
Improving Quality of Use-Case Models
by Correlating Defects, Difficulties,

and Modeling Strategies

Cristiana Pereira Bispo1,3(B) , Ana Patrícia Magalhães1,2 , Sergio Fernandes1 ,
and Ivan Machado3

1 Salvador University, Salvador, Brazil
cristiana.bispo@ufba.br, {ana.fontes,

sergio.fernandes}@unifacs.br
2 Department of Exact Sciences and Earth, State University of Bahia, Salvador, Brazil

3 Computer Science Department, Federal University of Bahia, Salvador, Brazil
ivan.machado@ufba.br

Abstract. Use case (UC) models play an essential role in software specification
since they describe system functional requirements. AUCmodel should be free of
defects due to its relevance and impact throughout the software development life
cycle. However, inspections in UC models frequently identify defects related to
modelers’ difficulties in different activities during themodeling process. The qual-
ity of a UC model is usually analyzed based on quality criteria such as ambiguity
and inconsistency. Several strategies in the literature assist use case modeling in
mitigating defects, but these strategies do not identify which potential defects they
aim to prevent or eliminate. In this context, we proposed a correlation between
UCmodeling difficulties and strategies tomitigate these difficulties based onUC’s
quality criteria. In this paper, we describe each strategy contained in the correla-
tion and present, in detail, the controlled experiment that assesses the correlation
effectiveness, including the discrete data collected in analyzing the participants’
models and statistical analysis performed in these data. Besides, we also propose
a mechanism to guide in elaborating checklists to identify defects in UC models
focusing on quality criteria. Through a controlled experiment, we evaluate the
Antipattern strategy, and the results showed a clear indication that this strategy
mitigates the difficulties in which it is related according to the correlation. Besides,
the UC models developed in the experiment were evaluated using the checklist
generated based on the proposed mechanism.

Keywords: Use case modeling · Use case inspection · Controlled experiment

1 Introduction

In Information System (IS) development, a technique commonly used to capture and
describe systems’ functional requirements is Use-Case Modeling (UCM), which pro-
duces a Use-Case (UC) model as output. Due to their relevance and impact throughout
the software development life cycle, UC models should be free from defects.

© Springer Nature Switzerland AG 2021
J. Filipe et al. (Eds.): ICEIS 2020, LNBIP 417, pp. 360–385, 2021.
https://doi.org/10.1007/978-3-030-75418-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75418-1_17&domain=pdf
http://orcid.org/0000-0003-4765-9614
http://orcid.org/0000-0002-8608-4553
http://orcid.org/0000-0002-1118-5560
http://orcid.org/0000-0001-9027-2293
https://doi.org/10.1007/978-3-030-75418-1_17


Improving Quality of Use-Case Models 361

The quality of a UC model can be analyzed based on quality attributes already
defined in the literature, as summarized by Tiwari and Gupta [2], such as ambiguity,
inconsistency, among others. In fact, several authors have reported that the inspection
of use-case models concerning quality attributes frequently identifies the occurrence of
defects [2–6]. The low quality of UC models has been related to modelers’ difficulties
in different activities, such as understanding the requirements and representing them in
UC models [7]; and understanding the problem domain [5].

To mitigate defects in UCmodels, several authors propose strategies that help UCM.
In a prior work, we carried out a systematic literature review (SLR) [26] and identified
39 studies that present UCM strategies. For example, some authors indicate the use of
Antipattern [3, 9–13], a technique that brings evidence on common modeling mistakes
so that developers do not make the same mistakes in their models. Business Process
Notation, a standard notation to model business process, is also considered as a feasible
strategy to identify requirements [14, 15]. The authors of these works agree that using
a UCM strategy can lead to an improvement in the UC model concerning the quality
attributes enhanced by the strategy. However, none of these works identifies which
potential defects each of these strategies aims to prevent or eliminate. Nor do they
identify which difficulties of the modelers the strategy can alleviate.

UCMstrategies do not have a systematicmethod to inspect UCmodels built using the
respective strategy, i.e., do not provide a formalism to assist in identifying defects in UC
models. Additionally, they do not generate a list of identified defects that can be reused
to inspect other use-case models in the same domain. In summary, it is challenging to
assess a UC model’s quality by the occurrence of defects because the works found in
the literature do not show how the UC models can be corrected.

To assist UCM, we proposed a correlation between UCM difficulties and strategies
tomitigate these difficulties based on quality attributes for UC [8].With this correlation’s
support, it is possible to identify which strategies are most appropriate to mitigate the
defects that affect quality specific attributes. This current investigation elaborates on such
preceding work by detailing each literature strategy to support UCM. We also detail the
controlled experiment that assesses the correlation effectiveness, including the discrete
data collected in analyzing the participants’ models and statistical analysis performed
in these data. To assist in the inspection of the UCs created based on a strategy, in this
article, we also propose amechanism to guide in elaborating checklists to identify defects
in UCMs with a focus on quality criteria. The mechanism comprises a set of steps for
the generation of the checklist to inspect UC models. We validated the mechanism in
the same experiment to assess the correlation.

The remainder of this chapter is organized as follows: Sect. 2 presents the concepts
related to requirements specification and use-case modeling. Section 3 discusses related
work. Section 4 details the strategy found in the literature to assist UCM. Section 5
presents the correlation between UCM difficulties and strategies to mitigate these dif-
ficulties, and Sect. 6 presents the proposed mechanism to generate a UC inspection
checklist. Section 7 details the controlled experiment, and Sect. 8 draws concluding
remarks and pinpoints opportunities for further research.



362 C. P. Bispo et al.

2 Requirements Specification

According to Sommerville [17], a system requirement represents the description of
functionality or constraint that the system must fulfill. The process of identifying, ana-
lyzing, documenting, and verifying these requirements is called Requirement Engineer-
ing. It produces a Software Requirement Specification (SRS), which is an essential
input for subsequent software development activities. Essential activity in the Require-
ment Engineering process are requirements identification, analysis, and validation. There
are different techniques in the literature to specify requirements, among them the UC
modeling.

UC modeling is the activity of designing a use-case model, which describes in detail
the software functional requirements. They make use of graphic and textual notation
to, respectively [18] (i) create the UC diagram that provides a visual summary of the
system services and their interaction with the environment and users (called actors); and
(ii) describe the interactions between the system and its actors.

The Unified Modeling Language (UML) [19] is widely adopted to represent use
case diagrams. The UML UC diagram is mainly composed of the following elements:
actors, use case, communication relationships, inclusion, extension, and generalization.
The description of Use Cases is a textual notation, in natural language, that describes
the behavior of each UC in the diagram. Cockburn [20] and Jacobson et al. [21] define
the following elements to describe a UC: Name of the UC; Short description of the UC’s
objective; Actor (s) participating in the UC; Precondition to start the UC; Post-condition
that must be met after the execution of the UC; Main Flow describing the main UC
scenario; Alternative flows with alternative UC usage scenarios; Exception flows for
unexpected occurrences; and Rules that must be considered when executing the UC.

