
Finding Code-Clone Snippets in Large
Source-Code Collection by ccgrep

Katsuro Inoue1(B), Yuya Miyamoto1, Daniel M. German2, and Takashi Ishio3

1 Osaka University, Osaka, Japan
{inoue,yuy-mymt}@ist.osaka-u.ac.jp

2 University of Victoria, Victoria, Canada
dmg@uvic.ca

3 Nara Institute of Science and Technology, Ikoma-shi, Japan
ishio@is.naist.jp

Abstract. Finding the same or similar code snippets in the source code
for a query code snippet is one of the fundamental activities in software
maintenance. Code clone detectors detect the same or similar code snip-
pets, but they report all of the code clone pairs in the target, which
are generally excessive to the users. In this paper, we propose ccgrep, a
token-based pattern matching tool with the notion of code clone pairs.
The user simply inputs a code snippet as a query and specifies the tar-
get source code, and gets the matched code snippets as the result. The
query and the result snippets form clone pairs. The use of special tokens
(named meta-tokens) in the query allows the user to have precise control
over the matching. It works for the source code in C, C++, Java, and
Python on Windows or Unix with practical scalability and performance.
The evaluation results show that ccgrep is effective in finding intended
code snippets in large Open Source Software.

Keywords: Code snippet search · Pattern matching · Clone types

1 Introduction

Finding and locating the same or similar code snippets in source code files is
a fundamental activity in software development and maintenance, and various
kinds of software engineering tools or IDEs have been proposed and imple-
mented [19].

A (code) clone is a code snippet that has an identical or similar snippet,
and a pair of such snippets is called a (code) clone pair [6]. A large body of
scientific literature on clone detection has been published and various kinds of
code clone detection tools (detectors) have been developed [18,20]. These code
clone detectors are candidates for finding similar code snippets, but most of
those are designed to detect all of the code clone pairs in the target, which are
generally excessive to the user who wants to search for a specific query snippet.

It has been reported that grep [8], a character-based pattern matching tool,
is widely used in the software engineering practice to find lines with a specific
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 28–41, 2021.
https://doi.org/10.1007/978-3-030-75251-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_3

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 29

keyword [14,21], although making a query for a code snippet that spans multiple
lines needs some skill and effort.

In this paper we propose a tool, named ccgrep (code clone grep), to find code
snippets by using the notion of clone detection and pattern matching. Search
queries can be simply code snippets, or code snippets enhanced with meta-tokens
having a leading $ that can provide flexibility to narrow or broaden the search
query. ccgrep is not an ordinary code clone detector that finds all code clone
pairs in the target program but it is a code snippet finder that reports code
snippets composing code clone pairs against the query snippet.

ccgrep works on Windows or Unix as a simple but reliable clone detector
and pattern matching tool for C, C++, Java, and Python. ccgrep has been
applied to various applications, and it showed high scalability and performance
for large source-code collection. ccgrep is an Open Source Software system and
can be obtained from GitHub1.

2 Motivating Example

Some uses of the ternary operator (e.g., exp1 ? exp2 : exp3 meaning the result
of this entire expression is exp2 if exp1 is true, otherwise the result is exp3—
available in C, C++ and Java) are considered bad practice [23]. For example, the
use of a < b ? a : b is arguably harder to read than using min(a,b). Therefore,
it might be desirable to replace the ternary operator with a function or macro
that returns the minimum value. The following is an example found in the file
drivers/usb/misc/adutux.c in the Linux kernel (v5.2.0).

amount = bytes to read < data in secondary ?

bytes to read : data in secondary;

This line of code should be replaced with a more readable expression (note that
the macro min in Linux guarantees no side effects):

amount = min(bytes to read, data in secondary);

We might consider that finding all occurrences of such usage of the ternary
operator could be done by clone detectors. A popular clone detector NiCad [7]
reports 646 block-level clone classes for the drivers/usb files by the default set-
ting, but no snippet with the ternary operator case is included in the result
because it is too small to be detectable.

Alternatively, we would try it with grep but it is not easy. For example,
simply executing “grep ’<’” for all 598 files (total 51,6394 lines in C) under
drivers/usb produces 16335 matching, including many undesired patterns such
as “if (a<b)”, “for (i=0; i<x; ...)”, or “#include <linux/...>”. We could
narrow the matches by concatenating grep like,

1 https://github.com/yuy-m/CCGrep.

https://github.com/yuy-m/CCGrep

30 K. Inoue et al.

grep ’<’ -r . | grep ’?’ | grep ’:’

However, it still produces 149 matches. Perhaps more problematic is that the
expressions could span multiple lines. While it is possible to create a complex
regular expression to find these expressions, it would be time-consuming and
potentially error-prone.

