ai . This total score can be used to
compare different forecasters. Now introduce the entropy function associated with S,
H(p) := S(p, p), which is a concave function of p; and the associated discrepancy
function, D(p, q) := S(p, q) − H(p), which is non-negative and vanishes for
q = p. (For the Brier score, H(p) = p(1 − p), and D(p, q) = (p − q)2.) Let
ri = ρ(qi) be the recalibrated version of qi . Then (DeGroot and Fienberg 1983), we
can decompose S+ = S1 + S2, where

S1 =
n∑

i=1

D(ri, qi)

S2 =
n∑

i=1

H(ri).

We see that S1 ≥ 0, with equality if ri = qi for all i: S1 thus penalises poor
calibration. As for S2, since H is concave, it is smaller when the recalibrated
forecasts (ri) are clustered near 0 and 1, and thus S2 penalises poor resolution. We
can use these components of the overall score to compare forecasters in terms of
their calibration and/or their resolution.

We can further decompose S2 = nH(π0)− S3, where S3 =∑n
i=1 D(ri .π0), and

π0 = n−1∑n
i=1 ai is the overall relative frequency of success. Since the first term

is fixed, a larger S3 indicates better resolution. For the Brier score, this delivers the
variance criterion.

Refinement

DeGroot and Fienberg (1983) describe a partial ordering between forecasters that is
related to resolution. This is based on the theory of sufficiency in the comparison of
statistical experiments (Blackwell 1951).

Consider two forecasters, F and F ′, who issue respective forecasts (qi) and (q ′
i )

for the same sequence of events (Ai), with outcomes (ai). We can suppose both
forecasters are well-calibrated; if not, we work with their recalibrated forecasts,
rather than the raw values. Then, we say that F is more refined than F ′ if there
exists a specification of a conditional distribution, p(q ′ | q), of q ′ given q, such
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that, both for α = 0 and for α = 1, we can generate the (empirical) distribution
of q ′, for those events having a = α, by first generating q from its distribution
given a = α, and then generating q ′ from p(q ′ | q). In this case, we can consider
q ′ as a noisy version of q, with the noise unrelated to the true outcome—which
suggests that F ′ has poorer performance than F . Indeed, it can be shown that when
this property holds, the resolution score S2 for F will not exceed that for F ′, for any
proper scoring rule S.

6.3 Combining Several Opinions

It is sometimes necessary to construct a single opinion by combining a number of
individual opinions. A decision-maker might consult a number of experts (financial,
meteorological, medical, etc.) before reaching a final decision.

We can distinguish three types of problems:

(a) When opinions are expressed as probability distributions. For reviews of
opinion pooling in this setting, see for example Clemen and Winkler (1999),
Dawid et al. (1995), DeGroot and Mortera (1991), Genest and Zidek (1986),
Ranjan and Gneiting (2010). Marschak and Radner (1972) developed team
theory from an economic perspective.

(b) Group decision-making when opinions are expressed as preferences among
alternatives: see for example Arrow (1951), Laffont (1979), Luce and Raiffa
(1958).

(c) Meta-analysis where different quantitative methods are used to combine the
results of different studies on the same topic.

Here we will be concerned only with problems of type (a). We shall suppose that the
experts’ opinions are expressed as probability distributions, over a fixed set of events
and quantities of interest, but the data underlying those opinions remain undisclosed.

The ideal approach to merging several experts’ views would be for each of them
to report all the data and background knowledge on which his or her opinions are
based, and for you, the decision-maker, to combine all this information with your
own prior opinions, and any additional data you may have, using Bayes’s theorem;
but in the absence of access to the underlying data, you can only work with the
experts’ opinions, expressed as probability distributions. Their distributions will
most probably differ. Your task is to combine these differing opinions, somehow,
into a single distribution to use as your own. Let the k experts E1, E2, . . . Ek give
their probability predictions �1,�2, . . . �k for an uncertain quantity, perhaps an
event A or the parameter θ of a distribution. You must pool the experts’ distributions
to form your resulting aggregate or pooled distribution, �.



110 J. Mortera and A. P. Dawid

Model-Based Approach

In this approach, the experts’ opinions are modelled as data (for you), and, on
combining the data with your own prior opinions, using Bayes’s theorem, you can
construct your own posterior distribution. This approach is taken by, among others,
Berger and Mortera (1991), French (1986), Lindley (1983), Winkler (1981). For the
case of a single event, Winkler (1981) assumes that the various log-odds have a
multivariate normal distribution.

However, the process by which probability assessments are generated is not in
general very easy to formalise—unlike the mechanisms by which experimental
data are typically generated. The model needs to take into account the decision-
maker’s opinion, the dependence between that and the experts’ opinions, the
interdependencies among the experts’ opinions, and the dependence between all
of these and the quantity of interest.

Group with Complete Interaction In the case where all experts exchange infor-
mation, the problem of consensus of opinions expressed as probability distributions
is an example of complete interaction. DeGroot (1974) considers a group of indi-
viduals who must act together as a team or committee, each individual in the group
having his/her own subjective probability distribution for the unknown quantity.
After these are all announced (round 1), each expert updates his distribution to a
linear combination of all the distributions. This procedure is repeated over many
rounds, the weights varying between experts but being fixed over time. DeGroot
(1974) presents a condition under which the group eventually reaches agreement on
a common probability distribution. The model can also be applied to problems of
reaching a consensus when the opinion of each member of the group is represented
as a point estimate, rather than as a probability distribution. Aumann (1976) studied
the dynamics of reaching a consensus through Bayesian dialogue, where conflicting
opinions in a group are due solely to the fact that the members have different
information sets.

Group with Partial Interaction The theory above bears a resemblance to the
Delphi technique (Pill 1971), used to reach agreement among a panel of experts. The
Delphi technique is a purely empirical procedure and is not based on any underlying
mathematical model. Again, it is applied iteratively in a sequence of rounds. At each
round, the individuals are informed of the opinions of the others in the group and
allowed to reassess their own opinion before proceeding to the next round. Because
of the empirical nature of the Delphi technique, it provides no conditions under
which the experts can be expected to reach agreement or terminate the iterative
process.
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Axiomatic Approach

In this approach, a series of axioms are laid down in which an opinion pooling
method should satisfy. For example, if all the experts agree on a certain property—
e.g., that certain events are independent—then one might require that this should be
preserved in the aggregated distribution. Another such property is invariance with
respect to marginalisation, i.e., you would attain the same aggregated opinion if you
first aggregate overall and then marginalise, or if each expert gives his marginal
distribution and you then aggregate those. Depending on the properties assumed, a
variety of aggregation methods can be derived. Among these, we will discuss the
linear opinion pool and the logarithmic opinion pool.

Linear Opinion Pool Stone (1961) considered the linear opinion pool:

� =
m∑

i=1

wi�i, (6.1)

where wi ≥ 0 and
∑m

i=1 wi = 1. He suggested that the opinion pool is democratic
if you use equal weights w1 = w2 = · · · = wm = 1/m.

The linear opinion pool has both advantages and disadvantages. McConway
(1981) proved that if you require the marginalization property then the rule for
aggregation must be linear (if at least three nontrivial events exist). The weights wi

can be interpreted as reflecting the previous performance of the experts. DeGroot
and Mortera (1991) derived the optimal weights according to a criterion based on
the Brier score.

Ranjan and Gneiting (2010) show that the linear opinion pool is uncalibrated,
even when the individual probability forecasts are calibrated.

Logarithmic Opinion Pool The logarithmic opinion pool is given by

logπ = w0 +
m∑

i=1

wi logπi,

where π [resp., πi] is the density function of � [resp., �i], and w0, a function
of (w1, . . . , wm), is chosen to ensure that � is a probability distribution. This was
derived by Weerahandi and Zidek (1981). An important property of the logarithmic
opinion pool is its consistency under aggregating and updating, i.e., if you first
aggregate opinions and then update the pooled opinion when new information is
available, or if the experts first update their opinions with the new information and
you then aggregate these. However, the weights do not have a simple interpretation,
and if a probability given by any expert for an event is zero, then the pooled
probability is zero, whatever weight he/she has, and whatever the other experts’
opinions are.
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Coherent Combination

Dawid et al. (1995) investigate coherent methods for combining experts’ opinions,
when these are expressed as probabilities for some fixed event A. Neither axiomatic
nor modelling assumptions are made. Instead a restricted definition is used of what
constitutes expertise, as seen by you, the decision-maker: an expert is considered
to be someone who “shares your world-view”, i.e., if you both had identical
information, you would both have identical opinions. However, the expert may
know more than you do. It is assumed that the probabilities the expert provides
are correctly and coherently computed.

Suppose you have access to k different experts. If you were to obtain a probability
for an event A from just one of these, you should adopt it as your own, but
the different experts’ probabilities will typically differ, since they will be based
on differing information. You require a combination formula to apply to the full
collection (�1, · · · ,�k) of expert probabilities, to compute your own probability
�.

Before you consult the experts, their various reports (�1, · · · ,�k) will be, for
you, uncertain random quantities, jointly distributed together with the uncertain
event A of interest. Let P ∗ denote your overall joint distribution on the random
quantities (�1, · · · ,�k,A), and let P denote the implied distribution for (�i),
marginalizing over A.

The laws of coherence require that, on learning all the experts’ probabilities, you
should assign probability P ∗(A | �1, · · · ,�k) to A. This yields the combination
formula

� = �(�1, · · · ,�k) ≡ P ∗(A | �1, · · · ,�k). (6.2)

Note that, if expert i bases her probability on observation of Xi , then �i ≡ P ∗(A |
Xi), where here P ∗ is extended to encompass (Xi), but in general the value of Xi

will not be fully recoverable from that of �i , so that the right-hand side of (6.2) will
not usually be the same as P ∗(A | X1, · · · , Xk).

The question addressed is: When will a given combination formula � be
coherently compatible with some joint distribution P for the experts’ reported
opinions? i.e., when will there be some overall joint distribution P ∗ under which
�i ≡ P ∗(A | �i), the implied distribution for (�1, · · · ,�k) is P , and (6.2)
holds?

Compatibility Consider the case of k = 2 experts and an event A, where expert Ei

observes Xi and reports �i ≡ P ∗(A | Xi), for i = 1, 2. Then, from the definition
of an expert, �i ≡ P ∗(A | �i), and defining �(�1,�2) ≡ P ∗(A | �1,�2), �

must satisfy

0 ≤ �(�1,�2) ≤ 1 (6.3)

EP (� | �i) = �i, i = 1, 2. (6.4)
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Then, EP (�) = EP (�1) = EP (�2) = π0, say. Thus, by Bayes’s theorem,

p∗(π1, π2 | A) ≡ π−1
0 �(π1, π2)p(π1, π2),

where π0 = P ∗(A).
The pair (P,�) determines a unique distribution P ∗ for (�1,�2, A) with

P ∗(A | �i) ≡ �i , P ∗(A) = π0. Conditions (6.3) and (6.4) are necessary and
sufficient conditions for logical consistency and the pair (P,�) are then termed
compatible.

Characterizations In general, the problems of characterizing all �’s compatible
with a given P , and vice versa, are difficult. This set, defined by (6.3) and (6.4), is
convex, but not generally a simplex. It might be empty, or contain just one member,
or many.

Let P denote a joint distribution for (�1,�2) having E(�1) = E(�2) = π0;
and let � be a combination formula. Define a finite measure Q by dQ(π1, π2) :=
�(π1, π2)p(π1, π2), and let Pi and Qi be the marginals for �i under P and Q,
respectively. Dawid et al. (1995) show that � and P are a compatible pair if and
only if dQi(πi) ≡ πidPi(πi) = dP ∗

i (πi) for i = 1, 2. Given P , this shows that
the problem of finding a compatible � reduces to that of characterizing measures Q

having specified marginals and with dQ/dP ≤ 1.
As a corollary of the above, for any absolutely continuous coherent joint

distribution P for (�1,�2), there exists a compatible combination formula �

that takes values 0 and 1 only. This implies that it is logically consistent that the
combination of opinions could deliver absolute subjective certainty as to whether
the event A holds or not.

Most of the literature on combining opinions uses axiomatic properties or
modelling assumptions to derive particular pooling recipes. Compared with these,
the assumptions for coherent pooling are less restrictive.

This analysis also offers guidance for assessing pooling formulae that have been
suggested from other approaches. Thus, consider combination rules that can be
expressed in the generalized linear form

g(�) ≡ α1g(�1) + α2g(�2) + c, (6.5)

for some monotonic continuous function g. These include those considered in
Sect. 6.3.

Linear Opinion Pool Dawid et al. (1995) show that, with (6.3) and (6.4), a
generalised linear opinion pool

� ≡ α1�1 + α2�2 + c (6.6)

has α0 + α1 + α2 = 1, where c = α0π0, with π0 := P ∗(A). In particular, if c �= 0,
every distribution P ∗ compatible with � must assign the same prior probability
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π0 = c/(1− α1 − α2) to A. When both experts agree, you will adopt their common
forecast if and only if it is the exactly same as your prior probability for A.

When α1, α2, and c = α0π0 are all non-zero, (6.4) implies that

EP (�2 | �1) ≡ λ�1 + (1− λ)π0 (6.7)

EP (�1 | �2) ≡ μ�2 + (1− μ)π0, (6.8)

where λ := (1− α1)/α2, μ := (1− α2)/α1, i.e., each �i has a linear regression on
the other.

Conversely, any joint distribution P on [0, 1]2 that satisfies (6.7) and (6.8) is
compatible with a � of form (6.6), for

α1 = 1− λ

1− λμ

α2 = 1− μ

1− λμ

c = π0(1− α1 − α2)

as long as it gives probability 1 to the event 0 ≤ α1�1 + α2�2 + c ≤ 1, thus
satisfying (6.3). This characterizes all distributions P compatible with � in (6.6).

Note that not all choices of the α coefficients are coherent. Since, from (6.7)
and (6.8), λμ is the squared correlation ρ2 between �1 and �2, we must have
0 ≤ (1 − α1)(1 − α2)/α1α2 < 1. In contrast with an assumption commonly made
for linear opinion pools, it is not coherent for α1, α2, and c all to be strictly positive,
since then both regression coefficients in (6.7) and (6.8) would exceed 1.

Bradley (2018) claimed to show that a joint distribution P is compatible with
a linear opinion pool only if �1 and �2 are almost surely identical. However, as
pointed out by Dawid and Mortera (2020), there is an error in his proof.

Logarithmic Opinion Pool A generalised logarithmic opinion pool can be
expressed as

logit� ≡ α1 logit�1 + α2 logit�2 + α0 logitπ0, (6.9)

where logit x = log{x/(1− x)}.
This combination formula can arise as follows. Given A or Ā, let (X1, X2) be

bivariate normal with var(Xi | A) = var(Xi | Ā) = 1, and cov(X1, X2 | A) =
cov(X1, X2 | Ā) = ρ, with ρ2 �= 1 and E(Xi | A) = δi/2 and E(Xi | Ā) = −δi/2
for i = 1, 2. Let �i := P ∗(A | Xi) and � := P ∗(A | X1, X2). Bayes’s theorem
yields

logit�i = logitπ0 + δiXi,
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and

logitP ∗(A | X1, X2) = logitπ0 + (1− ρ2)−1 {(δ1 − ρδ2)X1 + (δ2 − ρδ1)X2} .

Hence, (6.9) holds, with α1 = (1− ρη)/(1− ρ2), and α2 = (1− ρη−1)/(1− ρ2),
where η = δ2/δ1, and α0 = 1− α1 − α2.

Again we have α0 + α1 + α2 = 1, and if α0 �= 0, (6.9) determines π0. Since
α0 = −(1− ρ2)α1α2, again α0, α1, and α2 cannot all be strictly positive.

Conditional Independence If the two experts’ opinions are conditionally indepen-
dent given both A and Ā, �1 ⊥⊥ �2 | (A, Ā), then

logit� ≡ logit�1 + logit�2 + c, (6.10)

where c = − logitπ0.
Dawid et al. (1995) prove the following theorem that characterizes all joint

distributions compatible with (6.10).

Theorem 1 A necessary and sufficient condition for a joint density f (π1, π2) to be
compatible with � in (6.10) is that

f (π1, π2) ≡ {[1− π0)π1π2 + π0(1− π1)(1− π2)]/(π0(1− π0))}g(π1, π2),

(6.11)

where π0 = (1+ ec)−1 and g is a density such that Eg(�1 | �2) ≡ Eg(�2 | �1) ≡
π0. In this case, π0 is the common expectation of �1 and �2 under f and, thus, the
prior probability of A.

6.4 Prediction Markets

This part of this chapter revisits some results appearing in the economics literature
from a statistical point of view.

A prediction market—also known as a predictive market, an information market,
a decision market, or a virtual market—is a venue where experts can trade predic-
tions on uncertain future events and can stake bets on various events occurring. Such
events might be, for example, an election result, a terrorist attack, a natural disaster,
commodity prices, quarterly sales, or sporting outcomes. Prediction markets also
offer trade in possible future outcomes on securities markets, in which case
participants who use it are buying something like a futures contract. The Iowa
Electronic Markets (http://tippie.uiowa.edu/iem/) of the University of Iowa Henry
B. Tippie College of Business is one of the main prediction markets in operation.
Also companies like Google have their own internal prediction markets. Prediction
markets sometimes operate as an open market like the stock market, or as a closed

http://tippie.uiowa.edu/iem/
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market akin to a betting pool. A prediction market translates the wisdom of crowds
into predictive probabilities.

For example, suppose that in a prediction market one can bet whether A occurs
(before time t), and individuals can trade contracts among each other. Consider a
contract that pays 1 if event A occurs, and 0 otherwise. Say the current market
price for the contract is 0.58. Offers to buy and sell are fixed at 0.57 and 0.59,
respectively. Now you can either pay 0.59 instantly, or post an offer to pay 0.58
and see if anyone is willing to sell at that price. If so, the new market price, 0.58,
becomes the consensus probability.

Prediction markets have been discussed by Aldous (2013), Arrow et al. (2008),
Hanson (2003), Chen et al. (2010), Hanson et al. (2006), Wolfers and Zitzewitz
(2008), and Strähl and Ziegel (2015), among others.

Basic Setup

We shall focus on the opinions of a specific individual, “you”, possibly but not
necessarily a participant in the market, and how these opinions change in the light
of accumulating experience. We suppose that your opinions are expressed as a joint
probability distribution, Pr, over all relevant variables. Other individuals may have
their own probabilities for various events, but for you these are data. In the sequel,
all probabilities are computed under your distribution Pr.

We shall again interpret the term “expert” in the sense of Dawid et al. (1995),
DeGroot (1988). That is, an individual E is an expert (for you) if E started with
exactly the same joint probability distribution Pr over all relevant variables as you,
and has observed everything that you have observed, and possibly more. Then when
you learn (just) the probability � that E assigns to some event A, your updated
probability for A will be �. That is, you will agree with the expert.

In the context of a prediction market, suppose that experts E1, E2, . . . sequen-
tially announce their probability predictions �1,�2, . . . for a future event A. Thus,
Ei is the expert that makes the forecast at time i, and we allow that the same
expert could make forecasts at different times. At time i, expert Ei has access to
all previous forecasts �1, . . . , �i−1 and possibly additional private information Hi ,
but Ei will typically not have access to the private information sets H1, . . . , Hi−1
that the previous experts used in formulating their forecasts. However, in some
markets, there is an option for forecasters to leave comments, which could give
partial information Ki (which might be empty) about Hi . We assume that each
forecaster is aware of all such past comments. Thus, �i = Pr(A | Ti), where
Ti := (K1,�1, . . . , Ki−1,�i−1,Hi) is the total information available to Ei .

The full public information available just after time i is Si := (K1,�1,K2,�2,

. . . , Ki,�i). Note that Si and Ti both contain all the information made public
up to time i − 1. They differ however in the information they contain for time
i: Ti incorporates the totality, Hi , of expert Ei’s information, both public, Ki ,
and private, whereas Si incorporates only Ei’s public information, Ki , and her
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announced probability forecast,�i , forA at time i. The information sets (Ti) are not
in general increasing with i, since Hi is included in Ti but need not be in Ti+1. The
information sets (Si) are however increasing. The following Lemma and Corollary
show that, for you, for the purposes of predicting A both information sets Ti and Si

are equivalent, and your associated prediction is just the most recently announced
probability forecast.

Lemma 1 Pr(A | Si) = Pr(A | Ti) = �i .

Proof Since Ti ⊇ Si � �i ,

Pr(A | Si) = E{Pr(A | Ti) | Si}
= E(�i | Si)

= �i

= Pr(A | Ti).

��
Corollary 2 If you observe the full public information Si and have no further
private information, your conditional probability for A is just the last announced
forecast �i .

Convergence

From Lemma 1 and the fact that the information sequence (Si) is increasing, we
have:

Corollary 3 The sequence (�i) is a martingale with respect to (Si).

Then by Corollary 3 and the martingale convergence theorem, we have:

Corollary 4 As i → ∞, �i tends to a limiting value �∞.

The variable �∞ is random in the sense that it depends on the initially unknown
(to you) information sequence S∞ := lim Si that will materialise but will be a fixed
value for any such sequence.

A perhaps surprising implication of Corollary 4 is that, eventually, introduction
of new experts will not appreciably change the probability you assign to A—
whatever new private information they may bring will be asymptotically negligible
compared with the accumulated public information. We term �∞ the consensus
probability of A, and the information S∞ on which it is based the consensus
information set. The information S∞ is common knowledge for all experts in the
sense of Aumann (1976): see Geanakoplos (1992a;b), McKelvey and Page (1986),
Nielsen (1984).
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It might be considered that the limiting value �∞ has succeeded in integrating
all the private knowledge of the infinite sequence of experts. As we shall see below,
this is sometimes, but not always, the case.

Two Experts

As a special case, suppose we have a finite set of experts, E1, . . . , EN , and we take
EN+1 = E1 (so HN+1 = H1), EN+2 = E2, etc. Thus, we repeatedly cycle through
the experts. Continuing for many such cycles, eventually we will get convergence
to some �∞, at which point each expert will not be changing her opinion based on
the total sequence of publicly announced forecasts, even though she may still have
access to additional private information.

At convergence, it will thus make no difference to expert Ei to incorporate
(again) her private information Hi . Consequently, we have:

Proposition 5 For each i, A⊥⊥Hi | S∞.

In the sequel, we consider in detail the case N = 2 of two experts, who alternate
E1, E2, E1, E2, . . . in updating and announcing their forecasts. Geanakoplos and
Polemarchakis (1982) have studied this in the case that there is no side information,
and each expert Ei’s set of possible private information has finite cardinality, ki say.
They show that exact consensus is reached in at most k1 + k2 rounds.

Dutta and Polemarchakis (2014) give a simple example, with two experts, that
shows that the order in which the experts play can matter. In their example, they
show that when one of the experts starts they reach complete consensus (i.e.,
equivalent to pooling their private information), whereas on changing the starting
order they only reach a limited consensus. Dutta and Polemarchakis (2014) further
show that if an expert has additional information, this can produce a weaker
consensus. They call this “obfuscation”.

Vacuous Consensus

We start with some examples where the experts learn nothing from each other’s
forecasts—although they would learn more if they were able to communicate and
pool their private data.

Example 1 (Parity Check) This example is essentially the same as that described
by Geanakoplos and Polemarchakis (1982), p. 198.

Let X1, X2 be independent fair coin tosses. Expert Ei observes only Xi (i =
1, 2). Let A be the event X1 = X2. This has prior probability 0.5.

On observing his private information X1, whatever value it may take, E1’s
probability of A is unchanged, at 0.5. His announcement of that value is therefore
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totally uninformative about the value ofX1. Consequently, E2 can only condition on
her private information about X2—which similarly has no effect. The sequence of
forecasts will thus be 0.5, 0.5, 0.5, . . .. Convergence is immediate, but to a vacuous
state.

However, if the experts could pool their data, they would learn the value of A

with certainty. ��
Example 2 (Bivariate Normal) With this example, we generalise from predicting
an uncertain event to predicting an uncertain quantity.

Suppose that E1 observes X1, and E2 observes X2, where (X1, X2) have a
bivariate normal distribution with means E(Xi) = 0, variances var(Xi) = 1, and
unknown correlation coefficient ρ—which is what they have to forecast. Let ρ have
a prior distribution �0. Since X1 is totally uninformative about ρ, E1’s first forecast
is again �0 and so is itself uninformative. Again, E2 has learned nothing relevant
to ρ and so outputs forecast �0, and so on, leading to immediate convergence to
a vacuous state. However, the pooled data (X1, X2) is informative about ρ (though
does not determine ρ with certainty). ��

In the above examples, each expert’s private information was marginally inde-
pendent of the event or variable, generically Y say, being forecast, with the
immediate result that the consensus forecast was vacuous, the same as the prior
forecast. Conversely, suppose the consensus is vacuous. That is to say,

Y ⊥⊥ S∞. (6.12)

From Proposition 5 (trivially generalised), we have

Y ⊥⊥Hi | S∞. (6.13)

Combining (6.12) and (6.13), we obtain

Y ⊥⊥ (Hi, S∞)

whence, in particular,

Y ⊥⊥Hi.

Hence, the consensus will be vacuous if and only if each expert’s private information
is, marginally, totally uninformative. The argument extends trivially to any finite
number of experts.
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Complete Consensus

We use the term complete consensus to refer to the case that the consensus forecast
will be the same as the forecast based on the totality of the private information
available to all the individual forecasters. A simple situation where this will occur is
when �i is a one-to-one function of Hi , so that, by announcing �i , expert Ei fully
reveals her private information.

Example 3 (Overlapping Bernoulli Trials) Let θ be a random variable with a
distribution over [0, 1] having full support. Given θ , let Y0 ∼ B(n0, θ), Y1 ∼
B(n1, θ), Y2 ∼ B(n2, θ), and A ∼ B(1, θ), all independently.

Suppose E1 observes X1 = Y0 + Y1, and E2 observes X2 = Y0 + Y2. At the
first stage, E1 computes and announces �1 = Pr(A | X1)—which is a one-to-
one function of X1. For example, under a uniform prior distribution for θ , �1 =
(X1 + 1)/(n0 + n1 + 2). Then at stage 2, E2 will have learned X1 and also has
private information X2. Thus, �2 = Pr(A | X1, X2), the correct forecast given the
pooled private information of E1 and E2 (though different from that based on full
knowledge of (Y1, Y2, Y2)). Further cycles will not change this probability, which
will be the consensus. ��
Example 4 (Linear Prediction) Consider variables X = (X1, . . . , Xk), Z =
(Z1, . . . , Zh), and (scalar) Y , all being jointly normally distributed with non-
singular dispersion matrix. Expert 1 observes H1 = X, Expert 2 observes H2 =
Z, and they have to forecast Y . Each time an expert announces her predictive
distribution for Y , she is making known the value of her predictive mean of Y , which
will be some linear combination of the predictor variables (X,Z). So generically, we
would expect convergence of the forecasts, after at most min{k, h} rounds, to the full
forecast based on the pooled information (X,Z). This has been shown by Dutta and
Polemarchakis (2014). However, they did not give a numerical illustration, which
we now supply.

We have made use of the 93CARS dataset (Lock 1993), containing information
on new cars for the 1993 model year. There are n = 82 complete cases with
information on 26 variables, including price, mpg ratings, engine size, body size,
and other features. We took X = (X1, . . . , X11) to be the variables 7 to 17,
Z = (Z1, . . . , Z9) to be the variables 18 to 26, and Y to be variable 5 (Midrange
Price).

Let S denote the uncorrected sum-of-squares-and-products matrix based on the
data for these variables. The fictitious model we shall consider for the prediction
game has (X,Z, Y ) multivariate normal, with mean 0 and dispersion matrix � =
S/n. The predictive distribution of Y , based on any collection of linear transforms
of X’s and Z’s, will then be normal, with a mean formula that can be computed
by running the zero-intercept sample linear regression of Y on those variables, and
variance that will not depend on the values of the predictors. Note that, although our
calculations are based on the sample data, the values computed are not estimates but
are the correct values for our fictitious model.
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Let U1 be the variable so obtained from the sample regression Y on X ≡
(X1, . . . , X11). Recall that both experts are supposed to know the model, hence
�, and know which variables each is observing. Consequently, both know the form
of U1, but initially only E1, who knows the values of (X1, . . . , X11), can compute
its value, u1 say. Since his round-1 forecast for Y is normal with mean u1, while its
variance is already computable by both experts, the effect of E1 issuing his forecast
is to make the value u1 of U1 public knowledge.

It is now E2’s turn to play. At this point, she knows the values of U1 and
(Z1, . . . , Z9), and her forecast is thus obtained from the sample regression of Y

on these variables. Let this regression function (computable by both experts) be V1;
then at this round E2 effectively makes the value v1 of V1 public.

Now at round 2, E1 regresses Y on (X1, . . . , X11, V1) (U1, which is a linear
function of his privately known X’s, being redundant) and announces the value u2
of the computed regression function U2; and so on.

The relevant computations are easy to conduct using the statistical software
package R (R Development Core Team 2011). At each stage, we compute the 82
fitted values based on the regression just performed. These can then be used as
values for the new predictor variable to be included in the next regression. Moreover,
convergence of the forecast sequence will be reflected in convergence of these fitted
values.

As a numerical illustration, suppose E1 has observed

X = x = (16, 25, 2, 1, 8, 4.6, 295, 6000, 1985, 0, 20.0),

and E2 has observed

Z = z = (5, 204, 111, 74, 44, 31.0, 14, 3935, 1).

Before entering the prediction market, E1’s point forecast for Y , based on his data
X = x, is u1 = 40.6163, and E2’s point forecast for Y , based on her data Z = z,
is v0 = 30.6316. If they could combine their data, the forecast, based on (X,Z) =
(x, z), would be 39.73925.

On entering the market, the sequence of their predictions is as given in Table 6.1.
We observe convergence, both for the fitted values and the predicted standard
deviations, from round 10 onwards. As soon as E1 has access to the values of
U1, . . . , U9, he effectively knows Z1, . . . , Z9, and his forecast becomes the same
as that based on the pooled data. And as soon as E1 makes that public, E2 can make
the same forecast. The predictions of both experts will remain the same thereafter.

Table 6.1 Sequence of market predictions for Y

i: 1 2 3 4 5 6 7 8 9 10 . . .

ui : 40.62 39.49 39.34 39.51 39.55 39.54 39.66 39.75 39.73917 39.73925 . . .

vi : 38.28 39.40 39.46 39.54 39.56 39.63 39.67 39.74 39.73924 39.73925 . . .
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As a second illustration, suppose E1 has observed

X = x = (22, 30, 1, 0, 4, 3.5, 208, 5700, 2545, 1, 21.1),

and E2 has observed

Z = z = (4, 186, 109, 69, 39, 27.0, 13, 3640, 0).

Before entering the prediction market, E1’s point forecast for Y is 27.80968, and
E2’s point forecast is 36.593865. Their market forecasts converge at round 10 to
31.22983, the forecast based on all the data.

These two examples illustrate within-sequence convergence, to a data-dependent
limit. ��

Limited Consensus

In all the above examples, convergence was either to a vacuous state or to a complete
consensus based on the totality of the pooled private information. As the following
example shows, it is also possible to converge to an intermediate state.

Example 5 Suppose θ and X1 have independent N(0, 1) distributions, while, given
(θ,X1), X2 ∼ N(θX1, 1). Expert E1 observes H1 = X1, while E2 observes H2 =
X2. The interest is in predicting θ . A sufficient statistic for θ , based on the combined
data (X1, X2), is (X1X2, |X1|) = (S1, S2), say. The posterior distribution is

θ | (S1, S2) = (s1, s2) ∼ N

(
s1

1+ s22

,
1

1+ s22

)

.

Straightforward computations deliver the joint density of (X1, X2), marginalis-
ing over θ :

f (x1, x2) = (2π)−1(1+ x2
1)

− 1
2 exp−1

2

(

x2
1 +

x2
2

1+ x2
1

)

. (6.14)

Because (6.14) is unchanged if we change the sign of either or both of x1 and x2,
we deduce (what may be obvious from the symmetry of the whole setup):

Proposition 6 Conditionally on |X1| and |X2|, sign(X1) and sign(X2) behave as
independent fair coin flips.

At the first round, E1 declares his posterior for θ , based on X1—but, since
X1⊥⊥ θ this supplies no information at all about θ . (So we would get the same
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answer if E2 were to go first—the order in which they announce their opinions does
not matter.)

Now E2 goes. Since X2 | θ ∼ N(0, 1 + θ2), with sufficient statistic |X2|, E2 is
effectively putting |X2| into the public pot.

At the start of round 2, E1 knows X1 and |X2|. By Proposition 6, sign(X2) is still
equally likely to be 1 or −1. So E1 knows S2 but only knows |S1|—for him, S1 is
either |S1| or −|S1|, each being equally likely. His posterior is thus a 50–50 mixture
of the associated posteriors

N

(
|S1|

1+ S2
2

,
1

1+ S2
2

)

and

N

(
−|S1|
1+ S2

2

,
1

1+ S2
2

)

.

On E1’s now announcing this mixture posterior, he is effectively communicating
(|S1|, S2) ≡ (|X1| × |X2|, |X1|). The total information in the public pot is thus now
equivalent to (|X1|, |X2|).

It is now E2’s turn again. At this point, she knows (|X1|, X2), so (|S1|, S2)—
but still does not know sign(S1), which again behaves as a coin flip. Her forecast
distribution is thus exactly the same as E1’s. So we get convergence to the above
mixture posterior at round 2. But this limiting forecast is not the same as that based
on the pooled data, which would be the relevant single component of the mixture.

Note that, at convergence, the pool of public knowledge is (|X1|, |X2|). Since
θ has the identical mixture posterior whether conditioned on (|X1|, |X2|), on
(X1, |X2|), or on (|X1|, X2), we have both θ ⊥⊥X1 | (|X1|, |X2|) and θ ⊥⊥X2 |
(|X1|, |X2|), in accordance with Proposition 5. ��

It might appear that the above behaviour is highly dependent on the symmetry of
the problem, but this is not so. As the following analysis shows, the same limited
consensus behaviour arises on breaking the symmetry.

Example 6 Consider the same problem as in Example 5 above, with the sole
modification that the prior distribution of θ is now N(μ, 1), where μ is non-zero.
The posterior distribution of θ , based on the full data (X1, X2) or its sufficient
statistic (S1, S2), is now

θ | (S1, S2) = (s1, s2) ∼ �(s1, s2) := N

(
μ + s1

1+ s22

,
1

1+ s22

)

.

The following result is immediate.
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Proposition 7 Given only |S1| = m1, S2 = m2, the posterior distribution is a
mixture:

θ ∼ M(m1,m2) = π(1)�(m1,m2) + π(−1)�(−m1,m2), (6.15)

where

π(j) = Pr(sign(S1) = j | |S1| = m1, S2 = m2) (j = ±1). (6.16)

Proposition 8 Conditionally on |X1| and |X2|:
(i) sign(X1)⊥⊥ sign(X1X2)

(ii) sign(X2)⊥⊥ sign(X1X2)

Proof (i) The joint density of (X1, X2), marginalising over θ , is

f (x1, x2) = (2π)−1(1+ x2
1)

− 1
2 exp−1

2

(

x2
1 +

(x2 − μx1)
2

1+ x2
1

)

.

This is unchanged if we change the signs of both x1 and x2. Consequently, given
|X1| = m1, |X2| = m2, Pr(X1 = m1, X2 = m2) = Pr(X1 = −m1, X2 = −m2),
while Pr(X1 = m1, X2 = −m2) = Pr(X1 = −m1, X2 = m2). But this is equivalent
to

Pr(sign(X1) = 1, sign(X1X2) = 1) = Pr(sign(X1) = −1, sign(X1X2) = 1)

Pr(sign(X1) = 1, sign(X1X2) = −1) = Pr(sign(X1) = −1, sign(X1X2) = −1).

Thus, Pr(sign(X1) = 1 | sign(X1X2) = 1) = Pr(sign(X1) = 1 | sign(X1X2) =
−1) = 1

2 , which in particular implies sign(X1)⊥⊥ sign(X1X2).

(ii) We have

Pr(sign(X2) = 1 | sign(X1X2) = 1) = Pr(sign(X1) = 1 | sign(X1X2) = 1)

Pr( sign(X2) = 1 | sign(X1X2) = −1) = Pr( sign(X1) = −1, sign(X1X2) = −1).

So from (i), conditional on |X1| = m1, |X2| = m2, Pr(sign(X2) = 1 |
sign(X1X2) = 1) = Pr( sign(X2) = 1 | sign(X1X2) = −1) = 1

2 so that, in
particular, sign(X2)⊥⊥ sign(X1X2). ��

In the first round, E1 and E2 behave exactly as before, and again, at the start of
round 2, the public pot contains |X2|. So now E1 knows X1 and |X2|. In terms of
the sufficient statistic, he knows (|S1|, S2) but does not know sign(S1). Moreover,
by Proposition 8(i), his additional knowledge of sign(X1) contains no relevant
further information about sign(S1). Consequently, he will compute and announce
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the mixture posterior M(|S1|, S2). From this, it is possible to deduce the values of
|S1| and S2. Hence, at this point, the public pot contains (|S1|, S2).

Now E2 knows (|S1|, S2) but is still ignorant of sign(S1). And again, although
she has the additional knowledge of sign(X2), by Proposition 8(ii), this contains no
relevant further information about sign(S1). Consequently, E2 will have the same
posterior distribution M(|S1|, S2), which will be the final (but limited) consensus.

(Note that an essentially identical analysis will hold with any prior distribution
for θ .) ��

6.5 Discussion

Probability forecasts take explicit account of the uncertainty concerning an unknown
quantity or event. We have described three important tools for motivating and
assessing the performance of a single forecaster. A proper scoring rule induces the
forecaster to give honest predictions and can also be used to evaluate performance
after the event. For forecasts made for a sequence of events, calibration measures
success in quantifying uncertainty. Resolution measures how close calibrated
forecasts come to actual outcomes, and thus reflects expertise in the subject area.
Refinement is a relation between the resolutions of different forecasters, which is
useful for comparing them.

When there are multiple expert forecasters, you require a method for combin-
ing their forecasts. There is strong empirical evidence that probability forecasts
suitably combining all the experts’ opinions generally result in better predictive
performance—this is similar to the case of Bayesian model averaging, a coherent
mechanism for accounting for model uncertainty that improves predictive perfor-
mance. In a Bayesian approach to combining experts’ opinions, the decision-maker
models the experts’ opinions and combines them with his/her own prior opinion,
and any additional data he/she may have, using Bayes’s theorem. An alternative
axiomatic approach imposes constraints that a combination formula is required to
satisfy. We have described in detail an approach, based on a specific understanding
of “expertise”, which imposes only coherence constraints. For the linear opinion
pool, the most popular method for combining probability forecasts, coherence
requires that not all weights are strictly positive.

We have given a detailed account of prediction markets, with special attention to
the case where two experts take it in turn to update their probability of a future event,
conditioning only on the revealed probabilities of the other. We have displayed a
variety of behaviours for such a process. There will always be convergence to a
limiting value, but this may or may not be the same as what could be achieved if the
experts were able to pool all their private information.

We have supposed that, although each expert may be unaware of the private
information held by the other, he does at least know which variables the other expert
knows—though not their values. When even this cannot be assumed, there will be
much greater freedom for an expert to update his own probability on the basis of
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the revealed probabilities of the other. Nevertheless, this freedom is restricted. The
theory of Dawid et al. (1995) relates to combining the announced probabilities of a
number of experts without necessarily knowing the private variables on which these
are based. It would be challenging, but valuable, to extend this to the sequential
case.
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Chapter 7
Determinantal Priors for Variable
Selection

Veronika Ročková and Edward I. George

7.1 Steve the Bayesian

It is with deep appreciation and admiration that we dedicate this contribution to
Steve Fienberg. The wide variety of Steve’s broad contributions to the theory,
methodology, and application of Bayesian analysis were remarkable in how they
anticipated so many different areas of flourishing Bayesian research today. His
many prescient contributions included the early introduction and development of
Bayesian methods for fundamental statistical problems such as latent root analysis
and sparse multinomial cell probability estimation, for novel applications such as
data confidentiality protection, for disability measurement in elderly populations
and legal proceedings frameworks, and for modern machine learning approaches
such as mixed membership classification analysis, to name but a few [1]. It is
especially notable that in spite of Steve’s impressive attention to the foundations
and historical evolution of Bayesian analysis, he never let subjective purity get in the
way of using whatever kind of Bayesian machinery and thinking would further the
statistical goals of the problem at hand. His work exemplified the broad potential of
Bayesian analysis at its best. Moved by this spirit, our contribution introduces new
Bayesian machinery for tackling the fundamental problem of mitigating unwanted
multicollinearity in Bayesian variable selection.
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7.2 Bayesian Variable Selection with Spike-and-Slab Priors

Suppose observations on y, an n × 1 response vector, and X = [x1, . . . , xp], an
n × p matrix of p potential standardized predictors, are related by the Gaussian
linear model

f (y | β, σ ) = Nn(Xβ, σ 2 In), (7.1)

where β ′ = (β1, . . . , βp) is a p×1 vector of unknown regression coefficients and σ

is an unknown positive scalar. (We assume throughout that y and the x’s have been
centered at zero to avoid the need for an intercept).

A fundamental Bayesian approach to variable selection for this setup is obtained
with a hierarchical spike-and-slab Gaussian mixture prior on β [2]. Introducing a
latent binary vector γ = (γ1, . . . , γp)′, γi ∈ {0, 1}, each component of this mixture
prior is defined conditionally on σ and γ by

π(β | σ, γ ) = Np(0, σ 2Dγ ), (7.2)

where

Dγ = diag{[(1− γ1)v0 + γ1v1], . . . , [(1− γp)v0 + γpv1]} (7.3)

for 0 ≤ v0 < v1. Adding a relatively noninfluential prior on σ 2 such as the inverse
gamma prior π(σ 2) = IG(ν/2, νλ/2) with ν = λ = 1, the mixture prior is then
completed with a prior distribution π(γ ) over the 2p possible values of γ .

By suitably setting v0 small and v1 large in (7.3), βi values under π(β | σ, γ ) are
more likely to be small when γi = 0 and more likely to be large when γi = 1. Thus
variable selection inference can be obtained from the posterior π(γ | y) induced by
combining this prior with the data y. For example, one might select those predictors
corresponding to the γi = 1 components of the highest posterior probability γ .

The explicit introduction of the intermediate latent vector γ in the spike-and-slab
mixture prior allows for the incorporation of available prior information through the
prior specification of π(γ ). This can be conveniently done by using hierarchical
specifications of the form

π(γ ) = Eπ(θ)π(γ | θ), (7.4)

where θ is a (possibly vector) hyperparameter with prior π(θ).
In the absence of structural information about the predictors, i.e., when their

inclusion is a priori exchangeable, a useful default choice for π(γ | θ) is the i.i.d.
Bernoulli prior form

πB(γ | θ) = θqγ (1− θ)p−qγ , (7.5)
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where θ ∈ [0, 1] and qγ =∑
i γi . Because this π(γ | θ) is a function only of model

size qγ , any marginal π(γ ) in (7.4) will be of the form

πB(γ ) = πB
π(θ)(qγ ) πB(γ | qγ ), πB(γ | qγ ) =

(
p

qγ

)−1

(7.6)

where πB
π(θ)(qγ ) is the prior on model size induced by π(θ), and πB(γ | qγ ) is

uniform over models of size qγ .
Of particular interest for this formulation has been the beta prior π(θ) ∝

θa−1(1− θ)b−1, a, b > 0, (7.5) which yields model size priors of the form

πB
a,b(qγ ) = Be(a + qγ , b + p − qγ )

Be(a, b)

(
p

qγ

)

, (7.7)

where Be(·, ·) is the beta function. For the choice a = b = 1, under which θ ∼
U(0, 1), this yields the uniform model size prior

πB
1,1(qγ ) ≡ 1

p + 1
. (7.8)

An attractive alternative is to choose a small and b large in order to be more effective
for targeting sparse models in high-dimensions. For example, [3] shows that the
choice a = 1 and b = p yields optimal posterior concentration rates in sparse
settings with v0 = 0 and heavier-tailed Laplace priors for β.

7.3 Determinantal Prior Formulations

The main thrust of this contribution is to propose new model space priors π(γ )

based on the hierarchical representation (7.4) with the conditional form

πD(γ | θ) =
∣
∣cθXγ

′Xγ

∣
∣

|cθX′X + I | ∝ |Xγ
′Xγ | θqγ (1− θ)p−qγ , (7.9)

where cθ = θ
1−θ

and Xγ is the n × qγ matrix of predictors identified by the active
elements in γ . The first expression for πD(γ | θ) reveals it to be a special case
of a determinantal prior, as discussed below, while the second expression reveals
it to be a reweighted version of the Bernoulli prior (7.5) as in [4]. Thus, this prior
downweights the probability of γ for the predictor collinearity measured by the
determinant |Xγ

′Xγ |, which quantifies the volume of the space spanned by the
selected predictors in the γ th subset. Intuitively, sets of collinear predictors are less
likely to be selected under this prior, due to ill conditioning of the correlation matrix.
As will be seen, the use of πD(γ | θ) can provide cleaner posterior inference for
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variable selection in the presence of multicollinearity, when the correlation between
the columns of X makes it difficult to distinguish between predictor effects.

In general, a probability measure π(γ ) on the 2p subsets of a discrete set
{1, . . . , p}, indexed by the binary indices γ , is called a determinantal point process
(DPP) if there exists a positive semidefinite matrix K , such that

π(γ ) = det(Kγ ), ∀γ , (7.10)

where Kγ is the restriction of K to the entries indexed by the active elements in γ .
The matrix K is referred to as a marginal kernel as its elements lead to the marginal
inclusion probabilities and anti-correlations between the pairs of variables, i.e.

P(γi = 1) = Kii ; P(γi = 1, γj = 1) = KiiKjj − KijKji .

Given any real, symmetric, positive semidefinite p × p matrix L, a corresponding
DPP can be obtained via the L-ensemble construction

π(γ ) = det(Lγ )

det(L + I)
, (7.11)

whereLγ is the sub-matrix ofL given by the active elements in γ and I is an identity
matrix. That this is a properly normalized probability distribution follows from the
fact that

∑
γ det(Lγ ) = det(L + I). The marginal kernel for the K-ensemble DPP

representation (7.10) corresponding to this L-ensemble representation is obtained
by letting K = (L + I)−1L. The first expression for πD(γ | θ) in (7.9) can be now
seen as a special case of (7.11) by letting L = cθX

′X and Lγ = cθXγ
′Xγ .

Applying π(γ ) = Eπ(θ)π(γ |θ) to πD(γ |θ)with the beta prior π(θ) ∝ θa−1(1−
θ)b−1, we obtain

πD(γ ) = ha,b(qγ )|Xγ
′Xγ |, (7.12)

where

ha,b(qγ ) = 1

Be(a, b)

∫ ∞

0
|cX′X + I |−1 cqγ +a−1

(1+ c)a+b
dc. (7.13)

Although not in closed form, ha,b(qγ ) is an easily computable one dimensional
integral.

For comparison with the exchangeable beta-binomial priors πB(γ ), it is useful
to reexpress (7.12) as

πD(γ ) = πD
π(θ)(qγ ) πD(γ | qγ ), (7.14)
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where

πD
π(θ)(qγ ) = W(qγ ) ha,b(qγ ), πD(γ | qγ ) = |Xγ

′Xγ |
W(qγ )

, W(q) =
∑

qγ =q

|Xγ
′Xγ |.

(7.15)

Thus, to generate γ from πD(γ ) one can proceed by first generating the model
size qγ ∈ {0, . . . , p}from πD

π(θ)(qγ ), and then generating γ conditionally from

πD(γ | qγ ). Note that the model size prior πD
π(θ)(qγ ) may be very different from

the beta-binomial prior πB
π(θ)(qγ ). For example, it is not uniform when a = b = 1.

Therefore, one might instead prefer, as is done in Sect. 7.5 below, to consider the
alternative obtained by substituting a prior such as πB

π(θ)(qγ ) for the first stage draw

of qγ , but still use πD(γ |qγ ) for the second stage draw of γ to penalize collinearity.
Lastly, note that the computation of the normalizing constant W(q) can be

obtained as a solution to Newton’s recursive identities for elementary symmetric
polynomials [5]. This is better seen from the relation

∑

qγ =q

|Xγ
′Xγ | = eq(λ) :=

∑

qγ =q

p∏

i=1

γiλi, (7.16)

where eq(λ) is the qth elementary symmetric polynomial evaluated at λ =
{λ1, . . . , λp}, the spectrum of X′X. Defining pq(λ) =∑p

i=1 λ
q
i , the qth power sum

of the spectrum, we can obtain normalizing constants e1(λ), . . . , ep(λ) as solutions
to the recursive system of equations

q eq(λ) = pq(λ) +
q−1∑

j=1

(−1)j−1eq−j (λ)pj (λ). (7.17)

7.4 Implementing Determinantal Priors with EMVS

EMVS [6] is a fast deterministic approach to identifying sparse high posterior
models for Bayesian variable selection under spike-and-slab priors. In large high-
dimensional problems where exact full posterior inference must be sacrificed for
computational feasibility, deployments of EMVS can be used to find subsets of
variables associated with the highest posterior modes. We here describe a variant of
the EMVS procedure which incorporates the determinantal prior πD(γ | θ) in (7.9)
to penalize predictor collinearity in variable selection.

At the heart of the EMVS procedure is a fast closed form EM algorithm,
which iteratively updates the conditional expectations E[γi | ψ (k)], where here
ψ (k) = (β(k), σ (k), θ (k)) denotes the set of parameter updates at the kth iteration.
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The determinantal prior induces dependence between inclusion probabilities so
that conditional expectations cannot be obtained by trivially thresholding univariate
directions.

With the determinantal prior πD(γ |θ), the joint conditional posterior distribution
is

π(γ | ψ) ∝ exp

(

−βDγ β

2σ 2

)

|Dγ |1/2|cθ Xγ
′Xγ |, (7.18)

where Dγ = diag{γi/v1 + (1− γi)/v0}pi=1. We can then write

π(γ | ψ) ∝ exp

[

− 1

2σ 2

(
1

v1
− 1

v0

)

(β ◦ β)′γ
]

|Dγ |1/2cqγ

θ |Xγ
′Xγ |, (7.19)

where ◦ denotes the Hadamard product. The determinant |Dγ | can be written as

|Dγ | = exp

{[

log

(
1

v1

)

− log

(
1

v0

)]

γ ′1+ p log

(
1

v0

)}

,

so that the joint distribution in (7.19) can be expressed as

π(γ | ψ) ∝ exp

{

−1

2

[
1

σ 2

(
1

v1
− 1

v0

)

(β ◦ β) − log

(
v0

v1

)

1− 2 log(cθ )1
]′

γ

}

|Xγ
′Xγ |.

Defining the p × p diagonal matrix

Aψ = diag

{

exp

{

−1

2

[
1

σ 2

(
1

v1
− 1

v0

)

β2
i − log

(
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(7.20)

the exponential term above can be regarded as the determinant of Aγ ,ψ , the qγ ×
qγ diagonal submatrix of Aψ whose diagonal elements correspond to the nonzero
elements of γ .

It now follows that the determinantal prior is conjugate in the sense of yielding
the updated determinantal form

π(γ | ψ) ∝ |Aγ ,ψ Xγ
′Xγ |. (7.21)

The marginal quantities from this distribution can be obtained by taking the diagonal
of a matrix Kψ = (Aψ X′X + Ip)−1Aψ X′X, namely

P(γ i = 1 | ψ) = [Kψ ]ii . (7.22)
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7.5 Mitigating Multicollinearity with Determinantal Priors

In order to demonstrate the redundancy correction of the determinantal model
prior we revisit the collinear example of [7] with p = 15 predictors. Under the
uniform-on-model-size beta-binomial spike-and-slab prior, the pervasive collinear-
ity here induces severe posterior multimodality, as displayed by the 32 768 posterior
model probabilities in the upper plot Fig. 7.1. Models whose design matrix is
“ill-conditioned”, i.e. with smallest eigenvalue λmin(γ ) of the gram matrix Lγ

below 0.1, are designated in red. In contrast, the lower plot of Fig. 7.1 shows
how the uniform-on-model-size determinantal spike-and-slab prior has penalized
the many multicollinear submodels and put more posterior weight on submodels
with less redundant covariate combinations, effectively reducing both posterior
multimodality and entropy.

7.6 Discussion

As opposed to traditional beta-binomial spike-and-slab prior formulations that
assign equal prior probability to subset models of the same size, determinantal
spike-and-slab priors penalize subset models by reducing their prior probabilities

Fig. 7.1 Posteriors arising from beta-binomial and determinantal priors (both uniform-on-model-
size)
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according to their degree of predictor collinearity. From a practical standpoint,
determinantal priors turn attention away from unwanted subset models by allocating
more posterior probability to a smaller and more manageable set of interpretable
submodels for the statistical analyst to consider. As so clearly demonstrated in
Fig. 7.1, determinantal priors also serve to mitigate multimodality due to multi-
collinearity, thereby facilitating more productive posterior exploration via MCMC
or EMVS. Finally, the generality of the determinantal prior formulation allows
for its straightforward incorporation into many other Bayesian variable selection
methods such as the spike-and-slab lasso and its many variants [8–10].

A preliminary version of this work was presented at the 47th Scientific Meeting
of the Italian Statistical Society [11]. Also, an independent related development of
these determinant prior ideas can be found in [12].
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Part III
Introduction: Statistics and the Law

William F. Eddy

Decision-making is the heart of statistics and decision-making is the heart of the
law. Naturally Steve was drawn to legal issues from his earliest days. He worked
on many aspects of the two. One of his last big projects was the creation of the
Center for Statistics and Applications in Forensic Evidence (CSAFE). Steve had
been involved in the policy side of statistics and the law for a number of years;
those efforts will not be reviewed here. In 2014 the NIST (National Institute of
Standards and Technology) issued a call for proposals to create a large national
research activity centered on the statistical aspects of forensics. Steve was ready. He
formed a small group, Alicia Carriquiry of Iowa State, Hal Stern of the University of
California Irvine, and Karen Kafadar of the University of Virginia, and developed a
large proposal. He asked Alicia to be the principal investigator because of his health,
but Steve remained the power behind the throne.

After many months of hard work, the proposal was submitted, and after many
more months of review, the project was funded in 2015. The initial relationship
between the NIST staff and the CSAFE academics was a little rocky; unlike many
similar relationships, the principals were not well known to each other at first, and
the form of the relationship (a cooperative agreement) was not well understood
by either of the two parties. The kinks were worked out and the two groups have
developed a strong relationship. Steve passed away in December 2016, and William
Eddy of Carnegie Mellon was asked to replace him. In 2020 the project completed 5
years and CSAFE was renewed for another 5 years. The leadership group evolved,
and the activities developed some new foci, but CSAFE has remained true to Steve’s
original vision.

The four papers in this section all focus on aspects of the legal problems in
statistics. Jay Kadane discusses various personal views of particular cases. Hal Stern
discusses the use of the likelihood function. That paper overlaps a bit with the work
by Ommen and Saunders; they should be read together. Finally, Karen Kafadar
discusses the use of eyewitness testimony in legal cases.

Jay Kadane was head of the statistics department when Steve was recruited to
Carnegie Mellon in 1980. Jay was also one of those who had an abiding interest
in legal issues and statistics. Shortly after Steve moved to Pittsburgh, the book
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Statistics and the Law edited by Morris DeGroot, Steve, and Jay was published by
Wiley (1986). That book is a very interesting collection of papers written by both
statisticians and lawyers that run the gamut of applications.

Kadane’s contribution to this volume is his personal view of statistical issues
in the law supported by several examples of actual cases. The first of Kadane’s
examples is a paper by Finkelstein and Farley; the former is a lawyer and the latter
is a statistician. It is perhaps the first paper to connect statistics and the law. Kadane
decides that their example is “insufficiently Bayesian.” Knowing Jay very well, I am
not surprised by this decision. The next paper (by Tribe) is seen as a rebuttal to the
first paper, and Kadane allows that court procedures should not allow statisticians to
interfere with their proper functioning.

The remaining ten papers in Jay’s review range in length from a single sentence
reaffirming the initial Finkelstein and Fairley paper to several pages that Kadane
offers on the Batson “motions.” They are all quite interesting especially to statis-
ticians who are not familiar with legal issues. I will only discuss one in detail, the
last.

In Batson v. Kentucky, the Supreme Court ruled in 1986 that preemptory
challenges could not exclude black members and created a three-step process to
be followed by the courts. The steps are (1) a timely objection, identification of the
subject of discrimination, and facts to raise inference of discrimination; (2) the other
party has to explain why they were not discriminatory challenges; and (3) the court
has to decide if step 2 is persuasive. Kadane considers or has participated in the
appeals process in several cases. In each case he summarizes the “data” by what is
effectively a 2 × 2 table. I put data in quotes because the relevance of the data to
each specific case is variable. Kadane provides an analysis of the data in each case.
I note that he chooses in at least one case to provide a Bayesian analysis based on a
uniform prior distribution. As a non-Bayesian, I find that a kind of “cop-out.” In the
paper below (Ommen and Saunders) which received obvious input from Kadane,
they argue for a personal Bayesian analysis which, as I understand it, does not allow
for “default” priors but requires the fact finder to use their “real” prior.

Hal Stern has contributed a fascinating look at the statistical aspects of using
forensic evidence.

Hal was one of the original partners in CSAFE and had decades of experience
analyzing forensic evidence. Hal begins with a brief discussion of the Frye standard
(the 1923 court decision which in some US states still governs the use of expert
witness testimony). In Federal courts and some states, this has been superseded by
the 1993 Daubert decision; that lays out in some detail a set of rules that must be
followed to properly use such evidence.

In Sect. 9.3 Stern discusses Daubert and the 2016 PCAST report and the use of
so-called black box studies. He does note that such studies produce a single overall
error rate and cannot produce such a rate for every conceivable study. In the same
section, Stern discusses the “two-stage” approach. He does point out the loss of
information that results from a yes/no decision and mentions the 2019 report that
recommended abandonment of statistical significance tests.
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He then begins the discussion on the likelihood ratio, and while he refers to it
as the Bayes factor, he does not make a distinction. The next paper in this part of
the book, by Ommen and Saunders, is devoted to this distinction. Hal discusses the
single-source DNA problem where the likelihood ratio approach works; he goes
on to discuss trace evidence, where it might work, and then moves on to pattern
evidence, where it hardly works. Towards the end of the section, Stern reviews the
pluses and minuses of likelihood ratios. The interested reader should compare this
with the discussion in Ommen and Saunders below.

The difficult task of explaining the difference between likelihood ratios and
Bayes factors in the context of forensics has been taken on by Ommen and Saunders.
This is already a difficult problem for statisticians, restricting the playing field to
forensics makes it more difficult. In Sect. 10.2 the authors clarify that Bayes rule is
simply a method of calculating probabilities that is a generally accepted statistical
tool; it is distinct from the subjective interpretation of probabilities that is generally
referred to as Bayesian and is an essential component of the Bayesian paradigm that
they are arguing for. In Sect. 10.3 they describe that paradigm, and in Sect. 10.4 they
describe an alternative called the likelihood paradigm.

There are a couple of points that are worth a little elaboration. First, there is still
not general agreement in the statistics community that the Bayesian paradigm is the
“correct” way to go, although the intellectual wars between Bayesian adherents and
opponents that went on 40 or 50 years ago have subsided. That subsidence is due in
part to the current availability of numerical computational tools (that did not exist
back then) that have made it possible for potential users to apply the paradigm. Back
then adherents were reduced to saying “This is what you should do (but I recognize
you’ll have to approximate).” Second, use of the likelihood paradigm seems a bit
like a failure of the scientific method: Can’t you scientists simply decide? The
Bayesian paradigm using a subjective analysis has allowed each analyst to produce
her own result; the likelihood paradigm has pushed the final decision past the end of
the process.

Sections 10.5 provides more discussion with Sect. 10.6 emphasizing similarities
and Sect. 10.7 emphasizing differences. This short paper is not going to resolve any
differences and is not going to produce a “final” decision. The authors have written
a clear discussion of the issues that will help inform individual readers about their
choices. Ultimately there can be no resolution of the “debate” because the solution
requires participants to agree on a set of rules that they may not (or may not be
allowed to) agree on; essentially “we allow subjective opinions” or “we do not allow
subjective opinions.”

The contribution of Karen Kafadar to this volume is an interesting and very
thorough review of eyewitness testimony as forensic evidence.

Karen was one of Steve’s original members of CSAFE, and Karen was a
member of the National Academy panel which authored the 2015 report, and she,
obviously, participated in the “response to review” and subsequent discussion which
led to the revised report (which was ultimately published). This role put her in
a unique position to develop a detailed statistical understanding of the process of
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eyewitness identification and how serious scientists respond to serious criticism of
the identification process.

Karen begins with a discussion of the cognitive scientific models of the eye-
witness identification process. Then in Sect. 11.4 she provides a very detailed
discussion of the factors that enter a formal statistical model of eyewitness witness
identification. The factors are broken into the group she calls signal which a
statistician would probably model as “fixed” effects and the group she calls noise
which a statistician would probably as “random” effects. The discussion could
almost lead the reader to write down the model complete with Greek letters and
plus signs between the various terms and perhaps even imagine writing down prior
distributions for the unknown parameters.

In Sect. 11.5 she turns to what might be the single most important effect, the
distinction between “sequential” presentation of the images and “simultaneous”
presentation of the images. After years of neglect, scientists are turning to its study.



Chapter 8
Bayes and the Law

J. B. Kadane

Steve Fienberg and I shared both an interest in the law and an attraction to Bayesian
statistics. Just what that relationship is has been discussed over the years by many.
The purpose of this paper is to review some of the major contributions to thought
on this subject and to raise some attendant questions.

8.1 Making Optimal Decisions: A Review of the Basics

No Uncertainty

When there is no uncertainty, the advice sounds trivial: do your best. What does
that mean? First, think creatively about the choices you have. Often in life decisions
are framed too narrowly; there may be good options the decision-maker failed to
consider. The only options to be considered are those that the decision-maker is
prepared to contemplate. Second, think hard about what you are trying to achieve.
What are your goals? Often there are many attributes of decisions to consider. How
do you trade off those attributes against each other? A formal way of expressing
how you feel about the attributes (jointly) and the decisions is in a utility function,
a function of both the attributes and the decisions. Such a function is usually
scaled so that higher is better. Then formally the recommendation is to maximize
the utility function, substituting the attribute values for each decision. Much of
microeconomics uses this paradigm. Note that any increasing function of such a
utility function results in the same optimal decision.
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It is important to understand that the decisions made in this way are “good”
only in the sense that they reflect what the decision-maker is trying to accomplish.
Depending on the taste of the decision-maker, these choices may be ethical or not,
may be wise or not, etc. The method is neutral with respect to such considerations.

This theory is intended to be a normative theory, not a descriptive one. That is, it
is not proposed that people actually make decisions this way, but rather that if they
did, they would make decisions that they would be more satisfied with.

With Uncertainty

Where there is uncertainty that importantly enters the picture, that is, situations
in which the best decision would be different were the uncertainty resolved, a
different analysis results. Now the opinion of the decision-maker about the uncertain
events matters. There are now two inputs to the analysis, a probability distribution
reflecting the beliefs of the decision-maker and a utility function reflecting the goals
of the decision-maker. The recommendation then is to make a choice that maximizes
expected utility, where the expectation reflects the probabilities of the decision-
maker. While it goes by the same name, this utility function is different in kind
from the utility function described in 8.1 above, as this one is invariant only with
respect to positive linear transformations.

Note that again this theory is normative and not descriptive and that it is ethically
neutral. Also note that the probabilities and utilities are those of the decision-maker.
That other people might disagree with the choices of probability, and utility made
by the decision-maker is irrelevant. The only party whose views are reflected are
those of the decision-maker.

When Data May Become Available

In this case, the decision-maker is hypothesized to have a joint probability distribu-
tion over the data and the other uncertain quantities. Then, Bayes Theorem, which is
a simple consequence of the axioms of probability, applies to permit the calculation
of the posterior distribution of the remaining uncertain quantities, given what has
been learned from the data. (This is where the name “Bayesian” arises from.) Then,
the posterior distribution is used to maximize expected utility. The only party whose
views are reflected are those of the decision-maker.

Often the joint distribution of the data and the uncertain quantities is expressed as
the product of two factors: the distribution of the data given the uncertain quantities
and the marginal distribution of the uncertain quantities. The former is called the
likelihood function, and the latter the prior distribution. Both reflect the opinion of
the decision-maker only. Once again, the theory is ethically neutral and normative.
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There is an extensive literature explaining and justifying this treatment of
decision-making, particularly under uncertainty and with data. My version can be
found in Kadane (2011).

8.2 Relation to the Law

(1) Finkelstein and Fairley (1970) is one of the first expositions to call for the
explicit use of Bayesian ideas in court. It came at a time when the full
implications of Bayesian ideas were still being worked out. With respect to
what probability means, Finkelstein and Fairley write “‘Subjective’, ‘intuitive’
or ‘personal’ probability. . . have been defined in terms of the odds that a
rational person acting after reflection and consistently would regard as fair in
betting on the proposition”.1 Although subjective probabilities can be used on
this basis, we suggest that in the legal context they are likely to be interpreted
as expressing a frequency, just as “the chances of heads is one-half” expresses
a frequency. When we say that the defendant is guilty beyond a reasonable
doubt, we mean that the evidence has brought us to a state of belief such that
if everyone were convicted when we had such a belief the decisions would
rarely be wrong” (p. 504). Thus, their interpretation is Bayesian–frequentist,
sometimes the one, sometimes the other.

How would Finkelstein and Fairley propose that Bayesian ideas be used in
court? They propose a scenario in which the murder weapon is a knife, and
suppose that the frequency of the palm mark found on the knife were it left by
someone other than the defendant is known. Then, they propose giving the jury
a table mapping their prior probabilities into calculated posterior probabilities
(their Table 1, page 500). Of course there is an issue about how the required
frequency might come to be known. But even if it were, there is no reason that
the decision-makers’ (i.e., the jurors) subjective probabilities should coincide
with that frequency. Therefore, this use of Bayes Theorem relies on a fact
not in evidence, namely the jurors’ translation of a frequency (applying to
a hypothetical infinite sequence of “similar” situations) into the particular
situation about which they are called upon to render a verdict.

Hence, the issue that I see with their proposal is not that it is Bayesian, but
rather that it is insufficiently Bayesian.

(2) Tribe (1971) is fairly seen as a rebuttal to Finkelstein and Fairley. Before
dealing with what it says, I have a few comments on the title “Trial by
mathematics: precision and ritual in the legal process.” One might read the title
as opposing all uses of mathematics in court. Mathematics, as a general matter,
is about the conclusions that follow from particular premises. Provided that no
mathematical error is involved, if you agree with the premises, you are stuck

1Discussed in D. Lindley, Introduction to Probability and Statistics, 32–34 (1965).
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with the conclusions.2 In the particular examples used by both Finkelstein and
Fairley and by Tribe, the mathematics involved is Bayes Theorem, which is
so easy to derive that it hardly deserves to be called mathematics. There are
many other possible uses of mathematics in court, and Professor Tribe does
not address nor appear to oppose them.

The issue raised by Professor Tribe is much narrower than the title suggests:
the possible use of decision analysis by statisticians (or others) in court to
advise jurors how to amalgamate quantitative evidence with other kinds of
evidence. Professor Tribe gives reasons why he feels that such use would
threaten important values that the ritual of a legal trial embodies, such as that
a person is innocent until found guilty, and that conviction must be “beyond a
reasonable doubt.” I agree with him, but think the proposal is catastrophically
misplaced for another reason. It would give entirely too much power to the
decision analyst. At present no one is permitted to speak to a juror about
the case outside of the formal procedure in court. Indeed, the jurors are not
permitted to discuss the case with each other until they have heard closing
arguments and the judge’s instructions about the law applicable to the case.
To permit a decision analyst to ask jurors their opinions about the case, either
part way through or at the end, would allow the analyst a powerful position to
influence the outcome, if only by their attitude and behavior. Much as I love
Bayesian decision theory, I would not contemplate such a power grab on the
part of my friends and colleagues.

(3) Finkelstein and Fairley (1971) responded to Tribe, mainly repeating arguments
already in their original paper.

(4) Lindley (1977b) is a study of glass fragments found at a crime scene, and glass
particles found in the clothing of a suspect. The question he proposes to answer
is the extent to which the data support the proposition that the refractive indices
of the two sources are similar. To this end, he has data from a sample of glass
refractive indices from the two sources. He imposes a joint normal distribution
(with distinct means and variances) on these two sources. In addition, he has a
reference sample of “true values” of refractive indices of glass. His analysis is
to compute a Bayes Factor for the proposition of similar refractive indices. He
does so first showing the mathematics under the counter-factual supposition
that the reference sample is normal, and then a computational method taking
into account the non-normal shape of the reference sample. After a comparison
with a frequentist test of significance, he discusses how his analysis might
be presented in court, presuming that identity of refractive indices in the two
populations is the same as the guilt of the defendant.

There are several important factual matters not discussed in this paper, such
as (a) What was the context of the crime scene? For example, was the glass

2There is nothing in this statement that should disturb Professor Tribe. By way of disclosure, he
and I were classmates in several mathematics courses as undergraduates. I am confident he fully
understands the deductive nature of mathematics.
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found at the crime scene from a single broken pane of glass, or from some
other source? (b) Whatever that source might have been, how variable is the
refractive index within such a source? If the sample he has from the crime
scene involves nearly all the glass from whatever the source was, then his
sample will reflect that variability. (c) How is the reflective index of glass
measured? Are the errors in measurement likely to be correlated? (d) Were
the measurements from the suspect measured on the same apparatus? In either
case, how would the answer influence his analysis? (e) Most critically, how
was the reference sample collected? What reasons are there to believe that the
reference sample applies to this particular case?

The casual assumption that identity of the refractive indices is equivalent
to the guilt of the suspect is unfortunate. The suspect may have a defense that
explains why such glass fragments were found in his clothing, and deserves
the opportunity to present such a defense. Lindley’s use of a Bayes Factor
is important because it presages such use in forensic science more generally.
However, such foreshadowing loses much of its attention-grabbing panache if
it is presented as a Bayes Factor for identity of refractive indices.

(5) Fienberg and Kadane (1983) review the literature up to that point and speculate
about a Bayesian understanding of legal terms, like “beyond a reasonable
doubt” and “the preponderance of the evidence.” Our thought in doing so was
not to replace those phrases with numbers (which Tribe would oppose), but
simply to understand better, in probabilistic terms, what is being said.

We also review two cases. We took the data from Swaine vs. Alabama
(1965) about whether African Americans were being systematically excluded
from juries in Alabama. We show that both frequentist and Bayesian treat-
ments lead to the same conclusion, one also reached (without our help) by the
US Supreme Court.

Finally, we discuss work that I had done on a procedure used in the USA to
choose jurors to hear cases in which the death penalty is a possibility (Kadane
1983). The jury would first render a verdict on guilt. If the defendant were
found guilty, a second hearing would be held in which the same jury would
decide whether to impose the death penalty. My work (which used Bayesian
methods) was aimed at the question of whether the exclusion of jurors who
could not fairly and impartially decide whether to impose the death penalty
led to a jury more likely to convict. As this case made its way through the
California courts, the Supreme Court ruled in Lockhart vs McCree (1986) that
the procedure is legal, regardless of social science results that may indicate
bias. Consequently, the case I had testified in was moot.

(6) Bright et al. (1988) was the result of a sales-tax audit of a retailer. A sample
had been drawn (badly the first time), the result of which was a probability
distribution of the amount owed by the retailer. But a probability distribution
is a difficult amount to write a check for. We propose a loss function for the
state, adoption of which would result in a specified amount being owed.

(7) Kadane (1990) discusses a case of possible employer discrimination on the
basis of age. There were four firing waves, resulting in four 2 × 2 tables
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(fired/not fired, over 40, under 40). Reasons are given for treating these
as doubly constrained. The (Bayesian) results indicated high probability of
discrimination. On a Friday, the jury was chosen. In the judge’s chambers,
the plaintiff’s attorney made a settlement offer, which the defense attorneys
rejected. On Monday, the plaintiff and his attorney came ready to start the
case, with boxes of evidence. However, the plaintiff himself noticed that the
defense attorneys had come to court with no briefcases or boxes of documents.
The attorneys were called to the judge’s chambers, and the defense attorneys
announced that they wanted to accept the settlement offer they had rejected on
Friday. The plaintiff’s attorney responded that the Friday offer was no longer
available. The case settled on grounds substantially more favorable to the
plaintiff than the Friday offer. The plaintiff bought the house his wife wanted.

(8) Lindley (1991) (see also Lindley (1977a)) proposes that fact finders, whether
judges or juries, should return probabilistic judgments, rather than binary
(guilty/not guilty or liable/not liable) verdicts. The court would then apply
a legislatively determined utility function to determine the consequence. He
also opposes suppressing any evidence, no matter how obtained. He also
proposes the abolition of the adversarial system for deciding cases. His
proposals are thus directly contrary to the arguments of Tribe (1971). Lindley
argues that these changes are consequences of expected utility theory. I argue
Kadane (1993) that, depending on whose utility is being discussed and how
it is being specified, one can defend current practice about these matters as
optimal. Hence, in my view, Lindley was conflating his social views with his
epistemological views.

(9) Fienberg and Finkelstein (1996) review studies of mock jurors in five exper-
iments and find that these mock jurors under-respond to proffered testimony,
compared to what the use of Bayes Theorem would predict. They conclude
from this that jurors need instruction about probability theory, omitting the
possibility that the mock jurors did not give full credence to the data they were
offered.

After an exposition of how Bayes Theorem might relate to hypothetical
cases, they turn to two real cases. The first is a paternity case in which
HLA blood typing was used, but not DNA of the modern kind. The appeals
court found that the trial record showed much confusion about conditional
probabilities and sent the matter back for rehearing. The second was about
whether there was fraud in absentee ballots in deciding an election in Eastern
Pennsylvania. There was an expert for each side, and a neutral expert
appointed by the judge. Fienberg and Finkelstein conclude that “the judge
misinterpreted the evidence provided by the experts in the case.”

(10) At about the same time, I was hired by the Public Defender’s Office in
Gloucester, New Jersey to help with a case alleging that the New Jersey State
Police were stopping cars on the New Jersey Turnpike driven by African
Americans at disproportionate rates. The Defender’s Office arranged for a
stationary survey, in which counters stationed on a bridge over the Turnpike
assessed the race of drivers. About 13.5% of these drivers were African
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American. Additionally, we had a rolling survey in which a Public Defender
set his cruise control for 5 miles an hour above the speed limit and counted
the race of drivers of cars who passed him, and the race of drivers whom
he passed. Almost all the cars he encountered were cars that passed him
(nearly everybody speeds), and 15% of the cars that passed him were driven
by African Americans. Using a random sample of stops by the State Police,
46.2% of the stops in which race was available were of cars driven by African
Americans. The problem was that there were many stops that did not have
the race of the driver recorded. Using a Bayesian analysis, we showed that
making various reasonable assumptions about the recording of race did not
upset the overall finding of discrimination (Kadane and Terrin 1977). While
the matter was hard fought (the hearing went on 1 day a week for 6 months),
my use of Bayesian methods was not challenged. We won. The decision (State
v. Soto 1996) upset the New Jersey State Police and the Attorney General,
who announced they would appeal. A year and a half later, and a week
before the appeal was to be heard, the Governor and the Attorney General
held a press conference to announce that they were withdrawing their appeal.
They had done their own study, which corroborated our findings. New Jersey
then entered into a consent decree with the Civil Rights Division of the US
Department of Justice and promised to reform the practices of the State Police.
So this is an example in which Bayesian analysis in court actually brought
about needed social change.

One of the defense arguments in the Soto case was that perhaps Blacks
are heavily represented among the most egregious speeders on the New Jersey
Turnpike. This possibility was dismissed by each police officer who testified,
saying that the race of egregious speeders mirrored the population.

To find out, I partnered with John Lamberth, a social psychologist who
did much of the data collection in the Soto case. We found essentially the
same rates of extraordinary speeders among Blacks andWhites on the turnpike
(Kadane and Lamberth 2009).

Therefore,

P{black|speeder}/P{white|speeder} = P{black & speeder}/P{white & speeder}
= P{speeder|black}/P{speeder|white}
× P{Black}/P{white}.

Showing that the first ratio in the last expression is 1 shows that the
proportion of Blacks among speeders mirrors the population numbers.

(11) Lund and Iyer (2017) emphasize the subjective nature of likelihood ratios
and consequently of the potential difference between the likelihood ratio of
the decision-maker and that of the forensic analyst. Consequently, they urge
that likelihood ratios be considered uncertain and propose many alternative
assumptions that might be considered.
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(12) Batson motions. American juries are chosen from a venire, which is supposed
to be a cross-section of the citizens in the community served by the court.
The venire is subject to challenges for cause, such as being related to one of
the parties, or other clear sources of bias. Then, potential jurors are subject
to peremptory challenges. Traditionally, reasons did not have to be given for
the use of peremptory challenges. However, it was a common observation that
prosectors in criminal cases were systematically using peremptory challenges
to exclude Black citizens from juries.

Accordingly, in 1986, the Supreme Court ruled that peremptory challenges
could not be used to exclude Blacks. The ruling created a three-step process.
The first step is to establish a prima facie case consisting of: (1) a timely
objection, (2) identification of the racial group alleged to be discriminated
against, and (3) facts sufficient to raise an inference of discrimination. The
second step requires the non-moving party to give non-discriminatory reasons
for its use of peremptory challenges. Finally, in the third step, the court
decides whether the reasons offered in the second text are persuasive (Batson
v. Kentucky, 476 U.S. 79).

Table 8.1 shows the steps taken by the Supreme Court to extend the rights granted
in Batson.

Batson motions are notoriously difficult to win at trial, perhaps because the
motion in effect asks the judge to find that the opposing attorney is both a bigot and
a liar. But appeals against a verdict based on a finding that the trial judge would have
found sufficient evidence for a prima facie case are another matter. Such appeals are
particularly likely in death penalty cases, because it is the responsibility of attorneys
arguing appeals in such cases not to omit any plausible ground.

There is data relevant to a Batson challenge, namely the numbers of Black
and non-Black potential jurors available to be peremptorialy challenged, and the
numbers who were so challenged. However, the situation is complicated by the fact
that each state (and sometimes within a state) has its own set of practices for how
peremptory challenges are administered.

In one process, used for example in Georgia, each potential juror is considered
individually. First the prosecution and then the defense are asked whether they wish
to exercise a peremptory challenge. If neither does so, the potential juror is seated
and cannot be recalled. A natural model for this process is two independent binomial
distributions, one for each racial group. The question is whether the probability of
being excluded from the jury is higher if one is Black than if one is not. Using

Table 8.1 Supreme Court cases extending Batson

Case Holding

Powers v. Ohio (1991) 499 US 400 Defendant’s race is irrelevant

Edmonson v. Leesville Concrete (1991) 500 US 614 Both parties in civil cases

Georgia v. McCollum (1992) 505 US 40 Defendant cannot discriminate

J.E.B. v. Alabama (1994) 511 US 127 Covers discrimination based on gender
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data from a 2016 Supreme Court case, I discuss various frequentist approaches to
the problem. A Bayesian approach with uniform priors shows a probability over
99.9% that Blacks were more likely to be challenged than were non-Blacks (Kadane
2018b).

A second case (Battle), this one from California, used a different procedure to
administer peremptory challenges. Here twelve potential jurors are in the box. The
sides take turns choosing whom to strike with a peremptory challenge. A challenged
juror is replaced before the other side chooses. Again I consider both frequentist and
Bayesian solutions to the problem. The Bayesian analysis requires a parameter to
measure the degree of bias. The way I chose is to let the probability of a minority
person being chosen as edc/(edc + m), so the probability of a majority person
being struck is m/(edc + m). Here, m is the number of majority persons, and c the
number of non-majority persons. Then, d > 0 indicates bias against the minority,
and conversely. Applied to the case at hand, the probability of bias (d > 0) turns
out to be 98.53% (Kadane 2018b).

North Carolina has yet a third procedure for administering peremptory chal-
lenges. As in California, twelve potential jurors are seated. The prosecution goes
first, and challenges whom it pleases. Then, those potential jurors are replaced, and
the prosecution again may challenge whom it pleases. After the prosecution is done,
then the twelve potential jurors are passed to the defense, who again can challenge
whom they please. Those unchallenged by both parties are seated (and not subject to
further challenge). The reduced group of replacement of challenged potential jurors
then passes to the prosecution, etc.

In Kadane (2018a), I argue for a doubly constrained 2 × 2 table for data rising
from this procedure, where the variables are race and whether challenged. Under this
model, the remaining parameter is the log cross-product ratio. I applied a Bayesian
analysis with this model to two North Carolina cases. The first case (Hurd) featured
both an unsuccessful Batson challenge of the prosecution and a successful Batson
challenge of the defense (called a reverse-Batson challenge). My results suggest
that the trial court was correct in both of these decisions: the prosecution was not
differentially challenging Black potential jurors, but the defense was differentially
challenging Whites.

In the second case (Tucker), my analysis suggests that the prosecution did
use peremptory challenges against Blacks at extraordinary rates. Tucker’s capital
conviction for murder is now under appeal, and one of the grounds for that appeal
is his Batson motion, referring to my analysis.

I have not testified in Batson motions yet. Since they are mainly appeal motions,
testimony is not pertinent. Yet my reports are parts of capital appeals in both
California and North Carolina. Such appeals seem to take forever. Part of the reason
may be the incentives of the parties. From the prosecution’s viewpoint, the defendant
is already in jail. Why expedite an issue that might vacate his conviction? From
the defense’s viewpoint, the defendant is still alive. Why expedite an issue that
might hasten his execution? So it may be a while before appeals courts rule on
these motions.
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8.3 The Use of Bayes in True Evidence Cases: R v T (2010)

R v T (2010 EWCA Crim. 2439) is a murder case in which a forensic scientist
testified about the similarity of the defendant’s Nike shoe to the shoe print found at
the crime scene. The expert used a database of shoes to buttress a 1 in 100 likelihood
ratio.

The appeals court overturned the conviction, writing:
“The use of the FSS’ (Forensic Science Service) own database could not have

produced reliable figures as it had only 8122 shoes whereas some 42 million are sold
every year” (Para 84). Additionally, the expert relied on a likelihood ratio calculation
made from this database. This was also found unsatisfactory by the court: “No
likelihood ratios or other mathematical formula should be used in reaching [a]
judgement.”

This decision engendered a vast number of critical comments from various
perspectives. The one I want to focus on is Berger et al. (2011), because the basic
viewpoint is closest to that expressed in Sect. 8.1 above.

This paper defends the use of subjective probability to express the opinion of
the forensic analyst. With this, I can only agree. Furthermore, they write “Overall,
the duty of transparency prevails, and the expert should articulate the basis for her
probabilistic assignments in a given case.” Again I agree.

However, the unspoken assumption here is that the expert’s opinion, however
expressed, will become those of the finder of fact, whether jury or judge. The very
point that probabilities are subjective means that the fact finder’s opinions need not
be those of the expert. Indeed, the real content of an expert’s testimony may revolve
around the reasons adduced for their opinion, however expressed. Even with such
explanation, a reasonable fact finder might think that the expert is called by the
prosecution, who had the choice of which expert to engage and hence may reduce
the credence given to the expert’s testimony.

Berger et al. (2011) are also vociferous in defending likelihood ratios as a
(perhaps the) way to express expert opinion (whether quantitative or qualitative).
They write “If the probability of the observations is greater given the prosecution
proposition than it is given the defense proposition it is intuitively reasonable and
logically justifiable to state that the observations support the former.”

But just a minute. The defense is not required to have any proposition at all, other
than that the prosecution has not proven its case. What is the correct comparison,
say in the R v T case? Is it against a random selection of shoes worn in Britain?
Should it be limited to Nike shoes? To Nike shoes of a particular size and vintage?
Should the comparison be to that shoe owned by someone other than the defendant
whose print would be most similar to that found at the crime scene? And how is the
FSS database going to help with this issue?

One can imagine cross-examination on this basis:

Q: Should the jury understand that you were called to testify by the prosecution?
A: Yes.
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Q: Do I understand correctly that the likelihood ratio about which you opine is the
ratio of the probability of the evidence under the prosecution proposition divided
by the probability of the evidence under the defense proposition?

A: Yes.
Q: Did you consult with the defense to ascertain what the defense proposition is?
A: No, I did not.
Q: If you have mistaken the defense proposition, of what use to the court is your

opinion about this likelihood ratio?

Likelihood ratios may not be the panacea that Berger et al. (2011) seem to think
it is.

8.4 Conclusion

Bayesian ideas and applications to the law are now part of the accepted landscape.
Some of the ideas proposed have been more successful than others, of course, and
there are many aspects of the conjunction between law and Bayesian methods still
to be explored. Perhaps continuing to use Bayesian ideas in court is among the more
fruitful ways forward because it provides feedback, sometimes painful, about what
courts find helpful.
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Chapter 9
Statistical Considerations for the Analysis
and Interpretation of Forensic Evidence

Hal S. Stern

9.1 Introduction

The application of forensic science in crime solving has a long history with
fingerprints being used in the USA since the early 1900s. Forensic science has had
a surge in popularity due in part to the success of the television show CSI: Crime
Science Investigation (and several spinoff shows) which ran for approximately 15
years in the early 2000s. The use of fingerprints and more recently DNA to identify
individuals has had a major impact on law enforcement and the legal system.
Though there have been many successes, concerns have been raised about whether
the claims being made by forensic examiners are supported by sufficient scientific
research and whether the claims incorporate appropriate assessments of uncertainty.

Several key events have raised the profile of these concerns. In 2004, the FBI
arrested Brandon Mayfield after mistakenly identifying him as the source of a latent
fingerprint found on a bag implicated in a terrorist train bombing in Spain. This
error received a great deal of attention because it was not uncommon at the time
for fingerprint examiners to report while testifying that the fingerprint comparison
process had zero error rate. A congressionally mandated study of forensic science
in the USA by the National Academies of Science, Engineering and Medicine
(National Research Council 2009) examined a number of aspects of the forensic
science system and concluded that there was not a strong scientific foundation for
many common types of evidence. The 2009 report was followed seven years later by
a report of the President’s Council of Advisors on Science and Technology (PCAST
2016). The PCAST report described what the Council thought should be expected in
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establishing forensic methods as valid and reviewed a number of disciplines, finding
again that more study was needed to support testimony about a number of evidence
types. The need for improving the practice of forensic science is further reinforced
by the work of the Innocence Project (IP); more than 40% of the 350+ wrongfully
convicted individuals who have been exonerated by DNA evidence through the
efforts of the IP had been convicted in part based on misleading or misapplied
forensic evidence.

Stephen Fienberg made substantial contributions to the application of statistics in
public policy and his contributions to statistics in the law are especially noteworthy.
Indeed, Steve’s fingerprints (no forensic pun intended) are on many of the most
important contributions to rigorous statistical thinking about scientific evidence. His
earliest contributions arose as part of a National Academies panel whose report
(Fienberg 1989) addressed the increasing trend for statistical evidence to arrive
via expert testimony and some of the issues associated with that trend for the
different courtroom participants. He subsequently chaired a panel on the validity
of the polygraph exam that found no scientific basis for its use as a lie detector
(National Research Council 2003). This turned out to be a precursor of the 2009
report mentioned above (for which Steve served as a reviewer).

Two consequences of the 2009 report were the creation of the joint NIST-
Department of Justice National Commission on Forensic Science and the funding of
a NIST Center of Excellence on probability and statistics for forensic evidence. Not
surprisingly Steve featured prominently in both. He was the only statistician on the
Commission, ensuring that the statistical viewpoint was always well represented. In
addition, Steve and several colleagues (including the author of this chapter) created
the Center for Statistics and Applications in Forensic Evidence (CSAFE), a NIST-
funded center of excellence that is exploring a range of research topics aimed at
assessing and improving the scientific underpinnings for the analysis of forensic
evidence.

Statistical concepts and statisticians have emerged as an important component of
the efforts to improve forensic science because of the need for reliable and accurate
measurements, rigorous assessments of uncertainty, and decision-making under
uncertainty. Through this chapter’s review of different approaches to the analysis
and interpretation of forensic evidence in criminal cases we hope to build on Steve’s
legacy of statistical contributions to public policy and the law.

9.2 Forensic Evidence and Expert Testimony

Forensic examinations cover a wide range of questions in criminal investigations.
These include determining the timing of events (e.g., time of death), cause and effect
(e.g., the sequence of events based on bloodstain pattern analysis), and whether two
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items correspond to the same source (e.g., comparing a latent finger mark from a
crime scene to the fingerprint of a suspect). This chapter focuses on the last of these,
often known as the source identification question or the determination of source.
The approaches to evidence described here apply more broadly to the other forensic
questions but it is convenient to use a single problem to focus the discussion.

The source identification question is itself quite general in that it is relevant to the
comparison of biological samples, trace evidence (glass samples, soil samples), and
pattern evidence (bullets/cartridge cases, toolmarks, fingerprints, shoe prints, tire
treads, handwriting). In the most common scenario, sometimes called the specific
source case, there is one sample with known source and a second sample with
questioned or unknown source. Typically one sample comes from the crime scene
and another is obtained from a suspect in the investigation. Which sample has known
source and which has questioned source can vary depending on the evidence type.
For example, in comparing glass samples the fragments at the crime scene may be
assumed to have come from the broken window at the scene while the fragments
identified on the clothing of the suspect are from an unknown source. By contrast,
the finger mark at the crime scene is from an unknown person while the suspect’s
fingerprint is from a known source. The forensic examiner is called as an expert to
assess the evidence and provide their conclusion regarding whether the sample with
unknown source could have arisen from the source that provided the sample with
known source.

The provision of expert testimony in federal courts and in many states is governed
by the Daubert decision of the U.S. Supreme Court (Daubert v. Merrell Dow
Pharmaceuticals 1993) and subsequent related decisions. The Daubert standard
identifies the judge as the gatekeeper in determining whether proposed testimony
should be admitted. The standard identifies a number of factors that are relevant for
the judge to consider including whether the technique in question has been tested in
actual field conditions, whether the technique has been subject to peer review and
publication, the known or potential rate of error of the technique, the existence of
standards for application of the method, and whether the method or technique is
generally accepted within the relevant scientific community. None of these factors
are required but all point the judge in the direction of assuring that the method or
technique has a solid scientific foundation. Some state courts are still governed by
expert witness guidelines that were in place before the Daubert decision, known as
the Frye standard (Frye v. United States 1923). The Frye decision applied only to
novel scientific evidence and the criterion for admitting such evidence was general
acceptance in the relevant scientific community.

The Daubert decision is codified in the U.S. Federal Rules of Evidence Rule
702. The rule requires a determination that the proffered expert knowledge will help
the trier of fact (usually the jury) to understand the evidence. It also requires that the
testimony be “based on sufficient facts or data,” be “the product of reliable principles
and methods,” and that the approach was “reliably applied” to the case at hand.
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9.3 Evaluation and Interpretation of Forensic Evidence

There are a number of approaches to making a source determination for forensic
evidence. All approaches require examining the two samples to identify similarities
and differences. The nature of the similarities and differences, including their
quantity and quality, are assessed to see if the observations would be expected
from two items derived from the same source and also to assess how likely such
observations might be for objects from different sources. The three approaches
described in detail here are: forensic evidence as expert opinion, a two-stage
approach to forensic evidence, and the likelihood ratio.

Forensic Evidence as Expert Opinion

The status quo in many forensic evidence disciplines, especially those known as
the pattern evidence disciplines (i.e., fingerprints, shoe prints, firearms, toolmarks,
questioned documents), is for an examiner to analyze the evidence based on their
experience, training, and accepted methods in the field. The examiner’s conclusion
regarding the evidence reflects the examiner’s expert opinion. The conclusion is
often reported as one of a set of categorical conclusions. Fingerprint examiners
will, for example, report the result of their analysis as either an identification (the
questioned print came from the same finger as a given print of known source),
an exclusion (the questioned print did not come from the same finger as the
known source print) or as not providing a conclusive result (often described as an
inconclusive result). Other forensic disciplines may allow for more categories. For
example, handwriting examiners often use a nine-category scale.

To be admissible under the Daubert standard forensic analyses of this type must
be “the product of reliable principles and method.” The word “reliable” has a both a
colloquial meaning and a technical meaning. The colloquial meaning is trustworthy
and this is the sense in which legal commentators interpret the word. There are a
number of technical concepts that address the trustworthiness of forensic evidence
that is provided in the form of an expert opinion. These include the measurement
science concepts of reliability and validity. Reliability refers to consistency of
measurement. It can be assessed through repeatability studies, in which the same
analyst is asked to analyze the same evidence on more than one occasion, and
reproducibility studies, in which different analysts are asked to analyze the same
evidence. Validity refers to the accuracy of a measurement or decision. Validity is
assessed through studies in which evidence samples with known status (as either
being from the same source or from different sources) are analyzed by a number of
analysts. The application of technical reliability and validity to forensic evidence is
described by Stern et al. (2019).

PCAST, in their 2016 report, (PCAST 2016) provided guidance on how the
Daubert standards could be addressed. They advocated for “black box” studies in
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which the expert is viewed as a decision-making “black box” taking the evidence
as input and outputting a decision regarding the same source question. Carrying out
such studies on a large number of analysts would allow for a determination of error
rates for examiner opinions and an assessment of the overall validity of the forensic
science discipline. One example of such a study is the fingerprint study carried out
by Ulery et al. (2011). That study included 169 examiners and more than 700 pairs
of prints with known true status. Each examiner analyzed a subset of the pairs. They
found a false positive rate of 0.15% with 6 nonmated pairs incorrectly identified as
mated. The false negative rate was 7.5% indicating that it was relatively common for
true mates to be incorrectly identified as nonmated pairs. Examiners were surveyed
as part of the study and a large majority were confident that they had never had a
false positive or false negative in their casework. Though false positives were indeed
rare in the study, more than 80% of examiners in the study had at least one false
negative.

There are limitations associated with this (and any) study. Statistics can con-
tribute to strengthening the scientific foundations of using expert opinion as an
approach to forensic evidence through its principles of experimental design. For
example, the examiners in the Ulery et al. (2011) study knew they were being
tested and thus their performance would not necessarily reflect the performance
that would be observed in case work or in the standard lab environment. In
addition, fingerprint examiners were judged on their analysis without the benefit of a
coworker’s verification (which is a part of standard practice in the field). Additional
research is planned to address concerns such as these.

The same authors also investigated the reliability of fingerprint decisions (Ulery
et al. 2012). They found that repeatability (intra-examiner agreement) was 90%
for mated pairs and 86% for nonmated pairs. Reproducibility (inter-examiner
agreement) was 80% for mated and nonmated pairs. The researchers also carried
out additional studies focused on understanding how the examiners reached their
conclusions.

One criticism of studies of this type is that they provide only a single overall
error rate estimate for the discipline. It is likely that the error rate varies based
on various characteristics of the evidence and the examiner. It is natural to expect
that errors will be more common for a blurry, low quality latent print or for a low
complexity signature (one that is easy to simulate). This suggests that an important
future direction is the estimation of error rates that would be relevant to a specific
comparison.

It is likely that there will always be comparison questions for which no error rate
information is available. One Indiana case involved a comparison of a two plastic
garbage bags that attempted to determine if they were produced at roughly the
same time by the same machine. Such comparisons may yield useful information
but caution is obviously required when there is no empirical evidence that such
determinations can be reliably made.
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A Two-Stage Approach to Forensic Evidence

The two-stage approach (Parker 1966, 1967; Parker and Holford 1968) to the
analysis of forensic evidence addresses the source determination question in two
separate steps. Initially a determination is made as to whether the two samples
are sufficiently similar based on their measured characteristics to be declared as a
“match” or to be identified as “indistinguishable.” This is often done via a statistical
test or procedure. The second stage of the analysis attempts to address the probative
value of the evidence by assessing the probability that two samples from different
sources would be found indistinguishable by chance. This is commonly done for
measurements of glass fragments. This can include measurements of the refractive
index of the glass or measurements of the chemical concentrations of various
elements found in the glass fragment. We use glass to describe the approach and
to address some of the issues associated with assessing the reliability and validity of
the approach.

The first stage can be carried out with a traditional statistical test such as the t-
test. The null hypothesis is taken to be that the two sets of measurements (one set
from the sample with questioned source and one set from the sample with known
source) come from populations with the same mean. The alternative hypothesis is
that the two sets come from populations that differ. In practice, examiners appear
to often use a variety of alternative statistical procedures that are similar to the t-
test. For example, they may compare the mean measurement for the questioned
sample to a confidence interval for the mean measurement of the known sample.
For purposes of this discussion we assume the first stage is carried out through a
traditional statistical test.

There are a number of both technical and conceptual concerns associated with
the use of a statistical test to determine matching samples. One technical concern is
that in practice the test is carried out based on a small number of measurements. This
means that the test procedure will be sensitive to any distributional assumptions that
are made. A second concern is that the forensic analysis often involves carrying out
a series of tests for the concentration of different elements. This raises the issue of
multiple comparisons which must be addressed in the setting of thresholds. A final
technical concern when the analysis is carried out through a series of univariate tests
of different chemical elements is that this ignores information that is contained in
the correlation structure of the multivariate chemical concentration measurements.

In practice, however, the conceptual concerns are arguably more important
than the technical concerns. The first of these is the loss of information asso-
ciated with summarizing a comparison of continuous measurements through a
binary decision (distinguishable/indistinguishable). A finding that two samples are
indistinguishable, i.e., that the null hypothesis of equal population means could
not be rejected, may mean there is excellent agreement or it may mean that the
samples differ considerably but not enough to achieve statistical significance. This
issue has received a great deal of attention recently with a number of statisticians
recommending elimination of the concept of statistical significance (Wasserstein
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et al. 2019; Amrhein et al. 2019). The Amrhein et al. comment in Nature was signed
by more than 800 scientists. The various authors note that a binary decision can
ignore potentially meaningful differences because they do not attain a specified p-
value and that samples can be found significantly different even when the difference
is not practically important.

In the forensic application, the setting of the threshold for declaring two items
matched has important implications for justice. Using a generous threshold for
statistical significance (e.g., taking p < .15 as indicating “distinguishable” samples)
risks failing to correctly identify two mated or matching samples. A strict threshold
for statistical significance on the other hand (requiring a very low p-value) risks
incriminating an innocent person by failing to correctly identify nonmated samples.
It is not at all clear how to trade off these two types of errors. It certainly does not
seem like the kind of decision that should be determined by an individual examiner.

The challenge of setting a threshold is linked to another key conceptual issue
associated with the two-stage approach. As commonly executed the null hypothesis
is taken to be that the two samples are indistinguishable. As is well-known,
statistical significance tests do not treat the two hypotheses symmetrically. The null
hypothesis is assumed true unless the data provide sufficient evidence against that
hypothesis. But the null hypothesis incriminates the suspect and thus the statistical
approach seems to oppose the traditional position of the justice system in the USA
that a suspect is innocent until proven guilty. In fact, somewhat paradoxically,
carrying out a “weaker” analysis by taking fewer measurements or using an inferior
measurement technique (with larger variance) make it more likely that samples will
be found “indistinguishable.”

The second stage of the two-stage approach is an assessment of the probability
that two samples from different sources would be found indistinguishable by
chance. Assessing this probability requires information about the distribution of
mean measurements across a population of glass sources. Given information about
this distribution and a set of measurements for a given sample from a known source
(summarized perhaps by the sample size, the sample mean and the sample standard
deviation), one can calculate the probability of a coincidental match as an integral
over the population distribution of glass source means of the probability that a
sample of size n from a (perhaps normally distributed) sample with the given mean
would fail to differ significantly from the known source sample.

There are challenges associated with obtaining and maintaining a database of
measurements that can provide relevant information for the second stage. For
example, there are many types of glass and each likely requires its own database.
As well, one can easily imagine that the distribution of glass source means will
vary over time. It is not too surprising then that no such databases exist for most
forensic evidence types at the present time. This means that current practice for
forensic evidence often stops with the stage one conclusion that two samples are
indistinguishable. Future research that would enable examiners to reliably infer the
likelihood of a coincidental match is crucial for improving forensic science.



160 H. S. Stern

The Likelihood Ratio

The likelihood ratio (LR) or Bayes factor (BF) has long been recognized as a natural
approach to the evaluation of evidence (see e.g., Lindley 1977; Aitken and Taroni
2004). Within forensics the LR has been regularly computed for DNA evidence for
more than 20 years and this has led many to wonder if the concept can be more
generally applied. The justification for the use of the LR or BF can be seen easily
through the odds version of Bayes’ Theorem

Pr(Hs |E)

Pr(Hd |E)
= Pr(E|Hs)

Pr(E|Hd)
× Pr(Hs)

Pr(Hd)
(9.1)

where E represents the evidence (the measurements on the two items), Hs is the
hypothesis that the two items share a common source, and Hd is the hypothesis that
the two items come from different sources. The notation above is imprecise in that
for evidence E comprised of continuous measurements the probabilities would be
replaced by probability density functions. Bayes’ theorem identifies the LR or BF,
Pr(E|Hs)/Pr(E|Hd), as the factor by which a trier of fact should update their prior
odds of the two hypotheses to obtain their posterior odds of the two hypotheses.

The likelihood ratio addresses the conceptual weaknesses of the two-stage
approach. By assessing the likelihood of the evidence under the two competing
hypotheses we avoid choosing a single hypothesis as the starting point (e.g.,
the null hypothesis that two samples are indistinguishable). In addition, the LR
avoids separating the analysis into two stages. The LR also eliminates the need
for a threshold and associated binary decision. The European Network of Forensic
Science Institutes (ENFSI) has endorsed the use of likelihood ratios for evaluation
of forensic evidence (ENFSI 2015). Their guideline emphasizes that the evaluation
of evidence should be with respect to two or more competing hypotheses, should
use probability as a measure of uncertainty, and should be based on the assignment
of a likelihood ratio.

A couple of technical points are noteworthy. The first is that assessing the
likelihood of the evidence under the same (or especially the different) source
hypothesis is likely to depend on a number of unknown parameters. For example,
the likelihood of a set of glass measurements is likely to depend on the variability
of the measurement process and the variability among sources of glass in the
population. Inference for the parameters of the same source distribution may be
based on the measurements in the case at hand or may be based on other data
regarding the measurement process. Inference for the parameters of the different
source distribution usually relies on data from an auxiliary source.

To this point we have referred to the ratio Pr(E|Hs)/Pr(E|Hd) as both the
likelihood ratio and the Bayes factor. The distinction between the two terms is
related to the treatment of the unknown parameters. The likelihood ratio is often
used as the preferred term when the unknown parameters are replaced by point
estimates and the Bayes factor terminology is used when the unknown parameters
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are assigned a prior distribution and averaged over. Naturally if the two hypotheses
completely specify the probability distribution of the evidence (rare in forensics
though possible in other applications of the LR), then the likelihood ratio and Bayes
factor would agree. In the remainder of the chapter we use the likelihood ratio
terminology.

Another technical concern is that there may be additional information relevant
to the interpretation of the evidence. This information might have to do with the
technology used to obtain the measurements or with steps taken during the analysis
of the evidence (e.g., the technique used to lift the fingerprint evidence or gather
the shoe print evidence). Such task-relevant information can be integrated in the
calculation of the LR/BF but is ignored here.

In the remainder of this section, we briefly review how the likelihood ratio works
or might work for different types of forensic evidence. Additional details can be
found in Stern (2017). We also discuss some of the limitations associated with the
use of likelihood ratios to analyze forensic evidence.

Where It Works: DNA

The likelihood ratio approach is best known for its application to DNA evidence. To
start we assume there is a crime scene sample that is known to represent a single
unknown source and a second sample from a suspect in the case. The evidence
E is comprised of two DNA profiles, with each profile identifying the two alleles
identified at a set of locations along the genome. Under the hypothesis that the two
samples are from the same source, the probability of matching profiles is essentially
one. Under the hypothesis that the two samples are from different sources, the
probability of matching profiles depends on the frequency of the alleles on which
the samples were found to match.