2.1 Difficulties in UCM

Difficulties regarding the syntax and semantics of graphic and textual elements in elab-
orating the UC model compromise the quality attributes [22] of use case models, such
as completeness, ambiguity, and inconsistency. In this paper, a difficulty is defined as
any lack of knowledge of requirement modelers that prevent them from modeling UCs
meeting specified quality requirements.

There are some works in the literature that present difficulties in UCM, such as dif-
ficulties to understand requirements and represent them in use cases [22]; difficulties
in understanding the problem domain [5]; difficulties in specifying information unam-
biguously [23]; difficulties in representing information in a diagram [24]; among others.
Nascimento et al. [5] summarize all of these in a model of difficulties in UCM.

Writing UC is an exploratory and visionary task, and a good modeler should have
skills, such as the ability to write well; the ability to systematically address a problem;
the ability to synthesize user needs; in addition to specific knowledge of the problem
domain and understanding of software development, among other skills.



Improving Quality of Use-Case Models 363

2.2 Rules and Guidelines for UCM Modeling

There are several guidelines and rules in the literature to writing effective UC [19, 21],
and [25]. The work of Gregolin [45] presents a synthesis of these rules and guidelines.
Some of these are:

• A UC should add value to the related actors, grouping atomic functions in a single
functionality, avoiding functional decomposition;

• A UC should avoid individual features of CRUD (Create, Retrieve, Update, Delete).
These functionalities should have a single generic UC, such asManage Registrations,
or Keep Registrations, and to use interface prototypes for each registration.

• The actor’s name should reflect their role in the system and avoid titles of positions,
organizations, or activities related to an organizational structure.

• The UC’s name usually contains a verb followed by nouns, and the sub-nouns can
have adjectives. The verb must be in the infinitive or present tense and must use the
active voice instead of the passive voice, among others.

2.3 Quality Attributes in UCM

There are many recommendations in the literature on what constitutes quality in a use-
case model. Through a Systematic Literature review (SLR), the authors of [2] bring
these attributes together. However, different authors often give each attribute a particular
understanding. Therefore, in this work, we perform a synthesis of each of them, as
Table 1 shows.

Table 1. Synthesis of quality attributes.

Quality attribute Description

Accuracy or completeness or integrity There should be no missing information nor elements in the UC
diagram and in the corresponding textual descriptions

Consistency The UC model information should have the expected semantics.
There should not be any conflicting elements in the diagrams and
in their textual descriptions

Correctness The UC diagram and its descriptions must correctly represent the
requirements

Understandability The information and rules contained in the UC diagrams and
textual descriptions must be accurate and clearly defined

Ambiguity There should be no information in the UC diagram and textual
descriptions with more than one meaning

Redundancy There should be no excessive, repetitive or superfluous
information in the UC diagram and descriptions

Abstraction level The UC diagram and descriptions should present only what the
software should do at an appropriate granularity level. That is, the
UC should not be broken down into parts that have no value in
themselves



364 C. P. Bispo et al.

3 Related Work

The studies deemed as related to the purpose of this research focus on the same aspect: the
difficulties of UCM requirements specifier that prevent them from building UC models
meeting the defined quality requirements.

Nascimento et al. [5] sought to explore and understand difficulties in UCM by con-
ducting four experimental studies. As a result, they presented a model of difficulties.
The works [22, 23] and [24] also investigated and reported difficulties in UCM. These
works do not present any strategy to mitigate these difficulties.

To mitigate the difficulties that requirements specifier faces when modeling UCs,
several authors propose applying resources already used in other domains to verify their
effectiveness in UCM. The work presented in [14] employed business process models to
derive UCs because these models are often available in a company as work instructions
or administrativemanuals in a clear and structuredmanner. Conversely, the authors of [3]
presented an Antipattern-based strategy for UCM, in which bad practices are identified
to be replaced by recommended solutions. We identified other strategies in a previous
investigation and their respective contributions to UCM [8]. However, these studies do
not indicate which strategies could mitigate the UCM difficulties.

The difficulty-strategy correlation proposed in this paper guides the requirements
specifier in selecting the most appropriate strategy to mitigate a given difficulty. It avoids
adopting ineffective practices and presents various alternatives for applying tested and
evaluated procedures to assist UCM.

4 Strategies for UCM

Several strategies in the literature support the use-case modeling, as identified in the
SLR that we present in [26].

One of the first strategies proposed in the literature was that of Ontology [27–33]. It
represents the domain concepts and their relationships, allowing automated reasoning.
Consequently, it can minimize problems concerning requirements ambiguity, inconsis-
tency, and incompleteness. Ontology strategy contributes to UCM, making it possible
to specify UC requirements more completely and unambiguously.

Antipattern is one of the most common strategies found in the literature [3, 9–13].
It focuses on identifying deficiencies in UC, emphasizing the human cognitive abilities
that allow identifying these deficiencies. According to it, a bad UC modeling structure
does not necessarily indicate a defect, but it can lead to possible harmful consequences.
This way, it shows dubious UCM structures and their harmful effects and is useful in
detecting possible doubtful structures to perform corrective actions.

Another technique, called Role Interpretation [34–39], is used in teaching model-
ing. Students and instructors assume different roles in a modeling experiment. In this
way, it aims to simulate the industrial environment so that students obtain a description
very close to the system to be modeled.

The Natural Language Processing (NPL) strategy provides semi-automated assis-
tance, through an algorithmic approach, for developers to generate UC models from
standardized natural language requirements [46–50]. It inspects the requirements docu-
ment to find nouns to add to the list of actors, and verbs to add to the list of UCs. The UC



Improving Quality of Use-Case Models 365

diagram is sketched from these lists. NPL protects the developer from the ambiguity,
redundancy, and incompleteness inherent in the requirements specifications written in
natural language. It uses advanced word processing techniques to rapid discover dupli-
cate functionality, identify and extract actors and UCs, and to clarity specifications that
are difficult to understand and communicate.

Scenario Pattern [51–54] uses standard UC specification scenarios that describe
requirements and interactions between system actors in a standardized way. Pattern
matching algorithms are automatically used to check if there is an omission of any
necessary step in the UC specification. It provides automatic tool support to detect the
missing part in the requirements specification and recommend appropriate instructions
for including it to make the UC specification as complete as possible.

Business Process Notation is also used for modeling use cases by [14, 15]. The
proposal uses business processes to derive UCs, through an algorithm that implements
meta-models for use case diagrams (UCD) and for business processmodels (BPM).Thus,
it creates UC diagrams more quickly because BPM is often available in a company in
work instructions or administrative manuals in a clear and structured way. In addition,
it tends to produce consistent and complete specifications.

Domain-Specific Languages (DSL) are used to describe UC [16], specifying the
user and system actions clearly and precisely. This language uses a specific text syn-
tax that allows a certain formalization in the UC model description. In this way, it
can increase productivity by promoting understandable communication between engi-
neers and domain experts, in addition to allowing the removal of ambiguities and
inconsistencies observed in natural language texts.