Ideally, we would like to be able to specify a simple and easy-to-create-and-
understand query to find these types of snippets. Therefore in this paper, we
propose ccgrep and its query is written simply as:

a < b ? a : b

In a nutshell, this query specifies that a variable (represented by a) should be
followed by < and then the second variable (represented by b), followed by a ?,
followed by the same first variable found, followed by :, followed by the second
variable. Also, white spaces and comments should be ignored. This query would
match all type 2 clones (mentioned in Sect. 3.3) with consistent variable names
such as x<y?x:y but it would not match x<y?x:z.

As a practical application, we have used this query to identify 3 instances
of such an expression in Linux’s drivers/usb and submitted patches to replace
them with min. Two of those patches have been accepted already into Linux.

3 Overview of Code Clone Query by ccgrep

3.1 Basic Features

The input of ccgrep is the query and the target of the source code files in the
same programming language. The output is a list of the matched code snippets
in the target. The query and the matched code snippets form clone pairs. The
query is a code snippet of single or multiple lines and is composed of the regular
tokens in the language and the extended tokes with meta symbols having a
leading $. We will describe these based on the classification of the clone types.
Formalization of the matching is presented in Appendix and also in [11].

3.2 Query for Type 1 Clone

A Type 1 code clone pair is two code snippets possibly with different spacing,
line break, or comment. To find type 1 cloned snippets, a code snippet in the
programming language is directly given as the query, with a leading $ for each
identifier or literal. Note that in the following examples, we will use Java as the
programming language.

Query: int $a= $0;

Target: int a=0 /* some comments */; Match
Target: int b=0 ; Not Match

In this case, the query matches a code snippet with a comment, but it does not
match the latter case of identifier b. The users do not worry about the white
spaces and comments in the query.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 31

3.3 Query for Type 2 Clone

A Type 2 code clone pair is two code snippets with the difference of the replace-
ment of identifiers and literals, in addition to the difference of type 1 clones.

In type 2 matching, a user-defined identifier in the query matches any iden-
tifier in the target. The same also applies to literal. This “normalization” of the
user-defined names allows very flexible pattern matching to find different iden-
tifiers or literals. By default, ccgrep executes so-called Parameterized match [3]
or P-match for short, such that if two identifiers (or literals) in the query are
the same, then the corresponding tokens in the target must be consistently the
same. These normalization and p-match are formally explained in Appendix.

Query: a = 0; a = a + b;

Target: y = 0; y = y + c; Match

Target: y = 0; y = z + c; Not Match

In the former case, a consistently corresponds to y, but in the latter case, it does
not2.

3.4 Query for Type 3 Clone

A Type 3 code clone pair is two code snippets with a difference of some state-
ments of addition, deletion, or change, in addition to the distinction of type 2.
We employ wild-card tokens in the query, which extend the matching from the
original seed tokens. The seed snippet and the matched snippet form a code
clone pair of type 3. We can replace a token in the seed snippet with ‘$.’ that
matches any single token.

Seed: a = 5 ;

Query: a = $. ;

Target: a = b ; Match

‘$$’ is a wild-card token to match zero or more tokens before the next token
matches.

Seed: a = 10 ;

Query: a = $$;

Target: a = b+c+10 ; Match

Target: a = f(g,h) ; Match

The following is a more complex example.

Seed: a= f(q); if(a<0){a=-a;}
2 This can be changed by an option to allow inconsistent matching.

32 K. Inoue et al.

Query: a= $f(p); $$ if(a<0){a=-a;}
Target: b= f(q); if(b<0){b=-b;} Match

Target: b= f(q); c= c+10; d=20; if(b<0){b=-b;} Match

3.5 Finding Various Code Snippets

Combining the regular tokens and meta-tokens in the query, we can find many
different kinds of code patterns in the target, from simple to complex ones.

Method XY Z with no parameter
Query: $XYZ()

Method XY Z with 0 or more parameters
Query: $XYZ($$)

Method print with variable buf as the 1st parameter
Query: $print($buf, $$)

Any method definition
Query: T f($$){$$}

Note that type names are treated as identifiers and then T matches any type
name.

