
Davide Taibi
Valentina Lenarduzzi

Terhi Kilamo
Stefano Zacchiroli

(Eds.)

17th IFIP WG 2.13 International Conference, OSS 2021
Virtual Event, May 12–13, 2021
Proceedings

Open Source Systems

IFIP AICT 624

IFIP Advances in Information
and Communication Technology 624

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Luís Soares Barbosa , University of Minho, Braga, Portugal

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall , Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Burkhard Stiller, University of Zurich, Zürich, Switzerland

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps , National University of Ireland, Galway, Ireland

TC 10 – Computer Systems Technology
Ricardo Reis , Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell , Plymouth University, UK

TC 12 – Artificial Intelligence
Eunika Mercier-Laurent , University of Reims Champagne-Ardenne, Reims, France

TC 13 – Human-Computer Interaction
Marco Winckler , University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

http://orcid.org/0000-�0002-�5037-�2588
http://orcid.org/0000-�0003-�4317-�971X
http://orcid.org/0000-�0002-�5776-�2888
http://orcid.org/0000-�0001-�5781-�5858
http://orcid.org/0000-�0003-�0984-�7542
http://orcid.org/0000-0003-2303-7263
http://orcid.org/0000-�0002-�0756-�6934

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Davide Taibi • Valentina Lenarduzzi •

Terhi Kilamo • Stefano Zacchiroli (Eds.)

Open Source Systems
17th IFIP WG 2.13 International Conference, OSS 2021
Virtual Event, May 12–13, 2021
Proceedings

123

Editors
Davide Taibi
Tampere University
Tampere, Finland

Valentina Lenarduzzi
LUT University
Lahti, Finland

Terhi Kilamo
Tampere University
Tampere, Finland

Stefano Zacchiroli
Université de Paris and Inria
Paris, France

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-75250-7 ISBN 978-3-030-75251-4 (eBook)
https://doi.org/10.1007/978-3-030-75251-4

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3210-3990
https://orcid.org/0000-0003-0511-5133
https://orcid.org/0000-0002-9561-1116
https://orcid.org/0000-0002-4576-136X
https://doi.org/10.1007/978-3-030-75251-4

Preface

This book constitutes the refereed proceedings of the 17th IFIP WG 2.13 International
Conference on Open Source Systems, OSS 2021, held in Lahti, Finland, during May
12–13, 2021. Due to the COVID-19 pandemic, the conference was held virtually.

The 6 revised full papers and 1 short paper presented were carefully reviewed and
selected from 23 submissions (a 30.4% acceptance rate). All of the submitted research
papers went through a rigorous peer-review process. Each paper was reviewed by at
least two members of the Program Committee.

The papers cover a wide range of topics in the field of free/libre open source
software (FLOSS) and discuss theories, practices, experiences, and tools relating to the
development and applications of FLOSS systems. There is a specific focus on two
aspects: the development of open source systems and the underlying technical, social,
and economic issues; and the adoption of FLOSS solutions and the implications of such
adoption, both in the public and in the private sector.

We hope that you find the OSS 2021 proceedings useful for your professional and
academic activities, and that you enjoyed the conference. Finally, we would like to
thank all the people who have contributed to OSS 2021 including the authors, the
sponsors, the reviewers, the volunteers, and the chairs.

March 2021 Davide Taibi
Valentina Lenarduzzi

Terhi Kilamo
Stefano Zacchiroli

Organization

Organizing Committee

General Chair

Davide Taibi Tampere University, Finland

Program Co-chairs

Valentina Lenarduzzi LUT University, Finland
Stefano Zacchiroli Université de Paris and Inria, France

Special Issue Chair

Fabio Palomba University of Salerno, Italy

Proceedings Chair

Terhi Kilamo Tampere University, Finland

Publicity Chair

Gemma Catolino Tilburg University and Jheronimus Academy of Data
Science, Netherlands

Local Co-chairs

Sami Hyrynsalmi LUT University, Finland
Sonja Hyrynsalmi LUT University, Finland

Virtualization Co-chairs

Antti Knutas LUT University, Finland
Francesco Lomio Tampere University, Finland
Savanna Lujan Tampere University, Finland
Sergio Moreschini Tampere University, Finland

Web Chair

José Carlos Camposano LUT University, Finland

Program Committee

Valentina Lenarduzzi LUT University, Finland
Stefano Zacchiroli Université de Paris and Inria, France
Alexandre Decan University of Mons, Belgium

Ann Barcomb Friedrich-Alexander University Erlangen-Nürnberg,
Germany / Lero - The Irish Software Research
Centre and University of Limerick, Ireland

Moritz Beller Facebook, USA
Fabio Calefato University of Bari, Italy
Andrea Capiluppi Brunel University London, UK
Paolo Ciancarini University of Bologna, Italy / Innopolis University,

Russia
Kevin Crowston Syracuse University, USA
Javier Luis Cánovas

Izquierdo
IN3-UOC, Spain

Tapajit Dey Lero - The Irish Software Research Centre and
University of Limerick, Ireland

Davide Di Ruscio University of L’Aquila, Italy
Dirk Riehle Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Stefane Fermigier Abilian SAS, France
Christina von Flach Garcia

Chavez
Federal University of Bahia, Brazil

Jesus M.
Gonzalez-Barahona

Universidad Rey Juan Carlos, Spain

Akinori Ihara Wakayama University, Japan
Daniel Izquierdo Cortazat Bitergia, Spain
Daniel S. Katz University of Illinois at Urbana-Champaign, USA
Luigi Lavazza Università degli Studi dell’Insubria, Italy
Panos Louridas Athens University of Economics and Business, Greece
Björn Lundell University of Skövde, Sweden
Manuel Mazzara Innopolis University, Russia
Paulo Meirelles University of São Paulo, Brazil
Sandro Morasca Università degli Studi dell’Insubria, Italy
Tetsuo Noda Shimane University, Japan
Lucas Nussbaum University of Lorraine, France
Antoine Pietri Inria, France
Peter Rigby Concordia University, Canada
Gregorio Robles Universidad Rey Juan Carlos, Spain
Alberto Sillitti Innopolis University, Russia
Diomidis Spinellis Athens University of Economics and Business, Greece
Igor Steinmacher Universidade Tecnológica Federal do Paraná, Brazil
Anthony I. (Tony)

Wasserman
Carnegie Mellon, Silicon Valley, USA

viii Organization

Contents

Comparing Static Analysis and Code Smells as Defect Predictors:
An Empirical Study. 1

Luigi Lavazza, Sandro Morasca, and Davide Tosi

Enabling OSS Usage Through Procurement Projects: How Can Lock-in
Effects Be Avoided? . 16

Björn Lundell, Jonas Gamalielsson, Simon Butler, Christoffer Brax,
Tomas Persson, Anders Mattsson, Tomas Gustavsson, Jonas Feist,
and Jonas Öberg

Finding Code-Clone Snippets in Large Source-Code Collection by
ccgrep . 28

Katsuro Inoue, Yuya Miyamoto, Daniel M. German, and Takashi Ishio

OSS PESTO: An Open Source Software Project Evaluation
and Selection TOol . 42

Xiaozhou Li and Sergio Moreschini

OSS Scripting System for Game Development in Rust. 51
Pablo Diego Silva da Silva, Rodrigo Oliveira Campos, and Carla Rocha

Open Source Communities and Forks: A Rereading in the Light of Albert
Hirschman's Writings. 59

Robert Viseur and Amel Charleux

Software Change Prediction with Homogeneous Ensemble Learners on
Large Scale Open-Source Systems. 68

Megha Khanna, Srishti Priya, and Diksha Mehra

Author Index . 87

Comparing Static Analysis and Code
Smells as Defect Predictors:

An Empirical Study

Luigi Lavazza1(B) , Sandro Morasca1,2 , and Davide Tosi1

1 Università degli Studi dell’Insubria, Varese, Italy
{luigi.lavazza,davide.tosi}@uninsubria.it

2 Università degli Studi dell’Insubria, Como, Italy
sandro.morasca@uninsubria.it

Abstract. Background. Industrial software increasingly relies on open
source software. Therefore, industrial practitioners need to evaluate the
quality of a specific open source product they are considering for adop-
tion. Automated tools greatly help assess open source software quality,
by reducing the related costs, but do not provide perfectly reliable indi-
cations. Indications from tools can be used to restrict and focus manual
code inspections, which are typically expensive and time-consuming, only
on the code sections most likely to contain faults. Aim. We investigate
the extent of the effectiveness of static analysis bug detectors by them-
selves and in combination with code smell detectors in guiding inspec-
tions. Method. We performed an empirical study, in which we used a bug
detector (SpotBugs) and a code smell detector (JDeodorant). Results.
Our results show that the selected bug detector is precise enough to
justify inspecting the code it flags as possibly buggy. Applying the con-
sidered code smell detector makes predictions even more precise, but at
the price of a rather low recall. Conclusions. Using the considered tools
as inspection drivers proved quite useful. The relatively small size of our
study does not allow us to draw universally valid conclusions, but our
results should be applicable to source code of any kind, although they
were obtained from open source code.

Keywords: Defect prediction · Code smell · Static analysis

1 Introduction

Software inspections [5,6,12,13] are one of the main techniques that have been
proposed for discovering defects in code, to prevent defective software from being
released. Software inspections are often performed with the help of checklists,
i.e., lists of recurrent issues that usually lead to software failure.

Software bug detectors based on static analysis were developed to auto-
matically recognize code patterns that are generally associated with defects.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 1–15, 2021.
https://doi.org/10.1007/978-3-030-75251-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_1&domain=pdf
http://orcid.org/0000-0002-5226-4337
http://orcid.org/0000-0003-4598-7024
http://orcid.org/0000-0003-3815-2512
https://doi.org/10.1007/978-3-030-75251-4_1

2 L. Lavazza et al.

Bug detectors perform a sort of “automated” inspection, as opposed to the “man-
ual” inspection performed by developers. Unfortunately, static analysis cannot
in general provide conclusive evidence of defects. Since many properties related
to software defects are undecidable, the indications provided by bug detectors
must be verified by developers. In practice, developers have to manually inspect
the portions of code that are flagged as possibly defective by tools. Because of
their high cost, manual inspections are usually performed only on the sections
of code that are considered particularly important or very error-prone. In this
sense, bug detectors may be very effective, since they indicate which parts of the
code are worth inspecting manually.

The concept of “code smell” was introduced to describe a code structure that
is likely to cause problems [8,16,36]. The original introduction of the concept of
code smell was based on the manual examination of the source code, as witnessed
by a few indications. First, Fowler et al. [16] provided only informal descriptions
of code smells, since code smells are expected to be easily recognized as inad-
equate code structures by professional software coders. Second, they did not
intend to provide any precise measurement-based definition of code smells (“In
our experience no set of metrics rivals informed human intuition” [16]). Third,
no additional evidence was required that code smells actually have detrimental
effects on software. The very same act of code analysis by which a developer
recognizes a code smell also lets him/her recognize its harmfulness, hence a sit-
uation that is not deemed dangerous is not classified as a code smell, even when
the code structurally matches the definition of a code smell.

However, manual code smell detection involves the same type of costs as
manual inspections. Therefore, to reduce development costs [23], researchers
have developed tools for automatically detecting code smells [9,28,29,43,44,50].
Automation was made possible by precise definitions of code smells, generally
based on static measures of source code [27].

Even though automatic code smell detectors have been available for a few
years, there is little evidence that automatically detected code smells are actu-
ally associated with quality issues: there are both reports that support and do
not support the association of the presence of code smells with software qual-
ity issues. For instance, Olbrich et al. [30] and Palomba et al. [31] reported
findings supporting the hypothesis that god class hinders maintainability, while
Schumacher et al. [38], Sjøberg et al. [40] and Yamashita et al. [48] reported
findings not supporting the hypothesis. Some articles even report cases in which
an improvement of software quality in presence of code smells was observed [17].

Other papers studied the correlation between code smells and some struc-
tural problems reported by FindBugs, without checking manually whether the
detected structural problems correspond to actual defects [11,41,51]. In our view,
code sections that are classified as smelly by automated detectors should be con-
sidered as code sections that need to be manually inspected, to check whether
the conditions that could hamper software quality are satisfied.

Given that bug detectors have proved to work reasonably well in detecting
real bugs [24,45,52], and that manual inspections are expensive, it would be

Comparing Static Analysis and Code Smells as Defect Predictors 3

important for software developers to know how well automated bug detectors
work by themselves and in combination with code smell detectors. In fact, prac-
titioners who have a given budget for inspections must decide how they should
spend it most effectively. Should they favor the indications by bug detectors?
Should they inspect the code flagged by automated smell detectors? Or maybe
should they proceed to modify the code without inspecting it at all, based exclu-
sively on the indications by the tools? In this paper, we address these questions
by investigating the extent of the effectiveness of static analysis as bugs detector
by itself and in combination with code smells in guiding inspections. These ques-
tions are important especially when developers reuse software written by other
developers, as is usually the case with Open Source Software (OSS) [25,26].

We illustrate an empirical study concerning the OSS products incorporated
in two B2C web portals developed by an industrial organization. Our study
provides some early findings on the effectiveness of bug detectors aiming at
problem detection and automated code smell detection tools. Specifically, we
used one tool per category: respectively, SpotBugs [4] and JDeodorant [2]. We
applied them to the set of OSS products incorporated in two B2C web portals.
We first applied SpotBugs and noted the subset of most important warnings
that it issued. We then proceeded to manually check whether those warnings
corresponded to actual bugs. Finally, we subjected the code sections related to
the warnings to JDeodorant and recorded the smells found.

The main contributions of the paper are the following:

– Given the constant evolution of tools, our study provides some up-to-date
evidence about their practical usefulness in software development.

– In our empirical study, we found that the precision of the tools in detecting
problematic code sections is reasonably high, despite the fact that they do
not consider the dynamic behavior of the software under analysis.

– For the first time—to the best of our knowledge—a quantitative evaluation
of using bug detectors in combination with code smell detectors is provided.

– We provide some quantitative performance indicators to developers who need
to decide how to evaluate the quality of the OSS they are using, or could use,
as part of their software.

The results presented in this paper were obtained by applying a process that is
close to the one used by practitioners. So, our results are expected to be directly
applicable in software development practice.

The remainder of the paper is organized as follows. Section 2 describes the
concepts, processes and tools that are the subject of the study. Section 3 describes
our empirical study and illustrates the results we obtained. Section 4 discusses
the threats to the validity of the study. Section 5 reports about the previous
work that aimed at evaluating bug detectors based on static analysis and code
smells. Section 6 draws some conclusions.

4 L. Lavazza et al.

2 Bug Detectors and Code Smell Detectors

Several tools exist that can be used to reduce inspection costs.
We used two static analysis tools in our empirical study: SpotBugs to auto-

matically detect potential bugs in a software program, and JDeodorant to detect
potential code smells and suggest refactoring strategies to improve the source
code. These tools were selected because of their characteristics and their diffu-
sion in research and practice. Both tools have very active communities. Both
tools are also available as plug-ins, such as for Eclipse or SonarQube platforms.

2.1 A Bug Detector: SpotBugs

SpotBugs [4] is a static analysis tool that looks for bugs in Java source code.
The tool is free software, distributed under the GNU Lesser General Public
License. SpotBugs inherits all of the features of its predecessor FindBugs [1,19]
and checks more than 400 bug patterns. SpotBugs checks for bug patterns such
as—among others—null pointer dereferencing, infinite recursive loops, bad uses
of the Java libraries, and deadlocks. SpotBugs is available as an Eclipse plugin at
[spotbugs.github.io/eclipse/] or as a standalone program and can be downloaded
from [spotbugs.github.io].

In SpotBugs, bug patterns are classified by means of several variables, such
as: the type of violation, its category, the rank of the bug, and the confidence of
the discovering process.

Ten categories are defined [3], such as “Bad Practice” (i.e., violations of
recommended and essential coding practice, like hash code and equals prob-
lems, cloneable idiom, dropped exceptions, Serializable problems, and misuse of
finalize), “Correctness” (i.e., probable bug - an apparent coding mistake result-
ing in code that was probably not what the developer intended), or “Multi-
threaded correctness” (i.e., code flaw issues having to do with threads, locks,
and volatiles). The complete list of bug descriptions can be found at [spot-
bugs.readthedocs.io/en/latest/bugDescriptions.html].

The rank of each warning concerns the severity of the potential bug, and
spans from 1 (most severe) to 20 (least severe). Four rank levels are also defined:
“scariest” (1 ≤ rank ≤ 4), “scary” (5 ≤ rank ≤ 9), “worrying” (10 ≤ rank ≤
14), “of concern” (15 ≤ rank ≤ 20).

Moreover, a “confidence” (named “priority” in earlier releases of SpotBugs)
is associated to each warning: high confidence (1), normal confidence (2) and
low confidence (3), to highlight the quality of the detection process.

2.2 A Code Smells Detector: JDeodorant

JDeodorant [2,15,42] is a free tool (available as an Eclipse plug-in) that detects
design problems in source code, such as code smells, and suggests how to resolve
these smells by applying refactoring procedures. Specifically, JDeodorant is able
to detect the following four code smells [16]: God Class (a class that is too long,

Comparing Static Analysis and Code Smells as Defect Predictors 5

too complex, and does too much), Long Method (a method, function or proce-
dure that is too large), Type Checking (a class contains “complicated conditional
statements that make the code difficult to understand and maintain” [14]), and
Feature Envy (a method or an object does not leverage data or methods from
its class but asks for external data or methods to perform computation or make
a decision).

3 The Empirical Study

3.1 Method

Recently, one of the authors participated in the analysis of the quality of an
industrial software product, which used several pieces of OSS [22]. In this study
we use those OSS programs, briefly described in Table 1, as a test bed. In prac-
tice, the quality of a large fraction of industrial software depends on the quality
of OSS. By selecting a set of OSS products that we know are used also in non
open-source contexts, we make sure to 1) analyze software that is relevant, and
2) provide results that are of interest also outside the OSS community.

Table 1. The open-source products that were analyzed.

Product name Version LOC Num classes Num methods

Log4j 1.2.16 16497 217 1910

Jasperreports 6.11.0 278694 2558 23465

Pdfbox 1.8.16 120037 1125 9164

Hibernate-search-elasticsearch 5.11.4 21575 350 3264

Hibernate-search-backend-jgroups 5.11.4 1624 25 1067

Hibernate-search-engine 5.11.4 65239 1020 7967

Hibernate-search-performance-orm 5.11.4 1950 39 159

The study was organized in three phases: data extraction, data analysis, and
interpretation of results.

Data extraction was performed as follows:

1. We applied SpotBugs to the set of OSS products. SpotBugs issued several
hundred warnings. To limit the effort needed to inspect the code flagged as
possibly defective, we considered only the 64 issues having rank not greater
than 11. Since SpotBugs ranks warning severity in the range 1–20, we chose
11 as a threshold since it is the upper median of the severity rank range.
Considering the issues with the highest ranks is just what developers would do
in an industrial setting: having a limited effort to be dedicated to inspections,
they deal with the issues classified as most dangerous.

6 L. Lavazza et al.

2. The considered issues reported by SpotBugs were inspected manually by the
authors. The inspections resulted in classifying every issue as either confirmed
(when a real defect was found), rejected (when a false positive was recog-
nized), or “possible” (when we found something wrong, but our knowledge of
the code did not allow us to decide whether a failure was actually bound to
occur).

3. The code elements (i.e., the classes or methods) involved in the issues reported
by SpotBugs were analyzed with JDeodorant, and the detected smells were
annotated. We focused on performing smell detection on elements already
flagged defective by SpotBugs since, in this paper, we are interested in eval-
uating the effectiveness of static analysis bug detectors by themselves and in
combination with code smell detectors in guiding inspections, and not vice
versa.

For instance, in our study, SpotBugs issued a warning of category Cor-
rectness and type rc ref comparison (which is issued when == or != opera-
tors were used instead of equals()) in method validateEqualWithDefault
of class Elasticsearch2SchemaValidator, package hibernate.search.
elasticsearch. JDeodorant highlighted that class Elasticsearch2
SchemaValidator is a smelly class (God Class), and method validate
EqualWithDefault suffers from Feature Envy. Moreover, manual inspection con-
firmed that the SpotBugs warning is associated with a real bug.

Data analysis was conducted on the set of code elements flagged as defective
by SpotBugs. The analysis was performed twice: once considering the “possible”
bugs as false positives, and once considering the “possible” bugs as true positives.
In what follows, we label the former scenario as “optimistic” (since the code is
less buggy than indicated by SpotBugs), and the latter scenario as “pessimistic”
(since the code is considered as buggy as indicated by SpotBugs).

Data analysis was conducted as follows (once for each scenario). First, we
computed the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) estimates provided by SpotBugs and JDeodorant
for both scenarios (see Table 3). In doing this, the existence of a given smell was
considered as a fault prediction.

Then, based on TP, FP, TN and FN, we computed a few accuracy indicators,
namely precision, recall, F-measure (the harmonic mean of precision and recall),
and φ, alias Matthews’ Correlation Coefficient (MCC):

precision = TP
EP = TP

TP+FP

recall = TP
AP = TP

TP+FN

F-measure = 2 precision recall
precision+recall

φ = TP TN−FP FN√
EP EN AP AN

where EP is the number of estimated positives (EP = TP+FP), EN is the number
of estimated negatives (EN = TN+FN), AP is the number of actual positives
(AP = TP+FN) and AN is the number of actual negatives (AN = TN+FP).

Comparing Static Analysis and Code Smells as Defect Predictors 7

Finally, we considered two additional smell-based faultiness predictions,
which we labeled “any smell” and “all smells.” In the former case, a code element
is estimated buggy if it has one or more of the smells detected by JDeodorant;
in the latter case, a code element is estimated buggy if it has all of the smells
detected by JDeodorant. We computed the same accuracy indicators mentioned
above for “any smell” and “all smells.”

3.2 Results

First of all, let us evaluate the performance of SpotBugs. We considered 64 warn-
ings, hence EP = 64. Among these, in the optimistic scenario, TP is the number
of confirmed bugs; in the pessimistic scenario, TP is the number of confirmed
and possible bugs. Note that we consider only warnings, which—according to
SpotBugs—concern potential problems, hence there are estimated positives, but
no estimated negatives. Thus, EP = 64 = n, where n indicates the total number
of estimates of the classifier implemented by SpotBugs. As a consequence, we
have TN = FN= 0, hence TP = AP, and recall = 1.

The first row of Table 2 summarizes the performance of SpotBugs. Specifi-
cally, SpotBugs issued 64 warnings; of these, 37 were recognized via inspections
as real bugs, 13 were recognized as false positives, while 14 could not be classified
with certainty. Accordingly, in the optimistic case (i.e., when possible bugs are
considered as false positives) precision = 37

64 � 0.54. In the pessimistic case (i.e.,
when possible bugs are considered as true positives) precision = 37+14

64 � 0.8.
The first row of Table 2 shows that the accuracy of SpotBugs’s predictions is

good, substantially better than reported in several previous studies (for instance,
Shen et al. reported in their study that FindBugs achieved precision = 40% [39]).

Table 2. SpotBug’s issues and precision.

Selected issues n Bugs precision

Confirmed Possible Rejected Optimistic Pessimistic

All 64 37 14 13 0.58 0.80

High rank 6 6 0 0 1.00 1.00

Mid rank 36 13 11 12 0.36 0.67

Low rank 22 18 3 1 0.82 0.95

High conf. 22 10 7 5 0.45 0.77

Mid conf. 42 27 7 8 0.64 0.81

To verify the reliability of the evaluation of the confidence in the warnings,
we split SpotBugs issues into high- and mid-confidence ones (there were no
low-confidence issues among the ones we considered). We also split SpotBugs
issues into high-, mid- and low-rank ones (corresponding to SpotBugs “scariest,”
“scary,” and “worrying” rank levels), to check if the estimation accuracy depends

8 L. Lavazza et al.

on the rank. The results we obtained are in Table 2. The only noticeable result
is that all the 6 high-rank reported issues concern real bugs.

The accuracy indicators for SpotBugs and the considered code smells evalu-
ated by JDeodorant for the optimistic and pessimistic case are given in Table 3.
Note that φ is undefined for SpotBugs: this is a consequence of EN being zero.

3.3 Interpretation of Results

In interpreting the results, we must take into consideration a few facts:

– For SpotBugs, n = EP, hence FN= TN = 0: thus recall = TP
AP = TP

TP+FN =
TP
TP = 1.

– When performing a completely random estimation, you get precision =
recall =F-measure = AP

n . Therefore, a prediction model having F-measure
<AP

n should be discarded, since it performs worse than random estimation. In
the pessimistic case it is AP

n = 0.8, while in the optimistic case it is AP
n = 0.58.

Better than random values of F-measure are in bold in Tables 3.

Table 3. Accuracy indicators with the optimistic (AP/n= 0.58) and pessimistic crite-
rion (AP/n= 0.8).

Criterion TP FP FN TN recall precision FM φ

Optimistic SpotBugs 37 27 0 0 1.00 0.58 0.73 —

GodClass 15 5 22 22 0.41 0.75 0.53 0.23

LongMethod 22 5 15 22 0.59 0.81 0.69 0.41

FeatureEnvy 5 1 32 26 0.14 0.83 0.23 0.17

TypeChecking 9 0 28 27 0.24 1.00 0.39 0.35

AllSmells 2 0 35 27 0.05 1.00 0.10 0.15

AnySmell 29 9 8 18 0.78 0.76 0.77 0.45

Pessimistic SpotBugs 51 13 0 0 1.00 0.80 0.89 —

GodClass 18 2 33 11 0.35 0.90 0.51 0.17

LongMethod 24 3 27 10 0.47 0.89 0.62 0.20

FeatureEnvy 6 0 45 13 0.12 1.00 0.21 0.16

TypeChecking 9 0 42 13 0.18 1.00 0.30 0.20

AllSmells 2 0 49 13 0.04 1.00 0.08 0.09

AnySmell 34 4 17 9 0.67 0.89 0.76 0.29

– The F-measure has been widely criticized in the literature [18,34,49], mainly
because it does not account for true negatives. In our case, though, this is
not a reason not to use the F-measure to evaluate SpotBugs, because TN = 0
by construction. As far as code smells are concerned, φ complements the
F-measure in providing a reliable indication of prediction accuracy.

Comparing Static Analysis and Code Smells as Defect Predictors 9

In the pessimistic scenario, no code smell has F-measure better than random.
The low values of φ confirm that in this case code smells are poor defect pre-
dictors. However, in the optimistic scenario, Long Method and AnySmell have
a F-measure better than random, and φ confirms that in this case these smells
are acceptably good defect predictors. In fact, values of φ greater than 0.4 indi-
cate that the association between the defect prediction and model and actual
defectiveness is between medium and strong [10].

Nonetheless, in both scenarios, all code smells’ precision is better than ran-
dom, and often really good. This is not surprising. Most smells address very spe-
cific conditions, which do not occur very frequently. Therefore, they are bound to
feature rather low recall. On the contrary, when a very specific smell is present,
it is expected that there is “something wrong” and a defect is likely present as
well. For instance, in the pessimistic scenario, Feature Envy is detected in only
6 cases out of 64, and all 6 code elements were found defective.