Given estimates of the allele frequencies in the relevant population it is straight-
forward to compute the probability that a random individual would match the
crime scene sample at the specified locations. For a single location each person
has two alleles (one from mother and one from father) and the probability of
matching the crime scene sample follows from the Hardy-Weinberg principle. By
choosing a set of locations that reside on different chromosomes, and hence are
inherited independently, it turns out that the probability of matching profiles under
the different source hypothesis are often extremely low. This can yield likelihood
ratios in the millions or billions.

The single source DNA case is important because it informs about what is
required to have the LR approach work. The biology is well-understood, biological
theory provides a probability model for the evidence, population databases are
available to provide the numbers required by the probability model, and the method
has been peer reviewed by the scientific community. Even with these benefits there
are still complications that impact our ability to draw reliable inferences from
DNA evidence. Increasingly sensitive techniques for capturing DNA evidence can
lead to inadvertent contamination. As well, crime scene samples often represent a
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mixture of DNA from multiple sources and assessing the probability of observing
the evidence (crime scene and suspect sample) under the two hypotheses of interest
is much more complicated in such settings.

Where It Might Work: Trace Evidence

The likelihood ratio is not currently applied to trace evidence (e.g., glass fragments)
but research is ongoing and there are published examples demonstrating how
this might work. Using glass evidence as an example, the evidence E comprises
measurements of a number of characteristics on a set of fragments from both
the crime scene sample and fragments obtained from the clothing of a suspect.
Let ycs = (ycs,1, . . . , ycs,ncs ) denote the data for the crime scene sample of ncs

fragments with the measurement ycs,i on each fragment possibly multivariate and
let ysus denote the data for the suspect sample.

Following the ideas in Section 3.4 of Aitken and Lucy (2004), the data may
be modeled as being generated by two probability distributions. The repeated
observations of fragments from the same glass source (e.g., window) are modeled
as repeated draws from a distribution f (y|θ,W) where θ is the (unknown) glass
source mean and W is a variance matrix for repeated observations within a single
homogeneous glass sample. This implicitly assumes the distribution depends only
on these two parameters (as is the case for the normal distribution) but other
assumptions are possible. The distribution of unknown glass source means across
the population of potential sources are modeled as draws from a distribution
f (θ |μ,B) where μ is the population mean for the relevant type of glass source
and B is a variance matrix characterizing the variation of mean vectors across the
population. Then the likelihood ratio is

LR = Pr(E|Hs)

Pr(E|Hd)
(9.2)

=
∫

f (ycs |θ,W)f (ysus |θ,W)f (θ |μ,B)dθ
∫

f (ycs |θcs,W)f (θcs |μ,B)dθcs

∫
f (ysus |θsus,W)f (θsus |μ,B)dθsus

(9.3)

where μ,B,W are to be estimated from available data.
The numerator assumes the two sets of samples come from the same glass

source and are thus characterized by a single mean; the denominator assumes the
two sets come from different sources characterized by different means. Aitken and
Lucy (2004) demonstrate the approach using normal distributions and more flexible
kernel density estimates.

Though not currently used in practice, the brief description provided here shows
that it is plausible that such methods can be developed. Here the LR approach
seems possible because the evidence are characterized by a well-defined and
reliably measured set of quantitative characteristics. A major challenge is that the
distribution of measurements across the population of relevant glass sources is
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not well studied. Indeed, it is not immediately obvious how to define the relevant
population of glass sources. Is it all glass manufactured in the area of the crime? in
the nation? in the world? Further, a complete assessment of the evidence may also
require taking account of the probabilities that glass evidence is transferred from
the crime scene to the suspect and is retained on the suspect’s clothing (Curran et al.
1998; Curran 2003).

Where It Is Extremely Challenging: Pattern Evidence

Evidence comprised of pattern impressions (e.g., shoe prints) are currently analyzed
using methods that rely heavily on the expertise of the examiner. These methods
have been criticized for lacking the kind of objective measurements that character-
izes DNA and glass evidence. The evidence E typically comprises two images: an
image c obtained from the crime scene and an image s obtained from an item/object
belonging to the suspect. These may, for example, be a gray-level image of a shoe
print found at the crime scene and an analogous image of a test impression taken
from a suspect’s shoe.

In this setting the LR is defined as Pr(c, s|Hs)/Pr(c, s|Hd). The challenges in
developing a likelihood ratio are immediately obvious. The data c, s are very high-
dimensional, comprised of gray levels for many thousands of pixels in each image.
It is nearly impossible to develop probability models for data of this type; a full
probability model would require assigning a distribution on the space of possible
images. One approach (see, for example, Neumann et al. 2015 for fingerprints)
replaces the images by sets of features derived from the images. In the case of
fingerprints this might be locations, directions and types of individual minutiae
(e.g., ridge endings). As with trace evidence, evaluation of the likelihood ratio
requires some information about the variation that would be expected in repeated
impressions from the same source (i.e., the distortions that might arise in the
deposition of a fingerprint) and about the variation that would be expected in
impressions from different items in the population.

As mentioned earlier the ENFSI guideline (ENFSI 2015) endorses the use
of likelihood ratios as the appropriate approach to the evaluation of evidence.
According to the guideline, probabilities in the likelihood ratio are ideally based
on published data but experience and subjective assessments can be used as long as
they are justified. The use of experience-based subjective likelihood ratios has been
viewed with considerable skepticism in the USA.

Score-Based Likelihood Ratios

The challenges associated with developing likelihood ratios for pattern evidence
and other evidence types has led many to consider an approach based on numerical
summaries or scores as a summary of the evidence. Though the score-based
approach can be applied to a range of forensic disciplines, we develop the idea here
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for the pattern evidence setting. Suppose that S = S(E) = S(c, s) is a similarity
score derived from the two images c and s with higher values indicating greater
similarity of the two images. The definition of a score is quite general. It can be
derived directly from the images (e.g., as the sum of squared difference between two
aligned images) or through the use of features defined on the images. The key idea
is that the scores can then be used in place of the evidence E to reach a conclusion
about the hypotheses Hs and Hd .

Scores can be used in two different ways. On the one hand, scores can be used
as the basis for a two-stage procedure. A threshold on the score can be used to
distinguish between cases that are declared to be “matched” or from a “common
source” (analogous to stage one) and then data used to assess the probability of a
coincidental match (stage two). This approach has been used, for example, by Hare
et al. (2017) to develop an automatic approach to matching bullet land impressions.
The score in that case is the estimated probability of a match as output from a
random forest prediction model that has been trained to detect whether two bullet
land impressions come from the same source. When scores are used in this manner
it can be helpful to examine their performance through the receiver operating
characteristic curve that displays error probabilities as the threshold used to declare
a “match” is varied (Pepe 2004).

Scores can also be used to develop a likelihood ratio. The score-based likelihood
ratio, SLR, is defined as SLR = Pr(S(c, s)|Hs)/Pr(S(c, s)|Hd)where the probabil-
ity distributions of the scores under Hs and Hd are usually developed from datasets
comprised of known mated pairs (Hs) and known nonmated pairs (Hd ). A challenge
in this case is that it is often desirable to condition the score-based likelihood ratio
on various characteristics of the evidence in the case. For example Swofford et al.
(2018) develop a score-based approach to the analysis of fingerprint impressions
and show that there is considerable dependence on the number of minutiae marked
on the latent print. Hepler et al. (2012) develop score-based likelihood ratios for
handwriting evidence and show that different choices for how the denominator of the
score-based likelihood ratio is defined have a large impact on the values obtained.

Advantages and Disadvantages of the Likelihood Ratio

The likelihood ratio approach is popular among scientific researchers interested
in the analysis of forensic evidence. The LR provides a quantitative summary of
the probative value of the evidence and thus eliminates the need for choosing an
arbitrary threshold to enable a binary decision when working with continuous data.
It also explicitly requires the analyst to compare the relevant hypotheses regarding
the source(s) of the evidence. Though challenging to develop, the likelihood
ratio can also potentially accommodate a wide range of factors including issues
associated with the manufacturing and distribution of some evidence types. Perhaps
most important, the LR can be thought of as providing a mapping from a given set
of data, assumptions about the data, and a given set of hypotheses to a summary
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of the evidence. By being explicit about the data and assumptions the LR approach
invites criticism and alternative analyses.

This last point has also emerged as a potential disadvantage of the likelihood
ratio approach. There are a number of choices made in developing a statistical
model that enables inference for the likelihood ratio. Lund and Iyer (2017) explore
the amount of variation that can be observed in the likelihood ratio as a range of
plausible models for the data are considered. They demonstrate in the context of
glass evidence that the likelihood ratio can vary by several orders of magnitude over
a range of plausible models for the within-source and between-source distributions
of refractive index measurements. Their example even includes instances where
the hypothesis preferred by the likelihood ratio changes across the set of plausible
models. One can argue that the set of models considered by Lund and Iyer is
too generous, but their work clearly emphasizes the importance of considering the
sensitivity of forensic conclusions to the assumptions being made.

A second challenge in applying the LR approach is the difficulty that non-
statisticians have in understanding and interpreting the likelihood ratio. As one
example, it is common for individuals (lawyers, juries) to misinterpret the denom-
inator of the LR by transposing the arguments of the conditional probability and
thinking of Pr(E|Hd) as Pr(Hd |E). The former addresses the likelihood of the
evidence under the different source hypothesis while the latter directly addresses
the likelihood of the different source hypothesis. As made clear in Bayes’ Theorem
you can only obtain the posterior odds of the hypotheses if you first specify the a
priori odds and most experts agree that the examiner of the forensic evidence should
not be selecting prior odds for these hypotheses. One interesting line of research is
to try and better understand how juries understand different ways of presenting the
strength of the evidence (see, e.g., Thompson et al. 2018).

9.4 Conclusions

The summary above describes a variety of approaches to assessing the probative
value of forensic evidence. Any approach must address the court’s requirement
that expert testimony be based on reliable methods. Statistical methods thus have
a critical role to play in ensuring the fair administration of justice. Approaches
to the analysis and interpretation of forensic evidence should be explicit about
the reasoning and assumptions on which the assessment is based. There should
be empirical support for the reasoning and assumptions. The empirical support
can vary depending on the type of approach used to analyze the evidence. It
may be the result of well-designed “black box” studies to assess the performance
of analysts’ expert opinions or it may be carefully constructed statistical models
used to construct likelihood ratios for quantitatively measured evidence. There are
significant opportunities for statisticians to contribute to developing methods for this
high-impact area of public policy.
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Chapter 10
Differences between Bayes Factors
and Likelihood Ratios for Quantifying
the Forensic Value of Evidence
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10.1 Introduction

I believe that the basic concept of probability and of weight of evidence should be the same
for all rational people and should not depend on whether you are a statistician. – Good
(1985)

Unfortunately, this is not the case regarding the weight of evidence in forensic
applications where statisticians and forensic practitioners disagree. In statistics,
there are a handful of pertinent topics related to “evidence.” The first that comes
to mind is the strength of evidence that we all learn about in our first course on
statistics: the p-value. The p-value measures the support that sample data provide
against a null hypothesis in a traditional hypothesis (or significance) test. There
are a variety of the issues with using p-values alone for scientific conclusions and
policy decisions that are summarized in the American Statistician (Wasserstein and
Lazar 2016). So, it is no surprise that similar expressions regarding “evidence” mean
different things in relation to forensic science and criminal justice where the stakes
are high. In forensic statistics, the value of evidence is defined as the Bayes Factor
(Aitken and Taroni 2004, Good 1991), but often referred to as the likelihood ratio.
While statisticians agree that Bayes Factors and likelihood ratios can serve as the
value of evidence, statisticians distinguish them as two different statistics, while the
two are used interchangeably in forensics. In addition, the weight of evidence in
forensics is defined as the logarithm of the value of evidence (Aitken and Taroni
2004, Good 1991). Both the value and the weight of evidence are used to make
decisions regarding several aspects of the overall fact-finding process in justice
proceedings. These aspects range from decisions regarding the source of individual
pieces of forensic evidence to the overarching goal of deciding the guilt or innocence
of a person in relation to committing a crime. Therefore, methods of quantifying the
value of evidence play crucial roles in forensic science.

Let us start with a small snippet of recent history relevant to quantifying
evidential value.1 Most of the methods used to quantify evidential value are broadly
called the “likelihood ratio approach.” Naming these methods the “likelihood ratio
approach” in forensics applications is likely a tradition initiated by discussions that
followed Dennis Lindley’s paper in Biometrika. In 1977, Lindley’s seminal paper
“A Problem in Forensic Science” detailed his solution to a problem regarding glass
fragments from a broken window (Lindley 1977). This description of that problem
was given in an earlier paper by Evett (1977). To summarize, a window was broken
to gain entry into a residence for the purpose of committing a crime therein. A
suspect was identified in relation to committing the crime, and glass fragments were
subsequently found on the suspect. Did the glass fragments found on the suspect
come from the window at the crime scene? In his paper, Evett detailed a solution
using classical methods of statistical hypothesis testing, which utilize distribution

1For a more detailed history of statistical methods for forensic evidence, see Taroni et al. (1998).
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functions (i.e. p-values), in a two-stage approach2 developed by Parker (1966). In
contrast, Lindley provided a solution which used Bayesian methods (i.e. the Bayes
Factor). Lindley called his solution a “factor” that “uses only density functions, and
adheres to the likelihood principle” (Lindley 1977). A short time later, Allan Seheult
published a commentary on Lindley’s paper, and in this paper Lindley’s factor is
named a “likelihood ratio” for what we believe is the first time (Seheult 1978). In
Evett’s follow-up paper regarding the glass problem, he perpetuates the vocabulary
by calling his use of Lindley’s factor a likelihood ratio (Evett 1986). This seems to
be the point where the lines blurred between a Bayes Factor and a likelihood ratio,
and the use of “Bayes Factor” seemed to disappear from forensics, being replaced
by the misnamed likelihood ratio.

Given its obvious importance, there has been an ongoing debate about how to
properly express the forensic value of evidence (NIST 2017). Some advocate for
the use of a single number (for example, Taroni et al. (2016)), while others advocate
for some sort of interval quantification that would provide the decision-maker with
an idea of the uncertainty in the analysis (for example, Lund and Iyer (2017) and
Sjerps et al. (2016)). While the debate surrounding the appropriateness of using
intervals to quantify the value of evidence is outside the scope of the discussion in
this chapter, we believe that the aforementioned arguments are confounded with
a debate as to what the value of evidence actually means. In response to these
debates, one forensic practitioner provided a valuable opinion on the matter of
expressing the value of evidence: there is a gap between the sophistication of
methods proposed by statisticians and the statistical knowledge of a typical forensic
practitioner (Nordgaard 2016). We appreciate this viewpoint and hope to provide
information in this chapter to help fill the gap.

At this point, you may be wondering to yourself, “Why does any of this matter?”
Our reasoning is this: there have been several reports calling for stronger statistical
foundations in forensic evidence interpretation (NRCC 2009, PCAST 2016). In
order for that to happen, researchers across disciplines need to work together and
that requires good communication. If the language were consistent between statis-
ticians and forensic scientists, then there would be much less confusion regarding
quantifying evidential value in the future. As the field of forensic statistics advances,
it is becoming increasingly important to make the distinction between a Bayes
Factor and a likelihood ratio to reduce the ambiguity surrounding an important and
complex area of research. First, we will clarify several terms involving “Bayes.”
Then, we will discuss some of the current viewpoints regarding the relationships
between the Bayes Factor and likelihood ratio. Finally, we will summarize the
similarities and differences between a Bayes Factor and a likelihood ratio for the
forensic identification of source problems.

2The Two-Stage approach is a valid method of forensic evidence interpretation that is currently
used in practice. We will not discuss the Two-Stage approach in this chapter because it does not
result in a value of evidence (as defined by Good (1991)).
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10.2 The “Bayes” Confusion

Following Lindley, a number of researchers (Taroni et al. (2016), for example) and
governing bodies (for example, the European Network of Forensic Science Institutes
(ENFSI 2015)) have recommended the “Bayesian” approach to forensic evidence
interpretation. The Bayesian statistical paradigm is distinct from the classical, or
sometimes called the Frequentist, paradigm of statistics by explicitly incorporating
subjective personal beliefs into the analysis.

It is often misunderstood that any statistical analysis which uses Bayes Theorem
is Bayesian. This seems to be a connection that is made solely on the sameness
of the names. In reality, Bayes Theorem is a tool that can be used for all types
of probability. For example, classical statisticians use Bayes Theorem as a way
to compute conditional probabilities when the outcome of one event partitions the
sample space, i.e. P(B1 ∪ B2 ∪ · · · ∪ Bn) = 1 and P(Bi ∩ Bj ) = 0 for all i �= j ,

P(Bj |A) = P(A|Bj )P (Bj )∑n
i=1 P(A|Bi)P (Bi)

.

Bayes Theorem is often used in medical diagnostic applications. For example, a
doctor examines a patient who presents a set of symptoms, A, and it is known that
there are n possible unique causes, B1, B2, . . . , Bn, of these symptoms. The doctor
will need to find the most likely cause Bk of the symptoms A in order to treat the
patient. This can be done via the Bayes Rule Classifier which says the most likely
cause is the one with the largest conditional probability, P(Bk|A) > P(Bj |A) for
all j �= k (Izenman 2013). Under the classical paradigm of statistics, the doctor
would use “objective” population data in order to define the probability P(Bi),
i.e. the relative frequency of observing the disease Bi in the population (where
there is no restriction on the set of symptoms presented with the diseases). In
contrast, under the Bayesian paradigm the doctor may also incorporate his/her/their
own personal “subjective” beliefs into the definition of P(Bi) based on experience
and other relevant information available to the doctor at that time. For example,
these probabilities may be altered if the doctor has knowledge (while other doctors
may not have the knowledge, making it a personal experience) that a new vaccine
has nearly eradicated one of the diseases since the population frequencies were
last determined. To be clear, we are using the term “subjective” in a very broad
sense, to cover a variety of Bayesian approaches for assigning probabilities. This
includes the example of subjective beliefs given above (see Savage (1972) for
further details), as well as other approaches utilizing conjugate, default, or non-
informative prior probabilities (see Berger (1985) for further details).3 It is worth
noting at this point that the designation of population frequencies as “objective” and

3A full treatment of the numerous approaches for assigning probability in the Bayesian paradigm
is beyond the scope of this chapter, but the literature on this subject is rich.
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beliefs as “subjective” is intended to help clearly separate the two different types of
probabilities, and it does not mean that one is superior to the other.

The decision process via the Bayes Rule Classifier is distinct from the rec-
ommended Bayesian decision process in forensic science. The confusion between
Bayesian statistics and Bayes Theorem is likely caused by the strong reliance on the
odds form of Bayes Theorem when quantifying the evidential value in forensics. In
general, the odds form of Bayes Theorem can be used to compare the conditional
probabilities of any two outcomes of the partitioning event, i.e. P(Bk|A) against
P(Bj |A) for j �= k by taking the ratio of the probabilities given by Bayes Theorem:

P(Bk|A)

P (Bj |A)
=

(
P(A|Bk)P (Bk)∑n
i=1 P(A|Bi)P (Bi)

)

(
P(A|Bj )P (Bj )∑n
i=1 P(A|Bi)P (Bi)

) = P(A|Bk)P (Bk)

P (A|Bj )P (Bj )
.

In the forensic context, the odds form of Bayes Theorem is used as a decision tool
for comparing two competing hypotheses after some evidence has been collected
(Lindley 1977).

P
(
Hp|e, I

)

P (Hd |e, I )
︸ ︷︷ ︸
PosteriorOdds

= P
(
e|Hp, I

)

P (e|Hd, I)
︸ ︷︷ ︸
BayesFactor

× P
(
Hp|I

)

P (Hd |I )
︸ ︷︷ ︸
PriorOdds

(10.1)

Starting with the prior odds,4 the Bayes Factor is assigned a value and then
multiplied by the prior odds to arrive at the posterior odds.5 Here, P represents
a measure of probability, the evidence is denoted by e, the relevant background
information by I , and the two competing hypotheses by Hp and Hd which are
intended to give competing viewpoints from the “prosecution” and the “defense”
that explain how the evidence came to be.

Now, let us take a closer look at each of the components of Eq. (10.1), starting
with the measure of probability P . Like the Bayes Rule Classifier, P can be
defined in either the Bayesian or the classical way. Under the classical definition
of probability, both the Bayes Rule Classifier and the odds form of Bayes Theorem
cannot be used as decision tools for quantifying evidential value since they lead to
useless prior probabilities for hypotheses (either 0 or 1 depending on the ground
truth). Under the Bayesian definition, using the Bayes Rule Classifier as a decision
tool would require an exhaustive partitioning of the sample space. This means that

4Note that this does not make sense in the classical framework because the probability of a
hypothesis is either 0 or 1, depending on the ground truth, leading to a prior odds of either 0
or undefined (infinite).
5Again, this does not make any sense in the classical framework because the Bayes Factor becomes
irrelevant. Regardless of its value, the prior odds will determine the resulting posterior odds, either
0 or undefined.
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the forensic scientist would need to explore all possible explanations of the evidence
(this is not a feasible method due to many realistic constraints). However, using
the Bayes Factor as a decision tool requires only that the hypotheses be mutually
exclusive/disjoint (and there is no requirement that the hypotheses be exhaustive).
Thus far in the discussion, the Bayesian definition of probability is the only viable
option for quantifying the value of forensic evidence via the odds form of Bayes
Theorem. Therefore, it is the definition of the probability in the Bayesian way that
makes this method Bayesian (and not the fact that it uses Bayes Theorem).

Using the style of Larry Wasserman’s blog post (Wasserman 2012), we can
summarize the main points of this section by:

Bayesian Probabilities �= using Bayes Theorem
Bayes Theorem �= Bayes Rule Classifier
Bayes Rule Classifier �= Bayes Factor

10.3 The Bayesian Paradigm

Now that we have clarified the role of Bayesian probabilities in the odds form of
Bayes Theorem, there are several possible options for dealing with the remaining
components of Eq. (10.1). In the case that the two competing hypotheses imply a set
of parametric modeling assumptions for the evidence, denoted by Mp for the model
corresponding to the prosecution hypothesis and Md for the model corresponding
to the defense hypothesis, then the Bayes Factor (BF) can be expressed as follows:

BF(e) =
∫

f (e|θ,Mp) π(θ |Mp) dθ
∫

f (e|θ,Md) π(θ |Md) dθ
(10.2)

where θ denotes the collection of all parameters, f denotes the likelihood function
for the evidence, and π represents the joint prior density (assuming that the densities
exist)6 for all the parameters. The BF given in Eq. (10.2) is indeed the value of
evidence in the Bayesian paradigm.

In order to simplify matters going forward, we will only consider situa-
tions where the evidence is characterized by features (as opposed to pairwise
(dis)similarity scores), and we will assume that the evidence has been generated
according to a chosen set of statistical models that result in parametric likelihood
functions denoted by f in Eq. (10.2). In addition, we will consider only the two
forensic identification of source frameworks detailed in Ommen and Saunders
(2018). To briefly summarize, the goal of the identification of common source
problem is to answer the question,

Do the two sets of evidence, each with unknown source, originate from the same unspecified
source?

6Note in Eq. (10.2) the explicit use of prior probabilities for the parameter. This is another
distinguishing characteristic of the Bayesian paradigm that is not present in the classical paradigm.
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This type of problem is particularly useful in an investigative setting, where the
goal is to connect two crime scenes before any person of interest has been identified.
In contrast, the identification of specific source problem tries to answer the question,

Did the evidence with unknown source originate from this specific source?

and is relevant to situations where a person of interest has been identified, and
you want to link this person to the crime scene via the evidence. Under these
two frameworks, the source-level propositions, the corresponding sampling models,
and the forms of the likelihood functions are all described in a recent paper by
Ommen and Saunders (2021). In addition, the entire collection of evidence can be
split into subsets of evidence with unknown source(s) (often called the recovered
evidence) and with known source(s) (often called the control evidence) (Ommen
and Saunders 2021). The evidence with known sources includes a population of
alternative sources, i.e. background database. In the remainder of the chapter, the
subset(s) of evidence with unknown source will collectively be denoted eu and the
entire collection of evidence will be denoted e.

10.4 The Likelihood Paradigm

A natural alternative approach to the Bayesian paradigm is the likelihood paradigm7

because its goals are similar to the Bayesian decision framework, but it does not
allow for the use of subjective beliefs. The idea of the likelihood paradigm is to find
the strength of support the data provide to the two competing hypotheses and stop
short of making any decision regarding which hypothesis to choose (Royall 1997).
The main workhorse of the Likelihood paradigm is the likelihood principle:

If Hypothesis A implies the probability that X = x is pA(x), while Hypothesis B implies
the probability that X = x is pB(x), then the observation X = x is evidence supporting
Hypothesis A over Hypothesis B if and only if pA(x) > pB(x) and the Likelihood Ratio
pA(x)/pB(x) measures the strength of that support. (Royall 1997)

In this sense, the likelihood paradigm can be considered a “data-driven”
paradigm as opposed to the “belief-driven” Bayesian paradigm.8 Another
reason that the likelihood paradigm of statistics is being considered for forensic
applications is that its overarching theme aligns nicely to the role of the forensic
scientist when presenting evidence in the justice system.

The ultimate posterior probability, of guilt or innocence and their corresponding legal
verdicts, is always a question for the fact-finder . . . Expert witnesses must not trespass on
the province of the jury by commenting directly on the accused’s guilt or innocence, and

7Davis et al. (2012) use the likelihood paradigm for handwriting evidence.
8Again, this distinction is not intended to indicate that one method is better than the other or to say
that the Bayesian paradigm does not allow for probabilities that are informed by the data. This is
just to emphasize one particular distinction between the paradigms.
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should generally confine their testimony to presenting the likelihood of their evidence under
competing propositions. (Aitken et al. 2010)

In the case that the two competing hypotheses imply a set of parametric modeling
assumptions for the evidence, then the likelihood ratio (LR) function is defined by

LR(θ; eu) = f (eu|θ,Mp)

f (eu|θ,Md)
(10.3)

which is a function of the parameters, θ , where eu is only the evidence with unknown
source and Mp and Md are the models implied by the prosecution and defense
hypotheses, respectively. Note that we prefer to denote the likelihood function
by f for notational consistency between the two different paradigms. Under the
likelihood paradigm, it is this function that forensic scientists should be presenting
to a decision-maker upon the conclusion of their analysis (Royall 1997). Precisely
how they should visually or graphically present this function, and then what the
decision-maker should do with it once they have it, are two topics best left to future
research and discussion.

When there is no uncertainty regarding the modeling parameter, then the LR is
the value of evidence in the likelihood paradigm, and it is also equivalent to the
BF from the Bayesian paradigm. In this case, the true LR takes the simplistic form
below,

LR(θ0; eu) = f (eu|θ0,Mp)

f (eu|θ0,Md)
. (10.4)

Here, the value of θ is known and is the “true parameter value” defined by the
sampling models for the evidence. We denote the “true parameter value” by θ0 and
consequently, the true LR represents a single value of the LR function. There are rare
circumstances in real life where it is reasonable to assume that the true parameter
value is known, such as simple DNA. This is due to the fact that single-source DNA
has a strong scientific foundation where population frequencies can be estimated
with a high degree of certainty. This special case where the BF and LR are equivalent
may be partially to blame for the confusion between the two statistics since advances
in DNA evidence interpretation were heavily researched and publicized. However,
in most practical applications the value of θ0 is rarely known with any degree of
certainty. Therefore, the value of the true LR is fixed, but unknown. In contrast,
when there is uncertainty regarding θ , the LR and the BF are not equivalent.9 In the
following section, we will show the conditions needed for the equivalence under the
scenario of uncertainty in θ .

9Davis et al. (2012) are working in the situation that the parameters are unknown, and therefore all
resulting likelihood ratio-based methods of evidence interpretation are ad-hoc.
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10.5 Debates between the BF and LR

Academic debates regarding how to quantify the value of forensic evidence are so
influential for future research directions and policy decisions that we believe the
debates warrant additional attention, especially since the positions can be made
clearer by explicitly stating which statistical paradigm is being recommended. First,
consider the debate (as we have interpreted it) between Taroni et al. (2016) and
Sjerps et al. (2016) regarding the appropriateness of interval quantifications for the
value of evidence. This debate is so important that it sparked an entire special issue
devoted to this topic in Science and Justice (Morrison 2016). To summarize, Taroni
et al. (2016) advocate for a single number quantification of the value of evidence
because they define the BF to be the value of evidence while Sjerps et al. (2016)
advocate for interval quantification of the value of evidence because they define the
value of evidence to be the LR. The reasoning is that Taroni et al. (2016) very
clearly define probability in the subjective Bayesian way, whereas Sjerps et al.
(2016) consider the Bayesian approach to dealing with parameter uncertainty as
one possible option of many. Sjerps et al. (2016) are also open to other options for
parameter estimation that correspond to using the likelihood paradigm.

Consider the following result from Ommen and Saunders (2021): the BF can be
expressed by

BF(e) =
∫

LR(θ; eu) π(θ |e,Md) dθ (10.5)

where π(θ |e,Md) is the posterior density for θ given the entire set of evidence e

where the evidence has been generated according to the defense model Md (Ommen
and Saunders 2021). In other words, the BF is the expected value of the LR function
(with respect to the subjective belief about the uncertain parameter). Under the
Bayesian paradigm, (Taroni et al. 2016) recommend handling parameter uncertainty
by performing the integration given in Eq. (10.5), and then providing the BF as the
value of evidence. Under the likelihood paradigm, there are several possible ways of
handling parameter uncertainty. For example, Sjerps et al. (2016) suggest providing
the “plug-in” LR as an approximate value of evidence

LR(θ̂; eu) (10.6)

where θ̂ is an appropriate estimator of θ in addition to an interval for the LR
derived from the interval obtained by estimating θ with θ̂ . Therefore, the difference
in opinion regarding the use of intervals follows inherently from the fact that
the likelihood paradigm and the Bayesian paradigm have different methods of
uncertainty quantification.

Another topic surrounding the debates concerning interval quantifications for
the value of evidence is whether or not an “ideal value” for quantifying forensic
evidence exists. We believe the essence of this debate is the paradigm of statistics
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you choose to use for evaluating forensic evidence. If you subscribe to the classical
paradigm, it is likely that you will define this ideal value as the one that corresponds
to the true LR given by Eq. (10.4) (Morrison and Enzinger 2016). If you subscribe
to the Bayesian paradigm, it is likely that you will not believe an ideal value for the
BF exists since it represents a state of belief as opposed to a state of nature (Berger
and Slooten 2016, Biedermann et al. 2016, Taroni et al. 2016). While the latter
opinion is certainly justified within the Bayesian paradigm of statistics, it has caused
some discord within the forensics community as to whether or not the Bayesian
approach is justified. For example, many researchers and policy-makers agree with
the opinion given in Martire et al. (2017):

Indeed, unless the practitioner’s beliefs converge on the truth, their opinions cannot assist
the court to reach accurate outcomes.

The following theorem says that under the Bayesian paradigm and given very
mild assumptions, an ideal value for the Bayes Factor is guaranteed to exist, and
that the practitioner’s beliefs will in fact converge on the “truth.”

Theorem 1 (Bayes Factor Doob’s Consistency) Given a fixed observation of
unknown source evidence eu, suppose that LR(θ; eu) is a bounded random variable
with respect to �(θ). Let the assumptions of Doob’s Consistency Theorem be
satisfied. Then for every prior probability measure �(θ) on the parameter space
�, the sequence of Bayes Factors, BF(e), converges almost surely to the likelihood
ratio, LR(θ; eu), as n → ∞ for �-almost every θ and for P∞

θ -almost every e∞.

The proof of this result is given in the Appendix. Note that the result relies
on the assumptions that there is a fixed pair of hypotheses that imply a fixed
set of parametric modeling assumptions for the evidence, and a fixed method of
measuring and structuring the evidence. This result allows the prior distribution
for the modeling parameters to vary from person to person provided that those
distributions have a non-zero overlapping portion.

Finally, Theorem 1 shows the argument that objective probabilities are better
because they lead to an approach where the value of evidence has an ideal value
is baseless because an ideal value exists when using subjective probabilities as
well. Another criticism of Bayesian beliefs is that many people fear personal
experience and “guessing” often serves as a substitute for “objective,” or “data-
driven” probabilities. There is a good quote from a blog post by Larry Wasserman
that nicely summarizes the alternative point of view:

“Mindless Frequentist Statistical Analysis is Harmful to Science.
Mindless Bayesian Statistical Analysis is Harmful to Science.” (Wasserman 2012)

Therefore, “objective” frequencies and “subjective” beliefs both require a great
deal of thought and care in order to be considered good science.
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10.6 Similarities between the BF and LR

So far, we have tried to convince you that, within their respective paradigms, both
the Bayesian and likelihood approaches to evidence interpretation yield valid results
via the BF and the LR, respectively. Several other similarities between the BF and
LR can be seen by comparing Eqs. (10.2)–(10.4). The first similarity is that you need
to collect evidence in order to quantify the value of either the BF or LR. The second
similarity is that you must assume that the data have been generated according to a
particular statistical model in order to quantify either the BF or the LR.

Another similarity between the BF and the LR is the system for interpreting the
resulting value. There are two broad categories of systems for interpreting the value
of evidence: quantitative and categorical/verbal. Under the quantitative system, the
value of evidence is interpreted differently depending on whether the value is above,
below, or near one. Let V denote the value of evidence in either the Bayesian (i.e.
BF(e) = V ) or the likelihood (i.e. LR(θ0; eu) = V ) paradigm. When the value of
evidence is greater than one (V > 1), it can be interpreted in the following way
(ENFSI 2015):

It is V times more probable to observe the evidence if Hp is true than if Hd is true.

When the value of evidence is less than one (V < 1), it can be interpreted as
(ENFSI 2015):

It is V times more probable to observe the evidence if Hd is true than if Hp is true.

When the value of evidence is equal to one (V = 1), it can be interpreted by
(ENFSI 2015):

The evidence provides no assistance in addressing the issues covered by Hp and Hd .
(i.e. It is equally probable to observe the evidence if Hp is true or if Hd is true.)

Under the categorical/verbal system, the evidence is interpreted according to
Table 10.1 which has been reproduced from the ENFSI Guidelines for Evaluative
Reporting (ENFSI 2015). This table can be modified for values of evidence that are
less than one by taking the reciprocal of the first column (for example, the range 2–
10 becomes the range 0.1–0.5) and switching the order of Hp and Hd in the second
column. This table provides one possible system of verbal equivalence statements,
although others exist. There are several advantages and disadvantages of verbal
equivalent scales. One advantage is that they offer an alternative to providing actual
numbers for the value of evidence which has been shown to result in inconsistent
results since different people interpret the magnitude of the numbers differently
(Thompson and Newman 2015). One disadvantage is that the verbal statements
can also mean different things to different people. For example, without looking at
Table 10.1, which statement seems stronger to you, “far more probable” or “much
more probable” or “appreciably more probable”? When these types of statements
are offered in absence of the defining table, the issue of misinterpreting the strength
of evidence remains unresolved.
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Table 10.1 ENFSI verbal equivalence scale for value of evidence (ENFSI 2015)

Value of evidence Verbal equivalent expression

1 The forensic findings do not support one proposition over the other.

The forensic findings provide no assistance in addressing the issue.

2–10 . . . provide weak support for Hp relative to Hd .

. . . are slightly more probable given Hp relative to Hd .

10–100 . . . provide moderate support for Hp relative to Hd .

. . . are more probable given Hp relative to Hd .

100–1000 . . . provide moderately strong support for Hp relative to Hd .

. . . are appreciably more probable given Hp relative to Hd .

1000–10,000 . . . provide strong support for Hp relative to Hd .

.. are much more probable given Hp relative to Hd .

10,000–1,000,000 . . . provide very strong support for Hp relative to Hd .

. . . are far more probable given Hp relative to Hd .

1,000,000 and up . . . provide extremely strong support for Hp relative to Hd .

. . . are exceedingly more probable given Hp relative to Hd .

10.7 Differences between the BF and LR

So far, we have defined the BF to be the value of evidence in the Bayesian paradigm
and the true LR to be the value of evidence in the likelihood paradigm. One major
difference is the definition of probability, the BF incorporates subjective probability,
whereas the LR relies on objective probability. Recalling the debate between Taroni
et al. (2016) and Sjerps et al. (2016), one simple explanation of the difference
between the Bayesian approach and the likelihood approach to quantifying the
forensic value of evidence is whether you choose to find the expected value of
the LR function or whether you choose to “plug-in” an estimate of the parameter.
Several other differences between the BF and LR can be seen by comparing
Eqs. (10.2)–(10.4). The LR differs from the BF because the LR only depends on
the unknown source (recovered) evidence, whereas the BF depends on the entire
collection of evidence including the background database. Additionally, computing
the exact value of the LR requires that you must know the values of the parameters
that correspond to the statistical model (or that the parameters can be estimated
with a high degree of certainty). In contrast, computing the BF requires you to only
characterize your belief about the values of these parameters by a joint prior density.
As a consequence, one major difference between the two is that the value of the LR
will be the same for everyone, but the value of the BF can be different from person
to person.
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10.8 Discussion

To paraphrase from Wasserman (2012), Bayesian methods have good Bayesian
properties and frequentist methods have good frequentist properties. As noted by
Royall (1997), combining the two results in ad-hoc methods without the intrinsic
properties of either. These ad-hoc methods will necessarily need further justification
before they can be used.

In hopes of making this topic much clearer for your future endeavors, we leave
you with the following summary of the similarities and differences between BFs
and likelihood ratios.

• The BF is the value of evidence and the log of the BF is the weight of evidence.
The BF is a Bayesian statistic because it uses subjective probability.

• The LR is an important statistic in the Likelihood paradigm because it conforms
to the likelihood principle and uses objective probability.

• It is important to distinguish between the BF and LR for forensic evidence
interpretation. Under standard conditions, the BF and the LR are not equivalent.

• You must have “data” in order to compute both BFs and LRs. The LR depends
only on the “data” from the unknown source evidence, whereas the BF depends
on the “data” from the entire set of evidence including the background database.

• In order to quantify either the BF or the LR, you must assume that the data have
been generated according to a particular statistical model. In order to compute
the exact value of the LR, you must know the values of the parameters that
correspond to this statistical model. In order to compute the BF, you do not
need to know, but your belief about the values of these parameters must be
characterized by a joint prior density.

• The value of the LR (known or not) is the ideal value for a BF. This ideal value
can only be reached by the BF when sample sizes for the evidence from known
sources are very large (or when the value of the parameter is known).

10.9 Conclusion

In an effort to strengthen the statistical foundations of forensic evidence interpreta-
tion, it is necessary to stop the common practice of calling Bayes Factors “likelihood
ratios,” and vice versa. It is important to distinguish between the BF and LR since
the two statistics differ in several ways. The importance of this distinction is evident
in the current debates surrounding various aspects of the interpretation process
for forensic evidence. While the interpretation of the resulting BF or LR is the
same, the values (both magnitude and direction of support) themselves can be quite
different. These similarities and differences are paramount to good research and
policy-making in the future.
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Appendix

For ease of reference, Doob’s Consistency Theorem is reproduced from van der
Vaart (1998):

Theorem 2 (Doob’s Consistency Theorem) Suppose that the sample space
(X ,A) is a subset of Euclidean space with its Borel sigma-field. Suppose that the
random vectors X1, · · · , Xn are independent and identically distributed according
to the probability measure Pθ , and that Pθ �= Pθ ′ whenever θ �= θ ′. Then for every
prior probability measure � on � the sequence of posterior measures is strongly
consistent for �-almost every θ .

Now, the proof of the BF Doob’s Consistency Theorem will proceed in two parts:
first we will prove the case for the common source setting, and then we will prove
the case for the specific source setting.

In order to facilitate the consistency results, we will need to define some
additional notation. In the usual setting for the common source problem, the
evidence will have a fixed number of sources from the alternative source population,
na . However, the following result explores the behavior of the BF as the number of
sources in the alternative source population increases. Let Ea,na denote a sequence
of random variables corresponding to the generation of hierarchical samples from
the alternative source population ea,na where na is the index that denotes the
varying number of sources in the alternative source population with a fixed number
of samples from within each source. Also, let P

na

θa
denote the joint probability

measure on Ea,na for all θa ∈ �a . Finally, let ea,∞ denote an infinite sequence of
observations from the alternative source population with corresponding probability
measure P∞

θa
which is the limiting form of P

na

θa
as na → ∞.

Theorem 3 (Common Source Bayes Factor Consistency) Given a fixed observa-
tion of eu1 and eu2 , suppose that LRcs(θa; eu1 , eu2) is a bounded random variable
with respect to �(θa). Let the assumptions of Doob’s Consistency Theorem be
satisfied. Then for every prior probability measure �(θa) on �a , the sequence of
Bayes Factors,BFcs(eu1 , eu2 , ea,na ), converges almost surely to the likelihood ratio,
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LRcs(θa; eu1 , eu2), as na → ∞ for �-almost every θa and for P∞
θa
-almost every

ea,∞.

Proof For this proof, let ena = {eu1 , eu2 , ea,na } denote an observation of the entire
collection of evidence with alternative source population sample size na , and let
�na (θ

′
a|ena ,Md) denote the cumulative distribution function corresponding to the

posterior measure on the parameter space given the an observation of the entire
collection of evidence under the defense model using the standard abuse of notation.
We will also let δθa (θ

′
a) denote the cumulative distribution function corresponding to

the probability measure degenerate at θa . By Doob’s Consistency Theorem (van der
Vaart 1998), for �a-almost every θa and for P∞

θa
-almost every ea,∞, then as na →

∞

�na (θ
′
a|ena ,Md) → δθa (θ

′
a) (A.1)

for all continuity points θ ′a of δθa . Let D be the class of all Cadlag functions (van der
Vaart and Wellner 2000) and let g : D #→ R be a continuous map such that g(D) =∫

f dD for D ∈ D and bounded, continuous function f . Then Eq. (A.1) and the
Continuous Mapping Theorem, imply that

g(�na (θ
′
a|ena ,Md))

as−→ g(δθa (θ
′
a))

for all continuity points θ ′a of δθa , for �a-almost every θa , and for P∞
θa
-almost every

ea,∞. Using alternative notation, this means that as na → ∞
∫

LRcs(θ
′
a|ena ,Md)d�na (θ

′
a|ena )

as−→
∫

LRcs(θ
′
a|ena ,Md)dδθa (θ

′
a)

for �a-almost every θa and for P∞
θa
-almost every ea,∞. Therefore, as na → ∞

BFcs(ena )
as−→ LRcs(θa; eu1 , eu2)

for �a-almost every θa and for P∞
θa
-almost every ea,∞. ��

In the usual setting for the specific source problem, the evidence will have a fixed
number of sources from the alternative source population, na , and a fixed number
of samples from the specific source, ns . However, the following result explores
the behavior of the BF as na and ns both increase. Let Ea,na be defined as in
the common source problem and let Es,ns denote a sequence of random variables
corresponding to the generation of samples from the specific source es,ns where ns

is the index that denotes the varying number of samples. For simplicity, we will
assume that na = ns ≡ n although the proofs can be altered to accommodate
more flexible relationships between the sample sizes. Also, let P n

θ denote the joint
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probability measure on Ea,na and Es,ns for all θ ∈ � where � is the joint parameter
space for θs and θa . Next, let ea,∞ be defined as in the common source problem and
let es,∞ denote an infinite sequence of observations of the random variable Es,∞.
Finally, let en = {eu, es,ns , ea,na } denote the entire collection of evidence, where e∞
denotes an infinite sequence of observations from both the specific source and the
alternative source population with corresponding probability measure P∞

θ which is
the limiting form of P n

θ as n → ∞.

Theorem 4 (Specific Source Bayes Factor Consistency) Given a fixed observa-
tion of eu, suppose that LRss(θ; eu) is a bounded random variable with respect to
�(θ). Let the assumptions of Doob’s Consistency Theorem be satisfied. Then for
every joint prior probability measure �(θ) on �, the sequence of Bayes Factors,
BFss(en), converges almost surely to the likelihood ratio, LRss(θ; eu), as n → ∞
for �-almost every θ and for P∞

θ -almost every e∞.

Proof For this proof, we will use the standard abuse of notation and let
�n(θ

′|en,Md) denote the cumulative distribution function corresponding to the
posterior measure on � given the observation en under the defense model. We
will also let δθ (θ

′) denote the cumulative distribution function corresponding to
the probability measure degenerate at θ . By Doob’s Consistency Theorem (van der
Vaart 1998), for �-almost every θ and for P∞

θ -almost every e∞, then as n → ∞

�n(θ
′|en,Md) → δθ (θ

′) (A.2)

for all continuity points θ ′ of δθ . Let D and g : D #→ R be defined as above for the
proof of Theorem 3. Then the Continuous Mapping Theorem implies that

g(�n(θ
′|en,Md))

as−→ g(δθ (θ
′))

for all continuity points θ ′ of δθ , for �-almost every θ , and for P∞
θ -almost every

e∞. Using alternative notation, this means that as n → ∞
∫

LRss(θ
′; eu)d�n(θ

′|en,Md)
as−→

∫
LRss(θ

′; eu)dδθ (θ
′).

Therefore, for �-almost every θ and for P∞
θ -almost every e∞,

BFss(en)
as−→ LRss(θ; eu)

as n → ∞. ��
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Chapter 11
Statistical Issues in Assessing the
Reliability of Eyewitness Identification

Karen Kafadar

11.1 Introduction

Eyewitness identification (EWI) plays a critical role in criminal cases, from the
investigation of the event to the courtroom trial. Almost no other evidence can be as
powerful to a jury as a victim who points to a defendant and says, “Yes, he’s the one
who raped me.” Yet, as we all know from our own personal experiences, memory can
be fallible. The Innocence Project found that over ∼70% of 375+ DNA exoneration
cases involved mistaken eyewitness identifications.1 Wells et al. [43], Clark et al. [9]
as the source of filler error rates (eyewitness mistakenly identifies a known-innocent
filler as the perpetrator) is as high as 21.2% when the true perpetrator was present
and 34.5% when the true perpetrator was absent. For a procedure commonly used in
law enforcement proceedings, these error rates are frighteningly high. What factors
lead to such high error rates? Can the levels of any of those factors be controlled by
law enforcement to ensure lower error rates?

Errors in EWI can arise from: (a) identifying an innocent suspect from a lineup
(false positive), or (b) failure to identify the correct perpetrator from a lineup when
the perpetrator is present (false negative). Either error has severe consequences: the
innocent suspect goes to jail and the true perpetrator is free to commit further crimes.

A tragic, yet not rare, example of memory infidelity arose in the case of Jennifer
Thompson who, on a July evening in 1984 as a college student in North Carolina,
was sexually assaulted. From Thompson’s sketch, the police collected a series of
potential suspects and asked her to identify her attacker from a photo lineup. She

1innocenceproject.org, accessed 1 September 2021.
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tentatively selected Ronald Cotton from the lineup. The police detective asked,
“You’re sure?” She replied, “Positive. Did I do OK?” The detective reassured her:
“You did great.” Later, Thompson was asked again to identify her attacker from
a second, physical lineup of potential suspects, in which only Ronald Cotton was
included from the first lineup. Not surprisingly, only Cotton looked familiar to her
(from the previous lineup), and she confidently picked the same man. Ronald Cotton
spent over 10 years in prison before he was exonerated by DNA evidence in 1995.2

The processes of encoding the event, consolidating the information in the brain,
and reconstructing it at a later time, are all imperfect, leading to memory degradation
and misconstructed events. When those imperfect memories lead to misidentifica-
tions, the consequences are serious, both in convicting innocent suspects and in
freeing the true culprit to commit further crimes.

Despite much research on memory, relatively few factors have been considered
in eyewitness identification (EWI) research, especially in view of its critical role in
criminal cases. It can be the most heavily weighted evidence in a case where the
available forensic evidence is either lacking (e.g., insufficient biological material
for a DNA analysis) or has questionable probative value (e.g., bite marks). In view
of law enforcement’s reliance on eyewitnesses, the National Academy of Sciences
convened a Committee in 2013 to conduct an in-depth study of its procedures and
practices, to better assess EWI error rates, and especially to identify the factors
that contribute to its reliability or lead to misidentifications. The Committee issued
its report in October 2014 ([31] hereafter, “NAS report”) and described aspects of
vision and memory, environmental factors, and law enforcement procedures, all of
which influence the accuracy of eyewitness identification. The report also discussed
the use of eyewitnesses in judicial proceedings and evaluated the laboratory studies
that had been conducted to date, as well as the statistical methods used to analyze
the data from them and to draw conclusions from them. This chapter discusses these
aspects, with particular emphasis on the design of experiments and the statistical
methods that have been, and can be, used to analyze data from EWI experiments.

I chose this topic for this special volume dedicated to Steve Fienberg because of
his decades-long work on statistical methods that he developed for data to ensure the
equitable administration of justice, and because of his important role on the National
Academy of Sciences’ Report Review Committee that led to a far better report than
would have been possible without him. I will end this chapter by talking about that
role, and all that I learned from him during the course of writing the NAS report.

11.2 Memory and Vision

While one may believe that one’s memory can be faithfully recalled like a
photograph, in fact, memory is fallible and can be influenced by many factors.
Memories of events involve three processes: encoding (placing aspects of the

2For the heartbreaking details of this case, see www.thestory.org/stories/2013-06/jennifer-
thompson.
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event into memory), storage (maintaining the aspects in memory), and retrieval
(subsequent recall of aspects from memory). Each stage of memory is subject to
degradation:

1. Encoding: Events may not be fully captured or encoded at the time of their
occurrence due to limited extent of short-term memory, distortion and interfer-
ence from effects of previous and/or subsequent events (including emotional,
behavioral, sensory, observational effects), visual acuity, passage of time, and
environmental conditions (e.g., poor lighting), among other factors.

2. Storage: The long-term retention of events can be reduced by the mere passage
of time, effects of intervening experiences that replace existing memories,
advancing age, and degree of associated emotion when the events occurred: “The
emotional content of stored memories is a factor that appears to promote long-
term retention; memories of highly arousing emotional stimuli, such as those
associated with a witnessed crime, tend to be more enduring than memories of
non-arousing stimuli” [31, p43].

3. Retrieval: Errors arise at this stage from many sources, including similarities
to aspects of previously encoded and stored memories (leading to confusion
between the events), loss of information about source of memory, and time.
Retrieving memory of events from many decades ago may be harder for some
people than those that occurred only last year; the opposite may be true for other
people. Some aspects of the event may be improperly solidified into memory by
the comments of others who unconsciously reinforce one’s erroneous statements
about the event.

In all phases, environmental conditions and behavioral factors (e.g., stress), as well
as the passage of time, can lead to further degradation in the accuracy of a witnessed
event.

With all these potential effects leading to memory degradation, why is eyewitness
identification even used? For some crimes, it may be the only evidence available.
For some crimes, latent fingerprints cannot be captured with sufficient quality to be
identifiable nor can DNA, even in trace amounts, be obtained; both can be expected
to have more reliability (consistency) and greater accuracy (fewer false positives and
false negatives) than EWI. Moreover, eyewitness testimony has been shown to be
extremely powerful in the courtroom: jurors are highly affected by the victim who
points to a defendant and says, “He is the one who attacked me. I am one hundred
percent confident.” But can eyewitness identification ever be one hundred percent
accurate and routinely trustworthy?

In 2014, the National Academies released a report, Identifying the Culprit:
Assessing Eyewitness Identification [31]. The report explained features of vision
and memory, and summarized much of the research that had been conducted on
factors affecting the accuracy and reliability of EWI. The report also discussed the
study designs that had been used for EWI experiments and the statistical methods
that have been used to analyze the data from these experiments. This chapter
describes some of the findings in that report, as well as subsequent studies that
have been conducted. This field of inquiry demonstrates the enormous value of
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cross-disciplinary research, which Steve Fienberg championed throughout his life
and impressed upon his students and collaborators all over the world.

11.3 Challenges in Assessing EWI Reliability

The study that led to the report [31] included psychologists, legal professionals, and
law enforcement personnel, as well as one lone statistician. Per the charge from the
Laura and John Arnold Foundation (now Arnold Ventures), the report discussed the
following issues [31, p.12].

1. Assess the existing body of scientific research related to EWI;
2. Identify research gaps in the current literature, and suggest appropriate research

questions to pursue that will further our understanding of EWI and that might
offer additional insight into law enforcement and courtroom practice;

3. Identify relevant research from fields outside of existing EWI research;
4. Offer recommendations to law enforcement for best practices and procedures for

conducting and reporting eyewitness identifications;
5. Offer recommendations for developing jury instructions;
6. Offer advice regarding the scope of a Phase II consideration of neuroscience

research and other areas of research that might affect EWI accuracy and
reliability.

Briefly, the report noted these issues:

1. Much of the published literature in this field comes from researchers in university
departments of psychology.

2. The existing studies have been conducted using college students or online
platforms (e.g., Qualtrics©, or Amazon Mechanical Turk©); neither is likely to
recreate the stress of a real-life incident. For example, the college student who
must participate in an EWI experiment as a psychology course requirement, or
the online participant who views a video of an attempted robbery (for a modest
participation fee), is not likely to experience the same degree of anxiety and stress
as would occur to a victim or witness of a real-life crime. These online platforms
for conducting experiments are popular, however, because many participants can
be recruited in a short period of time.

3. Most experiments in this field examine only one factor at a time, thereby prevent-
ing the exploration of interaction among factors that influence EWI reliability.
Even slightly more sophisticated designs, such as factorial and fractional factorial
experiments, were rarely conducted. (Admittedly, complex designs on human
subjects can be more difficult to execute than on components in production
environments.)

4. More statistical methods could be, but have not been, applied to analyze the
data from these experiments, and thus useful data are often ignored, because
researchers could not agree on how to incorporate the extra data.

This chapter describes these findings in more detail.
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11.4 Factors that Affect EWI Accuracy

Statisticians are accustomed to approaching problems by first identifying the task at
hand and then listing possible sources of variation that can affect the outcome. In
this case, the task can be described as one of binary classification:

Eyewitness Classification
“Guilty” “Innocent”

True status Guilty True+ False –
of suspect Innocent False + True –

In actual practice, a law enforcement officer invites the eyewitness to identify
the perpetrator from a lineup, which can be conducted in several ways. Thus,
the accuracy of each “binary classifier” (eyewitness) depends on many factors,
including both those that can be controlled by the law enforcement officer (e.g.,
procedures for conducting the lineup) and those that are beyond the control of law
enforcement (e.g., distance between eyewitness and the culprit at the time of the
crime). In the statistics design literature, the former factors are often called “signal
variables” (levels can be adjusted for maximizing the outcome) and the latter factors
are “noise variables.” In the EWI literature, the terms are “system variables” (signal)
and “estimator variables” (noise). Some of these factors include:

Signal (system) variables: Under control of law enforcement

• Protocol for lineup (e.g., live or photo; present simultaneously or sequentially)
• Number of people or photos in lineup (suspect plus “fillers”)
• Degree of similarities between suspect and fillers (“fair lineup” if very similar;

“biased lineup” if suspect stands out)
• Nature of instructions to eyewitness (e.g., delivered orally or in writing; short

or long)
• Presence or absence of feedback to eyewitness
• Request for confidence in identification (e.g., “How sure are you?” or “On a

scale of 0–5, how confident are you?”)
• Administering official is/is not “blind” (not involved) to the circumstances

of the event, including the eyewitness, crime type, location, and potential
suspects.

Noise (estimator) variables: Beyond control of law enforcement

• Eyewitness’s level of stress or trauma at time of incident
• Conditions affecting visibility (e.g., light or dusk or dark)
• Distance between eyewitness and perpetrator
• Presence/absence of threat (e.g., weapon)
• Presence/absence of distinctive feature (e.g., scar)
• Presence/absence of other distractions (e.g., people, physical structures)
• Common/Different race or ethnicity
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• Time between incident & report (retention interval)
• Age of eyewitness.

An important goal for law enforcement officers is to conduct EWI procedures
using levels of the signal variables that maximize accuracy while minimizing
variability, irrespective of the operating levels of noise variables in any given
situation. Thus, it is important to design experiments that vary more than one
factor at a time, especially because variables may not operate independently (Box,
Hunter, Hunter 2005). However, most studies vary only one factor at a time; e.g.,
lineup format (sequential versus simultaneous: [23, 30]) delay between incident
and the eyewitness’s identification for the police officers (Deffenbacher et al. [10],
Kensinger et al. [20]; Dodson et al. [12]), presence or absence of a weapon [14],
same versus different race [28], process instructions to eyewitness (fair versus
biased: [8]), and age [35]. Very few studies have varied multiple factors: distinctive
feature and lineup format [4, 5]; distinctive feature and weapon focus [6]; lineup
format, weapon focus, and distinctive feature [6]; and lineup format, weapon focus,
distinctive feature, cross/same race, and target present/absent [12]. The NAS report
[31] encouraged more factorial experiments.

Factorial experiments are common in several scientific fields, but they are
relatively (and surprisingly) sparse in the eyewitness literature. One reason for their
sparsity may lie in the need for advanced statistical methods to analyze the data
from them, methods that may be unfamiliar to researchers in the field. The next
section describes the most commonly used methods, followed by methods that can
take account of multiple factors (which also require adjustment for multiple testing).

11.5 Statistical Methods: “Sequential” versus
“Simultaneous”

As noted above, most studies evaluate the effect of a single factor on EWI accuracy,
and often by comparing only two levels of that factor. Many of the studies were
limited to considering the accuracy of identifications arising from only two levels
of a single “system variable”: photo lineup format is either “sequential” versus
“simultaneous;” i.e., photographs are presented to the eyewitness either one at a
time or all together in a “photo array.”3 In a simultaneous lineup, the witness
views all individuals at the same time, and either identifies one as the perpetrator
or reports that the person seen at the crime scene was not in the lineup. In a
sequential procedure, the witness views individuals one at a time and reports
whether or not each one is the person from the crime scene. The sequential

3See http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-
witness-identification-116329 for an example of a simultaneous lineup. The article notes the
challenges in constructing a fair lineup, which include the potential bias from different background
colors for all photographs and the instructions given to the eyewitness.

http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-witness-identification-116329
http://theconversation.com/police-photo-lineups-how-background-colours-can-skew-eye-witness-identification-116329
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procedure had been in practice for decades as a possible way to reduce false
identification rates, particularly after the supporting research by Lindsay and Wells
[23], who “concluded that sequential presentation of lineups can reduce false
identifications of innocent suspects by reducing eyewitnesses’ reliance on relative-
judgment processes.” In the intervening years, an extensive literature has compared
witness identification performance using simultaneous and sequential procedures.
These comparisons typically have used photo-arrays.

Until recently, most studies compared the performance of simultaneous and
sequential procedures in terms of a ratio of correct identifications (i.e., ‘hit rate’)
to false identifications (i.e., ‘false alarm rate’), a measure known in the eyewitness
identification literature as the “diagnosticity ratio” (DR). (The “diagnosticity ratio”
is also known in other disciplines by other names; e.g., “positive likelihood ratio”
or “LR+ = Likelihood Ratio of a Positive Call”; see [22] Section 4.1.) The ratio
corresponds roughly to confirming a positive ID; i.e., the diagnosticity ratio is
related to the probability that an eyewitness who makes a positive identification
correctly selected the true perpetrator. Most laboratory-based studies and systematic
reviews showed that, with standard lineup instructions informing the witness that the
perpetrator may or may not be present, the sequential procedure produced a higher
diagnosticity ratio. That is, when a “witness” (study participant) viewed a video of
a crime being committed, and later was asked to identify the culprit from a lineup,
the ratio of correct to false identifications was often higher with the sequential than
with the simultaneous procedure. Later research (e.g., [30]) proposed that the metric
used to assess EWI accuracy was incomplete; using a different metric, simultaneous
lineups led to higher accuracy. Which was correct?

A higher diagnosticity ratio (hit rate/false alarm rate) could result from a higher
hit rate, a lower false alarm rate, or some combination of the two (or from
some factors that affect either rate). Some early papers suggested that sequential
procedures lead to fewer false alarms without changing the hit rate, which results
in a higher diagnosticity ratio. More recent laboratory-based studies and systematic
reviews typically show that sequential procedures are associated with a somewhat
reduced hit rate accompanied by a larger reduction in the false alarm rate, thereby
yielding a higher diagnosticity ratio than for the simultaneous procedure. (Results
from these studies using the diagnosticity ratio have not been uniform: a recent field-
based study comparing sequential to simultaneous procedures in a limited number
of jurisdictions revealed a modest diagnosticity ratio advantage for the simultaneous
procedure; cf. [43].) In light of this laboratory-based evidence showing a higher
diagnosticity ratio for sequential lineups, many police agencies and policy makers
adopted sequential lineups as their preferred EWI procedures.

However, comparisons based on a single diagnosticity ratio collapsed over all
participants in that treatment arm (e.g., DR for sequential and DR for simultaneous)
typically do not definitively reveal whether one procedure is “better” than the other.
The EWI literature noted that a single diagnosticity ratio is affected by many factors,
most importantly (a) how well a witness can discriminate the suspect from innocent
members of the lineup and (b) by the witness’s tendency to pick or not to pick
someone from the lineup; this tendency is often termed response bias. In general,
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given the same hit rate, more conservative responding will tend to lead to fewer
false alarms than more liberal responding and hence produce a higher diagnosticity
ratio. Thus, a single diagnosticity ratio can be an incomplete performance measure,
because it fails to account for an important variable, namely response bias. As
noted earlier, a higher diagnosticity ratio (hit rate/false alarm rate) could result
from a higher hit rate, or from a lower false alarm rate (caused by “conservative”
responding), or both [29, 30, 32, 44]. The important point is that another variable
(here, response bias) affects the measure being used to compare performance,
and failure to take this variable into account can lead to naive comparisons. The
receiver operating characteristic (ROC) curve was proposed as a way to account for
“response bias” by using “expressed confidence level” (ECL) as a proxy for it. The
ROC curve here is a plot of the DR’s numerator, hit rate (HR, y-axis), versus the
DR’s denominator, false alarm rate (FAR, x-axis), calculated from the responses of
participants who expressed different levels of confidence in the identification. (In
general, the ROC curve is a plot of sensitivity versus (1 – specificity), for different
levels of a third variable; see; e.g., [2, 21].

Recognized, but often to a much lesser extent, is the fact that many other variables
besides a proxy for “response bias” could easily affect sensitivity, specificity, or the
diagnosticity ratio (see Sect. 11.6). Moreover, ECLs (expressed confidence levels)
may have severe shortcomings as a “proxy” for “response bias” that render it
insufficient for comparing two procedures, only some of which are listed below.

1. ECL is likely to be only an imperfect measure of response bias. A good measure
of response bias is essential for ensuring ROC is appropriate for comparing
performance of procedures. Little research has explored whether other measures
would be more sensitive, and less variable, in capturing the tendency toward
“conservative” versus “liberal” responding, nor how variable ECL might be
for an individual presented with exactly the same circumstances and the same
instructions at a later time.

2. Discriminability involves not only making a correct identification but also
making a correct exclusion. As a plot of hit rate versus false alarm rate, the ROC
curve captures the first aspect: the slope of this curve is the diagnosticity ratio at
different ECLs. The second aspect involves the ratio specificity/(1 – sensitivity),
or, using the terminology in the eyewitness literature, (1−FAR)/(1−HR); see
Sect. 11.6.

3. The ECL responses in a laboratory experiment are likely to be much different in
real-life, highly stressful conditions, which are very difficult (if not impossible)
to replicate in an academic setting.

4. An eyewitness’s ECL of “50%” might mean something different under one
procedure (e.g., “sequential”) versus another (e.g., “simultaneous”); that is, the
third variable on which the ROC is based could well depend on the procedures
that the ROC curves are designed to compare.

5. More than just ECL may affect the diagnosticity ratio; an ROC curve that
accounts for other variables may be more useful in evaluating two procedures
than an ROC curve based on only ECL (Sect. 11.6).
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6. In real life, law enforcement officials recognize the impracticality of asking an
eyewitness to quantify his/her stated ECL as “10%”, “20%”, . . . , “100%” and
rather will invite the eyewitness to express confidence in his/her own words. The
translation of a response such as “pretty confident” might indicate a “5” on a 5-
point scale for one law enforcement officer but a “4” for another officer, adding
to the uncertainty in ECL.

7. The use of ECL to distinguish diagnosticity ratios via an ROC curve is sensible
if ECL is related to accuracy. One would hope a more confident witness is more
accurate, but recent research acknowledges that the strength of this association
between ECL and accuracy likely depends on many factors, such as some of the
system and estimator variables already presented in the previous section (and
discussed further below); see also [36].

8. The points on an ECL-based ROC curve (false alarm rate, hit rate) for respon-
dents that expressed at least a stated level of confidence are estimates of “true”
proportions; a new sample of study participants will yield a different false alarm
rate, different hit rate, and different number of participants in that ECL category.
The uncertainties in these proportions are rarely displayed, but they should be,
and they can indicate different conclusions; see below.

9. Finally, ROC curves are often constructed by plotting the “hit rate” versus
“false alarm rate” at different levels of ECLs across all subjects in the study.
In laboratory experiments where the majority of eyewitness identification studies
have been conducted (and sometimes in field studies), the same subject might
be asked to view more than one condition, responding “10% confident” in one
condition but “50% confident” in another condition. The effects of this lack of
independence among subjects on the bias and variability in the estimated ROC
curve (which requires estimates of “hit rate” = sensitivity and “false alarm rate” =
1 – specificity) have yet to be quantified. Moreover, the plotted points themselves
have uncertainty (see below).

Incidentally, the procedures governing the administration of “sequential lineups”
that are used in laboratory settings may differ in substantive ways from those in
real life. For example, in a lab setting, the “eyewitness” sees each photo only once
and cannot “go back” to previous photos. Conversely, in a real-life setting, a real
eyewitness may ask to see a previously viewed photo, and the law enforcement
officer (who is administering the lineup) often will allow him/her to go back and
view previously shown photographs. This discrepancy in the procedures between
lab and real life is one of the reasons why the generalization of inferences from
lab experiments to real-life practice may be questionable. The inability to faithfully
replicate in a lab the stress of the scene on the eyewitness is another reason for the
disconnect between lab experiments and real-life incidents.

Potential Uncertainties in ECL-based ROC Curve
The construction of the ECL-based ROC curve requires study participants to

answer after each of their choices, “How confident are you in your decision?”
Examples of scales for their responses are (1) 11-point scale “0%, 10%, 20%,
. . . , 100%”, (2) 7-point scale of 1 (not confident at all) to 7 (highly confident),
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or (3) 6-point scale “0%, 20%, 40%, 60%, 80%, 100%”. For example, Brewer and
Wells ([3], Table 9, p.24) conducted an experiment with 1200 recruited participants
(undergraduates and from the local community) who watched a video of a thief in
a restaurant and later were asked to identify the thief from a simultaneous lineup of
eight color photographs. Roughly 300 participants viewed a lineup with a “foil” that
had either high or low similarity to the culprit, and where the true culprit was either
present or absent.4 They calculated different DRs depending on the ECL category:
3.5 (“0–20%”), 3.3 (“30–40%”), 5.9 (“50–60%”), 13.6 (“70–80%”), 38.3 (“90–
100%”), for the 524 participants who chose a suspect from the lineup. (Interestingly,
the DRs change little across these five ECL categories for the 676 participants
who declined to choose any suspect: 1.0, 0.9, 1.2, 1.8, 2.3, respectively.) Mickes
et al. [30, Table 1, p.367] then calculated the DRs using slightly different categories
and found that they varied, mostly in the last (90–100%) category: 9.0 (“< 0%”),
9.3 (“< 30”), 10.7 (“< 50%”), 16.0 (“< 70%”), 43.2 (“< 90%”). Similar to the use
of receiver operating characteristics (ROCs) used in diagnostic medicine to compare
different diagnostic test modalities, these authors argued that, by plotting the hit rate
(sensitivity) versus the false alarm rate (1 – specificity) collapsed over participants
who express a given ECL or higher, the area under the resulting ROC curve (AUC)
provides a more appropriate metric for comparison. In doing so, a comparison of
AUCs in experiments comparing sequential (seq) and simultaneous (sim) lineups,
AUC(sim) > AUC (seq). Notice that the slope of the ROC curve at the plotted point
is the DR for that ECL category (“at least x% confident”); hence, a straight line
would indicate no effect of ECL on DR.

Figure 11.1 shows data published from a similar (thief) experiment in Mickes et
al. ([30] “Experiment 1a” in Table 3) that plots the hit rate (HR) versus the false
alarm rate (FAR) for sequential (Q) versus simultaneous (M) lineups. Their plot
(Fig. 11.6a, p.371) has been enhanced here in Fig. 11.1 by the addition of two curves
that represent very optimistic standard errors on the data points (binomial variation
in the reported HR and FAR). Indeed, simultaneous (M) appears to have a higher
AUC than sequential (Q), especially at higher levels of HR and FAR. Data from
another experiment analyzed in Liu [26] also indicated the possible superiority of
simultaneous over sequential. But data from other experiments are far less clear:
Fig. 11.2 shows the same type of curve, for data from “Experiment 2” in Mickes et
al. [30, Table 3]. Suddenly, now, the advantages of simultaneous (M) over sequential
(Q) are not so clear.

Does Higher Confidence Lead to Greater Accuracy?
The underlying premise of the ROC approach over the single collapsed DR is

based on the theory that increased accuracy is associated with increased confidence
in the eyewitness’s identification. (Recall from paragraph 2 of this section that DR

4The actual counts in Table 2 in Brewer and Wells [3] are: 299 (high similarity, target present);
300 (low similarity, target present); 301 (high similarity, target absent); 300 (low similarity, target
absent). In each of these four conditions,∼150 participants viewed a “biased” lineup and the other
half viewed an “unbiased” (sometimes called “fair”) lineup.
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Fig. 11.1 “ROC curve” (hit rate = sensitivity versus false alarm rate = 1 – specificity), using data
from Experiment 1A in [30, p.372]. Based on 598 participants who chose a suspect from one of two
lineups: Sequential (Q) or Simultaneous (M). Shown with (optimistic) limits of one standard error
in the estimated HR and FAR rates. Points on ROC curve refer to “At least 10% confident,” . . . , “At
least 90% confident,” “At least 100% confident”. Figure C-3 from [31], p.148: Reproduced with
permission from the National Academy of Sciences, Courtesy of the National Academies Press,
Washington, D.C.

is the same as the “positive likelihood ratio” LR+.) Data from several experiments
suggest that such an association may exist. For example, Figs. 11.3 and 11.4 are
plots of DR versus ECL using the same data from [30] as in Figs. 11.1 (“Experiment
1a”) and 11.2 (“Experiment 2”) above, respectively; see also [11]. However, studies
are not consistent in this relationship; e.g., see Juslin et al. [19]. Further, given the
multiple sources of variation that can affect ECL, the association is likely to vary
greatly depending on the eyewitness, conditions of the event, and other factors yet
to be identified.

Thus, even the migration from a single DR to an ECL-based ROC may not
adequately capture all the factors that should be taken into account when comparing
two procedures (such as “simultaneous” versus “sequential” lineups). Incidentally,
few of the articles in the EWI literature take account of multiplicity in hypothesis
testing: adjustment for multiplicity, such as the false discovery rate [1], appears to
be very rare.
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Fig. 11.2 “ROC curve” (hit rate = sensitivity versus false alarm rate = 1 – specificity), using data
from Experiment 2 in [30, p.372]. Based on 556 participants who chose a suspect from one of two
lineups: Sequential (Q) or Simultaneous (M). Shown with (optimistic) limits of one standard error
in the estimated HR and FAR rates. Points on ROC curve refer to “At least 10% confident,” . . . , “At
least 90% confident,” “At least 100% confident”. Figure C-4 from [31], p.140: Reproduced with
permission from the National Academy of Sciences, Courtesy of the National Academies Press,
Washington, D.C.

11.6 Improved Statistical Approaches: PPV and NPV

The primary goal of an eyewitness procedure is to maximize both the Positive
Predictive Value (PPV) as well as the Negative Predictive Value (NPV). Neither can
be observed in real life. We can estimate two of the components in the definitions
of PPV and NPV, namely sensitivity and specificity. Sensitivity is defined as the
probability that an eyewitness, who is shown the true culprit, correctly identifies
him/her as the culprit. Specificity is defined as the probability that an eyewitness,
who is shown the true innocent suspect, correctly does not identify him/her as
the culprit. Both probabilities can be estimated only in a designed study, where
the study facilitators know the true status of the culprit and innocent suspects. In
real life, one does not know the true status. At best, we can only estimate the
probability that a positive ID correctly identified the true culprit (“positive predictive
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limits of one standard error in the estimated HR and FAR rates

value”, or PPV) and the probability that no ID correctly recognized an innocent
suspect (“negative predictive value”, or NPV). Both PPV and NPV depend on three
quantities (sensitivity; specificity; and prevalence, or the proportion of individuals
that might be the culprit; i.e., 1 out of 6, or 1 out of 100, or . . . .), but in different
ways, as explained below.

Let S denote sensitivity, or “hit rate,” T denote specificity, or “1 – false alarm
rate,” and p denote the probability that the suspect is the perpetrator (prevalence).
Let OR denote the “odds ratio” = (1− p)/p. Then

PPV = (Sp)/[Sp + (1− T )(1− p)] = 1/(1+ OR/d), d = S/(1− T )

NPV = [T (1− p)]/[T (1− p) + (1− S)p] = 1/[1+ ((1− S)/T )/OR].

Recall that S/(1 − T ) = (hit rate/false alarm rate) is the same as the diagnosticity
ratio (DR), or, more generally, LR+ = “Likelihood Ratio of a Positive Call;” it
measures roughly the probability of a correct ID. So method 1 is preferred over
method 2 if PPV1 > PPV2; i.e., (OR1/DR1) < (OR2/DR2); i.e., (DR1/OR1) >

(DR2/OR2), where DR1, DR2 denote the diagnosticity ratios for methods 1 and



200 K. Kafadar

M

M
M

M

M
M

M

M

MM

0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

Diagnosticity Ratio vs Expressed Confidence Level

Data from MFW2012, p.372, Expt 2: M=Simultaneous (solid); Q=Sequential (dash); limits of 1 standard error
Expressed confidence level

D
R

 =
 F

A
R

/H
R

QQQ

Q

Q

Q

Q
Q

Q
Q

Fig. 11.4 Plot of DR = diagnosticity ratio = hit rate (sensitivity) divided by false alarm rate (1 –
specificity), using data from Experiment 2 in [30, p.372]. Based on 556 participants who chose
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2, respectively, under the same circumstances (i.e., OR1 = OR2, same conditions
for both methods, etc.). Thus, a comparison of procedures in terms of criteria based
on the diagnosticity ratio (LR+) is a comparison in terms of PPV , the probability
that an eyewitness’s ID really identified the true culprit.

To take into consideration the second aspect, NPV (probability that a non-ID
correctly recognized an innocent suspect in the lineup), a second ratio is needed.
Corresponding to LR+ = S/(1 − T ), this ratio, (1 − S)/T , is known as LR− =
“Likelihood Ratio of a Negative Call;” it corresponds roughly to the likelihood of
ruling out a suspect ([22] §4.1). A calculation for NPV , similar to the one above
for PPV , shows that method 1 is preferred over method 2 if NPV1 > NPV2;
i.e., T1/(1 − S1) > T2/(1 − S2) = 1/(LR−)1 > 1/(LR−)2 – again, assuming
that the odds ratio (1 − p)/p stays constant in the comparison between the two
procedures (e.g., both the simultaneous and the sequential lineups have the same
number of “foils”). Both the single diagnosticity ratio and the ROC curve (which
shows separate diagnosticity ratios as slopes of the curve at the points corresponding
to different levels of expressed confidence) address the PPV criterion; a separate
analysis is needed for the NPV criterion. (Note that all calculations have variability,
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due to uncertainties in estimating S and T .) The effects of sensitivity, specificity,
and prevalence on PPV and NPV are shown in Figs. 11.5 and 11.6, respectively.
The figures show that specificity affects PPV more than sensitivity, that sensitivity
affects NPV more than specificity, and that very high values of both sensitivity and
specificity, as well as very high prevalence, are needed for high PPV and NPV.

Thus, although the ECL-based ROC curve is an “improvement” over the single
DR collapsed over all subjects, in that it takes into account the eyewitness’s
expressed confidence in the ID (often seen as a proxy for “response bias” and
shown in some studies to be correlated to some degree with accuracy), it focuses
on only PPV and ignores NPV as well as other variables that could be affecting
accuracy. For sufficiently large experiments, one may be able to construct ROC
curves for each participant in the study, characterizing the information in each curve
by a summary measure (such as logarithm of the Area Under the Curve; bigger is
better) as a function of several factors. For example, [42] propose a hierarchical
model for log(AUC) to distinguish within-participant variability from between-
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participant variability; other effects can be incorporated into the model.5 Shiu and
Gatonis [37] offer a methodology for incorporating bothLR+ andLR− through the
“predictor receiver operating characteristic” (PROC) curve, by plotting PPV versus
1 – NPV. Other researchers have suggested approaches that would be even more
useful, namely bivariate logistic regression models for logit-transformed sensitivity
and specificity [34] generalized by Chu and Cole [7]. DuMouchel [13], Junaidi and
Stojanovski [18], and Luby [27] also propose hierarchical models that are applicable
for data from EWI experiments. See Liu et al. [25, Section 21.4] for further details
about using these models in this context.

As noted at the start of Sect. 11.4, the basic task of the eyewitness is to serve
as a binary classifier. The statistics and computer science literature contains many

5Notice that Wang and Gatsonis use AUC, versus pAUC = partial area under the curve; see
discussions about AUC versus pAUC in the articles by Pepe [33, p.311] and Walter [40].
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proposals for combining the information from binary classifiers; e.g., see [17]. Liu et
al. [25, Section 21.4] successfully use random forests and mention other supervised
methods that can be applied to the comparison of EWI procedures in the presence of
multiple factors, including the “noise” (“estimator”) variables that were mentioned
above (lighting, distance, race, etc.). Probably the simplest approach would be
ordinary logistic regression, which provides a model for the probability of being
accurate in light of other manipulated variables [15]; see also Appendix C in the
[31] report (pages 150–154) for an analysis of data from an experiment conducted
by Carlson and Carlson [6]. The research in the EWI field is yet another example of
the benefits of cross-disciplinary research involving statisticians.

11.7 Conclusion and Postscript

This article describes only briefly the state of the experimental designs and statistical
methods that have been used in the literature on assessing the reliability of
eyewitness identification procedures. The potential for statisticians to contribute to
this field is immense, but not without its challenges.

I chose this topic for this chapter because I encountered these challenges while
serving as a member of the Committee that authored the [31] report. Steve Fienberg
served as co-chair of the Report Review Committee that was in charge of ensuring
“that an independent examination of this report was carried out in accordance with
institutional procedures and that all review comments were carefully considered”
[31, p.xii]. Despite multiple obligations on his plate at the time, Steve was masterful
in his role. At one point, the Committee requested a call with him and his co-Chair,
Dr. David Korn. With no advanced warning of the Committee’s queries to them,
Steve responded thoughtfully, eloquently, and precisely to each question raised by
Committee members regarding various aspects of the review. His explanations of
statistical concepts were crystal clear, emphasizing their complexities and relevance
in an unambiguous but non-condescending manner. As I listened on the phone, I
was wishing I could have recorded the call; it was impressive, even if he had been
forewarned, but nothing short of spectacular in view of the fact that he had no idea
what he would be asked. I always had great admiration for Steve from the time I
met him, but that call impressed me immeasurably. And so it is, whenever I think of
the NRC report, I remember with great fondness the influence that Steve Fienberg
had on it, in ways that no one would ever know.
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Part IV
Introduction: Causal Analysis

Alicia L. Carriquiry

Many questions of interest in medicine, social science, public policy, and several
other areas are causal in nature. For example, do smaller class sizes result in better
learning outcomes for children? Does living next to a high voltage tower increase
the probability of cancer? If speed limits are strictly enforced, will there be fewer
fatalities on America’s roadways? By understanding the mechanism that generated
the data, we can sometimes establish a causal connection between a cause and
its effect. Causal reasoning as practiced in statistics and epidemiology is forward
looking, in that we wish to understand the effect of applying certain treatment (or
factor) to a sample of items. Randomized controlled trials (RCTs) are the gold
standard for this type of causal inference at the level of a group.

Steve was no stranger to causal inference research. He was an early proponent of
the use of graphical models for representing causal pathways (Spirtes et al. 1999)
and argued in favor of the principled use of causal inference in specific problems
in public policy (e.g., Fienberg et al. 2003; Fienberg and Haviland 2003). But his
real contribution was in what Steve called individual causation – how to argue
causally from the group to the individual. Can we say that a specific person’s cancer
was caused by smoking? Or that a particular baby’s brain injury was the result of
shaking? Assigning responsibility for an outcome is a thorny problem, resulting
in challenging technical issues. Yet, this is the question that arises most often in
medicine, tort law, and other areas.

A related area of great interest to Steve was about the value of data to guide public
policy. Steve was a strong believer and a tireless promoter of data-driven, or more
generally, science-driven policy while recognizing the difficulties of devising and
implementing such policies in real life. He was a proponent of RCTs for evaluating
the effect of new policies and was one of the members of the National Academies
of Science, Engineering, and Medicine (NASEM) panel on the use of social science
evidence in policy. The panel, in which I also participated, published a report in
2012 entitled Using Science as Evidence in Public Policy (Prewitt et al. 2012).

The four contributions in this section are by Maria Cuellar, by Phil Dawid and
Monica Musio, by Burt Singer and Ralph Horwitz, and by Norm Bradburn. The first
two papers are closely related and focus on the question of individual causality in
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the context of the law. Singer and Horwitz also discuss individual causality, but as
applied in medicine, for the purposes of medical decision-making. Finally, Bradburn
revisits the use of RCTs to evaluate policies and provides some insights on how
to make them more effective. The four manuscripts in the section are particularly
relevant for this volume; during the last year or two before he passed away, Steve
dedicated significant effort to researching technical and practical issues associated
to individual causation. Indeed, among the last papers written by Steve are Dawid et
al. (2016) and Fienberg (2017), both discussing the causes of effects (CoE) problem.

Maria Cuellar was one of Steve’s last doctoral students, and the only one to
embrace the problem of CoE as her research topic. The motivation for Cuellar’s
work arose from an actual trial, in which a caregiver was accused of causing a baby’s
brain injury by shaking the baby. Cuellar’s contribution focuses on the CoE problem
in the context of attribution of blame or responsibility, but helpfully also provides
an extensive introduction to the general area. She starts from the 2013 paper (Dawid
et al. 2014) in which Dawid, Faigman, and Fienberg argue that causal analysis,
as practiced by statisticians and epidemiologists, does not help answer questions
posed in Court. This article inspired a lively debate between Judea Pearl, who was a
discussant in the publication, and Dawid et al. Cuellar dives into the debate, and
her syntheses and interpretations are tremendously valuable contributions to the
ongoing discussions about individual causation.

Dawid and Musio synthesize existing work on the G2i (group to individual)
causal problem from the last several years, and expand on it. The question they
address is how to apply the ideas that underpin the causes of effects (CoE) paradigm
to assign responsibility once an effect is observed. The probability of causation itself
is not identifiable, but Dawid and Musio show that bounds on that probability can be
computed and even improved upon when information about covariates or mediators
is also available. In this paper, Dawid and Musio include an extensive discussion of
the effect of covariates with different attributes, or mediators or both on the lower
and upper bounds for the probability of causation.

Singer’s and Horwitz’s contribution discusses causal reasoning in the context of
medical decision-making. The authors make a distinction between causal reasoning,
useful for making decisions for an individual patient, and causal inference, useful
for understanding the effect of some factor on the average response in a population.
Singer’s and Horwitz’s argument is that traditional tools for causal inference
including randomized controlled trials (RCTs) cannot help a clinician who must
make decisions about the course of treatment for an individual patient. RCTs, they
argue, provide information about the average response in a group of potentially
heterogeneous patients, but have little to say about the effect of a treatment on an
individual patient who may not look anything like those who participated in the
RCT. This is a topic that would have resonated with Steve, who used to refer to
himself as a sample of size one when undergoing treatment for his cancer. As Singer
and Horwitz do, Steve used to argue that the only useful data to inform his treatment
would need to come from other individuals with similar genetic, demographic, and
medical history to his. Singer and Horwitz pick up on those ideas and propose the
creation of libraries of matched patients, or collections of comparable patients from
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whom a physician can extract information useful for making decisions about an
individual patient.

Finally, the contribution by Norm Bradburn focuses on RCTs and their use in the
evaluation of public policies. Bradburn relies on several famous policy failures to
introduce the notion that public policies are not static objects and that by their very
nature tend to effect a change in society that affects their effectiveness. Bradburn
argues that even the most carefully conducted RCT cannot replicate the complexity
of the real world and, thus, that one study cannot tell us whether a policy will
succeed as intended when implement widely. He proposes that only a battery of
RCTs carried out under varying conditions can hope to produce the information
that policy makers should have when implementing a new policy in society. While
Bradburn does not make a direct mention, his discussion is clearly related to the
question of reproducibility of scientific studies that has been raised in recent years
by, e.g., Ioannidis (2005).
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Chapter 12
Causes of Effects and Effects of Causes

Maria Cuellar

A Note About Steve Fienberg
Steve Fienberg introduced me to the causes of effects and effects of causes in
2015, when he was my doctoral advisor at Carnegie Mellon University. An attorney
contacted Steve and asked him for help with a statistical argument regarding shaken
baby syndrome, a brain condition in infants that is caused by shaking or other forms
of child abuse and sometimes leads to death. There were numerous trials in which
the prosecution would make a statistical argument about why an adult had abused
or murdered a child either by shaking the child or through other violent means, but
there was very little scrutiny in the courts about the statistics. Steve suggested that I
work on this project.

I struggled to write a critique that would be helpful to the attorney and to the
individuals who are being tried in court. The usual approaches that I had been
taught in my courses seemed inadequate, not only because the data seemed to
contain biases that I could not figure out how to eliminate, but also because the
reasoning was wrong or incomplete. The statistical arguments in court were trying
to determine whether, for a child with a brain condition, the child had been shaken.
But even if the child was shaken, what if shaking did not cause the brain condition,
and instead it was caused by something else, such as a traumatic birth? In that case,
I thought, the adult should not be considered guilty of murder or child abuse.

Steve referred to me some articles he had written about the causes of effects and
effects of causes. Once I understood this framework, I was able to vocalize what I
thought was wrong with the current arguments in court: they were concerned with
whether there had been an exposure, but they were not asking whether the outcome

M. Cuellar (�)
Department of Criminology, University of Pennsylvania, Philadelphia, PA, USA
e-mail: mcuellar@sas.upenn.edu

© Springer Nature Switzerland AG 2022
A. L. Carriquiry et al. (eds.), Statistics in the Public Interest, Springer Series
in the Data Sciences, https://doi.org/10.1007/978-3-030-75460-0_12

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75460-0_12&domain=pdf
mailto:mcuellar@sas.upenn.edu
https://doi.org/10.1007/978-3-030-75460-0_12


212 M. Cuellar

observed (the brain condition) had indeed been caused by the exposure in question
(shaking).

Questions about the effects of causes address whether there was an exposure,
or whether an exposure would, in general, cause that type of outcome. Questions
about causes of effects address whether, for a child who was shaken and has a brain
condition, the brain condition was caused by shaking, not by something else. In the
law, causes of effects questions are related to the “but for” condition, which says that
it must be shown that the outcome would not have occurred but for the exposure.
This distinction is also discussed in the law as the difference between general and
individual causation.

My research on shaken baby syndrome and causes of effects and effects of causes
led me to be able to criticize the reasoning used by some researchers and expert
witnesses in court. Attorneys have used my research to support arguments about
the innocence of individuals. This is precisely how statistics should be used: as a
force for the public good. I believe Steve would agree with this, since he strongly
supported the use of statistics for informing public policy. This research helped
shape my research, and it continues to affect what I do today.

12.1 Introduction

Dewayne Johnson, born in 1972, was a former school groundskeeper in northern
California. Between 2012 and 2014, Johnson worked as a school groundskeeper, and
during this time, he was exposed to Roundup, an herbicide produced by Monsanto,
which is a company owned by Bayer since 2018. In 2014, Johnson was diagnosed
with non-Hodgkins lymphoma, a type of cancer in blood cells, as a terminal
condition. Johnson then sued Monsanto for having caused his cancer.1

What type of argument should Johnson’s attorney make? The attorney could
argue that when people are exposed to Roundup, they tend to get cancer; or, that
when people get this type of cancer, it was because they were exposed to Roundup;
or, that, given that Johnson was exposed and got cancer, it is likely that his cancer
was caused by his exposure to Roundup and not something else. These three
arguments are examples of forecasting, backcasting, and attribution, respectively. In
general, the three types of arguments can be defined as the following questions:

1. Forecasting. How likely is it that an exposure to A will cause Y ? For example,
what is the effect of smoking on lung cancer or the effect of lead exposure
on crime? This class of questions concerns average effects on individuals
in populations and cases in which we have not yet observed the outcome.
Mathematically, we would write this as an average causal effect, which, for
a binary outcome Y , a binary exposure A, and a potential outcome Ya , is

1Source: https://www.theguardian.com/business/2018/jul/23/monsanto-trial-dewayne-johnson-
cancer-roundup-weedkiller.

https://www.theguardian.com/business/2018/jul/23/monsanto-trial-dewayne-johnson-cancer-roundup-weedkiller
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12 Causes of Effects and Effects of Causes 213

P
(
Ya=1

) − P
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Ya=0

)
, or a risk ratio, P

(
Ya=1

)
/P
(
Ya=0

)
. This notation will be

further discussed later in the chapter.
2. Backcasting. Given an outcome Y , how likely is it that the individual had an

exposure A? This question deals with uncertainty about whether there was an
exposure. For example, for people who have lung cancer, what is the probability
that they were smokers, or for people who are violent, what is the probability
that they were exposed to lead? Mathematically, we could write this as P(A =
1|Y = 1).

3. Attribution. For someone who was exposed to A and had an outcome Y , how
likely is it that the outcome was caused by the exposure and not something
else? For example, Jane has lung cancer. Was it the five daily cigarettes that she
smoked for the past 30 years that caused it, or was it something else? This class
of questions concerns average effects on individuals in populations and cases in
which we have already observed the outcome. Mathematically, we can write this
as the probability of causation, which, for a group of individuals with covariates
x, is

PC(x) = P
(
Ya=0 = 0|Y = 1, A = 1, X = x

)
. (12.1)

In other words, for an individual who had a positive outcome (e.g. cancer) and
a positive exposure (e.g. to Roundup), what is the probability that, had he not
been exposed, he would not have had the outcome? Estimating this quantity
requires counterfactual reasoning: we are not able to observe the outcome when
the individual is exposed and when he is not—unless we can make some
further assumptions about the outcome being reversible. Thus, we must make
identification assumptions to arrive at observable quantities that can be estimated
using statistics or machine learning methods.

Johnson’s attorneys should make an argument that combines these three types
of questions. It matters whether Roundup is carcinogenic, whether Johnson was
actually exposed, and, if he was exposed to Roundup and has cancer, whether his
cancer was caused by the exposure. Forecasting and backcasting jointly are called
the “effects of causes” (EoC), and attribution is called the “causes of effects” (CoE)
(Dawid et al. 2013).

Forecasting receives most of the attention in trials. Indeed, in Johnson’s case,
the expert witnesses focused primarily on whether Roundup was carcinogenic.
In the trial, the jury ruled against Monsanto because it seemed there had been
some evidence, undisclosed by Monsanto, that Roundup was harmful to humans.2

Backcasting is also often discussed, as in cases of shaken baby syndrome, where
the most common question is whether a baby was shaken or not. The question of

2Source: https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/dewayne-
johnson-v-monsanto-company/#transcripts.

https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/dewayne-johnson-v-monsanto-company/#transcripts
https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/dewayne-johnson-v-monsanto-company/#transcripts
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attribution is discussed less often, and the statistical analysis often does not address
attribution directly.

This chapter discusses how to formalize questions of attribution, or CoE, by using
the probability of causation. It begins with some background on the intersection
between statistics and the law in issues of CoE (Sect. 12.2). It continues with a
description of a debate about how to define and estimate the probability of causation
between A.P. Dawid, D.L. Faigman, S.E. Fienberg and J. Pearl (Sect. 12.3), in
which the main points of difference are highlighted. Some questions that were not
addressed directly in the debate but are nevertheless important for the application of
the CoE framework are then discussed (Sect. 12.4). The debate leads to a compre-
hensive formulation and identification of the probability of causation (Sect. 12.5).
Finally, Sect. 12.6 offers an opinionated summary of the current state of statistical
causation in the legal setting and suggests some topics for future research in this
area.

12.2 Causal Questions in the Law

Attributions of guilt generally require attributions of causality, as in determining
whether an individual’s ailment was caused by a specific exposure. In legal
proceedings, the two parties (plaintiff and defendant) must follow important pieces
of guidance known as burdens of proof and rules of evidence. These rules determine
the amount of evidence necessary to accomplish that goal. In most civil cases, the
burden of proof that applies is called “a preponderance of the evidence,” for which
a trier of fact (judge or jury) must return a judgment in favor of the plaintiff if
the plaintiff is able to show that a particular event was more likely than not to have
occurred. In most criminal cases, the standard is called “beyond a reasonable doubt,”
and it is the highest standard of proof that may be imposed upon a party in court.
This standard requires that the prosecution shows that the most likely explanation
was the one proposed.

Thus, in a specific case, we can suppose that if causality is determined beyond the
evidentiary standard, the trier of fact will likely side with the plaintiff or prosecution.
However, there is a surprising gap between this principle and legal practice. In
fact, there is no single standard for making attribution claims in legal settings. For
example, the judge or jury must decide not only how to evaluate the evidence with
which they are presented but also which standards should be used to determine
whether that evidence shows causation of the particular outcome suffered by the
harmed party.

In an adversarial system, such as the courts of the United States, the prosecution
will make causal attributions that incriminate a defendant, while the defense will
usually deny these attributions. Both sides may cite statistical evidence that is
admissible in court or may rely on statistical or probabilistic claims made by expert
witnesses. But while there are legal standards (e.g. Daubert and Frye) concerning
who may be admitted to give expert testimony and what can be said in court,
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there is no standard constraining how prosecutors, defense attorneys, or witnesses
formulate causal claims. A statistical claim that determines causality in one case
might be considered too weak to determine causality in another. Because they are
not defined statistically, the general principle that causal claims must be proved
“beyond a reasonable doubt” (or a preponderance of evidence) may be applied
differently in different settings. Differential application of a legal principle could
result in potentially catastrophic miscarriages of justice.

Statisticians have recently worked to improve this situation by formulating a
statistically competent theory of legal causation. While causality itself was long
considered a topic of philosophy rather than of statistics, since the pioneering work
by Holland (1986), Rubin (1974), Neyman (1923), and Pearl (2009) and others,
statistical models of causation have come to be a part of mainstream statistical
practice. Statistical causal inference is an active field of research, largely focusing
on how to estimate the probability that a specific outcome (e.g. a harm) was caused
by a specific exposure (e.g. a chemical, a specific event). In the field of statistics,
Dawid et al. (2013) and Pearl (2009) define this probability as a causal parameter,
while in the field of epidemiology, Robins and Greenland (1989) and Green et al.
(2011) define this probability as a statistical parameter. It is curious that under
some identifiability assumptions, the causal parameter from statistics is equivalent
to the statistical parameter from epidemiology. But, as far as the author is aware, the
connection between these two literatures has not been explored in depth.

Questions of attribution can be answered by using the probability of causation:
the probability that an outcome was caused by a specific exposure and not something
else. Statisticians have been able to calculate the probability of causation in
some contexts (Dawid et al. 2016). Given data from a well-designed randomized
controlled trial of a particular drug, statisticians are able to estimate the value of
the probability of causation that taking the drug relieved patients of a particular
symptom, for example. However, there are certain difficulties in applying the
concepts of statistical causality in the legal context.

First and perhaps most problematically, standard theories typically calculate
causation in a population, in which a control group is compared to a group that
received a treatment. In contrast, in the legal context, one is concerned primarily
with determining the cause of an individual outcome, for example, a concrete harm.
For a statistical theory of causation to be relevant in the legal context, it must offer
identification assumptions under which population-level data can be applied to an
individual case. This is sometimes referred to as making inferences from “type”
causation to “token” causation and sometimes as the g2i (group-to-individual)
problem (Dawid et al. 2016, Pearl 2009). Second, there is a question concerning
whether it is proper to use a Bayesian framework or to approach calculations of
causation from a frequentist perspective. If the probability should be interpreted
as subjective belief, then to estimate it, the researcher must choose a prior. But
if the probability is a frequency, then it is unclear what evidence should be used
in the legal setting since few randomized trials exist. While the disagreement
between Bayesians and Frequentists goes far beyond the issue of legal causality,
it must also be addressed in this case. Third, there is the question of which specific
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quantities should be estimated to make causal attributions, and what assumptions are
warranted in making the calculation.What should the probability be conditioned on?
How should the counterfactual quantity be stated? What is the type of question that
can be answered if this probability were estimated? What happens when there are
multiple causes, shorter exposure duration, a long time from exposure to outcome, a
very small “dose” in the exposure, and so on? These are all questions that might be
relevant in a trial. Can the causal quantity, and its identified version, answer these
questions?

Later, identification assumptions will become highly relevant. Regarding iden-
tification assumptions, for instance, is it reasonable to make the assumption that
a harmful exposure can only hurt, not help, a specific condition? This type of
requirement is the “monotonicity” assumption, and it helps identify a closed-form
statistical quantity from the causal quantity of the probability of causation. Can it
be assumed that for a group of similar individuals, whether they were exposed is
independent of what their outcomes would have been under treatment or control?
This is the “no unobserved confounders” assumption, and it can be made in
situations in which the treatment is randomized. Can it be assumed that anyone
in the sample of individuals could have had the exposure? This is the positivity
assumption, which can be strong depending on the specific circumstances. And can
it be assumed that, if an individual is exposed, the outcome for that individual is the
outcome he or she would have had under exposure? Or, as can happen in vaccine
trials, can the individual’s outcome be affected by another individual’s treatment.
This type of assumption is called “consistency,” and it fails under interference.

12.3 A Debate About the Probability of Causation

Dawid, Faigman, and Fienberg published an article in 2013 in the journal Socio-
logical Methods & Research titled “Fitting Science Into Legal Contexts: Assessing
Effects of Causes or Causes of Effects?” Dawid, Faigman, and Fienberg (2013)
argue that, on the one hand, statisticians and quantitative social scientists typically
study the effects of causes (EoC). On the other hand, attorneys and the courts are
more concerned with understanding the causes of effects (CoE). Thus, the evidence
that is cited in court is often useful to answer EoC questions. But, because it does
not focus on CoE, the evidence is often not relevant to assign blame to a specific
individual. The authors provide a substantive survey of the differences between how
causation is framed by courts and how it is framed by philosophers and scientists.
They “examine how law and science might better align their approaches to causation
so that, in particular, courts can take better advantage of scientific expertise.” The
audience for the article is presumably social scientists and attorneys, given that
the motivational examples take up most of the article, that very few formulas
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are provided, and that the formulas provided are simplified. This simplification,
although it might have been meant to clarify the issue for researchers outside
statistics, was noted by J. Pearl (2015) as a flaw in their analysis.

In his response article, Pearl (2015) focuses on three issues in his critique
of Dawid et al. (2013). First, Pearl claims that their analysis only applies to
determinations of causation in a population, which is irrelevant to the courtroom
context, where the question is whether an individual caused a certain outcome.
Second, Pearl argues that Dawid and his co-authors are only able to calculate
the probability of causation for a population that has gone through a randomized
experiment. Since the defendants in court cases are not randomly selected, this is
an unwarranted assumption in the legal context. Finally, it seems as though Pearl
is interpreting the probability of causation as frequentist (although this is not said
explicitly or tested with data), while Dawid, Faigman, and Fienberg claim that
it should be interpreted as a Bayesian quantity. Dawid, Faigman, and Fienberg
respond to Pearl in Dawid et al. (2014). They argue that because it oversimplifies
and idealizes legal causality, Pearl’s model is not applicable in the legal context.
They claim that there is no clear way that a judge or jury could implement Pearl’s
procedure to obtain an actual estimate of whether an individual caused an event to
happen. Moreover, they criticize the specific method Pearl uses to make inferences
from population data to cases of individual causality.

The debate between Pearl and Dawid, Faigman, and Fienberg is important
because it allows us to dissect the estimation problem into four pieces: (1) How
should we define the correct probability of interest in Causes of Effects questions?
(2) How should we identify this probability? (i.e.What assumptions are we willing
to make?) (3) How should we estimate this probability? And (4) How should we use
the results from a Causes of Effects analysis? In the next section, we describe the
authors’ arguments from each article, and we summarize the debate to shed light on
using statistics to speak about causal questions in the law.

Arguments

Dawid, Faigman, and Fienberg (2013) argue that statisticians can estimate the
probability of causation, which is the probability that, after conditioning on the
observed information, the individual was exposed and had a specific outcome, the
individual would not have had the outcome had she not been exposed. The authors
begin by citing an example of the distinction between effects of causes (EoC) and
causes of effects (CoE). An EoC question is, for example, “Ann has a headache. She
is wondering whether to take aspirin. Will that cause her headache to disappear?” A
CoE question is, “Ann had a headache and took aspirin. Her headache went away.
Was that caused by the aspirin?”
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To argue that an individual had some damage done to him or her by a specific
exposure to a treatment, Dawid et al. (2013) introduce the probability of causation as

PC = P(Y 0 = 0|Y 1 = 1), (12.2)

where (Y 0, Y 1) be the potential outcomes that will eventuate if the exposure A

equals zero or one. The potential outcome framework, developed by Neyman (1923)
and Rubin (2005) is used to denote an outcome that exists before A is determined
for each individual. This probability can be read in words as, “the probability that,
given that the individual had the outcome when he/she was exposed, the individual
would not have had the outcome if he/she had not been exposed.” It contains
counterfactuals since it is not possible, in general, to know the outcome under
exposure and no exposure for an individual. Note that the definition in (12.2) is
somewhat simplified compared to the definition given by Dawid et al. (2016), an
aspect that is addressed in Dawid et al. (2014).

Writing PC in this way is useful because quantities from a randomized trial can
easily be placed in the form of a contingency table. In the authors’ example, the
disappearance of Ann’s headache is caused by taking the aspirin only if Y 1 = 1 and
Y 0 = 0. In other words, Ann’s headache disappears if she takes the aspirin but does
not disappear if she does not take it. This requirement eliminates the possibility that
another cause, say a different medicine, caused Ann’s headache to go away. They
note that Ann taking the aspirin (A = 1) and her headache going away (Y 1 = 1) are
only causally connected if Y 0 = 0.

To estimate PC, the joint distribution of the potential outcomes (Y 0, Y 1) is
required, which can never be observed for a single individual. Therefore, the closest
one can get to PC is to place a bound on it. The bounds, which are derived under
assumptions not mentioned in the article, are

1 ≥ PC ≥ 1− 1/RR, (12.3)

where RR is the risk ratio P(Y 1 = 1)/P (Y 0 = 0). The lower bound is sometimes
called the “excess risk ratio” or ERR. The additional assumptions, not mentioned in
the article, are consistency and positivity.

The authors provide an example. Suppose a randomized trial was performed in
which a sample of 100 individuals with headaches were divided into taking the
control (chalk) or the treatment (aspirin). Some of the individuals recovered and
some did not. Fictional results are presented in Table 12.1.

In an Effects of Causes analysis, we would need to use only the information from
Table 12.1. But in a CoE analysis, we need to know the potential outcome values.
So, the authors propose creating a new table shown in Table 12.2. To estimate the
probability of causation, they first note that PC = P(Y 0 = 0|Y 1 = 1) = x/30.
Then, they use the fact that the cells in a table cannot be smaller than zero, and
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Table 12.1 Results from a
fictional randomized
experiment

No recovery Recovery

Y = 0 Y = 1 Total

Placebo (chalk), A = 0 88 12 100

Aspirin, A = 1 70 30 100

The study consists of 200 individuals with a headache, 100
of whom are given aspirin and 100 of whom are given chalk
(a placebo). Some individuals recovered (i.e. did not have a
headache anymore) and some did not

Table 12.2 Potential
outcomes of the randomized
experiment from Table 12.1

Y 0 = 0 Y 0 = 1 Totals

Y 1 = 0 88− x x − 18 70

Y 1 = 1 x 30− x 30

Totals 88 12 100

This table was generated considering the cell with x in it as
the cell of interest, since it denotes P(Y 0 = 0|Y 1 = 1).
The remaining cells in the inside are filled in as differences
between the marginal totals and x

therefore x ≥ 18. By combining these two facts, they find that

1 ≥ PC ≥ 0.6. (12.4)

In a civil trial, in which the preponderance of evidence is in question, this PC
calculation shows that the evidence leans toward causation, since PC > 0.5. In other
words, it is more likely than not that the aspirin did indeed cure a headache.