Getter method
Query: T f(){return this.v;}

Setter method
Query: T1 f(T2 v1){this.v1=v2;}

if statement
Query: if ($$){$$}

for statement using control variable
Query: for(T i=0; i<$$; i++){$$}

In addition to finding these patterns, one of the usable use-cases would be
a copy-and-paste code search. A developer finds a bug in a system and locates
the snippet that causes the defects. She would want to find the same or similar
occurrences of the bug in the system, then she copies the buggy snippet and
runs ccgrep with the pasted snippet as the query. Then she instantly gets type
2 clone snippets. She does not need to set up a heavy clone detector, nor does
she need to do tedious analysis of the unnecessary detection results.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 33

4 Architecture of ccgrep

The architecture of ccgrep is presented in Fig. 1.

Target

Query

Option

Tokenizer

Tokenizer

Tokenizer
Generator

Language
Definition

Extended
Token

Definition

CC
Matcher

Output
Formatter Output

Map Table

Tokenizer
Generation
(executed only
once for each
language)

Token
Sequence

Token
Sequence

ccgrep

Tokenizer
Generator

Fig. 1. Architecture of ccgrep

Tokenizer Generators: Parser generator ANTLR is used to generate two kinds
of tokenizers. For the target tokenization, only the language definition is used
to recognize the regular tokens, but for the query tokenization, the definition
of the meta-tokens and that of regular tokens are used. This process has been
executed only once for each target language.

Tokenizers: Each tokenizer removes white spaces and comments from the input
files and decomposes the code into tokens. The query tokenizer accepts the
meta-tokens starting with $ and the regular tokens defined by the language,
but the target tokenizer accepts only the regular tokens. The tokenizer for
the target files is executed in parallel for each file, along with the following
CC Matcher.

CC Matcher: This performs a naive sequential pattern matching algorithm
between two token sequences for the query (of the length m) and the target
(of the length n), whose worst-case time complexity is O(mn) [9]. For type
2 code clone matching, we record the position for each identifier and literal
in Map Table to check proper P-matching. The table contents are flushed for
each query. Option controls the normalization level, input language, output
form, and many others.

Output Formatter: This process constructs the output for the successful
matching result. Based on the input option, we can view the match result,
like grep, in the form of the file name associated with the matched top line
as the default, or as many other styles such as full matched lines, only the
number of lines, or so on.

34 K. Inoue et al.

ccgrep is written in Java associated with the ANTLR output, and it is very
easily installed and executed on various Unix or Windows environments with a
single JAR file (about 1M byte) containing all necessary libraries.

5 Evaluation

The goal of the evaluation is to show that our proposed approach can find various
kinds of intended code snippets effectively and efficiently. This goal could be
decomposed into the following three research questions.

RQ1: Query Expressiveness. Are queries for various types of code clones
expressible by ccgrep?

RQ2: Accuracy of ccgrep. Does ccgrep accurately find various types of code
clones already detected by other approaches?

RQ3: Performance of ccgrep. What is the execution time of ccgrep? Is
the token-based naive sequential pattern matching approach fast enough in
practice?

5.1 RQ1: Query Expressiveness

As shown in previous sections, it is obvious that our approach can easily create
various query patterns for type 1 matching, type 2 matching with P-match,
and type 2 matching with non-P-match, by specifying a code snippet associated
with appropriate options. In addition, we can specify the name of an identifier
or literal, if we place $ before the name.

A type 3 code-clone snippet is one with a few statement addition, or deletion,
or change for a seed snippet. Thus the query for type 3 matching could be made
from the seed by adding meta-tokens such as $., $$, or $*, deleting some regular
tokens in the seed, or modifying some regular tokens with $., $$, or other meta-
tokens.

Therefore, the queries for type 1 to 3 code clones can be effectively created
from a code snippet at hand.

5.2 RQ2: Accuracy of ccgrep

For evaluation of query-matching (or information retrieval) systems, recall and
precision values, computed by comparing the matched results with the oracles for
the queries, are popularly employed [2]. Here in our approach, however, the query
to CC matching has no ambiguity and it reports the matching result rigorously
as expected and specified by the query with options. In such a sense, the result
is always the same as the oracle, i.e., the recall and precision are always 1. Thus,
instead of using recall and precision, here we simply investigate if ccgrep works
accurately in the sense that code clones already reported by other approaches
could be found by our approach.

