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Abstract Bent tubes are extensively used in the manufacturing industry to meet
demands for lightweight and high performance. As one of the most significant
behaviors affecting the dimensional accuracy in tube bending, springback causes
problems in tube assembly and service, making the manufacturing process complex,
time-consuming, and difficult to control. This paper attempts to present an accurate,
efficient, and flexible strategy to control springback based on Machine Learning
(ML) modeling. An enhanced PSO-BP network-based ML model is established,
providing a strong ability to account for the influences of material, geometry, and
process parameters on springback. For supervised learning, training sample data can
be collected from the historical production process or, alternatively, finite element
simulation and laboratory-type experiments. Using the cold bending of aluminum
tubes as the application case, the ML model is evaluated with high reliability and
efficiency in springback prediction and compensation strategy of springback.
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1 Introduction

As one of the crucial structures for mass/heat transferring and load bearing with enor-
mous quantities and diversities, bent tubular parts have attracted increased applica-
tion in most industrial fields, such as automobile, aerospace, energy, and so on [1-3].
Springback is a significant issue for tube bending. It refers to the changes of both
angles and curvatures after removing the applied tools, leading to a series of prob-
lems such as increased tolerance limit, variabilities in assemble, and, sometimes,
service performance [3, 4]. From the point of the manufacturing system, springback
makes the forming process complex, significantly affecting the process flexibility
[5] as well as the adaptive design of control strategies [6]. In addition, this critical
problem becomes more dramatic in the manufacturing of complex 3D structures,
as well as small production batches with diverse bending angles and curvatures [7].
Thus, achieving accurate control of springback is of importance to high-precision
products and integrated design of smart manufacturing systems. However, spring-
back is the “closing work™ in a forming process, meaning that all possible factors
from the aspects of material property, geometry, and processing conditions can make
an impact on springback, thus making it difficult to control dimensional accuracy in
tube bending.

Accurate prediction is the premise to achieve effective control of springback. In
the past decades, analytical, experimental, and numerical methods have been widely
used to estimate springback in metal forming [3, 4]. The analytical method allows fast
springback calculation for simple forming cases, offering an advanced understanding
of springback characteristics and mechanisms. The finite element (FE) numerical
approach can simulate the actual forming process, in particular, with modeling of the
complex contact/friction conditions and nonlinear material properties, thus providing
accurate predictions of forming defects, such as thinning, distortion as well as spring-
back once high reliability can be ensured. FE-assisted optimization of tooling and
process parameters is widely used in the design stage of the forming process. The
experimental approach, however, is generally based on “trial-and-error” to search
for a satisfactory result. Furthermore, in recent years, several Deep Learning (DL)
methods also emerge in springback analysis to explore the control of dimensional
accuracy [8-10].

To this date, most FE-based works and DL-based attempts on springback are
focused on sheet metal forming, yet with much less concern on the tube bending
processes. The “trial-and-error” approach still acts as the main strategy for spring-
back compensation in tube bending production [1, 3], in which at least 2-3 times
bending trials are commonly needed to find out an acceptable compensation solution.
It causes some critical problems, including production downtime, high costs, waste
of materials, scrap, and increased process uncertainties. This is particularly true for
the industrial production of bent tubular parts with small batches and multiple part
configurations. Even though FE simulation can be used as the virtual “trial-and-error”
to reduce the physical trials, it is also a non-added value operation to simulate all the
possible forming conditions. In addition, FE simulation with the deterministic target
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springback problem can hardly meet the need for process flexibility. To address these
problems, it is a need to develop a feasible and effective strategy that can provide a
reliable and fast evaluation of compensation for springback, at the same time, with
the possibility for the integrated design of closed-loop-control to improve the product
accuracy and enhance the process flexibility for tube bending.

To this aim, this work attempts to develop a flexible strategy for springback
prediction and compensation in tube bending based on the ML modeling framework.
Training datasets for supervised learning can come from the historical production
process, alternatively laboratory-type experiments, and FE simulation. Using the cold
bending of aluminum alloy (Al-alloy) tubes as the application case, the ML model
is verified in both springback prediction and compensation. Based on this research,
an outlook on the future development and industrial application of the ML-based
springback control strategy is presented.

