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Preface

The 24th International Conference on Practice and Theory of Public-Key Cryptography
(PKC 2021) was held virtually over Zoom from May 10th to May 13th, 2021. It was
supposed to take place in Edinburgh, Scotland, but due to COVID-19 this was not
possible. The conference is organized annually by the International Association for
Cryptologic Research (IACR), and is the main annual conference with an explicit focus
on public-key cryptography. Given NIST’s efforts on standardization of post-quantum
cryptography, this year constructions and cryptanalysis in this area were specially
encouraged. These proceedings are comprised of two volumes and include the 52
papers that were selected by the Program Committee (PC), as well as a one-page
abstract corresponding to one of the two invited talks, which reflect this year’s focus.

The 52 accepted papers were selected out of a total of 156 received submissions.
Submissions were assigned to at least three reviewers, while submissions by PC
members received at least four reviews. Due to time constraints, the review period this
year did not include a rebuttal step, where the authors get a chance to preview their
papers’ preliminary reviews. The review process, however, was fairly interactive, as in
a large number of occasions reviewers posed questions to the authors. Six of the
accepted papers were first conditionally accepted and received an additional round of
reviewing; in addition, two of the papers were “soft merged” due to the similarity of
results and shared one presentation slot.

Given the high number and quality of the submissions, the reviewing and paper
selection process was a challenging task and I am deeply grateful to the members of the
PC for their high dedication and thorough work. In addition to the PC members, many
external reviewers joined the review process in their particular areas of expertise. We
were fortunate to have this knowledgeable and energetic team of experts, and I am
deeply grateful to all of them for their contributions. The submissions included two
papers with which I had a conflict of interest (they were authored by current and/or
close collaborators). For these two papers I abstained from the management of the
discussion and delegated this task to a PC member. Many thanks to Hoeteck Wee and
Vassilis Zikas, respectively, for their help in managing these two papers.

The paper submission, review and discussion processes were effectively and effi-
ciently made possible by the Web-Submission-and-Review software, written by Shai
Halevi, and hosted by the IACR. As always, many thanks to Shai for his assistance
with the system’s various features.

This year the program was further enriched by two invited talks by Léo Ducas
(CWI, the Netherlands; “Lattices and Factoring”) and Eike Kiltz (Ruhr-Universität
Bochum, Germany; “How Provably Secure are (EC)DSA Signatures?”). My special
thanks to Lèo and Eike for accepting the invitation and great presentations.

I am also grateful for their predisposition, availability, and efforts (unfortunately not
fully realized when we decided to go virtual) to Markulf Kohlweiss and Petros
Wallden, who served as General Co-chairs, and to Dimitris Karakostas (all from The



University of Edinburgh), who managed the conference’s website. I finally thank all the
authors who submitted papers to this conference, and all the conference attendees who
made this event a truly intellectually stimulating one through their active (albeit
remote) participation.

Next time, Edinburgh!

March 2021 Juan A. Garay
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Lattices and Factoring
(Abstract of Invited Talk)

Léo Ducas

Cryptology Group, Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands

Abstract. In this talk, I would like to re-popularize two dual ideas that relate
Lattices and Factoring. Such a connection may appear surprising at first, but is
only one logarithm away: after all, factoring is nothing more than a multi-
plicative knapsack problem, i.e. a subset product problem, where the weights are
given by the set of small enough primes.
The first of the two ideas, we owe to Schnorr (1991) and to Adleman (1995).

It consists in finding close or short vectors in a carefully crafted lattice, in the
hope that they will provide so-called factoring relations. While this idea does not
appear to lead to faster factoring algorithms, it remains fascinating and has in
fact lead to other major results. Indeed, the Schnorr-Adleman lattice plays a key
role in the proof by Ajtai (1998) of the NP-hardness of the shortest vector
problem.
The second idea, due to Chor and Rivest (1988) shows a reverse connection:

constructing the lattice this time using discrete logarithms, they instead solve the
bounded distance decoding (BDD) problem through easy factoring instances.
Revisiting their idea, Pierrot and I (2018) showed that this was a quite close to
an optimal construction for solving BDD in polynomial time. It was in fact the
best known such construction until some recent work by Peikert and Mook
(2020).
I wish to conclude with an invitation to explore the cryptographic potential of

other lattices than the random q-ary lattices—the lattices underlying the
Learning with Error problem (LWE) and the Short Integer Solution problem
(SIS). While SIS and LWE have shown to be very convenient for constructing
the most advanced schemes and protocols, I believe that more general lattices
have a yet untapped potential for cryptography.
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More Efficient Digital Signatures
with Tight Multi-user Security

Denis Diemert(B), Kai Gellert, Tibor Jager, and Lin Lyu

Bergische Universität Wuppertal, Wuppertal, Germany
{denis.diemert,kai.gellert,tibor.jager,lin.lyu}@uni-wuppertal.de

Abstract. We construct the currently most efficient signature schemes
with tight multi-user security against adaptive corruptions. It is the
first generic construction of such schemes, based on lossy identification
schemes (Abdalla et al.; JoC 2016), and the first to achieve strong exis-
tential unforgeability. It also has significantly more compact signatures
than the previously most efficient construction by Gjøsteen and Jager
(CRYPTO 2018). When instantiated based on the decisional Diffie–
Hellman assumption, a signature consists of only three exponents.

We propose a new variant of the generic construction of signatures
from sequential OR-proofs by Abe, Ohkubo, and Suzuki (ASIACRYPT
2002) and Fischlin, Harasser, and Janson (EUROCRYPT 2020). In com-
parison to Fischlin et al., who focus on constructing signatures in the
non-programmable random oracle model (NPROM), we aim to achieve
tight security against adaptive corruptions, maximize efficiency, and to
directly achieve strong existential unforgeability (also in the NPROM).
This yields a slightly different construction and we use slightly different
and additional properties of the lossy identification scheme.

Signatures with tight multi-user security against adaptive corrup-
tions are a commonly-used standard building block for tightly-secure
authenticated key exchange protocols. We also show how our construc-
tion improves the efficiency of all existing tightly-secure AKE protocols.

1 Introduction

The commonly accepted standard security goal for digital signatures is exis-
tential unforgeability under adaptive chosen message attacks (EUF-CMA). This
security model considers a single-user setting, in the sense that the adversary
has access to a single public key and its goal is to forge a signature with respect
to this key. A stronger security notion is EUF-CMA-security in the multi-user set-
ting with adaptive corruptions (MU-EUF-CMAcorr). In this security model, the
adversary has access to multiple public keys, and it is allowed to adaptively cor-
rupt certain users, and thus obtain their secret keys. The goal of the adversary
is to forge a signature with respect to the public key of an uncorrupted user.

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823.

c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 1–31, 2021.
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A straightforward argument, which essentially guesses the user for which the
adversary creates a forgery at the beginning of the security experiment, shows
that EUF-CMA security implies MU-EUF-CMAcorr security. However, this guess-
ing incurs a linear security loss in the number of users, and thus cannot achieve
tight MU-EUF-CMAcorr security.

The question how tightly MU-EUF-CMAcorr-secure signatures can be con-
structed, and how efficient these constructions can be, is interesting for different
reasons. Most importantly, MU-EUF-CMAcorr security seems to reflect the secu-
rity requirements of many applications that use digital signatures as building
blocks more directly than EUF-CMA security. This holds in particular for many
constructions of authenticated key exchange protocols (AKE) that use sign-
ing keys as long-term keys to authenticate protocol messages. Standard AKE
security models, such as the well-known Bellare–Rogaway [8] or the Canetti–
Krawczyk [10] model and their countless variants and refinements, allow for
adaptive corruption of users, which then translates to adaptive corruptions of
secret keys. Therefore Bader et al. [5] introduced the notion of MU-EUF-CMAcorr

as a building block to construct the first tightly-secure AKE protocol. This secu-
rity model was subsequently used to construct more efficient tightly-secure AKE
protocols [23,28,34], or to prove tight security of real-world protocols [14,15].
Note that tight security is particularly interesting for AKE, due to the perva-
sive and large-scale use of such protocols in practice (e.g., the TLS Handshake
is an AKE protocol). Furthermore, we consider the goal of understanding if,
how, and how efficiently strong security notions for digital signatures such as
MU-EUF-CMAcorr can be achieved with tight security proofs also as a general
and foundational research question in cryptography.

The Difficulty of Constructing Tightly MU-EUF-CMAcorr-Secure Signatures. The
already mentioned straightforward reduction showing that EUF-CMA security
implies MU-EUF-CMAcorr security guesses the user for which the adversary cre-
ates a forgery. Note that this user must not be corrupted by a successful adver-
sary. Hence, the reduction can define this user’s public key as the public key
obtained from the EUF-CMA experiment. The keys of all users are generated by
the reduction itself, such that it knows all corresponding secret keys. On the one
hand, this enables the reduction to respond to all corruption queries made by the
adversary, provided that it has guessed correctly. On the other hand, this makes
the reduction lossy, since it may fail if the reduction did not guess correctly.

A reduction proving MU-EUF-CMAcorr security tightly (under some complex-
ity assumption) has to avoid such a guessing argument. However, note that this
implies that the reduction must satisfy the following two properties simultane-
ously:

1. It has to know the secret keys of all users, in order to be able to respond to a
corruption query for any user, without the need to guess uncorrupted users.

2. At the same time, the reduction has to be able to extract a solution to the
underlying assumed-to-be-hard computational problem, while knowing the
secret key of the corresponding instance of the signature scheme.
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Since these two properties seem to contradict each other, one might think that
tight MU-EUF-CMAcorr security is impossible to achieve. Indeed, one can even
prove formally that MU-EUF-CMAcorr security is not tightly achievable [6] (under
non-interactive assumptions1), however, this impossibility result holds only for
signature schemes satisfying certain properties. While most schemes indeed sat-
isfy these properties, and thus seem not able to achieve tight MU-EUF-CMAcorr

security, there are some constructions that circumvent this impossibility result.

Known Constructions of Tightly MU-EUF-CMAcorr-Secure Signatures. To our
best knowledge, there are only a few schemes with tight MU-EUF-CMAcorr

security under non-interactive hardness assumptions (cf. Table 1). Bader et al.
(BHJKL) [5] describe a scheme with constant security loss (“fully-tight”), but it
uses the tree-based scheme from [27] as a building block and therefore has rather
large signatures. The scheme is proven secure in the standard model, using pair-
ings. Bader et al. also describe a second scheme with constant-size signatures,
which is also based on pairings and in the standard model, but which has a lin-
ear security loss in the security parameter (“almost-tight”) and has linear-sized
public keys. The currently most efficient tightly MU-EUF-CMAcorr-secure scheme
is due to Gjøsteen and Jager (GJ) [23]. It has constant-size signatures and keys,
as well as a constant security loss, in the random oracle model. The security
proof requires “programming” of the random oracle in the sense of [19].

Strong Existential Unforgeability. Currently there exists no signature scheme
with tight multi-user security under adaptive corruptions that achieves strong
existential unforgeability. Here “strong” unforgeability refers to a security model
where the adversary is considered to successfully break the security of a signature
scheme, even if it outputs a new signature for a message for which it has already
received a signature in the security experiment. Hence, strong unforgeability
essentially guarantees that signatures additionally are “non-malleable”, in the
sense that an adversary is not able to efficiently derive a new valid signature σ∗

for a message m when it is already given another valid signature σ for m, where
σ �= σ∗.

Strong unforgeability is particularly useful for the construction of authenti-
cated key exchange protocols where partnering is defined over “matching con-
versations”, as introduced by Bellare and Rogaway [8]. Intuitively, matching
conversations formalize “authentication” for AKE protocols, by requiring that
a communicating party must “accept” a protocol session (and thus derive a key
for use in a higher-layer application protocol) only if there exists a unique part-
ner oracle to which it has a matching conversation, that is, which has sent and
received exactly the same sequence of messages that the accepting oracle has
received and sent.

Consider for instance the “signed Diffie–Hellman” AKE protocol. Standard
existential unforgeability of the signature scheme is not sufficient to achieve
security in the sense of matching conversations, because this security notion does
1 One can always prove tight MU-EUF-CMAcorr security under the interactive assump-

tion that the scheme is MU-EUF-CMAcorr secure.
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Table 1. Comparison of existing tightly-secure signature schemes in the multi-user
setting with adaptive corruptions. “BHJKL 1” refers to the generic construction from
[5] instantiated with the scheme from [27], “BHJKL 2” is the new scheme constructed
in [5]. |σ| indicates the size of a signature and |pk | the size of public keys, where
|G| is the size of an element of the underlying group G, |q| is the size of the binary
representation of an integer in the discrete interval [0, q − 1], where q is order of G,
and λ is the security parameter. The column “Setting” indicates whether pairings/the
Programmable Random Oracle (PRO) model/the Non-Programmable Random Oracle
(NPRO) model is used. The column “sEUF” refers to whether the scheme is proven
strongly existentially unforgeable.

Scheme |σ| |pk | Loss Assumption Setting sEUF

BHJKL 1 [5,27] O(λ)|G| O(1)|G| O(1) DLIN Pairings –

BHJKL 2 [5] 3|G| O(λ)|G| O(λ) SXDH Pairings –

GJ [23] 2|G| + 2λ + 4 |q| 2|G| O(1) DDH PRO –

Ours 3 |q| 4|G| O(1) Lossy ID NPRO �

not guarantee that signatures are non-malleable. Hence, an adversary might, for
instance, be able to efficiently re-randomize probabilistic signatures, and thus
always be able to break matching conversations efficiently. This is a commonly
overlooked mistake in many security proofs for AKE protocols [33]. Therefore
Bader et al. [5] need to construct a more complex protocol that additionally
requires strongly-unforgeable one-time signatures to achieve security in the sense
of matching conversations. Gjøsteen and Jager [23] had to rely on the weaker
partnering notion defined by Li and Schäge [33] in order to deal with potential
malleability of signatures.

Hence, strongly-unforgeable digital signatures are particularly desirable in
the context of AKE protocols, in order to achieve the strong notion of “matching
conversation” security from [8].

Our Contributions. We construct strongly MU-EUF-CMAcorr-secure digital sig-
nature schemes, based on lossy identification schemes as defined by Abdalla
et al. [2,3] and sequential OR-proofs as considered by Abe et al. [4] and Fischlin
et al. [18]. This construction provides the following properties:

– It is the first generic construction of MU-EUF-CMAcorr-secure digital signa-
tures, which can be instantiated from any concrete hardness assumption that
gives rise to suitable lossy identification schemes. This includes instantia-
tions from the decisional Diffie–Hellman (DDH) assumption, and the φ-Hiding
assumption.

– It is the first construction of MU-EUF-CMAcorr-secure digital signatures that
achieves strong existential unforgeability. Here we use “uniqueness” of the
lossy identification scheme in the sense of [2,3].

– When instantiated under the DDH assumption, a signature consists of only
three elements of Zq, where q is the order of the underlying algebraic group.
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For comparison, Schnorr signatures [36] and ECDSA [16], for instance, have
signatures consisting of two elements of Zq, but do not enjoy tight secu-
rity proofs (not even in the single-user setting) [17,20–22,35,37]. In case of
Schnorr signatures [36], security can be based on the weaker discrete log-
arithm assumption, though. Katz-Wang signatures [29] also consist of two
Zq-elements and have tight security in the single-user setting, but not in the
multi-user setting with adaptive corruptions.

– Similar to the work by Fischlin et al. [18], the proof does not rely on pro-
gramming a random oracle, but holds in the non-programmable random oracle
model [19]. This yields the first efficient and tightly multi-user secure signa-
ture scheme that does not require a programmable random oracle.

Our construction is almost identical to the construction based on sequential
OR-proofs (as opposed to “parallel” OR-proofs in the sense of [13]), which was
originally described by Abe et al. [4]. Fischlin, Harasser, and Janson [18] formally
analyzed this construction and showed that it implies EUF-CMA-secure digital
signatures based on lossy identification schemes. Their main focus is to achieve
security in the non-programmable random oracle model [19], since the classi-
cal construction of signatures from lossy identification schemes [2,3] requires a
programmable random oracle.

We observe that this approach also gives rise to tightly-secure signatures in a
multi-user model with adaptive corruptions, by slightly modifying the construc-
tion. Due to the fact that the reduction is always in possession of a correctly dis-
tributed secret key for all users, it can both (i) respond to singing-queries and (ii)
respond to corruption-queries without the need to guess in the MU-EUF-CMAcorr

security experiment.
Also, our security proof is based on slightly different and additional properties

of the lossy identification scheme. We use that a sequential OR-proof is perfectly
witness indistinguishable when both instances of the lossy identification scheme
are in non-lossy mode. This enables us to argue that the adversary receives no
information about the random bit b chosen by the key generation algorithm of
one user, such that the probability that the adversary creates a forgery with
respect to sk1−b is 1/2. This enables us then to construct a distinguisher for the
lossy identification scheme with only constant security loss.

Another difference to the proof by Fischlin et al. [18] is that we directly
achieve strong unforgeability by leveraging uniqueness of lossy identification
schemes, as defined by Abdalla et al. [2,3]. Also, their construction does not yet
leverage “commitment-recoverability” of a lossy identification scheme, such that
their DDH-based instantiation consists of four elements of Zq.

In particular, Table 2 shows that our scheme does not only improve the over-
all performance of all the presented protocols, but it also enables the proto-
cols by GJ and LLGW to catch up to the communication complexity of JKRS.
This means that when instantiated with our signature scheme, the constructions
by GJ, LLGW, and JKRS achieve the same communication complexity. This
observation suggests that especially constructions that exchange two or more
signatures will benefit from an instantiation with our new signature scheme.
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Table 2. Comparison of existing tightly-secure AKE protocols when instantiated with
parameters for “128-bit security” (i.e., λ = 128). The columns Comm. count the values
exchanged during execution of the protocol with an abstract signature scheme, when
instantiated with the GJ signature scheme [23], and when instantiated with our DDH-
based signature scheme respectively. G is the number of group elements, H the number
of hashes or MACs, Sig. the number of signatures, Zq the number of exponents, and
“other” the amount of additional data in bits (nonces are 2λ-bit strings). The columns
Bytes contain the total amount of data in bytes when instantiating G with the NIST
P256 curve.

Protocol Comm.
(G, H, Sig., other)

With GJ Sigs. With our scheme

Comm.
(G, H,Zq, other)

Bytes Comm.
(G, H,Zq, other)

Bytes

GJ [23] (2, 1, 2, 0) (6, 1, 8, 4λ) 544 (2, 1, 6, 0) 288

TLS 1.3 [14,15] (2, 2, 2, 512) (6, 2, 8, 4λ + 512) 640 (2, 2, 6, 512) 384

SIGMA-I [14,32] (2, 2, 2, 512) (6, 2, 8, 4λ + 512) 640 (2, 2, 6, 512) 384

LLGW [34] (3, 0, 2, 0) (7, 0, 8, 4λ) 544 (3, 0, 6, 0) 288

JKRS [28] (5, 1, 1, 0) (7, 1, 4, 2λ) 416 (5, 1, 3, 0) 288

Applications to Tightly-Secure AKE Protocols. Since tightly MU-EUF-CMAcorr-
secure signatures are commonly used to construct tightly-secure AKE protocols,
let us consider the impact of our scheme on the performance of known protocols.
Since the performance gain obtained by the signature scheme has already been
discussed, we focus here only on the communication complexity of the considered
protocols, that is, the number of bits exchanged when running the protocol.
Table 2 shows the impact of our signature schemes on known AKE protocols
with tight security proofs. We compare instantiations with the signature scheme
by Gjøsteen and Jager [23] to instantiations with our signature scheme. Note
that the Gjøsteen–Jager scheme is also based on the DDH assumption, and so
are the considered protocols (except for TLS 1.3 and Sigma, which are based on
the strong Diffie–Hellman assumption).

We omit the protocol by Bader et al. [5], since it is more of a standard-model
feasibility result, which does not aim for maximal efficiency. Their protocol has
a communication complexity of O(λ) group elements when instantiated with
constant security loss, and 14 group elements plus 4 exponents when instantiated
with their “almost-tight” signature scheme with a security loss of O(λ). Cohn-
Gordon et al. [12] construct a protocol which entirely avoids signatures and aims
to achieve tightness, however, they achieve only a linear security loss and also
show that this is optimal for the class of protocols they consider.

Outline. The remainder of this work is organized as follows. In the next section,
we introduce standard definitions for signatures and their security. In Sect. 3, we
recall lossy identification schemes and their security properties. The generic con-
struction of our signature scheme from any lossy identification scheme alongside
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a security proof is presented in Sect. 4. We conclude our work with a detailed
discussion on possible instantiations of our scheme in Sect. 5.

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by a ‖ b. For
an integer n ∈ N, we denote the set of integers ranging from 1 to n by [n] :=
{1, . . . , n}. For a set X = {x1, x2, . . . }, we use (vi)i∈X as a shorthand for the
tuple (vx1 , vx2 , . . . ). We denote the operation of assigning a value y to a variable
x by x := y. If S is a finite set, we denote by x $←− S the operation of sampling
a value uniformly at random from set S and assigning it to variable x.

2.1 Digital Signatures

We recall the standard definition of a digital signature scheme by Goldwasser,
Micali, and Rivest [24] and its standard security notion.

Definition 1. A digital signature scheme is a triple of algorithms Sig = (Gen,
Sign,Vrfy) such that

1. Gen is the randomized key generation algorithm generating a public (verifica-
tion) key pk and a secret (signing) key sk.

2. Sign(sk ,m) is the randomized signing algorithm outputting a signature σ on
input of a message m ∈ M and a signing key sk.

3. Vrfy(pk ,m, σ) is the deterministic verification algorithm outputting either 0
or 1.

We say that a digital signature scheme Sig is ρ-correct if for (pk , sk) $←− Gen,
and any m ∈ M , it holds that

Pr[Vrfy (pk ,m,Sign(sk ,m)) = 1] ≥ ρ.

And we say Sig is perfectly correct if it is 1-correct.

Definition 2. Let Sig = (Gen,Sign,Vrfy) be a signature scheme and let N ∈ N

be the number of users. Consider the following experiment ExpMU-sEUF-CMAcorr

Sig,N (A)
played between a challenger and an adversary A:

1. The challenger generates a key pair (pk (i), sk (i)) $←− Gen for each user i ∈ [N ],
initializes the set of corrupted users Qcorr := ∅, and N sets of chosen-message
queries Q(1), . . . ,Q(N) := ∅ issued by the adversary. Subsequently, it hands
(pk (i))i∈[N ] to A as input.

2. The adversary may adaptively issue signature queries (i,m) ∈ [N ] × M
to the challenger. The challenger replies to each query with a signature
σ $←− Sign(sk (i),m) and adds (m,σ) to Q(i). Moreover, the adversary may
adaptively issue corrupt queries Corrupt(i) for some i ∈ [N ]. In this case, the
challenger adds i to Qcorr and forwards sk (i) to the adversary. We call each
user i ∈ Qcorr corrupted.
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3. Finally, the adversary outputs a tuple (i∗,m∗, σ∗). The challenger checks
whether Vrfy(pk(i∗),m∗, σ∗) = 1, i∗ �∈ Qcorr and (m∗, σ∗) �∈ Q(i∗). If all of
these conditions hold, the experiment outputs 1 and 0 otherwise.

We denote the advantage of an adversary A in breaking the strong existential
unforgeability under an adaptive chosen-message attack in the multi-user setting
with adaptive corruptions (MU-sEUF-CMAcorr) for Sig by

AdvMU-sEUF-CMAcorr

Sig,N (A) := Pr
[
ExpMU-sEUF-CMAcorr

Sig,N (A) = 1
]

where ExpMU-sEUF-CMAcorr

Sig,N (A) is as defined as above.

3 Lossy Identification Schemes

We adapt the definitions of a lossy identification scheme [2,3,30].

Definition 3. A lossy identification scheme is a five-tuple LID = (LID.Gen,
LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) of probabilistic polynomial-time algo-
rithms with the following properties.

– LID.Gen is the normal key generation algorithm. It outputs a public verifica-
tion key pk and a secret key sk.

– LID.LossyGen is a lossy key generation algorithm that takes the security
parameter and outputs a lossy verification key pk.

– LID.Prove is the prover algorithm that is split into two algorithms:
• (cmt, st) $←− LID.Prove1(sk) is a probabilistic algorithm that takes as input

the secret key and returns a commitment cmt and a state st.
• resp ← LID.Prove2(sk , cmt, ch, st) is a deterministic algorithm2 that takes

as input a secret key sk, a commitment cmt, a challenge ch, a state st,
and returns a response resp.

– LID.Vrfy(pk , cmt, ch, resp) is a deterministic verification algorithm that takes
a public key, and a conversation transcript (i.e., a commitment, a challenge,
and a response) as input and outputs a bit, where 1 indicates that the proof
is “accepted” and 0 that it is “rejected”.

– cmt ← LID.Sim(pk, ch, resp) is a deterministic algorithm that takes a public
key pk, a challenge ch, and a response resp as inputs and outputs a commit-
ment cmt.

We assume that a public key pk implicitly defines two sets, the set of chal-
lenges CSet and the set of responses RSet.

2 All known instantiations of lossy identification schemes have a deterministic
LID.Prove2 algorithm. However, if a new instantiation requires randomness, then it
can be “forwarded” from LID.Prove1 in the state variable st. Therefore the require-
ment that LID.Prove2 is deterministic is without loss of generality, and only made
to simplify our security analysis.
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Definition 4. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)
be defined as above. We call LID lossy when the following properties hold:

– Completeness of normal keys. We call LID ρ-complete, if

Pr

⎡
⎢⎢⎣LID.Vrfy(pk , cmt, ch, resp) = 1 :

(pk , sk) $←− LID.Gen
(cmt, st) $←− LID.Prove1(sk)
ch $←− CSet
resp $←− LID.Prove2(sk , cmt, ch, st)

⎤
⎥⎥⎦ ≥ ρ.

We call LID perfectly-complete, if it is 1-complete.
– Simulatability of transcripts. We call LID εs-simulatable if for (pk , sk) $←−

LID.Gen, (ch, resp) $←− CSet× RSet, the distribution of the transcript (cmt, ch,
resp) where cmt ← LID.Sim(pk, ch, resp) is statistically indistinguishable from
honestly generated transcript (with a statistical distance up to εs) and we
have that LID.Vrfy(pk , cmt, ch, resp) = 1. If εs = 0, we call LID perfectly
simulatable.
Note that this simulatability property is different from the original definition
in [2] where the simulator simulates the whole transcript.

– Indistinguishability of keys. This definition is a generalization of the standard
key indistinguishability definition of a lossy identification scheme extended to
N instances. For any integer N > 0, we define the advantage of an adversary
A breaking the N -key-indistinguishability of LID as AdvMU-IND-KEY

LID,N (A) :=
∣∣∣Pr

[
A(pk (1), · · · , pk (N)) = 1

]
− Pr

[
A(pk ′(1), · · · , pk ′(N)) = 1

]∣∣∣ ,

where (pk (i), sk (i)) $←− LID.Gen and pk ′(i) $←− LID.LossyGen for all i ∈ [N ].
– Lossiness. Consider the following security experiment ExpIMPERSONATE

LID (A)
described below, played between a challenger and an adversary A:
1. The challenger generates a lossy verification key pk $←− LID.LossyGen and

sends it to the adversary A.
2. The adversary A may now compute a commitment cmt and send it to the

challenger. The challenger responds with a random challenge ch $←− CSet.
3. Eventually, the adversary A outputs a response resp. The challenger out-

puts LID.Vrfy(pk , cmt, ch, resp).
We call LID ε�-lossy if no computationally unrestricted adversary A wins the
above security game with probability

Pr[ExpIMPERSONATE
LID (A) = 1] ≥ ε�.

Below are two more properties for lossy identification schemes defined in
[2,3].

Definition 5. Let pk $←− LID.LossyGen be a lossy public key and let
(cmt, ch, resp) be any transcript which makes LID.Vrfy(pk , cmt, ch, resp) = 1. We
say LID is εu-unique with respect to lossy keys if the probability that there exists
resp′ �= resp such that LID.Vrfy(pk , cmt, ch, resp′) = 1 is at most εu, and perfectly
unique with respect to lossy keys if εu = 0.
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Definition 6. Let (pk , sk) $←− LID.Gen be any honestly generated key pair and
C(sk) := {LID.Prove1(sk)} be the set of commitments associated to sk. We define
the min-entropy with respect to LID as

α := − log2

(
max

sk ,cmt∈C(sk)
Pr [LID.Prove1(sk) = cmt]

)

Below is another property for lossy identification schemes defined in [30].

Definition 7. A lossy identification scheme LID is commitment-recoverable if
the algorithm LID.Vrfy(pk , cmt, ch, resp) first recomputes a commitment cmt′ =
LID.Sim(pk , ch, resp) and then outputs 1 if and only if cmt′ = cmt.

Below, we define a new property for lossy identification schemes which
requires that the LID.Sim algorithm is injective with respect to the input chal-
lenge.

Definition 8. A lossy identification scheme LID has an injective simulator if
for any (pk , sk) $←− LID.Gen, any response resp ∈ RSet, any ch �= ch′, it holds
that LID.Sim(pk, ch, resp) �= LID.Sim(pk, ch′, resp).

In Sect. 5 we give a detailed discussion which of the existing lossy identifica-
tion schemes [1–3,26,29] satisfy which of the above properties.

4 Construction and Security of Our Signature Scheme

Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be a lossy iden-
tification scheme and let H : {0, 1}∗ → CSet be a hash function mapping finite-
length bitstrings to the set of challenges CSet. Consider the following digital
signature scheme Sig = (Gen,Sign,Vrfy).

Key generation. The key generation algorithm Gen samples a bit b $←− {0, 1}
and two independent key pairs (pk0, sk0) $←− LID.Gen and (pk1, sk1) $←−
LID.Gen. Then it sets

pk := (pk0, pk1) and sk := (b, sk b)

Note that the secret key consists only of sk b and the other key sk1−b is
discarded.

Signing. The signing algorithm Sign takes as input sk = (b, sk b) and a message
m ∈ {0, 1}∗. Then it proceeds as follows.
1. It first computes (cmtb, stb) $←− LID.Prove1(sk b) and sets

ch1−b := H(m, cmtb)

Note that the ch1−b is derived from cmtb and m.
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2. It generates the simulated transcript by choosing resp1−b
$←− RSet and

cmt1−b := LID.Sim(pk1−b, ch1−b, resp1−b)

using the simulator.
3. Finally, it computes

chb := H(m, cmt1−b) and respb := LID.Prove2(sk b, chb, cmtb, stb)

and outputs the signature σ := (ch0, resp0, resp1). Note that ch1 is not
included in the signature.

Verification. The verification algorithm Vrfy takes as input a public key pk =
(pk0, pk1), a message m ∈ {0, 1}∗, and a signature σ = (ch0, resp0, resp1). It
first recovers

cmt0 := LID.Sim(pk0, ch0, resp0)

From cmt0 it can then compute

ch1 := H(m, cmt0)

and then recover

cmt1 := LID.Sim(pk1, ch1, resp1)

Finally, the reduction outputs 1 if and only if ch0 = H(m, cmt1).

One can easily verify that the above construction Sig is perfectly correct if LID
is commitment-recoverable and perfectly complete. Also, note that, even though
algorithm LID.Vrfy is not used in algorithm Vrfy, we have that Vrfy(pk ,m, σ) = 1
implies that LID.Vrfy(pk j , cmtj , chj , respj) = 1 for both j ∈ {0, 1}. This is
directly implied by our definition of the lossy identification scheme’s simulata-
bility of transcripts.

Theorem 9. If H is modeled as a random oracle and LID is commitment-
recoverable, perfectly simulatable, ε�-lossy, εu-unique, has α-bit min-entropy and
has an injective simulator, then for each adversary A with running time tA
breaking the MU-sEUF-CMAcorr security of the above signature scheme Sig, we
can construct an adversary B with running time tB ≈ tA such that

AdvMU-sEUF-CMAcorr

Sig,N (A) ≤ 4 · AdvMU-IND-KEY
LID,N (B) +

2qSqH
2α

+
2

|CSet| + 2εu + 2Nq2Hε�,

where qS is the number of signing queries and qH is the number of hash queries.

Proof. We prove Theorem 9 through a sequence of games. See Table 3 for an
intuitive overview of our proof. In the sequel, let Xi denote the event that the
experiment outputs 1 in Game i.

Game 0. This is the original security experiment ExpMU-sEUF-CMAcorr

Sig,N (A). In this
experiment, adversary A is provided with oracles Sign and Corrupt from the secu-
rity experiment, as well as a hash oracle H since we are working in the random
oracle model. In the following, it will be useful to specify the implementation of
this game explicitly:
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Table 3. Overview of the sequence of games used in the proof of Theorem 9.

Game # Changes Remark

0 – The MU-sEUF-CMAcorr game

1 We rule out repeating
commitments cmt

This ensures that every signing
query makes fresh hash queries

2 We ensure the two hash queries in
the final verification have been
made before.

We will need this in Game 4

3 We exclude the case where
(cmt∗0, cmt∗1) is re-used from a
signing query

The adversary does not use
“implicit” knowledge of the secret
bit b(i

∗)

4 The adversary can only win if hash
query “(1 − b(i

∗))” is made first
b(i

∗) is perfectly hidden, prepa-
ration to achieve statistically small
winning probability

5 We make all “(1 − b(i))” public
keys lossy

This game has statistically small
winning probability for any
adversary

– The game initializes the chosen-message sets Q(1), . . . ,Q(N) := ∅, the set
of corrupted users Qcorr := ∅ and an implementation of the random oracle
L := ∅. It then runs the signature key generation algorithm Gen N times
to get the key pair (pk(i), sk(i)) for each i ∈ [N ]. More precisely, the game
samples a bit b(i) $←− {0, 1} and two independent key pairs (pk (i)

0 , sk (i)
0 ) $←−

LID.Gen and (pk (i)
1 , sk (i)

1 ) $←− LID.Gen. Then it sets pk(i) := (pk (i)
0 , pk (i)

1 )
and stores (pk(i), b(i), sk

(i)
0 , sk

(i)
1 ). Finally, it runs adversary A with input

(pk(i))i∈[N ]. In the following proof, to simplify the notation, we will use
pk (i)

b , pk (i)
1−b, sk

(i)
b , sk (i)

1−b to denote pk (i)

b(i)
, pk (i)

1−b(i)
, sk (i)

b(i)
, sk (i)

1−b(i)
respectively.

– H(x). When the adversary or the simulation of the experiment make a hash
oracle query for some x ∈ {0, 1}∗, the game checks whether (x, y) ∈ L for
some y ∈ CSet. If it does, the game returns y. Otherwise the game selects
y $←− CSet, logs (x, y) into set L and returns y.

– Sign(i,m). When the adversary queries the signing oracle with user i and
message m, the game first sets b := b(i), then computes

(cmtb, stb) $←− LID.Prove1(sk
(i)
b )

and sets ch1−b := H(m, cmtb) by making a hash query. Then, the game
chooses resp1−b

$←− RSet and uses the simulator to compute cmt1−b :=
LID.Sim(pk (i)

1−b, ch1−b, resp1−b). Finally, the game queries hash oracle to get
chb := H(m, cmt1−b) and then uses LID.Prove2 to compute

respb := LID.Prove2(sk
(i)
b , chb, cmtb, stb).
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The game outputs signature σ := (ch0, resp0, resp1) to A and logs the pair
(m,σ) in set Q(i).

– Corrupt(i). When the adversary A queries the Corrupt oracle for the secret
key of user i, the game returns sk(i) := (b(i), sk (i)

b ) to the adversary and logs
i in the set Qcorr.

– Finally, when adversary A outputs a forgery attempt (i∗,m∗, σ∗), the game
outputs 1 if and only if Vrfy(pk(i∗),m∗, σ∗) = 1, i∗ �∈ Qcorr, and (m∗, σ∗) /∈
Q(i∗) hold. More precisely, for σ∗ = (ch∗

0, resp
∗
0, resp

∗
1), the game recovers

cmt∗0 := LID.Sim(pk (i∗)
0 , ch∗

0, resp
∗
0) and queries the hash oracle to get ch∗

1 :=
H(m∗, cmt∗0). Then it recovers cmt∗1 := LID.Sim(pk (i∗)

1 , ch∗
1, resp

∗
1) and queries

the hash oracle to get ch∗ := H(m∗, cmt∗1). Finally, the game outputs 1 if and
only if ch∗

0 = ch∗, i∗ �∈ Qcorr and (m∗, σ∗) /∈ Q(i∗).

It is clear that Pr[X0] = AdvMU-sEUF-CMAcorr

Sig,N (A).

Game 1. Game 1 is the same with Game 0 except with one change. Denote
with cmtColl the event that there exists a signing query Sign(i,m) such that at
least one of the two hash queries H(m, cmtb(i)) and H(m, cmt1−b(i)) made in this
signing query has been made before.

Game 1 outputs 0 when cmtColl happens. In other words, X1 happens if and
only if X0 ∧ ¬cmtColl happens. We can prove the following lemma.

Lemma 10.
Pr[X1] ≥ Pr[X0] − 2qSqH

2α

where qS is the number of signing queries made by A and qH is the number of
hash queries made in Game 0.

Proof. To prove Lemma 10, we divide the event cmtColl into two subevents.

– There exists a signing query Sign(i,m) such that H(m, cmtb(i)) has been made
before. If this happens, then cmtb(i) is the output of LID.Prove1(sk (i)) for
any signing query. Since LID has α-bit min-entropy (cf. Definition 6), the
probability that this happens is at most qSqH/2α by a union bound.

– There exists a signing query Sign(i,m) such that H(m, cmt1−b(i)) has been
made before. Note that cmt1−b(i) is the output of

LID.Sim(pk
(i)
1−b, ch1−b(i) , resp1−b(i))

where ch1−b(i) = H(m, cmtb(i)). Since LID.Sim is deterministic, we know that
cmt1−b(i) is determined by pk

(i)
1−b,m, cmtb(i) and resp1−b(i) . Furthermore, since

LID.Sim is injective with respect to challenges (cf. Definition 8), we know that
the entropy of cmt1−b(i) in any fixed signing query is at least the entropy of
cmtb(i) in that query. Thus, we obtain that the probability that this subevent
happens is at most qSqH/2α.

Thus, we have that Pr[cmtColl] ≤ 2qSqH/2α and Lemma 10 follows. �
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Remark 11. Note that, from Game 1 on, the hash queries H(m, cmtb(i)) and
H(m, cmt1−b(i)) are not made before any signing query Sign(i,m) if the game
finally outputs 1. This implies that each signing query uses independent and
uniformly random ch1−b(i) and chb(i) , and they are not known to the adversary
at that time.

Game 2. Game 2 differs from Game 1 only in the way the game checks the
winning condition. More precisely, Game 1 issues two hash queries H(m∗, cmt∗0)
and H(m∗, cmt∗1) to check the validity of a forgery attempt (i∗,m∗, σ∗). In the
following, we call the former H(m∗, cmt∗0) a “0-query” and the latter H(m∗, cmt∗1)
a “1-query”. Let Both denote the event that both a 0-query and a 1-query have
been made by the signing oracle or by the adversary before submitting the
forgery attempt (i∗,m∗, σ∗).

Game 2 outputs 0 if event Both does not happen. In other words, X2 happens
if and only if X1 ∧ Both happens. We can prove the following lemma.

Lemma 12. Pr[X2] ≥ Pr[X1] − 2/|CSet|.
Proof. We know that Pr[X1] = Pr[X1 ∧ ¬Both] + Pr[X2]. We will prove that
Pr[X1 ∧ ¬Both] ≤ 2/|CSet| and the lemma follows. Note that

Pr[X1∧¬Both] ≤ Pr[X1∧1-query is never made]+Pr[X1∧0-query is never made]

– X1 ∧ 1-query is never made: Event X1 implies that Vrfy(pk(i∗),m∗, σ∗) = 1.
This further implies that the value ch∗

0 (chosen by the adversary) equals the
1-query hash result ch∗ = H(m∗, cmt∗1), which is a random element in CSet.
Since the 1-query is never made at this time, the adversary has no knowledge
about this value, which yields

Pr[X1 ∧ 1-query is never made] ≤ 1
|CSet| .

– X1 ∧ 0-query is never made: The 0-query value ch∗
1 = H(m∗, cmt∗0) is used

to recover cmt∗1 = LID.Sim(pk (i∗)
1 , ch∗

1, resp
∗
1). Since the 0-query is not made

at that time, the adversary has no knowledge about ch∗
1 except that it is a

random element in CSet. Together with the fact that algorithm LID.Sim is
injective (cf. Definition 8), the adversary only knows that cmt∗1 is uniformly
distributed over a set of size |CSet|. To make the verification pass, the adver-
sary would need to select ch∗

0 which equals to H(m∗, cmt∗1). However, there
are |CSet| possible values for cmt∗1 so that this can happen with probability
at most 1/|CSet|. Thus,

Pr[X1 ∧ 0-query is never made] ≤ 1
|CSet| .

Putting both together, we have Pr[X1 ∧ ¬Both] ≤ 2/|CSet|. �
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Game 3. Game 3 is exactly the same as Game 2, except for one change. We
denote by ImplicitUsage the event that the first 0-query and the first 1-query are
made in a signing query Sign(i∗,m∗), and the pair (cmt∗0, cmt∗1) equals to the
pair (cmt0, cmt1), which is generated in this signing query. Game 3 outputs 0 if
event ImplicitUsage happens.

Hence, X3 happens if and only if X2 ∧¬ImplicitUsage happens. We prove the
following lemma.

Lemma 13. We can construct an adversary B with running time tB ≈ tA such
that

Pr[X3] ≥ Pr[X2] − 2 · AdvMU-IND-KEY
LID,N (B) − 2εu.

Remark 14. Note that this proof can be potentially simplified if we define the
uniqueness property of LID with respect to normal public keys. However, this
would introduce a non-standard LID property compared to the standard LID
definition by Abdalla et al. [2,3].

Proof. We know that Pr[X2] = Pr[X2 ∧ ImplicitUsage] + Pr[X3]. We will prove
that Pr[X2∧ImplicitUsage] ≤ 2AdvMU-IND-KEY

LID,N (B)+2εu such that the above lemma
follows.

Note that ImplicitUsage implies that

chj = H(m∗, cmt1−j) = H(m∗, cmt∗1−j) = ch∗
j

for j ∈ {0, 1}. Together with the fact that (m∗, σ∗) /∈ Q(i∗), we must have that
(resp∗

0, resp
∗
1) �= (resp0, resp1). Then two subcases are possible.

– X2 ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) = resp1−b(i∗)) ∧ (resp∗

b(i∗) �= respb(i∗)). This
subcase intuitively implies that the adversary successfully guesses the bit b(i

∗),
since the adversary has to choose resp∗

0, resp
∗
1 such that resp∗

1−b(i∗) is equal and
resp∗

b(i∗) is unequal. However, in Game 2, the secret bit b(i
∗) is perfectly hidden

to the adversary due to the following facts.
• The public key pk (i∗) is independent of b(i

∗).
• User i∗ is not corrupted (or otherwise the forgery is invalid, anyway), so

the bit b(i
∗) is not leaked through corruptions.

• The signature σ returned by oracle Sign(i∗,m) is independent of bit b(i
∗).

The reason is that X2 implies that cmtColl does not happen. As shown
in Remark 11, each Sign(i∗,m) query will use uniformly random ch1−b(i∗)

and chb(i∗) . Thus, the signature essentially contains the two transcripts

(cmtb(i∗) , chb(i∗) , respb(i∗)) and (cmt1−b(i∗) , ch1−b(i∗) , resp1−b(i∗))

Note that the b(i
∗) transcript is an “honestly generated” transcript and

the (1−b(i
∗)) transcript is a “simulated” transcript with uniformly random

ch1−b(i∗) and resp1−b(i∗) . Due to the perfect simulatability of LID, we know
that these two transcripts are perfectly identically distributed. Thus, A
gains no information about b(i

∗) through signatures.
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In summary, we conclude that this subcase happens with probability

1
2

Pr[X2 ∧ ImplicitUsage].

– X2 ∧ ImplicitUsage∧ (resp∗
1−b(i∗) �= resp1−b(i∗)). For this subcase, we can prove

the following claim.

Claim. We can construct an adversary B with running time tB ≈ tA such that

Pr[X2 ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) �= resp1−b(i∗))] ≤ AdvMU-IND-KEY

LID,N (B) + εu.

Proof. To prove this claim, we define a new intermediate game Game 2′, which
is exactly the same as Game 2, except that we choose a lossy public key pk (i)

1−b
$←−

LID.LossyGen for every user i ∈ [N ] in Game 2′. We can build an adversary B
with running time tB ≈ tA such that

∣∣∣∣
Pr[X2 ∧ ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗))]
−Pr[X2′ ∧ ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗))]

∣∣∣∣ ≤ AdvMU-IND-KEY
LID,N (B)

(1)

The construction of B using A is straightforward. It receives (pk ′
i)i∈[N ], which

is either generated by algorithm LID.Gen or by LID.LossyGen. Then, it simulates
Game 2 for the adversary A and sets pk (i)

1−b := pk ′
i for all i ∈ [N ]. Note that,

in Game 2, the secret key sk (i)
1−b is not used for any user i. So B is able to

simulate the game perfectly. Finally, B outputs 1 if and only if A wins and
ImplicitUsage ∧ (resp∗

1−b(i∗) �= resp1−b(i∗)) happens. It is clear that B perfectly
simulates Game 2 if it receives normal public keys and B perfectly simulates
Game 2′ if it receives lossy public keys. Thus, Eq. (1) follows.

Now in Game 2′, the key pk (i∗)
1−b is lossy. Since X2′ implies that σ∗ is a valid

signature with respect to m∗, we know that

LID.Vrfy(pk (i∗)
1−b, cmt∗1−b(i∗) , ch

∗
1−b(i∗) , resp

∗
1−b(i∗)) = 1.

Since the signing oracle Sign(i∗,m∗) also outputs valid signature σ for m∗, we
have that

LID.Vrfy(pk (i∗)
1−b, cmt1−b(i∗) , ch1−b(i∗) , resp1−b(i∗)) = 1.

In this subcase, we have (cmt1−b(i∗) , ch1−b(i∗)) = (cmt∗
1−b(i∗) , ch

∗
1−b(i∗)) and

resp1−b(i∗) �= resp∗
1−b(i∗) . Due to the uniqueness property of LID with respect

to lossy public keys, we must have

Pr[X2′ ∧ ImplicitUsage ∧ (resp∗
1−b(i∗) �= resp1−b(i∗))] ≤ εu.

Applying Eq. (1) to the obtained bounds, the claim follows. �
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Putting both subcases together, we obtain that

Pr[X2 ∧ ImplicitUsage] ≤ 1
2

Pr[X2 ∧ ImplicitUsage] + AdvMU-IND-KEY
LID,N (B) + εu,

which implies that Pr[X2 ∧ ImplicitUsage] ≤ 2AdvMU-IND-KEY
LID,N (B) + 2εu. �

Game 4. Game 4 further modifies the winning condition. We denote Before as
the event that Both happens and the first (1 − b(i

∗))-query is made before the
first b(i

∗)-query is made. Game 4 outputs 0 if event Before does not happen.
Hence, X4 happens if and only if X3 ∧ Before happens. We can prove the

following lemma.

Lemma 15. Pr[X4] ≥ 1/2 · Pr[X3].

Proof. Since we know that event Both happens, we can divide X3 into three
subcases.

– Both the first 0-query and the first 1-query are made in one and the same
signing query Sign(i∗,m∗).
In this subcase, we have that two hash queries {H(m∗, cmt∗0),H(m∗, cmt∗1)}
made by the final verification algorithm have the same input as the two
hash queries {H(m∗, cmt0),H(m∗, cmt1)} made by the signing oracle. We
know that X3 implies that ImplicitUsage does not happen, so we must have
that (cmt∗0, cmt∗1) = (cmt1, cmt0). Since the signing algorithm always makes
a H(m∗, cmtb(i∗)) query before H(m, cmt1−b(i∗)), we have that event Before
always happens in this subcase.

– Both the first 0-query and the first 1-query are made in one signing query
Sign(i′,m∗) for some i′ �= i∗.
In this subcase, the b(i

′)-query is made first and Before happens if and only if
b(i

′) = 1 − b(i
∗).

– The first 0-query and the first 1-query are not made in exactly one signing
query. In other words, they lie in different signing queries or at least one of
them is made by the adversary.
In this subcase, the adversary A actually has full control which one is queried
first. Suppose the β-query is made first for some implicit bit β ∈ {0, 1} chosen
by the adversary. Then, event Before happens if and only if β = b(i

∗).

Similar to the proof of Lemma 13, we can show that the bit b(i
∗) is perfectly

hidden to the adversary. So if the second or the third subcase happens, the
probability that Before happens is 1/2. Together with the fact that Before always
happen in the first subcase, Lemma 15 follows. �

Game 5. In this game, we change the generation of the key pk (i)
1−b. Namely, the

key generation in Game 5 is exactly as in Game 4 except that we choose lossy
public keys pk (i)

1−b
$←− LID.LossyGen for every user i ∈ [N ] in Game 5.
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Lemma 16. We can construct an adversary B with running time tB ≈ tA such
that

|Pr[X4] − Pr[X5]| ≤ AdvMU-IND-KEY
LID,N (B).

Proof. The proof of the lemma is straightforward. We can construct B using
A as a subroutine. B receives as input (pk ′

i)i∈[N ], which is either generated
by algorithm LID.Gen or by LID.LossyGen. Then, it simulates Game 5 for the
adversary A and set pk (i)

1−b := pk ′
i for all i ∈ [N ].

�
Finally, we can prove the following lemma.

Lemma 17.
Pr[X5] ≤ N · q2H · ε�

where qH is the number of hash queries made in Game 5.

Note that the lossiness of LID guarantees that ε� is statistically negligible
(even for computationally unbounded adversaries). Hence, the multiplicative
term N · q2H does not break the tightness of our signature scheme. It will conve-
nient to prove this claim by reduction.

Proof. To prove this lemma, we build an adversary B against the lossiness of
LID. On getting a lossy public key pk $←− LID.LossyGen, B uniformly selects
i′ $←− [N ], j1 $←− [qH − 1] and j2

$←− {j1 + 1, · · · , qH}. Then B generates all the
public keys for A according to Game 5 except that it sets pk (i′)

1−b := pk . Then B
invokes A and answers all the queries according to Game 5 with the following
exceptions.

– In the j1-th hash query H(m, cmt), B submits cmt to its own challenger and
get back ch $←− CSet.

– In the j2-th hash query H(m, cmt′), B returns ch as response and logs
((m, cmt′), ch) into the hash list L.

After A submits the forgery attempt (i∗,m∗, σ∗ = (ch∗
0, resp

∗
0, resp

∗
1)), B checks

whether all the following events happen:

– X5 happens,
– i′ = i∗,
– the first (1 − b(i

∗))-query is exactly the j1-th hash query,
– the first b(i

∗)-query is exactly the j2-th hash query.

If all of these events happen, B outputs resp∗
1−b(i∗) to its own challenger. Other-

wise, B halts and outputs nothing.
The probability that B does not halt is at least Pr[X5]/(N ·q2H). We will show

that in this case
LID.Vrfy(pk , cmt, ch, resp∗

1−b(i∗)) = 1,

and hence B wins the lossiness game. This is implied by the following facts.
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– i′ = i∗ indicates that pk = pk (i∗)
1−b.

– The j1-th hash query is the first (1 − b(i
∗))-query indicates that cmt =

cmt∗
1−b(i∗) .

– The j2-th hash query is the first b(i
∗)-query indicates that ch = ch∗

1−b(i∗) .
– X3 happens indicates that Vrfy(pk (i∗),m∗, σ∗) = 1, which further indicates

that
LID.Vrfy(pk (i∗)

1−b, cmt∗1−b(i∗) , ch
∗
1−b(i∗) , resp

∗
1−b(i∗)) = 1.

Thus, we have that Pr[X5]/(N · q2H) ≤ Pr[B wins] ≤ ε� and Lemma 17 follows.
�

Theorem 9 now follows. �

5 Instantiations of Our Scheme

In the previous section we identified the necessary properties of the underlying
lossy identification scheme. We now continue to discuss how suitable schemes
can be instantiated based on concrete hardness assumptions. The constructions
described in this section are derived from [1–3,29] and are well-known. The
purpose of this section is to argue and justify that these constructions indeed
satisfy all properties required for our signature scheme.

5.1 Instantiation Based on Decisional Diffie–Hellman

The well-known DDH-based lossy identification scheme uses the standard Sigma
protocol to prove equality of discrete logarithms by Chaum et al. [11] (cf. Fig. 1)
as foundation, which was used by Katz and Wang [29] to build tightly-secure
signatures (in the single-user setting without corruptions).

Prover: sk = x Verifier: pk = (g, h, u, v)

r $←− Zq

cmt := (e, f) = (gr, hr) cmt

ch ch $←− Zq

resp := r − ch · x resp accept if e = gresp · uch

and f = hresp · vch

Fig. 1. The DDH-based identification scheme [11].
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The DDH Problem. Let (G, g, q) be a cyclic group of prime order q and generator
g. Further, let h ∈ G. We denote the set of DDH tuples in G with respect to g
and h as

DDH(G, g, h) := {(u, v) ∈ G
2 : logg u = logh v}

and the set of “non-DDH tuples” as

DDH(G, g, h) := G
2 \ DDH(G, g, h).

Definition 18. Let (G, g, q) be a cyclic group of prime order q and generator g.
Further, let h $←− G. We define the advantage of an algorithm B in solving the
DDH problem in G with respect to (g, h) as

AdvDDH
G,g,h(B) := |Pr [B(G, g, h, u, v) = 1] − Pr [B(G, g, h, u, v) = 1]|

where (u, v) $←− DDH(G, g, h) and (u, v) $←− DDH(G, g, h) are chosen uniformly
random.

A DDH-Based LID Scheme. Let (G, g, q) be a cyclic group of prime order
q and generator g and let h ∈ G. We define the lossy identification scheme
LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the proto-
col presented above as follows:

Key generation. The algorithm LID.Gen chooses a value x $←− Zq uniformly
at random. It sets pk := (g, h, u, v) = (g, h, gx, hx) and sk := x, and outputs
(pk , sk).

Lossy key generation. The algorithm LID.LossyGen chooses two group ele-
ments u, v $←− G uniformly and independently at random. It outputs pk :=
(g, h, u, v).

Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = x, chooses

a random value r $←− Zq, and computes a commitment cmt := (e, f) =
(gr, hr), where g, h are the value of the pk corresponding to sk . It outputs
(cmt, st) with st := r.

2. The algorithm LID.Prove2 takes as input a secret key sk = x, a commit-
ment cmt = (e, f), a challenge ch ∈ Zq, a state st = r, and outputs a
response resp := r − ch · x.

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (g, h, u, v), a commitment cmt = (e, f), a challenge ch ∈ Zq, and a
response resp ∈ Zq. It outputs 1 if and only if e = gresp ·uch and f = hresp ·vch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(g, h, u, v), a challenge ch ∈ Zq, and a response resp ∈ Zq. It outputs a
commitment cmt = (e, f) = (gresp · uch, hresp · vch).

Remark 19. Note that an honest public key generated with LID.Gen is of the
form pk = (g, h, u, v) such that (u, v) ∈ DDH(G, g, h), whereas a lossy public key
generated with LID.LossyGen is of the form pk = (g, h, u, v) such that (u, v) �∈
DDH(G, g, h) with high probability.
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Theorem 20. The scheme LID defined above is lossy with

ρ = 1, εs = 0, ε� ≤ 1/q,

and from any efficient adversary A we can construct an efficient adversary B
such that

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., εu = 0), LID
has α-bit min-entropy with α = log2(q), LID is commitment-recoverable, and LID
has an injective simulator.

The proof of this theorem is rather standard and implicitly contained in
the aforementioned prior works. For completeness, we provide a sketch in
Appendix A.

Concrete Instantiation. We can now use the DDH-based lossy identification
scheme to describe an explicit instantiation of our signature scheme based on
the DDH assumption, in order to assess its concrete performance. Let G be a
group of prime order p with generator g, let h $←− G be a random generator and
let H : {0, 1}∗ → Zp be a hash function. We construct a digital signature scheme
Sig = (Gen,Sign,Vrfy) as follows.

Key generation. The key generation Gen algorithm samples x0, x1
$←− Zp,

b $←− {0, 1}. Then it sets

pk := (u0, v0, u1, v1) = (gx0 , hx0 , gx1 , hx1) and sk := (b, xb).

Signing. The signing algorithm Sign takes as input sk = (b, xb) and a message
m ∈ {0, 1}∗. Then it proceeds as follows.
1. It first chooses a random value r $←− Zp, and sets (eb, fb) := (gr, hr) and

ch1−b := H(m, eb, fb).

2. Then it samples a value resp1−b
$←− Zp and computes

e1−b = gresp1−bu
ch1−b

1−b and f1−b = hresp1−bv
ch1−b

1−b .

3. Finally, it computes

chb := H(m, e1−b, f1−b) and respb := r − chb · xb

and outputs the signature σ := (ch0, resp0, resp1) ∈ Z
3
p.

Verification. The verification algorithm takes as input a public key pk :=
(u0, v0, u1, v1), a message m ∈ {0, 1}∗, and a signature σ = (ch0, resp0, resp1).
If first computes

e0 = gresp0uch0
0 and f0 = hresp0vch0

0 .
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From (e0, f0) it is then able to compute

ch1 := H(m, e0, f0)

and then
e1 = gresp1 · uch1

1 and f1 = hresp1 · vch1
1 .

Finally, the algorithm outputs 1 if and only if

ch0 = H(m, e1, f1).

Note that public keys are pk ∈ G
4, secret keys are sk ∈ {0, 1} × Zp, and

signatures are σ ∈ Z
3
p.

5.2 Instantiation from the φ-Hiding Assumption

Another possible instantiation is based on the Guillou–Quisquater (GQ) iden-
tification scheme [25], which proves that an element U = Se mod N is an e-th
residue (cf. Fig. 2). Abdalla et al. [1] describe a lossy version of the GQ scheme,
based on the φ-hiding assumption. We observe that we can build a lossy identi-
fication scheme on a weaker assumption, which is implied by φ-hiding.

In order to achieve tightness in a multi-user setting, we will need a common
setup, which is shared across all users. This setup consists of a public tuple (N, e)
where N = p · q is the product of two large random primes and e a uniformly
random prime of length 	e ≤ λ/4 that divides p− 1. The factors p and q need to
remain secret, so we assume that (N, e) either was generated by a trusted party,
or by running a secure multi-party computation protocol with multiple parties.

The Guillou–Quisquater LID Scheme. We define the lossy identification
scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) based on the
protocol presented above as follows:

Common setup. The common system parameters are a tuple (N, e) where
N = p · q is the product of two distinct primes p, q of length λ/2 and e is
random prime of length 	e ≤ λ/4 such that e divides p − 1.
Note that the parameters (N, e) are always in “lossy mode”, and not switched
from an “injective” pair (N, e) where e is coprime to φ(N) = (p − 1)(q − 1)
to “lossy” in the security proof, as common in other works.

Key generation. The algorithm LID.Gen samples S $←− Z
∗
N and computes U =

Se. It sets pk = (N, e, U) and sk = (N, e, S), where (N, e) are from the
common parameters.

Lossy key generation. The lossy key generation algorithm LID.LossyGen sam-
ples U uniformly at random from the e-th non-residues modulo N .3

3 This is indeed efficiently possible as U $←− Z
∗
N is a not an e-th residue with probability

1 − 1/e and we can efficiently check whether a given U is an e-th residue when the
factorization of N is known [1].
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Proving. The algorithm LID.Prove is split up into the following two algorithms:
1. The algorithm LID.Prove1 takes as input a secret key sk = (N, e, S),

chooses a random value r $←− Z
∗
N , and computes a commitment cmt :=

re mod N . It outputs (cmt, st) with st := r.
2. The algorithm LID.Prove2 takes as input a secret key sk = (N, e, S), a

commitment cmt, a challenge ch ∈ {0, . . . , 2�e − 1}, a state st = r, and
outputs a response resp := r · Sch mod N .

Verification. The verification algorithm LID.Vrfy takes as input a public key
pk = (N, e, U), a commitment cmt, a challenge ch, and a response resp. It
outputs 1 if and only if resp �= 0 mod N and respe = cmt · U ch.

Simulation. The simulation algorithm LID.Sim takes as input a public key pk =
(N, e, U), a challenge ch, and a response resp. It outputs a commitment cmt =
respe/U ch.

Prover: sk = (N, e, S) Verifier: pk = (N, e, U)

r $←− Z
∗
N

cmt := re mod N cmt

ch ch $←− {0, . . . , 2 e − 1}

resp := r · Sch resp accept if resp = 0 mod N

and respe = cmt · U ch

Fig. 2. The Guillou–Quisquater identification scheme [25].

Theorem 21. The scheme LID defined above is lossy with

ρ = 1, εs = 0, ε� ≤ 1/2�e ,

and from any efficient adversary A we can construct an efficient adversary B
such that

AdvMU-IND-KEY
LID,n (A) ≤ Advn-HR(B).

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., εu = 0), LID
has α-bit min-entropy with α ≥ λ − 2, LID is commitment-recoverable, and LID
has an injective simulator.

The above theorem has been proven in [1] for most of its statements. What
is left is a proof for n-key-indistinguishability, which we provide in Appendix B.
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5.3 On Instantiations of Lossy ID Schemes from Other Assumptions

There also exist lossy identification schemes based on the decisional short discrete
logarithm problem, the ring LWE problem, and the subset sum problem (all due
to Abdalla et al. [2,3]). However, they do not directly translate to a tight multi-
user signature scheme that is existentially unforgeable with adaptive corruptions.

Our security proof requires tight multi-instance security of the underlying
hardness assumption. While, for example, the DDH-based scheme satisfies this
via its self-reducibility property, it is not obvious how schemes based on, for
example, lattices or subset sum achieve this notion in a tight manner.

A Proof of Theorem 20

Random Self-reducibility of DDH. It is well-known that the DDH problem is
random self-reducible, which we summarize in the following lemma. See [7,
Lemma 5.2] for a proof.

Lemma 22. There exists an efficient algorithm ReRand that takes as input
(g, h) and a DDH instance (u, v) ∈ G

2 and an integer N , and outputs N new
DDH instances (u(i), v(i)) such that

(u, v) ∈ DDH(G, g, h) ⇐⇒ (u(i), v(i)) ∈ DDH(G, g, h)

for all i ∈ [N ]. The running time of this algorithm mainly consists of O(N)
exponentiations in G.

Proof. To show that LID is lossy, we need to show that it satisfies all properties
presented in Definition 4.

Completeness of normal keys. We claim that the above scheme is perfectly-
complete. To prove this, we show that for any honest transcript it holds
that LID.Vrfy(pk , cmt, ch, resp) = 1. Let (pk , sk) $←− LID.Gen be an (honest)
key pair and let (cmt, ch, resp) be an honest transcript, that is, ch $←− CSet,
(cmt, st) $←− LID.Prove1(sk) and resp := LID.Prove2(sk , cmt, ch, st). By defi-
nition of the scheme, we have pk = (g, h, u, v) with (u, v) ∈ DDH(G, g, h)
and sk = x and cmt = (e, f) = (gr, hr) and resp = r − ch · x. Further,
LID.Vrfy(pk , cmt, ch, resp) = 1 if and only if e = gresp · uch and f = hresp · vch.
Observe that

gresp · uch = gr−ch·x · gch·x = gr = e.

An analogous equation holds for f if g is replaced by h. Hence, LID.Vrfy
outputs 1 for every honest transcript.

Simulatability of transcripts. We claim that the above scheme is perfectly
simulatable. To show this, we need to argue that the two distributions

⎧
⎨
⎩(cmt, ch, resp) :

(cmt, st) $←− LID.Prove1(sk)
ch $←− Zq

resp := LID.Prove2(sk , ch, cmt, st)

⎫
⎬
⎭
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and
⎧
⎨
⎩(cmt, ch, resp) :

ch $←− Zq

resp $←− Zq

cmt := LID.Sim(pk , ch, resp)

⎫
⎬
⎭

are identical. Recall that we have pk = (g, h, u, v) with (u, v) ∈ DDH(G, g, h),
sk = x, cmt = (e, f) = (gr, hr) with st = r $←− Zq, and resp = r − ch · x
for an honest transcript (i.e., in the former distribution). Thus, we have that
cmt = (e, f) is uniformly distributed over G

2. Consequently, since r $←− Zq

and ch $←− Zq, we also have that the response resp is distributed uniformly
and independently (of cmt and ch) over Zq.
We will now take a look at the later distribution. Note that ch and resp are
both uniformly random elements over Zp. It remains to show that cmt in the
simulated transcript is distributed uniformly over G

2.
Recall that cmt := LID.Sim(pk , ch, resp) is defined as cmt := (e, f) = (gresp ·
uch, hresp · vch). Observe that logg(e) = resp + ch · x and logg(f) = logg(h) ·
(resp + ch · x). Since ch $←− Zq and resp $←− Zq, we have that both logg(e)
and logg(f) are distributed uniformly and independently (of ch and resp)
over Zq and thus (e, f) is distributed uniformly over G

2. Note that e, f are
not distributed independently of each other (as it is the case in the honest
transcript).

Indistinguishability of keys. As already remarked above, honest keys contain
a DDH tuple, whereas lossy keys contain a non-DDH tuple. Therefore, we
claim that for every adversary A trying to distinguish honest from lossy keys
of LID, we can construct an adversary B such that

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

To prove this claim, we give a construction of B running A as a subrou-
tine. The adversary B receives a tuple (g, h, u, v) such that (u, v) either is
a DDH tuple (i.e., (u, v) ∈ DDH(G, g, h)) or not. Then, it uses the algo-
rithm of Lemma 22 to re-randomize (u, v) into N tuples (u(i), v(i))i∈[N ]

$←−
ReRand(g, h, u, v,N) such that

(u, v) ∈ DDH(G, g, h) ⇐⇒ ∀i ∈ [N ] : (u(i), v(i)) ∈ DDH(G, g, h)

and hands (pk i = (g, h, u(i), v(i)))i∈[N ] to A as input. When A halts and
outputs a bit b, B halts and outputs b as well.
Observe that by Lemma 22, we have

Pr[B(g, h, u, v) = 1] ≥ Pr[A(pk (1), . . . , pk (N))]

with (u, v) $←− DDH(G, g, h), (u(i), v(i))i∈[N ]
$←− ReRand(g, h, u, v,N), and

pk (i) := (g, h, u(i), v(i)). Further, we have

Pr[B(g, h, ū, v̄) = 1] ≥ Pr[A(pk ′(1), . . . , pk ′(N))]
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with (ū, v̄) $←− DDH(G, g, h), (ū(i), v̄(i)) $←− ReRand(g, h, ū, v̄) for every i ∈ [N ],
and pk ′(i) := (g, h, ū(i), v̄(i)). In conclusion, we have

AdvMU-IND-KEY
LID,N (A) ≤ AdvDDH

G,g (B).

Lossiness. We claim that the above scheme LID is 1/q-lossy. To show this, we
first recall a classical result showing the soundness of the protocol to “prove
DDH tuples” by Chaum et al. presented above. Namely, we claim that if
logg(u) �= logh(v) holds for the public key pk = (g, h, u, v) (i.e., pk is a lossy
key and (u, v) �∈ DDH(G, g, h)), for any commitment cmt there can only be
at most one challenge ch such that the transcript is valid. We prove this
statement by contradiction.
Let A be an unbounded adversary that on input of a lossy public key pk $←−
LID.LossyGen, outputs commitment cmt = (e, f). We now show that A can
only output a correct resp for one ch such that LID.Vrfy(pk , cmt, ch, resp) = 1.
Suppose that A was able to come up with two responses resp1 and resp2 for
two different challenge ch1 �= ch2 such that LID.Vrfy(pk , cmt, ch1, resp1) = 1
and LID.Vrfy(pk , cmt, ch2, resp2) = 1 holds. This implies by the definition of
LID.Vrfy that

e = gresp1uch1 = gresp2uch2 and f = hresp1vch1 = hresp2vch2 .

Equivalently, we get by using the assumption that ch1 �= ch2:

logg(u) =
(resp1 − resp2)

ch2 − ch1
and logh(v) =

(resp1 − resp2)
ch2 − ch1

.

However, this is a contraction to the assumption that logg(u) �= logh(v). Thus,
pk must be a lossy key.
Using this, we have that for every commitment A outputs, there can only be
at most one challenge ch such that the adversary generated a valid transcript.
Note that we have an unbounded adversary and based on cmt and ch it can
compute a response. As there is only one challenge for cmt output by A and
the challenge is chosen uniformly at random, the adversary can only win with
a probability of at most 1/q.