3.4 Discussion

SpotBugs appears much more precise than reported by previous—possibly
outdated—studies. Precision in the [0.58, 0.80] range (depending on “possi-
ble” bugs being real bugs or not) suggests that manual inspection of the issues
reported by SpotBugs is generally cost-effective. To this end, it is worth not-
ing that SpotBugs describes and localizes possible bugs very precisely. Thus,
examining a few lines of code is generally sufficient to recognize the presence
of the bug. In many cases, the required correction is also straightforward. So, a
first outcome of our analysis is that using SpotBugs to identify the code to be
inspected appears cost-effective, even when the evaluated code is OSS, on which
industrial developers do not want to invest much effort and time.

However, a practitioner that applied SpotBugs and obtained a set of warnings
could still wonder whether SpotBugs warnings are reliable enough to deserve
inspections. To clear this doubt, a practitioner could decide to run JDeodorant on
the code flagged as possibly defective by SpotBugs, to get further confirmations.
Our analyses show (see rows “AnySmell” in Table 3) that this process, which
connects static analysis and code smell detection, achieves better precision than
static analysis by itself, i.e., a greater proportion of inspections find real defects;
in other words, inspections are most cost-effective. At the same time, recall
decreases with respect to inspecting all the warnings issued by SpotBugs; hence,
fewer defects are removed.

In conclusion, based on the results of our study, we can suggest that manual
code inspection be done following the indications provided by SpotBugs, because
its relatively high precision level makes it possible to identify (and often correct)
several bugs with little effort. However, practitioners may prefer to inspect only
code that is flagged as defective by both SpotBugs and JDeodorant; however
practitioners are warned that this practice seems to have a slightly increased
precision and a more substantially decreased recall.

10 L. Lavazza et al.

Code smells appear characterized by good precision. Hence it appears useful
to inspect code elements that are classified as smelly. Nonetheless, each inspec-
tion could be relatively expensive: for instance, inspecting a God Class involves
examining several hundred lines of code. Instead, performing smell detection on
elements already flagged defective by bug detectors leads to both increasing the
confidence that a smelly piece of code is really defective, and greatly simplifies
inspections: in case of a God Class, one does not need to examine the entire
class, but only the piece of code flagged defective by the bug detector.

4 Threats to Validity

The external validity of our study may be influenced by the fact that we used only
two tools, one for each type of analysis. However, the two tools are among the
best-known and most used ones, by both researchers and practitioners. At any
rate, we were able to investigate only a few code smells, i.e., all those supported
by JDeodorant. So, we may have obtained different results if we had investigated
other code smells. Also, we used a limited number of projects and datasets,
which may not be representative of a wider section of the software products. In
addition, we used OSS projects, which may not be representative of proprietary
software products and processes. We limited the number of issues investigated to
64, though we addressed the most critical of a few hundred warnings. As already
noted in Sect. 3.1, we performed smell detection only on elements already flagged
defective by SpotBugs, because our goal was not to compare the performance of
the two tools in isolation. This is a limitation to the scope of the study, not to its
validity; readers are warned not to interpret our results as an evaluation of the
performance of code smellers when not used in combination with bug detectors.

Construct validity may be threatened by the performance metrics used. For
instance, FM has been widely used in the literature, but it also has been largely
criticized [49]. We also used precision, recall, and φ, to have a more comprehensive
picture about the performance of the tools we used.

5 Related Work

Tools that use static analysis to identify likely defective code have been intro-
duced more than twenty years ago. Several research efforts have been devoted
to investigating their real effectiveness.

Rahman et al. [35] compared the defect prediction capabilities of static anal-
ysis tools (namely FindBugs, PMD, and Jlint) and statistical defect prediction
based on historical data.

Vetrò et al. [47] evaluated the accuracy of FindBugs. The code base used
for the evaluation consisted of Java projects developed by students during a
programming course. The code is equipped with acceptance tests written by
teachers of the course to check all functionalities. To determine true positives,
they used temporal and spatial coincidence: an issue was considered related to
a bug when it disappeared at the same time as a bug got fixed. Later, Vetrò
et al. repeated the analysis, with a larger code set and performing inspections

Comparing Static Analysis and Code Smells as Defect Predictors 11

concerning four types of issues found by FindBugs, namely the types of findings
considered more reliable [46].

Zazworka et al. studied the relationship between technical debt items
reported by developers and the indications provided by FindBugs [52]. They
found that FindBugs did well in pointing to source code files with defect debt.
However, finer granularity evaluations do not seem to have been addressed.

Danphitsanuphan and Suwantada studied the correlation between code
smells and some structural problems reported by FindBugs [11]. However, they
did not check whether the structural problems correspond to actual defects.

Zazworka et al. [51] also applied four different technical debt identification
techniques (including code smells and automatic static analysis) to 13 versions of
an open-source software project. Noticeably, the outputs of the four approaches
pointed to different problems in the source code. The research method used
by Zazworka et al. [51] is quite different from ours. They looked for correlations
between issues reported by tools and actions on code connected with repaying the
interests of technical debt. By considering a sufficiently long streak of versions,
they obtained a good representation of the underlying relationships between
reported issues and the technical debt. Our approach is inherently different. We
consider a single version of many software products and manually inspect the
code that SpotBugs flags as possibly defective. In this way, we verify whether
issues reported by the static analysis tool are actual defects or not.

Thung et al. performed an empirical study to evaluate to what extent field
defects could be detected by FindBugs and similar tools [41]. To this end, Find-
Bugs was applied to three open-source programs (Lucene, Rhino and AspectJ).
The study by Thung et al. takes into consideration only known bugs. On the
contrary, we relied on manual inspection to identify actual bugs.

In 2007, Ayewah et al. evaluated the issues found by FindBugs in production
software developed by Sun and Google [7]. They classified the found issues into
false positives, trivial bugs, and serious bugs. A substantial fraction of the issues
turned out to concern real but trivial problems. Accordingly, they stated that
“Trying to devise static analysis techniques that suppress or deprioritize true
defects with minimal impact, and high-light defects with significant impact, is
an important and interesting research question.” 13 years later, we wish to check
if SpotBugs (the heir of FindBugs) has improved in detecting “important” issues.

Vestola applied FindBugs to Valuatum’s system and found that 18.5% of
the issues were real bugs that deserved corrections, 77.6% were mostly harmless
bugs, and 3.8% were false positives [45].

Kim and Ernst evaluated the relationship between issues reported by three
static analysis tools (including FindBugs) and the history of changes in three
open source products [21]. They consider warnings that remain in the programs
or are removed during non-fix changes as likely false positive warnings. Although
it is probably so, it is hardly so for all such warnings, hence the number of false
positives is likely overestimated.

Code smell were defined by Fowler et al. in 1999 [16], based on previ-
ous work [8,36]. A few years later, Marinescu proposed to identify smells on
the basis of static code measures [27]: since then, several tools implementing

12 L. Lavazza et al.

automatic code smell detection—both based on Marinescu’s definitions and on
other definitions—have been developed, such as Decor, CodeVizard, JDeodorant,
etc. [9,28,29,43,44,50].

Many researchers addressed the problem of verifying to what extent code
smells are associated with code problems that can affect external code quali-
ties (mainly maintainability and correctness). Lately, a few Systematic Liter-
ature Reviews (SLR) were published [20,32,33,37], summarizing the evidence
collected about code smell harmfulness. The mentioned SLRs depict a situation
characterized by several studies, which produced evidence that does not seem
conclusive.

6 Conclusions

In this paper, we have described an empirical study that we carried out to assess
the usefulness of static analysis and code smell detection in the identification of
bugs. Our study uses two popular tools, SpotBugs and JDeodorant, which are
applied to a limited set of OSS projects. The study shows that these tools can
help software practitioners detect and remove defects in an effective way, to limit
the amount of resources that would otherwise be spent in more cost-intensive
activities, such as software inspections.

SpotBugs appears to detect defects with good precision, hence manual
inspection of the code flagged defective by SpotBugs becomes cost-effective.
When JDeodorant is used in conjunction with SpotBugs, detection precision
increases, thus making manual code inspections even more effective. However,
recall decreases, thus decreasing the number of bugs that are actually identified.

References

1. FindBugs website (2020). http://findbugs.sourceforge.net/
2. JDeodorant website (2020). https://github.com/tsantalis/JDeodorant
3. SpotBugs documentation website (2020). https://spotbugs.readthedocs.io/en/

latest/
4. SpotBugs website (2020). https://spotbugs.github.io/
5. Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: an effective

verification process. IEEE Softw. 6(3), 31–36 (1989)
6. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: software inspections after

25 years. Softw. Test. Verification Reliab. 12(3), 133–154 (2002)
7. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static

analysis defect warnings on production software (2007)
8. Brown, W.H., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J.: AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis, 1st edn. Wiley, New
York (1998)

9. Codoban, M., Marinescu, C., Marinescu, R.: iProblems-an integrated instrument
for reporting design flaws, vulnerabilities and defects. In: 2011 18th Working Con-
ference on Reverse Engineering, pp. 437–438. IEEE (2011)

10. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Earl-
baum Associates Routledge, New York (1988)

http://findbugs.sourceforge.net/
https://github.com/tsantalis/JDeodorant
https://spotbugs.readthedocs.io/en/latest/
https://spotbugs.readthedocs.io/en/latest/
https://spotbugs.github.io/

Comparing Static Analysis and Code Smells as Defect Predictors 13

11. Danphitsanuphan, P., Suwantada, T.: Code smell detecting tool and code smell-
structure bug relationship. In: 2012 Spring Congress on Engineering and Technol-
ogy, pp. 1–5. IEEE (2012)

12. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Syst. J. 38, 258–287 (1976)

13. Fagan, M.E.: Advances in software inspections. In: Broy, M., Denert, E. (eds.)
Pioneers and Their Contributions to Software Engineering, pp. 335–360. Springer,
Heidelberg (2001). https://doi.org/10.1007/978-3-642-48354-7 14

14. Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A.: JDeodorant: identification and
removal of feature envy bad smells. In: 2007 IEEE International Conference on
Software Maintenance, pp. 519–520 (2007)

15. Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A.: JDeodorant: identification and
removal of feature envy bad smells. In: 2007 IEEE International Conference on
Software Maintenance, pp. 519–520. IEEE (2007)

16. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, Boston (1999)

17. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(4), 1–39
(2014)

18. Hernández-Orallo, J., Flach, P., Ferri, C.: A unified view of performance metrics:
translating threshold choice into expected classification loss. J. Mach. Learn. Res.
13, 2813–2869 (2012)

19. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Not. 39(12),
92–106 (2004)

20. Kaur, A.: A systematic literature review on empirical analysis of the relationship
between code smells and software quality attributes. Arch. Comput. Methods Eng.
27, 1267–1296 (2019)

21. Kim, S., Ernst, M.D.: Which warnings should I fix first? In: 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pp. 45–54 (2007)

22. Lavazza, L.: Software quality evaluation via static analysis and static measurement:
an industrial experience. In: The Fifteenth International Conference on Software
Engineering Advances - ICSEA 2020, pp. 55–60 (2020)

23. Lavazza, L., Morasca, S., Tosi, D.: An empirical study on the factors affecting soft-
ware development productivity. e-Informatica Softw. Eng. J. 12(1), 27–49 (2018).
https://doi.org/10.5277/e-Inf180102

24. Lavazza, L., Tosi, D., Morasca, S.: An empirical study on the persistence of Spot-
Bugs issues in open-source software evolution. In: Shepperd, M., Brito e Abreu, F.,
Rodrigues da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266,
pp. 144–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-
2 12

25. Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., Morasca, S.: Open source software
evaluation, selection, and adoption: a systematic literature review. In: 46th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
437–444 (2020)

26. Lenarduzzi, V., Tosi, D., Lavazza, L., Morasca, S.: Why do developers adopt open
source software? past, present and future. In: In: Bordeleau F., Sillitti A., Meirelles
P., Lenarduzzi V. (eds.) Open Source Systems. OSS 2019. IFIP International Con-
ference on Open Source Systems, pp. 104–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20883-7 10

https://doi.org/10.1007/978-3-642-48354-7_14
https://doi.org/10.5277/e-Inf180102
https://doi.org/10.1007/978-3-030-58793-2_12
https://doi.org/10.1007/978-3-030-58793-2_12
https://doi.org/10.1007/978-3-030-20883-7_10
https://doi.org/10.1007/978-3-030-20883-7_10

14 L. Lavazza et al.

27. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws.
In: 20th IEEE International Conference on Software Maintenance, pp. 350–359.
IEEE (2004)

28. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: a method for
the specification and detection of code and design smells. IEEE Trans. Softw. Eng.
36(1), 20–36 (2009)

29. Murphy-Hill, E., Black, A.P.: An interactive ambient visualization for code smells.
In: 5th International Symposium on Software Visualization, pp. 5–14 (2010)

30. Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I.: Are all code smells harmful? a study of
god classes and brain classes in the evolution of three open source systems. In: 2010
IEEE International Conference on Software Maintenance, pp. 1–10. IEEE (2010)

31. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.:
On the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Softw. Eng. 23(3), 1188–1221 (2018)

32. de Paulo Sobrinho, E.V., De Lucia, A., de Almeida Maia, M.: A systematic liter-
ature review on bad smells—5 w’s: which, when, what, who, where. IEEE Trans.
Softw. Eng. 47(1), 17–66 (2021)

33. Piotrowski, P., Madeyski, L.: Software defect prediction using bad code smells:
a systematic literature review. In: Poniszewska-Marańda, A., Kryvinska, N.,
Jarz ↪abek, S., Madeyski, L. (eds.) Data-Centric Business and Applications.
LNDECT, vol. 40, pp. 77–99. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-34706-2 5

34. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation (2011)

35. Rahman, F., Khatri, S., Barr, E.T., Devanbu, P.: Comparing static bug finders and
statistical prediction. In: 36th International Conference on Software Engineering,
pp. 424–434 (2014)

36. Riel, A.J.: Object-Oriented Design Heuristics, vol. 335. Addison-Wesley, Reading
(1996)

37. Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., do Nascimento, R.S., Freitas,
M.F., de Mendonça, M.G.: A systematic review on the code smell effect. J. Syst.
Softw. 144, 450–477 (2018)

38. Schumacher, J., Zazworka, N., Shull, F., Seaman, C., Shaw, M.: Building empirical
support for automated code smell detection. In: ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, pp. 1–10 (2010)

39. Shen, H., Fang, J., Zhao, J.: EFindbugs: effective error ranking for findbugs. In:
2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation, pp. 299–308. IEEE (2011)

40. Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dyb̊a, T.: Quantifying the
effect of code smells on maintenance effort. IEEE Trans. Softw. Eng. 39(8), 1144–
1156 (2012)

41. Thung, F., Lo, D., Jiang, L., Rahman, F., Devanbu, P.T., et al.: To what extent
could we detect field defects? An extended empirical study of false negatives in
static bug-finding tools. Autom. Softw. Eng. 22(4), 561–602 (2015)

42. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: JDeodorant: identification and
removal of type-checking bad smells. In: 2008 12th European Conference on Soft-
ware Maintenance and Reengineering, pp. 329–331. IEEE (2008)

43. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring
opportunities for the decomposition of methods. J. Syst. Softw. 84(10), 1757–1782
(2011)

https://doi.org/10.1007/978-3-030-34706-2_5
https://doi.org/10.1007/978-3-030-34706-2_5

Comparing Static Analysis and Code Smells as Defect Predictors 15

44. Van Emden, E., Moonen, L.: Java quality assurance by detecting code smells. In:
Ninth Working Conference on Reverse Engineering, pp. 97–106. IEEE (2002)

45. Vestola, M., et al.: Evaluating and enhancing findbugs to detect bugs from mature
software; case study in valuatum (2012)

46. Vetrò, A., Morisio, M., Torchiano, M.: An empirical validation of findbugs issues
related to defects. In: 15th Annual Conference on Evaluation and Assessment in
Software Engineering (EASE 2011), pp. 144–153. IET (2011)

47. Vetrò, A., Torchiano, M., Morisio, M.: Assessing the precision of FindBugs by min-
ing java projects developed at a university. In: 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pp. 110–113. IEEE (2010)

48. Yamashita, A.: Assessing the capability of code smells to explain maintenance prob-
lems: an empirical study combining quantitative and qualitative data. Empirical
Softw. Eng. 19(4), 1111–1143 (2014)

49. Yao, J., Shepperd, M.J.: Assessing software defection prediction performance: why
using the Matthews correlation coefficient matters. In: Evaluation and Assessment
in Software Engineering, EASE 2020, Trondheim, Norway, 15–17 April 2020, pp.
120–129. ACM (2020)

50. Zazworka, N., Ackermann, C.: CodeVizard: a tool to aid the analysis of software
evolution. In: Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 1–1 (2010)

51. Zazworka, N., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F., et al.: Compar-
ing four approaches for technical debt identification. Softw. Q. J. 22(3), 403–426
(2014)

52. Zazworka, N., Sṕınola, R.O., Vetrò, A., Shull, F., Seaman, C.: A case study on
effectively identifying technical debt. In: Proceedings of the 17th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 42–47 (2013)

Enabling OSS Usage Through Procurement
Projects: How Can Lock-in Effects Be Avoided?

Björn Lundell1(B), Jonas Gamalielsson1, Simon Butler1, Christoffer Brax2,
Tomas Persson3, Anders Mattsson4, Tomas Gustavsson5, Jonas Feist6,

and Jonas Öberg7

1 University of Skövde, Skövde, Sweden
{bjorn.lundell,jonas.gamalielsson,simon.butler}@his.se

2 Combitech AB, Skövde, Sweden
christoffer.brax@combitech.com
3 Digitalist Sweden AB, Stockholm, Sweden

tomas.persson@digitalistgroup.com
4 Husqvarna AB, Huskvarna, Sweden

anders.mattsson@husqvarnagroup.com
5 PrimeKey Solutions AB, Solna, Sweden
tomas.gustavsson@primekey.com

6 RedBridge AB, Stockholm, Sweden
jfeist@redbridge.se

7 Scania CV AB, Södertälje, Sweden
jonas.oberg@scania.com

Abstract. Formulation of mandatory requirements in procurement projects has
significant influence on opportunities for development and deployment of Open
Source Software (OSS). The paper contributes insights on a widespread practice
amongst public procurement projects which causes problematic lock-in effects
and thereby inhibits opportunities for use of OSS solutions. Through a systematic
investigation of 30 randomly selected procurement projects in the software domain
the paper highlights illustrative examples of mandatory requirements which cause
lock-in and presents five recommendations for how requirements instead should
be formulated in order to avoid causing lock-in. Findings show significant lock-in
caused by current procurement practices with a stark preference for proprietary
software and SaaS solutions amongst procuring organisations.

Keywords: Open source software projects · Procurement projects ·
IT-standards · Open standards · Lock-in effects

1 Introduction

Investigations of a large number of IT procurement projects have identified widespread
practices amongst public sector organisations that cause different lock-in effects which

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 16–27, 2021.
https://doi.org/10.1007/978-3-030-75251-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_2

Enabling OSS Usage Through Procurement Projects 17

in turn inhibit Open Source Software (OSS) usage [29]. Further, it is far from uncom-
mon that procurement projects express mandatory requirements which refer to specific
IT standards that prevent implementation in OSS projects [17, 25, 29]. In turn, if an
organisation expresses a requirement for an IT standard which inhibits implementation
and use of OSS such a practice causes lock-in that inhibits competition. As stated by
Katz [23]: “Lock-in has been recognized as distorting themarket process, creating unfair
monopolies for the participants.”

With increased adoption and use of proprietary licenced Software as a Service (SaaS)
solutions, researchers and policy makers have recognised lock-in effects as a significant
concern [19, 20, 33]. For example, the GAIA-X initiative states that lock-in effects
“can be of a technical-functional kind (dependence on the specific features of certain
providers); they can arise from contractual agreements (e.g. license models and penalty
costs), but also result from a high, customer-specific degree of personalisation, from
familiarisation effects, or from the sheer data volume that is to be migrated.” [19].

Amongst policy recommendations for an organisation that seeks to avoid lock-in
related to usage of a SaaS solution, the importance of conduct of a careful review of
all contract terms for the solution has been stressed with a recommendation to avoid
accepting terms which allow the provider of the solution to unilaterally change contract
terms and ensuring availability of an effective exit strategy [13]. Further, concerning
procurement of software applications it has been recommended that “compatibility with
proprietary technologies should be explicitly excluded from public procurement criteria
and replaced by interoperability with products from multiple vendors.” [21].

The overarching goal of the study is to illuminate how current practice in procure-
ment projects impacts on opportunities for development and deployment of OSS that
implement IT standards. The study investigates the following research questions:

RQ1: How do public sector organisations express mandatory requirements on
development and deployment of software which impact on opportunities for use of
OSS?

RQ2: How are requirements on IT-standards expressed in public procurement
projects and how should they be modified in order to avoid lock-in effects and allow for
strategic use of OSS?

2 On Lock-in Effects in the Software Domain

Related to different technologies several studies have addressed different types of lock-in
effects [1, 5, 16]. For example, previous research shows that ‘historical events’ can lead
to lock-in [1]. One historical example being touch typing that ‘gave rise to three features
of the evolving production system which were crucially important in causing QWERTY
to become “locked in” as the dominant keyboard arrangement. These features were
technical interrelatedness, economies of scale, and quasi-irreversibility of investment.’
[5].

OSS projects and IT standards, and in particular the role of OSS for implementing
standards, have been recognised as important enablers for addressing lock-in effects. For
example, outcomes from an EU study claim that contributing “to OSS is perceived as
a strategy to prevent proprietary software solutions, which might create a vendor lock-
in and consequently closes markets instead of opening them” [2]. Further, the study

18 B. Lundell et al.

stresses that when an organisation contributes its own code of high quality to OSS such
work practices are perceived as a contribution to a common good and that such work
practices also promote the own organisation’s autonomy and control of its own software
development [2].

Policy makers in different countries have presented a number of policy recommen-
dations related to use of IT standards [6–10, 12, 31, 32, 34–36]. Further, the EU has
presented a catalogue of ICT standards which are recommended for use in 20 different
European countries [9, 12]. Several of the standards included in these recommendations
allow for implementation in OSS as they fulfil the definition of an open standard which
is presented by the European Interoperability Framework version 1.0 [6]. For example,
all standards included in the recommendation presented in Sweden are open IT stan-
dards [32], whereas research shows that some standards recommended for use in some
other countries (e.g. the JPEG 2000 standard and several MPEG-standards) are closed
standards which inhibit implementation in OSS [27]. Further, all framework contracts
for public procurement projects established by the Swedish National Procurement Ser-
vices (a governmental agency) at Kammarkollegiet [32] require that any reference to a
standard in a mandatory requirement in a procurement project must conform to the EU
definition of an open standard [6]. Requirements for open standards with the same [31]
or similar [34–36] definition have been included in national policy established in other
countries in order to allow for use of OSS and promote software interoperability.

3 Research Approach

The study addresses how current practice in procurement projects impacts on oppor-
tunities for development and deployment of OSS that implement IT standards through
investigation of 30 randomly selected procurement projects undertaken by Swedish
municipalities in 2019. The investigation considered procurement projects that have
been publicly announced in Tenders Electronic Daily (an EU public procurement ser-
vice) if it included at least one of the two Common Procurement Vocabulary (CPV)
codes (in divisions 48 and 72) for ‘software package and information systems’ and ‘IT
services: consulting, software development, Internet and support’.

Central government has limited influence on Swedish municipalities’ public pro-
curement projects as municipalities have significant autonomy with respect to conduct
of public procurement. The vast majority (94%) of the 290 Swedish municipalities have
fewer than 100,000 citizens and themedian sizedmunicipality has approximately 16,000
citizens. Hence, many public procurement projects are undertaken by rather small, inde-
pendent municipalities, even though many challenges related to digitalisation and IT are
very similar amongst municipalities.

For each investigated procurement project, we reviewed tender documents and anal-
ysed each mandatory requirement with a view to identify any explicit (or implicit)
reference to IT standards which may impact on opportunities for a potential supplier to
provide a bid which includes an OSS solution. The coding of documentation from each
procurement project was conducted in a manner which follows Glaser’s ideas on open
coding [24]. We specifically considered the formulation of each mandatory requirement
which may cause any (intentional or unintentional) lock-in and thereby also restrict

Enabling OSS Usage Through Procurement Projects 19

competition as an unintended consequence for the procuring organisation by inhibiting
some potential suppliers from submitting bids.

Amongst the 30 investigated public procurement projects we found that documen-
tation from the vast majority of the selected procurement projects refer to a range of
different technologies and explicitly refer to specific proprietary software. For exam-
ple, amongst procurement projects municipalities request solutions, such as: a student
administration system and learning platform for public schools; a scheduling system for
public schools; an IT-solution for digital tests; a document and case management sys-
tem with an e-archive solution; a system for health and social care; a video conference
system with support for e-voting; a system for distribution of invoices; a debt collec-
tion system; a cloud based web platform for a website; a Customer support system; a
HR and salary system; consultants for software development related to Geographical
Information Systems (GIS); and a GIS-system.

For a selected set of the problematic mandatory requirements, as identified from the
outcome of our analysis of each mandatory requirement, we present five recommen-
dations for improved (alternative) formulations of the mandatory requirements which
we claim will significantly improve the situation and (most likely) avoid problematic
lock-in effects. The evolved recommendations are grounded in a comprehensive analy-
sis of current practice concerning expression of mandatory requirements in procurement
projects and supplemented by a literature analysis which informed the formulation of
each recommendation. The formulation of the recommendation also benefited from that
several authors of this study have extensive prior experiences and insights from analysis
of, and direct involvement in procurement projects in different roles, including previous
research which has analysed and contributed to procurement projects.

4 Results

This section presents results concerning how public sector organisations express manda-
tory requirements on development and deployment of softwarewhich impact on opportu-
nities for use of OSS (Subsect. 4.1). Thereafter, the section presents results concerning
how mandatory requirements expressed in public procurement projects cause lock-in
effects which impact on opportunities for strategic use of OSS (Subsect. 4.2). Specif-
ically, illustrative examples of how mandatory requirements that cause lock-in effects
are expressed in procurement projects are presented, together with suggested modified
alternative formulations for expressing each requirement in order to avoid lock-in and
allow for strategic use of OSS.

4.1 Development and Deployment of Software Impacting on Opportunities
for OSS Usage

Software development projects can provide software under a number of different con-
ditions, including terms which fulfil the Open Source Definition (OSD) that have been
recognised as OSS licences by the Open Source Initiative (OSI). Further, software pro-
vided under other terms is often referred to as proprietary software (and sometimes
closed source software). Software can be deployed in a number of different ways, for

20 B. Lundell et al.

example through internal deployment which may involve installation and use of a soft-
ware application on a local computer (on premise). Further, a software application which
is deployed and installed on a server that is controlled by some external organisation
may provide the application as a public SaaS solution. In this latter scenario the procur-
ing organisation typically uses the externally deployed public SaaS solution via a web
browser.