2 Methodology

2.1 Overview of ML-Based Modeling for Springback

As mentioned above, almost all the possible factors throughout the forming process
can make a difference in springback. In fact, as shown in Fig. 1, in addition to spring-
back, the other geometry dimensions, such as wall thickness, ovalization, etc., as well
as product performance, such as working pressure, fatigue, etc., are closely related
to the above-mentioned influential factors from the aspect of material, geometry, and
process. To this end, a “bridge” can be built to link the various input and/or in-process
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Fig. 1 Overview of the ML-based modeling for tube bending
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variables and different output indexes based on big-data mining and analysis, thus
achieving better control of product quality and forming process, as well as reducing
the manufacturing investment.

However, the accuracy and reliability of the “bridge” model highly depend on the
number and quality of sampling data. If the data is all from physical experiments, it
will uncourtly cause dramatic time consumption and high cost, especially in small
production batches with diverse angles, radius, and spatial structures. Therefore, the
idea of this model is to establish the sampling data source by combining typical
experiments, such as material property tests and forming experiments, and the multi-
scale simulation-based virtual experiments, such as through-process FE simulation of
bending—springback. Based on the big-data analysis, a machine learning model can
be constructed to map the relation between multiple input variables and springback,
thus achieving accurate compensation for springback in tube bending.

2.2 Rotary Draw Bending and Springback

Rotary draw bending (RDB) is taken as the forming process in the application. RDB
is the most commonly used method for the manufacturing of bent tubes with high
dimension accuracy. As shown in Fig. 2a, the whole tube is subjected to the multi-tool
constraints; viz., bend die, clamp die, pressure die, wiper die, and flexible mandrel
die. Under the joint action of a multi-tool, the tube is drawn around the bending center
to form a bent tube with a certain bending radius and angle. Then, the tube is unloaded
upon removal of the tools, and springback occurs, as shown in Fig. 2b. Springback
in tube bending can cause both changes of released bending angle and radius. For
a targeted bending geometry, the processing conditions are always pre-determined
after optimization.
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Fig.2 Schematic view of rotary draw bending: a forming principle and tooling system; b unloading
springback. (Color figure online)
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In order to characterize the springback under different bending angles, a
springback ratio coefficient is defined as follows:

n=A~A0/60, =0, —0)/6 (1)

where 7 is the springback ratio coefficient, A6 denotes the amount of springback
angle, 6, and 6, represent the bending angle before unloading and actual angle after
springback, respectively.

As for springback compensation, a compensation coefficient is also defined as
shown in Eq (2):

C=A6/0 =0~ 0)]06, @

where C is the compensation coefficient, 6; is the targeted bending angle, and A6,
is the amount of compensation angle. Here, 6. is the compensated bending angle,
which can further be calculated as follows:

0. = (1 4+ C)6; 3)

If the compensation coefficient can be identified, the springback compensation
thus can be realized. However, achieving this coefficient presumes an accurate
prediction of the springback angle under different bending conditions.

3 Machine Learning Modeling

A myriad of ML algorithms has been developed to address the problems with different
features. Among these algorithms, the backpropagation (BP) neural network is the
most widely used due to its advanced algorithm structure, which shows a strong
ability and potential in recognizing the underlying complicated patterns in engi-
neering tasks [11]. Furthermore, there is a number of successful experiences with
utilizing the BP neural network in manufacturing processes, such as stamping, addi-
tive manufacturing [12]. Therefore, in this work, the BP neural network is employed
as the base to model the relationship between the input variables and springback for
tube bending process.

3.1 BP Neural Network

The BP neural network is a multi-layer feedforward network algorithm that is trained
according to an error backpropagation scheme [13]. A three-layer BP network with
the input layer, the hidden layer, and the output layer is selected as the baseline to
construct the ML model. The Hecht—Nelson method is used to determine the node
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number of the hidden layer; that is, the node number of the hidden layer is (2n + 1)
times the node number of the input layer. For the output, only the springback ratio or
compensation coefficient is the objective in this work, which implies that the node
number is just set as one.

The basic procedure of the BP network is described as follows:

Step 1: Calculation of hidden layer output:

Hj = f(Z wji - X + aj) )
i=1

where w;; represents the connection weight from input node i to hidden node j, a; is
the bias of the neuron j, H; is the output of hidden layer node j, and f is the activation
function of a node.

Step 2: Calculation of the final output:

Ok = fo (Z wij - Hj + bk) )

k=1

where wy ; represents the connection weight from hidden node j to output node k, by
is the bias of the neuron k, Oy, is the output data, and f, is the activation function of
output layer nodes.