Another strategy adopted is the Fragment of Use Cases [55, 56]. In this, the UC text
is written using fragment composition in which each fragment represents a recurring set
of interactions necessary to achieve a sub-objective. Each fragment can be customized
and is coded using the best practices for writing the UC steps. Thus, the aim is to reduce
the time required for the preparation of high-quality UC specifications. This strategy
seeks to eliminate ambiguities, redundancies, inconsistencies, and conflicts with domain
terminology (UCs contaminated by jargon). In this way, it standardizes and promotes the
concise specifications of UCs, facilitating the maintenance and understanding of UCs
by those involved with the system.

The CommunicationMedia strategy [1] replaces face-to-face communication with
Think-Pair-Square, a structured text-based chat, suitable for solving problems in the
learning field. Its great application is in offering appropriate resources for distributed
modeling, common in current development projects.

TheMentalModels strategy [6] uses virtualization in UCM to propose a conceptual
mentalmodel representing the user’s thinking of how it works. It refines the requirements
phase by structuring the imagination process in a formal visualization stage, to be carried
out before creating the UC diagram. In this way, helps inexperienced developers to
overcome their difficulties in defining functional requirements at UCM and produces a
tangible visual result of what the developer perceives as the user mental model of how
something works.

The use of Visual Languages to describe UCs, replacing the UML language, is
proposed in [43]. The authors consider that UML does not satisfactorily address the



366 C. P. Bispo et al.

concerns (in terms of requirements) of human-computer interaction (HCI) professionals.
Thus, they provide a commonmechanism of communication and understanding between
IHC professionals and software engineers (ES) so that the development and description
of UC portray the interests of both together.

Reverse Engineering is a strategy that aims to systematically extract a large amount
of information from UC descriptions [44]. The information can be read by machine and
serves as a guideline for the “assembly of the UC diagram.” Alternatively, the reverse
process can be used: to decompose the diagram to assemble the UC specification. It
seeks to systematically provide a minimal skeleton as a starting point for UCM.

Finally, [57] proposes the use of Automatic Layout with guidelines for defining
a UC diagram. It focuses on the lack of appropriate layout mechanisms to provide an
understanding of the system graphically and seeks to make up for the significant lack of
resources for diagramming UCs as well as for displaying differences visually.

Table 2 summarizes the quality attributes enhanced by each strategy.

5 Correlation Between Difficulties and Strategies for UCM

This section presents an overview of the correlation proposed in [8] between modeling
difficulties and strategies to mitigate these difficulties concerning the quality attributes
for UC presented in Sect. 2.3.

The methodology used to establish the correlation between difficulties and strategies
uses as input the information contained in the papers retrieved from the SLR [26]. We
analyzed the experiments described in the SLR selected papers with the support of an
inductive theory based on data analysis named Grounded Theory (GT) [41] to categorize
the difficulties in UCM that we identified in the literature (Sect. 2.1). The result of this
analysis made it possible to identify which quality attributes can be affected by each of
the defined difficulty categories. Details of this process can be found in [8].

Table 3 shows the relationship established between difficulty and quality attributes.
The first and second columns show the difficulty identifier and its description. Simi-
larly, the third and fourth columns show the quality attribute’s identifier affected by the
difficulty and its description.

The combination of the results presented in Tables 2 and 3 allowed the definition
of the correlation. Figure 1 shows part of the correlation, which is described in detail
in [8]. On the top, there is the difficulty in identify/Extract/Discover UCs, actors and
relationships. This difficulty affect the completeness-accuracy-integrity quality attribute,
and can be mitigated by four different UCM strategies (on the botton): Role-playing,
Natural Language Processing, Business Process Modeling, and Scenario pattern.

6 The Mechanism to Assist UCM Inspection

The correlation proposed in Sect. 5 helps modelers identify which strategies canmitigate
specific difficulties in use-case modeling to enhance certain quality attributes.



Improving Quality of Use-Case Models 367

Ta
bl
e
2.

U
C
m
od
el
in
g
st
ra
te
gi
es

an
d
qu
al
ity

at
tr
ib
ut
es
.

St
ra
te
gi
es

A
m
bi
gu
ity

In
co
ns
is
te
nc
y

R
ed
un
da
nc
y

In
co
m
pl
et
en
es
s

In
co
m
pr
eh
en
si
bi
lit
y

C
om

m
un
ic
ab
ili
ty

O
nt
ol
og
y

X

A
nt
ip
at
te
rn

X
X

R
ol
ep
la
yi
ng

X
X

N
at
ur
al
la
ng
ua
ge

pr
oc
es
si
ng

X
X

X
X

X

Sc
en
ar
io

pa
tte
rn
s

X
X

B
us
in
es
s
pr
oc
es
s
no

ta
tio

n
X

X
X

X

D
SL

s
X

X

U
se

ca
se

fr
ag
m
en
t

X
X

X
X

C
om

m
un
ic
at
io
n
m
ed
ia

X

M
en
ta
lm

od
el

X

V
is
ua
ll
an
gu
ag
e

X
X

X

R
ev
er
se

en
gi
ne
er
in
g

X

A
ut
om

at
ic
la
yo
ut

X



368 C. P. Bispo et al.

Table 3. Difficulties that affect quality attributes.

Id Difficulty Id At Quality attribute affected

D1 Identify/extract/discover UC, actor and
relationship

Q1 Completeness-accuracy-integrity

D2 Represent/express model elements Q3 Correctness

D3 Write in detail the semantics of the UC
model

Q2 Consistency

D4 Understand/interpret the problem
domain.

Q1 Completeness - accuracy - integrity

D5 Perceive implicit requirements Q4, Q5 Understandability; integrity

D6 Synthesize use cases Q7 Abstraction level

D7 Condense the various information from
the UC model

Q6 Redundancy

Fig. 1. Part of the proposed correlation.

According to [5], the modeler difficulties in UCM usually insert defects in UC
models. Thus, in this paper, we consider the hypothesis that reducing the defects in UC
model after using a strategy means that the difficulty that would potentially generate
such defects is mitigated. However, to assess this hypothesis, we need a systematic
mechanism to inspect a UC model and detect possible defects after applying a strategy.

Inspection is a static activity based on the visual examination of development prod-
ucts to detect defects, violations of development patterns, and other problems without
trying to solve the identified problems [45]. In UCM, this activity consists of checking if
the model expresses the requirements and can be understood by all involved. A checklist



Improving Quality of Use-Case Models 369

defines a list of questions that the inspectors must answer yes or no, must be prepared
to detect the defects in UC model during the inspection [42].

In this section, we propose a mechanism for UCM developers/instructors to build a
checklist to detect defects in the UC model based on the strategies presented in Sect. 4.
The generated checklist will evaluate the quality attributes enhanced by the strategy
adopted in its construction. We consider a mechanism a set of previous and necessary
procedures to be performed for the construction of the checklist. Themechanism purpose
is to guide the definition of a checklist from which to measure the effect of a specific
strategy on difficulties of the students at UCM.