A conceptualisation of four principal ways for development of software (open or
closed) and deployment of software (internal or external) is presented in Fig. 1. From
the perspective of the procuring organisation, development of software which is pro-
vided as OSS may be internally deployed (lower left quadrant of Fig. 1) or be externally
deployed (lower right quadrant of Fig. 1). Similarly, development of software which
is provided as proprietary software may be internally deployed (upper left quadrant of
Fig. 1) or be externally deployed (upper right quadrant of Fig. 1). To further clarify the
conceptualisation, illustrative examples of software applications of each type are pre-
sented in Fig. 1. From the perspective of a procuring organisation it should be noted that
several OSS projects develop and provide OSS (e.g. Nextcloud) which can be deployed
both internally and externally. For example, the SaaS solution Nextcloud can be pro-
vided to the procuring organisation through internal deployment (e.g. Nextcloud can be
internally used by the procuring organisation through provision by the organisation’s
own IT department). Further, Nextcloud can also be provided to the procuring organi-
sation through deployment by an external organisation as a public SaaS solution (e.g.
Nextcloud can be provided by a global company).

Fig. 1. Conceptualising four principal ways for development and deployment of software

Concerning development of software applications, procurement projects express
stark preference for proprietary software solutions. The vast majority (90%) of the
investigated projects express one or several mandatory requirements which discrimi-
nate against provision of OSS solutions. We find a widespread practice of explicitly (or
implicitly) referring to specific vendors, specific proprietary software applications which
are provided and controlled by specific companies. Further, we also find a widespread
practice amongst procurement projects to includemandatory requirementswhich request
compatibility (instead of interoperability) with specific technologies. For example, pro-
curement projects include compatibility requirements with reference to one (or several)
of the following: AD (Active Directory), EPIserver DXC (a cloud based CMS solu-
tion), iPad, Microsoft Office 365, Oracle DB, and Stratsys (a cloud based strategic
planning solution). In addition, several projects express mandatory requirements which
request integration with proprietary software applications and technology. For example,

Enabling OSS Usage Through Procurement Projects 21

amongst analysed projects we find mandatory requirements for integration with one (or
several) of the following: iipax (a proprietary e-archiving solution), Microsoft BizTalk
2016, Phoniro’s locking solution (for Senior Care), Sharepoint, Stratsys, and TEIS (an
integration platform server). Overall, we find that such procurement practices inhibit
opportunities for potential suppliers to offer OSS solutions.

The remaining (10%) procurement projects lack explicitly expressed mandatory
requirements related to software. One of these remaining procurement projects (which
requested an administrative system for primary schools, expressed only (high-level)
functionality requirements. In another procurement projects (requesting a system for
invoice distribution), the procurement project made reference to several proprietary
software applications from which data should be processed by the procured applica-
tion (and based on the limited information provided it is unclear if it is possible for a
potential supplier to offer a bid for an OSS solution). Further, in yet another case, the
procuring organisation expressed requirements for IT consultants which are focused on
one specific global provider.

Concerning deployment of software applications, we find that almost half (47%) of
the analysed procurement projects do not express any requirements for how a procured
application shall be deployed. Further, amongst the procurement projects which express
requirements for how a procured software application shall be deployed we find a clear
preference for deployment of the procured application in an external organisation as a
cloud or SaaS solution.

Specifically, amongst the analysed procurement projects we find that more than one
out of three (37%) projects include a mandatory requirement which expresses that the
software application must be deployed as a cloud or a SaaS solution in an external
organisation (e.g. expressed as that the system ‘shall be provided as a cloud solution’
or as ‘the application shall be of the type SaaS solution’ with the requirement that
the operation shall be included), whereas only one out of ten (10%) require that the
software application must be internally deployed in the procuring organisation as an
on premise solution (e.g. expressed as the ‘system shall be installed locally’). Hence,
amongst (almost half of) the procurement projects which actually express a requirement
for how the procured software application shall be deployed we find a clear preference
for deployment of the procured application as a cloud or SaaS solution at an external
organisation.

In addition, some (7%) of the analysed procurement projects require that a procured
software application must be both internally and externally deployed. This implies that
for those projects the procured application will be both internally provided in the procur-
ing organisation and also as a cloud or a SaaS solution that is provided by an external
organisation.

Almost all procurement projects which procure a SaaS solution do not consider
licensing and legal aspects (including the GDPR) when expressing mandatory require-
ments concerning processing andmaintenance of the procuring organisation’s data. This
is despite procuring a SaaS solution which, when used, will process personal data. Only
one procurement project requires that maintenance and processing of personal data must
take place in the EU/EES by a legal entity which is represented in the EU/EES. However,

22 B. Lundell et al.

none of the procurement projects express any mandatory requirements related to appli-
cable laws for contracting parties (e.g. if a procuring organisation requires that all parties
involved with the data processing are bound by Swedish law) and under which law (e.g.
only Swedish and EU law) data processing are allowed to take place when a procured
SaaS solution is used (e.g. if processing of personal data in certain third countries are
disallowed).

4.2 Requirements on IT Standards Impacting on Lock-in Effects

Some procurement projects make reference to open standards and open formats when
expressing mandatory requirements. For example, we find one procurement project
which requires that all integration between IT systems use open standards and another
project expressing a mandatory requirement for ‘open and standardised formats’ related
to provision of personal data in connection with a future exit from a procured SaaS solu-
tion. Further, several procurement projects refer to specific IT standards when expressing
mandatory requirements. Several projects refer to specific IT standards (e.g. ODF, PNG,
PDF/A-1, XML, HTML5, and CSV) which comply with the definition of open standard
[6, 32]. However, there are several projects which refer (in some cases in a somewhat
unclear way) to specific IT standards and file formats (e.g. MPEG, MPEG4, DWG,
PDF/A-2, and Microsoft formats) that do not constitute open standards [6].

Amongst analysed procurement projects which include explicitly expressed manda-
tory requirements related to software we find many implicit and indirect references (in
many cases referenced via specific implementations in software) to a range of differ-
ent IT standards. Amongst implicit references to specific IT standards we find many
projects which include mandatory requirements expressed by reference to specific file
format standards through its filename extension, such as: ‘docx’, ‘dwg’, ‘jpeg’, ‘png’,
and ‘mpeg4’. Further, amongst indirect references to specific IT standards expressed
via implementation of the standards in specifically referenced software applications
(including several SaaS solutions) we find several unclear mandatory requirements.

Several procurement projects include mandatory requirements which refer to spe-
cific proprietary technologies that by some procuring organisations are perceived as
‘standards’ even though these are not recognised by any standards setting organisation.
In many cases such proprietary technologies are controlled by a specific company, such
as for example ‘AD’ (Active Directory, a directory service developed forMicrosoftWin-
dows). On the other hand, we also find some procurement projects which refer to OSS
projects (e.g. Apache Tomcat and LibreOffice) and projects which express a mandatory
requirement for the availability of OSS that can interpret files that need to be maintained
and processed by a procuring organisation.

Many procurement projects express mandatory requirements with reference to spe-
cific implementations in software. For example, one project expressed a mandatory
requirement which required ‘PDF from Raindance’ (based on the information provided
by this procurement project it is unclear how, and which version of the PDF file format is
used by this specific SaaS solution for creation of PDF files). Similarly, another project
expressed that support for exporting data from the procured application ‘to the Google
docs format’ in a mandatory requirement (without providing any details concerning how

Enabling OSS Usage Through Procurement Projects 23

‘the’ technical specification for the format used internally by the SaaS solution is actu-
ally specified and implemented). Further, several procurement projects express (in many
cases rather vaguely formulated) mandatory requirements that request integration and
compatibility with the file formats used by ‘iWork’, ‘Office 365’, and ‘MS Office’.

Overall, from analysis of all mandatory requirements expressed in the investigated
procurement projects, we observe stark confusion related to the difference between soft-
ware application on the one hand, and IT standards (and file formats) on the other. Some
procurement projects include mandatory requirements which make explicit references
to formal standards. For example, one project referred to a withdrawn standard (ISO/IEC
10646:2003) when expressing a mandatory requirement. In this case, we note that sev-
eral successive editions of the standard (i.e. ISO/IEC 10646:2011, ISO/IEC 10646:2012
and ISO/IEC 10646:2014) have also been withdrawn and that the fifth edition of this
standard (ISO/IEC 10646:2017) is under review.

Based on our analysis of the investigated procurement projectswe present five action-
able recommendations for preventing lock-in effects for any procuring organisation that
expresses mandatory requirements in procurement projects.

First, a procuring organisation needs to express requirements for interoperability
with open IT standards (instead of compatibility with a specific proprietary technology
which is controlled by a single provider). We find that if an organisation expresses
a requirement for compatibility with a specific proprietary software application such
practice contributes to lock-in. There is strong support for this recommendation in EU
law and previous studies [17, 21, 25, 29, 33].

Second, a procuring organisation needs to express requirements for open IT stan-
dards (instead of closed IT standards) in order to avoid lock-in. There is strong support
for this recommendation in previous research [2, 11, 19, 21, 26, 27] and reports from
policy makers at different levels [7, 8, 10, 34–36]. Further, if an organisation expresses
a requirement for a closed IT standard, it may (for both legal and technical reasons) be
impossible to implement this standard in OSS [27].

Third, a procuring organisation should express requirements for an IT standard only
if it has been implemented by one or several OSS projects. If sustainable OSS projects
faithfully implement a specific IT standard inOSS thisminimise the risk for being unable
to interpret digital assets previously created in the specific IT standard. We find that if
there is no publicly available OSS implementation for a specific IT standard this imposes
significant risks for lock-in, and it may be a sign that there are technical and legal issues
with the standard itself. There are many technical, legal and business related challenges
which impact on the possibility to develop software applications which conform to
technical specifications of specific IT standards [2, 4, 11, 19, 21, 26, 27, 30].

Fourth, a procuring organisation needs to avoid expressing requirements for spe-
cific proprietary software applications that cause problematic lock-in for the procuring
organisations. There is strong support for this recommendation in Swedish and EU law
[25]. We find that if an organisation expresses a requirement for a proprietary licenced
software application this imposes risks for the procuring organisation (e.g. risks related
to long-term maintenance and reuse of digital assets created through use of the procured
software application) which need to be carefully considered in each case.

24 B. Lundell et al.

Fifth, a procuring organisation needs to develop an effective exit strategy which
allows for abandoning the procured software application (and in particular if the appli-
cation is deployed as a SaaS solution provided by an external organisation) on short
notice with preserved data and digital assets which can be reused in open file formats.
There is strong support for this recommendation in policy recommendations [13] and
previous research [28]. For example, one of the policy recommendations included in a
checklist presented by eSam states: “Is there a strategy that allows or abandoning the
cloud service in the future (an exit plan)?” [13]. Further, lock-in and availability of an
effective exit strategy is considered as one of the “top concerns with the cloud” [22].
We find that if an organisation expresses a requirement without considering the possi-
bility to undertake an effective exit from day one, this imposes risks for the procuring
organisation which need to be carefully considered in each case.

5 Discussion and Conclusions

Based on analysis of the mandatory requirements expressed in the investigated procure-
ment projects, we find widespread lack of clarity and significant scope for improvement
related to expressing competition neutral, relevant and unambiguous mandatory require-
ments amongst procuring organisations. For example, several procurement projects have
confused specific software applications with specific IT standards when expressing
mandatory requirements. Further,manyprojects have expressedmandatory requirements
without having understood the fundamental difference between a technical specification
of a specific IT standard which is implemented in a specific software application (that is
provided by a software project), and the same specification (of the same IT standard) as
documented in a standard document (that is provided by a standard setting organisation,
e.g. ISO).When comparing to previous studies undertaken in the Swedish context which
have identified problematic procurement practices that cause lock-in [25, 29] we find
that previously identified problematic practices remain and even have become evenmore
problematic. We conjecture that this, at least partly, may be explained by an increased
proportion of problematic mandatory requirements expressed in relation to procurement
of SaaS solutions.

Related to the evolved recommendations for preventing lock-in when undertaking
procurement projects, we find that providers of SaaS solutions may cause a range of
lock-in challenges for a customer which consequently may need to recover its externally
maintained data on short notice, perhaps due to that the provider decides to change
the contract terms or in case of serious problems for the provider which leads to a
discontinued solution. For example, we note that a cloud solution provider gave its
customers “two weeks to get their data back” [3].

For these reasons it may be unsurprising that a number of policy recommendations
which seek to address these, and related, challenges have been presented over the years.
For example, eSam (a collaboration between 29 central government agencies and the
SwedishAssociation ofLocalAuthorities andRegions,which represents all 290Swedish
municipalities [15]) has presented recommendations related to use of cloud and SaaS
solutions, including a legal analysis [14] in addition to its checklist which contains
recommendations to an organisation related to procurement of cloud solutions [13].

Enabling OSS Usage Through Procurement Projects 25

Further, an analysis undertaken by Swedish legal experts argues that, under normal
conditions, it is unlawful for a Swedish public sector organisation to enter into a contract
with a supplier, for example for procurement and use of a SaaS solution, in cases where
any foreign law may impact the public sector organisation’s ability to ensure official
tasks are performed according to Swedish law [18]. Further, this may, inter alia, concern
data processing and official duties to ensure information is preserved in data formats
suitable for archival purposes, or that rules governing public access to information and
secrecy are in fact observed so that information cannot improperly be given to a third
party such as a foreign government. The authors argue that it would in these cases be
in contravention of the obligation in the Swedish legal order, for authorities to give
rules in a foreign jurisdiction precedence over the Swedish legal order [18]. Based on
these arguments, we find that this should be the case regardless of whether the authority
enters into a contract directly with an international cloud service provider, or whether
the authority enters into a contract with a Swedish SaaS provider which in turn relies on
an international IaaS provider, as the same fundamental issue can persist in either case.

In conclusion, based on analysis of all mandatory requirements in the investigated
procurement projects we find a widespread practice amongst procuring organisations to
include explicit references to specific proprietary technologies and IT standards which
do not complywith the EU definition of an open standard that is also used by theNational
Procurement Services in Sweden. Consequently, to avoid lock-in effects and promote
software interoperability we find that procuring organisations need to promote use of
open IT standards which can be (and already are) implemented in OSS by sustainable
OSS projects. For reasons of sustainable digitalisation, we find improved public pro-
curement practices to be critical for avoiding an unintentional discrimination against
development and deployment of effective OSS solutions.

Acknowledgements. This research has been financially supported by the Swedish Knowledge
Foundation (KK-stiftelsen) and participating partner organisations in the SUDO project. The
authors are grateful for the stimulating collaboration and support from colleagues and partner
organisations.

References

1. Arthur, B.: Competing technologies, increasing returns, and lock-in by historical events. Econ.
J. 99(394), 116–131 (1989)

2. Blind, K., Böhm, M.: The relationship between open source software and standard setting.
In: Thumm, N. (ed.) EUR 29867 EN, JRC (Joint Research Centre) Science for Policy Report,
Publications Office of the European Union, Luxembourg, ISBN 978-92-76-11593-9 (2019)

3. Butler, B.: Gartner analyst’s advice to customers of shuttering Nirvanix: PANIC!, Cloud
Chronicles Netw. World (2013)

4. Butler, S., et al.: Maintaining interoperability in open source software: a case study of the
Apache PDFBox project. J. Syst. Softw. 159, 110452 (2020)

5. David, P.A.: Clio and the economics of QWERTY. Am. Econ. Rev. 75(2), 332–337 (1985)
6. EC: European Interoperability Framework for Pan-European eGovernment Services, Version

1.0. European Commission, ISBN 92-894-8389-X (2004)

26 B. Lundell et al.

7. EC: Against lock-in: building open ICT systems by making better use of standards in public
procurement. Communication from the Commission to the European Parliament, the Council,
the European Economic and Social Committee and the Committee of Regions, European
Commission, COM (2013) 455 Final, 25 June 2013

8. EC: Guide for the procurement of standards-based ICT - Elements of Good Practice. Com-
munication from the Commission to the European Parliament, the Council, the European
Economic and Social Committee and the Committee of Regions, European Commission,
SWD (2013) 224 final, 25 June (Accompanying the document: ‘Against lock-in: building
open ICT systems by making better use of standards in public procurement’, COM (2013)
455 final) (2013)

9. EC: Commission Recommendation (EU) 2017/1805 of 3 October 2017 on the professionali-
sation of public procurement - Building an architecture for the professionalisation of public
procurement. Official Journal of the European Union, L259/28, 3 October 2017

10. EC: OPEN SOURCE SOFTWARE STRATEGY 2020 - 2023: Think Open. Communication
to the Commission, European Commission, Communication, COM (2020) 7149 Final, 21
October 2020

11. Egyedi, T.: Standard-compliant, but incompatible?!Comput. Stand. Interfaces 29(6), 605–613
(2007)

12. EU: Online catalogue of ICT standard for procurement. European Commission, 6 November
2017. https://joinup.ec.europa.eu/community/european_catalogue. Accessed 6 Nov 2017

13. eSam: Checklista inför beslut om molntjänster i offentlig sektor, 31 October 2018. https://
www.esamverka.se/stod-och-vagledning/rekommendationer-och-checklistor/checklista-
infor-beslut-om-molntjanster-i-offenlig-sektor.html

14. eSam: Rättsligt uttalande om röjande ochmolntjänster, VER 2018:57, eSam, 23October 2018
15. eSam (2021). www.esamverka.se/om-esam/om-esam.html
16. Farrell, J., Klemperer, P.: Coordination and lock-in: competition with switching costs and

network effects. In: Armstrong, M., Porter, R. (eds.) Handbook of Industrial Organization,
vol. 3, pp. 1967–2072. Elsevier, Berkeley (2007)

17. FLOSS: Open Source Software in the Public Sector: Policy within the European Union.
FLOSS Final Report - Part 2b, Free/Libre Open Source Software: Survey and Study, Berlecon
Research, Berlin, June 2002

18. Furberg, P.,Westberg,M.:Måste myndigheter följa lagarna? Om utkontraktering och legalitet
i digital miljö, Juridisk tidskrift, No. 2, pp. 406–417 (2020/21)

19. GAIA: Project GAIA-X: A Federated Data Infrastructure as the Cradle of a Vibrant European
Ecosystem. Federal Ministry for Economic Affairs and Energy (BMWi), Berlin, October
2019. https://www.bmwi.de/Redaktion/EN/Publikationen/Digitale-Welt/project-gaia-x.html

20. GAIA:GAIA-X: Technical Architecture, Release - June 2020, FederalMinistry for Economic
Affairs and Energy (BMWi), Berlin, June 2020. https://www.bmwi.de/Redaktion/EN/Publik
ationen/gaia-x-technical-architecture.pdf?__blob=publicationFile&v=5

21. Ghosh, R.A.: Open Standards and Interoperability Report: An Economic Basis for Open
Standards, Deliverable D4. University of Maastricht, MERIT (2005)

22. Hon, W.K., Millard, C., Walden, I.: Negotiating cloud contracts: looking at clouds from both
sides now. Stanford Technol. Law Rev. 16(1), 79–129 (2012)

23. Katz, A.: Google, APIs and the law. Use, reuse and lock-in. In: Lopez-Tarruella, A. (ed.)
Google and the Law: Empirical Approaches to Legal Aspects of Knowledge-Economy Busi-
nessModels, pp. 287–301. T.M.C. Asser Press, The Hague (2012), ISBN 978-90-6704-845-3

24. Lings, B., Lundell, B.: On the adaptation of grounded theory procedures: insights from the
evolution of the 2G method. Inf. Technol. People 18(3), 196–211 (2005)

25. Lundell, B.: e-Governance in public sector ICT procurement: what is shaping practice in
Sweden? Eur. J. ePract. 12(6), 66–78 (2011). http://web.archive.org/web/20110429011729/
http://www.epractice.eu/files/European%20Journal%20epractice%20Volume%2012_6.pdf

https://joinup.ec.europa.eu/community/european_catalogue
https://www.esamverka.se/stod-och-vagledning/rekommendationer-och-checklistor/checklista-infor-beslut-om-molntjanster-i-offenlig-sektor.html
http://www.esamverka.se/om-esam/om-esam.html
https://www.bmwi.de/Redaktion/EN/Publikationen/Digitale-Welt/project-gaia-x.html
https://www.bmwi.de/Redaktion/EN/Publikationen/gaia-x-technical-architecture.pdf%3F__blob%3DpublicationFile%26v%3D5
http://web.archive.org/web/20110429011729/\UrlAllowbreak {}http://\UrlAllowbreak {}www.\UrlAllowbreak {}epr\UrlAllowbreak {}act\UrlAllowbreak {}ice.\UrlAllowbreak {}eu/\UrlAllowbreak {}files/\UrlAllowbreak {}Eur\UrlAllowbreak {}opean%\UrlAllowbreak {}20J\UrlAllowbreak {}our\UrlAllowbreak {}nal%\UrlAllowbreak {}20e\UrlAllowbreak {}pra\UrlAllowbreak {}ctice%\UrlAllowbreak {}20V\UrlAllowbreak {}olume%\UrlAllowbreak {}2012_6.\UrlAllowbreak {}pdf\UrlAllowbreak {}

Enabling OSS Usage Through Procurement Projects 27

26. Lundell, B., Gamalielsson, J., Katz, A.: On implementation of open standards in software: to
what extent can ISO standards be implemented in open source software? Int. J. Stand. Res.
13(1), 47–73 (2015)

27. Lundell, B.,Gamalielsson, J.,Katz,A.: Implementing IT standards in software: challenges and
recommendations for organisations planning software development covering IT standards.
Eur. J. Law Technol. 10(2) (2019). https://ejlt.org/index.php/ejlt/article/view/709/

28. Lundell, B., Gamalielsson, J., Katz, A.: Addressing lock-in effects in the public sector: how
can organisations deploy a SaaS solution while maintaining control of their digital assets? In:
Virkar, S., et al. (ed.) CEUR Workshop Proceedings: EGOV-CeDEM-ePart 2020, vol. 2797,
pp. 289–296, ISSN 1613-0073 (2020). http://ceur-ws.org/Vol-2797/paper28.pdf

29. Lundell, B., Gamalielsson, J., Tengblad, S.: IT-standarder, inlåsning och konkurrens: En
analys av policy och praktik inom svensk förvaltning, Uppdragsforskningsrapport 2016:2,
Konkurrensverket (the Swedish Competition Authority), ISSN: 1652-8089, (in Swedish, with
an executive summary in English) (2016)

30. Lundell, B., et al.: Addressing lock-in, interoperability, and long-termmaintenance challenges
through open source: how can companies strategically use open source? In: Balaguer, et al.
(eds.) The 13th International Conference on Open Source Systems (OSS 2017), IFIP AICT,
vol. 496, pp. 80–88. Springer (2017)

31. NOC: The Netherlands in Open Connection: An Action Plan for the Use of Open Standards
and Open Source Software in the Public and Semi-Public Sector. The Ministry of Economic
Affairs, The Hague (2007)

32. NPS: Open IT-Standards. National Procurement Services, Kammarkollegiet, 7 March, Dnr
96-38-2014 (2016). https://www.avropa.se/globalassets/dokument/open-it-standards.pdf

33. NPS: Förstudierapport Webbaserat kontorsstöd, National Procurement Services, Kam-
markollegiet, Dnr 23.2-6283-18, 22 February (in Swedish, with a summary in
English) (2019). https://www.avropa.se/globalassets/forstudierapporter-vt--it/forstudierap
port-webbaserat-kontorsstod2.pdf

34. UK: Open Standards Principles: For Software Interoperability, Data and Doc-
ument Formats in Government IT Specifications. HM Government, 7 Septem-
ber 2012. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/att
achment_data/file/459074/Open-Standards-Principles-2012.pdf

35. UK: Open Standards Principles, GOV.UK, 7 September 2015. https://www.gov.uk/govern
ment/uploads/system/uploads/attachment_data/file/459075/OpenStandardsPrinciples2015.
pdf

36. UK: Open Standards Principles, UK.GOV, 5 April 2018. https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/697195/Open_Standards_
Principles_2018.odt

https://ejlt.org/index.php/ejlt/article/view/709/
http://ceur-ws.org/Vol-2797/paper28.pdf
https://www.avropa.se/globalassets/dokument/open-it-standards.pdf
https://www.avropa.se/globalassets/forstudierapporter-vt{-}{-}it/forstudierapport-webbaserat-kontorsstod2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/459074/Open-Standards-Principles-2012.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/459075/OpenStandardsPrinciples2015.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/697195/Open_Standards_Principles_2018.odt

Finding Code-Clone Snippets in Large
Source-Code Collection by ccgrep

Katsuro Inoue1(B), Yuya Miyamoto1, Daniel M. German2, and Takashi Ishio3

1 Osaka University, Osaka, Japan
{inoue,yuy-mymt}@ist.osaka-u.ac.jp

2 University of Victoria, Victoria, Canada
dmg@uvic.ca

3 Nara Institute of Science and Technology, Ikoma-shi, Japan
ishio@is.naist.jp

Abstract. Finding the same or similar code snippets in the source code
for a query code snippet is one of the fundamental activities in software
maintenance. Code clone detectors detect the same or similar code snip-
pets, but they report all of the code clone pairs in the target, which
are generally excessive to the users. In this paper, we propose ccgrep, a
token-based pattern matching tool with the notion of code clone pairs.
The user simply inputs a code snippet as a query and specifies the tar-
get source code, and gets the matched code snippets as the result. The
query and the result snippets form clone pairs. The use of special tokens
(named meta-tokens) in the query allows the user to have precise control
over the matching. It works for the source code in C, C++, Java, and
Python on Windows or Unix with practical scalability and performance.
The evaluation results show that ccgrep is effective in finding intended
code snippets in large Open Source Software.

Keywords: Code snippet search · Pattern matching · Clone types

1 Introduction

Finding and locating the same or similar code snippets in source code files is
a fundamental activity in software development and maintenance, and various
kinds of software engineering tools or IDEs have been proposed and imple-
mented [19].

A (code) clone is a code snippet that has an identical or similar snippet,
and a pair of such snippets is called a (code) clone pair [6]. A large body of
scientific literature on clone detection has been published and various kinds of
code clone detection tools (detectors) have been developed [18,20]. These code
clone detectors are candidates for finding similar code snippets, but most of
those are designed to detect all of the code clone pairs in the target, which are
generally excessive to the user who wants to search for a specific query snippet.

It has been reported that grep [8], a character-based pattern matching tool,
is widely used in the software engineering practice to find lines with a specific
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 28–41, 2021.
https://doi.org/10.1007/978-3-030-75251-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_3

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 29

keyword [14,21], although making a query for a code snippet that spans multiple
lines needs some skill and effort.