Uniqueness with respect to lossy keys. Let pk = (g, h, u, v) with (u, v) �∈
DDH(G, g, h) and (cmt, ch, resp) with LID.Vrfy(pk , cmt, ch, resp) = 1. Suppose
that there is a resp′ �= resp such that LID.Vrfy(pk , cmt, ch, resp′) = 1. In this
case, we have for cmt = (e, f) that

e = grespuch = gresp
′
uch and f = hrespvch = hresp′

vch.

However, this implies that

gresp = gresp
′

and hresp = hresp′
,

which implies that resp = resp′, contradicting the initial assumption.
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Min-entropy. For any secret key sk , the commitment cmt $←− LID.Prove1(sk)
equals (gr, hr) for r $←− Zq, which is independent of sk . So the min-entropy of
cmt is α = log2(q).

Commitment-recoverable. The verification algorithm of LID first recovers
a commitment using the simulator and then compares the result with the
commitment in the transcript. So LID is commitment-recoverable.

Injective simulator. For any normal public key pk = (g, h, u, v), any response
resp and any challenge ch �= ch′, we have that

LID.Sim(pk , ch, resp) = (grespuch, hrespvch),

LID.Sim(pk , ch′, resp) = (grespuch′
, hrespvch′

).

Thus, if the above two pairs are equal, we must have that (uch, vch) =
(uch′

, vch′
). That implies ch = ch′.

�

B Proof of Theorem 21

The following definition is from [1].

Definition 23 (RSA modulus generation algorithm). Let 	N be a positive
integer and let RSA�N be the set of all tuples (N, p1, p2) such that N = p1p2 is
a 	N -bit number and p1, p2 are two distinct primes in the set of 	N/2-bit primes
P�N/2. Let R be any relation on p1 and p2, define RSA�N [R] := {(N, p1, p2) ∈
RSA�N | R(p1, p2) = 1}.

We can use it to define the n-fold higher residuosity assumption as well as
the φ-hiding assumption [1,9,31].

Definition 24 (n-fold higher residuosity assumption). Let e be a random
prime of length 	e ≤ 	N/4 and

(N, p1, p2) $←− RSA�N [p1 = 1 mod e]

and let HRN [e] := {ge mod N | g ∈ Z
∗
N} be the set of e-th residues modulo N .

We define the advantage of any A in solving the higher residuosity problem as

Advn-HR(A) := |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N, e, y′
1, . . . , y

′
n) = 1]| ,

where y1, . . . , yn
$←− HRN [e] and y′

1, . . . , y
′
n

$←− Z
∗
N \ HRN [e]. The e-residuosity

problem is (t, ε)-hard if for any A with running time at most t, Advn-HR(A) is
at most ε.

We prove the following lemma.

Lemma 25. For any adversary A with running time tA against the n-key-
indistinguishability of LID in Fig. 2, we can construct an adversary B with run-
ning time tB ≈ tA such that

AdvMU-IND-KEY
LID,n (A) ≤ Advn-HR(B).



28 D. Diemert et al.

Proof. The proof is a straightforward reduction. B receives (N, e, y1, . . . , yn) as
input and defines the common parameters as (N, e) and

(
pk (1), · · · , pk (n)

)
= (y1, . . . , yn) .

Note that this defines real keys if the yi are e-th residues, and lossy keys if the
yi are e-th non-residues. �

Finally, we can show that the n-fold higher residuosity assumption is tightly
implied by the φ-hiding assumption, for any polynomially-bounded n.

Definition 26 (φ-hiding assumption [1,9,31]). Let c ≤ 1/4 be a constant.
For any adversary A, define the advantage of A in solving the φ-hiding problem
to be

AdvφH(A) := |Pr[A(N, e) = 1] − Pr[A(N ′, e) = 1]| ,
where e $←− Pc�N , (N, p1, p2) $←− RSA�N [gcd(e, φ(N)) = 1] and (N ′, p′

1, p
′
2)

$←−
RSA�N [p′

1 = 1 mod e]. The φ-hiding problem is (t, ε)-hard if for any A with
running time at most t, AdvφH(A) is at most ε.

Lemma 27. For any adversary A with running time tA we can construct an
adversary B with running time tB ≈ tA such that

Advn-HR(A) ≤ 2 · AdvφH(B).

Proof. First, we have that

Advn-HR(A) = |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N, e, y′
1, . . . , y

′
n) = 1]|

≤ |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1]|

+ |Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1] − Pr[A(N, e, y′

1, . . . , y
′
n) = 1]| ,

where (N, p1, p2) $←− RSA�N [gcd(e, φ(N)) = 1] and (N ′, p′
1, p

′
2)

$←− RSA�N [p′
1 =

1 mod e]. We can prove the following claim.

Claim. |Pr[A(N, e, y1, . . . , yn) = 1] − Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1]| ≤ AdvφH(B).

The proof is again a very straightforward reduction. B receives as input
(N, e). It samples x1, . . . , xn

$←− ZN uniformly random and then defines yi :=
xe

i mod N for i ∈ {1, . . . , n}. Then it runs A on input (N, e, y1, . . . , yn) and
returns whatever A returns.

Note that if (N, e) is a “lossy” key, so that e | φ(N), then the yi are random
e-th residues. However, if gcd(e, φ(N)) = 1, then all yi are random e-th non-
residues, since the map x �→ xe mod N is a permutation.

Using a similar idea, we can prove that

Claim. |Pr[A(N ′, e, y′
1, . . . , y

′
n) = 1] − Pr[A(N, e, y′

1, . . . , y
′
n) = 1]| ≤ AdvφH(B).

Putting the two claims together, we have that Advn-HR(A) ≤ 2AdvφH(B) and
Lemma 27 follows. �
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21. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019)

22. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

23. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

26. Hasegawa, S., Isobe, S.: Lossy identification schemes from decisional RSA. In:
International Symposium on Information Theory and its Applications, ISITA 2014,
Melbourne, Australia, 26–29 October 2014, pp. 143–147. IEEE (2014)

27. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

28. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
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Abstract. Threshold Private Set Intersection (PSI) allows multiple par-
ties to compute the intersection of their input sets if and only if the
intersection is larger than n − t, where n is the size of each set and t is
some threshold. The main appeal of this primitive is that, in contrast to
standard PSI, known upper-bounds on the communication complexity
only depend on the threshold t and not on the sizes of the input sets.
Current threshold PSI protocols split themselves into two components:
A Cardinality Testing phase, where parties decide if the intersection is
larger than some threshold; and a PSI phase, where the intersection is
computed. The main source of inefficiency of threshold PSI is the former
part.

In this work, we present a new Cardinality Testing protocol that allows
N parties to check if the intersection of their input sets is larger than
n − t. The protocol incurs in Õ(Nt2) communication complexity. We
thus obtain a Threshold PSI scheme for N parties with communication
complexity Õ(Nt2).

1 Introduction

Suppose Alice holds a set SA and Bob a set SB . Private set intersection (PSI) is a
cryptographic primitive that allows each party to learn the intersection SA ∩SB

and nothing else. In particular, Alice gets no information about SB \ SA (and
vice-versa). The problem has attracted a lot of attention through the years, with
an extended line of work proposing solutions in a variety of different settings (e.g.,
[11–13,15–17,21,25–27,31–36]). Also, numerous applications have been proposed
for PSI such as contact discovery, advertising, etc. (see for example [22] and
references therein). More recently, PSI has also been proposed as a solution for
private contact tracing (e.g., [2]).

Threshold PSI. In this work, we focus on a special setting of PSI called Threshold
PSI. Here, the parties involved in the protocol learn the output if the size of the
intersection between the input sets of the parties is very large, say larger than
n − t, where n is the size of the input sets and t is some threshold such that
t � n; Otherwise, they learn nothing about the intersection. This is in contrast
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with standard PSI where the parties always get the intersection, no matter its
size.

The main reason for considering this problem (apart from its numerous appli-
cations which we discuss next) is that the amount of communication needed is
much smaller than for standard PSI: In particular, there are threshold PSI pro-
tocols whose communication complexity depends only on the threshold t and
not on the size of the input sets as for standard PSI [17].

Despite its theoretical and practical appeal, there are just a few works that
consider this problem [16,17,20], and just one of them achieves communication
complexity independent of n [17], in the two party setting.

1.1 Applications of Threshold PSI

A wide number of applications has been suggested for threshold PSI in previous
works such as applications to dating apps or biometric authentication mecha-
nisms [17].

One of the most interesting applications for threshold PSI is its use in carpool-
ing (or ridesharing) apps. Suppose two (or more) parties are using a carpooling
app, which allows them to share a vehicle if their routes have a large intersec-
tion. However, due to privacy issues, they do not want to make their itinerary
public. Threshold PSI solves this problem in a simple way [20]: The parties can
engage in a threshold PSI protocol, learn the intersection of the routes and, if
the intersection is large enough, share a vehicle. Otherwise, they learn nothing
and their privacy is maintained.

PSI Using Threshold PSI. Most of current protocols for threshold PSI (including
ours) are splitted into two parts: i) a Cardinality Testing, where parties decide if
the intersection is larger than n − t; and ii) secure computation of the intersec-
tion of the input sets (which we refer to as the PSI part). The communication
complexity of these two parts should depend only on the threshold t and not on
the input sets’ size n.

Threshold PSI protocols of this form can be used to efficiently compute the
intersection, even when no threshold on the intersection is known a priori by
the parties, by doing an exponential search for the right threshold. In this case,
parties can proceed as follows:

1. Run a Cardinality Testing for some t (say t = 1).
2. If it succeeds, perform the PSI part. Else, run again the Cardinality Test for

t = 2t.
3. Repeat Step 2 until the Cardinality Testing succeeds for some threshold t and

the set intersection is computed.

By following this blueprint, parties are sure that they overshoot the right
threshold by a factor of at most 2. That is, if the intersection is larger than
n − t′, then the Cardinality Testing will succeed for t such that t ≥ t′ > t/2.
Thus, they can compute the intersection incurring only in a factor of 2 overhead
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over the best insecure protocol. In other words, PSI protocols can be computed
with communication complexity depending on the size of the intersection, and
not on the size of the sets.

This approach can be useful in scenarios where parties suspect that the inter-
section is large but they do not know exactly how large it is.

1.2 Our Contributions

In the following, N denotes the number of parties in a multi-party protocol and
t is the threshold in a threshold PSI protocol. Below, we briefly describe our
results.

Multi-party Cardinality Testing. We develop a new Cardinality Testing scheme
that allows N parties to check if the intersection of their input sets, each having
size n, is larger than n− t for some threshold t � n. The protocol needs Õ(Nt2)
bits of information to be exchanged.

Along the way, we develop new protocols to securely compute linear algebra
related functions (such as compute the rank of an encrypted matrix, invert a
encrypted matrix or even solve an encrypted linear system). Our protocols build
on ideas of previous works [24,29], except that our protocols are specially crafted
for the multi-party case. Technically, we rely heavily on Threshold Public-Key
Encryption schemes which are additively homomorphic (such schemes can be
constructed from DDH [14], DCR [30], or from several pairings assumptions
[3,4]) to perform linear operations.

Multi-party Threshold PSI. We then show how our Cardinality Testing protocol
can be used to build a Threshold PSI protocol in the multi-party setting. Our
construction achieves communication complexity of Õ(Nt2).

Concurrent Work. Recently, Ghosh and Simkin [18] updated their paper with
a generalization to the multi-party case which is similar to the one presented in
this paper in Sect. 4. However, they leave as a major open problem the design
of a new Cardinality Testing that extends nicely to multiple parties, a problem
on which we make relevant advances in this work.

In a concurrent work, Badrinarayanan et al. [1] also proposed new protocols
for threshold PSI in the multi-party setting. Their results complement ours. In
particular, they propose an FHE-based approach to solve the same problem as
we do with a communication complexity of O(Nt), where N is the number of
parties and t is the threshold. However, we remark that the goal of our work
was to reduce the assumptions needed for threshold PSI. They also propose a
TPKE-based protocol that solves a slightly different problem: the parties learn
the intersection if and only if the set difference among the sets is large, that
is, | (∪N

i=1Si

) \ (∩N
i=1Si

) | is large1, which is denoted as FTPSI-int in [1]. This
1 It is a slightly different problem from the one we solve in this work. Here, we want to

disclosure the intersection ∩N
i=1Si if | ∩N

i=1 Si| ≥ n − t, which is denoted as FTPSI-diff

in [1].
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protocol achieves communication complexity of Õ(Nt). They achieve that result
using completely different techniques from ones used in this work. Namely, they
noticed that computing the determinant of a Hankel matrix can be done in
sublinear time in the size of the matrix. This implies that the cardinality testing
of [17] can actually be realized in time Õ(Nt).

1.3 Technical Outline

We now give a high-level overview of the techniques we use to achieve the results
discussed above.

Threshold PSI: The Protocol of [17]. Consider two parties Alice and Bob,
with their respective input sets SA and SB of size n. Suppose that they want to
know the intersection SA ∩ SB iff |SA ∩ SB | ≥ n − t for some threshold t � n.
To compute the intersection, both parties encode their sets into polynomials
PA(x) =

∏n
i (x − ai) and PB(x) =

∏n
i (x − bi) over a large finite field F, where

ai ∈ SA and bi ∈ SB . The main observation of Ghosh and Simkin [17] is that
set reconciliation techniques (developed by Minsky et al. [28]) can be applied in
this scenario: if |SA ∩ SB | ≥ n − t, then

PA(x)
PB(x)

=
PA∩B(x)
PA∩B(x)

PA\B(x)
PB\A(x)

=
PA\B(x)
PB\A(x)

and, moreover, deg PA\B = deg PB\A = t. Hence, Alice and Bob just
need to (securely) compute O(t) evaluation points of the rational function
PA(x)/PB(x) = PA\B(x)/PB\A(x) and, after interpolating over these points,
Bob can recover the denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator PA\B, otherwise
security is compromised. So, [17] used an Oblivious Linear Evaluation (OLE)
scheme to mask the numerator with a random polynomial that hides PA\B from
Bob.

This protocol is only secure if Alice and Bob are absolutely sure that
|SA ∩ SB| ≥ n − t. Otherwise, additional information could be leaked about
the respective inputs. Consequently, Alice and Bob should perform a Cardinal-
ity Testing protocol, which reveals if |SA ∩ SB | ≥ n − t and nothing else.

Limitations of the Protocol when Extending to the Multi-party Setting. It turns
out that the main source of inefficiency when extending Ghosh and Simkin
protocol to the multi-party setting is the Cardinality Testing they use. In
[17], Alice and Bob encode their sets into polynomials QA(X) =

∑n
i xai and

QB(X) =
∑n

i xbi , respectively, where ai ∈ SA and bi ∈ SB . Then, they can
check if Q̃(x) = QA(x) − QB(x) is a sparse polynomial. If it is, we conclude
that the set (SA ∪ SB) \ (SA ∩ SB) is small. By disposing O(t) evaluations of
the polynomial Q̃(x) in a Hankel matrix [19] and securely computing its deter-
minant (via a generic secure linear algebra protocol from [24]), both parties can
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determine if |SA ∩ SB | ≥ n − t. The total communication complexity of this
protocol is O(t2).2

However, if we were to naively extend this approach to the multi-party set-
ting, we would have N parties computing, say,

Q̃(x) = NQ1(x) − Q2(x) − · · · − QN (x)

which is a sparse polynomial only if N is small. Moreover, if we were to com-
pute the sparsity of this polynomial using the same approach, we would have a
protocol with communication complexity O((Nt)2).

Our Approach. Given the state of affairs presented in the previous section, it
seems we need to take a different approach from the one of [17] if we want to
design an efficient threshold PSI protocol for multiple parties.

Interlude: Secure Linear Algebra. Recall that in the setting of secure linear alge-
bra (as in [29] and [24]), there are two parties, one holding an encryption of a
matrix Enc(pk,M) and the other one holding the corresponding secret key sk.
Their goal is to compute an encryption of a (linear algebra related) function of
the matrix M, such as the rank, the determinant of M, or, most importantly, find
a solution x for the linear system Mx = y where both M and y are encrypted.
We can easily extend this problem to the multi-party case: Consider N par-
ties, P1, . . . ,PN , each one holding a share of the secret key of a threshold PKE
scheme. Additionally, P1 has an encrypted matrix. The goal of all the parties is
to compute an encryption of a (linear algebra related) function of the encrypted
matrix.

We observe that the protocols for secure linear algebra presented in [24]
can be extended to the multiparty setting by replacing the use of an (addi-
tively homomorphic) PKE and garbled circuits for an (additively homomorphic)
threshold PKE3. Hence, our protocols allow N parties to solve a linear system
of the form Mx = y under the hood of a threshold PKE scheme.

Cardinality Testing via Degree Test of a Rational Function. Consider again the
encodings PSi

(x) =
∏n

j (x − a
(i)
j ) where a

(i)
j ∈ Si, for N different sets, and the

rational function4

PS1 + · · · + PSN

PS1

=
PS1\(∩N

j=1Sj) + · · · + PSN \(∩N
j=1Sj)

PS1\(∩N
j=1Sj)

.

2 Given this, we conclude that the communication complexity of the threshold PSI
protocol of [17] is dominated by this Cardinality Testing protocol.

3 We need a bit-conversion protocol such as [37] to convert between binary circuits
and algebra operations.

4 We actually need to randomize the polynomials in the numerator to guarantee cor-
rectness, that is, we need to multiply each term in the numerator by a uniformly
chosen element. This is in contrast with the two-party setting where correctness holds
even without randomizing the numerator. However, we omit this step for simplicity.
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Note that, if the intersection ∩Si is larger than n − t, then deg PS1\(∩N
j=1Sj) =

· · · = deg PSN \(∩N
j=1Sj) ≤ t.

Therefore, the Cardinality Testing boils down to the following problem: Given
a rational function f(x) = P̃1(x)/P̃2(x), can we securely decide if deg P̃1 =
deg P̃2 ≤ t having access to O(t) evaluation points of f(x)?

Our crucial observation is that, if we interpolate two different rational func-
tions fV and fW on different two support sets V = {vi, f(vi)} and W =
{wi, f(wi)} each one of size 2t, then we have:

1. fV = fW if deg P1 = deg P2 ≤ t
2. fV �= fW if deg P1 = deg P2 > t

except with negligible probability over the uniform choice of vi, wi.
Moreover, interpolating a rational function can be reduced to solving a linear

system of equations. Hence, by using the Secure Linear Algebra tools developed
before, we can perform the degree test revealing nothing else than the output.
In other words, we can decide if the size of the intersection is smaller than n − t
while revealing no additional information about the parties’ input sets.

Security of the Protocol. We prove security of our Cardinality Testing in the UC
framework [7]. However, there is a subtle issue in our security proof. Namely,
our secure linear algebra protocols cannot be proven UC-secure since the inputs
are encrypted under a public key which, in the UC setting, needs to come from
somewhere.

We solve this problem by using the Externalized UC framework [8]. In this
framework, the secure linear algebra ideal functionalities all share a common
setup which, in our case, is the public key (and the corresponding secret key
shares). We prove security of our secure linear algebra protocols in this setting.

Since the secure linear algebra protocols are secure if they all share the same
public key, then, on the Cardinality Testing, we just need to create this public
key and share it over these functionalities. Thus, we prove standard UC-security
of our Cardinality Testing.

Badrinarayanan et al. [1] also encounter the same problem as we did and they
opted to not prove security of each subprotocol individually, but rather prove
security only for their main protocol (where the public key is created and shared
among these smaller protocols).

Multi-party PSI. Having developed a Cardinality Testing, we can now focus
on securely computing the intersection. In fact, our protocol for computing the
intersection can be seen as a generalization of Gosh and Simkin protocol [17].
Again, by encoding the sets as above (that is, PSi

(x) =
∏n

j (x−a
(i)
j ) where a

(i)
j ∈

Sj and Sj is the set of party Pj) and knowing that the intersection is larger than
n− t, parties can securely compute the rational function5 (PS1 + · · ·+PSN

)/PS1 .
5 Again, we omit the randomization of the polynomials. Actually, without random-

ization, these methods (including [17]) are exactly the same as the technique for set
reconciliation problem in [28].
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By interpolating the rational function on any O(t) points, party P1 can recover
the denominator and compute the intersection.

The main difference between our protocol and the one in [17] is that we
replace the OLE calls used in [17] by a threshold additively homomorphic PKE
scheme (which can be seen as the multi-party replacement of OLE).

1.4 Other Related Work

Oblivious Linear Algebra. Cramer and Damg̊ard [9] proposed a constant-round
protocol to securely solve a linear system of unknown rank over a finite field.
Since they were mainly focused on round-optimality, the communication cost of
their proposal is Ω(t3) for O(t2) input size. Bouman et al. [5] recently constructed
a secure linear algebra protocol for multiple parties, however they focused on
computational complexity.

Other secure linear algebra schemes in the two-party setting were presented
by Nissim and Weinreb in [29] and Kiltz et al. in [24]. In the following, con-
sider (square) matrices of size t over a field F. These two works take different
approaches: [29] obliviously solves linear algebra related problems directly via
Gaussian elimination in O(t2) communication complexity, for a square matrix of
size t. However, their approach has an error probability that decreases polynomi-
ally with t. In other words, the error probability is only sufficiently small when
applied to linear system with large matrices. Whereas [24] has error probability
decreases polynomially with |F|, which is negligible when F is of exponentially
size.6

2 Preliminaries

If S is a finite set, then x ←$ S denotes an element x sampled from S according to
a uniform distribution and |S| denotes the cardinality of S. If A is an algorithm,
y ← A(x) denotes the output y after running A on input x. For N ∈ N, we
define [N ] = {1, . . . , N}.

Given two distributions D1,D2, we say that they are computationally indis-
tinguishable, denoted as D1 ≈ D2, if no probabilistic polynomial-time (PPT)
algorithm is able to distinguish them.

Throughout this work, we denote the security parameter by λ.

6 This is important to us since, in the threshols PSI setting, t � n where t is the
threshold and n is the set size. Kiltz et al. solve linear algebra problems via minimal
polynomials, and use adaptors between garbled circuits and additive homomorphic
encryption to reduce round complexity. In this work, we extend Kiltz’s protocol to
the multiparty case without using garbled circuits (otherwise the circuit size would
depend on number of parties) while preserving the same communication complexity
for each party (O(t2)).
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2.1 Threshold Public-Key Encryption

We present some ideal functionalities regarding threshold public-key encryption
(TPKE) schemes. In the following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret
key and the corresponding public key. That is, on input (sid,Pi), FGen outputs
(pk, ski) to each party party where (pk, sk1, . . . , skN ) ← TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each
of them holding a secret share ski, to learn if a ciphertext is an encryption of 0
and nothing else. That is, FDecZero receives as input a ciphertext c and the secret
shares of each of the parties. It outputs 0, if 0 ← Dec(sk, . . .Dec(skN , c) . . . ), and
1 otherwise. Note that these functionalities can be securely realized on varies
PKE schemes such as El Gamal PKE or Pailler7 PKE [21].

We also assume that the underlying TPKE (or plain PKE) is always addi-
tively homomorphic, unless stated otherwise (see Supplementary Material A.1).

2.2 UC Framework and Ideal Functionalities

In this work, we use the UC framework by Canetti [7] to analyze the security of
our protocols.8 Throughout this work, we only consider semi-honest adversaries,
unless stated otherwise. We denote the underlying environment by Z. For a
protocol π and a real-world adversary A, we denote the real-world ensemble by
EXECπ,A,Z Similarly, for an ideal functionality F and a simulator Sim, we denote
the ideal-world ensemble by IDEALF,Sim,Z .

Definition 1. We say that a protocol π UC-realizes F if for every PPT adver-
sary A there is a PPT simulator Sim such that for all PPT environments Z,

IDEALF,Sim,Z ≈ EXECπ,A,Z

where F is an ideal functionality.

In the following, we present some ideal functionalities that will be recurrent
for the rest of the paper.

Multi-party Threshold Private Set Intersection. This ideal functionality imple-
ments the multi-party version of the functionality above. Here, each of the N
parties input a set and they learn the intersection if and only if the intersection
is large enough.

7 We will assume the message space of Paillier’s cryptosystem as a field as also men-
tioned in [24].

8 We refer the reader to [7] for a detailed explanation of the framework.



40 P. Branco et al.

FMTPSI functionality

Parameters: sid, N, t ∈ N known to both parties.

– Upon receiving (sid,Pi, Si) from party Pi, FMTPSI stores Si and
ignores future messages from Pi with the same sid.

– Once FMTPSI has stored all inputs Si, for i ∈ [n], it does the fol-
lowing: If |S1 \ (∩N

i=2Si

) | ≤ t, FMTPSI outputs S∩ = ∩N
i=1Si. Else,

it outputs ⊥.

Externalized UC Protocol with Global Setup. We introduce a notion of
protocol emulation from [8], called externalized UC emulation (EUC), which is
a simplified version of UC with global setup (GUC).

Definition 2 (EUC-Emulation [8]). We say that π EUC-realizes F with respect
to shared functionality Ḡ (or, in shorthand, that π Ḡ-EUC-emulates φ) if for any
PPT adversary A there exists a PPT adversary Sim such that for any shared
functionality Ḡ, we have:

IDEALḠ
F,Sim,Z ≈ EXECḠ

π,A,Z

Notice that the formalism implies that the shared functionality Ḡ exists both
in the model for executing π and also in the model for executing the ideal protocol
for F , IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to
protocols that use several different shared functionalities (instead of only one).

2.3 Polynomials and Interpolation

We present a series of results that will be useful to analyze correctness and
security of the protocols presented in this work.

The following lemma show how we can mask a polynomial of degree less than
t using a uniformly random polynomial.

Lemma 1 ([25]). Let Fp be a prime order field, P (x), Q(x) be two polynomials
over Fp such that deg P = deg Q = d ≤ t and gcd(P,Q) = 1. Let R1, R2 ←$Fp

such that deg R1 = deg R2 = t. Then U(x) = P (x)R1(x) + Q(x)R2(x) is a
uniformly random polynomial with deg U ≤ 2t.

Note that this result also applies for multiple polynomials as long as they don’t
share a common factor (referring to Theorem 2 and Theorem 3 of [25] for more
details).

We say that f is a rational function if f(x) = P (x)
Q(x) for two polynomials P

and Q.
The next two lemmata show that we can recover a rational function via

interpolation and that this function is unique.
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Lemma 2 ([28]). Let f(x) = P (x)/Q(x) be rational function where deg P (x) =
m and deg Q(x) = n. Then f(x) can be uniquely recovered (up to constants) via
interpolation from m + n + 1 points. In particular, if P (x) and Q(x) are monic,
f(x) can be uniquely recovered from m + n points.

Lemma 3 ([28]). Choose V to be a support set9 of cardinality m1 + m2 +
1. Then, there is a unique rational function f(x) = P (x)/Q(x) that can be
interpolated from V , and P (x) has degree at most m1 and Q(x) has degree at
most m2.

3 Oblivious Degree Test for Rational Functions

Suppose we have a rational function f(x) = P (x)/Q(x) where P (x) and Q(x)
are two polynomials with the same degree. In this section, we present a protocol
that allows several parties to check if deg P (x) = deg Q(x) ≤ t for some threshold
t ∈ Z. To this end, and inspired by the works of [24,29], we present a multi-party
protocol to obliviously solve a linear system Mx = y over a finite field F with
communication complexity O(t2kλN), where M ∈ F

t×t, log |F| = k and N is
the number of parties involved in the protocol.

3.1 Oblivious Linear Algebra

In this section, we state the Secure Linear Algebra protocols that we need to build
our degree test protocol. For the sake of briefness, the protocols are presented in
Appendix B. These protocol all have the following form: There is a public key
of a TPKE that encrypts a matrix M and every party involved in the protocol
has a share of the secret key.

Note that if we let parties Pi input their encrypted matrix Enc(M), then
the ideal functionality F has to know the secret key (by receiving secret key
shares from all parties), otherwise F cannot compute the corresponding func-
tion correctly. However, this will cause an unexpected problem in security proof
as mentioned in our introduction and [1]: The environment Z will learn the
secret key as well since it can choose inputs for all parties. We fix this by rely-
ing on global UC framework where exists a shared functionality Ḡ in charge of
distributing key pairs (FGen from Sect. 2.1).

Oblivious Matrix Multiplication. We begin by presenting the ideal function-
ality for a multi-party protocol to jointly compute the product of two matrices,
under a TPKE. The protocol is presented in Appendix B.1.

9 A support set is a set of pairs (x, y).
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Ideal Functionality. The ideal functionality for oblivious matrix multiplication
is presented below.

FOMM functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,Ml),Enc(pk,Mr)) from party P1

(where Ml,Mr ∈ F
t×t), FOMM outputs Enc(pk,Ml ·Mr) to P1 and

(Enc(pk,Ml),Enc(pk,Mr),Enc(pk,Ml · Mr)) to all other parties
Pi, for i = 2, . . . , N .

Securely Compute the Rank of a Matrix. We present the ideal function-
ality to obliviously compute the rank of an encrypted matrix. The protocol is
presented in Appendix B.2.

Ideal Functionality. The ideal functionality of oblivious rank computation is
defined below.

FORank functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where
M ∈ F

t×t), FORank outputs Enc(pk, rank(M)) to P1 and
(Enc(pk,M),Enc(pk, rank(M)) to all other parties Pi, for i =
2, . . . , N .

Oblivious Linear System Solver. We now show how N parties can securely
solve a linear system using the multiplication protocol above. We follow the ideas
from [24] to reduce the problem to minimal polynomials, and the only difference
is we focus on multiparty setting.

The protocol is presented in Appendix B.5. Informally, we evaluate an arith-
metic circuit following the ideas of [10], and for the unary representation, a
binary-conversion protocol [37] is required. All of above protocols can be based
on Paillier cryptosystem.
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Ideal Functionality. We give an ideal functionality of oblivious linear system
solver for multiparty as follows.

FOLS functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q ,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,M),Enc(pk,y)) from party P1

(assuming there is a solution x for Mx = y), FOLS outputs
Enc(pk,x) such that Mx = y.

3.2 Oblivious Degree Test

We now present the main protocol of this section and the one that will be using
in the construction of threshold PSI. Given a rational function P (x)/Q(x) (for
two polynomials P (x) and Q(x) with the same degree) and two support sets
V1, V2, the protocol allows us to test if the degree of the polynomials is less than
some threshold t. Of course, we can do this using generic approaches like garbled
circuits. However, we are interested in solutions with communication complexity
depending on t (even when the degree of P (x) or Q(x) is much larger than t).

Ideal Functionality. The ideal functionality for degree test of rational functions
is presented below.

FSDT functionality

Parameters: sid, N, q, n, t ∈ N, F is a field of order q and t is a pre-
defined threshold, known to the N parties involved in the protocol.
pk public-key of a threshold PKE scheme. α1, . . . , α4t+2 ←$F known
to the N parties.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk, f1), . . . ,Enc(pk, f4t+2)) from party
P1 (where fi = P1(αi)/P2(αi), and P1, P2 are two co-prime polyno-
mials with same degree t′ (additionally, P2 is monic), FSDT outputs
0 if t′ ≤ t; otherwise it outputs 1.
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Protocol. We present the Protocol 1 for secure degree test which we denote by
secDT. The main idea of the protocol is to interpolate the rational function on
two different support sets and check if the result is the same in both experiments.

Recall that interpolating a rational function boils down to solve a linear
equation. We can thus use the secure linear algebra tools developed to allow the
parties to securely solve a linear equation.

Also recall that two rational functions C
(1)
v /C

(2)
v = C

(1)
w /C

(2)
w are equivalent

if C
(1)
v C

(2)
w − C

(1)
w C

(2)
v = 0. Thus, in the end, parties just need to securely check

if C
(1)
v C

(2)
w − C

(1)
w C

(2)
v is equal to 0.

Comments. Suppose that, for an interpolation point αi, the rational function
f(x) = P (x)/Q(x) is well-defined but Q(αi) = P (αi) = 0 such that we can-
not compute f(αi) by division. In this case12, the parties evaluate P̃ (x) =
P (x)/(x − αi) and Q̃(x) = Q(x)/(x − αi) on αi and set f(αi) = P̃ (αi)/Q̃(αi).
These points are called tagged values and this strategy is used in [28]. In
more details, instead of using Enc(pk, fi) for αi, we will use a tagged pair(
Enc

(
pk, s

(1)
i

)
,Enc

(
pk, s

(2)
i

))
where s

(1)
i = P1(αi)

x−αi
and s

(2)
i = P2(αi)

x−αi
. Corre-

spondingly, replace each row of Enc(pk,Mr) and Enc(pk,yr) with

Enc
(
pk,

[
s
(2)
i rt

i . . . s
(2)
i −s

(1)
i rt−1

i . . . −s
(1)
i

])

and Enc
(
pk,

[
s
(1)
i rt

i

])
, respectively.

Also, note that the protocol easily generalizes to rational functions f(x) =
P (x)/Q(x) with deg P �= deg Q (which is actually what we use in the follow-
ing sections). We present the version where deg P = deg Q for simplicity. In
fact, the case where deg P �= deg Q can be reduced to the presented case by
multiplying the least degree polynomial by a uniformly chosen R(x) of degree
max{deg P (x) − deg Q(X),deg Q(x) − deg P (x)}.

Moreover, if t′ > t, the linear system for rational interpolation might be
unsolvable. In this case, there is no solution which means we cannot interpolate
an appropriate rational function on certain support set. Therefore, the parties
just return 0.

Analysis. We analyze correctness, security and communication complexity of
the protocol. We begin the analysis with the following auxiliary lemma.

Lemma 4. Let F be a field with |F| = ω(2log λ). Let V = {(vi, f(vi))|∀i ∈
[1, 2t + 1]} and W = {(wi, f(wi))|∀i ∈ [1, 2t + 1]} be two support sets each of

10 Note that this is the linear system that we need to solve in order to perform rational
interpolation [28].

11 The polynomial multiplication can be expressed as matrix multiplication.
12 In the case that only Q(αi) = 0, use a different tagged pair (Enc(pk, s

(1)
i ),Enc(pk, 0)),

and this can be noticed by the party who owns polynomial Q(x). In our PSI setting,
it is party P1.
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Protocol 1 Secure Degree Test secDT
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOLS,
FOMM and FDecZero. The values {α1, . . . , α4t+2} ←$F

4t+2 are public, from which also
sampling a random point α∗ ←$ {α1, . . . , α4t+2}.

Input: Party P1 inputs {(α1,Enc(pk, f1)), . . . , (α4t+2,Enc(pk, f4t+2))}, where fi =
P1(αi)
P2(αi)

, where P1(x), P2(x) are two polynomials with degree deg(P1) = deg(P2) =

t′ = poly(log |F|) and such that P2(αi) �= 0 for all i ∈ [2t].
1: P1 sets {(αj ,Enc(pk, fj))}j∈[2t+1] = {(vj ,Enc(pk, fv,j))}j∈[2t+1], and

{(αj ,Enc(pk, fj))}j∈{2t+2,...,4t+2} = {(wj ,Enc(fw,j))}j∈[2t+1]. It homomorphically
generates an encrypted linear system consisting of

Enc(pk,Mr) = Enc

⎛
⎜⎝pk,

⎡
⎢⎣

rt
1 . . . 1 −fr,1 · rt−1

1 . . . −fr,1

...
...

...
...

rt
2t+1 . . . 1 −fr,2t+1 · rt−1

2t+1 . . . −fr,2t+1

⎤
⎥⎦

⎞
⎟⎠

and

Enc(pk,yr) = Enc

⎛
⎜⎝pk,

⎡
⎢⎣

fr,1 · rt
1

...
fr,2t+1 · rt

2t+1

⎤
⎥⎦

⎞
⎟⎠

for r = {v, w}.10 Here Mr is a square matrix with dimension 2t + 1 and yr a
2t + 1-sized vector.

2: All parties jointly compute Enc(pk, rank(Mr) − rank ([Mr||y]) for r ∈ {v, w}
through two invocations of FORank and mutually decrypt the ciphertext via FDecZero.
If the result is different from 0, they abort the protocol.

3: All parties mutually solve the two linear systems above using FOLS such that each

party gets Enc
(
pk,

(
c
(1)
v ||c(2)v

))
and Enc

(
pk,

(
c
(1)
w ||c(2)w

))
, where Mr

[
c
(1)
r

c
(2)
r

]
= yr,

for r ∈ {v, w}. Besides, c
(1)
r and c

(2)
r are t + 1- and t-sized vectors, respectively.

4: All parties compute the polynomials C
(1)
r (x) =

∑t
j=0 c

(1)
r,j xt−j , and C

(2)
r (x) = xt +∑t

j=1 c
(2)
r,j−1x

t−j , for r ∈ {v, w}, then compute

Enc(pk, z) = Enc(pk, C(1)
v (x) · C(2)

w (x) − C(1)
w (x) · C(2)

v (x))

by invoking FOMM.11 Here C
(b)
r (x) are evaluated on a random selected point

α∗ ←$ {α1, . . . , α4t+2}.
5: All parties jointly use FDecZero to check if z = 0. If it is, output 1. Otherwise, output

0.

them with 2t + 1 elements over a field F, with wi ←$F, and f(x) := P (x)
Q(x) is

some unknown reduced rational function (i.e., P (x), Q(x) are co-prime), where
deg(P ) = deg(Q) = t′ and t < t′ where t, t′ ∈ poly(λ). We also require Q(x)
to be monic (to fit in our application). Additionally, assume that Q(vi) �= 0 and
Q(wi) �= 0 for every i ∈ [2t + 1].
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If we recover two rational function fV (x), fW (x) by interpolation on V,W ,
respectively, then

Pr [fV (x) = fW (x)] ≤ negl(λ)

over the choice of vi, wi.

Proof. Let fV (x) = A(x)/B(x) the rational function recovered by rational
interpolation over the support set V and let f(x) = P (x)/Q(x) be the ratio-
nal function interpolated over any 2t′ + 1 interpolation points. We have that
fV (vi) = f(vi) for all i ∈ [2t + 1] and hence

A(vi)
B(vi)

=
P (vi)
Q(vi)

⇔ A(vi)Q(vi) = P (vi)B(vi).

Since gcd(P (x), Q(x)) = 1, then the polynomial P̃ (x) = A(x)Q(x) − P (x)B(x)
is different from the null polynomial (as deg(P ) = t′ > t = deg(A)). Moreover,
vi is a root of P̃ (x), for all i ∈ [2t + 1], and deg P̃ (x) ≤ t + t′ (which means that
P̃ (x) has at most t + t′ roots).

Analogously, let fW = C(x)/D(x) be the rational function resulting from
interpolating over the support set W and let Q̃(x) = C(x)Q(x)−D(x)P (x). We
have that Q̃(wi) = 0 for all i ∈ [2t + 1]. Hence, if fV (x) = fW (x), then we have
that the points wi are also roots of P̃ (x). But, since the points wi are chosen
uniformly at random from F (which is of exponential size when compared to
t, t′), then there is a negligible probability that all wi’s are roots of P̃ (x).

Concretely,

Pr [fV = fW ] ≤ Pr
[
P̃ (wi) = 0∀i[2t + 1]

]

=
2t+1∏

i

Pr
[
P̃ (wi) = 0

]
≤

(
deg P̃

|F|

)2t+1

which is negligible for |F| ∈ ω(2log λ). �

Theorem 1 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support
sets. Then, it checks if the two interpolated polynomials are the same by com-
puting

C(1)
v (x) · C(2)

w (x) − C(1)
w (x) · C(2)

v (x))

which should be equal to 0 if C
(1)
v (x)/C

(2)
v (x) = C

(1)
w (x)/C

(2)
w (x).

If t′ ≤ t, then by Lemma 3, there is a unique rational function can be recov-
ered thus the final output of the algorithm should be 1. On the other hand, if
t′ > t, the linear system can be either unsolvable or solvable but yielding two
different solutions with overwhelming probability by Lemma 4. In this case, the
protocol outputs 0. �
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Theorem 2. The protocol secDT EUC-securely realizes FSDT with shared ideal
functionality FGen in the (FORank,FOMM, FOLS,FDecZero)-hybrid model against
semi-honest adversaries corrupting at most N − 1 parties, given that TPKE is
IND-CPA.

Proof (Sketch). The simulator sends the corrupted parties’ input to the ideal
functionality and obtains the output (either 0 or 1). Then, it simulates the
ideal functionalities (FORank,FOMM,FOLS,FDecZero) so that the output in the real-
world execution is the same as in the ideal-world execution. In particular, the
simulator is able to recover the secret key shares via FORank,FOMM,FOLS and,
thus, simulate FDecZero in the right way.

Indistinguishability of executions holds given that TPKE is IND-CPA. �

Communication Complexity. When we instantiate FOLS with the protocol from
the previous section, the communication complexity of secDT is O(Nt2).

4 Multi-party Threshold Private Set Intersection

We present our protocol for Threshold PSI in the multi-party setting. Our pro-
tocol to privately compute the intersection can be seen as a generalization of
Ghosh and Simkin protocol [17] where we replace the OLE by a TPKE (which
fits nicer in a multi-party setting). The main difference between our protocol
and theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute a cardinality testing
between N sets. Then, we plug everything together in a PSI protocol.

4.1 Secure Cardinality Testing

Ideal Functionality. The ideal functionality for Secure Cardinality Testing
receives the sets from all the parties and outputs 1 if and only if the inter-
section between these sets is larger than some threshold. Else, no information is
disclosed. The ideal functionality for multi-party cardinality testing is given as
follows.

FMPCT functionality

Parameters: sid, N, n, t ∈ N known to both parties.

– Upon receiving (sid,Pi, Si) from party Pi, FMPCT stores Si and
ignores future messages from Pi with the same sid;

– Once FMPCT has stored all inputs Si, for i ∈ [N ], it does the
following: If |S∩| ≥ n − t, FMPCT outputs 1 to all parties, where
|S∩| = ∩N

i=1Si. Else, it returns 0.
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Protocol 2 Private Cardinality Test for Multi-party MPCT
Setup: Values α1, . . . , α4t+2 ←$F, threshold t ∈ N and N parties. Functionalities FGen

and FSDT, and a IND-CPA TPKE TPKE = (Gen,Enc,Dec).

Input: Each party P i inputs a set Si = {a
(1)
i , . . . , a

(n)
i } ∈ F

n.
1: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share

ski and a public key pk, which is known to every party involved in the protocol.

2: Each party Pi encodes its set as a polynomial Pi(x) =
∏n

j=1(x−a
(j)
i ) and evaluates

it on 4t + 2 points. That is, it computes Pi(α1), . . . , Pi(α4t+2). It encrypts the

points, that is, c
(j)
i ← Enc(pk, ri · Pi(αj)) for a uniformly chosen ri ←$F. Finally,

it broadcasts {c
(j)
i }j∈[4t+2].

3: Party P1 computes d(j) = (
∑N

i=1 c
(j)
i )/P1(αj) for each j ∈ [4t + 2]. Then, sends

{αi, d
(j)}j for every j, and sk1 to the ideal functionality FSDT.13 Each party Pi, for

i = 2, . . . , N , send ski to FSDT to check if the degree of the numerator (and the
denominator) is at most t.

4: Upon receiving b ∈ {0, 1} from the ideal functionality FSDT, every party outputs b.

Protocol. We introduce our multiparty Protocol 2 (based on degree test pro-
tocol). In the following, FGen be the ideal functionality defined in Sect. 2.1 and
FSDT be the functionality defined in Sect. 3.2.

Analysis. We now proceed to the analysis of the protocol described above.

Lemma 5. Given n characteristic polynomials with same degree from F[x],
denoted as P1(x), . . . , Pn(x), we argue that, for any j, P ′(x) =

∑n
i=1 ri·Pi(x) and

Pj(x) are relatively prime with probability 1 − negl(log |F|) if P1(x), . . . , Pn(x)
are mutually relatively prime, where ri ←$F is a uniformly random element.

Proof. Supposing there is a common divisor of two polynomials P ′(x) and Pj(x),
since Pj(x) is a characteristic polynomial, we denote (x−s) the common divisor.
Therefore, we have P ′(s) = 0 which can be represented as

∑n
i=1 ri · Pi(s) = 0.

However, from the mutually relative primality of P1(x), . . . , Pn(x), we know
that Pi(s) cannot be zero simultaneously which means there exists at least one
i∗ to make Pi∗(s) �= 0. Moreover, ri are all sampled uniformly from F, the
weighted sum of ri will not be zero with all but negligible probability. This is
a contradiction. Therefore, P ′(x) and Pj(x) will share a common divisor only
with negligible probability. �

Theorem 3 (Correctness). The protocol MPCT described above is correct.

Proof. Note that the encryption d(j) computed by party P1 are equal to

d(j) = Enc

(

pk,

(
N∑

i=1

ri · Pi(αj)

)

/P1(αj)

)

.

13 Here, FSDT has shared functionality FGen.
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Also, observe that

∑N
i=1 ri · Pi(αj)

P1(αj)
=

P∩iSi
(αj) · ∑N

i ri · PSi\(∩k �=iSk)(αj)
P∩iSi

(αj) · PS1\(∩k �=1Sk)

=

∑N
i ri · PSi\(∩k �=iSk)(αj)
PS1\(∩k �=1Sk)(αj)

,

in this way, we make the numerator and denominator relatively prime except
with negligible probability by Lemma 5.

Observe that deg
∑N

i ri · PSi\(∩k �=iSk)(x) ≤ t and deg PS1\(∩k �=1Sk)(x) ≤ t if
and only if S∩ ≥ n − t. Hence, by the correctness of FSDT, the protocol outputs
1 if S∩ ≥ n − t, and 0 otherwise. �

Theorem 4. The protocol MPCT securely realizes functionality FMPCT in the
(FGen,FSDT)-hybrid model against any semi-honest adversaries corrupting up to
N − 1 parties, given that TPKE is IND-CPA.

Proof. Assume that the adversary is corrupting N − k parties in the protocol,
for k = 1, . . . , N − 1. The simulator creates the secret keys and the public key of
a threshold PKE in the setup phase while simulating FGen and distributes the
secret keys between every party. The simulator Sim takes the inputs (which are
sets of size n, say Si1 , . . . , SiN−k

) of the corrupted parties and send them to the
ideal functionality FMPCT. It receives the output b from the ideal functionality. If
b = 0, the simulator chooses k uniformly chosen sets such that | ∩N

i=1 Si| < n − t
and proceed the simulation as the honest parties would do. If b = 1, the simulator
chooses k uniformly chosen random sets such that | ∩N

i=1 Si| ≥ n− t and proceed
the simulation as the honest parties would do. Note that it can simulate the
ideal functionality FSDT since it knows all the secret keys of the threshold PKE.

Indistinguishability of executions follows immediately from the IND-CPA
property of the underlying threshold PKE scheme. �

Communication Complexity. When we instantiate the FSDT with the protocol
from the previous section, each party broadcasts Õ(t2). Hence, the total com-
munication complexity is Õ(Nt2), assuming a broadcast channel.

4.2 Multi-party Threshold Private Set Intersection Protocol

In this section, we extend Ghosh and Simkin protocol [17] to the multi-party
setting using TPKE. We make use of the cardinality testing designed above to
get the Protocol 3.

Analysis. We now proceed to the analysis of the protocol described above. We
start by analyzing the correctness of the protocol and then its security.

Theorem 5 (Correctness). The protocol MTPSI is correct.
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Protocol 3 Multi-Party Threshold PSI MTPSI
Setup: Given public parameters as follows: Values α1, . . . , α3t+1 ←$F, threshold t ∈ N

and N parties. Functionalities FGen and FMPCT, and a threshold additively PKE
TPKE = (Gen,Enc,Dec).

Input: Each party Pi inputs a set Si = {a
(1)
i , . . . , a

(n)
i } ∈ F

n.
1: Each party Pi sends its set Si to FMPCT. If the functionality FMPCT outputs 0, then

every party Pi outputs ⊥ and terminates the protocol.
2: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share

ski and a public key pk, which is known to every party involved in the protocol.
3: for all Party Pi do
4: It encodes its set as a polynomial Pi(x) =

∏n
j=1(x − a

(j)
i ) and evaluates it on

3t + 1 points. That is, it computes Pi(α1), . . . , Pi(α3t+1).
5: It samples Ri(x) ←$F[x] such that deg Ri(x) = t.

6: It encrypts these points using pk, that is, it computes c
(j)
i = Enc(pk, Ri(αj) ·

Pi(αj)) for every j ∈ [3t + 1].

7: It broadcasts {c
(j)
i }j∈[3t+1].

8: end for
9: Party P1 adds the ciphertexts to get d(j) =

∑N
i c

(j)
i for each j ∈ [3t + 1]. It

broadcasts {d(j)}j∈[3t+1].

10: They mutually decrypt {d(j)}j∈[3t+1] to learn V (j) ← Dec(sk, d
(j)
N ) for j ∈ [3t+1].

11: P1 computes the points Ṽ (j) = V (j)/P1(αj) for j ∈ [3t + 1].
12: P1 interpolates a rational function using the pairs of points (αj , Ṽ

(j)).
13: P1 recovers the polynomial PS1\(∩iSi)(x) in the denominator.

14: P1 evaluates PS1\∩iSi
(x) on every point of its set {a

(1)
1 , . . . , a

(n)
1 } to compute ∩iSi.

That is, whenever PS1\∩iSi
(aj

1) �= 0, then aj
1 ∈ ∩iSi.

15: It broadcasts the output ∩iSi.

Proof. Assume that |S1 \ (∩N
i=2Si

) | ≤ t (note that this condition is guaranteed
after resorting to the functionality FMPCT in the first step of the protocol). After
the execution of the protocol, party P1 obtains the points V (j) =

∑N
i Pi(αj) ·

Ri(αj). Then,

Ṽ (j) =
V (j)

P1(αj)
=

∑N
i Pi(αj) · Ri(αj)

P1(αj)

=
P∩iSi

(αj) · ∑N
i PSi\(∩k �=iSk)(αj) · Ri(αj)

P∩iSi
(αj) · PS1\(∩k �=1Sk)(αj)

=

∑N
i PSi\(∩k �=iSk)(αj) · Ri(αj)

PS1\(∩k �=1Sk)(αj)
.

Since P1 has 3t + 1 evaluated points of the rational function above, then it
can interpolate a rational function to recover the polynomial PS1\(∩k �=1Sk). This
is possible because of Lemma 2 and the fact that

deg

(
N∑

i

PSi\(∩k �=iSk)(αj) · Ri(αj)

)

≤ 2t and deg
(
PS1\(∩k �=1Sk)(αj)

) ≤ t.
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Having computed the polynomial PS1\(∩k �=1Sk), party P1 can compute the
intersection because the roots of this polynomial are exactly the elements in
S1 \ (∩k �=1Sk). �

Theorem 6. The protocol MTPSI securely realizes functionality FMTPSI in the
(FGen,FMPCT)-hybrid model against any semi-honest adversary corrupting up to
N − 1 parties.

Proof. Let A be an adversary corrupting up to k parties involved in the protocol,
for any k ∈ [N −1]. Let Pi1 , . . . ,Pik

be the corrupted parties. The simulator Sim
works as follows:

1. It sends the inputs of the corrupted parties, Si1 , . . . , Sik
, to the ideal func-

tionality FMTPSI. Sim either receives ⊥ or ∩iSi from the ideal functionality
FMTPSI.

2. Sim waits for A to send the corrupted parties’ inputs to the ideal functionality
FMPCT. If Sim has received ⊥ from FMPCT, then Sim leaks 0 to A (and Z)
and terminates the protocol. Else, Sim leaks 1 and continues.

3. Sim waits for A to send a request (sid, requestij
) for each of the corrupted

parties (that is, for j ∈ [k]) to FGen. Upon receiving such requests, Sim gen-
erates (pk, sk1, . . . , skN ) ← Gen(1λ, N) and returns (pk, skij

) for each of the
requests.

4. For each party P� such that � �= ij (where j ∈ [k]), Sim picks a random
polynomial U�(x) of degree n−|∩iSi|+t and sends Enc(pk, R�(αj)·P∩iSi

(αj)·
U�(αj)), where R�(x) is chosen uniformly at random such that deg R�(x) = t.
From now on, Sim simulates the dummy parties as in the protocol.

We now argue that both the simulation and the real-world scheme are indis-
tinguishable from the point-of-view of any environment Z. In the real-world
scheme, party P1 obtains the polynomial

V (x) = P∩iSi
(x) ·

N∑

i

PSi\(∩k �=iSk)(x) · Ri(x)

evaluated in 3t + 1 points. Assume that P1 is corrupted by A. Even in this
case, there is an index � for which A does not know the polynomial R�(x). More
precisely, we have that

V (x) = P∩iSi
(x) ·

⎛

⎝

⎛

⎝
∑

i�=�

PSi\(∩k �=iSk)(x) · Ri(x)

⎞

⎠ + PS�\(∩k �=�Sk)(x) · R�(x)

⎞

⎠ .

First, note that

deg

⎛

⎝
∑

i�=�

PSi\(∩k �=iSk)(x) · Ri(x)

⎞

⎠ = deg PS�\(∩k �=�Sk)(x) · R�(x)

= n − | ∩i Si| + t ≤ 2t.
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Moreover, we have for any i ∈ [N ] that deg PSi\(∩k �=iSk) ≤ t, deg Ri(x) = t

and gcd
(
PSi\(∩k �=iSk), PSj\(∩k �=jSk)

)
= 1 for any j �= i. Hence, by Lemma 1,

we can build a sequence of hybrids where we replace V (x) by the polynomial
V ′(x) = P∩iSi

(x) · U(x), where deg U(x) = n − | ∩i Si| + t, as in the ideal-world
execution. Indistinguishability of executions follows. �

Communication Complexity. When we instantiate the ideal functionality FMPCT

with the protocol from the previous section the scheme has communication com-
plexity Õ(Nt2).
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A Preliminaries Cont’d

A.1 Threshold Public-Key Encryption

In this work, we will use Public-Key Encryption schemes and a variant of it:
Threshold Public-key Encryption. We now define Threshold Public-key Encryp-
tion. Such schemes can be instantiated from several hardness assumptions such
as DDH, DCR or pairing-based assumptions [21].

Definition 3 (Threshold Public-Key Encryption). A Threshold Public-Key
Encryption (TPKE) scheme is defined by the following algorithms:

– (pk, sk1, . . . , skN ) ← Gen(1λ, N) takes as input a security parameter. It out-
puts a public key pk and N secret keys (sk1, . . . , skN ).

– c ← Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗. It
outputs a ciphertext c.

– c′ ← Dec(ski, c) takes as input one of the secret keys ski and a ciphertext. It
outputs a share decryption c′ of c.

Correctness. For any N ∈ N and any permutation π : [N ] → [N ], we have that

Pr
[
m ← Dec(skπ(N),Dec(skπ(N−1), . . .Dec(skπ(1),Enc(pk,m)) . . . ))

]
= 1

where (pk, sk1, . . . , skN ) ← Gen(1λ, N).



Multiparty Cardinality Testing for Threshold Private Intersection 53

IND-CPA Security. For any N ∈ N, any permutation π : [N ] → [N ] and any
adversary A, we require that

Pr

⎡

⎢
⎢
⎢
⎣

b ← A(c, st) :

(pk, sk1, . . . , skN ) ← Gen(1λ, N)
(m0,m1, st) ← A

(
pk, skπ(1), . . . , skπ(k)

)

b ←$ {0, 1}
c ← Enc(pk,mb)

⎤

⎥
⎥
⎥
⎦

≤ negl(λ)

for any k < N .

Additive Homomorphism. We also assume that the TPKE (or plain PKE) is
homomorphic for additive operation.14 That is, for all (pk, sk1, . . . , skN ) ←
Gen(1λ, N), we can define two groups (M,⊕), (C,⊗) such that, given two cipher-
texts c1 ← Enc(pk,m1) and c2 ← Enc(pk,m2), we require that

c1 ⊗ c2 = Enc(pk,m1 ⊕ m2).

By abuse of notation, we usually denote the operations of M and C as +.

A.2 Linear Algebra

We first introduce minimal polynomials of a sequence and of a matrix. Then we
present how they can be used to solve linear algebra related problems.

Minimal Polynomial of a Matrix. The minimal polynomial of a sequence a
is the least degree polynomial m such that 〈m〉 = Ann(a) where Ann(a) is the
annihilator ideal of a (that is, the ideal such that every element f of Ann(a)
satisfies f · a = 0).

Lemma 6 (Lemma 3 in [24]). Let A ∈ F
n×n and let mA be the minimal

polynomial of matrix A. For u,v ←$F
n, we have mA = ma′ with probability at

least 1−2 deg(mA)/|F|, where a′ = (uTAiv)i∈N. Moreover, ma′ can be calculated
using a Boolean circuit of size O(nk log n log k log log k) where k = log |F|.

Compute the Rank of a Matrix and Solve a Linear System

Lemma 7 ([23]). Let A ∈ F
n×n of (unknown) rank r. Let U and L be randomly

chosen unit upper triangular and lower triangular Toeplitz matrices in F
n×n, and

let B = UAL. Let us denote the i×i leading principal of B by Bi. The probability
that det(Bi) �= 0 for all 1 ≤ i ≤ r is greater than 1 − n2/|F|.
Lemma 8 ([23]). Let B ∈ F

n×n with leading invertible principals up to Br

where r is the (unknown) rank of B. Let X be a randomly chosen diagonal matrix
in F

n×n. Then, r = deg(mXB) − 1 with probability greater than 1 − n2/|F|.
14 From now on, we always assume that PKE and TPKE used in this work fulfill this

property, unless stated otherwise.
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B Oblivious Linear Algebra

B.1 Oblivious Matrix Multiplication

Protocol. The following Protocol 4 allows several parties to jointly compute the
(encrypted) product of two encrypted matrices. Note that the protocol can also
be used to compute the encryption of the product of two encrypted values in F.

Protocol 4 Secure Multiplication secMult
Setup: Each party Pi has a secret share ski of a secret key for a public key pk of a

TPKE scheme TPKE = (Gen,Enc,Dec).
Input: Party P1 inputs Enc(pk,Ml) and Enc(pk,Mr), where Ml,Mr ∈ F

t×t.
Goal: Every one knows the product Enc(Ml · Mr).

1: for all party Pi do
2: It samples two random matrices R

(i)
l ,R

(i)
r ←$F

t×t.

3: It computes c
(i)
l = Enc(pk,R

(i)
l ), c

(i)
l = Enc(pk,R

(i)
r ), d

(i)
r = Enc(pk,Ml · R(i)

r ),

d
(i)
l = Enc(pk,R

(i)
l · Mr).

4: It broadcasts {c
(i)
l , c

(i)
r , d

(i)
l , d

(i)
r }.

5: end for
6: Each party Pi computes c̃(i) = Enc(pk,

∑
j �=i R

(i)
l · R(j)

r ) (using c
(j)
r and R

(i)
l ) and

broadcasts c̃(i).
7: All parties mutually decrypt i) Enc(M′

l) := Enc(pk,Ml) +
∑

j c
(j)
l (to obtain M′

l ∈
F

t×t), ii) Enc(M′
r) := Enc(pk,Mr) +

∑
j c

(j)
r (to obtain M′

r ∈ F
t×t)

8: for all party Pi do
9: It computes d̃ = Enc(pk,M′

l · M′
r).

10: It outputs e = d̃ − ∑
j d

(j)
l − ∑

j d
(j)
r − ∑

j c̃(j)

11: end for

Analysis. We proceed to the analysis of the protocol described above.

Lemma 9 (Correctness). The protocol secMult is correct.

Proof The correctness is straightforward. �

Lemma 10 (Security). The protocol secMult securely EUC-realizes FOMM with
shared ideal functionality FGen against semi-honest adversaries corrupting up to
N − 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). Assume that the adversary corrupts N−k parties. The simulator
takes the inputs from these parties and send them to the ideal functionality. Upon
receiving the encrypted value Enc(pk,Ml ·Mr), it simulates the protocol as the
honest parties would do.

We now prove that no set of at most N − 1 colluding parties can extract
information about Ml,Mr. First, observe that any set of N − 1 parties cannot
extract any information about encrypted values that are not decrypted during
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the protocol (because there is always a missing secret key share) given that TPKE
is IND-CPA. Second, we analyze the matrix M′

l (which is decrypted during the
protocol). We have that M′

l = Ml +
∑

j R
(j)
l . Hence, there is always at least

one matrix R(�)
l which is unknown to the adversary and that perfectly hides the

matrix Ml (the same happens M′
r. �

Complexity. The communication complexity of the protocol is dominated by the
messages carrying the (encrypted) matrix. Hence, assuming a broadcast chan-
nel between the parties, the protocol has communication complexity of O(Nt2)
where t is the size of the input matrices and N the number of parties involved
in the protocol.

B.2 Compute the Rank of a Matrix

Protocol. We present this protocol in the full version of this paper in [6].

Complexity. Each party broadcasts O(t2k log t) bits of information, where k =
log |F|. To see this, note that the communication of the protocol is dominated
by the computation of the circuit that computes the degree of a and this can be
implemented with communication cost of O(t2k log t) [24]. Assuming a broadcast
channel, the communication complexity is Õ(Nt2).

B.3 Invert a Matrix

In this section, we present and analyze a protocol that allows N parties to invert
an encrypted matrix. In this setting, each of the N parties holds a secret share
of a public key pk of a TPKE. Given an encrypted matrix, they want to compute
an encryption of the inverse of this matrix.

Ideal Functionality. The ideal functionality of oblivious rank computation is
defined below.

FOInv functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol. pk public-key of a threshold
PKE scheme.

– Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where M ∈
F

t×t is a non-singular matrix), FORank outputs Enc(pk,M−1) to
P1 and (Enc(pk,M),Enc(pk,M−1)) to all other parties Pi, for i =
2, . . . , N .

Protocol. This protocol allows N parties to jointly compute the encryption of
the inverse of a matrix, given that this matrix is non-singular. Please refer to
the full version of this paper in [6] to see details.
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Analysis. The proofs of the following lemmas follow the same lines as the proofs
in the analysis of secMult protocol. We state the lemmas but omit the proofs for
briefness.

Lemma 11. The protocol secInv is correct.

Lemma 12. The protocol secInv securely EUC-realizes FOInv with shared ideal
functionality FGen against semi-honest adversaries corrupting up to N−1 parties,
given that TPKE is IND-CPA.

Complexity. Each party broadcasts O(t2) bits of information. The communica-
tion complexity of the protocol is O(Nt2), assuming a broadcast channel.

B.4 Secure Unary Representation

Following [24], we present a protocol that allows to securely compute the unary
representation of a matrix.

Ideal Functionality. The ideal functionality for Secure Unary Representation is
given below.

FSUR functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol. pk public-key of a threshold
PKE scheme.

– Upon receiving (sid,P1,Enc(pk, r)) from party P1 (where r ∈
F and r ≤ t), FSUR computes (Enc(pk, δ1), . . . ,Enc(pk, δt))
such that δi = 1 if i ≤ r, and δi = 0 otherwise. The
functionality outputs (Enc(pk, δ1), . . . ,Enc(pk, δt)) to P1 and
(Enc(pk, r), (Enc(pk, δ1), . . . ,Enc(pk, δt))) to all other parties Pi,
for i = 2, . . . , N .

Protocol. A protocol for secure unary representation can be implemented with
the help of a binary-conversion protocol [37]. That is, given Enc(pk, r), all parties
jointly compute Enc(pk, δi), where δi = 1, if i ≤ r, and δi = 0 otherwise, via a
Boolean circuit (which can be securely implemented based on Paillier cryptosys-
tem).

Communication Complexity. We can calculate the result using a Boolean circuit
of size O(r log t), thus the communication complexity is O(Nr log t).
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Protocol 5 Secure Linear Solve secLS
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOInv

and FSUR.
Input: Party P1 inputs Enc(pk,M) where M ∈ F

t×t is a non-singular matrix.
1: All parties jointly compute an encryption of the rank Enc(pk, r) of M via the ideal

functionality FORank.
2: Set Enc(pk,M′) := Enc(pk,M) and Enc(pk,y′) := Enc(pk,y).
3: for i from 1 to N do
4: Pi samples two non-singular matrices Ri,Qi from F

t×t. It calculates
Enc(pk,M′) = Enc(pk,RiM

′Qi) and Enc(pk,y′) = Enc(pk,Riy
′). Pi broadcasts

Enc(pk,M′),Enc(pk,y′).
5: end for
6: All the parties jointly compute Enc(δ1), . . . ,Enc(δt) by invoking FSUR on input

Enc(pk, r). They set Enc(pk, Δ) := Enc

⎛
⎜⎝pk,

⎡
⎢⎣

δ1 . . . 0
...

. . .
...

0 . . . δt

⎤
⎥⎦

⎞
⎟⎠. Finally, they compute

Enc(pk,N) := Enc(pk,M′ · Δ + It − Δ), where It ∈ F
t×t is the identity matrix.

7: All the parties jointly compute Enc(N−1) by invoking FOInv on input Enc(pk,N).
8: Each party Pi samples ui ←$F

t and broadcasts (Enc(pk,M′ui),Enc(pk,ui)).
9: All parties jointly compute Enc(pk,u′) = Enc(pk,N−1y′

r) by invoking FOMM,
where Enc(pk,y′

r) = Enc(pk, (y′ +
∑

j M
′uj)Δ). Then they set Enc(pk,x) =

Enc(pk, (
∑

j uj) − u′).
10: for i from N to 1 do
11: Pi calculates Enc(pk,x) = Enc(pk,Q−1

i x). Pi broadcasts Enc(pk,x).
12: end for
13: P1 outputs Enc(pk,x).

B.5 Solve a Linear System

Protocol. We now present the Protocol 5 that allows multiple parties to solve
an encrypted linear system. In the following, we assume that the system has at
least one solution (note that this can be guaranteed using the secRank protocol).

Lemma 13 (Correctness). The protocol secLS is correct.

Proof. The proof follows directly from [23,24]. �
Lemma 14. The protocol secLS securely EUC-realizes FOLS with shared ideal
functionality FGen in the (FORank,FOInv,FSUR)-hybrid model against semi-honest
adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Communication Complexity. Each party broadcasts O(t2k log t) bits of informa-
tion where k = |F|. The total communication complexity is Õ(t2).

References

1. Badrinarayanan, S., Miao, P., Raghuraman, S., Rindal, P.: Multi-party threshold
private set intersection with sublinear communication. In: PKC 2021 (2021)



58 P. Branco et al.

2. Berke, A., Bakker, M., Vepakomma, P., Larson, K., Pentland, A.S.: Assessing dis-
ease exposure risk with location data: a proposal for cryptographic preservation of
privacy (2020). https://arxiv.org/abs/2003.14412

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

5. Bouman, N.J., de Vreede, N.: New protocols for secure linear algebra: pivoting-
free elimination and fast block-recursive matrix decomposition. IACR Cryptology
ePrint Archive 2018/703 (2018)
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Abstract. Verifiable random functions (VRFs), introduced by Micali,
Rabin and Vadhan (FOCS’99), are the public-key equivalent of pseudo-
random functions. A public verification key and proofs accompanying the
output enable all parties to verify the correctness of the output. How-
ever, all known standard model VRFs have a reduction loss that is much
worse than what one would expect from known optimal constructions of
closely related primitives like unique signatures. We show that:
1. Every security proof for a VRF that relies on a non-interactive

assumption has to lose a factor of Q, where Q is the number of adver-
sarial queries. To that end, we extend the meta-reduction technique
of Bader et al. (EUROCRYPT’16) to also cover VRFs.

2. This raises the question: Is this bound optimal? We answer this ques-
tion in the affirmative by presenting the first VRF with a reduction
from the non-interactive qDBDHI assumption to the security of VRF
that achieves this optimal loss.

We thus paint a complete picture of the achievability of tight verifiable
random functions: We show that a security loss of Q is unavoidable and
present the first construction that achieves this bound.

1 Introduction

Verifiable Random Functions (VRFs), introduced by Micali, Rabin and Vad-
han in [41], can be thought of as the public key equivalent of pseudorandom
functions (PRFs). That is, a secret key sk always comes together with a public
verification key vk. The secret key sk allows the evaluation of the verifiable ran-
dom function Fsk(X) on input X and obtain the pseudorandom output Y . In
contrast to pseudorandom functions, however, a verifiable random function also
produces a non-interactive proof of correctness π. Together with vk, the proof π
allows everyone to verify that Y is the output of Fsk(X). We require two security
properties from VRFs: unique provability and pseudorandomness. Unique prov-
ability means that for every verification key vk and every VRF input X, there
is a unique Y for which a proof π exists such that the verification algorithm
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accepts. However, note that there might be multiple valid proofs π verifying the
correctness of Y with respect to vk and X. Further, we (informally) say that a
VRF is pseudorandom if there is no efficient adversary that can distinguish a
VRF output without the accompanying proof from a uniformly random element
of the range of the VRF. In addition to these properties, Hofheinz and Jager
introduced the notion of VRFs with all desired properties [27]. Namely, we say
that a VRF possesses all desired properties if it fulfills all requirements above,
has an exponentially sized domain, is secure even in presence of an adaptive the
adversary is proven secure under a non-interactive complexity assumption. In
this work, we only consider VRFs that have all desired properties.