The checklist must contain questions to identify defects related to quality attributes.
For example, if a difficulty affects the completeness of a UC model, it is because this
difficulty inserts defects thatmake themodel incomplete. The checklistmust then contain
questions that allow finding the defects related to the attribute of quality completeness.
Thus, the mechanism’s procedures are as follows (Fig. 2):

Fig. 2. Mechanism to generate the inspection checklist.

(a) Select Strategy - This procedure aims to choose the strategy to be used forUCM.Not
enough criteria were found in the literature to recommend one strategy more than
another. Therefore, the selectionmust be conditioned to previous knowledge ofwhat
difficulties affect the group ofmodelers at themoment of UCMand then, consulting
the correlation (Sect. 5), select the corresponding strategy for such difficulties. It is
essential to be aware of the strategy goal, specific procedures, andwhat contribution
should be expected from it (Sect. 4).
Procedures (B) and (C) must be based on the correlation.

(b) Extract quality attributes enhanced by the strategy - Knowing what the attributes
are, we aim to identify in the rules and guidelines for UCM (Sect. 2.2) conditions
related to these attributes. It is recommended to elaborate a small synthesis of the
understanding of each attribute extracted in this phase.

• Extract the difficulties that affect the quality attributes, after identifying the
difficulty in the correlation, and

(c) Extract the defects inserted according to the difficulties. Add the knowledge
obtained in (B) and (C), and draw up the list of defects for each quality attribute of
the procedure (B).

(d) Generate checklist. In this procedure, questions are prepared to answer whether
each defect generated in procedure (D) exists or not when the inspection of the UC
diagram or description is performed.



370 C. P. Bispo et al.

6.1 Applying the Mechanism in a UCM Strategy

To assess the mechanism proposed initially, we defined the mechanism for a specific
strategy. Then we apply the mechanism to evaluate the models created in the controlled
experiment presented in [8] (Sect. 7).

The following steps illustrate the execution of the procedures defined in Fig. 2:

(a) Select Strategy - Antipattern.
(b) Extract Quality Attributes Enhanced - Consistency and Ambiguity.

The Consistency attribute refers to structure, elements, language, grammar, and any
information in the diagram and description of a UC, which must have the semantics
expected of them. They need to be coherent, logical, and consistent. To illustrate this
attribute, consider Fig. 3.

Fig. 3. Example of inconsistent and consistent diagrammatic structure.

The Ambiguity attribute refers to structure, elements, language, grammar, and any
model information (present in the UC diagram or description) must be clear so that the
interpretation is unique and the understanding is the same for both the client and for the
developer. To illustrate this attribute, consider Fig. 4.

Educational Institution – fragment of a UCD
Ambiguous Structure Unambiguous, but inconsistent Unambiguous and Consistent 

Syntactic and semantics analysis are not the focus for assessing ambiguity. The question is: "Can
representation have more than one meaning?" That is, in the hypothetical scenario "Educational Institution," 
which Person receives payment? The manager, the janitor ... who is the appropriate actor? There is no 
ambiguity in the second table because it is clear that the payer is the janitor, but it is not consistent with the 
scenario. The suggested actor is the secretary. 

Fig. 4. Example of unambiguous and ambiguous diagrammatic structure.



Improving Quality of Use-Case Models 371

(c) Extract Difficulties that Affect Quality Attributes.

The Consistency attribute is affected when the specifier has difficulty describ-
ing/specifying the semantics of the UCmodel. This difficulty presents itself as an inabil-
ity to attribute value or highlight the meaning of the information. The specifier finds it
challenging to convey what is necessary with logic and coherence not to compromise
the modeled scenario with inconsistencies.

The Ambiguity attribute is affected when the specifier has difficulty perceiving
implicit requirements. This difficulty presents itself as an inability or doubt to accu-
rately visualize a hidden requirement. For example, in Fig. 4, it is possible that in the
requirements document, it was not explicit that the secretary is responsible for the receiv-
ing payment task. Thus, the modeler can associate the functionality receive payment to
a generic actor person, believing that any person can perform this use case. Ambiguity
happens because it leads to different interpretations.

(d) Extract the Defects Inserted According to the Difficulties.

For illustration purposes, defects that appear in the UC diagram are listed in Tables 4
and 5 that make it inconsistent and ambiguous, respectively. The first column identifies
the defect from an id (e.g. DfC1), and the second column shows the defect.

Table 4. Defects that compromise the quality attribute Consistency in the UC diagram.

Id Description

DfC1 Relate actor and UC, when the actor is incompatible to interact with UC

DfC2 Name UC with a name inconsistent with the purpose of the UC

DfC3 Appoint an actor with job titles and not with his role in the system

DfC4 The UC diagram is not plausible with the list of requirements

DfC5 Decompose a UC when its parts alone do not represent value to an actor

DfC6 Use CRUD (Create, Retrieve, Update, Delete) functionality instead of a single
generic UC (Manage … or Maintain …)

DfC7 Establish a communication relationship between two UCs instead of inclusion or
extension

DfC8 Relate UC and actor through generalization

DfC9 Define an inclusion, extension or generalization relationship between UCs whose
removal prevents understanding of the main UC’s objective

DfC10 Have an inclusion UC that relates to only one UC

DfC11 Have an extension UC that does not add functionality to the base UC

DfC12 Define a UC as inclusion and extension at the same time



372 C. P. Bispo et al.

Table 5. Defects that compromise the quality attribute ambiguity in the UC diagram.

Id Description

DfA1 Name actor or UC with long or inexpressive terms, which do not reflect their role or
goal, with varying meaning or adverbs, synonyms, adjectives, pronouns, homonyms,
and references

DfA2 Define a single UC as inclusion and extension simultaneously

DfA3 Define a generic UC and another UC that is part of the generic one without relating
one with the other

DfA4 Specialize an actor who cannot establish inherited relationships

DfA5 Add brief description notes, without which it is not possible to understand the diagram

DfA6 Do not clearly show users and system functionality according to the list of
requirements

DfA7 Have two or more UCs that perform the same functionality

DfA8 Modeling two or more actors who have the same role in the system with a different
name

DfA9 Not making the relationships between the actors and the UCs clear

(e) Generate Checklist.

A question is formulated related to each defect to verify the defects presented in
Tables 4 and 5. For example, for defect DfC1: Was a relationship between actor and UC
found in the inspected diagram when the actor is incompatible with the UC? The answer
must always be Y or N, yes or no, respectively.

7 Proposal Evaluation

This section details the controlled experiment briefly presented in [8]. The defect detec-
tionmechanism presented in Sect. 6 was also used to inspect themodels generated by the
experiment participants. The experiment was carried out following [40] guidelines and is
structured in four stages: scope, planning, operation, and data analysis and interpretation,
detailed in the following subtopics.

7.1 Experiment Scope

Each UMC strategy identified in Sect. 4 must be assessed individually. We started this
validation with the Antipattern strategy because it is the strategy most found in the
literature and themost detailed in terms of steps to guide the use of the strategy. Following
the proposed correlation (Sect. 5), this strategy is related to the mitigation of difficulties
that affect the consistency and ambiguity attributes of a UC models.