For this purpose, first, we have employed BigCloneBench [24] which is a huge
collection of various kinds of code clones. We have extracted all pairs classified

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 35

as type 1 and type 2 code clones from BigCloneBench, and for each clone pair
(sp1, sp2), we have checked if sp2 is successfully found in the result of ccgrep
for sp1 as a query with appropriate options, and vice versa. Table 1 shows the
numbers of type 1 and 2 clones found by ccgrep.

Table 1. Checked clones in BigCloneBench

Clone type Clone pairs Found Not found

Type 1 48116 48111 5

Type 2 4234 4232 2

Total 52350 52343 7

As we can see in Table 1, most type 1 and 2 clones are found accurately.
There were several cases of not-found clones, and we have investigated further
those cases and recognized that those cases are faults of the classification of
BigCloneBench, some of which should be classified into type 3, and some others
are not clones. Thus, we can say that all of the proper type 1 and 2 clones in
BigCloneBench were perfectly found by ccgrep.

For type 3 clones, since BigCloneBench contains huge type 3 data and we
cannot make the queries for those, we have instead used CBCD data [16], that
contains 11 type-3 clone sets taken from the source code of Git, the Linux kernel,
and PostgreSQL. We have crafted type 3 queries from one of the code snippets
in each clone set as the seed and have checked if those queries accurately match
the other snippets in the same clone set. We have confirmed that all the crafted
queries accurately match other snippets in each clone set.

As far as our investigation, all the matches are controlled by the query and
are performed accurately as we have expected.

5.3 RQ3: Performance of ccgrep

It is interesting to know that our approach, i.e., token-based and naive sequential
pattern matching, can be implemented fast enough for practical use. We have
examined various queries for ccgrep with the target source files of Antlr and
Ant in Java, and CBCD data (Git, PostgreSQL, and Linux Kernel) in C, and
have measured the performance of ccgrep. Following are employed queries. All
execution was made with the default setting of ccgrep except for the language
option.

qA: a < b? a: b
Find ternary operation to give a smaller value.

qB: T1 f(T2 a) { return $$; }
Find function definition immediately returning a value.

qC: f($$, $$, $$);
Find three parameter function.

36 K. Inoue et al.

qD:
for(a = 0; a < $$; a++) { $$ } $|
a = 0; while(a < $$) { $$ a++; }

Find for or (represented by $|) while statement with a control variable.

Table 2. Target and execution result by ccgrep

Target Antlr Ant Git PgSQL Linux

Lang. Java Java C C C

#file 678 1,272 339 904 15,123

#line 59,511 138,396 90,495 177,174 3,756,212

qA #found 0 2 8 3 48

time (sec.) 1.12 1.32 1.11 1.43 9.46

qB #found 159 161 7 27 543

time (sec.) 1.15 1.33 1.10 1.47 10.15

qC #found 1,710 2,487 5,717 10,603 187,653

time (sec.) 1.20 1.38 1.13 1.55 12.01

qD #found 1 13 442 621 10,754

time (sec.) 1.19 1.52 1.10 1.49 11.06

Antlr: Antlr4 v.4.7.2, Ant: Apache Ant v.1.10.5, Git: v.1.6.4.3,
PgSQL: PostgreSQL v.6.5.3, Linux: Linux kernel v.2.6.14rc2

Table 2 shows the size metrics of the target, the number of found snippets,
and the execution time of each query on a workstation with Intel Xeon E5-1603v4
(@2.8 GHz × 4), 32 GB RAM, and Windows 10 Pro for WS 64bit.

As we can see from Table 2, the execution times are about 1–10 s even for a
few million lines of Linux kernel target. We would think that those are fast and
acceptable as a daily-use tool. The execution times for qA to qD are very stable
for each target. For example, in the case of Linux, they are about 10 s. even for
the small #found case (48 for qA) and the large #found case (187,653 for qC).
Thus, we would say that the execution time is not heavily affected by the result
size (#found) but mainly affected by the target size (#line). Targets Ant in Java
and PgSQL in C have similar sizes around 140–180 Klines, and the execution
times are also similar around 1–1.5 s. This would show that the execution time
is not strongly affected by the target language.