Applications of VRFs. VRFs have found a wide range of applications in the-
ory in practice. One of the most notable ones is the recent application of VRFs
in proof of stake consensus mechanisms, like the ones used in the Algorand
Blockchain [23], the Cardano Blockchain [6,21] and the DFINITY Blockchain [4].
Further applications are in key transparency systems like CONIKS [40], where
VRFs prevent the enumeration of all users that have keys in the system. Sim-
ilarly, VRFs are used in the proposed DNSSEC extension NSECv5 [49], where
they provably prevent zone enumeration attacks in the authenticated denial of
existence mechanism of DNSSEC [24].

Tightness. Following the reductionist approach to security, we relate the dif-
ficulty of breaking the security of a cryptographic scheme to the difficulty of
solving an underlying hard problem. Let λ be the security parameter and con-
sider a reduction showing that any adversary that breaks the security of a cryp-
tographic scheme in time t(λ) with probability ε(λ) implies an algorithm that
solves the underlying hard problem with probability ε′(λ) in time t′(λ) with
t′(λ) ≥ t(λ) and ε′(λ) ≤ ε(λ). We then say that the reduction loses a factor �(λ)
if t′(λ))/ε′(λ) ≥ �(λ)t(λ)/ε(λ) for all λ ∈ N. We say that a reduction is tight if �
is a constant, i.e. if the quality of the reduction does not depend on the security
parameter.

The loss of a reduction is of particular practical importance when deciding
on the key sizes to use for cryptographic schemes. For simplicity, assume that we
have a reduction with ε′(λ) = ε(λ) and t′(λ) = �(λ)t(λ) and let topt(λ) denote the
time the fastest algorithm takes to solve an instance of the hardness assumption.
Then, if we want to rule out the existence of an adversary that breaks the security
of the scheme faster than tadv, we have to choose the security parameter large
enough such that topt(λ)/�(λ) ≥ tadv. Hence, if � is large, then λ has to be rather
large in order to guarantee that any adversary that breaks the security of the
scheme has runtime at least tadv. However, a large security parameter also implies
large keys, which negatively affects the real-world efficiency of the scheme. On
the positive side, this means that if we are able to construct a tight reduction,
this allows us to use small key sizes and guarantee security against all adversaries
with runtime at most tadv. This approach to security is also known as concrete
security and is more thoroughly discussed in [8].
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Impossibility of Tight Reductions. Unfortunately, we know that tight reduc-
tions can not exist for some primitives. Coron presented the first result of this
kind in 2002 for unique signatures [19], in which he showed that every secu-
rity reduction for unique signatures loses at least a factor of ≈ Q, where Q is
the number of adaptive signature queries made by the forger. He achieved this
result by introducing the meta-reduction technique. That is, one shows that a
tight reduction can not exist by proving that any tight reduction would be able
to solve the underling hard problem without the help of an adversary. Subse-
quently, the technique has been successfully used to prove the same lower bound
for the loss of security reductions for efficiently re-randomizable signatures by
Hofheinz et al. [28] and later on to an even wider classes of primitives by Bader
et al. [5]. Most recently the Coron’s technique has been extended by further
works. First, Morgan and Pass extended Coron’s technique to also incorporate
interactive complexity assumptions and reductions that execute several instances
of an adversary in parallel. However, since the result applies to a wider class of
reductions and complexity assumptions, the lower bound on the loss is only

√
Q

instead of Q. Then Morganet al. applied the technique to MACs and PRFs [43].
Even though VRFs are closely related to unique signatures, none of the lower

bounds on the loss mentioned above applies to VRFs in general because the
non-interactive proofs of VRFs do not need to be unique, nor do they need to
be re-randomizable. For example, the VRF by Bitansky does not have unique
proofs [10]. Hence, in contrast to a remark in [42], a VRF does not immediately
imply a unique signature, but only a signature with a unique component.

Circumventing Tightness Lower Bounds. Despite all the lower bounds on the
loss of reductions to the security of unique signatures, Guo et al. showed in [25]
that reductions circumventing the lower bounds are possible by making heavy
use of the programmability of a random oracle. However, this technique is only
applicable in the random oracle model and can not be adapted in the standard
model to the best of our knowledge.

Moreover, the tightness lower bounds have also been circumvented in the
standard model by making the signatures non-randomizable [2,11,20,26,37,47].
Kakvi and Kiltz even describe a tightly secure unique signature scheme by using
a public key in the reduction that allows for non-unique signatures and is indis-
tinguishable from an honestly generated public key [35].

Furthermore, for identity based encryption – a primitive that is closely related
to VRFs [1] – Wee and Chen [17] describe a scheme that can proven secure
with a reduction whose loss depends only on the security parameter and not
on the number of queries made by the adversary. In 2016, Boyen and Li then
presented the first tightly secure construction in [16]. Similar to our approach
in this work, they homomorphically evaluate a pseudorandom function in the
reduction. However, they use it in order to apply the technique of Katz and
Wang to construct tightly secure signatures by making the signatures non-re-
randomizable [37].

However, the techniques above are not applicable to VRFs. Replacing the
verification with an indistinguishable verification key that allows for non-unique
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signatures is not possible due to the strong uniqueness requirement. Moreover,
our meta reduction makes no assumptions about the re-randomizability of the
proof of correctness produced by a VRF evaluation. Hence, making the proofs of
correct evaluation non-rerandomizable can not allow for tighter reductions. Thus,
to the best of our knowledge the only avenues to achieve tighter reductions for
VRFs would be either to use the random oracle model, to prove the security from
an interactive assumption or to use a reduction that can run several instances
of an adversary in parallel. However, for the latter two approaches, it seems
unlikely to achieve a loss better than

√
Q due to the lower bound by Morgan

and Pass [42].

Our Contributions. In this paper, we study the tightness of reductions from non-
interactive complexity assumptions to the security of verifiable random functions.

1. We first extend the lower bound for the loss of re-randomizable signatures
from Bader et al. [5] to verifiable unpredictable functions (VUFs), which dif-
fer from VRFs in that the output only has to be unpredictable instead of
pseudorandom. Since this is a weaker requirement, the theorem for VUFs also
implies the same bound for reductions to the security of VRFs. Concretely,
we prove that any reduction from a non-interactive complexity assumption
to the unpredictability of a VUF loses a factor of at least Q.

2. We present a VRF and a reduction from the non-interactive q-DBDHI assump-
tion to the adaptive pseudorandomness of the VRF that achieves this bound.
The VRF is based on the VRF by Yamada [51,52].

1.1 Notation

We introduce some notation before giving a technical overview of our work. For
this, let a, b, c ∈ N with a ≤ b ≤ c. We then let [c] := {1, . . . , c}. Analogously,
we let [a, c] := {a, . . . , c} and [c \ b] := [c] \ {b}. Also, for any finite set S, we
denote drawing a uniformly random element y from S by y

$←S. Further, for a
probabilistic algorithm A that uses k bits of randomness and takes some input
x, we write A(x; ρA) for the execution of A on input x with fixed random bits
ρA ∈ {0, 1}k. Analogously, we write a

$←A(x) for executing A on input x with
uniformly random bits and assigning the result to a. Finally, we will view the time
to execute the security experiment as part of the runtime of an adversary that
is executed in the security experiment. We do so as to not worsen the runtime
of a reduction by accounting it runtime for simulating the security experiment
for the adversary.

1.2 Technical Overview

Before presenting our results, we give a short overview over our techniques below.
We first describe how we prove the lower bound for the loss of VRFs and then
describe our construction attaining this bound.
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Adversary A
(simulated by

Meta-Reduction B)

Reduction Λ

Meta Reduction B
Problem instance

Solution

Problem instance

Solution

Fig. 1. The meta-reduction technique of Coron [19].

Bounding the Tightness of VRFs. We first extend the meta-reduction of Bader
et al. to VRFs and thus show that any reduction from a non-interactive com-
plexity assumption to the security of a VRF necessarily loses a factor of at least
Q, where Q is the number of queries made by the adversary. The results by
Bader et al. do not cover VRFs and VUFs because their theorems only apply
to re-randomizable signatures/relations1. However, VRFs and VUFs do not fall
into this class of primitives because their non-interactive proofs are not neces-
sarily re-randomizable. In order to explain how we extend their technique, we
shortly revisit Coron’s meta-reduction technique depicted in Fig. 1. A meta-
reduction can be thought of as a reduction against a reduction. That is, the
meta-reduction B simulates a hypothetical adversary A for a reduction Λ. Since
the meta-reduction is constructed to have a polynomial runtime and simulates
the hypothetical adversary, it is actually the reduction Λ that solves the instance
of the hardness assumption. This allows us to show that any reduction with a
certain tightness is able to break the underlying hardness assumption without
the help of any adversary and therefore contradicts the hardness assumption.

In their proof, Bader et al. use the re-randomizability/uniqueness of the sig-
natures that Λ produces for A in order to solve the challenge when simulating
A. We extend their technique to VRF/VUFs by showing that it is sufficient if
the part of the signature that the adversary has to provide for the challenge, in
the case of VUFs the unpredictable value Y , is unique or re-randomizable.

For simplicity, we prove the theorem for VUFs: this automatically implies
the same bound for VRFs because every VRF is also a VUF. Following Bader
et al., we consider a very weak security model in which the number of queries Q
is fixed a priori. Further, the adversary is presented with Q uniformly random
and pairwise distinct inputs X1, . . . , XQ and has to choose a challenge X∗ from
these. For all other inputs, the adversary is then given the VUF output and
proof. Finally, the adversary has to output the VUF value for the challenge
input and wins if the output is correct. We refer to this very weak security as
weak-selective unpredictability. We describe a hypothetical adversary that breaks
the adaptive pseudorandomness with certainty and then show that our meta-

1 Note that unique signatures are re-randomizable because, given a unique signature
for a message, it is trivial to sample from all signatures for that message since there
is only that one signature.
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reduction can efficiently simulate this adversary for the reduction. Informally,
on input a problem instance for a non-interactive complexity assumption, the
meta-reduction Λ behaves as follows.

1. It passes on the problem instance to the reduction and lets it output a veri-
fication key vk and Q pairwise different VUF inputs X1, . . . , XQ.

2. It then iterates over all j ∈ [Q] and executes the second part of the reduction
as if it chose j as the challenge and lets the reduction produce all pairs of
VUF output and proof except for the j’th pair. It then verifies them and saves
them if they are correct with respect to vk and the corresponding input.

3. Finally, it chooses j∗ $←[Q] and passes on the correct VUF output for Xj∗ to
the reduction. We formally prove in Sect. 2 that the meta-reduction indeed has
learned the correct VUF output for Xj∗ from the reduction with probability
at least 1/Q.

4. When the reduction then outputs the solution to the underlying problem
instance, the meta-reduction outputs this solution as well.

Overall, we can then show that the meta-reduction takes time at most B =
Q · tΛ + Q(Q + 1)tVfy and has a success probability at least εΛ − 1/Q, where tΛ
and εΛ are the runtime and the success probability of the reduction and tVfy is
the time it takes to verify a VUF output. Now we can follow that Λ has a loss
of at least � = (εN + 1/Q)−1, where εN is the largest probability any algorithm
running in time tB has in breaking the hardness assumption. Since the hardness
assumption implies that εN is negligibly small, we have that � ≈ Q.

While the meta-reduction above is only applicable to reductions that execute
the adversary exactly once, our proof of the lower bound on the loss of VRFs
in Sect. 2, like the one by like Bader et al., also applies to reductions that can
sequentially rewind the adversary.

On the Difficulty of Constructing Tightly Secure VRFs. As Table 1 shows, known
security proofs for VRFs in the standard model are significantly more lossy than
the lower bound Q. This raises the question:

Do verifiable random functions with a loss of Q exist?

In consequence, such a VRF would show that a loss of Q is indeed optimal.
We proceed by explaining why all previous constructions have a loss much

worse than Q and then give an overview over our approach that achieves the
optimal tightness. They all have in common that the reduction makes a guess in
the very beginning and then has to abort and output a random bit depending
on the queries and the challenge of the adversary. Let succ-red be the event that
the reduction solves the underlying hardness assumption and let abort be the
event that the reduction aborts and outputs a random bit. For a clear exposition,
we assume that the reduction always succeeds when it does not abort and the
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Table 1. We compare the loss of previous VRFs with all desired properties. For the
variables, let |π| denotes the size of the proofs of the VRF and ε, t and Q the advantage,
runtime and number of queries made by the adversary the reduction is run against.
Further, there are three values that depend on the error correcting code used in the
construction: the function τ(ε) > 1 and the constants ν > 1 and c ≤ 1/2. Note that
the full version [14] of [15] has been updated with the bound stated above.

Schemes Security loss

Hohenberger and Waters [29] O(λQ/ε)

Boneh et al. Sec. 7 in [15] (Qλ)τ(ε)

Jager [31] O(Qν/εν+1)

Hofheinz and Jager [27] O(λ log(λ)Q2/c/ε3)

Yamada Sec 6.1 in [52] O(Qν/εν+1)

Yamada Sec. 6.2 in [52] O(Qν/εν+1)

Yamada App. C in [51] O(λ2Q/ε2)

Katsumata Sec. 5.1 in [36] O(Qν/εν+1)

Kastumata Sec. 5.3 in [36] O(Qν/εν+1)

Rosie [46] O(λ log(λ)Q2/c/ε3)

Kohl [38] O(|π| log(λ)Q2/ν/ε3)

Kohl [38] O(|π| log(λ)Q2+2/ν/ε3)

Jager and Niehues [34] O(t3/ε2)

Jager et al. [32] O(t3/ε2)

Sect. 4 O(Q)

adversary succeeds. We then have that

Pr [succ-red] = Pr [succ-red∧ abort] + Pr [succ-red∧ ¬abort]
=

1
2
(1 − Pr [¬abort]) + Pr [succ-red∧¬abort]

=
1
2

+ Pr [succ-red∧¬abort] − Pr [¬abort]
2

.

This shows that, in contrast to computational security experiments/hardness
assumptions, where a lower bound would suffice, we need upper and lower
bounds on Pr [abort] that are close to each other in order prove the security
of a VRF. Waters used the artificial abort technique to prove close lower and
upper bounds on Pr [¬abort] [50]. That is, the reduction estimates the probabil-
ity of aborting over all possible choices it can make in the very beginning for the
sequence of queries made by the adversary and then aborts with a probability
that ensures that the reduction always aborts with almost the same probability.
However, the estimation step in the reduction is computationally expensive. Bel-
lare and Ristenpart addressed this issue with a more thorough analysis and by
making Pr [¬abort] slightly smaller [9]. Jager then applied Bellare’s and Risten-
part’s technique to admissible hash functions (AHFs) and introduced balanced
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admissible hash functions [31]. But in conclusion, none of the techniques known
so far achieves the optimal loss of Q.

A Reduction with Optimal Tightness. We next answer the question stated above
in the affirmative by presenting a VRF with a reduction that only loses a factor
of Q. To do so, we have to address the issue raised above: that the success
probability for the partitioning argument depends on the sequence of queries
made by the adversary. We achieve this by passing every query and the challenge
of the adversary through a pseudorandom function (PRF). Further, we utilize
a property of the VRF Yamada introduced in [51, Appendix C]. This VRF
allows the reduction to homomorphically embed an arbitrary NAND circuit of
polynomial size and logarithmic depth in the VRF. The idea here is that the
reduction can embed an arbitrary NAND-circuit in the VRF such that it can
answer all queries by the adversary for which the circuit evaluates to 0 and can
extract a solution to the underlying hard problem whenever the circuit evaluates
to 1. In particular, the homomorphic evaluation hides selected parts of the circuit
inputs, all internal states of the circuit and the output of the circuit from the
adversary.

We use these properties to homomorphically evaluate a PRF. Since the adver-
sary does not learn any internal states or outputs of the PRF, we thus have that
the outputs of the PRF are distributed as if they were the outputs of a random
function. In particular, we then have that the outputs of the PRF are distributed
uniformly and independent of each other. We show in Sect. 3 that it then suffices
for the reduction to guess 	log(Q)
 + 1 bits of the PRF output of the challenge.
Then the probability that the following two events both occur is at least 1/8Q:

1. The PRF output of the challenge matches the guess.
2. The guess does not match the PRF output for any of the adversary’s queries.

Further, viewing the PRF outputs as the output of a truly random function,
the probability for the reduction to succeeds is independent of the probability of
the adversary breaking the security of the VRF. Ultimately, this yields a VRF,
which has a loss of Q plus the loss of the PRF.

2 Impossibility of VRFs and VUFs with Tight
Reductions

In this section, we prove that any reduction from a non-interactive complexity
assumption to the security of a VUF or VRF unavoidably loses a factor of Q.
To do so, we first formally introduce VUFs and VRFs and their accompanying
security notions. We then introduce a very weak security notion for VUFs and
prove that even for this notion, every reduction form a non-interactive complexity
assumption to it necessarily loses a factor of Q.
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2.1 Syntax of Verifiable Random Functions (VRFs) and Verifiable
Unpredictable Functions (VUFs)

Formally, a VRF or VUF consists of algorithms (Gen,Eval,Vfy) with the follow-
ing syntax.

– (vk, sk) $←Gen(1λ) takes as input the security parameter λ and outputs a key
pair (vk, sk). We say that sk is the secret key and vk is the verification key.

– (Y, π) $←Eval(sk,X) takes as input a secret key sk and X ∈ {0, 1}λ, and
outputs a function value Y ∈ Y, where Y is a finite set, and a proof π.
We write Vsk(X) to denote the function value Y computed by Eval on input
(sk,X).

– Vfy(vk,X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ {0, 1}λ,
Y ∈ Y, and proof π, and outputs a bit.

Note that VRFs and VUFs share a common syntax. The only difference is in the
achieved security properties. We first define security for VRFs and then describe
how the definition has to be adapted for VUFs.

GVRF
(A1,A2)

(λ)

(vk, sk) $←Gen(1λ); ρA
$←{0, 1}λ

(X∗, st) $← AEval(sk,·)
1 (vk; ρA)

Y0 := Eval(sk, X∗)

Y1
$← Y

b
$←{0, 1}

b′ := AEval(sk,·)
2 (Yb, st)

return b == b′

Fig. 2. The security experiment specifying pseudorandomness of verifiable random
functions.

Definition 1. VRF = (Gen,Eval,Vfy) is a secure verifiable random function
(VRF) if it fulfills following requirements.

Correctness. For all (vk, sk) $←Gen(1λ) and X ∈ {0, 1}λ holds: if
(Y, π) $←Eval(sk,X), then Vfy(vk,X, Y, π) = 1. Further, the algorithms Gen,
Eval, Vfy are polynomial-time.

Unique provability. For all vk ∈ {0, 1}∗ and all X ∈ {0, 1}λ, there does
not exist any Y0, π0, Y1, π1 ∈ {0, 1}∗ such that Y0 �= Y1 and it holds that
Vfy(vk,X, Y0, π0) = Vfy(vk,X, Y1, π1) = 1.
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weak-selective-UnpredictabilityQ,VUF
(A1,A2)

(λ)

(vk, sk) $←Gen(1λ); ρA
$←{0, 1}λ

(X1, . . . , XQ) $←{0, 1}λ s.t. Xi �= Xj for all i �= j

(Yi, πi)
$←Eval(sk, Xi)

(j, st) $← A1(vk, (Xi)i∈[Q];ρA)

Y ∗ $← A2((Yi, πi, st)i∈[Q\j])

return Y ∗ == Yj

Fig. 3. The security experiment specifying weak selective pseudorandomness.

Pseudorandomness. Consider an attacker A = (A1,A2) with access (via oracle
queries) to Eval(sk, ·) in the pseudorandomness game depicted in Fig. 2. Let
Q = (X1, . . . , XQ) be the oracle queries made by A1 and A2, then we say
that A is legitimate if there is no ρA ∈ {0, 1}λ such that there exists i ∈ [Q]
with Xi = X∗, where Xi is the i’th query to Eval made by A. We define the
advantage of A in breaking the pseudorandomness of VRF as

AdvVRF
A (λ) :=

∣
∣
∣Pr

[

GVRF
(A1,A2)

(λ) = 1
]

− 1/2
∣
∣
∣ .

We require the same security properties from VUFs as the properties we
require from VRFs in Definition 1, with the exception that we require the weaker
property of unpredictability instead of pseudorandomness from VUFs. This prop-
erty can be formalized just like pseudorandomness just that the adversary has
to output the correct Y ∗ instead of distinguishing it from a random element as
depicted in Fig. 2. We do not give a formal definition since it is very similar to
VRFs, and we use the notion of weak select unpredictability, which is defined in
Sect. 2.2, in our proof.

2.2 Lower Tightness Bounds for VUFs

We begin by introducing the very weak security notion of weak-selective unpre-
dictability. In this security model, all queries and the challenge are uniformly
random and pairwise different. We formally define it as follows.

Definition 2. Let VUF = (Gen,Eval,Vfy) be a verifiable unpredictable function
and let t : N → N, ε : N → [0, 1]. For an adversary A = (A1,A2), we say that A
(t,Q, ε)-breaks the weak selective pseudorandomness of VUF if A runs in time t
and

AdvVUF
A1,A2

(λ) := Pr
[

weak-selective-UnpredictabilityQ,VUF
A1,A2

(λ) = 1
]

= ε(λ)

where weak-selective-UnpredictabilityQ,VUF
(A1,A2)

(λ) is the security experiment
depicted in Fig. 3.
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Note that any verifiable random function fulfilling the requirements of Defini-
tion 1 has also weak-selective unpredictability. Hence, ruling out a tight reduc-
tion from weak selective unpredictability to a class of hardness assumptions,
also rules out tight reductions from pseudorandomness to that class of hardness
assumptions. We thus prove a lower bound on the loss of any reduction from
any non-interactive complexity assumption to the weak selective unpredictabil-
ity of a VUF, where the reduction my sequentially repeat the execution of the
adversary.

Following [3,5], we define a non-interactive complexity assumption as a triple
N = (T,V,U) of Turing machines (TMs). While the TM T generates a problem
instance and V verifies the correctness of a solution, the TM U represents a
trivial adversary to compare an actual adversary against. For example, a trivial
adversary against the DDH assumption would just output random bit as its
guess. We formally define non-interactive complexity assumptions as follows.

Definition 3. A non-interactive complexity assumption N = (T,V,U) consist
of three Turing machines. The instance generation machine (c, w) $←T(1λ) takes
the security parameter as input and outputs a problem instance c and a witness
w. U is a probabilistic polynomial-time Turing machine, which takes c as input
and outputs a candidate solution s. The verification Turing machine V takes as
input (c, w) and a candidate solution s. If V(c, w, s) = 1, then we say that s is a
correct solution to the challenge c.

NICAN
A(λ)

(c, w) $←T(1λ); ρA
$←{0, 1}λ

s
$← A(c; ρA)

return V(c, w, s)

Fig. 4. The generic security experiment for a non-interactive complexity assumption
N = (T,V,U) between the challenger and an adversary A.

Definition 4. Let N = (T,V,U) be a non-interactive complexity assumption
and let NICA be the security experiment depicted in Fig. 4. For functions t :
N → N, ε : N → [0, 1] and a probabilistic Turing machine B running in time
t(λ), we say that B (t, ε)-breaks N if

∣
∣
∣Pr

[

NICAN
B (λ) = 1

]

− Pr
[

NICAN
U (λ) = 1

]∣
∣
∣ ≥ ε(λ),

where the probabilities are taken over the randomness consumed by T and the ran-
dom choices of ρU and ρB in the security experiments NICAn

B(λ) and NICAn
U(λ).
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r-ΛA(c, ρΛ)

stΛ1,1
$← Λ1(c; ρ0)

For 1 ≤ � ≤ r do:

(vk�, (X�
i )i∈[Q], ρA, stΛ�,2)

$← Λ�,1(stΛ,1)

(j∗�, stA) $← A1(vk�, (X�
i )i∈[Q]; ρA)

((Y �
i , π�

i )i∈[Q\j∗�], stΛ�,3)
$← Λ�,2(j∗�, stΛ�,2)

Y �
j∗�

$← A2((Y �
i , π�

i )i∈[Q\j∗�], stA)

stΛ�+1,1
$← Λ�,3

(
Y �

j∗� , j
∗�, stΛ�,3

)

s
$← Λ3(stΛr+1,1)

Fig. 5. Description of the Turing r-ΛA machine built from an adversary A = (A1, A2)
against the weak selective unpredictability of a verifiable unpredictable function and a
reduction (Λ1, (Λ�,1, Λ�,2, Λ�,3)�∈[r], Λ3).

Bader et al. prove lower bounds for simple reductions as well as for reduc-
tions that can sequentially rewind the adversary [5]. Since the latter class of
reduction include the former class, we directly prove the lower bound on the loss
for the larger class of reductions. Following Bader et al., we view a reduction
that sequentially rewinds an adversary up to r ∈ N times as a 3r + 2-tuple of
Turing machines. That is, one TM that initializes the reduction, one to pro-
duce a solution in the end and three for each execution of the adversary. For an
adversary A = (A1,A2) against the weak selective unpredictability of a verifi-
able unpredictable function VUF , we let r-ΛA be the Turing machine depicted
in Fig. 5.

Definition 5 (Def. 6 in [5]). For a verifiable unpredictable function VUF , we
say that a Turing machine r-Λ = (Λ1, (Λ�,1, Λ�,2, Λ�,3)�∈[r], Λ3) is an r-simple
(tΛ, Q, εΛ, εA)-reduction from breaking the non-interactive complexity assump-
tion N = (T,V,U) to breaking the weak selective unpredictability of VUF if for
any TM A that (tA, Q, εA)-breaks the weak selective unpredictability of VUF ,
TM r-ΛA as defined in Fig. 5 (tΛ + rtA, εA) breaks N .

Furthermore, we define the loss of a reduction as the factor that (tΛ(λ) +
rtA(λ))/εΛ(λ) is larger than tA(λ)/εA(λ). We formalize this in the following
definition.

Definition 6. For a verifiable unpredictable function VUF , a non-interactive
complexity assumption N , a function � : N → N and a reduction Λ, we say that
Λ loses �, if there exists an adversary A that (tA, Q, εA) breaks the weak selective
unpredictability of VUF such that ΛA (tΛ + r · tA, εA)-breaks N where

tΛ(λ) + rtA(λ)
εΛ(λ)

≥ �(λ) · tA(λ)
εA(λ)

.
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After introducing the needed notations and notions, we can now state our the-
orem regarding the loss of VRFs and VUFs.

Theorem 1. Let N = (T,V,U) be a non-interactive complexity assumption,
Q, r ∈ poly(λ) and let VUF be a verifiable unpredictable function. Then for any
r-simple (tΛ, Q, εΛ, 1)-reduction Λ from breaking N to breaking the weak selective
unpredictability of VUF there exists a TM B that (tB, εB)-breaks N , where

tB ≤ r · Q · tA + r · Q · (Q − 1) · tVfy

εB ≥ εΛ − r

Q
.

Here, tVfy is time needed to run the algorithm Vfy of VUF .

Note that the theorem also applies to adversaries with εA < 1, as we discuss
after the proof of Theorem 1. However, before proving Theorem 1, we show that
it implies that every r-simple reduction Λ from a non-interactive complexity
assumption N has at least a loss of ≈ Q. For tN := tB = r·Q·tΛ+r·Q·(Q−1)·tVfy,
let εN be the largest probability such that there exists an algorithm that (tN , εN )-
breaks N . We then have that εN ≥ εB and by Theorem 1, we have that εΛ ≤
εB + r/Q ≤ εN + r/Q. We can then conclude that

tΛ + r · tA
εΛ

≥ r · tA
εN + r/Q

= (εN + r/Q)−1 · r · tA
1

= (εN + r/Q)−1 · r · tA
εA

.

This means that Λ loses at least a factor of � = r/(εN + r/Q). Further, if εN is
very small, which it is supposed to be for a good complexity assumption, then
� ≈ Q.

Proof. Our proof is structured like the proofs in [5,28,39] and thus first describes
a hypothetical adversary that breaks the weak selective unpredictability of VUF
with certainty and then describes a meta reduction that perfectly and efficiently
simulates this adversary towards Λ.

The Hypothetical Adversary A. The hypothetical adversary A = (A1,A2) con-
sists of the following two procedures.

A1(vk, (Xi)i∈[Q]; ρA) samples j
$←[Q] and outputs (j, st) with the state st =

(vk, (Xi)i∈[Q], j).
A2((Yi, πi)i∈[Q\j], st) first parses the state st as (vk, (Xi)i∈[Q], j) and then checks

whether Vfy(vk,Xi, Yi, πi) = 1 for all i ∈ [Q \ j]. If there is i∗ such that
Vfy(vk,Xi, Yi, πi) = 0, it aborts with result ⊥. Otherwise, it computes Y ∗ ∈ Y
such that there exists π ∈ {0, 1}∗ with Vfy(vk,Xj , Y

∗, π) = 1. The existence
of such a Y ∗ is guaranteed by the correctness of VUF .

Observe that A breaks the weak selective unpredictability of VUF with certainty
because a correct VUF produces only valid pairs of outputs and proofs, but A2

may not be efficiently computable. However, we show that B can efficiently
simulate A nonetheless.
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The Meta-reduction B. We now describe the meta-reduction B that simulates A
r times for Λ = (Λ1, (Λ�,1, Λ�,2, Λ�,3)�∈[r], Λ3). B’s goal in this is to break N and
is therefore called on input c, where (c, w) $←T(1λ).

i. B receives c as input. It samples randomness ρΛ
$←{0, 1}λ and executes

stΛ1,1 = Λ1(c, ρΛ). If Λ1 does not output stΛ1,1 , then B aborts and outputs
⊥. Since the randomness of Λ1 is fixed, we view all subroutines of Λ as deter-
ministic. Note that Λ1 can pass on random coins to the other subroutines
via stΛ1,1 .

ii. Next, B sequentially simulates A r times for Λ. That is, for all 1 ≤ � ≤ r it
does the following.
a) Initialize an empty array A� with Q places, that is A�[i] =⊥ for all i ∈ [Q].
b) Run (vk�, (X�

i )i∈[Q], ρA, stΛ�,2) = Λ�,1(stΛ�,1). If Λ�,1 does not produce
such an output, then B aborts and outputs ⊥.

c) Then B runs
(

(Y �
i,j , π

�
i,j)i∈[Q\j], stΛ3,�

)

= Λ�,2(j, stΛ�,2) for all j ∈ [Q]. If
Λ�,2 only produces correct outputs with respect to vk�, that is if

∧

i∈[Q\�]

Vfy(vk�,X�
i , Y

�
i,j , π

�
i,j) = 1,

then B sets A�[i] := Y �
i,j for all i ∈ [Q \ j].

d) B then samples j∗� $←[Q]. It then proceeds in one of the following cases:
1. If Λ�,2(j∗�, stΛ�,2) produced any invalid pair of output and proof, that

is, if there exists i ∈ [Q \ j∗�] such that it holds that the Vfy rejects,
that is Vfy(vk�,X�

i , Y
�
i,j∗� , π

�
i,j∗�) = 0, then B aborts and outputs ⊥.

2. Otherwise, B sets Y ∗ := A�[j∗�].
e) Set stΛ�+1,1 := Λ�,3(Y ∗, stΛ�,3)

iii. Finally, B runs s
$←Λ3(stΛr+1,1) and outputs s.

Success Probability of B. In order to analyze the success probability of B, we
compare the simulation of A by B with the description of A. Note that A1

samples j uniformly at random and A2 aborts if it is given an invalid pair of
output and proof. B also samples j∗� uniformly at random from [Q] and aborts
if Λ�,2(j∗�, stΛ�,2) produced any invalid pair of output and proof, just like A.
However, we are only guaranteed that A�[j∗�] contains the correct output of
VUF for X�

i if there is j′ ∈ [Q \ j∗�] such that Λ�,2(j′, st�,2) outputs only correct
pairs of outputs and proofs, i.e., if this is not the case the simulation of A by B
deviates from A’s behavior. Below, we formally prove that B perfectly simulates
A unless the event described above occurs and upper bound the probability that
it occurs by r/Q.

Let stΛ�,2 be the unique state computed by Λ�,1 and let j∗� ∈ [Q] be the
unique index that Λ�,3 is executed with. Note that these values are well-defined
in both NICAΛA

N (λ) and NICAB
N (λ). Now, define the event all-valid(stΛ�,2 , j) as

the event that Λ�,2 outputs only valid pairs of outputs and proofs. That is

all-valid(stΛ�,2 , j) =

{

1 if Vfy(vk�,X�
i , Y

�
i,j , π

�
i,j) = 1 for all i ∈ [Q \ j]

0 otherwise,
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where (Y �
i,j , π

�
i,j)i∈[Q\j] = Λ�,2(stΛ�,2 , j). Recalling the case in which B’s sim-

ulation deviates the hypothetical adversary A, we define the event bad(�) :=
all-valid(stΛ�,2 , j

∗�)
∧

j∈[Q\j∗�] ¬all-valid(stΛ�,2 , j), that is the event that Λ�,2

returned only valid pairs of outputs and proofs for j = j∗� in the �’th simu-
lation of A. Further, we let bad :=

∨

�∈[r] bad(�) be the event that bad(�) occurs
for any � ∈ [r].

Next, let S(F) denote the event that NICAF
N (λ) = 1 for some adversary

F against the non-interactive complexity assumption N . Then we observe the
following:

Pr
[

S(r-ΛA)
] − Pr [S(B)]

= Pr
[

S(r-ΛA)∧ bad
]

+ Pr
[

S(r-ΛA)∧ ¬bad] − Pr [S(B)∧ bad] − Pr [S(B)∧ ¬bad]
≤Pr

[

S(r-ΛA)∧ ¬bad] − Pr [S(B)∧ ¬bad] + Pr [bad]

Therefore, we proceed by showing two things:

1. Pr
[

S(r-ΛA)∧ ¬bad] = Pr [S(B)∧ ¬bad]
2. Pr [bad] ≤ r/Q

In order to prove the first statement, we consider two cases in which A outputs
either ⊥ or the correct output of VUF for input X�

j under verification key vk�.
These are the two cases that B distinguishes in step ii. d).

1. In the first case Λ�,2(j∗�, stΛ�,2) outputs (Y �
i,j∗� , π

�
i,j∗�)i∈[Q\j∗�] such that there

is i ∈ [Q \ j∗�] with Vfy(vk�,X�
i , Y

�
i,j∗� , π

�
i,j∗�) = 0. Note that in this case, A2

aborts and outputs ⊥. B also aborts and outputs ⊥ in step ii. d) in the first
case.

2. In the second case no such i ∈ [Q\j∗�] exists for the output of Λ�,2(j∗�, stΛ�,2).
Hence, we have all-valid(stΛ�,2 , j

∗�) = 1. Furthermore, since we assumed
that bad does not happen, we have that there is also j ∈ [Q \ j∗�] with
all-valid(stΛ�,2 , j) = 1 and therefore A�[j∗�] contains the correct VUF output,
which B passes on to Λ�,3. Since A also outputs the correct VUF value in
this case, the two outputs are distributed identically.

We therefore have Pr
[

S(r-ΛA)∧ ¬bad] = Pr [S(B)∧ ¬bad].
Next, we show that Pr [bad] ≤ r/Q. For this, consider a fixed � ∈ [r] and

observe that bad(�) can occur only if there is a unique index j ∈ [Q] such that
all-valid(st�,2, j) = 1. Hence, the probability that B draws j∗� = j in step ii. d) in
the �’th round is 1/Q. We therefore have that Pr [bad(�)] = 1/Q, and it follows
by the union bound that Pr [bad] ≤ r/Q. Summing up, we have shown that.

Pr
[

S(r-ΛA)
] − Pr [S(B)] ≤ Pr [bad] ≤ r/Q ⇐⇒ εΛ ≤ εB − r/Q

It is now only left to compute the running time of B. For this, note that B
executes the algorithms Λ�,2 Q times for each � ∈ [r] and other algorithms of Λ
only once. Furthermore, B executes Vfy r ·Q ·(Q−1) times. Overall, we therefore
conclude that

tB ≤ r · Q · tΛ + r · Q · (Q − 1) · tVfy,

where tVfy is the time it takes to execute Vfy. This concludes the proof.
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Non-perfect Adversaries. We only considered adversaries that always break the
weak selective unpredictability of the VUF in the theorem above. However, the
hypothetical adversary A and the meta-reduction can also simulate adversaries
with arbitrary εA ∈ [0, 1] by just aborting with probability 1 − εA in the simu-
lation of A.

3 A Reduction Strategy with Optimal Tightness

Now that we showed that every reduction from a non-interactive complexity
assumption to the pseudorandomness or unpredictability of a VRF or VUF loses
at least a factor of Q, we present a VRF together with a reduction, which attains
this bound up to a small constant factor. We achieve this by describing a par-
titioning proof strategy. In these types of proofs, the reduction partitions the
input space of the VRF in a controlled set and an uncontrolled set and embeds
this partitioning into the verification key. The reduction is then able to answer
evaluation queries for inputs in the controlled set and can extract a solution to
the underlying complexity assumption if the challenge is in the uncontrolled set.
This type of proof has also been used in most of the previous VRFs that do not
rely on the random oracle heuristic, for example [31,36,38,52]. In this section,
we describe how the reduction chooses this partition. We discuss the embedding
of the partitioning in the VRF in Sect. 4.

Optimal Partitioning. In order to make a partitioning argument with optimal
tightness for VRFs, we need to decouple the probability that the partitioning
succeeds from the queries and the challenge, which are chosen by the adversary.
We achieve this by passing every input of the adversary through a pseudoran-
dom function. This ensures that the outputs are distributed independently and
uniformly at random for pairwise different inputs. We formally define a PRF as
follows.

Definition 7. For functions t,m, n : N → N and ε : N → [0, 1], we say that a
function PRF : {0, 1}m(λ)×{0, 1}λ → {0, 1}n(λ) is an (t, ε)-secure Pseudorandom
Function if it holds for every algorithm D running in time t(λ) that

∣
∣
∣
∣
∣

Pr
KPRF $←{0,1}m

[

DPRF(KPRF,·)(1λ) = 1
]

− Pr
F

$← Fλ,n(λ)

[

DF (·) = 1
]
∣
∣
∣
∣
∣
≤ ε(λ),

where Fλ,n(λ) = {F : {0, 1}λ → {0, 1}n(λ)} is the set of all functions from {0, 1}λ

to {0, 1}n(λ).

For a clear exposition, assume that all queries by the adversary and the challenge
are passed through a truly random function. We later on replace this truly
random function with a PRF. If the PRF is secure, then this does only make a
negligible difference in the success probability.

We use the outputs X ′ of the truly random function for partitioning in the
following way. The reduction draws η uniformly random bits Kpart for some
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carefully chosen η ∈ [n(λ)]. It then defines the uncontrolled set, i.e., the set of
inputs for which the reduction can extract a solution but not answer evaluation
queries, as the set of all inputs whose PRF output match Kpart on the first η
bits. We formalize this partitioning as the following function F.

Definition 8. For X ′ ∈ {0, 1}n(λ) and Kpart ∈ {0, 1}η, we define

F(X ′,Kpart) :=

{

1 if X ′
|η = Kpart

0 otherwise,

where X ′
|η denotes the first η bits of X ′.

Such a function F has been used in many previous partitioning arguments, e.g.
[22,27,31,36,52], but has its origin in [13, Sec. 4.1] as biased binary pseudoran-
dom function.

Let TRF
$← Fλ,n(λ) be a truly random function and let X1, . . . , XQ,X∗ ∈

{0, 1}λ be arbitrary with Xi �= Xj and Xi �= X∗ for all i �= j. We then let X ′
i :=

TRF(Xi) and X∗′
:= TRF(X∗). Observe that we then have that all X ′

i and X∗′

are independent and uniformly random in {0, 1}n(λ). We show in the following
Lemma that for η = 	log(Q)
 + 1 and Kpart $←{0, 1}η, where Q is the number of
evaluation queries made by the adversary, we have that F(X ′

i,K
part) = 0 for all

i ∈ [Q] and F(X∗′
,Kpart) = 1 with probability at least 1/(8Q). That means, the

partitioning argument has optimal tightness for VRFs up to a small constant
factor. We later on show that since a pseudorandom function is indistinguishable
from a truly random function, we can efficiently apply this in our construction.

Lemma 1. Let Q = Q(λ) be a polynomial, let η = η(λ) := 	log(Q)
 + 1 and let
X ′

1, . . . , X
′
Q,X∗′

be as above. For Kpart $←{0, 1}η, we then have that

Pr
[

F(X ′
i,K

part) = 0 for all 0 ≤ i ≤ Q and F(X∗′
,Kpart) = 1

]

≥ 1/(8Q).

Proof. We start by lower bound the probability from the lemma as follows.

Pr
[
F(X ′

i,K
part) = 0 for all 0 ≤ i ≤ Q and F(X∗′

,Kpart) = 1
]

= Pr
[
F(X ′

i,K
part) = 0 for all 0 ≤ i ≤ Q | F(X∗′

,Kpart) = 1
]
Pr

[
F(X∗′

,Kpart) = 1
]

=

(
Q∏

i=1

Pr
[
F(X ′

i,K
part) | F(X∗′

,Kpart) = 1
])

Pr
[
F(X∗′

,Kpart) = 1
]

(1)

=

(
1 −

(
1

2

)η)Q

Pr
[
F(X∗′

,Kpart) = 1
]

≥
(

1 −
(

1

2

)η

Q

)
Pr

[
FK(X∗′

,Kpart) = 1
]

(2)

=

(
1 −

(
1

2

)η

Q

) (
1

2

)η
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Observe that Eq. (1) holds because all X ′
i and X∗′

are stochastically inde-
pendent and that Eq. (2) follows from Bernoulli’s inequality. Next, notice
that since η = 	log(Q)
 + 1 we have that

(
1
2

)η ≥ (
1
2

)log(Q)+2 = 1
4Q and

− (
1
2

)η ≥ − (
1
2

)log(Q)+1 = − 1
2Q . We can therefore conclude the proof as fol-

lows.

Pr
[

F(Xi,K
part) = 0 for all 0 ≤ i ≤ Q and F(X∗,Kpart) = 1

]

≥
(

1 −
(

1
2

)η

Q

)(
1
2

)η

≥
(

1 − 1
2Q

Q

)
1

4Q
=

1
2

1
4Q

=
1

8Q

Note that Lemma 1 only holds if all X ′
i and X∗′

are distributed independently
and uniformly at random in {0, 1}n, e.g., if X ′

i = TRF(Xi) for all i ∈ [Q] and
X∗′

= TRF(X∗). Observe that we stated our argument for a truly random
function instead of a PRF and our construction in Sect. 4 uses a PRF. We
therefore define the function G, which uses a pseudorandom function instead of
a truly random function.

Definition 9. For X ∈ {0, 1}λ,KPRF ∈ {0, 1}m and Kpart ∈ {0, 1}η, we define

G(X,KPRF,Kpart) := F(PRF(KPRF,X),Kpart).

Intuitively, Lemma 1 also applies to G and adversarially chosen Xi and X∗

because the outputs of the pseudorandom function are indistinguishable from
the outputs of a truly random function. Hence, any adversary that is able to
efficiently make queries to the PRF such that the probability in Lemma 1 dif-
fers significantly from the probability for a truly random function would also
be able to distinguish the pseudorandom function from a truly random func-
tion. We show that this also holds formally as part of the security proof of the
pseudorandomness of VRF in Sect. 4.1.

4 Verifiable Random Functions with Optimal Tightness

In order to embed the partitioning argument we described in Sect. 3 into a VRF,
we use the verifiable random function that Yamada describes in [51, Appendix C].
This is the full version of [52]. This VRF is well-suited for our purposes, because
it enables us to embed the homomorphic evaluation of arbitrary NAND-circuits
in the reduction such that the reduction can answer all queries for inputs on
which the circuit evaluates to zero and can extract a solution to the underlying
complexity assumption for all inputs for which the circuit evaluates to 1. At the
same time, the embedding of the circuit hides some input bits, all internal states
and the output of the circuit from the adversary. We use this property to embed
the homomorphic evaluation of G from Definition 9. We first describe bilinear
group generators, which we require in the VRF construction and then describe
how we model NAND circuits. Finally, we describe the VRF.
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Bilinear Group Generators. We shortly introduce (certified) bilinear group gen-
erators, which were originally described in [27]. These allow us to define com-
plexity assumptions relative to the way the bilinear group is chosen end ensure
that every group element has a unique encoding, which is required for the unique
provability of our construction.

Definition 10. A Bilinear Group Generator is a probabilistic polynomial-time
algorithm GrpGen that takes as input a security parameter λ (in unary) and out-
puts Π = (p,G,GT , ◦, ◦T , e, φ(1)) $←GrpGen(1λ) such that the following require-
ments are satisfied.

1. p is a prime and log(p) ∈ Ω(k)
2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps

φ : Zp → G and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security

parameter) maps ◦ : G × G → G and ◦T : GT × GT → GT , such that
a) (G, ◦) and (GT , ◦T ) form algebraic groups,
b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
c) φT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the security
parameter) bilinear map e : G×G → GT . We require that e is non-degenerate,
that is,

x �= 0 ⇒ e(φ(x), φ(x)) �= φT (0).

Definition 11. We say that group generator GrpGen is certified, if there exist
deterministic polynomial-time (in the security parameter) algorithms GrpVfy and
GrpElemVfy with the following properties.

Parameter Validation. Given the security parameter (in unary) and a string
Π, which is not necessarily generated by GrpGen, algorithm GrpVfy(1λ,Π)
outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 10 are satisfied.
Recognition and Unique Representation of Elements of G. Further, we

require that each element in G has a unique representation, which can be
efficiently recognized. That is, on input the security parameter (in unary)
and two strings Π and s, GrpElemVfy(1λ,Π, s) outputs 1 if and only if
GrpVfy(1λ,Π) = 1, and it holds that s = φ(x) for some x ∈ Zp. Here
φ : Zp → G denotes the fixed group isomorphism contained in Π to spec-
ify the representation of elements of G.

NAND Circuits. Before describing our construction, we require a formal defini-
tion of NAND circuits. The type of circuits we consider take two types of inputs:
public inputs and secret inputs. For the function G, which we want to embed
in the VRF, we can think of the public input as a VRF input X ∈ {0, 1}λ and
of the secret input as the PRF key KPRF and the partitioning key Kpart. Like
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Yamada, we roughly follow the notation of [7] when describing NAND circuits.
That is, we assign an index to each input bit and to each gate, beginning with
the public input bits, continuing with the secret inputs bits and finally indexing
the gates. Formally, if there are k ∈ N inputs of which kpub ∈ [k] are public
input bits and ksec = k − kpub are secret input bits, then we set P := [kpub] and
S := [kpub + 1, kpub + ksec] as the respective index sets for the public and secret
input bits.

For a NAND circuit C : {0, 1}|P|+|S| → {0, 1} with c many gates and |P|+ |S|
many input bits, we assign an index j ∈ C := [|P| + |S| + 1, |P| + |S| + c] to
each gate. Further, we formalize the wiring of the circuit with the functions
in1, in2 : C → P ∪ S ∪ C that represent the input wires of a gate. We require that
for all j ∈ C it holds that in1(j) < j and in2(j) < j. This condition ensures that
the circuit does not contain any circles.

Since we only consider circuits with a single output bit, we assume without
loss of generality that the output of the gate with index |P| + |S| + |C| outputs
the overall output of the circuit. Furthermore, we define the depth of a gate j as
the maximal distance from any input gate to j. Consequentially, we define the
depth of a circuit C as the depth of the gate with index |P| + |S| + |C|.

Evaluating a Circuit. For a circuit C in the notation above with public inputs
p = (pj)j∈P , secret inputs s = (sj)j∈S , gates with indexes in C and the wiring
encoded by in1, in2 : C → P∪S∪C, we define the function value : P∪S∪C → {0, 1}
as follows. For all j ∈ P we set value(j) := pj and for all j ∈ S as value(j) := sj .
Further, for all j ∈ C, we set value(j) := value(in1(j))NANDvalue(in2(j)). In
order to evaluate a circuit on input p ∈ {0, 1}|P| and s ∈ {0, 1}|S|, we compute
value(|P|+ |S|+ |C|) since the gate with index |P|+ |S|+ |C| outputs the overall
output of C. Note that the evaluation of the circuit is well-defined because we
have that for all j ∈ C it holds that in1(j) < j and in2(j) < j.

Representing G as a Circuit. For our construction, we need to represent G from
Definition 9 as a NAND-circuit. However, given the plain definition of G, the
number of input bits of the circuit depends on η(λ), which in turn depends on the
number Q of Eval queries made by the adversary. We address this by adapting the
encoding of Kpart. Namely, we let PrtSmp(1λ, Q(λ)) be the algorithm that samples
Kmatch $←{0, 1}n(λ), computes η := 	log(Q(λ))
 + 1 sets Kfixing = 1η||0n(λ)−η(λ)

and outputs Kpart = (Kmatch,Kfixing) ∈ ({0, 1}n(λ))2. We then adapt the function
F(X ′,Kpart) to compare X and Kmatch on all positions where Kfixing is 1 and output
1 if they match on all such positions and 0 otherwise. These adaptations do not
change the output of F or G but ensure that the NAND-circuit representing G
only depends on λ and not on Q. Note that it would be possible to encode Kfixing

more efficiently, but we use this encoding for simplicity.

Construction. We assume that the NAND-circuits for the function G for different
security parameters are publicly known, and we denote the circuit for G with
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security parameter λ by CG,λ. For our construction, we have that P = [λ],
since the public input of G is X ∈ {0, 1}λ. Furthermore, we set SPRF := [|P| +
1, |P| + m(λ)] for the indexes of the bits of KPRF ∈ {0, 1}m(λ), Spart := [|P| +
|SPRF| + 1, |P| + |SPRF| + 2n(λ)] for the indexes of Kmatch ∈ {0, 1}2n(λ), and
S := SPRF ∪ Spart. Finally, we assume that the function in1λ, in2λ : C → P ∪ S ∪ C
encode the wiring of CG,λ and that |P|+ |S|+ |C| is the index of the output gate.
For simplicity, we set out := |P| + |S| + |C|.

Gen(1λ) first generates a group description Π
$←GrpGen(1λ) and samples uni-

formly random group generators g, h
$←G \ {0}, w0

$←Z
∗
p and wj

$←Zp for all
j ∈ S. It then sets W0 := gw0 , Wj := gwj for all j ∈ S and outputs

vk :=
(

Π, g, h,W0, (Wj)j∈S
)

and sk :=
(

w0, (wj)j∈S
)

.

Eval(sk,X) parses X ∈ {0, 1}λ as (X1, . . . , Xλ) and sets

θj :=

{

Xj if j ∈ P
wj if j ∈ S

for all j ∈ P ∪ S. For all j ∈ C, it sets

θj := 1 − θin1λ(j)θin2λ(j).

It then sets π0 := gθout/w0 and πj := gθj for all j ∈ C and outputs

Y := e(g, h)θout/w0 and π := (π0, (πj)j∈C).

Vfy(vk,X, Y, π) first verifies that vk has the form (Π, g, h,W0, (Wj)j∈S) and that
π has the form (π0, (πj)j∈C). It then verifies the group description by running
GrpVfy(1λ,Π) and then verifies all group elements in vk, π and Y by running
GrpElemVfy(1λ,Π, s) for all s ∈ {g, h, Y, π0, π|P|+|S|+1, . . . , π|P|+|S|+|C|}. Vfy
outputs 0 if any of the checks fails. Next, the algorithm verifies the correctness
of Y in respect to vk, X and π by setting πj := gXj for all j ∈ P and πj := Wj

for all i ∈ S and performing the following steps.

1. It checks whether e(g, πj) = e(g, g)
(

e(πin1λ(j)
, πin2λ(j)

)
)−1

for all j ∈ C.
2. It checks whether e(π0,W0) = e(πout, g).
3. It checks whether e(π0, h) = Y .
If any of the checks above fail, then Vfy outputs 0. Otherwise, it outputs 1.

The proofs for correctness and unique provability closely follow the respective
proofs by Yamada [51]. We therefore only present them in the full version [45,
Section 4.1]. Before proving the pseudorandomness of the VRF, we shortly dis-
cuss the instantiation with concrete PRFs and the effect on the efficiency.
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Instantiation. In order to instantiate the VRF , we need that G can be repre-
sented by a circuit of polynomial size and logarithmic depth. While this is cer-
tainly possible for the comparison of the PRF output with Kmatch, we also require
a PRF that can be computed by such a NAND circuit. The Naor-Reingold PRF
is an example of such a PRF that is also provably secure under the DDH assump-
tion [44]. However, we can further optimize the efficiency by using the adapta-
tion of the Naor-Reingold PRF in [33, Section 5.1]. This PRF has secret keys
of size ω(log(λ)). Further, we can change the encoding of Kmatch and Kfixing to
also consist of only ω(log(λ)) many bits. This would bring the size of the public
verification key down to ω(log(λ)), would however only hold for λ large enough.
We can further optimize the size of the proofs by applying the technique of [30],
which allows to reduce the circuit size of every PRF to O(λ) at the cost of
reducing the output length to λ1/c for some constant c > 0 that depends on the
PRF. However, the smaller output length is no issue, since λ1/c is larger than
	log(Q(λ))
 + 1 = O(log(λ)) for large enough λ, because Q is polynomial in λ.
This technique therefore reduces the size of proofs to O(λ).

4.1 Proof of Pseudorandomness

The security of our VRF is based on the decisional q-bilinear Diffie-Hellman
inversion assumption that we formally introduce below.

Definition 12 (Definition 4 in [12]). For a bilinear group generator GrpGen,
an algorithm B and q ∈ N, let Gq-DBDHI

B (λ) be the following game. The challenger
runs Π

$←GrpGen(1λ), samples g, h
$←G, α

$←Z
∗
p and b

$←{0, 1}. Then it defines

T0 := e(g, h)1/α and T1
$←GT . Finally, it runs b′ $← B(Π, g, h, gα, . . . , gαq

, Tb),
and outputs 1 if b = b′, and 0 otherwise. We denote with

Advq-DBDHI
B (λ) :=

∣
∣
∣Pr

[

Gq-DBDHI
B (λ) = 1

]

− 1/2
∣
∣
∣

the advantage of B in breaking the q-DBDHI-assumption for groups generated
by GrpGen, where the probability is taken over the randomness of the challenger
and B. For functions t : N → N and ε : N → [0, 1], we say that B (t, ε)-breaks the
q-DBDHI assumption relative to GrpGen, if Advq-DBDHI

B (λ) = ε(λ) and B runs in
time t(λ).

Note that the assumption falls in the category of non-interactive complexity
assumptions from Definition 3. Based on this assumption, we can formulate the
theorem for the pseudorandomness of our VRF.

Theorem 2. Let VRF = (Gen,Eval,Vfy) be the verifiable random function
above, then for every legitimate adversary A = (A1,A2) that (tA, εA) breaks
the pseudorandomness of VRF and makes Q(λ) queries to Eval for some
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polynomial Q : N → N, there exists an algorithm B that (tB, εB)-breaks the
q-DBDHI assumption relative to GrpGen used in VRF with

tB(λ) = tA(λ), εB(λ) ≥ εA(λ)
8Q(λ)

− εPRF(λ) − negl(λ) and q := 2d,

where d is the depth of the circuit for G, εPRF is the largest advantage any algo-
rithm with runtime tA(λ) that makes Q(λ) queries to its oracle has in breaking
the security of the PRF used in VRF and negl(λ) is a negligible function. In
particular: VRF achieves the optimal tightness, since εPRF(λ) is negligible if the
construction is instantiated with a PRF with a security reduction loss of at most
Q(λ).

Remark 1. Note that the requirement of a loss of at most Q for the PRF is
fulfilled by e.g. the Naor-Reingold PRF [44] or the PRFs by Jageret al. [33].

Proof. Since Eval is deterministic, A can not learn anything by making the same
query to Eval twice. We therefor assume without loss of generality that A makes
only pairwise distinct queries to Eval. Further, we set Q := Q(λ), n := n(λ),m :=
m(λ) and εA := εA(λ) in order to simplify notation.

We prove Theorem 2 with a sequence of games argument [48]. We denote the
event that Game i outputs 1 by Ei. The first part of the proof will focus on our
technique of using a PRF for partitioning. The second part of the proof follows
the proof by Yamada [51, Theorem 6] and we provide it mostly for completeness.

Game 0. This is the original security experiment from Definition 1 and we
therefore have that ∣

∣
∣
∣
Pr [E0] − 1

2

∣
∣
∣
∣
= εA

holds by definition.

Game 1. In this game, the challenger first runs the game as before. But, before
outputting a result, it samples X ′

i
$←{0, 1}n uniformly and independently at ran-

dom for each query Xi ∈ {0, 1}λ to Eval by A and X∗′ $←{0, 1}n for the chal-
lenge X∗ ∈ {0, 1}λ. Observe that this perfectly emulates the process of eval-
uating a truly random function on the queries and the challenge because we
assumed without loss generality that all queries and the challenge are pairwise
distinct. Further, it sets η := 	log Q
 + 1 and samples Kpart $←PrtSmp(1λ, Q). It
then aborts and outputs a random bit if F(X ′

i,K
part) = 1 for any i ∈ [Q] or if

F(X∗′
,Kpart) = 0. We denote the occurrence of any of the two abort conditions

by the event bad. We next show that

|Pr [E1] − Pr [E0]| = εA(1 − Pr [bad]) ≤ εA

(

1 − 1
8Q

)

.
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We use later that Pr [¬bad] ≥ 1/(8Q), which follows from Lemma 1 and will in
the end yield the loss stated in Theorem 2. We have the following.

|Pr [E1] − Pr [E0]| = |Pr [E1 | bad] Pr [bad] + Pr [E1 | ¬bad] Pr [¬bad] − Pr [E0]|

=
∣
∣
∣
∣

1
2

(1 − Pr [¬bad]) + Pr [E1 | ¬bad] Pr [¬bad] − Pr [E0]
∣
∣
∣
∣

=
∣
∣
∣
∣

1
2

+ Pr [¬bad]
(

Pr [E1 | ¬bad] − 1
2

)

− Pr [E0]
∣
∣
∣
∣

=
∣
∣
∣
∣

1
2

+ Pr [¬bad]
(

Pr [E0] − 1
2

)

− Pr [E0]
∣
∣
∣
∣

(3)

=
∣
∣
∣
∣
Pr [¬bad]

(

Pr [E0] − 1
2

)

−
(

Pr [E0] − 1
2

)∣
∣
∣
∣

=
∣
∣
∣
∣

(

Pr [E0] − 1
2

)

(Pr [¬bad] − 1)
∣
∣
∣
∣

=
∣
∣
∣
∣
Pr [E0] − 1

2

∣
∣
∣
∣
· |Pr [¬bad] − 1|

= εA · (1 − Pr [¬bad])

Note that Eq. (3) holds because Pr [E1 | ¬bad] = Pr [E0 | ¬bad] and the event
¬bad is independent of E0. The independence holds because X∗′

and all X ′
i are

drawn at random. Note that it is this independence together with the indepen-
dence between the different X ′

i and X∗ that allows us to achieve the optimal
tightness in contrast to the other approaches discussed in the introduction.

Further, by Lemma 1, we have that Pr [¬bad] ≥ 1/(8Q) holds and therefore

|E1 − E0| = εA(1 − Pr [¬bad]) ≤ εA

(

1 − 1
8Q

)

.

Game 2. In this game, the challenger only changes the way it computes X∗′

and X ′
i for all i ∈ [Q]. The challenger samples KPRF $←{0, 1}m and aborts and

outputs a random bit if G(Xi,K
PRF,Kpart) = 1 or if G(X∗,KPRF,Kpart) = 0. The

only difference to Game 1 is that G sets X∗′
:= PRF(KPRF,X∗) and X ′

i :=
PRF(KPRF,Xi) instead of drawing them uniformly at random.

Informally, every algorithm distinguishing Game 2 from Game 1 with advan-
tage ε implies a distinguisher for PRF with advantage ε. We describe a distin-
guisher BPRF for PRF that is based on Game 2 and Game 1 and achieves exactly
this: BPRF(λ) with access to either a PRF(KPRF, ·) or a truly random function
F

$←Fλ,n(λ) as oracle first runs (vk, sk) $←Gen(1λ) and uses sk to answer all
queries and the challenge by A. After A submits its guess b′, BPRF queries its
oracle on Xi and by that obtains X ′

i for all i ∈ [Q]. Analogously, it queries its
oracle on X∗ and by that obtains X∗′

. It then samples Kpart $←PrtSmp(1λ, Q)
and aborts and outputs a random bit if F(X∗′

,Kpart) = 0 or F(X ′
i,K

part) = 1 for
some i ∈ [Q]. Otherwise, BPRF outputs 1 if A’s guess is correct and 0 otherwise.
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Note that B has exactly the same runtime as A and that the probability that
it outputs 1 is identical to Pr [E2] if its oracle is the pseudorandom function.
Analogously, if its oracle is a truly random function, then its output is 1 with
probability Pr [E1]. We therefore have

|Pr [E2] − Pr [E1]| =
∣
∣
∣
∣
∣

Pr
KPRF $←{0,1}m

[

BPRF(KPRF,·)
PRF (1λ) = 1

]

− Pr
F

$← Fλ,n(λ)

[

BF (·)
PRF = 1

]
∣
∣
∣
∣
∣
≤ εPRF.

Game 3. In this game, the challenger samples KPRF $←{0, 1}m and the partition-
ing key Kpart $←PrtSmp(1λ, Q) in the very beginning and aborts and outputs a
random bit as soon as A makes an Eval query Xi with G(Xi,K

PRF,Kpart) = 1 or
if it holds for A’s challenge X∗ that G(X∗,KPRF,Kpart) = 0. Since this is just a
conceptual change, we have that

Pr [E3] = Pr [E2] .

From here on, the proof mostly follows the proof by Yamada [51, Appendix C]
and we present it here for completeness.

Game 4. In this game, we change the way the wj are chosen. That is, the
challenger samples the partitioning key Kpart $←PrtSmp(1λ, Q) with Kpart ∈
{0, 1}|Spart| and KPRF $←{0, 1}|SPRF|. For all j ∈ S it sets sj := KPRF

j−|P| for all
j ∈ SPRF and sj := Kpart

j−|P|−|SPRF| for all j ∈ Spart. The challenger then samples

α
$←Z

∗
p, and w̃j

$←Z
∗
p for all j ∈ S. It then sets

w0 := w̃0α and wj := w̃j · α + sj for all j ∈ S.

Note that the w̃j are drawn from Z
∗
p and not from Zp like the wj in the

previous game. This slightly changes the distributions of the wj . However, the
overall statistical distance is at most |S|/p, which is negligible because p = Ω(2λ)
by Definition 10. We therefore have that

|E4 − E3| = negl(λ).

Before proceeding to the next game, we introduce additional notation. That
is, for all X ∈ {0, 1}λ and all j ∈ P ∪ S ∪ C, we let

PX,j(Z) :=

⎧

⎪⎨

⎪⎩

Xj if j ∈ P,

w̃iZ + sj if j ∈ S and
1 − PX,in1λ(j)

(Z)PX,in2λ(j)
(Z) if j ∈ C.

Note that by the definition of wj form Game 3, we have that PX,j(α) = θj . In
order to proceed to the next game, we require the following lemma by Yamada.
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Lemma 2 (Lemma 16 in [51]). There exists RX(Z) ∈ Zp[Z] with deg(R(Z)) ≤
deg(PX,out(Z)) ≤ 2d, where d is the depth of the circuit for the function G, and

PX,out(Z) = G(X,KPRF,Kpart) + Z · RX(Z).

We provide proof in the full version [45, Appendix A] for completeness.

Game 5. With Lemma 2 at our hands, we change how the challenger answers A’s
queries to Eval in this game. As in the previous game, the challenger aborts and
outputs a random bit if G(Xi,K

PRF,Kpart) = 1 for any query Xi by A. Otherwise,
the challenger computes and outputs

Y := e
(

gRX(α)/w̃0 , h
)

, π :=
(

π0 = gRX(α)/w̃0 ,
(

πj := gPX,j(α)
)

j∈C

)

.

Observe that Y and π are distributed exactly as in Game 4. This holds for all
πj because PX,j(Z) is defined exactly as Pj in the definition of Eval above, just
with wj defined as in Game 4. Further, it holds for π0 and Y because

RX(α)
w̃0

=
α · RX(α)

α · w̃0
=

G(X,KPRF,Kpart) + α · RX(α)
α · w̃0

=
PX,out(α)

w0
,

where the last equality follows from Lemma 2. We therefore have that

Pr [E5] = Pr [E4] .

Game 6. In this game, we change how the challenger answers to A’s challenge
X∗. As in the previous game, the challenger aborts and outputs a random bit if
G(X∗,KPRF,Kpart) = 0. Otherwise, the challenger computes RX∗(α) and sets

Y0 :=
(

e(g, h)1/α · e
(

gRX∗ (α), h
))1/w̃0

= e
(

g(1+αRX∗ (α))/(w̃0α), h
)

= e
(

g(G(X
∗,KPRF,Kpart)+αRX∗ (α))/(w̃0α), h

)

= e
(

gPX∗,out(α)/w0 , h
)

Then, the challenger samples a uniformly random bit b and Y1
$←GT and outputs

Yb to A. Again, observe that PX∗,out(α) is, relative to wj as defined in Game 4,
distributed exactly as θout in the definition of Eval . We therefore have that

Pr [E6] = Pr [E5] .

We now claim that there is an algorithm B that runs in time tA and solves
the q-DBDHI problem probability Pr [E6].

Lemma 3. Let d ∈ N be the depth of the CG,λ, then there is an algorithm B
with run time tB ≈ tA that on input a q-DBDHI instance with q = 2d perfectly
simulates Game 6 such that Pr

[

Gq-DBDHI
B (λ) = 1

]

= Pr [E6].
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Due to space limitations and since the proof very closely follows the respective
proof by Yamada, we only provide it in the full version [45]. By Lemma 3 and
the (in)equalities we derived above we have that

εA =
∣
∣
∣
∣
Pr [E0] − 1

2

∣
∣
∣
∣
≤ |Pr [E0] − Pr [E1]| +

∣
∣
∣
∣
Pr [E1] − 1

2

∣
∣
∣
∣

≤ εA

(

1 − 1
8Q

)

+
∣
∣
∣
∣
Pr [E1] − 1

2

∣
∣
∣
∣

≤ εA

(

1 − 1
8Q

)

+ εPRF +
∣
∣
∣
∣
Pr [E2] − 1

2

∣
∣
∣
∣

= εA

(

1 − 1
8Q

)

+ εPRF +
∣
∣
∣
∣
Pr [E3] − 1

2

∣
∣
∣
∣

≤ εA

(

1 − 1
8Q

)

+ εPRF + negl(λ) +
∣
∣
∣
∣
Pr [E4] − 1

2

∣
∣
∣
∣

= εA

(

1 − 1
8Q

)

+ εPRF + negl(λ) +
∣
∣
∣
∣
Pr [E6] − 1

2

∣
∣
∣
∣

= εA

(

1 − 1
8Q

)

+ εPRF + negl(λ) + εB

Rearranging the terms, we have that

εB ≥ εA
8Q

− εPRF − negl(λ).

This concludes the proof of Theorem 2.

5 Conclusion

We have settled the question: What is the optimal tightness an adaptively secure
VRF can achieve? We did so by showing that every reduction from a non-
interactive complexity assumption that can sequentially rewind the adversary
a constant number of times necessarily loses a factor of ≈ Q. Further, we con-
structed the first VRF with a reduction that has this optimal tightness. The
takeaway message is that the optimal loss for adaptively secure VRFs is Q and
that it is possible to construct VRFs that attain this bound.

Our main technical contributions are:

1. The extension of the lower bound for the loss of reductions by Bader et al. [5]
to VRFs and VUFs in Sect. 2.

2. Further, we presented a new partitioning strategy that achieves this optimal
tightness even in the context of decisional security notions and complexity
assumptions.

3. Finally, we show that this partitioning strategy can be applied in Yamada’s
VRF and thus yields a VRF in the standard model with optimal tightness.
This also shows that the lower bound on the loss of reductions from a non-
interactive complexity assumption to the security of a VRF that we present
is optimal.
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However, there are still some open questions. The technique of Bader et al., and
therefore also our results, only applies to non-interactive complexity assumptions
and reductions that sequentially rewind adversaries. While this result covers
already a large class of assumptions and reductions, it does not cover interactive
assumptions and reductions that can run several instances of the adversary in
parallel. Morgan and Pass show a lower bound of

√
Q for the loss of reductions

to the unforgeability of unique signatures from interactive assumptions [42]. It
seems plausible that their technique could be extended to also cover VRFs and
VUFs.