Experiment Goal. The experiment goal is defined according to the GQM (Goal Ques-
tion Metric) template. It consists of analyzing the Antipattern-based strategy for the



Improving Quality of Use-Case Models 373

purpose of assess its effectiveness in mitigating the difficulties of describing/detailing
the semantic of UC models, and implicit understanding requirements concerning con-
sistency and ambiguity from the point of view of undergraduate students in the software
engineering discipline.

Research Questions. Based on the objective of this experiment, the following research
questions (RQ) were defined: RQ1: Is the diagram produced with the support of the
strategy free from defects that would make it inconsistent and ambiguous? This question
sought to assess whether the use of the strategy corrected defects or prevented the appear-
ance of new ones. RQ2: Does using the Antipattern strategy mitigate the difficulties that
affect the consistency and ambiguity of use-case diagram? With this question, we tried
to verify if the difficulties of students that affect consistency and ambiguity disappeared
or reduced.

Metric. The metric used to assess the correlation was the number of defects observed
in the diagrams produced. Modeled diagrams were inspected using the defect detection
mechanism defined in Sect. 6, based on the defect count according to Tables 4 and
5. These defects are inserted due to difficulties in describing/specifying the UC dia-
gram’s semantic and understanding implicit requirements. It was assessed whether the
Antipattern strategy mitigates these difficulties by reducing these defects.

7.2 Experiment Planning

The experiment was planned in terms of context selection, type of experiment,
formulation of hypotheses, dependent and independent variables, and instrumentation.

Context Selection. The experiment was conducted in an academic environment formed
by undergraduate students with knowledge of the basic syntax and semantics of UML
use-case diagram. To ensure that students had this knowledge, only those studying or
who had completed the Software Engineering discipline in Computer Science courses
were selected.

Experiment Type. The type of design used in this experiment was based on [40], com-
prising one factor, the strategy for UCM based on Antipattern, and two treatments: (1)
the modeling of the UC diagram without the Antipattern strategy and (2) the modeling
of the UC diagram with the Antipattern strategy. Each participating student used the two
treatments to model the same scenario. Two sets of diagrams were generated: one with-
out the Antipatterns strategy help (we called this set of UCD_Controlled); and another
set based on Antipattern (called this set of UCD_Antipattern).

Hypotheses Formulation. Hypotheses were formulated to conduct the evaluation:
null (H0) and alternative (HA), corresponding to the existence of defects in the
UCD_Controlled and UCD_Antipattern, as showed in Fig. 5.

Variables Definition. The independent variable consisted of modeling the UC diagram
that assumed two levels, modeling without the strategy and modeling using the Antipat-
tern. The dependent variables were the attributes of UCM quality, consistency, and
ambiguity, directly related to the measures used to test the hypotheses.



374 C. P. Bispo et al.

Fig. 5. Data collected on defect inspection that makes the UC diagram inconsistent [8].

Instrumentation. The resources used to carry out this experiment involved: guidance
for carrying out the experiment; a scenario for modeling the UC diagram; training to
present and understand the strategy; selection of the material needed to execute the
strategy; checklists to inspect the modeled diagrams. The experiment was conducted
in two stages: stage 1, where all students modeled the UC diagram based on the same
specification, and step 2, in which students were trained to understand and use the
strategy for UCM and the artifacts to support its application. After completing the two
stages, diagrams modeled with and without the strategy for inspection, comparison, and
subsequent analysis were collected from each student.

7.3 Experiment Operation

The operation stage comprised the following steps: data preparation, execution,
collection, and validation.

Data Preparation. The experiment participants were 16 students from two different
software engineering classes from a Computer Science course.

Execution. The experiment was carried out in two replications, one for each class,
in different days. Each student initially modeled the UC diagram without using the
Antipattern strategy (in theUCD_Controlled group). Diagrams generatedwere collected
for later evaluation. The strategywas then explained, andmaterial supporting the strategy
was provided to the students, e.g., a list of Antipattern with examples of its application.
Using this material, the students improved the first modeled diagram, when necessary
(in the UCD_Antipattern group). So as, each student produced a second UC diagram,
all of which were also collected by the researchers for subsequent analysis.



Improving Quality of Use-Case Models 375

Data Collection. The researchers inspect the diagrams collected in both groups using
the checklist defined according to the mechanism showed in Sect. 6. Figures 6 and 7
show the data collected in this inspection.

Fig. 6. Data collected on defect inspection that makes the UC diagram inconsistent.

Fig. 7. Data collected in the inspection of defects that make the UC diagram ambiguous.

In both Figs. 6 and 7, column 1 shows the code corresponding to each defect listed in
Tables 4 and 5. For example, DfC1 indicates the defect Relating actor and UC, when the



376 C. P. Bispo et al.

actor is incompatible with interacting with UC, which makes the diagram inconsistent.
Columns 2 to 17 show the participants of the experiment. For example, P1 is participant
1. Each participant modeled a diagram without knowing the strategy, represented by DI
(Initial Diagram) and the diagram using the strategy, represented byDF (Final Diagram).
Each S and N indicates the researcher response when inspecting the presence or absence
of defect in the initial and final diagram. The last line shows the total of defects found
in the initial and final diagram of each participant. At the end of this line is the total of
defects for the entire group. Finally, the last column shows the total of each type in the
set of diagrams.

Data Validation. The validation was performed to assess any inconsistency in the data
collected. The diagrams of participant P2 were discarded because he did not perform
the modeling for the scenario presented. No other discrepancies were found. Therefore,
all other answers were used in the data analysis.

7.4 Data Analysis and Interpretation

This step is responsible for the analysis of the data collected so that conclusions can
be drawn. Figure 8 illustrates the result of the diagrams inspection. Eighty-two defects
related to the inconsistency, of which 64 were identified in the UCD_Controlled group
and 18 in the UCD_Antipattern group. Regarding ambiguity, 76 defects were found,
of which 62 were identified in the UCD_Controlled group and 14 UCD_Antipattern
group. The defects found in UCD_Antipattern group represented by the number 18
and 14, related to inconsistency and ambiguity, respectively, are defects found in
UCD_Antipattern. They were not corrected with the strategy usage or are new defects
that emerged after using the strategy.

Fig. 8. Number of defects found in UC diagrams inspection.

In the UCD_Controlled group, the number of occurrences of each defect that made
the diagrams inconsistent is illustrated in Fig. 9. The type of defect that was most



Improving Quality of Use-Case Models 377

evident was DfC3 (Name actor with job titles and not with his role in the system) with
15 occurrences, followed by DfC12 (Define a UC as inclusion and extension at the
same time) with 13 occurrences, and DfC2 (Name UC with a name inconsistent with
the purpose of the UC) with 12 occurrences. Three types of defects occurred only once,
DfC1 (Relate actor and UC, when the actor is incompatible with interacting with the
UC), DfC4 (The UC diagram is not plausible with the list of requirements), and DfC11
(Have an Extension UC that does not add functionality to the base UC). The defect
DfC6 (Use CRUD, i.e. Create, Retrieve, Update, Delete, functionality instead of a single
generic UC) was not found in any diagram.