Pearl defines causes of effects as situations in which we observe both the effect,
Y = y, and the putative cause A = a and we are asked to assess, counterfactually,
whether the former would have occurred absent the latter. Pearl defines the quantity
of interest as the probability of necessity (although he uses different notation, it is
replicated here with the chapter’s notation for consistency),

PN = P(Y 0 = 0|Y = 1, A = 1). (12.5)

The difference is that Pearl conditions on a positive outcome. Pearl notes that
the quantity in Dawid et al. (2013) represents the probability that the drug was
the cause of death of a subject who died in the experimental setup. However, very
few court cases deal with deaths under experimental circumstances. Therefore, their
formulation is a specific instance of the more general formulation he has derived.
The more general form is needed, since the injury was not necessarily suffered as
the result of a controlled experiment.
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In Pearl’s notation, Dawid, Faigman, and Fienberg’s lower bound is the experi-
mental excess risk ratio,

PC = P(Y 1) − P(Y 0)

P (Y 1)
. (12.6)

In Pearl’s text, he writes do(A = a) instead of YA=a . His “do” notation denotes
that the value of the variable A has been set to a (in this case either zero or one) by
the experimenter. Therefore, Pearl notes, this denotes experimental data, in which
individuals are assigned to take aspirin or not, and not observational data, where
individuals happen to take aspirin because of a headache. Note that this does not
assume exchangeability, which would hold in a randomized trial.

To identify the probability of necessity, Pearl bounds PN by

max

{

0,
P (Y = 1) − P(Y 0 = 1)

P (Y,A)

}

≤ PN ≤ min

{

1,
P (Y 0 = 0) − P(Y = 0, A = 0)

P (Y = 1, A = 1)

}

,

(12.7)

which follows a Frechet inequality. Pearl then makes the assumption of monotonic-
ity to avoid having bounds and obtain one quantity. If Y is monotonic relative to
X, that is, Y 1(u) ≥ Y 0(u) for every unit, or individual, u, then PN is identifiable
whenever P(Y 1 = 1) is identifiable. Moreover,

PN = P(Y = 1) − P(Y 0 = 1)

P (Y,A)
, (12.8)

which is the lower bound in (12.7). It is useful to note that in Dawid et al. (2013),
the lower bound would also be the point estimate under monotonicity. This point
estimate can be stated as a sum of two ratios,

P(Y = 1|A = 1) − P(Y = 1|A = 0)

P (Y = 1|A = 1)
+ P(Y = 1|A = 0) − P(Y 0 = 1)

P (Y,A)
,

(12.9)

where the first term is the observational excess risk ratio and the second term is
the correction for confounding bias. Under the assumption of exogeneity (that is,
no unobserved confounders) and monotonicity, Pearl finds that the probability of
necessity can be formulated as

PN = P(Y = 1|A = 1) − P(Y = 1|A = 0)

P (Y = 1|A = 1)
, (12.10)

which is the observational excess risk ratio from the first term in (12.9).
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Table 12.3 Experimental and nonexperimental (i.e. observational) data used to illustrate the
estimation of PN, the probability that drug A was responsible for a person’s death Y = 1

Experimental Nonexperimental

do(A = 1) do(A = 0) A = 1 A = 0

Deaths (Y = 1) 16 14 2 28

Survivals (Y = 0) 984 986 998 972

Note that in an experimental setting, this quantity equals the one provided in
Dawid et al. (2013) because the only change is that P(Y a) becomes P(Y = 1|A =
1), or in other words, do(A = a) becomes A = a,

P(Y 1) − P(Y 0)

P (Y 1)
= P(Y = 1|A = 1) − P(Y = 1|A = 0)

P (Y = 1|A = 1)
. (12.11)

Thus, under Pearl’s monotonicity and exogeneity,

PC = PN, (12.12)

so Dawid, Faigman, and Fienberg’s probability of causation (PC) is just a special
case of Pearl’s probability of necessity (PN).

Pearl demonstrates this by example. Suppose you have experimental and nonex-
perimental (i.e. observational) data as shown in Table 12.3. Assume monotonicity
(recalling that without monotonicity this result is the lower bound). Then,

PN = P(Y = 1|A = 1) − P(Y = 1|A = 0)

P (Y = 1|A = 0)
+ P(Y = 1|A = 0) − P(Y 0 = 1)

P (A = 1, Y = 1)

= 0.002− 0.028

0.002
+ 0.028− 0.014

0.001
= −13+ 14 = 1.

Thus, under monotonicity, the observational ERR is −13, but the correction for
confounding makes PN = 1. Thus, the drug A was indeed responsible for the
person’s death with probability one. Pearl then shows that estimating PC from
Dawid et al. (2013),

PC = P(Y 1 = 1) − P(Y 0 = 1)

P (Y 1 = 1)
= 0.016− 0.014

0.016
= 0.125, (12.13)

had they used their excess risk ratio, for which they assumed exogeneity in their
formulation. Thus, using the experimental ERR, we get PC = 0.125, which
implies that drug A was not responsible for the person’s death in terms of the
preponderance of evidence. Pearl summarizes his results in a table from Tian and
Pearl (2000), replicated here in Table 12.4.
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Table 12.4 PN as a function of assumptions and available data

Assumptions Data available

Exogeneity Monotonicity Additional Experimental Observational Combined

+ + ERR ERR ERR

+ – Bounds Bounds Bounds

– + Covariates – Corrected ERR Corrected ERR

– + – – Corrected ERR

– – – – Bounds

ERR stands for excess risk ratio, and corrected ERR refers to (12.9)

Finally, Pearl states that there is no way to directly estimate a probability for an
individual from population-level data. The implications for the legal setting are that

By using the wording “more probable than not,” lawmakers have instructed us to ignore
specific features that are either irrelevant or for which data are not likely to be available,
and to base our determination on the most specific yet essential features for which data are
expected to be available. . . knowing in advance that we will never be able to match all the
idiosyncratic properties of Mr. A, the lawmakers’ intent must be interpreted relative to the
probability bounds provided by PN.

Thus, Pearl believes that (1) researchers must ignore the observed data about
the individual for which there is no available data in the population and (2) the
lawmakers’ decision must be based on the estimated probability of necessity.

But what are the assumptions used by Dawid et al. (2013) to arrive at their
bounds in (12.3)? And are there other assumptions made by Pearl that allow him to
derive different quantities from his more general formulation? Additional questions
regarding assumptions are answered in two more extensive articles (Dawid et al.
2016, Tian and Pearl 2000) where the authors describe their arguments, which we
summarize after we discuss the final response by Dawid et al. (2014).

Dawid et al. (2014) respond to Pearl first by noting that their assumptions are
different from Pearl’s, and therefore, his analysis differs even though they arrive at
the same bounds after the exogeneity assumption. The authors view probability as
personalist and subjective, and therefore not only is the probability different (even if
it looks the same) but the assumptions for identifiability are different as well. They
entertain the idea of making their analysis be more similar to Pearl’s by using a new
variable D, the event that the individual desires to be treated.

The authors do not say this explicitly in their response, but they refer to their
previous article (Dawid et al. 2013), in which they defined the probability of
causation before making assumptions as

PCi = Pi(Y
0 = 0|Y 1 = 1, A = 1, X), (12.14)

where X are observed covariates. It is interesting to note that it does not look so
different from Pearl’s probability of necessity

PN = P(Y 0 = 0|Y = 1, A = 1, X). (12.15)
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The only differences are the conditioning on Y 1 vs. on Y and the subscript i. The
former is not so relevant since by assuming consistency, which is not a strong
assumption in this case, we get A = a $⇒ Ya = Y . But the latter is
relevant because it denotes that Dawid, Faigman, and Fienberg are using a subjective
Bayesian probability. This makes not only their analyses different but also their
philosophies.

They also respond by saying that even though his contributions to the problem
are useful, Pearl has made a mistake. He oversimplifies the legal problem. His “use
of the legal burden of proof in civil cases is misleading and simplistic.” Dawid,
Faigman, and Fienberg object to Pearl “aligning the CoE statistical issue with the
trier of fact’s ultimate determination regarding causation.” The authors believe that
Pearl is missing a crucial aspect of the analysis, which is how to communicate it to
a court, and how a court should use it.

A complication arises if we are not certain that Ann took the aspirin. So far, we
have assumed we know that A = 1 and Y = 1 and do not know whether there is
a causal link between the two. What about the situations in which we observe the
response but are not sure whether the individual was exposed at all? In these cases,
we need to multiply the probability of causation by the probability of exposure,
conditioned on the (known) fact that there was a positive response. Thus, we write
the modified probability of causation for Ann as

PC∗
A = PCA · PrA(A = 1|Y = 1, X) (12.16)

and the bounds as

Pr(A = 1|Y = 1, X) ≥ PC∗ ≥ max

{

0, 1− Pr(A = 0|Y = 1, X)

Pr(A = 0|X)

}

. (12.17)

These new bounds are useful when accounting for uncertain exposure, which
could be a crucial issue in a legal trial.

Discussion About the Debate

The debate between Pearl and Dawid, Faigman, and Fienberg addresses some of
the main disagreements between the authors on using causes of effects to answer
legal questions. The quantities, assumptions, and data types used by each side are
displayed in Table 12.5.

It seems that Pearl is more interested in providing a general mathematical
formulation and in making weaker identifiability assumptions. Dawid, Faigman,
and Fienberg are more interested in what the law asks, which is a question about
an individual, and how to address this group-to-individual question in a real-life
setting.
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Table 12.5 Comparison of the causes of effects formulations by Pearl and Dawid, Faigman, and
Fienberg (DFF), based on their debate in the journal Sociological Methods and Research

Issue Dawid, Faigman, Fienberg Pearl

Quantity of interest PCi = Pi(Y
0 = 0|Y 1 = 1, A =

1, X)

PN = P(Y 0 = 0|Y = 1, A =
1, X)

Philosophy Personalist Bayesian Frequentist

Identifiability No unobs. confounders (∼) –

Assumptions Exchangeability of Ya

Exogeneity

→ Experimental ERR → Observational ERR +
Correction

Data required Experimental Experimental + Observational

Further assumptions – No unobs. confounders

→ Experimental ERR → Experimental ERR

Group-to-individual Posterior expectation Ignore specific features

PC specific to individual PN conditions on X

Uncertain exposure PCi × Pi(Y = 1|A = 1) –

Other quantities – PS, PNS

Although both DFF and Pearl start with different probabilities and assumptions, they arrive at the
same observable quantity: the excess risk ratio (ERR). (Note: → denotes the lower bound (or the
single quantity under monotonicity)

It is curious that Dawid, Faigman, and Fienberg start by defining an individual
probability, which is what the law requires, but to identify it, they make assumptions
that lead to a group-based probability. They do not explicitly say how one gets from
the group probability back to an individual probability, but in Dawid et al. (2016),
the authors display an example of an application. In this application, they use a
Bayesian method to simulate the experimental RR from (12.3), and then they take
the mean of the posterior. This indeed yields an individual value, but does it mean
that it is the individual’s probability of causation? It is unclear how this resolves the
problem of group-to-individual causality (sometimes referred to as G2i).

The authors address the sensitivity to the choice of prior by saying that none
of their priors capture zero or one, which are the most important values. But it
is still not clear which values between zero and one are relevant. Perhaps the
preponderance of evidence is useful, for which a value above 0.5 means there is
a causal link and below 0.5 means there is not one. But it is unclear how to define
quantities for “beyond a reasonable doubt.” Should it be 0.5 or 0.8 or 0.99? There
is no consensus about what the answer should be here. This is a common problem
in applying statistics in the law, which has been addressed by numerous researchers
(see, for example, Green et al. (2011)).

The debate sheds light on how best to answer the four questions posed earlier
(and repeated here): (1) How should we define the correct probability of interest in
Causes of Effects questions? (2) How should we identify this probability? (i.e.What
assumptions are we willing to make?) (3) How should we estimate this probability?
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And (4) How should we use the results from a Causes of Effects analysis? In this
section, we describe the authors’ arguments from each article, and we summarize
the debate to shed light on using statistics to speak about causal question in the law.

Dawid, Faigman, and Fienberg’s definition of the probability of causation
directly from the requirements by law is useful. Pearl’s derivations under different
assumptions and types of data are also useful. In addition, there are extensions
that each side developed, but the other did not. Pearl included the definition of
the probability of sufficiency (PS) and the probability of necessity and sufficiency
(PNS). This could be used to incorporate stricter requirements in making statistical
claims in court. Dawid, Faigman, and Fienberg provide an adjustment for uncertain
exposure (e.g. for cases in which we are not sure whether the individual took the
aspirin). Perhaps it is possible to incorporate the insight from both sides to develop
a methodology that is stronger than any single one.

Below, we replicate Pearl’s and Dawid, Faigman, and Fienberg’s complete
arguments, which they did not include in their entirety in Dawid et al. (2013) but
which can be useful to understand the frameworks.

12.4 Further Questions

The topics of mediators and other possible causes are not addressed in the debate in
the articles; nevertheless, they deserve some attention.

Group-to-Individual Problem

The question of how to use the probability from a Causes of Effects analysis requires
understanding how to interpret the probability for an individual given that you
have population-level data. Dawid et al. (2014) call this the problem of group-to-
individual (or G2i) probability. The authors state that Pearl (2015) does not answer
the question about the individual when “he makes clear that his statistical analysis
does not, indeed cannot, take into account all the. . . variables. . . But it is exactly
these variables that jurors will be considering alongside any statistical proof of
CoE.” Thus, the authors state that the trier of fact will learn individual information,
and somehow the trier must interpret the estimated probability for the individual,
because the courts do expect to hear about “all the anatomical and psychological
variables that determine an individual’s (or bus’s) behavior.” The authors add that
this simplification to the point of caricature is reminiscent of the famous Blue Bus
Company hypothetical, a problem that has been addressed by Fienberg (1986),
Dawid (2015), and Pearl (2009), among many others, as well as unpublished work
by K. Steele and M.Colyvan at the London School of Economics.

The Blue Bus Company hypothetical asks whether a plaintiff can recover for
damages in an accident with a bus when the Blue Bus Company operates 80% of the
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buses on the street where the accident occurred, but no other evidence is proffered by
either side. The authors state that legal scholars generally agree that the proportion
of blue buses is relevant evidence (and likely admissible), but it is not sufficient to
sustain a verdict for the plaintiff (in a civil case, or prosecution in a criminal case).

A similar hypothetical not mentioned by Dawid, Faigman, and Fienberg is the
problem of the 100 prisoners. Suppose there are 100 prisoners in a courtyard prison,
and 99 of them attack a prison guard and murder him. Then, the prisoners are tried
individually. For any random individual, this individual has a 99% chance of having
attacked and murdered the guard, according to the evidence. Therefore, they will all
be considered guilty, even though there was one prisoner who is innocent and not
involved in the attack. According to Dawid et al., legal scholars would say the 99%
probability is not sufficient to sustain a verdict for the plaintiff.

The question of group-to-individual probability is one that has not been settled
in statistics. The literature in precision medicine (Krakow et al. 2017) has addressed
some of these issues about how to interpret a probability that has been estimated
for a population for an individual. Some of these issues include what additional
assumptions must be made, and on which populations? Although we do not discuss
this issue in depth in this chapter, we mention it here because it is relevant to
interpreting probability for legal trials.

Lagakos and Mosteller (1986) have an interesting view of the group-to-
individual, or G2i, problem. They argue that instead of calling it the probability
of causation or necessity, the quantity discussed by Pearl, which is conditioned
on a group of individuals with observed characteristics X, it should be called the
“assigned share.” The assigned share or AS addresses the issue that researchers
have limited data, and thus they must make simplifying assumptions about how
the treatment affects the individual. In addition, it is possible that the individual
in question was not in an experiment, but data from an experiment is used. The
external validity of this experiment must then be evaluated.

Lagakos and Mosteller (1986) argue that it might be possible to gather additional
information about the individual and further condition the probability based on the
information. It might be possible to further condition the probability until it reaches
a stable value (in the sense that it stops varying with further conditioning), and
conditioning it on further information does not alter its value. However, it is possible
that the order in which new variables are conditioned on can change whether the
probability increases or decreases. So, this idea should only be carried out when
there is monotonicity in the sense of checking whether the probability changes
values always in the same direction (increasing or decreasing) with specified
additional information. However, the authors also warn about possibly not wanting
to condition on certain types of information. They state,

In discussing these matters, we tend to get caught up in the science side and forget that the
purpose of the enterprise is to make decisions that are seen to be equitable, if only because
they are evenhanded and uniform. One can visualize an individual with a certain type of
cancer, whose AS is lower than what it would be if he had another form of cancer, arguing
that the distinction between the types of cancer should not be made. One can even imagine
society and the courts agreeing with such a position in spite of the legislation and in spite
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of the use made of this distinction in constructing the tables. An important point in policy
work with populations is that society may choose not to take account of all or even any of
the distinctions that matter.

Lagakos and Mosteller (1986) also argue that it might be possible to use AS
tables within the tort (or personal injury) legal system to calculate the compensation
that should be given to the individual. The authors derive several compensation
rules, which include information about the effects of the outcome on quality or
quantity of life after diagnosis. For a cancer patient, the authors speculate that “some
amount of compensation could be based on the type of cancer, age at diagnosis,
prognosis for life-shortening, prognosis for restricted activity, etc., and then this
compensation could be adjusted in proportion to the AS values.” This is perhaps the
most concrete policy suggestion in the literature about causes of effects.

Mediators

Suppose the treatment A is taking a pill and the outcome Y is dying. Suppose a man
has taken the pill and died. What happens if the reason he died is not because the pill
poisoned him and made his body fail, but instead when he took the pill, he decided
to drive a car, and the pill caused him to become debilitated and thus get into a fatal
car crash? In that case, the probability of causation would be positive: taking the
pill is the cause of his death. But in reality, the car crash caused his death. What
do we do in this case? The law sometimes requires the “but for” requirement: it
requires that experts demonstrate that the person would not have died but for taking
this pill. In this case, however, the man would not have died had he not taken the
pill. Without the pill he does not die, but with the pill he does die. This scenario
still satisfies the but for criterion. But we cannot assume that the man’s decision
to drive his car after taking the pill is the same as it would be for a sample of
individuals from the population because the exchangeability assumption would fail.
If everyone in the sample also decided to drive after taking the pill, then the man
would be exchangeable and the analysis could proceed. If not, then one of the main
assumptions would be violated. Perhaps a study performed by statisticians and legal
scholars about proximate causes could help inform this discussion. Finally, Dawid
et al. (2019) have recently written about how to include mediators in identification
and in deriving bounds for the causes of effects.

Multiple Causes

What happens when the question of interest is not just “Was Y caused by A?”,
but instead, “Was Y caused by A or B or C?” The probability of causation only
answers the first question. To adapt it to answer the second question, the probability
of causation could be applied to each event A, B, and C separately. If events A,



228 M. Cuellar

B, and C are mutually exclusive, and they are the only possible causes, we would
expect their three probabilities of causation to sum to one. However, if they are not
mutually exclusive, then it is possible that their probabilities of causation add up
to more than one. What does it mean when to say that the probability that it was
A or B or C that caused Y is, for example, two? Since it is still a probability of
causation, should it not be restricted to be between zero and one? This topic has
not been addressed in the literature, but it is of great importance when comparing
different causes. It might also be possible to express the cause being A, B, or C, in a
different way using potential outcomes, but that is outside the scope of this chapter.
For now, the question of comparing probabilities of causation of different possible
exposures is unexplored.

Overdetermination is the case in which the outcome was caused by several
different causes, say by A and by B and by C (e.g. a man died because he ingested
poison, was shot, and drowned). In other words, each cause was sufficient, but not
necessary. In that case, if we write

P(YA=0 = 0|Y = 1, A = 1, B = 1, C = 1, X = x), (12.18)

then PC = 0 because the outcome was also caused by both B and C. In that case,
the probability of causation fails to capture the fact that A caused Y. We could repeat
this by evaluating the case for B, PC = P(YB=0 = 0|Y = 1, A = 1, B = 1, C =
1, X = x) = 0, and the case for C, PC = P(YC=0 = 0|Y = 1, A = 1, B =
1, C = 1, X = x) = 0. So, we see that A was not the cause, B was not the cause,
and C was not the cause. But in fact, each one was a cause. It just was not the (only)
cause. Overdetermination breaks this formulation of the probability of causation.
However,

P(YA=0 = 0, YB=0 = 0, YC=0 = 0|Y = 1, A = 1, B = 1, C = 1, X = x) = 0,
(12.19)

and

P(YA=1 = 0, YB=0 = 0, YC=0 = 0|Y = 1, A = 1, B = 1, C = 1, X = x) = 1.
(12.20)

Etiology (as in the case of etiologic fractions) is the case in which the cases A,
B, and C together cause Y. In other words, each A, B, and C is a partial cause of Y.
Writing the usual probability of causation, we get that A was not the cause of Y:

P(YA=0 = 0|Y = 1, A = 1, X = x) = 0. (12.21)

We also get that B and C are not the cause of Y. The but for requirement applies
because Y would not have happened but for A happening (this is true for B and C
as well). But if we combine them, we can write

P(YA=0,B=0,C=0 = 0|Y = 1, A = 1, B = 1, C = 1X = x) = 1. (12.22)
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Also, if you set any of A, B, and C to zero, then PC = 1:

P(YA=0,B=1,C=1 = 0|Y = 1, A = 1, B = 1, C = 1X = x) = 1. (12.23)

In other words, blocking any of them makes the counterfactual false, and therefore
PC = 1.

In conclusion, one must be wary when estimating the probability of causation in
the case of overdetermination (A or B or C) and etiologic fractions (A and B and
C). Pearl has some discussion of this in Tian and Pearl (2000), where he talks about
the probability of necessity and sufficiency. It could be interesting to apply Pearl’s
definitions to real-world cases to see if any new arguments could be made to support
either the prosecution or the defense.

Bayesian versus Frequentist Interpretation

If one’s goal is to quantify one’s subjective beliefs about the probability of causation
for a specific case, then one should use Bayesian statistics. In this case, an
expert witness can state a likelihood from population-level data and a prior from
information specific to the individual. Therefore, the exchangeability assumption
is necessary only for the likelihood, and the prior can be specific to the individual
at hand. Subsequently, the expert provides his results (as a posterior distribution),
and the trier of fact can incorporate that into his or her (or their) prior information
(hopefully the judge or jury is unbiased and will have a flat prior before learning
about the case, but the prior could include other evidence presented in the case) to
make the final conclusion about guilt. More precisely, an expert witness is allowed
to give a personal opinion in court. It is subjective, and there is nothing problematic
about that. The question is whether, and to what extent, does the trier of facts (judge
or jury) change their subjective opinions given the expert’s testimony. That is a
matter of how persuasive the expert is.

If one’s goal is to provide a methodology that whenever it is repeated in the long
run it provides 95% confidence intervals for the probability of causation, the one
should use frequentist statistics. In this case, the probability of causation should be
estimated by using population-level data, for instance, from a randomized trial. PC
is a function of x, so there will be an estimate for each observation, and in fact
for any new x by using predictions from a model. A way to derive a probability
specific to an individual is by conditioning on observed covariates of interest and
by assuming that the individual of interest is exchangeable with the people from the
sample with his or her same covariates. The more covariates one conditions on, the
narrower the group of individuals that fit into that group, and the easier it is to satisfy
the exchangeability assumption, and the harder it is to obtain good estimates.
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12.5 A Comprehensive Treatment of the Probability
of Causation

What can we conclude from the debate? Or in other words, What definition
and identification should a researcher use if they are interested in estimating the
probability of causation? The formulation in Cuellar and Kennedy (2018) was
informed by the debate, and it is replicated here. Let the probability of causation
be defined as

PC = P(Y 0 = 0|Y = 1, A = 1, X = x), (12.24)

where Y is the binary outcome, A is the binary exposure, YA=a is the binary
potential outcome, and X = x is the vector of covariates that can be observed
about the individual or group in question. The probability of causation is the causal
parameter of interest.

The probability of causation includes the counterfactual relationship between the
potential outcomes under exposure and under no exposure, and these two will never
be observed for an individual or even for a group. This is the fundamental problem
of causal inference, as noted by Holland (1986). To arrive at a statistical quantity that
can be estimated from data, we must make some identification assumptions. We start
with a causal parameter, make identification assumptions to arrive at a statistical
parameter, and then make estimating assumptions to arrive at an estimator. Here, a
causal parameter means a quantity of interest that contains potential outcomes and
thus can rarely be estimated directly. A statistical parameter is a quantity that does
not have potential outcomes and thus could be estimated from data. An estimator is
a rule for calculating an estimate of a given statistical parameter based on observed
data; thus, the rule (the estimator), the quantity of interest (the estimand, here the
statistical parameter), and its result (the estimate) are distinguished.

Assume outcome Y is binary. Start by using the Bonferroni–Fréchet–Hoeffding
bounds:

min
{
1, P (Y 0=0|X,A=1)

P (Y 1=1|X,A=1)

}
≥ PC ≥ max

{
0, 1− P(Y 0=1|X,A=1)

P (Y 1=1|X,A=1)

}
. (12.25)

Assume no unobserved confounders, otherwise called exchangeability, i.e.
(Y 0, Y 1) ⊥⊥ A|X. A is a random variable. Then, conditioning on X and A = 1 or
on X and A = 0 are interchangeable, so we can write

min
{
1, P (Y 0=0|X,A=0)

P (Y 1=1|X,A=1)

}
≥ PC ≥ max

{
0, 1− P(Y 0=1|X,A=0)

P (Y 1=1|X,A=1)

}
. (12.26)

Assume consistency, i.e. A = a $⇒ Ya = Y . In this step, we shift from potential
(sometimes unobservable) outcomes to observable outcomes. Then,

min
{
1, P (Y=0|X,A=0)

P (Y=1|X,A=1)

}
≥ PC ≥ max

{
0, 1− P(Y=1|X,A=0)

P (Y=1|X,A=1)

}
. (12.27)
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Assume monotonicity, i.e. P(Y 1 ≥ Y 0) = 1. Monotonicity implies that the
treatment (e.g. aspirin) can only make a person better (e.g. cure the person’s
headache), but it cannot make the person worse. In summary, under these causal
assumptions:

1. Binary outcome and treatment: Y ∈ {0, 1}, A ∈ {0, 1},
2. Consistency: A = a $⇒ Ya = Y ,
3. No unobserved confounders: Ya |$ A|X, and
4. Monotonicity: Y 1 ≥ Y 0,

the probability of causation is identified as

PC =︸︷︷︸
l.t.p.

P (Y 0=0,Y 1=1|A=1,X)

P (Y 1=1|A=1,X)
=︸︷︷︸
1,4

P(Y 1−Y 0=1|A=1,X)

P (Y 1=1|A=1,X)
=︸︷︷︸
2,3

1− P(Y=1|A=0,X)
P (Y=1|A=1,X)

=︸︷︷︸
1

1− E(Y |A=0,X)
E(Y |A=1,X)

,

where l.t.p. stands for the law of total probability, and therefore,

PC = 1− ERR. (12.28)

Finally, PC under monotonicity is exactly the lower bound in (12.27). A researcher
can use this strategy, after verifying that the causal assumptions hold in the specific
substantive area and dataset of interest, to estimate the probability of causation.

12.6 Discussion

Attorneys and courts often need to understand whether a specific exposure, or
something else, caused a defendant’s outcome. In other words, they need to
determine whether an outcome can be attributed to a specific cause. To answer
questions of causality in which the exposure and outcome have already been
observed, researchers should use the framework of causes of effects, not effects
of causes. They can do this by using the probability of causation (PC). In the
statistics literature, the questions of how to define this probability properly and what
identification assumptions to make in a specific application are still debated.

Dawid, Faigman, and Fienberg have one way of answering these questions. They
argue that the probability of causation should be defined for a specific individual,
as denoted by subscript i in PCi . That it should condition on Y 1 instead of Y ,
since in an experimental trial the treatment A was set to one. For Y 1 to equal Y ,
the authors must assume consistency, which Pearl does not necessarily assume.
And that, it should be interpreted as a subjective Bayesian quantity that is stated
by a researcher with specific prior knowledge of the situation. They argue that to
identify the probability of causation, the researcher must assume that there are no
unobserved confounders, and thus essentially only experimental data can be used to
answer questions about the probability of causation. “Identify” here means to derive
a statistical quantity from a causal quantity by making identification assumptions.
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The no-unobserved-confounders assumption is almost never true in observational
data, but it is true in experimental data. Finally, they argue that the individual must
be exchangeable with the individuals in the sample, in order to make inferences
about the individual in question from data (Dawid et al. 2013; 2016).

Pearl has a different way of answering these questions. He argues that the
probability of causation (which he has claimed to have already defined as his
probability of necessity) should condition on Y , not Y 1 since the researcher must
condition on what was observed, which was the real outcome, not the potential
outcome. Under consistency, the definition by Dawid, Faigman, and Fienberg is
almost the same as Pearl’s, but again, Pearl does not necessarily assume consistency.
Pearl argues that the probability should be interpreted as a frequentist quantity
that could be estimated by anyone. Pearl does not interpret the probability of
causation for an individual in the sense that he accepts that, since the data used
to estimate PC comes from a population, the closest one can get to finding PC
for an individual is by conditioning further by using the covariates X. To identify
the quantity, Pearl says there are no necessary assumptions. If one assumes no
unobserved confounders, then one can get the experimental excess risk ratio, and
with monotonicity, the quantity is a point estimate (not a bound). In general, Pearl
makes fewer assumptions.

If one is interested in quantifying subjective beliefs, one should use Dawid, Faig-
man, and Fienberg’s subjective Bayesian approach. If one is interested in frequency
guarantees, one should use Pearl’s approach. Each has to make assumptions to draw
inferences from data about an individual. The assumptions made will depend on
the application in question and particularly on the data available. For example, in
a vaccine trial consistency might not hold, and in an observational setting, there
might be unobserved confounders. Thus, it is up to the researcher to justify each
assumption carefully. Work remains to be done to incorporate some additional
issues into the formulation of the probability of causation that might be of interest
for legal or epidemiological questions. Furthermore, connecting the views from
epidemiology, the law, and statistical causal inference on this topic is a serious gap
in the literature that if filled could better inform legal and medical decisions.

Further questions about the probability of causation that were not addressed in
the debate are important to understanding how to answer questions of attribution
and causes of effects. First is the group-to-individual problem, which deals with
how to interpret the probability of causation for an individual if what the researcher
has access to is data about a group. Second is a discussion about mediators, whether
the probability of causation should be defined the same way if there is a sequence
of possible causes instead of a single cause. Third is a discussion about multiple
causes, whether the definition of PC should change if the question of interest is
about whether an outcome was caused by one cause or another, or another. Finally,
they include a discussion about the differences between a Bayesian treatment and a
frequency treatment of the analysis.

When answering questions about causality in the law, from the point of view
of statistics, it is important to clarify what the question of interest is (e.g. is it
about forecasting, backcasting, or attribution?), how the causal parameter is defined,
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and what causal assumptions are made to estimate the quantity of interest. As
statisticians, we are used to addressing questions of forecasting, and sometimes
backcasting (effects of causes), but we are less familiar with questions of attribution
(causes of effects). It is important to answer the questions we are actually interested
in, and not just the ones we have the tools to answer. Therefore, the causes of effects
deserve some attention such that questions in court and in investigations can be
answered appropriately.
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Chapter 13
What Can Group-Level Data Tell Us
About Individual Causality?

A. Philip Dawid and Monica Musio

13.1 Introduction

“Causal inference” subsumes two related but distinct enterprises: inference about
the expected Effects of applied Causes (EoC) and inference about the likely
Causes of observed Effects (CoE). The former is the bread and butter of most
scientific research, while the latter is important in the law for assigning blame or
responsibility. While EoC questions can be phrased at the level of individuals or of
groups, CoE questions are fundamentally individualistic. In this chapter, we shall be
specifically interested in the possibilities for making CoE inferences, on the basis of
data collected on groups.

As an example, in a legal “toxic tort” case, an individual might sue a pharmaceu-
tical company, claiming that taking their drug was responsible for her developing
a certain adverse outcome. Evidence is presented by expert epidemiologists of the
incidence rate of this outcome, both among those exposed and among those not
exposed, to the drug. This evidence is clearly directly relevant to EoC inference:
would we expect the outcome, were an individual to take, or not take, the drug? But
this is not the question before the court, which wishes to assess whether there was a
causal link between taking the drug and the outcome in this particular case—a CoE
question. The epidemiological evidence is at best indirectly relevant to this issue.

So how are we to use such group-level epidemiological data to assist in
addressing the CoE task for the individual case at hand? This has been termed
the G2i (Group to individual) problem (Faigman et al. 2014). In a number of
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contributions (Dawid 2011, Dawid et al. 2014; 2021; 2016a;b; 2017, Murtas et al.
2017), we have addressed various aspects of this question. We have shown that
group-level data can in general only supply, at best, interval bounds for the CoE
target, the “probability of causation” (PC). These intervals can however be improved
if we also have data on additional variables, such as covariates or mediators (with
or without the associated information for the individual case).

Here, we summarise and build on our previous collaborative work in this area
with Stephen Fienberg, Rossella Murtas, and Macartan Humphreys. We give more
detailed analysis, including proofs for some results asserted in Dawid et al. (2017)—
which, like the present work, was dedicated to the memory of Stephen Fienberg,
a consummate statistician, a stimulating collaborator, and a dear friend. We also
present some new results on the use of mediating variables.

Plan of Chapter

In Sect. 13.2, we describe and contrast the problems of EoC and CoE inference.
Whereas the former can be formulated and solved using only the standard tools
of probability, statistics, and decision analysis (Dawid 2000; 2015), the latter
necessitates some form of “counterfactual reasoning”: for example, in the above
toxic tort example, one would want to consider whether the outcome might have
been different if—contrary to actual fact—the plaintiff had not taken the drug.

In Sect. 13.3, we describe a formalisation of the CoE problem in terms of
“potential responses”, which supports direct formulation of a counterfactual query
and the associated probability of causation, PC. But Sect. 13.4 shows that, even with
perfect information about the dependence of the response on the exposure, typically
one cannot identify PC exactly. Nevertheless, under certain assumptions, one can
use this information to determine interval bounds for PC.

The remainder of this chapter shows how such bounds can be varied or improved
by including further information on additional variables. Section 13.5 discusses the
use of information in the data on a “sufficient covariate”, which may affect both
exposure and outcome but conditional on which there is no residual confounding.
We derive the associated bounds on PC, both (a) when the covariate is observed
for the case at hand and (b) when it is not. A special case considered is where the
covariate does not affect exposure, in which case the bounds for situation (b) are at
least as good as the simple bounds of Sect. 13.4, which also apply in this case. They
are also at least as good as the bounds of Tian and Pearl (2000) applied to this case.

In Sect. 13.6, we suppose instead that the additional information in the data
relates to a variable that acts as a complete mediator between exposure and response.
When this is unobserved in the case at hand, the lower bound on PC is unchanged
from the simple lower bound, but the upper bound is improved. We also give results
for a chain of complete mediator variables. Section 13.7 derives bounds for cases
combining both covariate and mediator variables. Finally, Sect. 13.8 summarises the
work and suggests further extensions.
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13.2 Effects of Causes and Causes of Effects

The overwhelming majority of the literature on statistical causality, as in most
scientific concerns about causality, focuses on understanding the effects of causes
(EoC). That is to say, we are interested in understanding what would happen to
an individual if subjected to a certain intervention or exposure, E ← e. Here, E

is the cause variable and e its contemplated value, and the expression E ← e

indicates the state of affairs where an external intervention is applied to make E

take value e. There will typically be a specific response variable R of interest—
the effect variable. Our query would then be essentially answered if we could
assess the conditional probability distribution for R, consequent on the intervention
E ← e. The major purpose of EoC analysis is to find ways of estimating these
interventional probabilities, when the available data are in some way deficient—for
example, because they are purely observational and we suspect confounding, where
an unmeasured variable (such as a patient’s general health) is a common cause of
both exposure and response. Such estimation will require assumptions to be made,
and justified, in order to transfer properties from the observed but deficient data to
the hypothetical interventional situation of interest (Dawid 2021).

A somewhat different set of causal questions arises in, for example, legal
proceedings to assign liability for an already observed response. This requires
inference as to the causes of effects (CoE). Thus, suppose Ann took the drug
benfluorex as an appetite suppressant (E = 1) and sometime later developed
valvular heart disease (R = 1). She sues the manufacturer of the drug for
misconduct, an essential component of her case being that it was because she took
the drug that she developed the condition. Typically in such a toxic tort case, there
will be epidemiological evidence (“group level” data) presented to argue that the
exposure is indeed associated with the response, eg., because the response rate is
higher in the exposed than in the unexposed. This is information about the effects
of causes. But even full knowledge of the probabilities of the response, with and
without exposure, is not obviously relevant to the individual case at hand: we face
non-trivial problems of “group to individual” (G2i) inference. In particular, in the
individual case, both the exposure and the response have been observed—so where
does uncertainty about their causal relationship reside?

The CoE question might be reformulated as:

“If Ann had not taken benfluorex, would she still have developed valvular heart disease?”

For if the answer to this is “Yes”, and the same response would have occurred
anyway, one could not say that it was only because of the actual exposure that the
actual response occurred. On the contrary, a negative answer means that the actual
exposure did make a difference to the outcome, so can be regarded as a causative
factor.

However, the above question is counterfactual, in referring to a state of affairs
(where Ann’s exposure was different) that is contrary to the known facts. This
raises delicate questions of how we could ever address such a question on the



238 A. P. Dawid and M. Musio

basis of empirical observations. More specifically, suppose we have a complete
epidemiological understanding of how the response depends (probabilistically) on
an applied exposure. What does this tell us that might be helpful for addressing the
above counterfactual CoE query about Ann?

13.3 Potential Responses

The above counterfactual query is not clear-cut if there are more than two possible
values for the exposure, since the answer could depend on just which alternative
value we consider might have been realised. To avoid this complication, we restrict
attention to the case of a binary exposure variable E. The response variable R could
be of any nature, but for simplicity we will also require R to be binary. The CoE
question is then (where suffix A refers to Ann)

“We have observed EA = 1, RA = 1. If (counterfactually) it had been the case that EA = 0,
would it have been the case that RA = 0?”

The way in which such a question has generally been formalised statistically is in
terms of potential responses. Instead of a single response variable R, we posit a pair
of response variables, R = (R(0), R(1)), where R(e) (e = 0, 1) is conceived of as
the response that would occur under an actual or hypothetical intervention E ← e.
Both these variables are supposed to exist even prior to the determination of the
value of E, and indeed to be independent of whether E is set by intervention or
arises “naturally”. After the value of E has been determined, the actual response R

will be R(0) if in fact E = 0, or R(1) if in fact E = 1. That is to say, R = R(E).
However, while we can observe the single component of the pair R corresponding
to the realised value of E, the other component will remain forever unknown.

With this notational and philosophical elaboration, the CoE question becomes:

“We have observed EA = 1, RA(1) = 1. Is it the case that RA(0) = 0?”

If we had a full joint distribution for the three quantities (EA,RA(0), RA(1)), we
could compute the associated probability of causation (what Pearl (1999) terms the
probability of necessity, PN ):

PCA := Pr (RA(0) = 0 | EA = 1, RA(1) = 1) . (13.1)

The problem is that the information we have, even if obtained from individuals who
can be regarded as similar to (exchangeable with) Ann, will typically not allow us
to determine this joint distribution. In particular, since we can never observe both
R(0) and R(1) simultaneously, it is problematic to estimate a probability for R(0)
conditioned on R(1).
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13.4 Simple Analysis

Suppose we have access to extensive data supplying values for the population
probabilities Pr(R = r | E ← e) (e, r = 0, 1). We can express these probabilities
in terms of parameters τ and ρ, where

τ := Pr(R = 1 | E ← 1) − Pr(R = 1 | E ← 0)

ρ := Pr(R = 1 | E ← 1) − Pr(R = 0 | E ← 0).

Then, τ is the average causal effect ofE onR, while ρ is a measure of how common
the outcome is.

The transition matrix from E to R is thus

P = P(τ, ρ) :=
( 1

2 (1+ τ − ρ) 1
2 (1− τ + ρ)

1
2 (1− τ − ρ) 1

2 (1+ τ + ρ)

)

, (13.2)

where the row and column labels are implicitly 0 and 1 in that order. The necessary
and sufficient condition for all the transition probabilities to be non-negative is

|τ | + |ρ| ≤ 1. (13.3)

We have equality in (13.3) only in the degenerate case that one of the entries of P

is 0. Henceforth, we suppose this is not so.
The probabilities in P are clearly relevant to EoC analysis. But how can they

assist CoE analysis?
In terms of potential responses, we can equate

Pr(R(e) = r) = Pr(R = r | E ← e).

The data thus supply the marginal distributions of each of R(0) and R(1) but can
give no further insight into their joint distribution.

We can express the joint distribution forR as in Table 13.1, where the margins are
determined by the data, but the internal entries are indeterminate, having one degree
of freedom crystallised in the unspecified “slack variable” ξ . The only constraint on

Table 13.1 Joint probability distribution of (R(0), R(1))

R(1) = 0 R(1) = 1

R(0) = 0 1
2 (1− ρ − ξ) 1

2 (ξ + τ) 1
2 (1+ τ − ρ)

R(0) = 1 1
2 (ξ − τ) 1

2 (1+ ρ − ξ) 1
2 (1− τ + ρ)

1
2 (1− τ − ρ) 1

2 (1+ τ + ρ) 1
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ξ is that all internal entries of Table 13.1 must be non-negative, which holds if and
only if

|τ | ≤ ξ ≤ 1− |ρ|. (13.4)

Since we are assuming that P is non-degenerate, this will be a non-trivial interval.
We now attempt to apply the group-level probabilities to the individual case of

Ann. In order to begin to do this, we make two assumptions:

Exchangeability Ann is similar to the population from which the probabilities
have been computed, so those probabilities apply to her. So we can drop the
suffix A on probabilities.

No confounding The fact that Ann chose to take benfluorex is not informative
about her response to it, either factually or counterfactually. Formally, we require
independence between E and R: R⊥⊥ E.

The probability of causation (13.1) now becomes

PC = Pr (R(0) = 0 | R(1) = 1) .

In terms of Table 13.1, this is

PC = ξ + τ

1+ τ + ρ
.

In view of (13.4), we have the following interval bounds for PC:

l := max

{

0,
2τ

1+ τ + ρ

}

≤ PC ≤ min

{

1,
1+ τ − ρ

1+ τ + ρ

}

=: u, (13.5)

or equivalently

l = max

{

0, 1− 1

RR

}

≤ PC ≤ min

{

1,
Pr(R = 0 | E ← 0)

Pr(R = 1 | E ← 1)

}

= u, (13.6)

where

RR = Pr(R = 1 | E ← 1)

Pr(R = 1 | E ← 0)
(13.7)

is the risk ratio.
Without further information or assumptions, this interval for PC is the best

information we can extract from the group-level data.
It may however be that we do have additional information, either for the

population, or for Ann, or for both. When this is the case, we can generally use
that information to modify the simple interval bounds of (13.5). In this chapter, we
will focus on the use of additional information about covariates and/or mediators.
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13.5 Using Covariates

Consider the diagram of Fig. 13.1, with exposure E, response R, and sufficient
covariate S. That is, S is an additional variable that can be measured before
exposure is determined and that can have an effect on both E and R. Again,
we suppose variables E and R are binary, and (for simplicity) we suppose S is
discrete, with values in S say, and Pr(S = s) > 0 for all s ∈ S . We suppose
that, from the study data, we can identify Pr(S = s), Pr(E = e | S ← s), and
Pr(R = r | S ← s, E ← e). For Ann, we have observed EA = 1 and RA = 1 but
may or may not have observed SA. We want to bound the probability that EA = 1
caused RA = 1.

The relevant potential responses are now:

• E(s), the exposure when S ← s

• R(s, e), the response when S ← s, E ← e

We define E := (E(s) : s ∈ S), R := (R(s, e) : s ∈ S, e = 0 or 1). The
relationship between the potential and actual responses is E = E(S), R = R(S,E).

We again assume exchangeability and no unobserved confounding, the latter now
being formalised as mutual independence between S, E, and R. In particular, we
have

Pr(E = e | S = s) = Pr(E(s) = e) = Pr(E = e | S ← s)

and similarly

Pr(R = r | E = e, S = s) = Pr(R = r | E ← e, S ← s).

Thus, we have joint distribution

Pr(S = s, E = e, R = r) = Pr(S = s) Pr(E = e | S ← s) Pr(R = r | E ← e, S ← s).

Bounds

Consider first the case that, for Ann, we have observed E = 1, R = 1, S = s. What
now is the relevant probability of causation, PC(s) say?

E R 

S

Fig. 13.1 Sufficient covariate. E is the exposure variable, R is the response variable, and S is the
covariate, which may affect both E and R. We assume no residual confounding
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We have

PC(s) = Pr (R(S, 0) = 0 | S = s, E(s) = 1, R(s, 1) = 1)

= Pr (R(s, 0) = 0 | R(s, 1) = 1) (13.8)

by the no-confounding assumption. We can also set

Pr(R(s, e) = r) = Pr(R = r | S ← s, E ← e).

An analysis parallel to that of Sect. 13.4 can now be performed, with the sole
modification that all probabilities are further conditioned on S = s. So we obtain

l(s) := max

{

0, 1− 1

RR(s)

}

≤PC≤min

{

1,
Pr(R = 0 | E ← 0, S ← s)

Pr(R = 1 | E ← 1, S ← s)

}

=: u(s),

(13.9)

with

RR(s) = Pr(R = 1 | E ← 1, S ← s)

Pr(R = 1 | E ← 0, S ← s)
.

Alternatively, suppose that we cannot measure S for Ann, so we only know
E(S) = 1, R(S, 1) = 1. We have to consider what would have been the response
if, counterfactually, Ann’s exposure had been E = 0. We further assume that this is
the minimal change made between the factual and counterfactual world, so that, in
particular, there is no change to the value or distribution of S.

The probability of causation is now

PC = Pr {R(S, 0) = 0 | E(S) = 1, R(S, 1) = 1}
= E { Pr (R(S, 0) = 0 | S,E(S) = 1, R(S, 1) = 1) | E(S) = 1, R(S, 1) = 1}
= E {PC(S) | E(S) = 1, R(S, 1) = 1}
=
∑

s

PC(s) × Pr(S = s | E = 1, R = 1). (13.10)

Now there are no logical relationships between the distributions of
(R(s, 0), R(s, 1)) for different values of S. So by independently varying the values
taken by the slack variables in the joint distribution of these potential responses, all
the lower bounds l(s) for PC(s) given by (13.8) can be achieved simultaneously.
This leads to an achievable lower bound for PC:

PC ≥ L :=
∑

s

l(s) × Pr(S = s | E = 1, R = 1). (13.11)
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Using

Pr(S = s | E = 1, R = 1)

Pr(R = 1 | E = 1, S = s)
= Pr(S = s | E = 1)

Pr(R = 1 | E = 1)
,

we can re-express the lower bound as

L = 1

Pr(R = 1 | E = 1)

×
∑

s

max {0, Pr(R = 1 | E ← 1, S ← s) − Pr(R = 1 | E ← 0, S ← s)}

× Pr(S = s | E = 1), (13.12)

where we compute

Pr(S = s | E = 1) ∝ Pr(E = 1 | S ← s)Pr(S = s), (13.13)

and then

Pr(R = 1 | E = 1) =
∑

s

Pr(R = 1 | E ← 1, S ← s) Pr(S = s | E = 1).

(13.14)

Similarly, we can re-express the upper bound U = ∑
s u(s) × Pr(S = s | E =

1, R = 1) as

U = 1− 1

Pr(R = 1 | E = 1)

×
∑

s

max{0, Pr(R = 1 | E ← 1, S ← s) − Pr(R = 0 | E ← 0, S ← s)}

× Pr(S = s | E = 1). (13.15)

The results (13.12) and (13.15) agree with the bounds asserted in formula (11) of
Dawid et al. (2017). They can also be shown to agree, under the conditions assumed,
with formula (4) of Kuroki and Cai (2011).

Note that it is not appropriate to compare the above bounds with the simple
bounds of Sect. 13.4. Those bounds only apply when we can assume the simple
“no confounding” property, which in particular requires Pr(R = 1 | E = 1) =
Pr(R = 1 | E ← 1). However, in the presence of the unobserved confounder
variable S, this will typically not be so.
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Exposure Independent of Covariate

A similar situation was considered in Dawid (2011), with the difference that there
it was assumed that, for both Ann and the study data, exposure E is not affected by
S—e.g., because E is set externally. The response R may however still depend on
E and S jointly.

This can be treated as a special case of our story above, where now E(s) does
not in fact depend on s and thus is just E. Otherwise, the assumptions are the same.
This change does not affect the derivation of (13.10), nor the property that we can
vary PC(s), as given by (13.8), independently for different s.

We now have E ⊥⊥ S, so that (13.12) becomes

L = 1

Pr(R = 1 | E = 1)

×
∑

s

max{0, Pr(R = 1 | E ← 1, S ← s) − Pr(R = 1 | E ← 0, S ← s)} × Pr(S = s),

which agrees with the formula given in Dawid (2011). Likewise, formula (13.15),
with Pr(S = s) replacing Pr(S = s | E = 1), reduces to that given for the upper
bound in Dawid (2011).

In this case, the assumptions underlying the simple bounds of Sect. 13.4 do hold,
so it is appropriate to compare the above bounds with the simple bounds. It can
easily be shown that L ≥ l, with equality if and only if all the conditional risk ratios

Pr(R = 1 | E ← 1, S ← s)

Pr(R = 1 | E ← 0, S ← s)
(s ∈ S)

lie on the same side of 1. Commonly, we might expect all these risk ratios to be
bigger than 1, in which case access to the covariate S does not offer an improvement.
Similarly, U ≤ u, with equality if and only if all the ratios

Pr(R = 1 | E ← 1, S ← s)

Pr(R = 0 | E ← 0, S ← s)
(s ∈ S)

lie on the same side of 1.

Comparison with Tian and Pearl (2000)

Tian and Pearl (2000) consider a case where both observational and experimental
data are available on E and R, but we do not have information on the sufficient



13 What Can Group-Level Data Tell Us About Individual Causality? 245

covariate. In our notation, their equation (17) gives the following lower bound for
PC:

max

{

0,
Pr(R = 1) − Pr(R = 1 | E ← 0)

Pr(E = 1, R = 1)

}

. (13.16)

This can in fact be derived as a special case of our expression (13.12), if we
take as S the binary variable D = “desired exposure”, which behaves as a sufficient
covariate (this follows from the consistency condition assumed by Tian and Pearl
(2000)—see Dawid et al. (2015).) The introduction of such a variable has been
found useful in a number of contexts (Corradi and Musio 2020, Dawid 2021,
Geneletti and Dawid 2011, Richardson and Robins 2013). The actual exposure
E will be identical with D in an observational setting but need not be so in an
experimental setting (where D may not be observable).

Since Pr(D = 1 | E = 1) = 1, Pr(D = 0 | E = 1) = 0, (13.12) reduces to

L = max

{

0,
Pr(R = 1 | E = 1,D = 1) − Pr(R = 1 | E = 0,D = 1)

Pr(R = 1 | E = 1)

}

.

(13.17)

Now since in the observational regime E = D, we have

Pr(R = 1 | E = 1,D = 1) = Pr(R = 1 | E = 1), (13.18)

which is estimable from observational data. But we cannot so identify Pr(R =
1 | E = 0,D = 1), since the conditioning event does not occur in observational
circumstances. However, we can estimate Pr(R = 1 | E ← 0) from experimental
data; and we have

Pr(R = 1 | E ← 0) = Pr(R = 1 | E = 0,D = 0) × Pr(D = 0 | E ← 0) +
Pr(R = 1 | E = 0,D = 1) × Pr(D = 1 | E ← 0),

where Pr(D = 0 | E ← 0) = Pr(D = 0) = Pr(E = 0), Pr(D = 1 | E ← 0) =
Pr(D = 1) = Pr(E = 1), while Pr(R = 1 | E = 0,D = 0) = Pr(R = 1 | E =
0). So we can now identify

Pr(R = 1 | E = 0,D = 1) = Pr(R = 1 | E ← 0) − Pr(R = 1, E = 0)

Pr(E = 1)
.

(13.19)

Inserting (13.18) and (13.19) in (13.17), we recover (13.16). In similar fashion, we
can recover the upper bound in equation (17) of Tian and Pearl (2000).
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Now consider again the case that we do have access to a sufficient covariate S.
Then, we can compute Pr(R = 1 | E ← 0) by the “back-door formula” (§3.3.1
Pearl (2009)):

Pr(R = 1 | E ← 0) =
∑

s

Pr(R = 1 | E ← 0, S ← s) × Pr(S = s). (13.20)

So we can also compute the Tian–Pearl lower bound (13.16). Since we have
additional information, our lower bound should be better (larger) than theirs. This
claim of Dawid et al. (2017) is proved as follows.

We have

L = 1

Pr(R = 1, E = 1)

×
∑

s

max{0, Pr(R = 1, E = 1, S = s) − Pr(R = 1 | E ← 0, S ← s)}

× Pr(S = s, E = 1).

Using

∑

s

max{0, as} ≥ max

{

0,
∑

s

as

}

, (13.21)

we find L ≥ max{0, A/ Pr(R = 1, E = 1)}, where

A = Pr(R = 1, E = 1) −
∑

s

Pr(R = 1 | E ← 0, S ← s) × Pr(E = 1, S = s)

= Pr(R = 1, E = 1)

−
∑

s

Pr(R = 1 | E ← 0, S ← s) × { Pr(S = s) − Pr(E = 0, S = s)}

= Pr(R = 1) −
∑

s

Pr(R = 1 | E ← 0, S ← s) × Pr(S = s)

= Pr(R = 1) − Pr(R = 1 | E ← 0)

on using (13.20). This shows that our lower bound is at least as good as that of Tian
and Pearl (2000), as given by (13.16).

We note that there is equality in (13.21) if and only all the {as} have the same
sign. Consequently, our lower bound will be the same as that of Tian and Pearl
(2000) when all the conditional risk ratios

Pr(R = 1 | E ← 1, S ← s)

Pr(R = 1 | E ← 0, S ← s)
(s ∈ S)
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lie on the same side of 1, in which case the Tian and Pearl bound is just as good as
ours—our additional information about S has not been helpful (except in enabling
us to compute Pr(R = 1 | E ← 0) without actually running an experiment).

In similar fashion, we can show that our upper bound U cannot exceed the upper
bound derived by Tian and Pearl, namely

min

{

1,
Pr(R = 0 | E ← 0) − Pr(E = 0, R = 0)

Pr(E = 1, R = 1)

}

,

with equality if and only if all the ratios

Pr(R = 1 | E ← 1, S ← s)

Pr(R = 0 | E ← 0, S ← s)
(s ∈ S)

lie on the same side of 1.
We illustrate the above with the following example from Dawid et al. (2017).

Example 1 Suppose S is binary, and from the data, we obtain the following
probabilities:

Pr(S = 1) = 0.5

Pr(E = 1 | S ← 0) = 0.8

Pr(E = 1 | S ← 1) = 0.2

Pr(R = 1 | E ← 1, S ← 1) = 0.2

Pr(R = 1 | E ← 0, S ← 1) = 0.8

Pr(R = 1 | E ← 1, S ← 0) = 0.8

Pr(R = 1 | E ← 0, S ← 0) = 0.2.

Then, we obtain the following lower bounds for the probability of causation (the
upper bound being 1 in all cases):

When Ann is observed to have S = 1: PC ≥ 0
When Ann is observed to have S = 0: PC ≥ 0.75
When Ann’s value for S is not observed: PC ≥ 0.71

Ignoring S and using the Tian and Pearl (2000) bounds: PC ≥ 0.53.

��

13.6 Complete Mediator

Consider now a problem illustrated by the diagram of Fig. 13.2, where binary
variableM acts as a complete mediator of the effect ofE onR. For CoE analysis, we
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introduce the potential responsesM(e) andR(m), withM = M(E) andR = R(M).
We again assume exchangeability and no confounding, expressed as the mutual
independence of E, M := (M(0),M(1)), and R := (R(0), R(1)). We then have
the observational conditional independence

R⊥⊥E | M.

We assume that we have data supplying values for Pr(M = m | E ← e) and
Pr(R = r | M ← m). Then, we can compute

Pr(R = r | E ← e) =
∑

m

Pr(R = r | M ← m) Pr(M = m | E ← e).

(13.22)

In Dawid et al. (2016a), it was shown that when we do not observe M for Ann,
the lower bound on PC is obtained when the slack variables in the distributions of
M and R are both set at their lower bounds. And this yields exactly the same value
as the simple lower bound l given by (13.6) and (13.7), which entirely ignores the
existence of M (except that we use M for computing Pr(R = r | E ← e) in
(13.22)).

However, knowledge of the mediation process does improve the upper bound,
obtained when both slack variables are set at their upper bounds. This gives upper
bound

min{ac + (1− d)(1− b), bc + (1− d)(1− a), ad + (1− c)(1− b), bd + (1− c)(1− a)}
Pr(R = 1 | E ← 1)

,

(13.23)

where

a = Pr(M = 0 | E ← 0)

b = Pr(M = 1 | E ← 1)

c = Pr(R = 0 | M ← 0)

d = Pr(R = 1 | M ← 1)

(so that the denominator of (13.23) is Pr(R = 1 | E ← 1) = (1− b)(1− c)+ bd).

E M R 

Fig. 13.2 Complete mediator. E is the exposure variable, R is the response variable, and M is the
mediator. E directly affects M , M directly affects R, and there is no further direct effect of E on R
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For example, suppose we obtain the following values from the data:

Pr(M = 1 | E ← 1) = 0.25

Pr(M = 1 | E ← 0) = 0.025

Pr(R = 1 | M ← 1) = 0.9

Pr(R = 1 | M ← 0) = 0.1.

On applying (13.23), we get upper bound PC ≤ 0.76, whereas without taking
account of the mediator M the upper bound is 1.

Multiple Mediators

The above analysis was extended by Dawid et al. (2021) to the case where we have
a complete mediation sequence E = M0 → M1 → · · · → Mn−1 → Mn = R

and know the probabilistic structure of each link in the chain. It is assumed there is
no confounding at any stage. They consider cases where some of the M’s may be
observed for Ann, and others unobserved.

Let the transition matrix from Mi−1 to Mi be P(τi, ρi), defined as in (13.2). It
can be shown that

τ =
n∏

i=1

τi

ρ =
n∑

i=1

ρi

n∏

j=i+1

τj .

Mediators Observed

Suppose we observe each Mi = mi (with m0 = mn = 1). Let PCi be the probability
that Mi−1 = mi−1 causes Mi = mi . Then,

PC =
n∏

i=1

PCi ,

and the same product form will hold for the upper and lower bounds on these
probabilities. For the case that all τi ≥ 0 and all mi = 1, this yields bounds

n∏

i=1

(
2τi

1+ τi + ρi

)

≤ PC ≤
n∏

i=1

(
1+ τi − |ρi |
1+ τi + ρi

)

.
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While the lower bound is never smaller than l of (13.5), the upper bound may be
smaller or larger than u.

Mediators Unobserved

When τ ≥ 0 and all mediators are unobserved, we obtain bounds

2τ

1+ τ + ρ
≤ PC ≤ τ +∏n

i=1 (1− |ρi |)
1+ τ + ρ

, (13.24)

where the lower bound is the same as l in (13.5), while the upper bound does not
exceed (and is generally less than) u. For n = 2, (13.24) agrees with (13.23).

13.7 Mediator with Covariate

Figure 13.3 illustrates a combination of the problems of Sects. 13.5 and 13.6,
involving both a complete mediator M and a sufficient covariate S. We allow that
S might affect all of E, M , and R but exclude any unmediated (direct) effect of E

on R. We thus have potential responses E(s), M(e, s), and R(m, s). From data, we
have identified Pr(S = s), Pr(E = e | S ← s), Pr(M = m | E ← e, S ← s), and
Pr(R = r | M ← m, S ← s).
We again assume exchangeability and no confounding. We then have the

observational conditional independence

R⊥⊥E | (M, S),

and thus the joint distribution is given by

Pr(S = s, E = e,M = m,R = r) =
Pr(S = s) Pr(E = e | S ← s) Pr(M = m | E ← e, S ← s) Pr(R = r | M ← m, S ← s),

so that

Pr(R = r | E ← e, S ← s) =
∑

m

Pr(R = r | M ← m, S ← s) Pr(M = m | E ← e, S ← s).

(13.25)

Fig. 13.3 Complete mediator
(M) with covariate (S). S
affects all the other variables

E M R 

S
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Conditional on S = s, the problem reduces to that considered in Sect. 13.6,
except that all probabilities are to be conditioned on S = s.

Lower Bound

Knowledge of a complete, but unobserved, mediator does not affect the lower
bound on PC. Consequently, if S = s is observed, but not M , the lower bound
is given by l(s) of (13.9) (on using (13.25)). When S is also unobserved, we can
independently set the slack variables in the distributions of (M(s, 0),M(s, 1)) and
of (R(s, 0), R(s, 1)) (s ∈ S) to their lower bounds, so achieving the lower bound
l(s) for PC(s) simultaneously for all s. We thus recover the overall lower bound
L = E{l(S) | E = 1, R = 1} (as is also given by (13.12), on applying (13.25),
(13.13), and (13.14)).

Upper Bound

From (13.23), conditionally on S = s, we have upper bound

u(s) = 1

Pr(R = 1 | E ← 1, S ← s)
×

min{ a(s) c(s) + (1− d(s)) (1− b(s)),

b(s) c(s) + (1− d(s)) (1− a(s)),

a(s) d(s) + (1− c(s)) (1− b(s)),

b(s) d(s) + (1− c(s)) (1− a(s)) }

with

a(s) = Pr(M = 0 | E ← 0, S ← s)

b(s) = Pr(M = 1 | E ← 1, S ← s)

c(s) = Pr(R = 0 | M ← 0, S ← s)

d(s) = Pr(R = 1 | M ← 1, S ← s).

Again, for S unobserved, we can vary the slack variables in the distributions of
the relevant potential responses, independently for different s. So all upper bounds
u(s) can be achieved simultaneously. Hence, the overall upper bound is E{u(S) |
E = 1, R = 1}.
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Example 2 Suppose we have binary covariate S and obtain the following values
from the data:

Pr(S = 0) = 0.5

Pr(E = 1 | S ← 0) = 0.8

Pr(E = 1 | S ← 1) = 0.2

a(0) = Pr(M = 0 | E ← 0, S ← 0) = 0.98

a(1) = Pr(M = 0 | E ← 0, S ← 1) = 0.975

b(0) = Pr(M = 1 | E ← 1, S ← 0) = 0.75

b(1) = Pr(M = 1 | E ← 1, S ← 1) = 0.24

c(0) = Pr(R = 0 | M ← 0, S ← 0) = 0.95

c(1) = Pr(R = 0 | M ← 0, S ← 1) = 0.90

d(0) = Pr(R = 1 | M ← 1, S ← 0) = 0.65

d(1) = Pr(R = 1 | M ← 1, S ← 1) = 0.905.

We find, using (13.25),

Pr(R = 1 | E ← 0, S ← 0) = 0.062

Pr(R = 1 | E ← 1, S ← 0) = 0.5

Pr(R = 1 | E ← 0, S ← 1) = 0.120

Pr(R = 1 | E ← 1, S ← 1) = 0.293.

Then, we obtain the following lower bounds for the probability of causation:

When M is unobserved and S = 0: l(0) = 0.876
When M is unobserved and S = 1: l(1) = 0.590.

Also,

Pr(S = s | E = 1, R = 1) ∝ Pr(S = s) Pr(E = 1 | S ← s)×{(1−b(s))(1−c(s))+b(s)d(s)}

from which we find Pr(S = 0 | E = 1, R = 1) = 0.872. So, on using this with
(13.11), when S too is unobserved, we have lower bound L = 0.840.

For the upper bounds, we have

u(0) = 0.4885

0.5
= 0.977

u(1) = 0.21837

0.2932
= 0.745

and, for S unobserved, U = E{u(S) | E = 1, R = 1} = 0.947.
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Note that if we were to ignore entirely the existence of M , on using (13.6), we
would then have both u(0) and u(1) = 1 (and so U = 1). ��

Variation

As a variation of the above problem, we might assume that there is no dependence
of M on S, as illustrated in the diagram of Fig. 13.4. The effect of this is to replace
the potential variable M(e, s) by M(e).

The “no-confounding” assumptions imply that the observational joint distribu-
tion of (S,E,M,R) obeys the conditional independencies encoded by Fig. 13.4,
namely:

M ⊥⊥ S | E

R ⊥⊥ E | (M, S),

yielding the joint distribution

Pr(S = s, E = e,M = m,R = r) =
Pr(S = s) Pr(E = e | S ← s) Pr(M = m | E ← e) Pr(R = r | M ← m, S ← s),

(13.26)

so that

Pr(R = r | E ← e, S ← s) =
∑

m

Pr(R = r | M ← m, S ← s) Pr(M = m | E ← e).

(13.27)

We assume that, from data, we can evaluate the factors on the right-hand side of
(13.26).

However, none of these modifications changes the essential logic of our previous
analysis. We obtain the same lower and upper bounds as in Sects. 13.7 and 13.7,
subject only to computing Pr(R = r | E ← e, S ← s) using (13.27), and replacing
a(s) with a = Pr(M = 0 | E ← 0), and b(s) with b = Pr(M = 1 | E ← 1).

Fig. 13.4 Complete
mediator, with covariate S

affecting exposure E and
response R, but not mediator
M

E M R 

S
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Example 3 We modify Example 2 by replacing Pr(M = m | E ← e, S ← s) by

Pr(M = m | E ← e) =
∑

s

Pr(M = m | E ← e, S ← s) Pr(S = s)

(this application of the back-door formula can be regarded as supplying the
closest approximation to Example 2 under the additional assumption embodied in
Fig. 13.4). The effect of this is to replace a(s) by a = 0.978 and b(s) by b = 0.495,
all other input values being unchanged.

We now find, using (13.27),

Pr(R = 1 | E ← 0, S ← 0) = 0.064

Pr(R = 1 | E ← 1, S ← 0) = 0.347

Pr(R = 1 | E ← 0, S ← 1) = 0.118

Pr(R = 1 | E ← 1, S ← 1) = 0.498

so that we have

When M is unobserved and S = 0: l(0) = 0.817
When M is unobserved and S = 1: l(1) = 0.763.

Also Pr(S = 0 | E = 1, R = 1) = 0.736, which gives, when S too is unobserved,
the following value for the lower bound: L = 0.803.

For the upper bounds, we have

u(0) = 0.323

0.347
= 0.930

u(1) = 0.448

0.498
= 0.898

and, for S unobserved, U = E{u(S) | E = 1, R = 1} = 0.922.
If we were to ignore M altogether, we would once again obtain u(0) = u(1) =

U = 1. ��

13.8 Discussion

We have highlighted the important distinction between two varieties of causal
inference: EoC inferences, about the effects of contemplated interventions, and
CoE inferences, about causation or liability in a fully observed individual case.
Correspondingly, different mathematical formalisms are required for these two
varieties, with CoE inferences expressed in terms of “potential response” variables.
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Data sources will typically be available at group level. Under suitable conditions,
such as an experimental or ignorable observational setting, such data can be used
directly to determine desired EoC-type probabilities. However, they are not directly
relevant to CoE-type queries. This chapter has investigated just how, and how well,
group-level data can be used to make CoE inference about the “probability of
causation”, PC, in an individual case. Typically, even with ideal group-level data,
PC cannot be identified exactly but only confined to an interval.

The simplest case is when the data relate to exposure and response in an
experiment. Here, we have also considered what can be inferred for PC in an
individual case when we have some access to the inner workings of the “black
box” relating response to exposure, by observing additional variables in the data.
Specifically, we have considered the addition of information on covariates and/or
complete mediators. In all cases, we get interval bounds on PC, which—when the
problem allows the comparison—will be at least as good as the bounds for the
simple case.

The structure of each of the problems we have considered has been described
by means of a simple directed acyclic graph (DAG). Other problems could
involve other types of additional variables, structured into more complicated DAG
representations of the black box. It would be highly desirable to develop a more
general approach that could handle any such problem.
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Chapter 14
Evidence to Guide Decision Making
in Clinical Medicine

Burton Singer and Ralph I. Horwitz

This chapter is dedicated to the memory of Steve Fienberg, who could well be
called “Mr. Statistics” of the last several decades. Beyond his many statistical
contributions, Steve was a scientific generalist of the highest order. This was
exemplified by his chairmanship of the National Research Council’s Report Review
Committee, which basically covered all of science. Within Steve’s large corpus
of publications, many were targeted on issues in medicine and epidemiology. His
focus, however, was on statistical issues, which dealt with responses of populations
and their responses on average. Steve, nevertheless, had an interest in clinical
medicine per se from both personal and scientific perspectives. This brings us much
closer to the question of evidence needed to guide clinical practice. There, the focus
is never the population; it is the individual patient. The present chapter can be
considered an initial exegesis on reasoning by the physician about an individual
patient. Much of it is case-based reasoning from the experience of the physician
and literature focused on similar individual cases. Embedded in this discussion are
issues of causality. Here we are faced with the fact that clinical medicine deals
with causality from outcomes to candidate causes. This is precisely the opposite of
most of the statistics literature, which reasons from candidate causes to outcomes.
Although Steve situated most of his writing on the topic in the standard statistics
perspective, towards the end of his life, he was just beginning to consider in some
detail the real problems of clinical practice which start from the individual patient
and of necessity must reason about the patient in his or her own terms. We hope
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that this chapter can serve to not only honor Steve and his many contributions in the
medical domain but also point the way to a vast area of research that the statistics
community can add to its corpus. What we are presenting here is only a start but
one that we hope would have given Steve great satisfaction about a new domain for
scientific investigation.

14.1 Introduction

Any discussion of evidence to guide decision making in clinical practice requires
prior explication of the process of reasoning by the clinician starting from initial
contact with a given patient. The reasoning process begins with the presentation
of symptoms and signs signifying some kind of deviation from normal biological
or physiological functioning for the patient at hand, as well as a limited set of
sociodemographic facts – e.g., age, sex, ethnic background, and limited work and/or
family history. This limited set of information serves to trigger one or more initial
hypotheses in the mind of the clinician about mechanisms (dysfunction in one or
more biological systems) that might have produced the given symptoms and signs.
The basis for initial hypothesis generation is usually the expert knowledge of the
physician as well as clinical histories and diagnoses of patients, the prior experience
of the attending physician, or case reports from the extant literature, where the
information set of these cases approximately matches the presenting conditions of
the patient at hand. Without necessarily formalizing the process, indeed, in many
instances relying solely on pattern recognition, the clinician is developing a mental
database of approximate matches to the patient at hand which can serve as an initial
guide to formulating a diagnosis and to suggesting one or more treatments that have
a track record of benefitting persons in what is regarded as the relevant comparison
population [1].

Iteration of the above process continues with the clinician sequentially examining
more and more of the patient’s profile of biological and biographical information.
New hypotheses are proposed about the mechanisms that might have produced the
total examined information at each stage, while also rejecting earlier hypotheses
that do not continue to receive support. Often one or more responses to therapeutic
treatments are assessed and factored into the formulation of a diagnosis. This
strategy ultimately leads to a well-defended diagnosis, a report of several possible
diagnoses each with some probability attached to it, or no clear diagnosis or set
of them at all. Along the way, new approximate match populations are considered,
still based on the prior experience of the attending physician, but also possibly from
archives of patient profiles that are called up using diverse combinations of matching
conditions suited to the specific question(s) being addressed about the manner in
which observed effects for the patient at hand were generated.

The above outline might almost be viewed as an expanded definition of abduc-
tion, as put forth by Charles Sanders Peirce [2]. It is essentially a process of
learning from data where models of the observed phenomena are generated and



14 Evidence to Guide Decision Making in Clinical Medicine 259

revised, new hypotheses are generated, and new data is assembled with the overall
objective of reaching a diagnosis with the strongest available defense. For a closely
related overview from the vantage point of economics, see Heckman and Singer
[3]. Abduction is a process of detective work where the methodology of Sherlock
Holmes is the salient mode of operation. As put forth by Arthur Conan Doyle [4]:

All knowledge comes useful to the detective . . . . The temptation to form premature theories
on insufficient data is the bane of our profession. I can see only two things for certain at
present — a great brain in London and a dead man in Sussex. It’s the chain between that
we are going to trace.

—Sherlock Holmes
[4, p. 33 and p. 43]

Currently, when decisions about clinical care are considered, it is all too
customary to see reference to the randomized controlled trial (RCT) as the “gold
standard” that guides decision making. Yet a close reading of the above paragraphs
makes clear how little application the RCT has to clinical reasoning. It has long been
acknowledged that RCTs are useful for estimating average effects in populations,
a result that is most useful to pharmaceutical companies developing drugs and
regulators who license them [5]. A more extended set of recent critiques of the
method has identified other limitations of RCTs that are especially pertinent to this
consideration of clinical reasoning for the patient at hand. For instance, Deaton and
Cartwright have emphasized the transportability problem, that if the average result
of the RCT is by chance true, it is true for those who were in the trial and not
necessarily the patient being treated by the clinician [6].

Other recent critiques are also pertinent when considering the evidential base
clinicians require to support clinical reasoning for the individual patient. RCT
results may tell the clinician how to start treatment, but not what to do when
the patient fails to respond to therapy, or the disease progresses and treatment
modifications are needed. Clinical reasoning requires an iterative process that
incorporates new data as the patient’s clinical trajectory changes over time [7].
The dynamic nature of the patient’s illness journey demands a similarly dynamic
process of evidence generation that is tuned to clinical reality [8]. Case-based
reasoning, starting from the clinician’s experience and augmented by examination
of similar cases to a patient at hand using extensive literature and patient record
archives, facilitated by contemporary computer technology and analytical methods
for interfacing with large data sets, is at the heart of clinical decision making.

With this background, the purposes of this paper are to (i) clarify the evidential
base that is relevant for decision making in clinical medicine, (ii) describe causal
reasoning tuned to clinical practice and contrast it with causal inference as consid-
ered in the statistics and epidemiology literatures, and (iii) briefly explicate what
we regard as important research directions where advances would enhance clinical
practice in medicine.
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14.2 Approximate Match Populations

Case-based reasoning, reflecting the attending physician’s prior experience, has
always been at the heart of specification of diagnoses and decision making about
therapeutic treatments for a patient at hand. Although a clinician can only consider
small blocks/modules of information at any one point in time [9] from what one
hopes is a rich biology-biography profile of the patient at hand [10], the sequential
examination of multiple modules triggers recall of different approximate match
cases for comparison with the patient’s profile.

In principle, case-based reasoning pertaining to a particular patient could be
dramatically expanded if the clinician could access a library of detailed patient
profiles and select a subset of them whose characteristics are matched to those of
the patient at hand. Criteria that define a match are, of necessity, idiosyncratic to a
question(s) being asked by the clinician about the particular patient. For example,
when contemplating use of a particular pharmacological agent for a patient already
receiving two or more co-therapies, matching criteria would include the co-therapies
and other clinical course descriptors deemed essential for declaring that comparison
cases were an adequate match to the patient at hand. The matched cases would
be used for evaluating responses to treatment as well as response to no treatment
or alternatives to the contemplated treatment as likely scenarios for what would
happen to the patient at hand under the various options [11]. A key point about this
process is that it requires availability of large libraries of patient profiles if there is
to be assurance of identifying approximate matches for rather idiosyncratic sets of
conditions.

Elaborating further on this point, consider molecular diagnostics-guided targeted
therapies that have become standard treatments for patients with lung cancer [12].
Molecular analyses of various biomarkers in tumor tissue or cytology specimens
are part of standard laboratory tests for the clinical management of lung cancers.
Identifying approximate match groups for the test results of a lung cancer patient
at hand and examining responses to alternative treatments within this group is
an increasingly common practice. However, doing such approximate matching
while ignoring basic demographic information, smoking history, and especially
comorbidity status can ultimately mean that the extent of overlap between the
profile of the patient at hand and the comparison group is quite limited. Taking
the more refined information into account leads to tradeoffs between richness of
detail and approximate match group size. An example of this tradeoff is illustrated
by the recent development of targeted therapies for patients with Stage 3 lung
cancer. Previous therapy for this disease was limited to surgery for a small minority
of eligible patients and chemoradiation for patients ineligible for surgery. Many
patients with Stage 3 lung cancer are too frail for these treatments, with the result
that as many as half or more of older patients are left untreated [13]. Immune
checkpoint inhibitors are now available with a better side effect profile and can be
offered to frail older patients previously left untreated.
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Referring back to our remarks about RCTs in the introductory section, it is
important to emphasize that no RCT or group of RCTs have sufficient numbers
of relevant patients to guide clinical decisions for such lung cancer patients. In this
setting, only real-world cases can generate the approximate matches that clinicians
and patients need [14]. In fact, this is a generic weakness of results from RCTs in
which, as Austin Bradford Hill pointed out in the early days of RCTs in medicine,
“they cannot answer the clinician’s question about the effectiveness of a particular
treatment for a given patient” [15]. It is the approximate match group, of whatever
size attainable, that is the relevant comparison population for decision making
about the patient at hand. It is also important to emphasize that the members of
an approximate match group can derive from hospital records, one or more RCTs,
observational studies, or clinical practice archives as long as they are subject to
quality control standards. Although difficult to do at the present time because of
privacy restrictions, you could build up approximate match groups of considerable
size were it possible to draw cancer profiles from a multiplicity of sites – e.g.,
M.D. Anderson, Dana Farber, Sloan Kettering, Mayo Clinic, etc. Some commercial
entities are doing that now for patients with cancer (e.g., Flatiron: https://flatiron.
com/).

Here it is useful to comment on the recent development of a predictive approach
to treatment effect heterogeneity referred to by the acronym PATH [16]. The authors
refer to this approach as personalized evidence-based medicine (EBM). The stated
goal is to use RCT data to identify optimal subgrouping schemes based on all
relevant patient characteristics that yield more individualized estimates of treatment
effects for each patient than the average results from the overall trial. From our
perspective there are several key problems with this approach, which is currently
receiving wide attention in the medical community. These are the following:

(i) The insistence on using data from RCTs virtually guarantees that broad classes
of patients – e.g., those with rare conditions, those on multiple co-therapies,
those with conditions deemed ineligible to be enrolled in a trial, etc. – will
not be in any trial that might be the target of the subgroup formation being
considered. This ensures that there will be no approximate matches, here
interpreted as members of an appropriate subgroup in an RCT, for comparison
in response to a candidate treatment, with a patient at hand.

(ii) Virtually all RCTs lack nuanced biographical information about the enrolled
patients. The following case summary from Arthur Kleinman [17] portrays
in glaring terms what you could not identify into any “optimal subgroup”
formation in an RCT:

“A medical anthropologist is asked by a pediatrician in California to consult
in the care of a Mexican man who is HIV positive. The man’s wife had died
of AIDS 1 year ago. He has a 4-year-old son who is HIV positive, but he
has not been bringing the child in regularly for care. The explanation given
by the clinicians assumed that the problem turned on a radically different
cultural understanding. What the anthropologist found, though, was to the
contrary. This man had a near complete understanding of HIV/AIDS and its

https://flatiron.com/
https://flatiron.com/
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treatment – largely through the support of a local nonprofit organization
aimed at supporting Mexican-American patients with HIV. However, he
was a very-low-paid bus driver, often working late-night shifts, and he had
no time to take his son to the clinic to receive care for him as regularly
as his doctors requested. His failure to attend was not because of cultural
differences, but rather his practical, socioeconomic situation.

Talking with him and taking into account his ‘local world’ were more useful
than positing radically different Mexican health beliefs.” This example
highlights the critical importance of including detailed biographical infor-
mation in patient profiles for the large libraries of such profiles that we have
proposed above.

(iii) If you were to start with a profile of a patient at hand and seek guidance about
the patient’s likely response to a treatment assessed in a given RCT, you might,
and you might not, be able to form an “optimal subgroup” for comparison
with your patient where the subgroup was a good match – as deemed by
the attending physician – to the patient. Even if the subgroup formed a
good approximate match, which we view as unlikely given the heterogeneity
of patients enrolled in RCTs, and the simultaneous exclusion of classes of
patients who are candidates for the treatment, the resulting analyses would be
average responses across the members of the subgroup, which is standard RCT
reporting. However, the clinician would like to know the clinical course over
time of the patients in the subgroup, whether or not complications or adverse
effects occurred and how soon after treatment administration, and whether
or not a patient’s treatment needed to be changed at some relatively short
time after initial administration. In a word, much more flexibility in analysis
strategies than those that accompany RCT reporting would be desirable for the
clinician whose instincts might demand a focus on special details which are
triggered by knowledge of her particular patient.

Point (i) in the above listing is pertinent to the general point we have been
making about the need for large archives of patient profiles whether the patients
are enrolled in an RCT or simply having their detailed health records as part of
a library. As a concrete illustration, when rare cancers are at issue, and the need
to identify approximate match groups is particularly pressing, library size can be
a major limiting factor. In this regard, we recently considered a patient at hand
who had diagnosed cholangiocarcinoma (CC), a relatively rare, but dangerous, bile
duct cancer. Some years prior to the CC diagnosis, the same patient had, and was
treated successfully for, Hodgkin’s lymphoma (HL). Having access to a large and
diverse patient database at a single medical center from which to do approximate
matching, we found at the coarsest level for matching that there were 4284 HL
cases available, 1125 CC cases available, but only 2 cases where HL was followed
by a CC diagnosis at any point later in life. Without the option of accessing profile
data across multiple medical centers, the approximate matching effort was stopped
before it ever got started. This phenomenon is by no means limited to cancers. It
is a major motivation for a national, and international, movement to develop large
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libraries accessible to clinicians broadly and subject to nuanced ethical constraints
that await full delineation.

Approximate Matching and N-of-1 Trials

The increasing availability of sensory devices that can continuously monitor a
diversity of physiological parameters, as well as patient responses to treatments,
has stimulated a renewed focus on N-of-1 clinical trials [18]. This is an interesting
option for treatment of chronic conditions in which the patient acts alternately over
time as a recipient of a treatment and as a control without it. The earliest careful
treatment of an N-of-1 trial and associated design issues is by Hogben and Sim
[19], a paper that received very little attention until it was resurrected by George
Davey Smith and republished in his International Journal of Epidemiology in 2011
[20]. Although a given N-of-1 trial may benefit the patient who is its subject, our
purpose in raising this topic here is to point out that results of N-of-1 trials in
approximate match populations for a particular patient at hand can provide more
highly controlled guidance about performance of a particular therapy than results
from a single administration of the treatment under consideration. Being able to
access a library of patient profiles that contain N-of-1 trials has the potential to
enhance the evidential base for clinical practice. In particular, this is a route into
being able to characterize for whom a particular treatment is effective and for whom
it is not efficacious. The importance of such characterizations has been apparent
in clinical practice for over a century. However, the widely employed evaluative
instrument for diverse therapies, the randomized controlled trial (RCT), does not
provide answers to this important question.

14.3 Causal Reasoning

Two places in clinical practice where issues of causality arise are the processes of
developing a diagnosis and formulation of a prognosis or estimate regarding the
efficacy of a treatment(s) administered to a particular patient at hand. These two
activities are not disjoint. Indeed response to an intended therapeutic treatment may
be part of the evidence leading to a diagnosis.

Elaborating on these points, we first emphasize that most causal reasoning in
clinical practice is reasoning from effects to causes. This stands in stark contrast
to the direction of reasoning in the statistics literature [21], where we find “causal
inference is ultimately concerned with the effects of causes on specific units” [21,
page 947]. There has been an extensive development of methods of causal inference
reasoning from causes to effects in the 34 years since [21] was published [22–
25]. Particularly interesting are the publications focusing on causal inference with
interference [26, 27]. Unfortunately, this literature is not relevant to the form of
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causal reasoning that is central to clinical practice, particularly in the development
of diagnoses, with the exception of the use of therapeutic interventions as part of
the process of developing a diagnosis. Since a focus on causal reasoning in clinical
practice heavily emphasizes what goes on in the mind of the attending physician, the
cognitive psychology/neuroscience interface is of central importance for providing
an ever more refined view of knowledge representation and causal claims when the
reasoning is from effects to causes.

It is worth explaining this point further. In making a diagnosis, physicians are
seeking to know a cause that led to an effect and, in evaluating treatment, how a
therapy led subsequently to a treatment response. In both circumstances, the causal
chain proceeds forward from cause to effect. But clinicians are always reasoning
backwards from the observed effects to the proximate causes. Patients come with
signs and symptoms from a cause (disease) that already exists. And clinicians
understand treatment effects better retrospectively after they occur than before they
are observed. Effects of treatment that occur soon after a treatment, such as when
a medication to lower blood pressure has its effects soon after it is begun, are easy
for physicians to appreciate. What is not easy to appreciate from direct observations
are the long-term effects of lowering blood pressure such as reductions in later heart
failure, stroke, or kidney disease. For these outcomes, collections of patients with
longitudinal follow-up provide the basis for identifying the causes by studying the
effects.

We also emphasize that the measures of uncertainty customarily required in
causal inference in the statistics literature are not applicable to clinical practice.
Clinical reasoning seeks to identify the best option for the single patient at hand,
recognizing that judgments are made under conditions of considerable uncertainty
[28]. This further supports the position that abduction is a preferred inferential
framework that better conforms to clinical reality.

It is important to indicate at the outset that detailed rules for causal attribution
in medicine are not available. Nevertheless, physicians intensively seek causal
explanations of the symptoms, signs, and the broader range of phenomena they
observe. Such searches for a cause not only are the basis for understanding
pathogenesis of clinical manifestations in individual patients, but, in some cases also
may be the modality by which new hypotheses about the mechanisms of disease are
first identified.

To clarify our position, we explicate first in general and then, by concrete analysis
of a particular patient, the process of reasoning by the clinician starting from initial
contact with a given patient. The reasoning process begins with the presentation
of symptoms and signs signifying some kind of deviation from normal biological,
physiological, or immunological functioning for the patient, as well as a limited set
of sociodemographic facts – e.g., age, sex, ethnic background, and limited work
and/or family history. This limited set of information serves to trigger one or more
initial hypotheses in the mind of the clinician about conditions and mechanisms that
might have produced the given symptoms and signs. Such mechanistic formulations
represent candidate causal models to explain the observed symptoms and signs,
i.e., the effects. The basis for this initial hypothesis generation is usually the
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knowledge of the physician on clinical histories and diagnoses of patients in her
prior experience, or case reports from the extant literature, where the information
set of these cases approximately matches the presenting conditions of the patient
at hand. Without necessarily formalizing the process, the clinician is developing a
database of approximate matches to the patient at hand which can serve as an initial
guide to formulating a diagnosis and to suggesting one or more treatments that have
a track record of benefitting persons in what we regard as the relevant comparison
population [1].

There is frequently a considerable set of nonequivalent mechanisms – candidate
explanatory models – that can produce the initial set of symptoms and signs.
They also provide a basis for the clinician asking to see the results of particular
additional assessments – e.g., laboratory assays, imaging, gene expression profiles
[29], responses to prior treatments, etc. – that can facilitate selection of a proper
subset of the original candidate diagnoses for further consideration, temporarily
ruling out those that are discarded at this stage. With this more extensive set of
data from the patient’s profile, the clinician again proposes more refined candidate
mechanistic descriptions that are capable of producing the full set of so far examined
data from the patient at hand. Again, these hypotheses may be based on cases from
prior clinical experience of the attending physician. However, this limited set of
recalled cases can be augmented by identifying a new set of approximate matches
to the patient at hand from a large archive of patient profiles.

At this stage, development of a diagnosis from the more refined set of data
would be based on delineation and verification of a proposed mechanism as being
consistent with the current and past conditions of the patient at hand. Prior to
presentation of a diagnosis, the clinician, in consultation with the patient, may
want to ascertain the response of the patient to one or more therapies, suggested
by the patient profile data and/or examine the results of additional tests that may
serve to discriminate among candidate mechanisms. Under both scenarios, different
approximate match populations should be assembled from a library of cases where,
for example, a contemplated treatment is applied to some of the cases and where
it is not for others, or an alternative treatment is applied. Responses that are short
term and long term to the treatment regimens can provide further guidance about a
diagnosis.

As the many cases in [1] attest, the iteration process with increasing information
about the patient at hand may continue through many rounds, often with discarding
of the entire set of initial diagnoses and proposal of new ones. In our opinion, there
is no simple straightforward taxonomy of the possibilities. There is no substitute for
simply building up a library of many detailed cases, as illustrated by the set of 68
examples in [1].

Example 1 – Adaptation of CASE 35 from [1]. Here we illustrate the reasoning
by the clinician for a particular patient at hand. Information from the patient’s
profile, PP, is indicated in bold face and designated by PPx, where x is a label
for a particular aliquot of information. The clinician’s response to PPx and PPx’
for x’, having been examined prior to x, is labeled CRx. Although an extensive
amount of information may be in the profile, no clinician can grasp it all in parallel
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[5]. The sequential examination of information and corresponding generation of
alternative hypotheses by the clinician is the actual mode of reasoning involved in
clinical practice. We give this feature particular prominence as it seems to be absent
from virtually all discussions of causal inference in clinical medicine of which
we are aware. The most famous forums to display clinical reasoning are the case
studies of the Massachusetts General Hospital where the sequential presentation and
discussion of the case has been the method employed for nearly 100 years. We also
hasten to add that reasoning of the kind we are illustrating can only be carried out
by someone with clinical experience who is also expert in the relevant disciplines of
clinical medicine.

The case presentation from PP1 thru CR10 and PP11 is taken from [1, pp. 180–
183].

PP1: A 44-year-old man was transferred to the hospital for recurrent episodes
of fever, malaise, headache, and confusion.

CR1: This could be a serious situation. In anyone with fevers, headaches, and
confusion, I would be concerned about central nervous system infection. Since
he was transferred from another institution, I’d wonder if he has already been
studied, and if no cause was found, he might have an unusual central nervous system
infection. If he has had these symptoms for some time, then bacterial infections such
as meningococcus infection is unlikely.

PP2: The patient was in good health until 6 weeks prior to admission when he
was admitted to a local hospital with gastrointestinal bleeding from gastritis that
was attributed to aspirin and nonsteroidal anti-inflammatory drugs that he had been
taking for chronic back pain. He also had a long history of depression.

CR2: It’s hard to know if this history is relevant to his current symptoms.
Certainly if he were continuing to take nonsteroidal anti-inflammatory drugs, then
aseptic meningitis due to these medicines would be a possibility. The combination
of gastrointestinal bleeding and back pain raises the possibility of some type of
inflammatory bowel disease and a concomitant spondyloarthropathy. Possibly while
in the hospital, he acquired a nosocomial infection, perhaps related to the endoscopic
procedure, and the complication is only now becoming clinically apparent.

PP3: His current symptoms began 1 month later when over the course of 2 days
he became increasingly lethargic, confused, and ataxic. At work he was found sitting
at his computer not knowing what to do. His temperature was 39 ◦C and he was
taken to the hospital.

CR3: If the current symptoms were related to his hospitalization a month earlier,
then we are dealing with an indolent process. On the other hand, it may be totally
unrelated. The confusion raises the question of some type of encephalopathy. The
ataxia makes me think of something going on in his cerebellum or perhaps a
peripheral neuropathy or perhaps some type of ear infection that has led to a brain
abscess. I’m thinking about the possibility that some drug could have caused these
symptoms. I don’t think that proton-pump inhibitors could be responsible. If he
were achlorhydric from the proton-pump inhibitor, he might be more susceptible to
an infection like tuberculosis. My main concern at this time is some type of basilar
meningitis.
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PP4: He was very lethargic but awake. He had difficulty saying “Methodist
Episcopal.” There was mild left-right confusion and difficulty in repeating. He
was diffusely weak with no other focal findings. The remainder of his physical
examination was not revealing. Complete blood count, blood glucose, electrolytes,
and serum calcium were normal. Lumbar puncture was normal and a toxic screen
was negative. The neurologist was concerned about encephalitis and initiated
acyclovir therapy.

CR4: He appears to have a diffuse encephalopathy with signs of bilateral cortical
dysfunction. He could have a vocal apraxia or something more serious like a loss of
language itself. The diffuse weakness makes me think of some type of toxin with
systemic effects. Could he have one of the viral encephalopathies? Does he live in an
endemic area? Is it the right time of year? He does not appear to have any metabolic
abnormalities. Given the potential seriousness of herpes encephalitis, the initiation
of acyclovir seems reasonable since the potential benefits outweigh the risks at this
point. Finally, could he have some type of a paraneoplastic syndrome?

PP5: Head CT, MRI, and EEG were unremarkable. Chest X-ray showed a pos-
sible right basilar infiltrate. Blood and CSF cultures were negative. Acyclovir was
stopped and ceftriaxone therapy was initiated. His symptoms gradually improved
and he was discharged. The final diagnosis was probable viral syndrome and
depression.

CR5: The presence of a possible pulmonary infiltrate and neurologic dysfunction
makes me wonder about the possibility of a Legionella infection, although the ataxia
would be unusual. The improvement of his symptoms in the hospital could be related
to the antibiotics or could just be coincidental. PP6: He returned 1 week later with
similar symptoms. Blood and urine cultures were negative. Mono spot and a TSH
were normal. Lyme titers and a PPD were negative. Other routine lab studies were
unremarkable. Chest CT raised the question of a right middle lobe consolidation and
he was given clarithromycin. By the third hospital day, he had improved remarkably
and was discharged.

PP6: He returned 1 week later with similar symptoms. Blood and urine cultures
were negative. Mono spot and a TSH were normal. Lyme titers and a PPD were
negative. Other routine lab studies were unremarkable. Chest CT raised the question
of a right middle lobe consolidation and he was given clarithromycin. By the third
hospital day, he had improved remarkably and was discharged.

CR6: Does he have some type of relapsing disease or could he have a partially
treated infection? Could he have some type of occult abscess which is causing
intermittent symptoms? Is he being exposed to some kind of toxin? Still’s disease
could be associated with intermittent fevers and back pains, but not central nervous
system symptoms, and vasculitis must always be on the differential of intermittent
febrile illnesses; it can involve the central nervous system.

PP7: 2 days later he returned with the same symptom complex including slurred
speech, ataxia, and confusion. Meanwhile he had been given paroxetine 30 mg qd
for depression and pantoprazole 40 mg qd for his stomach symptoms.

CR7: I’m still wondering about undiagnosed basilar meningitis, central nervous
system tuberculosis, and fungal infections. Prior to HIV disease, cryptococcal
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disease often occurred in immunocompetent hosts. Is the patient taking any illicit
drugs?

PP8: The patient lived with his wife and worked as a sewer inspector. He had a
distant history of cigarette smoking. He denied recent travel, sick contacts or pets.
He had abused alcohol in the past but had been sober for 6 years. He exercised
regularly before his recent illness.

CR8: Given his work as a sewage inspector, leptospirosis immediately comes to
mind. This can be a relapsing illness associated with confusion but also hepatic and
renal disease. Has he been bitten by a rat and acquired rat bite fever? I doubt it. The
regular exercise makes one wonder if he were using performance-enhancing drugs
such as anabolic steroids or the like.

PP9: He was in no distress. Blood pressure 100/65 mm Hg, heart rate 54 per
minute with no orthostatic changes. He was afebrile. General examination was
unremarkable. He was oriented but slow to respond. He could not remember his
phone number. He was ataxic and unsteady on his feet. The rest of the neurological
examination was normal.

CR9: His ataxia appears to be central in origin. CNS infection still is on my list,
but could he have one of the avitaminoses such as thiamine deficiency or another
nutritionally related illness?

PP10:-The following laboratory studies were normal: Electrolytes, glucose, liver
function tests, serum calcium, serum magnesium, and CK. White cell count was
7400 per with a normal differential. CBC was unchanged. Sedimentation rate was
53 mm/hr. Hepatitis serologies and HIV test were negative. Brucella titers were
negative.

CR10: If his outside studies have been reviewed and are normal, then repeat
imaging studies are unlikely to be very helpful. Is he taking any health foods of any
kind?

PP11: On further questioning, the patient’s wife said that 2 months previously
the patient had started taking kava kava and valerian root for his depression.
Each time he was admitted to the hospital, he stopped the herbal medications
and his symptoms subsided. No further tests were performed, and except for drugs
for depression, no other medications were given. As before, within 2 days the
neurological findings disappeared. He was advised not to take the herbal products.
The patient subsequently had no recurrence of his symptoms.

Analysis of Causal Reasoning in the Present Case

Three times the patient presented with confusion and ataxia, and twice he improved
during a short hospital stay. Nevertheless, the physicians caring for him did not
recognize the nature of his illness until the third time he recovered. The clinical
responder (CR) seemed wiser; even after she heard the information from the
patient’s first admission, she raised the possibility of “some type of toxin,” and
she repeated this concern when she heard about the information from the second
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and third admissions. Rapid improvement in symptoms during hospitalization on
repeated occasions is a signal to invoke a classic causal hypothesis, namely, “post
hoc, ergo propter hoc” (after this, therefore because of this).

There are not many disorders that fit a relapsing and recovering pattern, but
exposure to a toxin (and subsequent elimination of the toxin) is one. Examination
of the available literature on the toxicity of these herbal substances is frustrating,
principally because so little research has been done on the side effects of these
materials. Most sites list no side effects of valerian root and only liver toxicity
for kava kava. Yet the case for kava kava and/or valerian root as the toxin in
this case is quite convincing, based on the return of symptoms after exposure
and improvement after cessation of the herbals. In essence, this is the nature of
the “challenge-dechallenge-rechallenge” concept, the idea that the strength of a
causal attribution increases if the response disappears when a stimulus is removed
and reappears when the stimulus is reapplied. In this patient, dechallenge and
rechallenge occurred twice after the initial event, providing convincing evidence of
a cause-and-effect relationship between the herbals and the patient’s illness. Given
the multiple recurrent episodes, it seems safe to make the causal connection here.

In terms of the general framework for causal reasoning that we presented
above, in the present case, repeated relapse and recovery sets up a cause-and-effect
hypothesis, a causal field, or the context, which then demanded satisfaction and
explanation. The causal field in this instance could be construed as a chain consisting
of a simple explanation, namely, could a toxin at home be the cause of symptoms.
The causal field also is important in setting the number of alternative explanations
for an event or finding. Here, numerous possible diagnoses were raised from serious
infections to vasculitis.

Regarding cues to causality, the intensity of the stimulus and the result are
probably concordant even though data on the toxicity of the herbals was difficult to
come by. Necessarily, this relation is a probabilistic one, with probability interpreted
by experienced physicians as degree of belief. On the basis of the cues alone,
we would be justified only in being suspicious that the herbals caused the central
nervous system manifestations.

Many measures of strength of a causal linkage were satisfied for the particular
patient, but the relation in time and space between the putative stimulus and the
response was the most potent. Such relationships are, of course, only correlations.

Finally, in considering counterfactuals, no other explanation than the patient’s
ingestion of herbal products having some toxicity better explained the patient’s
clinical pattern or gained any serious credibility.

Mechanistic Models and Clinical Reasoning

In the above clinical responses, CRx, the physician’s causal assertions are sim-
ply presented as claims that a particular cause, X, could have produced an
effect, Y. There is an extensive amount of physiology, frequently accompanied by
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mathematical models, which underlies each claim. There is also case experience
of the physician with multiple patients where the given Y was an effect of X and
where X may have been part of a diagnosis. In the present example, the physician
was confident about the candidate causal claims and the reasoning that took place
with the ten sets of information considered from the patient’s profile. No attempt
was made at any stage in the iteration process to identify an approximate match
population as a source of additional evidence to guide the reasoning toward a
diagnosis.

The brevity of the physician’s responses masked some complex details that
underlie causal reasoning in clinical practice and that we summarize here. A
fundamental point is that it is important to understand the representation of causal
knowledge in the minds of expert clinicians. Kuipers and Kassirer [30] studied
these representations by acquiring verbal transcripts of clinicians describing their
causal reasoning processes in detail for phenomena where mechanistic theory in the
form of differential equation models characterized some physiological processes
that were the causes of effects observed in patients.

When soliciting clinicians’ more detailed explication of mechanisms for how
a potential cause, X, produced an effect, Y, what would be described as the
description of the mechanism was a sequence of qualitative statements such as “a
given parameter increased between two consecutive observation times,” “another
parameter was found to be persistently lower than what is expected when the
system is in equilibrium,” “two intermediate variables are simultaneously moving in
opposite directions,” etc. The fundamental point here is that the physician typically
lacks precise numerical values for many parameters characterizing a patient’s
state. Further, some parameters may be difficult or impossible to measure. The
physiological system about which she is making a causal claim in the context of
a patient at hand frequently has a textbook description via, for example, a system
of ordinary differential equations (ODE). The clinician may understand this and
be conversant with the behavior of solutions of the ODEs subject to a variety of
initial conditions and parameter ranges. However, this is a far more precise level of
description than can be put forth, measured, and validated for any given patient.

The key point is that an expert physician reasoning about a case uses only those
factors she considers particularly relevant and thus is able to restrict her attention
to a much smaller model. To make up for the lack of detail, the expert must
then have many different small models, each with its own assumptions and thus
expressing different “points of view.” The causal model representation is intended to
express this highly modularized knowledge structure, so its models will typically be
relatively small. Indeed, it appears that there is a match between the limited working
memory and processing capacity of the human and the inability of the causal model
representation to handle very large models.

The discrete modular nature of information about the dynamics of a physiological
system in the clinician’s mind, despite the fact that the system may be more
completely characterizable by ODEs, raises the question of the extent to which
sets of qualitative statements, augmented by numerical constraints can closely
approximate the more precise characterization. This question was taken up by
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Kuipers and Kassirer [30], who provided a detailed representation of nephrotic
syndrome and the pathway from impaired kidney function to edema observed
in a patient via both ODEs and their qualitative, but less precisely specified,
counterpart QDEs (qualitative differential equations) [31–34]. As a point of fact, the
clinician makes detailed assessments of candidate causal mechanisms in a patient
at hand via sparse qualitative claims. This then raises the mathematical question of
characterizing the physiologically meaningful systems of dynamical equations that
are consistent with a given QDE specification of inequalities, initial conditions, and
simple algebraic relationships.

In a bit more detail, the allowed conditions in a QDE specification represent the
results of an attempt to develop a knowledge representation capable of describing
human commonsense reasoning and explanation about physical causality. Common-
sense causal reasoning is qualitative reasoning about the behavior of a mechanism
that can be done without external memory or calculation aids, although it may draw,
and indeed does in clinical medicine, on knowledge learned from the advanced study
of a particular domain such as medical biology and physiology. In order to be useful
for modeling human commonsense knowledge, the computational primitives of the
QDE formulation must not require excessive memory or processing resources [31].

While commonsense causal reasoning characterizes the knowledge represen-
tations for clinician’s consulting the information base in their minds, some of
which is derived from approximate matches to patients at hand from their prior
clinical practice experience, much more intricate knowledge representations can be
introduced if an AI/Expert System is to assist the reasoning process. To this end,
Kuipers and Kassirer [20] introduced qualitative physiological system descriptions
that match the level and kind of detail that the clinician may have available in
a patient profile, but that can also be mapped onto families of dynamical system
models (here, ODEs) that represent a more fine-grained set of causal explanations
for observed effects in the patient at hand. Detailed examples of such mappings are
exhibited in Kuipers et al. [33].

A central point is that the clinician’s qualitative assessments cannot be used to
identify an ODE representation of physiological dynamics. They can be used to
identify a class of QDE models that have the same qualitative behavior as the ODE
system, and this is the sense in which causal mechanism is delineated in clinical
practice. For a rare example with all the details, the reader should study Kuipers and
Kassirer [30] and their thorough and, of necessity, intricate analysis of nephrotic
syndrome. Here the problem is to provide a causal explanation of edema in a patient
at hand based on sparse measurements and qualitative approximations to dynamics
of a physiological system.