Step 3: Global minimization of error by training the algorithm:

e = Z [yk — Okl (6)
=1

where ¢ is the error and y; represents the experimental result of output node k.
Step 4: Check of error tolerance and update of weight coefficients.

3.2 PSO Algorithm

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart
[14], representing an evolutionary computation algorithm inspired by the flocking
behavior. In the PSO algorithm, a swarm of particles keeps moving around in a
problem space according to the best-known positions of each particle and the entitle
swarm, in searching for the optimal solution. The position and moving velocity of
the particles in the D-dimensional space are described as follows:

)

{ Vit+1 = thil +ciry (pi)est,i - th) + C2r2(géesl,i - le)
1 1
XLH- — X: + Vit+
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where X! is the position of particle i in at the /™ iteration, V/' represents the velocity
of this particle, ¢; and ¢, are the learning factors controlling how far a particle can
move in a single iteration, and r; and r, are two random number within [0, 1].
In Eq. (7), ppeq; and gy ; are the optimal position of the particle and the global
optimal position of all particles at the tth iteration, respectively, and the w’ is the
inertia weight coefficient that makes a balance of the local and global search ability.

In the PSO algorithm, the linearly decreasing inertia weight is commonly used.
However, the linear decreasing weight has two drawbacks; viz., the low velocity of
convergence when the best point can be detected at an early computation state, and
the decreased global search ability with decreasing the weight [15]. Thus, in this
model, a nonlinear inertia weight is used to improve the search ability, as shown in
Eq. (8):

w’ = Wmax — (U)max — wmin) . tan(l/lmax — 7T/4) (8)

where wmax and wy, iy, are the maximum and minimum inertia weight, and fmax is
the maximum iteration, respectively.

In addition, to further improve the global search ability of the PSO algorithm, a
crossover operator can be applied after each iteration [16]. According to a given
crossover probability, a certain number of particles will be chosen for random
hybridization, and then the same number of offspring particles are generated. The
position of the offspring particle is determined as

X'=rX'+0-rX}, 9)

where r is a random value within [0, 1], and the subscript “I”” and “II”’ are two parent
particles.

The velocity of the offspring particle is calculated by Eq. (10) from their parent
particles.

V= |VI(Vi+ Vi) Vi+ V| (10

Through the crossover operator, the offspring particles can avoid falling into the
local optimization, thus improving the global search ability.

3.3 Enhanced PSO-BP-Based ML Model

By combining the BP neural network and the PSO algorithm with a crossover
operator, an enhanced PSO-BP-based machine learning model is thus established.
Figure 3 demonstrates the computation flowchart of the proposed ML model. Based
on Matlab, the model is numerically implemented for the application in the next
section.
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Fig. 3 Flowchart of the enhanced PSO-BP neural network model. (Color figure online)

4 Application and Evaluation

In this application, AA5052-O tubes with eight types of specifications (diameter
and thickness) are used. Even though the material grades are the same, variations
exist in the mechanical properties between different specifications. Table 1 shows
the mechanical properties obtained by uniaxial tension tests, indicating a significant
variation in the elastic modulus, yield strength, working hardening, etc. Springback
magnitude is determined by the bending moments, elastic modulus, and residual
stress after unloading, etc. All the mechanical parameters listed in Table 1 can cause
an influence on the stress/strain distribution, further affecting the springback. There-
fore, the above material parameters are set as the independent input variables in the
ML model. Besides, the geometry parameters—viz., outer diameter, thickness, the

Table 1 Mechanical properties of Al-alloy tubes by uniaxial tension experiments

No. | Outer Thickness | Elastic | Yield Ultimate | Fraction Working | r-value

diameter | [mm] modulus | strength | tensile elongation | hardening

[mm)] [MPa] [MPa] strength | [%] exponent

[MPa]

#1 8 1 67244 45 216 22.48 0.328 0.500
# |10 1 62485 81 220 16.09 0.315 0.929
#3 |16 1 67428 70 250 28.57 0.286 0.858
#4 |22 1 76190 67 247 25.66 0.302 0.924
#5 |30 1 73267 43 180 27.11 0.316 0.628
#6 |38 1 73642 81 300 24.14 0.341 0.599
#7150 1.5 63368 31 128 24.98 0.330 0.635
#8 |70 1.5 65671 47 182 26.17 0.346 0.486
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Fig. 4 Rotary draw bending experiment: a forming process; b ®50 x t1.5 x 2D bent part. (Color
figure online)

ratio of bending radius to outer diameter, and bending angle—are also set as inde-
pendent input variables. As the tooling/process parameters are generally determined
after optimization and then keep constant in production, these parameters are not
considered in this work. Figure 4 shows the rotary draw bending process and the
typical experimental part.