In this paper we propose a tool, named ccgrep (code clone grep), to find code
snippets by using the notion of clone detection and pattern matching. Search
queries can be simply code snippets, or code snippets enhanced with meta-tokens
having a leading $ that can provide flexibility to narrow or broaden the search
query. ccgrep is not an ordinary code clone detector that finds all code clone
pairs in the target program but it is a code snippet finder that reports code
snippets composing code clone pairs against the query snippet.

ccgrep works on Windows or Unix as a simple but reliable clone detector
and pattern matching tool for C, C++, Java, and Python. ccgrep has been
applied to various applications, and it showed high scalability and performance
for large source-code collection. ccgrep is an Open Source Software system and
can be obtained from GitHub1.

2 Motivating Example

Some uses of the ternary operator (e.g., exp1 ? exp2 : exp3 meaning the result
of this entire expression is exp2 if exp1 is true, otherwise the result is exp3—
available in C, C++ and Java) are considered bad practice [23]. For example, the
use of a < b ? a : b is arguably harder to read than using min(a,b). Therefore,
it might be desirable to replace the ternary operator with a function or macro
that returns the minimum value. The following is an example found in the file
drivers/usb/misc/adutux.c in the Linux kernel (v5.2.0).

amount = bytes to read < data in secondary ?

bytes to read : data in secondary;

This line of code should be replaced with a more readable expression (note that
the macro min in Linux guarantees no side effects):

amount = min(bytes to read, data in secondary);

We might consider that finding all occurrences of such usage of the ternary
operator could be done by clone detectors. A popular clone detector NiCad [7]
reports 646 block-level clone classes for the drivers/usb files by the default set-
ting, but no snippet with the ternary operator case is included in the result
because it is too small to be detectable.

Alternatively, we would try it with grep but it is not easy. For example,
simply executing “grep ’<’” for all 598 files (total 51,6394 lines in C) under
drivers/usb produces 16335 matching, including many undesired patterns such
as “if (a<b)”, “for (i=0; i<x; ...)”, or “#include <linux/...>”. We could
narrow the matches by concatenating grep like,

1 https://github.com/yuy-m/CCGrep.

https://github.com/yuy-m/CCGrep

30 K. Inoue et al.

grep ’<’ -r . | grep ’?’ | grep ’:’

However, it still produces 149 matches. Perhaps more problematic is that the
expressions could span multiple lines. While it is possible to create a complex
regular expression to find these expressions, it would be time-consuming and
potentially error-prone.

Ideally, we would like to be able to specify a simple and easy-to-create-and-
understand query to find these types of snippets. Therefore in this paper, we
propose ccgrep and its query is written simply as:

a < b ? a : b

In a nutshell, this query specifies that a variable (represented by a) should be
followed by < and then the second variable (represented by b), followed by a ?,
followed by the same first variable found, followed by :, followed by the second
variable. Also, white spaces and comments should be ignored. This query would
match all type 2 clones (mentioned in Sect. 3.3) with consistent variable names
such as x<y?x:y but it would not match x<y?x:z.

As a practical application, we have used this query to identify 3 instances
of such an expression in Linux’s drivers/usb and submitted patches to replace
them with min. Two of those patches have been accepted already into Linux.

3 Overview of Code Clone Query by ccgrep

3.1 Basic Features

The input of ccgrep is the query and the target of the source code files in the
same programming language. The output is a list of the matched code snippets
in the target. The query and the matched code snippets form clone pairs. The
query is a code snippet of single or multiple lines and is composed of the regular
tokens in the language and the extended tokes with meta symbols having a
leading $. We will describe these based on the classification of the clone types.
Formalization of the matching is presented in Appendix and also in [11].

3.2 Query for Type 1 Clone

A Type 1 code clone pair is two code snippets possibly with different spacing,
line break, or comment. To find type 1 cloned snippets, a code snippet in the
programming language is directly given as the query, with a leading $ for each
identifier or literal. Note that in the following examples, we will use Java as the
programming language.

Query: int $a= $0;

Target: int a=0 /* some comments */; Match
Target: int b=0 ; Not Match

In this case, the query matches a code snippet with a comment, but it does not
match the latter case of identifier b. The users do not worry about the white
spaces and comments in the query.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 31

3.3 Query for Type 2 Clone

A Type 2 code clone pair is two code snippets with the difference of the replace-
ment of identifiers and literals, in addition to the difference of type 1 clones.

In type 2 matching, a user-defined identifier in the query matches any iden-
tifier in the target. The same also applies to literal. This “normalization” of the
user-defined names allows very flexible pattern matching to find different iden-
tifiers or literals. By default, ccgrep executes so-called Parameterized match [3]
or P-match for short, such that if two identifiers (or literals) in the query are
the same, then the corresponding tokens in the target must be consistently the
same. These normalization and p-match are formally explained in Appendix.

Query: a = 0; a = a + b;

Target: y = 0; y = y + c; Match

Target: y = 0; y = z + c; Not Match

In the former case, a consistently corresponds to y, but in the latter case, it does
not2.

3.4 Query for Type 3 Clone

A Type 3 code clone pair is two code snippets with a difference of some state-
ments of addition, deletion, or change, in addition to the distinction of type 2.
We employ wild-card tokens in the query, which extend the matching from the
original seed tokens. The seed snippet and the matched snippet form a code
clone pair of type 3. We can replace a token in the seed snippet with ‘$.’ that
matches any single token.

Seed: a = 5 ;

Query: a = $. ;

Target: a = b ; Match

‘$$’ is a wild-card token to match zero or more tokens before the next token
matches.

Seed: a = 10 ;

Query: a = $$;

Target: a = b+c+10 ; Match

Target: a = f(g,h) ; Match

The following is a more complex example.

Seed: a= f(q); if(a<0){a=-a;}
2 This can be changed by an option to allow inconsistent matching.

32 K. Inoue et al.

Query: a= $f(p); $$ if(a<0){a=-a;}
Target: b= f(q); if(b<0){b=-b;} Match

Target: b= f(q); c= c+10; d=20; if(b<0){b=-b;} Match

3.5 Finding Various Code Snippets

Combining the regular tokens and meta-tokens in the query, we can find many
different kinds of code patterns in the target, from simple to complex ones.

Method XY Z with no parameter
Query: $XYZ()

Method XY Z with 0 or more parameters
Query: $XYZ($$)

Method print with variable buf as the 1st parameter
Query: $print($buf, $$)

Any method definition
Query: T f($$){$$}

Note that type names are treated as identifiers and then T matches any type
name.

Getter method
Query: T f(){return this.v;}

Setter method
Query: T1 f(T2 v1){this.v1=v2;}

if statement
Query: if ($$){$$}

for statement using control variable
Query: for(T i=0; i<$$; i++){$$}

In addition to finding these patterns, one of the usable use-cases would be
a copy-and-paste code search. A developer finds a bug in a system and locates
the snippet that causes the defects. She would want to find the same or similar
occurrences of the bug in the system, then she copies the buggy snippet and
runs ccgrep with the pasted snippet as the query. Then she instantly gets type
2 clone snippets. She does not need to set up a heavy clone detector, nor does
she need to do tedious analysis of the unnecessary detection results.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 33

4 Architecture of ccgrep

The architecture of ccgrep is presented in Fig. 1.

Target

Query

Option

Tokenizer

Tokenizer

Tokenizer
Generator

Language
Definition

Extended
Token

Definition

CC
Matcher

Output
Formatter Output

Map Table

Tokenizer
Generation
(executed only
once for each
language)

Token
Sequence

Token
Sequence

ccgrep

Tokenizer
Generator

Fig. 1. Architecture of ccgrep

Tokenizer Generators: Parser generator ANTLR is used to generate two kinds
of tokenizers. For the target tokenization, only the language definition is used
to recognize the regular tokens, but for the query tokenization, the definition
of the meta-tokens and that of regular tokens are used. This process has been
executed only once for each target language.

Tokenizers: Each tokenizer removes white spaces and comments from the input
files and decomposes the code into tokens. The query tokenizer accepts the
meta-tokens starting with $ and the regular tokens defined by the language,
but the target tokenizer accepts only the regular tokens. The tokenizer for
the target files is executed in parallel for each file, along with the following
CC Matcher.

CC Matcher: This performs a naive sequential pattern matching algorithm
between two token sequences for the query (of the length m) and the target
(of the length n), whose worst-case time complexity is O(mn) [9]. For type
2 code clone matching, we record the position for each identifier and literal
in Map Table to check proper P-matching. The table contents are flushed for
each query. Option controls the normalization level, input language, output
form, and many others.

Output Formatter: This process constructs the output for the successful
matching result. Based on the input option, we can view the match result,
like grep, in the form of the file name associated with the matched top line
as the default, or as many other styles such as full matched lines, only the
number of lines, or so on.

34 K. Inoue et al.

ccgrep is written in Java associated with the ANTLR output, and it is very
easily installed and executed on various Unix or Windows environments with a
single JAR file (about 1M byte) containing all necessary libraries.

5 Evaluation

The goal of the evaluation is to show that our proposed approach can find various
kinds of intended code snippets effectively and efficiently. This goal could be
decomposed into the following three research questions.

RQ1: Query Expressiveness. Are queries for various types of code clones
expressible by ccgrep?

RQ2: Accuracy of ccgrep. Does ccgrep accurately find various types of code
clones already detected by other approaches?

RQ3: Performance of ccgrep. What is the execution time of ccgrep? Is
the token-based naive sequential pattern matching approach fast enough in
practice?

5.1 RQ1: Query Expressiveness

As shown in previous sections, it is obvious that our approach can easily create
various query patterns for type 1 matching, type 2 matching with P-match,
and type 2 matching with non-P-match, by specifying a code snippet associated
with appropriate options. In addition, we can specify the name of an identifier
or literal, if we place $ before the name.

A type 3 code-clone snippet is one with a few statement addition, or deletion,
or change for a seed snippet. Thus the query for type 3 matching could be made
from the seed by adding meta-tokens such as $., $$, or $*, deleting some regular
tokens in the seed, or modifying some regular tokens with $., $$, or other meta-
tokens.

Therefore, the queries for type 1 to 3 code clones can be effectively created
from a code snippet at hand.

5.2 RQ2: Accuracy of ccgrep

For evaluation of query-matching (or information retrieval) systems, recall and
precision values, computed by comparing the matched results with the oracles for
the queries, are popularly employed [2]. Here in our approach, however, the query
to CC matching has no ambiguity and it reports the matching result rigorously
as expected and specified by the query with options. In such a sense, the result
is always the same as the oracle, i.e., the recall and precision are always 1. Thus,
instead of using recall and precision, here we simply investigate if ccgrep works
accurately in the sense that code clones already reported by other approaches
could be found by our approach.

For this purpose, first, we have employed BigCloneBench [24] which is a huge
collection of various kinds of code clones. We have extracted all pairs classified

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 35

as type 1 and type 2 code clones from BigCloneBench, and for each clone pair
(sp1, sp2), we have checked if sp2 is successfully found in the result of ccgrep
for sp1 as a query with appropriate options, and vice versa. Table 1 shows the
numbers of type 1 and 2 clones found by ccgrep.

Table 1. Checked clones in BigCloneBench

Clone type Clone pairs Found Not found

Type 1 48116 48111 5

Type 2 4234 4232 2

Total 52350 52343 7

As we can see in Table 1, most type 1 and 2 clones are found accurately.
There were several cases of not-found clones, and we have investigated further
those cases and recognized that those cases are faults of the classification of
BigCloneBench, some of which should be classified into type 3, and some others
are not clones. Thus, we can say that all of the proper type 1 and 2 clones in
BigCloneBench were perfectly found by ccgrep.

For type 3 clones, since BigCloneBench contains huge type 3 data and we
cannot make the queries for those, we have instead used CBCD data [16], that
contains 11 type-3 clone sets taken from the source code of Git, the Linux kernel,
and PostgreSQL. We have crafted type 3 queries from one of the code snippets
in each clone set as the seed and have checked if those queries accurately match
the other snippets in the same clone set. We have confirmed that all the crafted
queries accurately match other snippets in each clone set.

As far as our investigation, all the matches are controlled by the query and
are performed accurately as we have expected.

5.3 RQ3: Performance of ccgrep

It is interesting to know that our approach, i.e., token-based and naive sequential
pattern matching, can be implemented fast enough for practical use. We have
examined various queries for ccgrep with the target source files of Antlr and
Ant in Java, and CBCD data (Git, PostgreSQL, and Linux Kernel) in C, and
have measured the performance of ccgrep. Following are employed queries. All
execution was made with the default setting of ccgrep except for the language
option.

qA: a < b? a: b
Find ternary operation to give a smaller value.

qB: T1 f(T2 a) { return $$; }
Find function definition immediately returning a value.

qC: f($$, $$, $$);
Find three parameter function.

36 K. Inoue et al.

qD:
for(a = 0; a < $$; a++) { $$ } $|
a = 0; while(a < $$) { $$ a++; }

Find for or (represented by $|) while statement with a control variable.

Table 2. Target and execution result by ccgrep

Target Antlr Ant Git PgSQL Linux

Lang. Java Java C C C

#file 678 1,272 339 904 15,123

#line 59,511 138,396 90,495 177,174 3,756,212

qA #found 0 2 8 3 48

time (sec.) 1.12 1.32 1.11 1.43 9.46

qB #found 159 161 7 27 543

time (sec.) 1.15 1.33 1.10 1.47 10.15

qC #found 1,710 2,487 5,717 10,603 187,653

time (sec.) 1.20 1.38 1.13 1.55 12.01

qD #found 1 13 442 621 10,754

time (sec.) 1.19 1.52 1.10 1.49 11.06

Antlr: Antlr4 v.4.7.2, Ant: Apache Ant v.1.10.5, Git: v.1.6.4.3,
PgSQL: PostgreSQL v.6.5.3, Linux: Linux kernel v.2.6.14rc2

Table 2 shows the size metrics of the target, the number of found snippets,
and the execution time of each query on a workstation with Intel Xeon E5-1603v4
(@2.8 GHz × 4), 32 GB RAM, and Windows 10 Pro for WS 64bit.

As we can see from Table 2, the execution times are about 1–10 s even for a
few million lines of Linux kernel target. We would think that those are fast and
acceptable as a daily-use tool. The execution times for qA to qD are very stable
for each target. For example, in the case of Linux, they are about 10 s. even for
the small #found case (48 for qA) and the large #found case (187,653 for qC).
Thus, we would say that the execution time is not heavily affected by the result
size (#found) but mainly affected by the target size (#line). Targets Ant in Java
and PgSQL in C have similar sizes around 140–180 Klines, and the execution
times are also similar around 1–1.5 s. This would show that the execution time
is not strongly affected by the target language.

For comparison to grepwe have employed a query qE, that is almost equiv-
alent to qA except qE does not match the targets with more than one line.

qE(grep):
([a-zA-Z][a-zA-Z 0-9]*)\s*<
([a-zA-Z][a-zA-Z 0-9]*)\s*\?\s*
\1\s*:\s*\2

This query is complex and hard to create for inexperienced grep users. It has
been executed by grep 3 to 9 times faster than ccgrep, but it missed some
expected matches of the code snippets with two or more lines.

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 37

As the conclusion of RQ3, although the speed of ccgrep is slower than grep,
it is sufficiently fast and acceptable as a search tool even for large targets such
as 3 million LOC Linux kernel.

6 Related Works

There are numerous publications on code clone detection methods and their
tools [18,20]. Most of those tools focus on finding all of the code clone pairs in the
target file collection. They report all code clones or similar code snippets with
similarities higher than a certain threshold. Precisely controlling the matches
with meta-symbols like ours cannot be accomplished by those approaches.

There are several tools specialized for finding code snippets. CBCD has been
designed for finding related code snippets from a buggy code snippet, by using
matching of Program Dependence Graph (PDG) [16]. It can be used to find
type 1, 2, and 3 clones; however, the matching generally requires a long pre-
processing time to construct PDG, and so this approach would not fit the nimble
clone finding that we are interested in. NCDSearch has been designed to find
similar code snippets in the pile of source code files for the analysis of code
reuse and evolution [12]. The approach would be unique and interesting, but the
speed is slower than ours. Micro-clones are recently getting focus due to their
importance [4,13]. Our tool is one of the convenience tools for finding micro
clones.

Siamese has been developed for finding code clone pairs for a query method
or file using multiple representations of n-gram token sequences with inverted
index [17]. It requires a long indexing time (e.g., about 10 min indexing time for
10,000 method target). Thus its application and usage would be different from
ours.

Variants of grep such as context grep cgrep, approximate grep agrep, and
many others had been proposed and implemented to meet various require-
ments [1]. However, there is no one for clone-based matching like ours.
Semantic-based matching tool sgrep [5], data-structure-based matching tool
coccigrep [15], and the logic-based query pattern capturing language [22] were
proposed, where the specific notations for the queries are provided without using
the notion of clones like ours.

7 Conclusions

We have presented ccgrep that effectively finds code snippets in the target files
with the notion of code clone and meta-pattern. It is a practical and effective
pattern matching tool, easy-to-use to many software engineers.

As a future direction, we are interested in further performance improvement
by using more efficient pattern matching algorithms. Also, we are trying to
spread the use of ccgrep to industry collaborators who are trying to detect
similar bug patterns in their legacy systems.

38 K. Inoue et al.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 18H04094, and Osaka University Program for Promoting International Joint
Research. We are grateful for important comments from T. Kamiya, N. Yoshida, Raula
Gaikovina Kula, E. Choi, K. Takenouchi, T. Kanda, and M. Matsushita.

Table 3. Token-level matching

Token(s) in query Matched token(s) in
target

Simple example of match

Query Target

Reserved word† Exact reserved word while while

Delimiter Exact delimiter ((

Identifier Any identifier‡ myname abc

Literal Any literal‡ 1 100

$identifier Exact identifier $myname myname

$literal Exact literal $1 1

$. Any single token $. if

$# X Any shortest token
sequence ending
with X

$# + while(f(a+

$$ X Any shortest token
sequence ending
with X, excluding X
inside well-balanced
bracket {...}, [...], or
(...)

$$ + while(f(a+1))+

X $— Y Either X or Y + $| - -

X $* Repeated sequence
of X zero or more
times

($* (((

X $+ Repeated sequence
of X one or more
times

($+ ((

X $? X or none ($? (

$(X1 X2 ... $) X1, X2, ... (group
for further regular
expression
operations)

$(a++ $| ++a $) a++

†Type names are treated as identifiers.
‡Identifier and literal may match only the exact one by an option.
- Tokens starting with $ are meta-tokens and others are regular tokens.
- Wildcard meta-tokens $# and $$ match in reluctant way, and $*, $+, and $? match in
possessive way [10].
- X, Y, X1, X2, ... are any regular token or a group with $(... $).

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 39

Appendix: Formulating Matching

Here we formulate the matching made by ccgrep. The input of the matching
is the query q, the target T of source code files in a programming language L,
and matching option o. The output is a list of matched code snippet t in T .
We refer to reserved words, delimiters (operators, brackets, ; ...), identifiers, and
literals in L as regular tokens. Other tokens starting with meta symbol $ are
called meta-tokens. q is a sequence of regular tokens and the meta-tokes, and
each matched result t is a sequence of the regular tokens. These token sequences
do not contain comments, white spaces, or line breaks. We always consider the
matching on the token sequence level, not on the character level.

In Table 3, we define a token-level matching for various kinds of tokens with
simple examples. The basic ideas of these matches are as follows.

– A language-defined token such as reserved words or delimiters matches the
exact token.

– A user-defined token such as an identifier or literal can match the same kind of
token with a possibly different name or value. To pin down them to a specific
identifier name or literal value, $ is used before the token. For example, $count
would match only the token count.

– Wildcard tokens $., $#, and $$ are introduced for the matches to any single
token, any token sequence, or any token sequence discarding paired brackets,
respectively.

– Popular regular expression operators for choice, repetition, and grouping are
introduced to enhance the expressiveness.

Consider that query q is a token sequence q1, ..., qm (1 ≤ m), and a target
t is a token sequence t1, ..., tn (0 ≤ n). From q1 to qm, if each token in the
query matches tokens in the target from t1 to tn as defined in Table 3 without
overlapping or orphan tokens, then we say q matches t.

For the query token sequence q1, ..., qm and the target token sequence
t1, ..., tn, if n = m and norm(qi) = norm(ti) for each i, then q matches t as
type 2 matching. Here norm is a normalization function to flat the distinction
of identifiers (or literals), defined below.

norm(x) ≡
⎧
⎨

⎩

#id if x is an identifier
#li if x is an literal
x otherwise

In type 2 matching, an identifier in the query can match any identifier in the
target, and also a literal in the query can match any literal in the target.

q1: a = 0; b = 10;
t1: x = 10; y = 200;

q1 matches t2, because the sequences of the normalized tokens are both [#id,=,
#li, ; ,#id,=,#li, ;].

40 K. Inoue et al.

A special case of type 2 matching, with a constraint such that for any identi-
fier or literal qi if qi = qj , then ti = tj , is Parameterized matching or P-matching.
This is sometimes referred to consistent or aligned matching, meaning the same
identifiers (or literals) in the query are mapped into the same ones in the tar-
get. P-matching is formally defined with a specialized normalization function
normp(), as follows.

normp(x) ≡
⎧
⎨

⎩

#idpos(x) if x is an identifier
#lipos(x) if x is a literal
x otherwise

Here, pos(x) is a function returning position i such that identifier (or literal) x is
the i-th identifier (literal) newly appeared in the token sequence. Note that any
meta-token starting with $ in the query and their matched tokens in the target
are out of consideration of pos().

q2: a = 0; a = a + b;
t2: y = 0; y = y + c;

For q2, pos(a) = 1 and pos(b) = 2, and for t2, pos(y) = 1 and pos(c) = 2.
q2 matches t2 as P-matching, because the P-normalized sequences are both
[#id1,=,#li1, ; ,#id1,=,#id1,+,#id2, ;]. The following case is type 2 matching
but not P-matching.

q3: a = 0; a = a + b;
t3: y = 0; y = z + c; (type 2 matching but not P-matching)

At t3, z cannot be matched by a because normp(a) = #id1 is not equal to
normp(z) = #id2. As a default of CC matching, P-matching is assumed but it
can be changed by the tool’s option.

References

1. Abou-Assaleh, T., Ai, W.: Survey of global regular expression print (grep) tools
(2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.3326

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM
Press/Addison-Wesley, New York (1999)

3. Baker, B.S.: A program for identifying duplicated code. In: Proceedings of Com-
puting Science and Statistics: 24th Symposium on the Interface, vol. 24, pp. 49–57
(1992)

4. Beller, M., Zaidman, A., Karpov, A., Zwaan, R.A.: The last line effect explained.
Empir. Softw. Eng. 22(3), 1508–1536 (2016). https://doi.org/10.1007/s10664-016-
9489-6

5. Bull, R.I., Trevors, A., Malton, A.J., Godfrey, M.W.: Semantic grep: regular expres-
sions + relational abstraction. In: 2002 Proceedings of the Ninth Working Confer-
ence on Reverse Engineering, pp. 267–276, November 2002. https://doi.org/10.
1109/WCRE.2002.1173084

6. Carter, S., Frank, R., Tansley, D.: Clone detection in telecommunications software
systems: a neural net approach. In: Proceedings of the International Workshop on
Application of Neural Networks to Telecommunications, pp. 273–287 (1993)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.3326
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1109/WCRE.2002.1173084
https://doi.org/10.1109/WCRE.2002.1173084

Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep 41

7. Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension, pp. 219–220, June 2011. https://doi.org/
10.1109/ICPC.2011.26

8. FreeSoftwareFoundation: Gnu grep 3.3 manual (2018). https://www.gnu.org/
software/grep/manual/grep.html

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York (1997)

10. Habibi, M.: Java Regular Expressions: Taming the Java.util.regex Engine. Apress
(2004). https://doi.org/10.1007/978-1-4302-0709-2

11. Inoue, K., Miyamoto, Y., German, D.M., Ishio, T.: Code clone matching: a practical
and effective approach to find code snippets. arXiv CS.SE(2003:05615v1), pp. 1–11
(2020)

12. Ishio, T., Maeda, N., Shibuya, K., Inoue, K.: Cloned buggy code detection in prac-
tice using normalized compression distance. In: 2018 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, 23–29
September 2018, pp. 591–594 (2018)

13. Islam, J., Mondal, M., Roy, C., Schneider, K.: Comparing bug replication in regular
and micro code clones. In: 27th International Conference on Program Comprehen-
sion (ICPC 2019), pp. 81–92, May 2019

14. Kernighan, B., Pike, B.: The Practice of Programming. Addison-Wesley, Boston
(1999)

15. Leblond, E.: Coccigrep introduction. http://home.regit.org/software/coccigrep/
16. Li, J., Ernst, M.D.: CBCD: cloned buggy code detector. In: 2012 34th International

Conference on Software Engineering (ICSE), pp. 310–320, June 2012. https://doi.
org/10.1109/ICSE.2012.6227183

17. Ragkhitwetsagul, C., Krinke, J.: Siamese: scalable and incremental code clone
search via multiple code representations. Empir. Softw. Eng. 24(4), 2236–2284
(2019). https://doi.org/10.1007/s10664-019-09697-7

18. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: a systematic review.
Inf. Softw. Technol. 55(7), 1165–1199 (2013)

19. Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do professional developers
comprehend software? In: Proceedings of the 34th International Conference on
Software Engineering, ICSE 2012, pp. 255–265. IEEE Press, Piscataway (2012).
http://dl.acm.org/citation.cfm?id=2337223.2337254

20. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

21. Singer, J., Lethbridge, T.C.: Whatś so great about ‘grep’? Implications for program
comprehension tools. Technical report, National Research Council, Canada (1997)

22. Sivaraman, A., Zhang, T., Van den Broeck, G., Kim, M.: Active inductive logic
programming for code search. In: Proceedings of the 41st International Conference
on Software Engineering, pp. 292–303. IEEE Press (2019)

23. Soetens, Q.D., Demeyer, S.: Studying the effect of refactorings: a complexity met-
rics perspective. In: 2010 Seventh International Conference on the Quality of Infor-
mation and Communications Technology, pp. 313–318, September 2010. https://
doi.org/10.1109/QUATIC.2010.58

24. Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with BigCloneBench.
In: 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 131–140. IEEE (2015)

https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1109/ICPC.2011.26
https://www.gnu.org/software/grep/manual/grep.html
https://www.gnu.org/software/grep/manual/grep.html
https://doi.org/10.1007/978-1-4302-0709-2
http://home.regit.org/software/coccigrep/
https://doi.org/10.1109/ICSE.2012.6227183
https://doi.org/10.1109/ICSE.2012.6227183
https://doi.org/10.1007/s10664-019-09697-7
http://dl.acm.org/citation.cfm?id=2337223.2337254
https://doi.org/10.1109/QUATIC.2010.58
https://doi.org/10.1109/QUATIC.2010.58

OSS PESTO: An Open Source Software
Project Evaluation and Selection TOol

Xiaozhou Li(B) and Sergio Moreschini

Tampere University, Kalevantie 4, 33100 Tampere, Finland
{xiaozhou.li,sergio.moreschini}@tuni.fi

Abstract. Open source software (OSS), playing an increasingly criti-
cal role nowadays, has been commonly adopted and integrated in var-
ious software products. For many practitioners, selecting and adopting
suitable OSS can help them greatly. Though many studies have been
conducted on proposing OSS evaluation and selection models, a limited
number are followed and used in the industry. Meanwhile, many exist-
ing OSS evaluation tools, though providing valuable details, fall short on
offering intuitive suggestions in terms of framework-supported evaluation
factors. Towards filling the gap, we propose an Open Source Software
Project Evaluation and Selection TOol (OSS PESTO). Targeting OSS
on Github, the largest OSS source code host, it facilitates the evalua-
tion practice by enabling practitioners to compare candidates therein in
terms of selected OSS evaluation models. It also allows in-time Github
data collection and customized evaluation that enriches its effectiveness
and ease of use.