14.4 Large Libraries of Patient Profiles

The word “large” in the title of this section has two meanings for our purposes.
First, considering the patient at hand, the individual profile consisting of biological,
clinical, and biographical information assembled longitudinally has the potential to
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grow to enormous size, far beyond what is currently part of the electronic health
record (EHR). Second, we have repeatedly pointed out the need to have many
profiles available in a library that can be searched for approximate matches to a
given patient at one or more points in time and with varying criteria as the basis for
matching. We elaborate on these two points of view beginning with the content of
profiles for the patient at hand.

In an initial effort to delineate the content of profiles for patients with systemic
lupus erythematosus (SLE) [10], profile specification was based on data from ran-
domized controlled trials (RCTs) of belimumab, noting that most of the information
in the patient record was not used in published analyses of the results of the trials.
This is a generic situation for patient records in RCT files. However, our interest
was not in the trials per se, but in assembling profiles that would be part of a
library to be used for approximate match population specification for given women
(and less commonly men) who are SLE patients. The profiles included longitudinal
representations of clinical courses in accordance with a taxonomy of such histories
tuned to SLE. They also contained standard clinical and biological/biomarker data,
and social/functional information derived from a 36-item short form health survey
(SF36) [35].

An important limitation of these profiles is the lack of biographical information
beyond basic demographics. This is a common feature of most medical records,
whether they be EHRs, hospital patient files, RCTs or observational study files,
or medical insurance records. The need for much more extensive biographical
information is documented in patient records – but not systematically – in the many
instances where family, work, community engagement, and psychological features
have played a critical role in recovery from illnesses. It is possible that some of
this information is contained in parts of the medical record not commonly accessed,
such as social worker and nurse notes. New tools of natural language processing are
available to explore these sources of biographical information. This perspective is
further developed in Lobitz et al. [36].

Substantially expanding on the profile structure in the SLE population is the inte-
grative personal omics profile (iPOP) [29], which includes genomic, transcriptomic,
proteomic, metabolic, and autoantibody profiles for a single patient followed over
14 months. While iPOP files are extensive relative to currently routine EHRs, they
should properly be viewed as prototypes for what will surely become a standard
part of patient profiles in the near future. This kind of profiling should be viewed in
parallel with the more strictly metabolic formulation of the patient journey [37].
Another important multi-omics profiling example is the wellness study of 108
individuals [38] which also includes some ambulatory measurements. As lucidly
pointed out by Torkami/Topol and colleagues [39], data from sensing devices of
diverse types, worn routinely even by people who are not patients with particular
illnesses of concern, will lead to a further explosion in data that will become a
routine part of a person’s health record.

The challenge with the forthcoming vast expansion of information in patient
profiles is effective utilization of it in the iterative process between details about
a patient at hand and the clinician’s focusing on diagnoses and treatment decisions.



14 Evidence to Guide Decision Making in Clinical Medicine 273

The detailed example of this iterative process in Part III can be viewed as a
small-scale approximation to the nuance and subtlety of analyses in the future
that incorporate multi-omics and multi-sensory device information. Many different
approximate match populations can be envisioned for a given case even at one
point in the evolving clinical course, each depending on one or more contemplated
explanations/models for how a subset of features in the profile came about.

Given the growing emphasis on Expert Systems to aid in the process of
developing diagnoses and selecting treatments likely to benefit a patient at hand,
and their success in disciplines that involve imaging or pattern recognition, we feel
it imperative to point out a current and likely long-term limitation of automated
systems in clinical practice. In particular, the inadequately understood phenomenon
of judgment by the physician is an integral feature of hypothesis generation and
interpretation of analyses as the diagnostic/treatment decision making process
moves along. Automating this critical feature of clinical practice would, it seems
to us, require a far deeper understanding of the working of the human mind than is
currently at hand. An informative discussion of this point is given in [40].

Shifting attention to the second notion of “large” in the title of this section, we
come face-to-face with the question of the size of the library of patient profiles
that a given clinician might access in any attempt to assemble a population of
approximate matches to a patient at hand. The need for such an assembly becomes
particularly acute for patients with rare single disorders or with unusual sets of
comorbid conditions. The current balkanization of patient records among medical
centers, insurance providers, and the pharmaceutical industry presently inhibits the
creation of a much-needed national library that could be responsive to the need to
construct approximate match populations for patients where even the specification
of a defensible diagnosis is problematic based on case-based reasoning by an
attending physician(s). There is, a priori, no guarantee that approximate match
populations will supply the requisite discrimination among alternative diagnoses
and treatment choices. However, they open an avenue for evidence that has not been
part of the information bases of clinical practice heretofore. Increasing the scope for
approximate matching using data from multiple centers seems to us to be a pressing
issue. Many complex ethical, political, and financial issues remain to be addressed
to make large libraries of patient profiles a reality in the United States. This is a
major topic in its own right that lies beyond the scope of this paper.

14.5 Discussion

Two facets of clinical practice that are in need of much further development formed
the basis for our consideration of evidence to guide patient management in clinical
medicine. These are (i) the centrality of approximate match populations as natural
comparison groups for a patient at hand and (ii) a focus on causal reasoning and in
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clinical practice as a sequential process of modular evidence interpretation, hypoth-
esis generation, and increasingly refined and supported attribution of particular
mechanisms as the source of symptoms, signs, and technologically sophisticated
assessments of aberrant functioning of a patient at hand. Point (ii) is an instance of
abduction, as emphasized in Part I. That the entire process of developing diagnoses,
integrated with testing of treatments, should properly be viewed as abduction, and
an act of detective work in the spirit of Sherlock Holmes has been emphasized in {1,
179–180; 247–248] and other writers trying to characterize the essence of clinical
reasoning. We also reiterate our emphasis that this process stands in stark contrast
to causal inference as developed in the statistics and epidemiological literatures.

One aspect of causal reasoning in clinical practice that deserves more attention is
the correspondence between qualitative statements from the clinician about mecha-
nistic models, qualitative dynamical models – particularly, qualitative differential
equations and qualitative simulations – and continuum models as in differential
equations modeling of physiological systems. At the coarse level of causal claims
provided by the clinician reasoning about a patient at hand, the more tightly
reasoned causal modeling in physics, physiology, immunology, and even economics
may seem rather far removed from clinical practice. However, the mapping from a
clinician’s qualitative statements in the context of nephrotic syndrome to a qualita-
tive dynamical system and then to underlying differential equations, demonstrated in
[30], provides proof of principle that such systematic linkage is feasible. The topic
has been further developed in a series of papers by Kuipers and colleagues [31–
34], some of which parallels qualitative modeling studies by De Kleer and Forbus
[41–43]. This topic needs further clinical medicine development in the present
environment of molecular-level modeling. The correspondence between clinician’s
qualitative statements and qualitative molecular models is where much emphasis
belongs. Developing this area will require close attention to the thought processes
of clinicians reasoning about individual patients. This is a highly labor-intensive
activity, but it is necessary if the analogue of the Kuipers and Kassirer [30] analysis
from the 1980s is to be brought into twenty-first-century clinical medicine.

Finally, it should be noted that the issues discussed herein are part of a
larger enterprise evolving under the name medicine-based evidence (MBE) [44–
46], meaning evidence development and utilization tuned to the needs of clinical
practice. MBE should be, and has been, contrasted [44] with evidence-based
medicine (EBM) where a hierarchy of evidence dominated by the RCT is a primary
focus of attention. That the RCT is ill-suited to provide guidance about management
of a patient at hand has been well known at least since Austin Bradford Hill’s
Heberden Oration 53 years ago. We have refrained from entering into lengthy
critiques of RCT evidence – much of it already being available in standard sources –
as our primary objective has been to stimulate further research on issues that are
directly germane to clinical practice looking ahead.
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Chapter 15
What Can Policies Do and How Can
Social Science Help?

Norman M. Bradburn

Steve Feinberg dedicated his life to improving the use of data in public policy.
He served on many National Academies of Science committees and panels that
advocated the use of evidence both in formulating and evaluating government
programs. He was a leader in the application of statistical methods to public policy
issues and was a strong advocate of random controlled trials (RCTs) for evaluating
policy effectiveness. His legacy is seen in the current widespread support, including
legislation, for evidence-based policies.

In this chapter I would like to step back from technical considerations and reflect
on the interplay between social science theory and research and the formulation and
implementation of public policies. What can public policies realistically do about
producing changes in society and what can the social sciences contribute to the
formulation and successful implementation of these policies? These are extremely
complex questions, and my reflections are molded by own experiences with these
issues.

My career has been largely spent as an empirical social scientist involved partly
in the evaluation of US governmental programs during the 1960s and 70s, and I
began my career as a colleague of Steve’s at the University of Chicago. This was
a period in the United States of great experimentation with new policies to solve
social problems. It was the time of the War on Poverty and the coming of age of
program evaluation. Only a small portion of my career has been involved in policy
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making, but I am familiar with the implementation of many of the most important
social policies in the United States over the past five decades.

15.1 Limitations of Social Policies

My experiences have led me to two main conclusions about public policies that
I think are not sufficiently appreciated by policy makers or social scientists who
do policy-related research. The first is that policies are formulated as essentially
limited static instruments; that is, they assume a set of conditions and change one
or two of the parameters of that set. Frequently the perception of the initial set of
conditions is faulty due to lack of data or good analysis and may be dominated by
views of a modal case, which might not, in fact, be reflective of the underlying
distribution of conditions. Governmental policies are blunt instruments to bring
about social change. They are designed to intervene in complex systems that are
changing all the time. They almost never consider the dynamics put in motion by
those changes. Thus, they inevitably suffer from unintended consequences. These
unintended consequences are often large enough to nullify the positive effects of the
policies or, even, to produce the opposite effect from that intended. Several examples
that illustrate this process are discussed below.

Second, the implementation of governmental policies often falls far short of that
envisioned by the designers of the policies either because they are underfunded or,
in order to be successfully implemented, they require bureaucratic changes that do
not occur or both. In the United States at least, the costs of policies are projected
through economic models used by budget planners in the administration and in the
Congress. These models often do not agree and may severely under- or overestimate
the true cost of the programs, and larger budget considerations may affect the actual
funding levels for programs. In program evaluation, the first, and too frequently the
only thing we can ascertain, is whether the program ever got implemented at all,
and, if it did, how closely it resembled its original design. In order to make these
points more vivid, I will give two brief examples. I start with a small policy change
implemented in the 1970s after the oil embargo. The problem was an acute shortage
of oil, and a number of policies to deal with the situation were implemented quickly.
One of them was changing to year-round daylight savings time (YRDST) in order
to save electricity. This policy was enacted and the country stayed on DST in the
fall rather than returning to standard time. The underlying logic was that making it
light later in the morning in the winter and longer into the evening when presumably
more people would be active, would decrease the demand for energy. It is not clear
how well documented this assumption was, but such a policy had been implemented
during World War II and presumably was effective.

The United States is a large country spanning 4 time zones. The variance in hours
of daylight over the year is also sensitive to how far north one is, with much greater
variance for the northern than for the southern parts of the country. In addition,
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for economic reasons, some areas near the edge of a time zone opted years ago
to join the time zone adjacent to them, so that they were in effect already on
perpetual summer time. Demographic analysis easily showed that the conditions
that gave rise to the original setting of the times had changed—the time zones
were established when the country was largely agricultural—and that the present
geographic distribution of the population and time distribution of work hours made
it sensible to adjust the clocks by 1 hour throughout the year to increase the hours
of daylight, on average, when the population was awake and needed them. Positive
popular support for the policy was confirmed by public opinion surveys, although it
was noted that there was a minority of the population that was adamantly opposed
to the policy.

While the policy may have achieved what it was designed to do in the aggregate,
several areas of the country were adversely affected by the policy for geographical
reasons or, because they had already opted for the policy (but under a different
name), the policy in their areas did not have the intended effect. In some areas in
winter, the consequence of the new policy was that rural children who had to take
school buses to school had to wait in the morning darkness for the bus to arrive. In
one of the areas, southwestern Georgia, parents complained that the children were in
danger of being hit by cars in the dark, and, a few weeks into the new policy, indeed
a child waiting for a bus in the early morning was hit and killed by a car. This event
was given great play by the mass media and support for YRDST evaporated almost
overnight. YRDST was repealed and the country returned to the usual policy of
daylight time and standard time the next spring.

This example illustrates my point about the bluntness of policy instruments and
unintended consequences. While the policy may have produced the intended effect
of saving energy and, for the vast majority of the population, did increase the
useful hours of daylight in the winter, the policy could not, because of geographical
reasons, and did not, because of historical reasons, produce the same effect for
everyone. (As an aside, later analysis of data on traffic accidents showed that the
very slight increase in deaths in the early morning was offset by a decrease in deaths
from traffic accidents in the afternoon when it stayed light longer.)

My second example is one with which social science research has been heavily
involved. This is the policy related to racial segregation of public schools in
the United States. Social science research on the effects of racial segregation on
individuals had been a potent force in the Supreme Court decision declaring the
“separate but equal” doctrine unconstitutional and led to the dismantling of legally
backed segregation of public facilities including schools. The implementation of this
decision, which challenged long standing mores, habits, and social organization,
particularly in the South, was openly resisted and, on occasion, required the use of
force to implement. School integration has been one of the most contentious issues
in the United States. Social science analysis had indicated that school integration
was one of the most important instruments for long-term change in social relations
between the races as well as for improving the economic condition of African-
Americans.
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Even after the end of legal segregation, the historical and economic effects of
residential segregation meant that many schools, which had local attendance areas,
continued to be de facto segregated. A famous and influential study by a team
of sociologists led by James Coleman (1966) found that educational achievement
was as much a consequence of familial conditions as it was of the schools. One
of the most important findings was that in classrooms that were racially mixed
(and in effect economically mixed), the African-American children did better than
comparable children in segregated schools and the white children did not do any
worse. This study was interpreted as a call for intervention by the government
into the principle of local attendance areas and led in many cities to a court-
ordered program of busing children out of their local attendance areas to schools
in other areas in order to achieve racial balance and thus the presumed effects on
achievement of racial integration.

This policy has proven to be one of the most politically sensitive policies pursued
by the US government in the past few decades. It has been attacked and defended
using social science analysis and empirical studies of the effects of busing. For the
purposes of this discussion, I would like to point out a few features of the issue
that illustrate my main points. First, the policy of busing students was a policy that
changed one element of a complex system, one that arguably did not follow from
the Coleman Report. The Coleman Report was based on comparison of segregated
classrooms with classrooms that had been voluntarily or naturally integrated as a
result of a large set of circumstances, many of which were not measured in the study.
To generalize, the finding to conditions in which the integration was produced by
external policies took a leap of faith and had to be based on social theories coming
from more general social science analysis.

Second, the policy was static in that it failed to take into account the reaction
of parents of many middle-class white families whose children or local schools
were subject to the busing policy. The consequence was the acceleration of the
movement of white families from the central cities to the suburbs, a phenomenon
that was referred to as “white flight.” Over a decade or so, there was a vast change
in the racial composition of urban schools and greater segregation than before the
policy was instituted because the proportion of white children in the cities declined
markedly. While Coleman initially supported busing, he quickly saw the unintended
consequences of the policy and became one of its leading opponents.

Third, the policy was also never fully or thoroughly implemented. For many
years, busing was restricted to the schools in one school district, and there was
no busing across district lines. Busing is costly and, in many cases, school districts
lacked funds to implement the policy unless specifically forced to do so by suits
brought by parents who supported busing. After the effects of “white flight” became
clear so that it was impossible to achieve integration within a single district, courts
began to order busing across district lines. This resulted in considerable litigation,
but perhaps more importantly required longer bus rides for the children and support
for the policy declined among parents of all races. Attention shifted to efforts to
improve the schools regardless of their racial composition.
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15.2 Limitations of Current Social Science Practice

Social science theories view society as a dynamic system with many interrelated
parts, but empirical studies in the social sciences most often take only one or two
parts of the system to study, leaving the impression that these parts can change
without having implications for other parts of the system. When policy makers
do look to the social sciences for guidance in formulating policies to bring about
desired changes, they often will find studies that have focused on discrete elements
in the system and have ignored the larger system implications of the changes. If they
then take up these partial elements and make them the basis of policies, they are
likely to discover other interrelated elements in the system that affect the outcome
of the policies.

For example, if one takes a simplified look at the primary educational system, it is
made up of schools that have principals with a degree of autonomy, but also may be
organized into larger units like districts that have rules and a structure that constrains
the autonomy of the individual school. Schools are organized in classrooms with
individual teachers of varying degrees of experience and ability. Classrooms are of
varying sizes and made up of students with varying backgrounds, motivations, and
abilities. The system is constrained by a curriculum, resources, parental involvement
(or lack of), physical structures, the socioeconomic characteristics of the families in
the attendance area, and a host of other factors. The performance of the system
is a product of these factors working together over time, and, while individual
elements of the system may change, as when there is a new principal or a curricular
change, the performance of the system as a whole is difficult to change more than
incrementally.

As it is difficult to study all the elements in the entire system at once, it is natural
to focus on one or two parts of the system to study what might be important leverage
points to bring about desired changes in performance. For example, class size seems
a likely constraint on learning, particularly for less advantaged or less able children,
leading to the hypothesis that smaller class size would give teachers more time to
devote to individual students and improve learning. Such a hypothesis led to the
well-known Tennessee STAR experiment in class size (Ritter and Boruch 1999)
which, indeed, did appear to show positive effects on learning.

But focusing on this one element of the system ignored the fact that class size
in the Tennessee schools studied was embedded in a larger system that included the
distribution of experienced teachers, student expectations, family backgrounds, and
resources. When the results of the experiment were later implemented on a large
scale in California, where a large number of new, relatively inexperienced teachers
had to be hired to decrease class size, where there was a greater diversity of racial
and linguistic minority student population and larger class sizes, the positive results
were not replicated. Indeed, when the STAR experiment were applied to a larger
program in Tennessee that focused first on poverty areas and later on the entire
state, they failed to replicate the STAR results (von Hippel and Wagner 2018).
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15.3 How Can Social Science Help Address These Issues?

First, it can build models of social systems that make clear the important elements
of the system and their interrelationships. Too often one or two elements that are
thought to be important drivers of the system are singled out for consideration as
part of a policy change without making it clear how they function as part of the
whole. Elements, such as class size, are then made the subject of policies that are
implemented with little regard for the impact of the implementation on other parts of
the system. This pattern is supported by the use of random controlled trials (RCTs)
as the mode of evaluation for the effectiveness of the policy produced intervention.
RCTs, by the logic of their design, treat the intervention as a discrete element to
be contrasted with the control group that did not get the intervention. While the
randomization of the assignment to the treatment and comparison groups controls
statistically the other (static) elements of the system, it does not take into account
the context of the experiment which may contain elements which are an essential
condition for the experiment to succeed. It also does not consider the dynamics that
may be put into play by the interventions that produce unintended consequences.
The Tennessee class size experiment STAR was a well-designed and executed RCT,
but failed to replicate when implemented at a larger scale where the conditions of the
original RCT could not be reproduced. The larger point is that experiments must be
replicated many times in different populations and conditions before the results can
be relied upon. This is rarely done in testing policy programs; indeed, the literature
on randomized controlled trials says little about replication. That omission implies
to a lot of people that the randomization takes care of everything.

As is probably obvious from the examples I have chosen, I approach these issues
from the perspective of a social systems theorist and fault applications of social
science analysis and research that fail to think through the dynamics of social
systems and to pursue research that enables us to model more completely the effects
of policy changes. Theories help us understand the systems and guide us toward the
relevant relations that might be most susceptible to policy interventions. As Ronald
Coase (1994) has pointed out: “ . . . , a theory is not like an airline or bus timetable.
We are not interested simply in the accuracy of its predictions. A theory also serves
as a base for thinking. It helps us to understand what is going on by enabling us to
organize our thoughts.”

I do not underestimate the difficulty of this task, but it is the direction that I
think social sciences must go. This dynamic reorientation requires new theories,
new tools, and new data. The development of economic theory and modeling has
improved our understanding of the dynamics of economic systems and the probable
effects of economic policies, although we obviously have a long way to go before
we understand things fully. I believe that there are promising new techniques, such
as stochastic modeling of social interactions and network analysis, which can lead to
better understanding of the dynamics of social systems at both the micro and macro
levels. We also have powerful new computational tools that enable us to build more
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realistic models. The data to support these models, however, are often insufficient. I
am less sure how much progress we can make on that front in the near future.

In sum, I see a reinvented social science as primarily concerned with formal
theory building using dynamic models, closely coupled with empirical testing of
the theories and requiring larger and better data bases to provide adequate data
for testing those theories. Such a future also requires changes in our training of
social scientists so that they will have the skills necessary to carry out this program.
Whether we are up to the challenge remains to be seen. If Steve were here to help, I
would be more optimistic.
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Part V
Introduction: Surveys and Censuses

Judith M. Tanur

Steve gave credit for his initial interest in surveys to Bill Kruskal. Shortly after Steve
went to the University of Chicago as an assistant professor, Bill started giving him
clippings from the Chicago Sun Times about their straw polls for the 1968 election.
As Bill had undoubtedly hoped, Steve became interested in the way the polling was
done and the accuracy of the predictions. Steve’s interest culminated in an article in
JASA entitled “The Sun-Times Straw Poll, 1968 and 1970: A Statistical Appraisal”
in which he partitioned the prediction error into components using an additive linear
model. He then compared the straw poll results with simple persistence prediction
and found that they were not much better. He suggested using previous data on
the sampling units via regression adjustments, as was being done in election night
national television forecasts. He cautions that “[t]he significant realignment of ward
boundaries in Cook County following the census every ten years clearly limits the
amount of prior information available.” The implications of a census count were
already part of Steve’s world view.

And this interest in the straw poll led to his appearance on an early morning
television program along with Norman Bradburn and Kenneth Prewitt where
they explained the process of doing a survey—explaining sampling, putting a
questionnaire together, interviewing, data processing, and how the results were
interpreted and used.

Later Steve would spend a good deal of his career thinking and writing about
surveys, both in terms of “hard” issues of sampling and analysis and of “softer”
issues such as the cognitive issues involved in respondents’ understanding and
responding to questions. Some of these harder issues were addressed in the work
he and I did jointly considering the parallels between experiments and surveys;
some of the softer ones guided his initiation of and participation in the work of
the Committee on National Statistics to sponsor the Advanced Research Seminar on
Cognitive Aspects of Survey Methodology and its many follow-up activities. The
chapter on Multiple Imputation for Nonignorable Item Nonresponse in Complex
Surveys Using Auxiliary Margins by Olanrewaju Akande and Jerome Reiter
addresses some of those technical issues.
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Steve was concerned about the US Census for almost half a century. In preparing
a talk to be delivered in celebration of his 70th birthday, I searched his 52-page cv
for the word “census” and found it 82 times—and the cv was already 6 months old
when I was working on it. These mentions included the following:

• 1 book Who Counts: The Politics of Census-Taking in Contemporary America,
written with Margo J. Anderson and published in 1999

• 28 papers + 9 Chance articles
• 2 brief papers and editorials
• 4 technical discussions
• 1 book review
• 8 occasions of Congressional testimony
• And one PhD student Yi Ding, Department of Statistics, Carnegie Mellon

University, “Capture-Recapture Census with Uncertain Matching,” 1991

Steve was very much in favor of adjustment for the 1990 Census to correct the
differential undercount and served in many capacities during that controversy. These
included a CNSTAT panel, congressional testimony, technical original research on
capture/recapture or dual system estimation, and a series of expository pieces in
Chance about the legal battle over whether to adjust. These Chance articles, read
in retrospect, give a blow-by-blow explanation of the complicated proceedings in
which the statistical issues were overshadowed by constitutional ones, with the
Supreme Court having the final say. One can almost tell the stories from the titles.
Steve’s account is a model of sorting out the legalities and explaining them to
statisticians and lay people, not necessarily versed in the law. His own position only
very faintly colors his reportage.

“An adjusted Census in 1990?” (in nine parts):

(a) “An adjusted Census in 1990?” Chance, 2 (No. 3), (1989), 23–25
(b) “An interim report,” Chance, 3 (No. 1), (1990), 19–21
(c) “Back to court again,” Chance, 3 (No. 2), (1990), 32–35
(d) “The judge rules and the PES begins,” Chance, 3 (No. 3), (1990), 33–36
(e) “Commerce says ‘no’,” Chance, 4 (No. 3), (1991), 44–52
(f) “A full-scale judicial review approaches,” Chance, 4 (No. 4), (1991), 22–24, 29
(g) “The trial,” Chance, 5 (No. 3–4), (1992), 28–38
(h) “Trial judgment set aside,” Chance, 7, (No. 4), (1994), 31–32
(i) “The Supreme Court decides,” Chance, 9, (No. 2) (1996), 4–9 (with M.

Anderson)

Controversies about the Census continue and two former Census Directors
discuss the issues faced by two recent Censuses. First John Thompson contributes
“Insights into the Decision on Whether to Statistically Adjust the 2000 Census
for Coverage Errors,” and then Kenneth Prewitt in “A Sensible Census” addresses
issues raised by the 2020 Census and likely to be relevant to future Censuses as well.



Chapter 16
Multiple Imputation for Nonignorable
Item Nonresponse in Complex Surveys
Using Auxiliary Margins

Olanrewaju Akande and Jerome P. Reiter

16.1 Introduction

Many surveys suffer from item nonresponse that may be nonignorable. This can
complicate analysis or dissemination of survey data. In some settings, we can
leverage auxiliary information from other data sources to help adjust for the effects
of nonignorable nonresponse. For example, suppose that in a simple random sample,
a question on sex suffers from item nonresponse, so that 70% of the respondents are
women. Suppose we know that the target population includes 50% of men and 50%
of women. This implies that respondents with missing values of sex are more likely
to be men than women. Thus, if we impute values for the missing sexes, we should
impute more “male” than “female.”

Generalizing this example, we desire to leverage reliable estimates of low-
dimensional margins for variables with item nonresponse—available, for example,
from high-quality surveys or administrative databases—when imputing missing
items. However, we do not want to use solely these population margins to inform
the imputations. We should also take advantage of observed information in other
variables, so as to preserve multivariate relationships as best as possible. In the case
where the data are from a complex survey, we also need to somehow account for the
survey design weights in the imputations (Reiter et al. 2006, Zhou et al. 2016). We
are not aware of any principled ways to do all this simultaneously when performing
multiple imputation for item nonresponse.

O. Akande
Social Science Research Institute, Duke University, Durham, NC, USA
e-mail: olanrewaju.akande@duke.edu

J. P. Reiter (�)
Department of Statistical Science, Duke University, Durham, NC, USA
e-mail: jreiter@duke.edu

© Springer Nature Switzerland AG 2022
A. L. Carriquiry et al. (eds.), Statistics in the Public Interest, Springer Series
in the Data Sciences, https://doi.org/10.1007/978-3-030-75460-0_16

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75460-0_16&domain=pdf
mailto:olanrewaju.akande@duke.edu
mailto:jreiter@duke.edu
https://doi.org/10.1007/978-3-030-75460-0_16


290 O. Akande and J. P. Reiter

In this chapter, we propose a framework for multiple imputation of missing
items in complex surveys that leverages auxiliary margins. Our approach is to use
the auxiliary margins to identify additive nonignorable (AN) models (Hirano et al.
1998; 2001), with an additional requirement that the completed datasets result in
plausible design-based estimates of the known margins. We do so by fusing the AN
model with large sample results under frequentist (survey-weighted) paradigms. In
this way, we ensure that imputations are influenced by relationships in the data and
the auxiliary information, while being faithful to the survey design through survey
weights.

Our work connects to several areas of research in which Stephen Fienberg made
key contributions. In particular, the methods are examples of using marginal infor-
mation (Chen and Fienberg 1976, Fienberg 1970), and of course handling missing
values (Bishop and Fienberg 1969, Chen and Fienberg 1974, Fienberg 1972), in
the analysis of contingency tables. Our approach also uses Bayesian techniques for
official statistics and survey sampling, a perspective that he championed for many
areas including disclosure limitation, record linkage, and the analysis of categorical
data.

The remainder of this chapter is organized as follows. In Sect. 16.2, we review
the ANmodel. In Sect. 16.3, we present our approach. In Sect. 16.4, we illustrate the
performance of the approach using simulation studies with stratified sampling. In
Sect. 16.5, we conclude and discuss possible extensions. For clarity, we present the
methodology for data that does not have unit nonrespondents. We discuss extensions
to scenarios including unit nonrespondents in Sect. 16.5.

16.2 Review of the AN Model

Our review of the AN model closely follows the review in Akande (2019, Chap-
ter 4). For additional discussion of the AN model, see Bhattacharya (2008), Das
et al. (2013), Deng et al. (2013), Nevo (2003), Sadinle and Reiter (2019), Schifeling
et al. (2015), Si et al. (2015). Although the AN model was developed originally
for handling nonignorable attrition in longitudinal studies with refreshment samples
(Deng et al. 2013, Hirano et al. 1998), it can be applied to our setting by viewing the
data from the refreshment samples as auxiliary information, as we now describe.

Notation

Let D comprise data from the survey of i = 1, . . . , n individuals, and A comprise
data from the auxiliary database. Let X = (X1, . . . , Xp) represent the p variables
in both A and D, where each Xk = (X1k, . . . , Xnk)

T for k = 1, . . . , p. Let
Y = (Y1, . . . , Yq) represent the q variables in D but not in A, where each
Yk = (Y1k, . . . , Ynk)

T for k = 1, . . . , q. We assume that A only contains sets of
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marginal distributions for variables in X, summarized from some external database
and measured with negligible error. We disregard variables in A but not D, as the
margins for these variables generally do not provide much information about the
missing values inD.

We also introduce variables to account for item nonresponse. For each k =
1, . . . , p, let Rx

k = (Rx
1k, . . . , R

x
nk)

T , where each Rx
ik = 1 if individual i would

not respond to the question on Xk inD, and Rx
ik = 0 otherwise. Similarly, for each

k = 1, . . . , q, let Ry
k = (R

y

1k, . . . , R
y
nk)

T , where each R
y
ik = 1 if individual i would

not respond to the question on Yk inD and R
y
ik = 0 otherwise.

Finally, for simplicity, we use generic notations such as f and η for technically
different functions and parameters, respectively, although their actual meanings
should be clear within each context. For example, f , η0, and η1 need not be the
same in the conditional probability mass functions Pr(X1 = 1|Y1) = f (η0 + η1Y1)

and Pr(Y1 = 1|X1) = f (η0 + η1X1).

AN Model Specification

To make the ANmodel specification easy to follow, we work with an example where
D comprises only two binary variables, X1 and Y1. Following our notation,A con-
tains the auxiliary marginal distribution forX1 but no auxiliary marginal distribution
for Y1. For simplicity, we also suppose X1 suffers from item nonresponse but Y1 is
fully observed. Thus, we need a model for Rx

1 , the fully observed vector of item
nonresponse indicators for X1. We assume that we do not need to include a model
for R

y

1 , since there is no nonresponse in Y1. The observed and auxiliary data take
the form shown in Table 16.1a. The incomplete contingency table representing the
joint distribution of (X1, Y1, R

x
1 ), with observed and auxiliary marginal probabilities

excluded, is shown in Table 16.1b.
Due to the empty cells in the contingency table in Table 16.1b, we cannot fit

a fully saturated model to these data. To see this, we use a pattern mixture model
factorization (Glynn et al. 1986, Little 1993) to characterize the joint distribution of
(X1, Y1, R

x
1 ). The factorization, which we write as

Pr(X1 = x, Y1 = y,Rx
1 = r) = Pr(X1 = x|Y1 = y,Rx

1 = r)

× Pr(Y1 = y|Rx
1 = r)Pr(Rx

1 = r),
(16.1)

can be fully parameterized using seven parameters: the four values of θyr =
Pr(X1 = 1|Y1 = y,Rx

1 = r), πr = Pr(Y1 = 1|Rx
1 = r), and q = Pr(Rx

1 = 1).
Five of the seven parameters, that is, q, π0, π1, θ00, and θ10, can be directly

estimated from the observed data alone, as long as the sample data is representative
of the target population. Unfortunately, the observed data contain no information
about θ01 and θ11. We need to make assumptions about the missingness mechanism
to estimate the full joint distribution. For example, we could set θ01 = θ00 and
θ11 = θ10, resulting in a missing at random (MAR) mechanism.
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Table 16.1 Setup for the AN model with two binary variables Y1 and X1. Y1 is fully observed and
X1 suffers from item nonresponse. We know the population margin for X1. Here, “✓” represents
observed components and “?” represents missing components

(a) Data

X1 Y1 Rx
1

Original data
{

✓
✓

0

? 1

Auxiliary margin → ✓ ? ?

(b) Contingency table

Rx
1 = 0 Rx

1 = 1

X1 = 0 X1 = 1 X1 = 0 X1 = 1

Y1 = 0 ✓ ✓ ? ?
Y1 = 1 ✓ ✓ ? ?

The auxiliary marginal distributions provide information that we can use to
specify such identifying assumptions. In our two-variable example, the auxiliary
marginal distribution of X1 provides one linear constraint about θ01 and θ11. We
write this constraint as

Pr(X1 = 1)−Pr(X1 = 1, Y1 = y,Rx
1 = 0) = q [θ01(1− π1) + θ11π1] . (16.2)

Although (16.2) does not provide enough information to identify both θ01 and θ11,
it does increase the number of estimable parameters from five to six.

The ANmodel takes advantage of this additional constraint. In particular, the AN
model assumes that the reason for item nonresponse in X1 depends on X1 and Y1
through a function that is additive in X1 and Y1. We have

(X1, Y1) ∼ f (X1, Y1|�) (16.3)

Pr(Rx
1 = 1|X1, Y1) = h(η0 + η1X1 + η2Y1), (16.4)

where �, η0, η1, and η2 represent the parameters in f and h. Here, h(a) should be
a strictly increasing function satisfying lima→−∞ h(a) = 0 and lima→∞ h(a) = 1.
The models in (16.3) and (16.4) represent a selection model factorization (Little
1995) of the joint distribution of (Y1, X1, R

x
1 ), instead of the pattern mixture

factorization in (16.1). Hirano et al. (2001) prove that the AN model is likelihood-
identified for general distributions, such as probit and logistic regression models.
The interaction term between X1 and Y1 is not allowed, as additivity is necessary to
enable identification of the model parameters.

The ANmodel is appealing in that it includes ignorable and nonignorable models
as special cases. For example, (η1 = 0, η2 = 0) results in a missing completely at
random (MCAR) mechanism, (η1 �= 0, η2 = 0) results in a MAR mechanism,
and η2 �= 0 results in a missing not at random (MNAR) mechanism. In particular,
(η1 = 0, η2 �= 0) results in the nonignorable model of Hausman and Wise
(1979). This allows the data to determine an appropriate mechanism from among
these possibilities. The AN model does rely on the assumption of additivity of the
response model in X1 and Y1, which may be reasonable in practice. Deng et al.
(2013) describe sensitivity analysis for non-zero interaction effects. Hirano et al.
(2001) suggest results are not overly sensitive to the choice of h.
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It is possible to use mechanisms other than the AN model to estimate up to six
unique parameters (in our example here). For example, one can set either θ01 or
θ11 equal to zero. Setting θ01 = 0 but θ11 �= 0 implies that all nonrespondents
cannot have X1 = 1 whenever Y1 = 0. On the other hand, setting θ11 = 0 but
θ01 �= 0 implies that all nonrespondents cannot have X1 = 1 whenever Y1 = 1. Both
assumptions seem more restrictive than setting an interaction effect in the model for
Rx
1 to zero, and we do not recommend adopting them unless the specific application

at hand justifies such strong assumptions. As another example, one can set θ01 =
θ11+b for some constant b. With b = 0, this equates to θ� = θ01 = θ11, which then
simplifies (16.2) to

θ� = Pr(X1 = 1) − (1− q) [θ00(1− π0) + θ10π0]

q
. (16.5)

This constraint implies conditional independence between Y1 andX1 for nonrespon-
dents. This seems a strong assumption in general.

These two options, as well as other mechanisms that we do not cover here,
are seemingly more restrictive than the AN assumptions or do not maximize all
available information. The AN model does not force analysts to make as many
untestable assumptions as most of the other mechanisms do, while allowing analysts
to estimate as many parameters as possible with auxiliary data. However, the AN
model as developed by Hirano et al. (1998; 2001) does not incorporate complex
survey designs directly. We now extend the model to do so.

16.3 Extending the AN Model to Account for Complex
Surveys

Let N represent the number of units in the population from which the n survey units
inD are sampled. Let W = (w1, . . . , wn), where each wi is the base weight for the
ith unit in the sample D. Here, we let wi = 1/πi , where πi is the probability
of selection of the ith unit. We present methods where weights are not subject
to calibration or nonresponse adjustments, although one could use the approach
for adjusted weights as well. Let the superscript “pop” represent the population
counterparts of the survey variables. For example, Xpop and Ypop represent the
population-based counterparts of X and Y , respectively, where each Xi ∈ Xpop and
Yi ∈ Ypop. We do not observe values of Xpop or Ypop for all non-sampled units in
the population.

To present the methodology, we continue to work with the two-variable example
in Sect. 16.2, with one minor modification. We now let Y1 be a categorical variable
with three levels, that is, Y1 ∈ {1, 2, 3}. We do so to show that our approach can
extend to non-binary variables. The data and incomplete contingency table take
similar forms to Table 16.1, with weights now included and Y1 having three levels.
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Following our discussions in Sect. 16.2, we once again cannot fit a fully saturated
model to the data. However, we can uniquely estimate seven of the nine parameters
in a fully saturated model. Without any auxiliary information, we can fit the
following model to the observed data as a default option within the missing data
literature. We have

Y1 ∼ f (θ) (16.6)

Pr(X1 = 1|Y1) = g(α0 + α1j1[Y1 = j ]) (16.7)

Pr(Rx
1 = 1|X1, Y1) = h(γ0 + γ1j1[Y1 = j ]), (16.8)

resulting in a MAR mechanism, where j = 1, 2, 3. We set α11 = 0 and γ11 = 0
to ensure the model is identifiable; the model then only contains seven parameters
as desired. For more flexibility however, we seek to fit a nonignorable model that
includes γ2X1 in (16.8), so that (16.8) becomes the AN model

Pr(Rx
1 = 1|X1, Y1) = h(γ0 + γ1j1[Y1 = j ] + γ2X1). (16.9)

To do so, we need to incorporate at least one constraint on the remaining parameters.
When the survey design is complex, it may not be sufficient to use the auxiliary
margin to force an extra constraint on the remaining parameters as we did in
Sect. 16.2, since that approach does not incorporate the survey weights directly. To
account for the survey weights, we take a different approach.

In practice, the most common marginal information is the population total (or
mean) of some of the variables. For example, for totals, we know that

TX =
N∑

i=1

X
pop

i1 = N × Pr(Xpop

1 = 1), (16.10)

where Pr(Xpop

1 = 1) is the true auxiliary marginal probability. A classical design-
unbiased estimator of TX in this case is the Horvitz–Thompson estimator (Horvitz
and Thompson 1952), henceforth referred to as HT estimator, which is

T̂X =
∑

i∈D

Xi1

πi

=
∑

i∈D
wiXi1. (16.11)

In large enough samples, finite population central limit theorems ensure that T̂X is
approximately normally distributed around TX, with a variance VX that is estimated
using design-based principles (Fuller 2009). Thus, for fully observed data, we have

∑

i∈D
wiXi1 ∼ N(TX, VX). (16.12)
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When the data contain nonresponse, we cannot compute T̂X directly. However,
it is reasonable to expect this unobserved value of T̂X to be distributed around
TX as governed by (16.12). Thus, when we impute the missing values for X1, it
is reasonable to require any completed dataset to produce a value of T̂X that is
plausible under (16.12) as well. We operationalize this logic as follows. For all
i ∈ D, let X�

i1 = Xi1 when Rx
i1 = 0, and let X�

i1 be an imputed value when
Rx

i1 = 1. We impose the probabilistic constraint,

∑

i∈D
wiX

�
i1 ∼ N(TX, VX). (16.13)

In this way, we favor imputations consistent with (16.13) when generating imputed
values for X under the posterior predictive distribution implied by (16.6), (16.7),
and (16.9). Using a probabilistic constraint, as opposed to a deterministic constraint
that T̂X be as close to TX as possible, reflects uncertainty about T̂X more appropri-
ately. Here, we assume VX is pre-specified and treated as known; for example, it
could be based on previous knowledge or an average of estimates from preliminary
sets of completed data. We discuss considerations with unknown VX further in
Sect. 16.5.

We incorporate (16.13) into a Markov chain Monte Carlo (MCMC) sampler for
the model parameters through a Metropolis algorithm. At each MCMC iteration t ,
let the current draw of each X�

i1 be X
�(t)
i1 and let T̂ �(t)

X =∑
i∈DwiX

�(t)
i1 . We use the

following sampler at iteration t + 1.

S1. For all i ∈ D, i.e., i = 1, . . . , n, set X�
i1 = Xi1 when Rx

i1 = 0. When Rx
i1 =

1, generate a candidate X�
i1 for the missing Xi1 from the following posterior

predictive distribution implied by (16.7) and (16.9). We have

Pr(X�
i1 = 1| . . .) ∝ g(α0 + α1j1[Yi1 = j ]) h(γ0 + γ1j1[Yi1 = j ] + γ2X

�
i1),

(16.14)

using the current posterior draws of the parameters at iteration t + 1, where
“. . . ” represents conditioning on all other variables and posterior draws of all
parameters in the model.

S2. Let T̂ �
X =∑

i∈DwiX
�
i1. Calculate the acceptance ratio,

p = N(T̂ �
X; TX, VX)

N(T̂
�(t)
X ; TX, VX)

. (16.15)

S3. Draw a value u from u ∼ Unif (0, 1). If u ≤ p, accept the proposed candidate
(X�

i1, . . . , X
�
in), and set X

�(t+1)
i1 = X�

i1 for i = 1, . . . , n. Otherwise, reject the

proposed candidate, and set X�(t+1)
i1 = X

�(t)
i1 for i = 1, . . . , n.

Intuitively, these steps reject completed datasets that yield highly improbable
design-based estimates of TX, while simultaneously allowing us to estimate γ2X1
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in (16.9). Although (16.13) provides a stochastic constraint, whereas using the
auxiliary margins as in Sect. 16.2 forms linear constraints, γ2X1 is still estimable
when using (16.13), as we show using the simulations in Sect. 16.4.

We recommend that analysts monitor the acceptance ratio of the missing data
sampler in Steps S1–S3, as with any Metropolis sampler. In cases where the
acceptance ratio is considerably low, analysts can inflate or tune VX or consider
other methods of generating more realistic imputations from the implied posterior
predictive distribution. In our simulation scenarios in Sect. 16.4, there is no need
to do so as the samplers mix adequately. We do not worry about cases where the
acceptance ratio is high because we view (16.13) as a constraint rather than a target
distribution. Therefore, we interpret a high acceptance ratio as the sampler doing a
good job of generating imputations that respect the survey design, as desired.

16.4 Simulations with Stratified Sampling

In this section, we illustrate the approach described in Sect. 16.3 via simulation
studies with stratified sampling. We create ten populations, each of sizeN = 50,000
split into two strata: 70% of the units are in stratum 1 (N1 = 35,000), and 30% of
the units are in stratum 2 (N2 = 15,000). For each observation in each population,
we generate values of a three-valued Y1 and binary X1 using

Yi1 ∼ Discrete(θ1, θ2, θ3) (16.16)

Xi1|Yi1 ∼ Bernoulli(πXi1); �−1(πXi1) = α0 + α1j1[Yi1 = j ], (16.17)

for j ∈ {2, 3}, where πXi1 = Pr[Xi1 = 1|Yi1]. Here, the discrete distribution refers
to the multinomial distribution with sample size equal to one, and �−1 is the inverse
cumulative distribution function of the standard normal distribution. We set θ =
(θ1, θ2, θ3) = (0.5, 0.15, 0.35) in stratum 1 and θ = (0.1, 0.45, 0.45) in stratum
2. This ensures that the joint distributions of Y1 and X1 differ across strata. We set
different values for α0, α12, and α13 to explore how the strength of the relationship
between X1 and Y1 affects results.

For each of the ten simulation runs, we randomly select n = 5000 observations
from the corresponding population using stratified simple random sampling. We
sample n1 = 1500 units from stratum 1 and n2 = 3500 units from stratum 2.
This disproportionate sampling allocation ensures that the base weights matter in
the estimation of finite population quantities. The survey weights wi = N1/n1 =
35000/1500 = 23.33 for all units in stratum 1 and wi = N2/n2 = 15000/3500 =
4.29 for all units in stratum 2.

We introduce item nonresponse in X1 for each of the simulation runs by
generating missingness indicators from an AN model. For each i ∈ D in each
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population, we sample the missingness indicator from a Bernoulli distribution with
probability

�−1(Pr[Rx
i1 = 1|Yi1, Xi1]) = γ0 + γ1j1[Yi1 = j ] + γ2Xi1, (16.18)

where j ∈ {2, 3}. We set different values for γ0, γ12, γ13, and γ2 to investigate
how departures from an ignorable missing mechanism affect the performance of the
imputation strategies. All sets result in approximately 30% missing values in X1.

After making the missing values, we use several approaches to impute the item
nonresponse in X1. For each approach, we use (16.16) and (16.17) as the models
for the survey variables. We use different methods for specifying and estimating
the selection model, in particular for incorporating the weights and auxiliary
information. The approaches include the following.

1. MAR+Weight: We incorporate the survey weights by including wi as a covariate
in (16.17). Since there is a one-to-one mapping between weights and strata in our
simulation setup, we incorporate wi by adding an indicator variable Si for strata,
so that we have

Xi1|Yi1 ∼ Bernoulli(πXi1); �−1(πXi1) = α0 + α1j1[Yi1 = j ] + α21[Si = 2]
(16.19)

as the model for X1 instead of (16.17). We exclude the parameter for 1[Si = 1]
in (16.19) to ensure identifiability. Additionally, since γ2Xi1 in (16.18) cannot be
identified from the observed data alone, we exclude γ2Xi1 in (16.18), so that we
have

�−1(Pr[Rx
i1 = 1|Yi1, Xi1]) = γ0 + γ1j1[Yi1 = j ]. (16.20)

This is a MAR model for the item nonresponse. This approach represents a
default approach analysts might use in this scenario. It does not use auxiliary
information about the margin of X1.

2. AN+Weight: We use (16.19) to incorporate the weights and fit the AN model
in (16.18). However, we do so without using any auxiliary information. Although
γ2Xi1 in (16.18) is not identifiable as previously discussed, the model can be
estimated (albeit not accurately) under the Bayesian paradigm because of the
prior distribution. This represents a naive application of a nonignorable modeling
strategy.

3. AN+Constraint: We fit the AN model in (16.18), using the method in Sect. 16.3
to incorporate the auxiliary information and survey design. We incorporate the
auxiliary total TX1 and survey weights through the constraint in (16.13). We set
VX equal to approximately the theoretical variance of T̂X without any missing
values.
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4. AN+Constraint+Weight: We combine the AN+Weight and AN+Constraint
approaches. Specifically, we follow the AN+Constraint method but use (16.19)
instead of (16.17) to further control for the weights.

We use non-informative priors for all parameters. Specifically, we use the
Dirichlet(1, 1, 1) distribution as the prior distribution for (θ1, θ2, θ3) and a standard
multivariate normal distribution as the prior distribution for the set of parameters in
each probit model in (16.17)–(16.20). We fit all models using MCMC sampling.
We run each MCMC sampler for 10,000 iterations, discarding the first 5000 as
burn-in, resulting in 5000 posterior samples. We create L = 50 multiply-imputed
datasets, Z = (Z(1), . . . ,Z(50)), from every 100th posterior sample. From each
completed dataset Z(l), we compute the design-based estimates of TX, α0, α12,
and α13, along with the corresponding standard errors, using the survey-weighted
generalized linear models option in the R package, “survey.” Although there are
differing opinions associated with using survey weights in regression modeling
(Gelman 2007, Pfeffermann 1993), we use them to ensure all analyses account for
the selection effects in the survey design. We also compute estimates of γ0, γ1, and
γ2 (which do not depend on the weights by design), along with the corresponding
standard errors, from each completed dataset, using the generalized linear models
option in the R package, “stats.”

Within any simulation run, we combine all the estimates across all multiply-
imputed datasets using multiple imputation (MI) rules (Rubin 1987). As a brief
review of MI, let q be the point estimator of some estimand of interest Q in a
completed dataset, and let u be the estimator of its variance. For l = 1, . . . , L, let
ql and ul be the values of q and u in completed dataset Z(l). The MI point estimate
of Q is q̄L = ∑L

l=1 ql/L, and the corresponding MI estimate of the variance of q̄L

is given by TL = (1 + 1/L)bL + ūL, where bL = ∑L
l=1(ql − q̄L)2/(L − 1) and

ūL = ∑L
l=1 ul/L. We write q̄m

L and T m
L to represent the values of q̄L and TL in the

simulation run indexed by m, where m = 1, . . . , 10.
We consider eight simulation scenarios resulting from a 2 × 2 × 2 factorial

design. The factors include strong and weak associations among X1 and Y1; large
and small departures from ignorable missingness mechanisms; and, margins for X1
known either for the entire population only (TX) or for each of the two strata. In the
interest of space, we report detailed results only for the four scenarios described
in Table 16.2. In each scenario, we report averages of MI estimates across the
10 runs, including

∑10
m=1 q̄m

L /10 for the point estimate of each estimand Q, and

Table 16.2 Simulation scenarios presented in Sect. 16.4

Scenario Association (X1, Y1) Departure from ignorable missingness Margins

1 Strong Large Population only

2 Weak Small Population only

3 Strong Large Both strata

4 Weak Small Both strata
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√∑10
m=1 T m

L /10 as a measure of the corresponding standard error. For comparison,
we also report results before introduction of missing data, using the average of the
ten point estimates and the square root of the average of the variance estimates.

Results for Scenario 1 and Scenario 2

In scenario 1, we set α0 = 0.5, (α12, α13) = (−0.5,−1), γ0 = −0.25, (γ12, γ13) =
(0.1, 0.3), and γ2 = −1.1. This represents a strong relationship between Y1 and
X1 and a nonresponse mechanism that deviates substantially from an ignorable
mechanism. Here, TX is known only for the entire population and not for the
individual strata.

For each method, Table 16.3a displays the average of the ten HT estimates
for TX and the square root of the average of the variances of these estimates in
scenario 1. AN+Constraint and AN+Constraint+Weight offer the most accurate
estimates, whereas AN+Weight andMAR+Weight offer the least accurate estimates.
Controlling for the weights in the model for X1 as in the AN+Constraint+Weight
method apparently decreases the standard error in comparison to AN+Constraint.
It also increases the acceptance ratios in the MCMC samplers. The standard
error associated with AN+Weight is much higher than all other methods. This
is due primarily to the weak identification issues associated with using the AN
model without any auxiliary information, resulting in greater uncertainty from the
nonresponse mechanism.

Table 16.3b also shows survey-weighted estimates of α0, α12, α13, γ0, γ12,
γ13, and γ2, along with the corresponding standard errors, again combined across
all ten simulation runs. Here, both AN+Constraint and AN+Constraint+Weight
give nearly identical results and closely estimate the true parameter estimates.
The AN+Constraint and AN+Constraint+Weight approaches outperform the other
choices in this scenario. AN+Weight andMAR+Weight again give the least accurate
results.

In scenario 2, we weaken both the relationship between the variables of
interest and the nonignorable nonresponse. We set α0 = 0.15 and (α12, α13) =
(−0.45,−0.15) to reflect a weak relationship between Y1 and X1, and we set
γ0 = −1, (γ12, γ13) = (−0.6, 1.4), and γ2 = −0.2 to reflect a small departure from
an ignorable nonresponse mechanism. TX is known only for the entire population.

Table 16.4a,b presents results of 10 simulation runs of scenario 2. Once again,
the AN+Constraint and AN+Constraint+Weight outperform the other methods.
AN+Constraint has a slightly smaller standard error for TX in scenario 2 than
AN+Constraint+Weight. Also, MAR+Weight performs much better in scenario
2 than in scenario 1. In the presence of a weakly nonignorable nonresponse
mechanism, there appears to be little degradation when using a MAR model. In
addition, whatever degradation or bias that should have been attributed to the survey
design appears to be taken care of by including the strata indicator in the model
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Table 16.3 Results for scenario 1: overall auxiliary margin for X1, strong relationship between
Y1 and X1, and strong nonignorable nonresponse

(a) HT estimates for TX under each method, the corresponding standard errors, and acceptance
ratios. “Population” is the value of TX in the population of N = 50,000 individuals. “No Missing
Data” is the weighted estimate based on the sampled data before introducing item nonresponse.
For AN+Constraint and AN+Constraint+Weight, the estimated Monte Carlo standard errors of∑10

m=1 q̄m
L /10 are less than 150, ruling out chance error as explanation for the improved perform-

ance of these two models over AN+Weight and MAR+Weight.

TX Acceptance Ratio

Method Mean SE Mean Range

Population 25,026 – – –

Mo Missing Data 25,275 582 – –

MAR+Weight 30,579 670 – –

AN+Weight 28,222 2789 – –

AN+Constraint 24,993 741 0.82 [0.79, 0.84]

AN+Constraint+Weight 25,019 718 0.83 [0.80, 0.86]

(b) Survey-weighted estimates of α0, α12, α13, γ0, γ12, γ13, and γ2, along with the corresponding
standard errors. “MAR+W” is MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Const-
raint, and “AN+C+W” is “AN+Constraint+Weight.” Standard errors of the averaged point
estimates are small enough to rule out chance error as explanations for the improved performance
of AN+C and AN+C+W over MAR+W and AN+W.

MAR+W AN+W AN+C AN+C+W

Par. Truth Mean SE Mean SE Mean SE Mean SE

α0 0.50 0.74 0.05 0.63 0.13 0.49 0.05 0.49 0.05

α12 −0.50 −0.45 0.07 −0.47 0.07 −0.49 0.07 −0.49 0.06

α13 −1.00 −0.88 0.07 −0.92 0.10 −0.98 0.06 −0.98 0.06

γ0 −0.25 −0.88 0.04 −0.63 0.35 −0.22 0.07 −0.23 0.07

γ12 0.10 0.29 0.05 0.21 0.11 0.10 0.06 0.10 0.06

γ13 0.30 0.63 0.05 0.48 0.17 0.27 0.07 0.27 0.07

γ2 −1.10 – – −0.48 0.57 −1.15 0.14 −1.15 0.13

for X1. AN+Weight performs worse than the other three methods. Unlike before,
AN+Weight actually underestimates rather than overestimates TX in this scenario.
Overall, the range of acceptance ratios has decreased slightly from the previous
scenario.

We note that we find similar overall conclusions in the two other scenarios where
we know the margin of TX only for the whole population.

Results for Scenario 3 and Scenario 4

We next investigate the performance of the approaches when we know the auxiliary
margin of X1 in each stratum. In this case, it is possible to implement the constraint
in (16.13) for each stratum. For each stratum s ∈ {1, 2}, we require that
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Table 16.4 Results for scenario 2: overall auxiliary margin for X1, weak relationship between Y1
and X1, and weak nonignorable nonresponse

(a) HT estimates for TX under each method, the corresponding standard errors, and acceptance
ratios. “Population” is the value of TX in the population of N = 50,000 individuals. “No Missing
Data” is the weighted estimate based on the sampled data before introducing item nonresponse.
For AN+Constraint and AN+Constraint+Weight, the estimated Monte Carlo standard errors of∑10

m=1 q̄m
L /10 are less than 150, ruling out chance error as explanation for the improved perform-

ance of these two models over AN+Weight and MAR+Weight.

TX Acceptance Ratio

Method Mean SE Mean Range

Population 24,677 – – –

Mo Missing Data 24,742 570 – –

MAR+Weight 26,098 662 – –

AN+Weight 23,705 2519 – –

AN+Constraint 24,666 698 0.79 [ 0.77, 0.81]

AN+Constraint+Weight 24,653 705 0.79 [ 0.77, 0.81]

(b) Survey-weighted estimates of α0, α12, α13, γ0, γ12, γ13, and γ2, along with the corresponding
standard errors. “MAR+W” is MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Const-
raint, and “AN+C+W” is “AN+Constraint+Weight.” Standard errors of the averaged point
estimates are small enough to rule out chance error as explanations for the improved performance
of AN+C and AN+C+W over MAR+W and AN+W.

MAR+W AN+W AN+C AN+C+W

Par. Truth Mean SE Mean SE Mean SE Mean SE

α0 0.15 0.19 0.05 0.12 0.08 0.15 0.05 0.15 0.05

α12 −0.45 −0.48 0.06 −0.43 0.08 −0.45 0.06 −0.45 0.06

α13 −0.15 −0.04 0.07 −0.23 0.21 −0.15 0.07 −0.16 0.07

γ0 −1.00 −1.12 0.05 −0.97 0.21 −1.00 0.06 −1.00 0.06

γ12 −0.60 −0.57 0.07 −0.64 0.10 −0.61 0.07 −0.61 0.07

γ13 1.40 1.42 0.06 1.41 0.06 1.42 0.06 1.42 0.06

γ2 −0.20 – – −0.44 0.47 −0.23 0.08 −0.23 0.08
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(s)
X is the corresponding

variance associated with it. For the AN+Constraint and AN+Constraint+Weight
methods, we implement this constraint by applying the Metropolis steps S1–S3 in
Sect. 16.3 within each stratum.

We first set the parameters as in Sect. 16.4 to reflect a strong relationship
between Y1 and X1, and strong nonignorable nonresponse mechanism. Table 16.5a
shows the average HT estimates for TX, the standard error under each method,
and the acceptance ratios by strata. Table 16.5b shows survey-weighted estimates
of α0, α12, α13, γ0, γ12, γ13, and γ2, and the corresponding standard errors. The
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Table 16.5 Results for scenario 3: auxiliary margin for X1 within each stratum, strong relation-
ship between Y1 and X1, and strong nonignorable nonresponse

(a) HT estimates for TX under each method, the corresponding standard errors, and acceptance
ratios by strata. “Population” is the value of TX in the population of N = 50,000 individuals. “No
Missing Data” is the weighted estimate based on the sampled data before introducing item nonres-
ponse. For AN+Constraint and AN+Constraint+Weight, the estimated Monte Carlo standard
errors of

∑10
m=1 q̄m

L /10 are less than 250, ruling out chance error as explanation for the improved
performance of these two models over AN+Weight and MAR+Weight.

Acceptance Ratio

TX Stratum 1 Stratum 2

Method Mean SE Mean Range Mean Range

Population 24,994 – – – – –

Mo Missing Data 25,043 580 – – – –

MAR+Weight 30,447 668 – – – –

AN+Weight 28,488 3034 – – – –

AN+Constraint 25,062 665 0.81 [ 0.66, 0.91] 0.80 [ 0.74, 0.83]

AN+Constraint+Weight 25,070 667 0.80 [ 0.61, 0.90] 0.79 [ 0.74, 0.84]

(b) Survey-weighted estimates of α0, α12, α13, γ0, γ12, γ13, and γ2, along with the corresponding
standard errors. “MAR+W” is MAR+Weight, “AN+W” is AN+Weight, “AN+C” is AN+Const-
raint, and “AN+C+W” is “AN+Constraint+Weight.” Standard errors of the averaged point
estimates are small enough to rule out chance error as explanations for the improved performance
of AN+C and AN+C+W over MAR+W and AN+W.

MAR+W AN+W AN+C AN+C+W

Par. Truth Mean SE Mean SE Mean SE Mean SE

α0 0.50 0.74 0.05 0.64 0.13 0.50 0.05 0.50 0.05

α12 −0.50 −0.45 0.07 −0.46 0.08 −0.50 0.07 −0.50 0.07

α13 −1.00 −0.89 0.07 −0.90 0.12 −1.00 0.06 −1.00 0.07

γ0 −0.25 −0.89 0.04 −0.73 0.44 −0.27 0.06 −0.27 0.06

γ12 0.10 0.30 0.05 0.22 0.11 0.12 0.06 0.12 0.06

γ13 0.30 0.65 0.05 0.52 0.19 0.31 0.06 0.31 0.06

γ2 −1.10 – – −0.41 0.69 −1.08 0.09 −1.08 0.09

overall conclusions are qualitatively similar to those in Sect. 16.4. Incorporating the
auxiliary margin by strata in AN+Constraint and AN+Constraint+Weight reduces
the standard errors. AN+Weight and MAR+Weight again yield the least accurate
results. The range of acceptance ratios is much wider suggesting that there is a
smaller set of combinations of imputed values that fulfill the constraints within each
stratum, than with the combined constraint.

We also set the parameters as in Sect. 16.4 to reflect a weak relationship between
Y1 and X1, and a weakly nonignorable nonresponse mechanism. Table 16.6a,b
display the results. The conclusions are qualitatively similar to those in previous
simulations. The primary difference is that implementing the constraint by strata
reduces the standard errors for AN+Constraint and AN+Constraint+Weight.
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Table 16.6 Results for scenario 4: auxiliary margin for X1 within each stratum, weak relationship
between Y1 and X1, and weak nonignorable nonresponse

(a) HT estimates for TX under each method, the corresponding standard errors, and acceptance
ratios by strata. “Population” is the value of TX in the population of N = 50,000 individuals. “No
Missing Data” is the weighted estimate based on the sampled data before introducing item nonres-
ponse. For AN+Constraint and AN+Constraint+Weight, the estimated Monte Carlo standard
errors of

∑10
m=1 q̄m

L /10 are less than 350.

TX Acceptance Ratio

Stratum 1 Stratum 2

Method Mean SE Mean Range Mean Range

Population 24,724 – – – – –

Mo Missing Data 24,613 569 – – – –

MAR+Weight 25,969 669 – – – –

AN+Weight 23,551 3038 – – – –

AN+Constraint 24,710 651 0.79 [ 0.60, 0.87] 0.76 [ 0.68, 0.79]

AN+Constraint+Weight 24,689 672 0.77 [ 0.59, 0.86] 0.75 [ 0.66, 0.78]

(b) Survey-weighted estimates of α0, α12, α13, γ0, γ12, γ13, and γ2, along with the corresponding
standard errors. “MAR+W” is MAR+Weight, “AN+W” is AN+Weight, “AN+C” is AN+Const-
raint, and “AN+C+W” is “AN+Constraint+Weight.”

MAR+W AN+W AN+C AN+C+W

Par. Truth Mean SE Mean SE Mean SE Mean SE

α0 0.15 0.18 0.05 0.12 0.09 0.15 0.05 0.15 0.05

α12 −0.45 −0.48 0.06 −0.44 0.08 −0.46 0.06 −0.46 0.06

α13 −0.15 −0.05 0.07 −0.24 0.25 −0.14 0.07 −0.14 0.07

γ0 −1.00 −1.09 0.05 −0.97 0.26 −0.98 0.06 −0.98 0.06

γ12 −0.60 −0.60 0.07 −0.68 0.12 −0.64 0.07 −0.64 0.07

γ13 1.40 1.38 0.05 1.37 0.06 1.38 0.06 1.38 0.06

γ2 −0.20 – – 0.50 0.62 −0.21 0.07 −0.21 0.07

Results for the remaining two scenarios with known population totals per stratum
are qualitatively similar to those presented here.

16.5 Discussion

The results suggest that the approach in Sect. 16.3 can allow survey analysts to
incorporate survey weights and auxiliary information when imputing nonresponse in
complex surveys. In particular, AN+Constraint and AN+Constraint+Weight appear
to outperform the default option of controlling for the weights in the joint model
for the variables in D. The MAR+Weight approach offers good results when the
nonresponse mechanism is only weakly nonignorable; we expect that this method
should perform even better for fully ignorable nonresponse mechanisms. However,
the results based on AN+Constraint and AN+Constraint+Weight are the most
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consistently best across the different scenarios. Of course, these results are based
on a limited set of simulation scenarios, and the methods could perform differently
in other scenarios.

Opportunities for extensions of this approach exist as future research topics. First,
future work could explore extensions of the approach to other sampling designs,
in particular when weights have many unique values. Preliminary simulations, not
shown here, suggest that our approach can also work well for many valued, unequal
weights. However, generating plausible imputations that satisfy the constraint can
be challenging whenever the set of combinations of imputed values that result in
completed datasets that satisfy the constraint is small compared to the set of all
possible combinations. When this is the case, we have found that one needs efficient
samplers for generating proposals for the imputations. Finding general strategies for
such proposals is an important topic for future work.

Second, as we suggested in Sect. 16.3, there are opportunities to investigate dif-
ferent approaches to specifying the constraints involving T̂X, in particular how to set
the variance VX. In the simulations, we used the theoretical design-based variance,
estimated via resampling from the true generative process, but this would need to
be approximated in practice. Future research could examine the effectiveness of
using the types of approximations described in Sect. 16.3. Additionally, one could
investigate how different values of VX affect the performance of the methodology.
For example, using very small VX could lead to a more efficient estimation of TX;
however, forcing the completed datasets to match very closely on TX could affect the
relationships among X and Y in the completed data in unpredictable ways. It could
also lead to a less efficient MCMC sampler, since the set of imputations consistent
with (16.13) would be smaller.

Third, future research could adapt this approach to other model specifications.
For example, one could extend the approach to nonparametric models and semi-
parametric models like those in Kim and Yu (2011), and Morikawa et al. (2017).

Fourth, one could extend the framework to handle imputation for unit nonre-
sponse as well. In particular, we conjecture that analysts can follow the framework
developed by Akande (2019, Chapter 4), who extends the AN model to unit
nonresponse as well as item nonresponse in more than one variable in simple
random samples. We expect that analysts can add the probabilistic constraint on
the completed data totals on top of the models in Akande (2019, Chapter 4). We
note that this requires survey weights for the unit nonrespondents, which often are
not available.

Finally, we work with base weights instead of more complex “adjusted” weights,
which are often inflated to adjust for nonresponse or poststratification. Since we
take a model-based approach to handling survey nonresponse, there is no obvious
justification for using adjusted weights that already account for the nonresponse.
In fact, using such adjusted weights assumes that the weights are fixed, which is
not often true as pointed out by Fienberg (2010). Since agencies often release those
adjusted weights in practice, instead of the base weights, future work would explore
the extension of our approach to adjusted weights as well.
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Chapter 17
Insights into the Decision on Whether
to Statistically Adjust the 2000 Census for
Coverage Errors

John H. Thompson

17.1 Introduction

The decennial census is one of the cornerstones of our democracy. The Constitution
requires that the Decennial Census be used for reapportioning the Congress of
the United States and the Electoral College. The decennial census is also used
for numerous other functions to support good policymaking and economic growth
including: redrawing Congressional and local voting districts; allocating over $900
billion of federal funds annually; informing sound policy development; providing
critical information for state, local, and tribal government planning; and supplying
critical information to large and small businesses to generate growth and job cre-
ation. Inaccuracies or errors in the decennial census will have grave consequences
for these uses not only in the year in which the census data are produced, but for the
subsequent 10-year period until data from the next census are available.

Understandably, there are great concerns regarding the accuracy of the census
by a wide array of stakeholders. No decennial census has been perfect, and
historically, non-White and Hispanic population groups have been undercounted
in the decennial census at a significantly higher rate than the White population.
Renters have also been undercounted to a greater extent than owners. Statistically
adjusting the decennial census to correct for such coverage errors, in particular
the differential undercounts of non-White and Hispanic populations, has been a
consideration for the 1980, 1990, and 2000 Censuses. In addition, for each of
these censuses, lawsuits were filed over whether statistical adjustment should be
employed. Statistical adjustment was not considered for the 2010 Census and was
not included in the planning for the 2020 Census as explained below.
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One of the many interests of Stephen Fienberg was the conduct of the decennial
census and how statistical methods could be used to improve the enumeration. One
of his numerous publications included a book coauthored with Margo Anderson
Who Counts? The Politics of Census-Taking in Contemporary America, Anderson
and Fienberg (2001). That volume discusses the history of the decennial census and
undercounts. The book includes a detailed discussion of the issues surrounding the
1990 Census regarding the use of statistical methods to correct for undercounts.
It then describes the planning leading up to the 2000 Census that included the
incorporation of statistical methods into the core 2000 Census processes to use
sampling to reduce costs and to use statistical methods to adjust or correct the
census results for coverage error. The book chronicles the controversy and litigation
that emerged in opposition to this Census Bureau plan to use statistical methods
and the final decision by the Supreme Court to rule out the use of statistical
sampling to produce the census counts for apportionment. It concludes with the
release of the 2000 Census data for apportionment and documents that in the next
phase of the 2000 Census the Census Bureau would be considering the use of
statistical adjustment for all non-apportionment uses of the 2000 Census including
redistricting.

Subsequently, the Census Bureau determined not to use statistical adjustment to
produce the redistricting data due to concerns with the accuracy of the coverage
measurement methodology used in the 2000 Census. This chapter will build on the
work of Anderson and Fienberg to describe the decision process used by the Census
Bureau in reaching this conclusion and will provide insights into the deliberations
of a statistical agency.

17.2 Background

In order to establish the proper context for the discussion of the Census Bureau
deliberations on the matter of statistically adjusting the 2000 Census results for all
non-apportionment purposes including redistricting, it will be necessary to provide
a brief background on decennial census methodology and measurement of coverage
errors.

The basic process that has been used to conduct the decennial census since
1970 is based on self-response and a subsequent follow-up for those households
that do not self-respond. The methodology has changed little from the 1970 Census
through the 2010 Census and is as follows: (1) The decennial census day is April 1
of the year in which the census is conducted. The decennial census counts every
resident of the United States where they usually live or stay on April 1 of the
decennial census year (Census Bureau 2018). Often the term “Census Day” is
used as a reference to April 1. (2) The Census Bureau compiles an address list
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of nearly all housing units in the United States.1 The address list is validated and
updated 1 or 2 years in advance of the census by address canvassers who walk
virtually every street. The address canvassers add missing addresses and delete
nonexistent listings. (3) Shortly before Census Day nearly every address is mailed
an invitation to self-respond. Through the 2010 Census the invitation consisted of
a paper questionnaire which respondents were asked to complete and mail back.
The rate at which households provide a self-response has been about 65 percent
since the 1990 Census (Census Bureau 2012). (4) Information on the completed
questionnaires is electronically captured using a scanning technology.2 (5) About
a month after Census Day, the Census Bureau conducts a follow-up to collect
information from those households that have not self-responded. This operation is
referred to as “Nonresponse Follow-up” or NRFU. The NRFU is based on sending
a census enumerator to visit each nonresponding housing unit a prescribed number
of times to obtain an interview. NRFU is a massive undertaking requiring the
Census Bureau to hire over 500,000 enumerators. Through the 2010 Census, NRFU
was a paper-based operation. That is, no automated technology was employed
to either assist or manage the enumerators. (6) And finally, starting in the 2000
Census, the Census Bureau has funded a large combined paid advertising and local
partnership program to motivate self-response and to encourage full participation in
the decennial Census.

The 2020 Census will differ from previous decennial censuses in four dis-
tinct areas (Census Bureau 2018): (1) The address canvassing operation will be
conducted largely in an office environment using modern geospatial tools. (2)
Respondents will be allowed to use both the Internet and telephone in addition
to mail as means of self-response. (3) NRFU will be highly automated, taking
advantage of mobile technology by equipping enumerators with smart phones and
their supervisors with tablets. (4) And administrative records will be used for the
first time to reduce the NRFU workload.

The Census Bureau is required by law, Title 13 US Code, Section 141 (b) and
(c), to meet two deadlines for the release of certain data products. The first is
the production of the 50 state population totals that are to be used to reapportion
the Congress. Currently these data are required to be produced by December 31
of the year in which the decennial census is taken. The second legally mandated
product is the data to support state redistricting. These data consist of census block
level tabulations of Race and Hispanic ethnicity by voting age (McCully 2014).
The Census Bureau must deliver these data to the states by March 31 of the year
following the conduct of the decennial. These data are also used by the Department
of Justice to enforce voting rights. It is important to note that the COVID-19
pandemic has forced the Census Bureau to delay a number of operations, and

1There are small portions of the United States where an address list is not prepared. In these areas,
census enumerators will deliver a questionnaire or conduct a direct enumeration.
2The scanning technology has evolved from in-house mark recognition to optical scanning and
intelligent character recognition.
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the Census Bureau has requested that Congress extend these deadlines to April
30, 2001, and July 31, 2001, respectively (U.S. Census Bureau 2020). The actual
release dates were April 26, 2021 for apportionment counts and August 12, 2021
for redistricting data.

Census accuracy in terms of undercounts and overcounts has been measured
by two methods since at least 1980 – post enumeration survey with dual system
estimation and demographic analysis. The statistical adjustment methodology that
the Census Bureau has considered for correcting the decennial census for coverage
errors has been based on using the results of the post enumeration survey and dual
system estimation results. These methods are described very briefly as follows:

The post enumeration survey (PES) and dual system estimation (DSE) is
described very well by Hogan (1993) and Mule (2012). These authors also discuss
statistical adjustment methods. Essentially the methodology is based on conducting
a PES that is independent of the decennial census and matching it to the decennial
census. The following 2 × 2 contingency table as described in Hogan (1993) can
then be constructed:

Census enumeration
PES In Out Total
In N11 N12 N1+
Out N21 N22 N2+
Total N+1 N+2 N++

Assuming that the PES is independent of the census, a dual system estimator
(DSE) of the “true” population (N++) can be constructed as:

DSE = (N+1) (N1+) /N11

In actuality, the calculation of a DSE for the decennial census is much more
complicated since the decennial census contains erroneous enumerations and
includes enumerations which do not have enough information to match to the PES.
This has required the Census Bureau to select an additional sample to measure
erroneous enumerations so that the DSE can be modified to reflect erroneous census
enumerations and the census enumerations that cannot be matched. Hogan (1993)
also discusses this in detail. However, it will not be necessary for this chapter to go
into that level of detail.

Undercount (U) is measured by:

U = (DSE–Census) /DSE

It should be noted that negative values of U indicate an overcount.
The PES and DSE methodology allow for the estimation of coverage errors for a

wide range of characteristics, including race, Hispanic ethnicity, age, sex, and tenure
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(owner/renter). These estimates are also produced (using model-based techniques)
for subnational geographic areas of the United States including states, large cities,
and counties.

The PES and DSE methodology are subject to limitations as well. Most notably,
the requirement for independence of the decennial census is not met when certain
respondents who have a lower chance of being included in the decennial census
also have a lower chance of being included in the PES. This phenomenon is often
referred to as “heterogeneity” or “correlation” bias. The result of this bias is an
underestimation of the actual undercount. In the case of the decennial census, this
bias has often been observed for young- to middle-aged black males, and other
groups that the Census Bureau considers to be hard-to-count. Therefore, the DSE is
viewed as a conservative estimate of undercounts for these groups.

Table 17.1 summarizes the estimates of coverage error that resulted for the PES
and DSE for the 1990, 2000, and 2010 censuses by race and Hispanic ethnicity:3

Demographic analysis is well described by Robinson et al. (1993) and Devine
et al. (2012). Briefly, demographic analysis produces an estimate of the population
of the United States at any point in time. Administrative records are used to
account for births and deaths and legal immigration. Demographic analysis must
make assumptions to estimate emigration and illegal immigration. Examples of
administrative record sources are vital statistics on births and deaths and Medicare
records for the population over age 65. As discussed in Robinson et al. (1993)
and Devine et al. (2012), demographic analysis estimates of the total or “true”
population are only produced at the national level and for age, sex, and Black and
non-Black racial classifications.

Demographic analysis has provided estimates of decennial census coverage error
for each census starting with the1940 Census (Robinson et al. 1993). In addition,
even though demographic analysis does not have the granularity of the DSE, it is
less subject to correlation bias. Therefore, estimates based on demographic analysis
are valuable in assessing the quality of the DSE. This issue will be discussed in
much more detail below.

Undercount (U) is estimated from demographic analysis (DA) as:

U = (DA− Census) /DA

Statistical adjustment of the decennial census is based on using the DSE as the
starting point for a small area estimation approach to incorporate corrections for
coverage error into the decennial census. The small area estimation methodology
used for the 1990 and 2000 Censuses is referred to as “synthetic estimation.” Hogan
(1993) presents a comprehensive discussion of synthetic estimation. It can be briefly
summarized as the following process:

3As will be discussed below the estimate of undercount for the 2000 Census in this table differs
from the estimate initially produced in March of 2001.
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• Census blocks are the basic tabulation unit for many important uses of the
decennial census including the data that the Census Bureau is legally required
to produce to support redistricting.4 Therefore each of the census block counts
must be statistically adjusted.

• The process starts by defining a number of post-strata that are designed to be
homogeneous with respect to coverage error, are mutually exclusive, and include
every component of the US population. For example, a stratum could be defined
as Black renters in central cities of Standard Metropolitan Statistical Areas in the
Northeast Region. For each post-stratum, a DSE is first calculated and then an
adjustment factor (AF) is produced as:

AF = DSE/Census

• Then the count of each block component of the post-stratum is multiplied by AF.
For the example of Black renters in central cities in the Northeast, suppose that
AF = 1.05 (a 5 percent undercount). Then each block in the Northeast that had a
count of Black renters in central cities would have the count multiplied by 1.05.

• At the end of this process, each census block would have a statistically adjusted
count that would be used for all subsequent tabulation purposes.5

17.3 Census Bureau Consideration of Statistical Adjustment
for the 2000 Census

As noted above, the initial plan for the 2000 Census included the use of sampling
to reduce the NRFU costs and statistical adjustment to be included as an integral
census process to produce the most accurate results possible. Anderson and Fienberg
present a detailed discussion of the genesis of this plan; briefly it is described as
follows.

The 1990 Census ended leaving many stakeholders (including many members of
Congress) concerned with the outcome. The 1990 Census cost more than had been
planned and undercounts of many population groups were higher than in the 1980
Census. Litigation had also been filed to seek adjustment of the 1990 Census to
correct for undercounts (City of New York v. US Department of Commerce 1990).
There was a widespread recognition that the basic methods for conducting the
decennial census had to be reexamined in developing the plan for the 2000 Census.

4Technically the Census Bureau is not legally required to produce block level data; however, the
Census Bureau produces this level of tabulation to meet the requests of state redistricting offices.
5This is an oversimplified description of the methodology. The actual process is more complicated
and results in individual records being created on the base census data file that is used to produce
all census tabulations.
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In particular, Congressman Thomas Sawyer (D-OH), the chair of the Census
Bureau’s oversight subcommittee in the House, introduced a bill in late 1990 that
required the Secretary of Commerce to engage the National Academy of Sciences
(NAS) to examine ways for the Census Bureau to conduct the most accurate census
possible in 2000 (House of Representatives 1991). In response, the NAS established
a Panel on Census Requirements in the Year 2000 and Beyond National Research
Council (1995).6 The Census Bureau also asked the NAS to establish an additional
Panel to Evaluate Alternative Census Methods National Research Council (1994).

Both Panels made a number of important recommendations regarding the
conduct of the 2000 Census. Importantly, both panels recommended that the 2000
Census should use sampling to reduce the cost of NRFU and should integrate
coverage measurement and statistical adjustment of the physical enumerations into
the core census process to reduce, to the greatest extent possible, undercounts,
including differential undercounts. This was frequently referred to as the “One
Number Census.”

The Census Bureau accepted these recommendations and in February 1996, then
Census Bureau Director Marty Riche, announced the plan for the 2000 Census, (US
Census Bureau 2009). The plan called for using statistical sampling techniques in
the two principal ways recommended by the NAS Panels.

However, the composition of the Congress changed to a Republican majority
in both the House of Representatives and the Senate. Under this new leadership,
opposition to the plan to use sampling grew to the point at which the House of
Representatives filed litigation to prevent the use of sampling for the purposes
of apportionment, US Department of Commerce v. (US House of Representatives
1999). Ultimately the litigation went to the Supreme Court which ruled in January
1999 that the use of statistical sampling in the decennial census for purposes of
determining congressional apportionment violated the Census Act.

The Census Bureau then revised the plan for Census 2000 to not use statistical
sampling for the enumeration of the population and to return to the counting
processes used in the 1990 Census. The revised plan did include a new use of paid
advertising and local partnership to motivate response and cooperation to the 2000
Census.7 The Census Bureau also announced that the revised plan would include a
consideration of the use of statistical adjustment to correct the 2000 Census results
for all non-apportionment purposes, including redistricting. It should also be noted
that the Census Bureau began referring to the coverage measurement program based
on a PES and DSE as the “Accuracy and Coverage Evaluation” or A.C.E. This
terminology will be used extensively in the discussions that follow.

At this point, statistical adjustment was a highly charged political issue; the
Democratic Party including the Clinton Administration supported the methodol-
ogy, and the Republican Party opposed it. The Census Bureau understood the

6It should be noted that Stephen Fienberg was a member of this Panel.
7It is beyond the scope of this paper, but this may have been the most significant innovation adopted
for the 2000 Census.
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importance of maintaining its credibility as an independent and objective Statistical
Agency in this environment. Therefore, it established the Executive Steering
Committee on Accuracy and Coverage Evaluation Policy (ESCAP) to recommend
whether statistical adjustment of 2000 Census results should be used for all non-
apportionment uses including redistricting. The first task of the ESCAP was to
develop a recommendation on whether the redistricting data (required to be released
by March 31, 2001) should be statistically adjusted. The remainder of this chapter
focuses on this decision process.

17.4 Developing a Recommendation on Statistical
Adjustment of Redistricting Data

As noted above, the Census Bureau understood the importance of maintaining its
credibility as a Statistical Agency, (National Academy of Sciences, Engineering and
Medicine 2017). In order to be completely transparent on how it would determine
whether to recommend that statistically adjusted 2000 Census data be used for
all non-apportionment purposes, it issued a Federal Register Notice in June 2000
documenting how it would proceed (Federal Register 2000). The document set forth
the rationale for the Census Bureau’s preliminary determination that (1) statistically
corrected census data can be produced within the time frame required by law and (2)
that statistically corrected data will be more accurate. However, the Federal Register
Notice made clear that the Census Bureau’s final decision on what data to release
would not be made until the Census Bureau conducted a review of both the census
and the A.C.E. Importantly, the Federal Register Notice laid out criteria that would
be used in this review and documented the establishment of the ESCAP.

The ESCAP consisted of 12 senior Census Bureau career staff. The ESCAP
was established in November 1999 and was chaired by the Associate Director
for the 2000 Census – the Career Executive with responsibility for managing all
aspects of the 2000 Census. The other members of the ESCAP represented a body
of senior career Census Bureau professionals, with advanced degrees in relevant
technical fields and/or decades of experience in the Federal statistical system. All
were exceedingly well qualified to evaluate the relative merits of both the 2000
Census and the A.C.E.

Three criteria were established that would guide the development of the ESCAP
recommendation:

• Consideration of operational data to validate the successful conduct of the A.C.E.
and 2000 Census

• Assessment of the consistency of the A.C.E. measures of undercount with histor-
ical patterns of undercount and independent demographic analysis benchmarks

• Review of quality measures for the A.C.E and the 2000 Census
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The ESCAP reviewed extensive materials and analyses that were relevant for
each of the above criteria, often the ESCAP required presentations from internal
and external experts on various aspects of the 2000 Census and A.C.E. This
extensive work is documented in the March 1, 2001, ESCAP recommendation
report (ESCAP 2001a). To clearly demonstrate that the ESCAP deliberations were
objective and independent of political interference, all briefing and meeting minutes
were documented and made public with the release of the ESCAP report.

The results of the ESCAP review of the three criteria follows:

• Consideration of operational data to validate the successful conduct of the A.C.E.
and 2000 Census

The ESCAP examined a number of operational measures for both the 2000
Census and the A.C.E. For the 2000 Census these measures included the mail
response rates and metrics regarding the conduct of the address list development
and NRFU. The measures examined for the A.C.E. included sampling error, missing
data rates, and matching error. The ESCAP concluded that both the 2000 Census
and the A.C.E. were efficient and effective operations that produced high-quality
data. All major programs in the census were completed on schedule and within
budget, and design improvements in both Census 2000 and the A.C.E. produced
measurably better results than were observed in 1990 for the census and the
coverage measurement operation equivalent to the A.C.E.

• Assessment of the consistency of the A.C.E. measures of undercount with histor-
ical patterns of undercount and independent demographic analysis benchmarks

This assessment was based on comparing the estimates of coverage error
from demographic analysis and the A.C.E. The assessment identified a major
inconsistency between the two methods of measuring census coverage. The A.C.E.
estimated a net undercount of about 1.15 percent while demographic analysis esti-
mated a net overcount of about −0.65 percent. This discrepancy was very troubling
to the ESCAP, particularly since historically, demographic analysis produces higher
estimates of undercounts than those resulting from a coverage measurement survey
such as the A.C.E. (e.g., for the 1990 Census demographic analysis estimated a
net undercount of 1.8 percent while the coverage measurement survey estimated
a net undercount of 1.6 percent [Hogan (1993)]). The ESCAP investigated this
inconsistency extensively, but in the time available could not adequately explain
the result (subsequent analysis described below found that the A.C.E erroneously
underestimated the level of duplicate enumerations, which explained much of the
discrepancy with demographic analysis).

• Review of quality measures for the A.C.E and the 2000 Census

The review of quality measures was based on a total error model that had been
developed for the 1990 Census coverage measurement process and DSE (Mulry and
Spencer 1991). Under this approach the components of error that could occur in a
coverage measurement survey were identified and combined in a model that could
be used to describe the total error in the DSE. In 1990 a number of evaluation studies
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were carried out to measure each error component and the results were incorporated
into the total error model. The 1990 DSE could then be corrected for this total
error, producing an estimate of the “true” population. The 1990 Census and the
DSE produced by the coverage measurement could then be compared to the “true”
population to determine which is more accurate.8

The ESCAP considered the 1990 total error model as a basis for evaluating the
quality of the 2000 Census and the A.C.E. However, the evaluation studies designed
to measure the components of the error were not scheduled to be completed in time
for the ESCAP review for the purposes of making a recommendation on whether to
release adjusted data for redistricting. The ESCAP was forced to use the results
of the 1990 Census coverage measurement evaluations. Given the discrepancies
between the A.C.E and demographic analysis noted above, the ESCAP could not
rely on this analysis of quality, until more information from the evaluations of the
actual components of error for the A.C.E. was available.

17.5 ESCAP Conclusion and Recommendation for the 2000
Census Redistricting Data

The ESCAP issued its first report on March 1, 2001, (ESCAP 2001a) and concluded

There is a significant inconsistency between the A.C.E. estimates and demographic analysis
estimates. Additionally, possible synthetic and balancing errors may affect the accuracy of
the adjusted numbers. Until these concerns are more fully investigated and addressed, the
ESCAP cannot recommend using adjustment. Accordingly, ESCAP has recommended that
unadjusted census data be released as the Census Bureau’s official redistricting data.

This recommendation was accepted by the Director of the Census Bureau and by
the Secretary of Commerce and unadjusted redistricting data were released.

This decision was very difficult for the ESCAP, since it was clear that the 2000
Census data contained undercount that were differential between theWhite and non-
white Hispanic populations. These undercounts would therefore be present in the
2000 redistricting data. However, the risk of introducing flawed A.C.E. results as
a correction was viewed as too great as well as improper behavior for a Statistical
Agency.

Following the release of the March 2001 report, the ESCAP began consideration
of whether the A.C.E could be used to produce adjusted data for other non-
apportionment purposes. The ESCAP was informed by the completion of the
evaluation studies of the A.C.E during the summer of 2001. The results of this work
are reported in the second report issued by the ESCAP on October 17, 2001 (ESCAP
2001b).

8This is an extremely oversimplified description of the process. The complete discussion is found
in Mulry and Spencer (1991).
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Table 17.1 Census net undercount estimates 1990, 2000, and 2010

Estimates of percent net undercount by Race/Origin domain
2010 2000 1990

Race/Origin
Domain

Estimate
(%)

Standard
error (%)

Estimate
(%)

Standard
error (%)

Estimate
(%)

Standard
error (%)

U.S. Total −0.01 0.14 −.049* 0.20 1.61* 0.20
Non-Hispanic
White

−0.84* 0.15 −1.13* 0.20 0.68* 0.22

Non-Hispanic
Black

2.07 0.53 1.84* 0.43 4.57* 0.55

Non-Hispanic
Asian

0.08 0.61 −0.75 0.68 2.36* 1.39

American Indian on
Reservation

4.88* 2.37 −0.88 1.53 12.22* 5.29

American Indian off
Reservation

−1.95 1.85 0.62 1.35 0.68* 0.22

Native Hawaiian or
Pacific Islander

1.34 3.14 2.12 2.73 2.36* 1.39

Hispanic 1.54* 0.33 0.71 0.44 4.99* 0.82

Source: Mule, Thomas, 2010 Census Coverage measurement Estimation Report: Summary of
Estimates of Coverage or person in the United States, US Census Bureau, May 22, 2021
An asterisk (*) denotes a percent net undercount that is significantly different from zero
Negative values indicate a newt overcount

The ESCAP found that the A.C.E. had not correctly measured the level of
duplicate enumerations in the 2000 Census. The result was that the A.C.E. was
found to have overestimated the population of the United States by potentially three
to four million people (ESCAP 2001a, b). Therefore, the initial estimate of a 1.15
percent net undercount from the A.C.E. could be in the range of an undercount
of 0.01 to an overcount of −0.03 percent. The ESCAP concluded at this point
“The significance of the error in the A.C.E. treatment of duplicates compels the
recommendation that the current A.C.E. estimates cannot be used to adjust the
Census 2000 data, (ESCAP 2001a, b).”

At this point the ESCAP was concluded and the Census Bureau went forward
to produce revised estimates of the 2000 Census coverage error that appear in
Table 22.1.

17.6 Conclusion

This chapter started with a discussion of the importance of the decennial census
to our democracy and as a source of critical information to a wide array of
stakeholders. Improving the accuracy and efficiency of the 2000 Census relative
to the 1990 Census was the prime factor in the planning program that the Census
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Bureau instituted. The Census Bureau followed sound scientific principles in
developing the plan for the 2000 Census that included the use of statistical sampling
and adjustment as means to reduce costs and increase accuracy. When this plan
became the object of intense partisan political debate, the overarching concern at
the Census Bureau was to maintain its status as an objective Statistical Agency free
from any political interference. The deliberative processes described above have
demonstrated how the Census Bureau achieved this goal. The Census Bureau would
only recommend that statistical adjustment be used if there was clear and compelling
evidence to support such an action. The decennial census cannot be the subject of
arbitrary decision making. The decision to not statistically adjust the 2000 Census
was supported by objective and careful research. Stephen Fienberg was intimately
involved with the 2000 Census and was hopefully pleased with the final outcome.

One further point regarding the concerns for accuracy in the decennial census:
The 1980, 1990, and 2000 Censuses resulted in litigation filed by stakeholders who
felt that they would be disadvantaged by undercounts. For 1980 and 1990, litigation
called for statistical adjustment, while the 2000 litigation was opposed to this
methodology. The 2010 Census did not include any usage of statistical adjustment
to correct for coverage errors, nor does the planning for the 2020 Census. However,
as the past has shown, if the 2020 Census is found to contain serious undercounts
for particular population groups, it would not be surprising to see litigation arise
again seeking statistical adjustment as remedy.
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Chapter 18
2030: A Sensible Census, in Reach

Kenneth Prewitt

Steve Fienberg, in 1998 as I prepared for the Census Directorship, told me that it
is not whether we have a perfect method, but whether we have a sensible method.
A few years earlier, asked to explain to a congressional committee how research is
converted to a commercial product, Steve deftly pointed out that posing a narrow
question about a complex transaction doesn’t produce a sensible answer.

The problem is that metrics used to assess any one aspect of the research system in isolation,
without a strong understanding of the larger picture, may prove misleading. The benefits of
research investments tend to arrive unpredictably, vary widely in eventual value, and require
substantial additional investment (as well as investment in other fields of science) to realize
their economic payoff through innovation. With few exceptions, approaches to measure
the impacts and quality of research programs cannot depict the diffuse, interconnected and
highly nonlinear pathways that lead from research to technologies and other innovations.
(Fienberg 2014)

I link these two Fienbergian principles to underscore that every census travels on
its uniquely diffuse, interconnected and highly nonlinear pathway and, every census,
perfection not being an option, searches for the most sensible method for navigating
its particular pathway.

The title of this chapter announces its target – a sensible census in 2030.
Reproducing the current 2020 census design in 2030 is not an option. There are
numerous reasons, the most important being the opportunity to lessen the reliance
on labor-intensive field work by using data independently available – administrative
data, links to other federal statistical data, and commercial/social media data. To
the extent these data sources reduce the reliance on direct contact with millions of
households, the decennial budget is reduced, and the budget for other survey-based
data can benefit, notably the American Community Survey.
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A less far-reaching, though possibly critical legacy of 2020, is the shadow of
political interference; it is too early to know how much real damage is occurring.
The census is still in the field.1 But even the appearance of political interference
is harmful, especially to the completeness and accuracy in the hard-to-count
population. A related problem is, ironically, how a positive development in census-
taking, starting with the 2000 census – below labeled a “census face-lift” – has
inadvertently introduced practices inconsistent with census-taking. I sort this out
below, using it and political interference to underscore the risks to today’s census
model and the rationale for adjustments in 2030.

18.1 Political Interference in the Census

Article 1, Section 2, of the Constitution directs that the actual census enumeration be
taken every 10 years “in such Manner as [Congress] shall by Law direct.” Because
Congress is composed of the politically ambitious, it is no surprise that it has
argued over the census. This was so from the first census, with its three-fifths clause
advantaging slave-holding states. Since then censuses have varied in the degree to
which they are shaped as much by politics as science – the 1840 question on whether
a person was “insane or idiotic,” which seemed to show (the data were eventually
found to be useless) that free blacks were driven to insanity and the enslaved were
spared that condition, giving Senator Calhoun ammunition to promote Texas joining
the union as a slave-holding state. Or the unwelcomed surprise in 1920 that America
had become more urban than rural, potentially sending a dozen or so congressional
seats from rural regions to the urbanizing, politically threatening northeastern states
(the Red Scare era). Congress, dominated by rural, conservative states, refused to
reapportion – claiming census errors but in fact making a political decision.

These examples from census history (there are dozens more) remind us that
census-taking is simultaneously political and scientific. What, then, constitutes
political interference? Every census starts with its particular purposes, then becomes
the production of statistics, and ends with its uses. Purposes and uses are political
and belong to the politicians. Production belongs to the census professionals,
guardians of the standards necessary for an accurate and fair census.

Consider an analogy. To defend the country, Congress funds a new fighter plane
and then, when the plane becomes available, okays its use in a war zone. In between
this purpose and this use is the production of the plane; this is assigned to scientists
and engineers, insulated from congressional meddling. Political interference in the
census is similar. It is the scientific production of statistics that advance the nation’s

1This chapter goes to press on September 1, in the census year, 2020, with about 35 million
households as yet uncounted and the non-response-follow-up, hard-to-count, and various critical
data cleaning operations not completed. My primary use of the incomplete census is commenting
on political interference with particular attention to how 2030 can be designed to minimize the
politicization of the census, which in 2020 have interrupted the production function.
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purposes and statistics that are then put to use. As discussed below, the boundaries
between production, on the one hand, and purposes and uses, on the other hand, are
blurry and have been especially so in the 2020 census.

This is the start of a definition authored a decade ago. I still believe it useful but
for reasons made clear below, it doesn’t fully deal with the blurry boundaries of
today.

Political interference occurs when there is:

– “the politically motivated suppression of an agency’s responsibility to offer its best
judgment on how to most accurately and reliably measure a given phenomenon,

– the politically motivated decision to prevent an agency from using state-of-the-art
science,

– the politically motivated insistence on preclearance of a major statistical product that is
based on state-of-the-art science.” (Prewitt 2010)

All three have played a role in 2020.

The 2020 Census After the 2020 census form was cleared by the Congress and
was field tested – both standard practices – the Secretary of Commerce instructed
the Bureau to add a question on citizenship status. The Bureau explained that it
was too late for this; the census was in production. Further, the Bureau explained
that adding the question would produce an intense legal battle that would attract
extensive media coverage, largely negative, which could lessen census cooperation
rates. The Bureau explained all of this to the Secretary, adding that it could produce
a more accurate estimate of citizenship status using administrative records. The
Bureau was unsuccessful in persuading the Secretary, who insisted that the data
were needed for the Voting Rights Act.

As many readers will recall, the issue was litigated. There were multiple law
suits, hundreds of media pieces, prolonged congressional hearings, and considerable
distraction for the Bureau in the final weeks before the 2000 census was launched.
The terminology was loudly, insistently political.

What at first appeared to be a procedural and political fight turned into a made-for-TV
movie in the wee hours before the Supreme Court ruled in response to the legal battle
that this [instruction to add a citizenship question] triggered. The computer hard drives
of a deceased Republican gerrymanderer ended up in the hands of a policy think tank
as a gift from his estranged daughter. Tucked away in Powerpoints that acknowledged
that said files never be public were a slew of materials that confirmed suspicions that the
Trump Administration was not interested in upholding the Voting Rights Act, the cover
it used in justifying the introduction of a citizenship question. Rather, as these explosive
documents showed, a network of Republicans was invested in the citizenship question to
strategically and intentionally disenfranchise non-citizens, the same Nativist agenda that
helped undermine the [1920] census a century ago.

In a surprise reversal from what all experts expected, the Chief Justice reprimanded the
Trump Administration and told them to properly justify their need for this question in a
legitimate fashion. The response was vicious, with career lawyers asking to be taken off the
case because they couldn’t properly defend their client, the Supreme Court telling them that
they must stay on the case, and a game of musical chairs that has come to define the Trump
Administration. Rather than justifying their ask, the Administration produced an Executive
Order, demanding that the Census Bureau use administrative records to assign citizenship
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to every person in the census. In other words, they wanted their citizenship data, even if it
wasn’t going to come directly from a question on the census.

The sensitivity of citizenship is profound. Civil rights groups, who have long struggled
to get non-citizens and their family members to respond to the required census, encountered
a wave of fear within their communities. No amount of promising people that Title 13 would
prevent their data from being abused convinces people that participation is without risk.
Surveys of attitudes about census privacy revealed stark differences between people based
on race, ethnicity, and immigration status. With the 2020 count underway, we are already
seeing significant race-based differences in participation. (Bouk and boyd 2020)

The Supreme Court ruling notwithstanding, the Administration was not finished
with the citizenship issue. There was an unprecedented development a few months
later, with the census underway. The Census Bureau has thousands of employees,
only four of whom are political appointees and only one of these, the Director,
is a presidential appointee. As is a long-standing practice the political appointees
are carefully screened for experience and expertise in federal statistics matters.
But not this time. The White House, without prior consultation with the Census
Bureau Director, named two political appointees to senior positions at the Bureau,
giving them titles that did not previously exist: Deputy Director for Policy and his
Senior Advisor. The individuals chosen had extensive political experience, but thin
to non-existent expertise in census-taking. The Commerce Department’s Inspec-
tor General immediately requested documentation setting forth their suitability,
which, months later, has not been produced. The American Statistical Association
sounded an alarm.2 The alarm was quickly followed by a large number of similar
statements from professional associations, congressional inquiries, and extensive
media coverage – all raising the specter of political interference. The New York
Times (Michael Wines, June 23, 2020) quoted Terri Ann Lowenthal, a long-time
and deeply informed consultant on census matters: “Their proximity to the director
and lack of relevant expertise suggest a thinly veiled effort to interfere in the
implementation and outcome of the 2020 census for the administration’s benefit . . .
It’s hard to draw any other conclusion.”

Representative Carolyn B. Maloney of New York, the Democratic chair of a
House committee overseeing the bureau, called the appointees “political operatives”

2“The US Census Bureau produces statistics that are fundamental to our democracy, government,
economy, and everyday life. The committed professional staff of the Census Bureau strives to
ensure the bureau’s products are accurate, reliable, and timely. The Census Bureau relies on the
trust of its survey and census respondents, trust earned through objectivity, protection of personal
information, transparency, and production of high-quality impartial data. The Census Bureau’s
addition of two political appointees to its top ranks undermines the work of the Census Bureau
and federal statistical agencies because of the lack of transparency and justification, as well as the
perception—if not reality—of improper political influence. We ask Director Dillingham to explain
and provide rationale for the creation of the senior positions that includes their job duties in addition
to the qualifications of the people appointed to the positions. In the absence of an explanation to US
taxpayers for the need for these two senior political appointments, the ASA sees no justification
for them.” American Statistical Association Statement on the US Census Bureau Appointments,
June 24, 2020
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chosen by the Trump administration and accused officials of “using the census for
political gain.” I described the appointments as “a frightening development.”

I had in mind the message being sent to the American people. Even if these
appointments were, at the end of the day, politically harmless, the media storm was
not harmless. Six decades ago, Japanese-Americans internment was facilitated by
the Census Bureau. Every census since, the Bureau endlessly stresses that “you
can trust us; your answers to the census cannot be used to harm you.” And every
census since, millions of Americans recall that that promise was violated in 1940.
The violation cast a long shadow. The citizenship court case and now the hard-
to-explain political appointments will cast a long shadow. As indicated above, the
current census, by design, is highly visible. It matters if this visibleness has even
a hint of political interference. The census viewed as a partisan tool has an uphill
battle in securing public trust, particularly from population groups targeted – in this
case, non-citizen immigrants and Hispanics. The census used as a partisan tool is a
damaged census.

It turned out that the appointments were not harmless (and were not over, as later
another political appointee was assigned to the Bureau, with even greater powers
than his predecessors). With the census in full swing, and the mail out/mail back
phase having achieved a self-response equal to that of earlier censuses (two-thirds
of the population returning a form), the Bureau requested a schedule extension as it
adjusted to the very disruptive Covid-19 pandemic. President Trump initially agreed
to an extension of 4 months, commenting that this extension may be insufficient.
The Bureau rearranged operations accordingly. A few weeks later the agreement
evaporated and, in fact, the Bureau was instructed to complete its field work – then
more than 56 million households yet to be reached – a month sooner. The Bureau
had been told it was running in a marathon, only to find that it was actually a sprint.

The next census disruption was President Trump instructing the Census Bureau
to separately count the non-citizens, in the process drawing a sharp distinction
between the documented and the undocumented. His announced goal was to remove
the undocumented from the apportionment numbers. This produced another media
storm and another flood of legal challenges. This issue, by the way, has a several
decade history and, thus far, has not received positive response from the Supreme
Court,3 though this does not prevent different legal strategies from trying again.4

Irrespective of a Supreme Court ruling, experts consider Trump’s instruction to be
technically unfeasible. The Bureau cannot knock on doors and ask if any illegals
live there. That leaves Administrative Records, which experts say is a bridge too far.
Science (Mervis 2020a), covering this story, cites the economist Amy O’Hara, who
for years oversaw the agency’s efforts to use administrative records: “I don’t know
what set of data sources the Bureau could identify for that purpose. And for the ones

3https://www.documentcloud.org/documents/7036772-State-of-New-York-Aug-14-2020-
Amicus-Brief-of.html
4https://www.documentcloud.org/documents/7040829-State-of-New-York-Aug-19-2020-
Memorandum-of-Law.html

https://www.documentcloud.org/documents/7036772-State-of-New-York-Aug-14-2020-Amicus-Brief-of.html
https://www.documentcloud.org/documents/7036772-State-of-New-York-Aug-14-2020-Amicus-Brief-of.html
https://www.documentcloud.org/documents/7040829-State-of-New-York-Aug-19-2020-Memorandum-of-Law.html
https://www.documentcloud.org/documents/7040829-State-of-New-York-Aug-19-2020-Memorandum-of-Law.html
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they have, it’s not clear how they would operationalize them.” O’Hara pointed out
that none of the existing government records was designed to do what Trump wants.
Records with current citizenship status, for example, do not also indicate where the
person is living. (The decennial census assigns each person to a specific address
when it includes them in the overall count.)

Responding to these various interruptions and midway through the census, the
Committee on Oversight and Reform of the House of Representatives called an
emergency hearing to investigate whether the census itself was at risk from what
was shaping up as an exceptionally politicized census. It featured four previous
Census Bureau Directors, who unanimously urged that Congress extend the census
schedule, as earlier agreed, into 2021. And we each pointed to the risks in what
had become a rushed schedule, especially the likelihood of a sizeable undercount
unevenly distributed across different demographic groups and geographic units.