For the supervised machine learning of this model, the training sample set should
be first established. In this application case, only the experimental data collected from
the historical tube bending production in a company be used to establish the big-data
source, and further to explore the feasibility of the ML model. The training sample
data source is comprised of 46 sets of experimental input and springback data, which
is acquired from the industrial production process in the company. The training set
covers different bending geometries of the above-described eight types of tubular
materials, in which the range of bending angle is 8 = 9~122.2°, and the range of
relative bending radius is R = 2~3D. As shown in Table 2, five sets of experimental
inputs are chosen as the test samples to evaluate the prediction accuracy. According
to the description in Sect. 3, the parameters related to the ML model are determined

Table 2 Springback prediction based on the ML model

Input Sp. prediction output + actual result

D [mm] |7 [mm] |Relative Bending | Exp. sp. Pred. sp. Absolute | Relative
bending angle, 6, | angle, angle, error [°] | error [%]
radius, R/D | [°] Abexp [°] | AbBprea [°]

10 1.0 3 34.20 2.20 2.39 0.19 8.50

16 1.0 2 34.50 1.10 1.02 0.08 7.45

22 1.0 2 66.20 1.30 1.26 0.04 331

30 1.0 2 91.20 1.70 1.55 0.15 9.00

70 1.5 2 52.50 1.70 1.65 0.05 3.18
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Table 3 Springback compensation based on the ML model

Input Sp. compensation output + actual result

D [mm] |¢[mm] |Relative | Target Exp. comp. | Pred. comp. | Absolute | Relative
bending |bending |angle, angle, error [°] error [%]
radius, angle, 6; | AbBcexp [°] | ABcprea [°]
R/D [°]

10 1.0 3 32.00 2.20 2.11 0.09 391

16 1.0 2 33.40 1.10 0.81 0.29 26.10

22 1.0 2 64.90 1.30 1.21 0.09 7.08

30 1.0 2 89.50 1.70 1.91 0.21 12.53

70 1.5 2 50.80 1.70 1.65 0.05 2.82

as follows: the number of particles: 40, learning coefficient: 2.05, maximum weight:
0.9, minimum weight: 0.4, maximum velocity: 1, hybrid probability: 0.7.

After 34 iterations within 300 s, the prediction results can be calculated, as shown
in Table 2. It can be found that the maximum absolute error is 0.188°, the average
relative error is 6.29%. Compared with the traditional PSO-BP model, by introducing
the crossover operator, not only the prediction accuracy is greatly improved but also
the computation time is significantly reduced from 1.5 h to 300 s. For the springback
compensation, the computation is completed after 32 iterations within 200 s. As
shown in Table 3, the predicted compensation angles can agree with the experimental
ones except for one abnormal case. The average absolute error and relative of the
compensation angle are 0.15° and 10.49%, respectively. The maximum absolute error
is 0.29°, which also meets the tolerance of £ 0.3° in many application cases.

However, we can find from the predictions of both springback angles and compen-
sation angles, as shown in Tables 2 and 3, that there is still a pronounced variation in
the prediction errors, which indicates a probability that an unacceptable prediction
occurs. The reason for this variation might be attributed to the sample data used for
training the ML model. In this application, the tube specifications (i.e., outer diameter
and thickness), and bending geometries (i.e., bending angle and bending radius) vary
significantly, however, training data only comprise 46 sets of experimental data from
the historical production process. The accuracy of machine learning is sensitive to the
number of samples and enlarging the high-quality datasets with a certain range can
improve the performance [10, 17]. Thus, for the problem in this work, increasing the
size of high-quality training datasets may be helpful to the improvement of spring-
back prediction and compensation. However, it does not mean that the more data
of samples, the better performance of the model. The large size of datasets always
means an increased computation time. Besides, machine learning can show effec-
tiveness when it is applied to limited types and size of data and well-defined tasks
[10]. It needs further exploration to find an optimal size of datasets, thus ensuring
the performance as well as balancing the efficiency of the ML model.
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5 Conclusions and Outlook