Keywords: Open source software · Open source evaluation · Github
mining

1 Introduction

During the last two decades, open source software (OSS) has been flourish-
ing with such trend continuing [10] and nowadays, OSS is adopted by the vast
majority of IT companies [12,13]. On Github, the largest OSS source code host,
more than 60 million users1 have participated in over 100 million open source
projects2, among which many have been widely adopted by users and compa-
nies. However, due to such a large number of candidates, for many practitioners,
selecting a suitable OSS product or library is difficult, especially when the rele-
vant information are not explicitly provided [12].

To support the OSS evaluation and selection practice, many studies provide
models and frameworks as guidance [7,18,21,23,24]. During the last two decades,
35 models are proposed with checklists, measures or both provided [12]. They

1 https://github.com/search?q=type:user&type=Users.
2 https://github.com/search?q=is:public.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 42–50, 2021.
https://doi.org/10.1007/978-3-030-75251-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_4&domain=pdf
https://github.com/search?q=type:user&type=Users
https://github.com/search?q=is:public
https://doi.org/10.1007/978-3-030-75251-4_4

OSS PESTO 43

all work similarly with a process of “candidate software identification - factor
evaluation - scoring”. In addition, many tools are designed and proposed to
facilitate such practice [4,18,21,23]. However, many tools are rigidly designed
and allow limited customization. Meanwhile, among those proposed, only two
are properly maintained with the majority being not available any more [12].

As the largest OSS host and platform, Github is a valuable channel restoring
and presenting OSS related information. Retrospective analysis of Github repos-
itories, based on the abundant information on code, developers, organizations
and activities within, can yield valuable insights into the evolution and growth of
OSS and facilitate decision making processes [17]. Many studies have used such
data source and conduct research on various OSS related perspectives [9,15,22].
However, the approaches towards using Github data for OSS evaluation are lim-
ited, let alone tools to support such practice.

Herein, we propose OSS PESTO, an open source tool facilitating OSS eval-
uation and selection. Comparatively, besides being fully open sourced and free
to use, OSS PESTO has the following advantages: 1) it allows users to update
in-time Github data; 2) it allows users to customize evaluation with models or
preference; 3) it allows users to save data locally and to use it without network
connection; 4) it is always accessible as maintained in Github repository. It shall
largely help the practitioners to compare and evaluate OSS candidates freely,
timely and efficiently.

The remainder of this paper is organized as follows. Section 2 introduces
the related work on OSS evaluation tools. Section 3 presents OSS PESTO with
details. Section 4 presents an experiment validating its applicability. Section 5
concludes the article.

2 Related Work

The Open Source Maturity Model (OSMM) is the first proposed model and open
standard that aims for such purpose [7]. Guided by OSMM, the practitioners will
evaluate OSS by its maturity of each aspect, weight each aspect with importance,
and compute its overall maturity by the weighted sum. Compared to OSMM,
the Open Business Readiness Rating (OpenBRR) is an OSS evaluation method
with more indicators, the idea of target uses and the customized evaluation [24].
The method provides an index applicable to all OSS development initiatives.
Its main limits are related to the incompatibility of the requirements between
different targets and to the difficulty of choosing the proper reference applica-
tion for some projects. Similarly, a number of evaluation models are proposed,
for example, Qualification and Selection of Open Source Software (QSOS) [18],
OpenBQR [21], OSSPAL [23], which provide enhanced guidance and method-
ological support.

QSOS tool is designed to support the QSOS model which aims to qualify,
select and compare OSS products [18]. However, the rigidness of compulsory
Identity Card setting and all criteria inclusion is commonly seen as its limitation.
OpenQBR [21] requires specification on factor importance before the assessment

44 X. Li and S. Moreschini

of the project. Compared to the QSOS tool, OpenQBR is more elastics as not
require to evaluate factors which are not relevant to the specific project.

OSS-PAL [23], though similar to QSOS, aims to partially automate the evalu-
ation of the projects. Despite the appealing goal of the project, it fails to provide
the automated data collection function. Other works investigated the availability
of the information on online portals [14,20], but they did not provide tools for
collecting or aggregating data.

In addition, many other tools are available over time but have been dis-
continued, including real-time OpenSSL execution monitoring system (ROSEN)
[4], RAP TOOL [8], SQO-OSS [19], OMM Tool [5], T-Doc Tool [16], QualiPSo
Trustworthiness Checklist [3], MOSST [6] and OP2A Checklist [1] and other
checklist included in marketing models for OSS [2,11].

With OSS PESTO, we aim to overcome some of the most common drawbacks
of all of these tools, such as, the focus on specific factors, the evaluation of
factors before adding a weight function or the lack of control for both internal
and external product quality.

3 OSS PESTO

We implement OSS PESTO3 by following the commonly acknowledged OSS
evaluation process summarized from previous studies [12]. It shall contain the
following main activities: 1) identify the OSS candidates; 2) elicit a list of factors
that need to be evaluated and the according metrics that measure such factors;
3) provide scores or selection recommendation as evaluation output.

In addition, in order to use the latest Github data to evaluate OSS, we
integrate a data crawler module in OSS PESTO. It enables the users to crawl
the required repository and activities information of any existing OSS projects.
Additionally, it also allows them to crawl the data of a list of projects based
on the selected range of stars. Furthermore, OSS PESTO allows users to cus-
tomize evaluation factors based on the selection of models and/or their personal
preferences.

Fig. 1. OSS PESTO framework

3 Source code: https://github.com/clowee/OSS-PESTO.

https://github.com/clowee/OSS-PESTO

OSS PESTO 45

Shown in Fig. 1, OSS PESTO contains three individual modules as follows.

– Data Crawler: The data crawler module contains a set of Python scripts
that extract Github repository data via Github APIs4. It enables the users
to select the candidate OSS and extract the according data.

– Server: The server side is implemented by ReactJS5 while database with
MongoDB6. The evaluation model is described with the config.json file, which
can be altered with users’ preference of evaluation factors.

– Client: The client side is also implemented by ReactJS. It mainly displays
the candidate OSS projects with the selected attributes/factors shown. It also
shows the results of candidate comparison which facilitates OSS evaluation
and selection.

Figure 1 also shows the activities of utilizing OSS PESTO to evaluate candi-
date OSS projects as follows.

– Step 1. identifies the OSS candidates by running the data crawler module to
extract the according dataset.

– Step 2. select the evaluation model, configure evaluation preference, and run
the server module.

– Step 3. run the client module and compare the OSS candidates by the
selected factors.

The crawled data is saved locally in A comma-separated values (CSV) file
with each row containing the values of an individual OSS candidate. To be noted,
the required data can be selectively crawled according to the users, who deter-
mine which metrics are the important ones when evaluating particular aspects
of OSS. Such selection of data can be guided by the evaluation model chosen
by the evaluator. For example, when selecting only the most popular OSS, the
numbers of stars, watches, and download are the ones to be crawled.

Fig. 2. An example of configuration file

Furthermore, the configuration file is a Javascript file mapping the category
tabs displayed by the client and the data features/metrics that are selected to
4 https://docs.github.com/en/graphql; https://docs.github.com/en/rest.
5 https://reactjs.org/.
6 https://www.mongodb.com/.

https://docs.github.com/en/graphql
https://docs.github.com/en/rest
https://reactjs.org/
https://www.mongodb.com/

46 X. Li and S. Moreschini

evaluate the according categories. Shown in 2 is an example of how a config-
uration file works. By editing the configuration file, the users can customize
their selection of metrics, the evaluation categories and the links in between.
For example, if the user chooses to focus on the popularity of OSS and uses the
number of watches as the metric for it, the according piece of code {Header:
“#Watch”, accessor: “watcher count”} shall be added to the “Popularity” tab
block.

4 Experiment Showcase

In order to validate the applicability of OSS PESTO, we conduct a series of
experiments, including the testing of all three modules. The testing scenario is to
evaluate and compare three JavaScript frameworks, i.e., Angular7, Redux8 and
Vue9 using the OSSPAL model [23]. The evaluation categories include “Com-
munity”, “Support”, “Operational Software Characteristics”, “Documentation”,
“Software Technology Attributes”, “Functionality” and “Development Process”.
Herein, we focus on the “Community”, “Support” and “Software Technology
Attributes” aspects, which can be well demonstrated by the obtained data.

To start crawling the Github data, given the user’s Github personal token
and the target OSS candidates as input, the data crawler module can be ran
individually and continuously. Towards the stated objective, the crawling process
takes within two minutes. When the data is ready, we prepare the config.json
by selecting the target metrics that are valuable towards evaluating each factors
of the candidates. For each of the selected factors, the according metrics are as
follows.

– Community: number of watches, number of stars, age, average issue active
time, average issue comments, number of pull requests, and number of issue
raiser.

– Support: average issue closed time, number of contributor, organization issue
raiser.

– Software Technology Attributes: number of open issues, number of depen-
dence.

Thereafter, when running both the server and the client, the comparison
result is shown in Fig. 3.

Based on such comparison, we can easily observe that despite not being the
oldest community, Vue is more popular than the other two candidates in terms of
watches and stars. However, these three communities are active in different ways,
as Angular has more comments on issues, pull requests, and different issue raisers
while the others are more responsive to issues (shown in Fig. 3(a)). Regarding
support, Angular has a much larger contributor group and organizational issue

7 https://angular.io/.
8 https://redux.js.org/.
9 https://vuejs.org/.

https://angular.io/
https://redux.js.org/
https://vuejs.org/

OSS PESTO 47

Fig. 3. Experiment results demonstration

raiser for support, while on software technology attribute aspect, Redux has
much less dependence and open issues (shown in Fig. 3(b) and (c)).

When adopting a different evaluation model, it is possible that by taking into
account particular overseen metrics, the user obtains new insights regarding the
selected candidates. For example, the SQO-OSS model [19] sees “Growth in
active developers” as a metric to evaluate the “Developer base” category, when
OSSPAL has not such category. However, due to the fact that same dataset is
used for all potential models, it is hardly possible to have opposite comparative
evaluation result for the same category from different models.

5 Conclusion

This paper presents OSS PESTO, an open source software project evaluation
and selection tool, to support the practitioners’ need towards OSS evaluation
and selection. This tool provides a Github-repository-data-oriented, easy-to-
maintain, customization-friendly solution. It shall benefit the practitioners in
both industry and academia in terms of the different focuses on either the OSS
projects or the OSS evaluation models respectively.

However, the current version of this tool can certainly be improved in the
following ways. Firstly, OSS PESTO has not yet supported the practitioners’
selection of OSS candidates at the identification phase in terms of their target
functionalities. As the accessible data obtained from Github does not provide
explicit information regarding the main features of the OSS, such candidate
selection cannot be automated via direct identification. A potential solution is to
apply natural language processing (NLP) techniques to identify and summarize
such main features from the description and Readme text of the projects. Such
a feature shall be implemented in our future work.

Furthermore, the current version only utilizes limited amount of the
attributes provided by the Github API. For many such attributes, the explicit
mappings towards particular OSS evaluation categories are not verified. For
example, the number of OSS downloads can be seen as a metric for its pop-
ularity. However, unless a particular user insists it being a critical evaluation

48 X. Li and S. Moreschini

criterion for his/her customized evaluation model, such value can be ignored
when it does not contribute to any pre-defined evaluation categories. Nonethe-
less, the inclusion of more data features shall be taken into account in the future
work. However, it should be noted such work can result in the exhaustion of
Github API query limit, as some values (e.g., issues) can only be obtained via
looping enumerated results.

In addition, more features, in terms of the ease of use perspective of the
tool, shall be also considered. For example, a graphic user interface is needed for
the data crawler module which can also be integrated to the server side. Fur-
thermore, the data from Github has its limitation on reflecting certain aspects
of OSS. For example, the development process of the projects cannot be eas-
ily accessed externally, except for the number of releases and the release pace.
Thus, in order to improve the potential scope of this tool, more data sources are
required with more techniques required to process possibly unstructured data
as well. Meanwhile, more practical features, such as, exporting the evaluation
results, adding weight to different factors, editor of configure files, and model
customization interface, are also required.

Our future work shall focus on integrating the modules and enhancing the
overall quality of the tool according to the above mentioned limitation. It is also
important to investigate the ways of evaluating individual OSS by providing
unified quantified results. In addition, we shall systematically investigate the
availability of data from multiple sources that could be used to support OSS
evaluation.

References

1. Benlian, A., Hess, T.: Comparing the relative importance of evaluation criteria
in proprietary and open-source enterprise application software selection-a conjoint
study of ERP and office systems. Inf. Syst. J. 21(6), 503–525 (2011)

2. del Bianco, V., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., Tosi, D.: A
study on OSS marketing and communication strategies. In: Hammouda, I., Lundell,
B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IAICT, vol. 378, pp. 338–343.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33442-9 31

3. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The QualiSPo app-
roach to OSS product quality evaluation. In: Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, pp. 23–28 (2010)

4. Choi, S., Kang, Y., Lee, G.: A security evaluation and testing methodology for
open source software embedded information security system. In: Gervasi, O., et al.
(eds.) ICCSA 2005. LNCS, vol. 3481, pp. 215–224. Springer, Heidelberg (2005).
https://doi.org/10.1007/11424826 23

5. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of open source software:
the QualiPSo trustworthiness model. In: Boldyreff, C., Crowston, K., Lundell, B.,
Wasserman, A.I. (eds.) OSS 2009. IAICT, vol. 299, pp. 199–212. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02032-2 18

https://doi.org/10.1007/978-3-642-33442-9_31
https://doi.org/10.1007/11424826_23
https://doi.org/10.1007/978-3-642-02032-2_18

OSS PESTO 49

6. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: A survey on the
importance of some economic factors in the adoption of open source software. In:
Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds.) Software Engi-
neering Research, Management and Applications 2010. Studies in Computational
Intelligence, vol. 296, pp. 151–162. Springer, Heidelberg. https://doi.org/10.1007/
978-3-642-13273-5 10

7. Duijnhouwer, F.W., Widdows, C.: Capgemini expert letter open source maturity
model. Capgemini, 1–18 (2003)

8. Immonen, A., Palviainen, M.: Trustworthiness evaluation and testing of open
source components. In: Seventh International Conference on Quality Software
(QSIC 2007), pp. 316–321. IEEE (2007)

9. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
The promises and perils of mining GitHub. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, pp. 92–101 (2014)

10. Kilamo, T., Lenarduzzi, V., Ahoniemi, T., Jaaksi, A., Rahikkala, J., Mikkonen,
T.: How the cathedral embraced the bazaar, and the bazaar became a cathedral.
In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A., Succi, G. (eds.) OSS 2020.
IAICT, vol. 582, pp. 141–147. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47240-5 14

11. Lenarduzzi, V.: Towards a marketing strategy for open source software. In: Pro-
ceedings of the 12th International Conference on Product Focused Software Devel-
opment and Process Improvement, Profes 2011, pp. 31–33. Association for Com-
puting Machinery, New York (2011). https://doi.org/10.1145/2181101.2181109

12. Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., Morasca, S.: Open source soft-
ware evaluation, selection, and adoption: a systematic literature review. In: 2020
46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 437–444 (2020). https://doi.org/10.1109/SEAA51224.2020.00076

13. Lenarduzzi, V., Tosi, D., Lavazza, L., Morasca, S.: Why do developers adopt open
source software? Past, present and future. In: Bordeleau, F., Sillitti, A., Meirelles,
P., Lenarduzzi, V. (eds.) Open Source Systems. OSS 2019. IFIP Advances in Infor-
mation and Communication Technology, vol. 556, pp. 104–115. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20883-7 10

14. Li, X., Moreschini, S., Zhang, Z., Taibi, D.: Exploring factors and measures to
select open source software. Arxiv (2021)

15. Lima, A., Rossi, L., Musolesi, M.: Coding together at scale: Github as a collabora-
tive social network. In: Proceedings of the International AAAI Conference on Web
and Social Media, vol. 8 (2014)

16. Morasca, S., Taibi, D., Tosi, D.: T-DOC: a tool for the automatic generation of
testing documentation for OSS products. In: Ågerfalk, P., Boldyreff, C., González-
Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 200–
213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 16

17. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating GitHub for engineered
software projects. Empirical Softw. Eng. 22(6), 3219–3253 (2017). https://doi.org/
10.1007/s10664-017-9512-6

18. Origin, A.: Method for qualification and selection of open source software (QSOS).
http://www.qsos.org. Accessed 22 Jan 2021

19. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:
measurement based open source software evaluation. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. ITIFIP, vol. 275, pp. 237–248.
Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09684-1 19

https://doi.org/10.1007/978-3-642-13273-5_10
https://doi.org/10.1007/978-3-642-13273-5_10
https://doi.org/10.1007/978-3-030-47240-5_14
https://doi.org/10.1007/978-3-030-47240-5_14
https://doi.org/10.1145/2181101.2181109
https://doi.org/10.1109/SEAA51224.2020.00076
https://doi.org/10.1007/978-3-030-20883-7_10
https://doi.org/10.1007/978-3-642-13244-5_16
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
http://www.qsos.org
https://doi.org/10.1007/978-0-387-09684-1_19

50 X. Li and S. Moreschini

20. Sbai, N., Lenarduzzi, V., Taibi, D., Sassi, S.B., Ghezala, H.H.B.: Exploring infor-
mation from OSS repositories and platforms to support OSS selection decisions.
Inf. Softw. Technol. 104, 104–108 (2018). https://doi.org/10.1016/j.infsof.2018.07.
009, https://www.sciencedirect.com/science/article/pii/S0950584918301526

21. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of
OSS. In: Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP,
vol. 234, pp. 173–186. Springer, Boston, MA (2007). https://doi.org/10.1007/978-
0-387-72486-7 14

22. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for eval-
uating contribution in GitHub. In: Proceedings of the 36th international conference
on Software engineering, pp. 356–366 (2014)

23. Wasserman, A.I., Guo, X., McMillian, B., Qian, K., Wei, M.-Y., Xu, Q.: OSSpal:
finding and evaluating open source software. In: Balaguer, F., Di Cosmo, R., Gar-
rido, A., Kon, F., Robles, G., Zacchiroli, S. (eds.) OSS 2017. IAICT, vol. 496, pp.
193–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57735-7 18

24. Wasserman, A.I., Pal, M., Chan, C.: The business readiness rating: a framework
for evaluating open source technical report (2006)

https://doi.org/10.1016/j.infsof.2018.07.009
https://doi.org/10.1016/j.infsof.2018.07.009
https://www.sciencedirect.com/science/article/pii/S0950584918301526
https://doi.org/10.1007/978-0-387-72486-7_14
https://doi.org/10.1007/978-0-387-72486-7_14
https://doi.org/10.1007/978-3-319-57735-7_18

OSS Scripting System for Game
Development in Rust

Pablo Diego Silva da Silva, Rodrigo Oliveira Campos, and Carla Rocha(B)

University of Braśılia (UnB), Braśılia, Brazil
caguiar@unb.br

Abstract. Software development for electronic games has remarkable
performance and portability requirements, and the system and low-level
languages usually provide those. This ecosystem became homogeneous
at commercial levels around C and C++, both for open source or pro-
prietary solutions. However, innovations brought other possibilities that
are still growing in this area, including Rust and other system languages.
Rust has low-level language properties and modern security guarantees in
access to memory, concurrency, dependency management, and portabil-
ity. The Open Source game engine Amethyst has become a reference solu-
tion for game development in Rust, has a large and active community, and
endeavors in being an alternative to current solutions. Amethyst brings
parallelism and performance optimizations, with the advantages of the
Rust language. This paper presents scripting concepts that allow the game
logic to be implemented in an external interpreted language. We present a
scripting module called Legion Script that was implemented for the entity
and component system (ECS) called Legion, part of the Amethyst organi-
zation. As a Proof-of-Concept (POC), we perform the Python code inter-
pretation using the Rust Foreign Function Interface (FFI) with CPython.
This POC added scripting capabilities to Legion. We also discuss the ben-
efit of using the alternative strategy of developing a POC before contribut-
ing to OSS communities in emergent technologies.

Keywords: Tool paper · OSS · Rust language · Game engine ·
Scripting system · Amethyst game engine · Entity component system ·
Foreign function interface

1 Introduction

The rapid evolution of microprocessors and computer architecture has com-
pletely changed the game industry. The advance in computing power enables
increasingly complex software solutions, and with that, a wide variety of digital
games emerged [5].

Game engines implement general and necessary functionalities for several
digital games. The goal is to reuse as much code that is not part of the game’s
logic and, at the same time, provide a stable architecture for the development
of games. The game industry established design standards and code reuse to
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 51–58, 2021.
https://doi.org/10.1007/978-3-030-75251-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_5

52 P. D. S. da Silva et al.

assist in the development of complex software, thus creating the so-called game
engines.

One of the particular programming requirements in games is the need for per-
formance. This performance requirement enforced popular game engines’ imple-
mentation in compiled system languages, such as C and C++. They are low-
level languages and have almost universal portability for any processor archi-
tecture [15]. However, C/C++ has a more significant learning curve and tools
of greater complexity, in addition to common memory management problems
[7,11], resources, and multi-platform compilation for games.

Game engines usually have scripting systems to accelerate the game develop-
ment cycle and shorten the learning curve. The scripting system is an abstrac-
tion layer of the engine’s modules, usually in a different language, to separate the
game’s specific logic from the complexities of the engine [14]. Most of the compet-
itive engines in the gaming industry have a well-implemented scripting system
with their characteristics. For example, Godot [3] is an open source game engine
implemented in C++ and can execute scripts in C#, D, and its built-in scripting
language, called GDScript [4].

The Rust programming language is an alternative for C and C++ in perfor-
mance and portability. It also delivers performance, and the latest programming
standards, such as robust packaging systems, dependency management, func-
tional programming support, and more significant memory safety handling.

Amethyst is an open-source game engine in Rust, which, currently, does not
have a scripting system. Therefore, it requires expertise in Rust to develop a
game within its framework. In addition to the learning curve inherent in sys-
tem languages, any changes to the code require its compilation, which can take
a considerable amount of time in the Rust environment due to the compile-
time checks. To facilitate new game developers’ adhesion into the engine, the
Amethyst community has expressed its intent to have a scripting system using
a Request-For-Comments (RFC).

Contributing to a large and active OSS community, using emergent tech-
nologies with little technical documentation to specific problems, imposes some
challenges. The Amethyst game engine has frequent architectural changes, and
that is expected with new technologies, defying both contributors and maintain-
ers to add new features, solve bugs, and leave stable versions available to users.
Instead of contributing to an architecture that we know will be discontinued
or contribute to architecture not yet mature, we opted to develop a Proof-of-
Concept (POC). With this strategy, we could anticipate the new architecture
problems and develop a functionality not yet present in the engine.

This paper presents an extensible scripting system for the Entity Component
System, called Legion, used inside the Amethyst game engine. This system will
serve as a driver for executing different interpreters and language scripts. The
scripting system allows programmers with little or no Rust programming skills to
start using a Rust-based game engine. We developed a Proof-of-Concept (POC)
with support for the Python language to serve as example to other languages
implementations. The project is an unprecedented work that highlights the

OSS Scripting System for Game Development in Rust 53

concepts of implementing a scripting system in a Rust game engine. It defines a
baseline for Legion and Amethyst contributors to continue working in scripting
solutions while improving their software and features.

The rest of the paper is organized as follows. Section 2 presents the back-
ground, the necessary concepts of the Entity Component Systems developed in
Rust. Most of the technical documentation necessary to implement the scripting
system is diffuse in forums, blog posts, and other unstructured grey literature.
In Sect. 3, we detail how we conduct this work. Finally, in Sect. 4, we present our
results. The conclusions and lessons learned are in Sect. 5.

2 Background

Amethyst1 is a data-driven open source game engine made with Rust, focused
on being fast and configurable and maintained by the Amethyst Foundation.
One of its main characteristics is the parallel Entity Component System (ECS)
with user-friendly abstraction, which will manage, store and update game data
using performance-focused strategies.

Amethyst community maintains an updated roadmap with the next steps for
the project. The process for significant changes is based on Request For Com-
ments (RFCs) [1] and seeks to provide a controlled, transparent, collaborative,
and consistent addition of new features to the engine and its libraries.

Amethyst is a complex project organized in several modules. A scripting
system gives external access to data and components through its Entity Compo-
nent System. It creates a layer of interaction between the external data and the
Amethyst game data. The other engine modules can be integrated in the future
as the scripting becomes stable.

2.1 Entity Component System

A typical pattern in a game development project is the Entity Component Sys-
tem (ECS). It is a core in the engine, and it manages and organizes the objects
inside a game during each iteration. This pattern favors the composition over
inheritance by transforming functionalities into components, therefore, keeping
each functionality self-contained and reusable. The game objects will be called
Entities and will receive their behaviors through instances of the Components [6].

Entity Component Systems use a Struct of Arrays (SoA) to manage the enti-
ties and their components. Instead of having a heterogeneous array of entities,
called an Array of Structs (AoS), on an ECS, each component type is stored
separately, as seen in Fig. 1a. It increases the performance of queries and cache
optimizations when iterating over game data.

One ECS implemented in Rust is called Specs Parallel ECS (Specs), which
the Amethyst Foundation maintains. Specs is close to the classic design of an
ECS presented above. It allows for parallel system execution, with both low

1 https://github.com/amethyst.

https://github.com/amethyst

54 P. D. S. da Silva et al.

overhead and high flexibility [10]. The user can declare Components, Systems,
Entities, and Resources, all tied to a virtual world, which becomes the main
game container.

Another Rust ECS is Legion [2]. Legion has minimal boilerplate and presents
a better performance in some ECS operations due to its abstraction over the
component types, called the archetype system. A unique combination of com-
ponents defines an archetype, represented in Fig. 1b. Legion’s archetype system
stores components on tables created on-demand as new entities are inserted into
the game world. It contrasts with Specs and most ECSs, with unique storage
for each component. Those archetype tables create faster filtering and querying
since it is done on the archetype level and not by entity iteration.

In Legion, while creating one or many entities, we need to match and find
to which archetype they belong. If they do not match any of the existing
Archetypes, Legion creates a new Archetype with the corresponding layout of
the group of components that define the entity.