My oral testimony included an unusual recommendation:

How do I define a successful census? Easy – census numbers have specified
purposes. The Bureau will know – as no other unit of the government can –
if its numbers will accurately reapportion and fairly distribute federal funds for a
decade. It knows that the census count is the denominator of every vital statistic
we rely upon, whether it’s the number of consumer prospects for a new business,
the differential rate of infection across population subgroups in the pandemic, or
disparities in the arrest rates across racial groups These numbers have a 10-year
life.

The Bureau not only knows these statistical facts, it knows the amount of damage
that sub-standard numbers will inflict on society. It is not pretty – 10 years of
homeless veterans because their hospitals are mislocated; 10 years of tropical
storm disaster relief that is too little and too late because traffic congestion is
underestimated; 10 years of poor planning by local school districts because they
have flawed estimates of how many first graders are going to show up; and
10 years of misled Chambers of Commerce because predictions of population
growth and characteristics were off base.

The Bureau will not want to inflict that damage. It is too honorable, too scientific, too
proud of its professional standards, too faithful to its constitutional duties. The
Bureau will struggle with the enormous burden of whether to release substandard
results.

Recommendation: I urge the Congress to share that burden. Task a suitable
independent institution – the National Academy of Sciences, or any apolitical and
trusted institution of its choosing – to produce predetermined quality metrics that
can assess if the final 2020 numbers reasonably match what the Bureau knows
they should be. And if not, what steps the country should take.

This recommendation has not been acted on by the Congress and is not likely to
be – though versions of it have been cited in the press, notably in Science (Mervis
2020b).

I note the recommendation here to emphasize the gravity of the various ways
in which the Administration politicized the 2020 census, invited legal action, and,
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more generally, complicated the non-response-follow-up phase of the census. It is
this package that calls for such an unprecedented recommendation.

I return below to why political interference in 2020 should be taken into account
when framing a sensible census for 2030.

18.2 From 1790 to 1990: Who/What Was the Face
of the Census?

This is an odd question. Obviously, insofar as there is a face associated with the
census, it is that of the census-enumerator. This was the experience of 100% of the
American people for 18 censuses. For the 19th census (1970), the Bureau shifted
to mail out/mail back as the primary data collection method, with enumerators used
only for nonresponders.5

Soon, however, the mail out/mail back method faced an unexpected problem –
a persistent declining response rate. In 1970, the self-response mail back captured
78% of the population. This dropped by 5% in 1980 and in 1990, another 10%. And
over this period, the cost per household, in constant dollars, increased from $13 to
$32. What was in store for 2000? It did not look good. Census Bureau statisticians
initially arrived at an estimated 55% mail back (later adjusted to 61%, still a drop
from 1990), and the likelihood of another sharp increase in costs. The Bureau was
now dealing with a disgruntled Congress, telling the Bureau to figure out how to
stop the response rate decline.

Which takes us to the “face-lift” or what became an unprecedented large-scale
promotion of the census. An extensive paid advertising campaign ($165 million),
first in census history, was used by the Census Bureau to urge mail back. It also
established a partnership program, what was generally known as engaging trusted
voices who volunteered to carry the census message to households across the
country. The face of the census was less likely to be an employee of the Bureau, and
more likely to be a school teacher, union leader, Mayor, employer, minister, priest,
librarian, the chamber-of-commerce, leaders of race/ethnicity advocacy groups. If
the measure of success is stopping the response rate from declining any further,
bring out the champagne. Mail back in 2000 was 66%.6

5I skip many complexities here – long form/short form, update-leave for households lacking mail
delivery, group quarters, military abroad, special arrangements for the hard-to-count, proxies and
imputation as last resort.
6In fact, it was 78.4%, and, the final 1990 number was 75%. Why were the final numbers so much
higher than what was initially announced? There are various factors. The most consequential is the
length of time it takes for the Bureau to remove from the denominator the vacancies in the master
address file. Not until this corrected denominator estimate is available is there an accurate response
rate.
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The strategy and its success were repeated in 2010, then again in the mail
out/mail back phase of the 2020 census – despite the Covid-19 pandemic. (The
final result for 2020 is not yet available.)

There was steady expansion of effort and costs across the three censuses. The
2010 paid advertising budget was, at $350 million, nearly double that of 2000. And,
in 2020 what is called the “public education and outreach campaign” had a $500
million budget. The 2000 census had 140,000 partnering organizations; there were
255,000 in the next census and 380,000 in the present census. In all three censuses
there were thousands of Complete Count Committees, working closely with local
governments. The new face of the census had become a vast, volunteer labor force,
loosely managed by the Census Bureau, and projecting itself into the census space
not as enumerators but as neighbors, partners, and trustworthy messengers.

These numbers are impressive. Not impressive is that more advertising, more
partners, more effort have only managed to hold the line. The self-response rate
appears stuck in the two-thirds range.7 It’s an odd success we celebrate – from one
decennial to the next, spend twice the dollars and double down on the effort but
expect no improvement in self-response.

There was a parallel development, also new in census history. Historically all
census operations were fully funded by the federal government. Of course, the
majority of the funds in 2000 were still provided federally, but now states, cities,
corporations, advocacy organizations, and complete count committees began to
invest their own funds for census promotion. Private philanthropy gave support not
to the census itself but to advocates for groups traditionally undercounted – children
under five and indigenous people, for instance. Milwaukee invested $350,000 on
a “I Will Count in Census 2000” campaign, one of several hundred cities that used
their funds to build their census numbers. This occurred at the state level as well, led
by California’s $35 million investment. Such investments had two goals: to secure
congressional seats and electoral college votes and to assure fair share of what was
then $250 billion per year in federal funds distributed through formulas based on
census counts. In 2000, I wanted to circulate a census poster picturing the IRS 1040
Form and the Census Form, noting that the former “Taketh Away” and the latter
“Bringeth Back.” The poster was rejected by wiser colleagues.

In any case, the Bringeth Back number by 2020 was $1.5 trillion, annually. New
York City, for example, estimated one billion in federal funds every year for a
decade based on its 2020 census count. In NYC, every low-income child missed
in the census subtracts $2295 from the public-school budget; every lower-income
worker missed subtracts $281 from job-training programs. With this federal funding
at stake, we can hardly be surprised that NYC will dedicate its own funds to census
promotion – $40 million, in fact. I noted above that California made an investment

7It is actually closer to three-quarters, but this cannot be determined until the denominator has been
adjusted by removing vacant housing units. I believe that 2020 will be the last census afflicted with
this misleading messaging. Third party sources have records on vacancies.



18 2030: A Sensible Census, in Reach 329

in 2000; two censuses later the investment had increased fivefold – nearly $200
million. Half of the States, on a per capita base, made similar investments.

This unplanned, unexpected consequence of the “face-lift” launched three
censuses ago raises a troubling question. The Census Bureau is totally indifferent
to the implication for red vs. blue states of any of its operations. It is only focused
on providing a complete count of the complete country. Any operation or policy
violating that standard results in an unfair distribution of federal funds, and unfairly
reapportions the House of Representatives. That is not in the Bureau’s game plan,
and never will be.

However, the Bureau now finds itself linked to cities and states that are alert to
the financial and political implications of how they promote, or don’t, the census.
A census in which half the states directly invest and half do not complicates the
Bureau’s basic fairness principle, and certainly risks sending signals that have no
place in the census itself. They may, however, be useful for an advocacy group
seeking a foundation grant or complete count committees in one state competing
with committees in another.

At its most dangerous this messaging, not from the Census Bureau itself but still
widely recognized as promoting the census, risks being misinterpreted. The public
cannot distinguish between Census Bureau advertisements and similar looking
promotional material from interested players. Has the Census Bureau, however
inadvertently, created a condition in which individual states or cities making the
biggest investments get the biggest awards – in congressional seats, electoral
college votes, and federal funds? The federal funds are a fixed resource, distributed
proportionally. If State A counts 100% of its population and State B counts 95%,
funds that should have gone to State B will, instead, go to State A. Is the census for
sale? I see more risks than benefits in the face-lift launched in 2000. I return shortly
to the consequences of these two 2020 census features – political interference and a
face-lift with some notable flaws – treating them as push factors in contrast with the
next section, treated as a pull factor.

The face-lift had one other unexpected outcome. Among its partners are some
very census-informed organizations – from academic circles (American Statistical
Association, American Population Associations, Committee on National Statistics
of the National Academies of Science, to name a few) and from advocacy
organizations tightly focused on undercounts of demographic groups for which they
take responsibility (Leadership Conference on Civil and Human Rights, Mexican
American Legal Defense and Educational Fund, NALEO Education Fund, ACLU,
and several dozens more). The leaders of this broad, impressive array of academic
and advocacy organizations have four characteristics: when it comes to the census,
they know their stuff; they completely understand that the best fix of the undercount
is a census that counts everyone, which requires special efforts to erase the
undercount; they are fierce defenders of the census and of the Bureau, and, when
they have concerns, they are easily the strongest critics of the census and of the
Bureau. The Bureau depends on them, but is also annoyed by them. This make for
awkward partnerships.
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18.3 New Data with an Eye on the 2030 Census

There are three data sources available for census use, each providing opportunities,
though none likely to fully replace what the census offers.

(a) Government Administrative Record Data (AdRec). The Census Bureau has
studied the possibility of using administrative records for three decades, coming
to the conclusion that these data can, by 2030, be used in the basic count used
for reapportionment and the distribution of federal funds. For these uses, all
that is needed is an accurate count of how many people live in every household
represented in the master address file. There is not yet consensus on how
much to rely on these data, but that they can contribute to the basic count is
unquestioned. This basic count does not include critical demographic statistics
now collected on the decennial form, in particular, household composition and
race/ethnicity. To be determined is whether these statistics can be saved with
an enlarged and more frequent American Community Survey, using funds no
longer required for the basic count.

(b) Data Linkage in Federal Statistics. A closely related asset is data linkage across
the federal statistical system. “The public pays for and provides an incredible
amount of data to governments and companies. Yet much of the value of this
data is being wasted, remaining in silos rather than being shared to enhance the
public good.” (Groves and Neufeld 2017) There is strong pressure to link these
data and good reason to expect major advances in this decade.

There are also frustrations with the barriers and difficulties. Evidently, how-
ever, difficulties can be conquered when the stakes are high, as demonstrated
by the Covid-19 Household Pulse Survey, initiated by the Census Bureau
in collaboration with five federal agencies producing data on the social and
economic effects of the pandemic – employment status, spending patterns,
food security, housing, physical and mental health, access to health care, and
educational disruption. Statistics are provided at the state level and for the 15
largest Metropolitan Statistical Areas. The survey has a longitudinal feature that
documented how household experiences changed during the pandemic and was
expected to be in the field for 90 days, longer if the pandemic persists.

(c) Third-Party Sources. Nongovernmental sources include data collected by com-
mercial transactions and social media, offering unprecedented frequency (daily
credit card transactions) and granularity (location data from smart phones). The
Dutch, for example, have smoothly moved their census entirely to government
records and private sector data. In the United States, economic measurement
experts are already producing studies linking administration records (taxes paid)
and commercial data (bank account transactions) (Jarmin 2019).

Less advanced, but in active exploration are other sectors – agriculture, health,
education, energy, and transport. In each sector there is attention to barriers and
challenges: privacy, proprietary data, standardization, data security, broken trend
lines, and trust in the government’s numbers. In some sectors, progress will be quick
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and impressive; in others, slow and frustrating. But the overall picture points to a
future in which at least some non-survey data will add to what the census data now
make available.

18.4 The 2030 Census, Early Steps

Every census in our history has been used as lessons learned for the next census –
Federal Marshals on horseback, followed by continuous innovations that bring us
today to the Internet. The Census Bureau and stakeholder interests, in partnership
with academic statisticians and social scientists, are now from their respective
vantage points in active discussion of a twenty-first-century information platform –
with the multiple data sources summarized above as critical contributors.

The Census Bureau is designing a nationally integrated person-household-
business-jobs frame. This integrated frame brings together the business register of
establishments, the master address file of housing units, the Longitudinal Employer-
Household Dynamics (LEHD) jobs frame, and a demographic frame of individuals.
This universal frame can be augmented over the decade with multisource federal and
private sector data sources. The Bureau’s goal is to have this in place for the 2030
census. Independently, consulting with the Bureau at every step is an academic-
led initiative, which includes representatives from commerce and advocacy groups.
It is in the early stages of what is provisionally labeled: Essential-Data Count of
the Resident Population coupled with a 21st Century Census Curated Information
Platform.8

Essential-data starts from the premise that a combination of the three data sources
sketched above, on every April 1 that occurs in a year ending in zero, will enumerate
nearly all of the persons resident in the United States, locating them at their
normal place of residence. This count reapportions the House of Representatives
and distributes federal funds. It will retain the key capacity of the census to allow
all sample surveys – government, academic, media, and commercial – to use it as
the gold standard. A number of possible designs are being considered. For example,
based on lessons learned in 2020, for approximately 75% of the population in 2030,
comfortable with the Internet, online responses might replace the mail out/mail back
method with the remaining 25% being counted from a mixture of Administrative
Records, other government surveys and commercial sources. Or, perhaps by 2030,
Administrative Records will be positioned to provide more of the essential data,
minimizing the need to contact every household. Any model is likely to need
special attention to the hard-to-count population groups, which may require expert

8This initiative is housed in the Social and Decision Analytics Department, University of Virginia
Biocomplexity Institute and is co-directed by Sallie Keller and the author, with initial funding
provided by the Sloan Foundation. The labeling is provisional, and likely to be modified when it
reaches the point of active consultation with numerous interested parties.
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enumerators. We are confident that the essential data can, by 2030, be the foundation
for a sensible census consistent with Fienbergian principles.

The second component, the Census Curated Information Platform will, first,
help support the essential-data by connecting it where useful to other data sources.
But the Platform has broader goals –demographic and geographic granularity, and
temporality, especially for the American Community Survey. Much of what is
brought together on this twenty-first-century information platform will be shaped
and managed by a newly established Data Curator Department. This government
unit – basically a redesigned Census Bureau – will assess the accuracy, coverage,
privacy, and costs of commercially provided data products, making decisions about
what can be successfully incorporated into the nation’s statistical system. It will
be responsible for data linkage across the federal statistical agencies and includes
state-level statistical offices where appropriate.

These are sweeping statements of ambitious goals. They are being worked
on by groups acutely aware of the various complexities and challenges – legal
issues, privacy protections, preserving trend lines, creating new standards, cost
effectiveness, and accurate data in the public’s interest, dedicated to the public good.

18.5 The Push Factors, the Pull Factors

I noted above that visibility describes the three most recent censuses, especially their
paid advertisement and partnership programs. Prior census were not invisible, but
were experienced by each household independent of the next household, a quite
different experience than the neighborhoods, towns, and cities that collectively
mobilized around the census. This visibility is highly desirable, promoting the
census as a shared civic experience, created by the founders and dedicated to the
democratic principles outlined in the Constitution. Under optimum conditions, this
conveys that the census belongs to the people, not to the government. The census
produces numbers that Americans use to hold the government to account – numbers
related to economic growth, public health conditions, social justice, educational
achievement, and security. Characterizing the census this way was a goal of the
face-lift and was successfully carried out in 2000 and 2010.

Through no fault of the Census Bureau, 2020 is a more mixed case – noting again
that the census is still underway and faced with a number of uncertainties: court
cases, possible schedule adjustments, more political interference, and the impact of
Covid-19 on door-to-door follow-up. What is already apparent is the risk that the
census is being experienced by a sizeable number of people as a tool of the political
party in power. Whether true or not, some households feel that they are being
targeted by the census, giving them reason to close the door to the census-taker.
This partisan lens will be sharpened if the Supreme Court rules that undocumented
residents are to be excluded from the apportionment count, though softened if the
practice in place since the 1790 census is undisturbed.
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It is likely though not certain that 2020 will leave another problematic message:
perceived unfairness in how census counts indirectly9 allocate federal funds geo-
graphically and demographically. When less well-counted states, counties, cities,
and towns and different vulnerable population groups realize this unfairness, there
will be press coverage and, again, legal action. Negative census publicity associated
with political interference and what is interpreted as unfair fund allocation will cast
a shadow over early planning for the 2030 census. This will push toward a census
design that should minimize both political interference and unfair allocation. It will
require laws and regulations much more robust than Title 13 (limited to issues of
privacy and confidentiality).

New laws and regulations will no doubt draw on the Information Quality Act
and the OMB issued M-19-15 (April 24, 2019) on Improving Implementation of
the Information Quality Act (IQA). The OMB memo summarizes the three core
responsibilities of each federal agency under 2002 guidelines:

1. Agencies must embrace a basic standard of quality and consider quality in their
information dissemination practices.

2. Agencies must develop information quality assurance procedures that are applied
before disseminating information.

3. Agencies must develop an administrative mechanism for affected parties to
request that agencies correct information of inadequate quality, with an appeal
process and annual reports to OMB.

Further: The Guidelines explain that quality encompasses utility, integrity, and
objectivity. Utility refers to the data’s utility for its intended users and for its
intended purpose. Integrity refers to the data’s security. Objectivity refers to whether
the disseminated information is accurate, reliable, and unbiased as a matter of
presentation and substance.

The focus on the information’s usefulness is critical; the Guidelines recognize
that “information quality comes at a cost” and “that some government information
may need to meet higher or more specific quality standards than those that would
apply to other types of government information,” depending on the information’s
expected use. The touchstone is “fitness for purpose”; information destined for a
higher-impact purpose must be held to higher standards of quality. The census is
held to the highest standards. It has “clear and substantial impact on important
public policies or important private sector decisions” and publishes its own detailed
Statistical Quality Standards.10

The challenge, of course, is to insulate these standards and guidelines that are
specific to the production of census statistics from partisan motivated political

9Indirectly because funding formulae are based on Population Estimates and, to a lesser extent,
the American Community Survey – both depend on the basic census count to correct for sampling
error.
10For material on the Information Quality Act and related Guidelines, along with his helpful
explanations that I have borrowed in this section, I am indebted to Andrew Reamer, Research
Professor, George Washington Institute of Public Policy, George Washington University.
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interference. Moreover, when political interference or non-controllable external
conditions (a pandemic, national disasters) prevent the Bureau from meeting its
quality standards in the time frame initially anticipated, schedule adjustment (not
cutting corners) has to be the common-sense practice.

This challenge, too, is a push factor and is reason to build a census design
for 2030 which incorporates IQA guidelines and standards, which has law clearly
protective of the obligation of the census to meet well-defined quality standards,
and which has predetermined metrics allowing nonpartisan review of whether those
standards are realized.

The pull factors start from practices that date to 1790. Build the next census on
lessons learned from the prior one. In 2030 this means adding to the census:

Data that are curated for accuracy, coverage, non-intrusiveness, privacy protec-
tion, and related positive features.

Data that can escape any negative judgments associated with 2020, or any prior
censuses and that are, in fact, nonpartisan.

Data that have been examined from the perspective of the role of third parties,
especially when they introduce independent resources for the benefit of demo-
graphic groups or geographic units that might be (mis)interpreted as rewarding some
and ignoring others.

Add to this metrics that clearly define and measure must-meet quality standards –
the IQA contribution.

Add a redesigned communication strategy that is fully transparent about the
purposes, the production, and the uses of the census. That is persuasive on
confidentiality and privacy. That matches the cost of the new design to the benefits
provided, whether local, national, or anything between. That describes the new
design as “the people’s census” and means it. This last is critical. A census viewed
as a tool of the “surveillance state” is a big step backward. The big step forward is a
census viewed as indispensable to the health of America’s society and economy and
that strengthens its democracy – which means data designed to hold accountable
whoever is in power.

To return to the Fienbergian principle – every census travels on its uniquely
diffuse, interconnected and highly nonlinear pathway, and, every census, perfection
not being an option, searches for the most sensible methods for navigating that
pathway. This will again be the case in 2030.

Postscript – From Mid-September (2020) to Late April (2021)

The goal of this chapter was to outline how the 2030 Census should build on lessons
learned from the previous census. I started the chapter on the assumption that by
mid-September 2020, I could comment with confidence on my goal. However, by
that date, the covid pandemic and the Trump administration had upended matters.
Nonetheless, the publishing schedule required submission. Subsequent delays, then,
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postponed publishing. And today, 35 weeks later, the editors received permission for
this 500-word update. That opportunity allows comment on four relevant issues.

(a) Internet response rates. The Internet proved to be an efficient way to enumerate
the population, easily on a level with the mailout/mailback method of recent
censuses. Item nonresponse rates, however, were greater than expected. The
Bureau is well positioned to study why and to strengthen an Internet-based
census in 2030.

(b) Administrative records. There was also advance in using administrative records
in the nonresponse follow-up phase of the census. I expect the Bureau to
increase its use of administrative records in 2030, allowing it to reduce reliance
on imputation and proxy response methods. This will result in higher quality
statistics for harder to count population groups.

(c) Unprecedented quality control arrangements. The 2020 operations were dis-
rupted by three features: the pandemic; political interference by the Trump
administration; floods and fires at unusual levels, caused by climate change
that are likely to be even more disruptive in 2030. The combination of these
features led to serious concerns about data quality in 2020, even questioning
whether the census would be fit for purpose. For a period, there was much
anxiety among the census stakeholders, eventually replaced by unprecedented
cooperation between the Bureau and informed stakeholders. In ways not
previously imagined, with the census still in the field, the Bureau sought
help from the Jasons, the National Academy of Sciences, and the American
Statistical Association. This cooperation, I believe, will persist. Jointly designed
quality control methods will be a feature of the 2030 census design, which will
be made public. In time, the results of the quality checks – before, during, and
after field operations – will be fully transparent. The public will come to see the
application of quality controls as no less important than the already very visible
enumeration census phase. The public will be invited to take notice of errors
and their correction. Media coverage will be welcome. Trust in the census will
follow.

(d) Differential privacy (DP) is a well-tested method that masks personal identifiers
while still reporting the aggregated census statistics needed by federal, state,
and local governments, by commercial institutions, by the technology industry,
by academic researchers, and much more. DP is currently hostage to the legal
system, and likely to reach the Supreme Court. If the Bureau wins in court, DP
will be a model for privacy protection in 2020 and future censuses. If it loses, the
redistricting data files will be delayed by months – prompting widespread anger
toward the Bureau. It gets worse. There will be privacy breaches engineered
by hackers equipped with computer power not previously available, seriously
damaging the census counts. It would take at least a decade to climb out of that
hole.

Final note, in the spirit of transparency. I was appointed Special Advisor to the
Census Director on April 15, 2021.
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Chapter 19
Perturbed M-Estimation: A Further
Investigation of Robust Statistics for
Differential Privacy

Aleksandra Slavkovic and Roberto Molinari

19.1 Introduction

We live in a world of continuous data collection, storage, and sharing, with much
of those data being sensitive, making data privacy a highly relevant societal topic.1

Steve Fienberg has recognized the importance of data privacy and confidentiality
and crucially the role that statistical science must play in this context. He had
argued that the right methodology for collecting and sharing of sensitive data should
rely on statistical principles of sampling, estimation and modeling, transparency
of masking procedure, and the dualities of the data utility and the disclosure risk.
Steve argued for these guiding principles in many congressional and government
testimonies and followed them in numerous scholarly contributions on the topic
of data privacy and confidentiality. In his first technical contribution in this area,
he proposed a bootstrap-like approach for creating synthetic data, similar to the
current synthetic data methodology that relies on multiple imputation (Fienberg
(1994)). Here, we highlight a few additional representative publications of his—

1See, for example, https://www.nytimes.com/interactive/2019/opinion/internet-privacy-project.
html.
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for example, see Fienberg and Steele (1998) on perturbation of categorical data,
Duncan et al. (2001) for general disclosure principles and links to information loss,
Trottini and Fienberg (2002) on Bayesian modeling of disclosure risk, Fienberg and
Slavkovic (2005) on links between privacy-preserving data mining and contingency
table releases, Fienberg et al. (2008) on distributed regression analysis and secure
multi-party computation, Fienberg et al. (2010) on data privacy links to algebraic
statistics and log-linear models, Hall et al. (2011) on how to perform distributed
regression using homomorphic encryption, Wang et al. (2016) on KL-privacy and
its links to differential privacy, and Lei et al. (2018)) on model selection under
differential privacy; for a more comprehensive list, see Slavkovic and Vilhuber
(2018).

Statistical data privacy, traditionally referred to as statistical disclosure limitation
or control (SDL or SDC), is the branch of statistics concerned with limiting
identifying information in released data and summaries while maintaining their
utility for valid statistical inference. It has a rich history for both methodological
developments and applications for “safe” release of altered (or masked) microdata
and tabular data (see Dalenius (1977), Fienberg and Slavković (2011), Hundepool
et al. (2012), Willenborg and De Waal (1996), and references therein). Besides
traditional methods such as suppression and aggregation, many modern methods
rely on sampling and modeling, such as synthetic data (e.g., Reiter (2005), Rubin
(1993), and Snoke et al. (2018)), and aim to frame data privacy as a statistical
problem that requires treating both the data utility and the disclosure risk as random
variables. However, they often fall short of allowing for the transparency of masking
procedures, which is important in order to achieve the right statistical inference, not
the individual identification. Furthermore, the onslaught of big data has presented
new challenges for traditional statistical data privacy methodology, and the so-called
reconstruction theorem (e.g., see Dinur and Nissim (2003) and Garfinkel et al.
(2018)) has identified a flaw in a probabilistic notion of disclosure as proposed by
Dalenius (1977). Many practical examples have demonstrated increased privacy risk
from the released data or summaries in presence of other “auxiliary” data that were
previously either not considered or simply were not as readily accessible; see Dwork
et al. (2017) for a survey of such attacks, and recent claims related to issues with the
U.S. Census data (Abowd (2018)).

Differential privacy (DP) has emerged from theoretical computer science with
a goal of designing transparent privacy mechanisms/methods with mathematically
provable disclosure risk in the presence of adversaries with arbitrary priors,
unlimited side information, and unbounded computational power, e.g., see Dwork
et al. (2006) for the original proposal and Slavkovic (2013) and Slavkovic and
Vilhuber (2018) for Steve’s role in bringing computer scientists, statisticians and
practitioners together to forge the new directions of formal privacy. Differential
privacy guarantees that whether an individual is in a database or not, and the results
of a DP method should be similar in terms of their probability distribution; this
limits the ability of an adversary to infer about any particular individual (unit) in
the database and at the same time allows the data analyst to carry out inference on a
distribution not sensitive to outliers. DP quantifies the so-called privacy-loss budget,
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ε, to how much the answer to a question or statistic is changed given the absence or
presence of the most extreme possible person in the population.

Understanding the above risk-utility trade-offs under formal privacy constraints
such as those imposed by DP and linking them to fundamental statistical concepts
has been one of the key recent research threads in data privacy, as there are serious
implications on how we carry valid statistical inferences if data are to be shared
under the DP framework. Wasserman and Zhou (2010) were among the first to
underline these links focusing on density estimation and offering a statistically
flavored interpretation of DP. Over the past decade, numerous works have explored
these links in different settings including parameter estimation (Duchi et al. (2013),
Smith (2011)), hypothesis testing (Awan and Slavković (2018), Canonne et al.
(2019), Gaboardi et al. (2016), Vu and Slavkovic (2009), Wang et al. (2015b)),
confidence intervals (Karwa and Vadhan (2017)), model selection (Lei et al. (2018)),
principal component analysis (Awan et al. (2019), Chaudhuri et al. (2013)), network
data (Karwa and Slavković (2016)), and functional data analysis (Hall et al. (2013),
Mirshani et al. (2019)), to name a few.

Dwork and Lei (2009) were the first to investigate links between differential
privacy and robust statistics (e.g., see Huber (2011)). One of the fundamental
concepts behind differential privacy is to define the maximum amount of change
a query or statistic can undergo (sensitivity) when one row in the database is added
or replaced by another arbitrary row. Once this sensitivity is defined, differentially
private mechanisms add a proportional amount of noise in order to hide whether a
change in output is due to a change in row or to the added noise; the amount of noise
grows with the sensitivity of the query/statistic. Robust statistics aims at limiting the
impact that an extreme observation can have on statistical estimation and inference.
In this sense, using robust statistics can deliver statistics and/or analyses with
bounded sensitivity. Based on this property, robust statistics can bound the (DP)
sensitivity and therefore reduce the amount of noise required to ensure privacy and
consequently improve utility of the private outputs. Dwork and Lei (2009) explore
these links and make use of robust estimators (e.g., median and interquartile range)
as a starting point for releasing differentially private estimators based on a Propose-
Test-Release algorithm for interactive queries, while Lei (2011) proposes the use
of (bounded) M-Estimators applied to differentially private perturbed histograms in
order to enhance the utility of statistical estimations under DP. Chaudhuri and Hsu
(2012) study convergence rates of differentially private approximations to statistical
estimators and propose the use of (bounded) M-Estimation within the exponential
mechanism. Most recently, Avella-Medina (2019) proposed a statistical inference
framework where noise is added to the M-Estimators in order to ensure privacy.

In this chapter, we investigate the use of functions with bounded derivatives, such
as those used for M-Estimation in robust statistics, within the objective perturbation
mechanism (OPM), originally proposed in Chaudhuri et al. (2011) and modified
by Kifer et al. (2012). We propose a new convex and bounded function called
the robust hyperbolic tangent (RobHyt) function which can be used to produce a
bounded M-Estimator with adequate statistical properties which itself can be easily
integrated within the OPM framework. More specifically, we study the statistical
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consistency of this bounded non-private M-Estimator. In the non-private setting,
the choice of the bounding parameter (that is of the tuning constant) is usually
made based on the asymptotic properties of the non-private M-Estimator. However,
when integrating the M-Estimator in the OPM, the tuning constant can be used as a
parameter regulating the trade-off between statistical efficiency and the amount of
noise added for privacy. Thus, the non-private statistical properties of the proposed
M-Estimator can provide a first rule to define this tuning constant when employed
within the OPM. Based on the preliminary results, the resulting privacy mechanism,
which we name the “Perturbed M-Estimation” mechanism, can greatly improve the
utility of differentially private outputs while preserving the same level of privacy.

This chapter is organized as follows. In Sect. 19.2, we provide a summary
overview of important definitions for differential privacy and then make links
between these definitions and the framework of robust statistics. In Sect. 19.3, we
briefly introduce M-Estimation theory and propose the RobHyt function to deliver a
bounded M-Estimator. This estimator is then used to build Perturbed M-Estimation
by integrating it within the OPM. In Sect. 19.4, we study the performance of the
proposed method by using both the simulated and real-data examples, particularly
focusing on gains in statistical utility in comparison to some existing methods.
Finally, Sect. 19.5 concludes and provides possible future avenues of research in
the proposed direction.

19.2 A Robust Parametric View of Differential Privacy

The basic idea behind differential privacy is to protect the privacy of an individual
in the worst case scenario where an adversary is in possession of the data of all the
other individuals in a database except for those of this particular individual. The
release of differentially private data or analyses requires mechanisms (methods) to
add noise, directly or via sampling, in such a way that an output of these mechanisms
is (nearly) equally likely to occur whether or not an individual is included in a
database. More formally, a mechanism M(·) is defined to be (ε, δ)-differentially
private if it respects the following condition:

P[M(D) ∈ S] ≤ eε
P[M(D′) ∈ S] + δ,

whereD andD′ are two databases that differ in one row (i.e., neighboring databases)
and S is a set of outputs belonging to the range ofM(·). This definition implies that,
for the same output S, the probability of observing it given the database D′ is within
an “ε-range” of the probability of observing the same output given the database
D plus an exception δ. This must hold for all measurable sets S and all pairs of
databases D and D′ that differ in one entry. The quantities ε and δ should be small.
When δ = 0, then we have the so-called pure differential privacy, while the presence
of a small δ (e.g., decreasing polynomially with the sample size n) allows for the
data of (some) individuals to be released entirely with low probability δ. The value



19 Perturbed M-Estimation: A Further Investigation of Robust Statistics for. . . 341

ε is the privacy parameter or the privacy-loss budget. Smaller values correspond to
more privacy, but as it approaches infinity, there is no privacy guarantee.

DP mechanisms most often introduce some form of noise in the analysis (or data)
or distort the problem definition underlying a query or estimation procedure in order
to cover the variation due to the change in one individual’s data. To determine the
degree of “variation” and thus the amount of noise to be added, different notions of
sensitivity have been proposed and discussed in the privacy literature. The global
sensitivity is defined as

GSf = max
D,D′‖f (D) − f (D′)‖,

where f (·) is any function (query, estimator, etc.) and this measure captures
the maximum extent to which the function f (·) can vary between all possible
combinations of neighboring databases. The local sensitivity,

LSf = max
D′ ‖f (D) − f (D′)‖,

fixes the database of reference D and determines the maximum variation consider-
ing all other possible neighboring databases D′. Other notions of sensitivity exist
and other norms to determine them are also considered (see, e.g., Dwork et al.
(2014), Awan and Slavković (2020), and references therein). These quantities are
important for improving the risk-utility trade-offs. The smaller the sensitivity, the
smaller the amount of noise is required for privacy, which typically leads to better
utility of the outputs and possibly better management of the privacy-loss budget. In
Awan and Slavković (2020) and in this chapter, we show that for the same privacy
cost, we gain better utility and more usefulness of data if we propose ways of
adjusting the sensitivities of the outputs.

The above notions of sensitivity, which measure possible variations of estimating
functions, is strongly related to the notions underlying the framework of robust
statistics. The next section highlights the similarities between these notions and
justifies the investigation of robust statistical tools for the purposes of achieving
differential privacy since, by reducing the sensitivity of estimators (functions f (·)),
robust statistical approaches can require less noise in order to deliver more useful
differentially private outputs.

Links with Robust Statistics

As highlighted above, the notion of differential privacy and the concepts based
on which differentially private mechanisms are proposed are intrinsically linked
with notions of function (query) sensitivity, centered on the space of neighboring
datasets. Robust statistics, on the other hand, focuses on the sensitivity of the
function with respect to the quantity it is meant to compute (estimate), which, in
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general, corresponds to the output that would be observed if the function were
applied to the entire population of reference. This is formalized within robust
statistics by using a parametric framework where the population is described by
an assumed parametric model Fθ , with θ ∈ � ⊂ R

p being the parameter vector
defining the model. The goal in this setting is to estimate the parameter vector
θ (e.g., the regression coefficients and residual variance) through an estimator
(function) with appropriate statistical properties.

However, the framework of robust statistics postulates that although we assume
a model Fθ for our data, this is at best an approximation to reality and what we
actually observe is

Fλ = (1− λ)Fθ + λG, (19.1)

for small λ > 0 and with G being an unspecified “contamination” model (see e.g.,
Hampel et al. (1986), Huber (2011), and Maronna et al. (2019)). In this paradigm,
the goal of an estimation and optimization problem would be to recover the value
of θ as best as possible by reducing the impact of the unknown model G. More
specifically, let us define an estimator as a functional T (F ), where F is a general
notation for a model (e.g., empirical or parametric). When we apply this functional
to Fλ, we would want to obtain a good estimate that is output for the true value of θ ,
but this will depend on the properties of the functional. In order to determine these
properties when observing Fλ, the notion of influence function (IF) was introduced
(see Hampel (1974)) and is defined as follows:

IFT (z0, Fθ ) = lim
λ↓0

T ((1− λ)Fθ + λ�z0) − T (Fθ )

λ
,

where �z0 is a point-mass distribution in an arbitrary point z0 which plays the role
of the model G. In general terms, this quantity can be interpreted as the impact that
an infinitesimal amount of contamination can have on a given functional T .

The IF is therefore an important notion in robust statistics since it can be used
as a measure to understand the possible extent of asymptotic bias with respect to θ

introduced by the presence of G. An additional measure that is based on the IF is
given by the gross error sensitivity (GES) defined as

γ (T , Fθ ) = sup
z0

|IFT (z0, Fθ )| .

The GES measures the maximum impact that any point-mass distribution �z0 can
have on the estimator T . Then, an estimator T is defined as being (B-)robust if the
GES is bounded, that is, if the IF is bounded—which is a sufficient condition.

Taking a deeper look at these definitions, one can see the similarities with the
sensitivity definitions used for differential privacy. Let λ = 1

n
, and assume that the

empirical distribution Fn (an estimator of Fθ ) fully characterizes the database D.
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Then, we could reformulate the contamination model from Eq. (19.1) as

Fλ = n − 1

n
Fn + 1

n
z0,

which resembles another definition in robust statistics, i.e., the sensitivity curve.
These types of robust measures resemble the definition of local sensitivity since
they would measure the impact of one observation, z0, on the database (model) of
reference D (i.e., Fθ ). The notion of global sensitivity, on the other hand, would
require a contamination model where all possible versions of Fθ are considered.

As mentioned earlier, other works have explored the similarities of differential
privacy notions with those of robust statistics highlighted above. For example,
after defining the above robustness measures, Chaudhuri and Hsu (2012) use the
notion of GES to deliver convergence rates for differentially private statistical
estimators, while Avella-Medina (2019) uses this measure to calibrate the additive
noise to deliver differentially private M-Estimators. In the next sections, we explore
another approach, suggested but not studied in Chaudhuri and Hsu (2012) and
Avella-Medina (2019), where we investigate the use of bounded M-Estimation for
differentially private estimation and prediction using the OPM. While empirical
risk minimization, that objective perturbation is built on, can be classified as M-
Estimation, it is not straightforward to integrate the standard bounded functions
for M-Estimation as is. To address this problem, we propose a modified OPM that
we call the Perturbed M-Estimation mechanism. More specifically, we propose the
use of a new convex objective function, RobHyt, defining a bounded M-Estimator
for which we first study its non-private statistical properties and convergence rates
which then lead to its integration in a differentially private setting.

19.3 Perturbed M-Estimation

In this section, we present the Perturbed M-Estimation mechanism designed by
integrating a new bounded function into the OPM of Kifer et al. (2012), thereby
improving the overall utility of the differentially private output. Recall that the goal
of robust statistics is to bound the impact of outlying observations on the output of
an analysis. A popular class of estimators for this purpose is that of M-Estimators
defined as

θ̄ = argmin
θ∈�

1

n

n∑

i=1

ρ(θ; di), (19.2)

where θ is a parameter of interest we aim to release, ρ(·) is a convex loss function,
and di ∈ D ∈ Dn is the ith row of a database with independent rows. In this form,
the class of M-Estimators corresponds to the notion of empirical risk minimization.
However, in order for the resulting estimator θ̄ to be robust, we require the derivative
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of the loss function to be bounded. The IF of an M-Estimator is given by

IFT (z0, Fθ ) = −ψ(z0, T (Fθ )) B(T (Fθ ), ψ)−1,

where z0 ∈ R is an arbitrary point, ψ(z) = ∂/∂z ρ(z) and B(T (Fθ ), ψ) =
∂/∂θ E[ψ(θ; z)] (see Hampel et al. (1986)). Thus, the IF of an M-Estimator is
bounded if the ψ-function is bounded, which justifies why, in many cases within
the robust literature, M-Estimators are also expressed directly with respect to their
derivative as follows:

θ̄ = argzero
θ∈�

1

n

n∑

i=1

ψ(θ; di).

The class of maximum-likelihood estimators (MLEs) can be represented as M-
Estimators, where ρ(·) would correspond to the negative log-likelihood and ψ(·)
its derivative. But the MLE is not robust since, in general, the corresponding ψ-
function is unbounded with respect to the data. Different functions have been
proposed for ρ(·) in order to bound ψ(·), such as the Huber and Tukey Biweight
functions (see, e.g., Hampel et al. (1981) and Maronna et al. (2019)). These
functions, along with other bounded functions commonly used for robustness
purposes, implicitly or explicitly assign weights to the residuals or score functions
defined by the minimization problem thereby downweighing observations that lie
far from the “center” of the assumed distribution of the residuals F . However, these
functions typically have symmetric weights and can therefore be asymptotically
biased with respect to the distribution of the residuals F (for example, if the latter is
asymmetric). Hence, a correction factor is often added for Fisher consistency (e.g.,
see Huber (2011) and Cantoni and Ronchetti (2001)), which depends on the model
F and the chosen bounded function ψ(·).

The definition of an estimator as an M-Estimator has additional advantages
from a point of view of parametric statistical inference. Under a set of regularity
conditions on the properties of the ψ(·) function and the parameter space, the
asymptotic distribution of M-Estimators (see Hampel et al. (1986), Mises (1947)) is

√
n(θ̄ − θ0) → N (0,	) ,

where θ0 represents the true parameter vector we aim to estimate, and

	 = Mψ(θ0)Qψ(θ0)Mψ(θ0)
T

is the asymptotic covariance matrix where

Mψ(θ0) = ∂

∂θ
E[ψ(θ; di)]

∣
∣
∣
θ=θ0

,

and
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Qψ(θ0) = E[ψ(θ0; di)ψ(θ0; di)
T ].

Assuming one can define an appropriate M-Estimator for a given problem, it would
be possible to use these properties to perform statistical inference thereby allowing
for different parametric tests.

With respect to the use of M-Estimation for the purposes of differential privacy,
as mentioned, in this work we aim to integrate the robust ρ(·) functions within
the OPM. More specifically, the OPM requires computing bounds on the first and
second derivatives of the objective (loss) function ρ(·) so that the adequate amount
of noise can be added to this objective function to ensure privacy. In order to
compute these bounds, we first propose a new specific function ρ(·) with bounded
derivative ψ(·), delivering a robust M-Estimator that relies on a certain tuning
constant. When this M-Estimator is used within the OPM, the tuning constant
plays a role in determining the bounds of the above-mentioned derivatives and,
consequently, plays a role in the amount of noise added for privacy. The following
sections present the proposed bounded function, i.e., RobHyt, and the statistical
properties of the resulting non-private M-Estimator (Sect. 19.3), and based on this,
we then integrate this estimator within the OPM (Sect. 19.3) to obtain the proposed
Perturbed M-Estimation mechanism.

The Robust Hyperbolic Tangent Function

The ρ-functions that are usually employed for robustness purposes are either non-
convex (e.g., Tukey Biweight) or piecewise (and/or non-continuously differentiable)
functions (e.g., Huber), which either make them unusable within the OPM or
can make the computation of the required sensitivity bounds and/or asymptotic
properties more complicated. There exist other smooth (and strongly convex)
functions, such as the Pseudo–Huber loss function, but, given similar complexities
in computing sensitivity bounds, we choose to address these issues by adapting the
hyperbolic tangent (tanh) function (see Hampel et al. (1981)) to deliver a bounded
function for M-Estimation. The tanh function has nice properties since it is (i)
continuously differentiable, (ii) defined over the entire real line, and (iii) bounded
between [−1, 1] making it a good candidate for robustness purposes and for the
derivation of the required sensitivity measures for the OPM. Given these properties,
in Definition 1, we propose to modify this function by parametrizing it with a tuning
constant k ∈ R

+ that guarantees robustness when k < ∞ and converges toward the
L2-loss function when k → ∞, similarly to the Huber loss function. To the best
of our knowledge, although various modifications of the hyperbolic functions have
already been proposed and used for robust optimization (e.g., see Chen et al. (2017)
and Shen et al. (2019), to cite some recent work), we are not aware of a similar
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parametrization of this function in either the statistical or the computer science
literature to date.

Definition 1 The robust hyperbolic tangent (RobHyt) function is defined as fol-
lows:

ρk(z) := k2

2
log

(

cosh

(
2

k
z

))

,

where k ∈ R
+.

By definition, the proposed RobHyt function is convex with respect to its argument
and has derivative given by

ψk(z) := k tanh

(
2

k
z

)

,

which is bounded between [−k, k]. Hence, this function can be employed as a
bounded function for robust M-Estimation since, as long as we choose k < ∞,
we have that ψk(z) is bounded and consequently so is the IF of the resulting M-
Estimator.

Remark 1 The RobHyt function has the following important property:

lim
k→∞ρk(z) = z2.

Given the above definition and remark, this function can be seen as a smooth
and differentiable-everywhere version of the Huber loss function (similarly to the
Pseudo-Huber loss). Keeping this in mind, we next consider an M-Estimator based
on the commonly used L2-loss function, i.e.,

θ̃ = argmin
θ∈�

1

n

n∑

i=1

s(θ; di)
2, (19.3)

where s(θ; di) is a score function such that under the true model we have that
E[s(θ; di)] = 0. An example is given by

s(θ; di) := yi − η(xT
i θ),

which represents the non-scaled score function for a generalized linear model
(GLM), where yi represents the response variable, xi ∈ R

p a vector of covariates,
and η(·) a link function defined by the family characterizing the appropriate GLM
model (see Nelder andWedderburn (1972) and Cantoni and Ronchetti (2001)). If we
plug this score function, or any MLE score function corresponding to the derivative
of the log-likelihood function, into (19.3), then it is straightforward to see that the
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estimator θ̃ corresponds to the MLE. This definition is particularly relevant since,
based on Remark 1, it is also straightforward to see that the proposed M-Estimator

θ̂ = argmin
θ∈�

1

n

n∑

i=1

ρk(s(θ; di)) (19.4)

tends to the MLE as k → ∞, in the same way as the Huber loss function.
In the robust statistical framework, one chooses a fixed tuning constant k based

on the desired level of robustness and asymptotic efficiency with respect to the
standard (non-robust) estimator. To do so, one usually requires an estimate of
scale for the score function s(θ; di), which could eventually be also obtained in
a differentially private manner. If we let k diverge with n, thereby defining the
sequence kn ∈ R

+, the estimator in (19.4) will inherit all the optimal properties
of the MLE in terms of statistical accuracy based on the following assumptions (see
Newey and McFadden (1994)):

(A1) The parameter space � is compact.
(A2) E[s(θ; di)

2] is uniquely minimized in θ0.
(A3) E[s(θ; di)

2] is continuous.
(A4) 1/n

∑n
i=1 ρk(s(θ; di)) converges uniformly in probability to E[s(θ; di)

2].
While assumption (A1) is a standard regularity condition which can eventually
be replaced by other (model-specific) constraints, assumptions (A2) and (A3) are
generally verified when considering the MLE. We now state our key result on the
statistical consistency of the proposed estimator in (19.4).

Proposition 1 Under assumptions (A1)–(A3) and assuming s(θ; di) = Op(1), for
all kn ∈ R

+ such that kn → ∞ as n → ∞, we have that

θ̂
P→ θ0.

This result, whose proof can be found in Appendix 19.5, implies that as long as kn

diverges at any given rate with n, the proposed estimator in (19.4) is statistically
consistent and hence converges in probability toward the true parameter θ0. If
however we assume that the score function s(θ; di) is symmetrically distributed,
the following corollary delivers the convergence rate for a tuning constant kn → 0
with n → ∞.

Corollary 1 Let xn ∈ R
+ be a deterministic sequence such that xn → 0 and√

n xn → ∞ as n → ∞. Then, assuming s(θ; di) has a symmetric distribution
function and for any kn ≥ xn, we have

θ̂
P→ θ0.
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The proof of this corollary is in Appendix 19.5. These results are important since
they allow us to define a region, which depends on the sample size n, within which
we should define the tuning constant kn in order for our estimator θ̂ to be statistically
consistent.

Remark 2 As stated earlier, for the purposes of robust statistical analysis, the
“original” tuning constant k should be fixed and chosen, for example, with respect to
the desired level of robustness and asymptotic efficiency of the resulting estimator
compared to the non-robust alternative. However, for the purposes of privacy, we
would require the constant to be chosen also with respect to the sample size
and noise for privacy, in addition to the asymptotic efficiency. Therefore, given
the above results, we want to define a tuning constant kn that grows as slowly
as possible since we want the statistical efficiency (low sampling variability) to
dominate the noise added for differential privacy (which grows with kn). A candidate
could, for example, be kn := log(log(n)) or any slowly increasing function in n.
However, if we assume that the score function is (approximately) symmetrically
distributed (e.g., linear regression with Gaussian residuals or logistic regression with
probability π ≈ 0.5), one could define, for example, kn := 1/log(n) for n > 1. At
the same time, however, a kn that is too small, despite allowing for consistency,
can deliver an excessively inefficient estimator from a statistical point of view.
Therefore, a rule for determining kn based on the (asymptotic) efficiency under the
constraint of consistency would be more appropriate and is left for future research.

The next section explores the use of the above proposed and studied M-Estimator
within a differentially private mechanism in order to understand if the use of a robust
M-Estimation framework can improve the utility of DP outputs for the same level of
privacy. We also investigate the impact of the tuning constant kn. For the purposes
of notation, hereinafter we will simply denote the tuning constant as k and make
its underlying dependence on n implicit whenever we let this constant diverge (or
converge to zero).

Tuned Objective Perturbation

In this section, we propose the Perturbed M-Estimation mechanism that integrates
the presented M-Estimator with the OPM framework; see Algorithm 1. The reason
for considering the OPM as a good candidate for integration with the above
described M-Estimation framework is that the OPM, being the result of an empirical
risk minimization problem, produces an output that can indeed be classified as an
M-Estimator as in (19.2). Following the definition in Kifer et al. (2012), the OPM
for ε-differential privacy is defined as follows:

θ̄DP = argmin
θ∈�

1

n

n∑

i=1

l(θ; di) + �

2n
‖θ‖22 +

bT θ

n
, (19.5)
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where l(θ; di) is a convex loss function, � ≥ 2λ/ε, λ is an upper bound on the
eigenvalues of the Hessian ∇2 l(θ; di), and b ∈ R

p is a random vector with density

f (b) ∝ exp−ε‖b‖2/2ξ ,

where ξ is such that ‖∇ l(θ; di)‖2 ≤ ξ . Therefore, λ and ξ are two parameters
that define the sensitivity measures of the loss function and consequently impact the
amount of noise (perturbation) that is added to the loss function. Considering the
definition in (19.5), we can now replace the loss function l(θ; di) with the proposed
loss function in (19.4) to deliver the new Perturbed M-Estimator.

Definition 2 The Perturbed M-Estimator is defined as follows:

θ̂DP = argmin
θ∈�

1

n

n∑

i=1

ρk(s(θ; di)) + �k

2n
‖θ‖22 +

bT
k θ

n
. (19.6)

From the above definition, we have that �k and bk (which depend on λk and ξk ,
respectively) are now quantities and variables that depend on the tuning constant k.
Indeed, we have that ξk , and hence bk , depends on the following quantity:

∇ρk(s(θ; di)) = tanh

(
2

k
s(θ; di)

)

︸ ︷︷ ︸
∈[−1,1]

k∇s(θ; di),

while λk , and hence �k , depends on

∇2ρk(s(θ; di)) = 2 sech

(
2

k
s(θ; di)

)2

︸ ︷︷ ︸
∈[0,1]

(∇s(θ; di))
2 + tanh

(
2

k
s(θ; di)

)

︸ ︷︷ ︸
∈[−1,1]

k∇2s(θ; di).

From the above expressions, we observe that the tuning constant k can be directly
related to a specific notion of DP-based sensitivity for ∇ s(θ; di) and ∇2 s(θ; di).
Based on these expressions, for example, one could choose to define the tuning
constant k as being inversely proportional to the sensitivity of these expressions
according to the problem at hand.

Our proposed approach, highlighted in Algorithm 1, can therefore be seen as
a form of “tuned” objective perturbation where we can calibrate the choice of k

based on (i) sample size, (ii) required statistical efficiency, and (iii) known sensitivity
bounds for the loss function. Indeed, we would generally want to choose a k that is
“small” to achieve low sensitivity bounds (and add less noise for privacy), but in
order to achieve statistical efficiency, we would ideally want k not to be too small.
As stated earlier, the study of an optimal (private) choice of the tuning constant is
left for future research.



350 A. Slavkovic and R. Molinari

19.4 Applications and Simulations

In this section, we investigate the potential utility of the suggested approach in
Algorithm 1 in some applied and simulated settings. The examples are based on
standard linear regression and logistic regression for small and large sample sizes
and with a guarantee for pure differential privacy with ε = 0.1. The parameter
of interest θ is represented by the regression coefficient vector β ∈ R

p, and the
utility of the estimators is measured via the L2-norm (i) between the estimators
and the reference value (non-private estimator or true value) or (ii) between the
observed response and the predictions based on the different estimators (mean
squared prediction error). The performance of the estimators is evaluated over
H = 100 replications, and for each of them, different values of the tuning constant k
are considered between [0, 2]. The latter range is considered since if k < 1, then the
sensitivity measures for privacy are reduced while for values k > 1, the sensitivity
is increased.

Remark 3 It must be noted that the OPM (and hence the proposed estimator)
requires the optimization procedure to converge in order to guarantee differential
privacy. In few examples, we did not have the convergence, but we still included
them in the overall results to illustrate the potential gains in utility that this new
approach could deliver. Hence, the results in this section should be considered as
preliminary investigations rather than “conclusive” empirical results. Based on these
observations, the goal would be to explore possibly more numerically stable privacy
mechanisms for the considered approach using, for example, the stochastic gradient
descent method (see, e.g., Rajkumar and Agarwal (2012), Song et al. (2013), Wang
et al. (2015a), and Chen et al. (2019)) or the more recent KNG approach proposed
by Reimherr and Awan (2019).

Algorithm 1 Perturbed M-Estimation—modified objective perturbation from Kifer
et al. (2012)
INPUT: D ∈ Dn, ε > 0, a tuning parameter k ∈ R

+, a convex set � ⊂ R
p , a convex loss

L̂k(θ;D) = 1
n

∑n
i=1 ρk(s(θ; di)) defined on � such that the Hessian ∇2ρk(s(θ; d)) is continuous

in θ and d, ξk > 0 such that ‖∇ρk(s(θ; d))‖2 ≤ ξk for all θ ∈ � and d ∈ D, and λk > 0 is an
upper bound on the eigenvalues of ∇2ρk(s(θ; d)) for all θ ∈ � and d ∈ D.

1: Set �k = 2λk

ε

2: Draw bk ∈ R
m from the density f (bk; ε, ξ) ∝ exp(− ε

2ξ ‖bk‖2)
3: Compute θ̂DP = argmin

θ∈�

1
n

∑n
i=1 ρk(s(θ; di)) + �k

2n ‖θ‖22 +
bT
k θ

n

OUTPUT: θ̂DP
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Applications: Linear Regression

For the linear regression examples, let y ∈ R
n be a vector of responses and X ∈

R
n×p be a matrix of covariates, where the first column is a vector of ones for the

intercept term. The score function is given by

s(β; di) := yi − xT
i β,

where yi is the response variable and xi ∈ R
p is the vector of covariates for the ith

row. We compare the following estimators:

• β̂ = (XT X)−1XT y: the least-squares non-private estimator that will be used
as reference for the other estimators (i.e., considered as the true β we aim to
estimate).

• β̄: the non-private robust estimator using ρk(s(β; di)); we expect this to converge
to β̂ as k → ∞.

• K-norm sufficient statistics perturbation: this approach is proposed by Awan
and Slavković (2020) and delivers differentially private estimators based on
different norms considered for the sensitivity of the sufficient statistics XT X

and XT y (see the functional mechanism of Zhang et al. (2012)). Based on these
norms (including an optimal K-norm defined in Awan and Slavković (2020)),
appropriate noise is added to the sufficient statistics to deliver differentially
private estimators based on replacing an observation as opposed to removing
an observation.

• β̃: the proposed Perturbed M-Estimator in (19.6).

The first example we use is the “Attitude” dataset from Chatterjee and Hadi
(2015), available in the R statistical software. This is a small dataset with only 30
observations and 7 variables capturing the percentages of favorable responses to a
survey of clerical employees in a financial organization. A question of interest is
how each variable contributes to the overall rating of the company (y). The left plot
in Fig. 19.1 reports the mean square prediction error for the different estimators over
the different values of the tuning constant k for this data.

The second example, the “San Francisco housing” data, has been used for
the evaluation of different statistical and differentially private methods; we use
a dataset version from Awan and Slavković (2020). This dataset consists of
348, 189 observations on houses in the Bay area between 2003 and 2006. The main
question of interest is in explaining the rent of the houses as a function of several
other variables (e.g., square-footage, location, age of house, number of bedrooms,
county). The right plot in Fig. 19.1 shows the mean squared error between all
estimators and the parameter of reference β̂ (the non-private estimator).

In both cases, the data are preprocessed by taking the logarithm of some
numerical variables and ensuring that all numerical variables lie between [−1, 1].
The latter bounding is not necessarily required for Perturbed M-Estimation since
the tuning constant k can eventually compensate for a higher sensitivity due to
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Fig. 19.1 Left: logarithm of the mean squared prediction error versus tuning constant k for the
attitude dataset. Right: logarithm of the mean squared error versus tuning constant k with respect
to the non-private estimator β̂ for the housing dataset

larger bounds on the variables; nevertheless, we perform this processing in order
to compare it with the other estimators.

From Fig. 19.1, we can notice that the only estimators that depend on the tuning
constant k (and whose lines therefore do not remain constant) are the robust non-
private estimator β̄ and the proposed DP β̃. For both datasets, as expected, it is clear
that the robust non-private estimator β̄ (red line) has the best performance, and as
the tuning constant k increases, this estimator improves its performance since it
will converge to β̂. Our proposed DP M-Estimator (green line) appears to be the
best alternative, and it significantly outperforms the other DP estimators in these
settings. However, for both datasets, the performance of the Perturbed M-Estimator
gets worse as the value of the tuning constant increases (although it still does better
than the other DP estimators). This implies that the noise added for privacy starts
to dominate over the statistical efficiency that is delivered through the increase of
the tuning constant. Another effect that is more evident for the housing data (right
plot) is that the performance of β̃ is not optimal for the smallest values of k since
it decreases and then starts to steadily increase around k = 1. This would indicate
that for small values of k, the statistical inefficiency dominates the minimal noise
added for privacy, while as k increases, this ratio starts to diminish as a result of the
increasing statistical efficiency being overcome by the noise added for privacy.

Simulations: Logistic Regression

The simulation study in this section replicates the one in Awan and Slavković (2020)
but with a smaller sample size of n = 100. We consider a logistic regression model
where we generate uniformly distributed covariates xi ∼ U [−1, 1] and set the true
parameter vector as β = (0,−1,−1/2,−1/4, 0, 3/4, 3/2). Based on these values, we
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simulate uniform values Ui ∼ U [0, 1] and define the simulated response values
using the link function

η(xT
i β) = exp (xT

i β)

1+ exp (xT
i β)

,

as follows:

yi =
{
1 Ui < η(xT

i β)

0 otherwise.

In this case, the score function is defined as s(β; di) = yi − η(xT
i β). In order

for the robust non-private estimator to be Fisher consistent, we would need to
derive a correction term since the bounded function can introduce bias in the
resulting estimator (see e.g., Cantoni and Ronchetti (2001)). For the purpose of
this simulation, we do not apply this correction since, given our setting, the
scores are approximately symmetrically distributed. Moreover, we assume that the
performance of the proposed approach can only be improved if the correction term
was introduced (and would be less relevant when k → ∞).

We consider the following estimators for this simulation study:

• β̂: MLE for logistic regression as a non-private reference.
• Objective perturbation estimators based on K-norms: private estimators based

on the generalized OPM (adapted from Awan and Slavković (2020) and Kifer
et al. (2012)) using differentK-norms with change-DP, i.e., replace an individual.
We consider the following norms, L1, L2, and L∞ and another version of the
L∞-based OPM with an additional tuning constant to control the bias–variance
trade-off set to q = 0.85 (instead of q = 0.5 for the other estimators, see Awan
and Slavković (2020)).

• β̃: the proposed Perturbed M-Estimator in (19.6).

The additional tuning constant q and the use of other norms could also be considered
for our proposed approach in order to improve its performance. However, for this
chapter, we keep it only depending on the tuning constant k. The mean squared
errors with respect to the true parameter vector β are presented in Fig. 19.2.

The conclusions are similar to those of the previous section for the linear
regression setting. Obviously, the MLE (red line) performs the best. However, our
proposed DP M-Estimator (green line) is the best alternative, in some cases having
substantially better performance than other DP estimators that are more commonly
used with logistic regression. We also see that in this case the performance of
β̃ appears to worsen more rapidly as k increases but not much more than in the
Attitude dataset; recall, both of these datasets are on a smaller scale with n = 30
and n = 100—settings where differentially private mechanisms, in general, have
a harder time producing accurate statistics with small privacy-loss budgets, ε. In
addition, we can see that the private estimator based on the tuned L∞-norm (L∗∞)
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Fig. 19.2 Logarithm of the mean squared error versus tuning constant k with respect to the true
parameter value β for the logistic regression simulation

also has a high utility, as argued in Awan and Slavković (2020), and is very close
to our proposed approach. Nevertheless, as alluded earlier, it is possible that our
approach could also benefit from consideration of other norms and the additional
tuning constant q; we leave that to future work.

19.5 Conclusions and Outlook

In this work, we consider the use of methods from the field of robust statistics
in order to improve the utility of differentially private mechanisms, that is, of
their statistical outputs. More specifically, we propose a robust M-Estimator with
well-defined properties, including consistency, and propose to employ it within
the popular objective perturbation mechanism, thereby proposing a Perturbed M-
Estimation mechanism. Our approach allows for calibration of noise needed to
produce differentially private estimates, and it improves statistical utility of these
outputs while removing the need to impose bounds on the parameter space and the
response variables—this is a significant methodological and practical contribution
as many current mechanisms require preprocessing of data such that it is bounded.
There is still the need, however, to impose bounds on the covariates, for regression
problems, for example, in order to determine sensitivity bounds. Our prelimi-
nary simulations and examples for linear and logistic regressions demonstrate
significantly improved utility in estimation of parameter estimates under ε-DP in
comparison to the currently used methods. It is also important to note that our
proposed DP estimator works reasonably well for small sample sizes n. The setting



19 Perturbed M-Estimation: A Further Investigation of Robust Statistics for. . . 355

with small n is frequently problematic for DP since the noise needed to protect the
privacy may overcome the sampling noise too much, making data unusable. While
the choice of the tuning constant k for our robust estimator is more obvious in the
non-private setting and is tied to n, in the private setting, the clear rules are yet to be
determined and are part of future work.

Having investigated the possible use of robust statistical tools in the domain
of differential privacy, it appears that it is worth to further explore this path and
better understand properties and convergence rates of the proposed approach. Two
improvements that can be considered jointly are the use of a Mallow’s type estimator
(see Huber (2011), Maronna et al. (2019)) and the redefinition of the expression
for the OPM based on the properties of the proposed RobHyt function or of any
other function with bounded derivative (and definable sensitivity bounds) and with
similar properties of consistency. The Mallow’s type estimator can automatically
bound the covariates of a regression problem thereby possibly removing the need
to impose any bounds on parameters and data. The redefining of the sensitivity
bounds can be done, for example, by using the links between smooth sensitivity and
the GES as highlighted in Chaudhuri and Hsu (2012) and Avella-Medina (2019)).
Moreover, depending on the definition of the problem, rules to determine the value
of the tuning constant k can be developed or appropriate methods to select an
“optimal” k in a private manner can be studied. In the latter case, an intuitive
approach would be to find the value of k based on the definition of the asymptotic
variance for M-Estimators, which would possibly depend only on the model and
the sample size, thereby allowing to determine it independently from the data (or
find an approximation in a private manner). Another approach that will be worth
investigating is the use of a private stochastic gradient descent mechanism (see
Chen et al. (2019), Song et al. (2013), Wang et al. (2015a)), or methods such as the
KNG mechanism in Reimherr and Awan (2019), in order to overcome possible non-
convergence issues of the objective perturbation mechanism. Finally, once possible
new sensitivity bounds are defined based on robust statistical measures, it would
be possible to deliver the corresponding statistical inference framework that would
allow to construct private confidence intervals and perform private parametric tests.
And, nearly 50 years ago, after Andrews et al. (1972) provided an extensive survey
of some 68 robust estimates of location, we can take a look back at those in order to
move forward.
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A Proofs

Proof of Proposition 1

Proof Provided the other assumptions hold (which is generally common or verified
when considering the MLE), we need to prove that Assumption (A4) holds as well.
The definition of uniform convergence for our setting is the following:

sup
θ∈�

∣
∣
∣1/n

n∑

i=1

ρk(s(θ , di)) − E[s(θ, di)
2]
∣
∣
∣→ 0.

Let us denote Qn(s(θ)) := 1/n
∑n

i=1 ρk(s(θ , di)) and Q0(s(θ)) := E[s(θ, di)
2].

We can therefore reexpress the above definition as

sup
θ∈�

∣
∣
∣Qn(s(θ)) − Q0(s(θ))

∣
∣
∣→ 0,

where, defining Q̄n(s(θ)) := 1/n
∑n

i=1 s(θ, di)
2, by triangle inequality, we have

∣
∣
∣Qn(s(θ))−Q0(s(θ))

∣
∣
∣ ≤

∣
∣
∣Qn(s(θ))−Q̄n(s(θ))

∣
∣
∣+
∣
∣
∣Q̄n(s(θ))−Q0(s(θ))

∣
∣
∣. (7)

Since we assume that s(θ , di) = Op(1), we have that

∣
∣
∣Q̄n(s(θ)) − Q0(s(θ))

∣
∣
∣ = Op

(
1√
n

)

,

based on the weak law of large numbers and Markov’s inequality. We therefore
focus on the first term on the right side of the inequality in (7). For this reason, let
us apply a second-order Taylor expansion of the two functions characterizing this
term around the expected value of s(θ , di) at the solution (i.e., zero):

Qn(s(θ))= 1

n

n∑

i=1

[

ρk(0)+ ∂

∂si(θ)
ρk(si (θ))

∣
∣
∣
si (θ)=0

si (θ)+ ∂2

∂2si (θ)
ρk(si (θ))

∣
∣
∣
si (θ)=0

si (θ)2+Rρk

]

,

and

Q̄n(s(θ)) = 1

n

n∑

i=1

[
0+ 2 · 0 · si(θ) + 2si(θ)2

]
= 1

n

n∑

i=1

2si(θ)2,

since there is no remainder term for the expansion of Q̄n(s(θ)). As for the expansion
of Qn(s(θ)), by taking the required derivatives and evaluating them in zero, we end
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up with

Qn(s(θ)) = 1

n

n∑

i=1

⎡

⎣2 sech(0)2
︸ ︷︷ ︸

=1

si(θ)2 + Rρk

⎤

⎦ = 1

n

n∑

i=1

[
2si(θ)2 + Rρk

]
.

Considering these expansions, we have that

Qn(s(θ)) − Q̄n(s(θ)) = 1

n

n∑

i=1

Rρk
,

and therefore let us take a look at the remainder term that has the following structure:

Rρk
= ∂3

∂3s(θ)
ρk(s(θ))

s(θ)3

3! .

Let us focus on the bound of the third derivative, and taking the absolute value, we
have

∣
∣
∣

∂3

∂3s(θ)
ρk(s(θ))

∣
∣
∣ =

∣
∣
∣ 6k tanh

(
2
k
s(θ)

)
sech

(
2
k
s(θ)

) ∣∣
∣

= 6
k

∣
∣
∣ tanh

(
2

k
s(θ)

) ∣
∣
∣

︸ ︷︷ ︸
≤1

∣
∣
∣sech

(
2

k
s(θ)

) ∣
∣
∣

︸ ︷︷ ︸
≤1

≤ 6
k
.

Hence, we have that

∣
∣
∣Rρk

∣
∣
∣ ≤ 6

k

s(θ)3

3! = s(θ)3

k
,

which, for k → ∞ with n, implies that

∣
∣
∣Qn(s(θ)) − Q̄n(s(θ))

∣
∣
∣ = Op

(
1

k

)

,

since s(θ, di) is bounded in probability. Plugging this back in Eq. (7), we conse-
quently have that

∣
∣
∣Qn(s(θ)) − Q0(s(θ))

∣
∣
∣ = Op

(

max

(
1

k
,

1√
n

))

,

which concludes the proof. ��
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Proof of Corollary 1

Proof This corollary is simply a consequence of the proof of Proposition 1. Indeed,
if s(θ , di) follows a symmetric distribution, we have that

1

n

n∑

i=1

si(θ)3 = Op

(
1√
n

)

,

and hence, following (7), we would have

∣
∣
∣Qn(s(θ)) − Q0(s(θ))

∣
∣
∣ ≤ Op

(
1√
n

)

+Op

(
1

k
√

n

)

= Op

(

max

(

1,
1

k

)
1√
n

)

.

In order for this term to go to zero as n → ∞, we need either of the following
cases:

1. k → ∞ (or in any case k ≥ 1),
2. k → 0 slower than

√
n.

��
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Part VI
Introduction: Official Statistics

Judith M. Tanur

Steve cared about official statistics. A good deal of his interaction with official
statistics came through his affiliation with the Committee on National Statistics
of the National Academy of Sciences/National Research Council (henceforth
CNSTAT). Steve’s mentor, Fred Mosteller, was the vice chair of the President’s
Commission on Government Statistics, chaired by W. Allen Wallis. A major
recommendation of that Commission was the establishment of such a committee.
The first chair of CNSTAT, which was charged with evaluating statistical issues for
the US government, including citizens’ attitudes and behavior toward the census
was Bill Kruskal, who had been a member of the Commission. Taking office in
1972, Kruskal got the committee off to a great start, raised funds, got agency buy
in, and worked with Margaret Martin, who was the first executive director, to really
accomplish administrative miracles at the National Academy of Sciences/National
Research Council in creating an entity very different from the norm there. Bill
was succeeded by Conrad Taeuber who held the Committee on a steady course
during his term from 1978 to 1981. But Taeuber was born in 1906; Kruskal was
born 1919. Steve, a baby boomer, had all the stereotypical characteristics of that
generation, including energy and brashness. In an interview (reprinted later in this
volume) for the series of conversations with distinguished statisticians and published
in Statistical Science (2013), Steve described his feelings as he became a member
of CNSTAT in 1978 and especially as he chaired it in 1981–1984 and then after a
sabbatical year from 1985 to 1987.

I got to join CNSTAT . . .This was . . . full of new ideas and problems to work on; I was like
a kid in a candy shop! The committee didn’t have a lot of projects then, but I just got to look
around the Academy and the Federal government, and there were possibilities everywhere.
I could only do so much, but I pushed the staff to do other things and got my friends on the
committee to lead panels. By the mid-80s the committee was humming and there were all
these neat activities on census methodology, on cognitive aspects of survey methodology,
statistical assessments as evidence in the courts, sharing research data—there was just no
end.—Statistical Science Interview, page 457

Under Steve’s leadership, the Committee undertook informal reviews of the
portfolios of the major statistical agencies. Steve kept getting the committee
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involved in new projects and thus kept the staff badly overworked. Somehow he
seemed to have more hours in the day than do the rest of us.

Let me talk in detail about one effort that took place during Steve’s tenure as
CNSTAT chair – chosen because I happen to know quite a bit about its genesis –
the movement that investigates cognitive aspects of survey methodology and which
is known by the acronym CASM. (We chose that name and acronym purposefully –
it punned on the broad chasm between survey research and the cognitive scientists
that we hoped the participants in the movement would bridge.) Although there were
earlier efforts to bring together cognitive scientists and survey researchers, notably
one headed by Al Biderman (see Biderman 1980) and focused on the National
Crime Survey, and a major effort about the same time in Germany organized by
ZUMA (see Hippler, Schwarz, and Sudman 1987), and although others got credit
(in terms of authorship of publications and receipt of awards), one could make the
case that Steve was, if not the progenitor of the CASM movement, at the least its
presiding midwife. He talked me into chairing the 1983 St. Michael’s seminar by
bribery – he offered attractive surroundings, permission for my husband to visit
along with other guests, the opportunity to choose the participants and thus include
my friends and, most important, a great staff that included Tom Jabine, Miron
Straf, and Roger Tourangeau. How could I refuse? At the seminar itself, Steve
was an enthusiastic participant. Very soon thereafter he coauthored with Elizabeth
Loftus, an eminent memory researcher, and me, a solicited article for the Milbank
Memorial Fund Quarterly on cognitive aspects of surveys. It turned out the article
as written was too long, so Steve suggested that we break it into three, and Milbank
published them all. (That made quite a blip on my cv, but is hardly noticeable on
Steve’s or Beth’s.) Then Steve got the Social Science Research Council (SSRC)
(where he served on what amounted to the Board of Directors) to establish a
Committee on Cognition and Survey Research, then talked me into co-chairing
the committee (with Robert Abelson). Again, Steve was an active participant in
the committee’s meetings and workshops, especially enthusiastic in organizing a
workshop on reporting pain and other symptoms. When the committee considered
its work done (and its funding exhausted), Steve talked me into editing a volume of
papers based on its work – and in 1991 Questions about Questions appeared.

The chapters in this section reflect Steve’s interests in official statistics – but
as usual his interests are too broad and interrelated to be easily pigeonholed.
While Margo Anderson’s chapter entitled “The History of ‘Statistics in the Public
Interest’ in the United States” certainly belongs here because of its emphasis on
how statistical issues arise from the very Constitution of the United States, its
emphasis on the US Census could also have justified its placement in our section
on Surveys and Censuses (where two former Census Directors, Kenneth Prewitt
and John Thompson, discuss the interplay of statistics and politics on the Census).
And the chapters that discuss issues of the US Census could as easily have appeared
in this section.

More obviously germane to the topic of official statistics is the chapter by
Connie Citro, Michael Cohen, and Porter Coggeshall, “Fostering Statistical Rigor
for Evidence-Based Policy at the National Academies of Sciences, Engineering,
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and Medicine,” which chronicles Steve’s enormous contributions to the Academies,
starting even before his membership in the Committee on National Statistics and
continuing until very shortly before his death.

Jan van den Brakel, a PhD advisee of Steve’s, whose PhD work attempted to
further extend the papers that Steve and I had been working on, by combining
statistical methods from the fields of randomized experiments and sampling theory
to improve the internal and external validity of experimental research. As Jan writes,
that would have been a natural topic for his chapter in this volume, but an overview
had been published recently. Jan is at the Research and Development Department
of Statistics Netherlands and contributes a chapter touching on another of Steve’s
interest: “New data sources and inference methods for official statistics.”

Kathy Wallman was Chief Statistician of the United States from 1992 to 2017. In
that role at the US Office of Management and Budget, she provided coordination,
guidance, and oversight for the Federal Statistical System of the United States. Her
chapter explicates the organization of the US decentralized Statistical System and
describes its mission.
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Chapter 20
The History of “The Politics
of Population” in the United States

Margo Anderson

20.1 Preliminaries

I met Steve Fienberg around 1989, when to the best of my hazy recollection, I got
a phone call from him asking if I would be interested in team teaching a course at
Carnegie Mellon on the census in spring 1990. We’d never met though we’d been in
the same census universe, me as an historian, Steve as statistician. I had published
the first edition of my history of the American population census the previous year
(Anderson 1988). I lived in Milwaukee, WI, so that was an interesting logistical
challenge, but I was also on leave so not teaching at the moment. After more
conversations, I agreed and we tag teamed the class, with me flying to Pittsburgh
for my sessions.

That initial collaboration led to more, including writing joint articles for Chance
on the 1990 census lawsuits, and then a book level study (Anderson and Fienberg
1999a). We tried to integrate the long-term history of the American population cen-
sus with the controversies about measuring and adjusting for the known differential
undercount, particularly of minorities and the poor. The undercount had the effect
of reducing the political power of affected communities and reducing the funding
available through the formulas embedded in legislation. I traced the historical roots
of the census’s role in apportionment and funding allocations from its origins in
the eighteenth century to the present. Steve did the statistical theory debate about
adjustment methodology. We both collaborated on the ongoing policy (Anderson
and Fienberg 1999b). We both served on the Committee on National Statistics panel
which led to the report, Modernizing the U.S. Census (National Research Council
1995).
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After that burst of collaboration in the 1990s, we kept in touch, met at JSM
or other events around the country. We shared our common interests in statistical
confidentiality, and he published one of the papers I coauthored withWilliam Seltzer
in the first volume of the Journal of Privacy and Confidentiality (Anderson and
Seltzer 2009).

So what might one suggest in honor of Steve about the question of “statistics in
the public interest?” One might start by noting that, for an historian, the title of this
volume is a bit of a redundancy. The origin of the term “Statistik” or “statistics”
meant “of the state” and so “statists” who engaged in “statistics” gathered and
analyzed quantitative or tabular information about politics, government, and public
activity. In English, the term of art through the eighteenth century was “political
arithmetic” (Porter 1986).

Today the discipline of “statistics” traces its roots to the seventeenth century
both from the mathematicians who worked out the theory of probability and the
measurement of uncertainty, and from the researchers who collected, classified, and
tabulated the information we now call “numerical data” for analysis. These were
somewhat separate developmental threads.

Early “data” work in the seventeenth and early eighteenth century was concerned
with patterns of population growth, mortality, and the relative demographic strength
of nations, and thus pioneered in the publication and analysis of the numerical
patterns in existing data collections, such as Graunt and Petty’s work on the London
Bills of Mortality (Heyde 2001).

In the American colonies and the infant United States, as well, the issues of
data collection were paramount, initially as the British Crown tried to understand
what was going on in its far-flung colonies by asking for reports on the people,
economy, and productivity of their “investments.” Then, in the mid-eighteenth
century, came the American Revolution, independence, and the need for the newly
“united” colonies to establish a stable government and economic future that would
survive what they realized would be further efforts by the British to regain control
of their colonies (Cassedy 1969; Cohen 1982).

Meanwhile, back in Europe, as Stephen Stigler (1986) has shown, were the
astronomers and mathematicians with a different problem. They were trying to
understand the natural world, and wrestled with the problem of reconciling the
differing measurements of allegedly the same thing, for example, a star’s location.
The measurements conflicted with one another, even after considering when or
where the information was collected. Hence the notion of “error” was born not to
mean a mistake, but an inevitable element of measurement to be quantified.

By the time the American Statistical Association was founded in 1839, “statis-
tics” was no longer simply “political” arithmetic. ASA founders were wise enough
to define their field widely in their constitution: “The objects of the Society shall be
to collect, preserve and diffuse Statistical information in the different departments of
human knowledge.” But in the United States, well into the early twentieth century,
data collection and the analysis of government policy issues and data continued to
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be the backbone of the enterprise. As Fitzpatrick (1957: 15) noted, the American
Statistical Association issued its first publication in the 1840s:

The first part of this volume had appeared in 1843. It is entitled “Statistics of Towns
in Massachusetts”, and numbers 120 pages. The second part, was published in 1845,
embracing 216 pages, and is called, “Statistics of Population in Massachusetts”. The third
part, appeared in 1847, consisting of about 375 pages, with the title “Statistics of Taxation
in Massachusetts Including Valuation and Population”. All three parts were “prepared by
Joseph B. Felt”, the Recording Secretary of the American Statistical Association from 1839
to 1859. [sic, punctuation in original]

JASA, which began publication under a variety of titles in the 1880s, was
similarly concerned with government data.

20.2 Building a Politics of Population into the Structure
of the American State

It turns out that complete count public data collections were fundamental to building
the American state in the late eighteenth century. The 1787 federal constitution
enshrined public data in two separate provisions, designed to define how to ground
state authority in the “people,” allocate the responsibilities and resources of the state
among the citizenry, and provide mechanisms for stabilizing the state over time. This
became the two-legged statistical system, grounded in demographic statistics on the
population and economic statistics on the revenues and expenditures of the state.

This chapter, therefore, is a selective narrative of examples about how the data
collectors in the discipline dominated into the first third of the twentieth century;
how the mathematical breakthroughs in statistics, sampling, in particular, catapulted
“statistics in the public interest” into the discipline we know today; and how the long
historical experience in the problems of state making and measurement resonate
even now in the big data world of the twenty-first century.

20.3 The First Leg of the System: Demographic Statistics

The US Constitution firmly grounds the authority of the state in the sovereignty
of the “people:” “We the people of the United States. . . do ordain and establish
this Constitution for the United States of America.” The previous federal structure,
the Articles of Confederation, in contrast, had located sovereignty in the states
themselves, affirming that “Each state retains its sovereignty, freedom, and indepen-
dence,” in matters “not ....expressly delegated” to the United States. The 13 states
of the United States were clearly identifiable entities in the 1770s and 1780s, with
traditions of settlement and governance that stretched back a century or more. The
concept of the “people” of the United States was a much murkier notion, a fine
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rhetorical device, but filled with ambiguous connotations (Anderson 1988; Bailyn
1967; Morgan 1988; Wood 1969, 1992).1

One mechanism in the new governmental structure relied directly on the notion of
the ultimate “sovereignty” of the “people.” That was the institution of the decennial
census or enumeration of the population required to allocate the seats among the
states in the House of Representatives, the votes for each state in the Electoral
College, and the apportionment of “direct taxes” among the states. Article 1, Section
2, paragraph 3 began: “Representatives and direct Taxes shall be apportioned among
the several States which may be included within this Union, according to their
respective Numbers....” The full paragraph reads:

Representatives and direct taxes shall be apportioned among the several States which may
be included within this Union, according to their respective Numbers, which shall be
determined by adding the whole number of free persons, including those bound to service
for a term of years, and excluding Indians not taxed, three-fifths of all other persons. The
actual enumeration shall be made within three years after the first meeting of the Congress
of the United States, and within every subsequent term of ten years, in such manner as they
shall by law direct.

Just as an election count determined who would represent a local area in a
legislative assembly, a population count would determine the strength of each state’s
House delegation. In the very grounding of the new state, the government would be
required to count the population every 10 years, reallocate the seats in the House on
the basis of that count, and reallocate the apportionment for direct taxes to be levied
among the states. It is this provision that grounded the first leg of the statistical
system: the periodic population count.

20.4 The Second Leg of the System: Economic Statistics

The second leg of the statistical system can also be found in the 1787 Constitution,
which provided the basis for the collection and publication of economic data. Article
1 Section 9 mandated that federal appropriations required legal authorization and
that “a regular Statement and Account of the Receipts and Expenditures of all
public Money shall be published from time to time.” The President was required
by Article 2, Section 3 to “from time to time give to the Congress Information of the

1In the Constitutional Convention that ambiguity was evident as the framers struggled to
“operationalize” their new government and provide concrete mechanisms for setting the thing in
motion. The most obvious are the ordered election procedures, for Representatives, Senators, and
the President. Even then though, the reliance on the procedures and traditions in the existing states
indicated the framers’ reticence with departing too greatly from the traditions within the states.
Two senators were allocated to each state. The state legislatures chose the 2 senators for each state.
The state legislatures chose the electors to the Electoral College who formally chose the President.
Only in the case of members of the House of Representatives did the “people” vote directly for an
individual who would serve in national office. Voter qualifications and the timing of elections for
Senators and Representatives were also left to the state legislatures. .
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State of the Union and recommend to their Consideration such Measures as he shall
judge necessary and expedient.” These two provisions guaranteed the administrative
record keeping and publication of the fiscal condition of the federal government,
which in turn permitted their compilation into a statistical record of administrative
operations, both in the collection of taxes and in the expenditure of federal revenue.

20.5 Setting the Government in Motion: Implementing
the Census Enumeration and Learning About Statistical
Methods at the Same Time

Like the notion of the sovereignty of the people, counting the population is a
deceptively simple idea, which on further examination is much more complex. Who
actually are “the people”? How, practically, does one go about counting them? The
first question of who “constituted” the people to be counted was the subject of
intense debate in the Constitutional Convention because of the existence of slavery.
Slaves were both “people” and a “species of property” expressly excluded from the
possibility of political action. If sovereignty derives from the people, what about
other “people” who exercise no political power and have no political authority:
women, children, criminals, aliens, the poor? Practically speaking “voting,” i.e.,
official participation in electing a representative was exercised by about 10% of the
total population in the United States of the late eighteenth century. Nevertheless,
the framers settled on a census which counted practically the entire population.
The compromise in the Constitutional Convention was to use a very expansive rule.
The enumeration would count everyone except “Indians not taxed” and distinguish
the slave population from the free population so the slave population could be
“discounted” to 60% for the apportionment of House seats and direct taxes. “Indians
not taxed,” that is, those American Indians who gave allegiance to their tribes rather
than to the United States, were the only “people” within the geographic boundaries
of the United States not required to be counted in the decennial census (cf. Anderson
2015; Lewis 1995; Zagarri 1987).

The second question, of the administration of the census, was left to the First
Congress to resolve. The legislation enacted in early 1790 mandated a bare-bones
administrative operation. It created no new administrative instruments. Rather it
required the US marshals (at the time one per state) to appoint assistants in their
districts to canvass each household and count the members. Six brief questions
were mandated: name of the household head; a division of the free white males
into cohorts of 16 and above and under 16; and free white females, “other free
persons,” and slaves. The assistants totaled the figures for their districts and sent
them to the marshals who in turn totaled them for each state. The Secretary of State
in turn tallied the national figures and sent them to the President. The first census
was taken between August 1790 and March 1792 and recorded 3.9 million people.
There were a variety of administrative headaches that developed, including worries
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of under enumeration, and even some prosecutions for refusals to participate. On
the whole, however, President George Washington recommended the results to the
Congress as evidence of the success of the new state, and Congress undertook its
first apportionment on the bases of the figures (Anderson and Fienberg 1999b).

Once the census results were available, a third problem emerged: how did one
translate the population numbers into allocations of representatives among the
states? How big should the House of Representatives be? Beyond requiring no
more than one representative per 30,000 population, the Constitution was silent
on this issue as well. As soon as they began to debate the issue, members of
Congress articulated several different methods which led to allocations favoring
one or another of the emerging factions. Once Thomas Jefferson and Alexander
Hamilton, the leaders of the emerging Republican and Federalist factions in the new
government, came to be identified with alternative apportionment bills, the issue was
joined in a potentially dangerous way. Congress passed a bill to Hamilton’s liking
in the spring of 1792. Washington consulted Jefferson and vetoed the bill (using the
Presidential veto for the first time). At this point, the new government could have
faced a true crisis: i.e., the inability to “constitute” the House of Representatives.
Congress relented and passed a “Jeffersonian” bill and everyone breathed a sigh of
relief as the House was apportioned (Balinski and Young 1982).

This history of the creation of the census instrument in the Constitutional
Convention and the first years of the republic reveals how high the stakes were in
organizing this mechanism of the new government. The successful implementation
of the population count and its use for legislative apportionment were absolutely
essential to organizing the state itself.

I suspect the framers knew as much at the time, but I also suspect they recognized
more deeply the importance of the census and apportionment instrument in future
years. They did so because not only did the census provide a mechanism deemed fair
to all parties for apportioning seats in the House among the states, it also provided
a predetermined and automatic means to redistribute those seats each decade.
Congress initially made only small incremental changes in the administrative
structure for taking the census. The Secretary of State continued to oversee the
count until 1850, when the temporary census office was transferred to the new
Interior Department, and the temporary position of Census Superintendent was
created to oversee the publication of an increasingly large volume of statistics.
The US marshals and their assistants continued to serve as the field enumeration
staff through the 1870 census. Occasionally Congress discussed the creation of
a permanent statistical office to take the census and process other data, but the
proposals did not materialize in legislative action.

The demographic results, on the other hand, were truly noteworthy. By the 1810s,
Americans had taken three censuses and had allocated representatives to states of
widely differing size. The allocations ranged from 1 to 23 members. But by the
1810s, with three data points and thus the capacity to calculate growth rates for
two decades, they also recognized that the population was growing rapidly (to 7.2
million in 1810, or 30 to 35 percent a decade nationally). The populations of the
states were growing at different rates. The House of Representatives grew from a
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temporary constitutional apportionment of 65 members in 1789 to 186 members
after the 1810 count. The western state of Kentucky, admitted to the union in 1792,
with 2 representatives, had 10 after the 1810 apportionment, an allocation larger
than 9 of the original 13 states.

By the time of the War of 1812, the shape of American population dynamics
that would dominate nineteenth-century development and population politics was
becoming clear. The population grew rapidly and differentially. The successful
politician would be one who understood how to mobilize power of growing regions
and local areas and in turn mobilize resources for such areas. Early national political
leaders discovered that the decision to ground sovereignty in the people made real
the “power of the people,” to use a more modern phrase, in the structure of the state.

In short, the United States developed a politics of population even before the
development of the mass party systems and the democratization of voting in the
Jacksonian era of the 1830s. It is a lens through which to view a whole series of
political issues of the early national era. Before the development of mass parties and
the mass mobilization of voters for elections, political leaders had experience of a
generation or more of learning that they had to learn to control (or manipulate) this
popular base of the political system. The evidence of this learning process is clear
in some of the standard political debates in the early national era.

At the most obvious, the fact of rapid and differential population growth required
a delicate political debate about the size of the House of Representatives each
decade. The House grew from the 186 members in 1810 to 243 members in 1860
on the eve of the Civil War. After the 1840 census Congress conducted a complex
debate on apportionment methods and changed to a system developed by Daniel
Webster. In 1850, it reformed the system again, using the Vinton method. For detail
on the evolution of apportionment formulas and their political implications, see
Balinski and Young (1982).

Congress also admitted new states to the union with a keen eye to the political
implications of admitting the rapidly growing western territories to the union as
states. The union grew in fits and starts. The story of the patterns of state admissions
in the antebellum period is generally told as part of the history of the coming of
the Civil War and the future of slavery, and so it is. But it is also a history of
race, region, and the management of the relentless population politics built into
the decennial reapportionment process. Only once in the 230-year history of the
American republic did Congress fail to respond to the population changes of the
census and reapportion. That was after the 1920 census and, though out of the scope
of this paper, confirms the fundamental importance of the “politics of population”
in American life (Anderson 2015).

The naming and refinement of the “gerrymander,” or the conscious manipulation
of the geographic boundaries of legislative districts to enhance the fortunes of one
political group or faction, is another prominent “innovation” of the early national
politics of population. Named for Elbridge Gerry, the Governor of Massachusetts,
the term was coined to accompany a description of a cartoon of a legislative district
in Essex County, Massachusetts, created after the 1810 census. Federalists who
objected to the district ridiculed the “convex” shape of the district, and in later



374 M. Anderson

years, the image and the name became common to criticize the designing motives of
politicians who drew districts to their political advantage. The practice predates the
early nineteenth century and currently is still litigated and debated in the United
States in terms of “racial” and more recently “partisan” redistricting. What the
practice does represent is the “discovery” of the capacity of an incumbent faction or
party to use the reapportionment and redistricting process to its political advantage
by literally drawing the rules of the game in the form of legislative districts (Griffith
1907; Grofman 1998; Grofman and Lijphart 1986; Kousser 1999).

A third aspect of the politics of population in the early national era is what
would seem today a very strange political controversy about “slave representation.”
In 1800 Thomas Jefferson won the presidency and ended the domination by the
Federalists of the national government. An intense period of factional conflict
preceded the election, and the successful, and peaceful, election of Jefferson has
often been dubbed “the revolution of 1800.” The losing Federalists asked what
went wrong and analyzed the votes in the Electoral College. Some pundits claimed
that the margin of victory for Jefferson could be attributed to the votes of electors
“representing” slaves in the South. Elaborate analyses of census results and the
resulting House apportionments appeared, claiming a profound political impact
for these “slave representatives.” The writers proposed amending the Constitution
to base representation on counts of the white population only. The sectional
implication of doing so was quite obvious since northern states were in the process
of legislating slave labor out of existence, and thus slavery was increasingly a labor
system confined to the South. The rather crass proposal was to enhance northern
strength in the national government and would continue to reverberate through later
debates about sectionalism and the extension of slavery into new states. The writers
did not follow the logic of their arguments about whether “female representation”
or “child representation” or “alien representation” – all groups with no rights of
suffrage – also had an impact on national politics (Anderson 2015; Dwight, Sereno
Edwards (Boreas). 1812; Simpson 1941).

Finally, by the second and third decades of the republic, political leaders began to
employ demographic arguments in their political rhetoric and respond to demands
for service based on demographic need. The expansion of the postal network is a
prime example, as Richard John (1995, 47, 49) has shown, of these demographic
politics. In 1792, Congress granted “itself the authority to designate every postal
route in the United States.” John continues:

The impetus for the expansion of the postal network owed a good deal to the structure of the
House. Since congressional apportionment was based on population and constituents were
constantly clamoring for new routes, there existed a built-in bias in favor of expanding the
postal network on the basis of population rather than on the basis of the existing pattern of
commercial demand.

Local citizens petitioned for service; every state generally received a seat on
the House committee on the Post Office and Post Roads. The result was that
the ratio of white population per post office declined from 43,000 in 1790 to
around 1000 in 1840, and the number of post offices expanded from 75 to 13,468.
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Congress also gave itself an expansive franking privilege and permitted the free mail
exchange of newspapers among publishers. John describes the profound effect these
combined policies had on American public life; they made possible, for example,
the development of a “national community” well before the spread of new modes of
transportation and communication (the telegraph and the railroad), which are often
credited with the development of a truly national politics.

The emergence of a demographic political rhetoric is also evident in the spate
of “statistical” publications by members of Congress – particularly after 1810
(Cohen 1982). The most elaborate of these was Adam Seybert’s (1818) 803 page
tome, Statistical Annals, with the rather long-winded subtitle, Embracing Views
of the Population, Commerce, Navigation, Fisheries, Public Lands, Post-Office
Establishment, Revenues, Mint, Military & Naval Establishments, Expenditures,
Public Debt and Sinking Fund of the United States of America ((Seybert 1818),
1, 15, 17, 9). Seybert was a Pennsylvania Congressman who clearly understood the
implications of the rapid population growth of the early republic. He began with
some “preliminary observations”:

The state of civilized society and the resources of nations, are the tests by which we can
ascertain the tendency of the government. It is to the condition of the people, in relation to
their increase, their moral and physical circumstances, their happiness and comfort, their
genius and industry, that we must look for the proofs of a mild and free, or of a cruel and
despotic government.

Seybert opened his first chapter on population, noting, “That which most
concerns every state is its population,” yet most nations did not yet conduct regular
population censuses. The success of the American census made “our practice . . .
worthy of being followed by other nations.” Seybert summarized his argument with
a brief table of key indicators from the 1790, 1800, and 1810 censuses. He did not
calculate growth rates, but the rapid population growth over the three census years
was evident without it. Even more striking was the even more rapid growth in the
revenue and expenditures of the federal government, which Seybert attributed to the
“prosperity of the nation, because as far as our knowledge extends, no individual
suffered from the taxes which were imposed, nor was he deprived of a single
comfort, which he had before enjoyed” (emphasis in original). Reviewers of the
volume outside the United States noted the hyperbolic rhetoric of Seybert’s analysis,
yet the dramatic patterns of growth did speak for themselves.

Finally Seybert compiled his tables from government documents available to
Congress, noting that he had proposed a compendium because the “documents
annually presented to Congress, are contained in more than one hundred and
twenty volumes, and are too much diffused to be made the subjects of immediate
reference... though they were intended to be used in debate.” Thus Seybert (1818, vi)
produced an “authentic book of reference” “to arrange the statements under a form
that might be convenient and useful, and so that the details should be preserved.”

Seybert’s efforts point to growing Congressional awareness of the second leg of
the federal statistical system, namely, the collection and publication of economic
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statistics. These statistics would prompt the creation of permanent offices and
officers to compile and publish the data.

The primary revenue base for the national government in the nineteenth century
was the tariff. “Internal Revenue,” derived from excise taxes or direct taxes, was a
very minor portion of the federal revenue budget. Direct taxes, to be apportioned
on the basis of population using the census, were levied in the late 1790s, during
the War of 1812, and during the Civil War. An income tax, levied during the Civil
War, was declared a violation of the Constitution in the 1890s and did not become
part of the federal revenue system until the census clause was amended in 1913 to
remove the requirement that such “direct taxes” had to be apportioned upon the basis
of population (Anderson 2015). Thus the administrative record system of federal
revenue collections was based primarily upon the records of annual imports and
exports, and the tonnage of shipping.

The record keeping and reporting fell to the clerks in the Treasury Department
and was done intermittently from 1790 to 1820, as Seybert noted. Legislative
authorization of systematic annual reporting of such statistics came in 1820, as
Congress provided that “the Register of the Treasury shall, under the direction of
the Secretary of the Treasury, annually prepare statistical accounts of the commerce
of the United States with foreign countries.” The customs collectors were the field
staff required to collect the information to submit to Washington. The Treasury
Secretary was authorized to provide “such directions to the collectors and to
prescribe such rules and forms as might appear proper.” In 1844, Congress passed
a joint resolution authorizing the Treasury Secretary to allocate “three or more
clerks to be employed under his direction in collecting, arranging, and classifying
such statistical information as may be procured, showing or tending to show each
year the condition of the agriculture, manufactures, domestic trade, currency and
banks of the several states and territories of the United States.” In 1850, Congress
authorized the regular publication and distribution of these annual reports and, in
1866, established a formal Bureau of Statistics in the Treasury Department with a
bureau head in charge of statistical operations; monthly reporting of commercial
statistics began. In 1878, the bureau inaugurated the Statistical Abstract of the
United States ((Schmeckebier and Weber 1924), 9, 11, 21, and in later years became
a staple of government publication for the Census Bureau, e.g., (U. S. Bureau of the
Census 1999)). The 1878 edition was a modest affair, containing 150 tables in 157
pages, and focused primarily on the import and export statistics collected in the
Treasury Department.

20.6 The Federal Statistical System Takes Shape

The inauguration of the annual publication of the Statistical Abstract provides
a convenient marker to identify the emergence of what we now call the federal
statistical system, including its characteristic decentralized structure, a combination
of survey and administrative data collection, and at the time, commitment to
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complete count data collection. The agencies which produced these demographic
and economic statistics were diverse. A temporary Census Office in the Interior
Department, created from scratch each decade, published voluminous information
on the population, and oversaw decennial censuses of agriculture, manufacturing,
and some other industries such as mining. The Bureau of Statistics in the Treasury
Department published annual compilations of economic statistics, the Statistical
Abstract, and monthly statistics on foreign commerce with the United States. The
Bureau of Statistics relied on its administrative activities and personnel to provide
the basic data for its statistical publications. The Census Office used a “survey-like”
field staff of temporary employees who collected data for purely statistical purposes.
Both agencies were beginning to develop more sophisticated technical expertise and
define “statistical standards” for accuracy, consistency, efficiency, and precision.

The success of the demographic and economic statistics of the first two-thirds
of the nineteenth century prompted Congress to propose further statistical efforts,
using the same decentralized model. During and after the Civil War, for example,
Congress put in place three ambitious new statistical initiatives, in agricultural
statistics, labor statistics, and education statistics (Goldberg and Moye 1985; Leiby
1960; Smith 1923; Taylor and Taylor 1952; Warren 1974). In 1890, under pressure
to tabulate the data quickly for apportionment and then produce dozens of volumes
of statistical reports from more complex tabulations, the still “temporary” Census
Office in the Department of Interior launched punch card machine tabulation of the
census returns to mechanize the work.

By the turn of the century, there were a plethora of statistical agencies in
the federal government, of varying competence, and with varying mandates and
budgets. Different agencies published data on what might seem to be the same topic.
Thus, the Census Office as well as the Agriculture Department produced agricultural
statistics; the Treasury Department compiled statistics on agricultural commodities
exported while the Agriculture Department published statistics on commodities
produced. Immigration statistics were collected by the State Department and then
by the Bureau of Immigration, part of the Treasury Department. Consular officials
abroad, officials of the State Department, collected local wage data; the Labor
Department collected wage data in the United States. Congress began to look
to coordination and consolidation of the work as they considered proposals to
create a new cabinet department charged with dealing with business, commerce,
and manufacturing. With larger issues of government expansion on the agenda,
statistical coordination and consolidation seemed politically possible.

The US population topped 76 million in 1900. In 1902 Congress made the Census
Bureau a permanent statistical agency and removed the economic censuses from the
decennial population census cycle. In 1903 Congress moved the Census Office from
the Interior Department into the newly created Department of Commerce and Labor.
Several other statistical agencies, including the Department of Labor (downgraded
to a Bureau of Labor), the Bureau of Statistics of the Treasury Department, the
Bureau of Foreign Commerce of the State Department, were relocated to the new
Department. The organic legislation for the Department authorized the Secretary
and the President to consolidate agencies and functions with an eye toward creating
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a central statistical agency. These and later efforts at centralization failed (Anderson
2015; Bonnen 1984; Norwood 1995; Office of Federal Statistical Policy and
Standards 1978; Parmelee 1910–11; President’s Commission on Federal Statistics
1971).

The failure of centralization did not halt statistical innovation, as Americans’
voracious appetite for statistical data did not abate and arguably prompted more
informal efforts at statistical coordination and the reintegration of the mathematical
side of the discipline into “statistics in the public interest.”

Through the first third of the twentieth century, most federal statistics were still
basically “complete count” tabulations of administrative data records, or true cen-
suses. But policy demanded new kinds of data, surveys collected more frequently, to
monitor conditions that changed rapidly, and for which lumbering complete count
methods could simply not provide timely data. The crisis of the Great Depression
forced the issue, particularly creating the need to measure unemployment, a rapidly
changing phenomenon that required simple frequent data collection. Probability
sampling became the solution, first in the experimental sample surveys that led
to the “monthly report on the labor force,” and after World War II to the Current
Population Survey. Economic data were marshaled to build the National Income
and Products Accounts, deployed successfully during World War II to guide the
war effort. Computerization of statistical research soon followed, with wartime
innovations in a digital computer, ENIAC, the Electronic Numerical Integrator and
Computer, providing the inspiration for UNIVAC, Universal Automatic Computer,
to tabulate the 1950 census (Duncan and Shelton 1978).

These mathematical and technical innovations in turn produced the rich and
varied world of statistics in the public interest that we know today. Probability
sampling methodology required the calculation of margins of error, just as the
astronomers had been doing since the early nineteenth century. And sampling could
be applied not only to conduct new types of surveys, public opinion polling par
excellence, it also could be integrated into complete count data collections, to lessen
the burden on respondents by moving questions to a “long form” sample for the
census, for example, or by adding evaluation samples to measure bias and efficiency
in survey administration. Anecdotal evidence of undercount could be replaced with
demographic analysis of vital statistics, or post enumeration surveys to measure
coverage. As computer technology advanced, government statistical agencies rec-
ognized that they could release microdata samples for external researchers, as well
as the tabulations they traditionally published. The first of those came with the 1960
census; researchers could buy either the punch card or the tape version to use on
their own computer platform.

This “revolution” in government statistics, as Duncan and Shelton call it, was
also something of a fall from grace, as the greatly broadened statistical and policy
community recognized not only the power of their data and techniques, but also their
limitations. Census undercount, Steve Fienberg’s and my original collaboration,
became a particularly troublesome case in point.

Once the bureau was able to document scientifically, i.e., measure, the under-
count, it didn’t take long for politicians to recognize the implications for reap-
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portionment, redistricting, and federal funds allocation. By the late 1960s, they
pressed the bureau not only to measure the undercount but to “fix it” – improve
the accuracy of the count. And when the Census Bureau admitted it could not do so,
local jurisdictions and stakeholder groups sued the Commerce Department.

The Bureau faced suits to correct for the known differential undercount in the
census cycles from 1970 to 2000. The most serious challenges were to the 1990
and 2000 censuses, where the litigation reached the Supreme Court for resolution
in 1996 and 1999 (Anderson and Fienberg 1999a). The Census Bureau also
improved its operational control over the census field enumeration. The innovations
reduced but did not eliminate the differential between the white non-Hispanic count
and minority undercounts. The procedure proposed for adjustment was a large
post enumeration survey matched to the census returns and capture – recapture
calculations (dual system estimation) to estimate the undercount of demographic
groups and local areas. The Bureau built the adjustment methodology into the
designs of the 1990 and 2000 census. In the 1990s, the courts ruled that the
Commerce Secretary could authorize an adjustment if the results improved the
accuracy of the “actual enumeration.” In 1999, the Supreme Court clarified the legal
status of adjustment further, ruling that the current statutory language of Title XIII,
the Census Act, bars adjustment for apportionment numbers, but not for redistricting
and other census uses.

In both decades, the Secretary decided not to adjust. The Census Director
recommended adjustment for the 1990 census, and the courts upheld the Secretary’s
decision. The Bureau did not recommend adjustment after the 2000 census because
of newly discovered problems with the adjustment methodology, particularly the
discovery of a large number of duplicate enumerations which undermined the
Bureau’s confidence in the dual systems estimation results (National Research
Council 2004). The 2010 census design included a post enumeration survey with
dual systems estimation for evaluation, but not for adjustment.