For comparison to grepwe have employed a query qE, that is almost equiv-
alent to qA except qE does not match the targets with more than one line.

qE(grep):
([a-zA-Z][a-zA-Z 0-9]*)\s*<
([a-zA-Z][a-zA-Z 0-9]*)\s*\?\s*
\1\s*:\s*\2

This query is complex and hard to create for inexperienced grep users. It has
been executed by grep 3 to 9 times faster than ccgrep, but it missed some
expected matches of the code snippets with two or more lines.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 37

As the conclusion of RQ3, although the speed of ccgrep is slower than grep,
it is sufficiently fast and acceptable as a search tool even for large targets such
as 3 million LOC Linux kernel.

6 Related Works

There are numerous publications on code clone detection methods and their
tools [18,20]. Most of those tools focus on finding all of the code clone pairs in the
target file collection. They report all code clones or similar code snippets with
similarities higher than a certain threshold. Precisely controlling the matches
with meta-symbols like ours cannot be accomplished by those approaches.

There are several tools specialized for finding code snippets. CBCD has been
designed for finding related code snippets from a buggy code snippet, by using
matching of Program Dependence Graph (PDG) [16]. It can be used to find
type 1, 2, and 3 clones; however, the matching generally requires a long pre-
processing time to construct PDG, and so this approach would not fit the nimble
clone finding that we are interested in. NCDSearch has been designed to find
similar code snippets in the pile of source code files for the analysis of code
reuse and evolution [12]. The approach would be unique and interesting, but the
speed is slower than ours. Micro-clones are recently getting focus due to their
importance [4,13]. Our tool is one of the convenience tools for finding micro
clones.

Siamese has been developed for finding code clone pairs for a query method
or file using multiple representations of n-gram token sequences with inverted
index [17]. It requires a long indexing time (e.g., about 10 min indexing time for
10,000 method target). Thus its application and usage would be different from
ours.

Variants of grep such as context grep cgrep, approximate grep agrep, and
many others had been proposed and implemented to meet various require-
ments [1]. However, there is no one for clone-based matching like ours.
Semantic-based matching tool sgrep [5], data-structure-based matching tool
coccigrep [15], and the logic-based query pattern capturing language [22] were
proposed, where the specific notations for the queries are provided without using
the notion of clones like ours.

7 Conclusions

We have presented ccgrep that effectively finds code snippets in the target files
with the notion of code clone and meta-pattern. It is a practical and effective
pattern matching tool, easy-to-use to many software engineers.

As a future direction, we are interested in further performance improvement
by using more efficient pattern matching algorithms. Also, we are trying to
spread the use of ccgrep to industry collaborators who are trying to detect
similar bug patterns in their legacy systems.

38 K. Inoue et al.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 18H04094, and Osaka University Program for Promoting International Joint
Research. We are grateful for important comments from T. Kamiya, N. Yoshida, Raula
Gaikovina Kula, E. Choi, K. Takenouchi, T. Kanda, and M. Matsushita.

Table 3. Token-level matching

Token(s) in query Matched token(s) in
target

Simple example of match

Query Target

Reserved word† Exact reserved word while while

Delimiter Exact delimiter ((

Identifier Any identifier‡ myname abc

Literal Any literal‡ 1 100

$identifier Exact identifier $myname myname

$literal Exact literal $1 1

$. Any single token $. if

$# X Any shortest token
sequence ending
with X

$# + while(f(a+

$$ X Any shortest token
sequence ending
with X, excluding X
inside well-balanced
bracket {...}, [...], or
(...)

$$ + while(f(a+1))+

X $— Y Either X or Y + $| - -

X $* Repeated sequence
of X zero or more
times

($* (((

X $+ Repeated sequence
of X one or more
times

($+ ((

X $? X or none ($? (

$(X1 X2 ... $) X1, X2, ... (group
for further regular
expression
operations)

$(a++ $| ++a $) a++

†Type names are treated as identifiers.
‡Identifier and literal may match only the exact one by an option.
- Tokens starting with $ are meta-tokens and others are regular tokens.
- Wildcard meta-tokens $# and $$ match in reluctant way, and $*, $+, and $? match in
possessive way [10].
- X, Y, X1, X2, ... are any regular token or a group with $(... $).

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 39

Appendix: Formulating Matching

Here we formulate the matching made by ccgrep. The input of the matching
is the query q, the target T of source code files in a programming language L,
and matching option o. The output is a list of matched code snippet t in T .
We refer to reserved words, delimiters (operators, brackets, ; ...), identifiers, and
literals in L as regular tokens. Other tokens starting with meta symbol $ are
called meta-tokens. q is a sequence of regular tokens and the meta-tokes, and
each matched result t is a sequence of the regular tokens. These token sequences
do not contain comments, white spaces, or line breaks. We always consider the
matching on the token sequence level, not on the character level.