2.2 Specs X Legion

(a) Specs component data storage using
arrays for each component.

(b) Legion’s archetype storage for each
unique component group in entities.

Fig. 1. Storage comparison between Legion and Specs.

Figure 1 illustrates the differences in data storage in both Specs and Legion,
directly impacting the engine performance. Declaring data is the first step for
an ECS-based game. In Specs, after declaring a component, one must register
them into a World structure. It creates the storage table for each component and
the synchronization logic for parallel access. However, Specs uses Rust’s unique
struct identifier, called TypeId, as an index to each registered component type.

A TypeId in Rust is the unique identifier for a type. It is only available
for types from the program’s static lifetime. Also, Rust does not allow run-
time declarations of structs, making injecting externally defined components
into Specs impracticable.

For Legion, a Component is defined as any type with static lifetime and imple-
ments Rust traits as Sized, Send, and Sync. The registering and storage will be

OSS Scripting System for Game Development in Rust 55

done later by the ECS internal code as it combines the components to create an
Entity. It enables building a scripting system through new components capable
of sorting and uniquely identifying external components inside the Legion core.

3 Method

In this paper, we present an experience report of a contribution to a growing but
still recent community of Rust and game engines. The use of modern technologies
is also a highlight for the Amethyst engine. In this emerging technology context,
we have technical challenges related to implementing a scripting system in Rust
without a previous reference solution and the need to adapt and include this
volatile community environment into our OSS contribution workflow.

We began with community bonding, in a traditional OSS contribution pro-
cess. We got familiar with the Amethyst code base during this phase, guidelines,
reading closed and open issues, forum posts, and threads focused on scripting.
Amethyst has a separate repository for its Request-For-Comments (RFC), keep-
ing discussions focused on topics such as the scripting system. They have a
dedicated forum [13] for communication, questions, and discussions about the
engine. Amethyst also has a Discord [12] server for faster collaborations.

Since Amethyst is a continually evolving project with many modules, we
decided to adopt a Proof-of-Concept (POC) strategy. The strategy consists of
developing a POC in a separate repository and implementing the minimal fea-
tures necessary to validate the solution proposal. Once the community mentors
review the POC, we can plan a roadmap to contribute to the Amethyst engine
codebase.

In our repository, the Amethyst team could quickly review our progress and
give feedback. We could do our separate version control and manage the project’s
risks without all the other engine modules volatile environment. The POC envi-
ronment allowed us to be mentored by experienced Amethyst members. Some
had participated in the scripting RFC, and some created scripting initiatives that
would be incorporated into our POC. Finally, after sharing the results with the
community, validating our scripting module proposal through the POC, imple-
menting the scripting system in the Amethyst engine has fewer risks involved,
and the POC serves as a guide to new contributors.

4 Results

We implemented the Proof-of-Concept during a year of research with the support
of the Rust, Legion and Amethyst communities. It is a Rust module integrated
into Legion. It comprises a library that adds scripting capabilities to the ECS.
Our library allows running game scripts written in Python. As a result, it is
possible to define components and entities from Python and still use a Rust
ECS.

The scripting system is developed in Rust, C, and Python. Figure 2 depicts
our architecture, using a bidirectional FFI to connect external languages to the

56 P. D. S. da Silva et al.

scripting system. The developed library supports creating and querying entities
from Python scripts stored inside Rust’s domain. It does not infringe the ECS
mechanisms, and it benefits from Legion. We implement a Python driver for
demonstration purposes, but the goal is to be extensible to any other language
drivers.

Fig. 2. Representation of the Scripting System architecture within the Amethyst Game
Engine.

The Rust component of the scripting system is responsible for interacting
with Legion and its API while also exposing this API for the C language driver.
The language driver is written in C, and it is responsible for interpreting scripts
and using the Rust API to inject data into Legion. Finally, in the Python script,
the component data is appropriately defined and grouped into an entity using
the C interpreter’s API. Therefore, the game engine can directly execute our
Rust code, which will execute the C language driver responsible for interpreting
the Python script.

To build our POC we had to solve some problems like linking and compiling C
code from Rust, calling external functions defined in C from Rust, and converting
types between the two languages. Finally, we customize the ECS to manage
external components from Rust. We also performed minimal modifications on
Legion that still will be revised by the community.

5 Conclusion and Lessons Learned

The main result of our work is the POC called legion script [8]. It is an
extensible library that adds scripting capabilities to the Legion ECS. This project
implements minor changes to Legion and creates another scripting layer as an
API that language drivers can access. Since the implementation is on top of
an ECS, The scripting system is not specific to the Amethyst game engine.
Therefore, any other Rust project could benefit from this project.

Working in a non-consolidated area of programming, like scripting for games
using Rust, brought some not expected challenges. These vague concepts of
scripting and language interpretation generally available on the web might create
the illusion that the work to be done is more straightforward than it is. It creates

OSS Scripting System for Game Development in Rust 57

a scope management problem that can be entirely out of sync with the team’s
capabilities to produce in time. We did not find much scripting documentation for
Rust since the language is relatively new. Also, smaller teams and projects tend
to make decisions by word of mouth, not being recorded into repositories. Mainly,
investigating and understanding decisions is much harder when documentation
and working examples do not exist.

Besides the problem of scope, newly created technologies are very volatile.
We expected a traditional OSS contribution process, from community bonding to
pull request revision. During our planning phase, the Amethyst community never
manifested any obstacles concerning Specs’ use as its ECS system. However,
they started migrating from Specs to Legion during our research, which directly
affected our contribution relied on the ECS system. It obliged us to change our
OSS contribution strategy to the development of a POC.

A lesson learned was the interaction with the community. Even though we
could not find working examples of the concepts we were trying to develop,
we reached out to many developers who tried approaching the problem and
discussed the community’s solutions. It allowed us to combine many incomplete
or deprecated solutions into one working POC.

Besides developing documentation for scripting and Legion, our project
aimed to create a platform and a runnable example. This solution can help
guide the community to develop new solutions based on what we provided. Our
complete work was shared through Amethyst Forums [9], Discord servers, and
other social media.

References

1. Amethyst Team: Amethyst RFCS (2018). https://github.com/amethyst/rfcs.
Accessed 01 Dec 2019

2. Gillen, T.: Legion (2020). https://github.com/amethyst/legion. Accessed 9 Dec
2019

3. Godot: Godot engine (2014). https://github.com/godotengine/godot. Accessed 01
Dec 2019

4. Godot: Gdscript basics (2020). https://docs.godotengine.org/en/3.2/getting
started/scripting/gdscript/gdscript basics.html. Accessed 17 Sept 2020

5. Gregory, J.: Game engine architecture. Peters (2009)
6. Halpern, J.: Developing 2D Games with Unity: Independent Game Programming

with C#. Apress (2019)
7. Novark, G., Berger, E., Zorn, B.: Plug: automatically tolerating memory leaks in

c and c++ applications, January 2008
8. Oliveira, R., Silva, P.: Legion script (2020). https://github.com/redcodestudios/

legion script. Accessed 8 Oct 2019
9. da Silva, R.O.C.P.D.S.: Undergrad thesis on game scripting for legion (2020).

https://community.amethyst.rs/t/undergrad-thesis-on-game-scripting-for-legion/
1753. Accessed 22 Jan 2021

10. Specs: Specs parallel ECS. https://specs.amethyst.rs/docs/tutorials/ (2020).
Accessed 29 Nov 2019

https://github.com/amethyst/rfcs
https://github.com/amethyst/legion
https://github.com/godotengine/godot
https://docs.godotengine.org/en/3.2/getting_started/scripting/gdscript/gdscript_basics.html
https://docs.godotengine.org/en/3.2/getting_started/scripting/gdscript/gdscript_basics.html
https://github.com/redcodestudios/legion_script
https://github.com/redcodestudios/legion_script
https://community.amethyst.rs/t/undergrad-thesis-on-game-scripting-for-legion/1753
https://community.amethyst.rs/t/undergrad-thesis-on-game-scripting-for-legion/1753
https://specs.amethyst.rs/docs/tutorials/

58 P. D. S. da Silva et al.

11. Tang, Y., Gao, Q., Qin, F.: LeakSurvivor: towards safely tolerating memory leaks
for garbage-collected languages. In: USENIX Annual Technical Conference, pp.
307–320, January 2008

12. The Amethyst team: Amethyst discord (2018). https://discordapp.com/invite/
amethyst. Accessed 29 Nov 2019

13. The Amethyst team: Amethyst forum (2018). https://community.amethyst.rs.
Accessed 29 Nov 2019

14. Varanese, A.: Game scripting mastery. Premier Press (2003)
15. Zivkov, D., Kurtjak, D., Grumic, M.: GUI rendering engine utilizing Lua as script

(2015)

https://discordapp.com/invite/amethyst
https://discordapp.com/invite/amethyst
https://community.amethyst.rs

Open Source Communities and Forks:
A Rereading in the Light of Albert Hirschman’s

Writings

Robert Viseur1(B) and Amel Charleux2

1 University of Mons, Mons, Belgium
robert.viseur@umons.ac.be

2 University of Montpellier, Montpellier, France
amel.charleux@umontpellier.fr

Abstract. The literature dedicated to free and open source software emphasizes
the support given by the community to software producers. However, the commu-
nity is also a place of conflict and can sometimes experience violent splits (forks).
Communities can show different forms of resistance to change. In this research,
we propose a re-reading of these mechanisms of opposition in light of Albert
Hirschman’s theory (exit, voice, loyalty). We present the fork as a new form of
defection (exit) allowed by licenses and discuss the rationality of choice for the
economic actors who implement it.

Keywords: Open source · Business model innovation · Governance · Fork

1 Introduction

The literature on free and open source software emphasises the positive role of the com-
munity in the efforts of the software producer to ensure its development and popularity
(Shahrivar et al. 2018). However, the literature points out the possibility of conflicts that
could lead to a split in the community and, therefore, to the creation of a competing
project (fork) based on the source code of the original project (Viseur 2012; Viseur
and Charleux 2019). In a recent study dedicated to Claroline software, Dokeos (fork
of Claroline) and Chamilo (fork of Dokeos), Charleux et al. (2019), then Viseur and
Charleux (2019), note that the community is also a force of opposition resisting changes
initiated by the producer in a context of business model innovation. The opposition
mechanisms identified present surprising similarities with the alternative actions iden-
tified by Hirschman (2017) concerning the consumer (or citizen) faced with a declining
organisation. This article therefore proposes a re-reading of the work of Charleux et al.
(2019) with regard to Albert Hirschman’s theory.

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 59–67, 2021.
https://doi.org/10.1007/978-3-030-75251-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_6

60 R. Viseur and A. Charleux

2 Community as a Source of Value

The term “free software” has been defined by the Free Software Foundation (FSF)
through 4 freedoms: freedom of use, freedom of study, freedom of distribution and
freedom of redistribution. The term “open source” was subsequently defined by the
Open Source Initiative (OSI) on the basis of 10 criteria including in particular freedom
of redistribution, access to the source code, creation of derivative works and respect
for authorship. Beyond the difference in terminology, where the FSF sees free software
as a political project oriented towards sharing and user emancipation, the OSI puts
forward the cooperative development model as well as the associated business models
and licenses (Benkeltoum 2011).

Free/open source software can arise in a variety of contexts. Firstly, it can be created
by one (or more) user(s) concerned with solving a problem they encounter, in accor-
dance with Raymond’s (1999) quote: “Every good work of software starts by scratching
a developer’s personal itch”. This creation will typically take place in a professional
context, as shown by the examples of Apache (Franke and Von Hippel 2003) and Claro-
line (Viseur and Charleux 2019). Secondly, it may be created by companies in order to
pool resources and promote the dissemination of a technology or standard (Adatto 2013).
Thirdly, it can be produced by a company in an entrepreneurial context with the aim of
subsequently meeting customer needs. This type of open source producer is paid for by
services and sometimes licences (e.g. dual licensing; cf. Välimäki 2003; Charleux and
Mione 2018) while relying on a community to develop the software and disseminate the
brand (Fitzgerald 2006). Examples already studied include eZ Publish (Teigland et al.
2014) and MySQL (Välimäki 2003).

3 The Community as a Brake

The community is therefore considered, for open source companies, as an important
resource and a key factor in its success (Shahrivar et al. 2018). Thanks to it, the open
source publisher would benefit from a reduced development cost because, on the one
hand, volunteer developers would code for free and, on the other hand, users would
report problems in the software (Shahrivar et al. 2018). However, the community can
also be a source of disillusionment and difficulties. The commitment of developers and
users is not guaranteed, either in quantity or quality. Viseur (2007) thus reports, based on
6 case studies (eZ Publish, Claroline, Exo, Plume CMS, Ekiga and Jext), that “the most
frequent contributions concern bug reports, translations and, more rarely, the addition
of new functionalities”. The hope of seeing developers coding for free is therefore put
into perspective by open source project managers. Teigland et al. (2014) reveal the gap
between the quality requirements of a publisher (eZ Systems) and the contributions
in source code brought by the community (often in the form of extensions to the eZ
Publish project). Viseur and Charleux (2019) make the same observation in the case of
the Claroline project. The authors also highlight the difficult animation of the community
and analyse two concrete cases of community splits (forks) (Dokeos and Chamilo). The
community can therefore be a support (contributions, feedback of errors…), but also
sometimes a force of resistance that can lead to new forms of competition through the
forks.

Open Source Communities and Forks 61

The forks are motivated by several phenomena. Viseur (2012), in his analysis of the
forks of 26 popular projects, isolates six motivations for forking a project: stopping the
original project, technical motivations, license changes, conflict over brand ownership,
problems of project governance, cultural differences and the search for new directions
of innovation. Changes in business models not negotiated with the community can also
lead to resistance and defection through the creation of forks (Charleux et al. 2019).
The negotiation of strategic parameters such as governance appears in this context to
be essential to maintain community buy-in and investment (Viseur and Charleux 2019).
Alignment between the interests of project promoters and their community must be
preserved to guarantee the long-term success of projects: “effective governance and
work practices that are appreciated by community members is fundamental for long-
term sustainability” (Gamalielsson and Lundell 2014). Alignment of strategy, business
model and governance emerge as a necessary and difficult balance to achieve (Viseur
and Charleux 2019). Markus (2007) defines open source governance as the set of means
implemented for the guidance, control and coordination of fully or partially autonomous
organisations and individuals on behalf of an open source development project to which
they collectively contribute. It combines it with a set of characteristics including the
ownership of assets (such as trademarks, licenses and copyrights), the objectives of
the project, conflict resolution and rule change, and the modalities of access to tools.
Viseur (2012) shows that these elements (via diverging technical choices, conflicts over
brand ownership, changes in licenses, etc.) emerge as major elements of conflicts within
communities that can lead to forking. The case of license changes is emblematic of these
tensions that can arise between the producer and his community (Viseur and Robles
2015). License changes take place in very distinct contexts, particularly in relation to
the need to adapt to the environment or change the business model. The development
of cloud computing over the last ten years or so has shown how a company can move
from a service delivery model to a publishing model and then to a service operator
(SaaS) model by adapting the terms of its license (Viseur 2013). These changes in
project parameters may alter the conditions for value creation and appropriation within
the project community (Charleux and Mione 2018). If, for some, the changes can be
positive and represent opportunities, for others, these changes can be harmful, leading
to opposition and conflicts that can go as far as the fork.

Table 1. Gradation of opposition mechanisms (adapted from Charleux et al. 2019).

Public expression of
discontent

Use of software associated
with a cessation of
contributions

Stopping the use of the
software and migration

Fork

Conflictswithin communities, however, do not always lead to forks and do not always
manifest the same violence. The expression of discontent can be gradual (Charleux et al.
2019). Thus, in the particular situation of a strategic change in business model, the
community may (1) publicly express its dissatisfaction, (2) continue to use the soft-
ware but stop contributions, (3) stop using the software and/or (4) fork (see Table 1).

62 R. Viseur and A. Charleux

The issue of negotiation with the community in the specific context of a business model
innovation (BMI) highlights the inertia brought about by the community in the face of a
situation of change. This type of situation is particularly in line with the issues of equity
and reversion raised in the field of open innovation by Chesbrough et al. (2018). The
producer has to deal with community values and disappointment with new policies.

4 Exit and Voice (Hirschman)

In an early book originally published in 1970 (“Exit, Voice and Loyalty. Response to
Decline in Firms, Organisations and States”), Albert Hirschman (2017) asks the ques-
tions (1) of the actions of consumerswho are dissatisfiedwith a product or service and (2)
of the means available to businesses to remedy their decline. Hirschman identifies three
mechanisms used by consumers. The first is defection (exit): faced with deterioration
in quality, the consumer brings competition into play. The second is voice: consumers
express their dissatisfaction. The third is loyalty: the consumer resigns himself to defects
through inertia, loyalty or lack of a real alternative.

Hirschman evaluates the effectiveness of these different reactions and notes in par-
ticular that defection is more or less effective in a competitive environment due to
the inefficient chasing of customers. He identifies an optimum consisting of a balance
between passive customers leading to the purchase of the product and vigilant customers
serving as a warning signal for the company. He thus imagines that a monopoly based
on the search for profits can be more effective when the speaking out allows the start
of a recovery movement. As for the sacrifice of remaining loyal, it can be explained
by the will to exert influence, the expectation of results (if loyalty is combined with a
collective complaint), the costs of change and loyalty (judged not to be fully rational
as opposed to other actions). Furthermore, Hirschman attempts in his analysis to mix
economics and politics. He thus extends his analysis to non-profit organisations (e.g.
political parties) and states, showing that the credibility of a threat of defection coupled
with voice justifies loyalty because it gives hope for a turnaround in the organisation.

To the threemechanisms of discontent identified byHirschman (2017), Bajoit (1988)
proposes a fourth: apathy. In this schema, the dissatisfied individual can either leave (exit)
or stay. If he stays, he can either protest (voice) or remain. In the latter case, he can still
participate actively (loyalty) or passively (apathy).Apathy is characterised by resignation
and is a form of mistrust. It does not lead to conflict and maintains social control. It plays
a moderating role in the mechanisms described by Hirschman by preventing the collapse
of the organisation following the flight of its members.

5 Fork as a New Form of Exit

5.1 Opposition Mechanisms and Hirschman’s Model

In his work, Hirschman attempts to reconcile the economic (favouring exit) and political
(favouring voice) spheres. However, free and open source software covers both spheres.
Free software, which appeared in the 1980s, develops a political and ethical project of
user emancipation, whereas open source places greater emphasis on the industrial and

Open Source Communities and Forks 63

economic dimensions (Benkeltoum 2011; Fitzgerald 2006; Charleux and Mione 2018).
These two conceptions coexist within communities. Moreover, the management of an
open source project has in practice a political side (governance) and an economic side
(business model), while the rationality of the actors is complemented by a strong moral
dimension (cf. Hirschman’s normative utilitarianism). Charleux et al. (2019) identify
several gradations among the mechanisms of community resistance (cf. Table 1). Com-
pared to Hirschman (cf. Fig. 1), the first (public expression of discontent) corresponds
to a form of voice, while the third (migration) and the fourth (fork) constitute a form of
exit. As for passive use, it is a form of loyalty but can be compared to apathy (Bajoit
1988), allowing a reasonably stable user base to be maintained. In practice, the commu-
nity provides the producer with continuous feedback on its choices, and also elements
likely to influence them (if the producer listens to them!), sometimes in opposition to
the opinion of internal teams (Teigland et al. 2014).

Fig. 1. Opposition mechanisms.

5.2 Extension to Open Hardware

Fauchart et al. (2017) provide material for understanding these opposition mechanisms
in open hardware. The authors have mainly studied Makerbot, a company active in
desktop 3D printers. Its products were initially developed in an open manner, before the
development process (“‘open realease’ but ‘closed development’”) and then the products
themselves were gradually closed, a relatively common strategy when technological
uncertainty tends to be reduced and the innovative company seeks to protect itself from
possible imitators (Fauchart et al. 2017; Osterloh and Rota 2007). The expression of
discontent has developed as a result of various events: the gradual closure of the project,
a fundraising campaign, the discovery of the conditions of use relating to intellectual
property on the Thingiverse platform (also launched by Makerbot) and the filing of
patents. The community has therefore reacted to various forms of misappropriations that
donot necessarily violate theproject’s licensebut are at oddswith the commonly accepted
culture and norms (if not explicit). The misappropriations took different forms: posting
on influential blogs (voice), stopping contributions (apathy), refusing to buy the product

64 R. Viseur and A. Charleux

again (exit), criticising the brand (voice) and calling for a boycott (i.e. a combination of
voice and exit). The company experienced a significant commercial decline as a result
of these events, but also the deterioration in the quality of the machines.

Fig. 2. The elements of Total Cost of Ownership (TCO).

5.3 Justification of Apathy

The intangible nature of the software should not lead one to believe that the cost of
change is systematically low. Shaikh and Cornford (2011) thus show that the Total
Cost of Ownership of software relates to a set of operations (cf. Fig. 2) including the
exploration of possible alternatives, the acquisition of the chosen solution, its integration
into work procedures, its use and, if the decision is taken to no longer capitalise on the
same software, the exit from the solution (with a view to migration to another solution).
On the one hand, the user of software within an organisation does not generally have
the freedom to choose the software he uses. On the other hand, the company itself has
limited degree of freedom. Thus, exploration does not require development skills, but
rather the ability to define needs and evaluate offers, i.e. skills that lay users do not
have (Kogut and Metiu 2001). Moreover, companies generally have to deal with legacy
systems and technological integration efforts, which can be likened to a form of path
dependency. The desire to migrate is curbed by the increasing returns on adoption (Foray
2002) as well as by vendor lock-in processes (Zhu and Zhou 2012) which increase the
cost of defection (migration). Apathy is therefore hardly surprising even if history also
contains rare examples to the contrary (e.g. PHP Nuke and its numerous forks).

5.4 Rationality of a Fork

The fork appears to be a widespread source of fear in the open source industry (Viseur
2012) even if, for others, it emerges as a form of invisible hand contributing to the

Open Source Communities and Forks 65

sustainability of projects (Nyman et al. 2012). Nyman et al. (2012) thus insist on the
fact that the very existence of this possibility of a fork stimulates the listening and
consideration given by project leaders to community contributors. In this sense, the
threat of a fork is seen as a factor of community recovery when its management leaves
something to be desired. However, it assumes that the conflict lasts long enough, as
Hirschman predicts, to allow for recovery. While this is often the case, whether the
fork occurs (e.g. LibreOffice.org) or not (e.g. Java) in the end, the conflict can also too
quickly lead to a fork (e.g. Dokeos), without the original project having time to adjust
its governance, eventually leading to the death of the original project. While the fork
may be initiated, sometimes suddenly, by a single individual (e.g. Dokeos), it is also
more often the result of prior negotiation and coordination between influential project
members (e.g. Chamilo) (Viseur and Charleux 2019). From the user’s point of view,
however, the fork facilitates defection because it lowers migration costs.

In order to better understand the economic rationality behind a fork, we propose
to deepen the understanding of forks initiated (or supported) by commercial compa-
nies. For the latter, the software can be a key resource when it enables them to gain a
competitive advantage on a market (e.g. dissemination of a standard through an open
source implementation; Adatto 2013) or when its rate of evolution is rapid (cumulative
aspect). In the latter case, the value created is more a “value in exchange” than a “value
in use” (Chesbrough et al. 2018), resulting in a continuous flow of contributions that
the company must be able to absorb. The company can then seek to gain control over
the project through leadership (e.g., sponsoring or recruiting influential members) or by
deploying resources (e.g., development capabilities) (Schaarschmidt et al. 2015). When
both of these options fail, the fork can be an effective means of parallel takeover. By
creating a project that competes with the initial project, the company can achieve its
strategic objectives by benefiting from the impetus of the initial project. This is how
Google, through the fork of the WebKit project (rendering engine), itself forked with
KHTML by Apple, was able to develop and deploy its own project called Blink, a
Chromium component used as a basis for several browsers (including Google Chrome).
The fork provided Google with a solid foundation to develop its own rendering engine
project. On the one hand, Google wanted to be able to make modifications to WebKit
on a larger scale to meet different needs from those of the WebKit project (Baysal et al.
2015). The fork therefore saves on transaction costs. On the other hand, control of this
technology provides the company with a strategic instrument to influence web standards
(e.g. HTML5; cf. Fukami 2016) and more closely control access to the web pages on
which its advertising platform business model depends (Osterwalder and Pigneur 2011;
Srnicek 2018).

6 Conclusion

This research enabled us to propose a synthesis on the motivations behind the forks.
Based on Charleux et al. (2019), exploiting the field offered by the Claroline, Dokeos
(fork of Claroline) and Chamilo (fork of Dokeos) projects, we presented the opposition
mechanisms mobilised by open source communities. We then showed the similarity
between these mechanisms of opposition and the mechanisms of expression of discon-
tent, i.e. exit, voice and loyalty, proposed by Albert Hirschman (1970, 2017) to explain

66 R. Viseur and A. Charleux

the behaviour of an agent faced with the decline of an organisation. More specifically,
we analysed the fork reaction as an additional manifestation to be counted as an action
of exit. Drawing on Fauchart et al. (2017), which offers rich material on conflicts in the
Makerbot community, we also showed the applicability of this analytical framework to
an open hardware project.

This research represents a first step towards understanding open source communities
in the light of Albert Hirschman’s writings and contributes to an effort to theorise the
mechanisms of opposition within communities. Two in-depth studies seem to us partic-
ularly worthy of interest. On the one hand, the levels of expertise and commitment of the
members of an open source community (see Crowston and Howison 2005) could be dis-
tinguished in order to differentiate the opposition mechanisms implemented and discuss
their dangerousness for the short-term stability of the project. On the other hand, these
opposition mechanisms could be associated with indicators that can be calculated in an
automated manner and thus allow for an anticipation of the most dangerous community
reactions (e.g. call for boycott and fork).

Acknowledgements. This research was supported by the European Regional Development Fund
as part of the FabricAr3v cross-border project.