20.7 New Challenges

The foregoing narrative highlights some key events in the development of “statistics
in the public interest” in the United States. It is illustrative of my understanding
of how to think about the long continuities in American statistical practice, and
many excellent studies flesh out complementary details.2 I’d like to conclude by

2The literature is voluminous, and a thorough catalog is beyond the scope of this essay.
Nevertheless, in addition to the studies cited infra, see, for example, Fisher (1992); Citro and
Michaels (1995) on poverty measurement; (Lopresti (2017) on statistics on women and gender;
Hochschild and Powell (2008); Mezey (2003); Morning (2008); Nobles (2000); Perlmann (2018);
Perlmann (2001); Perlmann and Waters, eds. (2002); Prewitt (2013); Rodriguez (2000); Samhan
(1999); Schor (2017); and Williams (2006) on race, ethnic, and immigrant classification issues. On
international comparisons and public policy, see, for example, Curtis (2001); Desrosières (1998);
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contrasting some lessons from this narrative with the current challenge posed by the
Trump administration’s politicization of the 2020 census, starting with the effort to
add a citizenship question to the 2020 decennial complete count census form.

On March 26, 2018, Secretary of Commerce Wilbur Ross informed Congress
that “I have determined that reinstatement of a citizenship question on the 2020
decennial census is necessary to provide complete and accurate data in response to
the DOJ request.”3 Within days, the controversy exploded publicly as civil rights
organizations and state and local government officials announced their intentions to
sue the Commerce Department to reverse the decision.

Ross publicly claimed that his decision to add the citizenship question to the
form was not problematic, that the question had been asked for over a century
on the census or the American Community Survey, and that it would not generate
logistical or technical problems for the 2020 count. Yet word of Ross’ intentions had
been percolating among census stakeholders for several months and had generated
a dramatic behind the scenes debate opposing adding the question. For example, in
a January 2018 letter to Ross, six former census directors in both Republican and
Democratic administrations wrote

. . .we believe that adding a citizenship question to the 2020 Census will considerably
increase the risks to the 2020 enumeration. Because we share your goal of a “full, fair, and
accurate census,” as the Constitution requires, we urge you to consider a prudent course of
action in response to the Justice Department’s untimely and potentially disruptive request.4

Critics charged that the Trump administration was intentionally trying to sup-
press census responses from immigrant communities. Ross’ decision came too late
for testing the efficacy of the question, and technical experts warned of known
problems. The traditional “dress rehearsal” for the census in Rhode Island in spring

Patriarca (1996); Glass and Victor (1978); Higgs (1989); Deacon (1985); and Alonso and Starr, ed.
(1987).
3Ross claimed that in December 2017, the Justice Department requested that he “reinstate a
citizenship question on the decennial census to provide census block level citizenship voting age
population (“CVAP”) data that are not currently available from government survey data.” The
Justice Department claimed that “having these data at the census block level will permit more
effective enforcement” of the Voting Rights Act. See Secretary Wilbur Ross to Karen Dunn Kelley,
Under Secretary for Economic Affairs, March 26, 2018, available at https://www.commerce.gov/
sites/default/files/2018-03-26_2.pdf
4The former directors continued: “It is highly risky to ask untested questions in the context of
the complete 2020 Census design. There is a great deal of evidence that even small changes
in survey question order, wording, and instructions can have significant, and often unexpected,
consequences for the rate, quality, and truthfulness of response. The effect of adding a citizenship
question to the 2020 Census on data quality and census accuracy, therefore, is completely unknown.
Also of import, overcoming unexpected obstacles that arise as 2020 Census operations unfold
would add to the cost, without assurances that such efforts would yield a more accurate outcome.”
For the text of the letter see Vincent P. Barabba (1973–1976; 1979–1981); Martha Farnsworth
Riche (1994–1998); Kenneth Prewitt (1998–2001); Steven H. Murdock (2008–2009); Robert M.
Groves (2009–2012); John Thompson (2013–2017) to Wilbur L. Ross, January 26, 2018 available
at https://www.washingtonpost.com/r/2010-2019/WashingtonPost/2018/03/27/Editorial-Opinion/
Graphics/DOJ_census_ques_request_Former_Directors_ltr_to_Ross.pdf.

https://www.commerce.gov/sites/default/files/2018-03-26_2.pdf
https://www.commerce.gov/sites/default/files/2018-03-26_2.pdf
https://www.washingtonpost.com/r/2010-2019/WashingtonPost/2018/03/27/Editorial-Opinion/Graphics/DOJ_census_ques_request_Former_Directors_ltr_to_Ross.pdf
https://www.washingtonpost.com/r/2010-2019/WashingtonPost/2018/03/27/Editorial-Opinion/Graphics/DOJ_census_ques_request_Former_Directors_ltr_to_Ross.pdf
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of 2018 didn’t have the question on the form. Critics also charged that the question
had not been asked on the main census form since 1950 and that when it was asked
on the main census form from 1890 to 1950, it was only asked of the foreign-
born population. In 1990 and 2000, a question on citizenship was asked of sample
households that received the detailed “long form” census form. Since 2000, it
has been asked on the American Community Survey sample. In other words, the
question has never appeared on the census to be asked of all persons.

Ross’ action and the intense opposition it generated reignited the public debate
about the functions of the census for reapportionment and redistricting, the
dynamism and diversity of the US population, and the need for a fair census so
that both the “winners” and the “losers” in the reapportionment and redistricting
process will see the outcome as legitimate. The controversy reminded Americans
that the census is an instrument of government, but it should not be a partisan or
biased instrument with controversial questions that affect the quality of the results.

Since the spring of 2018, seven major federal lawsuits challenged Ross’ decision
to include a citizenship question on the 2020 census. The litigation process
generated a detailed administrative record of the Trump administration decision
making. Three trials were held, in New York City, San Francisco, California, and
Maryland. All three federal courts ruled against the government on the grounds
that Ross’ action violated the Administrative Procedures Act. The judges in the
Maryland and California cases also found that Ross’ action violated the enumeration
clause of the Constitution. The New York case was expedited to Supreme Court
review, with oral arguments on April 23, 2019, so that the court could rule before
its summer recess, and the Census Bureau could finalize the printing contract for
census forms.

On June 27, 2019, Chief Justice Roberts affirmed the lower court decision and
wrote the opinion for a slim 5–4 majority (Department of Commerce, et al. v.
New York, et al. 2019). The court found that Ross’ decision making had violated
the Administrative Procedures Act. Printing was slated to start by July 1. For 2
weeks, the President pressed to find a way to get the question on the form, despite
the fact that the Commerce Department authorized the printing contract to go into
effect in the first week of July. Trump suggested an addendum, even postponing the
census. On July 11, he relented and acknowledged that the 2020 census form would
not have a citizenship question, but ordered the Census Bureau to produce small
area citizenship data from the American Community Survey and administrative
records. The potential constitutional crisis of a president defying a Supreme Court
decision abated. But the threats and challenges to the 2020 count were not over.
New questions immediately arose – about the impact of the controversy on people’s
willingness to respond to the census in April 2020, the cost of the census, on
cybersecurity, on the readiness of the computer systems underpinning the new mass
internet response option. And then in the spring of 2020, as the mail and Internet
response options began, the coronavirus pandemic forced postponement of the labor
intensive in person counting operations, nonresponse follow-up (NRFU), service-
based enumerations, list-enumerate, among others. The administration requested
relief on the statutory reporting deadlines in Title 13 in April 2020 and announced a
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revised operational plan envisioning the delayed operations to resume in the summer
of 2020.

Since, the Trump administration renewed its political meddling with census
operations, appointing unqualified new political appointees in June 2020, reneging
on the request for an extension of reporting, among other initiatives. See Prewitt
discussion in this volume.

As of this writing, in mid-September 2020, the situation remains fluid. The
administration has already lost two more legal challenges in federal court, and
the dates for the completion of census field work and post processing are being
litigated. At the moment, the ultimate resolution of the impact of the pandemic and
the political manipulation on the quality of the 2020 census results is not clear, but
the count is clearly under threat.

The statistical community almost universally objected to the introduction of the
citizenship question on the 2020 census form, arguing that Ross’ hasty and cavalier
decision undermined the trust in the federal statistical system, by disregarding
the technical and statistical expertise that have been carefully and systematically
integrated into law and administrative practice over the past 200 years. It has
resumed its expressions of alarm in summer 2020. As Teresa Sullivan (2019) argued
in her President’s Invited Address at the 2019 Joint Statistical Meetings, it is no
mean accomplishment that American “statistics in the public interest,” born in
revolution and political decision making, nevertheless have come to be regarded
worldwide as exemplars of scientific innovation and objectivity.5 The Trump
administration’s actions since 2017 are an unprecedented attack on the statistical
system, and the American statistical community is facing a truly existential moment
in the years ahead.

Honoring Steve Fienberg’s work and his legacy is a good way to begin to address
that moment.
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Chapter 21
Fostering Statistical Rigor
for Evidence-Based Policy at the National
Academies of Sciences, Engineering,
and Medicine

Constance F. Citro, Michael L. Cohen, and Porter E. Coggeshall

21.1 Introduction

Stephen E. Fienberg (“Steve” to his legions of colleagues and friends) was deeply
dedicated to the improvement of evidence for public policy and understanding by
the application of rigorous statistical methods. His boundless energy, willingness
to work on a wide range of applied statistics problems relevant to public policy,
keen intellect, and—yes—commanding presence and impatience with incremental
change enabled his stellar achievements.

An important arena in which he exercised his gifts to the full was the National
Academies of Sciences, Engineering, and Medicine (see Box 21.1). Steve was
elected to the honorific National Academy of Sciences (NAS), which has fewer
than 2500 members, in 1999, but his pro bono service to the nation through
the National Academies began over 20 years earlier when he first served on a
National Research Council (NRC) expert consensus committee that produced the
reports, Rehabilitation of Criminal Offenders: Problems and Prospects (1979)
and New Directions in Rehabilitation of Criminal Offenders (1981). Steve served
on consensus study committees, workshop planning groups, standing oversight
boards and committees, and the all-important National Academies’ Report Review
Committee (RRC), which exercises life or death authority over NRC consensus
study reports. He also served on the Governing Council of the NAS and many of
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its committees, including those involved in selection of NAS members. All in all,
from 1977 until just a few months before his death in December 2016, Steve was
continuously involved in National Academies’ activities (NAS and NRC) over that
40-year period.

We three—Connie Citro, Mike Cohen, and Porter Coggeshall1—were honored
to have known Steve and his work for the National Academies over many years.
We discuss his National Academies’ work by drawing on our personal knowledge
and experience, supplemented by information from National Academies’ internal
databases. We address his service to the nation at the National Academies in
three parts. First, Connie details Steve’s extraordinary record of involvement in
NAS and NRC activities. Then Mike discusses several consensus studies to which
Steve contributed, their statistical aspects, and the centrality and impact of Steve’s
contributions for the public good. Finally, Porter describes Steve’s integral role in
assuring the quality of National Academies’ consensus reports through his service
as member and cochair of the RRC.

Box 21.1 The National Academies
On March 3, 1863, President Abraham Lincoln signed an act incorporating
the National Academy of Sciences, a self-perpetuating, honorific society that
“shall, whenever called upon by any department of the Government, investi-
gate . . . and report upon any subject of science or art.” The NAS established
the National Academy of Engineering in 1964 and the Institute of Medicine
in 1970 (renamed the National Academy of Medicine in 2015). To tap the
expertise in the broader scientific and technical community for its studies,
the Academy created an operational and staff arm—the National Research
Council—in 1916. In accordance with the original charter, experts serve pro
bono on National Academies’ study and oversight committees. Today the
National Academies are an independent 501(c)(3) nonprofit organization;
studies are conducted at the request of government agencies and foundations
through contracts and grants.

The NRC has more than 50 standing committees and boards, which
function to oversee and develop a portfolio of work related to their missions.
Steve devoted much of his energies to the work of the Committee on National
Statistics (CNSTAT), one of the oldest such standing committees, established
in 1972 at the recommendation of the President’s Commission on Federal
Statistics, chaired by W. Allen Wallis.

1Connie Citro is a senior scholar with the Committee on National Statistics (she directed CNSTAT
from 2004–2017); Mike Cohen is a senior program officer with CNSTAT; Porter Coggeshall
directed the Report Review Committee from 1992 to 2017.
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21.2 Service to the Nation Through the National Academies

Service to the National Research Council

At a very tender age, in terms of the usual age at which experts are appointed
to National Academies’ study committees, the then 35-year-old Steve Fienberg
was appointed in 1977 to the study on research on rehabilitation techniques (cited
above). In the course of this study, Steve often encountered Miron Straf, research
director for CNSTAT, who had overlapped with Steve at the University of Chicago
in the late 1960s. Steve also knew Bill Kruskal, the founding chair of CNSTAT, from
his Chicago days. Those contacts likely led to the appointment of Steve to CNSTAT
in 1978.

Steve served a 3-year term on CNSTAT and then became its third chair, serving
from 1981 to 1987 (with a sabbatical year in 1984–1985 at the Center for Advanced
Study in the Behavioral Sciences). During these years, he chaired a CNSTAT sub-
committee that produced the landmark report, Sharing Research Data (1984), and
was a member of the CNSTATAdvanced Research Seminar on Cognitive Aspects of
Survey Methodology, which produced another landmark report, Cognitive Aspects
of Survey Methodology: Building a Bridge Between Disciplines (1984). Indeed, the
Seminar was his idea—he pushed hard for it to happen and then arranged for its
work to continue under the auspices of the Social Science Research Council via a
Committee on Cognition and Survey Research.

Connie well remembers a dinner in late 1983 at which Steve interviewed her
for a position as director of a study that produced The Bicentennial Census: New
Methodology for 1990 (1985). Mike also worked on that study. We vividly recall
Steve’s enthusiasm for the study (he served as a member ex officio) and his
out-of-the-blue proposal for a joint meeting with CNSTAT for part of the study
committee’s second meeting. As still very much newbies in the ways of the National
Academies, we felt overwhelmed by Steve’s blithe assumption that we could make
this complicated event work, but as it turned out, he was right. Among the luminaries
who participated in the meeting was John Tukey, who famously looked to be asleep
for much of the time but offered penetrating remarks when called on.

Steve went on to serve on 15 more study committees (8 of which were overseen
by CNSTAT) that produced the following reports:

1. Priorities for the 1990 Census Research, Evaluation and Experimental (REX)
Program (1988) [link not available]

2. Statistical Models and Analysis in Auditing: A Study of Statistical Models
and Methods for Analyzing Nonstandard Mixtures of Distributions in Auditing
(1988) [https://doi.org/10.17226/1363]

3. The Evolving Role of Statistical Assessments as Evidence in the Courts (1989)
(Steve served as cochair) [published by Springer]

4. Providing Access to Epidemiological Data (1990) [link not available]

http://dx.doi.org/10.17226/1363
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5. Assessing Evaluation Studies: The Case of Bilingual Education Strategies
(1992) (Steve served as chair) https://doi.org/10.17226/2014

6. Modernizing the U.S. Census (1995) [https://doi.org/10.17226/4805]
7. The Polygraph and Lie Detection (2003) (Steve served as chair) [https://doi.org/

10.17226/10420]
8. Measuring Racial Discrimination (2004) [https://doi.org/10.17226/10887]
9. Vaccine Safety Research, Data Access, and Public Trust (2005) [https://doi.org/

10.17226/11234]
10. Protecting Individual Privacy in the Struggle Against Terrorists: A Framework

for Program Assessment (2008) [https://doi.org/10.17226/12452]
11. Secondhand Smoke Exposure and Cardiovascular Effects: Making Sense of the

Evidence (2010)[https://doi.org/10.17226/12649]
12. The Potential Consequences of Public Release of Food Safety and Inspection

Service Establishment-Specific Data (2011) [https://doi.org/10.17226/13304]
13. Using Science as Evidence in Public Policy (2012) [https://doi.org/10.17226/

13460]
14. Options for Estimating Illegal Entries at the U.S.-Mexico Border (2013) [https:/

/doi.org/10.17226/13498]
15. Furthering America’s Research Enterprise (2014) [https://doi.org/10.17226/

18804]

To mention just one anecdote, Steve’s service on the committee that produced
Measuring Racial Discrimination involved him in friendly but hard-fought argu-
ments about statistical rigor and causality with experts in other fields, including
social psychology and econometrics. For the report, Steve came up with what we
believe to be the unique idea of using an analogy based on The Sneetches by Dr.
Seuss, to illustrate the issue of establishing a counterfactual for causal analysis (see
Box 21.2).

In addition to serving on study committees, Steve served on oversight committees
for the NRC. Having early on served as member and chair of CNSTAT, 20 years
later he served two terms—from 1998 to 2004—on the advisory committee to the
Division of Behavioral and Social Sciences and Education, which oversees the
portfolios of a number of boards and standing committees, including CNSTAT.
In 1999 Steve was elected to the NAS, and while he continued to serve on study
committees, his oversight role shifted to that body.

Box 21.2 From The Sneetches to Causal Inference Theory
. . . Those who attempt to identify the presence or absence of discrimination
typically observe an individual’s race (e.g., black) and a particular outcome
(e.g., earnings) and try to determine whether that outcome would have been
different had the individual been of a different race (e.g., white). In other
words, to measure discrimination researchers must answer the counterfactual

(continued)
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question: What would have happened to a nonwhite individual if he or she
had been white? . . .

To illustrate the problem, we turn to a classic Dr. Seuss book, The
Sneetches (published in 1961), which describes a society of two races dis-
tinguished by markings on their bellies. In the story, one race of Sneetches is
afforded certain privileges for having stars on their bellies, and the other race,
lacking these markings, is denied those same privileges. There are, however,
Star-On and Star-Off machines that can alter the belly and therefore the race
of both Plain-Belly and Star-Belly Sneetches. Thanks to these machines, an
individual Sneetch’s racial status and various outcomes could be observed
more than once, both as a Plain-Belly and a Star-Belly Sneetch.

In The Sneetches, . . . one could readily answer the counterfactual ques-
tion, saying with certainty what would have happened to a Plain-Belly
Sneetch had he or she been a Star-Belly Sneetch (or vice versa) . . . . [Yet]
it is nearly impossible in the real world to observe the difference in outcomes
across race for a single person; one must instead draw causal inferences.

SOURCE: Chapter 5, Causal inference and the assessment of racial
discrimination. National Research Council. 2004.Measuring Racial Discrim-
ination. Washington, DC: The National Academies Press. doi: https://doi.org/
10.17226/10887.

Service to the NRC Report Review Committee

Deserving special mention is Steve’s role as member and cochair of the RRC
through which he profoundly affected the NRC study process in ways that elevated
statistical rigor and evidence-based work NRC-wide. As Porter describes in the third
section of this chapter, Steve contributed to the institutional review process at all
three levels: (1) as reviewer providing insightful comments on draft reports, (2) as
RRC monitor assessing whether or not the authoring committee had fully addressed
all of the reviewers’ comments, and (3) as RRC cochair recommending public
release of the report after a comprehensive review process had been satisfactorily
completed. In each role, Steve was well known for his high standards.

Not only Porter, but also Connie and Mike, saw Steve in action many times on
the RRC because we were often consulted by project staff and the RRC regarding
reports that raised particularly contentious issues regarding the quality of the
evidence. We were also consulted by study staff from other units in the NRC as
to how best to prepare for what they were sure would be thunderbolts from on high
when their reports entered review. Indeed, Connie was often asked to accompany
study staff when, at the very beginning of the study process, they had to seek
approval of the statement of task and plan of work by the NRC Governing Board

http://dx.doi.org/10.17226/10887
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Executive Committee (GBEC) and knew they would encounter Steve. He faithfully
dialed into those monthly GBEC meetings and in his role as RRC cochair would
raise questions about the scope and approach of a proposed study and invariably
suggest that one or more statisticians be added to the committee slate. It is not too
much to say that Steve was probably one of the most influential of the RRC’s leaders
over its long existence dating back to 1969.

Service to the National Academy of Sciences

Steve’s participation in activities of the honorific NAS included service:

• Onmembership committees for most years from 2001 to 2009 and again in 2013–
2014

• As chair of Section 32: Applied Mathematical Sciences, from 2006 to 2009
• On the Editorial Board of the Proceedings of the National Academy of Sciences

in 2011–2012
• On the NAS Public Welfare Medal Selection Committee from 2014 to 2016
• On the NAS Council and its Executive Committee from 2013 to 2016
• On NAS Council committees on scientific programs, membership affairs, and

international affairs from 2013 to 2016
• On the NAS Committee on Executive Compensation from 2013 to 2016

Through his NAS service, Steve was in a position to build the influence of
statistics through promoting membership for outstanding individuals in the field.
He also reached the highest levels of the NAS, serving on the NAS Council and
its Executive Committee. All NAS members are giants in their fields, but few have
contributed as much to the NAS and the NRC, and thereby to the nation, as Steve
Fienberg.

21.3 Contributions to Public Policy Through Statistical Rigor

All 17 NRC consensus study committees that Steve served on (a few times as
chair) had a methodological focus. Some studies involved meta-analysis, where a
summary of the methodological findings was needed to provide readers with an
understanding of what is known about the strength of the associations, especially
the causal linkages, for some response of interest. This was generally accomplished
through the application of one or more statistical models. Some studies described a
variety of methodological approaches that were or could be used to answer policy
questions of current interest, along with the pros and cons of adopting each of
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these approaches, and whether any were preferable. Below we briefly describe five
examples of these methodological studies that addressed important policy issues
that are still highly relevant today: bilingual education, use of the polygraph, racial
discrimination, terrorism, and illegal immigration.

It is important to point out that every NRC report reflects the consensus views
of all committee members (unless a dissent is written). Therefore, while Steve was
one of several voices on all these reports—albeit a very strong one—we do not
know which of the various methods mentioned in each study were initially raised
by him. What we do know is that he approved each committee’s findings and
recommendations. Furthermore, for two of the five studies we review—bilingual
education and use of the polygraph—Steve chaired the committee and therefore
played a leading role in arriving at committee consensus.

Assessing Evaluation Studies: The Case of Bilingual Education
Strategies (1992)

This study, which Steve chaired, was tasked with evaluating the two then-most
prominent studies on the benefits of bilingual education programs, one being a
national longitudinal study of the benefits of various approaches to teaching limited-
English-proficient students, and the other a longitudinal study comparing three
different instructional strategies for this population of students: immersion where
teachers understand Spanish but respond in English, early exit where students are
placed in classes taught in English as soon as possible, and late exit where both
languages are maintained over a longer period of time. The committee was asked to
review the data collection and analysis carried out in these two studies, determine
whether additional analyses would strengthen the findings, and suggest alternative
ways to compare the different instructional strategies. The report made clear that
statistical models used to support public policies needed to be carefully evaluated
for their assumed associations and for their causal inferences:

Users of statistical methods often wish to draw causal conclusions, for example, from
programs to achievement outcomes. This is especially true in a policy setting. If one
concludes that when a school follows approach X to bilingual education, the performance
and achievement of the students will be Y, one is claiming, at least in a loose sense,
that X “causes” Y. The notion of which [research] designs allow conclusions about the
causal effects of treatments is critical to an appreciation of the evaluation of alternative
bilingual education programs . . . There are no general sufficient conditions that can be
used to declare and defend a claim that X “causes” Y. The evidence used to support such
claims varies substantially with the subject matter under investigation and the technology
available for measurement. Statistical methodology alone is of limited value in the process
of inferring causation. Furthermore, consensus on causality criteria evolves over time
among practitioners in different scientific lines of inquiry (p. 13).
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Table 21.1 Expected results of a polygraph test procedure with an accuracy index of 0.90 in a
hypothetical population of 10,000 examinees that includes 10 spies . . . [if detection threshold is
set to detect the great majority (80 percent) of spies]. (Box 21.3 defines “Accuracy Index”)

Examinee’s true condition
Test result Spy Non-spy Total

“Fail” test 8 1598 1606
“Pass” test 2 8392 8394
Total 10 9990 10,000

The Polygraph and Lie Detection (2003)2

The committee that issued this report was tasked with examining the scientific
literature of 50 studies in a controlled laboratory environment to arrive at a summary
estimate of the false-negative and false-positive rates given the application of
polygraph technology to the screening of employees. The existing literature was
substantially larger than 50 studies, but the panel winnowed this down to the final
50 studies by requiring the studies used to meet the following standards before
being included in this meta-analysis: (1) documentation of each study needed to
be sufficient to allow one to reproduce the analysis; (2) each study needed to use an
independent assessment of the truth of each subject; (3) each study needed to include
both innocent and guilty individuals; (4) each study needed to support an accuracy
analysis given that all cases were classified as either deceptive or nondeceptive; (5)
measuring and scoring had to be carried out by individuals who did not know which
subjects were guilty or innocent; and (6) the study had to make use of an appropriate
method for assigning experimental subjects to experimental groups.

A key result of this study is presented in Table 21.1 (see reference in Footnote
#2, Table 2-1, p. 48) of what might result from using a polygraph screening tool on
10,000 employees where 10 are known to be bad actors: This table was instrumental
in changing the view of Los Alamos concerning the use of polygraph methods to
screen employees for spying and sabotage.

Box 21.3 Accuracy Index
Note: The accuracy index is a joint measure (described in the report) that
combines the false-negative rate of a diagnostic’s ability to identify spies for
the subpopulation of spies and the false-positive rate of a diagnostic’s ability
to identify non-spies for the non-spy subpopulation. One way of getting an
accuracy index of 0.90 is with a false-negative rate of identifying spies for

(continued)

2National Research Council. 2003. The Polygraph and Lie Detection. Washington, D.C.: The
National Academies Press. https://doi.org/10.17226/10420

http://dx.doi.org/10.17226/10420
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the spy subpopulation of 0.20 and a false-positive rate of 0.16 of identifying
non-spies for the non-spy population. These rates are close to the average
performance of polygraph instruments empirically tested in the literature.

Assume that there are 10,000 individuals in an organization, including
9990 nonspies and 10 spies. Then if everyone is administered the test, the
number of individuals that will be incorrectly identified as spies in the non-
spy population will be 0.16 × 9990 = 1598, presumably all of whom will
have to be investigated. Consequently, the number of individuals correctly
identified as non-spies on the non-spy subpopulation will be 8392. Further,
the number of actual spies missed will be 0.20 × 10 = 2, and consequently
the number of spies correctly identified as such will be 0.80 × 10 = 8. So
two spies will be missed out of 10. If one wishes to keep the accuracy index
at 0.90, and one wants the number of false positives to be reduced from 1598,
the number of missed spies will grow (possibly much) larger than 2 out of 10.

Measuring Racial Discrimination (2004)

This study was tasked to “consider the definition of racial discrimination, assess
current methodologies for measuring it, identify new approaches, and make rec-
ommendations about the best broad methodological approaches” (p. 1). In its
comprehensive review of relevant methodologies, the committee noted the follow-
ing:

Research design is critical to the ability to draw causal inferences from data analysis. For
purposes of causal inference, there is a hierarchy of approaches to data collection. As
one moves from meticulously designed and executed laboratory experiments through the
variety of studies based on observational data, increasingly strong assumptions are needed
to support the claim that X “causes” Y. The more careful and rigorous the design and
control, the stronger are the inferences that can be drawn, provided that the design and
control are used to address the causal question of interest. . . . Alternatively, the available
data may provide information on differential outcomes (e.g., wage rates) for racial groups
together with other variables that the researcher may use to infer the possible role of
race-based discrimination. In such passive observation, the researcher lacks control over
the assignment of treatments to subjects and attempts to compensate for this lack by
“statistically controlling” for possible confounding variables . . . In such circumstances,
causal inferences can be controversial (p. 83).

The key methodological contribution of this report can be found in Chapter 7,
“Statistical Analysis of Observational Data.” This is an extremely careful discussion
of how far one can use regression-type models on observational data to assess
the degree of discrimination. The chapter contains the arguments that are used
to infer from a regression approach whether a difference should be attributed to
discrimination. In addition, the caveats that one must be aware of are tied into the
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modeling in a comprehensive discussion of this issue. The degree of care as to how
far one can take this argument can be seen from the following:

More generally, we will often be hampered in our ability to infer discriminatory behavior
on the basis of regression decompositions because we can never be sure we have included
all of the relevant controls in the model. We must be able to control for the relevant
variables well enough to approximate closely the hypothetical counterfactual in which only
race has been changed . . . .The use of statistical models, such as multiple regressions, to
draw valid inferences about discriminatory behavior requires appropriate data and methods,
coupled with a sufficient understanding of the process being studied to justify the necessary
assumptions (p. 158).

Protecting Individual Privacy in the Struggle Against Terrorists
(2008)

This study was an attempt to identify data mining methods that could be used to help
identify individuals that were planning to help in or to commit acts of terrorism, in a
way that protected the privacy of innocent individuals. It was pointed out that some
machine learning methods could be very helpful in some tasks, such as identifying
luggage that was used to transport weapons, etc. A major contribution of this study
was a framework that could be used to evaluate the effectiveness of a program for
use in identifying terrorists. The use of specific approaches that had a strong causal
interpretation was greatly preferred to other approaches that were based on weak
associations, partly because of the resulting large number of false positives that can
result from the latter approach.

Options for Estimating Illegal Entries at the US-Mexico Border
(2013)

The statement of task for this study was to assess the flow of illegal migrants at
various portions of the border as a function of economic pressure, enforcement
effort, and geographic factors. Clearly linking these variables necessitated the use
of a statistical model. The committee discussed different approaches to accomplish
this, including network sampling, various probability models (especially the geo-
metric distribution for successive attempts at illegal entering), regression models,
spatiotemporal processes, and agent-based modeling. The view that the committee
expressed for how much to trust statistical models in this context was as follows:

Even though the available surveys do not directly address all questions of interest to DHS
. . . if a statistical model agrees with the findings of the surveys on those aspects of flow that
the surveys do capture, then one can reasonably expect that the model has predictive power
for estimating other relevant aspects of flows. Similarly, if a model produces results that are
not supported by previous data, then one of three conclusions is possible: the model does not
fit the data well, the migration process has changed significantly over time, or both of these
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conditions apply. The model must be flexible, and one should expect that it will be necessary
to extend it when new factors come into play, leading to a new round of model retrofitting
and validation. Beyond timeliness and the possibility of greater accuracy, modeling has
additional advantages. A good model allows policy makers to explore “what if” scenarios
by changing model inputs. In particular, DHS can explore the impact of different allocations
of enforcement resource among border stations or the impact of new enforcement policies.
More importantly, the process of building a good model can create a stronger understanding
of the social process underlying immigration behavior (p. 97).

The committee was not sanguine about the predictive power of the older models
that the Department of Homeland Security and the United States Border Patrol had
employed previously:

. . . the situation at the border has changed markedly since 1997, and the panel has no
confidence that these older models, which antedate the drug corridors, modern enforcement
technology, and other innovations, can provide good guidance for the current era. Since the
older models are unlikely to have the correct form, it would probably be necessary to rebuild
them rather than just refit them with new data. While the policy environment can be updated
in a rebuilt model, another shortcoming of much survey-based regression type modeling is
the endogeneity of many of the migration determinants. In the presence of endogenous
covariates and dual causality, the ability to simulate counterfactuals is compromised (p.
100).

These various studies demonstrate Steve’s interest in statisticians playing a cen-
tral role in the various policy debates of our time, employing a variety of statistical
models in a conscientious manner to better understand how different factors are
related and at times to make causal inferential statements and recommendations. As
the passages quoted previously make clear, these studies to which Steve contributed
advocated the use of statistical models to answer questions about the impact of an
intervention or the causal nature of a change in some factor that was hypothesized to
be affecting some response of interest. It may be of interest to readers to contrast this
view with that of another leading statistical figure, David Freedman, who was well
known for his cautions against the use of statistical models in these circumstances
unless the models were strongly validated (see Box 21.4).

Box 21.4 Steve Fienberg vs. David Freedman: The Use of Statistical
Models in Support of Policy Analysis
David Freedman argued against the use of multiple regression, path analysis,
and related methods in an effort to infer causation from association. His
position can be summarized as arguing that unless the stochastic assumptions
one relied upon were fully validated, it was preferable for statisticians to
refrain from playing any role in policy debates. In contrast, Steve Fienberg
was adamant that statisticians needed to play an active role in any policy
question informed by data even when the statistical tools were somewhat
flawed.

It can be argued that the outstanding statistical public policy question
of recent times was whether the decennial census should be modified or

(continued)
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“adjusted” to take into consideration information on groups subject to differ-
ential undercoverage. In recent decennial censuses, a post-enumeration survey
and demographic analysis provided information on those missed and those
duplicated or otherwise counted in error in the census, and as a result there
was pressure to make use of this information to modify the census counts.
This topic was the focus of several National Academies studies. Neither
David Freedman nor Steve Fienberg served as a regular member on any of
these studies, but they both attended National Academies workshops on this
topic and both provided Congressional testimony. Steve Fienberg was a strong
advocate of adjustment of the census counts while David Freedman was
strongly opposed. To better understand their different views on the application
of statistical methods to public policy problems (and applications in general),
the reader may find Chapters 13 and 14 in W.M. Mason and S.E. Fienberg
(eds), Cohort Analysis in Social Research: Beyond the Identification Problem
(1985, Springer Verlag, NY), of interest.

21.4 Contributions to the Work of the Report Review
Committee

Of his many contributions to National Academies reports, Steve Fienberg’s broadest
impact was through his services on the Report Review Committee (RRC), which
is responsible for overseeing the reviews of all reports produced by Academies
committees. Steve served on the RRC for 11 years (July 2005 to June 2016);
and during the last 8 years, he cochaired this prestigious committee, composed of
approximately 30 members of the National Academy of Sciences (NAS), National
Academy of Engineering (NAE), and Institute of Medicine (IOM, now known as
the National Academy of Medicine). As Steve succinctly described the role of the
RRC, “Our mission is to save the Academies some embarrassment.”

Contributions as Report Review Monitor

During his time on the RRC, Steve monitored the reviews of 35 reports.3 The
responsibilities of the RRC monitor are similar to those of a journal editor:4

3In addition to serving as RRC monitor and cochair, Steve reviewed a total of 15 National
Academies reports. We thank RRC staff member Dalia Hedges, who provided the appended lists
of the reports that Steve monitored and reviewed.
4One important difference is that the review comments on National Academies reports are
submitted to the institution, which is represented by the RRC monitor and a review coordinator
appointed by the Academies division overseeing the study. They together assess the adequacy of
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(1) making certain the panel of reviewers reflects an appropriately diverse range
of expertise and perspectives, (2) providing a summary of the most important
issues raised by reviewers, and (3) evaluating the committee’s responses to review
comments and revisions to the draft report. As monitor, Steve paid particular
attention to the composition of the review panel and frequently added statisticians
and other experts, as warranted. Steve was also known for his rigor in evaluating the
changes made to the report in response to review comments—frequently calling for
further revisions. As he pointed out, one important distinction between the review
of journal articles and Academies reports is that reviewers of Academies reports
are specifically asked whether the draft report addresses the statement of task that
had been approved by the institution and whether the committee’s findings and
recommendations are supported by evidence and arguments. Steve never hesitated
to challenge committees when he believed that they had gone beyond their task
statements or that their recommendations lacked convincing evidence.

During his 11-year tenure on the RRC, Steve monitored the reviews of more
than three reports a year.5 Moreover, he even handled reports well outside the field
of statistics on such diverse topics as global security,6 the FBI’s investigation of
the 2001 Anthrax letters,7 K-12 STEM education,8 family caregiving,9 and even a
classified report on unmanned undersea vehicles.10 Steve told an RRC staff member,
“Some people like to be narrow! I try to pick assignments to learn something
new.” Even when he lacked subject matter expertise for a report, he made a notable
contribution to the review process. As Steve explained to his RRC colleagues, every
report of the National Academies should be comprehensible to broad audiences
of scientists and engineers, and furthermore many reports outside the field of
statistics deal with methodological issues of interest to statisticians. [Lincoln Moses,
a Stanford University statistician and former RRCmember, went so far as to suggest
that every Academies report should be reviewed by at least one statistician!]

the authoring committee’s responses to all review comments. The reviewers themselves never see
these responses. Nor do they see the revisions to the report until it is published.
5The review of a National Academies report typically takes 10–12 weeks to complete (i.e., from
the time the draft is sent to reviewer to the date of RRC signoff).
6National Academy of Sciences. 2009. Global Security Engagement: A New Model for Coopera-
tive Threat Reduction. Washington, DC: The National Academies Press. https://doi.org/10.17226/
12583
7National Research Council. 2011. Review of the Scientific Approaches Used During the FBI’s
Investigation of the 2001 Anthrax Letters. Washington, DC: The National Academies Press. https:/
/doi.org/10.17226/13098
8National Research Council. 2013. Monitoring Progress Toward Successful K-12 STEM Edu-
cation: A Nation Advancing?. Washington, DC: The National Academies Press. https://doi.org/
10.17226/13509
9National Academies of Sciences, Engineering, and Medicine. 2016. Families Caring for an Aging
America. Washington, DC: The National Academies Press. https://doi.org/10.17226/23606
10National Academies of Sciences, Engineering, and Medicine. 2016. Mainstreaming Unmanned
Undersea Vehicles into Future U.S. Naval Operations: Abbreviated Version of a Restricted Report.
Washington, DC: The National Academies Press. https://doi.org/10.17226/21862

http://dx.doi.org/10.17226/12583
http://dx.doi.org/10.17226/13098
http://dx.doi.org/10.17226/13509
http://dx.doi.org/10.17226/23606
http://dx.doi.org/10.17226/21862
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Contributions as RRC Cochair

The total number and diversity of reports that Steve monitored is impressive.
However, even more impressive was his leadership as RRC cochair, a role he
shared for 8 years with NAE member Chris Whipple. The RRC cochairs are
responsible for selecting the RRC monitors to oversee the review process as well
as for “signing off on” (i.e., approving) the release of Academies reports, based
on the advice of the RRC monitor and the review “coordinator” appointed by the
Academies division overseeing the study. Chris and Steve split this responsibility,
each signing off on nearly 400 reports during their 8-year tenure. While many
of these signoffs were straightforward, for every report Steve made it a point to
understand the committee’s major recommendations, the most controversial issues
raised by reviewers, and how these issues were resolved. Not infrequently Steve
helped to adjudicate disagreements arising either at the end of the review process
or even earlier when the RRC monitor expressed serious concerns about review
criticisms. At the same time Steve understood the limitations of his authority to
withhold RRC signoff—commenting once that “If I had two noses, I would hold
them both while signing off” and similarly “Much like my father used to say, this
[report] is now ‘less worse.’ I am ready to sign off.”

As RRC cochair, Steve also served an ex officio member of the NRC Governing
Board Executive Committee, which is responsible for approving all proposals for
new National Academies projects. In this role Steve read every project prospectus
and frequently commented on issues that he expected might come up later in
report review (e.g., an ambiguous statement of task or flaws in the proposed study
methodology). It is impossible to measure, of course, how many problems in
report review were avoided because of Steve’s comments on project prospectuses,
but his impact was well recognized by Academies staff members whose project
prospectuses he critiqued. Steve also was a strong advocate for involving NAS
members on Academies committees and especially as report reviewers. In this
regard, he made an effort to include at least one NAS member on every review
panel and he frequently suggested candidates—even for reports outside the field of
statistics. During his tenure as RRC cochair, the participation of NAS members in
report review increased appreciably.

With responsibility for signing off on nearly 400 reports in 8 years, it is not
surprising that Steve had e-mail and phone interactions with the RRC staff almost
daily. Although at times serving as the RRC cochair seemed like a full-time job, he
performed this role without any financial compensation.

Steve’s leadership was very apparent at the RRC annual meetings, at which the
RRC members, the presidents of the three Academies, and senior staff considered
the lessons learned from 20 or so case studies, which described the review process
for reports handled by the RRC during the past year. Steve and Chris used this
meeting as a training session for the RRC members, who typically monitor one or
more report reviews a year. The discussions focused on the substantive issues arising
in review and how they were resolved. Steve was candid in his assessment of the
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issues raised in the case studies and did not pull any punches. The RRCmeeting was
also an opportunity to suggest changes in institutional review practices and policies,
one of which pertaining to original data collection and analyses is described below.

Examples: Forensic Science, Assessments of Doctoral Research
Programs

While the enormity and breadth of Steve’s involvement in the Academies report
review process is staggering, his substantive contributions may best be understood
by describing his direct involvement in three reports, based largely on material from
case studies that were prepared by the RRC staff for the annual meetings.

Given his particular interest in the forensic sciences, it is not surprising that
Steve eagerly volunteered to monitor the review of a report on assessing eyewitness
identification.11 He made certain that 3 of the 14 reviewers had statistical expertise.
While the 14 reviewers raised several substantive issues, Steve focused on one
particularly contentious concern that was mentioned by the three statisticians: the
committee’s overly enthusiastic endorsement of the receiver operating characteristic
(ROC) curve analysis.12 In their summary of key review issues, Steve and the review
coordinator, a pathologist, urged the authoring committee to temper its enthusiasm
for ROC:

The committee needs to follow the suggestion of Reviewer H to ‘dial back’ its support
of ROC analysis as the methodology to advance the applied research literature, as review
comments indicated that the complexities have not been adequately considered. The
discussion of the ROC approach appears to be simplistic and fails to recognize the need
to set tools in the context of modern statistical research methodology.13

While the committee modified its detailed description of the ROC analysis, Steve
was not fully satisfied and called for further changes: “We are not proposing that
the committee should say that the ROC work should be dismissed. The report
can still say that it opens a promising avenue of research, while at the same time
acknowledging that it is far from a final word or definitive methodology.”14 To
help resolve this disagreement Steve and the coordinator participated in a late-night
conference call with 11 of the 14 committee members, who subsequently agreed to
further modifications of the ROC description. It was later learned that a statistician

11National Research Council, 2014: Identifying the Culprit: Assessing Eyewitness Identification.
Washington, DC: The National Academies Press. https://www.nap.edu/catalog/18891/identifying-
the-culprit-assessing-eyewitness-identification
12The use of receiver operating receiver curves to measure the accuracy of eyewitness identification
decisions has been widely debated. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256436/.
13From a case study that was prepared by the RRC staff for discussion at the 2015 RRC annual
meeting.
14Ibid.

https://www.nap.edu/catalog/18891/identifying-the-culprit-assessing-eyewitness-identification
https://www.nap.edu/catalog/18891/identifying-the-culprit-assessing-eyewitness-identification
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256436/
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on the committee fully agreed with Steve’s reservations, but was outnumbered
by several members who were ROC enthusiasts. It took Steve’s perseverance to
effectuate this change in the committee’s report.

The second and third examples of Steve’s acumen as an RRC monitor involved
two Academies reports on the assessment of doctoral programs: the first of which
proposed a methodology to be used in the assessment15 and the second presented
the assessment results.16 To understand the motivation for these reports, some
historical information is helpful. The Academies had issued two earlier doctoral
program assessments in 199517 and 1982,18 both of which provided extensive data
on doctoral programs in a wide range of fields in the physical sciences, life sciences,
behavioral and social sciences, engineering, and humanities. Although both reports
included objective measures of program size, faculty publication and citation rates,
research funding, student outcomes and support, average GRE scores, and other
program characteristics, most of the public attention focused on the reputational
ratings derived from opinion surveys of faculty members in each field. The goal of
this third assessment was to include only objective measures and avoid reputational
rankings.

As might be expected, Steve was particularly interested in monitoring the review
of the 2009 report (Guide) since it proposed novel methodologies. He actively
collaborated with the division review coordinator, Lyle Jones, a former RRC
member and psychometrician from the University of North Carolina at Chapel Hill,
who had cochaired the committee that had authored the 1982 assessment report. The
proposed methodology aggregated 20 objective measures, using two very different
weighting schemes. One set of weights was determined by the relative importance
of each measure, based on the opinions of a small sample of faculty members in the
field. The second set of weights was derived from a stepwise multiple regression
analysis explaining reputational program ratings that were based on the opinions
of another small sample of faculty members in each field. The results of these two
weighting schemes were then to be combined to provide an interquartile ranking for
each doctoral program. Although reputational ratings for a subset of programs in

15National Research Council. 2009. A Guide to the Methodology of the National Research Council
Assessment of Doctorate Programs. Washington, DC: The National Academies Press. https://
doi.org/10.17226/12676
16National Research Council. 2011. A Data-Based Assessment of Research-Doctorate Programs
in the United States (with CD). Washington, DC: The National Academies Press. https://doi.org/
10.17226/12994
17National Research Council. 1995. Research-Doctorate Programs in the United States: Continuity
and Change. Washington, DC: The National Academies Press.
18Jones, Lyle V., Gardner Lindzey, and Porter E. Coggeshall. 1982. An Assessment of Research-
Doctorate Programs in the United States (five volumes). Washington, DC: The National Academies
Press. This 1982 report was undertaken under the auspices of the Conference Board of Associated
Research Councils in the United States, which included representatives of the American Council of
Learned Societies, the American Council on Education, the Social Science Research Council, and
the National Research Council. The 1995 report was undertaken by the National Research Council
alone.

http://dx.doi.org/10.17226/12676
http://dx.doi.org/10.17226/12994


21 Fostering Statistical Rigor for Evidence-Based Policy at the National. . . 403

each field were compiled to calculate the second set of weights, they were not to be
reported.

Given the widespread interest in this doctoral program assessment, Steve and
Lyle thought that it was imperative to enlist a highly diverse review panel. Twenty
reviewers were selected, including university presidents and provosts, graduate
deans and faculty, higher education analysts, statisticians and survey methodol-
ogists, and even a few recent doctorate recipients.19 Steve and Lyle identified
two overarching concerns raised by these reviewers: (1) confusing and incomplete
descriptions of the compiled program data and the proposed analytical approach and
(2) apparent flaws in the proposed statistical methodologies.20 To address the first
concern, extensive revisions were made to the text and a new chapter was added
with examples illustrating the calculation of the program rankings in two selected
fields. With regard to the second concern, a reviewer, who expressed concern about
the problem of collinearity in applying the stepwise linear regression to derive
weights for the 20 measures, suggested that a principal components technique
be used to transform the variables prior to the regression analysis. With Steve’s
encouragement, the committee adopted this reviewer’s suggestion.

While Steve and Lyle were generally pleased with the extensive revisions to
the draft report, they decided to take the unusual step of sending the revised
draft to eight of the original reviewers for their overall reactions since so much
new material had been added to the report. In this second round of review,
additional technical issues were raised, based on a clearer understanding of the
proposed methodologies. Of particular concern to Steve was the complex technique
for estimating the interquartile range of program rankings, which the committee
preferred to provide instead of a central ranking with a confidence interval. The
estimation of this interquartile range for each doctoral program required calculating
500 ratings based on randomly generated program data and weights and comparing
each rating with similarly generated ratings for other doctoral programs in the field.
The 175th and 325th highest rankings for each program determined the endpoints
of its interquartile ratings. After several exchanges with the committee statistician
who had formulated this Monte Carlo approach, Steve agreed that the method could
be used as long as it was clearly described in the report.21

The review process for the 2009 Guide involved two rounds of comments and
took nearly 11 months to complete. From Steve’s perspective the most helpful
improvements were in clarifying and expanding the descriptions of the data
and methodologies—especially the addition of a 20-page technical appendix that
included a one-page schematic of the entire ranking process.

19The names of the 20 reviewers may be found in the Preface and Acknowledgments section of
the 2009 report.
20From a case study that was prepared by the RRC staff for discussion at the 2009 RRC annual
meeting
21The complex technique for estimating the interquartile range of program rankings is described
in Appendix A of the 2009 report.
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By the time that the RRC had signed off on the Guide in June 2009, the project
was already 18 months behind schedule, and there was considerable pressure from
the anxious academic community to issue the doctoral program rankings as soon as
possible. The draft Assessment report22 was ready for review 7 months later and sent
to 16 reviewers, 7 of whom had submitted thoughtful comments on theGuide.Along
with this draft report, reviewers were provided the final version of the 2009 Guide
and access to Excel spreadsheets containing the data tables on the 20 measures and
interquartile ranking for each of the 5000 (unidentified23) doctoral programs. In
addition to the standard set of review questions, Steve and Lyle asked reviewers to
consider three questions:24

1. Are the data, methodology, and statistical analyses described in a comprehensible
fashion?

2. Are the data tables presented in a clear and usable fashion, given the amount of
data included?

3. How can the User’s Guide [i.e., the 2009 report] be improved?

While the reviewers offered numerous suggestions for improving the presenta-
tion of all the assessment material, none appeared to have tried to replicate the
rankings using data from the spreadsheets. Steve felt strongly that the program
rankings should be validated by an independent group of “auditors.” He personally
recruited three statisticians, who were given the electronic database and agreed to
try to replicate the program rankings in 6 weeks. One of the auditors, using the same
statistical software package that the committee had applied, was able to reproduce
the committee’s program rankings. However, the other two auditors, using different
statistical software, found some appreciable differences for numerous program
rankings. More importantly, all three auditors discovered that the ratings derived
from the regression-based weights were very poorly correlated with the ratings using
weights constructed from faculty-assigned importance of the 20 measures. Steve and
Lyle summarized the auditors’ findings:

All three auditors have reached the same conclusion: the committee’s combined rankings
should not be published. Given the outstanding credentials of these three auditors and the
compelling evidence provided in their detailed reports, we are deeply concerned. As Auditor
#2 observed, “If the committee dares publish the rankings as is, there will be aggrieved
departments complaining loudly on sensible grounds that, in their own careful and faithful

22The 2011 assessment report presents a brief description of the doctoral program data collected
and how the rankings were calculated, including a detailed example of this calculation for a
program in economics.
23The assessment data covered doctoral programs in 61 fields at 222 institutions. The names of
the institutions and departments were not identified in the spreadsheet to prevent any reviewers,
monitor, coordinator, and staff from leaking the assessment results before the report was publicly
released.
24From a case study that was prepared by the RRC staff for discussion at the 2011 RRC annual
meeting.
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implementation of the NRC Committee’s methodology, they calculate a better ranking than
they have been given.”25

One of the auditors suggested that two separate sets of program rankings might
be issued, based on the alternative weighting schemes. Steve strongly endorsed this
suggestion since the two sets could be presented as illustrations of how the data
compiled by the committee might be used and would emphasize that no single set
of weights works well for all doctoral programs. The committee, after consulting
with the Academies leadership, adopted this suggestion and also decided—given
the uncertainties in the data—to expand the ranking ranges to the fifth and 95th
percentiles (instead of the first and third quartiles). At Steve’s urging, the following
paragraph was inserted on the first page of the report’s Summary:

This report also includes illustrations of how the dataset can be used to produce rankings
of doctoral programs, based on the importance of individual measures to various users.
Two of the approaches provided in the report are intended to be illustrative of constructing
data-based ranges of rankings that reflect values to assess program quality determined by
the faculty who teach in these programs. Other ranges of rankings can also be produced
reflecting the values of the users. The production of rankings from measures of quantitative
data turned out to be more complicated and to have greater uncertainty than originally
thought. As a consequence, the illustrative rankings are neither endorsed nor recommended
by the National Research Council (NRC) as an authoritative conclusion about the relative
quality of doctoral programs [emphasis added].26

While Steve and Lyle were pleased with this explanation, they expressed serious
concerns that the body of the report was inconsistent with this caution—implying
instead that the alternative program rankings were definitive and, in some fields,
might even be combined. They asked for further changes to the discussions in
the body of the report to emphasize that the program rankings presented in the
assessment were illustrative.

Frustrated by the long delays in the review process (nearly 6 months), the
committee chair informed the National Academies leadership that he would resign
if the report did not clear review in 5 days.27 Concerned that the chair’s resignation
at this late stage in the study would undermine the credibility of the report, the
NAS and NAE presidents informed Steve that they would assume his and Lyle’s
responsibilities for the completion of the review process. The presidents promptly
signed off on the report after some modest changes were made, although Steve’s
primary concern remained that the rankings would be interpreted by most readers
as definitive program rankings by the National Academies committee.

While disappointed with the outcome, Steve understood that the RRC cochairs
serve as representatives of the NRC chair (NAS president) and that the final decision
about whether a National Academies report can be released is ultimately up to the

25Ibid.
26National Research Council. 2011. Op. cit., p. 1
27From a case study that was prepared by the RRC staff for discussion at the 2011 RRC annual
meeting.
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NRC chair. In the past there have been a few reports for which the RRC cochairs
consulted the NRC chair about specific review issues before signing off. However,
this Assessment report is the only instance where the RRC cochairs (and division
coordinator) were overruled by the NRC chair.

As it turned out, Steve’s concern proved to be well founded. The 2011 Assess-
ment report received widespread criticisms from many in the academic community
who did not perceive the program rankings to be “illustrative” and questioned
their validity. Among the most vociferous critics was Stephen Stigler,28 one of the
statisticians who had reviewed both the 2009 and 2011 reports.

Steve’s unsuccessful efforts to salvage this report were not entirely in vain; in
fact, his efforts had an important and long-lasting impact on the report review
process. After consultation with the National Academies leadership, the RRC
adopted formal “Review Guidelines for Reports Involving Original Data Collection,
Analysis, and Modeling Activities.” These guidelines, which have been extensively
used by the RRC,29 raise three general questions for committees as well as reviewers
of their reports to consider:

1. Is the analytical approach fully documented, and are the data publicly available
so that the results can be replicated?

2. How have the data and analyses been checked for errors?
3. Is the analytical methodology appropriate and representative of best practices?

The two-page guidelines, which contain detailed advice for each question, are
typically shared with committees and their project staff before they undertake any
data collection and/or analyses activities so that subsequent difficulties in report
review can be alleviated. Steve was instrumental in calling attention to this important
issue and in formulating these guidelines, which may be his most important legacy
to the RRC and to the National Academies deliberative process.

National Academies Reports Monitored by Steve Fienberg

[in chronological order]

National Research Council. 2005. Measuring Literacy: Performance Levels for Adults. Washing-
ton, DC: The National Academies Press. https://doi.org/10.17226/11267

Institute of Medicine. 2006a. Disposition of the Air Force Health Study: Interim Letter Report.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11483.

Institute of Medicine. 2006b. Disposition of the Air Force Health Study. Washington, DC: The
National Academies Press. https://doi.org/10.17226/11590.

28The Chronical of Higher Education. September 30, 2010. “A Critic Sees Deep Problems in the
Doctoral Rankings”; https://www.chronicle.com/article/A-Critic-Sees-Deep-Problems-in/124725
29Much to the surprise of many RRC members, it was discovered that as many as 5 percent of all
National Academies studies involved some form of original data collection, analyses, or modeling.
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National Research Council. 2006.Once, Only Once, and in the Right Place: Residence Rules in the
Decennial Census. Washington, DC: The National Academies Press. https://doi.org/10.17226/
11727.

National Research Council. 2007. Engaging Privacy and Information Technology in a Digital Age.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11896.

National Research Council. 2009a. Responding to Federal Register Call for Comments: Letter
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22.1 Introduction

National statistical institutes or agencies are responsible for the production of
reliable statistical information about economic and social developments in a society.
This information is often referred to as official statistics. The required data are
obtained via registers or collected through surveys, usually on the basis of a prob-
ability sample. For decades, design-based and model-assisted inference methods
have been the preferred methods for national statistical institutes to produce official
statistics. The prevailing opinion at national statistical institutes is that official
statistics should not be based on explicit statistical model assumptions that are hard
to verify. On the other hand, there is increasing pressure for national statistical
institutes to reduce administrative costs and response burden. At the same time,
users of official statistics more and more expect that national statistical institutes
provide this information in a more timely fashion, at a higher frequency and
at a more detailed level. In addition, declining response rates compromise the
quality of sample estimates. These developments stimulate the search for alternative
sources of statistical information. Such sources could include administrative data
like tax registers, non-probability samples or other large data sets – so called
big data – that are generated as a by-product of processes not directly related to
statistical production purposes. Examples of big data include time and location of
network activity available from mobile phone companies, social media messages
from Twitter and Facebook, sensor data, and internet search behavior from Google
Trends. A common problem with this type of data sources is that the process
that generates the data is unknown and likely selective with respect to the target
population.

The question arises to what extent can national statistical institutes in the future
afford to exclusively use traditional probability samples in combination with design-
based or model-assisted inference procedures for the production of official statistics.
The major drawback of this approach is that small sample sizes rapidly result
in unacceptably large design variances. This hampers the production of timely
statistics at a detailed level using design-based inference methods. Model-based
methods, for example, known from the small area estimation literature, can be used
to make more precise and timely predictions for detailed subpopulations. New data
sources can potentially be used as covariates in these models, since they come at a
high frequency and are therefore very timely and also cost effective. The advantage
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of using big data sources as covariates in models for sample surveys is that problems
with selectivity can be circumvented as detailed below. If, however, big data sources
are directly used to produce statistical information, then the potential selection bias
of these data sources must be accounted for. In this case statistical modelling also
plays a vital role.

The purpose of this chapter is to discuss the potentials and risks for national
statistical institutes of using these new data sources in combination with model-
based inference procedures for the production of official statistics. The chapter is
organized as follows. In Sect. 22.2, the traditional approach of probability sampling
in combination with design-based inference methods is reviewed. In Sect. 22.3,
the advantages of model-based inference procedures are described. In Sect. 22.4,
the pros and cons of new data sources or big data sources are described. In Sect.
22.5, the potentials of using these new data sources as covariates in model-based
inference procedures are discussed. In Sect. 22.6, different methods that account for
selection bias of non-probability samples are reviewed. Section 22.7 concludes with
a discussion of the challenges and issues of these new data sources and inference
methods for national statistical institutes.

22.2 The Role of Probability Sampling for Official Statistics

National statistical institutes gather and publish reliable statistical information about
finite populations, generally all people residing in a country or all enterprises
registered in a country. This information is often defined as totals, means, or
proportions. Consider a finite population U of size N. Let yi, i = 1, . . . , N, denote
the values of a variable of interest of population unit i. Population totals are typically
defined as Y =∑N

i=1yi . Means are simply obtained as Y = Y/N . This information
is not only required at the national level but also for all kind of subpopulations, like
municipalities, age classes, gender classes, etc. The population U can be divided in
D subpopulations or domains Ud of size Nd. In this case domain totals are defined
as Yd = ∑N

i=1δi,dyi , with δi, d an indicator taking a value equal to one if element i
belongs to domain d, and zero otherwise.

The population values for these variables are generally unknown. Until the
beginning of the twentieth century, this kind of information was obtained by a
complete census of the target population. This is very laborious and expensive. At
the beginning of the twentieth century, it gradually became clear that large data
sets are not a sufficient condition for valid inference. Despite an impressive 2.3
million respondents, the 1936 Literary Digest poll completely failed to correctly
predict the outcome of the US presidential elections, because both the sample and
the response were selective and not appropriately dealt with (Squire, 1988). This
and other polling failures provided a strong incentive to embrace the concept of
random sampling, which had been developed, mainly on the basis of the work of
Bowley (1926) and Neyman (1934), as a method of obtaining valid estimators for
finite population parameters based on a relative modest but representative sample,
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rather than on a complete census. Other important milestone papers are Hansen
and Hurwitz (1943), Narain (1951), and Horvitz and Thompson (1952). Under this
approach the probability sample s of size n is drawn from the target population
U with n ) N. Each element i in the population has a nonzero probability, say
π i, to be included in the sample. An estimator of the unknown population total
is obtained as the sum over the observations in the sample, expanded with the
so called design weights, i.e., Ŷ = ∑n

i=1diyi , with di = 1/π i. This estimation
procedure is called design-based since inference and is completely based on the
randomization distribution induced by the sampling design. Statistical modelling of
the observations obtained in the survey does not play any role so far.

National statistical institutes often have auxiliary information about the target
population from external sources, e.g., censuses and registers. This information
can be used to improve the precision of the sample estimates. One way is to
improve the efficiency of the sampling design, e.g., stratified sampling with optimal
allocation and sampling designs where selection probabilities are approximately
proportional to the target variable. Another way is to use this auxiliary information
in the estimation procedure via the so-called generalized regression estimator
proposed by Särndal et al. (1992). The generalized regression estimator expands
each observation in the sample with a regression weight such that the sum over
the weighted observations is an approximately design unbiased estimator of the
unknown population total. Let xi denote a vector containing q auxiliary variables
for which the population totals X = ∑N

i=1xi are known from a register or census.
The design weights di are adjusted such that the sum over the weighted auxiliary
variables in the sample equates to the known population totals, i.e.,

∑n
i=1wixi = X,

where wi are the regression weights. This results in a correction for groups that
are underrepresented in the sample, for example, due to selective nonresponse. The
regression estimator for the population total is now obtained as Ŷ R = ∑n

i=1wiyi .
Generally the purpose of a survey is not limited to estimates at the national level
but also to produce statistical information for subpopulations or domains. Direct
estimates for domain totals are obtained by Ŷ R

d =∑n
i=1wiδi,dyi .

In the model-assisted approach developed by Särndal et al. (1992), this estimator
is derived from a linear regression model that specifies the relationship between the
values of a certain target variable and a set of auxiliary variables for which the totals
in the finite target population are known, i.e., yi = β txi + ei. Most estimators known
from sampling theory can be derived as a special case of the generalized regression
estimator. Examples are the ratio estimator and post-stratification. Generalized
regression estimators are members of a larger class of calibration estimators (Deville
and Särnal 1992).

The generalized regression estimator has two very attractive properties. Although
this estimator is derived from a linear model, it is still approximately design-
unbiased. If the underlying linear model explains the variation of the target param-
eter in the population reasonably well, then the use of this auxiliary information
will result in a reduction of the design variance compared to the Horvitz-Thompson
estimator, and it might also decrease the bias due to selective nonresponse (Särndal
et al. 1992; Särndal and Swensson 1987; Bethlehem 1988; Särndal and Lundström
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2005). Model misspecification might result in an increase of the design variance but
the property that this estimator is approximately design-unbiased remains. From
this point of view, the generalized regression estimator is robust against model
misspecification. The linear model is only used to derive an estimator that uses
auxiliary information, but the resulting estimator is still judged by its design-based
properties, such as design expectation and design variance. This is the reason that
this approach is called model assisted.

Design-based and model-assisted inference is a very powerful concept since it is
based on a sound mathematical theory that shows how, under the right combination
of a random sample design and estimator, valid statistical inference can be made
about large finite populations based on relatively small samples. In addition, the
amount of uncertainty arising from relying on small samples can be quantified
under both approaches through the variance of the estimators. A strong advantage
of probability sampling in combination with a design-based or model-assisted
inference is that it has a built-in robustness against model misspecification. This
is useful in a production process where there is not much time for extensive model
evaluation. For these reasons, design-based and model-assisted inference is still used
in modern statistical science and is the standard for most national statistical institutes
for producing official statistics.

22.3 Towards Model-Based Inference in Official Statistics

Model-based inference refers to estimation procedures that rely on the probability
structure of an explicitly assumed statistical model, with the probability structure of
the sampling design playing a less pronounced role. This is the position taken by
authors like Gosh and Meeden (1997), Valliant et al. (2000), and Rao and Molina
(2015).

Results published by national statistical institutes must enjoy public confidence.
For decades, this has resulted in the prevailing opinion that methods used to produce
official statistics, particularly if they are used for planning and implementing
policies, must be free from model assumptions and should therefore be based on the
above-mentioned design-based and model-assisted approaches. The reason for this
is that models depend on assumptions that are hard to verify, which raises concerns
about the validity of the results. Design-based and model-assisted approaches,
however, have some limitations. In the case of small sample sizes, the design
variance of the sample estimates become unacceptably large, which makes the built-
in robustness against model misspecification of less use, and these approaches do not
handle measurement errors effectively. In such situations model-based estimation
procedures can be used as an alternative. The rapid rise of large data sets – so called
big data – that are generated as a by-product of processes not directly related to
statistical production purposes is another incentive for national statistical institutes
to move towards model-based inference procedures as will be detailed in Sects. 22.4,
22.5, and 22.6



416 J. van den Brakel

Important quality aspects of official statistics are accuracy, relevance, timeliness,
and comparability with preceding periods. Relevance of statistical information
increases with the level of detail and the frequency of the information. For policy
making, monthly figures at a low regional level are in general more relevant than
annual figures at the national level. Figures for reference period t are more relevant
if they become available in t + 1, instead of with a delay of multiple time lags.
Together these desiderata result in a detailed breakdown of a target population in
domains or subpopulations with respect to regions or socio-demographic classifica-
tions in combination with short reference periods. In such situations domain sample
sizes rapidly become too small to produce sufficiently precise domain estimates
with design-based or model-assisted procedures. As an alternative, model-based
procedures, which explicitly use a statistical model, can be used to improve the
effective sample size of a particular domain using information from other domains
or preceding sampling periods. These methods are in the literature referred to as
small area estimation, for example, Rao and Molina (2015) and Pfeffermann (2002,
2013).

Small area estimation is predominantly based on multilevel models. These
methods can be classified as area level models (Fay and Herriot, 1979) and unit
level models (Battese et al., 1988). These models are predominantly used to take
advantage of cross-sectional sample information that is observed in other domains.
In an area level model, the direct estimates of the domains are modelled in a
multilevel model, while in a unit level model the sampling units are the input
for a multilevel model. Both types of models consist of a regression component,
where available auxiliary information is used to explain the variation in the
survey data, and a random component, which describes the unexplained variation
between the domains. Through the regression component, sample information from
other domains is used to improve the precision of the estimates for each domain
separately. To define an area level model, a measurement error model is assumed for
the observed domain estimates; Ŷ R

d = Yd+ed , for domain d= 1, . . . ,D, with ed the
sampling errors which are assumed to be normally and independently distributed;
ed~N(0,ψd). Subsequently a linear model for the true population parameter is
assumed; Yd = xt

dβ + vd , with xd a vector of auxiliary information at the domain
level, β a vector with regression coefficients, and vd the random domain effects
that are assumed to be normally and independently distributed; vd ∼ N

(
0, σ 2

v

)
.

Assuming that the design variances ψ are known, estimates for β, vd, and σ 2
v can be

obtained with maximum likelihood methods or Bayesian methods. Finally model-
based predictions for Yd including approximations for its uncertainty can be derived.
See Rao and Molina (2015) for details. With a unit level model, a similar multilevel
model is defined but now at the level of the observations of the sampling units.
Below we further focus on the area level model, since most auxiliary information
from new data sources are fuzzy and difficult to match at the unit level but are often
available at the domain level.

Most surveys conducted by national statistical institutes are conducted repeatedly
over time. A natural approach for small area prediction is to extend the Fay-Herriot
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model with related information from previous editions of the survey. Rao and Yu
(1994) extended the area level model by modelling random domain effects with an
AR(1) model. Other accounts of regional small area estimation of unemployment,
where strength is borrowed over both time and space, include Tiller (1992), Datta et
al. (1999), You (2008), and Pfeffermann and Tiller (2006).

Temporal information can be included in the area level by assuming a structural
time series (STS) model for the unknown domain parameters. Similar to the area
level model, a time series model for survey estimates observed with a periodic
survey starts with a measurement error model, Ŷ R

t,d = Yt,d + et,d , where subscript
t refers to the time periods of the survey, t = 1, . . . , T. Subsequently a structural
time series model is assumed for the domain parameters. For simplicity we assume
a basic structural time series model, which assumes that a series can be decomposed
in a stochastic trend model, say, Lt, d, for modelling the low frequency variation,
a stochastic seasonal component, say, St, d, to model a cyclic pattern with a period
of 1 year, and a white noise component, say, vt, d, for the remaining unexplained
variation. This leads to Yt, d = Lt, d + St, d + vt, d. This model can be extended
with other cycles, regression components and AR or MA components. See Durbin
and Koopman (2012) for an introduction in STS modelling. For the components
stochastic models are assumed, which makes them time dependent. A frequently
applied trend model is the local linear trend model, which is defined as

Lt,d = Lt−1,d + Rt−1,d + ξt,d , ξt,d ∼ N
(
0, σ 2

ξ

)
,

Rt,d = Rt−1,d + ηt,d , ηt,d ∼ N
(
0, σ 2

η

)
.

For the seasonal component, the dummy or trigonometric seasonal component
can be used; see Durbin and Koopman (2012) for an expression. The white noise
terms are independently normally distributed; vt,d ∼ N

(
0, σ 2

v

)
. Inserting the STS

model into the measurement error model gives Ŷ R
t,d = Lt,d + St,d + ϕt,d , with

ϕt, d = vt, d + et, d and assuming that ϕt,d ∼ N
(
0, ψdσ 2

ϕ

)
with ψd assumed to

be known. See Van den Brakel and Krieg (2015) for details. STS models can be
fitted using the Kalman filter after writing them in state-space form; see Durbin and
Koopman (2012) for details.

The univariate STS model can be seen as a form of small area estimation,
where sample information from preceding periods are used to improve the effective
sample size for the last period. This model can be extended in several ways. A first
generalization is to combine the time series of all D domains in one multivariate STS
model. In this case the D domain estimates for one period are stacked in one vector

Ŷ
R

t =
(
Ŷ R

t,1, . . . , Ŷ
R
t,D

)t

. Each series has its own trend and seasonal component.

By modelling the correlations between the level disturbances of the domains ξ t, d,
cross-sectional information from other domains can be used. This assumes a D× D
full covariance matrix for the vector ξ t = (ξ t, 1, . . . , ξ t, D)t. In a similar way the
correlation between the slope disturbances ηt, d can be modelled as well as the
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disturbance terms of the seasonal components. This results in a multivariate STS
model that uses temporal and cross-sectional information to improve the effective
sample size for the different domains. This approach is followed by Pfeffermann and
Burck (1990), Pfeffermann and Bleuer (1993), Van den Brakel and Krieg (2016),
and Boonstra and Van den Brakel (2019).

Another useful application of STS models is to account for non-sampling
errors. As long as the survey design of a repeated cross-sectional survey is not
changed, non-sampling errors like measurement bias and selection bias remain
rather invisible. In some situations the effects of non-sampling errors become
visible. The first example is rotating panel designs, which are frequently used by
national statistical institutes for labor force surveys. In a rotating panel on each
survey occasion, a new panel is added to the sample and followed for a number of
periods according to a predetermined pattern, after which the panel is (normally)
dropped and replaced by a new one. Generally there are systematic differences
between the responses across the waves, a phenomenon which is referred to in the
literature as rotation group bias (RGB, Bailar 1975). Pfeffermann (1991) proposed a
multivariate STS model where time series of direct estimates of the different waves
of the rotating panel serve as the input and the RGB is explicitly modelled. This
model can be used as a form of small area estimation and also to account for
RGB induced by the rotating panel design. Other occasions where non-sampling
errors become visible are major redesigns of the survey process for a repeated
survey. The necessary update of data collection and field methods generally causes
a change in the series. Such systematic differences are distinct from the sampling
error and are known as discontinuities. One way to avoid confounding real period-
to-period change with discontinuities is to model the effect of a redesign with an
STS model. In this case the above proposed model is extended with an intervention
variable which changes from zero to one at the moment of implementing the new
survey design. The corresponding regression coefficient can be interpreted as the
discontinuity, see, e.g., Van den Brakel and Roels (2010).

Finally the STS model can be augmented with related auxiliary series. This can
be done by extending the univariate STS model with a regression component or by
defining a bivariate STS model where the input vector contains the survey estimate

and the auxiliary series, say,
(
Ŷ R

t,d , xt,d

)t

. Both series have their own trend and

seasonal components. The correlation between level disturbance terms of both series
can be modelled in a similar way as explained for the multivariate STS model for
all domain estimates. Also the correlation between the disturbance terms of other
model components can be modelled. In this way the additional information from
related auxiliary series is used to improve the survey estimates, see, e.g., Harvey
and Chung (2000) and Van den Brakel and Krieg (2016).

Improving precision of direct estimates is an argument for national statistical
institutes to move towards model-based estimation procedures in the production
of official statistics. Statistics Netherlands has made some steps in this direction.
Boonstra et al. (2008) summarize the first research result in small area estimation
at Statistics Netherlands. Based on this work, since 2010 Statistics Netherlands has
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used a multivariate STS model in the production of monthly Labor Force figures
to handle problems with small sample sizes, rotation group bias and discontinuities
(Van den Brakel and Krieg (2015)). A similar model was implemented in 2017 for
producing official figures for the Consumer Confidence Index. A Battese-Harter-
Fuller unit level model has been in use since 2015 to produce annual municipal
unemployment figures (Boonstra et al. (2011)). A multilevel time series modelling
approach, based on an extension of the model proposed by Bollineni-Balabay et al.
(2016), is implemented in 2019 to estimate official trend figures in time series of the
Dutch National Travel Survey (Boonstra et al. 2019).

22.4 New Data Sources

The accuracy of statistics is measured by their variance and bias. The variance
is inversely related to the sample size and will generally be a major uncertainty
component for survey sample statistics, because sample surveys usually have limited
sample sizes. A strong point of sample surveys is that a national statistical agency
has control over the quality of the survey outcomes through the design of the
sample survey. The precision of the sample estimates can be controlled in advance
via variance and sample size calculations and the choice of an optimal sampling
strategy, i.e., the combination of a sample design and estimator. In addition the
national statistical institute is in control of the availability of the data source as
well as its frequency. Repeated sample surveys are therefore a stable data source for
measuring the evolution of social-economic phenomena over time.

Concerning bias, we distinguish between selection bias and measurement bias.
The selection bias of sample survey statistics is approximately zero under complete
response. In practice, however, selection bias arises due to selective nonresponse,
undercoverage of the sample frame, and the extent that field work strategy misses a
part of the target population. Nonresponse can be informative and result in biased
estimates if not appropriately accounted for (Pfeffermann and Sverchkov, 2003,
2009). The measurement bias in sample statistics typically depends on the extent
to which the conceptual variables to be measured are correctly implemented in
the questionnaire, on the mode of data collection and on the quality and skills of
the interviewers in the case of telephone and face-to-face surveys. Problems with
measurement bias in surveys arise because measurements of the variables of interest
are indirect in that respondents are asked to report about their behavior, introducing
all kind of measurement errors.

Drawbacks of sample surveys are that data collection is costly, its quality is
compromised by nonresponse and measurement bias, and generally surveys are
not very timely. In addition survey samples induce response burden, which is
particularly an issue in business surveys. For national statistical institutes, this
is an argument to make more use of administrative data like tax registers, or
other large data sets – so called big data – that are generated as a by-product
of processes not directly related to statistical production purposes. Examples of
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these include time and location of network activity available from mobile phone
companies, social media messages from Twitter and Facebook, internet search
behavior from Google Trends, information found on the internet, web scraping,
scanner data and sensor data such as satellite images, aerial images, and road sensor
data. A common problem with this type of data sources is that the process that
generates the data is unknown and likely selective with respect to the intended
target population. A challenging problem in this context is to use these data for
the production of official statistics that are representative of the target population.
There is no randomized sampling design that facilitates the generalization of
conclusions and results obtained with the available data to an intended larger target
population. Hence, extracting statistically relevant information from these sources
is a challenging task.

A strong point of administrative data sources and some big data sources is that
they contain direct measurements of people’s behavior and are therefore unaffected
by measurement bias induced by questionnaires. Examples include smart meters
to measure electricity consumption, GPS trackers in mobile phones to measure
mobility and travel of populations, search and purchase behavior on the internet. If
similar information was collected via questionnaires, substantial measurement bias
might occur. Big data sources that contain direct measurement of people’s behavior
without measurement bias, however, can be implemented in a practical manner in a
limited set of cases only.

A problem with registers and big data sources is that a national statistical institute
has no control over the quality, availability, and stability of these data sources.
Major changes in the behavior of the public on social media and the internet have
a disturbing effect on the comparability of series over time. Also the use of these
media might fluctuate over time. For example, a Google-trend series on searches
related to vacancies might track an official series on unemployment. It does not
measure unemployment, however. Search behavior before the start of the financial
crisis in 2009 might be completely different compared to the period directly after
the financial crisis, invalidating the measurement of the intended concept. Another
example is the frequency with which administrative data become available. For
short-term business statistics, published on a monthly basis, Statistics Netherlands
changed from survey data to administrative data of value added tax in a period
during which businesses where required by law to declare value added tax on a
monthly frequency. Later on this legislation changed and businesses were allowed to
choose whether they declared tax on a monthly, quarterly, or even annual frequency.
As a result, Statistics Netherlands had to change their publications to a quarterly
frequency.

Particularly in the case of big data with immense volumes, the variance will
often be a minor uncertainty component. The bias, however, might be substantial.
The size of the selection bias, in particular, depends on the extent to which the
non-probability data source represents or covers the intended target population.
Currently, research is going on into the use of data obtained from smart meters,
GPS trackers and internet behavior for the production of official statistics, because
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they measure individual behavior very precisely in a cost-effective way. Here the
question is how to account for selection bias.

The rise of the big data era is somewhat reminiscent of the development of
probability sampling in the early twentieth century responding to problems with
the use of large non-probability samples like the 1936 Literary Digest poll. The
volume of big data might lure some into the same trap of narrowing accuracy to
precision, ignoring selection bias. This paradox has been mathematically formalized
by Meng (2018) who derived an expression for the error of estimates derived from
non-probability samples. The error contains three components: (1) a data quality
measure or data defect index which measures the level of departure from simple
random sampling, (2) a data quantity measure which measures the fraction of the
target population covered by the big data sample, and (3) a problem difficulty
measure, which is the standard deviation of the target variable. This measure shows
that selection bias in non-probability samples become an issue if the data defect
index (1) becomes substantial even if the sample size is voluminous.

The non-probability nature of the data therefore requires dedicated methods of
inference to produce statistics about the intended, finite target population. Broadly
spoken, there are two ways to use non-probability data sources in the production
of official statistics. The first approach is to use them as covariates in model-based
prediction methods for survey data. The second approach is to use them directly as
a data source for official statistics and correct for possible selection bias.

22.5 Big Data as Auxiliary Variables

Problems with selection bias of non-probability data sources can be circumvented, at
least partially, if they are used as covariates in prediction models for sample survey
data. One potential application is to small area estimation models. Most big data
sources are fuzzy and volatile, and the records typically do not coincide with the
units of an intended target population or the sampling units of a probability sample.
Therefore linking units in big data sources with sampling units in a probability
sample will often be a heroic task. These complications can be avoided, at least
partially, by using area level models instead of unit level models for small area
estimation. The area level model was briefly introduced in Sect. 22.4. Covariates
traditionally used in small area prediction models are available from registers and
censuses. The value of new data sources is multiple. First of all in developing
countries and combat areas, the availability of registers frequently updated censuses
and survey data is generally scarce. Satellite images and mobile phone data can have
valuable information for making detailed regional predictions. Also in developed
countries, new timely data sources offer valuable additional information, e.g., once
a census, which is typically conducted with a frequency of 10 years, becomes
outdated. The high frequency by which new data sources become available allow
for more frequent updates of official statistics (Hand, 2018; Powell et al., 2017).

Parallel to the development of the small area estimation literature, several authors
have proposed methods for combining survey data with non-probability data sources
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available from, e.g., sensor data and mobile phone data with the purpose of making
detailed regional predictions for well-being and poverty. Many applications apply
machine learning algorithms to establish the relation between survey data and
sensor or mobile phone data and use the latter data set in a second step to make
detailed regional predictions. Noor et al. (2008) analyzed the correlation between
nighttime light intensity from satellite images and survey sample data on household
income in Africa. They report a high correlation and used this empirical finding as
a motivation to use nighttime light intensity as an alternative measure of poverty.
Although one can question whether nighttime light intensity is an efficient construct
to measure poverty, their empirical findings illustrate the potential of using remote
sensor information as covariates in small area prediction models. Engstrom et al.
(2017) used daytime satellite images to predict well-being. In a first step they
applied deep learning to extract features from satellite images that are potentially
related to well-being, like number of cars, building type, roof type, etc. In a next
step they applied a Lasso to construct a linear model that relates the relevant images
features to survey data on well-being. This relation is used to predict well-being in
fine regional detail in Sri Lanka. Blumenstock et al. (2015) applied machine learning
methods to combine mobile phone data with survey data on poverty and used this
to predict poverty and well-being on a small regional level in Rwanda. Steele et
al. (2017) combine survey data and mobile phone and satellite data in a generalized
linear model to predict poverty in Bangladesh. This literature illustrates the potential
value of these new forms of data for official statistics.

Some caution is required, however, for making fine regional predictions with the
use of machine learning algorithms for overreliance on a model is required. One step
in this direction is made byMarchetti et al. (2015) who used mobility patterns of cars
tracked with GPS as a covariate in a Fay- Herriot model for predicting poverty for
small regions in Italy. This class of small area estimation predictions is specified as a
composite estimator of a model-based prediction and a design-based estimate where
the weights are based on their measure of uncertainty and provide mean squared
error approximations for the uncertainty of the small domain predictions. Similarly
Schmid et al. (2017) use mobile phone data as a covariate in a Fay-Herriot model to
predict literacy in Senegal.

In Sect. 22.3, it was emphasized that STS models are particular appropriate as a
form of small area estimation, since official statistics are based on repeated surveys.
Multivariate STS models are therefore appropriate to borrow strength over both
time and space. Multivariate STS models can be used in a similar way to combine
time series obtained with repeated sample surveys with auxiliary series derived from
registers or big data sources.

Such combining serves two purposes. Extending the time series model with an
auxiliary series allows modelling the correlation between the unobserved compo-
nents of the structural time series models, e.g., trend and seasonal components. If
the model detects a strong correlation, then the accuracy of domain predictions will
be further increased. Harvey and Chung (2000) propose a time series model for the
Labor Force Survey in the UK extended with a series of registered people receiving
unemployment benefits. Information derived from nontraditional data sources like
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Google Trends or social media platforms is generally available at a higher frequency
than series obtained with repeated surveys. This allows the use of this time series
modelling approach to make predictions for the survey outcomes in real time at the
moment that the outcomes for the big data series are available, but not yet the survey
data. In this case the auxiliary series are used as a form of nowcasting, which refers
to methods that make early estimates during the reference period of survey when no
sample data or only a part of the sample data are available. Van den Brakel et al.
(2017) applied a bivariate STS model to estimate the Consumer Confidence Index,
based on a monthly cross-sectional sample, in real time using an auxiliary series
derived from messages left on social media platforms. Google Trends in particular
has been used in the economic forecasting literature for this purpose; see, e.g., Vosen
and Schmidt (2011) and the references therein.

To exploit the timeliness of the auxiliary series obtained with big data sources,
the multivariate STS model can be expressed at the high frequency of the auxiliary
series. This requires a disaggregation of the unobserved time series components of
the target series observed with a repeated survey at a low frequency to this higher
frequency. After fitting the model, estimates for the survey parameters are obtained
by aggregating the underlying components to a monthly frequency. Details of mixed
frequency state-space models are described in Harvey (1989), Ch. 6.3, Durbin and
Quenneville (1997), and Moauro and Savio (2005).

With data sources like Google Trends, a large number of potential auxiliary series
are easily obtained. Combining them in a full multivariate STS model, as outlined
before, limits the degrees of freedom for model fitting. Due to the so-called curse of
dimensionality, prediction power of such models will be low. From this perspective,
factor models are developed to formulate parsimonious models, despite the large
number of auxiliary series considered. Factor models are developed and widely
applied by central banks to nowcast GDP on quarterly frequency using a large
number of related series observed on a monthly frequency (Boivin and Ng 2005;
Stock and Watson 2002a, 2002b; Marcellino et al. 2003). More recently, Giannone
et al. (2008) and Doz et al. (2011) proposed a state-space dynamic factor model.
They propose a two-step estimator. In a first step a small number of common factors
are extracted from a large set of series using principal component analysis. In a
second step, the common factors are combined with the target series in a state-space
model and are fitted using the Kalman filter. This approach is applied by Schiavoni
et al. (2019) to estimate monthly unemployment figures in real time with a series of
people receiving unemployment benefits and Google Trends series.

22.6 Big Data as Direct Data Sources for Official Statistics

If non-probability data sources are considered as a primary data source for
compiling official statistics, then the question arises to which extent can results
obtained with a non-probability data source be generalized to an intended, larger
target population. Contrary to probability samples, the data generating process of
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these data sources is generally unknown. As a result, statistical information derived
from non-probability samples can suffer from a large selection bias if they are used
for these purposes.

Different methods are proposed in the literature to account for selection bias in
non-probability samples. Some authors apply standard weighting and calibration
methods known from classical probability sampling to non-probability samples,
which are referred to as pseudo-design-based inference methods (Baker et al., 2013).
Several authors apply propensity scoring, proposed by Rosenbaum and Rubin
(1983), to construct weights that correct for selection bias. Estimating response
probabilities and using them in Horvitz-Thompson-type estimators to account for
unequal selection probabilities is sometimes called pseudo-randomization. Valliant
and Dever (2011) propose different models to estimate response probabilities in
opt-in Web panels and discuss under which conditions they correct for selection
bias. Deville (1991) proposed models for quota samples, which can be used to
construct post-stratification estimators or linear weighting-type estimators (2008).
There are many references in the literature where propensity scores are used to
correct for selection bias in non-probability samples (see, e.g. Lee, 2006; Lee and
Valliant, 2009; Schonlau et al., 2007, 2009). Buelens et al. (2018) compared pseudo-
design-based, model-based, and algorithmic methods and conclude that auxiliary
information typically available for weighting and calibration (e.g., demographic
variables like age class, gender, regional classifications) do not sufficiently explain
the data generating process of a non-probability sample to correct successfully for
selection bias.

Another class of methods to correct for selection bias is to apply a statistical
model to predict the units not in the sample (Royall, 1970; Valliant et al., 2000).
This approach is based on the specification of an appropriate super-population
model that captures the variation of the target variables instead of adjusting selection
probabilities.

Some methods combine a non-probability sample that contains the target variable
of interest and auxiliary variables with a reference sample that is based on a
probability sample and only contains auxiliary variables. The reference sample is
used to assess the selectivity of the non-probability sample. One approach, quasi
randomization, is to construct propensity models to estimate selection probabilities
for the non-probability sample (Elliot and Vailliant, 2017; Isaksson and Forsman,
2003; Valliant et al., 2013). Sample matching is also applied as an attempt to
reduce selection bias in opt-in Web panels using covariates obtained in a small
reference sample to construct propensity weights without collecting observations for
the target variables (Rivers and Bailey, 2009; Vavreck and Rivers, 2008; Terhanian
and Bremer, 2012). These ideas are related to approaches that are also used
in microsimulation to match probability samples with population or census data
(Tanton and Edwards, 2013). Kim and Wang (2018) proposed inverse sampling. In
a first step, important weights are derived for the units in the non-probability sample,
using the auxiliary variables in the reference sample and the non-probability sample.
In a second step, a sample using unequal probability sampling proportional to the
important weights is drawn from the non-probability sample, such that it can be
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interpreted as a simple random sample from the target population. As an alternative,
Kim and Wang (Kim and Wang, 2018) proposed data integration which implies
that a parametric model is assumed to construct weights for the units in the non-
probability sample, which are subsequently used in standard weighting methods.
Rivers (2007) proposed imputation of the target variables observed in the non-
probability sample in the reference sample using nearest neighbor imputation and
subsequently apply standard weighting methods.

A consequence of combining a large non-probability sample with a high-quality
smaller reference sample is that the precision of the large non-probability sample
reduces to the standard error of the smaller reference sample. These methods
nevertheless might improve the accuracy, in terms of mean squared error, of
estimates derived from non-probability samples. The methods summarized above
are based on strong ignorability assumptions and can lead to serious bias if these
assumptions are not met.

In the case that the non-probability sample and the probability-based reference
sample, both contain the target variable and some auxiliary variables. Kim and
Tam (2018) propose a design-based inference method that can be regarded as
a post-stratification estimator where one stratum is the subpopulation that is
completely observed with the non-probability sample. Model-based approaches for
informative sampling (Pfeffermann and Sverchkov, 2003, 2009), where the selection
probabilities are related to the target variables, might potentially be fruitful to correct
for selection bias in non-probability samples for situations where no reference
sample is available.

Selection bias in non-probability samples is also a topic of concern in economic
analysis. There is an extensive amount of econometric literature on correcting for
selection bias in behavioral studies. Heckman (1976, 1979) has two early landmark
papers on this topic. A more recent overview is provided by Heckman (2010). In
this approach there is a random sample available for which two linear models are
distinguished. The dependent variables in the first linear model suffer from selection
bias due to self-selection, while the dependent variables in the second linear model
do not suffer from selection bias and therefore can be considered as a random
sample. Sample selection in the variables of the first linear model is considered
as a specification error and correction for selection bias is achieved by considering
the response on the variables in the first model as a censored or truncated sample
using the second linear model.

This literature on selection bias in economic behavioral studies provides impor-
tant methods that potentially correct for selection bias in non-probability samples in
the context of official statistics and are related to the aforementioned methods that
use a probability sample as a reference sample to assess selection bias in big data
sources. In many situations, a non-probability sample might not contain variables for
which it can be assumed that they are not affected by selection bias. This problem
might be circumvented by matching a non-probability sample with a data source that
is not affected by selection bias, e.g., a register. Further research into how to adapt
these methods to correct for selection bias in new non-probability data sources in
the context of official statistics is definitely worthwhile.
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22.7 Discussion

National statistical institutes face multiple challenges. There is increasing pressure
to reduce administration costs and response burden. Nonresponse is a gradually
increasing problem which compromises the quality of traditional sample surveys. In
order to remain relevant for data users, the level of detail, frequency, and timeliness
of statistical information must increase. This raises the question whether national
statistical institutes can continue to base official statistics solely on probability
samples in combination with design-based or model-assisted inference methods.
The advantage of this approach is its low-risk level. With sample surveys, a
national statistical institute has full control over the availability of the data, as
well as the quality and frequency of the statistical output. Model-assisted inference
methods have a built-in robustness against model misspecification, which make
these methods attractive for multipurpose surveys in the production of official
statistics where there is usually very limited time for model building and evaluation.
Repeated sample surveys therefore provide a safe method to produce consistent time
series that measure period-to-period change in a reliable way.

In order to improve the level of detail, frequency, and timeliness of statistical
information, without increasing sample sizes and thus data collection costs, model-
based inference procedures known from the literature of small area estimation, time
series analysis, and nowcasting can be considered. This, however, increase the risk
level for a national statistical institute, since model misspecification can result in
biased statistical information. The output, however, is primarily based on sample
survey data, collected by the national statistical institute. This implies that the risks
concerning availability, frequency, and quality of the data are still managed by the
national statistical institute. In this context new data sources can provide useful
additional information as covariates in small area prediction models, particular
for countries without registers or timely census data. Many big data sources are
available at a high frequency which makes them potentially useful to make more
precise predictions of sample statistics in real time with nowcasting models.

Replacing sample surveys by registers or other type of non-probability data
sources implies a substantially increased risk level, since in this situation a national
statistical institute has no control over the availability, comparability, and quality of
the data source over time. Another issue with using big data as a primary data source
to compile statistical information is that of selectivity. Big data are used successfully
in many different disciplines. The use of these data sources in the context of official
statistics is, however, different. The problem, which is unique, e.g., official statistics,
marketing research, and election polls, is the question to which extent statistical
results can be generalized to larger intended target populations (Pfeffermann, 2019;
Pfeffermann et al., 2015).

As highlighted in Sect. 22.6, there is a substantial amount of literature for
correcting for selection bias in non-probability samples. There are nevertheless a
lot of issues with the application of these methods in the daily practice of official
statistics. One issue is that all methods are based on strong ignorability assumptions
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conditionally on the available covariates, which are difficult to verify. A more
practical issue is that all methods assume that the records in a big data source
contain, besides the target variable, a set of auxiliary variables which correspond
with the units in a target population or a reference sample. Unfortunately, these
conditions are seldom met. Most big data sets are fuzzy, records do not correspond
with units in the target population or a reference sample, and auxiliary information is
generally not available since owners of the big data source are reluctant to provide
them due to privacy issues. Mobile phone data, for example, are mostly a file of
call detail records that contain time and location information generated by devices.
Mobile phone companies generally do not provide the demographic information of
the owners of the devices. As a result, methods summarized in Sect. 22.6 to correct
for selection bias cannot be applied in a straightforward manner in these situations.
Attempts to use these data to produce, for example, daytime population statistics
are based on machine learning methods which attempt to derive demographic
information from the observed mobility patterns of the devices, followed by rather
naïve post-stratification corrections. It is not likely that this sufficiently corrects for
selectivity.

At this moment it is not at all clear how big data can be used in the production of
official statistics (Pfeffermann, 2019; Pfeffermann et al., 2015). National statistical
institutes, nevertheless, have to investigate to what extent these new data sources,
in combination with new inference methods, can be used to improve the level of
detail, frequency, and timeliness of their publications, on the one hand, and to reduce
data collection costs, on the other hand. The literature that uses satellite images and
mobile phone data to make small area predictions for poverty and well-being on a
fine regional level clearly illustrate the potentials of big data sources. Using these
new data sources in the production of official statistics requires more research and
insight into the quality of these data sources and an extension of the methodological
tools to extract the right information from these new data sources. This is not only an
extension from design-based to model-based inference but also to machine learning
methods and artificial intelligence algorithms to extract information from satellite
and aerial images or sensor data. An additional advantage of all these developments
is that they make the life of an official statistician more exciting.
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Chapter 23
Understanding the United States’ Official
Statistics System

Katherine K. Wallman

Many if not most who learned and benefitted from Steve Fienberg’s contributions
to our Nation knew him as a singular contributor in statistical methods. But there
was a special place in Steve’s heart and work for the quality and vibrancy of our
Nation’s official statistics and the federal system that produces those statistics. For
me, this somewhat rare interest among academic statisticians first manifested itself
when we served together on the American Statistical Association’s Committee on
Law and Justice Statistics circa 1980. More importantly, in the early 1980s Steve
took up the cause of reviving and strengthening the statistical policy function at the
US Office of Management and Budget (Fienberg and Wallman 1983). At that time,
we coauthored a few of Steve’s less technical writings – and testified effectively to
the US Congress.

Our democracy and economy demand that public and private leaders, gov-
ernments at all levels, businesses, hospitals, academic institutions, and individual
households – essentially every organization and person – have unbiased, relevant,
accurate, timely, and accessible information on which to base their decisions. Statis-
tics produced by the Federal Government, often referred to as “official statistics,”
inform decision makers in shaping policies, managing and monitoring programs,
identifying problems and opportunities for improvement, tracking progress, and
monitoring change. The programs of our statistical system furnish key information
to guide responses to pressing challenges, including among others those associated
with the economy, agriculture, crime, education, the environment, health, science,
and transportation. In a very real sense, these statistics provide data users with a
lens to focus the myriad activities of our society into a more coherent picture of the
status, progress, and trends in our Nation.
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Our economy’s complexity, growth, and rapid structural changes, for example,
require data on real Gross Domestic Product (GDP), the Consumer Price Index
(CPI), and the trade deficit to guide government spending, budget projections, and
the allocation of public funds. These data are also essential inputs to monetary, fis-
cal, trade, and regulatory policy. Economic data, such as measures of price change,
also have a significant influence on interest rates and cost-of-living adjustments
that affect every American who runs a business, saves for retirement, or mortgages
a home. Taken together, official statistics on demographic, economic, and social
conditions and trends are essential to inform decisions that are made by virtually
every organization and household.

Among the most influential statistics produced by our Federal Government is
the Consumer Price Index (CPI) which measures the average change in prices over
time for a fixed market basket of goods and services. As an economic indicator, the
CPI is used by the Executive Branch, the Congress, and the Federal Reserve Board
to determine and evaluate government economic policy. For example, reports of
monthly changes in the CPI are a major input for Federal Reserve Board decisions
in setting short-term interest rates and annual changes in the CPI affect components
of the Federal income tax code.

As a consequence of statutory requirements, the CPI directly affects the incomes
of millions of our citizens through Federal programs that deliver benefits to
individuals. These include more than 100 million Social Security beneficiaries,
food stamp recipients, and military and Federal Civil Service retirees and survivors.
Changes in the CPI also affect children through adjustments to the School Lunch
program and private sector workers whose wages are tied to the CPI under collective
bargaining agreements.

Similarly, information from our Decennial Census of Population and Housing
and its companion American Community Survey affects Americans every day. Data
on the number and characteristics of the population are used by state and local
governments to plan schools and highways, by the Federal Government to distribute
hundreds of billions of dollars annually for health care and other programs, and by
businesses in making their economic plans. And of course Census data have been
used since 1790 initially to reapportion congressional (House of Representatives)
seats among the States, and in addition since the passage of P.L. 94–171 in 1975, to
draw legislative districts within states.

A handful of examples further illustrates the wide-ranging role of official
statistics produced by the Federal Government in informing policies and decisions
at every level and sector of our society:

• Monetary Policy Decisions: The Federal Reserve determines monetary policy
based on monthly economic indicator data, such as economic growth and
unemployment rates produced by the Bureau of Economic Analysis and the
Bureau of Labor Statistics.

• State Budget Decisions: Nearly all states use Bureau of Economic Analysis
state personal income statistics to project state budget revenues; 20 states have
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established constitutional or statutory limits on state government revenue and
spending that are tied to these statistics.

• Federal Program Funding Allocations: Federal programs, such as Medicaid,
allocate over $400 billion annually to states and localities based on Bureau of
Economic Analysis and Census Bureau statistics on income and population.

• Federal Program Administration: The Social Security Administration provides
statistical analyses to help policymakers understand the potential distributional
effects of alternative policy changes on social security beneficiaries and on the
larger economy.

• Private Sector Investment Decisions: The private sector uses Federal statistics,
such as agricultural production and workforce availability from the National
Agricultural Statistics Service, to determine optimal locations for industries such
as ethanol and slaughter plants.

So what is our Nation’s “official statistics system” that was a beneficiary of
Steve’s attention? What is this system that brings to us a wealth of statistics on
physical and mental health, educational attainment, employment, criminal victim-
ization, transportation, energy use, the environment, and many other dimensions of
our lives? In the United States, we have what is generally known as a “decentralized
system” for the acquisition, compilation, analysis, and dissemination of official
statistics. At the core of this decentralized system are 13 agencies that produce
statistics as their principal mission; their work is complemented by activities carried
out in more than 100 other agencies having primary missions to conduct research,
administer Federal programs, or perform regulatory functions. Some – but not
perhaps all – of the former group (the “principal statistical agencies”) likely are
known to readers (the Census Bureau, the Bureau of Labor Statistics) and agencies
that focus on education, health, transportation, or other “topical” areas. Perhaps
less often thought of in this framework are agencies such as Commerce’s National
Oceanic and Atmospheric Administration, Health and Human Services’ Centers
for Medicare and Medicaid Services, Homeland Security’s Customs and Border
Protection, Interior’s Geological Survey, and a number of others that in fact have
greater expenditures for statistics production than many of the “principal” statistical
agencies. In total, the annual budget for the Federal Government’s statistical work
is in the neighborhood of $6 billion (exclusive of cyclical funding related to the
Decennial Census). This total is roughly 0.04 percent of GDP. In Decennial Census
years, this figure about doubles.

At the “hub” of this decentralized statistical system is the Statistical and
Science Policy Office, headed by the US Chief Statistician, located in the Office
of Management and Budget (the largest component of the Executive Office of
the President). This office, whose statutory authority currently resides in the
Paperwork Reduction Act (as updated in 1995), has been in existence for more than
80 years, providing oversight, coordination, and guidance to promote the quality
and integrity of Federal statistical information. The primary functions of this office
are to identify priorities for improving statistical programs, ensure the adequacy
of funding proposed for statistical programs in the President’s budget, establish



436 K. K. Wallman

government-wide statistical and information quality policies and standards, evaluate
statistical programs for compliance with OMB guidance, critique and approve
statistical information collections promulgated by Federal agencies, and coordinate
US participation in international statistical activities.

Advising the Federal statistical system and its component agencies are various
councils and committees (such as the American Statistical Association committee
on which Steve and I served) that assist the agencies that carry out data production
and dissemination activities. Broadest in its scope is the Committee on National
Statistics (CNSTAT) within the National Academies of Sciences, Engineering, and
Medicine. Established in response to a request by the 1972 President’s Commission
on Federal Statistics, CNSTAT convenes panels of volunteer experts to advise
on a variety of statistical programs. Steve chaired CNSTAT for two terms in the
1980s – and even more fundamentally contributed to the quality and integrity of
federal statistical programs by serving on (and often chairing) CNSTAT study panels
on Data Sharing, Statistical Assessments as Evidence in the Courts, Decennial
Census Methodology, Review of Evaluation Studies of Bilingual Education, Census
Requirements in the Year 2000 and Beyond, Review of the Scientific Evidence on
the Polygraph, Methods for Assessing Discrimination, Committee on Technical and
Privacy Dimensions of Information for Terrorism Prevention and Other National
Goals, and Survey Options for Estimating the Illegal Alien Flow at the Southwest
Border. Steve was also a member of the Advanced Research Seminar on Cognitive
Aspects of Survey Methodology. The breadth of his contributions via these activities
mirrors the scope of his interests and expertise.

As we look to the future for official statistics, it is clear that Steve would have
had many more contributions to foster the viability of our Nation’s statistical system
and the quality of its products. Over the years, many challenges have confronted the
US statistical system. While some of the more immediate have been overcome or
addressed (e.g., devolution of government programs, deregulation), several – such as
limited fiscal resources, declining survey response rates, and obtaining and retaining
critical human capital – seem to be forever with us. Now, as we find ourselves at
the center of growing attention to “Evidence-Based Policymaking” (statistics are, I
believe, the heart of evidence), other challenges that had been emerging are coming
to us with increasing acceleration, or as my former OMB colleague Don Arbuckle
once noted, “we are not experiencing life in the fast lane, but life in the oncoming
lane . . . .” Chief among these are calls for more finely grained demographic and
economic data at more discrete levels of physical and political geography, desires
for internationally comparable statistics, and demands for fuller and quicker access
to data in more modern and creative forms and venues.

Essential to guiding the agencies as they address the challenges is adherence to
the fundamental principles that underlie their work: in addition to meeting standards
of relevance, objectivity, accuracy, timeliness, and accessibility, they must be viewed
as credible, trustworthy, and free from political or other undue external influence.

• For federal statistical programs to effectively benefit their wide range of public
and private sector users, the underlying data systems must be viewed as credible.
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As the collectors and providers of these basic data, federal statistical agencies
are data stewards – balancing public and private decision makers’ needs for
information with legal and ethical obligations to minimize reporting burden,
respect respondents’ privacy, and protect the confidentiality of the data provided
to the government. To further ensure the credibility of our Nation’s official
statistics, the agencies responsible for these products disseminate their results
under strict guidelines that reinforce both the reality and the perception of their
freedom from policy perspectives.

• A growing challenge concerns the ability to garner the attention of the politically
powerful, but avoid their interference. As former Census Bureau Director
Kenneth Prewitt has offered, “political interference is the attempt to gain partisan
or regional advantage by shaping the production of a statistical product against
the judgment of a non-partisan and apolitical statistical agency.” (Prewitt 2010)
Prewitt elaborates with examples:

(1) the politically motivated suppression of an agency’s responsibility to offer its best
judgment on how to most accurately and reliably measure a given phenomenon, (2)
the politically motivated decision to prevent an agency from using the state-of-the-art
science, or (3) the politically motivated insistence on preclearance [review and approval
by political appointees] of a major statistical product that is based on state-of-the-art
science.

Political interference is not limited to the production of statistical products;
for example, such interference can also occur when agency personnel are fired
or reassigned because they produce politically inconvenient and thus unwelcome
results. The fact that statistical series have become so important to the devel-
opment and implementation of social and economic policies inevitably creates
a temptation to manipulate the numbers for political gain. By refraining from
participating in political discussion, and following careful, objective procedures
for compiling our official statistics, federal agency statisticians are assuring the
continued avoidance of political interference in our Nation’s statistics.

• Last – but perhaps far from least – is the principle of trust. Though initially
framed as a principle related to the statisticians’ compact with data providers,
it seems today that there is at least as great a challenge in gaining the trust of
those who use the data.

Given the context in which official statisticians must operate, I want to address
the importance of embracing, rather than resisting, our changing environment. The
question is, how can we harness what is going on around us to meet information
needs in new and perhaps better ways despite a host of challenges?

First, as any casual reader of the newspaper can tell you, the Federal budget
process continues to be fraught with uncertainties. But one thing seems certain: the
funding constraints affecting many statistical agencies over the past several years
are likely just the beginning of what we should expect for the next few years. At the
same time, with respondent cooperation at an all-time low, it costs more and more
just to maintain historic respondent cooperation in household and establishment
surveys.
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Second, with talk of freezes on hiring and pay and of buyouts common parlance
around Washington, and government employment perhaps not at its most respected
status, it’s harder than ever to hire and retain staff to help innovatively adapt our
infrastructure and squeeze every last drop of usefulness out of the resources devoted
to our Nation’s statistical programs.