In Table 3, we define a token-level matching for various kinds of tokens with
simple examples. The basic ideas of these matches are as follows.

– A language-defined token such as reserved words or delimiters matches the
exact token.

– A user-defined token such as an identifier or literal can match the same kind of
token with a possibly different name or value. To pin down them to a specific
identifier name or literal value, $ is used before the token. For example, $count
would match only the token count.

– Wildcard tokens $., $#, and $$ are introduced for the matches to any single
token, any token sequence, or any token sequence discarding paired brackets,
respectively.

– Popular regular expression operators for choice, repetition, and grouping are
introduced to enhance the expressiveness.

Consider that query q is a token sequence q1, ..., qm (1 ≤ m), and a target
t is a token sequence t1, ..., tn (0 ≤ n). From q1 to qm, if each token in the
query matches tokens in the target from t1 to tn as defined in Table 3 without
overlapping or orphan tokens, then we say q matches t.

For the query token sequence q1, ..., qm and the target token sequence
t1, ..., tn, if n = m and norm(qi) = norm(ti) for each i, then q matches t as
type 2 matching. Here norm is a normalization function to flat the distinction
of identifiers (or literals), defined below.

norm(x) ≡
⎧
⎨

⎩

#id if x is an identifier
#li if x is an literal
x otherwise

In type 2 matching, an identifier in the query can match any identifier in the
target, and also a literal in the query can match any literal in the target.

q1: a = 0; b = 10;
t1: x = 10; y = 200;

q1 matches t2, because the sequences of the normalized tokens are both [#id,=,
#li, ; ,#id,=,#li, ;].

40 K. Inoue et al.

A special case of type 2 matching, with a constraint such that for any identi-
fier or literal qi if qi = qj , then ti = tj , is Parameterized matching or P-matching.
This is sometimes referred to consistent or aligned matching, meaning the same
identifiers (or literals) in the query are mapped into the same ones in the tar-
get. P-matching is formally defined with a specialized normalization function
normp(), as follows.

normp(x) ≡
⎧
⎨

⎩

#idpos(x) if x is an identifier
#lipos(x) if x is a literal
x otherwise

Here, pos(x) is a function returning position i such that identifier (or literal) x is
the i-th identifier (literal) newly appeared in the token sequence. Note that any
meta-token starting with $ in the query and their matched tokens in the target
are out of consideration of pos().

q2: a = 0; a = a + b;
t2: y = 0; y = y + c;

For q2, pos(a) = 1 and pos(b) = 2, and for t2, pos(y) = 1 and pos(c) = 2.
q2 matches t2 as P-matching, because the P-normalized sequences are both
[#id1,=,#li1, ; ,#id1,=,#id1,+,#id2, ;]. The following case is type 2 matching
but not P-matching.

q3: a = 0; a = a + b;
t3: y = 0; y = z + c; (type 2 matching but not P-matching)

At t3, z cannot be matched by a because normp(a) = #id1 is not equal to
normp(z) = #id2. As a default of CC matching, P-matching is assumed but it
can be changed by the tool’s option.

References

1. Abou-Assaleh, T., Ai, W.: Survey of global regular expression print (grep) tools
(2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.3326

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM
Press/Addison-Wesley, New York (1999)

3. Baker, B.S.: A program for identifying duplicated code. In: Proceedings of Com-
puting Science and Statistics: 24th Symposium on the Interface, vol. 24, pp. 49–57
(1992)

4. Beller, M., Zaidman, A., Karpov, A., Zwaan, R.A.: The last line effect explained.
Empir. Softw. Eng. 22(3), 1508–1536 (2016). https://doi.org/10.1007/s10664-016-
9489-6

5. Bull, R.I., Trevors, A., Malton, A.J., Godfrey, M.W.: Semantic grep: regular expres-
sions + relational abstraction. In: 2002 Proceedings of the Ninth Working Confer-
ence on Reverse Engineering, pp. 267–276, November 2002. https://doi.org/10.
1109/WCRE.2002.1173084