References

Adatto, T.: Standards ouverts et implémentations FLOSS (Free LibreOpen Source Software) : vers
un nouveau modèle synergique de standardisation promu par l’industrie du logiciel. Terminal:
Technologie de l’Information, Culture, Société, (113–114), 137–170 (2013)

Bajoit, G.: Exit, voice, loyalty... and apathy. Les réactions individuelles aumécontentement. Revue
française de soc. 29–2, 325–345 (1988)

Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: Investigating technical and non-technical
factors influencing modern code review. Empirical Softw. Eng. 21(3), 932–959 (2015). https://
doi.org/10.1007/s10664-015-9366-8

Benkeltoum, N.: Regards sur les stratégies de détournement dans l’industrie open source. Vie
sciences de l’entreprise 187(1), 72–94 (2011)

Charleux, A., Viseur, R., Mione, A.: Open source innovation: enabler or hinderer of business
model dynamics. In: Actes de XXVIIe Conférence Internationale de Management Stratégique
(AIMS) (2019)

Chesbrough, H., Lettl, C., Ritter, T.: Value creation and value capture in open innovation. J. Prod.
Innov. Manage. 35(6), 930–938 (2018)

Crowston, K., Howison, J.: The social structure of free and open source software development.
First Monday 10(2) (2005)

Fitzgerald, B.: The transformation of open source software. MIS Q 30, 587–598 (2006)
Fauchart, E., Rayna, T., Striukova, L.: Is selling caring? Norms regulating commercialisation

and sharing behaviour with the open hardware RepRap. In: Proceedings of the “XXVIème

Conférence Internationale de Management Stratégique” (AIMS), Lyon, France (2017)
Foray, D.: Innovation et concurrence dans les industries de réseau. Revue française de gestion 3,

131–154 (2002)
Franke, N., Von Hippel, E.: Satisfying heterogeneous user needs via innovation toolkits: the case

of Apache security software. Res. Policy 32(7), 1199–1215 (2003)

https://doi.org/10.1007/s10664-015-9366-8

Open Source Communities and Forks 67

Fukami, Y.: Open architectural competition strategy: Google’s approach to innovation through
standardization. In IWSECO@ICIS, pp. 80–94 (2016)

Gamalielsson, J., Lundell, B.: Sustainability of open source software communities beyond a fork:
how and why has the LibreOffice project evolved? J. Syst. Softw. 89, 128–145 (2014)

Hirschman, A. O.: Exit, Voice, Loyalty. Defection et prise de parole. Éditions de l’Université libre
de Bruxelles (2017). ISBN: 978-2-8004-1625-0

Hirschman, A.O.: Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and
States. Harvard University Press, Cambridge (1970)

Kogut, B.M., Metiu, A.: Open source software development and distributed innovation. Oxford
Rev. Econ. Policy 17(2), 248–264 (2001)

Mäenpää, H., Munezero, M., Fagerholm, F., Mikkonen, T.: The many hats and the broken binoc-
ulars: state of the practice in developer community management. In: Proceedings of the 13th
International Symposium on Open Collaboration, pp. 1–9 (2017)

Markus, M.L.: The governance of free/open source software projects: monolithic, multidimen-
sional, or configurational? J. Manage. Governance 11(2), 151–163 (2007)

Nyman, L., Mikkonen, T., Lindman, J., Fougère, M.: Perspectives on code forking and sustain-
ability in open source software. In: IFIP International Conference on Open Source Systems,
pp. 274–279. Springer, Heidelberg (2012)

Osterloh, M., Rota, S.: Open source software development—Just another case of collective
invention? Res. Policy 36(2), 157–171 (2007)

Osterwalder, A., Pigneur, Y.: Business model nouvelle génération: Un guide pour visionnaires,
révolutionnaires et challengers, vol. 1. Pearson (2011)

Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49 (1999)
Schaarschmidt,M.,Walsh,G., vonKortzfleisch,H.F.:Howdofirms influence open source software

communities? A framework and empirical analysis of different governance modes. Inf. Organ.
25(2), 99–114 (2015)

Shahrivar, S., Elahi, S., Hassanzadeh, A., Montazer, G.: A business model for commercial open
source software: a systematic literature review. Inf. Softw. Technol. 103, 202–214 (2018)

Shaikh, M., Cornford, T.: Total cost of ownership of open source software: a report for the UK.
Cabinet Office supported by OpenForum europe (2011)

Srnicek, N.: Capitalisme de plateforme. L’hégémonie de l’économie numérique, Lux (2018)
Teigland, R., DiGangi, P.M., Flåten, B.T., Giovacchini, E., Pastorino, N.: Balancing on a tightrope:

managing the boundaries of a firm-sponsored OSS community and its impact on innovation
and absorptive capacity. Inf. Organ. 24(1), 25–47 (2014)

Välimäki, M.: Dual licensing in open source software industry. Syst. Inf. Manage. 8(1), 63–75
(2003)

Viseur, R., Charleux, A.: Changement de gouvernance et communautés open source: Le cas du
logiciel Claroline. Innovations 1, 71–104 (2019)

Viseur, R., Robles, G.: First results about motivation and impact of license changes in open source
projects. In: IFIP International Conference on Open Source Systems, pp. 137–145. Springer,
Cham (2015)

Viseur, R.: Evolution des stratégies et modèles d’affaires des éditeurs open source face au cloud
computing. Terminal. Technol. l’inf. Cult. Soc. 113–114, 173–193 (2013)

Viseur, R.: Forks impacts and motivations in free and open source projects. Int. J. Adv. Comput.
Sci. Appl. 3(2), 117–122 (2012)

Viseur, R.: Gestion de communautés Open Source. In: 12ème Conférence de l’Association
Information et Management. Lausanne (Suisse) (2007)

Zhu, K.X., Zhou, Z.Z.: Research note—lock-in strategy in software competition: open-source
software vs. proprietary software. Inf. Syst. Res. 23(2), 536–545 (2012)

Software Change Prediction with Homogeneous
Ensemble Learners on Large Scale Open-Source

Systems

Megha Khanna(B), Srishti Priya, and Diksha Mehra

Sri Guru Gobind Singh College of Commerce, University of Delhi, Delhi, India
{shrishtipriya.18,dikshamehra.18}@sggscc.ac.in

Abstract. Customizability, extensive community support and ease of availability
have led to the popularity of Open-Source Software (OSS) systems. However,
maintenance of these systems is a challenge especially as they become consid-
erably large and complex with time. One possible method of ensuring effective
quality in large scale OSS is the adoption of software change prediction models.
These models aid in identifying change-prone parts in the early stages of software
development, which can then be effectively managed by software practitioners.
This study extensively evaluates eight Homogeneous Ensemble Learners (HEL)
for developing software change predictionmodels on five large scaleOSS datasets.
HEL, which integrate the outputs of several learners of the same type are known
to generate improved results than other non-ensemble classifiers. The study also
statistically compares the results of the models developed by HEL with ten non-
ensemble classifiers. We further assess the change in performance of HEL for
developing software change prediction models by substituting their default base
learners with other classifiers. The results of the study support the use of HEL for
developing software change prediction models and indicate Random Forest as the
best HEL for the purpose.

Keywords: Empirical validation · Ensemble learners · Large-scale OSS ·
Software change prediction

1 Introduction

OSS follows the principle of open exchange and community-oriented development.
These systems are in continuous development adhering to the dynamic requirements
of the users [1]. Regular modifications and capability upgrades of these systems add
to their complexity and size. In such a scenario, it is critical to continuously monitor
and maintain these systems effectively, so that their quality does not degrade with time.
Management and maintenance of these software systems require resources like time,
effort and cost. However, considering the limited availability of these resources, they
need to be used judiciously. One of the effective methods for sensible use of resources
and guaranteeing effective software quality is the prediction of change-prone parts in

© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
D. Taibi et al. (Eds.): OSS 2021, IFIP AICT 624, pp. 68–86, 2021.
https://doi.org/10.1007/978-3-030-75251-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75251-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-75251-4_7

Software Change Prediction with Homogeneous Ensemble Learners 69

OSS. In the event that we can predict the parts which are more inclined to changes, they
can be examined thoroughly. These parts may be redesigned appropriately or rigorously
verified to ensure good quality software. Therefore, constraint resources may be directed
to these change-prone parts as they are likely to change because of fault correction or
additional functionality requested by the users [2]. Thus, software change prediction
(SCP) aids timely delivery and cost-effective management of software systems.

In recent years, various learning techniques have been assessed for SCP.Many studies
have predicted the change-prone classes of software systems using statistical methods
[3] and machine-learning (ML) techniques [2, 4, 5]. A recent review by Malhotra and
Khanna [1] onSCPascertained thatmodels developedby ensemble learners exhibit better
performance as compared to models developed using classifiers of other categories.
Ensemble learners aggregate the output of various base learners to give an effective
prediction model. They are further classified into HEL and heterogeneous ensemble
learners [6]. In HEL, the same base learner is used for developing several models.
However, the diversity is ensured by using varied datasets for training (for example,
Bagging). On the other hand, in heterogeneous ensembles, different base learners are
used to developmodels using the same training dataset. Themodel outputs the combined
outcome of base models through voting or stacking. As compared to heterogeneous
ensembles, HEL can employ a larger number of base models. For instance, Random
Forest (anHEL) can easily aggregate 100 decision trees developed on variants of training
sets, but it is difficult to build 100 base models using diverse algorithms for aggregation
using voting or stacking. Thus, this study investigates the effectiveness of SCP models
developed using HEL.

We investigate the performance of eight HEL for developing SCPmodels on datasets
obtained from five large-scale OSS. The HEL investigated were AdaBoost (AB), Bag-
ging (BG), Dagging (DG), Decorate (DC), MultiBoostAB (MB), Random Forest (RF),
Random SubSpace (RSS) and Rotation Forest (ROF). The models were developed using
ten-fold cross validation and inter-version validation. We also statistically compare the
effectiveness of SCP models developed using HEL with models developed using classi-
fiers that belong to other categories such as decision tree, Bayesian learners etc. The study
also analyses the change in performance of the HEL when their default base learners are
replaced. The following research questions are explored in this study:

RQ1: What is the performance of SCPmodels developedwith HEL using ten-fold cross
validation?

SCP models were developed using HEL and the performance of the models was
assessed using Area Under the Receiver Operating Characteristics Curve (AUC), F-
measure (F1-score) and Mathew’s Correlation Coefficient (MCC). The models were
ranked in accordance with their performance using Friedman test. A post-hoc Wilcoxon
test with Bonferroni correction was also conducted.

RQ2: What is the comparative performance of SCP models developed using HEL in
RQ1 with non-ensemble learners?

We compare the performance of top 3 HEL performers (obtained in RQ1) with ten
learners that belong to other categories (Classification and Regression Trees (CART),
Instance-based learner (IB), J48, JRip, Logistic Regression (LR), Multilayer Perceptron

70 M. Khanna et al.

(MLP), Naive Bayes (NB), OneR, Sequential Minimal Optimization (SMO) and Voting
Feature Intervals (VFI)) for developing the SCP models (ten-fold cross validation).
We refer to these algorithms as non-ensemble learners. The comparison is statistically
performed by analyzing AUC, F1-score and MCC measures.

RQ3: What is the performance of SCP models developed with HEL using inter-version
validation? Are these SCP models better than inter-version models developed using
non-ensemble learners?

The question evaluates the effectiveness of HEL for developing SCP models using
inter-version validation. Thereafter, the performance of the developed SCP models is
statistically ranked using the Friedman test. We also statistically compare the pair-
wise difference (Wilcoxon test) in the performance of SCP models developed by the
investigated HEL and those developed using the ten non-ensemble learners over three
performance measures (AUC, F1-score and MCC) using inter-version validation.

RQ4: Does the change in base learners significantly improve the performance ofmodels
developed by HEL?

The question ascertains if there is any change in performance of SCP models devel-
oped using HEL when their default base learners are modified. For seven of HEL’s
investigated in the study (except RF), we developed SCP models (ten-fold cross vali-
dation) by replacing their base learners with ten classifiers. The classifiers evaluated as
base learners were the non-ensemble learners investigated in RQ2. We statistically rank
the performances (using AUC, F1-score & MCC) of different base learners for each
HEL using the Friedman test. The top three base learners that attained the highest ranks
were then compared with the default base learners of the HEL using Wilcoxon test.

The results of the study confirm the efficacy of HEL in the domain of SCP. The
developed models can be used by software practitioners for effective management of
software resources by focusing them on the problematic change-prone classes. The
organization of the paper includes a broad discussion of the related literature studies in
Sect. 2. Section 3 includes the various variables used in the research, the data collection
procedure, performance measures and statistical tests. Section 4 provides an overview of
the HEL and non-ensemble classifiers analyzed. Section 5 and 6 elaborates on the results
of the study and the threats to validity respectively. Section 7 discusses the conclusions
drawn and prospective future work.

2 Related Work

Various studies in the domain of software quality predictive modeling have ascertained
the superiority of ensemble learners as compared to other non-ensemble algorithms
[2, 4, 11]. The characteristics of some of the prominent literature studies of SCP and
Software Fault Prediction (SFP), which is a related area of SCP have been listed in
Table 1. The table enlists the total number of datasets used for validation and specifies the
percentage of large datasets among them (in brackets). It also lists the HEL investigated,
statistical test used, whether the study has evaluated different base learners, domain and
the performance measure used in each study.

Software Change Prediction with Homogeneous Ensemble Learners 71

Table 1. Characteristics of literature studies

Study
name

No. of
dataset
(% of
large)

Name of
HEL used

Statistical
test used

Evaluation
of different
base
learners

Domain
(SCP/SFP)

Performance
measures
used

Malhotra
and
Khanna [2]

6 (0%) RF, AB, LB,
BG

Friedman &
Wilcoxon

No SCP Precision,
Recall, AUC,
Accuracy,
Balance &
G-mean

Catolino
and Ferruci
[4]

8 (12%) AB, RF, BG Wilcoxon No SCP Precision &
Recall

Zhu et al.
[5]

8 (25%) BG Scott-knott Yes SCP Recall,
F1-score,
MCC &
AUC

Rathore [6] 28
(35%)

DG, DC,
MB, AB,
ROF, ES, GR

Friedman &
Wilcoxon

Yes SFP Precision,
Recall, AUC,
Specificity,
G-mean1 &
Gmean2

Aljamaan
and Alazba
[7]

11
(54%)

RF, ET, AB,
GB, HG,
XGB, CB

Wilcoxon No SFP Accuracy &
AUC

Yucular [8] 15
(20%)

AB, LB, MB,
BG, RF, DG,
ROF

– Yes SFP AUC &
F1-score

Kaur and
Kaur
[9]

9 (0%) BG,
BOOSTING,
RF

Wilcoxon Yes SFP AUC

Malhotra
and Bansal
[10]

11
(100%)

BG, RF, LB,
AB

Friedman No SCP AUC,
G-mean &
Balance

AB- AdaBoost, BG- Bagging, CB- CatBoost, DC- Decorate, DG- Dagging, ES- Ensemble
Selection, ET- Extra Trees, GB- Gradient Boosting, GR- Grading, HG- Hist Gradient Boosting,
LB- Logit Boost, MB- MultiBoostAB, RF- Random Forest, ROF- Rotation Forest, XGB-
XGBoost

Ensemble learners have proven to be effective for yielding not only improved SFP
models but also SCP models. In this context, Catolino and Ferrucci [4], Malhotra and
Khanna [2], Malhotra and Bansal [10] assessed the performance of HEL for SCP. As
depicted in Table 1, Rathore and Kumar [6], Yucular [8], Kaur and Kaur [9] have also
evaluated the effect of change in base learners of HEL while developing SFP models.

72 M. Khanna et al.

However, only Zhu et al. [5] assessed the performance of HEL for SCP, by changing the
underlying base learners. Kumar et al. [12] evaluated the SCP models using heteroge-
neous ensemble learners. The study by Aljamaan and Alazba [7] validated tree-based
HEL for SFP, advocating the use of these techniques in the domain. Amongst the studies
listed in Table 1, only a few percentage of the total datasets that were evaluated by the
researchers were large scale OSS. To the author’s best knowledge, none of the studies
have examined the performance of SCP models using inter-version validation. Also, the
change in base learner have been neglected in most of the SCP studies. Motivated by
these research gaps, we realized that there is still a need for an extensive evaluation of
HEL on large scale OSS. In the presented work, we evaluated eight HEL for SCP and
also investigated the effect of change in their default base learners on their predictive
capability.

3 Research Background

This section discusses the independent and the dependent variables of the study fol-
lowed by the data collection procedure. It also states the performance measures and the
statistical tests used in the study.

3.1 Independent Variables

Previous studies have already validated the relationship among OOmetrics and change-
proneness [2, 3]. For our study, we have used eleven Object Oriented (OO) metrics as
the independent variables. We use the popular Chidamber and Kemerer metrics suite
[13] which consists of Coupling Between Objects (CBO), Number of Children (NOC),
Response For a Class (RFC), Depth of Inheritance Tree (DIT), Lack Of Cohesion in
Methods (LCOM) and Weighted Methods of Class (WMC). We also used two OO
metrics proposed by Lorenz and Kidd [14], i.e. Number of Instance Methods (NIM)
and Number of Instance Variables (NIV). Other metrics used were Number of Private
Methods (NPM) and Number of Public Methods (NPRM) of QMOOD metrics suite
[7] and Lines of Code (LOC) metric. The metrics mentioned were computed using
‘Understand’ tool (https://www.scitools.com/).

3.2 Dependent Variable

The dependent variable ascertains the probability of change of a class in the upcoming
version of the software product [2, 5]. We use the binary dependent variable with two
possible values “yes” or “no”, referring to whether a class changed in the newer version
of the product or not.

3.3 Data Collection and Validation

In order to empirically validate our results, we collected data from five large-scale Java
OSS namely- Vuze, PlantUml, LogicalDOC, Seata (Simple Extensible Autonomous

https://www.scitools.com/

Software Change Prediction with Homogeneous Ensemble Learners 73

Transaction Architecture) and MPXJ. Vuze is a software used to search and down-
load torrent files. PlantUml allows creation of UML diagrams using a simple textual
description language. Seata is a distributed transaction solution that brings high per-
formance under a microservices architecture. LogicalDOC is a document management
platform. MPXJ is a file handling library for Java. Two consecutive stable versions of all
these datasets were acquired from http://sourceforge.net/. The analysed versions were
designated as “old” and “new” according to their release date.

These OSS were chosen based on the following criterion- (i) The common classes
(data points) of each software should be 800 or more, (ii) The percentage of changed
classes in “old” and “new” versions should be 20% and above, (iii) The software system
should belong to varied domains like community oriented and industry oriented.

Table 2 displays the number of classes and the size (in KLOC) of the older and newer
version, the common classes of both the versions (data points) and the percentage change
of classes in the two versions of each dataset. As can be seen from the table, the number
of classes in the investigated datasets range from 911–3616, indicating the large-size
of datasets. The table also depicts the versions of datasets taken for validation while
performing inter-version validation. The versions used for validation are the successive
versions of those used for training.

In order to compute the dataset, at first, the OO metrics (mentioned in Sect. 3.1)
were computed for the older version of each of the dataset. We use the Understand tool
(https://www.scitools.com) for extracting the metrics. Secondly, the common classes of
the two versions (the older version and newer version) of the dataset were compared
to identify changes in the classes. Thereafter, interfaces and methods were excluded.
Additionally, the metrics include various anonymous and unknown classes which were
also discarded. Finally, change statistics were computed for each of the common classes
in the metrics. These common classes are the data points. Change statistics include the
number of inserted, deleted and modified source code lines for each data point. After
computing the change statistics, we introduce a binary variable ‘ALTER’. ALTER is the
dependent variable of our study. For each data point, if the change statistics computed
gave a non-zero positive value, the ALTER was marked as “yes”, otherwise “no”.

We examine the five datasets and develop models using 10-fold cross-validation and
inter-version validation. In cross validation, the dataset is divided into several sub-parts,
in this case ten. Then, nine of these divided datasets are used for training the model,
while the remaining one is used for testing the model. This process is repeated ten times,
so that each dataset part is used for testing at least once.

Inter-version validation refers to the validation of training model developed using
version ‘v’ of a software using any of the later versions of the same software. The
difference in inter-version validation is that it takes the dataset obtained from later
versions of the software into account to be used as testing data rather than dividing
a single dataset into training and validation data (i.e. in k-fold cross validation). For
inter-version validation, we first develop an SCP model, let’s say S1 using the dataset
obtained from analyzing the change and metrics of version v1 & v2. Thereafter, S1 is
validated using the dataset obtained from analyzing the change and metrics of version
v2 & v3 (later versions of corresponding software).

http://sourceforge.net/
https://www.scitools.com

74 M. Khanna et al.

Table 2. Software details

Name of
software

Classes Data
points

Training data (%
change)

Time
gap

Size (in
KLOC)

Validation data (%
change)

Vuze 3590–3616 2559 5.7.4–5.7.5 (33%) 3
months

625–632 5.7.5–5.7.6 (3%)

PlantUml 2966–2772 2329 1.2020.10–1.2020.22
(31%)

7
months

265–212 1.2020.23–1.2021.1
(12%)

LogicalDOC 1948–1370 1117 8.3.4–8.4.2 (23%) 6
months

229–159 8.4.2–8.5.2 (22%)

Seata 1123–1229 906 v1.2–v1.4 (35%) 7
months

67–74 v1.4.0–v1.4.1 (5%)

MPXJ 911–942 821 8.0.0–8.2.0 (26%) 8
months

175–181 8.3.0–8.5.0 (26%)

Training data is the dataset used for ten-fold cross validation.

3.4 Performance Measures

All the models developed in the study were analyzed based on performance measures
described below. The greater the value of these measures, the better is the performance
of developed models. We selected these performance measures as they are robust, stable
and give effective results even with imbalanced data [5, 8, 12].

• F1-score: It is measured as the harmonic mean of precision and recall.
• AUC: It is the area under the Receiver Operator Characteristic (ROC) curve. The curve
is plotted for true-positive rate (y-axis) vs. false-positive rate (x-axis).

• Mathew’s Correlation Coefficient (MCC): It is a symmetric measure which gives an
unbiased result than other measures in an imbalanced data sample. The formula of
MCC incorporates true positives, false positives, true negatives and false negatives.
The range of MCC values lies from −1 to +1.

3.5 Statistical Tests

We use two non-parametric tests i.e. Friedman test and Wilcoxon signed rank test to
statistically evaluate the results of our study. Friedman test is used to rank theperformance
of SCPmodels developed by HEL (in RQ1&RQ3) on the basis of performance measure
values (AUC, MCC and F1-score) across all the datasets. The test statistic is based on
chi-square distribution. We further employed Wilcoxon test which is used to pairwise
assess two classifiers and check if there is a significant difference in their performance.
The comparison done between the two classifiers depends on the pairwise difference
obtained on the values of performance measures. Bonferroni correction was used with
Wilcoxon test where the chosen α value (0.05) is divided by the total number of pairwise
comparisons evaluated. This correction is used to reduce the number of false positives
i.e. type 1 error in statistical analysis.

Software Change Prediction with Homogeneous Ensemble Learners 75

4 Research Methodology

In this section, we briefly introduce the various HEL used in the study to develop SCP
models. We selected these HEL as they encompass a diverse category of ensemble
techniques. For instance, AB and MB are boosting classifiers, while BG and DG belong
to the class of bagging learners. DC uses artificial training instances, while RSS chooses
random features for model development. Lastly, ROF and RF techniques are aggregate
of decision trees.

1. AdaBoost (AB) – It is a boosting technique that tries to improve the classification
performance by training a sequence of weak learners. In this iterative technique,
every following weak learner is trained to focus on the feature that was missed by
the previous learner [10].

2. Bagging (BG) - It is a method in which the sample data is divided into independent
subsets of data using bootstrap. The individual datasets are then evaluated with a
weak-learner and their result is aggregated using the voting method [15].

3. Dagging (DG) - It is a method in which the sample data is divided into disjoint
subsets (i.e. independent datasets are generatedwithout replacement). Thefinal result
is evaluated by combining the output of weak learners on disjoint datasets using a
voting scheme [6].

4. Decorate (DC) - This technique builds different intermediate prediction models by
using specially constructed artificial training samples. The predictions from theweak
learners are then integrated into one by the mean combination rule [6].

5. MultiBoostAB (MB) - It is an extension ofAdaBoostmethod. It reduces the prediction
bias and discrepancy in the final model by incorporating wagging techniques [16].

6. Random Forest (RF) - This technique consists of a number of decision trees, making
sure that each one of the individual trees is distinct. Each tree is built on a subset of
data points (with replacement) and the nodes of the tree use random features which
are selected without replacement [17].

7. Random SubSpace (RSS) - It selects random subsets containing particular features
of a sample dataset. The result is then predicted by the majority vote of the models
created using these subsets [18].

8. Rotation Forest (ROF) - This method utilizes Principal Component Analysis (PCA)
algorithm to choose features and data of the training sample to generate individual
decision trees. The classification of each decision tree is aggregated to give the final
result by the voting method [6].

Table 3 depicts the parameter settings of HEL used in this study. These are the default
parameter settings of the WEKA tool.

The non-ensemble classifiers analysed in the study were- CART, IB, J48, JRip, LR,
MLP, NB, OneR and SMO. These methods were chosen as they belong to different
classification categories. CART and J48 belong to decision trees, NB and LR belong
to statistical models, JRip and OneR belong to rule-based, IB comes under K-nearest
neighbor, SMO comes under support vector machine and lastly MLP belongs to neural
network. For these non-ensemble classifiers, we have used only the default parameters
of the WEKA tool.

76 M. Khanna et al.

Table 3. Parameter details of HEL

HEL Default base learners Parameter values

AB Decision stump Batch Size = 100, Iterations = 10, Weight Threshold = 100

BG REPtree Batch Size = 100, Iterations = 10

DG Decision stump Batch Size = 100, Number of Folds = 10

DC J48 Batch Size = 100, Desired Size = 15, Iterations = 50

MB Decision stump Batch Size = 100, Iterations = 10, Weight Threshold = 100

RF Random tree Batch Size = 100, Max Depth = 0, Iterations = 100

RSS REPtree Batch Size = 100, Iterations = 10, Sub Space Size = 0.5

ROF J48 Batch Size = 100, Group Size = 3, Iterations = 10

5 Result Analysis and Discussion

We discuss the results of RQ’s of our study in this section.

5.1 RQ1. What is the Performance of SCP Models Developed with HEL Using
Ten-Fold Cross Validation?

We assess the performance of the SCPmodels developed using HEL by analyzing AUC,
F1-score and MCC values. The models were developed using ten-fold cross validation.
Figure 1 depicts a stacked graph of average performance measure values (across all the
five investigated datasets).

Fig. 1. Graph representing the average values of HEL for AUC, F1-score and MCC.

The AUC values of SCP models on the five datasets were in the range from 0.714–
0.825, indicating their effectiveness. Similarly, F1-score values and MCC values were

Software Change Prediction with Homogeneous Ensemble Learners 77

in the range of 0.714–0.774 and 0.370–0.435 respectively. According to the figure,
the SCP models developed using RF, BG and ROF were the top 3 performers as they
depicted the best average cumulative values for all the three performance measures. DG
showed a decrease of 3% and 9% for average F1-score andMCC values over all datasets
in comparison to the other average values obtained by HEL, thus demonstrating poor
performance. Similarly, MB obtained the lowest value for AUC measure. Nevertheless,
all the models developed using HEL exhibited acceptable values. These results support
the use of HEL for determining change-prone classes in large OSS. We statistically
analyzed the performance of the developed SCPmodels using the Friedman test. The test
was conducted on the performance measure values (AUC, MCC and F1-score) obtained
by the models on the five datasets. In all the three cases, Friedman test results were found
significant at α = 0.05. This indicates a significant difference in the performance of the
investigated HEL for developing SCP models. The models developed by RF and BG
ensemble classifiers obtained the best Friedman ranks using AUC, F1-score and MCC
values. The next best ranks were obtained by ROF for AUC and F1-score measures
and RSS for MCC measure respectively. The models developed by MB, DG and AB
obtained the worst ranks.