Another open question is whether there are VRFs with an optimally tight
reduction that have key and proof sizes comparable to constructions with non-
optimal tightness (see e.g. [38] or [36] for recent comparisons). Furthermore,
the q-DBDHI assumption with a polynomial q is not a standard assumption
and gets stronger with q [18]. It would therefore be preferable to construct an
efficient VRF with optimal tightness from a standard assumption, like the VRFs
in [27,38,46].

Acknowledgments. I would like to thank Yuval Ishai for the helpful discussion. Fur-
ther, I would like to thank my advisor Tibor Jager for his support and helpful feedback.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions: relations to
identity-based key encapsulation and new constructions. J. Cryptol. 27(3), 544–
593 (2014)

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

3. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 34

4. Abraham, I., Malkhi, D., Nayak, K., Ren, L.: Dfinity consensus, explored. Cryptol-
ogy ePrint Archive, Report 2018/1153 (2018). https://eprint.iacr.org/2018/1153
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Abstract. An (n, m, t)-homomorphic secret sharing (HSS) scheme
allows n clients to share their inputs across m servers, such that the
inputs are hidden from any t colluding servers, and moreover the servers
can evaluate functions over the inputs locally by mapping their input
shares to compact output shares. Such compactness makes HSS a useful
building block for communication-efficient secure multi-party computa-
tion (MPC).

In this work, we propose a simple compiler for HSS evaluating
multivariate polynomials based on two building blocks: (1) homomor-
phic encryption for linear functions or low-degree polynomials, and
(2) information-theoretic HSS for low-degree polynomials. Our compiler
leverages the power of the first building block towards improving the
parameters of the second.

We use our compiler to generalize and improve on the HSS scheme
of Lai, Malavolta, and Schröder [ASIACRYPT’18], which is only effi-
cient when the number of servers is at most logarithmic in the security
parameter. In contrast, we obtain efficient schemes for polynomials of
higher degrees and an arbitrary number of servers. This application of
our general compiler extends techniques that were developed in the con-
text of information-theoretic private information retrieval (Woodruff and
Yekhanin [CCC’05]), which use partial derivatives and Hermite interpo-
lation to support the computation of polynomials of higher degrees.

In addition to the above, we propose a new application of HSS to MPC
with preprocessing. By pushing the computation of some HSS servers to
a preprocessing phase, we obtain communication-efficient MPC protocols
for low-degree polynomials that use fewer parties than previous proto-
cols based on the same assumptions. The online communication of these
protocols is linear in the input size, independently of the description size
of the polynomial.

1 Introduction

In lightweight secure multi-party computation (MPC) protocols, communication
is usually the bottleneck for efficiency. For example, typical protocols based on
oblivious-transfer (OT) have a communication complexity linear in the circuit
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 92–119, 2021.
https://doi.org/10.1007/978-3-030-75248-4_4
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size of the function being computed. A promising approach to bypass this barrier
is homomorphic secret sharing (HSS) for multivariate polynomials, which enables
low communication MPC protocols, while retaining practical efficiency. In this
work, we study this problem and present a set of new lightweight techniques to
maximize the degree of polynomials supported by HSS without increasing the
communication cost.

1.1 Homomorphic Secret Sharing

An (n,m, t)-HSS scheme allows n input clients to share their secret inputs
(x1, . . . , xn) to m non-communicating servers, such that the latter can homo-
morphically evaluate any admissible public function f over the shares, and pro-
duce the output shares (y1, . . . , ym). Using these, an output client can recover
f(x1, . . . , xn). Shares of HSS should be much shorter, or ideally of size indepen-
dent of the size of the description of the function f being computed. This non-
trivial feature distinguishes HSS from OT-based MPC. As for ordinary threshold
secret sharing schemes, security requires that the servers cannot learn anything
about the inputs assuming at most t of them are corrupt.

HSS was conceived [10] as a lightweight alternative to fully-homomorphic
encryption (FHE) [23] and it leverages the non-collusion of the servers to achieve
better efficiency. Indeed, any homomorphic encryption for a function class F can
be seen as an (n, 1, 1)-HSS for the same class. Due to the distributed setting,
homomorphic secret sharing can be constructed from assumptions that do not
imply a fully homomorphic encryption scheme, such as the intractability of the
Diffie-Hellman (DDH) problem [20], or even information-theoretically.

Boyle et al. [10] proposed a DDH-based (n, 2, 1)-HSS scheme for branching
programs, where the reconstruction function is simply the addition of output
shares. This enables many important applications, such as low-communication
2-party computation, efficient round-optimal multiparty computation protocols,
and 2-server private-information retrieval. See [12] for a comprehensive discus-
sion on the matter. One drawback of the scheme is that its correctness holds only
for an inverse polynomial probability. Amplifications through parallel repetition
results in a loss of concrete efficiency.

Boyle, Kohl, and Scholl [13] proposed a counterpart of [10] based on the learn-
ing with errors (LWE) assumption with negligible error. Similar to FHE, their
scheme is only concretely efficient in an amortized sense and only for SIMD1-style
computations. Boyle et al. [9] proposed an (n, 2, 1)-HSS scheme for constant-
degree polynomials based on the learning parity with noise (LPN) assumption.
The scheme does not apply to the multi-input setting, i.e., the entire input must
come from a single party, and the share size O(λd) (as opposed to the trivial
O(nd)) grows exponentially with the degree d.

In a different line of work originated by Catalano and Fiore [15], Lai, Mala-
volta, and Schröder (LMS) [31] considered a variant of the HSS model, where
the reconstruction function is not necessarily linear. While this notion is strictly
weaker than that considered by Boyle et al. [10], it is still useful in some context

1 Single-Instruction-Multiple-Data.
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to “amplify” the homomorphic capability of some encryption schemes, leveraging
the existence of multiple non-colluding servers. They proposed a construction of
(n,m, 1)-HSS for degree d < (k + 1)m polynomials using only a homomorphic
encryption scheme for degree k polynomials (k-HE), for any k ≥ 1. The LMS
construction [31] focused on the case t = 1. Their discussion of how the con-
struction can be extended to t > 1 was non-constructive. A constructive version
for general t ≥ 1 was proposed in [35]. The main shortcoming of LMS [31,35] is
that it is only efficient for a small number of servers, i.e., m = O(log λ), where
λ is the security parameter. This is due to the difficulty of the combinatorial
problem of assigning monomials of the expanded form of

∏
�∈[d](

∑
i∈[n] Xi) to

m servers so that each monomial is computed by exactly one server.

1.2 Power of Low-Degree Polynomials

The homomorphic computation of low-degree polynomials enables several inter-
esting applications, that we discuss below.

1. Private Information Retrieval: An m-server private information retrieval
(PIR) protocol allows a client to retrieve the entry of a certain database
(stored by all servers) without revealing which entry he is interested in. HSS
offers a natural implementation of PIR by allowing the client to secret share
the index across all servers, who can homomorphically evaluate the index
selection function and return the corresponding entry of the database to
the client. It is a well-known fact that the index selection function can be
expressed as a low-degree polynomial (logarithmic in the size of the database).

2. Private Queries: In the context of private queries, even a few extra degrees of
computation turn out to be useful. Instead of the simple index selection, the
servers can answer more complex queries, such as conjunctive statements [6].
As a concrete example, a client can query how many database entries contain
a 1 at positions (i, j), without revealing the indices (i, j), by just adding a
single degree to the polynomial homomorphically evaluated by the servers.
See [3] for an elaborate discussion on the matter. Other examples of useful
queries computable with low-degree polynomials include pattern matching
over unsorted databases [1,2].

3. Machine Learning: HSS for low-degree polynomials can be used to securely
compute repeated linear operations, such as matrix multiplication (for small
amounts of matrices). These operations are recurrent for many interesting
tasks, such as the secure computation of the training phase (e.g., [26]) and
classification phase of (e.g., [8]) of machine learning.

4. Biometrics: In applications of biometrics it is often required to compare or
compute the distance of two data points. These tasks, such as the comparison
of two integers [33], Hamming distance [38], and edit distance [16], can be
represented as the computation of low-degree polynomials.

5. Statistical Analysis: Low-degree polynomials allow one to compute statistics
over private data, such as low-order moments, correlations, and linear regres-
sions. See, e.g. [15] and references therein.



A Geometric Approach to Homomorphic Secret Sharing 95

1.3 Our Results

The starting point of this work is the observation that the LMS construction
can be viewed more abstractly as compiling an information-theoretic (IT) HSS
scheme into its computational counterpart using k-HE. In their case, the IT HSS
scheme consisted of the so called CNF secret sharing scheme [29], consequently,
the inefficiency of their scheme for m = Ω(log λ) servers is essentially due to
the difficulty of evaluating CNF shares, which in turn is related to the #P-
hard problem of computing the permanent of matrices [27]. With this view, it is
natural to ask if the CNF scheme can be replaced with another IT HSS scheme,
so that its (k-HE-compiled) computational variant is efficient for m = poly(λ)
servers.

Generic Compiler from IT HSS to HSS Using HE. In this work, we
answer the above question positively. Specifically, we propose a generic compiler
based on homomorphic encryption that compiles a certain class of IT HSS for
degree-d polynomials into their computational counterpart with less client com-
putation (and hence shorter output shares). In other words, for a fixed client
computation cost, the computational variant supports higher degrees.

Theorem 1 (Informal). Let k, � ∈ N be constants with k ≤ �, and d < (�+1)m
t .

Suppose there exists an IT (n,m, t)-HSS for degree-d polynomials satisfying cer-
tain structural properties, and a CPA-secure k-HE scheme. Further suppose that
the IT HSS scheme has recovery information size ρ, input share size α, output
share size β, server computation σ, and client computation γ. Then there exists
an (n,m, t)-HSS for degree-d polynomials with the following efficiency measures:

– Recovery information size ρ′ = ρ
– Input share size α′ = ρ + α
– Output share size β′ = ρ�−k

– Server computation σ′ = σ + βρ�

– Client computation γ′ = mρ�−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

For k = �, when the base IT HSS scheme is instantiated with the CNF scheme2,
we recover the LMS schemes [31,35].

Theorem 1 might seem confusing at first glance – Our compiler turns a degree-
d IT HSS into another degree-d computational HSS. What is the gain? We
highlight that the output share size of the resulting HSS is independent of that
of the base HSS, which could be much larger. From another perspective, for a
fixed communication cost, the compiled (computational) HSS supports a higher
degree than the base (IT) HSS.

More concretely, as we will see later in Corollary 1 (setting � = k + 1), with
O(n) · poly(λ) communication, the compiled HSS supports degree < (k + 2)m/t

2 More rigorously, the LMS construction can be seen as compiling the “first-order
CNF scheme” which we define in Sect. 4.
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with m servers, instead of < 2m/t by the base HSS. Note that the supported
degree is proportional to km, i.e., the expressiveness of k-HE is amplified mul-
tiplicatively by the number of servers m.

Generalizations of Existing Compatible IT HSS. In search of a substi-
tute of the CNF scheme, we observe that implicit in the work of Woodruff and
Yekhanin [37] lies an IT HSS, which was implicitly used to construct information-
theoretic secure multi-party computation protocols [3]. This scheme, which we
denote by WY1 (first-order Woodruff-Yekhanin HSS), can be seen as a general-
ization of the well-known Shamir secret sharing scheme [36], which we denote
by WY0.

To recall, in the Shamir secret sharing scheme, a secret x ∈ F
n is shared into

(s1, . . . , sm) = (ϕ(1), . . . , ϕ(m)) for some degree-t polynomial ϕ with ϕ(0) = x.
To evaluate a degree-d polynomial f , where d < m

t , server j sends f(sj) = (f ◦
ϕ)(j) to the output client. Since f ◦ϕ is a polynomial of degree at most dt < m,
the output client can recover f(x) = (f ◦ϕ)(0) by Lagrange interpolation. Notice
that the Shamir secret sharing scheme is compact in the sense that, while an
input share is of length n, an output share is of constant length. The latter is in
some sense “wasteful”, since increasing the output share length to n (which we
refer to as balanced), does not increase the overall asymptotic communication
complexity. To utilize this “wasted” space, the idea of Woodruff and Yekhanin is
to let the servers further compute the n first-order derivatives of f evaluated at
sj . Since m additional data points are available, the degree of f can now be as
high as d < 2m

t , and f(x) = (f ◦ϕ)(0) can be recovered by Hermite interpolation.
Our idea to further increase the degree of the supported polynomials is to

let the servers compute even higher-order derivatives.3 With some routine cal-
culation one can show that the output share size is O(n�) if derivatives of up to
the �-th order are evaluated and sent to the output client. While this does not
necessarily help in a standalone use of the HSS scheme, since it increases the
overall communication complexity (and also client computation), it turns out
that the increased communication can be brought back down again using the
k-HE-based compiler, so that the resulting scheme is balanced or even compact.

Theorem 2 (Informal). For any constant � ∈ N and d < (�+1)m
t , there exists

an IT (n,m, t)-HSS scheme WY� for degree-d polynomials with the following
efficiency measures:

– Recovery information size ρ = n
– Input share size α = n
– Output share size β = n�

– Server computation σ = |f |n�−1

– Client computation γ = mn�

3 The idea of generalizing the approach of Woodroof and Yekhanin to higher order
derivatives was already explored in the context of locally decodable codes [30]
although in very different parameter settings. To the best of our knowledge, its
application in cryptography is new to this work.
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Table 1. Comparison of HSS schemes. Computation complexities for CNF� and CNF�

+ k-HE are rough (over)estimations. The LMS scheme [31,35] achieves the efficiency
reported in the “CNF� + k-HE” column with � = k. Factors of poly(λ) contributed by
log |F| and k-HE ciphertext size are omitted.

Scheme CNF� CNF� + k-HE WY� WY� + k-HE

Security IT Comp. IT Comp.

Max degree d (Exclusive) (� + 1)m/t

Recovery info. size ρ mtn mtn �n �n

Input share size α mtn mtn n �n

Output share size β (mtn)� (mtn)�−k n� (�n)�−k

Server computation σ (mtn)d (mtn)d |f |n�−1 |f |n�−1 + (�n2)�

Client computation γ �m(mtn)� m(mtn)�−k �m(�n)� m(�n)�−k

Furthermore, WY� satisfies the structural requirements of the k-HE-based com-
piler. All log |F| factors are omitted.

Implications. When WY� is compiled with the k-HE based compiler, we obtain
the following result.

Corollary 1 (Informal). Let k, � ∈ N be constants with k ≤ �, and d <
(�+1)m

t . Suppose there exists a CPA-secure k-HE scheme. Then there exists an
(n,m, t)-HSS for degree-d polynomials with the following efficiency measures:

– Recovery information size ρ′ = n
– Input share size α′ = n
– Output share size β′ = n�−k

– Server computation σ′ = |f |n�−1 + n2�

– Client computation γ′ = mn�−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

As shown in Table 1, if we treat � as a constant, the k-HE-compiled
WY� scheme strictly outperforms the k-HE-compiled CNF� scheme (� = 1 in
LMS [31,35]) in all parameters. We are mostly interested in the setting where
the communication is balanced, in the sense that the input share size is compa-
rable to the output share size. From Corollary 1, this can be achieved by setting
� = k + 1.

In Table 2, we highlight some practically interesting parameters for the k-
HE-compiled WY� scheme. For a fixed communication cost n · poly(λ), we state
the relation between k, � = k + 1 (so that the HSS is balanced), the corruption
threshold t, the number of servers m, and the degree d of supported polynomi-
als. The degree d reported for each setting of (t,m) is generally higher than that
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Table 2. Some practically interesting parameters for our HSS schemes for polynomials
using k-HE for k = 1, 2 and linear communication. The first six rows are obtained by
setting k = 1 and � = 2 in WY� + k-HE. The last six rows are obtained by setting
k = 2 and � = 3.

Corruption t # Servers m Max degree d (Inclusive)

1 2 5

1 3 8

1 4 11

2 3 4

2 4 5

3 4 3

1 2 7

1 3 11

1 4 15

2 3 5

2 4 7

3 4 5

supported by LMS [31] (t = 1) and [35] (t ≥ 1) by an additive factor of m/t,
since they did not consider balanced HSS schemes. We focus on small k = O(1)
since for such values of k it is not known how a k-HE can be bootstrapped [23]
into an FHE. For k ∈ {1, 2}, k-HE can be realized based on assumptions that
are not known to imply FHE: For polynomials whose outputs are contained in
a polynomial-size space, the ElGamal encryption [21] is a 1-HE based on the
decisional Diffie Hellman (DDH) assumption, and the BGN encryption [7] is a
2-HE based on the subgroup decision assumption. For large outputs, the Pail-
lier encryption [34] and Damg̊ard–Jurik encryption [19] are 1-HE based on the
decisional composite residuosity assumption. The additive variant of ElGamal
[14] is a 1-HE based on DDH in groups with a discrete-logarithm-easy subgroup.
For general k = O(1), k-HE can be construction from the learning with errors
assumption with smaller parameters than those which imply FHE, and therefore
are concretely efficient.

Application to MPC with Preprocessing. In typical (n,m, t)-HSS schemes,
including ones constructed in this work, there exists p < m such that any p
input shares are distributed uniformly over an efficiently sampleable space. In
other words, the input shares of any, say the first, p parties contain no infor-
mation about the input (x1, . . . , xn), and can be generated in a preprocessing
phase even before the inputs (x1, . . . , xn) are known. We formalize this as the
p-preprocessing property, and show that the WY� scheme its k-HE-compiled
counterpart support

⌊
t

�+1

⌋
-preprocessing.
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We then show that, given a general purpose MPC protocol (whose commu-
nication cost might be linear in the function description size), an HSS for poly-
nomials with p-preprocessing can be compiled into a communication-efficient
MPC for polynomials with preprocessing. Our technique generalizes the app-
roach taken in [5] for obtaining 2-party MPC with preprocessing from 3-server
PIR.

Recall that an MPC protocol with preprocessing is split into two phases
– a preprocessing phase and an online phase. In the preprocessing phase, a
trusted party performs an input-independent preprocessing on the function f ,
and distributes shares of the preprocessing result to the m participants. Alter-
natively, the trusted party can be emulated by an MPC among the m par-
ties. Then, in the online phase, the m parties collectively receive their online
inputs (x1, . . . , xn), where each party either possesses a share or a disjoint sub-
set of entries of (x1, . . . , xn), and interact in an online MPC protocol to compute
f(x1, . . . , xn). The hope is that, by exploiting the offline preprocessing, the online
communication cost can be reduced such that it is independent of the description
size of f .

Our idea is to push the work of the first p servers in an HSS scheme with
p-preprocessing to the preprocessing phase of the MPC protocol, and thereby
reduce the minimal necessary number of parties required to run the protocol.
The MPC preprocessing first generates the inputs shares of the first p HSS
servers, which can be done independently of the input. It then homomorphically
evaluates f on the p input shares to produce p output shares. The input and
output shares of the first p HSS servers are then secret shared among the m
MPC participants.

In the online phase, the m MPC participants receive their respective inputs
(x1, . . . , xn) and engage in an MPC protocol to generate the remaining input
shares. Naturally, the j-th participant gets the (p + j)-th HSS input share.
Each participant can then proceed to homomorphically evaluate f on their input
shares, and then engage in another MPC to recover the computation result from
all output shares.

Note that the two MPC sub-protocols run in the online phase are computing
functions whose circuit size is comparable to the input size, independently of |f |.
For degree d polynomials, |f | can be of size O(nd). Our MPC protocol therefore
potentially achieves an exponential improvement over general-purpose MPC,
without using heavy tools such as FHE.

In the case where t is a multiple of � + 1, when instantiated with the k-HE-
compiled WY� scheme and, say, an OT-based MPC, we obtain an m party MPC
protocol with preprocessing for degree-d polynomials, where d < (�+1)m

t +1, i.e.,
the degree grows by 1 compared to a direct use of HSS without increasing the
number of participants. The online communication is mn�−k · poly(λ). As long
as |f | = ω(mn�−k), which holds for the vast majority of n-variate polynomials
of degree d < (�+1)m

t + 1, our preprocessing MPC achieves a communication
complexity sublinear in |f |. Due to the requirement that t is a multiple of � + 1,
the preprocessing technique seems to be more suited to the setting where t is large
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Table 3. Some practically interesting parameters for our MPC protocols with prepro-
cessing with n ·poly(λ) communication, based on HE for linear or quadratic functions.

Corruption t # Parties m Max degree d (Inclusive) Base scheme

3 4 4 WY2 + 1-HE

3 5 5 WY2 + 1-HE

3 6 6 WY2 + 1-HE

4 5 5 WY3 + 2-HE

4 6 6 WY3 + 2-HE

4 7 7 WY3 + 2-HE

(close to m). In Table 3, we highlight some practically interesting parameters
for the MPC protocols with preprocessing obtained via our transformation.

Beyond the computation of degree-d polynomials, our preprocessing MPC
can be used as a building block in MPC for structured circuits whose “gates”
compute degree-d mappings, similar to the ideas of [10,11,17] for evaluating
layered circuits and circuits over low-degree gates. Some examples for useful
circuits of this kind were given in [17]. These include circuits for Fast Fourier
Transform (FFT), symmetric-key cryptography, and dynamic programming.

1.4 Related Work

In addition to the aforementioned related works, we point out that the task of
evaluating degree-d n-variate polynomials privately was also considered in the
context of maliciously-secure MPC, where the adversary is allowed to corrupt
all but one parties, i.e., t = m − 1, whereas we only consider HSS and MPC
schemes in the semi-honest setting. Below we discuss the semi-honest protocols
implicitly described in two maliciously-secure MPC, both of which are indirectly
based on the idea of compiling an IT HSS using a k-HE (for k = 1), which
is made explicit in this work. These schemes inherently require that the poly-
nomial to be evaluated is represented in expanded form, and consequently has
only polynomially-many monomials. In contrast, our WY-based schemes support
polynomials represented by polynomial-sized arithmetic circuits.

The semi-honest part of the 2-party protocol of Franklin and Mohassel [22] is
precisely the HSS obtained by compiling CNF1 with a 1-HE in the setting where
(t,m) = (1, 2). They also proposed an m-party (maliciously-secure) protocol for
degree-d polynomials which achieves computation and communication complex-
ity poly(m) · n�d/2�, which is comparable to the 1-HE compiled WY� scheme
which has communication complexity m(�n)�−1 and supports polynomials of
degree at least � + 1 (c.f., Table 1).

Underneath the protocol of Dachman-Soled et al. [18] lies the following proto-
col for evaluating a (publicly known) monomial μ(x1, . . . , xn) where (x1, . . . , xn)
are jointly contributed by m parties. First, the monomial is split into μ =
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μ1 · . . . · μm, where μi(x1, . . . , xn) is a monomial which depends only on the
inputs of the i-th party. Party 1 encrypts the evaluation of μ1 using a 1-HE and
sends the ciphertext c1 to Party 2. Then, for i ∈ {2, . . . , m}, Party i homomor-
phically multiplies μi to the ciphertext ci−1 encrypting μ1 · . . . · μi−1 received
from Party i− 1 to obtain a new ciphertext ci. Finally, Party i sends ci to Party
i+1 if i �= m, or to everyone if i = m. Based on the above incremental evaluation
protocol, the (maliciously-secure) protocol of Dachman-Soled et al. [18] requires
(roughly) O(n2 log2 d) communication and O(n log d) computation, where the
logarithmic dependency on d is achieved by having each party precompute the
powers-of-2 of their inputs4. Due to the logarithmic dependency on d and the
limit of the number of monomials, their scheme seems best suited for evaluating
sparse polynomials of a high degree d = poly(λ).

2 Preliminaries

Let λ ∈ N denote the security parameter. The set of all polynomials and negli-
gible functions in λ are denoted by poly(λ) and negl(λ) respectively. An algo-
rithm with input length n is PPT if it can be computed by a probabilistic Turing
machine whose running time is bounded by some function poly(n). We use [n] to
denote the set {1, . . . , n}, and N0 to denote the set of all non-negative integers.
Given a finite set S, we denote by x ← S the sampling of an element uniformly
at random in S.

For simplicity, throughout this work we fix a field F which is sufficiently large,
such that for any polynomial f ∈ F[X1, . . . , Xn] we will be considering, we have
deg(f) < |F| ≤ 2λ. An F element can therefore be represented by λ bits. Let
e = (e1, . . . , en) ∈ N

n
0 and x = (x1, . . . , xn) ∈ F

n. We define the weight function
wt(e) := e1 + . . . + en. We use xe to denote the expression xe := xe1

1 . . . xen
n .

2.1 Homomorphic Encryption for Degree-k Polynomials (k-HE)

We recall the notion of homomorphic encryption for degree-k polynomials over
F.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme HE = (KGen,Enc,Eval,Dec) for degree-k polynomials over F, k-HE for
short, consists of the following PPT algorithms:

– KGen(1λ) : The key generation algorithm takes as input the security param-
eter λ and outputs the public key pk and the secret key sk.

– Enc(pk,x) : The encryption algorithm takes as input the public key pk and a
message x ∈ F

n for some n = poly(λ); it returns a ciphertext c ∈ Cn in some
ciphertext space C.

– Eval(pk, f, c) : The evaluation algorithm takes as input the public key pk, (the
description of) a polynomial f ∈ F[X1, . . . , Xn], and a ciphertext c ∈ Cn for
some n = poly(λ); it returns a ciphertext c′ ∈ C.

4 This degree reduction technique is generic and also applies to our HSS-based schemes.
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IND-CPAb
A,HE(1

λ) :

(pk, sk) ← KGen(1λ)

(x0, x1, state) ← A1(pk)

c ← Enc(pk, xb)

b′ ← A2(state, c)

return b′

Fig. 1. IND-CPA experiment for public-key encryption

– Dec(sk, c) : The decryption algorithm takes as input the private key sk and a
ciphertext c ∈ Cn for some n = poly(λ); it returns a plaintext x ∈ F

n.

We focus only on compact HE schemes [23], where the size of the ciphertext
space |C| = poly(λ) is independent of the size of the supported polynomials.

Definition 2 (Correctness). A k-HE scheme is said to be correct if for any
λ ∈ N, any (pk, sk) ∈ KGen(1λ), any positive integer n ∈ poly(λ), any polynomial
f ∈ F[X1, . . . , Xn] of degree at most k, and message x ∈ F

n, we have

Pr[Dec(sk,Enc(pk,x)) = x] ≥ 1 − negl(λ) , and

Pr
[

Dec(sk, c) = f(x) :
c ← Enc(pk,x)

c′ ← Eval(pk, f, c)

]

≥ 1 − negl(λ)

where the probability is taken over the random coins of Enc and Eval. The scheme
is perfectly correct if the above probabilities are exactly 1.

Definition 3 (CPA-Security). A homomorphic encryption scheme HE is
IND-CPA-secure (has indistinguishable ciphertexts under chosen plaintext
attack) if for any PPT adversary A = (A1,A2)

∣
∣
∣Pr

[
IND-CPA0

A,HE(1
λ) = 1

] − Pr
[
IND-CPA1

A,HE(1
λ) = 1

] ∣
∣
∣ ≤ negl(λ)

where the experiment IND-CPAb
A,HE is defined in Fig. 1.

3 Definition of Homomorphic Secret Sharing

We recall the notion of homomorphic secret sharing [12]. The definitions pre-
sented here are for the variant in the public-key setup model [31]. For the defi-
nitions in the plain model, we refer to [12,31].

Definition 4 (Homomorphic Secret Sharing (HSS)). An n-input m-
server homomorphic secret sharing scheme HSS = (KGen,Share,Eval,Dec) for
degree-d polynomials over F consists of the following PPT algorithms:
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– (pk, sk) ← KGen(1λ) : On input the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk.

–
(

in1, . . . , inm

rec1, . . . , recm

)

← Share(pk,x) : Given a public key pk, and an input

x ∈ F
n, the sharing algorithm outputs a a set of input shares (in1, . . . , inm)

where inj ∈ {0, 1}α·poly(λ) and their corresponding recovery information
(rec1, . . . , recm) where recj ∈ {0, 1}ρ·poly(λ).

– outj ← Eval(pk, j, f, inj) : The evaluation algorithm is executed by a server
Sj on inputs the public key pk, an index j, (the description of) a degree-d
polynomial f , and a share inj. Upon termination, the server Sj outputs the
corresponding output share outj ∈ {0, 1}β·poly(λ).

– y ← Dec

(

sk,
out1, . . . , outm,
rec1, . . . , recm

)

: On input a secret key sk, a tuple of output

shares (out1, . . . , outm), and a tuple of recovery information (rec1, . . . , recm),
the decoding algorithm outputs the result y of the evaluation.

The efficiency measures ρ = ρ(n), α = α(n) and β = β(n) are the lengths
of the recovery information, input shares, and output shares respectively (omit-
ting poly (λ) factors). An HSS scheme is said to be compact if β = poly (λ)
(independent of n), and balanced if β = O(α).

Remark 1. In the syntax, we decide to split the recovery information into m
chunks (rec1, . . . , recm), so that it is more convenient to describe the compiler
in Sect. 5, and so that we can omit a factor of m from the measure ρ to reduce
clutter. In general, the recovery information can be grouped into a single object
rec and the definition ρ can be changed accordingly.

Remark 2. In the literature, an HSS scheme is usually defined without the
recovery information (rec1, . . . , recm), i.e., ρ = 0. We remark that given an
HSS scheme with efficiency measures (ρ, α, β), we can construct another scheme
(with the same security under the same assumptions) with efficiency measures
(0, α + mρ, β + mρ), by having the input client secret-share r to the servers
and the servers relaying those shares to the output client. We use the present
definition for convenience.

Remark 3. Our syntax describes a setting where a single party provides all n
inputs to the Share algorithm for simplicity. In the case where the input xi

is provided by party i, we can consider an alternative syntax of Share which
inputs (pk, xi) and outputs (ini,j , reci,j). The Share algorithm of all HSS schemes
considered in this work can be “split” to suit the multi-input syntax.

Definition 5 (Correctness). An n-input m-server HSS scheme for degree-d
polynomials is correct if for any λ,m, n ∈ N, any (pk, sk) ∈ KGen(1λ), any
f ∈ F[X1, . . . , Xn] with deg(f) ≤ d, any n-tuple of inputs x = (x1, . . . , xn) ∈ F

n,
it holds that
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Securityb
A,HSS(1

λ) :

(pk, sk) ← KGen(1λ)

(x0,x1, j1, . . . , jt, state) ← A0(pk)(
in1, . . . , inm,
rec1, . . . , recm

)
← Share(pk, xb)

b′ ← A1(state, inj1 , . . . , injt)

return b′

Fig. 2. Security experiments for (∗, m, t)-HSS

Pr

⎡

⎣Dec

(

sk,
out1, . . . , outm,
rec1, . . . , recm

)

= f(x) :

(
in1, . . . , inm

rec1, . . . , recm

)

∈ Share(pk,x)

∀j ∈ [m], outj ∈ Eval(pk, j, f, inj)

⎤

⎦

≥1 − negl(λ) ,

where the probability is taken over the random coins of Share and Eval. The
scheme is perfectly correct if the above probability is exactly 1.

The security of an HSS scheme is analogous to the CPA-security of HE, and
guarantees that no information about the message is disclosed to any t servers.

Definition 6 (Security). An n-input m-server HSS scheme is t-secure if for
any λ ∈ N there exists a negligible function negl(λ) such that for any PPT
algorithm A = (A0,A1),

∣
∣Pr

[
Security0A,HSS = 1

] − Pr
[
Security1A,HSS = 1

]∣
∣ < negl(λ)

where Securityb
A,HSS is defined in Fig. 2 for b ∈ {0, 1}.

We use the short hand (n,m, t)-HSS to refer to n-input, m-server, t-secure
homomorphic secret sharing.

Definition 7 (p-Preprocessing). We say that an (n,m, t)-HSS scheme
HSS.(KGen,Share,Eval,Dec) supports p-preprocessing if there exists PPT algo-
rithms (PreProc,ShareComp) such that, for any λ ∈ N, any (pk, sk) ∈ KGen(1λ)
and any x ∈ F

n, the following distributions are identical:
⎧
⎪⎪⎨

⎪⎪⎩

(
in1, . . . , inm

rec1, . . . , recm

)

:

(
in1, . . . , inp

rec1, . . . , recp

)

← PreProc(pk, 1n)
(

inp+1, . . . , inm

recp+1, . . . , recm

)

← ShareComp

(

pk,
in1, . . . , inp,
rec1, . . . , recp,

,x

)

⎫
⎪⎪⎬

⎪⎪⎭

≡
{(

in1, . . . , inm

rec1, . . . , recm

)

:

(
in1, . . . , inm

rec1, . . . , recm

)

← Share(pk,x)

}
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If an HSS scheme supports p-preprocessing, it means that the shares of the
first p servers are independent of the input x, and can thus be computed in a
preprocessing phase when the input x is yet unknown.

Definition 8 (Information-Theoretic HSS). We say that HSS.(KGen,Share,
Eval,Dec) is information-theoretic (IT) if KGen outputs empty strings, and
HSS is secure against unbounded adversaries. In such case we simply write
HSS.(Share,Eval,Dec) to denote the HSS scheme and omit the public and secret
key inputs to the algorithms Share, Eval, and Dec. In case HSS supports p-
preprocessing, we also omit the public key input to PreProc and ShareComp.

4 Information-Theoretic Homomorphic Secret Sharing

Information-theoretic HSS exists implicitly in the literature of secret sharing
and private information retrieval (PIR). The simplest examples are the additive
secret sharing scheme and Shamir’s secret sharing scheme [36]. The former is an
(n,m,m−1)-HSS for degree-1 polynomials, i.e., linear functions, with efficiency
measures while the latter is an (n,m, t)-HSS for degree-

⌊
m−1

t

⌋
polynomials. Both

schemes are compact as an output share consists of a single F element.
In the following, we extract two IT HSS schemes – the “CNF” scheme CNF0

[29] and the scheme WY1 from Woodruff and Yekhanin [37] – from the liter-
ature of private information retrieval (PIR) which are generalizations of the
additive and Shamir secret sharing schemes respectively. We then present the
“�-th order” generalizations of the two schemes – CNF� and WY� – which aim
to support higher-degree polynomials at the cost of, among other parameters,
larger recovery information size and higher degree client computation. The gen-
eralizations are done in a way compatible with the compiler to be presented in
Sect. 5, so that the higher degree client computation can be delegated back to
the servers in the compiled schemes. While the CNF� scheme is strictly inferior
to the WY� for all �, we include it since compiling CNF1 with our compiler in
Sect. 5 captures the LMS scheme [31,35].

4.1 CNF Secret Sharing

A generalization of the additive secret sharing scheme is the so called CNF secret
sharing scheme [29], where CNF stands for conjunctive normal form. The scheme
was first used in the context of PIR by Ishai and Kushilevitz [28].

Original Scheme CNF0. The idea of the CNF scheme is to write x ∈ F
n as a

sum of random elements so that x =
∑

u cu, where u = (u1, . . . , um) ∈ {0, 1}m

runs through all possible choices of choosing t out of m objects. The j-th share
is then defined as sj := (cu)u:uj=0, i.e., all cu where the j-th bit of u is 0. The
scheme is t-secure because, given any t-subset {j1, . . . , jt} ⊆ [m], there exists
cu∗ , where u∗

j = 1 for all j ∈ {j1, . . . , jt}, which is not known to this subset of
servers.
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The CNF scheme is clearly linearly homomorphic. Thus, for evaluating a
polynomial of degree d, it suffices to show how a monomial xe where wt(e) = d
can be evaluated. Without loss of generality, we consider the monomial

x1 · · · xd =
d∏

i=1

∑

u∈{0,1}m:
wt(u)=t

ci,u =
∑

u1,...,ud∈{0,1}m:
wt(ui)=t

d∏

i=1

ci,ui
.

To let the output client recover x1 · · · xd, one way is to have (at least) one
server being able to compute for each (u1, . . . ,ud) the term

∏d
i=1 ci,ui

. If so, we
distribute the terms so that each term is computed by exactly one server. Each
server can compute the partial sum of all the terms that it is assigned, and send
this sum to the output client. The latter can then sum over all partial sums and
recover x1 · · · xd.

We now examine the term
∏d

i=1 ci,ui
for any fixed u1, . . . ,ud ∈ {0, 1}m with

wt(ui) = t. Consider the string u = u1 ∨ . . . ∨ ud obtained by bit-wise OR
operations. Note that if d ≤ m−1

t , we have

wt(u) ≤
d∑

i=1

wt(ui) ≤ m − 1
t

· t < m.

Therefore there must exist j∗ ∈ [m] such that ui,j∗ = 0 for all i ∈ [d]. That is,
server j∗ possesses c1,u1 , . . . , cd,ud

and can thus compute the term.
Although it is information theoretically possible for the parties to compute

x1 · · · xd, there seems to be no natural way to distribute the terms among the
servers. In particular, as noted in [27], when t = 1, m = d+1, and the terms are
distributed greedily to the servers, then the last server would need to compute the
permanent of a d-by-d matrix, which is #P-hard. The difficulty of distributing
the terms limits the number of servers in [31,35] to be logarithmic in λ.

For the case t = 1, [27, Section 5.2] showed an alternative method of com-
puting x1 · · · xd efficiently. The idea is essentially to first locally convert a CNF
share into a Shamir share of the same secret, and then perform homomorphic
evaluation on the Shamir share. We present here a generalization of the method
for any t < m. Fix an arbitrary m-subset {ζ1, . . . , ζm} ⊆ Zq. Define the degree-dt
polynomial

p(Z) :=
d∏

i=1

∑

u∈{0,1}m:
wt(u)=t

ci,u

∏

j:uj=1

(1 − Z/ζj)

such that p(0) =
∏d

i=1

∑
u∈{0,1}m:
wt(u)=t

ci,u = x1 · · · xd. Note that p(ζj) does not

depend on the values of ci,u where the j-th bit of u is 1, and can therefore be
computed by the j-th server. Since the degree of p is dt ≤ m − 1, p(0) can be
recovered by interpolating p(ζ1), . . . , p(ζm).
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In general, given an n-variate degree-d polynomial f , we can define

pf (Z) := f

⎛

⎜
⎜
⎝

∑

u∈{0,1}m:
wt(u)=t

c1,u

∏

j:uj=1

(1 − Z/ζj), . . . ,
∑

u∈{0,1}m:
wt(u)=t

cn,u

∏

j:uj=1

(1 − Z/ζj)

⎞

⎟
⎟
⎠ .

The value f(x) can be recovered by f(x) = pf (0).

Generalized Scheme CNF�. In the above, the client is required to perform
only a simple linear computation for recovery. We show that the computation of
higher degree polynomials is possible, if the client is willing to perform a degree-�
computation for � > 1.

We first consider the naive strategy of distributing terms to servers, and
discuss the interpolation-based approach later. In the former setting, it suffices
to have that, for any fixed u1, . . . ,ud ∈ {0, 1}m with wt(ui) = t, there exists a
server j∗ ∈ [m] and an index set I of size |I| ≥ d − � such that ui,j∗ = 0 for all
i ∈ I. Server j∗ can therefore compute

∏
i∈I ci,ui

, and leave the computation of∏
i∈[d]\I ci,ui

to the output client. To compute the latter, the client would need
to store locally a copy of all shares – the recovery information is the same as the
input shares.

We argue that if dt < (�+1)m, then the above condition is satisfied. Suppose
not, then for all j ∈ [m], we have |{i ∈ [d] : ui,j = 0}| ≤ d−�−1. In other words,
for all j ∈ [m], we have |{i ∈ [d] : ui,j = 1}| ≥ � + 1. Summing up the weights of
all ui, we have

∑d
i=1 wt(ui) ≥ (�+1)m. By the pigeonhole principle, there must

exist i∗ such that

wt(ui∗) ≥ (� + 1)m
d

>
(� + 1)mt

(� + 1)m
= t

which is a contradiction as wt(ui) = t for all i ∈ [d].
The CNF scheme suffers from many drawbacks. First, each input share con-

sists of
(
m
t

)
n F elements. It also suffers from inefficient evaluation, unless the

interpolation-based evaluation is used, which makes it equivalent to the scheme
presented in Sect. 4.2, except with larger input shares. Finally, the output share
size is upper bounded by the number of monomials of degree at most � over the
variables (ci,u)i∈[n],u∈{0,1}m:wt(u)=t, i.e.,

((m
t )n+�

�

)
= O((mtn)�).

We next state the formal theorem about the CNF� scheme. Its proof is already
written inline in the above discussion.

Theorem 3. Let d < (�+1)m
t . The �-th order CNF secret sharing scheme

CNF� is an IT (n,m, t)-HSS for degree-d polynomials, with efficiency measures
(ρ, α, β) =

(
mtn,mtn, (mtn)�

)
.

Similar to the � = 0 case, the above approach suffers in evaluation efficiency
since there is no natural way to distribute the terms. Naturally, one would hope
to use a generalization of the interpolation-based approach to achieve the same
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parameter (d =
⌊
(�+1)m−1

t

⌋
). Indeed, in Sect. 4.2 we recall and generalize a

technique by Woodruff and Yekhanin [37] of using partial derivatives and Her-
mite interpolation to support higher degree polynomials, which would also be
applicable in CNF�. Since the resulting schemes, which we denote by WY�, are
superior to CNF� in all parameters, we do not discuss applying the technique to
CNF� in detail.

4.2 �-th Order Woodruff-Yekhanin HSS

In an insightful work of Woodruff and Yekhanin [37], they constructed a PIR
scheme which can be viewed as an (n,m, t)-HSS for degree-

⌊
2m−1

t

⌋
polynomials,

which we call the first-order Woodruff-Yekhanin HSS WY1. The idea of the
scheme is as follows.

First Order Scheme by Woodruff and Yekhanin. We begin with the
sharing procedures of Shamir’s scheme. To secret-share x ∈ F

n, the input client
sample a random (vector valued) degree-t polynomial ϕ(Z) so that ϕ(0) = x.
The j-th share is defined as sj := ϕ(j). What differs from Shamir’s scheme is
that the input client also computes, as recovery information, the derivatives of
ϕ evaluated at j ∈ [m], denoted by ϕ(1)(j), ϕ′(j), or dϕ

dZ (j).
To evaluate a polynomial f of degree

⌊
2m−1

t

⌋
over a share sj , server j com-

putes as in Shamir’s scheme f(sj) = f(ϕ(j)). Additionally, it computes all par-

tial derivatives of f evaluated at sj , denoted by
(

∂f
∂Xi

(sj)
)

i∈[n]
. The j-th output

share is defined as yj :=
(
f(sj), ∂f

∂X1
(sj), . . . , ∂f

∂Xn
(sj)

)
.

Finally, to decode the output shares, the output client first recover (f ◦
ϕ)′(sj) = df◦ϕ

dZ (sj) by using the chain rule of derivatives. Then, since f ◦ ϕ
is a univariate polynomial of degree at most 2m − 1, it is possible to recover
f(ϕ(0)) = f(x) from m points on f ◦ ϕ and m points on (f ◦ ϕ)′ using Hermite
interpolation.

The scheme of Woodruff and Yekhanin is balanced, meaning that both input
and output shares consist of O(n) F elements. The result can be seen as a trade-
off between m

t degrees and compactness, when compared to Shamir’s scheme. If
we view the sharing, evaluation, and decoding procedures of an HSS as one MPC
protocol, then for a fixed input share size, a balanced HSS and a compact HSS
would give MPC protocols with the same asymptotic communication complexity.
In this sense, the extra m

t degrees are gained for free.

Generalization to Higher Orders. Intuitively, a way to support polynomials
of even higher degrees is to further sacrifice the output share size. The idea is
to let the servers compute all partial derivatives of order at most �, so that a
polynomial of degree at most d < (�+1)m

t can be supported. In a standalone
application of the HSS, this would not make sense as it is “wasteful” to have a
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WY�.Share(x)

ϕ ← (F[Z])n
s.t.

{
deg(ϕ) = t

ϕ(0) = x

inj := ϕ(j), ∀j ∈ [m]

recj :=
(

ϕ
(u)(j)

)
u∈[�]

return

(
in1, . . . , inm,
rec1, . . . , recm

)

WY�.Eval(j, f, inj)

outj :=
(

f(sj), f
(e)(sj)

)
e∈Nn

0 :wt(e)≤�

return outj

WY�.Dec

(
out1, . . . , outm,
rec1, . . . , recm

)
foreach j ∈ [m], u ∈ [�] do

(f ◦ ϕ)(u)(sj)

= Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f
(e)(sj))e∈N0:wt(e)≤u)

y := Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[�])

Fig. 3. The �-th order Woodruff-Yekhanin HSS.

smaller input share size than the output share size. However, with the observa-
tion that, in our compiler constructed in Sect. 5, the output share size of the
resulting HSS scheme is independent of that of the base scheme, sacrificing the
output share size even more for the support of more degrees might be worth it.
We therefore formalize this intuition in Fig. 3 and call the resulting scheme the
�-th order Woodruff-Yekhanin HSS, denoted by WY�.(Share,Eval,Dec).

For e ∈ N
n
0 , we use the notation f (e)(x) to denote the high-order partial

derivative ∂wt(e)f
∂X

e1
1 ...∂Xen

n
evaluated at x. For u ∈ [�], we make use of a generalization

of the Faa di Bruno formula [32] which expresses (f ◦ϕ)(u)(j) as a linear function
of (f (e)(sj))e∈N

n
0 :wt(e)≤u with coefficients determined by degree-u polynomials of

(ϕ(h)(j))h∈[u]. We denote this formula by

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f (e)(sj))e∈N0:wt(e)≤u).

Finally, we use the notation

Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[�])

to denote the value f(ϕ(0)) recovered using Hermite interpolation.

Theorem 4. Let d < (�+1)m
t . The �-th order Woodruff-Yekhanin HSS WY� is

an IT (n,m, t)-HSS for degree-d polynomials with efficiency measures (ρ, α, β) =(
�n, n, n�

)
.

Proof. Input shares of WY� are just shares of the Shamir secret sharing scheme.
Security thus follows immediately. More seriously, for any fixed t-subset of input
shares {inj1 , . . . , injt

} and any input x ∈ F
n, there exists a unique degree-t

polynomial ϕ such that ϕ(0) = x and ϕ(j) = inj for all j ∈ {j1, . . . , jt}. The set
{inj1 , . . . , injt

} therefore contain no information about the true input.
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The support of degree-d polynomials follows immediately from Hermite
interpolation. Specifically, we note that the output client obtains the following
(� + 1)m data points:

(1, (f ◦ ϕ)(1)) . . . (m, (f ◦ ϕ)(m))
(1, (f ◦ ϕ)′(1)) . . . (m, (f ◦ ϕ)′(m))

...
. . .

...
(1, (f ◦ ϕ)(�)(1)) . . . (m, (f ◦ ϕ)(�)(m))

for a univariate degree-dt polynomial f ◦ ϕ and its derivatives. Since dt ≤ (� +
1)m−1 the client is able to recover f(x) = f(ϕ(0)) using Hermite interpolation.

The size of a recovery information ρ = �n and that of an input share α = n
can be easily observed. For the size of an output share, observe that an out-
put share consists of

(
f(sj), f (e)(sj)

)
e∈N

n
0 :wt(e)≤�

. The set {e ∈ N
n
0 : wt(e) ≤ �}

counts the number of n-variate monomials of degree at most �, and thus is of
size

(
n+�

�

)
= O(n�). We thus have β = n�.

Note that WY0 is simply the Shamir secret sharing scheme.

Computational Complexity. We remark about the computational complex-
ity of the servers and the output client. It is well-known, e.g., by the Baur-
Strassen theorem [4] or in the field of auto-differentiation, that if a multivariate
polynomial f can be computed by an arithmetic circuit of size denoted by |f |,
then there exists a circuit of size O(|f |) which computes f and all n first-order
partial derivatives of f simultaneously. Applying this recursively to the n first-
order partial derivatives suggests that the server computation is bounded by
O(|f |n�−1).

On the output client side, we note that

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f (e)(sj))e∈N0:wt(e)≤u)

is a linear function with
(
n+u

u

) ≤ (
n+�

�

)
terms, where each coefficient is a

degree-u polynomial with at most
(
2u
u

) ≤ (
2�
�

)
terms. The output client needs

to evaluate �m of these. Lastly, the Hermite interpolation is a linear function
with (� + 1)m terms. Therefore, the output client computation is bounded by
O

(
�m · (n+�

�

) · (
2�
�

))
= O

(
�m(�n)�

)
. For the cases of � = 1 or � = 2, the output

client computation is O(mn) and O(mn2) respectively.

Preprocessing. In the Share algorithm of WY�, a degree-t polynomial ϕ is
sampled such that the input x is encoded as ϕ(0) = x. Note that ϕ is not deter-
mined until t+1 points on it or its derivatives are fixed. We can therefore exploit
this property and push the sampling of p ≤ t

�+1 shares and their corresponding
recovery information, which in total consist of p(� + 1) ≤ t < t + 1 points, to a
preprocessing phase.
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WY�.PreProc(1n)

p :=
⌊

t

� + 1

⌋
s0,j ← F

n
, ∀j ∈ [p]

su,j ← F
n

, ∀j ∈ [p], ∀u ∈ [�]

inj := s0,j , ∀j ∈ [p]

recj := (su,j)j∈[p],u∈[�]

return

(
in1, . . . , inp,
rec1, . . . , recp

)

WY�.ShareComp

(
in1, . . . , inp,
rec1, . . . , recp,

,x
)

// Sample ϕ by Hermite interpolation.

ϕ ← (F[Z])n
s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

deg(ϕ) = t

ϕ(0) = x

ϕ(j) = s0,j ∀j ∈ [p]
ϕ(u)(j) = su,j ∀j ∈ [p] ∀u ∈ [�]

inj := ϕ(j), ∀j ∈ [m] \ [p]

recj :=
(

ϕ
(u)(j)

)
j∈[p],u∈[�]

return

(
inp+1, . . . , inm,
recp+1, . . . , recm

)

Fig. 4.
⌊

t
�+1

⌋
-Preprocessing of the �-th order Woodruff-Yekhanin HSS.

Theorem 5. Let p ≤ t
�+1 . The �-th order Woodruff-Yekhanin HSS WY� sup-

ports p-preprocessing.

Proof. We show that WY� supports p-preprocessing by constructing the algo-
rithms WY�.(PreProc,ShareComp) in Fig. 4.

5 Compiler from IT HSS to HSS Using HE

For d < (k + 1)m and m = O(log λ), Lai, Malavolta, and Schröder [31] pro-
posed an (n,m, 1)-HSS scheme for degree-d polynomials based on any k-HE
scheme. Generalizing their approach, we present a compiler based on homomor-
phic encryption from IT HSS to HSS. Our compiler makes use of the following
elementary observation. Let f(X) be a ρ-variate degree-� polynomial. For any
0 ≤ k ≤ �, note that f(X) can be written as

f(X) =
∑

e∈N
ρ
0 :

wt(e)≤�−k

Xefe(X)

where fe(X) is a ρ-variate degree-k polynomial. Note that |{e ∈ N
ρ
0 : wt(e) ≤

� − k}| is the number of ρ-variate monomials of degree at most � − k, and can
be computed by

(
ρ+�−k

�−k

)
= O(ρ�−k).

5.1 The Compiler

Let IT-HSS.(Share,Eval,Dec) be a an IT (n,m, t)-HSS for degree-d polynomials
with the following properties:

– The recovery information recj is a vector rj ∈ F
ρ for all j ∈ [m].

– The output share inj is a vector yj ∈ F
β for all j ∈ [m].
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HSS.KGen(1λ)

(pk, sk) ← HE.KGen(1λ)

return (pk, sk)

HSS.Share(pk,x)(
in1, . . . , inm,
r1, . . . , rm

)
← IT-HSS.Share(x)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [m]

in′
j := (r̃j , inj), ∀j ∈ [m]

if h > 0 then

recj := rj , ∀j ∈ [m]

return
(

in′
1, . . . , in

′
m

rec1, . . . , recm

)

HSS.Eval(pk, j, f, in′
j)

yj ← IT-HSS.Eval(j, f, inj)

foreach e ∈ N
ρ
0 : wt(e) ≤ � − k do

d̃e,j ← HE.Eval

(
β∑

b=1

yj,b · Dece,j,b, r̃j

)

return out′j := (d̃e,j)e∈N
ρ
0 :wt(e)≤�−k

HSS.Dec

(
sk,

out′1, . . . , out
′
m

rec1, . . . , recm

)

foreach e ∈ N
ρ
0 : wt(e) ≤ � − k, j ∈ [m] do

de,j ← Dec(sk, d̃e,j)

y :=
∑

e∈N
ρ
0 :

wt(e)≤�−k

m∑
j=1

rejde,j

return y

Fig. 5. Compiler from IT-HSS to HSS based on HE.

– The decoding algorithm IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) is a linear func-
tion of (y1, . . . ,ym), where the coefficient of yj is computed by a degree-�
polynomial of rj , where � ≥ k. More concretely,

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm)

=
m∑

j=1

β∑

b=1

yj,b · Decj,b(rj)

where Decj,b is a degree-� polynomial of rj

=
∑

e∈N
ρ
0 :

wt(e)≤�−k

m∑

j=1

rej

β∑

b=1

yj,b · Dece,j,b(rj)

where Dece,j,b is a degree-k polynomial of rj .

The idea of the compiler is to delegate the computation of
∑β

b=1 yj,b ·
Dece,j,b(rj) to server j by encrypting rj with a homomorphic encryp-
tion scheme HE which supports the evaluation of degree-k polynomials.
Formally, we construct an (n,m, t)-HSS for degree-d polynomials, denoted
HSS.(KGen,Share,Eval,Dec), in Fig. 5.
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Note that when k = � the decoding function is simply

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) =
m∑

j=1

β∑

b=1

yj,b · Dece,j,b(rj).

In this case the input client does not need to store a local copy of the recovery
information.

Theorem 6. Let IT-HSS be an (n,m, t)-HSS for degree-d polynomials satisfying
the above properties, and HE be a CPA-secure k-HE scheme, then HSS is an
(n,m, t)-HSS for degree-d polynomials. If IT-HSS and HE are correct, then HSS
is correct. If IT-HSS has the efficiency measures (ρ, α, β), then HSS has the
efficiency measures (ρ′, α′, β′) =

(
ρ, ρ + α, ρ�−k

)
. If k = �, then ρ′ = 0. Note

that β′ is independent of β.

Proof. The correctness of HSS is already proven in-line in the above discussion.
For security, note that an input share in′

j consists of an input share inj of the
underlying IT HSS scheme and an HE ciphertext r̃j . We can thus prove security
by a simple hybrid argument, where we consider an intermediate hybrid security
experiment where the ciphertexts r̃j are replaced by ciphertexts encrypting zeros.
Clearly, this hybrid experiment is indistinguishable from the security experiment
for HSS, based on the CPA-security of HE. Next, we observe that the environment
of the hybrid experiment can be simulated perfectly using an adversary against
the security of the underlying IT HSS scheme. We can therefore conclude that the
advantage of any (unbounded) adversaries in the hybrid experiment is identical
to that against the security of the underlying IT HSS scheme, which is negligible.

The correctness of ρ′ and α′ follows from simple observations. For the cor-
rectness of β′, we observe that an output share consists of (d̃e,j)e∈N

ρ
0 :wt(e)≤�−k,

where each d̃e,j is of fixed poly(λ) size since HE is assumed to be compact. Note
that the index set {e ∈ N

ρ
0 : wt(e) ≤ � − k} is of size

(
ρ+�−k

�−k

)
= O(ρ�−k).

5.2 Computation Complexity

The computation complexity of the compiled scheme depends on that of the
base scheme. Suppose that the base scheme has server computation σ. We also
assume that HE.Dec() can be computed in poly(λ) time, and HE.Eval(f, ·) can
be computed in time |f | ·poly(λ). Then, the server computation of the compiled
scheme is

σ′ = σ + β

(
ρ + � − k

� − k

)(
ρ + k

k

)

· poly(λ) = σ + β · ρ� · poly(λ) ,

and the client computation is γ′ =
(
ρ+�−k

�−k

)
m · poly(λ) = ρ�−k · m · poly(λ).



114 Y. Ishai et al.

HSS.PreProc(pk)(
in1, . . . , inp,
r1, . . . , rp

)
← IT-HSS.PreProc(1n)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [p]

in′
j := (r̃j , inj), ∀j ∈ [p]

if h > 0 then

rec′
j := rj , ∀j ∈ [p]

return

(
in′

1, . . . , in′
p

rec′
1, . . . , rec′

p

)

HSS.ShareComp(pk, r′, s′
1, . . . , s

′
p, x)(

inp+1, . . . , inm

rp+1, . . . , rm

)
← IT-HSS.ShareComp

(
in1, . . . , inp,
r1, . . . , rp,

x

)
r̃j ← HE.Enc(pk, rj), ∀j ∈ [m] \ [p]

in′
j := (r̃j , inj), ∀j ∈ [m] \ [p]

if h > 0 then

rec′
j := rj , ∀j ∈ [m] \ [p]

return

(
in′

p+1, . . . , in′
m

rec′
p+1, . . . , rec′

m

)

Fig. 6. p-Preprocessing of the Compiler from IT-HSS to HSS based on HE.

5.3 Preprocessing

We show that if the base scheme IT-HSS supports p-preprocessing and satisfies
certain additional properties, then HSS p-preprocessing.

Theorem 7. If IT-HSS supports p-preprocessing, then so does HSS.

Proof. We construct the algorithms HSS.(PreProc,ShareComp) in Fig. 6.

5.4 Instantiations

Both CNF� and WY� constructed in Sect. 4 satisfy the properties required by
the compiler. The main HSS scheme in [31] can be seen as the result of applying
the k-HE-based compiler on the CNF� scheme in the setting with k = �. Lai,
Malavolta, and Schröder [31] discussed the setting with t > 1, but did not
provide any concrete schemes. A constructive version for general t ≥ 1 was
proposed in [35]. The approach of compiling CNF� gives concrete schemes and
significantly simplifies the analysis in [31] (c.f., Sect. 4.1).

As discussed in Sect. 4, CNF� is almost strictly inferior to WY�. We therefore
focus on the instantiations with a linearly-homomorphic HE (k = 1) and the �-th
order Woodruff-Yekhanin IT-HSS WY� which has efficiency measures (ρ, α, β) =
(�n, n, n�) and supports polynomials of degree d < (�+1)m

t . When � = 1, we
obtain a compact HSS with efficiency measures (ρ′, α′, β′) = (0, n, 1) supporting
polynomials of degree d < 2m

t , where decoding is linear. When � = 2, we obtain
a balanced HSS with efficiency measures (ρ′, α′, β′) = (mn,n, n) supporting
polynomials of degree d < 3m

t , where decoding is quadratic.

6 Application to MPC with Preprocessing

In the following we show an application of HSS to multi-party computation
(MPC) with preprocessing. Specifically, we show how to generically construc-
tion an m-party MPC protocol for degree-d polynomials resistant against the
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corruption of t parties, assuming the existence of an (n,m+p, t)-HSS for degree-
d polynomials that supports p-preprocessing. A similar result for the restricted
case of 2 parties was given (implicitly) in [5]. The salient point of our construction
is that the online communication complexity of the MPC scheme is independent
of the size of the polynomial being computed. For certain regimes of parameters,
this leads to an exponential improvement in the communication complexity of
the online phase, when compared with general-purpose MPC solutions.

6.1 Protocol Description

In the following we describe our (semi-honest) MPC protocol for degree-d poly-
nomials assuming the existence of a (n,m + p, t)-HSS scheme with perfect cor-
rectness and a general purpose (semi-honest) m-party MPC that is resilient
against the corruption of up to t parties. For a definition of MPC and its notion
of simulation-based semi-honest security, we refer to [24]. The scheme is detailed
below.

Preprocessing: We assume that the (input-independent) preprocessing phase is
run by a trusted party, which can be substituted by an execution of a general-
purpose MPC protocol jointly executed by the m participants. The preprocessing
phase proceeds as follows.

1. Generate a key for the HSS scheme via (pk, sk) ← HSS.KGen(1λ).
2. Run HSS.PreProc(pk, 1n) to obtain (in1, . . . , inp, rec1, . . . , recp).
3. Run HSS.Eval(pk, j, f, inj) to obtain outj , for all j ∈ [p].
4. Let s be the concatenation of the variables (sk, in1, rec1, out1, . . . , inp, recp,

outp) as defined above. The preprocessing algorithm computes an t-out-of-
m5 secret sharing of s and returns to each party the public key pk and the
j-th share sj .

Online: The online phase is jointly executed by the m participants, who collec-
tively receive the inputs x, i.e., either x is secret shared among the m participants
or each participant has knowledge of a disjoint subset of entries of x. The j-th
party inputs the j-th output of the preprocessing phase (pk, sj) and its share of
x. The parties jointly compute the following function using a general-purpose
MPC protocol. For simplicity we assume that the function takes as input the
variable s as defined in the preprocessing, which can be obtained by running the
reconstruction procedure of the t-out-of-m secret sharing scheme.

1. Run HSS.ShareComp(in1, . . . , inp, rec1, . . . , recp,x) to obtain the tuple
(inp+1, . . . , inm+p, recp+1, . . . , recm+p).

2. The j-th participant is given inp+j and an t-out-of-m secret share of s̃ =
(recp+1, . . . , recm+p).

5 We use t-out-of-m secret sharing to refer to an m-party secret sharing scheme which
is resilient against t corrupt parties.
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The j-th party locally computes HSS.Eval(pk, p + j, f, inp+j) to obtain outp+j .
Then the m parties engage once again in a general-purpose MPC on input the
secret key sk, the output shares (out1, . . . , outm+p), and the reconstruction infor-
mation (rec1, . . . , recm+p). Whenever some information is not available to any
party in plain, the MPC protocol reconstructs it from the shares.

1. Run HSS.Dec(sk, out1, . . . , outm+p, rec1, . . . , recm+p)) and return the output
to all parties.

6.2 Analysis

The security of the MPC protocol follows from a standard argument, which
we sketch in the following. Observe that the view of the parties consist of the
public key of the HSS scheme together with HSS shares of the input x and the
t-out-of-m secret sharing of the variables s and s̃. By the semi-honest security
of the MPC protocol, the MPC transcript does not reveal anything beyond the
output of the computation. Thus the t-out-of-m security of the resulting MPC
follows by a reduction against the HSS scheme (observe that the variables s
and s̃ are information-theoretically hidden from the eyes of any t-subset of the
participants).

We analyze the communication complexity of our protocol when instantiating
the general-purpose MPC with any OT-based protocol (e.g. [25]) and the HSS
scheme with k-HE-compiled variant of WY� described in Sect. 5. To reduce
cluttering, we assume that t and 1 ≤ k ≤ � are constants, e.g., t = 1, k =
1, and � = 1 or 2. Recall that (compiled) WY� supports

⌊
t

�+1

⌋
-preprocessing.

We therefore set p =
⌊

t
�+1

⌋
= O(1). The communication complexity of the

preprocessing phase is upper bounded by

(|HSS.KGen| + |HSS.PreProc| + p|HSS.Eval(·, ·, f, ·)|) · poly(λ)

=
(
1 + � · n · p + p(|f |n�−1 + (�n2)�)

) · poly(λ)

=(|f |n�−1 + n2�) · poly(λ) .

On the other hand, the online communication is upper bounded by

(|HSS.ShareComp| + |HSS.Dec|) · poly(λ)

=
(
p · nt + m(� · n)�−k

) · poly(λ)

=mn�−k · poly(λ) .

In case t is a multiple of � + 1, the protocol allows the participants to jointly
evaluate a degree d multivariate polynomial where d < (�+1)m

t + 1, i.e., we gain
1 degree compared to using the k-HE-compiled WY� scheme as-is. The size of
the circuit representation of such a polynomial ranges from a constant to O(nd).
Thus for large enough m, the communication complexity of the online phase
is exponentially smaller than that of a naive implementation using a general-
purpose MPC protocol. We stress that this result is obtained without relying on
heavy machinery, such as fully-homomorphic encryption.
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7 Conclusion

With the conceptual observation that the HSS scheme of [31] can be abstractly
seen as compiling the CNF IT HSS using a k-HE, in this work we have constructed
a generic compiler which turns a class of compatible IT HSS for degree-d poly-
nomials into a computational one with more favourable parameters.

A generic compiler has many advantages. For starters, it allows instantia-
tion with WY, which, unlike CNF, scales well with a large number of servers.
In contrast, [31] using CNF becomes exponentially inefficient. Due to degree-
amplification, this improvement is significant in practice as higher degrees can
be supported by simply employing more servers. The preprocessing property
of WY also allows application to preprocessing MPC, which was not possible
with [31]. Other choices of instantiating the IT-HSS and k-HE potentially yield
further improvements.
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Abstract. Attribute-based encryption (ABE) is a cryptographic primi-
tive which supports fine-grained access control on encrypted data, mak-
ing it an appealing building block for many applications. Pair encodings
(Attrapadung, EUROCRYPT 2014) are simple primitives that can be
used for constructing fully secure ABE schemes associated to a predi-
cate relative to the encoding. We propose a generic transformation that
takes any pair encoding scheme (PES) for a predicate P and produces a
PES for its negated predicate P . This construction finally solves a prob-
lem that was open since 2015. Our techniques bring new insight to the
expressivity and generality of PES and can be of independent interest.
We also provide, to the best of our knowledge, the first pair encoding
scheme for negated doubly spatial encryption (obtained with our trans-
formation) and explore several other consequences of our results.

1 Introduction

Attribute-based encryption (ABE) is a form of public-key encryption that gener-
alizes the traditional single-recipient variant, providing fine-grained access con-
trol on the encrypted data. In this new paradigm, ciphertexts and keys have
attributes attached and the decryption ability of a key on a ciphertext is deter-
mined by a potentially complex access control policy involving these attributes.
More concretely, an ABE scheme for predicate P guarantees that the decryption
of a ciphertext ctx with a secret key sky is successful if and only if the ciphertext
attribute x and the key attribute y verify the predicate, i.e., P (x, y) = 1.

ABE was first conceived by Sahai and Waters [30] and later introduced by
Goyal et al. [19]. Originally, ABE was designed in the flavour of key-policy ABE
(KP-ABE), where value x is a Boolean vector, value y is a Boolean function and
predicate P (x, y) is defined as y(x) ?= 1. On the other hand, in the analogous ver-
sion, ciphertext-policy ABE (CP-ABE), the roles of values x and y are swapped.
Nowadays, the notion of ABE has been generalized and, thanks to a consider-
able effort by the community of cryptographers, there exist efficient schemes for
a rich variety of predicates. For example, identity-based encryption (IBE) [31]
can be obtained as P (x, y) := x ?= y, zero-inner product encryption (ZIPE) [23]
can be obtained by setting P (x,y) := 〈x,y〉 ?= 0, where x and y belong to
some vector space; other examples are span programs [22], non-monotonic access
structures [28], hierarchical IBE [26], large universe ABE [29], polynomial size
circuits [18], or regular languages [33]. Despite such a great progress in the field,
c© International Association for Cryptologic Research 2021
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designing better schemes in terms of size, performance, security and expressiv-
ity became an excessively hard and tedious task. Until two astonishing works
appeared in 2014.

Modular Frameworks for ABE. In 2014, Wee [34] and Attrapadung [4] indepen-
dently proposed two generic and unifying frameworks for designing attribute-
based encryption schemes for different predicates. Both works define a simple
primitive called encoding and follow the dual system methodology by Lewko
and Waters [25,32] to construct a compiler that, on input an encoding (for cer-
tain predicate P ), produces a fully secure attribute-based encryption scheme for
P . Wee defines so-called predicate encodings, an information-theoretic primitive
inspired by linear secret sharing, while Attrapadung introduces the notion of
pair encodings, a similar primitive that admits both information-theoretic and
computational security definitions. These frameworks remarkably simplify the
design and study of ABE schemes: the designer can focus on the construction
of the simpler encoding (for the desired predicate), which requires weaker secu-
rity properties that are more easily verifiable. In fact, the potential of this new
frameworks is evidenced by the invention of new constructions and performance
improvements on existing primitives. Although these frameworks were designed
over composite-order groups, they were both extended, in [15] and [5] respec-
tively, to the prime-order setting (under the Matrix-DH assumption). Subsequent
works propose variations and extensions of these modular frameworks [1,2,14],
some of them even redefining the core encoding primitive [24] (defining so-called
tag-based encodings). However, note that the frameworks based on pair encodings
are the most general and expressive1 and they have led to breakthrough con-
structions such as constant-size ciphertext KP-ABE (with large universes) [4],
fully-secure functional encryption for regular languages [4], constant-size cipher-
text CP-ABE [1] or completely-unbounded KP-ABE for non-monotone span
programs (NSP) over large universes [6]. Note that, even nowadays, it is still
unknown how to construct any of these powerful schemes based on predicate
encodings or tag-based encodings.