This paper presents a Machine Learning framework for springback prediction and
compensation in tube bending towards the improvement of product dimensional
accuracy, and process flexibility. The model is based on an enhanced PSO-BP algo-
rithm, which enables a strong ability to address the complex influences of material
properties, bending geometries and process parameters on springback, at the same
time, has a high computation efficiency. Using the cold rotary draw bending process
of Al-alloy tubes, the ML model is verified with high accuracy and efficiency in both
springback prediction and compensation. In this application case, the experimental
data that are collected from the historical production process in a company is applied
for model training. Both the flexible bending geometries (i.e., tube diameter, thick-
ness, bending radius, and bending angle) and the variations of material properties
(elastic modulus, yield strength, work hardening exponent, etc.) of the Al-alloy tubes
with respect to different specifications are considered to accommodate their influ-
ences on springback. The process parameters, however, are not yet considered due
to the limited real-time data collection in the forming process.

In future research work, FE simulation-based virtual experiments in combination
with typical physical experiments will be used to provide a big-data source for super-
vised learning of the model, thus improving the prediction/compensation accuracy
and reducing the manufacturing investment. In addition, the model will be integrated
into the manufacturing system of tube bending, thus seeking a self-adaptive enhance-
ment of the model capability by training with the real-time production data. Finally,
a close-loop-control strategy of springback in tube bending will be explored based
on the ML model with both offline and online learning.

Acknowledgments Financial assistance of the Commercial Aircraft Research & Development
Project of China (MJ-2016-G-64), National Science Funds of China (51522509, 51775441) and
NTNU Aluminum Product Innovation Center (NAPIC) is acknowledged.

References

1. LiH, Yang H, MaJ (2018) Tube bending forming technologies: advances and trends. In: Totten
GE et al (eds) Encyclopedia of aluminum and its alloys. CRC Press, Boca Raton, pp 2732-2750

2. Li H Fu MW (2019) Deformation based processing of materials: behavior, performance,
modeling, and control. Elsevier

3. Li H, MaJ, Liu BY et al (2018) An insight into neutral layer shifting in tube bending. Int J
Mach Tools Manufac 126:51-70

4. Wagoner RH, Lim H, Lee MG (2013) Advanced issues in springback. Int J Plast 45:3-20

5. Yang DY, Bambach M, CaoJ etal (2018) Flexibility in metal forming. CIRP Ann 67(2):743-765

6. Welo T (2012) Intelligent manufacturing systems: controlling elastic springback in bending.
IFIP Int Conf Adv Prod Manag Syst, Rhodes, Greece, 24-26 Sept 2012

7. Allwood JM, Duncan SR, Cao J et al (2016) Closed-loop control of product properties in metal
forming. CIRP Ann 65(2):573-596



178

10.

11.

12.

13.

14.

15.

16.

17.

J. Ma et al.

Dezelak M, Pahole I, Ficko M et al (2012) Machine learning for the improvement of springback
modelling. Adv Prod Eng Manag 1:17-26

Nasrollahi V, Arezoo B (2012) Prediction of springback in sheet metal components with holes
on the bending area, using experiments, finite element and neural networks. Mater Des 36:331—
336

Wang JJ, Ma YL, Zhang LB et al (2018) Deep learning for smart manufacturing: methods and
applications. J Manuf Syst 48:144-156

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436-444

Qi X, Chen G, Li Y et al (2019) Applying neural-network-based machine learning to addi-
tive manufacturing: current applications, challenges, and future perspectives. Engineering
5(4):721-729

Li J et al (2012) Brief introduction of backpropagation (BP) neural network algorithm and its
improvement. Adv Comput Sci Inf Eng, Zhengzhou, China, 19-20 May 2012

Kennedy J, Eberhart, R (1995) Particle swarm optimization (PSO). IEEE Int Conf Neural
Networks, Perth, Australia, 27 Nov—1 Dec 1995

Bansal JC et al (2011) Inertia weight strategies in particle swarm optimization. IEEE 3rd World
Cong Nature Biol Inspir Comp, Salamanca, Spain, 19-21 Oct 2011

Chen Y, Li L, Xiao J et al (2018) Particle swarm optimizer with crossover operation. Eng Appl
Artif Intel 70:159-169

Zhang Y, Ling C (2018) A strategy to apply machine learning to small datasets in materials
science. Comput Mater 4(1):1-8



	13  Machine Learning (ML)-Based Prediction and Compensation of Springback for Tube Bending