Third, the ever-increasing desires for access to data and for more flexibility
in how and where the data can be accessed must be balanced with increasing
public concerns about confidentiality and privacy. Government statistical offices
derive their mandate for data collection and dissemination from a citizenry that
demands at once both quality information to drive public policy and protection of
the individual respondent from privacy invasion and administrative harm. Striking
the appropriate balance between permitting access to accomplish compelling and
legitimate research, and incurring the risk, however remote, of inadvertent revelation
of individual information is a fundamental concern and challenge for official
statisticians. As the same technologies that extend analytical capabilities also
furnish the tools that threaten the confidentiality of data records, there is the
potential to erode respondents’ trust that the information they provide will be kept
confidential.

Fourth, enabled largely by the presence of our arguably staid official statistics as
benchmarks, entrepreneurs are releasing statistics that are available much faster and
with more easily accessible means of presentation.

In the face of these challenges, our citizens continue to encounter statistics at
every turn in their daily lives. Yet recent surveys suggest that many are distrustful
of the providers of the numbers and most are unequipped with the statistical literacy
required to evaluate the information presented to them. Twenty-eight years ago,
when I was privileged to serve as President of the American Statistical Association,
I defined “statistical literacy” as:

The ability to understand and critically evaluate statistical results that permeate our daily
lives – coupled with the ability to appreciate the contributions that statistical thinking can
make in public and private, professional and personal decisions. (Journal of the American
Statistical Association 1993, p. 1)

I take hope from signs that our profession’s quantitative literacy initiatives are
increasingly pervading the curriculum – but as Fred Mosteller challenged me many
years ago, what do we do about the “over-30 crowd”?

Without money or staff even to maintain our current programs, and with a
growing cadre of outsiders suggesting to the public that they are mimicking the
official statisticians’ work for less money, more quickly and in a flashier way, some
providers of official statistics may be tempted to resist these pressures, owing to
legitimate concerns for data quality and confidentiality, and perhaps less legitimate
fear of competition. Rather than focusing on trying to point out the fragility of
the methodology and the flaws of these pseudo-official statistics, maybe producers
of official statistics need to take into consideration increasing demands for more
detailed and timely data in flexible, accessible formats. The time has come to think
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differently about the data and the federal statistical agencies’ role. It is time to think
openly and creatively about how we might collaborate, rather than withdraw.

Each challenge I have noted can be seen as an opportunity. And challenging times
create a favorable climate for bold new actions. By embracing these challenges, the
Federal statistical system can create the kinds of changes that allow it to remain
relevant, playing a pivotal role in meeting the Nation’s information needs in concert
with a larger set of government and nongovernment actors.

So what are the specific opportunities?

• In the same way that personal computers opened up a new world to the public,
Apps and APIs (application program interfaces) are giving the general public the
ability to “play with” data. They want to use these data to help make personal
decisions.

• Entrepreneurs want the underlying data, in a form that is timely, transparent, and
flexible for creating innovative solutions to everyday problems.

• And constituents and stakeholders want to assess the data from their own
perspective in order to inform their understanding of the role those data have
in public policy.

• Rather than fighting to “control” the message, we who produce official statistics
can take advantage of the insatiable appetite for information to extend our reach
beyond researchers and policy wonks.

• We official [government] statisticians have always thought of our role as:

– Developing the most rigorous statistical and scientific methods available,
for use in censuses and surveys, with well-understood and documented data
quality characteristics

– Designing data access for trained professionals who offer their interpretations
(often) through a peer-reviewed process and who are frequently the translators
via the media to a broader public

• If, instead, data are thought of as a product from and for the general public to use
to make personal, business, and public policy decisions, what would that mean
for the Federal statistical system in practice?

I do want to emphasize that regardless of the financial, technological, and
political pressures, the Federal Statistical System must never lose sight of its
steadfast commitment to ensuring the relevance, practical utility, quality, and
credibility of the information generated, as well as the widespread dissemination
of those data and the maintenance of public trust. Official statisticians must take
advantage of the opportunities that today’s challenges bring, while remaining true
to these core principles.

It is not our principles that need reexamination; it is the way in which we apply
them. To me this means that we need to take a step back so that we are in a position
to challenge long-held assumptions on how we do what we do. There are likely more
configurations of methods, tools, and roles that allow us to streamline our operations
while still being true to our underlying principles.

Information quality cannot be determined in a vacuum.
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We may not actually need the most robust sampling design or the highest
response rate to achieve a given goal – we need to challenge ourselves by asking
when the gold standard is appropriate and when the balance of the trade-offs might
actually be in favor of alternative methods. We need to ask, for example, “What
frequency or what level of geographic detail is necessary in the data that are to be
used for a given purpose?” As another example, pushing the boundaries of how we
measure and adjust for nonresponse bias can help us make better trade-offs in our
survey designs especially in ways that help us manage costs.

We need to be more open to leveraging administrative data in newways – whether
they are resident in a Federal statistical agency, housed in Federal or local program
agencies, or collected by the private sector. If such data can help us generate new
and useful statistics, we need to think about how we might best use them.

We come back to assessing data quality in the context of “fitness for use,” as
administrative data rarely meet the same standards for quality as one might design
in a collection actually intended for analytic purposes rather than for administering
programs or benefits. But done thoughtfully, incorporating administrative data
can be consistent with our principles, including relevance, without tarnishing our
products. Pushing forward on how to measure the quality of administrative records
is another important frontier.

Transparency – a very popular theme these days – is not new to us. In fact,
at times, we may appear to some to be “over-transparent” as we document, for
example, the uncertainty of our estimates. But transparency enhances the credibility
of official statisticians and the trust of those who use official statistics. We should
make data sets more readily accessible to users, even knowing that many will use
those data sets differently than we would – “mashing” them with sources that we’d
never have considered due to our more traditional view of the world of data.

Rather than fearing that non-statisticians will use the data incorrectly, we should
empower them by ensuring that we provide sufficient metadata so that they can
educate themselves regarding the fitness of the data for their use. After all, there is
much to be gained by getting many eyes on a dataset.

Wide dissemination arguably means something much more than it did in years
past, given the increasing demand and capacity. It doesn’t diminish our commitment
to confidentiality or make the task of releasing detailed microdata any easier. In fact,
now we are talking about not only our survey data, but also administrative data sets –
potentially even those from the private sector. But these data can “sit behind” some
of the Apps and smart disclosure efforts to repackage data in new ways that have
immediate relevance to consumers.

Relevance, practical utility, quality, wide dissemination, credibility, and public
trust remain top data principles. Determining how we best implement these princi-
ples in light of this broadened user base is our opportunity and challenge.

Official statisticians can take advantage of the energy and enthusiasm of this
information age to reinvent how we collect, analyze, store, and disseminate data
and, in the process, reach a new, broader audience. We must enhance the relevance
of Federal statistics; ensure that the Federal statistical system evolves to reflect
changes in society and the environment, providing the public and private sector with
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access to the information necessary to inform their decisions; and adapt information
generation approaches to take advantage of technological innovations and cultural
expectations. We must consider, for example, thinking more broadly about data
sources and using available data in creative ways to provide new types of data
products and insights into interpreting existing data; ways for agencies to become
more policy relevant without crossing the line into policy making; the nature of
the relationship between data science and official statistics; and ways to enhance
and broaden the skill sets of current and future agency employees to effectively
deal with new technologies, data sources, types and volume of information. It will
be the Nation’s good fortune to benefit from Steve Fienberg’s legacy and example
as colleagues emulate his thoughtful and generous contributions for OMB and the
statistical agencies to consider as they navigate this changing environment, where
the relevance of traditional statistics is sometimes questioned and policy makers are
demanding faster, more flexible approaches to meet their information needs.
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Part VII
Introduction: Steve and Joyce as We Knew

Them

Judith M. Tanur

Steve was a man of many talents and many interests. We have tried to capture some
of these in the preceding sections of this volume, but had we chosen to devote a
section to each of his interests we would have been undertaking to produce a library,
not just a volume. So we decided to allow this section to be considerably more
eclectic than the earlier ones, providing some views of Steve as we knew him and
of his varied interests. Joyce was also a many-faceted person, and so we include
material reflecting both her personal life including her roles as Steve’s wife and
mother to Anthony and Howard as well as her professional life as a researcher in
her own right. Gaea Leinhardt refers to her as a woman of grace and wisdom, a
characterization with which we strongly concur.

We lead off with a short obituary written by Steve’s long-time friend Steve
Stigler, followed by a detailed reminisce of about Steve’s time at Carnegie Mellon
by another long-time friend and colleague, Bill Eddy. Then Nancy Reid writes about
Steve’s devotion to statistical service and how he served as a role model to her in
that respect.

Moving to a more light-hearted mood, two substantive pieces speak to Steve’s
interests in graphic presentation and in fine dining. Howard Wainer and Michael
Friendly, friends whose acquaintance with Steve originated at far different stages
of his career, use an extended metaphor of a wedding between empiricism and
visualization to tell the story of the origin of data visualization. They note that
when Steve and Bill Eddy were starting Chance in the 1990s they asked Wainer
to write a column on data visualization. He agreed to do so for a short time –
but was still writing the column in 2020. Albert Madansky, building on his fame
as the author of “The Gentleman Tasting Pastrami” which appeared in Volume 1,
Number1 of Chance, chronicles Steve’s secret career as “Belizaire,” the restaurant
critic for Chance. Al notes that although Steve tended to review rather high priced
“fine dining” restaurants, he often included a moderately priced alternative, which
he labeled as a “Sam Greenhouse” restaurant, commemorating Sam’s usual choice
of eating place in conformance with his government travel allowance. What Al
doesn’t note, because there is no documentary evidence for such a statement, but
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which I can attest to, is that Sam informally labeled restaurants that he considered
overpriced as “Steve Fienberg restaurants.”

Moving back towards memoirs, we include a reminiscence I prepared for the
celebration to mark Steve’s transition to Emeritus status in October 2016, dealing
mostly with the visits he and his family made to our summer home in Montauk over
the years and our work on our planned volume on the parallels between experimental
design and probability sampling. We were able to publish several papers that were
destined to become chapters of that book (which we had decided to call Reaching
Conclusions: The Role of Randomized Experiments and Sample Surveys), but we
never got to finish the volume, perhaps because we were too busy having fun. After
that we reprint, with permission, an interview that Miron Straf and I carried out with
Steve and that was published in Statistical Science in 2013.

It is a tradition of Carnegie Mellon’s Department of Statistics to acknowledge
milestones for esteemed faculty with a collection of memories from those who
worked closely with the person, frequently on a daily basis. The reminisces from
colleagues, friends, and students appeared in two “memory books” in honor of Steve
for, respectively, his 65th birthday in 2007, and his attainment of Emeritus status in
2016. We include a selection of those reminisces.

Gaea Leinhardt’s piece about Joyce as a woman of grace and wisdom leads
off our section on Joyce. She describes Joyce’s activities over 30 years as an
educational researcher. This is followed by two obituaries of Joyce which appeared
in the Tribune-Review, written soon after her murder in the Tree of Life Synagogue
shooting in October 2018. Then there is a series of tributes to Joyce from friends
and from Steve’s former students, also written shortly after the murder.

We conclude with a selection of photographs of Steve and Joyce with their
family, with colleagues and with friends, though surely those categories overlap
substantially, and with a list of Steve’s PhD students.



Chapter 24
Stephen Elliot Fienberg, an Obituary

Stephen Stigler

Stephen Fienberg was the senior statesman of statistics in his era, both nationally in
the United States and internationally. His advisory and editorial activities covered
an amazingly broad set of areas and his engagement was always deep and effective.
For the past few decades, no meeting or conference on pressing statistical issues
such as census undercount or non-reproducibility or ethical experimentation would
be complete without his lively and focused participation.

Steve was born November 27, 1942, in Toronto where he remained through his
graduation from the University of Toronto in 1964. It was at that University that
he first encountered the field of statistics, in a class taught by Don Fraser. The
subject proved infectious; he went on to Harvard for his PhD, written under the
supervision of Fred Mosteller. At Fred’s suggestion, the work of his dissertation was
considerably expanded in active partnership with two other Harvard researchers,
Yvonne Bishop and Paul Holland, into the very influential book, Discrete Multi-
variate Analysis, finally published by MIT Press in 1975. That book, colloquially
referred to as “Bishop, Fienberg, and Holland,” did not invent loglinear models, but
it played a crucial role in helping to develop them and inspired a major growth in
research in the analysis of categorical data. At a workshop in his honor just two
months before he died, Steve told a story that one of his sons was taking a statistics
course in college; the instructor approached his son and asked, “Are you any relation
to Bishop Fienberg of Holland?” He said the son replied, “I don’t believe so, we are
Jewish.”

Reprinted with permission from The Annals of Applied Statistics, July, 2018
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Steve’s first appointment after his PhD was in 1968 at the University of Chicago,
where he was jointly in the Department of Statistics and the Department of
Theoretical Biology. I first met Steve and his wife Joyce shortly after that, when I
visited Chicago for a talk and they hosted a party for me at their apartment. We were
never at the same institution, despite several determined attempts to accomplish that,
but that first meeting was to be repeated regularly over nearly a half century. He left
Chicago in 1972 to Chair a new Department of Applied Statistics at the University
of Minnesota. In 1980 he moved to Carnegie Mellon’s Department of Statistics,
where he remained the rest of his life, save for a brief period as Provost at York
University in Toronto.

Steve’s research developed far beyond his thesis on contingency table models,
into network analysis, methodology for confidentiality and for statistical privacy,
algebraic statistics, and the application of statistics in science, particularly in social
science. He even wrote on the history of statistics, including a paper that traced the
history of the term “Bayesian” to R. A. Fisher in 1950, who used it in a pejorative
sense.

Steve played a major role in what may be called the infrastructure of the profes-
sion of statistics. He followed two of his great role models in this, Fred Mosteller
and Bill Kruskal. One part of this was editorial – early on in his career, he served as
Coordinating and Applications Editor of JASA 1977–1979. Later he was Associate
Editor and then Editor of the Annals of Applied Statistics 2006–2015. Steve was
founding or cofounding editor of the Journal of Privacy and Confidentiality, Chance
Magazine, and the Annual Review of Statistics and Its Applications. He wrote or
co-wrote or edited about 30 books, including Statistics and the Law (with Kadane
and DeGroot), Intelligence, Genes, and Success (with Devlin, Resnick, and Roeder),
andWho Counts? (on the US Census, with Anderson). But beyond this, Steve played
a major role as advisor and critic for many statistical agencies, including the US
Census and, over many years, the committees of the National Academy of Sciences,
where he played the major role in their 2003 report reviewing the Scientific Evidence
on the Polygraph, and was on the National Academy’s Report Review Committee,
which he cochaired in 2008–2012.

Among Steve’s many honors were the 1982 COPPS President’s Award, and
election to the US National Academy of Sciences, the Royal Society of Canada,
and the American Academy of Arts and Sciences.

And he did not neglect other aspects of a full life, which for him included ice
hockey as coach and player (well beyond the age some of us thought wise, yet
with no noticeable loss of teeth). Dinners with Steve and his wife Joyce in great
restaurants with fine wines and wide ranging discussion were always a treat. I
particularly recall nights in Paris, in Strasbourg, and in Dublin, and one night in an
Italian restaurant in Manhattan when after we were seated Jackie Kennedy Onassis
came in with a friend and sat at the next table, and we realized that the check would
likely set a new record cost for us (it did).

Despite his extensive international commitments, he was devoted to his 43 PhD
students, and to judge their comments upon Steve’s Emeritus attainment celebration
in October 2016, this devotion was reciprocated. By that time his four-year struggle
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with cancer was near the end, but no one without that knowledge would have
guessed it in view of his vigorous presence throughout the celebration, continuing
through the late party (including a small jazz combo) at his home. The energy he
brought to his half-century career in statistics seemed undimmed. He died December
14, 2016, and left an indelible imprint on the literature of statistics, on statistical
practice in many fields, and on countless colleagues and students.



Chapter 25
Reminiscences of Steve

William F. Eddy

Delivered on the occasion of Steve’s Emeritus celebration in
October, 2016.

I first met Steve in June, 1979, at the First International Bayesian Conference. At that
time, Steve was the head of the Department of Applied Statistics at the University
of Minnesota. We were both invited to the conference by Morrie DeGroot: Steve,
to begin recruiting him to join us at CMU, and myself, to begin converting me to
Bayesianism.

Our group of Steve, Morrie and I and wives Joyce, Marilyn, and Connie spent
every night at a local nightclub until 3 a.m. Led by Morrie, we were all up bright
and early each morning to attend the first session. Morrie’s style apparently agreed
with Steve, and later that year he agreed to come to CMU in 1980, and became head
in 1981.

Steve had a variety of interests at that time – the National Crime Survey, cognitive
methods in survey research, statistics and the law, and of course, the traditional
topics he’s interested in like loglinear models and computation. Those interests have
only grown broader with time.

In 1984, Steve stepped down as head. A year later, he was named Maurice Falk
Professor of Statistics and Social Science. In 1985, he came up with the idea for a
statistics magazine. We developed the idea, and after some struggles, Chance was
born in 1988. Steve and I had a lot of fun doing those early issues. We really enjoyed
dreaming up covers and having a professional photographer create them for us. One
of our favorites was connected to an article by Joel Greenhouse and his father, Sam.
The photographer was Joel’s brother, Richard. Our 30th anniversary is next year.

In 1987, Steve was appointed dean – no rest for the weary. In 1991, he returned to
Canada as professor of statistics and the law and vice president for academic affairs
at York University in Toronto, his childhood home. In 1993, then CMU Pres. Robert
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Mehrabian tried to recruit Steve back to the department. I recall Steve saying “there
was no other place I’d rather be.” Others may recall the department’s tenure review
of Steve, with an obvious outcome.

Then there was the time when I ran into Steve at Charles de Gaulle Airport near
Paris. It’s not surprising to run into a friend at PIT, but CDG? Steve was in transit
returning from a meeting, and I was in transit going to a meeting. Curiously, despite
our close friendship and regular interactions over all these years and despite our
sharing an office wall, we only wrote a few papers together more than 30 years ago.

Speaking of that shared wall . . .
It wasn’t long after Steve’s return to CMU that a staff member went into his office

to discover all his books on the shared wall in a heap on his floor. The shelves tore
everything from the wall, nearly destroying it. The incident forced me to examine
the shelves in my own office, which were teetering dangerously close to the same
fate as his. The wall was rebuilt and reinforced on both sides, and there has been no
problem since. I thank Steve for taking “the hit” for both of us.

As friends, we can discuss anything. Strong professional disagreements – while
rare – are easily resolved. Really weighty matters – such as wine and single malt
scotch preferences – are settled in taste tests at his home. Steve has been a critical
element in the growth and development of the department. When he came there
were about 10 faculty and 20 graduate students; during these years we’ve grown to
over 30 faculty and over 75 graduate students.

Around 1995, Dick Cyert, former president of CMU, was trying to start a
research center focused on the study of business/customer relationships. To generate
corporate interest, he organized a “dog-and-pony” show for a group of VPs. About
15 core faculty gave presentations to about 15 VPs. The faculty included Steve, Tom
Mitchell of CS, and me. We discovered our common interest in what was coming to
be called data mining. Tom and Steve had continued discussions which eventually
led to the creation of the Center for Automated Learning and Discovery in SCS
with Tom as Head and Steve, Larry Wasserman, and me as inaugural members. It
has since become the first Machine Learning Department in the world.

Despite his regular travels (those trips to Paris to see his five grandchildren
there must really rack up the frequent flier miles!), we still talk regularly about
the statistics department, about the profession, about our other departments, about
other professions.

As many of you know, about 5 years ago, I became Emeritus. For those of you
who don’t know what that means, I gave up my tenured professorship, but I did
not retire. My idea was I would, over several years, cut back on my activities, so
by, say 2016, I would retire (because I had nothing to do). Instead Steve managed
to get me involved in a census research project; in fact, of course, he has involved
several other faculty and several graduate students. And, following that, he got me
into another project, the Center for Statistics and Applications in Forensic Evidence
(again, with other faculty and students). Several other people did similar things to
me, and here I am working full time when I should be in Florida getting a suntan
and growing old.

Steve has noticed that becoming Emeritus doesn’t actually mean much except
that you don’t have to do things you don’t want to do. Steve is now Emeritus also.

Steve, welcome to the club!



Chapter 26
Statistical Service

Nancy Reid

26.1 Introduction

The first time I met Steve, probably in 1981, he asked me why I had not applied for
a larger grant from Canada’s funding agency, the Natural Sciences and Engineering
Research Council, as awards were limited to the amount requested. It was my first
such application, and I suppose I asked for what I thought I might spend—I do
not remember getting any particular advice from my department colleagues. I was
surprised that he knew about the application, but (of course) he was a member of the
grant selection committee. I was even more surprised that he told me he had argued
at the committee meeting for a larger grant award for me. This was typical Steve,
as I came to know him. Although living and working in the USA, he had agreed to
serve on a Canadian grant panel, which would have involved a punishing week-long
meeting in Ottawa, along with a great deal of preparation. In the midst of this, he
found the energy to champion a first-time applicant, both within the committee and
through personal contact. He probably broke some committee rules in doing this,
but he had his eye on the big picture. And I learned a valuable lesson about grant
applications, which I have passed on to my colleagues in turn.

In the many years since, I have done a good deal of statistical service myself,
partly because I was asked and did not like to say “no,” partly because it enabled
me to engage with friends and colleagues around the world, but mainly because it
opened my mind to different approaches to the advancement of the discipline. Many
of these service activities intersected with Steve, because he was everywhere and
doing everything. In the remainder of this essay, I will give an incomplete overview

N. Reid (�)
Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
e-mail: reid@utstat.utoronto.ca

© Springer Nature Switzerland AG 2022
A. L. Carriquiry et al. (eds.), Statistics in the Public Interest, Springer Series
in the Data Sciences, https://doi.org/10.1007/978-3-030-75460-0_26

451

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75460-0_26&domain=pdf
mailto:reid@utstat.utoronto.ca
https://doi.org/10.1007/978-3-030-75460-0_26


452 N. Reid

of Steve’s contributions, with emphasis on those in which I was directly or indirectly
involved.

I have drawn heavily on Steve’s curriculum vitae up to mid-2016—he sent it
to me at my request so that our department could nominate him for an honorary
doctorate from the University of Toronto. Unfortunately, he died before this honor
could be awarded to him.

26.2 Editorial

In an article in the Annals of Applied Statistics, in the Fienberg memorial issue, I
wrote [1]

When I met Steve in recent years, at conferences or committee meetings, he always seemed
to be busily tapping away on his iPad, and when he looked up he would say “Annals of
Applied Statistics.” (Although as it turned out he was editing several journals at the same
time.)

During his career, Steve was editor, co-editor, associate or guest editor of 24
different journals and encyclopedias, from the Annales de La Faculté des Sciences
de Toulouse Mathématiques to The Statistician. He was the founding co-editor, with
Bill Eddy, of CHANCE magazine (1988), co-founder and later editor in chief of the
Journal of Privacy and Confidentiality (2006), and founding editor of the Annual
Review of Statistics and Its Application (2013). He was editor, senior editor, and
editor in chief of the Annals of Applied Statistics (2006–2015), section co-editor of
the International Encyclopedia of the Social and Behavioral Sciences, coordinating
and applications editor of the Journal of the American Statistical Association, editor
of Statistical Science, and a member of the editorial board of the Proceedings of the
National Academy of Science. If there is a common thread, it is Steve’s dedication
to making the breadth and depth of statistical thinking available to many different
audiences, from the general public to the advanced researcher.

An interview with Bill Eddy and Steve in Volume 20 of CHANCE gives a
snapshot of the creativity, determination, and drive that led to the creation of the
journal [2]. Although Volume 1 appeared in 1985, they had started the project three
years earlier. While their original intent was to create a popular magazine, like
Scientific American or Psychology Today, I think the impact has been more profound
in the teaching of statistics. The first edition of Freedman’s groundbreaking statistics
text [3] was published in 1978, and like this book, CHANCE was a major contributor
to a new approach to statistical education and to the creation of an active group of
scholars focused on statistical education. My exposure to this was through the article
describing a course developed by Laurie Snell and colleagues at Dartmouth [4]. The
community established around this time continues to provide vibrant leadership in
statistical education; see, for example, the data science roundtable and report by the
National Academies’ Committee on Applied and Theoretical Statistics [5].
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I had a firsthand view of Steve’s publishing vision in my role on the inaugural
editorial board of the Annual Review of Statistics and its Application. Correspon-
dence obtained from the president and editor-in-chief of Annual Reviews at the time,
Sam Gubins, shows how quickly Steve moved to suggest a list of editorial board
members, a list of potential invited papers, and a vision for the scope of the journal.
Although the series of volumes published as Annual Reviews has an outsized role
in many scientific fields, Steve was aware that it would take some effort to ensure
that the new volume would have impact in the statistical sciences community and
also emphasized the importance of ensuring that the journal could also speak to
scientists and social scientists in a wide range of disciplines. He presented a clear
and compelling vision to his editorial team and led the early meetings with authority
and enthusiasm.

Annual Reviews, as the name suggests, focuses on overview articles summarizing
the current state of the art on some topic. Statistical Science and, in some respects,
CHANCE are also targeted on reviews, rather than original research. It is my
impression that these types of articles are underappreciated by academic researchers
and by promotion and tenure committees. I think this is a legacy of our roots in
mathematics, which tends to view contributions to learning and teaching as distinct
from “real research.” At the same time, the articles are very much appreciated by
students, researchers in other fields, and statistical researchers wishing to learn about
a new topic. I would like to see our academic colleagues more willing to write, and
to value, review articles.

26.3 Visiting Committees

One of the more interesting, though grueling, service activities for an academic
is membership on an external review committee of a department or center. These
run the gamut from an exercise in affirming the “world-class status” of the unit in
question, to an exercise in emergency resuscitation, or pronouncement, on a unit
that is on life-support. In all cases, this is, in my experience, therapeutic for the
less powerful members of the department, a burden for the senior leadership, and a
lottery in terms of the impact on the deans, vice-provosts, and others commissioning
the review. The work of the external reviewers is mentally and emotionally
exhausting—most of my colleagues who have contributed to this particular aspect
of service have decided after fulfilling a handful of these efforts to gracefully decline
further requests. In contrast, Steve reviewed 13 different Departments of Statistics,
several of them twice, with the first in 1987 and the last in 2015. He also served on
panels and review committees in public health, nutrition, sociology, education, and
more.

We served on one such committee together; at the time, I was chair of our
department and thought it would be a good learning experience to see another
department close up. In addition to having a commanding view of the needs and
opportunities of the department under review, and seemingly able to draft the report
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in his sleep, Steve found time to give me advice about my new role. One of his more
surprising questions was “Have you identified the next chair yet?”—I could barely
focus on the current semester, let alone the end of my term. And yet, as experienced
chairs know, this is indeed one of the most important files, for the health of the
department and for one’s own sanity.

26.4 Mentorship

In [6], we collected a series of vignettes from some of Steve’s collaborators, as an
incomplete attempt to illustrate the breadth of his scientific contributions. Many of
these collaborators were former students, now colleagues, and nearly all of these
added some comment about the importance to their career of Steve’s role as a
mentor. Similar text appears in the special section of the Annals of Applied Statistics
[11] published in his honor in 2018 and an earlier special section of CHANCE [12].

What struck me as we compiled these contributions was the incredible range of
people who expressed, in different words, more or less the same sentiment: gratitude
toward Steve for his enthusiasm, encouragement, vision, engagement, collaboration,
and leadership. Paul Holland wrote about the key role Steve played in writing and
publishing what he called the “Green Monster” [7]. Bernd Sturmfels noted that
“Steve had the vision to see this [the connections between algebra and statistics]
before anyone else did.” Philip Dawid described Steve’s pivotal role in engaging
him in a project that turned out to be “one of the most fascinating experiences of
my professional life.” Jana Asher wrote, in [11], “Steve was the only person that
seemed to truly understand how my mind worked.”

Steve was a member of the first Scientific Advisory Committee for the newly
established Canadian Statistical Sciences Institute, which was launched by the
Statistical Society of Canada in 2012 and received its first NSERC funding through
the Canadian mathematical sciences institutes in 2014. He gave me a great deal
of encouragement and advice when I became the Scientific Director in 2015. The
Center for Statistics and Applications in Forensic Evidence was being established
at the same time, under Steve’s co-leadership, and with a budget many orders
of magnitude larger than CANSSI’s. But Steve took my questions and problems
quite seriously and pushed the leadership of CANSSI and the Scientific Advisory
Committee to think big, think ahead, and think broadly. His most memorable advice
to me about funding was “Don’t waste time fighting for a bigger share of the pie.
Find a way to open your own bakery!”

26.5 The National Academies

Steve undertook an unusually wide range of service activities, but I think he may
have been most proud of his work for the National Academies. He was elected
to the National Academy of Science in 1999, chaired the Applied Mathematical
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Sciences section from 2006 to 2009, and served on the NAS Council and several of
the Council’s committees from 2013 to 2016.

He also served on many committees of the National Research Council of the
National Academies in three different divisions: Behavioral and Social Sciences
and Education, Physical and Engineering Sciences, and the Institute of Medicine.
In these capacities, he served on panels, organized and participated in workshops,
and contributed to NAS reports. He was a member of the Committee on National
Statistics for 10 years and Chairman for seven of those. In this capacity, he edited
four reports published by the National Academies Press and contributed to dozens of
other reports and workshops. One of the most significant of those was [8], the report
of the Committee to Review the Scientific Evidence of the Polygraph, which Steve
chaired. Earlier he had chaired the Panel on Statistical Assessments as Evidence in
the Courts [9], which includes a case study on the use of hair samples in forensic
analysis. He had a long-standing interest in forensic science, one important outcome
being the current Center for the Statistical Analysis of Forensic Evidence, which at
long last is bringing rigorous statistical thinking to forensic science.

To give a flavor of the breadth of his interests and remarkable range of activities,
he was a member of the following: Committee on Law and Justice, the Standing
Committee of the American Opportunity Study, the Committee on Technical and
Privacy Dimensions of Information for Terrorism Prevention and Other National
Goals, the Committee on Social Evidence for Use, the Committee to Assess the
Value of Research in Advancing National Goals, the Committee on Applied and
Theoretical Statistics, the Committee on Department of Energy Radiation Epi-
demiological Research Programs, the Computer Science and Telecommunications
Board, the Committee on a Study of Food Safety and Other Consequences of
Publishing Establishment Specific Data, the Committee on Review of the National
Immunization Program’s Research Procedures and Data Sharing Program, and the
Committee on Secondhand Smoke Exposure and Acute Coronary Events.

In addition to all these committees, panels, and workshops, Steve served on the
Report Review Committee from 2005 to 2016 and as co-chair of this committee
from 2008 to 2016. In this position, he oversaw the review of 200 reports each
year. The obituary published by Carnegie Mellon University [10] quotes Porter E.
Coggeshall, the Executive Director of Report Review: “Steve’s exceptional regard
for integrity and quality has ensured that reports met the Academies’ highest
standards for objectivity and evidence.”

What comes through in Steve’s vitae, in comments from his colleagues, in the
many obituaries, and so on is his remarkable dedication to advancing the careful use
of statistical arguments in all areas of application, but especially in areas related to
government, public policy, and the judicial system. Pleas to academic scientists to
engage with the “outside world” are common, but few of us find this very easy to
do, so we tend to avoid it. We are all of course very busy with our regular program
within the academy; this engagement takes a very concerted effort, and any one
effort may not have much impact. Steve took the charge very seriously and was
unusually effective in this, but he is not here, and if many of us were to make a little
extra effort, we could do his legacy proud.
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26.6 Professional Societies

Not surprisingly, Steve was also very active in contributing to professional societies.
He filled several different roles in the American Statistical Association, the Institute
of Mathematical Statistics, the International Society for Bayesian Analysis, the
International Statistical Institute, the Royal Statistical Society, the Statistical Society
of Canada, and the Committee of Presidents of Statistical Societies. He served on
the scientific advisory committees of the Banff International Research Station, the
Centre de Recherches Mathématiques, MITACS, NISS, SAMSI, and the Canadian
Institute of Statistical Sciences. He was active on the Council and in Section U of the
American Association for the Advancement of Science and the Council of the Inter-
university Consortium for Political and Social Research. He was on the organizing
committee for the International Conference on Forensic Statistics for each of its
triennial meetings from 1990 to 2011.

Among his many contributions to these and other organizations, he was influen-
tial in his role as President of the Institute of Mathematical Statistics, in finalizing
the details of the arrangement between IMS and JStor, and between IMS and Project
Euclid. The discussions with JStor began during my term as IMS President and
moved as slowly as discussions between academics and lawyers tend to move, but
they were completed in 1999. I think the leadership of IMS on this file led the way
to other statistical societies signing on their publications with the foundation, an
enduring legacy for our profession.

26.7 Closing

I have not even touched on many other professional activities that Steve undertook;
his vitae lists 44 separate national and international organizations for which he
consulted, including Statistics Canada (1975; 1992–1998), Statistics Netherlands
(1997–1998), the Bureau of Labor Statistics (1985–1985), the UK’s Engineering
and Physical Sciences Research Council (2010) (which produced an influential
report on their international review of the mathematical sciences), the Allegheny
County Health Department (1988–1989), the Centers for Disease Control (1989–
1990; 1994), and so on. He gave testimony to Congress and other government
committees on 17 different occasions. He was the only statistician on the National
Commission on Forensic Science (2014–2016) and, in 2016, served on the Presi-
dent’s Council of Advisors on Science and Technology.

He combined all these efforts with an astonishing research output of more than
340 technical publications in statistics journals and in applied journals, six books
authored or co-authored, and innumerable discussion pieces, short editorials, and
more. While his enthusiasm for research was unbounded, his determination that
this research should lead to better science, social science, health, and government
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was an equally important part of his legacy. This involved countless hours of travel,
meetings, phone calls, emails, presentations, and more meetings.

Robert Groves, executive vice-president and provost of Georgetown University
and former director of the U.S. Census Bureau, was quoted in [10]: “Steve
Fienberg’s career has no analogue in my lifetime.” While we can never fill his shoes,
we can all try a little harder to contribute to statistical service.
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Chapter 27
On the Origins of Data Visualization

Howard Wainer and Michael Friendly

27.1 Prelude

On December 24, 2018, we received an early Christmas gift from an old friend.
Judy Tanur wrote to tell us that she had joined with two other friends to generate a
memorial volume for Steve Fienberg, whose untimely passing in 2016 had saddened
us all; this sadness exploded to tragedy with the murder of Steve’s widow, Joyce,
at her synagogue on October 27, 2018. We were honored to be included among the
contributors to this volume and immediately set to work choosing an appropriate
topic.

HW’s history with Steve goes back to September of 1970 when we, as statis-
ticians and new assistant professors at the University of Chicago, were both
assigned to count votes in the faculty election. We became friends and continued
to collaborate on various projects for almost 50 years. Two of those collaborations
are relevant to today’s topic, the use of data visualization both for data exploration
and for the communication of quantitative phenomena.

1. In 1978, HW was in Washington, directing the NSF-sponsored Graphic Social
Reporting Project, and as part of this project had convened a conference of
interested scholars. Steve was one of the principal speakers. Al Biderman, HW’s
co-organizer of the conference, introduced Steve as “Holland’s only Jewish
Bishop.” At that time, it was an insider’s joke, but one that is not likely to be
obscure to the audience of this volume. Steve’s message in his talk, as nearly as
we can remember it, was that a scientist’s job was to speak truth – especially to
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those who were in positions to make policy – and that the best way to convey
quantitative truths was using pictures, not numbers.

2. In 1988, Steve and Bill Eddy began the statistics magazine Chance, which they
had imagined as readable by the general public, a parallel to Scientific American
that dealt with the field of statistics, principally its applications. In 1990, Steve
asked HW to write a column for Chance called “Visual Revelations” that would
focus specifically on statistical graphics. He felt strongly that this should be a
topic of primary concern to quantitative scientists generally and the readers of
Chance specifically. The case he made was so convincing that HW agreed to
take on the column for at least a couple of years; as of this moment, 31 years
later, he is still writing it.

A decade later Steve took a leave of absence from Carnegie Mellon to return
to his native Toronto and ascended to the position of Vice President for Academic
Affairs at York University. It was here that he made the acquaintance of MF, who
was then chair of York’s Academic Planning Computing Committee. Together they
immediately set about developing a plan to modernize the university’s computing
facilities. They planned to shift from a mainframe environment to the modern
approach of distributed computing using the exploding developments of personal
computers, augmented, for heavier tasks, with work stations. They were especially
attracted to those developed by Steve Jobs (MACs and NeXT machines) whose
graphical user interfaces were obviously (to Steve and MF) the future of computing.
Steve’s administrative leadership was as inspiring as it was rare and, within
18 months York’s computing environment, had moved from the trailing edge to
the forefront.

The subject of this essay is the origin of data visualization, and we begin with an
extended metaphor of a wedding between empiricism and visualization. Among the
details of the wedding that were only recently unearthed was that Steve Fienberg
was the guest of honor at the ceremony. In his toast, he offered his wishes for a
rosy future in which the offspring of the union would provide wisdom in choosing
important questions and guidance in finding solutions. Among those joining Steve
at the dais was a distinguished sextet of our graphical heroes, each with his own
special gift to the couple. To his left were:

William Playfair, who presented the couple with a beautiful, hand-colored plot
of England’s national debt indicating how wars contributed to its skyrocketing
growth.

Andre-Michel Guerry, whose gift of a shaded map of crime provided suggestions
of potential causes and possible remediation, marking the birth of modern
criminology and social science. The renowned Belgian statistician Aldolphe
Quetelet had also figured largely in this but sent his regrets and best wishes to
Steve.

John Snow, who gave an innovative dot-map of a cholera epidemic in London that
marked the start of modern epidemiology.
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And to Steve’s right were:

Charles Joseph Minard, who had adapted his visual stories of commerce to provide
a heart-rending tale of the horrors of war

Francis Galton, who had set aside his fascination with regression to construct a
map of weather patterns decorated with multivariate glyphs that would allow the
honeymooners to only go where the sun was shining brightly

Emile Cheysson, director of the statistical bureau of the French Ministry of Public
Works who produced the Albums de Statistique Graphique, the most ambitious
effort to make data of the state (“statistics”) accessible to public inspection

27.2 One Wedding, No Funeral

What follows is the saga of a family. It begins, as do all such stories, with a
marriage. The marriage is a good one, and we will learn how it came to be as well
as how it evolved in both richness and depth. Our tale then branches to the issue
from that union, taking time to include both the geneses of the offspring and their
accomplishments.

Let us begin.
The marriage represents the joining of the epistemological approach of empiri-

cism, as a window to understanding the world, to visualization as a way of
connecting evidence to human experience. It was a match made in heaven, for it
facilitated the easy connection of the seat of the intellect to the seat of the pants.

Empiricism begins, as do so many things, with Aristotle, but it was a tough sell,
for it meant that any proposal, no matter how convenient or how beautiful, could be
dismissed with a single reliable fact. Aristotle got away with such a rigid outlook
only because he had Alexander the Great watching his back. Thus anyone who
crossed Aristotle had to contend with Alex. But even Aristotle didn’t buy in fully –
he proposed that women had but 28 teeth. This was a rational conclusion; after all
women were smaller and more delicate. What need they for the extra chomping
power? Of course, had Aristotle truly digested his own epistemology he would
have counted – he did have two wives. But apparently, this particular application
of empiricism never occurred to him.

After the passing of the perfect storm of Aristotle, Alexander, and the Golden
Age of Greece, empiricism faded. It briefly reappeared with Roger Bacon (1214–
1292), who told us that,

Reasoning draws a conclusion, but does not make the conclusion certain, unless the mind
discovers it by the path of experience. (Bacon, 1897 in the section on the scientific method,
De Scientia Experimentali, page 244)

But once again it slipped away only to gain a firmer foothold with the work of
Francis Bacon (1561–1626), the second of the two fabulous Bacon boys. Following
on quickly were the British empiricists John Locke (1632–1704), George Berkeley
(1685–1753), and David Hume (1711–1776). And so by the end of the eighteenth
century, one spouse was ready.
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27.3 Picture that

The history of visualization is much longer. Perhaps the best known of very early
examples is found in the Lascaux caves near the French village of Montignac. On
the walls are remarkable drawings of animals, which carbon dating has estimated
to be more than 17,000 years old. But although the Lascaux cave drawings are
remarkable, and a bit stylized, they represent straightforwardly just what was seen
(Fig. 27.1).

Jumping forward in time (to about 1400 BCE) and southward in direction, we
arrive in ancient Egypt. The lives of most of Egypt’s inhabitants revolved around
the Nile. The regular floods of the river would wash away all but the most stubborn
of property markers; thus, maps were prepared to indicate whose land was whose
after the waters receded. Maps were a brilliant solution to a very practical problem,
but, like the cave drawings in ancient France, they represented space in spatial
terms. Aside from their miniaturization (and a rudimentary coordinate system of
intersecting horizontal and vertical lines to enable a more precise placement of data
points), this hardly represented a huge conceptual breakthrough.1 For that we would
have to wait more than two millennia.

But developments in cartography were to presage some critical future develop-
ments in the communication of evidence. For example, Descartes (1596–1650) is
typically credited with the establishment of his eponymous coordinate system. But
Hipparchus (ca. 140 BC) had a reasonably refined system for locating points in the

Fig. 27.1 Four sample paintings from the Lascaux caves, courtesy of the Bradshaw Foundation

1Maps were developed independently in the Far East. During the Warring States period in China
(about 227 BCE), we find the first mention of a Chinese map being drawn. It showed a portion of
Dukang that the Yan State was to cede to the King of Qin in exchange for peace.
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heavens; its axes were called (translated into Latin) longitudo and latitudo. Roman
surveyors used a coordinate grid to lay out their towns on a plane that was defined
by two axes; the decimani running from east to west and the cardi that ran north
to south. Music notation (as early as the ninth century) used a horizontal axis to
represent time and the vertical axis for pitch; and the chessboard (with its associated
notation to locate pieces) was developed in seventh-century India.

All of these visualizations were of something real and specific in the world.
We might capitalize them as we do proper nouns – I saw Sam yesterday; my
land and Gamal’s before the spring flood; our chess game as we left it today.
But there was another branch of visualization developing too – the common noun
part – in which what was being depicted was theoretical. One well-known early
example was published in Padua in 1486 on the first page of Oresme’s Tractus de
latitufunus forarum (Wainer, 2005, P. 10). The common noun structure of scientific
visualizations is not a surprise once we consider that the reigning epistemology in
natural science grew out of natural philosophy that favored a rational rather than
empirical approach to scientific inquiry.

By the middle of the eighteenth century, the empirical seeds sown by Locke,
Berkeley, and, especially, Hume (whose 1738 Treatise on Human Nature and his
1741 Essays,Moral and Political had a profound influence on Adam Smith, Jeremy
Bentham, and Immanuel Kant) had started to bear fruit. The Scottish enlightenment,
a magical period in the eighteenth century, gave rise to a torrent of practical
innovations in mathematics, science, and medicine. James Watt revolutionized
manufacturing; Adam Smith’s The Wealth of Nations started modern economics;
and the mathematician/geologist John Playfair’s advocacy of Hutton’s evidence-
based theories yielded an estimate of the age of the Earth that was very much at odds
with the 6000-year biblical estimate. But the star of our story is not the very worthy
John Playfair (1748–1819), but rather his ne’er-do-well younger brother William
(1759–1823).

Early on in his working life, William Playfair was a draftsman for James Watt.
He later went on to become a pamphleteer typically focusing on political arguments
based on economic data conveyed in vivid, original graphical forms. Thus was
consummated the union between empiricism and visualization begun long ago
during the Golden Age of Greece and completed in the Scottish Enlightenment.
William Playfair’s 1786 Atlas filled with spectacular and beautiful graphs of mostly
economic data was not a natural outgrowth of what came before. In fact, we view
Descartes’ 1637 development of a coordinate system as an intellectual impediment
that took a century and a half and Playfair’s eclectic genius to overcome.

A wonderful example of Playfair’s genius is his plot of England’s national debt
(Fig. 27.2) which is the first “skyrocketing debt” plot and exhibits many of Playfair’s
unique characteristics:

(a) It displays copious data, in this case England’s national debt from 1688 until
1800.

(b) It uses a higher-than-wide aspect ratio to emphasize the skyrocketing.
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Fig. 27.2 Playfair’s plot of England’s national debt from 1688 to 1800 dramatically showing the
adverse effect wars had on debt. Plate 20 (opposite page 85 in his 1801 Commercial Atlas)
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(c) It has unevenly spaced years to be explicit about when events influential for the
debt occurred.

(d) Those years are labeled with explanations (e.g., start of Seven Years’ War).

27.4 Finding Unexpected Values

The plotting of real data had a remarkable, and largely unexpected, benefit. It forced
the viewers to find what they hadn’t expected. Thus was born the empirical modern
approach to science that does not disdain the atheoretical plotting of data points with
the goal of investigating suggestive patterns. Graphs that were in existence before
Playfair (with some notable exceptions that we will discuss shortly) grew out of the
same rationalist tradition that yielded Descartes’ coordinate geometry – that is, the
plotting of curves on the basis of an a priori mathematical expression (e.g., Orseme’s
“pipes” – discussed in Clagett, 1968).

Naked empiricism did not meet with universal approval. Luke Howard, a prolific
grapher of data in the late eighteenth and early nineteenth century, as late as
1844, apologized for his methodology and referred to it as an “autograph of the
curve . . . confessedly adapted rather to the use of the dilettanti in natural philosophy
than that of regular students” (Howard, 1847, p. 38).

Now we can see the value of the grammatical metaphor that we introduced
earlier, for it is accurate to think of early graphic displays as nouns, indeed common
nouns that were used to depict some theoretical relationship. Thus we can conceive
of the first major revolution in the use of graphic display in science as a shift from
its use as a common noun (e.g., the theoretical relationship between supply and
demand) to that of a proper noun (e.g., England’s imports and exports from 1700
to 1800). This revolution seems to have begun in 1665 with the invention of the
barometer, which inspired Robert Plot to record the barometric pressure in Oxford
every day of 1684 and summarize his findings in a remarkably contemporary graph
that he called a “History of the Weather” (Fig. 27.3) (Wainer, 2005, P. 14).

He sent a copy of this graph with a letter to Martin Lister in 1685 with a prophetic
insight on the eventual use:

For when once we have procured fit persons enough to make the same Observations in many
foreign and remote parts, how the winds stood in each, at the same time, we shall then be
enabled with some grounds to examine, not only the coastings, breadth, and bounds of the
winds themselves, but of the weather they bring with them; and probably in time thereby
learn, to be forewarned certainly, of divers emergencies (such as heats, colds, dearths,
plague, and other epidemical distempers) which are not unaccountable to us; and by their
causes be instructed for prevention, or remedies . . .we shall certainly obtain more real and
useful knowledge in matters in a few years, then we have yet arrived to, in many centuries
(Wainer, 2005, P. 15).2

2Plot’s proposed method of crowd-sourcing weather data and his assessment of its potential value
would later bear great fruit in Francis Galton’s (1863) spectacular discovery of weather patterns in
the northern hemisphere.
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Fig. 27.3 Robert Plot’s (1685) “History of theWeather” recording of the daily barometric pressure
in Oxford for the year 1684

Plot and Lister’s use of graphic display was scooped by the seventeenth century
Dutch polymath Christiaan Huygens (1629–1693). On October 30, 1669, Chris-
tiaan’s brother Lodewijk sent him a letter containing some interpolations of life
expectancy data taken from John Graunt’s 1662 book the Natural and Political
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Fig. 27.4 Christian Huygens’s 1669 curve showing how many people out of a 100 survive
between the ages of infancy and 86. (The data are taken from John Graunt’s Natural and Political
Observations on the Bills of Mortality, 1662)

Observations on the London Bills of Mortality. Christiaan responded in letters
dated November 21 and 28, 1669, with graphs of those interpolations. Figure 27.4
contains one of those graphs showing age on the horizontal axis and number of
survivors of the original birth cohort on the vertical axis. The curve drawn was
fitted to his brother’s interpolations. The letters on the chart are related to an
associated discussion on how to construct a life expectancy chart from this one –
that is, analyzing a set of data to yield deeper insights into the subject. Christiaan
constructed such a chart and indicated that it was more interesting from a scientific
point of view; the alternative, he felt, was more helpful in wagering.

There were a smattering of other examples of empirically based graphs that
appeared in the century between Huygen’s letter and the 1786 publication of
Playfair’s Commercial and Political Atlas, for although some graphic forms were
available before Playfair, they were rarely used to plot empirical information. In
1978, Albert Biderman argued that this was because there was an antipathy toward
that as a scientific approach. This suggestion was supported by such statements as
that made by Luke Howard. But at least sometimes, when data were available (e.g.,
Graunt’s survival data, Plot’s weather data, and several other admirable uses), they
were plotted. Perhaps part of the exponential increase in the use of graphics since
the beginning of the nineteenth century is merely concomitant to the exponential
growth in the availability of data. Of course there might also be a symbiosis in that
the availability of graphic devices for analyzing data encouraged data gathering. For
whatever the reasons, Playfair was at the cusp of an explosion in data gathering, and
his graphic efforts appear causal. He played an important role in that explosion.
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The consensus of scholars, well phrased by Costigan-Eaves and Macdonald-
Ross (in progress) (in their oft-cited, but as yet, unpublished manuscript), is that
until Playfair “many of the graphic devices used were the result of a formal and
highly deductive science . . .This world view was more comfortable with an arm-
chair, rationalistic approach to problem-solving which usually culminated in elegant
mathematical principles” often paired with elegant geometrical diagrams. The
empirical approach to problem-solving, a critical driving force for data collection,
was slow to get started. But the empirical approach began to demonstrate remarkable
success in solving problems, and with improved communications, the news of these
successes, and hence the popularity of the associated graphic tools, began to spread
quickly.

We are accustomed to intellectual diffusion taking place from the natural and
physical sciences into the social sciences; certainly that is the direction taken for
both calculus and the scientific method. But statistical graphics in particular and
statistics in general went the reverse route. Although, as we have seen, there were
applications of databased graphics in the natural sciences, it was only after Playfair
applied them within the social sciences that their popularity began to accelerate.
Playfair should be credited with producing the first chart book of social statistics;
indeed, publishing an Atlas that contained not a single map is one indication of his
belief in the methodology (to say nothing of his chutzpah). Playfair’s work was
immediately admired, but emulation, at least in Britain, took a little longer (graphic
use started up on the continent a bit sooner). Interestingly, one of Playfair’s earliest
emulators was the banker S. Tertius Galton (the father of Francis Galton, and hence
the biological grandfather of modern statistics) who, in 1813, published a multiline
time series chart of the money in circulation, rates of foreign exchange, and prices
of bullion and of wheat.3 The relatively slower diffusion of the graphical method
back into the natural sciences provides additional support for the hypothesized bias
against empiricism there. The newer social sciences, having no such tradition and
faced with both problems to solve and relevant data, were quicker to see the potential
of Playfair’s methods.

The Prodigal Brother

Playfair’s graphical inventions and adaptations look contemporary. He invented the
line graph and the pie chart to suit particular purposes. He invented the statistical
bar chart out of desperation, because he lacked the time series data required to draw
a line showing the trade with Scotland and so used bars to symbolize the cross-
sectional character of the data he did have. Playfair acknowledged Priestley’s (1765,

3Ironically, had Galton paid close enough attention to his own graphs he would have been able to
foresee the financial crisis of 1831 that created a ruinous run on his own bank.
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1769) priority in this form, although Priestly used thin horizontal bars to symbolize
the life spans of historical figures in a time line (Fig. 27.5).

Playfair’s role was crucial for several reasons. It was not for his development
of the graphic recording of data; others preceded him in that. Indeed, in 1805,
he points out that as a child his brother John had him keep a graphic record of
temperature readings. But Playfair was in a remarkable position. Because of his
close relationship with his brother and his connections with Watt, he was on the
periphery of applied science. He was close enough to know of the value of the
graphical method, but sufficiently detached in his own interests to apply them in
a very different arena – that of economics and finance. These areas, then as now,
tend to attract a larger audience than matters of science, and Playfair was adept at
self-promotion.4

In a review of his 1786 Atlas that appeared in The Political Herald, Dr. Gilbert
Stuart wrote,

The new method in which accounts are stated in this work, has attracted very general
notice. The propriety and expediency of all men, who have any interest in the nation,
being acquainted with the general outlines, and the great facts relating to our commerce
are unquestionable; and this is the most commodious, as well as accurate mode of effecting
this object, that has hitherto been thought of . . .To each of his charts the author has added
observations (which . . . in general are just and shrewd; and sometimes profound . . .Very
considerable applause is certainly due to his invention; as a new, distinct, and easy mode of
conveying information to statesmen and merchants (Playfair 1801/2005, P. 31) . . .

Fig. 27.5 Lifespans of 59 famous people in the 6 centuries before Christ (Wainer, 2005, P. 43)

4For more about the remarkable life and accomplishments of William Playfair (including the
fascinating story of his attempted blackmail of Lord Archibald Douglas), the interested reader
is referred to Spence and Wainer (1997, 2000), Wainer (1996), Wainer and Spence (1997), and,
especially, Wainer and Spence’s Introduction to Playfair (1801/2005).
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Fig. 27.6 Marey’s graphical train schedule, showing all trains between Paris and Lyons each day
(Wainer, 2005, P. 7)

Such wholehearted approval rarely greets any scientific development. Playfair’s
adaptation of graphic methods to matters of general interest provided an enormous
boost to the popularity of statistical graphics.

The popularity of visualizations owes much to the almost religious fervor of
scientists and epistemologists of the nineteenth century who sought to banish
subjectivity from science. “The prophets, philosophers and preachers of objectivity
drew on a number of techniques including inferential statistics, double-blind clinical
trials, and self-registering instruments to hold subjectivity at bay.”5 But, as we have
sketched, the oldest and most important of these was visualization.

By 1878, the French physiologist Etienne Marey, whose graphic schedule of all
the trains between Paris and Lyons reproduced in Fig. 27.6 provides a powerful
illustration of the breadth of value of this approach, expressed the feelings of most
natural scientists of the value of graphical representation

There is no doubt that graphical expression will soon replace all others whenever one has
at hand a movement or change of state – in a word, any phenomenon. Born before science,
language is often inappropriate to express exact measures or definite relations (Marey, 1878,
p. iii).

Marey was also giving voice to the movement away from the sorts of subjectivity
that had characterized prior science in support of the more modern drive toward
objectivity. Although some cried out for the “insights of dialectic,” “the power of
arguments,” and the “flowers of language” (All quotations on this page are drawn
from Daston and Galison (1992), P. 86), their protestations were lost on Marey, who

5From page 17 in Lorraine J. Daston and Peter Galison’s, marvelous 2007 book, Objectivity
(Daston and Galison, 2007).
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dreamed of a wordless science that spoke instead in high-speed photographs and
mechanically generated curves – in images that were, as he put it, in the “language
of the phenomena themselves.”6

Historians have pointed out that “Let nature speak for itself” was the watchword
of the new brand of scientific objectivity that emerged at the end of the nineteenth
century. In their fascinating 1992 essay, Daston and Galison emphasize that “at issue
was not only accuracy but morality as well: the all-too-human scientists must, as a
matter of duty, restrain themselves from imposing their hopes, expectations, gener-
alizations, aesthetics, and even their ordinary language on the image of nature” (p.
84). Mechanically produced graphic images would take over when human discipline
failed. Marey and his contemporaries turned to mechanically produced images to
eliminate human intervention between nature and representation. “They enlisted
polygraphs, photographs, and a host of other devices in a near-fanatical effort to
produce atlases – the bibles of the observational sciences” (p. 118) – documenting
birds, fossils, human bodies, elementary particles, flowers, and economic and social
trends that were certified free of human interference.

Daston and Galison conclude, “The problem for nineteenth-century atlas makers
was not a mismatch between world and mind, as it had been for seventeenth-
century epistemologists, but rather a struggle with inward temptation. The moral
remedies sought were those of self-restraint: images mechanically reproduced and
published, warts and all; texts so laconic that they threatened to disappear entirely.
Seventeenth-century epistemology aspired to the viewpoint of angels; nineteenth-
century objectivity aspired to the self-discipline of saints. The precise observations
and measurements of nineteenth century science required taut concentration end-
lessly repeated. It was a vision of scientific work that glorifies the plodding
reliability of the bourgeois rather than the moody brilliance of the genius7” (p. 118).

The graphic representation of scientific phenomena served two purposes. Their
primary function was standardizing phenomena in visual form, but they also served
the cause of publicity for the scientific community. They preserved what was
ephemeral and distributed it to all who would purchase the volume, not just the
lucky few who were in the right place at the right time with the right equipment.
And, they served the cause of memory, for images are more vivid and indelible than
words.

But the graphic display of natural phenomena was viewed as yet more. Marey, in
an accompanying note to his design of a portable polygraph, which automatically
registered a variety of measures, suggested that through the use of graphics scientists
could reform the very essence of scientific research and scientific evidence. “The
graphic method translates all these changes in activity of forces into an arresting

6Marey (1878, p. vi)
7Although with such contributors as Condorcet (1743–1794), von Humboldt (1769–1859), and
Florence Nightingale (1820–1910), there was certainly room for genius in the eighteenth and
nineteenth centuries. Indeed, Galton’s weather maps, developed at the end of the nineteenth
century, shows how plodding reliability when adjoined with moody brilliance can yield especially
fruitful results, yet no one would doubt that Robert Plot was a plodding plotter.
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form that one could call the language of the phenomena themselves, as it is
superior to all other modes of expression” (Daston and Galison, 2007, p. iv). Such
a language was, for Marey, universal in two senses. Graphical representation could
cut across the artificial boundaries of natural languages to reveal nature to all people,
and graphical representation could cut across disciplinary boundaries to capture
phenomena as diverse as the pulse of a heart and the downturn of an economy.
Pictures became more than merely helpful tools: they were the words of nature
herself.8

The Wedding Banquet

Yet something even more remarkable occurred among the wedding planners in the
latter part of the nineteenth century, as many forces combined to produce the perfect
storm for data graphics we call the Golden Age. The table had been well set. Heaps
of data on important societal issues (commerce, literacy, crime) had been ordered
up; some statistical theory had been developed to allow the essential flavors to be
extracted; technological advances in printing and reproduction now allowed serving
a huge guest list. The guests were truly international, but they shared a common
visual language and visual thinking.

Only one of the planners will be mentioned here: Charles JosephMinard (1781—
1870), a civil engineer in France and who later produced a now iconic9 flow
map depicting Napoleon’s disastrous Russian campaign of 1812. Minard used the
graphic method to design exquisitely beautiful thematic maps and diagrams showing
all manners of topics of interest to the modern French state in the dawn of national
concern for trade, commerce, and transportation: Where to build railroads? What
happened to the production of cotton goods during the US Civil War (shown in
Fig. 27.7)?

By the end of the nineteenth century, guests from the USA (Francis Walker in
the Census Bureau), France (Émile Cheysson in the Ministry of Public Works),
and others in Germany, Sweden, and elsewhere began to send their gifts to the
happy couple – elaborate and detailed statistical albums tracing and celebrating
their nation’s achievements and aspirations – and decked out in the fancy colors
and styles of what became the language of graphics.

We have gone beyond merely tracing the history of the bride and groom in the
marriage of empiricism and visualization to also include some snapshots of the
wedding, the honeymoon, and of a fair number of anniversaries attended by the

8This simple? Perhaps not. An alternative thesis to the one that characterizes science’s task as
capturing the glorious revelations by nature of her sublime design is one that sees humans imposing
the order of their senses and their arts upon the unheavenly disorder they find themselves amidst.
9Marey (1878) first called attention to this work, saying it “defies the pen of the historian in its
brutal eloquence.” Tufte (1983) later bestowed the title of “the best statistical graphic ever drawn.”
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many descendants of the initial pairing. Our goal was to provide a foreshadowing of
the beauty and accomplishments that issued from this union.

For those who would value a fuller elaboration, we immodestly refer you to
Friendly and Wainer (2021) from which this chapter has been abstracted.
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Chapter 28
“Belizaire”: The Chance Restaurant
Critic

Albert Madansky

The 1967 correspondence exchange between Richard Condon (of Manchurian
Candidate fame), Martin Shubik (Seymour H. Knox Professor of Economics at
Yale), Irv Roshwalb (Senior Vice President of Audits & Surveys, Inc.), and me
about pastrami was a file folder (dubbed “The Pastrami Papers”) which was privately
circulated among our friends. One of its readers, Jack Gould (Economics Professor
at the University of Chicago Graduate School of Business), suggested that a
composite of this correspondence would make a great article for the University of
Chicago Magazine and so introduced me to its editor, Don Morris, who came up
with the format for the presentation of the material and who redacted the material,
crafting what was to become a classic paper. It appeared in the Spring 1976 issue
of the magazine, “Notes on an experimental evaluation of four leading delicatessens
using as criteria their corned beef and pastrami sannawhitch, in accordance with the
axiom: The deli is the sannawhitch.” The centerpiece of the paper was a taste test of
pastrami and corned beef sandwiches from four Manhattan delis.

In the 1980s, the GSB Statistics Group had periodic lunches in which someone
would lead a discussion on a statistical topic. I decided to bring to one of these
lunches pastrami and corned beef sandwiches from the two leading Chicago
purveyors of delicatessen meats, Hungarian Kosher Foods and Romanian Kosher
Sausage Company, and replicate the Shubik-Madansky experiment at that lunch.
The result of that experiment was a privately circulated report, “Hungarian and
Romanian: Whose Wurst is Best?”

When Steve Fienberg was planning the first issue of Chance, he called me and
asked if I would fashion an article suitable for statisticians about these taste tests,
and thus was born my paper, “The Gentleman Tasting Pastrami.” I came up with
that title as a homage to R. A. Fisher’s famous “Lady Tasting Tea” of his 1935
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Fig. 28.1 Cover of the first
issue of Chance magazine

Design of Experiments book (not to be confused with David Salsburg’s book, The
Lady Tasting Tea, which was published in 2001). Concerned that the casual reader
of Chance would not get the allusion, Steve included material from Fisher’s book
as a boxed insert in the paper.

Little did I know that this paper would define the cover art for Chance, as shown
in Fig. 28.1.

Steve described the genesis of this picture in Howard Wainer’s 2007 interview
of him and Bill Eddy (“Taking a Chance: An Interview with William F. Eddy and
Stephen E. Fienberg, Chance, 20:4, 33–39): “Unfortunately, we couldn’t reconvene
the panel of testers, since we had no budget, and the cover was simply a pastrami
sandwich with a can of Dr. Brown’s soda.”

The paper’s popularity may have contributed to Steve’s notion that Chance
needed a restaurant column. As Steve put it, “When we were starting Chance, we
tried to have the third issue come out in time for distribution at the Joint Statistical
Meetings, which turned out to be in New Orleans. So, I thought we could make
Chance a hot item if it contained a statistician’s guide to dining in New Orleans.
Neither of us had enough knowledge to write this, so we turned to my brother,
Lorne, who at the time was living in Jackson, Mississippi, and would regularly visit
New Orleans with my sister-in-law. He agreed and wrote a terrific guide, but he
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Fig. 28.2 Belizaire the Cajun

wasn’t sure he wanted to be associated with statisticians, so he assumed the nom de
plume Belizaire, after the title character in the memorable 1986 movie Belizaire the
Cajun. The poster for the movie is shown in Fig. 28.2.

“The next year, when it came time for another dining column for JSM in
Washington, DC, we asked my brother for a repeat performance, but he demurred.
But, I knew Washington restaurants really well, so I decided to mimic my brother’s
style and write a new column, but this time with real statistical references and dining
advice. And I used his nom de plume. Thus began my career as a dining critic. Bill
collaborated on one of the columns and many friends offered advice, both on which
restaurants to review and the content. Many years later, some of Chance’s most
faithful readers still didn’t know that I was Belizaire and asked if he was going to
revive his columns.”

There were 12 Belizaire columns in Chance:

1. Way Down Yonder in New Orleans, 1988, 1:3 52–54
2. A Capital Place for Dining, 1989, 2:2 44–46
3. Gastronomie et Paris, 1990, 3:1 39–42
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4. The Statistical Pleasures of California Cabernets, 1990, 3:2 48–50
5. Statistical Return to the Land of True Gastronomic Pleasures, 1991, 4:4 36–40
6. Toronto A World Serious City, 1993, 6: 1 38–40
7. A San Francisco Feast, 1993, 6:2 34–36
8. Temptations in Toronto Ethnic Variations, 1994, 7:2 41–44
9. Off to Orlando!, 1995, 8:2 26–27

10. Coming to Chicago, 1996, 9:2 27–33
11. Anaheim Appetite and Turkish Delight, 1997, 10:2 23–26
12. Virtual Dallas Dining, 1998, 11:2 31–33

One doesn’t have to perform a Mosteller-Wallace-Federalist paper-like analysis
of the Belizaire columns to determine which (one) was written by Lorne. Lorne’s
column on New Orleans lacked reference to statistics and statisticians and concen-
trated on 15 top restaurants in the area. Lorne did set the precedent for the closing
of the Belizaire reviews—bon appetit! (Not being as enthusiastic as was Lorne,
Steve ended all but one of his Belizaire columns with an exclamation-point-less bon
appetit. That alone is enough to enable a discerning reader to distinguish between
the two Belizaires.)

Steve’s first Belizaire column covered Washington, D.C., and, though skewed
to its top restaurants, did provide some tips for per diem constrained and budget-
impaired statisticians. It was here that Steve introduced the Sam Greenhouse Award
“for the best bargain meal” and included some “cheap eats” places in his list of 19
recommendations. (Those who do not know Sam Greenhouse can read about him
in “Some Reflections on the Beginnings and Development of Statistics in ‘Your
Father’s NIH’”, Statistical Science 1997, 12:2, 82–87. As a government employee
he was constrained at meetings by the government per diem reimbursement rules,
and so was always looking for ways to not run afoul of those rules.)

To set a Bayesian spin on the Belizaire columns, the first two were “priors,”
giving gastronomical (and some oenological) guidance to attendees of the New
Orleans and DC JSMs. The third column, though, was “posterior,” namely, a trip
report on Steve’s meals while attending the Paris ISI meeting. Neither Steve nor
any of the other statisticians he quoted engaged in a search for a Parisian restaurant
worthy of a Sam Greenhouse Award. (To his credit, Steve eschewed Michelin three-
star institutions and satisfied himself with a sampling of two-star bistros.)

Column 4 showed Steve at his schizophrenic best, where Belizaire, Steve, and
a third party engage in a conversation about what to cover in preparation for the
Anaheim JSM.

Where are the meetings this year? I (Belizaire) asked somewhat gingerly. “Anaheim,
California,” was the answer. “You mean Disneyland and Knott’s Berry Farm?” “Not quite
what we had in mind,” Steve Fienberg replied. “You’re fairly creative; we’re sure you’ll
find something interesting to write about!

This was merely a setup for Belizaire to report on a taste test in which he participated
to ascertain whether one could distinguish between California and French cabernets.
No doubt inspired by “The Gentleman Tasting Pastrami,” this experiment exhibited
the same flaws as those of its progenitor.
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In the 11 October 1990 issue of “Nature” (Volume 347, pages 593–4), John A.
Campbell of the Department of Computer Science, University College, London, had
reviewed Chance, and in his review said, “But one can forgive much in a journal
that carries a regular gastronomic column, provided that its columnist takes a more
enterprising approach to selecting restaurants on his next visit to France.” So Steve
pulled a fast one in column 5; he chose not to go to the Cairo ISI meeting, but
instead decided to go to France and publish another trip report on his meals there.
Not knowing what Campbell meant by “more enterprising,” I can’t tell whether the
restaurants Steve visited on this trip would have satisfied Campbell. (As a token
gesture, he did, though, include two pictures of statisticians taking time off from the
Cairo meeting to see the pyramids.)

Belizaire reported on two visits to Toronto. In one (column 6), he attended some
World Series games and ran the gastronomic gamut from the Studio Café bistro in
the Four Seasons hotel, through the informal Yves Bar and Grill, followed by three
different hotdogs at the SkyDome stadium, to a Montreal “smoked meat” sandwich
at the Pickle Barrel Restaurant. (Since I don’t consider Montreal “smoked meat” as
even mentionable in the same breath as pastrami, despite Belizaire’s exhortation to
me that I eat my heart out, I did not do so when I read this column.) In the other
(column 8), he prepared the attendees of the Toronto JSM for the ethnic variety
of eating possibilities to be found there. Belizaire recommended 19 restaurants,
French, Italian, Greek, Chinese, and Jewish. The Sam Greenhouse Award went to
a cafeteria, leaving me to wonder what criterion Belizaire uses to determine the
award winner. Belizaire also promised to take me to the Centre Street Deli to taste
their hand-sliced Roumanian-style smoked meat, but alas that excursion never took
place. I don’t remember seeing Steve at all at that meeting, and I ended up instead
having lunch at three of the other delis in Toronto, all confirming the inferiority of
“smoked meat” to pastrami.

A prelude to the San Francisco JSM was Belizaire’s column 7. Thirteen
restaurants were recommended, and one can see the bias in this review when one
finds no Sam Greenhouse Award-winning restaurant. Similarly, column 9 was a
prelude to the Orlando JSM, again Belizaire recommended 13 restaurants (6 of
which are 35 minutes or more away from Orlando), and again one finds no Sam
Greenhouse Award winner. One does, though, get a calibration of Belizaire’s palate,
in that he uses the Parisian restaurant Lucas Carton as his standard of comparison
for the French restaurants he recommends. I note that Lucas Carton is a mere one-
star Michelin restaurant, so Belizaire’s was not holding French restaurants to the
standard of the ten Parisian restaurants that achieved .

It wasn’t until column 10 that Belizaire gave a clue to his identity. “Belizaire is
the nom de plume of a well-known statistician with a penchant for gourmet dining
and an interest in sports statistics. He writes occasional articles for Chance on food
tasting and dining, especially in connection with statistical meetings, with the input
from friends and colleagues.” Steve outdid himself, listing five Italian, five Greek,
four Indian, six Thai, four Chinese, and two Vietnamese restaurants along with his
usual collection of super-expensive places for fine dining (mostly French). He even
came up with four restaurants as candidates for the Sam Greenhouse Award and
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had a hard time coming up with a winner. In total Belizaire reviewed 45 Chicago
restaurants for this column.

As this was a column about Chicago, Steve consulted me about deli choices (after
having eaten a miserable sandwich at Mrs. Levy’s Delicatessen, which deservedly
closed in February 2006). I read him an excerpt from The Pastrami Papers describing
the state of Chicago deli (which he duly quoted in his column), misquoted me
on recommended cities (I only recommended New York; Steve, being a confused
Canadian brought up on “smoked meat,” added Montreal and Toronto to the list),
and included my sole Chicago recommendation, Manny’s. (At the last Chicago
JSM, Michael Cohen, Ed George, and I went to Manny’s to continue the tradition
of hitting at least one deli during JSM.)

Two for the price of one was the theme of column 11. Belizaire covered cuisine
in both Anaheim (JSM site, neglected in his column 4) and Istanbul (ISI site). The
recommendation for Anaheim was to go to Santa Ana, Costa Mesa, Laguna Beach,
or Newport Beach for a good meal (with six designated as $$$$). If, however,
you wanted to eat at the Sam Greenhouse Award restaurant (Belizaire revealed his
criterion for this award in this column—a good wholesome meal for under $10;
see also column 12), you could do so by staying in Anaheim. As for Istanbul,
Belizaire made some recommendations for the old city, the new city, and along
the shores of the Bosporus; he only recommended Turkish restaurants, and only one
was designated $$$$. (Steve and I met up in Istanbul at the ISI meeting and went to
one of his recommended restaurants along the Bosporus shore for dinner to update
his prior; our posteriors peaked that evening.)

The swan song for Belizaire was column 12, about Dallas. Here he recommended
19 restaurants, of which 4 were $$$$ (“second mortgage territory”) and 2 were tied
for the Sam Greenhouse Award (whose cap had increased to $15). Maybe this was
prescience, but one can tell that it was to be Belizaire’s last column; it ended with
bon appetit!

In his column 11. Belizaire refers to himself as “Chance’s restaurant bon vivant.”
The Cambridge Dictionary defines a bon vivant as a person who enjoys good food
and wines and likes going to restaurants and parties. As can be seen from these
columns, Belizaire’s self-description was perfect. He is missed, and not just from
the pages of Chance.



Chapter 29
Reminiscences of Steve

Judith M. Tanur

I met Steve in 1976 when he was teaching a short course at the JSM on Discrete
Multivariate Analysis with Yvonne Bishop and Paul Holland – though Steve insists
that we were together several years earlier – in the late 1960s at a planning meeting
for what later became the book Statistics: A Guide to the Unknown (SAGTU). I
have no recollection of meeting him there, but then I was so dazzled at being at that
meeting at the invitation of Fred Mosteller that I probably would not have registered
the appearance of anything short of a lightning strike.

In some sense, Steve and I shared a mentor – Fred was Steve’s dissertation
advisor and role model; for me he was the making of my career when he invited
me to edit SAGTU. The later part of my long-term collaboration with Steve was
the editing (with the collaboration of Bill Kruskal and Dave Hoaglin) of a 1990
Festshrift for Fred entitled A Statistical Model: Frederick Mosteller’s Contributions
to Statistics, Science, and Public Policy. And after Fred’s death, we worked
with Dave Hoaglin again to put Fred’s unfinished autobiography into shape for
publication, adding a chapter to bring it up to date because Fred had abandoned
the effort in the 1980s.

Another mentor we shared was Bill Kruskal. Bill was in the habit of sending
clippings or Xeroxes from his reading to a long list of correspondents. I was on
that list because I had served as Bill’s assistant in editing the statistics material in
the International Encyclopedia of the Social Sciences. But Steve was not only on
the list, he spent several years in the Statistics Department at Chicago with Bill and
credits Bill with piquing his interest in surveys by plying him with clippings from
the Chicago Sun-Times about its straw poll, leading to Steve’s first sole-authored
paper in JASA.
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So as I got to know Steve in the late 1970s, we had quite a bit in common.
And when I was asked by the Social Science Research Council to write a piece on
Advances in Large-Scale Surveys and Experiments for the NSF 5-year Outlook on
Science and Technology and learned that Steve (along with Bill Kruskal, Norman
Bradburn, and Richard Berk) was on the advisory committee who would guide me
through the production of that work, I was delighted to get to know him better. And
it was from this project that our collaboration on the parallels between surveys and
experiments and the embedding of experiments within surveys began.

Steve and his family started visiting every summer at our summer home in
Montauk. Steve always brought a big stack of references that we would need and an
ambitious schedule of work that we would accomplish. We did always accomplish a
good deal, but never quite as much as we had expected or hoped. Things kept getting
in the way, like a Jeep ride on the beach – or a ride in the boat or some water skiing
or a lobster that had to be consumed or a tray of sashimi or a glass of good scotch.

Let me tell you a little more about those visits. Often Miron Straf and Carolee
Bush would join us. That would mean six adults, and however many of Fienberg
sons and Tanur daughters were part of that year’s party and the Fienberg golden
retriever, Princess. And any number of our Vizsla dogs – together with however
many dogs, my daughters had parked with us, all in a three-room-one-bathroom
house. There are lots of pictures of people asleep in the most unlikely places.

There are classic stories about those visits that Steve and I would repeat to
whomever would listen. One day, as we often did, Steve and I went to the fish store
to forage for dinner and brought home some soft shell crabs. Although both of us
had enjoyed soft shell crabs in restaurants, neither of us – nor any other member of
the house party – had ever cooked one. But my cookbook gave interesting recipes –
including graphic and rather disgusting instructions about how to clean them. When
dinner time approached, we each had a drink. And then another and still another.
Finally we steeled ourselves for the messy task – we laid out knives, covered the
kitchen counter with newspapers, took another drink, and unwrapped the crabs.
What a relief – the fishmonger had already cleaned them for us.

Then there was the Labor Day weekend when we all took a ride on the beach in
our Jeep. As we drove along, admiring the ocean and staying out of the way of the
people playing volleyball, somehow one of the front wheels of the Jeep drove into a
deep hole in the sand, so deep, in fact, that it was impossible to move the car either
backward or forward. It was a holiday – no chance to get someone to tow us out of
our predicament. It was Steve’s idea to approach the young men playing volleyball
to ask for help – they responded by descending en masse on the Jeep and simply
lifting the front wheel out of the hole and placing it on solid sand. Luckily there was
a keg of beer available to offer as a thank you.

In 2014, Steve and Joyce visited early in the spring, and since it was too cold to
swim, we decided to take a Jeep ride along the Sound. As we were driving along
the beach, we ventured on some rocks. We slipped sideways, right to the water
line and found ourselves wedged between two enormous boulders. We could go
neither backward nor forward and burned out the clutch (and probably the engine
as well) trying to move. The tide was coming in and evening was coming on. The
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adventure was becoming less fun every minute. Luckily, we had cell phones with
us and sufficient reception to call a local service station. After what seemed like
hours delay – while we all sat in the Jeep and wondered what would become of us –
the tow truck arrived, having driven some five miles on the beach to get to us. The
driver could not get in front of the Jeep or directly behind it and so had to leave the
beach to return from the other end – and he was willing to bring the Fienbergs and
me back to the house while my husband waited with the Jeep. Some hours later my
husband joined us for dinner – by which time we were several drinks ahead of him.
He had been towed for many miles – and it took two tow trucks to do it – and the
Jeep was a total loss. The secret background of this adventure was that I had long
wanted a four-door Jeep as I was getting too old to crawl into the back of the two-
door model – and we were able to get a four-door with the insurance compensation
we got for what our insurance company insisted on calling our “collision” with the
rocks.

Unfortunately, that visit in Spring, 2014, was Steve’s last to Montauk; he was
making plans to visit again in mid-2016, but those plans never came to fruition
before he died that winter. We finally prevailed upon Joyce to visit again in October,
2018 – she spent a long weekend with us from the 19th to the 22nd and really seemed
to be enjoying herself, though clearly still missing Steve. On Saturday, October 27,
she was killed in the Tree of Life Synagogue shooting.



Chapter 30
A Conversation with Stephen E. Fienberg

Miron L. Straf and Judith M. Tanur

MS: So, Steve, how is it that you came to become a statistician?
SF: It’s actually a long story, because when I was in high school and entering

university, I didn’t even know that there was such a field. I was good at mathematics
and I went to the University of Toronto, which was in my hometown—that’s where
the best students went if they could get in. I enrolled in a course calledMathematics,
Physics, and and Chemistry. It was one of the elite courses at U of T, and during the
first year, as I went through my chemistry labs, I never succeeded in getting the right
result when I mixed the chemicals up in the beakers; I realized chemistry wasn’t for
me, and so the second year I did only math and physics. Then there were the physics
labs, and I could never quite get the apparatus to work properly to get what I knew
was the correct answer. I still got an A in the physics lab, because I could start
with the result and work backward and figure out what the settings were and things
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Fig. 30.1 Miron Straf, Steve Fienberg and Judy Tanur at the University of Connecticut, October,
2009

like that; but it was clear to me that physics wasn’t for me as a consequence. So
that left me with mathematics, and it was in the second year that we had a course
in probability. So I was being gently introduced to statistical ideas. Then in my
third year there was a course in statistics that was taught by Don Fraser, and he
was terrific. His course was a revelation, because I didn’t know anything about
statistics coming in. Don followed the material in his Introduction to Statistics book
and he began with probability theory and he brought into play geometric thinking
throughout. When he got to inference, it was like magic. Of course, in those days
Don did what was called “fiducial inference”—he called it “invariance theory” and
later “structural inference”—where you went suddenly from probability statements
about potential observables given parameters to probability statements about the
data. I recall the old cartoon by Sydney Harris that people like to reproduce of the
two scientists pointing to a blackboard full of equations, and one of them points to
an equal sign and says, “And a miracle suddenly occurs here.” That’s sort of what
happened in Don’s class. He was a great lecturer, he was friendly with the students,
and it was very clear that statistics was a really neat thing to do. Thus, in my fourth
year, I took three classes involving statistics and probability and then applied to
graduate school in statistics. The rest, as they say, is history (Figs. 30.1, 30.2, 30.3,
and 30.4).

MS: So it was mathematics by elimination and statistics by revelation. Let’s go
back a bit. When did you discover that you had an aptitude for mathematics and
statistics? In elementary school? Or high school?
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Fig. 30.2 Steve as a Toddler
in 1940s in Toronto

Fig. 30.3 Steve at Camp Tamarack, near Bracebridge, Ontario in 1952
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Fig. 30.4 Steve with Don Fraser and Nancy Reid at a conference on the occasion of Don’s 75th
birthday, June 2000

SF: Not at all. In those days statistics never showed its face in the K-12
curriculum—this was before Continental Classroom.1 Actually, it was K-13 in
Toronto where I was born and raised. They got rid of grade 13 only decades after
I was in school. At any rate, although my mother thought I was genius—don’t all
mothers think that about their children—I don’t have any memory of being anything
other than just a good student. I was very good at what passed for mathematics, but
even through high school I don’t think I was truly exceptional, and, besides, we did
pretty elementary stuff—algebra, Euclidean geometry, and then in grade 13 we had
trigonometry. As I reflect on those days, I was good at mathematics, but certainly not
precocious and I only took standard high school math and with a heavy component
of rote and repetition. By the time I got to grade 13 I was at the top of my class,
however, and in the province-wide exams at the end of the year I was No. 2 in my
school. But I also played oboe in the orchestra and band, and drums in the marching
band, as well as participating in several other extra-curricular activities. So math
wasn’t much of a preoccupation and I didn’t know what statistics and probability
were all about at all.

JT: So that explains your broad early work in math, physics, and chemistry
as a kind of omnibus course rather than going directly into math or statistics. So
after your undergraduate work at the University of Toronto, you applied to graduate
school; where did you apply and where did you end up going?

SF:Well, at the University of Toronto there had actually been many people to go
into Statistics from MP&C. Don Fraser was perhaps the first, but then there were
Ralph Wormleighton, Art Dempster, and David Brillinger—they all went, by the

1Continental Classroom was a series of television “course” broadcast by NBC on a variety of
college-level topics in the early 1960s. Fred Mosteller taught the course on Probability and
Statistics during 1960–1961.
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Fig. 30.5 Graduation portrait
from the University of
Toronto, 1964

way, to Princeton. The year before me there was John Chambers, and John had
gone to Harvard. I knew John pretty well, and I asked him how it was at Harvard.
He seemed pleased with what he was doing and I did apply to Harvard and was
admitted. I also applied to Princeton, and in their wisdom they didn’t think that
I should carry on the tradition from the University of Toronto, and that made the
decision easier for me (Figs. 30.5 and 30.6).

MS:Were you disappointed about not being admitted to Princeton?
SF: Clearly at the time I was. This was my first rejection, and it prepared me

in a way for what was to come when I submitted papers for publication to major
journals! But Sam Wilks, who was the key person at Princeton with whom I had
hoped to work, died in the spring of 1964, before I would have arrived.

JT: By the time you went to Harvard you were already married, is that right?
SF:No, I had met my wife Joyce at the University of Toronto when we were both

undergraduates. I was actually working in the fall of 1963 in the registrar’s office,
and on the first day the office opened to enroll people, Joyce came through. And one
of the benefits about working in the registrar’s office, besides earning some spending
money, was meeting all these beautiful women students passing through. That first
day I made a note to ask Joyce out on a date. The next day she came through again,
this time bringing through another young woman who turned out to be the daughter
of friends of her parents. And I thought this was a little suspicious, but auspicious
in the sense that maybe I would succeed in getting a date when I asked her. And the
next day, she came through again! This time with her cousin! Then I knew that this
was really going to work out. And it did. We got engaged at the end of the summer
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Fig. 30.6 Joyce and Steve in Portugal for a conference on privacy and confidentiality, 1998

of 1964 after I graduated, but we weren’t married when I went away to graduate
school. In fact, yesterday I was talking to one of the students at the University of
Connecticut who was a little concerned about graduate school; it was wearing her
down, and I told her I almost left after the first semester because I wasn’t sure if I
was going to make a go of it, in part because I was lonely. But I did survive, and
Joyce came at the end of the first year; we got married right after classes ended, and
we’ve been together ever since.

MS: And where were your children born?
SF: Ah, conceived in various places, born in others. We believe that Anthony,

my older son, was actually conceived in Scotland, on the vacation we took just
after I graduated from Harvard. He was born in Chicago, where I had my first
academic appointment, and, indeed, as we traveled across the country, from Boston
to Chicago, Joyce began experiencing morning sickness (all day long), which didn’t
make for such a great trip. Then Howard was born in Minnesota just after we had
moved there and I had joined the University of Minnesota faculty.

JT: Tell us more about what happened when you first arrived at Harvard.
SF: Well, one of the reasons I went to Harvard is that they not only gave me

a fellowship, but also a research assistantship to work with Fred Mosteller. The
day after I arrived, I went into the department because I didn’t quite know what
a research assistant did, and I went to see Fred (at the time he was Professor
Mosteller, of course—I didn’t learn to call him Fred until later). Fred was busy, but
his assistant, Cleo Youtz, said he would like to have lunch with me. So I came back
for lunch, and we went to the Harvard Faculty Club. Fred was being very courteous,
and he suggested I order the horse steak, a special item on the faculty club menu
at the time. And the horse steak came—I’m not sure if you’ve had horse steak—
it’s not quite like the kinds of steaks we normally order, it’s a little bit tougher. I
cut my first piece of horse steak, I put it in my mouth and started to chew. And
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Fig. 30.7 Steve dining with Fred Mosteller at ISI meetings in Paris, 1989

then Fred began to describe this problem to me. It was about assessing probability
assessors. I didn’t understand a thing, and he’s talking away, and I’m chewing away.
Then Fred asked me a question, and I’m chewing away. At this point, he pulled
an envelope out of his pocket and on the back of it there were these scribbles. He
handed it to me, and I’m still chewing because you really can’t eat horse steak except
in very small bites. It turned out that the scribbles were notes from John Tukey
about this problem. In fact, this was a problem that John and Fred were working
on for some larger project, and my job was to translate the chicken-scratches on the
back of the envelope into something intelligible, when I didn’t know anything about
what was going on. I worked at it for a while, and then Fred slowly told me what
John’s jottings meant, and the key idea was that for assessing probability forecasts,
you have to look not just at the equivalent of means, or the bias in them (known
technically as calibration), but also at the equivalent of variability (how spread out
the forecasts are). Actually, that was a very important lesson, although I didn’t have
any clue about it in my first months at Harvard.

Over the course of my first fall at Harvard, I discovered a paperback book called
The Scientist Speculates: An Anthology of Partially Baked Ideas, edited by Jack
Good, with whose work I later became very familiar. In it was a short essay by
Bruno de Finetti on assessing probability assessors, and de Finetti’s ideas went into
the technical report I wrote up on the topic with Fred and John. Fifteen years later,
at the Valencia I Bayesian meeting, Morrie DeGroot and I began to work on the
problem and ultimately wrote three papers on the topic of calibration and refinement
of probability forecasters, heavily influenced by that first research exercise with Fred
(Fig. 30.7).

MS: I wanted you to talk about Fred. Fred has been a very influential person in
your career, and not just during your thesis. Maybe you want to tell us a little bit
more about how he influenced your life and also how you came to go from Harvard
to Chicago.
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SF: Well, during that first year I worked on several problems with Fred and I
wrote up some memos, but they never quite moved into papers at the time. Fred was
pretty busy, and I got interested in Bayesian inference and multivariate analysis. I
had begun to take an interest in Bayesian methods, having participated as a first year
student in a seminar across the river at the business school run by Howard Raiffa
and Bob Schlaiffer. At the time, Art Dempster was the person who seemed to be
most involved in these Bayesian things and multivariate analysis, so I began to meet
with him. In the process of working with Art, I met George Tiao, who was visiting
the Business School with George Box for the year. As a consequence, George and I
wrote a paper together on Bayesian estimation of latent roots and vectors, but it just
didn’t look like it was going to be a thesis problem.

The next summer, Fred ran into me in the hall and said he had some problems that
I might like to work on. Fred had become deeply involved in the National Halothane
Study at the NRC and, unlike most NRC studies, he and others—Tukey, John
Gilbert, Lincoln Moses, Yvonne Bishop, to name a few—were actually analyzing
data and creating new methods as they went along. The data essentially formed a
giant contingency table and Fred got me working on a few different problems that
ultimately came together as the core of my thesis. In the process I collaborated on
separate aspects of the work with John Gilbert, Yvonne Bishop, and Paul Holland. I
did most of the work in 1967 and that was the summer of “The Impossible Dream,”
when the Boston Red Sox won the pennant. I would work into the wee hours and
go to Fenway Park and sit in the bleachers for the afternoon games. Professional
sports were cheap in those days. We also used to go to Boston Gardens for Bruins
and Celtics games. Fred was also a Red Sox fan and he actually got tickets for some
of the 1967 World Series games. I was envious, but when I returned to Boston in
1975 on sabbatical we both were able to get World Series tickets. I got tickets for
game 6 and Fred got them for game 7!

Fred introduced me to lots of other statistical problems. I was also his TA 1 year,
working with Fred and Kim Romney who was in the Social Relations department
at the time. Then the time came to get a job, and Fred said to me, “Where would
you like to go?” Things were different in those days, as you will recall from your
days at Chicago. We went through the list of the best places in the field, at every
one of which Fred had a friend. He called up John Tukey at Princeton, he called
up Erich Lehmann at Berkeley, Lincoln Moses at Stanford, and Bill Kruskal at the
University of Chicago. I either got offers without showing up for different kinds
of jobs at these places or I got invited out for an interview. When I was invited to
interview at the University of Chicago, it just seemed like a really neat place. All
the faculty members were friendly. The temperature in January was really cold, but
I liked everything about the university from the people to the architecture; it looked
like a university. Leo Goodman was there on the faculty and he had done work that
was directly tied to contingency table topics in my thesis. Chicago just seemed like
a great place to go to, so I did.

JT: It was there that you first met Bill Kruskal and started being influenced by
him?
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SF: Bill Kruskal was the department chair at the time, and I barely got in the
door before he began talking to me about a slew of different statistical problems. . .

JT: Without horse steak?
SF: Yes, without horse steak. Bill would just come and say, “What do you know

about this?” And one of the first topics we actually discussed was political polls.
This was the summer of 1968; there was a lot going on politically in the U.S.A.,
and the Sun Times Straw Poll was showing up in the newspaper regularly. Two of
the key questions were: What was their real methodology? How accurate were their
predictions? I began to save the data from the newspaper reports and work on the
question of variability and accuracy. Then Bill got me to do a trio of television
programs with Ken Prewitt and Norman Bradburn on a special series that aired at
6 o’clock in the morning when nobody ever watched. But right from the beginning,
Bill and I interacted; he introduced me to Hans Zeisel in the law school, to people
in the business school, in sociology. It was really hard to trail after Bill, because he
was interested in everything in the university and outside, and almost everything we
discussed seemed pretty neat. So, as I launched my professional career at Chicago,
I tried to do something similar—not precisely the same as the way Bill did things—
but similar.

MS: Bill was a real Renaissance man, and I presume you were a recipient of his
many clippings from newspapers.

SF: Well, the clippings started when I was in my first year—he’s the one that
started to give me the Sun Times Straw Poll clippings. But it wasn’t just clippings.
Bill would leave library books for me in my box; he would go to the library, which
was on the second floor of Eckhart Hall, the building we were in, and he would
browse—people don’t do that today—the stacks are closed. He would come back,
armed with books, and he would share them with his colleagues and get Xeroxes
of pages. And this continued up through the 1980s. I would always get packets
of different materials from Bill, including copies of letters to somebody else that
would say: “I hope you don’t mind my sharing this with a few of my closest friends
and colleagues.” I had this image that he was making hundreds of Xeroxes to send
around the world.

MS: And before that, carbon paper. So, tell us a bit about your life after Chicago.
SF: The University of Chicago really was a great place for me to work. I had

a second appointment in theoretical biology, which was interesting because I had
never taken a course in biology as a student. And actually it was a very formative
experience, because it taught me that I could go into an area that I had never studied,
never learned anything about, and learn enough for me to make a difference in the
application of statistics. I wrote papers on neural modeling, and I wrote papers
on ecology; I didn’t do a lot of genetics, but I read genetics papers and books
because I included that material in the course on stochastic processes that I taught.
Unfortunately, Chicago wasn’t the safest of places in those days, and Joyce made
it pretty clear that she wanted to live in a place where our children could play in
the backyard by themselves, not under adult supervision 100% of the time. So I
began to be receptive to conversations with people from the outside, and soon I
was approached by one of my former students, Kinley Larntz, who had just joined
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Fig. 30.8 Judy Tanur, John Bailar, Steve, Henry Block, and Jim Press at a conference in Beijing,
1987

the University of Minnesota. They were looking for a chair for the newly created
Department of Applied Statistics, as part of a School of Statistics. So after 4 years
at Chicago, I became an administrator as well as researcher and teacher.

MS: Did you work with Seymour Geisser there?
SF: The School of Statistics was an interesting idea. Minnesota had had a

statistics department, and it had run into some problems over the years. The
university came up with this plan to reinvigorate statistics, and they created the
School of Statistics. Seymour was the director, and the School was supposed to
have three departments. There was the old statistics department, renamed as the
Department of Theoretical Statistics, there was the new applied department that
I was chairing, and there was the Biometry Department in the School of Public
Health. But the biometry faculty didn’t really seem to want any part in this, and
so they resisted, and ultimately the school had two departments plus the Statistical
Center—the consulting center that was associated with our department on the St.
Paul part of the Twin Cities campus. Seymour and I interacted throughout my 8
years at Minnesota, but we never wrote a paper together (Fig. 30.8).

JT: I want to take you back a little more. You talked about these two giant figures
who were colleagues and mentors—Fred Mosteller and Bill Kruskal. How do you
see how they shaped your career, your interests—not only technical, but practical?

SF: One of the things I didn’t know as a graduate student was how easy it would
be to work on and contribute to new problems and new areas of application. The
worst fear of a graduate student—well, the worst fear— is that they won’t finish
their thesis, the second fear is they won’t have a new idea, and, in fact, 80% of
students never publish anything other than their thesis. But Fred was going from area
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Fig. 30.9 Steve and Seymour Geisser, attending a Bayesian Workshop in Rio de Janeiro, Brazil,
summer 1990

to area: when I arrived at Harvard he had just published The Federalist Papers with
David Wallace; while I was there, he was leading the effort on the Halothane report;
I worked with him evaluating television rating surveys from Nielsen and other
companies for a national network (that was a consulting problem). He just seemed
to work around the clock on all sorts of different topics, and so I figured that’s just
what a statistician did. It’s funny because, in some senses, clearly, everyone didn’t
behave like Fred, as we all know. But that was my model! So when I got to Chicago
and Bill acted in the same way, and Paul Meier in addition, that seemed like a natural
way for me to do work as a statistician. They seemed to work around the clock on
statistics, so I did too (Fig. 30.9).

Now Fred liked art; in later years he actually took up reproducing art and it
showed up in his office. When I was a graduate student I went into his office 1 day
and there was a picture by Escher, the Dutch artist, called “The Waterfall” and I
was very surprised because I had been introduced to Escher as an undergraduate.
Escher’s work showed up on the cover of a book called, Introduction to Geometry,
written by Donald Coxeter—the great geometer at the University of Toronto. I
had three courses on different aspects of geometry from Coxeter. This influenced
some of my thesis research—and I still do some geometry—but I also learned
about Escher from Coxeter! And there was this Escher print in Fred’s office which
I recognized immediately. Fred told me where he had purchased it, and shortly
afterward I went off to the store. I still own two Escher prints as a consequence, ones
that I couldn’t afford to buy today, all because of Fred. Fred and I would occasionally
go off to museums, and while we looked at the art we would talk about statistics, art
and other topics.

Both Fred and Bill were Renaissance men and I didn’t know how I would do
things in the same way they did, but it became very clear to me that just doing
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papers in the Annals and in JASA wasn’t enough. While I had colleagues whose
careers looked like that, I thought I should be doing something different with my
career. I was easily seduced into all these other activities—and everything was so
much fun. For example, Dudley Duncan, the sociologist, called me 1 day and asked
me if I would join an advisory committee set up by the Social Science Research
Council on social indicators in Washington. I hadn’t been to Washington since I was
7 years old and I went off to this meeting and then spent 8 years interacting with
giants in the field of sociology and survey methods! That experience just reinforced
the way I was using my statistical knowledge in diverse applications.

And of course Bill and Fred would just sort of nudge me once in a while to
get things done that they cared about deeply. In particular, Fred wanted to see the
log-linear model work that his students had done for the Halothane study appear
in a book. Fred was big on books. And as I left Harvard, he gathered together all
the different students who had worked on different aspects of contingency table
analysis—Yvonne Bishop, Dick Light, myself, and Paul Holland, who was a junior
faculty member, for a meeting at his house. There were also a couple of other faculty
members who sort of disappeared by the wayside in this enterprise, there were a
few more graduate students—Gudmund Iversen who ended up at Swarthmore, for
example—and Fred said, “We need to have a book on this.”

But we didn’t have Fred’s grand picture in mind and the book didn’t begin to take
shape until long after I had joined the faculty at the University of Chicago. I taught
a contingency table course in my first year there and it included the first three Ph.D.
students I worked with—Tar (Tim) Chen, Shelby Haberman, and Kinley Larntz.
Shelby extended Yvonne’s code for multi-way tables and this inspired his thesis.
I began to use iterative proportional fitting on new problems and this triggered a
paper on multi-way incomplete tables and a draft of the first book chapter. But then
everything progressed rather slowly, and the book took a full 6 years to produce.
Fred kept pushing the book behind the scenes.

One of the things I learned is the time to produce a book goes up as the power
of the number of authors. It would have taken less time if I had written the book
myself instead of with Yvonne and Paul. But while we worked at the core of the
enterprise, the three of us had different conceptions of some materials, and this
slowed us down. Fred was a full partner, pushing us to “get the job done.” He edited
draft chapters over and over again, and Dick Light contributed big chunks to the
chapter on measures of association, which Paul and I redid and integrated with the
asymptotics chapter. If everyone who had come to Fred’s house back in 1968 had
become involved, we might still be working on the book today! Fred didn’t want
his name on the cover of the book. So we had this back-and-forth. The book ended
up with five names on the title page; it’s Yvonne Bishop, Stephen Fienberg, Paul
Holland, with the collaboration of Frederick Mosteller and Dick Light; Dick had
contributed to a chapter in the book and Fred had contributed to the whole enterprise.

JT: The book, which many have called the “Jolly Green Giant” because of its
cover, really put you on the map. In fact, that’s how we met, when I took the
short course the three of you gave based on the book in 1976 at the Joint Statistical
Meetings.
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SF: We actually met earlier, when Fred organized a meeting in Cambridge
to discuss the ASA-NCTM book projects that ultimately produced Statistics by
Example and Statistics: A Guide to the Unknown, your first magnum opus. I was
a bit intimidated since you seemed to be the organizer for Statistics: A Guide to the
Unknown, and so we just didn’t talk much.

MS: Steve and I met around the same time as well. I remember his coming to
Chicago to interview and talking about the geometry of 2× 2 tables. I asked him a
question which he didn’t really answer and then he wrote a paper about that problem
several years later!

SF: But when I got to Chicago you were one of the few good students who
didn’t take my contingency table course. You were too busy campaigning for Hubert
Humphrey and worrying about weak convergence!

MS: Well, one of the things that you have advanced in that book and elsewhere
derives from the geometric structure that gave you so much insight into what’s going
on in these tables. Now, you mentioned taking geometry at Toronto, and we know
R. A. Fisher was influenced by this, so how did that play out in the later research?

SF: It’s come into play in an amazing sort of way. If you look at the cover
of Discrete Multivariate Analysis, there is an artist’s depiction of the surface of
independence for a 2× 2 table. You’d hardly know it was a hyperbolic paraboloid
sitting inside a tetrahedron by the time the artist got done with it, and you see one
dimension of rulings—a hyperbolic paraboloid has two dimensions of essentially
orthogonal rulings—and those are things I actually learned from Coxeter in that
course on the Introduction to Geometry. And so my first work actually drew upon
that; I wrote a paper with John Gilbert on the geometry of 2×2 tables that appeared
in JASA and published a generalization in the Annals, and I always thought about
contingency tables and other statistical objects geometrically. Don Fraser thought
geometrically, and so you’re always up here “waving arms” in some abstract space,
and he would always wave with his arms. And I think in high-dimensional space in
some sense, although obviously we don’t see in high-dimensional space. But a lot of
statistics is projecting down into lower-dimensional spaces. I had left the geometry
stuff behind, except for motivation, until I got into confidentiality research in the
1990s.

In the 1990s, there was a paper, unpublished for 5 years by Persi Diaconis and
Bernd Sturmfels. Persi was at Cornell and Bernd had been at Cornell but moved to
Berkeley. In the paper, they talked about the algebraic geometry structure associated
with contingency tables. This turned out to be right at the heart of what I needed for
my problem, and so I learned algebraic geometry, which I had not really studied
carefully before. I learned at least enough to bring my problems to Bernd for help.
And one of the things I realized is that figure on the cover of Bishop, Fienberg and
Holland was being used by algebraic geometers in a different context; it’s called a
Segre Variety, named after Corrado Segre who was one of the fathers of algebraic
geometry. That work is now reflected in the theses of a couple of my former Ph.D.
students and lies at the heart of a lot of what I’ve been doing over the last several
years, including recent work on algebraic statistics and network models (Fig. 30.10).
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Fig. 30.10 Steve, Judy Tanur and Morrie DeGroot, Joint Statistics Meetings, 1978

JT: I think I derailed you sometime back where you were talking about the
trajectory of your career. And we’ve left you at Minnesota. Can you tell us why
you left?

SF: Minnesota was a giant bureaucracy. It was a big, big university, and one
of the moments that convinced me of this was after I had presented a report,
prepared with colleagues from around the university, to the president and the vice
presidents on the teachings of statistics at the university, where I had pointed out
that 40 different departments or units were teaching statistics or courses in which
statistics represented a serious part of the activity. Virtually all of this was going on
with little or no coordination with the School of Statistics. And then I met him [the
president of the university] about a month later at a reception. Joyce and I were going
through the reception line, and I shook his hand, and he asked what department I
was from. I said applied statistics, and he said, “Do we have a statistics department
at the University of Minnesota?” At that point I said to myself, “Oh my goodness!”
and I understood where the School of Statistics and my department stood in the big
picture of the university.

A year or two later, I was wooed by friends at another Big Ten university, but
the right offer didn’t quite come to pass. In the mid-1970s, I was working as an
associate editor for the Journal of the American Statistical Association, initially
with Brad Efron as theory and methods editor, and then with Morrie DeGroot. Later
I became the Applications and Coordinating Editor of JASA, and so Morrie and I
worked together. We had become friends a number of years earlier, drinking in a bar
together at an IMS regional meeting. Morrie and Jay Kadane, who had joined the
Department of Statistics at Carnegie Mellon in the early 1970s, and I would interact
at the Bayesian meetings that Arnold Zellner organized twice a year. They both
knew that I had flirted with the possibility of leaving the University of Minnesota,
and they said, “You should just come to Carnegie Mellon; you could bring the rest
of JASA over and we’d have the whole journal. Besides, it’s a great place.” So they
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worked on the possibility of an appointment for me. When I came to interview,
it wasn’t just to meet with the Dean, and with Jay and Morrie and the people in
the department that I knew. They took me to see the president of Carnegie Mellon
(CMU), who at the time was Richard (Dick) Cyert. Dick was an economist but
also a statistician! He took courses from Hotelling and Cochran at Columbia as a
graduate student, and although his degree was in economics, he always thought that
he was a statistician as well. In particular, he was a member and Fellow of ASA.
Dick helped to fund the CMU Department of Statistics in the mid-1960s when he
was the dean of the Graduate School of Industrial Administration. He was actually
the acting chair at the outset until Morrie took over. So the staff ushered me into his
office. I had never met Dick before, but that afternoon I spent 2 h with the president
of Carnegie Mellon. And I told you about my interaction with the president of the
University of Minnesota! Here I am sitting with the president of Carnegie Mellon,
this great university, and he’s telling me how important it is for me to come to
Carnegie Mellon and what I’m going to do for the field of statistics. He said, “If you
come here, everything you do will be called statistics. You will get to change the
field.” So I came. And I hope that I’ve changed parts of the field.