Generic Predicate Transformations. In order to further simplify the design of
these encodings, a common practice is to develop techniques to modify or com-
bine existing ones. For example, the DUAL transformation, that swaps the
ciphertext attribute and the key attribute, or the AND transformation, that
joins two predicates in conjunction, can be achieved for pair encodings [4,10].
Among many applications, these transformations can be used to build dual-
policy attribute-based encryption (DP-ABE) [7,10]; or to enhance any encoding
with direct revocation of keys by combining (in conjunction) the original encod-
ing with, e.g., an encoding for broadcast encryption.

In the framework of [15], Ambrona et al. [3] designed new general transfor-
mations for the DUAL, OR and AND connectors and, remarkably, the NOT
transformation (that negates the predicate of the encoding). This functionally

1 In fact, it is known that predicate encodings are a subclass of pair encodings [3].
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complete set of Boolean transformers provides a rich combination of predicates
and arguably broadens the expressivity of the framework, however, such a nega-
tion is limited to the framework based on predicate encodings. Designing a similar
negation transformation that is applicable to all pair encoding schemes (PES)
is a very appealing problem, since it would facilitate the design of new encod-
ings and would immediately expand the expressivity of the PES framework by
applying it to all existing ones. Note that, as we have already mentioned, pair
encodings have proven themselves to be significantly more expressive than any
other related framework.

However, recent works have considered the problem of designing such a gen-
eral negation to be intrinsically hard [2,6] (see our discussion in Sect. 3, we also
refer to this section for more details about relevant related works). To the best
of our knowledge, a general NOT transformation that is applicable to the frame-
work of pair encodings does not exist in the literature.

1.1 Our Contribution

We pursue the study of pair encoding schemes and establish several general
results that can lead to performance improvements, and new encodings that
broaden their scope.

Generic Negation of Pair Encodings. We propose a generic transformation that
takes any pair encoding scheme for a predicate P and produces a pair encoding
scheme for its negated predicate, P . Our transformation is applicable to pair
encodings that follow the most recent and refined definition given in [2]. Our
construction finally solves a problem that was open since 2015, when several
other transformation for pair encodings (like conjunction or duality) were pro-
posed [10], but no generic negation was provided (nor designed in subsequent
works). In fact, several works had suggested that finding such a transformation
was non-obvious [2,6], since it relates to the problem of generically finding a short
“certificate” of security of the encoding. We elaborate on this idea in Sect. 3.

Algebraic Characterization of Pair Encodings. En route to designing our generic
negation, we define an algebraic characterization of PES that brings new insight
to their expressivity and generality and can be of independent interest. Our
characterization allows us to express the security of a pair encoding scheme as
the (in)existence of solutions to a system of matrix equations. This is the bridge
that allows us to leverage Lemma 1, a very powerful result from linear algebra
(commonly used in cryptography), in order to design and prove our generic
negation.

New Encodings. Our generic negation facilitates the design of new pair encoding
schemes. It will immediately provide us with a negated version of any encoding,
something particularly useful for encodings for which a negated counterpart is
not known. A relevant example of a PES with (previously) unknown negation is
the case of doubly spatial encryption.
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Doubly spatial encryption [20] is an important primitive that generalizes both
spatial encryption and negated spatial encryption [8]. A negated doubly spatial
encryption scheme serves as its revocation analogue and can lead to powerful
generalizations in the same way that negated (standard) spatial encryption uni-
fies existing primitives, e.g. it subsumes non-zero-mode inner-product encryption
(IPE) [8]. In Sect. 6.1 we provide, to the best of our knowledge, the first pair
encoding scheme for negated doubly spatial encryption, obtained with our trans-
formation.

Other Implications of Our Results. We believe the results presented in this work
improve our understanding of pair encodings and how expressive they are. In par-
ticular, we now know that the set of predicates that can be expressed with PES
is closed under negation. In Sect. 6.2, we elaborate on the conclusions we could
derive from this fact as well as discuss how our generic transformation can also
lead to performance improvements when implementing ABE schemes. Further-
more, note that our generic negation is compatible with the very recent frame-
work proposed by Attrapadung [6], designed to perform dynamic pair encoding
compositions. We believe our new transformation complements his work, where
the proposed non-monotone formulae composition was only semi-generic (but
dynamic), because he had to rely on encodings for which a negated version was
available.

2 Preliminaries

2.1 Notation

We write s←$ S to denote that s is uniformly sampled from a set S. For integers
m,n, we define [m,n] as the range {m, . . . , n} and we denote by [n] the range
[1, n]. We use the same conventions for matrix-representations of linear maps
on finite-dimensional spaces. For a ring R, we define vectors v ∈ Rn as column
matrices, denote the transpose of a matrix A by A� and its trace by tr(A). We
denote by |v| the length or dimension of vector v and by vi its i-th component,
for all i ∈ {1, . . . , |v|}. Similarly, Ai denotes the i-th row of matrix A (we do not
use this notation when the name of the matrix already contains a subindex). We
denote by span(A) the linear column span of matrix A. We denote the identity
matrix of dimension n by In, a zero vector of length n by 0n and a zero matrix of
m rows and n columns by 0m×n. We denote by en

i the i-th vector of the standard
basis of an n-dimensional space, for all i ∈ [n]. We sometimes denote en

1 by 1n.
Similarly, we denote by 1m×n the matrix 1m1�

n, i.e., a null matrix of m rows and
n columns whose component in the first row and first column is 1. Given two
matrices A and B, we denote by A ⊗ B their Kronecker product.

We consider a bilinear group generator G that takes a security parameter
λ ∈ N and outputs the description of a bilinear group (p,G1, G2, Gt, g1, g2, e)
where G1, G2 and Gt are cyclic groups of order p (for a λ-bits prime p), g1
and g2 are generators of G1 and G2 respectively and e : G1 × G2 → Gt is a
(non-degenerate) bilinear map, satisfying e(ga

1 , gb
2) = e(g1, g2)ab for all a, b ∈ N.

Observe that the element gt = e(g1, g2) generates Gt.
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2.2 Attribute-Based Encryption

Attribute-based encryption (ABE) [30] is a form of of public-key encryption that
supports fine-grained access control of encrypted data.

Definition 1 (Attribute-based encryption). An ABE scheme for predicate
P : X × Y → {0, 1} consists of four probabilistic polynomial-time algorithms:

• Setup(1λ,X ,Y) → (mpk,msk), on input the security parameter λ and
attribute universes X ,Y, outputs a master public key and a master secret
key, defining a key space K.

• Enc(mpk, x) → (ctx, τ), on input mpk and a ciphertext attribute x∈ X , out-
puts a ciphertext ctx and a symmetric encryption key τ ∈ K.

• KeyGen(msk, y) → sky, on input the master secret key and a key attribute
y ∈ Y, outputs a secret key sky.

• Dec(mpk, sky, ctx, x) → τ/⊥, on input sky and ctx, outputs a symmetric key
τ ∈ K if P (x, y) = 1 or ⊥ otherwise.

Correctness. For all λ ∈ N, x ∈ X and y ∈ Y such that P (x, y) = 1, it holds:

Pr

⎡
⎣

(msk, pk) ← Setup(1λ)
sky ← KeyGen(msk, y)

(ctx, τ) ← Enc(mpk, x)
: Dec(mpk, sky, ctx, x) = τ

⎤
⎦ = 1.

Security. Informally, an ABE scheme is secure if no probabilistic polynomial-
time (PPT) adversary can distinguish the symmetric encryption key associated
to a ciphertext ctx� (for some attribute x�) from a uniformly chosen one from K,
even after requesting several secret keys for attributes y of their choice, as long
as they all satisfy P (x�, y) = 0.

In this work we focus on pair encodings (see the next section) as a building
block for constructing ABE schemes and we refer to Appendix B.1 for a formal
security definition of ABE, which we do not state here. Instead, we will formally
state and reason about the security requirements for pair encodings.

2.3 Pair Encodings

We consider the refined definition of pair encodings introduced by Agrawal and
Chase in [2].

Definition 2 (Pair encoding). A pair encoding scheme (PES) for a predicate
family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) consists of the following
deterministic and efficiently computable algorithms:

• Param(par): on input certain parameters outputs an integer n, specifying the
number of common variables, denoted by b = (b1, . . . , bn).
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• EncKey(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a vector of polyno-
mials k = (k1, . . . , km3) in the non-lone variables r = (r1, . . . , rm1), the lone
variables r̂ = (α, r̂1, . . . , r̂m2) and the common variables b.

• EncCt(N,x): on input N ∈ N and x ∈ X(N,par), outputs a vector of polynomials
c = (c1, . . . , cw3) in the non-lone variables s = (s0, s1, . . . , sw1−1), the lone
variables ŝ = (ŝ1, . . . , ŝw2) and the common variables b.

• Pair(N,x, y): on input N ∈ N and attributes x and y, outputs a pair of matri-
ces (E,E′) with coefficients in ZN of dimensions w1 × m3 and w3 × m1

respectively.

We require that the following properties be satisfied:

reconstructability: For every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, the following equation holds symbolically:

s�Ek + c�E′r = αs0,

where k ← EncKey(N,x), c ← EncCt(N, y) and (E,E′) ← Pair(N,x, y).
structural constraints: The polynomials produced by EncKey only contain

monomials of the form α, ribj or r̂i′ for some i ∈ [m1], j ∈ [n] and i′ ∈ [m2].
On the other hand, the polynomials produced by EncCt only contain monomi-
als of the form sibj or ŝi′ for some i ∈ [0, w1−1], j ∈ [n] and i′ ∈ [w2].

security (non-reconstructability): For all κ ∈ (N, par), x∈Xκ and y ∈ Yκ

such that Pκ(x, y) = 0, and for every pair of matrices E and E′, over ZN ,
s�Ek + c�E′r 	= αs0, where k ← EncKey(N,x) and c ← EncCt(N, y).

Remark 1. Observe that m1 and w1 represent2 the number of non-lone variables
r and s respectively; m2 and w2 represent the number of lone variables r̂ and
ŝ respectively; and m3 and w3 represent the number of polynomials produced
by EncKey and EncCt respectively. Also note that m3 may depend on the key
attribute y and w3 may depend on the ciphertext attribute x. We will use this
notation throughout the paper.

Agrawal and Chase [2] showed that an encoding with the non-reconstruc-
tability property (coined non-trivially broken) satisfies the symbolic property, a
concept introduced by them which is a sufficient condition to build attribute-
based encryption in the standard model under the so-called q-ratio assumption.

We refer to Appendix B.2 for details about how the compiler from PES to
fully secure ABE works. In this work we directly reason about PES and do not
need to explicitly define such a compiler. However, for the sake of understanding,
we provide an intuition of how a PES can be used to create an ABE scheme in
the following section.

2 In some literature, the number of non-lone ciphertext variables is defined as w1+1,
since the special variable s0 is treated separately. Observe that our vector of non-lone
variables ranges from s0 to sw1−1, this is for the sake of notation in further sections.
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Example 1 (PES for identity-based encryption). The following is a pair encoding
scheme for the IBE predicate P (x, y) := x ?= y, for x, y ∈ ZN . (With m1 = 1,
m2 = 0, m3 = 2 and w1 = 2, w2 = 0, w3 = 1.)

EncKey(N, y) := {α+ r1b1, r1(yb2 + b3)} EncCt(N,x) := {s0b1 + s1(xb2 + b3)}.

Furthermore, in this case Param is an algorithm that simply outputs n = 3
and Pair(N,x, y) returns matrices E = I2 and E′ = −I1. For reconstructability,
observe that

(
s0 s1

)
Ek + c�E′(r1

)
equals s0α + s1r1(yb2 + b3) − s1r1(xb2 + b3)

which equals αs0 whenever x = y, as desired.
Arguing security, i.e., non-reconstructability whenever x 	= y, is a little trick-

ier. One needs to show that for all matrices E ∈ Z
2×2
N , E′ ∈ ZN , the above linear

combination is never equal to αs0. This could be done by unfolding the list of
polynomials in s ⊗ k, c ⊗ r into a matrix A with w1m3 + w3m1 rows (as many
as polynomials) and as many columns as different monomials appear in them,
where the element at row i and column j of the matrix represents the coefficient
of the j-th monomial in the i-th polynomial. (Let the first column be the one
associated to monomial αs0.) One could then argue security by checking that
the row span of A does not contain the vector (1 0 . . . 0) when P (x, y) = 0.

However, there is a simpler way of proving non-reconstructability. Simply
evaluate the polynomials produced by EncKey and EncCt in:

b1 ← −1 b2, s0, r1, α ← 1 b3 ← −y s1 ← (x−y)−1.

Since all the polynomials evaluate to 0, but αs0 evaluates to 1 	= 0, it must
be impossible to symbolically reconstruct αs0 with some pair of matrices E,E′.
Otherwise, we would have a contradiction:

0 = s�E0m3 + 0�
w3

E′r = s�Ek(r, b) + c(s, b)�E′r = αs0 = 1.

The above variable substitution that vanishes all polynomials, but does not
vanish polynomial αs0 can be considered to be a short “certificate” of the security
of the scheme (and it is well-defined as long as x 	= y). We elaborate on this
interesting method for arguing security in Sect. 3. �

2.4 ABE from PES

The compiler from pair encodings to attribute-based encryption is defined over
bilinear groups implemented as dual system groups (DSG) [2,16,17]. Here, we
define a simplified version of the compiler and avoid DSG for simplicity, but note
that the actual scheme produced by these compilers uses vectors of group ele-
ments where we write single group elements. We provide a complete description
of the compiler from [2] in Appendix B.2.

Informally, the symmetric encryption key is computed as τ := gαs0
t , where

s0 is fresh randomness and gα
t is part of the master public key. Both ciphertexts

and keys are made of group elements (created based on the recipe given by the
corresponding PES polynomials). It is possible to recover τ when the predicate
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is satisfied. More concretely, for k ← EncKey(x) and c ← EncCt(y), the compiler
could be summarized as follows:

mpk :=
{
gα
t , gb1

}
(ctx, τ) :=

({gs1 , g
c(s,ŝ,b)
1 }, gαs0

t

)

msk :=
{
α, b

}
sky :=

{
gr2 , g

k(r ,r̂ ,b)
2

}

Decryption is done by pairing gs1 with gk2 , gc1 with gr2 , and linearly combining
the resulting elements, according to the coefficients given by Pair(x, y), obtaining
αs0 in the exponent.

2.5 Linear Algebra Tools

In order to prove the validity of our generic negation of pair encodings, we will
use a very powerful result from linear algebra that has been widely used in the
literature [1–3,11]. It states that given a field K, a matrix A ∈ Km×n and a
vector z ∈ Km, it holds that Av 	= z for all v ∈ Kn if and only if there exists a
vector w ∈ Km such that w�A = 0n and w�z = 1. We refer to [11, Claim 2] for
a formal proof.

Here, for the sake of presentation, we state a variant of the above result,
which can be shown to be equivalent, but that facilitates its application in the
proof of Lemma 2.

Lemma 1. Let V and W be vector spaces over a field K. Let f : V → W be a
linear operator and let z ∈ W . We have that:

z 	∈ Im(f) ⇔ ∃ϕ ∈ W ∗ such that ϕ ◦ f = 0 ∧ ϕ(z) = 1.

Here, W ∗denotes the dual space of W , i.e., the set of all linear maps ϕ : W → K.

3 Overview of Our Generic Negation Transformation

Our starting point is the generic negation for the (less expressive) framework of
predicate encodings from [3]. In order to achieve their transformation, Ambrona,
Barthe, and Schmidt first defined an algebraic characterization of predicate
encodings where the security of the encoding (previously defined as an equality
between distributions) was redefined into a purely algebraic statement related
to the existence of solutions to a linear system of equations. This observation
allowed them to link the notions of security and non-reconstructability and define
what they coined the implicit predicate of an encoding. This implies, in a nut-
shell, that all functions mapping attributes into matrices define a valid predicate
encoding for a certain predicate, informally defined as all pairs of attributes (x, y)
that map into matrices that lead to reconstructability.

Now that security has been proven to be equivalent to non-reconstructability,
and given the simple structure of predicate encodings (which are essentially
matrices over Zp), it is possible to find a short “witness” of non-reconstructability
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by simply finding a solution to a dual system of equations.3 What we want to
highlight here is that their new understanding of predicate encodings allows
them to view both reconstructability and non-reconstructability as essentially
the same kind of property. This suggests that one may be able to build a generic
negation of predicate encodings by transposing the matrices induced by them.4

This is in fact what the negation by Ambrona et al. does, but extra care is
needed to make things really work.

Unfortunately, in the case of pair encodings things are not as simple. Their
structure is significantly more convoluted, involving abstract polynomials that do
not allow the kind of reasoning that was possible before (standard linear algebra).
However, in 2017, Agrawal and Chase introduced a new security notion appli-
cable to pair encodings called the symbolic property [2]. They also showed how
to adapt the previous modular frameworks [1,5] to define a compiler that takes
pair encodings satisfying the symbolic property and produces fully secure predi-
cate encryption schemes under the q-ratio assumption, a new q-type assumption
proposed by them that is implied by other assumptions of this kind [27]. This
symbolic property can be seen as a generalization of the “trick” that we have used
in Example 1 to argue the security of the encoding. The main difference is that
scalar variables in the PES may be substituted by vectors or matrices (not neces-
sarily scalars as in our example) in such a way that, after the substitution, all the
polynomials evaluate to zero, but there is an extra constraint relating the inner
product of the vectors that replaced the special variables that guarantees that
αs0 is non-zero. As mentioned by Attrapadung [6], the above methodology gen-
eralizes the well-known Boneh-Boyen cancellation technique for identity-based
encryption [12]. What is remarkable about this idea is that the substitution can
be used as a “witness” or “certificate” (as coined by the authors of [2]) of the
security of the scheme. Furthermore, Agrawal and Chase also showed that any
pair encoding that is not trivially broken satisfies the symbolic property, a result
that is closely related to the algebraic characterization of privacy on predicate
encodings from [3].

It may seem that after these relevant results on pair encodings, and the simi-
larity with those in the framework of predicate encodings, we are in a position to
define a generic negation transformation for pair encodings. However, the more
involved structure of pair encodings makes it difficult to find and prove a valid
conversion. In fact, recent works have considered the problem of designing such a
general negation to be non-trivial (see [6, Appendix L.5]), since in the framework
of pair encodings it is generally hard to find the mentioned “certificates” that
can be interpreted as a short proof of security. (Note that any possible NOT
transformation would, at least implicitly, use such certificates as decryption cre-

3 Recall that ∀v : Av �= z ⇔ ∃w : A�w = 0 ∧ z�w = 1 for all compatible A and z.
4 That way, the witness of non-reconstructability can be used as the linear combina-

tion for decryption (reconstructability) in the negated encoding and vice versa: the
solution for reconstructability can be used as the witness of security in the negated
encoding.
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dentials for the transformed encoding, whereas the decryption credentials of the
original encoding would become the security certificate of the negated one.)

In order to construct a valid negation of pair encodings, we first need to
treat them in a simplified manner, closer to linear algebra. To do so, we pro-
vide an algebraic characterization of pair encodings (Sect. 4), whose security can
be expressed as a system of matrix equations, very similar to the statement i)
from Lemma 2. Intuitively, we split the polynomials produced by the encod-
ing into layers, each being a matrix that corresponds to one of the (common,
lone or non-lone) variables. We then show how the security of the scheme can
be expressed as a linear system involving these matrices. Our characterization
makes an structural assumption on the form of the pair encoding (that can be
made without loss of generality and has been used in the literature for other
purposes [2,6]). Namely, we assume that EncKey only produces one polynomial
that depends on α, which is of the form α + r1b1. This assumption introduces
a “symmetry” between the nature of key and ciphertext polynomials (now that
the special variable α is out of the way) that allows us to express the security
of the PES as the symmetric algebraic statement of Definition 3. The next step
is to leverage Lemma 1 in order to prove our following lemma, linking the inex-
istence of a solution to the system in i) with the existence of a solution to ii).
This is the main tool on which we base our negation transformation. The last
(but non-trivial) step is to define a new encoding (in algebraic form) such that
the solution from statement ii) serves as a decryption credential for it.

Lemma 2. Let K be a field, let n ∈ N and let {Ai, Bi, Ci}i∈[n], Â, B̂ be matrices:

Ai ∈ K�×m Bi ∈ Kr×s Ci ∈ Kr×m

Â ∈ K�×m̂ B̂ ∈ K r̂×s,

for certain �,m, r, s, m̂, r̂ ∈ N and every i ∈ [n]. The following are equivalent:

i) There do not exist X,Y with X ∈ Kr×�, Y ∈ Ks×m such that:

∀i ∈ [n]. XAi + BiY = Ci ∧ XÂ = 0r×m̂ ∧ B̂Y = 0r̂×m.

ii) There exist Z1, . . . , Zn ∈ Km×r and ZA ∈ Km̂×r, ZB ∈ Km×r̂ such that

A1Z1 + · · · + AnZn + ÂZA = 0�×r

∧ Z1B1 + · · · + ZnBn + ZBB̂ = 0m×s

∧ ∑n
i=1 tr(CiZi) = 1.

Proof. Let f be the linear map defined as

f : (X,Y ) �→ (XA1+B1Y, . . . , XAn+BnY, XÂ, B̂Y ).

Observe that the first statement of the lemma is equivalent to saying that

(C1, . . . , Cn, 0r×m̂, 0r̂×m) 	∈ Im(f),
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which, by Lemma 1 is equivalent to the existence of ϕ : W → K, where in this
case W := (Kr×m)n × Kr×m̂ × K r̂×m, such that

ϕ ◦ f = 0 and ϕ(C1, . . . , Cn, 0r×m̂, 0r̂×m) = 1,

which is equivalent to the existence of matrices Z1, . . . , Zn ∈ Km×r and ZA ∈
Km̂×r, ZB ∈ Km×r̂ such that

∀X,Y. tr
(∑n

i=1(XAi+BiY )Zi

)
+ tr

(
XÂZA

)
+ tr

(
B̂Y ZB

)
= 0 (1)

and tr
(
C1Z1 + · · · + CnZn

)
+ tr

(
0r×m̂ZA

)
+ tr

(
0r̂×mZB

)
= 1, (2)

which is equivalent to the second statement of the lemma, quod erat demonstran-
dum. To see why, note that Eq. (2) is present in both cases and observe that if
the second statement of the lemma holds, then (for any X,Y ) we have

0 = tr
(
0�×r

)
+ tr

(
0m×s

)

= tr
(
X

(
A1Z1 + · · · + AnZn + ÂZA

))
+ tr

((
Z1B1 + · · · + ZnBn + ZBB̂

)
Y

)

= tr
( ∑n

i=1 XAiZi

)
+ tr

(
XÂZA

)
+ tr

( ∑n
i=1 ZiBiY

)
+ tr

(
ZBB̂Y

)

†
= tr

( ∑n
i=1 XAiZi

)
+ tr

(
XÂZA

)
+ tr

( ∑n
i=1 BiY Zi

)
+ tr

(
B̂Y ZB

)

= tr
( ∑n

i=1(XAi+BiY )Zi

)
+ tr

(
XÂZA

)
+ tr

(
B̂Y ZB

)
,

where in † we have used the fact that the trace is invariant under cyclic permu-
tations. Finally, to see the converse, note that if Eq. (1) holds for any X,Y , it
must hold for Y = 0s×m, which would imply that for every X ∈ Kr×�,

tr
(
X

(
A1Z1 + · · · + AnZn + ÂZA

))
= 0,

but that can only happen if A1Z1 + · · · + AnZn + ÂZA is the zero matrix.
Analogously, evaluating (1) on X = 0r×�, we get

tr
(
B1Y Z1 + · · ·+B1Y Zn

)
+tr

(
B̂Y ZB

) †
= tr

((
Z1B1 + · · ·+ZnBn +ZBB̂

)
Y

)
= 0,

for every Y ∈ Ks×m, which can only happen if Z1B1 + · · · + ZnBn + ZBB̂ is the
null matrix. �

4 Characterization of Pair Encodings

In this section we propose a characterization of pair encodings that will be used
to define our generic transformation for the negated predicate.

The first step towards our characterization is to assume that only one poly-
nomial from EncKey depends on α and is of the form α + r1b1. This assumption
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is without loss of generality5, and has been utilized before in the literature [2,6].
The rest of polynomials can be expressed as k = Byr+Cyr̂, for some matrix By

whose terms are linear polynomials in ZN [b1, . . . , bn], and some matrix Cy with
coefficients in ZN . Given that α + r1b1 is always present, for the sake of nota-
tion, we redefine m3 to be the total number of polynomials produced by KeyGen
excluding α + r1b1. Similarly, the polynomials from EncCt can be expressed as
c = B′

xs + C ′
xŝ. Such an analogy in the form of k and c (only achieved after

getting rid of variable α) allows us to express the encodings in an algebraic form,
amenable to be combined with different results of linear algebra.

Definition 3 (Algebraic pair encoding). An algebraic pair encoding
scheme for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par)
consists of the following deterministic and efficiently computable algorithms:

• Paramalg(par): on input certain parameters outputs an integer n ∈ N.
• EncKeyalg(N,x): on input N ∈ N and x ∈ X(N,par), outputs a list of n+1

matrices with coefficients in ZN , (B1, . . . , Bn, C), where Bj has dimension
m3 × m1, for j ∈ [n], and C has dimension m3 × m2.

• EncCtalg(N, y): on input N ∈ N and y ∈ Y(N,par), outputs a list of n+1 matri-
ces with coefficients in ZN , (B′

1, . . . , B
′
n, C ′), where B′

j has dimension w3×w1,
for j ∈ [n], and C ′ has dimension w3 × w2.

Furthermore, for every κ = (N, par), x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and
only if there exist matrices E ∈ Z

w1×m3
N and E′ ∈ Z

w3×m1
N such that

EB1 + B′�
1E

′ = 1w1×m1 ∧ EC = 0w1×m2

∧ EBj + B′�
jE

′ = 0w1×m1 , j ∈ [2, n] ∧ C ′�E′ = 0w2×m1 (3)

where (B1, . . . , Bn, C) ← EncKeyalg(N,x) and (B′
1, . . . , B

′
n, C ′) ← EncCtalg

(N, y).

Theorem 1 (Characterization). There exists a pair encoding for predicate
family Pκ if and only if there exists an algebraic pair encoding for Pκ. Further-
more, there is an efficient conversion in both directions.

The above theorem is a consequence of our following two lemmas.

Lemma 3 (From algebraic to standard). Let (Paramalg,EncKeyalg,EncCtalg)
be an algebraic pair encoding scheme for predicate family Pκ : Xκ × Yκ →
{0, 1}. Then, algorithms (Param,EncKey,EncCt,Pair) (defined below) constitute
a pair encoding scheme for Pκ.

5 An easy way of arguing that this is w.l.o.g. is to apply the generic dual transformation
defined in [10] twice. (Note that the dual operation is an involution and a double
application of it would preserve the original predicate.).
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• Param(par) := run n ← Paramalg(par), output n and let b = (b1, . . . , bn).
• EncKey(N,x) := run (B1, . . . , Bn, C) ← EncKeyalg(N,x), output the vector

of polynomials given by α + r1b1 and (b1B1 + · · · + bnBn)r + Cr̂, where
r = (r1, . . . , rm1) and r̂ = (r̂1, . . . , r̂m2).

• EncCt(N, y) := run (B′
1, . . . , B

′
n, C ′) ← EncCtalg(N, y), output the vector of

polynomials given by (b1B′
1 + · · · + bnB′

n)s + C ′ŝ, where s = (s0, . . . , sw1−1)
and ŝ = (ŝ1, . . . , ŝw2).

• Pair(N,x, y) := find matrices (E,E′) satisfying Eq. (3), that exist if and only
if Pκ(x, y) = 1, output

((
1w1 −E

)
,−E′).

Proof. Observe that the structural constraints on the polynomials of EncKey and
EncCt are satisfied. To see reconstructability, simply note that for any N ∈ N,
x ∈ Xκ and y ∈ Yκ with P (x, y) = 1, and for (E,E′) satisfying (3), it holds:

s�(
1w1 −E

)
(

α + r1b1
(b1B1 + · · ·+ bnBn)r + Cr̂

)
−

(
s�

(
b1B′

1
�
+ · · ·+ bnB′

n
�
)
+ ŝ�C′�

)
E′r

= s0(α + r1b1)− sb1
(
1w1×m1

)
r = s0α.

For security, note that if the new pair encoding were trivially broken, there would
exist a pair (x, y) ∈ Xκ × Yκ with Pκ(x, y) = 0, and matrices E,E′ satisfying
Eq. (3). For details about this fact, we refer to the proof Lemma 4 (the part
about reconstructability). �

Lemma 4 (From standard to algebraic). Let (Param,EncKey,EncCt,Pair)
be a pair encoding scheme6 for predicate family Pκ : Xκ × Yκ → {0, 1}. Then,
algorithms (Paramalg,EncKeyalg,EncCtalg) (defined below) constitute an algebraic
pair encoding scheme for Pκ.

• Paramalg(par) := Param(par).
• EncKeyalg(N,x) := run (α + r1b1,k) ← EncKey(N,x), and let m3 = |k|. For

j ∈ [n], define matrix Bj as the matrix whose element at the �-th row and
i-th column is the coefficient of monomial ribj in polynomial k�. Define C as
the matrix whose element at the �-th row and i′-th column is the coefficient of
monomial r̂i′ in polynomial k�, for i ∈ [m1], i′ ∈ [m2] and � ∈ [m3]. Output
(B1, . . . , Bn, C).

• EncCtalg(N, y) := run c ← EncCt(N, y). For j ∈ [n], define matrix B′
j as the

matrix whose element at the �-th row and (i+1)-th column is the coefficient
of monomial sibj in polynomial c�. Define C ′ as the matrix whose element at
the �-th row and i′-th column is the coefficient of monomial ŝi′ in polynomial
c�, for i ∈ [0, w1−1], i′ ∈ [w2] and � ∈ [w3]. Output (B′

1, . . . , B
′
n, C ′).

Proof. Note that the structural constraints on the PES enforce that for every
N ∈ N, x ∈ Xκ and y ∈ Yκ, (α + r1b1,k) ← EncKey(N,x), c ← EncCt(N, y),
(B1, . . . , Bn, C) ← EncKeyalg(N,x), (B′

1, . . . , B
′
n, C ′) ← EncCtalg(N, y), it holds:

k = (b1B1 + · · · + bnBn)r + Cr̂ and c = (b1B′
1 + · · · + bnB′

n)s + C ′ŝ.
6 Recall that we are assuming, without loss of generality, that the first polynomial

produced by EncKey is α + r1b1 and that α does not appear anywhere else.
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Now, note that, due to reconstructability of the original encoding, for any N ∈ N,
x ∈ Xκ and y ∈ Yκ such that P (x, y) = 1, if we let

((
v E

)
, E′) ← Pair(N,x, y),

it holds:

s�(
v E

) (
α + r1b1

k

)
+ c�E′r = αs0,

which is equivalent to s�Ek + c�E′r = −s0r1b1 ∧ v = 1w1 , but then:

s�E
(
(b1B1 + · · · + bnBn)r + Cr̂

)
+

(
s�(b1B

′
1
�

+ · · · + bnB′
n
�
) + ŝ�C′�)

E′r = −s0r1b1

and because the above equality must hold symbolically, it must be the case that
EB1 + B′

1E
′ = 1w1×m1 and EBj + B′

jE
′ = 0w1×m1 for every j ∈ [2, n]. Moreover,

EC = 0w1×m2 and C ′�E′ = 0w2×m1 . Finally, note that the non-reconstructability
of the original encoding enforces that the above system does not have a solution
when Pκ(x, y) = 0. �

5 Generic Negation of Algebraic Pair Encodings

Although the general definition of pair encodings defines polynomials with coef-
ficients over ZN for an arbitrary integer N ∈ N. In this section we assume that
N is a prime number and write p instead. The reason is that our transformation
for the negated encoding leverages a result from linear algebra (our Lemma 2)
which requires that the underlying structure be a field. Note that this restriction
does not significantly weaken our result, since prime-order groups are preferred
over composite over groups.

Theorem 2. Let (Paramalg,EncKeyalg,EncCtalg) be an algebraic pair encoding
for a predicate family Pκ : Xκ ×Yκ → {0, 1}. The encoding (Pair,EncKey,EncCt)
described in Fig. 1 is an algebraic pair encoding for the predicate family Pκ given
by P (x, y) = 1 ⇔ P (x, y) = 0 for all x ∈ Xκ, y ∈ Yκ.

Proof. We need to show that whenever P (x, y)= 0, there exist matrices E and E′

of dimension w1×(1+m1n+m2) and (w1+w1n+w2)×m1 respectively, with coeffi-
cients in Zp, such that:

EB0 + B′
0

�
E′ = 1w1×m1 ∧ EC = 0w1×m3

∧ EBj + B′
j

�
E′ = 0w1×m1 , j ∈ [n+1] ∧ C ′�E′ = 0w3×m1 , (4)

where (B0, . . . , Bn+1, C) ← EncKey(p, x), (B′
0, . . . , B

′
n+1, C

′) ← EncCt(p, y).
Now, our original encoding guarantees that P (x, y) = 0 if and only if there
do not exist matrices E, E′ such that:

EB1 + B′
1

�
E′ = 1w1×m1 ∧ EC = 0w1×m2

∧ EBj + B′
j

�
E′ = 0w1×m1 , j ∈ [2, n] ∧ C ′�E′ = 0w2×m1 ,



134 M. Ambrona

Fig. 1. Generic negation of algebraic pair encoding schemes.

for (B1, . . . , Bn, C) ← EncKey(p, x) and (B′
1, . . . , B

′
n, C ′) ← EncCt(p, y). But

that is equivalent, in virtue of Lemma 2, to the existence of Z1, . . . , Zn ∈ Z
m1×w1
p ,

ZA ∈ Z
m2×w1
p and ZB ∈ Z

m1×w2
p such that:7

B1Z1 + · · · + BnZn + CZA = 0m3×w1

∧ Z1B
′
1

� + · · · + ZnB′
n

� + ZBC ′� = 0m1×w3

∧ tr(1w1×m1Z1) = 1. (5)

Now, for certain v ∈ Z
w1
p and V ∈ Z

m1×w1
p we can consider the matrices:

E :=
(
v | Z�

1 . . . Z�
n | Z�

A

)
and E′ :=

(
V | Z1 . . . Zn | ZB

)�
, (6)

and observe that they satisfy all the equations in (4) if we set v to be the first
column of Z�

1 multiplied by −1 (with the exception that v1 = 0) and we set V
to be the null matrix except for its first row, that is set to −v�.

7 To see why, set the matrices in Lemma 2 to Ai := Bi, Bi := B′
i
�
, for i ∈ [n] and

C1 := 1w1×m1 , Cj := 0w1×m1 for j ∈ [2, n]. Also, Â := C and B̂ := C′�.
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To conclude, observe that the converse is also true, i.e., if the equations in (4)
admit a solution, then (5) is satisfiable. To see this, note that the left-hand side
equations of (4) imply that any solution to them must be of the form of (6) for
certain v, V , Z1, . . . , Zn, ZA, ZB. Furthermore, the right-hand side equations of
(4) guarantee that such matrices Zi, for i ∈ {1, . . . , n, A, B} satisfy (5). Therefore,
we have shown that P (x, y) = 0 iff the equations in (4) have a solution. �

Observe that, in general, if (m1,m2,m3, w1, w2, w3, n) are the parameters of
the original encoding, our negated transformation will produce an encoding with
parameters n = n+2 and:

m1 = m1 m2 = m3 m3 = 1 + m1n + m2

w1 = w1 w2 = w3 w3 = w1(1 + n) + w2 − 1.

Note that, although the negated encoding may seem to have a much larger
size compared to the original one, the matrices associated to the new encoding
are actually very sparse and thus, our transformation will barely impact the
performance of the ABE scheme build from the negated encoding.

Furthermore, note that our generic negation is compatible with the promising
dynamic pair encoding composition technique very recently proposed by Attra-
padung [6]. We believe our new transformation complements his work which
could only achieve non-monotone formulae composition in a semi-generic (but
dynamic) manner, since the composition had to rely on encodings for which a
negated version was available.

6 Consequences of Our Results

Since Attrapadung introduced the notion of pair encoding schemes and the mod-
ular framework for constructing fully secure ABE from them [4], there have
been several works [1,2,6] refining this framework and proposing new encoding
schemes for different predicates, that sometimes enjoy extra properties (e.g., con-
stant ciphertext size). The community has made a significant effort on building
the negated version of most of the encodings from the literature, which in some
cases is significantly more involved. However, there are still encodings for which
not negation is known. Our generic transformation puts an end to this situation,
since we can now take any encoding and immediately obtain its negated coun-
terpart. A relevant example of a PES with (previously) unknown negation is the
case of doubly spatial encryption.

6.1 PES for Negated Doubly Spatial Encryption

Doubly spatial encryption [20] is an important primitive that generalizes both
spatial encryption8 [13] and negated spatial encryption, defined by Attrapadung

8 Spatial encryption is already a quite powerful predicate, that generalizes hierarchical
identity-based encryption (HIBE).
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and Libert [8]. It can be used to capture complex predicates and build flexible
revocation systems. Its relevance is evidenced by the fact that a variant of it,
called key-policy over doubly spatial encryption (defined by Attrapadung [4]),
generalizes KP-ABE and leads to efficient unbounded KP-ABE schemes with
large universes and KP-ABE with short ciphertexts. Given a field K, the dou-
bly spatial predicate, over sets X := Kd × Kd×� and Y := Kd × Kd×�′

,
P ((x,X), (y, Y )), is defined as 1 if and only if the affine spaces x + span(X)
and y + span(Y ) intersect.

In the same way that negated spatial encryption generalizes spatial encryp-
tion and serves as its revocation analogue, unifying existing primitives (for exam-
ple, it subsumes non-zero-mode IPE), negated doubly spatial encryption is a
more expressive and very powerful primitive that deserves our attention. How-
ever, to the best of our knowledge, there does not exist a general pair encoding
scheme for negated doubly spatial encryption in the literature. Attrapadung [4]
provided a pair encoding for doubly spatial encryption and a negated version, for
which he had to restrict one of the attributes (originally the ciphertext attribute)
to be confined to just a vector instead of a general affine space. This encoding
gave birth to the first fully-secure negated spatial encryption scheme, but it is
not the negated version of doubly spatial encryption. In the rest of this section,
we describe how to obtain the first, to the best of our knowledge, pair encoding
scheme for negated doubly spatial encryption without restrictions.

We start from the following PES for doubly spatial encryption (over ZN )
from [4]. (With m1 = 1, m2 = 0, m3 = �′+1 and w1 = 1, w2 = 0, w3 = �+1.)

Param(par) → d + 1 and let b = (b0, b′) = (b0, b1, . . . , bd)
EncKey(N, (y, Y )) := {α + r1b0 + r1y

�b′, r1Y
�b′}

EncCt(N, (x,X) := { s0b0 + s0x
�b′, s0X

�b′}.

We refer to [4] for a proof of security and reconstructability.
In order to apply our negated transformation to this encoding, we first need

to modify it so that it satisfies our structural assumption (see the first paragraph
of our Sect. 4). For this, we can apply the conversion defined by Attrapadung [6,
Section 4]. If we do so, we will get and encoding with m1 = 2, m2 = 0, m3 = �′+1
and w1 = 2, w2 = 0, w3 = �+2 that looks as follows (after renaming some
variables):

Param(par) → d + 3 and let b = (b0, b′, bd+1, bd+2) with b′ = (b1, . . . , bd)

EncKey(N, (y, Y )) := {r1bd+2 + r2bd+1 + r2y
�b′, r2Y

�b′} (also α + r1b0)
EncCt(N, (x,X) := {s0b0 + s1bd+2, s1bd+1 + s1x

�b′, s1X
�b′}.

Applying our negation transformation to the above encoding, we obtain the
pair encoding described in Fig. 3 (presented in Appendix A), where we have
renamed9 some common variables for the sake of readability. In Appendix A.1
9 Before applying the transformation, we rename b0 �→ t, bd+1 �→ u, bd+2 �→ v. After

the transformation, the two new common variables are named b0 and w respectively.
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Fig. 2. Simplified PES for negated doubly spatial encryption.

we show how we can slightly simplify the encoding from Fig. 3 and derive the
encoding that we present in Fig. 2. Our Theorem 2 guarantees that it is a valid
encoding for the negated doubly spatial encryption predicate, but we provide an
independent proof in Appendix A.2.

The process of applying our generic negation by hand may seem tedious (but
it seems necessary if we want to give an explicit description of an encoding that is
parametric in size, like the one for negated doubly spatial encryption). However,
notice that this process can be easily delegated to a computer, which does not
need to have an explicit definition of the negated encoding. Instead, it can start
from the non-negated encoding and apply the negation on the fly.

6.2 Other Implications of Our Transformation

Expressivity of Pair Encoding Schemes. A very important and long-standing
open question about pair encoding schemes is how expressive they really are.
They have led to breakthrough constructions such as constant-size ciphertext
KP-ABE (with large universes) [4], fully-secure functional encryption for regular
languages [4], completely-unbounded KP-ABE for non-monotone span programs
(NSP) over large universes [6]. However, it is still unknown where their limit is.
We believe our results bring new insight to answer this question and improve
our understanding of pair encodings and their expressivity.

For example, there exist pair encodings for regular languages, where key
attributes represent deterministic finite-state automata (DFSA), ciphertext
attributes represent (arbitrarily long) words, and the predicate is defined as
1 iff the automaton accepts the word. However, building ABE for context-free
languages (CFL) from pairings is still an important open problem, so it would
be desirable to understand whether CFL can be constructed from pair encoding
schemes. Our results imply that:
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The set of predicates that can be expressed with PES is closed under nega-
tion.

This tells us new non-trivial information about what predicates can be expressed
with a PES. In particular, it suggests that building PES for context-free lan-
guages may be harder than we think or even impossible. Note that context-free
languages are not closed under complementation [21] and, consequently, if we
can build a PES for CFL, we could build a PES for a predicate class that is
strictly more powerful than CFL (at least the union of CFL and coCFL10). Of
course, this reasoning does not allow us to roundly conclude anything, but it
serves as an evidence of the difficulty of this problem.

Potential Performance Improvements. Not only does our generic transformation
broaden the class of predicates that can be captured by pair encoding schemes,
but it also can lead to efficiency improvements in actual ABE constructions.
Observe the peculiar structure of the negated encodings produced with our trans-
formation from Fig. 1. All of the matrices associated to common variables, Bi

and B′
i, have a fixed structure that is independent of the key attribute and

the ciphertext attribute respectively (only the part associated to lone variables
is dependent on the attributes). Furthermore, observe that they are arguably
sparse. We can conclude that all pair encoding schemes admit a representation
(an encoding for the same predicate) in this form, since we can always apply
our transformation twice, leveraging the fact that the negation is an involution.
However, in many cases it may be simpler to arrive at the mentioned structure
more directly, by simply applying linear combinations and variable substitutions.
What is important is that such a representation always exists.

This observation opens the possibility of splitting the computation of cipher-
texts and secret keys into an offline part (before the attribute value is known)
and an online part (once the attribute has been determined). Observe that such a
strategy can bring significant performance improvements, given that operations
involving common variables require a group exponentiation per matrix coeffi-
cient (since the common variables are available in the master public key in the
form of group elements, with unknown discrete logarithm)11, whereas operations
involving lone variables can be batched together, reducing the number of expo-
nentiations (one can do linear algebra over the field ZN and perform one single
exponentiation at the end). This is because the value of lone variables is freshly
sampled during the computation and, therefore, known. This approach would
not only reduce the online encryption and key generation time, but also the
total time, since the offline computation can be reused for different attributes
after it has been computed once.

10 We denote by coCFL the class of languages whose complement is context-free.
11 See the ABE compiler from PES described in Appendix B.2.
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7 Conclusions and Future Work

Pair encodings are a simple, yet powerful, tool for building complex fully secure
attribute-based encryption schemes. In this work, we have presented a generic
transformation that takes any pair encoding scheme and negates its predicate.
This construction finally solves a problem that was open since 2015 [10] and
that has been considered to be non-obvious by several recent works [2,6]. Along
the way, we have defined new results that improve our understanding of pair
encodings and can be of independent interest, including a new encoding (pre-
viously unknown) for negated doubly spatial encryption, obtained with our
transformation.

We propose several directions for future work. On the theoretical side, it
would be interesting to explore whether our negation transformation can lead to
simpler encodings as in [3]. In their work, Ambrona et al. show how, applying
their negation to an encoding for monotone span programs [22] and after per-
forming some simplifications, the new encoding is more compact and leads to
an ABE that is twice as fast as the original one. The fact that the encoding is
negated does not spoil its usage, since span programs are closed under negation
and can be tweaked to implement the original functionality. The same technique
of negating the encoding also results into a successful simplification in the case of
arithmetic span programs. We believe the same kind of phenomenon can occur
when negating pair encodings with our technique, potentially producing simpler
encodings.

A very recent work [9] provides a new framework for constructing ABE
schemes that support unbounded and dynamic predicate compositions whose
security is proven under the standard matrix Diffie-Hellman assumption (gener-
alizing the result by Attrapadung [6], which achieved the same kind of compo-
sition under the q-ratio assumption). The work by Attrapadung and Tomida [9]
enables generic conjunctive and disjunctive compositions (which lead to mono-
tone Boolean formula compositions). Extending their techniques in order to
design a generic negation under standard assumptions is a very appealing direc-
tion for future work. (Note that the negation that we have provided in this work
is applicable to the framework of Agrawal and Chase [2], thus it also relies on
the less standard q-ratio assumption.)

On the practical side, it would be interesting to implement and evaluate the
performance improvements that we propose in Sect. 6.2, exploiting the singular
structure of the encodings produced by our transformation.
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tiple suggestions.
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A Pair Encoding for Negated Doubly Spatial Encryption

A.1 Building the Encoding

A direct application of our negated transformation (Fig. 1) to the encoding for
doubly spatial encryption from [4] (after minor modifications so that it satisfies
our structural constraints) leads to the encoding from Fig. 3. This encoding can
be simplified, as the following reasoning shows that not all the polynomials are
needed for reconstructability.

The only way to get polynomial s0r1b0 (and consequently αs0) as a linear
combination of polynomials from L = s ⊗ k ∪ c ⊗ r is through the two first
polynomials in the key (multiplied by s0): s0r1b0 + s0r1w and s0r1b0 + s0r1t.
For that, we need to express monomial s0r1w or monomial s0r1t as a linear
combination of other polynomials in L. The former is impossible to obtain (since
monomial s0r1w does not appear in any other polynomial in L). The latter can be
achieved only through polynomial r1s0t−r1ŝ1 ∈ L. Again, that requires to arrive
at polynomial r1ŝ1, which is present only in r1s1v−r1ŝ1. Furthermore, r1s1v can
only be (additionally) found in s1r1v + s1r̂1. However, s1r̂1 is present in several
polynomials in L, namely: s1r2u+s1r̂1 and s1(Yj r̂

′+r2bj +r̂1yj)j∈[d]. The former
contains a monomial, s1r2u, that only additionally appears in r2s1u − r2ŝ2, but
r2ŝ2 is only present in polynomials r2(Xj ŝ

′ − s1bj + ŝ2xj)j∈[d]. Consequently,
reconstructability will be possible if there exist coefficients βj and γj for all
j ∈ [0, d] such that:

s1r̂1 = β0(s1r2u + s1r̂1) +
∑

j∈[d] βjs1(Yj r̂
′ + r2bj + r̂1yj)

+ γ0(r2s1u − r2ŝ2) +
∑

j∈[d] γjr2(Xj ŝ
′ − s1bj + ŝ2xj).

Considering the different monomials in both sides of the equation, we deduce:

s1r̂1 : 1 = β0 +
∑

j∈[d] βjyj

s1r2u : 0 = β0 + γ0
s1r̂

′ : 0�′ =
∑

j∈[d] βjYj

r2ŝ2 : 0 = −γ0 +
∑

j∈[d] γjxj

s1r2bj : 0 = βj − γj ∀j ∈ [d]
r2ŝ

′ : 0� =
∑

j∈[d] γjXj

Consequently, reconstructability is possible if there exist coefficients βj for all
j ∈ [d] such that:

1 =
∑

j∈[d] βj(yj − xj) ∧ 0�′ =
∑

j∈[d] βjYj ∧ 0� =
∑

j∈[d] βjXj .

But this is equivalent to y−x /∈ span(Y )∪ span(X) (see Lemma 1) which holds
if and only if the predicate is true, as needed.

All the polynomials in the key and the ciphertext which have not been used
for reconstructability can be eliminated. Figure 2 describes the resulting encoding
after this simplification.

A.2 Arguing Security

Our Theorem 2 guarantees that the encoding from Fig. 3 is secure. Note that
removing polynomials cannot change security (only spoil reconstructability), so
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Fig. 3. PES for negated doubly spatial encryption.

the simpler scheme presented in the main body (Fig. 2) must also be secure.
Nevertheless, we provide an independent proof of its security, for the sake of
completeness.

Proof (Security of the encoding from Fig. 2). Assume the predicate is false, i.e.,
the affine spaces x+span(X) and y+span(Y ) intersect. Let z ∈ Z

d
N be a vector

in their intersection and let zx ∈ Z
�
N and zy ∈ Z

�′
N be such that:

x + Xzx = z = y + Y zy .

Observe that all the polynomials in EncKey(N, (y, Y )) and EncCt(N, (x,X)) (see
Fig. 2) evaluate to zero on the following substitution:

(b, r̂′, ŝ′) ← (z,zy,zx) r1, s1, r̂1, ŝ2, u, t, α ← 1 b0, s0, r2, ŝ1, v ← −1,

but polynomial αs0 evaluates to −1 (	= 0). As explained in Example 1, this is
an evidence of the security of the encoding.

B Additional Definitions

B.1 Security of Attribute-Based Encryption

An ABE scheme is adaptively secure if there exists a negligible ε such that for all
PPT adversaries A, and all sufficiently large λ ∈ N, AdvABEA (λ) < ε(λ), where:

AdvABEA (λ) := Pr

⎡
⎢⎢⎢⎢⎣

(mpk,msk) ← Setup(1λ,X ,Y)
x� ← AKeyGen(msk,·)(mpk)

(ctx� , τ) ← Enc(mpk, x�)
b ←$ {0, 1}; τ0 := τ ; τ1 ←$ K
b′ ← AKeyGen(msk,·)(ctx� , τb)

: b′ = b

⎤
⎥⎥⎥⎥⎦

− 1
2
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where the advantage is defined to be zero if some of the queries y made by
A to the KeyGen oracle violates the condition P (x�, y) = 0.

B.2 Attribute-Based Encryption from Pair Encodings

In order to explain how to build attribute-based encryption from pair encodings,
we need to introduce the notion of dual system groups (DSG) [2,16,17], since
the compilers from pair encodings into ABE [1,5] rely on DSG in a black-box
way.

Dual System Groups

A dual system group is a tuple of six efficiently computable algorithms:

• SampP(1λ, 1n): on input the security parameter and an integer n, outputs
public parameters pp and secret parameters sp such that:

◦ The public parameters, pp, include a triple of abelian groups (G,H,Gt)
(that are Zp-modules for some λ-bits prime p), a non-degenerate bilinear
map e : G×H → Gt, an homomorphism μ (defined over H) and additional
parameters required by SampP and SampH.

◦ Given pp, it is possible to uniformly sample to H.
◦ The secret parameters, sp, include a distinguished element h∗ ∈ H (dif-

ferent from the unit) and additional parameters required by ŜampG and
ŜampH.

• SampG(pp) and ŜampG(pp, sp) output an element from Gn+1.

• SampH(pp) and ŜampH(pp, sp) output an element from Hn+1.

• SampGT is a function defined from Im(μ) to Gt.

Additional conditions are required for correctness and security:

projective: For all public parameters, pp, every h ∈ H and all coin tosses σ, it
holds SampGT(μ(h);σ) = e(g0, h), where (g0, g1, . . . , gn) ← SampG(pp; r).

associative: Let (g0, g1, . . . , gn) ← SampG(pp), (h0, h1, . . . , hn) ← SampH(pp),
it holds e(g0, hi) = e(gi, h0) for every i ∈ [n].

H-subgroup: SampH(pp) is the uniform distribution over a subgroup of Hn+1.
orthogonality: h∗ ∈ Kernel(μ).
non-degeneracy: For every (h0, h1, . . . , hn) ← SampH(pp), h∗ ∈ 〈h0〉. Further-

more, for every (ĝ0, ĝ1, . . . , ĝn) ← ŜampG(pp, sp), (α ←$
Zp; return e(ĝ0, h∗)α)

is the uniform distribution over Gt.
left-subgroup indistinguishability: (pp, g) ≈c (pp, g·ĝ).
right-subgroup indistinguishability: (pp, h∗, g·ĝ, h) ≈c (pp, h∗, g·ĝ, h·ĥ).
parameter-hiding: (pp, h∗, ĝ, ĥ) ≡ (pp, h∗, ĝ·ĝ′, ĥ·ĥ′).
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Where, ≈c denotes a distinguishing probability upper-bounded by a negligi-
ble function on λ and, for any n ∈ N, the above elements are sampled as:

(pp, sp) ← SampP(1λ, 1n)

g ← SampG(pp) ĝ ← ŜampG(pp, sp) ĝ′ := (1G, ĝz1
0 , . . . , ĝzn

0 )

h ← SampG(pp) ĥ ← ŜampG(pp, sp) ĥ′ := (1H, ĥz1
0 , . . . , ĥzn

0 )

for z1, . . . , zn ←$
Zp.

Remark. Observe that we have presented the version of dual system groups
defined in [15]. Other works consider slightly different conditions (e.g., the non-
degeneracy of [1]). However, the widely used instantiation of DSG from k-lin
given in [15] also satisfies the properties of those variations.

ABE from Pair Encodings

Given a pair encoding scheme {Param,EncKey,EncCt,Pair} (see Definition 2) for
a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) (let λ = |N |),
an attribute-based encryption scheme can be constructed as follows:

• Setup(1λ,Xκ,Yκ): let n ← Param(par) and run the DSG generation algorithm
SampP(1λ, 1n) to obtain pp and sp. Let msk←$ H and mpk := (pp, μ(msk)).
Output (mpk,msk).

• Enc(mpk, x): run EncCt(N,x) to obtain polynomials cx(s, ŝ, b). For every � ∈
[w3], let the �-th polynomial in cx be

∑
i∈[w2]

γ(�)

i ŝi +
∑

i∈[0,w1−1]

∑
j∈[n]

γ(�)

{i,j}sibj

for some coefficients γ(�)

i and γ(�)

{i,j} in Zp. Now, run SampG to produce

(ĝ{i,0}, ĝ{i,1}, . . . , ĝ{i,n}) ← SampG(pp) for i ∈ [w2]
(g{i,0}, g{i,1}, . . . , g{i,n}) ← SampG(pp) for i ∈ [0, w1−1]

(g{0,0}, g{0,1}, . . . , g{0,n}) ← SampG(pp;σ)

Observe that we have made explicit the coin tosses, σ, used in the last sam-
pling. Setup ctx :=

(
ct0, ct1, . . . , ctw1−1, c̃t1, . . . , c̃tw3

)
and define the sym-

metric encryption key as τ := SampGT(μ(msk);σ), where cti := g{i,0} for
every i ∈ [0, w1−1]; and for every � ∈ [w3], c̃t� is computed as

c̃t� :=
∏

i∈[w2]

ĝ
γ
(�)
i

{i,0} ·
∏

i∈[0,w1−1]

∏
j∈[n]

g
γ
(�)
{i,j}

{i,j} .

Output (ctx, τ).
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• KeyGen(msk, y): run EncKey(N, y) to obtain polynomials ky(r, r̂, b). For every
� ∈ [m3], let the �-th polynomial in ky be

φ(�)α +
∑

i∈[m2]

φ(�)

i r̂i +
∑

i∈[m1]

∑
j∈[n]

φ(�)

{i,j}ribj

for some coefficients φ(�), φ(�)

i and φ(�)

{i,j} in Zp. Now, run SampH to produce

(ĥ{i,0}, ĥ{i,1}, . . . , ĥ{i,n}) ← SampH(pp) for i ∈ [m2]
(h{i,0}, h{i,1}, . . . , h{i,n}) ← SampH(pp) for i ∈ [m1]

Define the secret key as sky :=
(
sk1, . . . , skm1 , s̃k1, . . . , s̃km3

)
, where ski :=

h{i,0} for every i ∈ [m1]; and for every � ∈ [m3], s̃k� is computed as

s̃k� := mskφ(�) ·
∏

i∈[m2]

ĥ
φ
(�)
i

{i,0} ·
∏

i∈[m1]

∏
j∈[n]

h
φ
(�)
{i,j}

{i,j} .

Output sky.
• Dec(mpk, sky, ctx, x): run Pair(N,x, y) to obtain matrices E,E′ (note that y

is assumed to be extractable from sky, whereas x is explicitly included as an
input to Dec). Define:

τ :=
∏

i∈[w1]

∏
�∈[m3]

e(cti−1, s̃k�)Ei,� ·
∏

�∈[w3]

∏
i∈[m1]

e( c̃t�, ski)E′
�,i

Output the symmetric encryption key τ .
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Abstract. Classically, selective-opening attack (SOA) has been studied
for randomized primitives, like randomized encryption schemes and com-
mitments. The study of SOA for deterministic primitives, which presents
some unique challenges, was initiated by Bellare et al. (PKC 2015), who
showed negative results. Subsequently, Hoang et al. (ASIACRYPT 2016)
showed positive results in the non-programmable random oracle model.
Here we show the first positive results for SOA security of deterministic
primitives in the standard (RO devoid) model. Our results are:

– Any 2t-wise independent hash function is SOA secure for an
unbounded number of “t-correlated” messages, meaning any group
of up to t messages are arbitrarily correlated.

– A construction of a deterministic encryption scheme with analogous
security, combining a regular lossy trapdoor function with a 2t-wise
independent hash function.

– The one-more-RSA problem of Bellare et al. (J. Cryptology 2003),
which can be seen as a form of SOA, is hard under the Φ-Hiding
Assumption with large enough encryption exponent.

Somewhat surprisingly, the last result yields the first proof of RSA-based
Chaum’s blind signature scheme (CRYPTO 1982), albeit for large expo-
nent e, based on a “standard” computational assumption. Notably, it
avoids the impossibility result of Pass (STOC 2011) because lossiness of
RSA endows the scheme with non-unique signatures.

Keywords: Selective opening security · One-more RSA · Randomness
extractor · Deterministic public-key encryption · Information theoretic
setting

1 Introduction

In this paper, we study selective-opening-attack (SOA) security of some deter-
ministic primitives, namely hash functions, (public-key) deterministic encryp-
tion, and trapdoor functions. In particular, we extend the work of Hoang
et al. [20] in addition to answering some open questions there. We also provide
a new analysis of Chaum’s blind signature scheme [12].
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1.1 Background and Motivation

SOA security. Roughly, SOA security of a cryptographic primitive refers to
giving the adversary the power to adaptively choose instances of the primitive
to corrupt and considering security of the uncorrupted instances. SOA grew
out of work on non-committing and deniable primitives [6,9–11,14,16,26,27,31],
which are even stronger forms of security. Namely, SOA has been studied in
a line of work on public-key encryption and commitments started by Bellare,
Hofheinz, and Yilek [2,3,7,19,21,22]. When considering adaptive corruption,
SOA arguably captures the security one wants in practice. Here we only consider
sender SOA (i.e., sender, not receiver, corruption), which we just refer to SOA
security in the remainder of the paper for simplicity.

SOA for deterministic encryption. SOA security has usually been studied
for randomized primitives, where the parties use random coins that are given to
the adversary when corrupted, in particular randomized encryption. The study
of SOA for deterministic primitives, namely deterministic encryption was initi-
ated by Bellare et al. [1], who showed an impossibility result wrt. a simulation
based definition. Subsequently, Hoang et al. [20] proposed a comparison based
definition and showed positive results in the non programmable random oracle
(RO) model [5,25]. They left open the problem of constructions in the standard
(RO devoid) model, which we study in this work. In particular, Hoang et al.
emphasized this problem is open even for uniform and independent messages.

SOA for hash functions. In addition to randomized encryption, SOA secu-
rity has often been considered for randomized commitments. Note that a simple
construction of a commitment in the RO model is H(x‖r) where x is the input
and r is the randomness (decommitment). Analogously to the case of encryption,
we study SOA security of hash functions. This can also be seen as studying the
more basic case compared to deterministic encryption, as Goyal et al. [18] did in
the non-SOA setting. The practical motivation is password hashing—note some
passwords may be recovered by coercion, and one would like to say something
about security of the other passwords.

One-more RSA inversion problem. Finally, an influential problem that we
cast in the framework of SOA (this problem has not been explicitly connected
to SOA before as far as we are aware) is the one-more RSA inversion problem of
Bellare et al. [4]. Informally, the problem asks that an adversary with many RSA
challenges and an inversion oracle cannot produce more preimages than number
of oracle calls. Bellare et al. show this leads to a proof of security of Chaum’s
blind signature scheme in the RO model.

Challenges. For randomized primitives, a key challenge in security proofs has
been that at the time the simulator prepares the challenge ciphertexts it does
not know the subset that the adversary will corrupt. Compared to randomized
primitives, deterministic primitives additionally presents some unique challenges
in the SOA setting. To see why, say for encryption, a common strategy is for the
simulator to “lie” about the randomness in order to make the message encrypt
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to the right ciphertext. However, in the deterministic case the adversary there
is no randomness to fake.

1.2 Our Contributions

Results for hash functions. We start with the study of a more basic prim-
itive than deterministic encryption, namely hash functions (which in some sense
are the deterministic analogue of commitments). We note that SOA notion for
hash functions is stronger than the one-wayness notion. We point out that the
SOA adversary without any opening could simply run the one-wayness adversary
on each image challenge and recover the preimages. Thus, SOA notion is strictly
stronger than one-wayness. Here we show results for an unbounded number of
“t-correlated” messages, meaning each set of up to t messages may be arbitrarily
correlated. Namely, we show that 2t-wise independent hash functions, which can
be realized information-theoretically by a classical construction of polynomial
evaluation. We also consider the notion of t-correlated messages to be interest-
ing in its own right, and it captures a setting with password hashing where a
password is correlated with a small number of others (and it is even stronger than
that, in that a password may be correlated with any small number of others).

To show 2t-wise independent hash functions are SOA secure, we first show
that in the information theoretic setting, knowing the content of the opened
messages increases the upper-bound on the adversary’s advantage by at most
factor of 2. This is because the messages are independent, and knowing the
opened messages does not increase the adversary’s advantage in guessing the
unopened messages. Then, we show that for any hash key s in the set of “good
hash keys”, the probability of H(s,X) = y is almost equally distributed over all
hash value y. Therefore, we can show for any hash key s in the set of “good hash
keys” and any vector of hash values, opening does not increase the upper-bound
on adversary’s advantage. Thus, it is only enough to bound the adversary’s
advantage without any opening. Note that this strategy avoids the exponential
(in the number of messages) blow-up in the bound compared to the näıve strategy
of guessing the subset the adversary will open.

Constructions in the standard model. In the setting of deterministic
encryption, it is easy to see the same strategy as above works using lossy trap-
door functions [30] that are 2t-wise independent in the lossy mode. However, for
t > 1 we are not aware of any such construction and highlight this as an interest-
ing open problem.1 Hence, we turn to building a D-SO-CPA secure scheme in the
standard model. We give a new DPKE scheme using 2t-wise independent hash
functions and regular lossy trapdoor function [30], which has practical instan-
tiations, e.g., RSA is regular lossy [24]. A close variant of our scheme is shown
to be D-SO-CPA secure in the NPROM [20]. The proof strategy here is very

1 It is tempting to give a Paillier-based construction with a degree 2t polynomial in
the exponent, but unfortunately the coefficients don’t lie in a field so the classical
proof of 2t-wise independence does not work.
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similar to the hash function case above. We start by switching to the lossy mode
and then bound the adversary’s advantage in the information-theoretic setting.

Results for one-more-RSA. Bellare et al. [4] were first to introduce one-
more-RSA problem. They show assuming hardness of the one-more-RSA inver-
sion problem leads to a proof of security of Chaum’s blind signature scheme [12]
in the random oracle model. This problem is natural SOA extension of the one-
wayness of RSA. Intuitively, in the one-more inversion problem, the adversary
gets a number of image points and has access to the corruption oracle that allows
it to get preimages for image points of its choice. It needs to produce one more
correct preimage than the number of queries it makes. We show that one-more
inversion problem is hard for RSA with a large enough encryption exponent e.
In particular, we show that one-more inversion problem is hard for any regular
lossy trapdoor function. Intuitively, we show that in the lossy mode the images
are uniformly distributed. Then we show that inverting even one of the images
is hard, since any preimage x is equally likely. RSA is known to be regular lossy
under the Φ-Hiding Assumption [24]. Thus, by the result of [4], we obtain a secu-
rity proof for Chaum’s scheme.2 Interestingly, this result avoids an impossibility
result of Pass [29] because if RSA is lossy then Chaum’s scheme does not have
unique signatures. Analogously, in a different context, Kakvi and Kiltz [23] used
non-uniqueness of RSA-FDH signatures under Φ-Hiding to show tight security,
getting around an impossibility result of Coron [13].

1.3 Seeing us as Replacing Random Oracles

Another way of seeing our treatment of hash functions is as isolating a property
of random oracles and realizing it in the standard model, building on a line of
work in this vein started by Canetti [8]. In this context, it would be interesting
to consider adaptive SOA security for hash functions similar to [28] who consider
adaptive commitments. We leave this as another open problem. Additionally, it
would be interesting to see if our results allow replacing ROs in any particular
higher-level protocols.

2 Preliminaries

2.1 Notation and Conventions

For a probabilistic algorithm A, by y ←$ A(x) we mean that A is executed on
input x and the output is assigned to y. We sometimes use y ← A(x; r) to
make A’s random coins explicit. If A is deterministic we denote this instead by
y ← A(x). We denote by [A(x)] the set of all possible outputs of A when run
on input x. For a finite set S, we denote by s ←$ S the choice of a uniformly
random element from S and assigning it to s.

2 This glosses over an issue about regularity of lossy RSA on subdomains discussed in
the body.
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Let N denote the set of all non-negative integers. For any n ∈ N we denote
by [n] the set {1, . . . , n}. For a vector x, we denote by |x| its length (number of
components) and by x[i] its i-th component. For a vector x of length n and any
I ⊆ [n], we denote by x[I] the vector of length |I| such that x[I] = (x[i])i∈I , and
by x[I] the vector of length n−|I| such that x[I] = (x[i])i/∈I . For a string X, we
denote by |X| its length.

Let X,Y be random variables taking values on a common finite domain. The
statistical distance between X and Y is given by

Δ(X,Y ) =
1
2

∑

x

∣∣Pr [X = x ] − Pr [Y = x ]
∣∣ .

We also define Δ(X,Y | S) = 1
2

∑
x∈S

∣∣Pr [X = x ] − Pr [Y = x ]
∣∣, for a set S.

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr [X = x ]).
The average conditional min-entropy of X given Y is

H̃∞(X|Y ) = − log(
∑

y

PY (y)max
x

Pr [ X = x | Y = y ]).

Entropy after information leakage. Dodis et al. [15] characterized the
effect of auxiliary information on average min-entropy:

Lemma 1. [15] Let X,Y,Z be random variables and δ > 0 be a real number.
(a) If Y has at most 2λ possible values then we have H̃∞(X | Z, Y ) ≥ H̃∞(X |
Z) − λ.
(b) Let S be the set of values b such that H∞(X | Y = b) ≥ H̃∞(X | Y ) −
log(1/δ). Then it holds that Pr[Y ∈ S] ≥ 1 − δ.

2.2 Public-Key Encryption

Public-key encryption. A public-key encryption scheme PKE with message-
space Msg is a tuple of algorithms (Kg,Enc,Dec) defined as follows. The key-
generation algorithm Kg on input unary encoding of the security parameter 1k

outputs a public key pk and matching secret key sk . The encryption algorithm
Enc on inputs a public key pk and message m ∈ Msg(1k) outputs a ciphertext
c. The deterministic decryption algorithm Dec on inputs a secret key sk and
ciphertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)]
and all m ∈ Msg(1k), it holds that Dec(sk , (Enc(pk ,m)) = m. We say that PKE
is deterministic if Enc is deterministic.