Fig. 9. Number of occurrence of the different types of defects related to consistency found in the
inspection in the UC diagrams.

Figure 9 also shows the number of occurrences of each defect in the
UCD_Antipattern. In this data set, in particular, two types of defects, DfC8 (Relate UC
and actor through generalization), andDfC9 (Define inclusion, extension or generaliza-
tion relationship between UCs whose removal prevents the understanding of the main
UC objective) occurred two times, however, not previously found in UCD_Controlled
group.

Figure 10 illustrates the number of occurrences of each type of defect that made the
diagrams ambiguous. In the UCD_Controlled, group the type of defect that was most
evident was DfA7 (Having two or more UCs that perform the same functionality) with
12 occurrences, followed byDfA9 (Do notmake the relationships between the actors and
the UCs clear), DfA2 (Define a single UC as inclusion and extension simultaneously),
and DfA1 (Name actor or UC with long or inexpressive terms), which occurred the
same number of times, 11 occurrences. Various types of defects that appeared in the
UCD_Controlled group disappeared in the UCD_Antipattern, such as DfA2 (Define a



378 C. P. Bispo et al.

single UC as inclusion and extension simultaneously), DfA3 (Define a generic UC and
another UC that is part of the generic without having a relationship between them), and
DfA5 (Add brief description notes, without which it is not possible to understand the
diagram). Two types of defects,DfA6 (Donot clearly show the users and the functionality
of the software according to the list of requirements) and DfA8 (Have two or more actors
with the same role in the system with a different name) increased in UCD_Antipattern.

Fig. 10. Number of occurrence of the different types of ambiguity-related defects found in the
inspection in the UC diagrams.

Hypothesis Assessment. In order to verify whether there is a significant difference in
the quality (regarding consistency and ambiguity) of the diagrams modeled with and
without the Antipattern based strategy, the hypothesis test was performed [40]. To select
the test to be used, the normality of the data was verified. The tests showed that the
distributions of the number of defects per diagram are expected in the UCD_Controlled
group and in the UCD_Antipattern group. Figures 11 and 12 present the scatter plot
showing that the number of defects generated by each participant is close to the average
(linear across the points of the graph), concerning consistency and ambiguity.

In Fig. 11, for example, for participant P1, six defects were found in the
UCD_Controlled group and one in the UCD_Antipattern group. On average, there are
four defects in the UCD_Controlled group, and one in the UCD_Antipattern. The stan-
dard deviation is 1 and a tolerance of ±1 for the two data sets. Hence, both six defects
in the UCD_Controlled group and one defect in the UCD_Antipattern group are in the
normality of the data.



Improving Quality of Use-Case Models 379

Fig. 11. Scatter plot of the number of defects related to consistency in the initial and final diagram
of each participant.

Figure 12 presents the same analysis for ambiguity attribute. The average defect
number for UCD_Controled group is 3.875, with a standard deviation 1 and tolerance
of ±1. For UCD_Antipattern group, the average is 0.875, with a standard deviation 1
and tolerance of ±1. In both Figs. 11 and 12 x-axis show the participants P1, P2, up to
P16, and the defects in the initial and final diagrams of each are the graph points.

As the data obey a normal distribution, the Shapiro-Wilk [58] test was used with the
p-value (probability on the null hypothesis) equal to 0.05 to accept or reject the hypothe-
ses. If the p-value< 0.05, the result is significant, and the null hypothesis can be rejected.
After the test was carried out, the result showed that all null hypotheses (H10: Consis-
tency_DefectsUCD_Antipatten = Consistency_ Defects UCD_Controlled) and H20:
Ambiguity_ Defects UCD_Antipattern = Ambiguity_ Defects UCD_Controlled must
be rejected according to the following: p-value (p-value)= 0.034 for theUCD_Controled
group and p = 0.040 for the UCD_Antipttern; in relation to ambiguity, p = 0.035 for
the UCD_Controlled group and p = 0.037 for the UCD_Antipattern group.

Having rejected the null hypotheses H10 and H20 that the use of the
Antipattern-based strategy does not influence, respectively, the consistency and/or
ambiguity of the UC diagram, the alternative hypotheses, Ambiguity_ Defect-
sUCD_Antipattern <> Ambiguity_ DefectsUCD_Controlled, were accepted. That is,
the use of the Antipattern-based strategy influences the consistency and/or ambiguity of
the UC diagram, which can be confirmed in the boxplot graph in Fig. 13.

Research Questions Answers. Having evaluated the hypotheses, we sought to answer
the research questions formulated for this experiment. Related to RQ1, as showed in



380 C. P. Bispo et al.

Fig. 12. Scatter plot of the number of defects related to ambiguity in the initial and final diagram
of each participant.

64

62

18

14

0 10 20 30 40 50 60 70

CONSISTENCY

AMBIGUITY

Antipattern Strategy in UCM

UCD_Antipattern UCD_Controlled

Fig. 13. Effect of Antipattern-based strategy on reducing ambiguity and inconsistency in the UC
diagram [8].



Improving Quality of Use-Case Models 381

Fig. 13, the use of the Antipattern based strategy in modeling the UC diagram consider-
ably reduced the defects that make the diagram ambiguous and inconsistent. Concerning
ambiguity, total defects reduced from 62 to 14 and, concerning consistency, total defects
reduced from 64 to 18, when modeling with Antipattern. However, not all defects have
been corrected, nor has it prevented the appearance of new ones.

Concerning RQ2, in this work, it was considered that the difficulties of the modelers
generate the defects. Hence, if using Antipatterns reduces defects that affect consistency
and ambiguity, then the difficulties that insert these defects were mitigated. However,
there is a limitation in the results, which are considered as evidence and not conclusive.

7.5 Threats to Validity

To prevent bias in the validation, we now discuss some threats to this empirical study
validity. Regarding internal validity, as the level of knowledge of the participant and
experience in use case specification may influence the study results, we provided train-
ing for every participant in modelling use cases. Besides, we only selected participants
who were enrolled in the software engineering discipline. Concerning external validity,
to minimize the risk of sample representativeness, the diagrams produced by the par-
ticipants were also inspected by people who did not participate in the experiment. The
representativeness of the chosen domain and the size and complexity of the scenario
are other threats to the experiment. As there was no possibility of using a real case, a
scenario widely used in softwaremodelingwas chosen. However, experiments using real
scenarios are necessary to validate our proposal better. Related to construction validity,
we performed two pilot studies to validate the material used in the experiment. Distor-
tions in understanding the antipattern strategy were minimized through a summary of
examples of its use. Finally, concerning conclusion validity, the statistic method used
may influence on the conclusion. Therefore, we consulted a specialist to define which
method to adopt.

8 Conclusions and Future Works

Recent studies show the various difficulties of developers to model use cases. Therefore,
the quality of the models is compromised due to the occurrence of defects. To mitigate
these difficulties, we proposed a correlation between UCM defects and strategies to
mitigate these defects based on UC’ quality attributes.