6. Carter, S., Frank, R., Tansley, D.: Clone detection in telecommunications software
systems: a neural net approach. In: Proceedings of the International Workshop on
Application of Neural Networks to Telecommunications, pp. 273–287 (1993)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.3326
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1109/WCRE.2002.1173084
https://doi.org/10.1109/WCRE.2002.1173084

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 41

7. Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension, pp. 219–220, June 2011. https://doi.org/
10.1109/ICPC.2011.26

8. FreeSoftwareFoundation: Gnu grep 3.3 manual (2018). https://www.gnu.org/
software/grep/manual/grep.html

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York (1997)

10. Habibi, M.: Java Regular Expressions: Taming the Java.util.regex Engine. Apress
(2004). https://doi.org/10.1007/978-1-4302-0709-2

11. Inoue, K., Miyamoto, Y., German, D.M., Ishio, T.: Code clone matching: a practical
and effective approach to find code snippets. arXiv CS.SE(2003:05615v1), pp. 1–11
(2020)

12. Ishio, T., Maeda, N., Shibuya, K., Inoue, K.: Cloned buggy code detection in prac-
tice using normalized compression distance. In: 2018 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, 23–29
September 2018, pp. 591–594 (2018)

13. Islam, J., Mondal, M., Roy, C., Schneider, K.: Comparing bug replication in regular
and micro code clones. In: 27th International Conference on Program Comprehen-
sion (ICPC 2019), pp. 81–92, May 2019

14. Kernighan, B., Pike, B.: The Practice of Programming. Addison-Wesley, Boston
(1999)

15. Leblond, E.: Coccigrep introduction. http://home.regit.org/software/coccigrep/
16. Li, J., Ernst, M.D.: CBCD: cloned buggy code detector. In: 2012 34th International

Conference on Software Engineering (ICSE), pp. 310–320, June 2012. https://doi.
org/10.1109/ICSE.2012.6227183

17. Ragkhitwetsagul, C., Krinke, J.: Siamese: scalable and incremental code clone
search via multiple code representations. Empir. Softw. Eng. 24(4), 2236–2284
(2019). https://doi.org/10.1007/s10664-019-09697-7

18. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: a systematic review.
Inf. Softw. Technol. 55(7), 1165–1199 (2013)

19. Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do professional developers
comprehend software? In: Proceedings of the 34th International Conference on
Software Engineering, ICSE 2012, pp. 255–265. IEEE Press, Piscataway (2012).
http://dl.acm.org/citation.cfm?id=2337223.2337254

20. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

21. Singer, J., Lethbridge, T.C.: Whatś so great about ‘grep’? Implications for program
comprehension tools. Technical report, National Research Council, Canada (1997)

22. Sivaraman, A., Zhang, T., Van den Broeck, G., Kim, M.: Active inductive logic
programming for code search. In: Proceedings of the 41st International Conference
on Software Engineering, pp. 292–303. IEEE Press (2019)

23. Soetens, Q.D., Demeyer, S.: Studying the effect of refactorings: a complexity met-
rics perspective. In: 2010 Seventh International Conference on the Quality of Infor-
mation and Communications Technology, pp. 313–318, September 2010. https://
doi.org/10.1109/QUATIC.2010.58

24. Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with BigCloneBench.
In: 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 131–140. IEEE (2015)

https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1109/ICPC.2011.26
https://www.gnu.org/software/grep/manual/grep.html
https://www.gnu.org/software/grep/manual/grep.html
https://doi.org/10.1007/978-1-4302-0709-2
http://home.regit.org/software/coccigrep/
https://doi.org/10.1109/ICSE.2012.6227183
https://doi.org/10.1109/ICSE.2012.6227183
https://doi.org/10.1007/s10664-019-09697-7
http://dl.acm.org/citation.cfm?id=2337223.2337254
https://doi.org/10.1109/QUATIC.2010.58
https://doi.org/10.1109/QUATIC.2010.58

	Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep
	1 Introduction
	2 Motivating Example
	3 Overview of Code Clone Query by ccgrep
	3.1 Basic Features
	3.2 Query for Type 1 Clone
	3.3 Query for Type 2 Clone
	3.4 Query for Type 3 Clone
	3.5 Finding Various Code Snippets

	4 Architecture of ccgrep
	5 Evaluation
	5.1 RQ1: Query Expressiveness
	5.2 RQ2: Accuracy of ccgrep
	5.3 RQ3: Performance of ccgrep

	6 Related Works
	7 Conclusions
	References