D-SO-CPA security. Let DE = (Kg,Enc,Dec) be a D-PKE scheme. To a mes-
sage sampler M and an adversary A = (A.pg, A.cor, A.g, A.f), we associate the
experiment in Fig. 1 for every k ∈ N. We say that DE is D-SO-CPA secure for a
class M of efficiently resamplable message samplers and a class A of adversaries
if for every M ∈ M and any A ∈ A ,

Advd-so-cpa
DE,A,M(k)

= Pr
[
D-CPA1-REALA,M

DE (k) ⇒ 1
]

− Pr
[
D-CPA1-IDEALA,M

DE (k) ⇒ 1
]
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Fig. 1. Games to define the D-SO-CPA security.

is negligible in k.

2.3 Lossy Trapdoor Functions and Their Security

Lossy trapdoor functions. A lossy trapdoor function [30] with domain
LDom, range LRng and lossiness τ is a tuple of algorithms LT = (IKg, LKg,
Eval, Inv) that work as follows. Algorithm IKg on input a unary encoding of the
security parameter 1k outputs an “injective” evaluation key ek and matching
trapdoor td . Algorithm LKg on input 1k outputs a “lossy” evaluation key lk.
Algorithm Eval on inputs an (either injective or lossy) evaluation key ek and
x ∈ LDom(k) outputs y ∈ LRng(k). Algorithm Inv on inputs a trapdoor td and
a y ∈ LRng(k) outputs x ∈ LDom(k). We denote by Img(lk) the co-domain of
Eval(lk, ·). We require the following properties:

Correctness: For all k ∈ N, all (ek , td) ∈ [IKg(1k)] and all x ∈ LDom(k) it
holds that Inv(td ,Eval(ek , x)) = x.

Key Indistinguishability: We require that for every PPT distinguisher D, the
following advantage be negligible in k.

Advltdf
LT,D(k) = Pr [D(ek) ⇒ 1 ] − Pr [D(lk) ⇒ 1 ].

where (ek , td) ←$ IKg(1k) and lk ←$ LKg(1k).

Lossiness: The size of the co-domain of Eval(lk, ·) is at most |LRng(k)|/2τ(k) for
all k ∈ N and all lk ∈ [LKg(1k)]. We call τ the lossiness of LT.

t-wise independent. Let LT be a lossy trapdoor function with domain LDom,
range LRng and lossiness τ . We say LT is t-wise independent if for all lk ∈
[LKg(1k)] and all distinct x1, . . . , xt(k) ∈ LDom(k)

Δ
(
(Eval(lk, x1), . . . ,Eval(lk, xt(k))), (U1, . . . , Ut(k))

)
= 0

where lk ←$ LKg(1k) and U1, . . . , Ut(k) are uniform and independent on LRng(k).
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Regularity. Let LT be a lossy trapdoor function with domain LDom, range
LRng and lossiness τ . We say LT is regular if for all lk ∈ [LKg(1k)] and all
y ∈ Img(lk), we have Pr [Eval(lk, U) = y ] = 1/|Img(lk)|, where U is uniform on
LDom(k).

2.4 Hash Functions and Associated Security Notions

Hash functions. A hash function with domain HDom and range HRng is a
pair of algorithms H = (HKg, h) that work as follows. Algorithm HKg on input
a unary encoding of the security parameter 1k outputs a key K. Algorithm h on
inputs a key K and x ∈ HDom(k) outputs y ∈ HRng(k). We say that H is t-wise
independent if for all k ∈ N and all distinct x1, . . . , xt(k) ∈ HDom(k)

Δ
(
(h(K,x1), . . . , h(K,xt(k))), (U1, . . . , Ut(k))

)
= 0

where K ←$ HKg(1k) and U1, . . . , Ut(k) are uniform and independent in HRng(k).

3 Selective Opening Security for Hash Functions

Bellare, Dowsley, and Keelveedhi [1] were the first to consider selective-opening
security of deterministic PKE. They propose a “simulation-based” semantic
security notion, but then show that this definition is unachievable in both the
standard model and the non-programmable random-oracle model. Later in [20]
Hoang et al. introduce an alternative, “comparison-based” semantic-security
notion and show that this definition is achievable in the non-programmable
random-oracle model but leave it open in the standard model. In this section,
we extend their definitions to hash function families and show that t-wise inde-
pendent hash functions are selective opening secure under this notion.

3.1 Security Notion

Message samplers. A message sampler M is a PPT algorithm that takes
as input the unary representation 1k of the security parameter and a string
param ∈ {0, 1}∗, and outputs a vector m of messages. We require that M be
associated with functions v and n such that for any param ∈ {0, 1}∗, for any
k ∈ N, and any m ∈ [M(1k,param)], we have |m| = v(k) and |m[i]| = n(k), for
every i ≤ |m|. Moreover, the components of m must be distinct. Let Coins[k]
be the set of coins for M(1k, ·). Define Coins[k,m, I,param] = {ω ∈ Coins[k] |
m[I] = m′[I], where m′ ← M(1k,param;ω)}.

A message sampler M is (μ, d)-correlated if

– For any k ∈ N, any param ∈ {0, 1}∗, every m ∈ [M(1k,param)] and any
i ∈ [v], m[i] have min-entropy at least μ and is independent of at least v − d
messages.

– Messages m[1], . . . ,m[v(k)] must be distinct, for any param ∈ {0, 1}∗ and
any m ∈ [M(1k,param)].
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Fig. 2. Games to define the H-SO security.

Note that in this definition, d can be 0, which corresponds to a message
sampler in which each message is independent of all other messages and has at
least μ bits of min-entropy.

Resampling. Following [3], let ResampM(1k, I,x,param) be the algorithm that
samples r ←$ Coins[k,m, I,param] and returns M(1k,param; r). (We note that
Resamp may run in exponential time.) A resampling algorithm of M is an
algorithm Rsmp such that Rsmp(1k, I,x,param) is identically distributed as
ResampM(1k, I,x,param). A message sampler M is efficiently resamplable if
it admits a PT resampling algorithm.

H-SO security. Let H = (HKg, h) be a hash function family with domain HDom
and range HRng. To an adversary A = (A.pg, A.cor, A.g, A.f) and a message
sampler M, we associate the experiment in Fig. 2 for every k ∈ N. We say that
H is H-SO secure for a class M of efficiently resamplable message samplers and
a class A of adversaries if for every M ∈ M and any A ∈ A ,

Advh-so
H,A,M(k)

= Pr
[
H-SO-REALA,M

H (k) ⇒ 1
]

− Pr
[
H-SO-IDEALA,M

H (k) ⇒ 1
]

is negligible in k.

Discussion. We refer to the messages indexed by I as the “opened” messages.
For every message m[i] that adversary A opens, we require that every message
correlated to m[i] to also be opened.

We show that it is suffices to consider balanced H-SO adversaries where
output of A.f is boolean. We call A δ-balanced boolean H-SO adversary if for all
b ∈ {0, 1}, ∣∣∣Pr [ t = b : t ←$ A.f(m,param) ] − 1

2

∣∣∣ ≤ δ.

for all param and m output by A.pg and M, respectively.
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Theorem 2. Let H = (HKg, h) be a hash function family with domain HDom
and range HRng. Let A be a H-SO adversary against H with respect to message
sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced boolean H-SO
adversary B such that for all k ∈ N

Advh-so
H,A,M(k) ≤

(2
√

2
δ

+
√

2
)2

· Advh-so
H,B,M(k).

where the running time of A is about that of B plus O(1/δ).

We refer to Appendix A for the proof of Theorem 2. Next, we give a useful
lemma that we later use in our proofs.

Lemma 3. Let X,Y be random variables where H̃∞(X | Y ) ≥ μ. For any
0 ≤ δ < 1/2, random variable Y is a δ-balanced boolean. Then, H∞(X | Y =
b) ≥ μ − log(12 − δ) for all b ∈ {0, 1}.

Proof. We know that Pr [Y = b ] ≥ 1/2 − δ, for all b ∈ {0, 1}. We also have
that

∑
b Pr [Y = b ] maxx Pr [X = x | Y = b ] ≤ 2−μ. Therefore, we obtain that

maxx Pr [X = x | Y = b ] ≤ 2−μ(1/2 − δ) for all b ∈ {0, 1}. Summing up, we get
H∞(X | Y = b) ≥ μ − log(12 − δ) for all b ∈ {0, 1}. �

3.2 Achieving H-SO Security

We show in Theorem 4 that pair-wise independent hash functions are selec-
tive opening secure when the messages are independent and have high min-
entropy. Specifically, we give an upper-bound for the advantage of H-SO adver-
sary attacking the pair-wise independent hash function. We first show that in the
information theoretic setting, knowing the content of opened messages increases
the upper-bound for advantage of adversary by at most factor of 2. This is
because the messages are independent and knowing the opened messages does
not increase the advantage of adversary on guessing the unopened messages.
We point that for any vector of hash values and hash key, value I is uniquely
defined (unbounded adversary can be assumed deterministic) and based on the
independence of the messages, we could drop the probability of opened messages
in the upper-bound for the advantage of adversary. Note that the adversary still
may increase its advantage by choosing I adaptively without seeing the opened
messages, we later prove this is not the case.

We show in Lemma 5 that for any hash key s in the set of “good hash
keys”, the probability of H(s,X) = y is almost equally distributed over all
hash value y. Therefore, we can show for any hash key s in the set of “good hash
keys” and any vector of hash values, opening does not increases the upper-bound
for advantage of adversary. Thus, it is only enough to bound the advantage of
adversary without any opening.

Theorem 4. Let H = (HKg, h) be a family of pair-wise independent hash func-
tion with domain HDom and range HRng. Let M be a (μ, 0)-correlated, effi-
ciently resamplable message sampler. Then for any computationally unbounded
adversary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2.
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Proof. We need the following lemma whose proof we’ll give later.

Lemma 5. Let H = (HKg, h) be a pair-wise independent hash function with
domain HDom and range HRng. Let X be a random variable over HDom such
that H∞(X) ≥ η. Then, for all y ∈ HRng(k) and for any ε > 0,

∣∣∣Pr [H(K,X) = y ] − |HRng(k)|−1
∣∣∣ ≥ ε|HRng(k)|−1.

for at most 2−u fraction of K ∈ [HKg(1k)], where u = η − 2 log |HRng(k)| −
2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean

adversary B. Observe that for computationally unbounded adversary B, we can
assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we can also
assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote
by Advh-so

H,B,M,s(k), advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

I

Pr[B.cor(s,h) ⇒ I ∧ B.g(s,m1[I],h[Ī]) ⇒ b ∧ B.f(m1) ⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of
B.cor on input s,y. We also define M b

s,y = {m[Is,y] | B.g(s,m1[Is,y],y) ⇒ b},
for b ∈ {0, 1}. Thus,

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

The above probability is over the choice of m1. Similarly, we can define the
probability of the experiment H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m0) ⇒ b]

Assume wlog that above difference is maximized when b = 1. For d ∈ {0, 1},
we define Ed as an event where h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y and
B.f(md) = 1. Note that the messages are independent and has μ bits of min-
entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]
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Note that m0 and m1 have the same distribution. Then, we have Pr[E0] =
Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]]. Therefore, we obtain

Advh-so
H,B,M,s(k)

≤ 2 ·
∑

y

Pr[h[I] = y[I]] ·
(
Pr[h[I] = y[I] | B.f(m1) = 1] − Pr[h[I] = y[I]]

)

We define random variable X[i] = (m1[i] | B.f(m1) = 1), for all i ∈ [v]. From
property (a) of Lemma 1 and Lemma 3, we obtain that H∞(X[i]) ≥ μ−3. For all
i ∈ [v], we also have H∞(m1[i]) ≥ μ ≥ μ−3. Moreover, we know Lemma 5 holds
for at most 2−u fraction of K ∈ [HKg(1k)], where u = μ − 3 − 2 log |HRng(k)| −
2 log(1/ε); we shall determine the value of ε later. Using union bound, for all
X[i],m[i], where i ∈ [v] and for any ε > 0, we obtain that for at least 1 − 2v2−u

fraction of K, we have
∣∣Pr [H(K,x[i]) = y[i] ] − |HRng(k)|−1

∣∣ ≤ ε|HRng(k)|−1,
for all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1 − ε)|HRng(k)|−1 ≤
Pr [h[i] = y[i] ] ≤ (1 + ε)|HRng(k)|−1. Let |Is,y| = 
. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

|HRng(k)|−v(1 + ε)�
(
(1 + ε)v−� − (1 − ε)v−�

)

≤ 2
(
(1 + ε)v − (1 − ε)v

)

We also have (1 + ε)v = 1 +
∑

i

(
v
i

)
εi ≤ 1 +

∑
i εivi. For εv < 1/2, we obtain

that (1 + ε)v ≤ 1 + 2εv. Similarly, we obtain that (1 − ε)v ≥ 1 − 2εv. Therefore,
we have that Advh-so

H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

+
∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u.

Finally, by substituting ε = 3
√

21−μ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−μ|HRng(k)|2.

Using Theorem 2, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2.

This completes the proof of Theorem 4.

Proof of Lemma 5. We will need the following tail inequality for pair-wise
independent distributions
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Claim. Let A1, · · · , An be pair-wise independent random variables in the interval
[0, 1]. Let A =

∑
i Ai and E(A) = μ and δ > 0. Then,

Pr [ |A − μ| > δμ ] ≤ 1
δ2μ

.

Proof of Claim 3.2. From Chebychev’s inequality, for any δ > 0 we have

Pr [ |A − μ| > δμ ] ≤ Var[A]
δ2μ2

.

Note that A1, · · · , An are pair-wise independent random variables. Thus, we
have Var[A] =

∑
i Var[Ai]. Moreover, we know that Var[Ai] ≤ E(Ai) for all

i ∈ [n], since the random variable Ai is in the interval [0, 1]. Therefore, we have
Var[A] ≤ μ. This completes the proof of Claim 3.2.

We define px = Pr [X = x ], for any x ∈ HDom(k). We consider the proba-
bility over the choice of key K. For every x ∈ HDom(k) and y ∈ HRng(k), we
also define the following random variable

Zx,y =

{
px if H(K,x) = y

0 otherwise

We define random variable Ax,y = Zx,y2η. Note that for every x, H(K,x)
is uniformly distributed, over the uniformly random choice of K. Therefore,
we have E(Zx,y) = px/|HRng(k)|, for every x, y. Let Zy =

∑
x Zx,y and

Ay =
∑

x Ax,y. Then, we have E(Zy) = 1/|HRng(k)| and E(Ay) = 2η/|HRng(k)|.
Moreover, for every x, y, we know Ax,y ∈ [0, 1] and for every y, the variables
Ax,y are pair-wise independent. Applying Claim 3.2, we obtain that for every y
and δ > 0

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|
∣∣∣∣ ≥ δ2η

|HRng(k)|
]

≤ |HRng(k)|
δ22η

.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣∣∣Zy − 1

|HRng(k)|
∣∣∣∣ ≥ ε

|HRng(k)|
]

≤ |HRng(k)|
ε22η

.

Using union bound, we obtain that with probability |HRng(k)|2/ε22η = 2−u

over the choice of K that |Zy − 1/|HRng(k)|| ≥ ε/|HRng(k)|, for all y ∈
|HRng(k)|. This completes the proof of Lemma 5. �

We show in Theorem 6 that the 2d-wise independent hash functions are
selective opening secure for (μ, d)-correlated message samplers.

Theorem 6. Let H = (HKg, h) be a family of 2d-wise independent hash function
with domain HDom and range HRng. Let M be a (μ, d)-correlated, efficiently
resamplable message sampler. Then for any computationally unbounded adver-
sary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2d.
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Proof. We need the following lemma whose proof we’ll give later.

Lemma 7. Let H = (HKg, h) be a 2d-wise independent hash function with
domain HDom and range HRng. Let X = (X1, · · · ,Xt), where t ≤ d and Xi is
a random variable over HDom such that H∞(Xi) ≥ η, for i ∈ [t]. Then, for all
y = (y1, · · · , yt), where yi ∈ HRng(k) and for any ε > 0,

∣∣∣Pr [H(K,X) = y ] − |HRng(k)|−t
∣∣∣ ≥ ε|HRng(k)|−t.

for at most 2−w fraction of K ∈ [HKg(1k)], where w = η − 2t log |HRng(k)| −
2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean

adversary B. Observe that for computationally unbounded adversary B, we can
assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we can also
assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote
by Advh-so

H,B,M,s(k), advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

I

Pr[B.cor(s,h) ⇒ I ∧ B.g(s,m1[I],h[Ī]) ⇒ b ∧ B.f(m1) ⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of
B.cor on input s,y. We also define M b

s,y = {m[Is,y] | B.g(s,m1[Is,y],y) ⇒ b},
for b ∈ {0, 1}. Thus,

Pr[H-SO-REALB
H,s(k) ⇒ 1]

=
1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

The above probability is over the choice of m1. Similarly, we can define the
probability of the experiment H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑

b=0

∑

y

Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m1) ⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈ M b
s,y ∧ B.f(m0) ⇒ b]

Assume wlog that the above difference is maximized when b = 1. For d ∈
{0, 1}, we define Ed as an event where h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y

and B.f(md) = 1. Note that the messages are independent and has μ bits of
min-entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]
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Note that m0 and m1 have the same distribution. Then, we have Pr[E0] =
Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]]. We define random variable X[i] = (m1[i] |
B.f(m1) = 1), for all i ∈ [v]. From property (a) of Lemma 1 and Lemma 3, we
obtain that H∞(X[i]) ≥ μ−3. For all i ∈ [v], we also have H∞(m1[i]) ≥ μ ≥ μ−3

Moreover, we know Lemma 5 holds for at most 2−u fraction of K ∈ [HKg(1k)],
where u = μ−3−2d log |HRng(k)|−2 log(1/ε); we shall determine the value of ε
later. Partition [v] to L1, · · · , Lv such that |Lk| ≤ d and for all i, j ∈ Lk, messages
m[i] and m[j] are correlated. Using union bound, for all y[Li] ∈ (HRng(k))×|Li|,
where i ∈ [v] and for any ε > 0, we obtain that for at least 1 − 2v2−u fraction of
K, we have

∣∣Pr [H(K,x[Li]) = y[Li] ] − |HRng(k)|−|Li|∣∣ ≤ ε|HRng(k)|−|Li|, for
all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1 − ε)|HRng(k)|−|Li| ≤
Pr [h[Li] = y[Li] ] ≤ (1 + ε)|HRng(k)|−|Li|. Let |Is,y| = 
. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑

y

|HRng(k)|−v(1 + ε)�
(
(1 + ε)v−� − (1 − ε)v−�

)

≤ 2
(
(1 + ε)v − (1 − ε)v

)

We also have (1 + ε)v = 1 +
∑

i

(
v
i

)
εi ≤ 1 +

∑
i εivi. For εv < 1/2, we obtain

that (1 + ε)v ≤ 1 + 2εv. Similarly, we obtain that (1 − ε)v ≥ 1 − 2εv. Therefore,
we have that Advh-so

H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

+
∑

s∈S

Pr [K = s ] · Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u.

Finally, by substituting ε = 3
√

21−μ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−μ|HRng(k)|2d.

Using Theorem 2, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−μ|HRng(k)|2d.

This completes the proof of Theorem 6.

Proof of Lemma 7. We define px = Pr [X = x ], for any x = (x1, · · · , xt),
where xi ∈ HDom(k). We consider the probability over the choice of key K. For
every x and y, we also define the following random variable

Zx,y =

{
px if H(K,x) = y
0 otherwise
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Let Ax,y = Zx,y2η. Note that for all i ∈ [t] and for every xi, H(K,xi) is
uniformly distributed, over the uniformly random choice of K. Moreover, H is
t-wise independent. Therefore, we have E(Zx,y) = px/|HRng(k)|t, for every x,y.
Let Zy =

∑
x Zx,y and Ay =

∑
x Ax,y. Then, we have E(Zy) = 1/|HRng(k)|t

and E(Ay) = 2η/|HRng(k)|t. Moreover, for every x,y, we know Ax,y ∈ [0, 1] and
for every y, the variables Ax,y are pair-wise independent. Applying Claim 3.2,
we obtain that for every y and δ > 0

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|t
∣∣∣∣ ≥ δ2η

|HRng(k)|t
]

≤ |HRng(k)|t
δ22η

.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣∣∣Ay − 2η

|HRng(k)|t
∣∣∣∣ ≥ ε2η

|HRng(k)|t
]

≤ |HRng(k)|t
ε22η

.

Using union bound, we obtain that with probability |HRng(k)|2t/ε22η = 2−w

over the choice of K that |Zy − |HRng(k)|−t| ≥ ε|HRng(k)|−t, for all y. Thus,
∣∣Pr [H(K,X) = y ] − |HRng(k)|−t

∣∣ ≥ ε|HRng(k)|−t.

with probability at most 2−w over the choice of K. This completes the proof
of Lemma 7. �

4 Selective Opening Security for Deterministic
Encryption

In this section, we give two different constructions of deterministic public key
encryption and show that they achieve D-SO-CPA security. First, we show that
lossy trapdoor functions that are 2t-wise independent in the lossy mode are
selective opening secure for t-correlated messages. However, it is an open problem
to construct them for t > 1.

Hence, we give another construction of deterministic public key encryption
using hash functions and lossy trapdoor permutation and show it is selective
opening secure. A close variant of this scheme is shown to be D-SO-CPA secure
in the NPROM [20]. Our scheme is efficient and only public-key primitive that
it uses is a regular lossy trapdoor function, which has practical instantiations,
e.g., both Rabin and RSA are regular lossy.

4.1 Achieving D-SO-CPA Security

We start by showing that 2t-wise independent lossy trapdoor functions are selec-
tive opening secure. It was previously shown by Hoang et al. [20] that D-SO-CPA
notion is achievable under the random oracle model. They leave it open to con-
struct a D-SO-CPA secure scheme in the standard model. Here, we show that a
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Fig. 3. Games G0, G1 of the proof of Theorem 8.

pair-wise independent lossy trapdoor function is D-SO-CPA secure for indepen-
dent messages. We also show that a 2d-wise independent lossy trapdoor function
is D-SO-CPA secure for (μ, d)-correlated message samplers.

First, we show in Theorem 8 that a pair-wise independent lossy trapdoor
functions is D-SO-CPA secure for (μ, 0)-correlated message samplers.

Theorem 8. Let M be a (μ, 0)-correlated, efficiently resamplable message sam-
pler. Let LT be a lossy trapdoor function with domain LDom, range LRng and
lossiness τ . Suppose LT is pair-wise independent. Then for any adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ |LRng(k)|2.
Proof. Consider games G0, G1 in Fig. 3. Then

Advd-so-cpa
LT,A,M(k) = 2 · Pr [G0(k) ⇒ 1 ] − 1.

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Note that game G1 is identical to games H-SO-REAL or H-SO-IDEAL, when
b = 1 or b = 0, respectively. Then

Advh-so
LT,A,M(k) = 2 · Pr [G1(k) ⇒ 1 ] − 1.

Note that LT is pair-wise independent and τ -lossy. Then, size of the range of
LT in the lossy mode is at most 2−τ |LRng(k)|. From Theorem 4

Advh-so
LT,A,M(k) ≤ 2592v 3

√
21−μ−2τ |LRng(k)|2.
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DE.Kg(1k)

(ek , td) ←$ IKg(1k)
KH ←$ HKg(1k)
KG ←$ GKg(1k)
pk ← (KH , KG, ek)
sk ← (KH , KG, td)
Return (pk, sk)

DE.Enc(pk , m)

(KH , KG, ek) ← pk

r ← h(KH , m)
y ← g(KG, r)⊕m

c ← Eval(ek , y||r)
Return c

DE.Dec(sk , c)

(KH , KG, td) ← sk

y||r ← Inv(td , c)
m ← g(KG, r)⊕y

Return m

Fig. 4. D-PKE scheme DE[H,G, LT].

Summing up,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ |LRng(k)|2.

This completes the proof of Theorem 8.

Next, we show in Theorem 9 that a 2d-wise independent lossy trapdoor func-
tions is D-SO-CPA secure for (μ, d)-correlated message samplers.

Theorem 9. Let M be a (μ, d)-correlated, efficiently resamplable message sam-
pler. Let LT be a lossy trapdoor function with domain LDom, range LRng and
lossiness τ . Suppose LT is 2d-wise independent. Then for any adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3

√
21−μ−2dτ |LRng(k)|2d.

The proof of Theorem 9 is very similar to the proof of Theorem 8.
Although that 2t-wise independent trapdoor functions are very efficient and

secure against selective opening attack, it is an open problem to construct them
for t > 1. Hence, we give a new construction of deterministic public key encryp-
tion that is selective opening secure. Our scheme DE[H,G, LT] is shown in Fig. 4,
where LT is a lossy trapdoor function and H,G are hash functions. We begin by
showing in Theorem 10 that DE is D-SO-CPA secure for independent messages
when H, G are pair-wise independent hash functions and LT is a regular lossy
trapdoor function.

Theorem 10. Let M be a (μ, 0)-correlated, efficiently resamplable message
sampler. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and G =
(GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families. Sup-
pose H and G are pair-wise independent. Let LT be a regular lossy trapdoor
function with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let DE[H,G, LT]
be as above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ+2p.

Proof. We begin by showing the following lemma.
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Lemma 11. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and
G = (GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families.
Suppose H and G are pair-wise independent. Let LT be a regular lossy trapdoor
function with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let X be a ran-
dom variable over {0, 1}n such that H∞(X) ≥ η. Then, for all lk ∈ [LKg(1k)],
all c ∈ Img(lk) and any ε > 0,

∣∣∣Pr [DE.Enc(pk ,X) = c ] − 2τ−p
∣∣∣ ≥ ε2τ−p.

for at most 2−u fraction of public key pk, where u = η + 2τ − 2p − 2 log(1/ε).

Proof of Lemma 11. We define px = Pr [X = x ], for any x ∈ {0, 1}n. We
consider the probability over the choice of public key pk . fix the lossy key lk ∈
[LKg(1k)], we consider the probability over the choice of KH ,KG. For every
x ∈ {0, 1}n and c ∈ Img(lk), we also define the following random variable

Zx,c =

{
px if DE.Enc(pk , x) = c

0 otherwise

Let Ax,c = Zx,c2η. Note that that for every x, h(KH , x) is uniformly dis-
tributed, over the uniformly random choice of KH . Moreover, for every x and
KH , g(KG, h(KH , x)) is uniformly distributed, over the uniformly random choice
of KG. Since LT is a regular LTDF, we have E(Zx,c) = px · 2τ−p, for every
x, c. Let Zc =

∑
x Zx,c and Ac =

∑
x Ax,c. Then, we have E(Zc) = 2τ−p and

E(Ac) = 2η+τ−p. Moreover, for every x, c, we know Ax,c ∈ [0, 1] and for every
c, the variables Ax,c are pair-wise independent. Applying Claim 3.2, we obtain
that for every c and δ > 0

Pr
[ ∣∣Ac − 2η+τ−p

∣∣ ≥ δ · 2η+τ−p
] ≤ 2p−η−τ

δ2
.

Substituting Zc for Ac and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣Zc − 2τ−p

∣∣ ≥ ε · 2τ−p
] ≤ 2p−η−τ

ε2
.

Using union bound, we obtain that |Zc − 2τ−p| ≥ ε · 2τ−p with probability
22p−η−2τ/ε2 = 2−u over the choice of KH ,KG, for all lk ∈ [LKg(1k)], all c ∈
Img(lk). This completes the proof of Lemma 11. �

Consider games G0, G1 in Fig. 5. Then

Advd-so-cpa
DE,A,M(k) = 2 · Pr [G0(k) ⇒ 1 ] − 1.

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
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Game G0(k)
b ←$ {0, 1} ; param ←$ A.pg(1k)
m1 ←$ M(1k, param)
(ek , td) ←$ IKg(1k) ; KH ←$ HKg(1k)
KG ←$ GKg(1k) ; pk ← (KH , KG, ek)
c ← DE.Enc(pk ,m1)
(state, I) ←$ A.cor(pk , c, param)
m0 ←$ Rsmp(1k,m1[I], I, param)
ω ←$ A.g(state,m1[I], param)
t ←$ A.f(mb, param)
If (t = ω) then return b

Else return (1 − b)

Game G1(k)
b ←$ {0, 1} ; param ←$ A.pg(1k)
m1 ←$ M(1k, param)
lk ←$ LKg(1k) ; KH ←$ HKg(1k)
KG ←$ GKg(1k) ; pk ← (KH , KG, lk)
c ← DE.Enc(pk ,m1)
(state, I) ←$ A.cor(pk , c, param)
m0 ←$ Rsmp(1k,m1[I], I, param)
ω ←$ A.g(state,m1[I], param)
t ←$ A.f(mb, param)
If (t = ω) then return b

Else return (1 − b)

Fig. 5. Games G0, G1 of the proof of Theorem 10.

generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Similar to proof of Theorem 4, using Lemma 11, we obtain that

Pr [G1(k) ⇒ 1 ] ≤ 1296v
3
√

21−μ−2τ+2p +
1
2
.

Summing up,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v 3
√

21−μ−2τ+2p.

This completes the proof of Theorem 10.
We now extend our result to include correlated messages. We show that it

is enough to use 2t-wise independent hash functions to extend the security to t-
correlated messages. Let DE[H,G, LT] be PKE scheme shown in Fig. 4, where LT
is a lossy trapdoor function and H,G are hash functions. We show in Theorem 12
that DE is D-SO-CPA secure for t-correlated messages when H,G are 2t-wise
independent hash functions and LT is a regular lossy trapdoor function.

Theorem 12. Let M be a (μ, d)-correlated, efficiently resamplable message
sampler. Let H = (HKg, h) with domain {0, 1}n and range {0, 1}� and G =
(GKg, g) with domain {0, 1}� and range {0, 1}n be hash function families. Sup-
pose H and G are 2d-wise independent. Let LT be a regular lossy trapdoor func-
tion with domain {0, 1}n+�, range {0, 1}p and lossiness τ . Let DE[H,G, LT] be as
above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 · Advltdf

LT,B(k) + 2592v
3
√

21−μ+2d(−τ+p).

The proof of Theorem 12 is very similar to the proof of Theorem 10.
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Game ONE-MORE-INVA
TDF(k)

j ← 0 ; (ek, td) ←$ Kg(1k)
For i = 1 to v do
x[i] ←$ TDom(k)
y[i] ← Eval(ek,x[i])

x′ ←$ AC(ek,y)
Return (x = x′)

Oracle C(i)
j ← j + 1
If j ≥ v then
Return ⊥

Return x[i]

Fig. 6. Games to define the One-More security.

5 Results for One-More-RSA Inversion Problem

In this section, we recall the definition of one-more-RSA inversion problem. This
problem is a natural extension of the RSA problem to a setting where the adver-
sary has access to a corruption oracle. Bellare et al. [4] first introduce this notion
and show that assuming hardness of one-more-RSA inversion problem leads to
a proof of security of Chaum’s blind signature scheme in the random oracle
model. Here we show that one-more inversion problem is hard for RSA with
a large enough encryption exponent e. More generally, we show that one-more
inversion problem is hard for any regular lossy trapdoor function.

5.1 Security Notion

Here we give a formal definition of one-more-RSA inversion problem. Our def-
inition is more general and considers this problem for any trapdoor function.
Intuitively, in the one-more inversion problem, the adversary gets a number of
image points, and must output the inverses of image points, while it has access
to the corruption oracle and can see the preimage of image points of its choice.
We note that the number of corruption queries is less than the number of image
points. We also note that a special case of the one-more inversion problem in
which there is only one image point is exactly the problem underlying the notion
of one-wayness.

One-more inversion problem. Let TDF = (Kg,Eval, Inv) be a trapdoor func-
tion with domain TDom(·) and range TRng(·). To an adversary A, we associate
the experiment in Fig. 6 for every k ∈ N. We say that TDF is one-more[v] secure
for a class A of adversaries if for every any A ∈ A ,

Advone-more
TDF,A,v (k) = Pr

[
ONE-MORE-INVA,v

TDF(k) ⇒ 1
]

is negligible in k.

5.2 Achieving One-More Security

We show in Theorem 13 that a regular lossy trapdoor function is one-more
secure. We point out that, for large enough encryption exponent e, RSA is a
regular lossy trapdoor function [24].
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Game G0(k)
j ← 0
(ek , td) ←$ IKg(1k)
For i = 1 to v do
x[i] ←$ LDom(k)
y[i] ← Eval(ek ,x[i])

x′ ←$ AC(ek ,y)
Return (x = x′)

Game G1(k)
j ← 0
lk ←$ LKg(1k)
For i = 1 to v do
x[i] ←$ LDom(k)
y[i] ← Eval(lk,x[i])

x′ ←$ AC(lk,y)
Return (x = x′)

Oracle C(i) // G0–G2

j ← j + 1
If j ≥ v then
Return ⊥

Return x[i]

Game G2(k)
j ← 0
lk ←$ LKg(1k)
For i = 1 to v do
y[i] ←$ Img(lk)
x[i] ←$ P(lk, y)

x′ ←$ AC(lk,y)
Return (x = x′)

Game G3(k)
j ← 0 ; I ← ⊥
lk ←$ LKg(1k)
For i = 1 to v do
y[i] ←$ Img(lk)

x′ ←$ AC(lk,y)
For i /∈ I do
x[i] ←$ P(lk, y)

Return (x = x′)

Oracle C(i) // G3

j ← j + 1
I ← I ∪ {i}
If j ≥ v then
Return ⊥

x[i] ←$ P(lk, y)
Return x[i]

Fig. 7. Games G2, G3 of the proof of Theorem 13.

Pass [29] showed that the one-more inversion problem for any certified, homo-
morphic trapdoor permutation cannot be reduced to a more “standard” assump-
tion, meaning one that consists of a fixed number of rounds between challenger
and adversary. As noted by Kakvi and Kiltz [23], RSA is not certified unless e
is a prime larger than N so there is no contradiction.

Theorem 13. Let LT be a regular lossy trapdoor function with domain LDom,
range LRng and lossiness τ . Then for any adversary A and any v ∈ N,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + v · 2−τ .

Proof. Consider games G1–G3 in Fig. 7. Then

Advone-more
LT,A,v (k) = Pr [G0(k) ⇒ 1 ].

We now explain the game chain. Game G1 is identical to game G0, except
that instead of generating an injective key for the lossy trapdoor function, we
generate a lossy one. Consider the following adversary B attacking the key indis-
tinguishability of LT. It simulates game G0, but uses its given key instead of gen-
erating a new one. It outputs 1 if the simulated game returns 1, and outputs 0
otherwise. Then

Pr[G0(k) ⇒ 1] − Pr[G1(k) ⇒ 1] ≤ Advltdf
LT,B(k).

Let P(lk, y) = {x | Eval(lk, x) = y}. In game G2, we reorder the code of
game G1 producing vector y. Note that LT is a regular lossy trapdoor function.
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Then, distribution of vector y is uniformly random on Img(lk) in game G1. Thus,
vectors x and y have the same distribution in game G1 and G2. Hence, the change
is conservative, meaning that Pr[G1(k) ⇒ 1] = Pr[G2(k) ⇒ 1]. Moreover, game
G3 is identical to game G2. Thus, we have Pr[G2(k) ⇒ 1] = Pr[G3(k) ⇒ 1].

Let y[I] be the unopened images, where |I| ≥ 1. Note that in game G3,
for all i ∈ I, x[i] is chosen uniformly at random after adversary A outputs x′.
Therefore, we obtain Pr[G3(k) ⇒ 1] ≤ |I| · 2−τ . Summing up,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + v · 2−τ .

This completes the proof of Theorem 13.
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A Deferred Proofs

Proof of Theorem 2. The proof is similar to the proof of Theorem 3.1 from
[17]. The proof of Theorem 2 follows from the following claims. We begin by
showing that it is suffices to consider H-SO adversaries where the output of A.f
is boolean.

Claim. Let H = (HKg, h) be a hash function family with domain HDom and
range HRng. Let A be a H-SO adversary against H with respect to message
sampler M. Then, there is a boolean H-SO adversary B such that for all k ∈ N

Advh-so
H,A,M(k) ≤ 2 · Advh-so

H,B,M(k).

where the running time of B is about that of A.

Proof. Consider adversary B in Fig. 8. We define EA and EB to be events where
games H-SO-REALA,M

H and H-SO-REALB,M
H output 1, respectively. Hence,

Pr [EB ] = Pr [EA ] +
1
2
(1 − Pr [EA ])

=
1
2
Pr [EA ] +

1
2
.

We also define TA and TB to be the events where games H-SO-IDEALA,M
H

and H-SO-IDEALB,M
H output 1, respectively. Similarly, we have Pr [TB ] =

Pr [TA ]/2 + 1/2. Thus, we have Advh-so
H,A,M(k) ≤ 2 · Advh-so

H,B,M(k). This com-
pletes the proof.

Next, we claim that it is suffices to consider balanced H-SO adversaries mean-
ing the probability the partial information is 1 or 0 is approximately 1/2.
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Algorithm B.pg(1k)
param ←$ A.pg(1k)
r ←$ {0, 1}A.f.rl(k)

pars ← (r,param)
Return pars

Algorithm B.cor(k,h, pars)
(r,param) ← pars
(I, st) ←$ A.cor(k,h, param)
Return (I, st)

Algorithm B.g(st,m[I], pars)
(r,param) ← pars
ω ←$ A.g(st,m[I], param)
Return 〈 r, ω〉
Algorithm B.f(m, pars)
(r,param) ← pars
t ←$ A.f(m, param)
Return 〈 r, t〉

Fig. 8. H-SO adversary B in the proof of Claim A.

Claim. Let H = (HKg, h) be a hash function family with domain HDom and
range HRng. Let B be a boolean H-SO adversary against H with respect to the
message sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced boolean
H-SO adversary C such that for all k ∈ N

Advh-so
H,B,M(k) ≤

(2
δ

+ 1
)2

· Advh-so
H,C,M(k).

where the running time of C is about that of B plus O(1/δ)

Proof. For simplicity, we assume 1/δ is an integer. Consider adversary C in
Fig. 9. Note that C is δ-balanced, since for all b ∈ {0, 1}

∣∣∣Pr [ t = b : t ←$ C.f(m,param) ] − 1
2

∣∣∣ ≤ 1
2/δ + 1

.

We define EB and EC to be events where games H-SO-REALB,M
H and

H-SO-REALC,M
H output 1, respectively. Let T be the event that i, j = 2/δ + 1.

Therefore we have

Pr [EC ] = Pr [EC | T ] · Pr [T ] + Pr
[
EC | T

] · Pr
[
T

]

=
( 1

2/δ + 1

)2

Pr [EB ] +
1
2
Pr

[
T

]
.

We also define TB and TC to be the events where games H-SO-IDEALB,M
H

and H-SO-IDEALC,M
H output 1, respectively. Similarly, we have

Pr [TC ] =
( 1

2/δ + 1

)2

Pr [TB ] +
1
2
Pr

[
T

]
.

Summing up, we obtain that Advh-so
H,B,M(k) ≤

(
2
δ +1

)2

·Advh-so
H,C,M(k). This

completes the proof of Claim A.
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Algorithm C.pg(1k)
param ←$ B.pg(1k)
Return param

Algorithm C.f(m, param)
t ←$ B.f(m, param)
j ←$ {1, · · · 2(1/δ) + 1}
If j ≤ 1/δ then return 0
If j ≤ 2(1/δ) return 1
Return t

Algorithm C.cor(k,h, param)
(I, st) ←$ B.cor(k,h, param)
Return (I, st)

Algorithm C.g(st,m[I], param)
ω ←$ B.g(st,m[I], param)
i ←$ {1, · · · 2(1/δ) + 1}
If i ≤ 1/δ then return 0
If i ≤ 2(1/δ) return 1
Return ω

Fig. 9. H-SO adversary C in the proof of Claim A.
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Abstract. This paper takes a fresh approach to systematically charac-
terizing, comparing, and understanding CCA-type security definitions for
public-key encryption (PKE), a topic with a long history. The justifica-
tion for a concrete security definition X is relative to a benchmark appli-
cation (e.g. confidential communication): Does the use of a PKE scheme
satisfying X imply the security of the application? Because unnecessarily
strong definitions may lead to unnecessarily inefficient schemes or unnec-
essarily strong computational assumptions, security definitions should be
as weak as possible, i.e. as close as possible to (but above) the benchmark.
Understanding the hierarchy of security definitions, partially ordered by
the implication (i.e. at least as strong) relation, is hence important, as
is placing the relevant applications as benchmark levels within the hier-
archy.

CCA-2 security is apparently the strongest notion, but because it
is arguably too strong, Canetti, Krawczyk, and Nielsen (Crypto 2003)
proposed the relaxed notions of Replayable CCA security (RCCA) as
perhaps the weakest meaningful definition, and they investigated the
space between CCA and RCCA security by proposing two versions of
Detectable RCCA (d-RCCA) security which are meant to ensure that
replays of ciphertexts are either publicly or secretly detectable (and hence
preventable).

The contributions of this paper are three-fold. First, following the
work of Coretti, Maurer, and Tackmann (Asiacrypt 2013), we formalize
the three benchmark applications of PKE that serve as the natural moti-
vation for security notions, namely the construction of certain types of
(possibly replay-protected) confidential channels (from an insecure and
an authenticated communication channel). Second, we prove that RCCA
does not achieve the confidentiality benchmark and, contrary to previ-
ous belief, that the proposed d-RCCA notions are not even relaxations
of CCA-2 security. Third, we propose the natural security notions corre-
sponding to the three benchmarks: an appropriately strengthened version
of RCCA to ensure confidentiality, as well as two notions for capturing
public and secret replay detectability.
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1 Introduction

When designing a cryptographic security notion, it is of central importance to
keep in mind the purpose and applications it is developed for. For CCA-2 secure
encryption schemes1, the most important historical application is to enable con-
fidential communication: assuming an insecure channel from Alice to Bob (over
which ciphertexts are sent), and an authenticated channel from Bob to Alice
(over which the public key can be transmitted authentically), the scheme should
construct a confidential channel, i.e. an idealized object with the property that
whatever Alice sends to Bob does not leak any information to an attacker (except
possibly the length of the message), and where the only active capability of the
attacker is to inject new messages (uncorrelated to Alice’s inputs)2. Coretti,
Maurer, and Tackmann [10] proved that indeed CCA-2 security is sufficient for
this construction to be achieved, by having Bob generating a key-pair, sending
the public key authentically to Alice, and by letting Alice encrypt all messages
with respect to the obtained public key. It is also known that CCA-2 security is
actually too strong for this task: a CCA-2 secure scheme can be easily modified,
for example by appending a single bit to ciphertexts which is ignored by the
decryption algorithm, to yield a scheme that is not CCA-2 secure but still allows
to achieve a confidential channel.

To address the question what weaker security notion(s) would actually match
more closely to the application of secure communication, Canetti, Krawczyk, and
Nielsen [8] study relaxed CCA-2 security notions and their relationships; they
formalize an entire spectrum: at the weakest end, they propose RCCA security,
which for large message spaces (size super-polynomial in the security parame-
ter) is known to achieve confidential channels [10]. This fact has bolstered RCCA
security into becoming the default security notion in settings where CCA-2 is not
achievable, such as in rerandomizable encryption schemes [14,22] and updatable
encryption schemes [16]. Intuitively, a scheme can be RCCA secure even if it
is easy to create from a known ciphertext another one that still decrypts to
the same message. Inheriting from prior work on relaxing CCA-2 security, most
notably [1,17,24], they further provide formalizations for intermediate notions
between CCA-2 and RCCA. These so-called detectable notions of RCCA security
further demand that modifications of an already known ciphertext can be effi-
ciently detected—either with the help of the secret key (sd-RCCA) or the public
key only (pd-RCCA) yielding two separate security notions. These notions of
detectable RCCA security, and in particular pd-RCCA, are designed to capture
an appealing property of CCA-2 security, namely that replays can be efficiently
detected. This not only admits a more precise language to specify the types of
replays a scheme admits, but furthermore is a useful property in applications like
voting or access-control encryption, where a trusted third party must perform

1 Note that throughout this work, if not otherwise stated, we refer to the
indistinguishability-based versions of security notions.

2 Hence, the confidential channel does not provide any authenticity to Bob.
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the filtering without access to the secret key [3]. We elaborate on the former
aspects later in Remark 1 at the end of Sect. 1.1.

It has however never been formally investigated whether the detectable
notions are suitable to capture the security of the intended application of replay
detection. Moreover, our analysis shows that these detectable RCCA notions (i.e.
pd-RCCA and sd-RCCA) are actually not proper relaxations of CCA-2, in that
they are not implied by CCA-2.

In this work, we fill this gap and provide a systematic treatment of these
relaxations of CCA-2 security using the Constructive Cryptography framework
by Maurer and Renner [18,19] and building upon the work of Coretti et al. [10].
We formalize the intuitive security goals that RCCA security and the detectable
RCCA security notions aim to achieve, yielding what we call benchmarks to assess
whether the existing security notions are adequate. We observe that none of the
previous notions seems to allow a proof that they meet this level of security and
therefore propose new security notions for detectable RCCA security (which can
be regarded as the corrections of the existing ones), show which benchmarks
they achieve, and prove that they are implied by CCA-2. In summary, this shows
that the newly introduced notions are placed correctly in the spectrum between
CCA-2 and RCCA and that they can be safely used in the intended applications.

1.1 Overview of Contributions

A Systematic Approach to RCCA and Replay Protection. Following the
constructive paradigm, a construction consists of three elements: the assumed
resources (such as an insecure communication channel), the constructed or ideal
resource (such as a confidential channel), and the real-world protocol. A protocol
is said to achieve the construction, if there is a simulator such that the real world
(consisting of the protocol running with the assumed resources) is indistinguish-
able from the ideal system (consisting of the ideal resource and the simulator).
This way, it is ensured that any attack on the real system can be translated into
an attack to the ideal system, the latter being secure by definition.

Building upon the work of Coretti et al. [10], we present three benchmarks
to approach the intended security of RCCA and replay protection:

– The construction of a confidential channel between Alice and Bob from an
insecure communication channel (and an authenticated channel to distribute
the public key). This is arguably the most natural goal of confidential (and
non-malleable) communication. An encryption scheme should achieve this
construction by having Bob generating the key-pair and sending the public
key to Alice over the authenticated channel. Alice sends encryptions of the
messages over the insecure channel to Bob, who can decrypt the ciphertexts
and output the resulting messages. This benchmark is formalized in Sect. 3.1.

– The construction of a replay-protected confidential channel from (essentially)
the same resources as above. A replay-protected confidential channel is a
channel that only allows an attacker to deliver each message sent by Alice at
most once to Bob. This construction captures the most basic form of replay
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protection. An encryption scheme can be applied as above, except that Bob
must make use of the secret key (and a memory resource to store received
ciphertexts) to detect and filter out replays. This construction is formalized
in Sect. 3.2.

– The construction of a replay-protected confidential channel from basically the
same resources, but where the task of detecting replays is done by a third-
party, say Charlie, that does not need to have access to Bob’s secret key.
Hence, an encryption scheme is employed as above, but the task of filtering
and detecting replays can be outsourced to any party possessing the public key
(having sufficient memory to store the received ciphertexts). This benchmark
is formalized in Sect. 3.3.

We note that only the first benchmark is taken from existing literature [10]
(which is an abstract version of the UC-formalization FRPKE defined in [8])3

while the other benchmarks are new formulations and variants of the known goal
of replay protection. The benefits of our benchmarks is that they yield a precise
way to assess the guarantees provided by a security notion for an encryption
scheme: does a scheme secure with respect to a certain notion achieve the above
construction(s)?

New Intermediate Notions Between CCA-2 and RCCA. We propose three
game-based security notions, each designed to suffice for achieving the intended
benchmark. The abbreviations stand for confidential (cl), secret-key replay pro-
tection (srp), and public-key replay protection (prp):

– We first propose IND-cl-RCCA, a security notion which is sufficient to achieve
confidential communication even for small message spaces, which we prove
in Sect. 6.1. This is the weakest new notion we introduce and we prove that
it achieves the first benchmark; cl-RCCA should then take the role of RCCA
as the default security notion when one aims at the design of schemes that
enable confidential communication (in particular when the message space size
is small). Note that cl-RCCA is strictly stronger than RCCA since the latter
does not achieve confidential communication for small message spaces (see
Theorem 1).4

– The second security notion we introduce is IND-srp-RCCA and it achieves
the second benchmark: realizing a replay protected confidential channel. The
notion is hence designed to enable the implementation of a replay-protection
mechanism by the receiver, who knows the secret decryption key. We also
argue why the strengthening compared to cl-RCCA (and sd-RCCA) is needed
to achieve replay-protection: from a conceptual perspective, implementing
a replay-protector as part of the receiver requires the detection of replays
without necessarily ever seeing the original ciphertext by the sender which is

3 We note that all our results are independent of the specific details of the underlying
composable framework; analogous results would be obtained when working in the
UC framework [6].

4 We note that NM-RCCA [8], which is stronger than IND-RCCA, does not seem to be
sufficient to achieve the first benchmark either.
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Fig. 1. New notions of security between CCA-2 and RCCA, and their relations to
each other and to the benchmarks. Solid black arrows denote implications and dashed
red arrows denote separations. The new security notions introduced in this paper are
marked with *.

a security requirement that is not captured by cl-RCCA (nor sd-RCCA).5 The
notion and the construction proof appear in Sect. 6.2.

– We finally propose a security notion to capture the idea of publicly-detectable
RCCA that we call IND-prp-RCCA. This notion is sufficient to achieve the third
benchmark and therefore captures the outsourced replay-protection mecha-
nism that was originally envisioned from pd-RCCA. This notion and the con-
struction proof appear in Sect. 6.3.

We finally show that all these notions can be strictly separated: IND-RCCA
security, the weakest notion considered in this work, is strictly weaker than
IND-cl-RCCA. The latter is strictly weaker than IND-srp-RCCA, which is in turn
strictly weaker than IND-prp-RCCA. Finally, IND-prp-RCCA is strictly weaker
than IND-CCA-2 security. These results are proven in Sect. 7; Fig. 1 illustrates
all these new notions, their relations to each other and to the benchmarks.

Technical Inconsistencies with Existing pd-RCCA and sd-RCCA Notions.
Numerous weaker versions of CCA-2 security have been proposed [1,8,17,24]
which are essentially equivalent versions of what is formalized in [8] as pub-
licly detectable (pd)-RCCA and secretly detectable (sd)-RCCA. We show for the
given formalizations that the notions are generally not implied by CCA-2 secu-
rity (unless one would restrict, for example, explicitly to the case of deterministic
decryption [1], or alternatively to the case of perfect correctness), which seems to
be a rather unintended artifact of the concrete definition as we show in Sect. 5.
While these shortcomings can be fixed, the existing notions do not appear to
suffice to achieve the intended benchmarks for replay protection (see Sect. 6),
leaving the state of affairs unclear, as depicted in Fig. 2. This justifies the need
to propose new intermediate notions that provably avoid these shortcomings:
on one hand, our notions are implied by CCA-2, and on the other hand, they
deliver the desired level of security required by a replay protection mechanism.
The security notions and results of this paper clean up the space between CCA-2
and RCCA security, yielding, as aforementioned, a clean hierarchy of security
5 More concretely, the simulator in the construction proof of a confidential channel

only requires the (much milder) detection of honestly generated ciphertext replays.
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notions as depicted in Fig. 1: not only all notions are separated, but also we
show that each of the notions we introduce is sufficient for achieving each of the
benchmarks.

IND-CCA-2 IND-pd-RCCA IND-sd-RCCA IND-RCCA

Benchmark 1

[10] Thm. 1

[8]

[8]

Thm. 2

Thm. 2

[8]
[8] [8]

Fig. 2. Relations between the notions of security from [8]. The solid black arrows denote
implications whilst the dashed red arrows denote separations.

Remark 1. Recall that the original motivation of introducing relaxed versions of
CCA security stems from the observation that CCA is much stronger than the
composable confidentiality requirement [8]. RCCA has the built-in assumption
that generating replays of a (challenge) ciphertext is generally easy and there-
fore, in the security game the adversary is denied to decrypt a broad class of
ciphertexts. Detectable RCCA as introduced in [8, Definition 7], develops a lan-
guage to talk about the ability to detect specific kinds of replays and introduce
a relation among ciphertexts accompanied by an efficient algorithm to evaluate
it. Therefore, to capture detectable RCCA security, aside of the ordinary three
algorithms of a PKE system, there is by definition an additional one to detect
replays. While in this work we develop a composable understanding of what [8]
calls the ability to detect replays, our IND-srp-RCCA and IND-prp-RCCA notions
can equivalently be seen as ordinary PKE notions. Confidentiality then means
that no adversary learns anything about the plaintext when the challenger denies
decryption queries that the replay detection algorithm considers being replays
of the challenge ciphertext.

1.2 Further Related Work

The investigation of relaxed, enhanced, and modified versions of CCA-2 security
has a rich history and has found numerous applications in proxy-reencryption,
updatable encryption, attribute based-encryption, rerandomizable encryption,
or steganography [2,5,7,9,12–14,16,22,23].

The main relaxations of CCA-2, upon which the formalization of [8] builds,
have been proposed in [24] as benign malleability and in [1] as generalized CCA-2
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security, and also relate to loose ciphertext-unforgeability [17]. All these versions
fall essentially into the formalization of public detectability discussed above, and
all suffer from analogous technical issues, and hence in this work we focus on the
formalization given in [8]. Three different flavours of RCCA have been introduced:
IND-RCCA, UC-RCCA and NM-RCCA. In this work we focus on IND-RCCA. Our
first benchmark is an abstract version of UC-RCCA. While the third flavour,
NM-RCCA, is a strengthening of IND-RCCA (since it captures one additional
attack vector), it does not seem to suffice to construct a confidential channel (or
imply UC-RCCA for small message spaces) and is superseded in our treatment by
IND-cl-RCCA that provably constructs the confidential channel for any message
space.

A further relaxation of CCA-2 security, only loosely related to this work, is
called detectable CCA-2 [15] and formalizes the detection of “dangerous” queries
in CCA-2 (without considering replayable properties). This notion provides a
rather weak level of security on its own (in that it does not imply RCCA) [15].

Another line of research has consisted in studying q-bounded security defi-
nitions [11] wherein a scheme is assumed to only be used to decrypt at most q
messages. Cramer et al. [11] give a black-box construction of a IND-q-bounded-
CCA-2 secure PKE scheme from any IND-CPA secure one. The proposed con-
struction crucially relies on knowing the value q in advance as it is hardcoded in
the scheme.

2 Preliminaries

2.1 Constructive Cryptography

The Constructive Cryptography (CC) framework [18,19] is a composable secu-
rity framework which views cryptography as a resource theory: a protocol trans-
forms the assumed resources into the constructed resources.6 For example, if
Alice and Bob have (access to) a shared secret key and an authentic channel, by
running a one-time pad they construct a secure channel—this example is treated
more formally further in this section.

In this view, encryption is the task of constructing channel resources. We
thus start by defining various channels—used and constructed in this work—
here below. Then we give the formal definition of a construction in CC.

INS. The weakest channel we consider is the (completely) insecure channel INS,
where any message input by the sender goes straight to the adversary, and the
adversary may insert any messages into the channel, which are then delivered
to the receiver. This is drawn in the top left in Fig. 3.

AUT. In order to distribute the public keys used by PKE schemes, the players
will also need an authentic channel AUT, which guarantees that anything

6 Resources essentially correspond to (ideal) functionalities in UC [6], though in CC
we additionally model the ability of players to communicate as having access to a
channel resource.



180 C. Badertscher et al.

Alice Bob

Eve

INS

m

m m∗

m∗

Alice Bob

Eve

AUT

m m

m

Alice Bob

Eve

CONF & RP-CONF
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(inj, m′)
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Eve

SEC
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|m|

Fig. 3. A depiction of the channels used in this work. From top-left to bottom right:
an insecure channel INS, an authentic channel AUT, a (replay protected) confidential
channel (RP-)CONF, and a secure channel SEC.

received by the legitimate receiver was sent by the legitimate sender, but an
adversary may also receive a copy of these messages. For simplicity, in our
model we do not allow the adversary to either block an authentic channel or
insert any replays. Such a channel is drawn in the top right of Fig. 3.

CONF. A confidential channel CONF only leaks the message length (denoted
|m|) to the adversary, i.e. when the message m is input by the sender, the
adversary receives |m| at her interface. She can choose which message j ≤ i
is delivered to the receiver, where i is the total number of messages input
by the sender so far, or—since the channel is only confidential, but does not
provide authenticity—the adversary may also inject a message of her own
with (inj,m′), and m′ is then delivered to the receiver. This is depicted in
the bottom left of Fig. 3.

RP-CONF. The CONF channel described above allows the adversary to
deliver multiple times the same message to the receiver by inserting multiple
times (dlv, j). We define a stronger channel, the replay protected confiden-
tial channel RP-CONF, which will only process each (dlv, j) query at most
once.

SEC. Finally, the secure channel SEC is both confidential and authentic, and
is drawn in the bottom right of Fig. 3.

We will often consider channels that only transmit n messages, i.e. the sender
may only input n messages. These channels will be denoted NAME[n]. The
main properties of these channels are summarized in Fig. 4.

Formally, a resource (e.g. a channel) in an N -player setting is an interactive
system with N interfaces, where each player may interact with the system at their
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Channel Name Symbol Leak l(m) Insert Replays
Insecure Channel INS m Yes Yes
Authentic Channel AUT m No No
Confidential Channel CONF |m| Yes Yes

Replay Protected Confidential Channel RP-CONF |m| Yes No
Secure Channel SEC |m| No No

Fig. 4. A summary of the channel properties used in this work. Leak is the information
about the message given to Eve, where |m| denotes the length of the message. Insert
denotes whether Eve is allowed to insert messages of her own into the channel. Replay
denotes whether Eve can force a channel to deliver multiple times a message that was
sent only once.

interface by receiving outputs and providing inputs. These may be mathemat-
ically modeled as random systems [20,21] and can be specified by pseudo-code
or an informal description as the channels above. In this work we consider the
3 player setting, and the interfaces are labeled A, B, and E for Alice, Bob, and
Eve.

If multiple resources R1, . . . ,R� are accessible to players, we write
[R1, . . . ,R�] for the new resource resulting from having all resources accessi-
ble in parallel to the parties.

Operations run locally by some party (e.g. encrypting or decrypting a mes-
sage) are modeled by interactive systems with two interface and are called con-
verters. The inner interface connects to the available resources, whereas the outer
interface is accessible to the corresponding party to provide inputs and receive
outputs. The composition of the resource and the converter is a new resource.
For example, let R be a resource, and let α be a converter which we connect
at the A-interface of R, then we write αAR for the new resource resulting from
this connection. Formally, a converter is thus a map between resources.

To illustrate this, we draw the real system corresponding to a one-time pad
encryption in Fig. 5. Here, the players have access to a secret key KEY and
an authentic channel AUT. Alice runs the encryption converter encotp, which
sends the ciphertext on the authentic channel. Bob runs the decryption converter
decotp, which outputs the result of the decryption. The entire resource drawn on
the left in Fig. 5 is denoted encA

otpdec
B
otp[KEY,AUT], where the order of encotp

and decotp does not matter since converters at different interfaces commute.
In order to argue that the protocol otp = (encotp, decotp) constructs a secure

channel SEC from a shared secret key KEY and an authentic channel AUT, we
need to find a converter σotp (called a simulator) such that when this simulator is
attached to the adversarial interface of the constructed resource SEC (resulting
in σE

otpSEC), the real and ideal systems are indistinguishable. As illustrated in
Fig. 5, a simulator σotp which outputs a random string of the right length is
sufficient for proving that the one-time pad constructs a secure channel.

Distinguishability between two systems R and S is defined with respect to
a distinguisher D which interacts with one of the systems, and has to output a
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Random string

m m

|m|

c

Fig. 5. The real and ideal systems for the one-time pad. Viewed as a black box, the
real and ideal systems are indistinguishable.

bit corresponding to its guess. Let D[R] and D[S] denote the random variables
corresponding to the output of D when interacting with R and S, respectively.
Then its advantage in distinguishing between the two is given by

ΔD(R,S) := Pr[D[R] = 0] − Pr[D[S] = 0].

In the case of the one-time pad example with R denoting the real system and S
the ideal system (drawn on the left and right in Fig. 5) we have that for all D,
ΔD(R,S) = 0.

We now have all the elements needed to define a cryptographic construction
in the three party setting.

Definition 1 (Asymptotic security [18,19]). Let π = {(
πA

k , πB
k

)}k∈N be an
efficient family of converters, and let R = {Rk}k∈N and S = {Sk}k∈N be two
efficient families of resources. We say that π asymptotically constructs R from
S if there exists an efficient family of simulators σ = {σk}k∈N such that for any
efficient family of distinguishers D = {Dk}k∈N,

ε(k) = ΔDk(πkRk, σkSk)

is negligible. The construction is information-theoretically secure if the same
holds for all (possibly inefficient) families of distinguishers.

For clarity we have made the security parameter k explicit in Definition 1,
though in most of the technical part of this work we leave this parameter implicit
to simplify the notation.

2.2 Public Key Encryption

We recap the basic definitions when a public-key encryption (PKE) system is
considered correct and CCA/RCCA secure.
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Definition 2. A Public Key Encryption (PKE) scheme Π with message space
M ⊆ {0, 1}∗, is a triple Π = (G,E,D) of Probabilistic Polynomial-Time algo-
rithms (PPTs) such that for any PPT adversary A, the function Corr (k) defined
below is at most negligible in (the security parameter) k

Corr (k) := Pr
[

(pk, sk) ← G
(
1k

)

m ← A
(
1k, pk

)
∣
∣
∣
∣ Dsk

(
Epk (m)

) �= m

]

We point out that the above condition is a succinct expression that captures
the correctness of communication protocols in general and intuitively says that
even under knowledge of the sampled public key of the system, no one can find
(except with negligible probability) a message that would violate the correctness
condition (where the error term can be understood as computational distance
to a perfectly correct channel). Furthermore, the correctness requirement often
holds w.r.t. all adversaries.

Definition 3. A PKE scheme Π = (G,E,D) is IND-CCA-2 secure if no
PPT distinguisher D distinguishes the two game systems GΠ-IND-CCA-2

0 and
GΠ-IND-CCA-2

1 (specified below) with non-negligible advantage (in the security
parameter k) over random guessing (i.e. if ΔD

(
GΠ-IND-CCA-2

0

)
,GΠ-IND-CCA-2

1 ≤
negl (k)). For b ∈ {0, 1}, game system GΠ-IND-CCA-2

b is as follows:

Initialization: GΠ-IND-CCA-2
b generates a key-pair (pk, sk) ← G

(
1k

)
, and sends

pk to D.
First decryption stage: Whenever D queries (ciphertext, c), the game sys-

tem GΠ-IND-CCA-2
b computes m = Dsk (c) and sends m to D.

Challenge stage: When D queries (test messages,m0,m1), for m0,m1 ∈ M
such that |m0| = |m1|, GΠ-IND-CCA-2

b computes c∗ = Epk (mb), and sends c∗

to D.7

Second decryption stage: Whenever D queries (ciphertext, c), the game
system GΠ-IND-CCA-2

b replies test if c = c∗ and replies m = Dsk (c) (i.e. the
decryption of c) otherwise.

For simplicity, throughout the paper we will omit the prefix Π from the
notation of the game systems, unless needed for clarity.

Definition 4. A PKE scheme Π = (G,E,D) is IND-RCCA secure if it is secure
according to the definition of IND-CCA-2 security (Definition 3), but where the
IND-RCCA game systems differ from the IND-CCA-2 game systems in the second
decryption stage, which now works as follows: In the following, let m0,m1 be the
two challenge messages queried by distinguisher D during the Challenge stage:

Second decryption stage: When D queries (ciphertext, c), the game system
computes m = Dsk (c). If m ∈ {m0,m1}, then the game system replies with
the special response test to D, and otherwise sends m to D.

7 Unless explicitly stated, we assume that D can only perform a single challenge query.
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2.3 Public Key Encryption with Replay Filtering

We now introduce two new types of PKE schemes, namely ones in which cipher-
text replays can be efficiently detected by an algorithm F that is defined as
part of the scheme. For the correctness condition of these schemes we require,
in addition to the usual correctness condition of PKE schemes, that with high
probability F cannot relate two fresh encryptions of any messages. This is an
essential requirement such that F can be used for filtering out ciphertext replays,
because the correctness condition guarantees that it will not filter out honestly
generated ciphertexts (later in Sect. 6.2 we couple such schemes with the proper
security notions).

Definition 5. A PKE scheme with Secret (Replay) Filtering (PKESF) Π with
message space M ⊆ {0, 1}∗, is a 4-tuple Π = (G,E,D, F ) of PPT algorithms
such that for any PPT adversary A, the function Corr (k) defined below is at
most negligible in (the security parameter) k

Corr (k) := Pr

[
(pk, sk) ← G(1k)

(m,m′) ← A(1k, pk)

∣∣∣∣ F (pk, sk, Epk (m) , Epk (m′)) = 1
∨ Dsk (Epk (m)) �= m

]

A PKE scheme with Public (Replay) Filtering (PKEPF) Π is just like a PKESF
except that F now does not receive the secret key sk.

As one might note, from any correct and IND-CCA-2 secure PKE scheme
Π = (G,E,D), one can define a correct PKEPF scheme Π ′ = (G,E,D, F )
where F (pk, c, c′) = 1 if and only if c = c′; the correctness of Π ′ with respect to
Definition 5 follows from the correctness and IND-CCA-2 security of Π.

2.4 Reductions

Most of the proofs in this work consist in showing reductions between various
security definitions. Both the constructive statements introduced in Sect. 2.1 and
game-based definitions such as IND-CCA-2 (Definition 3) can be viewed as dis-
tinguishing systems—the real world W0 from the ideal world W1 and game G0

from game G1, respectively. A reduction between two such definitions consists
in proving that if a distinguisher D can succeed in one task, then a (related)
distinguisher D′ can succeed in the other. We only give explicit reductions with
single blackbox access to D in this work, i.e. we define D′ := DC, where DC
denotes the composition of two systems D and C. C is called the reduction
system (or simply the reduction).

For example, if we wish to reduce the task of breaking a constructive def-
inition (with real and ideal systems W0 = πABR and W1 = σES for some
simulator σ) to a game-based definition (with games G0 and G1), we will typi-
cally fix σ and find a system C such that W0 = CG0 and W1 = CG1. Then

ΔD(W0,W1) = ΔD(CG0,CG1) = ΔDC(G0,G1),

i.e. given a distinguisher D that can distinguish W0 from W1 with non-negligible
advantage, we get an explicit new distinguisher DC that can win the game
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Fig. 6. Real and ideal systems for (replay protected) confidential channel construction.
Capital letters (A, B, E.1, E.2) represent interface labels and small letters (m, m̃, c,
c′, j, pk) represent values that are in- or output.

with non-negligible advantage. Or, the contrapositive, if G0 and G1 are hard to
distinguish, then in particular they are hard to distinguish for all distinguishers
of the form DC (for any efficient D and fixed C). This means that no efficient
distinguish D can tell W0 from W1 for the given simulator σ.

3 Benchmarking Confidentiality

In this section we present three benchmark constructions to capture the security
of confidential communication and replay protected confidential communication.

3.1 Benchmark 1: The CONF Channel

The first channel we want to construct is the confidential channel CONF intro-
duced in Sect. 2.1. The ideal system thus simply consists of this channel and a
simulator σ, as depicted on the right in Fig. 6, and is denoted σECONF.

In order to achieve this, Alice and Bob need an authentic channel for one
message AUT[1] (from Bob to Alice), so that Bob can send his public key
authentically to Alice. They also use a completely insecure channel INS to
transmit the ciphertexts. Alice’s converter enc encrypts any messages with the
public key obtained from AUT[1], and sends the resulting ciphertext on INS
(i.e. for a PKE Π = (G,E,D), enc runs E). Bob’s converter dec generates the
key-pair (pk, sk), sends pk over AUT[1] to Alice, and decrypts any ciphertext
received from INS using sk (i.e. dec runs G and D). The resulting message is
output at Bob’s outer interface B (to the environment/distinguisher). This real
system is drawn on the left in Fig. 6), and is denoted encAdecB [AUT[1], INS].

As already mentioned, we will often parameterize channels by the number
messages that can be input at Alice’s interface. As an example, we will denote
by CONF[n] the confidential channel where at most n messages can be input
at Alice’s interface.
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Fig. 7. Real system for constructing a replay protected confidential channel. Capital
letters (A, B, E.1, E.2) represent interface labels and small letters (m, m̃, c, c′, pk)
represent values that are in- or output.