MS: Cyert was a visionary and really led the Graduate School of Industrial
Administration to a high place among business schools and understood that he
needed quantitative strength, and so he influenced you and supported you. I wanted
to ask about one of your greatest honors, and that is your election into the National
Academy of Sciences. Where were you and how did you get the word?

SF: Most people don’t know what goes on at the National Academy—it’s like
a secret society—and its selection process is Byzantine, running over the course
of one or more years. At the end, the NAS members meet in Washington at the
annual meeting in a business meeting and they elect the new members. That happens
between 8:30 and 9 in the morning; then they take a break in the meeting and
everybody rushes out to find a telephone and they call their friends and the newly
elected members to the section to congratulate them. This was in the spring of 1999,
and I was teaching—actually that year I was teaching an introductory statistics class,
so I had to be there relatively early—it was just at 9 o’clock, I was opening the door
to my office, and the phone rang. I answered and it was several friends, mainly
demographers—Jane Menken, Doug Massey, a couple of others—and there was a
chorus on the phone saying “Congratulations, you’ve been elected to the National
Academy!” I was floored, because I’m not quite sure whether they knew, a year or
so earlier I wouldn’t have been eligible, because I was born and raised in Canada,
and I hadn’t become an American citizen until January 1998. Thus being elected the
next year was a special honor (Fig. 30.11).

JT:You have received many other awards and honors; that must be very exciting.
SF: Well I would be lying if I said that receiving honors and awards is not fun,

and each is always very special. But I am reminded about something that Fred taught
me. He said that awards and honors are really not for the people who get them, but
they are for the field. Of course the person getting the honor benefits, but the field
benefits more, for example, when statisticians get elected to the National Academy
of Sciences. In that sense we don’t have enough big awards.
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Fig. 30.11 Richard Cyert, Dennis Gillings and Steve, at a National Institute of Statistical Sciences
Board of Trustees Meeting, 1993

MS: There are some of our colleagues who are happy that there isn’t a Nobel
Prize in Statistics, and as a consequence statisticians cooperate more with one
another than scientists in other fields. Do you agree?

SF: Well, I think if we follow Fred’s reasoning we would all be better off with
a Nobel Prize in Statistics because once a year all of the newspapers and media
in the world would focus on our field and the accomplishments in it. What most
statisticians don’t know is that there almost was a Nobel Prize!

The story goes back several decades when Petter Jacob Bjerve, who was the
director of Statistics Norway, began to raise funds for a Nobel Prize in Statistics. He
was off to a good start when he ran into a political obstacle. Those in charge of the
prize in Economic Sciences objected because they argued their prize encompassed
a large amount of what was important in statistics. In the end Bjerve abandoned his
quest, and the money he raised was left in a special account in Statistics Norway.
Finally, the government auditors forced Statistics Norway to close this account and
our colleagues there decided, among other things, to use the funds to host a special
international seminar, to which they invited statisticians such as Fred Smith from
the UK, Jon Rao from Canada, Wayne Fuller, me, and a few others. They paid for
our spouses to come as well and we got the royal (small R) treatment, with relatively
fancy hotel rooms and outstanding dinners. So in this sense you could say that I ate
the Nobel Prize in Statistics, although there is no public record and it doesn’t show
up on my CV.

JT: You’ve been active in several committees and panels and so forth, including
at the National Academies before and after your election as a member—what stands
out particularly from those?

SF: Well, of course this is Bill Kruskal at work—most statisticians who are
going to read this interview don’t know the history—Bill Kruskal founded the
Committee on National Statistics (CNSTAT) at the NAS. It was an outgrowth of
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the 1971 Report of the President’s Commission, chaired by Allen Wallis and co-
chaired by Fred Mosteller, and Bill talked to the people at the National Academies,
and the National Research Council (NRC, its operating wing), into creating a
committee although there was no external funding, and the NAS really had to put
up resources. Bill ultimately got some money from the Russell Sage Foundation to
tide the committee over with a part-time staffer—Margaret Martin, who was and is
absolutely fabulous and with whom the three of us have worked—and the committee
slowly got going. Bill was succeeded by Con Taeuber. At that time I actually was
on another committee, on the rehabilitation of criminal offenders, but Miron was
working for CNSTAT and I would run into him on occasion. I got to join CNSTAT a
year or so later, while I was still doing the work on criminal justice. Getting involved
in CSTAT was like all these other activities I have been describing—I was exposed
to lots of new ideas and problems to work on. I was like a kid in a candy shop!
The committee didn’t have a lot of projects then, but I just got to look around the
Academy and the Federal Government, and there were possibilities everywhere. I
could only do so much, but I pushed the staff to do other things and got my friends
on the committee to lead panels. By the mid-1980s, the committee was humming
and there were all these neat activities on census methodology, on cognitive aspects
of survey methodology, statistical assessments as evidence in the courts, sharing
research data—there was just no end.

MS: I wanted to ask about one of them in particular, which Judy chaired and
which you were instrumental in creating, and that is Cognitive Aspects of Survey
Methodology. When you were inducted into the American Academy of Political
and Social Sciences, you referred to that in your speech as one of the most important
activities that you had participated in. Why was this and how did it affect your work?

SF: Well, sample surveys is a very strange part of statistics. In my department,
nobody else really does it, in the research sense. People think the theory is
settled. But doing surveys is really hard. The measurement problems are enormous.
Designing questionnaires is a big, big problem. In the 1970s, I got interested in the
National Crime Survey on Victimization through the SSRC committee on social
indicators in Washington on which I served. I learned about the difficulties in
counting victimization events. In 1980, Al Biderman, who was involved in the re-
design effort for the victimization survey, brought together a few people from the
re-design project with cognitive psychologists to ask if we could learn something
from cognitive science. I thought this was just terrific because I could see ways
that I could take methodological statistical ideas and really intertwine them with the
theoretical ideas that came out of cognitive psychology. As a consequence, I pushed
for that CNSTAT activity even though others thought it made no sense. I was part
of the CNSTAT workshop that you and Judy organized—Judy and Beth Loftus and
I wrote a series of 4 papers on cognitive aspects of surveys afterward. I was also on
the SSRC council, and we created a committee that followed up on those activities.
It brought in new people to the enterprise, and it helped get these ideas embedded in
the statistical agencies. Janet Norwood ran with the idea at BLS. It was part of the
culture at NCHS at that time because Monroe Sirkin was at the CNSTAT workshop
and a moving spirit in establishing a cognitive laboratory at NCHS. The Bureau
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Fig. 30.12 Participants at 1983 CNSTATWorkshop on Cognitive Aspects of Survey Methodology
watching a survey interview video, from left to right: Kent Marquis, Judy Tanur, Phil Converse,
Lee Ross, Steve (in upholstered chair), Miron Straf

of the Census was actually the last of the big three agencies to create a separate
laboratory facility—but they did—and the influence spread because the associated
ideas changed research at the boundaries of survey methods and psychology in
a variety of different ways. The reason I am especially proud of this activity is
because you’d hardly know that there was any statistical theory or methodology
lurking behind it, but there really was.

MS: It’s really had a profound effect on the survey field, and now in many places
it’s commonplace—concepts of cognitive interviewing and all that (Fig. 30.12).

You’ve been especially close to your students, fostering them personally as
well as professionally. Pictures of you attending weddings of your students appear
frequently on websites in your honor. So could you tell us a little about your personal
interactions with your students.

SF: Well, in the early years, the students were my contemporaries. In fact, I
had a couple of students who were older than I was. Kinley Larntz was not only
my Ph.D. student and collaborator, but we were good friends and remain so. Over
the years I got a little older than my students, and when I moved to Carnegie
Mellon I really had the opportunity to have a different kind of student, and with
them different kinds of interactions. We were a small department in those days and
I interacted with lots of students, not just those whose research I supervised. Each of
the students I worked with then was interested in a somewhat different topic; they
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Fig. 30.13 Steve with friends at the Objective Bayesian Analysis meeting in Rome, June, 2007.
From left to right: Steve, Larry Wasserman, Jim Berger, Susie Bayarri, Robert Wolpert, Isa
Verdinelli

went in different directions, and we remained close in most instances (Fig. 30.13,
30.14, and 30.15).

But then, something happened—first, I became a dean, and then 4 years later I
left Carnegie Mellon, as you know. I had a second administrative career going on the
side—actually, I had three careers, or four. There was also the committee work at the
National Academy, which was a full-time job for awhile, there was the methodology
I worked on in part with students in the Department of Statistics, and I was also an
administrator—I was the Department Head for 3 years and then I was the Dean of
the College of Humanities and Social Sciences. I was on an administrative track
in the late 1980s and early 1990s, and my contact with graduate students actually
tailed off toward the end of my time as Dean. I was also teaching, but there are
only so many hours in the day and days in the week. In 1991, I left and went to the
York University in Toronto as Academic Vice President (that’s like a provost—they
don’t have that title at York) and so my regular ties with graduate students were
severed. I resigned from Carnegie Mellon to go to York, although we didn’t sell our
Pittsburgh house, and I returned to Carnegie Mellon a few years later and re-joined
the department.

I like to describe the move back to Carnegie Mellon as a promotion to the best
position in the university—as a tenured professor with no administrative obligations.
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Fig. 30.14 Steve with his wife Joyce and many of his former graduate students at a 65th birthday
celebration at Carnegie Mellon, October, 2007. From left to right: Ellie Kaizer, Edo Airoldi, Elena
Erosheva, Jason Connor, Sesa Slavković, Mike Meyer, Joyce, Steve, Alessandro Rinaldo, Justin
Gross, Russ Steele, Adrian Dobra, Amelia Haviland, Elizabeth Stasny

I slowly began to work with graduate students again. Somewhere along the way I
think I had learned something, which is you can’t necessarily get graduate students
to do what you want, and thus what you have to do is get them to do what they
want to do in the best possible way. You have to get them to complete a thesis, but
you have to be able to get them through and have them gain confidence in what
they’re doing so that they think they can make a difference. And I was lucky—I just
had fabulous students; they were terrific people and all the rest of the stuff just sort
of happened. I had the opportunity to give away in marriage one of my students,
Stella Salvatierra, who was working in Spain, at a ceremony in the mayor’s office
in Bilbao, because her father had a heart attack and couldn’t come to the wedding.
And there have been several other weddings since! Because my students have been
so great, the best thing I can do in some sense is to get them to do the things that
they do best. That’s in many ways a serious part of my legacy.

JT: I was going to ask you what advice you would have for graduate students
in statistics, or undergraduates for that matter. Clearly, the best advice I could give
would be for them to come to be your students, but since you can’t spread yourself
totally thin, failing that, what alternative advice would you offer?
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Fig. 30.15 The longtime members of the Carnegie Mellon Department of Statistics in the DeGroot
Library, 2011. Back row: Rob Kass, Mark Schervish, Steve, Joel Greenhouse; middle: Margie
Smykla; bottom row: Jay Kadane, Bill Eddy, John Lehoczky

SF: Well, I really can’t work with them all! It’s really bad because now we’ve
got this undergraduate program with upward of 150 majors. I can deal with one or
two graduate students at a time. But my advice to budding statisticians is simple:
statistics is an exciting field. There are all these neat problems. There are neat
theories, neat methods, neat applications; we’re in a new world. Big, big data sets.
My joint appointments are now in the Machine Learning Department and in the
Heinz College (of Public Policy and Management). I’m working with data sets that
people couldn’t conceive of dealing with a few years ago. And the students I’m
working with have the ability to go and do things with those data sets that were
unimaginable a decade ago. So my advice is simple. Work with data, take problems
seriously, but you have to learn the mathematics and statistical theory if you want
to do things right. And then you need to take seriously teaching people what you’ve
done, not just doing the research. You need to get the descriptions of your work into
a form that other people can understand—that’s a really important part of what we
do. That’s what National Academy reports are all about. Academy reports don’t have
impact if they’re badly written. Enormous effort goes into the executive summaries
of reports, into the review process, and everything up the line. Learning how to do
that as a student is time well spent. It’s too late when you’re a full professor and you
still haven’t learned how to write articles so that other people can understand what
you’ve done (Figs. 30.16 and 30.17).

MS: So, of your vast experiences, what are you the most proud of?
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Fig. 30.16 Steve and Bill
Eddy celebrating the 20th
anniversary of Chance, a
magazine they co-founded in
1988, wearing their original
Chance t-shirts

SF: I’m actually proud of a number of things. By the way, I didn’t tell you what
my fourth career was. I play ice hockey—I still play, that’s number one, although
the one for which I have the fewest skills or accomplishments.

MS: All right, let me interrupt you. . .
SF: Ha ha, no-no, as I left the locker room last Saturday night, one of the guys

across the dressing room said to me, “So how many years have you been playing?”
And I said, “62.” He then said, “62?” and silence ensued. But maybe hockey is
really number two; number one is my children and my grandchildren. They’re really
amazing. They’re another part of my life. Joyce and I were really fortunate; I have
two very smart sons, Anthony and Howard. They have independent careers, they
have lovely wives. . . (Fig. 30.18)

MS:Where are they now?
SF: Anthony lives in Paris, and I have five grandchildren in Paris, four grand-

daughters, and a grandson. And Howard lives in the DC area and I have a
lovely granddaughter in Vienna, Virginia. Howard actually has come very close
to statistics, as government liaison for a consortium dealing with surveys and
marketing. The grandchildren are terrific. I love being with them. We get to look
after them every once in a while.

Then there are my students. They’re really the people who are going to do
the things that I can only imagine. As I look back over what I’ve done, I see a
changed field of statistics. Fred Mosteller and Bill Kruskal were fabulous—and
we’ve talked about how they shaped all three of our careers, not just my career.
And they launched the Statistics Departments at their respective universities. I was
part of both departments and their programs in retrospect look “traditional.” They
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Fig. 30.17 Steve (on the right) playing for the Division C national championship as a member of
the Leiden Beaver Beer Team, in Eindhoven, March, 1997

emphasized mathematical statistics and probability. I like to think that when I left
Chicago and went to Minnesota, I started to change what statistics did and how
we thought about it. And applications today sit at the core of much of statistical
theory and methods, and in my department at Carnegie Mellon our students come
out having worked on multiple applied projects, and they’re in demand, because
that’s the future of our field. People recognize that advances in statistical methods—
and theory—are intertwined with real problems, major applications. I like to think
that I contributed to the change that we’ve seen over the past 40 years.

MS:Very nice, Steve. What you talk about is a legacy, not the individual research
that may wane in importance over the years. . .

SF: And it’s not just my work, it’s a collective. . .
MS: But it’s the influence of your students, as well as your children. I wanted to

interrupt, because I never thought you had four careers, I thought you had dozens
of careers. You talked about these professors that, you know, worked 24/7, so that
was your model. As long as I’ve known you, you’re always multi-tasking, and you
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Fig. 30.18 Steve with twin
granddaughters, Tiffany and
Selena, trying out their new
bikes, Paris, 2006

were doing that before the word was even in vogue. You’re fielding questions at a
seminar or flying a hockey puck across the ice. Did any of that rub off on your sons,
on your students?

SF: I don’t think that either Anthony or Howard is quite as obsessed as I am with
doing so many things simultaneously.

MS: How fortunate. . .
SF: That’s right! But Anthony did play hockey in Paris for many years, and both

Anthony and Howard have these terrific kids—since Anthony has five, they take up
more of his time than mine did. Actually, Anthony has inherited some of this multi-
tasking, at least at some level. He’s created his own business in France—a subsidiary
of a Dutch insurance company. His job went from finding the location to organizing
the offices, to hiring the staff, to inventing the insurance policies and making sure
that they were consistent with the ones of the parent company (Fig. 30.19).

My students also develop multiple facets of their careers and lives. I tell them
when they come in and ask if they can work with me that there are a couple of things
that are going to happen if the arrangement is going to succeed. One is they’re going
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Fig. 30.19 Steve, buried amidst files, in his CMU office, 2005

to live and breathe statistics. I see it everywhere. One of my favorite examples in
my little contingency table book came out of the program from the symphony at the
Minneapolis Orchestra one night when we were there in the 1970s. It didn’t quite
look like a contingency table, but I made it into one, in my book. Then I described
why you shouldn’t analyze it the way you would have otherwise, because the units
of observation are not independent. At any rate, I tell the students that I expect them
to live and breathe statistics. They’ll get their ideas in the shower. . . they’ll play hard
too, but when all is said and done, if they’re not into what they’re doing, they should
find another advisor, because other people have different attitudes about work and
how to get your inspiration! Students of course have their own lives, and as I’ve
said, you don’t tell students what to do, they tell you what they want to do.

JT: What’s next? For you?
SF: Wow. I’m too busy to stop at the moment to find out! I still have more

than one job. I’m editing, with some others, the Annals of Applied Statistics, I have
launched the Journal of Privacy and Confidentiality, I’m the co-chair of the Report
Review Committee at the Academy.2 I have a whole bunch of new Ph.D. students
and post-docs. We’ve got some absolutely fantastic projects going on: research
on confidentiality problems and on network modeling, which by the way, links to
confidentiality. Judy and I also have a book on surveys and experiments to polish

2Steve took over as the editor-in-chief of the Annals of Applied Statistics on January 1, 2013, and
is simultaneously serving as the founding editor of yet another publication, The Annual Review of
Statistics and its Application, scheduled to launch within the year.
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up for publication, as Fred Mosteller would say. I have six chapters that were, I had
thought, pretty polished at one stage, but they are still in a drawer in my office. At
least I know where the drawer is.

JT: And I know where my copies are. . .
SF: And so, I’ve got more books to write too—with good collaborators.
MS: Well, we’re almost out of time, but I have one final question. How would

you like to be remembered, Steve?
SF: Unfortunately not as a great hockey player. As long as my teammates just let

me on the ice, I’m happy to be able to skate around and get off safely.
I guess I’d like to be remembered as somebody who produced really good

students and who helped change the image of statistics in the sense that lots of
people now work on serious applied problems and help solve them. And that’s not
just about statistics, that’s real interdisciplinary scientific work, and that’s the legacy
I inherited from Fred and Bill Kruskal and Paul Meier, and all those other great
people that I had a chance to work with, like Bill Cochran. I would just like for
people to think of me in their kind of company, in some way or another. I suspect
that a couple of decades from now, if anybody ever looks at the video we’re making
or reads this interview, they may not remember log-linear models for contingency
tables and other forms of counted data because there will be new methodology, like
the mixed membership and related models I now work with. What I know from
students today is that, if it wasn’t in the journals in the last 3 years, they’re not
sure it’s worth their attention. So, if I am to have a legacy, it needs to be something
larger. I have no theorems, well, I do have theorems, but none of them are named
Fienberg’s Theorem. And even if there were a Fienberg’s Theorem, it probably
wouldn’t be important—what’s important is the attitude, for what statistics is and
how it’s recognized by other people outside of our field.

MS: Well, you’ve changed statistics, and you’ve made it fun along the way.
Thank you very much.



Chapter 31
Reminiscences from Steve’s 65th
Birthday Celebration

Margaret Smykla

It was a traditional practice in the Department of Statistics (and still is in today’s
Department of Statistics and Data Science; name changed in 2017) at Carnegie
Mellon University that when a renowned faculty member reaches a milestone,
that colleagues, students, staff, and alumni are given the opportunity to share their
thoughts and experiences on working with that person.

Those “reminiscences” are then compiled in a so-called memory book to be
shared with the honoree at an event in which he/she is so honored.

The reminiscences below were gathered for Steve Fienberg’s 65th birthday
celebration held on October 19, 2007, at Carnegie Mellon via a series of invited
lectures and reception.

We share them here as written in 2007. Each reminiscence, in its own way,
contributes to an all-round image of Steve as educator, mentor, scholar, innovator,
colleague, advisor, friend, promotor of statistics as a force for good in science and
government policy, and so much more.

Each reminiscence includes the author’s name and current title/place of employ-
ment. For those authors who were students in the department at the time, the year
in which they subsequently attained their PhD degree from the department is also
listed. If it was obtained elsewhere, the name of that university is included.

The reminiscences are listed in alphabetical order by the author’s last name.
(In the next section in this book are reminiscences about Steve from an October

14–15, 2016, event in honor of his attaining Emeritus status.)

Regarding academic matters, Steve is unstoppable. He once told me that the best way to
show students what research is all about is by being an example. In point of fact, Steve works
very hard. Throughout my graduate studies, for instance, and whenever I visit Carnegie
Mellon to this day, it is typical of Steve to invite me to his office on Saturdays and Sundays,
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when the department is quiet and we can focus and be productive. His energy is indeed
contagious. Talking to him about what is the big question that our new method or theory
should be able to address, or trying to get around a subtle technical problem at the board, is
stimulating and fun. On a more personal note, Steve is a wonderful man and a great mentor.
He has always been there for me, even in situations where it would have been easier to
simply let go. I enjoy his spirit and his strong opinions on everything (attending a seminar
with Steve is never boring), and I look forward to collaborating with, and learning from,
him in the years to come.

–Edoardo M. Airoldi (PhD 06 Comp. Sci.; Steve as advisor), Millard E. Gladfelter
Professor of Statistics and Data Science, Director, Data Science Center, Fox School of
Business, Temple University

How can I summarize the effect Prof. Stephen Fienberg has had on my professional and
personal life in one story? He has been a wonderful advisor, mentor, and friend – and my
stories about him range several years and three continents!

But my favorite memory of Steve is the role he played in my wedding. When I first
became Steve’s advisee, I was a single mom – but I met my husband in the course of my
work (at the US Census Bureau). Steve and Joyce were naturally invited to the wedding,
and they were delighted to attend.

There I was, pacing nervously in the Rabbi’s office before the wedding, waiting for
the signing of the Ketubah – the Jewish wedding contract. I had wanted Steve to sign the
Ketubah as my witness, but hadn’t had a chance to ask him yet! The minutes ticked closer
to the start of the ceremony, but no Steve. As far as I was concerned, the wedding wasn’t
starting until Steve and Joyce were there.

Finally, Steve arrived at the door of the Rabbi’s office, apologizing for being late due
to travel delays! The Ketubah signing could proceed. By Jewish tradition, my husband and
I were married then – even though the actual ceremony hadn’t taken place. Only a small
number of people witness the Ketubah signing – close family and friends – and the fact that
Steve could be part of that moment will always be a wonderful memory for me.

–Jana Asher (PhD 16), Assistant Professor, Slippery Rock University

When I moved to Pittsburgh in Spring, 2000, it was to work at a startup on Craig St. called
“Whizbang! Labs” (yes, with an exclamation point). I interacted with Steve briefly a few
times during the next few years in his role as acting director of CALD, but I didn’t really
meet him until Spring, 2002, when I happened to run into him at Pittsburgh International
Airport.

As I recall, it was a dark and stormy night, and we were both down on our luck. I was
coming back from a discouraging trip to schmooze in D.C., I think looking for funding of
some sort, and I was unemployed, Whizbang! Labs having recently gone the way of (most)
Web 1.0 startups. Steve was returning from what was probably an even more discouraging
trip to the Canary Islands – he’d gotten as far as the ticket counter and then discovered he’d
left his passport at home. Now this was before 9/11, so he wasn’t arrested, or detained for
questioning, but he wasn’t on his way to the Canary Islands either. He was waiting for the
28X to take him home.

To make the story not too long, we ended up discovering a shared technical interest in
(passion for?) record linkage, and having a long and detailed and refreshing technical talk
all the way back to Pittsburgh, which continued while we waited for a friend of mine to pick
us up from the bus stop, and then again while all three of us cowered in the car for another 15
minutes waiting for one of Pittsburgh’s “microburst” intense storms to blow over. This was
a talk that also continued, on and off for the next several months, during which time Steve
was instrumental in assembling the funding that eventually brought me to CMU, where I
worked for several months on what I still think of as the “28X project.”
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So to summarize, I’m not sure if I’d be here at CMU if Steve had managed to remember
his passport that day. And I’m not sure what the point of this story is, except maybe to
say that sometimes we find the best of friends at unexpected times and places, and for
unpredictable reasons.

–William Cohen, Principal Scientist, Google

I was Steve’s PhD student from 2003–2006. I was fortunate to have an advisor generous
with his time and expertise, but who gave me the freedom to investigate the statistical
questions I found most interesting. From the beginning Steve hoped I would explore a
particular model and I had a different idea in mind. While we had many conversations
about the competing methodologies, I’m thankful he allowed me the freedom to explore
what I wanted to explore and write the thesis that I wanted to write, all the while giving me
his complete support.

Basically every time I discussed any statistical problem with Steve I learned something –
even when it was a topic that I thought I understood! For that reason and many others, I
always looked forward to spending time with him and always will.

–Jason Connor (PhD 06), ConfluenceStat

I first met Steve Fienberg 43 years ago, in the fall of 1964. I was a college sophomore taking
Fred Mosteller’s famous Statistics 122 (Statistics in the Social Sciences, or something like
that), and Steve was a graduate student. As a math-oriented student in a sea of math-
phobic psychology majors, I had come to the attention of our teaching assistant (actually
universally known as “section man” in those days, regardless of gender – this particular
“section man” was a fairly glamourous young woman) who invited me to a party for her
fellow statistics graduate students. (They always needed more females and she thought I
would fit in – she was right!) Steve was at the party. He was wearing lederhosen, for reasons
then and now unknown to me. He was very friendly and we had quite a nice conversation
going when I was yanked away by my “section man” who informed me that Steve was
engaged and I’d better steer clear of him. I should note that two other grad students (one
of them being Jonas) came in tuxedos. (I got yanked away from Jonas also, since it turned
out my “section man” was dating him at the time.) All in all, a memorable party, definitely
establishing that statisticians were interesting, good-looking and a lot of fun!

Jonas and I send our best wishes for a wonderful birthday!
–Susan S. Ellenberg, Interim Chair, Department of Biostatistics, Epidemiology and

Informatics, Professor of Biostatistics, Medical Ethics and Health Policy Perelman School
of Medicine, University of Pennsylvania

When I was looking for a dissertation topic and an advisor, I had a number of conversations
with faculty members at CMU before coming to Steve’s office. I remember the very first
thing that he said was, “There is something you should know about me. I am very busy.”
Taking a mental note of this phrase, I did not expect much attention but I was clearly in for a
pleasant surprise. Now, five years after obtaining my PhD, it seems that Steve has somehow
always managed to give just the right amount of guidance, even if it had to be in a three-
minute meeting at the end of which his only words would be “Go and write it up.” The
ever-increasing number of his students is the best testimony to his exceptional mentoring
abilities.

–Elena Erosheva (PhD 02), Professor of Statistics and Social Work, University of
Washington

When I first met Steve in December 1985, I was a graduating senior in statistics/operations
research at the University of Cape Town. I did not have a plan, yet was fascinated by
statistics and wanted to learn more. I had a vague idea that I might like to come to the US,
but applying to different schools and taking care of the various application requirements
was getting on top of me.
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Steve was the keynote at the South African stats conference that year, and we met. That
meeting completely changed my life. The next August I was on my way to Pittsburgh.

I arrived in Pittsburgh knowing no one, this naïve South African little girl. Steve and
Joyce were there to welcome me and they hosted me and my mother as we navigated those
overwhelming first weeks. Steve and Joyce became my family in Pittsburgh, and welcomed
me for my first Thanksgiving and for Jewish holidays (thank you so much!).

Steve, I am so glad to have an opportunity to tell you how much of a difference you have
made in my life. You opened the doors to me in this country; it all began with you. Since I
came here I have found incredible career fulfillment and my life’s partner.

I don’t know that I can ever thank you enough.
–Ruth Etzioni (PhD 90), Professor, Fred Hutchinson Cancer Research Center

It’s not too much of an exaggeration to say that I wouldn’t be at CMU if it weren’t for Steve.
When Steve called to invite me for a visit, it felt like getting a talking from an old friend.
We discussed our common interests, the department, my plans. When I mentioned that my
talk would not be Bayesian – Carnegie Mellon had a reputation, you know – I could almost
hear him smile. He then laid out a vision of what the department was really about. Here is
a person I could learn from, I thought, and a place I could thrive. Steve made the case even
more compelling when I met him in person. We had been on opposite sides of the Census
adjustment debate, and I remember sitting in Steve’s office during my visit talking over the
issue from top to bottom. Never once did I feel that we were on different sides but rather
that together we were searching for the truth. It was invigorating.

For over a decade, Steve and I had neighboring offices. Before high-speed internet
connections and wireless made it so easy to work at home, he and I spent a good deal
of time working in the office on weekends, and we would talk about statistics and other
things. Steve was always gracious, helpful, and interested. And he gives good advice. One
regret I have is that he and I have not yet managed to write a paper together. But there’s still
time . . .

–Christopher R. Genovese, Head and Professor of Statistics, Dept. of Statistics and Data
Science, Carnegie Mellon University

When I joined the Department in the mid-1980s, Steve was the head. An initial and enduring
impression of the Department was the strong feeling of inclusiveness and collegiality. Not
only that, but to my surprise the senior faculty not only expressed an interest in my work,
but were forthcoming with their own ideas and opportunities for collaborations. In those
days we didn’t call it mentoring but that’s what it was. I soon learned that this departmental
climate was due in no small part to Steve’s leadership and vision.

Steve’s door has always been open. I have never seen him turn away a visitor, whether
undergraduate, graduate student, or junior faculty. He is a demanding instructor and advisor,
yet he is also realistic and understanding. He sets his expectations at a level that asks his
students and colleagues to reach a little higher and achieve a little more. Steve is selfless
about his work, and given his level of activity, there are plenty of good problems to share
with students and junior colleagues, which he does.

Thanks, Steve, for being a model statistical scientist, outstanding colleague, and good
friend. All the best for a very happy birthday. Looking forward to sharing many more
simchas with you and Joyce.

–Joel B. Greenhouse, Professor of Statistics, Dept. of Statistics and Data Science,
Carnegie Mellon University

When I was researching statistics departments for grad school, I solicited suggestions
for faculty around the country with an interest in social science. I received a number of
recommendations, but one name was on everyone’s list: Stephen E. Fienberg. So I planned
a visit to Pittsburgh and emailed Steve to ask if he would meet with me. A short time later,
Steve had emailed me back to say that I was in luck – although he was on sabbatical and
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about to leave for Paris, he would be in town the day of my visit and could make some time
to chat with me about the program.

So I arrived for my appointment and was immediately won over. For someone so
accomplished, Steve turned out to be surprisingly down-to-earth and exceptionally warm.
Despite being on his way out of town, he wasn’t the least bit impatient, and indeed engaged
me in a long conversation about statistics, various departments I had been considering, and
my possible research interests. When I hinted that I might be satisfied to just earn a master’s
degree, he brushed aside my implied lack of ambition and said, “Oh, you don’t want to do
that – we’ll get you through the program.”

That’s not to say that Steve is averse to doling out a little tough love. One afternoon, I
was sitting in the department lounge when Steve walked in. I had given a talk the day before
and felt it had gone pretty well, but he took one look at me, tilted his head to the side, let
out a slight groan and announced, “We really need to teach you how to give a presentation!”
How much more gratifying it was, given his honesty, when a year or so later, I finished a
departmental presentation and was greeted by Steve’s broad smile and the words “Nicely
done!”

Steve, you have touched the lives of so many colleagues, students, and friends. I am
honored and blessed to be among them.

–Justin H. Gross (PhD 10), Associate Professor, Director, Division of Political Science,
Department of Political Science, University of Massachusetts Amherst

I first saw Steve when I was a graduate student and he was receiving the Statistician of
the Year award from the Chicago chapter of the ASA. Steve’s predecessors included John
Tukey, Fred Mosteller, L.J. Savage, G.E.P. Box, William Cochran, and Bill Kruskal. I recall
Steve’s saying, in accepting the award, that he wasn’t in the same league as those guys.
Well, every generation should stand in awe of its ancestors, and some of those earlier guys
will be members of that rarified club who are remembered long past their own lifetime. But
for those of us who are here now, Steve is his own kind of giant. Rough, but ready, like the
hockey player he also is who pushes his way to the front of the net, waiting to turn trash
into a score; seemingly tireless. By the way, does he ever sleep?

When I interviewed at Carnegie Mellon, there was a rather arcane, mathematical focus
to my research, so it was not obvious to all on the faculty that I would be a good bet as a
colleague. I am fortunate that Steve, as incoming department head, took a special interest in
hiring me. And when he perceived some reticence on my part about coming to Pittsburgh,
Steve showed me things I might appreciate about the town, while painting a convincing
picture of the rosy future for the department. That was 26 years ago. I suppose the lingering
memory may have influenced my reactions to Steve’s ideas and pronouncements over the
years. In any case, I have found Steve’s instincts to be generally on target, his taste excellent,
and his judgment very good. As I think about him, though, I realize that what I have
appreciated most about Steve is his very strong desire to do the right thing, and to work
hard to get the right thing done. It is his unusual combination of continual achievement and
tireless commitment to improving the world that makes Steve an inspiration.

–Robert E. Kass, Maurice Falk Professor of Statistics and Computational Neuroscience,
Department of Statistics and Data Science, Machine Learning Department, and Neuro-
science Institute, Carnegie Mellon University

I was his student from the fall of 1986 until the fall of 1989. The 3 years were a period of
voyage through a maze of misty sight. In those days, he had two offices: the Dean’s office
and his own office. Working in these two offices, he still found time to give thorough and
detailed comments on my hand-written manuscripts. I remember his warm statement about
my English: “‘A’ and ‘the’ seems to be difficult parts of English for foreigners like you.”
He then suggested inserting them when I was not sure. This comment called my attention
to “a” and “the” whenever I read books in English. I might have tested his patience for a
while with my “wild” English!
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He is both a thesis advisor and a humanity mentor. As far as I am concerned, I would
rather remember him for the latter role. He gave some ripe words concerning roles as a
father and as a husband. Talking about kids with him, Steve once said, “Kids know better
ways than you for their lives.” These words helped enhance the level of my patience to a
certain maturity when my wife and I were at heart-breaking moments with my kids. My
experience with Steve as a thesis advisor and as a life-story consultant has led me to what I
am now. Thank you for all of this, Steve.

–Sung-Ho Kim (PhD 89), Professor Emeritus of Statistics, Department of Mathematical
Sciences, Korea Advanced Institute of Science and Technology

I first met Steve around 1989–1990. I was in my compulsory military service in the Israeli
army and thinking of going to graduate school, possibly in statistics. A friend of my parents
told me that a friend of his, a statistics professor from the US, was visiting Israel, giving
some talks, meeting with prospective graduate students, and he had agreed to take some
time in his busy schedule to meet with me.

We met in the Statistics Dept. at Tel Aviv University. Steve sat with me for a long time –
maybe more than an hour – and told me about the various programs in the US, their strengths
and weaknesses, and encouraged me to apply to graduate schools in North America. It was
the first time that I really had a sense that “maybe I can do this!”

Over the years, Steve grew to be a mentor and a friend. Now that I am in a position to
mentor students at all levels, as well as junior faculty, I try to keep Steve’s example in mind
always: his generosity with both time and sharing of wisdom, his patience, and his humor.
I can only hope that I have as favorable an impact on their lives as he has had on mine.

–Nicole A. Lazar (Dept. faculty 96-04), Professor, Department of Statistics, Pennsylva-
nia State University

I’ve always been impressed by Steve’s apparently unlimited energy. In January 2006,
while I was in my first year here at CMU, Steve and I traveled to Colombo, Sri Lanka,
to participate in a project with some human rights organizations there. The travel was
exhausting and that, in addition to the time difference (11 hours!), just knocked me down to
the ground for almost a week. Steve, however, just after a night of sleep was fresh as new
and ready to work. We had lots of meetings and, on top of that, he gave a series of lectures
at the University of Colombo, and even found time to meet with faculty and students there.

–Daniel Manrique-Vallier (PhD 10), Associate Professor, Department of Statistics,
Indiana University Bloomington

I used to be the old man in the Mt. Lebanon Senior Hockey League. I retired last year and
passed the mantle to Steve. This story applies to both of us. I had been urging my wife to
attend a game and she finally showed up one day while the game was on. I was playing
against Steve’s team. Our jerseys have no numbers, and we wear face masks which hide
our faces. So my wife couldn’t immediately make out which of the skaters either I or Steve
was. But she said she quickly figured it out. “How?” I asked. “Simple,” she said. “I looked
for the slowest skater on each team!”

Steve, don’t let this bother you. It’s amazing that you can still skate at this age, and
within a year you will have broken my record as oldest player. Best wishes,

–Ralph Roskies, Vice Chancellor for Research Computing, University of Pittsburgh

Steve, under the least likely circumstances, you drew me into the world of statistics, and
bestowed some of your magic upon me. You helped me unravel statistical incantations, but
rarely without a few extra tips on good wines, great books, and special travel spots. You are
not just my mentor, you and Joyce are my true friends who are there in times of joy and
sadness. Maybe one day you will share the secret of your relentless enthusiasm and support
for those around you and beyond.

Cheers to you, Steve, and your legacy. Let the magic continue rolling!
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–Aleksandra (Sesa) Slavkovic (PhD 04), Professor, Departments of Statistics and Public
Health Sciences, Associate Dean for Graduate Education, Eberly College of Science,
Pennsylvania State University

Steve was my dissertation advisor. I obtained my degree in December 1983, but Steve has
continued to encourage and aid me in my career even twenty years later.

When Steve asked me if I would like to work with him on a grant from Statistics Canada
in my second year of PhD studies, I didn’t realize how fortunate I was. He pushed me to
take a very active role, not just in research for the grant, but also in other aspects of the work
for the grant. For example, with guidance from Steve, I traveled to Statistics Canada to meet
with the research sponsors; I worked with them over the phone to determine the form of the
data we would receive; I wrote up a research proposal for the grant; I drafted a paper based
on our preliminary research; and I presented the results at conferences. Although all of this
made me very nervous, there was no question that I would do it – Prof. Fienberg expected
me to be able to do it. It was, of course, invaluable experience when I started working on
my own grants as a new assistant professor.

Also, while I was in graduate school, Steve introduced me to a number of important
people in my area of research, particularly women (Barbara Bailar, Janet Norwood, and
Judy Tanur), who have been vital contacts and role models for me over the years. When I
was nearing graduation, Steve encouraged me to apply to good schools for the academic
position I desired.

I have noticed that at national meetings, Steve makes it a point to introduce other women
to me, often those just starting their careers. Then he leaves to give us a chance to talk, share
experiences, and trade advice. I know that several of my friends from graduate school, and
even some who did not attend CMU, have been similarly aided and encouraged in their
careers by Steve over the years. I had no doubt that I owe a good proportion of my success
in my career to his behind-the-scenes encouragement to get involved. For that, I am very
grateful.

–Elizabeth Stasny (PhD 83), Professor Emeritus of Statistics, The Ohio State University

As an undergraduate student at Carnegie Mellon, I was fortunate enough to work with Steve
on disclosure avoidance and contingency tables for my undergraduate honours thesis. As
my research supervisor after my sophomore year, Steve gave me bits and pieces of the
problem to work on, step by step, until I unknowingly had programmed an algorithm using
computational algebra to generate proposals for a Metropolis Hastings algorithm under a
model of independence for multi-way contingency tables. It would be four more years and
almost three degrees later that I would understand completely what I had accomplished.
It’s unthinkable, in retrospect, what I was able to accomplish and I know that it is due
mainly to Steve’s support, attention, and the way that he never let me feel like what we
were trying to do was impossible. It’s with a lot of pride that I can say that I’ve supervised
14 undergraduate research projects and courses in my five-plus years at McGill University.
. . . I learned from Steve that it is never too early in their academic life for someone to begin
doing research, as long as they know that they’re not doing something impossible and that
they’re not doing it alone.

–Russell J. Steele (PhD 02, University of Washington), Associate Professor, Department
of Mathematics and Statistics and Associate Dean, Graduate and Postdoctoral Studies,
McGill University

It is my great pleasure and privilege to offer a tribute to Steve on the occasion of his
65th birthday. John Lehoczky once conjectured to me that, if n is the number of projects
an ordinary human being can handle at one time, then Steve will take on n+k, where
n and k are positive integers. For me, Steve’s accomplishments come most clearly into
focus when one thinks of the various roles a university professor can assume: teacher,
researcher, administrator, advisor. What I find truly remarkable about Steve is that, by my
accounting, he has filled all these positions many times in his distinguished career and,
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invariably, has succeeded brilliantly. As a student in his classes I enjoyed Steve’s well-
organized and provocative lectures. As a teaching assistant, I admired his insistence that
students in the introductory statistics course should engage the world at large with their
newfound knowledge and skills. As a scholar, I respected the deep contributions Steve has
made to our field, both in methodological research and in an incredibly broad array of public
policy studies. As an alumnus, I valued his contributions as a leader of both the college and
the university. And to this impressive list, one can add Steve’s legendary talents as a hockey
player.

On a personal level, I am most grateful for Steve’s generous and wise counsel. At critical
points in my own career, Steve has listened patiently, brought opportunities to my attention,
and offered his sage advice and perspective. I consider myself truly fortunate to count Steve
as an influential mentor, colleague, and friend.

Congratulations, Steve, and many happy returns! Cheers,
–Duane Steffey (PhD 88), Principal Scientist and Director, Statistical and Data

Sciences, Exponent

I was sitting in my apartment in Toronto in 1987 working on my thesis when I got a call.
“This is Steve Fienberg. Mind if I come over for a cup of coffee?”

A phone call from a famous statistician was the last thing I expected. What could I say
but, “Sure. Come on over.”

A few hours later, my (soon-to-be ex) wife announced: “Some guy who looks like
Rodney Dangerfield is at the door.”

I let Steve in and he immediately put me at ease. We had a nice chat about CMU,
Pittsburgh, and probably a few other things that I now forget. Mostly what I remember was
how welcome Steve made me feel. I had a strong sense that the CMU Statistics Dept. would
be a nice place to visit.

Well, my 2-year visit turned into a lifetime career. If Steve had not made this unexpected
visit, who knows where I would have ended up.

To this day, there is no one in the department who goes out of his way as much as Steve
does to recruit students and faculty for the department. Every year, when I do admissions, I
can always count on getting one or two students thanks to Steve’s proactive approach.

This is a small example of Steve’s selfless devotion to the department and we are all in
his debt because of this.

–Larry Wasserman, UPMC Professor of Statistics, Dept. of Statistics and Data Science,
Carnegie Mellon University
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The reminiscences below were gathered for Steve Fienberg’s Emeritus celebration
held on October 14–15, 2016, at Carnegie Mellon consisting of a series of invited
lectures, short informal presentations of reminiscences, and a reception.

We share them here as written in 2016. Each reminiscence, in its own way,
contributes to an all-round image of Steve as educator, mentor, scholar, innovator,
colleague, advisor, friend, promotor of statistics as a force for good in science and
government policy, and so much more.

Each reminiscence includes the author’s name and current title/place of employ-
ment. For those authors who were students in the department at the time, the year in
which they subsequently attained their MS/PhD degree from the department is also
listed. If it was obtained elsewhere, the name of that university is included.

The reminiscences are listed in alphabetical order by the author’s last name.
(In the prior section in this book are reminiscences about Steve from an October

19, 2007, celebration in honor of his 65th birthday.)

Before I started my thesis at CMU, I heard: “Steve can be really hard on you when you are
going through your thesis work, but he stands out for being extraordinarily supportive, and
for his confidence in his students.” What I will never forget was: “He will never let you
down.” These words will always remain in my mind, as it was what I found in you as my
advisor. There were many difficult times during those years working on my thesis. You were
always there to support me, even when my work was stuck, and helped me to get through.

I am extremely grateful to you, as well as to Joyce, who played a fundamental role for
her support and love, while I was living in Pittsburgh.

–Anita Araneda (PhD 04), Associate Professor, Catholic University of Chile

If we are to reduce the amount of human violence in the world, the first task is to determine
how much of it there is. And no one in the human rights field really understood how to do
that until we re-read – very closely – Chapter 6 of Bishop, Fienberg, and Holland.
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Of course, people knew how to estimate hard-to-reach populations before then. Nonethe-
less, it is the principled approach explained in Chapter 6 that gave us the tools to make the
estimates in a truly rigorous way.

In the international human rights movement, we remember the dead. And by remember-
ing the known dead, methods that Steve put in our hands allow us to remember the unknown
dead. From Guatemala to Colombia to East Timor to Perú to Kosovo, work based on Steve’s
thinking has helped move the world a little closer to justice. Thank you.

–Patrick Ball and Megan Price, Director of Research and Executive Director, respec-
tively, Human Rights Data Analysis Group

I vividly remember the day that I interviewed for my position in the Statistics Department.
I was ushered in to meet with Steve in his office as the department was looking to hire a
new assistant for him. I remember being struck by the stacks and stacks and stacks of books
and journals and papers. In my memory they were stacked absolutely from floor to ceiling,
teetering towers lined up side-by-side on the desks and all about the room. We chatted
about the amazing shared musical company that we had in common: he was a loyal patron
of the Pittsburgh Symphony and played hockey with my clarinet teacher, Michael Rusinek.
Not only that, Michael’s longtime mentor Avrahm Galper (famous clarinet pedagogue and
former Principal Clarinet of the Toronto Symphony) had a connection to Joyce!

I was a very green new-to-the-workforce musician right out of graduate school whom
Steve was convinced could learn LaTeX quickly enough to complete a book project that
he was aiming to publish – the autobiography of his mentor, Statistics giant Frederick
Mosteller. I jumped in headfirst, honestly not even knowing how to open LaTeX on my
computer, let alone how to compile an actual book with it, but Steve trusted I could
learn. Eventually we completed the book, launched the online Journal of Privacy and
Confidentiality, and even published a second book: The Handbook of Mixed Membership
Models. Each project a mammoth undertaking that Steve took in stride (as they ran in
parallel conjunction with all the other projects that occupied his time, including at this point
in his history the inception of LARC and the NSF Census Node Project). All the while Steve
has supported my musical ambitions, always asking about my latest projects and upcoming
auditions. It’s a tough business out there but my work in this department has grounded me
and I’m extremely grateful for it. Not unlike my musical peers, Steve demands greatness
and ceaseless effort not only from himself but from those around him. It serves to elevate
everyone’s work. He knows no other way – it’s simply the way Steve gets things done.
He cares tremendously about his field and it shows. It has been an immense pleasure and
privilege to work alongside him.

–Kira Bokalders, Assistant Business Manager of Finance/Sponsored Research Manager,
Dept. of Statistics and Data Science, Carnegie Mellon University

I am still working with Steve, so I create new memories every time we meet! But if I had to
describe what makes him stand out as a professor it is that he treats me with respect. From
the first time we spoke by email when I was applying to the PhD program, to our last few
meetings, Steve has made it clear that he thinks my ideas are worth discussing, even when I
had no credentials under my belt. He has argued with me, pointed me in the right direction
many times, and most importantly, he has never told me what to do. The research I have
done under his guidance has been mine, and I can never repay him for that.

After working with Steve I now know how to write better (“PGP! Particular-general-
particular!”), I know that statistics is defined very broadly as the set of tools you need to
answer interesting questions (“Statistics is what I do!”), and I know that I should not let
bureaucratic rules guide my research, no matter how strict they might seem (“Don’t think
about the requirement for now. Think about the research.”). I know it is ok to follow my
heart in my research, and I have a better idea of how to do this.



32 Reminiscences of Steve Offered on the Occasion of his Emeritus Celebration 523

If I am ever in the position of mentoring students, I hope I can be as respectful, available,
and supportive of them as Steve has been of me.

–Maria Cuellar (PhD 17), Assistant Professor, Dept. of Criminology, University of
Pennsylvania

We have had so many great adventures together, over so many decades, that the beginnings
of our friendship fade into the mists of my memory. Surely I knew you even before I first
visited CMU in 1977? Certainly I already knew of you, through my immense admiration
of your ground-breaking book “Discrete Multivariate Analysis” with Bishop and Holland.
At any rate, from then on, in various visits I made to CMU (during which you showed me
many great kindnesses), or in your visits to Europe, as well as at very many international
meetings—especially Bayesian and Forensic—we were able to spend increasing amounts
of time together, and interact, both professionally and personally, in most delightful ways. I
particularly recall the 1991 Valencia Bayesian Meeting in Peñiscola, where we sallied forth
every evening in search of a dinner rather better than available on site—and though it wasn’t
easy to meet your invariably high standards, we did more than well enough for mine.

Quite as much as I have always valued our friendship, I have had enormous respect for
both the depth and the breadth of your fundamental contributions to Statistics. I honestly
can’t think of anyone who can match you on this. As just one indicator of your unparalleled
versatility: I was recently at a workshop at the Isaac Newton Institute in Cambridge, which
was running 3 parallel statistical programmes, on “Data linkage and anonymisation,” on
“Theoretical foundations for statistical network analysis,” and on “Probability and statistics
in forensic science.” I saw there that you were listed as “Simon’s Foundation Visiting
Fellow” for every one of these three very different programmes—whereas no one else was
involved in more than one. It is a great pity that you were not, in the end, able to come to
any of these: I know just how much many others share my regret at missing the insight and
clarity that you always bring to everything you touch.

Recently we have been collaborating fruitfully on topics in statistical causality, with a
focus on legal issues. And I owe it to you that, through this, I was invited to serve on a
MacArthur Foundation interdisciplinary research committee, looking into the tricky issue
of making group data relevant to individual cases—an utterly fascinating experience.

Steve, it is indeed gratifying that your statistical acumen, prowess, originality and
leadership have been very widely appreciated and frequently called upon. And in applying
them to important matters of public policy you have made vital contributions to both
national and international affairs. We all owe you so much, in so many ways.

I would love to have been able to join personally in the celebrations under way for you,
but alas! can only participate telepathically. I will be thinking of you, and raising a glass to
your illustrious career—and another, even larger, to the warmth of our friendship.

Your good friend and great admirer,
–Philip Dawid, Emeritus Professor of Statistics, University of Cambridge

I was Steve’s PhD student from 1987 to 1990. Steve encouraged students to think big.
When a famous statistician came to give a department seminar, he challenged me to “ask
some tough questions.” When I raised concern about an aspect of thesis research being
ambitious, he said “I want you to be as ambitious as possible.”

My interactions with Steve and other faculty, as well as the outstanding graduate training
at CMU, have greatly benefited my career development. From my thesis work with Steve
on modeling matching errors in capture-recapture census, I knew I could enjoy developing
novel methods for real application problems, whereas pure theoretical work is not for me.
Although still not a big risk taker, I learned to pick highly significant problems to work on
in my field of RNA computational biology. My research program has been continuously
funded by NSF and NIH since 2002, with total accumulative funding of nearly $8 million,
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including a recent 4-year $2.2 million grant award from NIH. I congratulate Steve on
reaching Emeritus status, and wish him the very best.

–Ye Ding (PhD 90), Research Scientist, New York State Dept. of Health

I started working with Steve a few months after becoming a graduate student in the
department. Even after graduation, Steve continued to encourage and help me navigate the
sometimes uncharted waters of academia for many years. I appreciate Steve not only as a
mentor, but also as a person I could fully trust, and as an example that I constantly strive
to follow. I am sure there are many PhD advisors that know how to train and guide their
students well towards great careers. Among them, Steve stands out for the following key
reason: throughout the years, he constantly kept in touch with me and with his other PhD
students. He knew how to create a community of students whose shared research interests
stimulated growth and professional development. I owe a lot to this man on a professional
and personal level. He never hesitated to sacrifice his time to help me out when I needed it
most. And I know he always did the same for his other PhD students.

–Adrian Dobra (PhD 02), Professor, Dept. of Statistics, University of Washington

I first met Steve and Joyce in 1979 at Las Fuentes in Spain. We’ve been good friends ever
since. Steve immediately impressed me and continues to impress me with his tenacity. In
those early years, the four of us had some fun trips together. I remember one night in Buenos
Aires, Bill had the rigors (Bill had some kind of serious ongoing intestinal infection). I
called Steve (across the hall) and he came over and sat on Bill’s legs for quite a while to
try to control those shakes. Most recently, because of their cancers and mine, I’ve been
thinking a lot of Steve and my sister, Cathy. Now that I’m fighting cancer again, they both
have inspired me as they have fought with great strength and tenacity. A few months ago
my sister finally lost the battle after six-and-a-half years. I hope Steve can do even better.

Steve, it’s wonderful to have you in Pittsburgh as a good friend. My love to you and
Joyce.

–Connie Eddy, late wife of William F. Eddy, and close personal friend of Steve and Joyce
Fienberg

When I visited graduate schools as an undergrad, I talked to many people. A large number
of them told me to say “hello” to Steve! I realized then how many lives Steve had touched,
including my own.

–Shannon Gallagher (PhD 19), Postdoctoral Fellow, National Institute of Allergy and
Infectious Diseases

When I first met you in 1996 I was trying to figure out what I wanted to study in graduate
school. I took your class on survey sampling. You took me on a trip in your sporty Mazda
to Washington DC, and you introduced me to the protest songs of Pete Seeger. (I remember
being surprised that there was a song with the word “garbage” repeated several times.) I’m
quite sure I hadn’t done anything to deserve such generosity but you took me (and we met
up with another undergraduate, Larissa?) to DC to get a taste of what statisticians did for a
living. There I was, a wide-eyed 21-year-old, being introduced to the many important people
you knew in various agencies in DC. Between that and your encouragement to pursue
statistics, I ended up doing a PhD in it even though I was a computer science undergrad.
Turns out I really like the subject and couldn’t have asked for a better profession. Thank
you!! Nowwhen I take time out of my schedule to work with and encourage undergraduates,
I am reminded of you and Bill (Eddy). So the next generation of undergrads benefit from
your generosity as well.

My gratitude and very, very best wishes to you today and always.
–Murali Haran (PhD 03, Univ. of Minnesota), Professor and Head, Dept. of Statistics,

Pennsylvania State University
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I will always remember the great parties Steve and Joyce hosted for our department. Many
thanks to Steve and Joyce for your warm hospitality over those years. It was wonderful to
all be together with faculty, staff, students and the kids. Fun times and great memories and,
of course, I did take a lot of pictures.

Wishing you all the very best and in deep appreciation and gratitude.
–Cristina Ilangakoon (MS 96), independent consultant

Steve—not only are you a brilliant, nationally renowned statistician with an influential
record of scholarly contributions, you are also a remarkable Carnegie Mellon citizen,
mentor, teacher, and of course, a valued friend and colleague. Thank you for your
good company and wise counsel over the last few years. May this next chapter hold
many opportunities for relaxation, research and continued engagement with our campus
community.

–Farnam Jahanian, President, Henry L. Hillman President’s Chair, Carnegie Mellon
University

One of the best moves I made as department head in the 1970s was to hire Steve. The final
negotiating item was to find opportunities for Steve and his son, Anthony, to play amateur
hockey. Although I knew nothing about hockey, I did manage to find such a hockey league,
so Steve accepted.

Hockey was a personality theme for Steve in those days. He brought the same focus
and attention to being our Department Head and, later, our Dean. He always worked hard,
whether digging the puck out of the corner, or finding opportunities for his many graduate
students. He made important contributions toward building the department to the hive of
activity it is today.

Steve has also made very important contributions nationally, particularly in his work for
the National Research Council, and as an editor.

He no longer skates as hard as he did, but he still has the fire in his eye to move forward
on his many projects.

–Joseph B. Kadane, Leonard J. Savage University Professor of Statistics and Social
Sciences, Dept. of Statistics and Data Science, Carnegie Mellon University

Thank you so much for contributing to the department that I came to regard as a second
family. Your untiring efforts are what helped make it a great place to work. I was always so
impressed by your many projects and, most especially, the amount of time you spent with
your students, both grad and undergrad.

I did not do much work for you directly, but when I did you were generous with your
thanks. When I worked for you on the Encyclopedia, you appreciated my efforts and made
several very kind comments. You gave me a beautiful Cross gift set at the end of the project.

I will always be grateful for your understanding of my missteps.
I so enjoyed meeting your granddaughters and the sharing of our twin stories. Twins are

a never ending source of joy and craziness. Their teen years will be so interesting!
Steve, I wish you all the best. Enjoy your special Event. You certainly deserve it.
–Rose Krakovsky, Retired Receptionist, Dept. of Statistics and Data Science, Carnegie

Mellon University

In my first semester, Steve thoroughly lost me with a lofty discourse on multivariate
analysis. When I showed up at his office hours, he patiently explained the difference
between the log and the logit. His response to my request to drop his course surprised
me: “Just do your best and don’t worry about it.” The loglinear models he taught in that
course became a central building block of a thesis draft I submitted to the committee less
than four years later. Upon reviewing this draft, Steve was the loudest to object: “You’ve
got more work to do.” Kudos to Steve for guiding me to an ever-higher bar!

–Zachary T. Kurtz (PhD 14), Data Scientist, Argo AI
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I first met Steve when I was working at Google. During our thirty-minute chat in a Google
cafeteria, Steve told me about his vision of research, and how I could do research and
interact with people at CMU. One week after that, I was no longer lost about my career
plan, and I decided to leave my full-time job to join the CMU Statistics Department as
Steve’s postdoc.

Steve is a great mentor and collaborator. He has many amazing abilities, such as putting
the right people working together, and finding deep insights beyond technical details.

–Jing Lei, Associate Professor, Dept. of Statistics and Data Science, Carnegie Mellon
University

Feinberg, Fineberg, oh it’s Fienberg — got it. However, Steve is most definitely a fine-
burg, the finest in Pittsburg and well beyond. I don’t remember where or when we first
met in person, but am quite sure that my first contact with him was upon publication of
BFH/DMA. Happily, both social and professional in-person contacts quickly followed and
have enriched my professional and personal lives. Dinner in Leiden; floating in (almost on)
the Mediterranean in Crete, working to make the streets safe for hospital comparisons via a
COPSS white paper, collaborating on the Annual Review of Statistics and its Application;
these are but a few highlights. Steve, enjoy your emeritus status (though your CMU
colleagues report no detectable difference), and continue your stewardship of almost all
things statistical. I treasure our relationship; our profession and country treasure your
contributions.

–Thomas A. Louis, Professor Emeritus, Johns Hopkins Bloomberg School of Public
Health

I met Steve just over 10 years ago, when he was chairing a meeting on problems in
the forensic sciences at the National Academies. At the time, I was a journalist who’d
just finished a documentary on that subject. Steve kept in touch with me over the years,
answering my questions about statistics when I was reporting, even inviting me to my first
ever JSM, in Salt Lake City. Eventually, I turned to him for advice when I decided to go
back to school – and throughout my time as a graduate student. Like so many people, I was
continually amazed by his ability to be 3 places at once. When I decided to come to CMU
to this fall, my main fear was that Steve would realize I can’t keep up with him. Fortunately,
he’s remained as gracious as ever. I count myself incredibly lucky to have the chance to
work with him.

–Robin Mejia, Statistics and Human Rights Program Director, Center for Human Rights
Science, Carnegie Mellon University

It has been an honor, and an education, to work with Steve as we jointly created CMU’s
Center for Automated Learning and Discovery in 1997, and evolved it into today’s
Machine Learning Department. Throughout, I’ve been inspired by Steve’s broad and deep
understanding of science, and by his enthusiasm and energy for really making things
happen. Congratulations Steve on this next step forward – I plan to still call on you for
advice!

–Thomas Mitchell, University Professor, Carnegie Mellon University

I first became aware of Steve when I was an undergraduate at CMU, when he was Dean
of H&SS, and then later left for Canada to be a super dean or something. My general
understanding was that academics become deans when they are sick of research, and then
they move off up the administration food chain. Thus I was surprised when I later became
a graduate student, finding Steve back at CMU, and slowly discovering that he not only
had *not* left research, but that he was also was a research powerhouse. Aside from being
at the front edge of the discipline, whether in data disclosure or network analysis, he was
a journal editor, a book series editor, a National Academy work horse, and all the while
being a nurturing mentor. (I still remember two takeaways from notes he distributed on
dissertation writing: “Write! You need something to edit,” and on footnotes “Avoid them.
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Footnotes are rat’s nests for pedants.”) How a person could carry out so much work with
such vigor, and so much rigour, has always left me speechless.

–Thomas Nichols (PhD 01), Professor of Neuroimaging Statistics, University of Oxford

Steve, you have always been present for me: as an advisor, at my wedding(s!), and as a
mentor and colleague. You have been both a professional and a personal role model. I and
my family owe you a big debt of gratitude.

–Alessandro Rinaldo, Professor, Dept. of Statistics and Data Science, Carnegie Mellon
University

My most vivid memory of Steve occurred 11 years ago when we were working together to
edit a book and had weekly meetings every Monday from 3 pm to 4 pm. When I committed
to this joint project I hadn’t fully recognized the meaning Steve gives to “every Monday.”
When there is work to be done, Steve is working, and so is everyone else in the vicinity. At
the time we commenced the endeavor I was pregnant, and eventually I was very pregnant.
Steve had even hosted a baby shower for me! We were almost done with the book when
we met August 19, 1996. In fact we declared it temporarily our last meeting, since we were
ready to send material to the publisher—one last meeting to tie up loose ends. That morning
I was feeling kind of odd. By noon it was obvious I was in labor. But with Steve would you
cancel a meeting for such a minor inconvenience as an impending birth? I thought no. The
meeting proceeded as usual. By 9:45 pm, my daughter was born.

Thus I wanted to keep up with the high standards Steve has always set for hard work and
dedication to purpose. An excellent example of Steve living up to these standards occurred
when he was chosen to give the Fisher Lecture. I frankly told him, “Steve, please don’t
focus on Fisher in your lecture. It’s been done to death and it’s always boring.” Not to be
done in by my lack of enthusiasm, Steve worked for weeks to construct a brilliant story that
meshed with all of his research initiatives and yet reflected on Fisher’s principles. It was
beautiful.

–Kathryn Roeder, University Professor and the UPMC Professor of Statistics and Life
Sciences, Dept. of Statistics and Data Science, Carnegie Mellon University

I want to share the story of how I started interacting with Steve, because I think it shows
how open and generous he is. Back in Colombia when I was an undergraduate student, I
was involved in a project that had the goal of combining different sources of information
to estimate the number of people who had been displaced due to the Colombian armed
conflict. This is how I came across record linkage and capture-recapture methods. After
learning the basics of these methodologies, I found that the literature didn’t deal with some
of the problems I was facing with my data. I realized that there was an author that kept
coming up in the literature of these two areas: Stephen E. Fienberg. I decided to email
Steve with my very rudimentary English of the time: “Dear Professor Fienberg, . . . ” (Of
course at the time I didn’t know how famous and busy he was). I explained the problem
I was working on and the difficulties that I was finding. To my surprise Steve was very
prompt to reply, provided very helpful literature and references, and his email was quite
extensive. Nevertheless, I realized that many of the issues that I was facing had not been
fully addressed in the literature, so it seemed like this was an area that needed more research.
Months later I emailed Steve saying that I wanted to do research on this, and that I wanted
to “study a masters in capture-recapture estimation,” to which he nicely replied that there
wasn’t such a thing and that I’d have to enroll in a PhD program. At the time probably not
many of the things that I was writing made much sense, so I now realize how nice he was by
taking me seriously and providing me guidance! Our email exchanges continued for around
two years, until I finally enrolled in the PhD program at CMU, where I had the fortune of
having him as my advisor. I will always be grateful for the trust that Steve has put in me
and for all the support and mentoring that he has given me.

–Mauricio Sadinle (PhD 15), Assistant Professor, Department of Biostatistics, Univer-
sity of Washington
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I first met Steve when he interviewed at CMU in 1980. Or was it Steve who interviewed
CMU? Whichever it was, both were ready to join forces. And what a force Steve has been
for our department. He led both us and the whole profession into the age of statisticians as
scientific collaborators rather than consultants. When he left for a few years to become an
administrator at another university, I felt that both the department and the profession had lost
a valuable asset. Fortunately, he came back and led the drive to embrace the contributions
of computer scientists to statistical methodology without losing our own identity. I feel
honored to have been able to participate in two revolutions in our field, and particularly
honored to have been a colleague of Steve’s.

When Steve was department head and I was a junior faculty member trying to balance
my roles as teacher and researcher, I remember Steve being a mentor in both endeavors.
When students were not happy (euphemism) with my teaching, we went over my technique
and the student comments and found ways for me to be a more effective teacher (more
effective than before, that is.) He also joined with Morrie DeGroot to offer me opportunities
to present my research at international meetings.

A distinct memory is of Valencia 7 in June, 2002. I was trying to sleep late one night in
my hotel room but there seemed to be a loud party going on nearby. Was nobody planning
to attend the early sessions the next morning? I began to think that I recognized one or more
of the voices. So, I walked out on the balcony and there was Stephen and several former
students in the next room behaving like Spaniards. Fearing that some trouble might arise, I
decided that the best course was to take a chair next door and keep an eye on them. Did I
mention that Stephen always seems to be able to locate the best wines no matter where he
travels?

I owe a lot to Steve, and I want to thank him for everything that he did for me and
my career. I also want to thank him for everything he did (and continues to do) for our
department.

–Mark J. Schervish, Professor of Statistics Emeritus, Dept. of Statistics and Data
Science, Carnegie Mellon University

Steve, please make sure to provide your cloning recipe for those of us forever learning to
manage our time properly. Somehow you’ve managed to perfect the art of multitasking and
time efficiency! I marveled at this skill all of those years ago when you first started serving
as a faculty mentor for me, and I continue to marvel at your abilities to this day! Something
tells me that attaining Emeritus status will not slow you down in the least, so feel free to
continue mentoring me ( . . . I’m just saying . . . I’m forever accepting tips; smile).

–Kimberly F. Sellers, Associate Professor of Statistics, Department of Mathematics and
Statistics, Georgetown University

Steve, thank you for being my inspiration and role model in becoming a better researcher,
advisor, colleague, friend and parent. You have motivated and inspired many careers but
also touched many hearts. I would love to know your secret about how you manage to be
a worldwide renowned statistician while still having time to take us all out for nice dinners
and having time to put up with your 5+ grandchildren! In my travels, fun or work, you have
been my super-powered connection to the world, from Buenos Aires to Tokyo! The name
Steve Fienberg travels with the speed of light across the world. I am grateful to have had
the honor to have you as part of my life.

–Nicoleta Serban (PhD 05), Professor, Georgia Institute of Technology

In Spring 2001 I was lucky to co-teach with Steve the course “Sampling, Surveys and
Society.” Until then, I only taught courses on intro and industrial statistics to engineers.
Co-teaching with Steve was a real eye opener about what statistics means when it’s about
humans. About us. Steve’s teachings about IRB, ethics, confidentiality, and controversial
use of data was fundamental—he was clairvoyant in seeing today’s world of behavioral big
data and the convergence of engineering with human and social data. I am so grateful to
him for opening my eyes to the meaning of statistics beyond Greek letters and numbers. It
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is this thoughtfulness and awareness that have led me to where I am today, a statistician in
the world of behavioral big data.

– Galit Shmueli, Tsing Hua Distinguished Professor, Director, Center for Service Inno-
vation and Analytics, College of Technology Management, National Tsing Hua University,
Taiwan

Brother Steve—As I tally up, I think we’ve known each other for something over 40 years.
With direct intersections via CNSTAT, SSRC, a nice paper on large scale social experiments,
Elena Erosheva’s thesis defense, and your kind appearance at a little Princeton celebration
a few years ago, I regret that there wasn’t much more face-to-face contact over the years. At
this Emeritus juncture, I feel it a pleasure and an honor to be with you. While often out of
sight, you have never been out of mind. On many dimensions, you have been a wonderful
role model.

–Burton Singer, Emerging Pathogens Institute, University of Florida, Gainesville FL

For three years I served as Steve’s Associate Dean in the College of Humanities and Social
Sciences. I had originally agreed to take on this post reluctantly for one year, since I was
anxious to get back to my research after a stint as Acting Dean of the School of Urban and
Public Affairs. The one year turned into three years, as I had the pleasure of working closely
with Steve, observing his keen intelligence, his capable leadership as Dean, and his devotion
to the college and to CMU. Steve could be tough, but he could also be compassionate and a
wise decision-maker. It was a privilege to work closely with him.

–Joel A. Tarr, Richard S. Caliguiri University Professor of History and Policy, Carnegie
Mellon University

From the day I met him as a grad student, I knew Steve had every skill I ever wanted to
learn: incisive insights into every problem he found time to study; the ability to find more
time to do things than anyone I ever met; the exact degree of patience required of someone
who needed to grow or of someone who needed to be disabused of their wrongheaded
thinking—all of which were on full display to those who attended that conference with us.
I felt like I was meeting the first combination of true intellectual, decent human being and
prizefighter I’d ever encountered, and to date he’s still the only one I’d classify as such. I
am continually in awe of his networking, his stamina, and his humour, and my life is far
richer for having met and worked with him. I still hope I get the chance to skate with (or
against) you in the near future.

–Andrew C. Thomas, Director, Data Science, SportsMEDIA Technologies (SMT)

I’ve never worked directly with Steve on a project, but I’ve definitely felt his presence and
influence as my senior colleague. One of the things I admire most about Steve: he’s always
working hard to do good things for all those around him, i.e., his students, his post docs,
and his colleagues at all levels. We are all beneficiaries of his great generosity in this regard,
and I think we all owe him—in one way or another—a big “thank you” for his tremendous
support over the years. So, Steve: thank you not only for your personal guidance from time
to time, but for all your efforts that have brought so much success and happiness to CMU!

–Ryan Tibshirani, Associate Professor, Dept. of Statistics and Data Science, Carnegie
Mellon University

You are the most efficient and caring person we have ever known. Your positive attitude
and forward looking spirit always served as excellent guidelines for us. Teresa and I were
so lucky to start our career at Carnegie Mellon when you served as the department head.
We learned so much from you, and always appreciate your help and encouragement. I
still remember clearly that you drove me to a Bayesian conference held at the Ohio State
University all the way from Pittsburgh in your RX7. We wish you the best and look forward
to riding with you again.

–Ruey S. Tsay, H.G.B. Alexander Professor of Econometrics and Statistics, Booth School
of Business, University of Chicago
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I remember the first time I gave a talk about my research with Steve in the room. My
nervousness subsided a few slides into my talk when I glanced at Steve, and he appeared
to not be paying attention. “Whew, good thing I don’t have to worry about answering a
difficult question from him,” I thought. You can imagine my surprise when, at the end
of the talk, Steve immediately asked an extremely difficult and insightful question about
my work. Somehow, he knew more than I did about my own work, and he had barely even
glanced at the slides! The kicker was when I checked my email afterwards: I had two emails
in my inbox from Steve, both of which were sent during my presentation.

–Sam Ventura (PhD 15), Director of Hockey Research, Pittsburgh Penguins

Steve is one impressive dynamo. Family, academics, travel, hockey, and what not. And
then he and Joyce still find time to attend every performance of our fantastic Pittsburgh
Symphony; orchestra row P. For others who might consider attending these concerts (and
you should), the Pittsburgh crowd is a little noisy compared to what we expect in Europe:
talking, coughing, snoring, and the dreaded candy wrapper are regular staples. And then you
will hear pages being flipped, and you can blame that on one of two people: Mark Kanny,
the art critic of the Trib, following the score, and our own Steve, editing students’ papers
and theses to beautiful tunes! (Apparently, he can also see in the dark.) I hope to hear this
particular noise for years to come!

–Valérie Ventura, Professor, Dept. of Statistics and Data Science, Carnegie Mellon
University



Chapter 33
Joyce Fienberg: A Woman of Grace
and Wisdom

Gaea Leinhardt

Joyce Fienberg and I first met in 1968 in Cambridge Mass. Our respective spouses
(Steve and Sam) were working at Harvard, and they knew each other. Joyce
and I were friendly acquaintances through them. That was 52 years ago. After
Joyce and her family moved to Pittsburgh in the early 1980s, we reconnected.
Joyce had been volunteering at a local hospital. I managed to convince her that
working for pay might be just as interesting, so Joyce started working with me on
educational research projects at the Learning Research and Development Center at
the University of Pittsburgh. We saw each other and talked at length five days a
week for nearly 30 years. We talked about children, grandchildren, the details of
research, the plans for the next set of studies, and a million other things. We were
very close friends and colleagues. Perhaps the clearest signal of our relationship is
the fact that Joyce and Steve agreed to be the guardian for our daughter Zoe should
the need arise.

Over the 30 years we worked together, the research projects focused on the
nature of learning and teaching in a variety of subject areas (mathematics, history,
geography, and chemistry). Joyce played a critical part in all of the work that we
did. Her unique and gracious personality was the glue that kept things on track and
helped to maintain a steady flow of communication. The research projects usually
involved going into classrooms to observe and then interview. In mathematics
classes, for example, we would interview the teachers before a particular class,
videotape the class, and then interview the teacher as they watched the tape of
the class afterward. This procedure would go on for at least a month of teaching.
We would also interview the students at various times during the overall study.
Sometimes we would sit next to a student and interview them during class to
understand how well they were following the class in real time. It took a careful
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balance to be able to do those in class interviews without disrupting the class as a
whole. Joyce was always very sensitive to the needs and concerns of the teacher
and the students. That sensitivity translated into good decisions about how to treat
the situation. Joyce carried that same level of sensitivity through to the work and
friendship with doctoral students and post docs, both those who worked with Steve
and those who worked with me.

Starting in 1998, our research migrated to museums where we investigated the
nature of learning in informal settings. Joyce would observe and interview small
groups of visitors. Joyce was wonderful at these tasks because she was so honest,
sincere, and caring. This sense of real engagement with whomever Joyce was talking
to was deeply appreciated by visitors, teachers, and students. It led to important
understandings about the nature of the learning that was going on regardless of
setting. But Joyce was not only a warm and gentle person, she had a vibrant sense
of humor and was surprisingly forceful when she felt it was necessary. For example,
another aspect of her work with me was to act as gatekeeper in chief on research
papers leaving the project – almost nothing went out for publication from the project
without her demanding edits. There was nothing soft and fuzzy about those edits!
Everyone on the project would hand her their papers with some trepidation. No run
on sentences slid by, no unintelligible metaphors were allowed, and no flowery titles
that didn’t do their job stayed. Joyce knew the rules but she also sensed the nuance
and recognized the purposes of writing; she herself was a lovely, clear, and elegant
writer; it was always a joy to write with her. It was my good fortune to have had
such a friend and colleague for more than 30 years.



Chapter 34
Obituaries

Margaret Smykla

On Saturday, October 27, 2018, Joyce Fienberg, a cherished member of the Carnegie
Mellon Department of Statistics & Data Science community, was killed inside the
Tree of Life Synagogue after a gunman opened fire.

Besides being the widow of Stephen E. Fienberg, a renowned university professor
of statistics and social science, Joyce was a beloved mother to two sons and
a grandmother to their six children; a retired research specialist; a dedicated
congregation member and volunteer; and a treasured friend to countless department
members/visitors and their families.

This obituary by Jamie Martines appeared in the Tribune-Review on October 28,
2018. The piece that follows, “Tree of Life shooting victim Joyce Fienberg ‘will
continue to watch over us,’” is by Nathan Duke and appeared in the Tribune-Review
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on October 31, 2018. It was part of a series of profiles of people killed in the Tree
of Life attack.

Synagogue shooting victim Joyce Fienberg was a “driving force” of good

Personalized, handwritten holiday cards, beautiful dinners, and thoughtful
advice: This is what Joyce Fienberg shared with the graduate students she welcomed
into her home, said Aleksandra Slavkovic, now a professor in the statistics and
public health sciences departments and associate dean for graduate education at
Eberly College of Science at Penn State University.

Slavkovic described Fienberg as an esteemed social scientist, as well as an
elegant, magnificent person who was “kind beyond belief.”

Fienberg, 75, of Oakland, was one of the 11 people killed Saturday during a
shooting at Tree of Life Congregation in Squirrel Hill. She was married to the late
Stephen E. Fienberg, a professor of statistics and social science at Carnegie Mellon
University. They had two sons, Anthony and Howard.

Slavkovic met Fienberg through her husband, who served as Slavkovic’s adviser
while she completed her doctoral studies at Carnegie Mellon. Their home was open
to all of the students he mentored, Slavkovic said.

“That’s just goodness, and no limit to what they were willing to offer and show
kindness to people,” Slavkovic said of the Fienbergs. “I felt Joyce was really a
driving force to that.”

Their home was warm and inviting – a feeling Slavkovic attributes to Fienberg.
“It didn’t matter what race, religion, ethnicity you were,” she said. “Their home

was open to you. ... A big part of this was because of Joyce.”
Fienberg earned her degree in psychology at the University of Toronto, where

she was a student research assistant in social psychology, according to a post on
Facebook from the Learning Research and Development Center. She later worked
with children with emotional and behavior needs at a residential treatment center.
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Fienberg went on to work as a research specialist at the Learning Research and
Development Center from 1983 until she retired in 2008.

“We worked full work weeks, and she managed to be a fabulous mother,” said
Gaea Leinhardt, a professor at the University of Pittsburgh’s Learning Research and
Development Center, where Fienberg worked as a researcher.

She and Leinhardt worked together on several classroom-based research projects.
“Joyce was a magnificent, generous, caring and profoundly thoughtful human

being,” said Leinhardt, who regularly saw and spoke with Fienberg since her
retirement.

Leinhardt met Fienberg in 1968 in Cambridge, Massachusetts. They worked
together on many projects related to teaching and learning, as well as projects that
were part of the Museum Learning Collaborative, studying how people learn from
visiting museums. Leinhardt described Fienberg as an “unbelievably warm person”
who was an outstanding mother and adoring grandmother.

After retirement, Fienberg spent time volunteering at the Allegheny County
Courthouse in Downtown Pittsburgh, Leinhardt said.

Tree of Life shooting victim Joyce Fienberg “will continue to watch over us”
Joyce Fienberg traveled the world during her lifetime, but she couldn’t dream of

living anywhere other than her beloved Pittsburgh.
The Tree of Life Congregation, “became a refuge for her,” her son told mourners

Wednesday during a funeral.
“Mom spent an inordinate amount of time worrying about other people’s needs,

not hers,” Howard Fienberg said.
Hundreds of people turned out Wednesday morning for Joyce Fienberg’s funeral

at Beth Shalom Congregation on Beacon Street. She was one of the 11 victims in
Saturday’s shooting at the nearby Tree of Life synagogue in Squirrel Hill.

Outside of Beth Shalom, family members and friends hugged, while hundreds of
attendees – who traveled from neighboring communities, New York and overseas –
flooded into its second-floor synagogue. Haim Korsia, the chief rabbi of France,
attended along with rabbis from Washington, D.C. and other locales. Tree of Life
Rabbi Jeffrey Myers was also in attendance.

Fienberg, 75, who was born in Toronto, worked as a researcher at the University
of Pittsburgh’s Learning Research and Development Center from 1983 until her
retirement in 2008. Her husband, Stephen Fienberg, was a statistician at Carnegie
Mellon. He died in 2016.

Her family members recalled her as a dedicated attendee at Tree of Life who
always put others’ needs ahead of her own.

“My heart hurts – my sister is dead, my sister was murdered,” said Fienberg’s
brother, Robert Libman, of Toronto. “She was my role model all my life. Her
thoughts and words were of pure intent. She gave life to all she came into contact
with. In the end, a life of pure giving is a life well lived. In her death, we owe it to
ourselves to try to measure up. Evil tries to shut off the light, but the light refuses to
be dimmed.

“The light is still in our hearts – even our broken hearts.”
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Anthony Fienberg, one of Joyce’s two sons, traveled with his family from Paris
to attend the funeral. He and his brother, Howard Fienberg, stood together at Beth
Shalom’s podium while speaking of their mother.

“She will continue to watch over us,” Anthony Fienberg said. “Those who
crossed her path, it may have been a blessing to them. We miss [her] terribly, but
have already started to build on her legacy.”

Howard Fienberg, who lives with his family in Virginia, said that both he and his
brother had attempted to convince their mother to move closer to one of them after
her husband died. But she told them that she planned to remain in Pittsburgh, where
she attended Tree of Life and had many long-time friends.

Fienberg’s sister-in-law recalled a safari that she took with Joyce and Stephen,
while Devorah Kurin – Fienberg’s niece – said that her aunt’s generosity was
unmatched.

She told a story of how her aunt once not only bought season tickets to the
Pittsburgh Symphony Orchestra for her and her husband, but she also offered
to babysit during every performance, helped her to secure a parking space and
sent directions and instructions on what time she should leave to make it to the
performance on time.

“She cared about everybody,” Kurin said. “She cared and acted on it. She was a
doer.”

Jonathan Greenblatt, the CEO and national director of the Anti-Defamation
League (ADL), said that the ADL has seen a large increase in anti-Semitism over
recent years.

“It’s an incredibly sad day for the Jewish community of Squirrel Hill,” he said
outside of Beth Shalom. “Anti-Semitism has been a persistent problem for a long
time. It’s called the ‘oldest hatred.’ Our elected officials and political candidates
need to stop giving in to their worst impulses.”

Rabbi Daniel Yolkut, of the nearby Poale Zedeck synagogue, said that he
attended the funeral service to show support for the Tree of Life community and
the families of the shooting victims.

“We were all under attack last Saturday,” he said. “It could just as easily been
one of us. We are no strangers to acts of terror. From across the country, Jews and
gentiles have been dropping everything to come to Pittsburgh to help people they
never met.”



Chapter 35
Reminiscences of Joyce

Margaret Smykla

On Friday, October 26, 2018, Joyce Fienberg attended the inauguration of Carnegie
Mellon’s tenth president, Farnam Jahanian.

Afterward, she joined the department members at a festive campus-wide picnic,
during which she talked about family, the university, and more while enjoying
entertainment provided by the Pipe and Drum Band, the Tartan Tuba Band, and
CMU Bhangra.

Joyce was especially excited about the “Steve Fienberg Memorial Lecture Series
in Advanced Analytics” that Carnegie Mellon’s Heinz College of Information
Systems and Public Policy was hosting on November 5–8. She told numerous
friends and acquaintances she looked forward to attending all of the talks.

Less than 24 hours later, Joyce was dead; 1 of the 11 victims of a gunman in the
single worst attack on American Jews in the US history.

Shocked and saddened by Joyce’s senseless passing, the Statistics and Data
Science faculty, alumni, and friends paid tribute by sharing their memories of
a lovely and caring woman whose legendary kindnesses, especially to graduate
students from distant lands, made a profound and lasting impact in the lives of
everyone with whom she crossed paths.

Their reminiscences are listed in alphabetical order by the author’s last name.

I grew up thinking that women who were in their husband’s shadow were weak. Then I met
Joyce and had a complete change of attitude. Joyce was a very competent and impressive
woman in her own right who was also absolutely comfortable at times dedicating herself to
supporting Steve. It seemed she was able to find her own value in enabling him to achieve
his greatest accomplishments. Unbeknownst to her, I’ve leaned on the lessons she taught
me many, many times, and will continue to do so.

–Kelly Black, President and CEO, Neptune and Co., Inc.
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It is heartbreaking to know that Joyce is no longer with us. In my mind, Joyce—the person,
the citizen, the mother, and the grandmother—was as far away from violence, terror, and
senseless acts as one could be. Completely different words come to my mind when I think
about Joyce.

Elegant. The Fienberg family has a photo of her taken by a professional photographer
in Toronto when she was a young lady. That photo, which had been published in a local
newspaper, and which I have seen on several occasions when I visited Fienberg’s home,
is engraved in my visual memory. Joyce was amazingly beautiful on that photo, and she
remained elegant on every occasion.

Welcoming, warm, and friendly. Joyce was a warm and kind hostess. She had this rare
ability to make everyone feel welcome and comfortable in her home, whether it was a new
student whom she met for the first time (as was the case for me) or an old family friend.
My persona wasn’t special. Fienberg’s home was open to anyone, no matter the ethnic
origin or nationality. And, even though I have never discussed the topic with Joyce, I am
sure that she was behind a lion’s share of planning, organizing, and executing in order
to make their home a welcoming and friendly place, whether the end result was hosting a
young faculty member from another country or having students for a sit-down dinner around
Thanksgiving. Whenever I casually asked her a question, Joyce was determined to give the
best advice possible, even if it meant asking several people to find out—“let’s see how the
network unfolds.”

Interpersonal. Joyce was not only a proud mother of two sons and a grandmother to six
grandchildren, but somehow she managed to keep track and remember names of spouses
and kids of the many students that her husband had over the years, and send holiday
greetings every year. I was looking forward to each year’s card, which was usually a
reproduction of a tastefully chosen artistic masterpiece and a letter with family news and
pictures of the grandkids and others, but almost never pictures of herself. I do not remember
exactly when my family started getting these cards, perhaps after graduating, but there was
only one pause for a year two years ago when her husband passed away. Joyce shared with
me that the letter was written just before Steve’s health deteriorated, the cards were not sent
out that year, and that she was not sure if she wanted to include it in the next year’s card . . .

Perhaps jokingly, but most likely not, Joyce once described herself in an email as a
worrier. Indeed, looking back, Joyce seemed to always be worried about others, big things
and small. She worried if there were the right kinds of things for breakfast for visitors—
“Coffee? Orange juice? Other juice? Toast? Bagel? Cereal?” She was deeply concerned
about the impact that losing an advisor prematurely could have on career trajectories of
Steve’s younger mentees—“What research paths to follow, what conferences to attend, what
people to talk with, what other universities have promising programs that one might want
to join, what publication outlets are best, where to apply for grant money, what terminology
to use in such grant applications, which references to invoke in support of the research idea,
etc.” And, she was worried about increasing violence around the world . . .

Interpersonal, welcoming, warm, friendly and elegant. I will miss her.
–Elena Erosheva, Professor of Statistics and Social Work, University of Washington

Joyce opened her home and her heart to so many of Steve’s students. I remember her
warmth and kindness both during my time at CMU and after. Just before I defended, after
Kevin and I became engaged to marry, she gave me a beautiful tea party bridal shower. It
was so sweet, but also had the understated air of sophistication that Joyce seemed to do so
well.

–Mary Fowler, Professor of Mathematics, Worcester State University

Every year, Joyce and Steve invited students over to their house for Passover. They were so
welcoming to me when I first moved to Pittsburgh and later to Jen and I, inviting us into
their home to celebrate with their family. It was the first Seder Jen had ever attended. Joyce
was incredibly helpful and kind to Jen, making her feel welcome and at ease. I will never
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forget those holidays and their kindness. May her memory be for a blessing and may we all
strive to show the kindness and love to our neighbors that Joyce and Steve embodied.

–David Friedenberg, Senior Research Scientist, Battelle Memorial Institute

I met Joyce during the sitting shiva period for Steve Fienberg. She was very kind and
shared memories of Steve over photo albums full of photos of them traveling together on
conferences. Seeing them having had a happy, loving family and academic career together
left a big imprint in my life goals. I am grateful to her, and Steve, for that.

–Sangwon (Justin) Hyun, Postdoctoral Research Associate, Dept. of Data Sciences and
Operations, University of Southern California

I first met Joyce in August of 1994 as a new master’s student in the Statistics Department.
Joyce’s husband Steve was my adviser and I was also a TA for Steve’s intro to stats class.
My remembrance of Joyce was always her very warm smile and welcoming nature. Back
in those years we had only about 30 graduate students so it was always like one big family.
Pretty much every weekend we had a gathering at either a student or faculty home. Though
my time at Carnegie Mellon was short as I was only there for my Master’s program, the
friends that I made have been lifelong. I always took many pictures.

So as I sifted through my old albums I was able to find some lovely pictures of Joyce’s
warm smile. I am thankful that I did take those pictures. I found pictures of Joyce at various
gatherings including when Steve and Joyce had us TA’s over for dinner. Joyce was always
such a gracious host and genuinely cared about us students. I will always cherish the annual
holiday letter I received from Joyce over these 20 plus years telling me all about Howard
and Anthony and their families, and all the fun family trips and above all their love for their
grandchildren. I would also let Joyce know how things were going on at my end and we
continued to stay in touch. As the year draws to a close and the holidays get closer, Joyce
will be in my thoughts and I will always cherish those letters I received over these many
years.

Joyce, may you rest in peace.
–Cristina Ilangakoon, Independent Consultant

I saw Joyce a few times, including a party in her house in 2016 a couple of months before
Steve passed away, at which time I brought my 9-year old daughter with me. Joyce was a
very nice and friendly person. My daughter vividly remembers how kind Joyce talked to her
and offered her toys during the party. My daughter was very sad when she heard the news
about Joyce the other day. Joyce liked travels, and she traveled with Steve to many places.
I vividly remember one time Joyce and Steve and I and several others dined at a restaurant.
That night, Joyce told a story about a dinner party she and Steve had a few years back with
colleagues in Taiwan during a visit there. Obviously, Steve impressed the host by showing
that he can drink a great deal of wines and liquors, and won the title of “ocean capacity” (a
Chinese saying meaning that a person can drink a lot without getting drunk). The Fienbergs
were very happy about the title of “ocean capacity.”

–Jiashun Jin, Professor, Dept. of Statistics and Data Science, Carnegie Mellon Univer-
sity

I enjoyed being with Joyce at Bayesian conferences. Although I was a brought up in
the Bayesian tradition in the Statistics Department, my career went in the direction of
epidemiology and clinical trials. So after one or two Bayesian talks, I became a supportive
spouse (to George Duncan) and spent time with Joyce. In Dublin after tea at Bewleys on
Grafton Street we went looking for a synagogue where she had a friend of a friend and to
a hospital where I had a friend of a friend. It was much better to be a supportive spouse
in Peniscola, Spain, since many of those who attended all the sessions developed a strange
flu-like malady (Bayesian flu). In Italy near Bologna Joyce and I drank coffee and talked
about family, Pittsburgh and religion. Joyce was a gracious host and George and I attended
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many parties and receptions on Dunmoyle St. I will remember her spark, her generosity and
charm.

– Sheryl Kelsey, Professor Emerita of Epidemiology, University of Pittsburgh

Joyce used to send me new year photo cards with letters talking about lives with Steve and
her grandchildren. Her photo cards were beautiful, reminding me of the streets in Pittsburgh
covered with snow. This made me wait for new year cards from her. She seemed to have
got well over the sadness and loss last year since Steve passed away. Her family members
were all with her. I was grateful for that. I don’t know what to say to her family members,
in particular to her children. I wish her loss should be filled with good memories of her in
their minds.

–Sung-Ho Kim, Professor of Statistics, Korea Advanced Institute of Science and
Technology

This has been a difficult time for Pittsburgh. Something like this should never have
happened. I never met Joyce Fienberg, but knew Steve. When Steve died in 2016, Joyce
donated hundreds of books to the Library of Alexandria in Egypt to help build research
equity in Arab and African countries. It seems very sad that Mrs. Fienberg has helped so
many young people in Arab countries, and something like this happens.

–Ronald LaPorte, Professor Emeritus, Dept. of Epidemiology, University of Pittsburgh

I didn’t know Joyce as well as did Steve’s advisees, who were invited often to events at his
home. But Steve often spoke of her, as people do of their spouses. The way he talked about
her made it obvious how much he cared for her. My best memory of Joyce comes from
our daughter Allison’s birth during my last year as a PhD student at CMU. Joyce offered
to lend us their crib, which, she said, she would not be needing until their grandchildren
arrived. As I hear stories from other people who knew Joyce better than I did, I realize how
characteristic this generosity is of Joyce. I am shocked and heartbroken that this horrific
event has befallen my hometown and my old neighborhood, a mere half mile from where
we lived when Allison was born. It gives me a tiny bit of comfort to know that my daughter
slept in the same crib as Joyce’s sons and grandchildren.

–Kathryn Laskey, Professor of Systems Engineering and Operations Research, George
Mason University

I had the pleasure of spending some time with Joyce at occasional social events while I
was Steve’s student in the 1990s. Despite only a handful of interactions 20 years ago, I
still vividly remember Joyce as vibrant, with a great sense of humor, who was excellent
at eliciting interesting personal anecdotes from others. I can still visualize her miming
smoking in a very exaggerated sophisticated manner as she explained to graduate students
that she was never cool enough to pull off being a smoker.

I felt I knew Joyce even better than suggested by these brief experiences because
of stories Steve would tell about her. I remember him reminiscing about bringing home
sandwiches when she was pregnant with their first child, how he had been careful to bring
her something bland to avoid upsetting her stomach, but had not thought about his own
pungent sandwich, which sent her careening for the bathroom as soon as he unwrapped it.
For the life of me I cannot imagine how this came up in conversations between a statistics
professor and a dissertation student, but the fact it did is just evidence of his devotion to her
and that little things would bring to mind his experiences with her.

Since hearing the tragic news this weekend, I find myself looking at a portrait of my
daughter (now 17) taken when she was about a year old, which sits on my dresser. The
outfit she is wearing was a baby gift from Joyce and Steve. Even though she only knew
me a bit as one of Steve’s students, it was clear that she had taken care to select an outfit
that was unique and special, yet practical and comfortable. So when my in-laws scheduled
my daughter for portraits, and went looking through her wardrobe, that is the outfit they
selected.
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Joyce was the type of woman who made a memorable impression even on someone
like me who did not have the benefit of a longer, closer relationship with her. I can only
imagine what her loss means to those who knew her well, and send my deepest, most sincere
condolences.

–Terra McKinnish, Professor of Economics, University of Colorado

Many years ago Joyce hosted a baby shower for me, even though we hardly knew each
other. She knew that I was new in town, and a woman in a man’s world without a support
group. Because she was generous of heart, she stepped up to the task and extended her hand
in friendship.

–Kathryn Roeder, University Professor and the UPMC Professor of Statistics and Life
Sciences, Dept. of Statistics and Data Science, Carnegie Mellon University

Joyce was a gem! I remember her and Steve having my family over for dinners when
Richard was a baby. They would gush over him as if he were their own, and they spoke
so fondly and lovingly of their own grandchildren. Fast forward all of these years later . . . I
got to see, hug, and converse with Joyce at the JSM 2018 memorial session in Steve’s
honor. She asked me about Richard and couldn’t believe that he was now 16 years old! I
shared pictures of him, and she marveled over how much he’d grown and matured. It was
so wonderful to see her! I will forever cherish that time together.

–Kimberly F. Sellers, Associate Professor of Statistics, Department of Mathematics and
Statistics, Georgetown University

When my husband Boaz and I moved to Pittsburgh from Israel, Joyce and Steve graciously
hosted us at their home on holidays, introducing us to their family and friends. Joyce was
such a warm and loving person, always with a sincere broad smile even to newcomers she
hardly knew! She took interest in our lives and shared hers. She had an incredible ability
to start and maintain genuine and close relationships over long periods of time. Since we
left Pittsburgh in 2002, every Hanukkah we’d have a delightful Happy Hanukkah card from
Joyce and Steve, surprising us in the various remote locations we lived in. Joyce wrote
long letters in these cards, sharing the Fienberg family’s travels, events, joys and sorrows
in the recent year. Joyce would make us feel part of her family through these wonderful,
thoughtful, and lively cards. She even sent a card last Hanukkah, with the sad news of
Steve’s passing away, and we were glad to hear that she’d continued her visits with family
and friends, her loving spirit still kindled.

We are horrified and deeply sad about the violence and hatred that caused her death: the
exact opposite of Joyce’s extraordinary gentle, loving, and caring spirit.

–Galit Shmueli, Tsing Hua Distinguished Professor, Director, Center for Service Inno-
vation and Analytics, College of Technology Management, National Tsing Hua University,
Taiwan

We were on our way to Hong Kong when at the airport in Washington we heard about the
senseless event at the Synagogue. We were concerned because I knew that many colleagues
at CMU were members.

Joyce simply radiated all the humanity that a human being can possibly possess. Both
Joyce and Steve visited us in Hong Kong several years ago and we experienced their
delightful company. That was the last time we saw them together.

Joyce’s disposition and kindness are legendary. Indeed, what I remember often is that
when I was confined in bed due to an automobile accident, Joyce visited us to cheer me up
with a ton load of goodies. It made for a lasting impression on us, and Norah always made
an effort to get together with Joyce whenever an opportunity arose; they were close friends.
Violence is something we feel happens to others. But this time it is humanity itself, that has
been thoughtlessly struck by it!

–Nozer (and Norah) Singpurwalla, Emeritus Professor, The George Washington Uni-
versity



542 M. Smykla

My last email exchange with Joyce was exactly three months prior to her tragic passing. I
smile and cry every time I read that now, as it reminds me of her kindness, thoughtfulness,
and grace, of her attentiveness and openness, of how special she and Steve were to me,
but also of how precious our time together really was. After missing out on meeting Joyce
in Vancouver at the end of July, I was hoping to see her in early November to hear more
about her volunteering, to see her smile when she speaks proudly of her grandchildren, to
reminisce about my sojourn in their home on Dunmoyle St., or a beautiful flamenco dancer
we saw in Minneapolis, or hers and Steve’s visit to Penn State . . . I miss her, and Steve,
dearly.

–Aleksandra (Sesa) Slavkovic, Professor, Departments of Statistics and Public Health
Sciences, Associate Dean for Graduate Education, Eberly College of Science, Pennsylvania
State University

Joyce Fienberg radiated warmth, grace, and kindness. She had an instinctive way of putting
people at ease, even on first acquaintance. When I reflect on the times I spent in her company
over the past 35 years, two distinct memories span that period.

During my graduate studies at CMU, I received an invitation from Joyce and Steve to
attend their youngest son Howard’s bar mitzvah. I felt honored they had reached out across
lines of faith and asked me to be present for this significant event in their family life. Joyce
organized the day beautifully, ensuring that those of us unfamiliar with Jewish religious
traditions would be comfortable during the ceremony and subsequent celebratory meal.
With this thoughtful gesture of inclusion, Joyce and Steve broadened the life experience of
a young man from a small-town Christian upbringing and served by their example as role
models on how to engage the world with constructive, positive energy.

Three months ago, at the Joint Statistical Meetings in Vancouver, I attended a special
memorial session organized in Steve’s honor. During the scheduled talks I was delighted
to notice Joyce in the audience, and even more pleased when she ascended the podium to
offer some concluding thoughts. She spoke with composure, clarity, and gentle humor. Her
closing words were that Steve had had a great life, and she had been privileged to share
so much in that life. When I greeted her after the session and asked about her days now,
Joyce paused long enough to acknowledge the weight of loss while she continued to look
forward. Now those of us who knew Joyce must confront another, less comprehensible loss.
In these sad days, I find some comfort in the belief that, if asked directly, Joyce would have
expressed that she, too, had had a great life. We will honor her memory best in embracing
and advancing the values by which Joyce lived so well.

–Duane Steffey, Principal Scientist and Director, Statistical and Data Sciences, Expo-
nent

I am profoundly saddened by the news of Joyce’s passing away. In my memory, Joyce was
a vivacious, kind and caring person who, together with Steve, loved to share the joy in their
life with the others. I remembered vividly once Joyce and Steve threw a wonderful party,
showcasing the newly modeled bathroom to everyone. It was such a fun and joyful time! I
will miss Joyce. May she rest in peace in heaven!

–Feng Tang, Statistician, Medtronic

I remember Joyce as very kind and welcoming, and am devastated that she died this way.
My one specific memory about her is the same as what I said about Steve for his emeritus
celebration—that she and Steve invited my husband and me to Tree of Life for high holiday
services and hosted us at their home to break the Yom Kippur fast—a really lovely thing to
do for people who are new to a place.

–Norma Terrin, Professor, Tufts University School of Medicine

Joyce sent me a beautiful Christmas card the year after Steve passed away and thanked
me for seeing Yu-Xiang Wang (Steve’s student, who I advised after Steve passed away)
through to graduation. We ended up emailing a bit back and forth and talked about family—
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coincidentally, her sister-in-law knows my mom quite well (they went to school together).
I was just struck by what a sweet and kind woman she was.

–Ryan Tibshirani, Associate Professor, Dept. of Statistics and Data Science, Carnegie
Mellon University
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Fig. 36.1 Steve and Joyce’s
wedding; Toronto, late 1960s
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Fig. 36.2 Steve at the Tanur’s house in Montauk; Summer, 1989

Fig. 36.3 Left to right: Joyce, Bill Eddy, Connie Eddy, and Steve Fienberg; Spring, 1996
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Fig. 36.4 Gathering at the Fienbergs’ home with statistics graduate students; Spring, 1996

Fig. 36.5 Left to right: Joyce, Steve, Cristina Ilangakoon, and son Howard Fienberg; Cristina was
graduating with her master’s degree; Spring, 1996
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Fig. 36.6 Left to right: Steve, faculty John Lehoczky, Cristina Ilangakoon, and faculty Jay
Kadane; Spring, 1996

Fig. 36.7 Left to right: Alicia Carriquiry, Steve, Julia Mortera, and Dale Poirier in Cape Town,
South Africa; Fall, 1996
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Fig. 36.8 Stephen Stigler and Steve, 2003

Fig. 36.9 Steve, son Anthony Fienberg, and Joyce; Paris, November 2003
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Fig. 36.10 Joyce and Steve at the wedding of the daughter of Gaea and Sam Leinhardt; 2003

Fig. 36.11 Joyce and Steve in Nice, France; February 2004
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Fig. 36.12 Joyce in Italy;
July 2005

Fig. 36.13 Joyce and Steve on the Mt. Washington overlook in Pittsburgh, 2005
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Fig. 36.14 Minneapolis, February 2007

Fig. 36.15 Joyce’s 65th birthday party, Pittsburgh; February 9, 2008
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Fig. 36.16 Alum Sung-Ho Kim, Joyce, and Steve in a Pittsburgh restaurant when Sung-Ho visited
in April 2008

Fig. 36.17 Steve and granddaughter, Sophia, in Steve/Joyce’s apartment; April 2009
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Fig. 36.18 National
Academies’ annual gala, date
unknown.

Fig. 36.19 Steve and granddaughter, Sophia, in Manchester, NH, at Steve’s sister-in-law’s adult
bat mitzvah; June 1, 2013
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Fig. 36.20 Steve, granddaughter Sophie, and daughter-in-law Marnie skating at PPG Place in
Pittsburgh; November 2013

Fig. 36.21 Steve with sons
Howard and Anthony in Lake
Forest, IL, at a family
wedding on August 15, 2015
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Fig. 36.22 Steve with his
five French grandchildren.
From the left: Selena, Tiffany,
Adam, Victoria, Steve, and
Juliana; Pittsburgh, Summer
2015



Chapter 37
Stephen Fienberg’s Doctoral Advisees
and Co-Advisees by Institution
and Graduation Year

Shelby J. Haberman University of Chicago 1970
F. Kinley Larntz University of Chicago 1971
(Timothy) Tar Chen University of Chicago 1971
Howard Hochman University of Chicago 1971
Ying Shang Lin University of Minnesota 1975
S. Keith Lee University of Minnesota 1975
Stephen S. Brier University of Minnesota 1979
Michael M. Meyer University of Minnesota 1981
Diane G. Saphire Carnegie Mellon University 1983
Elizabeth A. Stasny Carnegie Mellon University 1983
Sherryl May Carnegie Mellon University 1984
Syni-an Huang Carnegie Mellon University 1984
Mary Santi Carnegie Mellon University 1988
Arieh Epstein Carnegie Mellon University 1989
Sung-Ho Kim Carnegie Mellon University 1989
Yi Ding Carnegie Mellon University 1991
Terra G. McKinnish Carnegie Mellon University 1999
Daniel Cork Carnegie Mellon University 2000
Jan A. van den Brakel Erasmus Universiteit Rotterdam 2001
Adrian Dobra Carnegie Mellon University 2002
Stella Maris Salvatierra Carnegie Mellon University 2002
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Elena Erosheva Carnegie Mellon University 2002
Amelia Haviland Carnegie Mellon University 2003
Mario Trottini Carnegie Mellon University 2003
Ana Maria Araneda Carnegie Mellon University 2004
Aleksandra Slavkovic Carnegie Mellon University 2004
Sinjini Mitra Carnegie Mellon University 2005
Alessandro Rinaldo Carnegie Mellon University 2005
Ana Maria Sfer Universidad Nacional de Tucuman 2005
Edoardo Maria Airoldi Carnegie Mellon University 2006
Jason Connor Carnegie Mellon University 2006
Justin Gross Carnegie Mellon University 2010
Daniel Heinz Carnegie Mellon University 2010
Daniel Manrique Carnegie Mellon University 2010
Anne-Sophie Charest Carnegie Mellon University 2012
April Galyardt Carnegie Mellon University 2012
Di Liu Carnegie Mellon University 2012
Robert Hall Carnegie Mellon University 2012
Seungil Huh Carnegie Mellon University 2012
Fei Yu Carnegie Mellon University 2015
Mauricio Sadinle Carnegie Mellon University 2015
Xiaolin Yang Carnegie Mellon University 2015
Jana Asher Carnegie Mellon University 2016
Kirstin Early Carnegie Mellon University 2017
Yu-Xiang Wang Carnegie Mellon University 2017
Maria Cuellar Carnegie Mellon University 2017
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