This paper presented the controlled experiment performed to evaluate the correlation
concerning the Antipattern strategy. In the experiment, participants developed a UC
model in two stages, first without using the Antipattern strategy, and then assisted by this
strategy. The produced UC models were analyzed using a checklist, which construction
was guided by the proposed mechanism. A set of possible difficulties were identified in
order to generate questions to be used in models inspection.

Shapiro-Wilk test was used with the p-value equal to 0.05 to accept or reject the
hypotheses defined in the experiment. The results showed that the Antipattern-based
strategy influences the consistency and ambiguity of quality criteria for the adopted



382 C. P. Bispo et al.

scenario. We considered this a clear indication that Antipattern mitigates the difficulties
related to it: difficulty to describe or to detail semantics in the UC model, and difficulty
in understanding implicit requirements. Other difficulties may be mitigated by other
strategies indicated in the correlation.

The strategy-difficulty correlation proposed in this paper organizes and guides the
requirements specifier to select the most appropriate strategy to mitigate a given diffi-
culty. This oriented indication that the correlation provides avoids adopting ineffective
practices and makes the requirements specifier aware of several possibilities of applying
tested and evaluated procedures to assist UCM.We are nowworking on new experiments
to validate the other strategies contained in the correlation.

References

1. Erra, U., Portnova, A., Scanniello, G.: Comparing two communication media in use case
modeling: results from a controlled experiment. In: ESEM 2010 Proceedings of the ACM-
IEEE International Symposium on Empirical Software Engineering andMeasurement (2010)

2. Tiwari, S., Gupta, A.: A systematic literature review of use case specifications research. In:
Information and Software Technology, vol. 67, pp. 128–158 (2015)

3. El-Attar, M., Miller, J.: Constructing high quality use case models: a systematic review of
current practices. Requir. Eng. 17(3), 187–201 (2012)

4. Liu, S., Sun, J., Xiao, H., Wadhwa, B., Dong, J.S., Wang, X.: Improving quality of use
case documents through learning and user interaction. In: 21st International Conference on
Engineering of Complex Computer Systems (ICECCS), Dubai, pp. 101–110 (2016)

5. Nascimento, E.S., Silva, W., França, B.B.N., Gadelha, B., Conte, T.: Um Modelo sobre as
Dificuldades para Especificar Casos de Uso. In: Conference Ibero-American on Software
Engineering (CIBSE), Argentina (2017)

6. Beimel, D., Kedmi-Shahar, E.: Improving the identification of functional system requirements
when novice analysts create use case diagrams: the benefits of applying conceptual mental
models. Requir. Eng. 24, 483–502 (2019). https://doi.org/10.1007/s00766-018-0296-z

7. Anda, B., Dreiem,H., Sjøberg, D.I.K., Jørgensen,M.: Estimating software development effort
based on use cases—experiences from industry. In:Gogolla,M.,Kobryn, C. (eds.)UML2001.
LNCS, vol. 2185, pp. 487–502. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45441-1_35

8. Bispo, C., Magalhães, A., Fernandes, S., Machado, I.: Mitigating difficulties in use-case
modeling. In: Proceedings of the 22nd ICEIS, 22nd International Conference on Enterprise
Information Systems, 2020, Prague, vol. 2, pp. 43–52 (2020)

9. El-Attar, M., Miller, J.: Improving the quality of use case models using antipatterns. Soft.
Syst. Model. 9(2), 141–160 (2010)

10. Khan, Y.A., El-Attar, M.: A model transformation approach towards refactoring use case
models based on antipatterns. In: 21st International Conference on Software Engineering and
Data Engineering, Los Angeles, California, USA, pp. 49–54 (2012)

11. Khan, Y.A., El-Attar, M.: Using model transformation to refactor use case models based on
antipatterns. Inf. Syst. Front. 18(1), 171 (2016)

12. El-Attar, M.: Improving the quality of use case models and their utilization in software
development. Department of Electrical and Computer Engineering, Alberta University (2009)

13. Fourati, R., Bouassida, N., Abdallah, H.B.: Ametric-based approach for anti-pattern detection
in UML designs. In: Lee, R. (ed.) Computer and Information Science 2011, vol. 364, pp. 17–
33. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21378-6_2

https://doi.org/10.1007/s00766-018-0296-z
https://doi.org/10.1007/3-540-45441-1_35
https://doi.org/10.1007/978-3-642-21378-6_2


Improving Quality of Use-Case Models 383

14. Bouzidi, A., Haddar, N., Abdallah, M.B., Haddar, K.: Deriving use case models from BPMN
models. In: IEEE/ACS 14th International Conference on Computer Systems andApplications
(AICCSA), Hammamet, 2017, pp. 238–243 (2017)

15. Cruz, E.F., Machado, R.J., Santos, M.Y.: From business process models to use case models: a
systematic approach. In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol.
174, pp. 167–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06505-2_12

16. Saviä, D., Vlajiä, S., Lazareviä, S., Antoviä, I., et al.: Use case specification using the SilabReq
domain specific language. Comput. Inf. 34(4), 877–910 (2015)

17. Sommerville, I.: Software Engineering, 10th edn. University of St Andrews, Pearson,
Scotland, London (2016)

18. Jacobson, I.: Use cases - yesterday, today, and tomorrow. Soft. Syst. Model. 3(3), 210–220
(2004)

19. OMG Unified Modelling Language Superstructure - version 2.3. http://www.omg.org/spec/
UML/2.3/ (2010)

20. Cockburn, A.: Writing Effective Use Cases. Addison Wesley, Reading (2000)
21. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software Engi-

neering: A Use-Case Driven Approach. Addison-Wesley, Reading (1992). Edition
22. Anda, B., Hansen, K., Sand, G.: An investigation of use case quality in a large safety-critical

software development project. Inf. Soft. Technol. 51(12), 1699–1711 (2009)
23. Bolloju, N.: Exploring quality dependencies among UML artifacts developed by novice

systems analysts. In: 12th Americas Conference on Information Systems, p. 472 (2006)
24. Siau, K., Poi-Peng, L.: Identifying difficulties in learning UML. Inf. Syst. Manag. 23(3),

43–51 (2006)
25. Spence, I., Bittner, K.: Use Case Modeling. Addison-Wesley, Reading (2003)
26. Bispo, C., Fernandes, S., Magalhães, A.P.: Strategies for use case modeling: a systematic lit-

erature review. In: Proceedings of the XXXIII Brazilian Symposium on Software Engineering
(SBES 2019), pp. 254–263. ACM, New York (2019)

27. Ahmed, E.: Use of ontologies in software engineering. In: SEDE, pp. 145–150 (2008)
28. Dermeval, D., Vilela, J., Bittencourt, I.I., et al.: Applications of ontologies in requirements

engineering: a systematic review of the literature. Requir. Eng. 21, 405 (2016)
29. Gašević, D., Kaviani, N., Milanović, M.: Ontologies and software engineering. In: Staab, S.,

Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 593–615. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3_27

30. Couto, R., Ribeiro, A.N., Campos, J.C.: Validating an approach to formalize use cases
with ontologies. In: Proceedings of the 13th International Workshop on Formal Engineering
Approaches to Software Components and Architectures, vol. 205, pp. 1–15 (2016)