3.2 Benchmark 2: The RP-CONF Channel

As explained in Sect. 1.1, our second benchmark is the construction of a stronger
channel, namely a replay protected confidential channel, i.e. one in which an
adversary’s input (dlv, j) may only be processed once for each j. The ideal
system σERP-CONF is thus similar to the one of Benchmark 1, only differing
in the underlying ideal channel which now is the stronger RP-CONF channel.

The real system is similar to the real system from Benchmark 1 in that
we want to construct RP-CONF from a single use authentic channel AUT[1]
and an insecure channel INS. However, the replay detection algorithm requires
memory to store the ciphertexts it has already processed. We model this memory
use explicitly by providing a memory resource M to the decryption converter.
This is drawn in Fig. 7. The real system is thus encAdecB [AUT[1], INS,M].

If one uses a public key encryption scheme with replay filtering defined by an
algorithm F (see Sect. 2.3), then Alice’s converter enc runs the encryption algo-
rithm as for a normal PKE, but Bob’s converter additionally runs the filtering
algorithm F before decrypting to detect (and filter out) replays.

3.3 Benchmark 3: The RP-CONF Channel with Outsourceable
Replay Protection

In this section we again want to construct a replay protected confidential chan-
nel RP-CONF—but where the job of filtering out ciphertext replays is out-
sourced to a third party. The ideal system is thus identical to Benchmark 2, i.e.
σERP-CONF.

The real system now has three honest parties, Alice the sender, Bob the
receiver, and Charlie the replay-filterer, where each runs its own converter enc,
dec and rp, respectively. As before, a public key pk is generated by dec and sent on
an authentic channel AUT[1]B to both Alice and Charlie—but Eve gets a copy
as well—where the index B denotes the origin of the authenticated message. And
as before, enc encrypts the message and sends it on an insecure channel INS,
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Fig. 8. Real system for constructing a replay protected confidential channel with out-
sourced replay filtering. As in previous figures, the sender Alice is on the left, the
receiver Bob is on the right and the eavesdropper Eve is below. In this setting we have
another party, Charlie, above in the picture, to whom replay detection is outsourced,
and who runs the converter rp. Capital letters (A, B, E.1, E.2) represent interface
labels and small letters (m, m̃, c, c′, pk) represent values that are in- or output.

but this time Charlie is on the receiving end of INS. Charlie then runs rp, which
decides if the message should be forwarded to Bob through AUTC or if it gets
filtered out—this channel needs to be authenticated so that Eve cannot change
the messages or inject replays again.8 To do this, rp needs access to the memory
resource M so that it can store the previously forwarded (i.e. not filtered out)
ciphertexts. Finally, dec decrypts the ciphertexts received. This is depicted in
Fig. 8.

Note that in this setup, rp does not have access to the secret key and so it
must detect replays with the public key only; since dec does not have access to
the memory M, it can not perform the replay filtering itself. In the case where
the players use a PKEPF Π = (G,E,D, F ), then enc runs E, dec runs G and
D, and rp runs F .

4 IND-RCCA Is Not Sufficient for Benchmark 1

In this section we give a correct and IND-RCCA secure PKE scheme which does
not achieve Benchmark 1 (see Sect. 3.1). As already mentioned, this separation
result is in spirit with the separation proven in [8] between UC-RCCA and IND-
RCCA for small message spaces.

Theorem 1. There is a correct and IND-RCCA secure PKE scheme Π ′ for
which there is an efficient distinguisher D such that for any simulator σ,

ΔD
(
encAdecB [AUT[1], INS[1]], σECONF[1]

)
≥ 1

2
.

8 Note that omitting Eve’s reading interface in AUTC is done here for simplicity and
at no loss of generality.
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At a high level, we construct an IND-RCCA secure PKE scheme Π ′ for the
binary message space that is malleable, in that an adversary can tamper a cipher-
text into another that decrypts to a related message. While such tampering
attacks do not help an adversary winning the IND-RCCA game for Π ′9, we show
that Benchmark 1 cannot be achieved using Π ′, as it still allows an attacker to
tamper with what Alice sends.

Let Π = (G,E,D) be a correct and IND-RCCA secure PKE scheme for
the binary message M = {0, 1}. From Π, we construct a PKE scheme Π ′ =
(G′, E′,D′), which works just as Π, except that now, E′ appends an extra bit 0 to
the ciphertexts, and during decryption D′ uses D internally to decrypt the input
ciphertext (ignoring the last bit appended by E′), and then XORs the plaintext
output by D with the extra bit that was appended to the ciphertext during
encryption (unless D outputs ⊥, in which case D′ also outputs ⊥). It is easy to
see, on one hand, that if Π is correct and IND-RCCA secure, then so is Π ′. On the
other hand, it is also easy to come up with a distinguisher that can distinguish,
for any simulator σE the real world system encAdecB[AUT[1], INS[1]] from the
ideal world system σECONF[1], where protocol π = (enc, dec) uses Π ′ as the
underlying PKE scheme. A formal proof of Theorem 1 can be found in [4].

5 Technical Issues with pd-RCCA and sd-RCCA

In [8], Canetti et al. introduce pd-RCCA and sd-RCCA as supposedly relaxed
versions of CCA-2 security. Although other supposedly relaxed versions of CCA-2,
such as Benign Malleability [24] and generalized CCA-2 security [1], had been
introduced before, these notions are subsumed by the definition of pd-RCCA and
suffer from the same technical issues we uncover in this section. For this reason,
we will focus only on the pd-RCCA and sd-RCCA security notions. We now recall
the definition of IND-pd-RCCA and IND-sd-RCCA [8].

Definition 6. Let Π = (G,E,D) be an encryption scheme.

1. Say that a family of binary relations ≡pk (indexed by the public keys of Π)
on ciphertext pairs is a compatible relation for Π if for all key-pairs (pk, sk)
of Π:
(a) For any two ciphertexts c, c′, if c ≡pk c′, then Dsk (c) = Dsk (c′), except

with negligible probability over the random choices of D.
(b) For any plaintext m ∈ M, if c and c′ are two ciphertexts obtained as

independent encryptions of m (i.e. two applications of algorithm E on
m using independent random bits), then c ≡pk c′ only with negligible
probability.

9 Note that, even if the adversary manages to maul the challenge ciphertext into one
that decrypts to a different plaintext, it cannot leverage this attack into distinguish-
ing the two game systems, because in the case of the binary message space the
IND-RCCA game systems will not decrypt a ciphertext that decrypts to any of the
two challenge plaintexts.
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2. We say that a relation family as above is publicly computable (resp. secretly
computable) if for all key pairs (pk, sk) and ciphertext pairs (c, c′) it can be
determined whether c ≡pk c′ using a PPT algorithm taking inputs (pk, c, c′)
(resp. (pk, sk, c, c′)).

3. We say that Π is publicly-detectable Replayable-CCA (IND-pd-RCCA) if
there exists a compatible and publicly computable relation family ≡pk such
that Π is secure according to the standard definition of IND-CCA-2 (Defini-
tion 3), but where the game systems differ from the IND-CCA-2 game systems
in the second decryption stage, which now works as follows: In the following,
let c∗ be the challenge ciphertext output by the game system:
Second decryption stage: When D queries (ciphertext, c), the game

system replies test if c∗ ≡pk c, and otherwise computes m = Dsk (c) and
then sends m to D.

Similarly, we say that Π is secretly-detectable Replayable-CCA (IND-sd-
RCCA) if the above holds for a secretly computable relation family ≡pk.

Remark 2. Note that Condition 1b, which demands two fresh encryptions of
any plaintext not to be detected as replays of one another, is equivalent to the
additional correctness condition imposed for PKESF and PKEPF schemes (see
Definition 5). As mentioned in [8], and as we will see later, the correctness of the
replay filtering algorithm follows from the semantic security of the underlying
PKE scheme.

It is claimed in [8] that IND-CCA-2 security implies IND-pd-RCCA security
(with the equality relation serving as the compatible relation), which in turn
implies IND-sd-RCCA security. However, as we now show, Definition 6 is not an
actual relaxation of the IND-CCA-2 security notion. More concretely, we prove
that IND-CCA-2 security does not entail IND-pd-RCCA nor even IND-sd-RCCA
security, according to their definition.

Theorem 2. If there is a correct and IND-CCA-2 secure PKE scheme, then there
is a correct and IND-CCA-2 secure PKE scheme which is not IND-pd-RCCA nor
IND-sd-RCCA secure.

Throughout the rest of the section, let Π = (G,E,D) be a correct and IND-
CCA-2 secure PKE scheme. Without loss of generality, assume that all messages
in Π’s message space have the same length. We create a scheme Π ′ = (G′, E′,D′)
(see Algorithm 1) that is a correct and IND-CCA-2 secure PKE scheme, but is
not IND-pd-RCCA nor IND-sd-RCCA secure.

Lemma 1. If Π is correct and IND-CCA-2 secure, then so is Π ′.

Proof. It is easy to see that if Π is correct and IND-CCA-2 secure then Π ′ is a
correct PKE scheme. We now prove that Π ′ is IND-CCA-2 secure.

Let D be a distinguisher for the IND-CCA-2 game systems for Π ′. We con-
struct a distinguisher D′, which internally uses D, for the IND-CCA-2 game
systems for Π such that

ΔD′ (
GΠ-IND-CCA-2

0 ,GΠ-IND-CCA-2
1

)
= ΔD

(
GΠ′-IND-CCA-2

0 ,GΠ′-IND-CCA-2
1

)
. (5.1)
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Algorithm 1. The Π ′ scheme.

1: procedure G′(1n)
2: (pk, sk) ← G (1n)
3: m̃ ←$ M
4: c ← Epk (m̃)
5: return (pk′, sk′) ← (pk, (sk, c))
6: end procedure

7: procedure E′
pk′:=pk(m)

8: return Epk (m)
9: end procedure

10: procedure D′
sk′:=(sk,c)(c)

11: if sk′.c �= c then
12: return Dsk (c)
13: else
14: b ←$ {0, 1}
15: if b = 0 then
16: return ⊥
17: else
18: return Dsk (c)
19: end if
20: end if
21: end procedure

D′ works as follows: When D′ receives pk from the game, it picks a plain-
text m̃ uniformly at random from M, generates a ciphertext c = Epk (m̃), and
forwards pk to D. Before the challenge ciphertext is set, whenever D queries
(ciphertext, c′), D′ first checks if c = c′: if this is the case then D′ flips a coin
uniformly at random and (depending on the outcome of the coin) either returns
⊥ as the result of the query, or forwards it to the IND-CCA-2 game. If c �= c′

then D′ simply forwards the query to the game. Upon receiving the result of the
decryption query, D′ forwards it to D. When D issues the challenge query, D′

forwards it to the game, and, upon receiving the challenge ciphertext c∗ from the
game, D′ forwards it back to D. After the challenge ciphertext is set, whenever
D issues a decryption query (ciphertext, c′), D′ behaves just as before, unless
c′ = c∗. In such case, D′ simply forwards the decryption query to the IND-CCA-2
game and returns the result to D. When D outputs a guess b, D′ outputs the
same guess and terminates. Clearly, (5.1) holds, and thus, if Π is IND-CCA-2
secure, then so is Π ′. 
�

We now show that a compatible relation for Π ′ cannot relate any freshly
generated ciphertext to itself.

Lemma 2. Let ≡pk be any family of compatible relations for Π ′ (indexed by the
public keys of Π ′). Then, for each pk in the support of Π ′’s public keys, we have:
for any fresh encryption c of some plaintext m ∈ M under pk, c �≡pk c.

Proof. For each public key pk in the support of Π ′’s public keys, let ≡pk be a
compatible relation for Π ′ with respect to pk. For each ciphertext c that can be
generated as a fresh encryption of some plaintext m by E′ under pk, there is a
key-pair (pk, sk) (for the same public key pk) such that Pr[D′

sk (c) �= D′
sk (c)] ≥

1
2 . Hence, by the compatibility condition of Definition 6, c �≡pk c. 
�
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Lemma 3. Π ′ is not IND-pd-RCCA nor IND-sd-RCCA secure.

Proof. By the definitions of IND-pd-RCCA and IND-sd-RCCA, the challenge
ciphertext c∗ is always a fresh encryption of some plaintext. By Lemma 2 it
then follows c∗ �≡pk c∗. As such, a distinguisher is allowed to simply ask for the
decryption of the challenge c∗ and thus distinguish the two game systems. 
�

Lemmas 1 and 3 conclude the proof of Theorem 2.
A way to avoid this technical issue with the definitions of IND-pd-RCCA and

IND-sd-RCCA is by restricting the class of schemes one considers. For instance, if
one would require the decryption algorithm to be deterministic, then the equality
relation between ciphertexts would be a compatible relation. Alternatively, one
could require PKE schemes to have perfect correctness. In this case, the equality
relation between ciphertexts that are in the support of the encryption algorithm
(for some public key pk and message m ∈ M) would be a compatible relation. It
however appears as more natural to have security notions that do not depend on
this fact (which is true for most if not all confidentiality notions). Furthermore,
it might not always be feasible to have perfect correctness or detectability [3]
and therefore, avoiding this dependence is crucial.

6 Relaxing Chosen Ciphertext Security

As discussed in Sect. 1, while IND-CCA-2 is generally a too strong security notion,
IND-RCCA security is too weak, in that it is not sufficient to achieve the weaker
Benchmark 1 for small message spaces. In this section we introduce three new
security notions—which are provably between IND-CCA-2 and IND-RCCA, see
Sect. 7—and prove that they are sufficient to achieve the three benchmarks intro-
duced in Sect. 3.

6.1 Achieving Benchmark 1: Constructing the CONF Channel

A game-based security notion that captures the confidentiality of an encryption
scheme against active adversaries is one which is sufficiently strong to achieve
a confidential channel (as defined in Sect. 3.1). Yet, it must also be as weak as
possible so that it does not exclude any schemes which provide confidentiality.
To achieve this, we introduce the IND-cl-RCCA security notion, and its multi-
challenge version [n]IND-cl-RCCA.

Definition 7. We say that a PKE scheme Π = (G,E,D) is IND-cl-RCCA
secure if there exists an efficient algorithm v that takes as input a key-pair
(pk, sk) and a pair of ciphertexts c, c′ and outputs a boolean (corresponding to
whether the ciphertexts seem related or not), such that no PPT distinguisher D
distinguishes the game systems GIND-cl-RCCA

0 and GIND-cl-RCCA
1 (specified below)

with non-negligible advantage (in the security parameter k) over random guess-
ing. For b ∈ {0, 1}, game system GIND-cl-RCCA

b is as follows:
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Initialization: GIND-cl-RCCA
b generates a key-pair (pk, sk) ← G

(
1k

)
, and sends

pk to D.
First decryption stage: Whenever D queries (ciphertext, c), the game sys-

tem GIND-cl-RCCA
b computes m = Dsk (c) and sends m to D.

Challenge stage: When D queries (test messages,m0,m1), for m0,m1 ∈ M
such that |m0| = |m1|, GIND-cl-RCCA

b computes c∗ = Epk (mb), and sends c∗ to
D.

Second decryption stage: Whenever D queries (ciphertext, c), the game
system GIND-cl-RCCA

b calls v (pk, sk, c∗, c) and decrypts c, obtaining a plaintext
m = Dsk (c). If v’s output is 1 and m = mb, the game system replies test to
D, and in all other cases the game replies with m.

At a high level, the job of algorithm v is to disallow strategies that an adver-
sary could take to win the security game, but would not help break confidentiality
of the encryption. In the context of the IND-cl-RCCA game, v is used to disallow
adversaries to pursue strategies in which they would ask for the decryption of
a ciphertext that would decrypt to the challenge message (a so-called replay).
Thus, the game can only refuse to answer a decryption query for a ciphertext c
if both of the following two conditions are met: 1. according to v, c is a replay
of the challenge ciphertext; and 2. c indeed decrypts to the same plaintext as
the challenge ciphertext. Note that if one would relax the second condition to
checking if c decrypts to one of the (two) challenge plaintexts, the resulting
security notion would be equivalent to RCCA security; allowing the adversary
to perform decryption queries of ciphertexts that do not decrypt to the same as
the challenge ciphertext is the key for capturing the non-malleability feature of
confidential channels.

IND-cl-RCCA security is sufficient for achieving Benchmark 1 for a single
message (i.e. constructing an ideal CONF[1] channel)—this follows from The-
orem 3 below. However, it is not clear whether it is also sufficient for achieving
Benchmark 1 for multiple messages: since, in order to check if two ciphertexts are
related, v requires the secret key, it becomes apparently unfeasible to detect rela-
tions between pairs of arbitrary ciphertexts, which is crucial for making a hybrid
reduction from distinguishing encAdecB [AUT[1], INS[n]] from CONF[n] to dis-
tinguishing the two IND-cl-RCCA game systems. To achieve Benchmark 1 for
multiple messages, we now present the multi-challenge version of IND-cl-RCCA
security, which we denote by [n]IND-cl-RCCA security, where n is the maximum
number of challenge queries that a distinguisher can make.

Definition 8. We say that a PKE scheme Π = (G,E,D) is [n]IND-cl-RCCA
secure if it is secure according to Definition 7, but where, for b ∈ {0, 1}, the
game system G[n]IND-cl-RCCA

b , which now accepts n challenge queries, behaves as
follows:

Initialization: First, G[n]IND-cl-RCCA
b creates and initializes a table t of

plaintext-ciphertext pairs which is initially empty. Then, G[n]IND-cl-RCCA
b runs

(pk, sk) ← G
(
1k

)
, and sends pk to D.
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Decryption queries: Whenever D queries (ciphertext, c), the game system
calls, for each plaintext-ciphertext pair

(
mb,j , c

∗
j

)
stored in t, v

(
pk, sk, c∗

j , c
)

and decrypts c, obtaining a plaintext m = Dsk (c). If for every plaintext-
ciphertext pair stored in t, either v’s output is 0 or m �= mb,j, then the
game system replies with m to D. Otherwise, let (mb,l, c

∗
l ) be the plaintext-

ciphertext pair stored in t with the smallest l such that both v (pk, sk, c∗
l , c) = 1

and m = mb,l. Then, G[n]IND-cl-RCCA
b replies (test, l) to D.

i-th challenge query (for i ≤ n): Whenever the distinguisher D issues a
challenge query (test messages,m0,i,m1,i), where m0,i,m1,i ∈ M such that
|m0,i| = |m1,i|, the game system computes c∗

i = Epk (mb,i), stores (mb,i, c
∗
i )

in table t, and sends c∗
i to D.

We now show that [n]IND-cl-RCCA security is sufficient for achieving Bench-
mark 1 when Alice is restricted to sending up to n messages. Thus, we need to
prove that the construction is indistinguishable from the ideal CONF[n] channel
up to the [n]IND-cl-RCCA security of the underlying PKE scheme.

Remark 3. Note that the above security notion stands in sharp contrast with the
q-bounded security notions from [11], which bound to q the number of decryption
queries an adversary can make. Even if a PKE scheme is only [1]IND-cl-RCCA
secure—the weakest security notion introduced in this paper—the adversary is
not restricted in the number of decryption queries it can issue to the game. Note
that in order to achieve our benchmarks, no such restriction can be imposed, as
it would be a restriction on the distinguisher (sending at most q ciphertexts at
Eve’s interface) which would impede general composability.

Let Π = (G,E,D) be a correct and [n]IND-cl-RCCA secure PKE scheme,
and let the protocol π = (enc, dec) be such that Alice’s converter enc runs the
encryption algorithm E to encrypt plaintexts, and Bob’s converter dec runs the
key-pair generation algorithm G to generate a public-secret key-pair and runs
D to decrypt the received ciphertexts.

To prove that π constructs CONF[n] from AUT[1] and INS[n] (Defini-
tion 1), we show how to create, from any algorithm v that satisfies Definition 8,
an efficient simulator σ which internally uses v such that any distinguisher D
for encAdecB [AUT[1], INS[n]] and σECONF[n] can be transformed into an
equally good distinguisher for the [n]IND-cl-RCCA game systems. Then, from
the [n]IND-cl-RCCA security of Π, it follows that there is such an algorithm v,
implying that no efficient distinguisher D can distinguish between the real world
encAdecB [AUT[1], INS[n]] and the ideal world σECONF[n] with simulator σ
attached. In turn, this implies that Benchmark 1 is achieved.

Theorem 3. Let v be an algorithm that suits [n]IND-cl-RCCA (Definition 8).
There exists an efficient simulator σ and an efficient reduction R such that for
every distinguisher D,

ΔD
(
encAdecB [AUT[1], INS[n]], σECONF[n]

)

= ΔDR
(
G[n]IND-cl-RCCA

0 ,G[n]IND-cl-RCCA
1

)
.
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Proof. Consider the following simulator σ for interface E of CONF[n], which has
two sub-interfaces denoted by E.1 and E.2 on the outside (since the real-world
system also has two sub-interfaces at E): Initially, σ generates a key-pair (pk, sk)
and outputs pk at E.1. When it receives the i-th input li at the inside interface
in (which is connected to CONF[n]), σ generates an encryption c ← Epk (m̃) of
a randomly chosen message m̃ of length li, records (i, m̃, c) and outputs c at E.2.
When c′ is input at E.2, σ proceeds as follows: First, it decrypts c′, obtaining
some plaintext m′. If (j, m̃, c) has been recorded for some j such that m̃ = m′

and v (pk, sk, c, c′) = 1, then σ outputs (dlv, j) at in (where j is the smallest
index satisfying this condition). If no such triple has been recorded, σ outputs
(inj,m′) at in (unless m′ = ⊥).

Having defined the simulator σ, we now introduce a reduction system R,
such that for any efficient distinguisher D

1. RG[n]IND-cl-RCCA
0 ≡ encAdecB [AUT[1], INS[n]]; and

2. RG[n]IND-cl-RCCA
1 ≡ σECONF[n].

Consider the following reduction system R (which processes at most n inputs at
the outside A interface): Initially, R forwards the public key pk generated by the
game system to the E.1 interface. When the j-th message m is input at the A
interface of R: R chooses a message m̃ of length |m| uniformly at random, and
makes the challenge query (test messages,m, m̃) to the game system, which
replies with some ciphertext c. Then, R records m∗

j = m. Next, R outputs c at
the outside E.2 interface. When (inj, c′) is input at interface E.2, R behaves as
follows. First, R makes a decryption query for c′ to the game, obtaining some
m′. If m′ = (test, j), then R outputs m∗

j at interface B. If m′ = ⊥, R ignores
the injection, and nothing happens. Else, R outputs m′ at the B interface. It
is easy to see that indeed RG[n]IND-cl-RCCA

0 ≡ encAdecB [AUT[1], INS[n]] and
RG[n]IND-cl-RCCA

1 ≡ σECONF[n]. Using the above facts, it finally follows

ΔD
(
encAdecB [AUT[1], INS[n]], σECONF[n]

)

= ΔD
(
RG[n]IND-cl-RCCA

0 ,RG[n]IND-cl-RCCA
1

)

= ΔDR
(
G[n]IND-cl-RCCA

0 ,G[n]IND-cl-RCCA
1

)
.


�

6.2 Achieving Benchmark 2: Constructing the RP-CONF Channel

Another use of IND-CCA-2 security is for achieving replay protected confidential
communication. As hinted by Benchmarks 2 and 3, replay protection comes in
two flavours: 1. private detection and filtering of replays; and 2. public detection
and filtering of replays. We begin by looking into the setting where Bob is the
one responsible for filtering out ciphertext replays (Benchmark 2).

Before introducing a new security notion, we first look into why IND-cl-RCCA
does not seem to suffice for constructing the RP-CONF channel. First, note
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that, the RP-CONF channel construction (Benchmark 2) has to protect not
only against replays of ciphertexts sent by Alice, but also against replays of
ciphertexts injected by Eve. This is so since the receiving end (i.e. the dec con-
verter) does not know where the ciphertexts have originated.10 Hence, for each
ciphertext that the converter receives, it has to make sure that it is not a replay
of any previously received ciphertext, implying that the converter has to impede
all ciphertext replays. When one tries to make a reduction from distinguish-
ing the real world construction encAdecB [AUT[1], INS,M] and the ideal world
channel RP-CONF to winning the IND-cl-RCCA game, two critical issues arise:

1. The algorithm v used by the game systems might not compute an equivalence
relation: Consider the case where Alice inputs a message m into the channel
which results in a ciphertext c being output at the E interface. Eve can
create two distinct replays of the ciphertext c, say c′ and c′′, and input them
into the E interface. While, from IND-cl-RCCA security, v should detect that
ciphertext c is related to both c′ and c′′, it does not necessarily detect whether
c′ is related to c′′. In such case, v cannot be used to detect ciphertext replays,
as it would allow Eve to replay what Alice sends, by generating different
replays of c and injecting them into the channel (without ever injecting c into
the channel).

2. The reduction does not have access to the secret key generated by the game
system: Even assuming that v computes an equivalence relation, it is not clear
how one could reduce distinguishing the real and ideal worlds to distinguishing
the two underlying IND-cl-RCCA game systems. Since any reduction system
R that one would attach to the game systems does not have access to the
secret key, it is not clear how R would be able to check if any arbitrary pair
of ciphertexts c′ and c′′ are related according to v (i.e. R would be able to
compute v (pk, sk, c′, c′′) without knowing sk).

Interestingly these remarks also apply to the IND-sd-RCCA notion from [8], hint-
ing at the fact that the IND-sd-RCCA security notion does not capture what it
was meant to capture. Another interesting remark is that, as for IND-cl-RCCA,
the single challenge and the multi challenge versions of IND-sd-RCCA security
do not seem to be necessarily equivalent.11 With this, we now introduce IND-
srp-RCCA security, which captures the secret detectability of ciphertext replays.

Definition 9. A PKE scheme Π = (G,E,D) is IND-srp-RCCA secure if there
exists an efficient algorithm v that computes, for each key-pair (pk, sk), an equiv-
alence relation over ciphertexts c, c′ such that for every key-pair (pk, sk) in the
support of G(1k) and every pair of ciphertexts c, c′, if v (pk, sk, c, c′) = 1 then
δ (Dsk (c) ,Dsk (c′)) ≤ negl (k) (where the randomness is over the internal ran-
domness of D), and if no efficient distinguisher D distinguishes the game systems
GIND-srp-RCCA

0 and GIND-srp-RCCA
1 (specified below) with non-negligible advantage

10 Note that, other than the assumption that the public key is authentically transmit-
ted, we are only assuming an insecure channel between Alice and Bob.

11 We leave the problem of proving whether these notions are equivalent or not as open.
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(in the security parameter k) over random guessing. The IND-srp-RCCA game
systems work just as the IND-CCA-2 game systems, except that the IND-srp-RCCA
game systems give distinguisher D oracle access to v throughout the entire game
(so that D can check whether any two ciphertexts c, c′ are related according to
v with respect to the key-pair pk, sk generated by the game system), and also
except for the second decryption stage, which now works as follows:

Second decryption stage: Whenever D queries (ciphertext, c), the game
system replies test if v (pk, sk, c∗, c) = 1 and replies m = Dsk (c) otherwise.

Definition 9 addresses both of the issues we mentioned above by, on one
hand giving the distinguisher oracle access to v, and on the other hand by
requiring that v computes an equivalence relation. The requirement that for
any key-pair pk, sk and any pair of ciphertexts c, c′, if v (pk, sk, c, c′) = 1 then
δ (Dsk (c) ,Dsk (c′)) ≤ negl (k) is captures that the two ciphertexts c and c′ can
only be considered as replays of one another if they “carry essentially the same
information”.

The definition of IND-srp-RCCA security is written for a PKE scheme Π =
(G,E,D), but by taking the algorithm v required to exist by Definition 9 as
a replay-filtering algorithm, we get a PKESF scheme Π ′ = (G,E,D, v). Con-
versely, a PKESF scheme Π = (G,E,D, F ) is IND-srp-RCCA secure if the under-
lying PKE scheme Π ′ = (G,E,D) is IND-srp-RCCA secure with respect to the
filtering algorithm F of Π. Correctness of an IND-srp-RCCA secure PKESF Π ′

then follows from the correctness of the corresponding PKE Π = (G,E,D).
It is instructive to see why IND-srp-RCCA security does indeed require the

filtering algorithm v to be meaningful. Consider, e.g. a trivial filtering algorithm
such as the one that always sets v(pk, sk, c, c′) = 0. This algorithm will not
satisfy the definition above. But more importantly, it turns out that the above
definition implies that Benchmark 2 is satisfied (see Theorem 4 further below),
and by definition, Benchmark 2 requires the filtering algorithm to be meaningful
(as otherwise the real and ideal systems are trivially distinguishable).

Lemma 4. Consider any correct PKE scheme Π = (G,E,D) that is IND-srp-
RCCA secure, and let v be an algorithm with respect to which Π is IND-srp-RCCA
secure. Then, Π ′ = (G,E,D, v) is a correct PKESF scheme.

Proof. We show a slightly stronger statement. The event Dsk

(
Epk (m)

) �= m ∨
v

(
pk, sk, Epk (m) , Epk (m′)

)
= 1 can only occur if at least one of Dsk

(
Epk (m)

) �=
m or v

(
pk, sk, Epk (m) , Epk (m′)

)
= 1 occurs (for any adversary producing such

messages). From the correctness of Π, it follows that Dsk

(
Epk (m)

) �= m only
occurs with negligible probability. Thus, it now only remains to show that
v

(
pk, sk, Epk (m) , Epk (m′)

)
= 1 occurs with at most negligible probability too.

Letting c = Epk (m) and c′ = Epk (m′), from the correctness of Π we
have that δ (m,Dsk (c)) ≤ negl (k) and δ (m′,Dsk (c′)) ≤ negl (k). From the
definition of IND-srp-RCCA security we have that if v (pk, sk, c, c′) = 1 then
δ (Dsk (c) ,Dsk (c′)) ≤ negl (k). Combining these last 3 inequalities with the tri-
angle inequality we find that δ (m,m′) ≤ negl (k). But note that m and m′ are
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deterministic values (unlike Dsk (c) and Dsk (c′) which are random variables over
the distribution of the encryption and decryption randomness), hence we must
have δ (m,m′) = 0 and m = m′. Putting this together, we have just shown that
if v

(
pk, sk, Epk (m) , Epk (m′)

)
= 1 then m = m′.

Now, suppose that for some m ∈ M we have that with non-negligible prob-
ability v

(
pk, sk, Epk (m) , Epk (m)

)
= 1 (i.e. v declares two fresh encryptions of

the m as related). Then it is easy to create an efficient distinguisher D that has
non-negligible advantage in distinguishing the two IND-srp-RCCA game systems
of Π with respect to v: First, D makes a challenge query (test messages,m, m̄)
to the game system (where m �= m̄), and then D generates a fresh encryption
c = Epk (m) of m, and asks for the decryption of c to the game system. If the
game system replies test, then D outputs 0, and otherwise outputs 1. It is easy
to see that D’s advantage in distinguishing the two game systems is at least
half of the probability that event v

(
pk, sk, Epk (m) , Epk (m)

)
= 1 occurs, which

by our assumption is non-negligible. Thus, D has non-negligible advantage in
distinguishing the two game systems, contradicting that Π is IND-srp-RCCA
secure with respect to v. From this contradiction, it follows that for any m,
v

(
pk, sk, Epk (m) , Epk (m)

)
= 1 can only occur with negligible probability. 
�

The following result states that the IND-srp-RCCA security of a PKESF
Π = (G,E,D, F ) suffices for constructing an RP-CONF[n] channel, i.e. sat-
isfying Benchmark 2. To prove this, one creates a simulator σ which internally
uses F such that any distinguisher D for encAdecB [AUT[1], INS[n],M] and
σERP-CONF[n] can be transformed into an equally good distinguisher for the
IND-srp-RCCA game systems. A formal proof of Theorem 4 can be found in [4].

Theorem 4. Let Π = (G,E,D, F ) be a correct PKESF scheme that is IND-
srp-RCCA secure. There exists an efficient simulator σ and for any n ∈ N there
exists an efficient reduction R such that for every distinguisher D,

ΔD
(
encAdecB [AUT[1], INS[n],M], σERP-CONF[n]

)

= n · ΔDR
(
GIND-srp-RCCA

0 ,GIND-srp-RCCA
1

)
.

6.3 Achieving Benchmark 3: Constructing the RP-CONF Channel
with Outsourceable Replay Protection

We now look into the setting where a third party who does not possess the
secret-key is responsible for filtering out ciphertext replays (Benchmark 3). In
this setting IND-srp-RCCA security seems too weak, as the algorithm v which the
IND-srp-RCCA game systems use for detecting ciphertext replays (i.e. to check if
two ciphertexts are replays of one another) have access to the secret-key. For this
reason, we will now introduce the IND-prp-RCCA security notion, which is the
analogous of IND-srp-RCCA security for public detection of ciphertext replays.
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Definition 10. A scheme Π = (G,E,D) is IND-prp-RCCA secure if there is an
efficient algorithm v that computes, for each public key pk, an equivalence rela-
tion over ciphertexts c, c′ such that for every pk in the support of G(1k) and every
pair of ciphertexts c, c′, if v (pk, c, c′) = 1 then δ (Dsk (c) ,Dsk (c′)) ≤ negl (k)
(where the randomness is over the internal randomness of D and over the con-
ditional distribution of the secret key sk for the given public key pk accord-
ing to the key-pair distribution of G(1k)), and if no efficient distinguisher D
distinguishes the two IND-prp-RCCA game systems (described ahead) with non-
negligible advantage (in the security parameter k) over random guessing. The
IND-prp-RCCA game systems work just as the IND-srp-RCCA game systems,
except that now the game system does not have to provide the distinguisher with
oracle access to v, as the distinguisher can anyway check whether any two cipher-
texts are related according to v by itself.

Recall that IND-pd-RCCA security was introduced to capture efficient public
detectability of ciphertext replays [8]. However, apart from the technical issues
we already identified with its definition, it turns out to be crucial, like in the
previous section, that the replay detection algorithm computes an equivalence
relation over ciphertexts in order to meet the benchmark.

Just like for IND-srp-RCCA, Definition 10 is written for a PKE scheme
Π = (G,E,D), but by taking the algorithm v required to exist by Definition 10
as a replay-filtering algorithm, we get a PKEPF scheme Π ′ = (G,E,D, v). Cor-
rectness of an IND-prp-RCCA secure PKEPF Π ′ then follows from the correctness
of the corresponding PKE Π = (G,E,D).

Lemma 5. Consider any correct PKE scheme Π = (G,E,D) that is IND-prp-
RCCA secure, and let v be an algorithm with respect to which Π is IND-prp-RCCA
secure. Then, Π ′ = (G,E,D, v) is a correct PKEPF scheme.

We omit the proof of Lemma 5 as it resembles the one of Lemma 4.
Theorem 5 states that the IND-prp-RCCA security of a PKEPF scheme

Π = (G,E,D, F ) suffices for constructing an RP-CONF[n] channel even
when the filtering is run by a third-party without access to the secret
key, i.e. it satisfies Benchmark 3. To prove this, one would have to cre-
ate a simulator σ which internally used F such that any distinguisher D
for encAdecBrpC [AUT[1]B ,AUTC , INS[n],M] and σERP-CONF[n] could be
transformed into an equally good distinguisher for the IND-prp-RCCA game sys-
tems. This result can be obtained along the lines of Theorem 4, whose proof can
be found in the full version of this paper [4].

Theorem 5. Let Π = (G,E,D, F ) be a correct and IND-prp-RCCA secure
PKEPF scheme. There exists an efficient simulator σ and for any n ∈ N there
exists an efficient reduction R such that for every distinguisher D,

ΔD
(
encAdecBrpC [AUT[1]B ,AUTC , INS[n],M], σERP-CONF[n]

)

= ΔDR
(
GIND-prp-RCCA

0 ,GIND-prp-RCCA
1

)
.
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7 Relating the Security Games

In this section we prove all the implications and separations between the game-
based security notions that are depicted in Fig. 1.

Lemma 6. IND-CCA-2 ⇒ IND-prp-RCCA.

Proof. Define v so that v (pk, c, c′) = 1 if and only if c = c′. Note that v satisfies
IND-prp-RCCA security, since if v (pk, c, c′) = 1 then δ (Dsk (c) ,Dsk (c′)) = 0. 
�
Lemma 7. IND-prp-RCCA ⇒ IND-srp-RCCA.

Proof. Any algorithm v that satisfies IND-prp-RCCA also satisfies IND-srp-RCCA
security (where v ignores the secret key sk). 
�

The proof of the following result can be found in [4].

Lemma 8. Any correct and IND-srp-RCCA secure PKE scheme Π is [n]IND-cl-
RCCA secure.

Lemma 9. [n]IND-cl-RCCA ⇒ [n − 1]IND-cl-RCCA.

Proof. Any distinguisher for the [n − 1]IND-cl-RCCA game systems is also a
distinguisher for the [n]IND-cl-RCCA systems with the same advantage. 
�
Lemma 10. [1]IND-cl-RCCA ⇒ IND-RCCA.

Proof. From any distinguisher D for the IND-RCCA game systems we create
a distinguisher D′ for the [1]IND-cl-RCCA game systems: D′ uses D internally
forwarding every query between D and the [1]IND-cl-RCCA game, except for
decryption queries, where it behaves as follows: If, after the challenge plaintexts
m0 and m1 are set, D makes a decryption query of some ciphertext such that
the [1]IND-cl-RCCA game replies with either m0 or m1, then D′ sends test to
D, and otherwise it sends what was output by the IND-RCCA game system. 
�
Lemma 11. IND-RCCA �⇒ [1]IND-cl-RCCA.

Proof. By Theorem 3, [1]IND-cl-RCCA security suffices for achieving Bench-
mark 1 for a single message. By Theorem 1, IND-RCCA does not suffice for
achieving Benchmark 1 for a single message. 
�

For the sake of simplicity, the two following results (Lemmata 12 and 13)
assume the existence of an IND-CCA-2 secure PKE scheme. We note that both
results can be generalized to only assume an [n]IND-cl-RCCA (IND-srp-RCCA,
respectively) secure scheme at the price of having a less elegant proof.

Lemma 12. [n]IND-cl-RCCA �⇒ IND-srp-RCCA.
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Proof. From a IND-CCA-2 secure scheme Π = (G,E,D), we create a scheme
Π ′ = (G′, E′,D′) that is [n]IND-cl-RCCA secure but not IND-srp-RCCA secure.
Π ′ works just as Π except that now during encryption E′ appends a bit 0
to the ciphertexts generated by E, and during decryption, if the last bit of
the ciphertext is 0 then D′ ignores it and decrypts the ciphertext using D, and
otherwise, with 1

2 probability D′ outputs ⊥ and with the remaining 1
2 probability

D′ ignores the last bit and decrypts the ciphertext using D.
Clearly, it is easy to create an algorithm v that suits [n]IND-cl-RCCA

such that no distinguisher has non-negligible advantage in distinguishing the
two [n]IND-cl-RCCA game systems for Π ′ with respect to v: for b ∈ {0, 1},
v (pk, sk, c || 0, c′ || b) = 1 if and only if c = c′. On the other hand, any algo-
rithm v′ that suits IND-srp-RCCA cannot relate ciphertexts c || 0 and c || 1 since
δ (D′

sk (c || 0) ,D′
sk (c || 1)) is not negligible anymore. As such, a distinguisher can

ask for the decryption of c || 1 and use this to distinguish the game systems. 
�
Lemma 13. IND-srp-RCCA �⇒ IND-prp-RCCA.

Proof. From a IND-CCA-2 secure scheme Π = (G,E,D), we create a scheme
Π ′ = (G′, E′,D′) that is IND-srp-RCCA secure but not IND-prp-RCCA secure.
Π ′ works just as Π except that now G′ additionally picks a bit b uniformly at
random and sets the key-pair to be (pk, (sk, b)), where (pk, sk) was the key-
pair generated by G. More, during encryption E′ uses E internally to generate
a ciphertext c and outputs (c, c) as the ciphertext, and during decryption, on
input (c0, c1), D′ uses D internally to decrypt cb (where b is the bit of the secret
key that was sampled by G′).

It is easy to create an algorithm v that suits IND-srp-RCCA such
that no distinguisher has non-negligible advantage in distinguishing the two
IND-srp-RCCA game systems for Π ′ with respect to v: for b ∈ {0, 1},
v (pk, sk, (c0, c1) , (c0′, c1′)) = 1 if and only if cb = cb

′, where b is again the
bit of the secret key.

On the other hand, any algorithm v′ that suits IND-prp-RCCA cannot relate
ciphertext (c, c) with any of the following ciphertexts: (c, c0′), (c, c1′), (c0′, c)
and (c1′, c), where c0

′ and c1
′ are fresh encryptions of 0 and 1 respectively. This

is so since, otherwise, either one could use v′ to break the semantic security
of Π (contradicting that it is IND-CCA-2 secure), or v′ would not be suitable
for IND-prp-RCCA, as one of δ (D′

sk (c, c) ,D′
sk (c, c0′)), δ (D′

sk (c, c) ,D′
sk (c, c1′)),

δ (D′
sk (c, c) ,D′

sk (c0′, c)) and δ (D′
sk (c, c) ,D′

sk (c1′, c)) is not negligible anymore.
As such, a distinguisher can ask for the decryption of these four ciphertexts and
use the outputs to distinguish the IND-prp-RCCA game systems. 
�
Lemma 14. IND-prp-RCCA �⇒ IND-CCA-2.

Proof. Consider an IND-prp-RCCA secure PKE scheme Π = (G,E,D); we create
a scheme Π ′ = (G′, E′,D′) that is IND-prp-RCCA secure but not IND-CCA-2
secure: Π ′ works exactly as Π except that E′ appends a bit 0 to the ciphertexts
generated by E, and during decryption D′ ignores the last bit added by E′ is
ignored. Since Π is IND-prp-RCCA secure, so is Π ′. However, Π ′ is not IND-
CCA-2 secure. 
�
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Abstract. Non-interactive zero-knowledge proofs or arguments allow a
prover to show validity of a statement without further interaction. For
non-trivial statements such protocols require a setup assumption in form
of a common random or reference string (CRS). Generally, the CRS can
only be used for one statement (single-theorem zero-knowledge) such
that a fresh CRS would need to be generated for each proof. Fortu-
nately, Feige, Lapidot and Shamir (FOCS 1990) presented a transfor-
mation for any non-interactive zero-knowledge proof system that allows
the CRS to be reused any polynomial number of times (multi-theorem
zero-knowledge). This FLS transformation, however, is only known to
work for either computational zero-knowledge or requires a structured,
non-uniform common reference string.

In this paper we present FLS-like transformations that work for non-
interactive statistical zero-knowledge arguments in the common random
string model. They allow to go from single-theorem to multi-theorem
zero-knowledge and also preserve soundness, for both properties in the
adaptive and non-adaptive case. Our first transformation is based on the
general assumption that one-way permutations exist, while our second
transformation uses lattice-based assumptions. Additionally, we define
different possible soundness notions for non-interactive arguments and
discuss their relationships.

Keywords: Non-interactive arguments · Statistical zero-knowledge ·
Soundness · Transformation · One-way permutation · Lattices ·
Dual-mode commitments

1 Introduction

In a non-interactive proof for a language L the prover P shows validity of some
theorem x ∈ L via a proof π based on a common string crs chosen by some
external setup procedure. The common requirements are completeness—that
the honest prover is able to convince the verifier V for true statements x—
and soundness—that the verifier will not accept false statements x /∈ L from
c© International Association for Cryptologic Research 2021
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malicious provers. Blum et al. [5] showed that such non-interactive proofs can
also be zero-knowledge [22], saying that a simulator can create a proof π on
behalf of P if it has the ability to place some trapdoor information in crs.

1.1 Flavors of Non-interactive Zero-Knowledge

Non-interactive zero-knowledge protocols come in many variations:

– If the prover is computationally unbounded then one speaks of a NIZK proof
system whereas in arguments or argument systems the prover runs in poly-
nomial time [8].

– Zero-knowledge may be computational (NICZK) or statistical (NISZK) or
even perfect (NIPZK). Note that non-interactive statistical (or perfect) zero-
knowledge for NP requires that the prover is computationally bounded, unless
the polynomial hierarchy collapses [31].

– The common string crs may be uniformly distributed over all bit strings of
a certain length, in which case one speaks of the common random string or,
less frequently, of the uniform reference string model. In any other case the
string may have more structure and one calls it a common reference string
or, sometimes, also public parameter model. In this work, we will focus on
the case where the crs is uniformly distributed.

Another important aspect is the question of when malicious parties choose
their challenge statement x. Both zero-knowledge and soundness come in an
adaptive and in a non-adaptive version. The adaptive versions say that the
adversary may choose the statement x after having seen the common reference
string. For zero-knowledge this means that the simulator must prepare crs inde-
pendently of x and then find a valid proof π after learning a maliciously chosen
x ∈ L. Adaptive soundness says that the malicious prover P∗ first receives crs
and then tries to find a false statement x /∈ L with a convincing proof π.

Remarkably, for soundness one usually merely distinguishes between non-
adaptive and adaptive notions. But there are also different ways how to capture
the fact that a malicious prover P∗ needs to succeed for an invalid statement
x /∈ L. Either one assumes that the prover only outputs invalid statements, thus
excluding some adversaries, or one penalizes the prover and declares it to lose if
it chooses some x ∈ L.1 The penalizing definition implies the exclusive one. We
note that Arte and Bellare [3], in a concurrent work, have proposed a similar
distinction between exclusive and penalizing soundness.

Both notions, exclusive and penalizing soundness, already appeared implic-
itly in the literature, e.g., the work by Blum et al. [7] gives both an adaptive and a
non-adaptive soundness definition in the exclusive setting. Indeed, non-adaptive
soundness in the literature is often cast in this style. In contrast, for adap-
tive soundness nowadays one often encounters the penalizing variant. It seems,

1 We use here the terminology from [4] for the comparable scenario of admissible
decryption queries in chosen-ciphertext security.
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however, that the adaptive/exclusive version is already sufficient for many appli-
cations, e.g., to build universally composable NIZK protocols [26]. We discuss
this in more detail in Sect. 3 when defining the different versions.

1.2 From Single-theorem to Multi-theorem Proofs

In this work we focus on another important property of NIZK, namely, if the
crs can be used only once (bounded or single-theorem) or is applicable for many
proofs (unbounded or multi-theorem). The latter is of course preferable, and
indeed Feige et al. [17,18] show how to generally turn single-theorem NICZK
proofs and arguments into multi-theorem zero-knowledge protocols. We call this
the FLS-transformation.

The idea of the FLS-transformation is to augment the common random string
by an extra uniformly distributed portion crsaux and let the prover for this NP-
language show that “x ∈ L or crsaux is the output of a pseudorandom generator”.
This allows the simulator to create this part crsaux pseudorandomly and use the
generator’s seed as a witness for simulating the or-proof. If the original proof
is zero-knowledge, then it is also witness indistinguishable [19], and then one
cannot distinguish or-proofs generated by the genuine prover with the witness
for x from proofs created by the simulator with the witness for crsaux.

Soundness, on the other hand, is not affected because a random string crsaux
is not pseudorandom, except with exponentially small probability. Hence, for
invalid x the “or” of the statements x /∈ L or “crsaux is pseudorandom” would
not be satisfied either with overwhelming probability. This implies that a prover
would still need to break soundness of the or-protocol.

The FLS-transformation, per se, is only known to work for non-interactive
computational zero-knowledge. The reason is that the pseudorandom string
crsaux of the zero-knowledge simulator is only computationally indistinguish-
able from a truly random string. There exists a folklore “dual version” of the
FLS-transformation for non-interactive perfect (and therefore also statistical)
zero-knowledge, where the crs contains a pseudorandom value by construction.
But this transformation requires a structured, non-uniformly chosen crs, whereas
we are interested in the setting of common random strings. For completeness,
we provide a formal description of that folklore result along our terminology in
the eprint version [20].

It is thus unclear if the FLS-transformation can be used equally smoothly
for statistical zero-knowledge in the common random string model. For exam-
ple, Peikert and Shiehian [32] recently presented a statistical zero-knowledge
argument for NP based on LWE in the common random string model, which is
only zero-knowledge for a single theorem. They therefore asked whether there
is an FLS-like transformation to achieve multi-theorem zero-knowledge in the
statistical case.
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1.3 Known NISZK Constructions

There are only a few known constructions of NISZK and NIPZK protocols for the
general class NP. Groth et al. [25,26] were the first to give a NIPZK argument
for NP based on specific number-theoretic constructions over bilinear groups.
Their protocol achieves multi-theorem adaptive zero-knowledge, but only non-
adaptive/exclusive soundness (although this can be extended to some limited
form of adaptive soundness, called adaptive culpable soundness). It is cast in
the common reference string model.

Abe and Fehr [1] later showed how to achieve NIPZK arguments for NP under
some form of the knowledge-of-exponent assumption. Their protocol achieves
adaptive multi-theorem zero-knowledge and is adaptively sound (in the penaliz-
ing setting). This protocol is again in the common reference string model.

Sahai and Waters [34] show how to build NIPZK arguments for NP based on
indistinguishability obfuscation and one-way functions. Their solution is adap-
tive multi-theorem zero-knowledge and non-adaptively/exclusively sound. It is
designed in the common reference string model.

Peikert and Shiehian [32] constructed NISZK arguments for NP based on
the LWE assumption. Their construction is based on the NIZK framework of
Canetti et al. [9,10] as well as Holmgren and Lombardi [27] which, among others,
constructs a non-adaptively/exclusively sound NISZK argument for NP in the
common random string model. Their protocol is adaptively zero-knowledge for
single theorems. The instantiation of Peikert and Shiehian [32] uses the LWE
assumption to implement the primitives and inherits the characteristics of the
solutions in [9,10,27].

An interesting observation, based on [11, Footnote 13], is that one should
be able to show adaptive soundness for the constructions in [9] when using
the exclusive notion. Noteworthy, Canetti et al. [11] merely claim non-adaptive
soundness, because for the adaptive version they switch to the penalizing variant.
They detail why this notion cannot be achieved with the current construction,
and the point touches precisely the difference between penalizing and exclusive
soundness. Reverting to adaptive/exclusive soundness, the construction may sat-
isfy this weaker level. This gives the interesting twist that the solution by Peikert
and Shiehian [32] may already be adaptively/exclusively sound, such that our
transformation lifts it from single-theorem to multi-theorem (adaptive) zero-
knowledge.

Libert et al. [29] recently showed how to build designated-verifier statistical
zero-knowledge arguments based on the (kernel) k-linear assumption, and how
this construction can also be turned into a public verifiable NISZK argument.
Their public verifiable construction achieves multi-theorem zero-knowledge and
non-adaptive/exclusive soundness in the common reference string model.

In another work, Libert et al. [28] achieve multi-theorem zero-knowledge in
the common random string model. Their protocol provides non-adaptive/non-
uniform soundness, i.e., where one quantifies over all inputs x /∈ L and the
crs is chosen as part of the experiment. We will later argue that in the non-
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adaptive case this notion is equivalent to non-adaptive/exclusive and to non-
adaptive/penalizing soundness for non-uniform provers (Fig. 1).

1.4 Our Results

In this work we show multiple FLS-SZK-transformations which preserve statis-
tical zero-knowledge. Moreover, they allow to preserve non-adaptive or adaptive
zero-knowledge and also inherit the adaptive security of soundness (in the exclu-
sive variant). In detail, we show:

– For statistical zero-knowledge we show how to transform any single-theorem
zero-knowledge NISZK argument for NP-languages into one which is a multi-
theorem zero-knowledge NISZK argument in the common random string
model. This requires only the existence of one-way permutations2.

– For perfect zero-knowledge we show that our transformation can be aug-
mented to preserve perfect zero-knowledge. This, however, comes at the cost
of having a zero-knowledge simulator which runs in expected polynomial-time.

– Finally, we show that we can build a transformation for statistical zero-
knowledge from the Learning with Errors (LWE) assumption in the common

Fig. 1. Comparison of different multi-theorem NIZK schemes. The entries marked with
* are actually transformations for the single-to-multi-theorem cases.
2 Note that we define one-way permutations as one-way functions that are 1-1 and

length-preserving, not as a family of such functions.
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random string model. This transformation, in contrast to the construction by
Libert et al. [28], even works for adaptively sound NISZK arguments. This fits
in nicely with the recent construction of statistical zero-knowledge arguments
based on LWE [32].

– Additionally, we define and discuss the different soundness properties for non-
interactive arguments and analyze their relationship. In particular, we show
that in the non-adaptive case, the notions of exclusive, penalizing, and non-
uniform soundness are all equivalent when considering non-uniform provers.

Our techniques for the constructions based on general assumptions uses a
“dual” version of the original FLS-transformation. That is, instead of building
the or-language for crsaux being pseudorandom, we use that crsaux is not pseu-
dorandom. Since this is in general a coNP-language we need to make sure that
it is also in NP. We achieve this by using the Blum-Micali-Yao pseudorandom
generator [6,35] based on one-way permutations and hardcore bits, which lies
in NP∩ coNP. Soundness for our dual FLS-transformation then follows since we
can let the malicious prover run on a pseudorandom string crsaux instead, since
this is indistinguishable for the efficient prover in an argument. Then the or of
the two statements, x ∈ L or crsaux is not pseudorandom, is again not satisfied.

The construction based on LWE is inspired by a primitive called dual-mode
commitment scheme, i.e., a commitment which can be either perfectly-binding
or statistically-hiding, based on the choice of how to generate the public key.
The public keys for both modes are computationally indistinguishable. We note
that the usefulness of such dual-mode commitments for non-interactive zero-
knowledge is well known, starting with the work by Groth et al. [25] where this
technique was called parameter switching, to recent efforts like the construc-
tion of Libert et al. [29]. Most times, however, the solutions work over certain
structures and yield arguments in the common reference string model.

Here, we use a construction of Gorbunov et al. [23] to build these dual-mode
commitments where the (statistically-hiding) public key and a commitment can
be chosen as uniform bit strings. As in the FLS-transformation we extend the
CRS by a public key string pk and a random commitment string c and extend the
language to “x ∈ L or c is a commitment to 1”. For the simulator, we choose our
public key to be statistically-hiding. In our construction, a statistically-hiding
public key will be statistically close to a uniformly random string and indeed
generate a commitment to the value 1.

However, for the soundness game we exchange the public key pk for a
perfectly-binding one and change the commitment to 0, thereby forcing the mali-
cious prover to prove x to be in L. We emphasize that we only switch between
these modes and merely require computational indistinguishability of the dif-
ferent types of public keys. In particular, we do not need to rely on the SIS
assumption as considered in [23] but, as pointed out in [13], the LWE assump-
tion suffices. Indeed, one could directly use Regev’s LWE encryption scheme [33]
which also supports a statistically-hiding, lossy mode.
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1.5 Squeezing in into Possibility and Impossibility Results

There are some known impossibility results for statistical and perfect zero-
knowledge arguments. Strictly speaking, these results do not infringe with our
results here, since we show how to transform statistical zero-knowledge argu-
ments (from single to multiple theorems) but do not give constructions. Still,
one may wonder if the combination of our transformations with the impossibil-
ity results have any implications on potential constructions.

Abe and Fehr [1] were the first to show that NISZK arguments cannot be
proven to be adaptively sound via so-called direct black-box reductions, unless
the language is in P/poly. One property which such direct reductions has is that
one can use an efficient alternative to the crs generator which in addition outputs
the simulator’s trapdoor information (property II.(b) in [1]). Our construction,
however, bypasses this property because for the soundness proof it generates a
bad crs which does not have a trapdoor. In this sense, our technique indicates
that the notion of direct black-box reductions may be too restrictive.

Pass [30], using similar ideas and techniques as [1], shows that adaptive statis-
tical and perfect zero-knowledge arguments with adaptive soundness cannot be
based on hard primitives via black-box reductions. How does the result of Pass
[30] match our results? First we remark that our NIPZK is indeed adaptively
sound and adaptively zero-knowledge. But the simulator only runs in polyno-
mial time averaged over its internal randomness. Such simulators escape the
results in [30].

Yet, the most striking difference between the results in [1,30] and our trans-
formations lies in the distinct notions of adaptive soundness. We show that our
transformations preserve adaptive/exclusive soundness. Opposite to that, the
impossibility results of [1,30] rely on the ability of the malicious prover to occa-
sionally output theorems x ∈ L. Put differently, they rule out the stronger form of
adaptive/penalizing sound arguments, whereas we argue that adaptive/exclusive
soundness is preserved. As remarked above, however, adaptive/exclusive sound
arguments may still be sufficient for applications.

1.6 Concurrent Work

As mentioned earlier, Arte and Bellare [3] have touched upon the issue of different
soundness notions in non-interactive proofs as well. Their starting point are dual-
mode systems in which the common reference string can be generated in two
modes, and in how far such systems allow for transference of security properties
in the different modes. Our work instead focuses on the transformations for
multi-theorem statistical zero-knowledge arguments.

Arte and Bellare define notions of penalizing and exclusive soundness, called
SND-P and SND-E, with which our adaptive notions for soundness coincide (for
efficient provers).3 Remarkably, they show a separating example of their exclu-
sive and penalizing soundness notion in the adaptive case, under the decisional
3 Strictly speaking, their notion of exclusiveness allows for a negligible error which

could be integrated in our notion as well.
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Diffie-Hellman assumption. This example applies to our notions in the adap-
tive setting as well. We complement this result by showing that the notions are
equivalent in the non-adaptive case, assuming non-uniform provers.

Another notably difference between the two works lies in the applications
of the different soundness notions. Arte and Bellare discuss the example of the
Bellare-Goldwasser signature scheme where penalizing soundness is required and
exclusive soundness is insufficient. We argue along the implication of culpability
that exclusive soundness may suffice in many settings.

2 Preliminaries

An NP-relation R consists of pairs (x, ω) of theorems and witnesses where
the length of witness is polynomially bounded in the length of the theorem,
and where one can efficiently decide membership. More formally, there exists a
polynomial-time Turing machine MR and a polynomial pR such that

R = {(x, ω) | |ω| ≤ pR(|x|) ∧ MR(x, ω) = 1} .

The induced language LR is given by

LR = {x ∈ {0, 1}∗ | ∃ω : (x, ω) ∈ R} .

2.1 Non-interactive Arguments

A non-interactive argument or proof system for an NP-relation is now a protocol
in which the setup algorithm Setup generates a common string crs which the
prover P then uses to generate a proof π for the input (x, ω). The verifier V then
checks this proof against crs and x only. There are some length restrictions, of
course, namely that the length of the theorem x determines the length of the com-
mon string. In particular, we assume that there is a polynomial pSetup such that
crs ∈ {0, 1}pSetup(n) for any crs $← Setup(1n). Let R(1n) = {(x, ω) ∈ R | |x| = n}
and LR(1n) = {x ∈ LR | |x| = n} denote the restriction of inputs of the relation
and language with length |x| = n such that the length of the common string for
such inputs is given by pSetup(n). Note that the verifier can easily check that |x|
matches the security parameter n such that we can assume that this is always
the case.

We note that the string crs generated by Setup may be uniformly distributed,
in which case we speak of a common random string. It may have a different
distribution, in which case we call it a common reference string. In particular,
we see a common random string as a special case of a common reference string.

The usual completeness notion of non-interactive arguments and proofs asks
that the verifier V accepts genuine proofs π generated by the prover P for input
x ∈ LR. Soundness, on the hand, demands that the verifier does not accept false
proofs generated by a malicious prover P∗ for inputs x /∈ LR. As explained in
the introduction there are various possibilities to define soundness, which we will
discuss in Sect. 3, and just use one example of the possible definitions here.
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Definition 1 (Non-interactive Argument). A non-interactive argument for
an NP-relation R (in the common reference string model) is a triple of proba-
bilistic polynomial-time algorithms Π = (Setup,P,V) satisfying the completeness
and soundness condition:
(Perfect) Completeness: For every n ∈ N, every (x, ω) ∈ R(1n), every crs $←

Setup(1n), every π
$← P(1n, x, ω, crs) we have that V(1n, x, π, crs) = 1 with

probability 1.
(Non-adaptive/Exclusive) Soundness: For every (possibly malicious) prob-

abilistic polynomial-time prover P∗ outputting only x /∈ LR there exists a
negligible function ε(n) such that for every n ∈ N we have

Pr [V(1n, x, π, crs) = 1] ≤ ε(|x|),

where the probability is over (x, st) $← P∗(1n), crs $← Setup(1n), as well as
π

$← P∗(1n, st, crs), and V’s randomness.
We say that the argument is in the common random string model if Setup(n)
outputs uniformly distributed strings over {0, 1}pSetup(n) for every n ∈ N.

2.2 Zero-knowledge
We next define zero-knowledge with the usual notion of a simulator ZKSim. In
the non-interactive setting this algorithm has the advantage to choose the com-
mon string crs to simulate proofs. In the bounded case the distinguisher only
gets to see a single proof for a chosen theorem, where the proof is either gen-
uine or fabricated by the simulator. We simultaneously define the single-theorem
and multi-theorem case where the distinguisher learns one or many (genuine or
simulated) proofs. We first define both cases in the adaptive setting where the
distinguisher selects the theorems in dependence of the common string and of
previous proofs and in the non-adaptive case where the distinguisher chooses
the statement(s) in advance. We stress that we are interested in statistical zero-
knowledge here such that the distinguisher is unbounded, except that it can only
ask for polynomially many proofs. We also allow the simulator to run in expected
polynomial time in specially marked cases.

Definition 2 (Statistical and Perfect Zero Knowledge). Let R be an NP-
relation and let Π = (Setup,P,V) be a non-interactive argument for R. The
argument is zero-knowledge if it satisfies one of the following properties:
Non-adaptive Multi-theorem Zero-knowledge: For any unbounded algo-

rithm D there exists a probabilistic algorithm ZKSim, the simulator, running
in (expected) polynomial time, such that the advantage

AdvnaSZKΠ,ZKSim,D(1n) := Pr
[
ExptnaSZKΠ,ZKSim,D(1n) = 1

]
− 1

2
is negligible for polynomially bounded q, where experiment ExptnaSZKΠ,ZKSim,D(1n)
is defined in Fig. 2. If the advantage of any such D is always 0 then the
argument is called perfect zero-knowledge.
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Fig. 2. Non-adaptive and adaptive statistical zero-knowledge experiments.

Adaptive Multi-theorem Zero Knowledge: For any unbounded algorithm
D there exists a probabilistic algorithm ZKSim, the simulator, running in
(expected) polynomial time, such that the advantage

AdvaSZKΠ,ZKSim,D(1n) := Pr
[
ExptaSZKΠ,ZKSim,D(1n) = 1

]
− 1

2

is negligible for polynomially bounded q, where experiment ExptaSZKΠ,ZKSim,D(1n)
is defined in Fig. 2. If the advantage of any such D is always 0 then the
argument is called perfect zero-knowledge.

The argument is single-theorem zero-knowledge of the corresponding type if the
property holds for q = 1.

Definition 3 (Statistical Witness Indistinguishability). Let R be an NP-
relation. A non-interactive argument Π = (Setup,P,V) for R is called statistical
witness indistinguishable (NISWI) if it satisfies one of the following properties:

Non-adaptive Multi-theorem Witness Indistinguishability: For any
unbounded algorithm D the advantage

AdvnaSWI
Π,D (1n) := Pr

[
ExptnaSWI

Π,D (1n) = 1
]

− 1
2

is negligible for polynomially bounded q, where the experiment ExptnaSWI
Π,D (1n)

is defined in Fig. 3. If the advantage of any such D is always 0 then the
argument is called perfect witness indistinguishable.



Single-to-Multi-theorem Transformations 215

Fig. 3. Non-adaptive and adaptive statistical witness indistinguishability experiments.

AdaptiveMulti-theoremWitness Indistinguishability: For any unbounded
algorithm D the advantage

AdvaSWI
Π,D (1n) := Pr

[
ExptaSWI

Π,D (1n) = 1
]

− 1
2

is negligible for polynomially bounded q, where the experiment ExptaSWI
Π,D (1n) is

defined in Fig. 3. If the advantage of any such D is always 0 then the argument
is called perfect witness indistinguishable.

The argument is single-theorem witness indistinguishable of the corresponding
type if the property holds for q = 1.

2.3 From Single-Theorem Zero-Knowledge to Multi-Theorem
Witness Indistinguishability

We repeat here the well known fact that zero-knowledge implies witness indis-
tinguishability, and that witness indistinguishability is closed under repetitions
[19]. We state the results here for sake of completeness and according to our
terminology in the statistical setting.

Lemma 1. Any adaptive resp. non-adaptive single-theorem NISZK argument is
also an adaptive resp. non-adaptive single-theorem NISWI argument.

Proof (Sketch). We only argue the adaptive case; the non-adaptive case follows
analogously. We can perform a game hop starting with the witness-indistinguish-
ability experiment ExptaSWI

Π,D (1n). In this hop we replace the CRS and both proofs
π0 and π1 in each iteration by simulated ones, all created by the simulator ZKSim
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without knowledge of the witnesses ω0 and ω1 but using the same trapdoor. Note
that we can view the proofs in the WI experiment as two sequentially requested
proofs in the ZK experiment, such that the SZK property ensures that this hop
is statistically indistinguishable. (In the non-adaptive case we would split each
entry (xi, ωi,0, ωi,1) in D’s initial choice into two entries (xi, ωi,0) and (x, ωi,1).)

But now both proofs π0 and π1 are created without the specific witness, and
since the simulator does not update its state for giving proofs, the order in which
the proofs are computed is irrelevant. In this case the bit b is perfectly hidden
from the distinguisher such that the advantage in predicting b is 0. �	
Lemma 2. Any adaptive resp. non-adaptive single-theorem NISWI argument is
also an adaptive resp. non-adaptive multi-theorem NISWI argument.

Proof (Sketch). We again only discuss the adaptive case since the non-adaptive
case follows analogously. The proof follows by a hybrid argument. For this we
reduce the multi-theorem distinguisher D to a bounded one D1 which only
makes one query. Let Q(n) be a polynomial upper bound on the number of
queries q which D makes. The bounded distinguisher D1 initially picks an index
i

$← {1, 2, . . . ,Q(n)} and then internally runs in the first stage (Line 5) the dis-
tinguisher D up to the i-th query (stD, x, ω0, ω1). All requested proofs up to this
step are computed internally by D1 via P and the left witness, and returned to
D. The i-th query is then computed externally, and D1 then hands the proof
back to D. In the final steps till halting, D1 computes the remaining proofs for
ω1, and eventually returns D’s decision bit d unchanged.

It can be shown that the advantage of the bounded distinguisher D1 is at
most a factor Q(n) larger than the one of D. Since Q(n) is polynomial, the
difference is negligible. �	

3 Soundness of Non-interactive Arguments

Soundness of a non-interactive argument assures that a (computationally-bound)
malicious prover is unable to convince the verifier of a false statement. Com-
monly, soundness is defined in two variants: Adaptive soundness, with allows
the (possibly malicious) prover P∗ to chose the statement to prove x before see-
ing the common random string crs, and non-adaptive soundness, in which the
prover P∗ has to decide on the statement x before the common random string
crs is generated.

Remarkably, there is another dimension of definitional choice for soundness
which often goes unnoticed in the literature. This dimension refers to the ques-
tion how we measure success of the malicious prover. Clearly, the malicious
prover should not make the verifier accept for a statement x not in the language.
But there are two possibilities to capture the non-membership requirement. One
is to disallow P∗ to output x ∈ L at all. The other one is to declare P∗ to lose if
it picks x ∈ L. Following the work of Bellare et al. [4] about the question how
to deal with inadmissible decryption queries in CCA-secure encryption schemes,
we call the former stipulation of P∗ outputting only x /∈ L exclusive, because it
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excludes certain adversaries. The latter is called penalizing as it punishes P∗ if
it chooses x ∈ L.

3.1 Soundness Definitions

In total, we define five soundness notions: adaptive vs. non-adaptive, and exclu-
sive vs. penalizing, as well as a non-uniform variant that only exists for the
non-adaptive case. We typically speak of non-adaptive/exclusive and adap-
tive/penalizing soundness etc. to distinguish the different types. Figure 4 pro-
vides an overview. It is also easy to see that adaptive soundness implies non-
adaptive soundness in both settings, and penalizing soundness implies exclusive
soundness in any of the other dimensions. The latter is easy to see because any
malicious prover P∗ breaking exclusive soundness must output x /∈ L such that
this prover also satisfies the winning condition in the penalizing setting. In this
chapter, we highlight the further connections between these definitions and their
implications.

The difference between exclusive and penalizing soundness may appear to
be insignificant. Indeed, for non-interactive proofs it is folklore to show that
the weakest one of the five notions, non-adaptive/exclusive soundness, implies
the strongest one, adaptive/penalizing soundness. See for instance [21]. This
may explain why today’s literature mostly distinguishes between the (exclusive)
non-adaptive notion and the (penalizing) adaptive notion. An exception is the
seminal paper by Blum et al. [7] which defines the adaptive version according
to the exclusive dimension (without using our terminology here, of course). We
emphasize, however, that the equivalence of all notions is not known to hold for
non-interactive arguments.