Additionally, we employed the post-hoc Wilcoxon test with Bonferroni correction
(α = 0.05) to pairwise compare the performance of RF with other HEL (Table 4). RF
outperformed (denoted by ⇑ in Table 4) all the other seven HEL, thereby, making it a
desirable HEL for developing SCP models. However, its superiority was not significant.

Table 4. Wilcoxon test with Bonferroni correction of RF with all other HEL

Performance measures AB BG DG DC MB ROF RSS

F1-score ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
AUC ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
MCC ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

⇑: better

5.2 RQ2. What is the Comparative Performance of SCPModels Developed Using
HEL in RQ1 with Non-ensemble Learners?

We assess the performance of the models developed using HEL in RQ1 by comparing
them with ten non-ensemble classifiers using AUC, F1-score and MCC values. Figure 2
displays the average values of the performance measures obtained by the HEL and non-
ensemble classifiers across all the datasets. As depicted in figure, the models developed
using the eight HEL obtained higher average values than the ten non-ensemble classifiers
for AUC, F1-score and MCC values. The average AUC values for SCP models obtained
by the non-ensemble classifiers on the five datasets were in the range of 0.587–0.750.
Similarly, average F1-score values were in the range of 0.425–0.766 and average MCC
values were in the range of 0.199–0.414. These values were lower than those reported
by the models developed in RQ1. With respect to AUC, models developed by non-
ensemble classifiers exhibited a 12% decrease as compared to models developed by

78 M. Khanna et al.

HEL. Similarly, F1-score values attained by the non-ensemble classifiers decreased by
7% and MCC values depicted a 15% decrement. Thus, SCP models developed using
HEL show an improvement over the models developed by non-ensemble learners.

Fig. 2. Graph representing average AUC, F1-score and MCC values for HEL and non-ensemble
classifiers

We also statistically evaluated the results using Wilcoxon test with Bonferroni cor-
rection at α = 0.05 by pairwise comparing the best three performing HEL (obtained by
Friedman test in RQ1) with ten non-ensemble classifiers on the three performance mea-
sures. Table 5 depicts the Wilcoxon test results and indicates that HEL perform notably
better by consistently obtaining higher values than non-ensemble classifiers across all the
datasets. In all the 90 pairwise comparisons performed, there was only one exception in
which a non-ensemble classifier i.e. J48 obtained a higher MCC value than RSS (HEL).
However, these results were not significant when Bonferroni correction was used.

5.3 RQ3. What is the Performance of SCP Models Developed with HEL Using
Inter-version Validation? Are These SCP Models Better Than Inter-version
Models Developed Using Non-ensemble Learners?

We assess the performance of SCP models developed using HEL and non-ensemble
learners using inter-version validation by evaluating AUC, F1-score andMCCmeasures.
Table 6 and 7 depict the average values of performance measures obtained on five
datasets by HEL and non-ensemble learners respectively. The average AUC values for
SCP models developed by HEL were in the range 0.727–0.764. The average values
for F1-score and MCC were in the range of 0.769–0.790 and 0.160–0.255 respectively.
On the other hand, the average performance measure values for non-ensemble learners
were in the range 0.619–0.759 (AUC), 0.544–0.806 (F1-score) and 0.150–0.210 (MCC),
which were considerably lower than those obtained by models developed using HEL.

Software Change Prediction with Homogeneous Ensemble Learners 79

Table 5. Comparing HEL & non-ensemble classifiers using AUC, F1-score and MCC

AUC

MLP SMO NB IB VFI CART J48 JRIP ONER LR

RF ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
BG ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
ROF ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
F1-score

MLP SMO NB IB VFI CART J48 JRIP ONER LR

RF ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
BG ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
ROF ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
MCC

MLP SMO NB IB VFI CART J48 JRIP ONER LR

RF ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
BG ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
RSS ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇓ ⇑ ⇑ ⇑

⇑: better, ⇓: worse

Table 6. Performance measure values of HEL

AB BG DG DC MB RF RSS ROF

AUC 0.727 0.756 0.732 0.764 0.729 0.759 0.758 0.749

F1-score 0.769 0.786 0.780 0.778 0.789 0.781 0.790 0.789

MCC 0.160 0.204 0.175 0.195 0.210 0.255 0.207 0.208

Table 7. Performance measure values of non-ensemble learners

MLP SMO NB IB VFI CART J48 JRip OneR LR

AUC 0.743 0.619 0.745 0.704 0.692 0.715 0.705 0.643 0.620 0.759

F1-score 0.797 0.815 0.806 0.766 0.544 0.781 0.779 0.792 0.792 0.802

MCC 0.196 0.206 0.200 0.208 0.150 0.196 0.192 0.184 0.184 0.210

Further, in order to determine the best HEL for developing SCP models using inter-
version validation, we statistically assessed their performances using Friedman test.
Though the test results were not found significant for AUC measure and F1-score, the
results were significant for MCC at α = 0.05. RF, BG and RSS were the top three
performers obtaining the highest values for MCC.

80 M. Khanna et al.

We further usedWilcoxon testwithBonferroni correction to validate the performance
of eight HEL with the ten non-ensemble learners on MCC values. Figure 3 shows the
number of non-ensemble learners that performed better (shown below the axis) and
worse (shown above the axis) than HEL when validated using inter-version validation.
The figure illustrates that the SCP models developed using HEL performed better than
those developed using non-ensemble learners in the majority of cases (54%), however
Boosting techniques (AB and MB) and DG showed poor performance measure values
than most of the investigated non-ensemble learners. Similar trend was observed when
Wilcoxon test was conducted using AUC and F1-score values. Wilcoxon results also
depicted that theMCCvalues for SCPmodels developed using RFwere the best amongst
all non-ensemble learners (Fig. 3) as the models developed using RF were superior than
all the other investigated non-ensemble learners.

Fig. 3. Wilcoxon results for MCC values (Inter-version validation)

5.4 RQ4. Does the Change in Base Learners Significantly Improve
the Performance of Models Developed by HEL?

Weassess the performance ofHELby changing their default base learners for developing
SCP models using ten-fold cross validation. We used the non-ensemble classifiers (used
in RQ2) as the various base learners. However, it may be noted that since RF is the
aggregation of multiple decision trees where each decision tree uses different features,
we could not alter its base learner. For all the other seven investigated HEL, we altered
the base learners to evaluate the change in their performance.

Figure 4 shows the AUC box-plots for the developed SCP models by changing the
base learners of investigated HEL. The figure depicts that majority of the investigated
HEL show best results for SCP models with their default base learners. It was also
observed that most of the HEL show improved performances with J48, JRip and CART
as their base learners in comparison to their default base learner (although, the percentage
changewas less than 1%).However, all theHELwith SMOandVFI as their base learners
obtain the lowest values. There was an average decrease of 16% for the AUC value, 33%
for the MCC value and 17% for F1-score for SMO and VFI in comparison to default
base learner.

Software Change Prediction with Homogeneous Ensemble Learners 81

Fig. 4. AUC box plots for different base learners - (a) AB, (b) BG, (c) DG, (d) DC, (e) MB, (f)
ROF, (g) RSS

To rank the performance of SCP models developed using HEL with different base
learners, we performed the Friedman test. Table 8 shows the best three ranks obtained
by various base learners for all the HEL on three performance measures (AUC, F1-score
and MCC). For each HEL, we evaluated eleven possibilities, one with their default base
learner and other ten with the rest of the base learners used in this study. The Friedman
test result was found significant at α = 0.05. According to Friedman results on AUC,
F1-score and MCC values, in addition to corresponding default base learners, J48, JRip
and CART were designated as the best base learners for most of the investigated HEL.
The MLP technique also exhibited effective results when used as a base learner for DG
and MB. On the other hand, SMO, VFI and OneR were found to be the worst base
learners.

Furthermore, we used post-hocWilcoxon test with Bonferroni correction to validate
the performance of HEL with their default base learner and the top three base learners
(according to the Friedman test). The test evaluates a total of 63 pairwise comparisons of
HEL with varied base learners for the three performance measures (AUC, F1-score and
MCC). According to the test results, the performance of SCP models developed using
HELwith different base learners showed an improvement in only 8 of the 21 cases when
AUC was evaluated. AB, DG and MB progressively increased their AUC performance
when their default base learners were altered. But in majority of the cases, there was a
decline in the AUC performance of other HEL when their base learners were changed.
Similar results were observed when Wilcoxon test was performed using F1-score and
MCC values. Thus, changing the default base learner does not necessarily improve the
performance of HEL for developing SCP models.

82 M. Khanna et al.

Table 8. Top ranks of base learners according to Friedman test

Friedman ranks for AUC Friedman ranks for
F1-score

Friedman ranks for MCC

HEL Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

AB JRip DFT J48 JRip J48 DFT JRip J48 CART

BG DFT J48 CART DFT J48 CART J48 DFT CART

DG MLP J48 LR DFT J48 MLP MLP J48 JRip

DC DFT J48 CART DFT CART J48 CART DFT J48

MB J48 JRip CART JRip MLP DFT JRip CART MLP

ROF DFT J48 CART DFT CART J48 DFT CART J48

RSS DFT J48 MLP DFT CART IB CART DFT J48

DFT: Default Base Learner

5.5 Discussion of Results

The results of the study indicate the effectiveness of the investigated HEL for developing
SCP models. The performance of HEL was evaluated on AUC, F1-score and MCC for
five largeOSSby ten-fold cross validation and inter-version validation. For ten-fold cross
validation, the mean AUC value exhibited by all the HEL across the datasets was 0.778
with a standard deviation (SD) of 0.02. Similarly, the mean F1-score and MCC values
were 0.758 (SD = 0.02) and 0.402 (SD = 0.06) respectively. The values obtained by all
the HEL for the three performance measures are close to the mean value, signifying that
all the ensemble learners are competent and effective for developing SCP models [19,
20]. Similar resultswere obtained using inter-version validation forwhich themeanAUC
and F1-score were 0.747 and 0.783 respectively. However, there was a slight decline in
the MCC values obtained using inter-version validation (mean MCC = 0.202).

It was observed that the SCP model developed using RF was the most efficient as it
obtained the highest values for all the investigated performancemeasures. Themaximum
values obtained by models developed using RF (ten-fold cross validation) for AUC, F1-
score andMCCwere 0.825, 0.796, and 0.518 respectively across all the datasets. Even for
inter-version validation, the average AUC value obtained by RF exhibited a 2% increase
andMCC exhibited a 31% rise compared to the other HEL. RF works on the principle of
bagging using random feature selection method. Since, RF is a combination of decision
trees which are developed using varied samples of the dataset (chosen randomly with
replacement) and varied predictors (chosen randomly without replacement from the
original set of features), it provides an edge over other HEL [21]. Also, RF can handle
large amount of data and tends to decrease overfitting [17]. These characteristics of RF
make it an ideal technique for developing SCP classification models.

According to Friedman test results (both ten-fold & inter-version), SCP models
developed by BG, ROF and RSS also yielded effective results as they were amongst
the top-3 HEL in majority of the cases. ROF technique involves the application of
BG and feature selection to perform PCA which is used to build decision trees. This
ensures accuracy and diversity of the individual decision trees [22]. BG tends to reduce

Software Change Prediction with Homogeneous Ensemble Learners 83

variance as it performs sampling of data with replacement. Just as the variance decreases,
overfitting also decreases which increases the accuracy of BG algorithm [23].

AB andMB (boosting techniques) and DG performed poorly in comparison to other
investigated HEL. Boosting techniques (AB andMB) work on weak base learners which
are sensitive to noise. Boosting techniques also give more weight to misclassified data
and hence if the data contains outliers, it will tend to increase overfitting [23]. This could
be a possible reason for their poor results.

The results obtained bySCPmodels developed usingHELon inter-version validation
were comparable to the results obtained by ten-fold cross validation. For instance, in
LogicalDOC the AUC and F1-score values of SCPmodels developed using RF (ten-fold
cross validation) were 0.785 and 0.796 respectively. On the other hand, the inter-version
model on LogicalDOC (using RF) exhibited an AUC and F1-score value 0.707 and
0.758 respectively. Though, there was a slight decrease (up to 10%) in these performance
measure values when using inter-version, they can be considered at par with ten-fold
cross validation results.

As indicated by the values of performance measures (Fig. 2), SCP models (ten-
fold cross validation) developed using HEL were found to be superior to the models
developed using non-ensemble classifiers. There was a decrease of 6% in the values
of the non-ensemble classifier obtaining the highest value for AUC as compared to
the highest value of AUC obtained by the best HEL (RF). Likewise, a decrease of 1%
and 5% was observed for F1-score and MCC values respectively. Unmistakably, the
higher values obtained by HEL for all performance measures highlights their accuracy
and efficiency for predicting change-prone classes. Even the HEL obtaining the lowest
Friedman rank (MB) secured a minimum value of 0.753 over all datasets for AUC.
This value is greater than the highest value obtained by the non-ensemble learner (LR)
for AUC which was 0.750. The superiority of HEL was also confirmed when the SCP
models were developed by inter-version validation. There was a slight decline in the
performance of SCP models developed using non-ensemble learners in comparison to
those developed usingHEL.On an average, therewas a 7%, 2% and 4%decline forAUC,
F1-score and MCC values. This signifies the effectiveness of HEL for prediction tasks.
It may be noted that the common errors in a model are often described in terms of two
properties- bias and the variance [23]. Ensemble techniques aim to minimize variance
and bias by combining various base models to build one optimal prediction model.
The reduction in the variance element of generalization error improves the prediction
capacity of the models developed by ensemble learners. Therefore, the results obtained
by HEL for developing SCP models are robust as HEL reduces these errors and obtains
an evenly spread values for all performance measures.

As observed in the results ofRQ4,when the default base learners of the proposedHEL
for developing SCP models are altered, there is a relative decline in their performance.
With respect to AUC, there was a drop of 2–10% in the performances of HEL across
all the datasets. MB depicted the lowest decrease of 2% and the highest decrease of
10% was obtained by RSS for AUC values. F1-score and MCC values also underwent a
similar decrease. Since the percentage decrease was low, we statistically ranked all the
base learners investigated for a specific HEL. J48, CART, JRip and MLP were ranked as
the top base learners as they gave better values for the performance measures compared

84 M. Khanna et al.

to the other investigated base learners. The results from the study suggested that when
these base learners are used, there was a positive effect on the AUC values for AB, MB
(boosting techniques) and DG.

Amongst the top three base learners, two of the learners (J48 and CART) were
decision tree algorithms. These learners use greedy approach. They split the data on the
best feature by considering the accuracy of all the available features [23]. As decision
trees implicitly perform feature selection they are successful as base learners for HEL.
However, in order to generalize these results, we need to ascertain the use of HEL
with other base learners for developing SCP models on even larger datasets. Since the
performance difference ofHELwith altered base learnerswas not significant, researchers
may use the default base learners for developing SCP models.

The SCP models developed in the study can be put into use by the software industry
while allocating resources like time, effort and cost. An effective way for maintenance of
large OSS is the prediction of change-prone classes so that more resources may allocated
to these classes. To assess the efficacy of the developed SCPmodels, we carried out cost-
benefit analysis on all five datasets using HEL techniques [25]. The cost/benefit gain
is computed as the saving of resources if the developed SCP models are put into use
instead of random testing. The higher the value of cost/benefit gain, the more successful
is the SCPmodel. The percentage cost/benefit gain given by all HEL for the five datasets
was found to be in the range of 26%–54%. This indicates optimum use of constraint
resources if the developed models are put into effect by software managers.

6 Threats to Validity

The SCP models developed in the study using HEL have been statistically evaluated
using Friedman and Wilcoxon test. This substantiates the conclusion validity of our
results. Moreover, the performance of the models were evaluated on three performance
measures- AUC, F1-score and MCC. This increases the credibility of the results.

The independent variables used in the study are the commonly used metrics in
software engineering literature. These variables have already been validated as predictors
in earlier studies [2, 3, 9], reducing the construct validity threat in the study. The results
of the study do not take into account the confounding effect of size of the projects and
other characteristics in development of the SCPmodels. However, this was not the intent
of the study.

The results of the study are validated on five large OSS belonging to varied domains.
However, researchers should perform empirical validation on OSS of different sizes
(small, medium, large) along with the OSS developed using different languages like
Python, JavaScript, C# to enhance the generalizability of obtained results.

7 Conclusion and Future Work

The study performs an analysis of eight HEL namely - AB, BG, DG, DC, MB, RF,
RSS, ROF to determine change-prone classes in five large-scale OSS (developed in Java
language). SCP models were developed using ten-fold cross validation as well as inter-
version validation. The effectiveness of the HEL was statistically evaluated using three

Software Change Prediction with Homogeneous Ensemble Learners 85

performance measures - AUC, MCC and F1-score. The key results of the study are as
follows-

• Each of the eight HEL analyzed in the study attained effective results for predicting
change-prone classes. Particularly, RF was the best HEL as we observed an increase
of 3% in AUC, 2% in F1-score and 9% in MCC values in the SCP models developed
by RF using ten-fold cross validation as compared to the models developed by the
other seven investigated HEL. Other HEL which showed promising results were BG,
ROF and RSS.

• The results from the study indicated that SCPmodels (using ten-fold cross validation)
developed by HEL are superior than those developed by non-ensemble classifiers. It
was observed that the top three ranked HEL (RF, BG, ROF, RSS) when compared to
the non-ensemble learners showed an improvement of up to 15%, 10% and 23% for
AUC, F1-score and MCC values respectively.

• The outcomes of the study also showed that SCP models developed by HEL using
inter-version validationmethods have better performance than non-ensemble learners.
HEL showed an increase of 7% in the AUC values as compared to the non-ensemble
learners. In a similar manner, an increase of 2% and 5% was indicated by the HEL
for F1-score and MCC values.

• The results of the study illustrate that the change in base learners for each HEL does
not significantly improve their performance in the SCP domain. BG, DC, ROF and
RSS showed a decline in their performance with J48, CART, JRip and MLP as their
base learners. On the other hand, AB, DG and MB exhibited enhanced performances
with these base learners. Thus, changing the base learners might not always give
promising results for HEL, while developing SCP models.

In future, we would like to evaluate the heterogeneous ensemble classifiers for pre-
dicting change-prone classes. For the continuous growth of software, the maintenance of
large and complex software systems is important. It is comprehended that efficient SCP
models reduce the effort and cost required for maintaining large OSS. The results of the
study would aid software managers in choosing optimum classifiers for developing SCP
models. Furthermore, effective planning and resource allocation can be implemented
using the developed SCP models.

References

1. Malhotra, R., Khanna, M.: Software change prediction: a systematic review and future
guidelines. eInformatica Softw. Eng. J. 13(1), 227–259 (2019)

2. Malhotra, R., Khanna, M.: An empirical study for software change prediction using
imbalanced data. Empirical Softw. Eng. 22(6), 2806–2851 (2017)

3. Zhou, Y., Leung, H., Xu, B.: Examining the potentially confounding effect of class size on the
associations between object metrics and change-proneness. IEEE Trans. Softw. Eng. 35(5),
607–623 (2009)

4. Catolino, G., Ferrucci, F.: Ensemble techniques for software change prediction: a preliminary
investigation. In: IEEE Workshop on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE), pp. 25–30. IEEE (2018)

86 M. Khanna et al.

5. Zhu, X., He, Y., Cheng, L., Jia, X., Zhu, L.: Software change-proneness prediction through
combination of bagging and resamplingmethods. J. Softw. Evol. Process 30(12), 1–17 (2018)

6. Rathore, S.S., Kumar, S.: An empirical study of ensemble techniques for software fault
prediction. Appl. Intell. 1–30 (2020)

7. Aljamaan, H., Alazba, A.: Software defect prediction using tree-based ensembles. In:
16th ACM International Conference on Predictive Models and Data Analytics in Software
Engineering, pp. 1–10. ACM (2020)

8. Yucular, F., Ozcift, A., Boranbag, E., Kilinc, D.: Multiple-classifiers in software quality engi-
neering: combining predictors to improve software fault prediction ability. Eng. Sci. Technol.
Int. J. 23(4), 938–950 (2020)

9. Kaur, A., Kaur, K.: Performance analysis of ensemble learning for predicting defects
in open source software. In: 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 219–225. IEEE (2014)

10. Malhotra, R., Bansal, A.: Investigation of various data analysis techniques to identify change-
prone parts of an open source software. Int. J. Syst. Assurance Eng. Manage. 9(2), 401–426
(2017)

11. Elish, M.O., Aljamaan, H., Ahmad, I.: Three empirical studies on predicting software
maintainability using ensemble methods. Soft. Comput. 19(9), 2511–2524 (2015)

12. Kumar, L., Lal, S., Goyal, A., Murthy, N.L.: Change-proneness of object-oriented software
using combination of feature selection techniques and ensemble learning techniques. In:
Proceedings of the 12th Innovations on Software Engineering Conference (formerly known
as India Software Engineering Conference), pp. 1–11. ACM (2019)

13. Chidamber, S., Kemerer, C.: A metric suite for object-oriented design. IEEE Trans. Softw.
Eng. 20, 476–493 (1994)

14. Lorenz, M., Kidd, J.: Object-oriented Software Metrics: A Practical Guide. Prentice-Hall,
Inc. (1994)

15. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
16. Webb, G.I.: Multiboosting: a technique for combining boosting and wagging. Mach. Learn.

40(2), 159–196 (2000)
17. Brieman, L.: Random forests. Mach. Learn. 45(1), 5– 32 (2001)
18. Ho, T.K.: The random subspacemethod for constructing decision forests. IEEE Trans. Pattern

Anal. Mach. Intell. 20(8), 832–844 (1998)
19. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over

F1-score and accuracy in binary classification evaluation. BMCGenomics, 21(1), 1–13 (2020)
20. Shatnawi, R.: Improving software fault-prediction for imbalanced data. In: 2012 International

Conference on Innovations in Information Technology (IIT), pp. 54–59. IEEE, UAE (2012)
21. Baskin, I.I., Marcou, G., Horvath, D., Varnek, A.: Random subspaces and random forest.

Tutorials Chemoinform. 263–269 (2017)
22. Bustamam, A., Musti, M.I.S., Hartomo, S., Aprilia, S., Tampubolon, P.P., Lestari, D.: Per-

formance of rotation forest ensemble classifier and feature extractor in predicting protein
interactions using amino acid sequences. BMC Genom. 20(9), 950–963 (2019)

23. Alpaydin, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2014)
24. Malhotra, R., Khanna, M.: An explanatory study for software change prediction in object-

oriented systems using hybridized techniques. Autom. Softw. Eng. 24(3), 673–717 (2017)
25. Sohail, M.N., Jiadong, R., Uba, M.M., Irshad, M., Iqbal, W., Arshad, J., John, A.V.: A hybrid

forecast cost benefit classification of diabetes mellitus prevalence based on epidemiological
study on real-life patient’s data. Sci. Rep. 9(1), 1–10 (2019)

Author Index

Brax, Christoffer 16
Butler, Simon 16

Campos, Rodrigo Oliveira 51
Charleux, Amel 59

da Silva, Pablo Diego Silva 51

Feist, Jonas 16

Gamalielsson, Jonas 16
German, Daniel M. 28
Gustavsson, Tomas 16

Inoue, Katsuro 28
Ishio, Takashi 28

Khanna, Megha 68

Lavazza, Luigi 1
Li, Xiaozhou 42
Lundell, Björn 16

Mattsson, Anders 16
Mehra, Diksha 68
Miyamoto, Yuya 28
Morasca, Sandro 1
Moreschini, Sergio 42

Öberg, Jonas 16

Persson, Tomas 16
Priya, Srishti 68

Rocha, Carla 51

Tosi, Davide 1

Viseur, Robert 59

	Preface
	Organization
	Contents
	Comparing Static Analysis and Code Smells as Defect Predictors: An Empirical Study
	1 Introduction
	2 Bug Detectors and Code Smell Detectors
	2.1 A Bug Detector: SpotBugs
	2.2 A Code Smells Detector: JDeodorant

	3 The Empirical Study
	3.1 Method
	3.2 Results
	3.3 Interpretation of Results
	3.4 Discussion

	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

	Enabling OSS Usage Through Procurement Projects: How Can Lock-in Effects Be Avoided?
	1 Introduction
	2 On Lock-in Effects in the Software Domain
	3 Research Approach
	4 Results
	4.1 Development and Deployment of Software Impacting on Opportunities for OSS Usage
	4.2 Requirements on IT Standards Impacting on Lock-in Effects

	5 Discussion and Conclusions
	References

	Finding Code-Clone Snippets in Large Source-Code Collection by ccgrep
	1 Introduction
	2 Motivating Example
	3 Overview of Code Clone Query by ccgrep
	3.1 Basic Features
	3.2 Query for Type 1 Clone
	3.3 Query for Type 2 Clone
	3.4 Query for Type 3 Clone
	3.5 Finding Various Code Snippets

	4 Architecture of ccgrep
	5 Evaluation
	5.1 RQ1: Query Expressiveness
	5.2 RQ2: Accuracy of ccgrep
	5.3 RQ3: Performance of ccgrep

	6 Related Works
	7 Conclusions
	References

	OSS PESTO: An Open Source Software Project Evaluation and Selection TOol
	1 Introduction
	2 Related Work
	3 OSS PESTO
	4 Experiment Showcase
	5 Conclusion
	References

	OSS Scripting System for Game Development in Rust
	1 Introduction
	2 Background
	2.1 Entity Component System
	2.2 Specs X Legion

	3 Method
	4 Results
	5 Conclusion and Lessons Learned
	References

	Open Source Communities and Forks: A Rereading in the Light of Albert Hirschman's Writings
	1 Introduction
	2 Community as a Source of Value
	3 The Community as a Brake
	4 Exit and Voice (Hirschman)
	5 Fork as a New Form of Exit
	5.1 Opposition Mechanisms and Hirschman's Model
	5.2 Extension to Open Hardware
	5.3 Justification of Apathy
	5.4 Rationality of a Fork

	6 Conclusion
	References

	Software Change Prediction with Homogeneous Ensemble Learners on Large Scale Open-Source Systems
	1 Introduction
	2 Related Work
	3 Research Background
	3.1 Independent Variables
	3.2 Dependent Variable
	3.3 Data Collection and Validation
	3.4 Performance Measures
	3.5 Statistical Tests

	4 Research Methodology
	5 Result Analysis and Discussion
	5.1 RQ1. What is the Performance of SCP Models Developed with HEL Using Ten-Fold Cross Validation?
	5.2 RQ2. What is the Comparative Performance of SCP Models Developed Using HEL in RQ1 with Non-ensemble Learners?
	5.3 RQ3. What is the Performance of SCP Models Developed with HEL Using Inter-version Validation? Are These SCP Models Better Than Inter-version Models Developed Using Non-ensemble Learners?
	5.4 RQ4. Does the Change in Base Learners Significantly Improve the Performance of Models Developed by HEL?
	5.5 Discussion of Results

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Author Index