31. Yuan, X., Tripathi, S.: Combining ontologies for requirements elicitation. In: IEEE Interna-
tional Model-Driven Requirements Engineering Workshop, Ottawa, ON, pp. 1–5 (2015)

32. Bagiampou, M., Kameas, A.: A use case diagrams ontology that can be used as common ref-
erence for software engineering education. In: 6th IEEE International Conference Intelligent
Systems, Sofia, pp. 035–040 (2012)

33. Dzung, D.V., Ohnishi, A.: Ontology-based reasoning in requirements elicitation. In: 2009 7th
IEEE International Conference on Software Engineering and Formal Methods, pp 263–272
(2009)

34. Portugal, R.L.Q., Engiel, P., Pivatelli, J., do Prado Leite, J.C.S.: Facing the challenges of
teaching requirements engineering. In: IEEE/ACM38th InternationalConference onSoftware
Engineering Companion (ICSE-C), Austin, TX, pp. 461–470 (2016)

35. Nkamaura, T., Tachikawa, Y.: Requirements engineering education using role-play training.
In: IEEE International Conference on Teaching, Assessment, and Learning for Engineering
(TALE), Bangkok, pp. 231–238 (2016)

https://doi.org/10.1007/978-3-319-06505-2_12
http://www.omg.org/spec/UML/2.3/
https://doi.org/10.1007/978-3-540-92673-3_27


384 C. P. Bispo et al.

36. Biddle, R., Noble, J., Tempero, E.: Role-play and use case cards for requirements review. In:
Proceedings of the 12th Australasian Conference on Information Systems (2012)

37. Costain, G., Mckenna, B.: Experiencing the elicitation of user requirements and recording
them in use case diagrams through role play. J. Inf. Syst. Educ. 22(4), 367–380 (2011)

38. Kumar, B.S., Krishnamurthi, I.: Improving user participation in requirement elicitation and
analysis by applying gamification using architect’s use case diagram. In: Vijayakumar, V.,
Neelanarayanan, V. (eds.) Proceedings of the 3rd International Symposium on Big Data and
Cloud Computing Challenges (ISBCC – 16’). SIST, vol. 49, pp. 471–482. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30348-2_39

39. Costain, G.: Cognitive support during object-oriented software development: the case ofUML
diagrams. Doctoral thesis. Auckland University, New Zealand (2008)

40. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29044-2

41. Corbin, J.M., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 3rd edn. SAGE Publications, Thousand Oaks (2008)

42. Kalinowski, M., Card, D.N., Travassos, G.H.: Evidence-based guidelines to defect causal
analysis. IEEE Softw. 29, 16–18 (2012)

43. de Souza, A.J., Cavalcanti, A.L.O.: Visual language for use case description. Softw. - Pract.
Exp. 46(9) 1239–1261 (2016)

44. El-Attar, M., Miller, J.: Producing robust use case diagrams via reverse engineering of use
case descriptions. Softw. Syst. Model. 7(1), 67–83 (2008)

45. Gregolin, R.: Uma proposta de inspeção em modelos de caso de uso. São Paulo. Dissertação
(Mestrado em Engenharia de Computação) – Instituto de Pesquisas Tecnológicas do Estado
de São Paulo, 108 p. (2007)

46. Jebril, E.M., Imam, A.T., Al-Fayuomi, M.: An algorithmic approach to extract actions and
actors (AAEAA). In: Proceedings of the International Conference on Geoinformatics and
Data Analysis, Prague, Czech Republic, 20–22 April (2018)

47. Sawant, K.P., Roy, S., Parachuri, D., Plesse, F.: Enforcing structure on textual use cases
via annotation models. In: ISEC 2014 Proceedings of the 7th India Software Engineering
Conference, Chennai, India, 19–21 February (2014)

48. Rago, A., Marcos, C., Diaz-Pace, J.A.: Identifying duplicate functionality in textual use cases
by aligning semantic actions. Softw. Syst. Model. 15(2), 579–603 (2016)

49. Deeptimahanti, D.K., Sanyal, R.: Semi-automatic generation of UML models from natu-
ral language requirements. In: Proceedings ISEC 2011 the 4th India Software Engineering
Conference, Thiruvananthapuram, Kerala, India, 24–27 February, pp. 165–174 (2011)

50. Liu, S., Sun, J., Xiao, H., Wadhwa, B., Dong, J.S., Wang, X.: Improving quality of use
case documents through learning and user interaction. In: 21st International Conference on
Engineering of Complex Computer Systems (ICECCS), Dubai, 2016, pp. 101–110 (2016)

51. Ko, D., Kim, S., Park, S.: Automatic recommendation to omitted steps in use case
specification. Requir. Eng. (2018)

52. Ochodek, M., Koronowski, K., Matysiak, A., Miklosik, P., Kopczyńska, S.: Sketching
use-case scenarios based on use-case goals and patterns. In: Madeyski, L., Śmiałek, M.,
Hnatkowska, B., Huzar, Z. (eds.) Software Engineering: Challenges and Solutions. AISC,
vol. 504, pp. 17–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43606-7_2

53. Issa, A.A., Alali, A.I.: Automated requirements engineering: use case patterns-driven
approach. IET Softw. 5(3), 287–303 (2011)

54. Silva, A., et al.: Patterns for better use cases specification. In: Proceedings EuroPLOP’ 2015.
Hillside Europe (2015)

https://doi.org/10.1007/978-3-319-30348-2_39
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-319-43606-7_2


Improving Quality of Use-Case Models 385

55. Dias, F., Schmitz, A., Campos, M., Correa, A., Alencar, A.: Elaboration of use case specifica-
tions: an approach based on use case fragments. In: ACMSymposium on Applied Computing
(SAC), Fortaleza, Ceará, Brazil, pp. 614–618 (2008)

56. El Miloudi, K., Ettouhami, A.: A multiview formal model of use case diagrams using Z
notation: towards improving functional requirements quality. J. Eng. 2018, 9 (2018). Article
ID 6854920

57. Holger, E.: Automatic layout of UML use case diagrams. In: SoftVis 2008 Proceedings of
the 4th ACM symposium on Software visualization, Ammersee, Germany, 16–17 September,
pp. 105–114 (2008)

58. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52, 591–611 (1965)


	Improving Quality of Use-Case Models by Correlating Defects, Difficulties, and Modeling Strategies
	1 Introduction
	2 Requirements Specification
	2.1 Difficulties in UCM
	2.2 Rules and Guidelines for UCM Modeling
	2.3 Quality Attributes in UCM

	3 Related Work
	4 Strategies for UCM
	5 Correlation Between Difficulties and Strategies for UCM
	6 The Mechanism to Assist UCM Inspection
	6.1 Applying the Mechanism in a UCM Strategy

	7 Proposal Evaluation
	7.1 Experiment Scope
	7.2 Experiment Planning
	7.3 Experiment Operation
	7.4 Data Analysis and Interpretation
	7.5 Threats to Validity

	8 Conclusions and Future Works
	References