Is a more fine-grained distinction between exclusive and penalizing soundness
in arguments necessary? We argue that it is. Roughly, the difference is that in
the exclusive case the malicious prover (and any other party) knows that its
output is not in the language, in the penalizing case even the prover may itself
be oblivious about this. This is an important ingredient in Pass’ impossibility
result to build adaptive sound and adaptive statistical zero-knowledge arguments
based on black-box reductions [30]. The result crucially relies on the malicious
prover choosing a (random or pseudorandom) statement for which it does not
know the status. In other words, this impossibility results rules out the strongest
form of adaptive/penalizing soundness.

We next argue that the weaker form of adaptive/exclusive soundness is very
relevant. It is easy to see that this notion implies a slightly weaker notion of
adaptive/culpable soundness [26]. This notion is similar to our definition of adap-
tive/exclusive soundness, but also requires the malicious prover to output an
efficiently verifiable witness (denoted ωguilt in [26]) that the statement x is not
in the language L. Our exclusive notion asks P∗ to output x /∈ L. We prove the
implication that adaptive/exclusive yields adaptive/culpable soundness formally
in Sect. 3.3.

The noteworthy fact is that adaptive/culpable soundness suffices for many
applications. One of the most important ones is the possibility to derive
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Fig. 4. Different notions of soundness.

universally composable NIZK argument [26]. Other applications include correct-
ness proofs for shuffles [14,15,24] or for e-voting [12]. Since adaptive/exclusive
soundness implies adaptive/culpable soundness, any protocol satisfying the
exclusive notion is also applicable in such settings.

We can now define arguments with the different soundness properties:

Definition 4 (Soundness of non-interactive Arguments). A non-
interactive argument for an NP-relation R (in the common reference string
model) is a triple of probabilistic polynomial-time algorithms Π = (Setup,P,V)
satisfying the completeness as well as at least one of the soundness conditions:
Non-adaptive/Exclusive Soundness: For every (possibly malicious) prob-

abilistic polynomial-time prover P∗ outputting only x /∈ LR there exists a
negligible function ε(n) such that for every n ∈ N we have

Pr [V(1n, x, π, crs) = 1] ≤ ε(|x|),
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where the probability is over (x, st) $← P∗(1n), crs $← Setup(1n), as well as
π

$← P∗(1n, st, crs), and V’s randomness.
Non-adaptive/Penalizing Soundness: For every (possibly malicious) proba-

bilistic polynomial-time prover P∗ there exists a negligible function ε(n) such
that for every n ∈ N we have

Pr [V(1n, x, π, crs) = 1 ∧ x /∈ LR ] ≤ ε(|x|),

where the probability is over (x, st) $← P∗(1n), crs $← Setup(1n), as well as
π

$← P∗(1n, st, crs), and V’s randomness.
Adaptive/Exclusive Soundness: For every (possibly malicious) probabilistic

polynomial-time prover P∗ outputting only x /∈ LR there exists a negligible
function ε(n) such that for every n ∈ N we have

Pr [V(1n, x, π, crs) = 1] ≤ ε(|x|),

where the probability is over crs $← Setup(1n), (x, π) $← P∗(1n, crs), and V’s
randomness.

Adaptive/Penalizing Soundness: For every (possibly malicious) probabilistic
polynomial-time prover P∗ there exists a negligible function ε(n) such that for
every n ∈ N we have

Pr [V(1n, x, π, crs) = 1 ∧ x /∈ LR ] ≤ ε(|x|),

where the probability is over crs $← Setup(1n), (x, π) $← P∗(1n, crs), and V’s
randomness.

Non-adaptive/Non-uniform Soundness: For every (possibly malicious)
probabilistic polynomial-time prover P∗ there exists a negligible function ε(n)
such that for every n ∈ N and every x 
∈ LR with |x| = n, we have

Pr [V(1n, x, π, crs) = 1 ∧ x /∈ LR ] ≤ ε(|x|),

where the probability is over crs $← Setup(1n), and π
$← P∗(1n, x, crs), and

V’s randomness.

3.2 Equivalence of the Non-adaptive Soundness Notions

We now show that the non-adaptive soundness definitions are all equivalent if
we allow the malicious provers to be non-uniform:

Theorem 1. For non-uniform (malicious) provers, a non-interactive argument
Π = (Setup,P,V) has non-adaptive/exclusive soundness iff it has non-adaptive/-
non-uniform soundness, and has non-adaptive/non-uniform soundness iff it has
non-adaptive/penalizing soundness.
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Proof. Non-adaptive/exclusive soundness follows directly from non-adaptive/pe-
nalizing soundness, therefore we only show that non-adaptive/non-uniform
soundness follows from non-adaptive/exclusive soundness and that non-
adaptive/penalizing soundness follows from non-adaptive/non-uniform sound-
ness.

We start by showing non-adaptive/non-uniform soundness follows from non-
adaptive/exclusive soundness. Let Π = (Setup,P,V) be the non-interactive argu-
ment in question. Assume that there exists a successful malicious prover P∗

na/nu

against the non-adaptive/non-uniform soundness, i.e., for any negligible function
ε(n) there exists an x /∈ L such that

Pr
[
V (crs, x,P∗

na/nu(crs, x))
]

> ε(|x|),

where the probability is over crs $← Setup(1n), as well as P ∗
na/nu’s and V’s

randomness. We can now construct a malicious prover P∗
na/ex against non-

adaptive/exclusive soundness as follows: We define the first-stage algorithm
P∗

na/ex,1(1n) to choose x /∈ L of length n non-uniformly, such that P ∗
na/nu’s

success probability is maximized. The state st is left empty. Further, the second-
stage algorithm P∗

na/ex,2 merely calls P∗
na/nu internally, ignoring the state st.

Then, the success probability of P∗
na/ex is at least as large as the one of P∗

na/nu

and thus non-negligible.
Next, we show that non-adaptive/penalizing soundness follows from non-

adaptive/non-uniform soundness. Assume that there exists a successful mali-
cious prover P∗

na/pn against the non-adaptive/penalizing soundness, i.e., for any
negligible function ε there exists an n ∈ N such that

Pr[V(crs, x, π) = 1 ∧ x /∈ L)] > ε(n),

where the probability is over (x, st) $← P∗
na/pn,1(1n), crs $← Setup(1n), π

$←
P∗

na/pn,2 as well as V’s internal randomness.
We can now construct a malicious prover P∗

na/nu against non-adaptive/non-
uniform soundness as follows: For each input length n, we fix the pair (x̄, s̄t),
x̄ ∈ {0, 1}n, x̄ /∈ L, on which P∗

na/pn,2’s success probability is maximized (we
bound the length of s̄t by P∗

na/pn,1’s running time). Next we define P∗
na/nu as

follows: On input x, P∗
na/nu checks whether x equals x̄, and if that is the case, it

internally calls P∗
na/pn,2(crs, x̄, s̄t) to generate a proof. Otherwise, P∗

na/nu returns
an empty proof. Note that we use the non-uniformity to save the sequence of
(x̄, s̄t) for each input length. It is again easy to see that this prover is indeed a
successful malicious prover against non-adaptive/non-uniform soundness. �	

For adaptive soundness, Arte and Bellare [3] showed that there exists a pro-
tocol that provides adaptive/exclusive soundness but not adaptive/penalizing
soundness. This indicates that a NISZK protocol with adaptive/exclusive sound-
ness might indeed be achievable, compared to one with adaptive/penalizing
soundness, for which Pass [30] showed a black-box impossibility result.
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3.3 Exclusive Soundness Implies Culpable Soundness

In this section we show that adaptive/exclusive soundness implies the notion
of adaptive/culpable soundness of [26]. We first recall the definition of culpable
soundness (according to our terminology). For an NP-relation R let Rguilt be
an NP-relation for the complement of LR, i.e., x /∈ LR means that there is a
polynomial size ωguilt such that (x, ωguilt) ∈ Rguilt. Note that the relation Rguilt
is efficiently verifiable as an NP-relation (and LR is therefore in co-NP).

Definition 5 (Adaptive/Culpable Soundness). A non-interactive argu-
ment (Setup,P,V) for an NP-relation R (in the common reference string model)
has adaptive culpable soundness if for any PPT algorithm P∗

culp there exists a
negligible function ε such that

Pr [V(1n, x, π, crs) = 1 ∧ (x, ωguilt) ∈ Rguilt ] ≤ ε(n),

where the probability is over crs $← Setup(1n), (x, π, ωguilt)
$← P∗

culp(1n, crs), and
V’s internal randomness.

Proposition 1. A non-interactive argument (Setup,P,V) for an NP-relation R
(in the common reference string model) which has a corresponding relation Rguilt
and is adaptive/exclusive sound is also adaptive/culpable sound.

Proof. Assume that we have a successful prover P∗
culp against culpable sound-

ness. We construct a malicious prover P∗
ex against exclusive soundness as fol-

lows. P∗
ex receives as input crs and forwards this to P∗

culp which, then, outputs
(x, π, ωguilt). Our prover P∗

ex checks in polynomial time if (x, ωguilt) ∈ Rguilt. If
not it immediately outputs ⊥, else it returns (x, π).

Note that since we interpret outputs ⊥ as ⊥ /∈ LR our prover P∗
ex only

outputs values not in the language. It is thus an admissible attacker against
exclusive soundness. Furthermore, P∗

culp can only win for x /∈ LR such that only
outputting (x, π) for those x cannot decrease the success probability. This yields
that P∗

ex has the same success probability as P∗
culp. �	

4 Constructions Based on General Assumptions

4.1 Multi-theorem NISZK Based on One-Way Permutations

Our approach uses the same idea as in [17] of having crsaux, but we apply it
in a dual way. That is, we use a language saying that crsaux is not pseudoran-
dom. Since this is in general a coNP-relation we use the Blum-Micali-Yao [6,35]
generator for one-way permutations,

G(s) = f |s|(s)‖ hb(s)‖ hb(f(s))‖ . . . ‖ hb(f |s|−1(x)),

where s is the seed of length |s| = n, f is a one-way permutation, f i(s) the i-fold
iteration of f for input s, and hb is a hardcore bit for f . Proving that a string
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crsaux is not in the range of G is easy if one presents the unique seed s such
that the first bits are equal to f |s|(s) and that the remaining bits are not the
hardcore bits.

For our simulator we can thus generate a perfectly distributed common ran-
dom string by picking s randomly, computing G(s), and randomly flipping the
hardcore bits:

crsaux ← G(s) ⊕ 0|s|‖t

where each bit ti
$← {0, 1} in t = t1‖ . . . ‖t|s| is chosen uniformly and indepen-

dently. Unless all ti’s are 0 —which happens with probability 2−|s|— this gives
the simulator a witness for crsaux not being pseudorandom in form of s, t. If
t = 0|s| the we let the simulator abort. This unlikely event of all ti’s being 0
causes our simulator to be statistical zero-knowledge instead of being perfect
zero-knowledge.

For the malicious prover in the soundness game we will hand over a pseu-
dorandom string G(s) instead of a truly random one. For the bounded prover
this is computationally indistinguishable. But then the prover does not have a
witness for the or-part and would thus need to break soundness of the other
protocol part for x /∈ LR. This step preserves any exclusive soundness notion
but not penalizing soundness, because we need to be able to detect diverging
success behavior of the prover in the two cases (which we may not necessarily
be able to in the penalizing setting since we cannot check if x is in the language
or not).

Below we formally define the augmented language Lor
R as

Lor
R =

{
(x, y)

∣∣∣ ∃ω : (x, ω) ∈ R ∨ ∃s, t ∈ {0, 1}�|y|/2� : y = G(s) ⊕ 0|s|‖t, t 
= 0|s|
}

and the corresponding relation Ror accordingly. Note that this is an NP-
relation such that, if we have any single-theorem statistical NIZK for gen-
eral NP-relations, then we also have an multi-theorem statistical witness-
indistinguishable argument for this relation Ror.

For pseudorandomness of G we consider for any probabilistic polynomial-
time algorithm D the probability that D(1n, yb′) = b′ where the probability
is taken over b′ $← {0, 1}, y0 ← G(s) for s

$← {0, 1}n, y1
$← {0, 1}2n. Let

AdvPRG
G,D (1n) := Pr [D(1n, yb′) = b′] − 1

2 be D’s advantage. We say that G is a
pseudorandom generator if for any probabilistic polynomial-time algorithm D
this advantage is negligible. Note that the Blum-Micali-Yao generator based on
a one-way permutation f achieves this property.

Construction 2 (SZK-FLS-Transformation). Let R be an NP-relation. Let
f be a one-way permutation and Πor = (Setupor,Por,Vor) be a multi-theorem
non-interactive statistical witness-indistinguishable argument for the NP-relation
Ror. We construct a multi-theorem non-interactive statistical zero knowledge
argument Π = (Setup,P,V) for R as follows (see also Fig. 5):
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Fig. 5. SZK-FLS-Transformation for multi-theorem NISZK argument (additional input
1n omitted for Por and Vor for space reasons).

CRS: We define the sampling algorithm Setup(1n) for the common random string
crs for our construction as

Setup(1n) = Setupor(1n)‖U2n,

where U2n is the uniform distribution on all 2n-bit strings.
Prover: The prover P, receiving 1n, crs = crsor||crsaux, x and ω (for R) as

input, uses (x, crsaux) and ω for the augmented relation Ror and computes a
witness-indistinguishable proof πor for this NP-relation using the string crsor.

Verifier: The verifier V receives 1n, crs = crsor‖crsaux, x, and a proof πor for
Ror. The verifier accepts iff Vor(1n, (x, crsaux), πor, crsor) accepts.

Theorem 3. Let R be an NP-relation. Assuming that Πor = (Setupor,Por,Vor)
is a non-interactive statistical single-theorem zero-knowledge argument for Ror

and that f is a one-way permutation, the non-interactive argument system
Π = (Setup,P,V) in Construction 2 is a multi-theorem statistical zero-
knowledge argument. Furthermore, if the underlying protocol Πor is (non-
adaptively resp. adaptively) exclusively sound, then so is the derived protocol
Π; if Πor is adaptive resp. non-adaptive zero-knowledge, then so is Π.

Proof. (Perfect) Completeness: Note that the verifier V accepts a genuine proof
πor $← P(1n, x, ω, crs) for original data crs = crsor‖crsaux $← Setup(1n) and
x ∈ LR if and only if Vor accepts πor for (x, crsaux) under crsor. The latter is
always true since x ∈ LR such that the pair (x, crsaux) of the or-relation is also
in Lor

R, the output of P is given by the output of Por for valid input, and the
verifier Vor accepts genuine proofs of Por.

Non-adaptive/Exclusive Soundness: Assume that Πor is non-adaptively/exclusi-
vely sound. Our argument to show that Π, too, has this property is as follows.
We will first substitute the “real” common random string by one in which the
augmented component crsaux is always in the range of the pseudorandom gen-
erator G. This will be indistinguishable for the bounded prover P∗ such that
P∗ outputs a valid proof with roughly equal probability for pseudorandom G.
In this step we exploit the property of non-adaptive/exclusive soundness that
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x /∈ LR is chosen before crs. But then the or-language does not have a witness for
either part, such that the malicious prover would have to break (non-adaptive)
exclusive soundness of the protocol for Ror.

More formally, let crs be a CRS generated as described above and crsG an
artificial CRS generated as

crsG ← Setupor(1n)||G(s),

where s is chosen uniformly from {0, 1}n. In a first game hop we argue that a
successful malicious prover P∗ for such a CRS is almost as successful as for a
genuine one, that is,

Pr [V(1n, x, π, crs) = 1] ≈ Pr [V(1n, x, π, crsG) = 1]

are negligibly close, where the probability is over (x, st) $← P∗(1n), crs $←
Setup(1n) and π

$← P∗(1n, st, crs) and V’s randomness in the first case,
and accordingly over (x, st) $← P∗(1n), crsG

$← Setupor(1n)||G(s), π
$←

P∗(1n, st, crsG) and V’s randomness in the second case.
We show the indistinguishability by defining a distinguisher D against the

pseudorandom generator G. For security parameter n the distinguisher receives
a string y ∈ {0, 1}2n as input, either picked uniformly at random, or being
the output of the pseudorandom generator. The distinguisher then invokes the
prover and verifier to decide:

D(1n, y)

(x, st) $← P∗(1n)

crsor $← Setupor(1n)
crs ← crsor‖y

π
$← P∗(1n, st, crs)

return V(1n, x, π, crs)

We claim that the distinguishing advantage bounds the difference between
the two games, where G0 is the original soundness game (with output 1 indicating
that P∗ has won) and G1 describes the game where we use the artificial string
crsG instead. Since the two games correspond syntactically to the cases that the
distinguisher receives a random y resp. a pseudorandom y we get:

Pr[G0(1n) = 1] − Pr[G1(1n)] ≤ 2 · AdvPRG
G,D (1n).

Next we turn the malicious prover P∗ in G1 against non-adaptive/exclusive
soundness against the unbounded scheme Π into one of the same type for the
augmented scheme Πor. Note that we are guaranteed that P∗ always outputs
x /∈ LR by assumption. Our prover P∗

or against Πor works as follows:
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P∗
or(1n)

(x, st) $← P∗(1n)

s
$← {0, 1}n

crsaux ← G(s)
stor ← (st, crsaux)
return ((x, crsaux), stor)

P∗
or(1n, stor, crsor)

// stor = (st, crsaux)

crs ← crsor||crsaux

π
$← P∗(1n, st, crs)

return π

We first observe that, if P∗ always outputs x /∈ LR, then our prover P∗
or

always outputs (x, crsaux) /∈ Lor
R. This holds as the string crsaux is pseudorandom

such that neither condition of the or-language is satisfied. In addition, P∗
or is

efficient. Hence, P∗
or is also an admissible attacker against non-adaptive/exclusive

soundness, this time against Lor
R.

We conclude that, by the soundness of Πor, the success probability of prover
P∗
or must be negligible. But because P∗

or has the same success probability as P∗

in G1 it follows that the winning probability of P∗ in G1 must also be negligi-
ble. Since this success probability is negligibly close to the one of P∗ in G0 by
the pseudorandomness of G, we derive that P∗ success probability against our
derived protocol Π must be negligible.

Adaptive/Exclusive Soundness: The proof in the adaptive case follows exactly as
in the non-adaptive case. Only this time P∗ chooses x /∈ LR after seeing crs. But
both the distinguisher D against the pseudorandomness D, as well as the prover
P∗
or against soundness, can assemble the common random string before P∗ selects

x. It follows as before that the probability of P∗
or against adaptive/exclusive

soundness of Πor and thus the one of P∗ against Π must be negligible.

Zero Knowledge: The simulator ZKSim works as follows: On input 1n it first
generates crs = crsor||crsaux, where crsor $← Setupor(1n) and crsaux is sampled as

crsaux ← G(s) ⊕ 0|s|‖t

for s, t chosen uniformly from {0, 1}n. Note that since f is a permutation this
CRS has the same distribution as a truly random string. If t = 0|s| then the
simulator immediately aborts. Else it outputs crs as the common random string
and (s, t) as state stZKSim. When receiving a (valid) theorem x ∈ LR the simulator
runs the prover Por for Ror on input 1n, (x, crsaux), crsor and witness (s, t) to
generate a proof πor. The state remains unchanged.

By assumption, Πor is single-theorem statistical zero knowledge (either adap-
tively or non-adaptively secure). Further, by Lemma 1 it is single-theorem sta-
tistical witness indistinguishable, and by Lemma 2 also multi-theorem statistical
witness indistinguishable for the same level of adaptiveness. Therefore, whenever
ZKSim is able to find a valid t 
= 0|s|, the statistical distance between genuine
proofs by Por (for witness ω) and proofs by ZKSim resp. Por (with witness (s, t)) is
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given by a negligible term ε(n) for any distinguisher requesting at most q proofs.
As ZKSim fails to derive t 
= 0|s| with probability 2−n, the overall statistical dis-
tance is therefore at most ε(n)+2−n and thus negligible. Thus, Π = (Setup,P,V)
is multi-theorem statistical zero knowledge. We note that the protocol inherits
the notion of zero-knowledge adaptiveness from Πor. �	

We remark that the transformation also preserves adaptive/culpable sound-
ness. For this notion the distinguisher against the pseudorandom generator in
the soundness part can check efficiently if the prover’s choice x is in the language
or not with the help of the witness ωguilt which the prover needs to output, too.

4.2 Adaptive Perfect Zero-Knowledge Under Expected Poly-Time

The construction in the previous section displays a small error in the simulation,
even if we would start with a perfect zero-knowledge or witness-indistinguishable
argument. The reason is that our simulator may not generate a valid pair (s, t)
with t 
= 0|s|. However, to preserve perfect zero-knowledge the simulator cannot
simply discard such bad pairs, else outputs of the form G(s) would not be hit
(while a uniformly chosen string may actually be in the range of G).

The solution in the single-theorem case is to use the fact that the event of
picking bad t’s is very unlikely, namely, 2−n. We will now decrease the probability
further such that we can safely search for the actual witness ω for the x part in
this rare case, without violating polynomial run time on the average. For this
let pR denote the polynomial which bounds the witness length of relation R.
Then we use a pseudorandom generator G(s) as before, but we iterate the one-
way permutation f for pR(n) steps. Now the probability of picking some input
(s, t) ∈ {0, 1}n × {0, 1}pR(n) with t = 0pR(n) is 2−pR(n). Given that this happens
we let the simulator (later, after having obtained the input x) search through
all potential witnesses w ∈ {0, 1}≤pR(n) and each time check in polynomial time
qR(n) if (x, w) ∈ R. The run time of the simulator for the exhaustive search
is then bounded from above by 2 · 2pR(n) · qR(n). But since this step is only
executed with probability at most 2−pR(n) the overall run time of the simulator
remains polynomial in expectation.

If we assume that the original argument system Πor is perfectly witness
indistinguishable for non-adaptively chosen statements, then the derived proto-
col is perfectly zero-knowledge, with as simulator running in expected polyno-
mial time and holding either a witness s, t for the auxiliary part or a witness
for x to compute the proof. As in the statistical case, the protocol still preserves
non-adaptive/exclusive or adaptive/exclusive soundness.

The next step is to extend the above idea to multiple theorems. If we have
polynomial many statements x1, . . . , xq then we would have to search for all
witnesses to simulate the proofs if t = 0 . . . 0. But the time to search for all these
witnesses by brute force is additive and requires at most 2q · qR(n) ·2pR(n) many
steps. Hence, the expected run time is still polynomial.

We finally remark that our simulator only attains the simple notion of
expected polynomial where we average the number of steps over the randomness
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of the algorithm. It is not known if one can modify the simulator to achieve more
robust notions, such as Levin’s average-time complexity.

5 A Lattice-based Construction

The main drawbacks of the previous constructions based on general assumptions
is that they are not directly applicable to lattice-based problems because they
require a one-way permutation. In this section we therefore present a multi-
theorem extension in the common random string using dual-mode commitments,
based on the Learning-With-Errors (LWE) assumption.

5.1 Dual-mode Commitment Schemes Based on Lattices

A (non-interactive) commitment scheme consists of a probabilistic polynomial-
time algorithm to generate a public key and another probabilistic polynomial-
time algorithm which allows to commit to a message under a public key. The
scheme can be statistically-hiding (and computationally-binding), or it can be
perfectly-binding (and computationally-hiding). A dual-mode scheme has now
two key generation algorithms, one for the statistically-hiding and one for the
perfectly-binding case. Furthermore, the output of the two key generation algo-
rithms is computationally indistinguishable. To preserve statistical zero-knowl-
edge we make the additional assumption that the public key output in hiding
mode is close to uniform:

Definition 6 (Dual-mode Commitment Scheme). A non-interactive com-
mitment scheme Γ = (GenH ,GenB ,Com) is called a dual-mode commitment
scheme if,

Statistically-Hiding Mode: The scheme (GenH ,Com) is a statistically-hiding,
computationally-binding commitment scheme. Furthermore, the output of
GenH is statistically close to the uniform distribution.

Perfectly-Binding Mode: The scheme (GenB ,Com) is a perfectly-binding,
computationally-hiding commitment scheme.

Indistinguishability of Modes: The random variables GenH and GenB are
computationally indistinguishable.

Note that for a dual commitment scheme, it suffices to show that the scheme
is statistically-hiding in the hiding mode, perfectly-binding in the binding mode,
and that the modes are computationally indistinguishable. The complementary
property of the corresponding mode (with computational guarantees) follows
immediately.

For the dual-mode commitments, we will use (a stripped-off version of) the
two homomorphic trapdoor functions defined by Gorbunov et al. [23]. As pointed
out in [13], these two trapdoor functions give rise to a dual-mode commitment
scheme. It has been shown in [13] that it can be used together with a non-
interactive witness-indistinguishable proof system for bounded distance decod-
ing to build non-interactive designated-verifier computational zero-knowledge
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arguments. We will describe this dual-mode commitment scheme now in detail
and provide proof sketches based on the security proofs in [23].

The construction of the commitment scheme in [23] itself is based on the SIS
problem [2], stating that for parameters n, m = poly(n), q and βSIS it is hard to
find a short non-zero integer vector u (of length at most βSIS) to a given random
n × m-matrix A over Zq such that Au = 0. The noteworthy property is that
there is also a method to generate an n × m matrix A over Zq together with a
trapdoor in a secure way. This is implemented by an algorithm TrapGen, taking
1n, 1m and q as input. Furthermore, there exists an algorithm Sam(1m, 1m, q)
which outputs a “small” matrix U ∈ Z

m×m
q . As discussed in [23] it holds that

A generated by TrapGen(1n, 1m, q) is statistically close to uniform, and that A
and A · U (sampled according to Sam) are statistically close to A and a uniform
matrix V ′. The final ingredient is a fixed and easy to compute matrix G ∈ Z

n×m
q

for the given parameter which allows us to build the commitment scheme. We
can then commit to a value x ∈ Zq for matrix A by computing A · U + x · G.
Note that since A · U is statistically close to a uniform matrix V ′ we obtain that
x is statistically hidden.

We note that we do not take advantage of the trapdoor property here in our
construction, but instead sample a uniform matrix A (in the hiding mode). More-
over, as pointed out in [13], the SIS assumption is not necessary either. The LWE
assumption suffices for our purpose, since we only need that the mode switching
is computationally indistinguishable. Indeed, the same could be already accom-
plished with Regev’s encryption scheme [33] where one can alter to a lossy mode.
We describe the dual-commitment scheme more formally in the following con-
structions:

Construction 4 (Hiding-mode Commitment Scheme).

Key Generation GenH : We sample A ∈ Z
n×m
q uniformly and set pk ← A.

Commitment Com: For input pk and x ∈ Zq, we sample U ← Sam(1m, 1m, q)
and return Com(pk, x; U) = pk · U + x · G. To open the commitment, we reveal
x and U (or the randomness used to sample U).

Proposition 2. Construction 4 is a statistically hiding commitment scheme.

Proof. As shown in [23], we have that the following two tuples are statistically
close:

(pk, x, pk · U + x · G) ≡s (pk, x, V ′)

where U ← Sam(1m, 1m, q) and V ′ ← Z
n×m
q , i.e., the commitment is statistically

indistinguishable from a random matrix. This holds for public keys generated
by TrapGen and, since that algorithm’s output is close to uniform, also for the
random matrix A. �	

Next we recall from [23] how we can switch to a perfectly-binding mode by
assuming the hardness of LWE. This problem states that given a matrix A and
As + e for a small error vector e sampled from a distribution χ, recovering s is
hard [33].



Single-to-Multi-theorem Transformations 229

Construction 5 (Binding-mode Commitment Scheme).

Key Generation GenB: We sample A′ ← Z
(n−1)×m
q uniformly and s′ $← Z

n−1
q

and set
pk ←

(
A′

s′A′ + e

)
,

where e is a short “noise vector” sampled from χ.
Commitment Com: The commitment is identical to the one in Construction 4.

Proposition 3. Construction 5 is a perfectly binding commitment scheme.

Proof. To show this construction is perfectly binding, it suffices to show that we
can uniquely recover x using s. Indeed, if we know s′, we can set s = (−s′, 1)
and z = (0, . . . , 0, r) and calculate

s (pk · U + x · G) G−1(z) = e · U · G−1(z) + x · 〈s, z〉 = x · r + e′.

Note that G−1 is a polynomial-time algorithm whose existence is guaranteed by
Lemma 2.2 in [23]. For correctly chosen parameters r and e, this lets us recover
x uniquely. Now, as s does not depend on x or U , if for two pairs (x, U) and
(x′, U ′)

pk · U + x · G = pk · U ′ + x′ · G,

holds, then we have x = x′. �	
Proposition 4. Assuming the LWE(q, χ)-assumption holds, Constructions 4
and 5 together form a dual-mode commitment scheme.

Proof. We start by showing that the public keys of both schemes are computa-
tionally indistinguishable. First, note that all but the last column of matrix A
are generated uniformly random (or statistically close to that) for both public
keys. Therefore, the problem is equivalent to distinguish between A′s + e and v′

given A′, where v′ ∈ Z
n
q is a uniformly random vector and s and e are sampled as

described in the scheme. However, this is exactly the decisional LWE problem.
By our assumption, the two public keys are therefore indistinguishable.

We have not yet shown that Construction 4 is computationally binding and
that Construction 5 is computationally hiding. However, we argue this follows
directly from what we have shown already. Assume Construction 5 would not be
computationally hiding, i.e., there exists an adversary that, given a public key
pk, can distinguish between a commitment to x and x′ with notable advantage.
However, in this case, we can use this adversary to distinguish the public keys
of the schemes, as Construction 4 is statistically hiding and no adversary with
notable advantage can exist here.

Similarly, assume that Construction 4 is not computationally binding. Then,
there exists an adversary that, given a public key pk, can generate a commitment
c that opens to two values x and x′ with non-negligible probability. However, as
Construction 5 is perfectly binding, we can use such an adversary to distinguish
between public keys of the two schemes. �	
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5.2 SZK-FLS-Transformation Based on Lattices

We will now define our multi-theorem transformation based on the dual-mode
commitment scheme in the previous section. As before, we will use the FLS-
type transform, therefore we only need to define a sampling algorithm for the
auxiliary CRS crsaux and an augmented or-relation Ror for this string.

The sampling algorithm Setupaux to generate crsaux will just generate uni-
formly random values representing a public key pk and a commitment c:

crsaux = (pk, c) ← Unmq × Unmq.

Note that a random public key corresponds to the hiding-mode public key.
Technically the public key and the commitment in crsaux are matrices over

Zq, and not uniform strings as required by the common random string model.
However, we can generate random elements in Zq from uniform strings by inter-
preting a random string of length |q| + n as an integer and mapping it to the
residue mod q. The statistically distance to a uniform element from Zq is then
exponentially small. We stress that we can also go “backwards” with this tech-
nique. Given a random value v ∈ Zq we can add a random multiple i · q to v for
i

$← {0, 1, . . . , 2n−1} to get an (almost) uniform |q| + n bit string which would
map to v again. Hence, from now on we switch between random matrices from
Zq and uniformly random string whenever convenient.

Our relation will now ask for a given public key pk of the commitment scheme
and commitment c, both found in the common random string, if there is a matrix
U ← Sam(1m, 1m, q) resp. randomness u such that U = Sam(1m, 1m, q; u), such
that the commitment opens to 1:

((pk, c), u) ∈ Ror :⇐⇒ U = Sam(1m, 1m, q; u) ∧ c = Com(pk, 1; U).

Given these two properties we can now use the same construction as for the one-
way permutation, only that we use the relation above and the sampler Setupaux
to generate crsaux. In fact the construction is otherwise identical to the one in
Fig. 5:

Construction 6 (SZK-FLS-Dual-Mode-Transformation). Let R be an
NP-relation. Further, let Γ = (GenH ,GenB ,Com) be a non-interactive dual-
mode commitment scheme and suppose that Πor = (Setupor,Por,Vor) be a
multi-theorem non-interactive statistical witness-indistinguishable argument for
the NP-relation Ror. We construct a multi-theorem non-interactive statistical
zero knowledge argument Π = (Setup,P,V) for R as in Fig. 5 with the following
exception:

CRS: We define the sampling algorithm Setup(1n) for the common random string
crs for our construction as

Setup(1n) = Setupor(1n)‖Setupaux(1n).

The prover algorithm P and verifier algorithm V are as before.
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Theorem 7. Let R be an NP-relation. Assuming that Πor = (Setupor,Por,Vor)
is a non-interactive statistical single-theorem zero-knowledge argument for Ror

and that Γ = (GenH ,GenB ,Com) is a dual-mode non-interactive commitment
scheme, the non-interactive argument Π = (Setup,P,V) in Construction 6 is a
multi-theorem statistical zero-knowledge argument. Furthermore, if the underly-
ing protocol Πor is (non-adaptively resp. adaptively) exclusively sound, then so
is the derived protocol Π; if Πor is adaptive resp. non-adaptive zero-knowledge,
then so is Π.

Proof. The proof is very close to the one of Theorem 3 such that we only sketch
the main differences here.

(Perfect) Completeness: It follows as in the one-way permutation case that the
honest verifier accepts proofs generated by P for x ∈ LR.

Exclusive Soundness: To show exclusive soundness (in the non-adaptive or adap-
tive case) we first switch the auxiliary string to a randomly sampled binding key
pk $← GenB(1n) and a 0-commitment Com(pk, 0; U), instead of using uniformly
random values. Note that we can use two game hops to show that this is com-
putationally indistinguishable from genuine common random strings. In the first
hop we replace the random key component in crsaux by a key pk $← GenH(1n),
which is even statistically close. Then we replace the random commitment com-
ponent in crsaux by a random commitment to 0, Com(pk, 0; U). This is again
statistically indistinguishable.

And finally we switch to a binding key pk $← GenB(1n) and a 0-commitment
under this key. This is computationally indistinguishable by the indistinguisha-
bility of the dual-mode key generation. (The additional 0-commitment can be
computed easily given a hiding or binding key.) This is where we again use
exclusive soundness to turn a malicious prover into a distinguisher against the
dual-mode scheme, analogously to the distinguisher against the pseudorandom-
ness of the generator in the one-way permutation case.

We now have an auxiliary string which contains a binding key and a 0-
commitment, such that the or-part in the Ror cannot be satisfied. It follows now
as before that soundness of the constructed protocol follows from the soundness
of the original non-interactive argument.

Zero-Knowledge: For adaptive multi-theorem zero-knowledge we remark that the
simulator ZKSim can create the key part in the auxiliary string as a hiding key
pk $← GenH(1n) and the commitment part as a 1-commitment under pk. Since
the key pk and the 1-commitment are statistically close to a uniform strings,
the simulator’s string crsaux is statistically close to a uniform string. For this
string crsaux the simulator can use the randomness of the commitment as a
witness. The remaining steps in the proof are identical to the ones in the proof
of Theorem 3. �	
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6 Conclusion

We have shown how to apply the idea of the FLS transformation also for statis-
tical zero-knowledge arguments. Let us highlight two important aspects of our
transformations.

First, our transformations based on one-way permutations and on lattices
work in the common random string model and does not require any structure of
the CRS. Common reference strings have the inherent disadvantage that they
have some structure and that one needs to trust the party which generates the
string. A prominent example is the discussion about the trustworthiness of the
Zcash reference string and follow-up suggestions to use common random strings
instead, e.g., [16]. Of course, a party generating a common random string may
also impose some trust assumption, as our lattice-based solution with the implicit
trapdoor generation algorithm shows. But several measures to thwart attacks
can be implemented much easier than for structured strings. This includes the
computation of the string as the output of a hash function, or by xoring common
random strings from several sources.

The other aspect we would like to emphasize that our transformations pre-
serve adaptive security for both zero-knowledge and soundness. This does not
conflict with black-box impossibility result for such statistical zero-knowledge
arguments [1,30], because in the course of showing adaptive soundness we have,
in passing, encountered a possibility to bypass the impossibility results. A key
observation is that one may be able to achieve adaptive soundness and zero-
knowledge if one switches to the notion of exclusive soundness. This adap-
tive/exclusive soundness implies adaptive/culpable soundness and thus suffices
for many practical applications.
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Abstract. In this work, we put forth the notion of compatibility of
any key generation or setup algorithm. We focus on the specific case
of encryption, and say that a key generation algorithm KeyGen is
X-compatible (for X ∈ {CPA,CCA1,CCA2}) if there exist encryption and
decryption algorithms that together with KeyGen, result in an X-secure
public-key encryption scheme.

We study the following question: Is every CPA-compatible key gener-
ation algorithm also CCA-compatible? We obtain the following answers:

– Every sub-exponentially CPA-compatible KeyGen algorithm is
CCA1-compatible, assuming the existence of hinting PRGs and sub-
exponentially secure keyless collision resistant hash functions.

– Every sub-exponentially CPA-compatible KeyGen algorithm is also
CCA2-compatible, assuming the existence of non-interactive CCA2
secure commitments, in addition to sub-exponential security of the
assumptions listed in the previous bullet.

Here, sub-exponentially CPA-compatible KeyGen refers to any key gen-
eration algorithm for which there exist encryption and decryption algo-
rithms that result in a CPA-secure public-key encryption scheme against
sub-exponential adversaries.

This gives a way to perform CCA secure encryption given any public
key infrastructure that has been established with only (sub-exponential)
CPA security in mind. The resulting CCA encryption makes black-box
use of the CPA scheme and all other underlying primitives.

1 Introduction

Any public-key encryption scheme enables a receiver to recover the encrypted
message only if they know a secret key corresponding to their public key. But
what if the receiver only ever published a verification key for a digital signature
scheme for which they possessed a signing key? Or published a hard puzzle for
which they possessed a solution?

This question was one of the original motivations for the study of witness
encryption. Garg et al. [14] showed that it is possible to encrypt a message so
that it can only be opened by a recipient who knows an NP witness, assuming the
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existence of an appropriate witness encryption scheme. Put differently, assuming
an appropriate witness encryption, almost any KeyGen algorithm that outputs
a hard-to-invert string and a corresponding secret (such as a verification and
signing key pair for a signature scheme) can be used to derive CPA-secure public
key encryption.

In this work, we generalize this study. We put forth the notion of compatibility
of any key generation or setup algorithm, while focusing on the specific case of
encryption schemes. Here, recall that semantic security of (public key) encryp-
tion in [15] was only the first step towards formalizing security of encryption
schemes. Semantic security, or equivalently indistinguishability-based security
against chosen plaintext attacks (CPA) requires that encryptions of every pair
of plaintexts appear indistinguishable to a computationally bounded attacker.
Unfortunately, starting with the attacks of Bleichenbacher [4] against PKCS#1,
it was quickly realized that systems that only satisfy CPA security often fail in
practice. As a result, security against adaptive chosen ciphertext attacks (or,
CCA security) has been accepted as the standard requirement from encryption
schemes that need to withstand active attacks [8,11,26,29]. This guarantees secu-
rity even against attackers that make oracle decryption queries to keys they do
not have. If the adversary only has access to a decryption oracle before obtaining
the challenge ciphertext, the resulting scheme is said to be CCA1 secure. On the
other hand, if the adversary has access to the decryption oracle both before and
after obtaining the challenge ciphertext, the resulting scheme is CCA2 secure.

We investigate whether arbitrary setup of KeyGen algorithms can be used to
derive CCA-secure schemes. We will say that a key generation algorithm KeyGen
is X-compatible (for X ∈ {CPA,CCA1,CCA2}) if there exist encryption and
decryption algorithms that together with KeyGen, result in an X-secure public-
key encryption scheme. As already discussed, the existence of (extractable) wit-
ness encryption suffices to prove CPA-compatibility for many non-trivial KeyGen
algorithms. The focus of our work is to take a closer look at CCA-compatibility.

Specifically, we analyze what it takes for a KeyGen algorithm to be
CCA-compatible. Our primary result stated informally, is the following:

It is always possible to get CCA secure encryption from any KeyGen pro-
cedure that gives rise to (sub-exponentially secure) CPA encryption.

Combined with the CPA-compatibility of non-trivial KeyGen, this also implies
CCA-compatibility of many non-trivial KeyGen algorithms.

This also means that we can always achieve CCA security using keys for
cryptosystems that were originally deployed for CPA mode, without having to
modify the public key. This would allow parties with access to public key infras-
tructures that have been established with only CPA security in mind, to use
these infrastructures to perform CCA secure encryption instead. For instance,
over the years, multiple encryption schemes have been developed that satisfy
IND-CPA security alone. A recent example that gained some popularity is the
messaging service telegram, that supplies end-to-end encryption using a new
protocol employing AES, RSA, and Diffie-Hellman key exchange. Recently, [17]
showed that this protocol is not IND-CCA secure. Our result ensures that (under
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reasonable cryptographic assumptions) careful participants can use the same
underlying infrastructure to engage in encrypted communication without worry-
ing about CCA2 attacks. Alternatively, suppose a user or an organization sets up
what is supposed to be a CCA secure system, but the underlying computational
assumption turned out to be false. For example, perhaps an attack on DDH was
found in a specific group [7], and the scheme is somehow adjusted to recover CPA
security. Then, the scheme can also be adjusted to recover CCA security (under
our assumptions), with the same infrastructure as that used for CPA security. In
these settings, while one could potentially ask users to switch to using a new key
from the same system, changing an entire public key infrastructure would be far
more cumbersome. We note that simple key encapsulation strategies would be
insufficient: for example, sampling the key for a CCA secure encryption scheme
and encapsulating it using a key for the original CCA-insecure infrastructure
would not lead to the resulting ciphertext being CCA secure.

Preliminary Solutions in Idealized Models. In idealized models, there are
known methods that implicitly allow one to obtain CCA security from any
CPA-compatible KeyGen algorithm. For instance, in the Random Oracle model,
the famous Fujisaki-Okamoto transform [12] converts any CPA secure encryp-
tion scheme to a CCA secure one, with the same KeyGen algorithm. We are
interested in whether a similar effect can be achieved in the plain model.

A natural approach without a random oracle would be to leverage a common
reference string (CRS) and implement the Naor-Yung methodology [11,26] using
simulation-sound NIZKs. We recall that the Naor-Yung (CCA secure) encryption
of a message typically consists of two encryptions, under independent public keys,
of the same message; and a simulation-sound NIZK proof that both ciphertexts
encrypt the same message. If implemented naively, it appears that the KeyGen
algorithm for the resulting CCA mode would have to output two independent
public keys corresponding to the underlying CPA secure scheme. Even if we
found a method to get rid of the second key, this still requires participants to
place their trust in a central setup assumption to enable the (simulation-sound)
NIZK. Given this state of affairs, we ask if it is possible to obtain CCA secure
encryption by relying on the KeyGen algorithm of any CPA secure encryption
scheme:

– in the plain model without assuming setup, CRS, or a random oracle,
– with black-box use of the CPA scheme (and additional primitives),
– and while making the weakest possible cryptographic assumptions.

Our Results. We take a novel approach to obtain a plain model solution that
makes black-box use of the CPA scheme, and does not resort to NIZK (or
NIWI) style assumptions. Specifically, we demonstrate CCA1-compatibility of
any sub-exponentially CPA-compatible KeyGen algorithm while making black-
box use of hinting PRGs and sub-exponential keyless collision resistant hash
functions. We also demonstrate CCA2-compatibility of any sub-exponentially
CPA-compatible KeyGen algorithm while additionally making black-box use of
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non-interactive CCA secure commitments. Such commitments were recently
obtained [13] based on black-box use of subexponential one-way functions in
BQP, and sub-exponential quantum-hard one-way functions, in addition to the
assumptions listed above. Alternatively, these can be based on sub-exponential
time-lock puzzles [13,24] in addition to the assumptions listed above. We infor-
mally summarize our results below.

Informal Theorem 1 Every sub-exponentially CPA-compatible KeyGen algo-
rithm against non-uniform adversaries is also CCA1-compatible against uniform
adversaries, assuming the existence of hinting PRGs and sub-exponential keyless
collision-resistant hash functions against uniform adversaries.

Informal Theorem 2 Every sub-exponentially CPA-compatible KeyGen algo-
rithm against non-uniform adversaries is also CCA2-compatible against uni-
form adversaries, assuming the existence of sub-exponential hinting PRGs, sub-
exponential keyless collision-resistant hash functions against uniform adversaries
and sub-exponential non-interactive CCA secure commitments.

2 Our Technique

2.1 Background: A Variant of Koppula-Waters [22]

Our starting point is a variant of the recent Koppula-Waters [22] approach to
achieving CCA1 secure encryption based on CPA secure encryption and a new
primitive they introduced, called a hinting PRG. A hinting PRG satisfies the fol-
lowing property: for a uniformly random short seed s, the matrix M obtained by
first expanding PRG(s) = z0z1z2 . . . zn, sampling uniformly random v1v2 . . . vn,
and setting for all i ∈ [n], Msi,i = zi and M1−si,i = vi, should be indistinguish-
able from a uniformly random matrix. Hinting PRGs are known based on CDH,
LWE [22]. (One can also pursue a similar path using any circular secure sym-
metric key encryption [20] in lieu of the Hinting PRG.) Koppula and Waters [22]
also require the CPA scheme to have two properties. First, the scheme should
have perfect decryption correctness for most public/secret keys and second, any
ciphertext should be decryptable given the encryption randomness.

Now, the KeyGen algorithm of the CCA1 scheme constructed by [20,22] exe-
cutes the CPA KeyGen setup twice to obtain two independent public/secret key
pairs, denoted by (pk0, sk0) and (pk1, sk1). Additionally, the CCA1 KeyGen algo-
rithm samples and outputs the public parameters pp of an equivocal commit-
ment scheme. To encrypt a message m, the encryption algorithm chooses a seed
s ← {0, 1}n and computes H(s) = z0z1 . . . zn, where H is a hinting PRG. It
uses z0 to mask the message m; that is, it computes c = m ⊕ z0. The remaining
ciphertext will contain n ‘signals’ that help the decryption algorithm to recover
s bit by bit, which in turn will allow it to compute z0 and hence unmask c.

The ith signal (for each i ∈ [n]) has three components c0,i, c1,i, c2,i. If the ith

bit of s is 0, then c0,i is an encryption of a random string yi using the public
key pk0 and randomness zi, and c1,i is an encryption of yi using pk1 (encrypted
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using true randomness). If the ith bit of s is 1, then c0,i is an encryption of yi

using public key pk0 (encrypted using true randomness), c1,i is an encryption of
yi using public key pk1 and randomness zi. In both cases, c2,i is an equivocal
commitment to si using randomness yi. As a result, half the ciphertexts are
encryptions with fresh randomness, while the remaining are encryptions with
blocks of the hinting PRG output being used as randomness, and the positioning
of the random/pseudorandom encryptions reveals the seed s.

The decryption algorithm first decrypts each c0,i (using secret key is sk0) to
obtain y1y2 . . . yn. It then checks if c2,i is an equivocal commitment to 0 with
randomness yi. If so, it guesses that si = 0, else it guesses that si = 1. With
this estimate for s, the decryption algorithm can compute H(s) = z0z1 . . . zn

and then compute c ⊕ z0 to recover the message m. The decryption algorithm
needs to enforce additional checks to prevent malicious decryption queries (made
during the CCA1 experiment). In particular, the decryption algorithm needs to
check that the guess for s is indeed correct. It conducts the following checks and
outputs z0 ⊕ c if they all pass.

– If the ith bit of s is guessed to be 0, then the decryption algorithm checks
that c0,i is a valid ciphertext - it simply re-encrypts yi using randomness zi

and checks if this equals c0,i. Recall that the decryption procedure, before
guessing the ith bit of s to be 0, also checks that c2,i is a commitment to 0
with randomness yi.

– If the ith bit of s is guessed to be 1, then the decryption algorithm first recovers
the message underlying ciphertext c1,i. Note that c1,i should be encrypted
using randomness zi, hence using zi, one can recover message ỹi from c1,i

(using the randomness recovery property of the PKE scheme). It then re-
encrypts ỹi and checks if it is equal to c1,i, and also checks that c2,i is a
commitment to 1 with randomness ỹi.

Inadequacies of this Transformation. At this point, we are far from having estab-
lished CCA1 compatibility of arbitrary CPA infrastructure due the following
reasons:

1. The transformation described so far crucially uses equivocal commitments,
which require trusted setup or a common reference/random string, and this
is something that we would like to avoid.

2. This transformation makes use of two public keys, and we are only guaranteed
to get a single key from existing setup.

In fact, achieving CCA2 security is even more complex: in particular, the CCA2
setup in the transformation of [22] must also contain pairwise independent hash
functions h1, h2, . . . , hn. These are used to prevent the adversary from mauling
the challenge ciphertext into related ciphertexts and querying the decryption
oracle on these ciphertexts.

In the coming section, we discuss how to achieve CCA1 compatibility by
eliminating the two problems listed above. In the section after that, we discuss
the more complex case of CCA2 compatibility.
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2.2 Techniques for CCA1 Compatibility

To address the first item listed above, we rely on equivocal commitments without
setup, that satisfy binding against uniform adversaries. The resulting CCA1
compatibility is also established against uniform PPT adversaries. We briefly
recall how such equivocal commitments can be obtained based on keyless collision
resistant hash functions against uniform adversaries [2,10,13,16]: the commit
algorithm samples a uniformly random seed for a strong extractor, g ← {0, 1}κ

and a value v in the domain of a sufficiently compressing keyless collision resistant
hash function. A commitment to a bit b is given by the string H(v), (Ext(g, v)⊕b).

We use the resulting commitment scheme to generate c2,i values in the out-
line described above. Note that this commitment scheme cannot be efficiently
equivocated by uniform adversaries, since that would lead to an efficient uni-
form algorithm that finds collisions in the hash function H. On the other hand,
our proof of security will rely on the fact that most strings in the support of
the commitment can be non-uniformly equivocated. Next, we discuss how to
argue security when using these equivocal commitments in the transformation
described above.

Arguing Security. To argue security, first observe that the equivocal commit-
ment satisfies computational binding against PPT adversaries, which makes it
infeasible for a CCA1 adversary to query the challenger on ambiguous cipher-
texts that pass the decryption checks but potentially decrypt to different values
under sk0 and sk1. This is because for such ciphertexts, for some i ∈ [n], the
component c2,i is both a commitment to 0 with randomness yi recovered from
c0,i and a commitment to 1 with randomness ỹi recovered from c1,i: clearly
violating the binding property of the commitment scheme.

At the same time, the equivocality of the commitment enables the challenger
to set for every i ∈ [n], the values c2,i that are both commitments to 0 with
randomness yi and 1 with randomness ỹi. Next, via a careful hybrid argument
that relies on perfect correctness of the encryption scheme, the binding property
of the equivocal commitment and CPA security of the public key encryption
scheme, the challenge ciphertext can be modified and made ambiguous: this
means that in the challenge ciphertext for every i ∈ [n], c0,i is an encryption
of yi, c1,i is a non-interactive commitment to ỹi, c2,i an equivocal commitment:
i.e., a commitment to 0 with randomness yi and to 1 with randomness ỹi.

At a very high level, this involves changing values encrypted under c0,i and
c1,i by relying on CPA security of the encryption scheme. Values encrypted under
c1,i can be modified relatively easily because only the secret key sk0 is used to
perform decryption queries. Arguing security when changing values encrypted
under c0,i requires more care: in particular, such an argument is possible only if
sk0 is no longer used to answer the adversary’s decryption queries. Therefore we
first switch to using an alternative decryption strategy that relies on sk1 instead
of sk0 to decrypt the adversary’s ciphertexts. Unambiguity of the adversary’s
ciphertexts helps ensure that alternative decryption yields the same outputs as
the original decryption strategy. When using alternate decryption, it becomes
possible to change values encrypted under c0,i since sk0 is no longer being used.



On the CCA Compatibility of Public-Key Infrastructure 241

At the end of this argument, information about the hinting PRG seed s has
almost been removed from the ciphertext, except that for all i where si = 0,
csi,i is encrypted using randomness ri which came from running the hinting
PRG on s; whereas c1−si,i is encrypted using uniform randomness. These can
all be replaced with uniformly random values by the property of the hinting
PRG, thereby eliminating all information about s, and therefore m, from the
ciphertext.

So far, the construction and security argument also relied on the use of two
public/private key pairs. But as already pointed out, a CPA-compatible KeyGen
algorithm will output a single public and private key. Next, we discuss how to
eliminate the need for the second key.

Removing the Second Key via Non-interactive Commitments. Here, we
begin by observing that the actual decryption algorithm only makes use of the
secret key sk0, and does not need the second secret key sk1. It recovers messages
underlying c1,i for all i ∈ [n] where si = 1, using the randomness zi that was
supposedly used to create c1,i.

As a result, the actual decryption algorithm does not need to efficiently
decrypt c1,i and has no use for the secret key sk1. Therefore, we eliminate the
need for the second public key by setting the strings c1,i to be non-interactive
perfectly binding commitments that do not require any public keys or public
parameters, and where the committed message can be efficiently recovered given
the randomness used to commit. Lombardi and Schaeffer [25] showed that such
commitments can be obtained from any perfectly correct public-key encryption
scheme. Specifically, we modify the encryption algorithm so that if si = 0, c1,i is
a non-interactive commitment to 0n using true randomness, and if si = 1, then
c1,i is a non-interactive commitment to a random string xi using randomness zi.
The remaining parts {c0,i, c2,i}i∈[n] will remain unmodified.

Now recall that the security argument outlined above points to an alterna-
tive decryption strategy that does actually use sk1, instead of sk0, to efficiently
decrypt the adversary’s ciphertexts. However, this alternative decryption algo-
rithm is only used in a few hybrids in the proof of security, and when using
non-interactive commitments, we allow these hybrids to inefficiently recover the
values committed under c1,i by running an exponential time brute-force algo-
rithm that checks all possible randomnees values that could potentially be used
to build c1,i.

In order to make the hybrid strategy still go through, we rely on complexity
leveraging: we set security parameters so that all other primitives are secure
against adversaries that can run in time large enough to execute the brute-force
algorithm that recovers values committed under c1,i for i ∈ [n]. Specifically, we
assume that the CPA encryption scheme to be upgraded has security parameter
k and is 2ke

secure for some constant 0 < e < 1. We also assume that the
keyless collision-resistant hash function responsible for the binding property of
the equivocal commitments is 2kε

-secure for some constant 0 < ε < 1, and we
set the security parameter for the non-interactive commitment to be kmin(e,ε).
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Additional Details of the Proof. We now provide additional details on the
proof of CCA1 security of the resulting scheme. Recall that in the CCA1 security
game, the adversary is allowed access to a decryption oracle before the challenge
phase, where the adversary outputs m0,m1 and then obtains an encryption of
mb for b sampled uniformly at random.

We develop a sequence of hybrid experiments where the decryption oracle
as well as the challenge ciphertext are modified in small increments, and where
the first hybrid corresponds to providing the adversary access to the actual
decryption oracle together with an encryption of mb and the last one corresponds
to providing the adversary access to the actual decryption oracle together with
an encryption of uniform randomness.

The very next hybrid experiment is an exponential time hybrid that samples
equivocal commitments {c2,i}i∈[n] for the challenge ciphertext, together with
randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used to equivocally open these
commitments to 0 and 1 respectively.

The third hybrid additionally modifies the components c1,i to “drown” out
information about s via noise. In particular, while in the real game, the values
c1,i are always commitments to ysi,i, in the challenge ciphertext these values
are modified to become commitments to y1,i, irrespective of what si is. On the
other hand, the values c0,i remain encryptions of ysi,i, exactly as in the real
experiment. In spite of the fact that equivocation takes exponential time, the
proof of indistinguishability between this hybrid and the previous one does not
need to rely on an exponential time reduction. Instead, we observe that the
equivocal commitment strings {c2,i}i∈[n] together with their openings can be
fixed non-uniformly and independently of the strings c1,i, and therefore these
hybrids can be proven indistinguishable based on non-uniform hiding of the
non-interactive commitment scheme. Since we must carefully manipulate the
randomness used for {c1,i}i∈[n] in both games, this hybrid requires a delicate
argument.

The fourth hybrid modifies the decryption oracle so that instead of decrypting
using the secret key of the public key encryption scheme, decryption is performed
by running in time exponential in the security parameter of the commitment
scheme (specifically, in time 2kmin(e,ε)

) and performing a brute-force search for
the randomness used to create the commitments {c1,i}i∈[n]. This hybrid is only
indistinguishable from the previous one if an adversary cannot find ciphertexts
that decrypt differently when using the secret key of the encryption scheme
versus the brute-force algorithm discussed above. This hybrid requires a subtle
argument that relies on the fact that no adversary can query the decryption
oracle with “ambiguous” ciphertexts, in spite of being provided such ciphertexts
in the challenge phase. Specifically, we crucially use the fact that the adversary
does not observe any equivocations before obtaining the challenge ciphertext,
and therefore cannot query the decryption oracle with any “ambiguous” cipher-
texts (as this would lead to the adversary breaking binding of the equivocal
commitment). This is the primary reason that we only obtain CCA1 security.
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In the fifth hybrid, some of the challenge ciphertext values, that are indepen-
dent of the message being encrypted, are chosen ahead of time. This maneuver
helps us with the sixth hybrid, where in the challenge ciphertext, information
about the PRG seed s is removed from the ciphertext components {c1,i}i∈[n],
making them all encryptions of y0,i instead of being encryptions of ysi,i. Again,
since we must carefully manipulate the randomness used for {c0,i}i∈[n] in both
games, this hybrid requires a delicate argument.

In the seventh hybrid, we modify the decryption oracle again to go back to
using the secret key of the public key encryption scheme to decrypt. Note that
the only remaining information about s is in the randomness used to obtain
{ci,0, ci,1}i∈[n] in the challenge ciphertext. In the seventh and eighth hybrids,
we carefully re-order the randomness and rely on the security of the hinting
PRG to switch to using uniform randomness everywhere. This eliminates all
information about s and therefore about the message being encrypted in the
challenge ciphertext.

2.3 Techniques for CCA2 Compatibility

We observe that the key barrier to proving CCA2 security in the hybrid argu-
ments outlined above is the specific hybrid that modifies the challenge ciphertext
so it contains a commitment to both a 0 and a 1. Given such a ciphertext, in a
CCA2 game, an adversary could generate new strings that are a commitment to
both a 0 and a 1, and use them to create ambiguous ciphertexts. Arguing that
this cannot happen requires us to develop a much deeper technical toolkit.

Our first insight is that the requirement that an adversary, given an ambigu-
ous ciphertext, be unable to generate additional ambiguous ciphertexts is remi-
niscent of non-malleability. As such, we will rely on non-interactive non-malleable
(more precisely, CCA secure) commitments without setup. Up until recently,
there were perceived strong barriers to obtaining non-malleable commitmens
with less than 3 rounds of interaction [28]. But a sequence of recent works
obtained two round [19,24] and even non-interactive [3,13,18,24] based on well-
studied sub-exponential hardness assumptions. In particular, a recent work [13]
obains black-box non-interactive non-malleable (and in fact CCA2 secure) com-
mitments assuming kelyess collision resistant hash functions, against uniform
adversaries.

Relying on CCA2 Secure Commitments. We now discuss modifications to the
CCA1 transformation discussed in the previous section. Specifically, we will
replace the non-interactive commitment (used to generate ciphertext compo-
nents {c1,i}i∈[n]) in the construction outlined above, with a CCA2 secure com-
mitment. Intuitively, using CCA2 secure commitments ensures that no matter
how we change the {c1,i}i∈[n] components in the challenge ciphertext, the cor-
responding {c1,i}i∈[n] components in the adversary’s decryption queries do not
change (except in a computationally indistinguishable way). Proving that the
resulting protocol is actually a CCA2 secure encryption scheme, is much trick-
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ier. We encounter several technical barriers in this process, which we discuss
below.

Arguing Security. Recall that in the CCA2 security game, the adversary is
allowed access to a decryption oracle both before and after the challenge phase,
where the adversary outputs m0,m1 and then obtains an encryption of mb for b
sampled uniformly at random.

We will consider a sequence of hybrid experiments similar to the CCA1 set-
ting, where the decryption oracle as well as the challenge ciphertext are modi-
fied in small increments. The first hybrid corresponds to providing the adversary
access to the actual decryption oracle together with an encryption of mb and the
last one corresponds to providing the adversary access to the actual decryption
oracle together with an encryption of uniform randomness.

The very next hybrid experiment, just like the CCA1 setting, is an exponen-
tial time hybrid that samples equivocal commitments {c2,i}i∈[n] for the challenge
ciphertext, together with randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used
to equivocally open these commitments to 0 and 1 respectively.

The third hybrid additionally modifies the components c1,i to “drown” out
information about s via noise. In particular, while in the real game, the values
c1,i are always commitments to ysi,i, in the challenge ciphertext these values are
modified to become commitments to y1,i, irrespective of what si is. On the other
hand, the values c0,i remain encryptions of ysi,i, exactly as in the real experiment.
At this point, the proof of indistinguishability of hybrids already significantly
diverges from the CCA1 setting. Specifically, the proof of indistinguishability
between this hybrid and the previous one, in the CCA1 setting, relied on non-
uniform security of the non-interactive commitment – in order to perform the
exponential time computation needed to equivocate the hash function. Here, we
would ideally like to rely on CCA secure commitments which are potentially
only secure against uniform adversaries (e.g., the black-box construction in [13]
which is only secure against uniform adversaries). One option could be to assume
that the CCA2 commitment is “hard” against adversaries running in time that
is sufficient to compute openings of the equivocal commitment.

In the fourth hybrid, we would like to modify the decryption oracle so that
instead of decrypting using the secret key of the public key encryption scheme,
decryption is performed by running in time exponential in the security parameter
of the commitment scheme (specifically, in time 2kmin(e,ε)

) and performing a brute-
force search for the randomness used to create the commitments {c1,i}i∈[n]. This
hybrid is indistinguishable from the previous one only if an adversary cannot find
ciphertexts that decrypt differently when using the secret key of the encryption
scheme versus the brute-force algorithm discussed above: in other words if the
adversary cannot query the oracle with “ambiguous” ciphertexts.

This is where the CCA2 setting diverges most significantly from the CCA1
setting. In the CCA1 setting, we could prove that the adversary does not make
ambiguous decryption queries by relying on uniform binding of the equivocal
commitment, but this is no longer true in the CCA2 setting. Specifically, we



On the CCA Compatibility of Public-Key Infrastructure 245

need to rule out an adversary that given ambiguous ciphertexts, creates new
ones.

Therefore, in the proof, we will now have to rely on CCA2 commitments
to maintain an invariant across all the hybrids discussed above. The invariant
is as follows: except with negligible probability, the adversary does not make
any oracle query for which there exists some i ∈ [n] such that the components
(c0,i, c1,i) encrypt/commit to two different openings of the string c2,i.

To ensure that this invariant holds in the initial hybrid that corresponds to
the real CCA2 experiment, we will use any adversary that breaks the invariant to
contradict the binding property of the equivocal commitment. The corresponding
reduction would have to extract two openings for the same equivocal commit-
ment string, from a decryption query provided by the adversary. In particular,
these openings will actually be the plaintexts underlying the ciphertext c0,i and
the commitment string c1,i. Extracting these two openings involves decrypting
c0,i under sk0, and brute-force breaking the CCA2 commitment string c1,i. This
use of brute force necessitates that the binding property of the equivocal com-
mitment be hard to break even in time that is sufficient to break the CCA2
commitment.

But recall that arguing indistinguishability for the third hybrid actually
required the exact opposite property: that the CCA2 commitment be hard to
break even by adversaries running in time that is sufficient to compute openings
of the equivocal commitment. It appears that we are at an impasse here, since we
need the equivocal commitment and the CCA2 commitment to each take longer
time to break than the other. One way to resolve this is to rely on a non-uniform
reduction to argue indistinguishability between the second and third hybrids.
But recall that the underlying black-box CCA commitments of [13] achieve only
uniform security, at least when relying on on keyless collision resistant hash
functions against uniform adversaries.

Fortunately for us, it turns out that [13] prove a much stronger property
than uniform CCA security – they actually establish computation enabled CCA
security. The computation enabled property allows the attacker to submit a
randomized turing machine P at the beginning of the game. The challenger can
run the program P and output the result for the attacker at the beginning of
the game: crucially, the running time of P can be much larger than the uniform
running time allowed to the adversary. This added property actually achieves a
flavor of non-uniformity that helps our argument go through, by allowing us to
perform special heavy computation at the beginning of the reduction between
hybrids 2 and 3, while at the same time, allowing the binding property of the
equivocal commitment to be hard to break even in time that is sufficient to break
the CCA2 commitment.

Once we have these ingredients in place, we still need to ensure that the
invariant continues to hold in all the other hybrids described above. This is
tricky because checking the invariant involves decrypting {c0,i}i∈[n] under sk0,
and also finding the messages committed via the CCA2 commitment strings
{c1,i}i∈[n], which may not necessarily be an efficient process. Recall that in the
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very next hybrid, we simply sample the commitment strings in an equivocal
way – this hybrid is statistically indistinguishable from the previous one, and
therefore the invariant also holds in this hybrid. In the hybrid after that, the
commitment strings c1,i are modified in the challenge ciphertext to drown out
information about s. Here, in order to prove that the invariant holds, we rely
on CCA2 security of the commitment to find the messages committed via the
CCA2 commitment strings {c1,i}i∈[n] in all of the adversary’s queries.

In the fourth hybrid, we change the way the adversary’s queries are decrypted:
here, we can prove (this time, by relying on the invariant) that the adversary
does not make decryption queries that decrypt differently, except with negligible
probability. In the next hybrid, we modify the decryption oracle again to go back
to using the secret key sk0 of the public key encryption scheme to decrypt. At
this point, we are no longer able to argue that the invariant holds, but note that
we only needed the invariant to argue that the way the adversary’s queries are
decrypted can be changed without affecting the adversary’s advantage. There-
fore, this point on, we will not make any changes to how the adversary’s queries
are decrypted, and so all we will need to do is argue indistinguishability of the
subsequent hybrids. At this point, the only remaining information about s is in
the randomness used to obtain {ci,0, ci,1}i∈[n] in the challenge ciphertext. In the
next couple of hybrids, we carefully re-order the randomness and rely on the
security of the hinting PRG to switch to using uniform randomness everywhere.
All this while, we decrypt the adversary’s oracle queries by breaking the CCA
commitments (via brute-force). As a result, our reductions run in superpolyno-
mial time, and we rely on sub-exponential hardness of the hinting PRG. This
is different from the CCA1 setting where we could first go back to decrypting
the adversary’s oracle queries in polynomial time and then rely on polynomial
hardness of the hinting PRG.

We provide some additional technical details about how we implement the
invariant discussed in this overview. Specifically, we insert a hybrid after the
first hybrid, where the experiment aborts (and the adversary wins) if he makes
an oracle query that breaks the invariant: that is, if the adversary makes an
oracle query for which there exists i ∈ [n] such that the components (c0,i, c1,i)
encrypt/commit to two different openings of the string c2,i. This (inefficient)
check is performed in all subsequent hybrids up until the fourth one, where
we change the way the adversary’s queries are decrypted. We perform careful
reductions to argue indistinguishability of these hybrids while performing this
inefficient check (as described above). After the fourth hybrid, we no longer
need the invariant and we therefore remove this check before proceeding with
subsequent hybrids. This concludes an overview of our construction and proof
of security.

2.4 On Security Against Non-uniform Adversaries

Very recently, the security of keyless hash functions against adversaries with
non-uniform advice has also been explored; in particular, [1,2,21] defined and
constructed keyless collision-resistant hash functions that satisfy the following
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property: there exists a polynomial p(·) such that for any polynomial s(·), any
PPT adversary with s(κ) bits of non-uniform advice cannot find more than
p(s(κ)) pairs of collisions. Subsequently, [3] used these hash functions and (sub-
exponential) NIWIs to obtain one-message zero-knowledge without trusted setup
and a weak form of soundness against provers with non-uniform advice.

We observe that relying on non-uniform secure primitives; more specifically
substituting keyless collision-resistant hash functions against uniform adver-
saries with keyless collision-resistant hash functions against adversaries with non-
uniform advice as described above, helps make our CCA constructions secure
against non-uniform adversaries. In other words, we can make a stronger assump-
tion on the underlying keyless hash function, to obtain stronger (non-uniform)
security. The only difference would be the observation that an adversary with
polynomial advice can only find polynomially many collisions, and therefore
query the decryption oracle with only polynomially many ambiguous cipher-
texts – the answers to which can be non-uniformly fixed and hardwired into the
oracle.

2.5 On Setting Parameters for CCA Compatibility

For both the CCA1 and CCA2 transformations, our non-interactive commitment
scheme used to create {c1,i}i∈[n] needs to be easier to break “along some axis
of hardness” than the PKE scheme so that there is a way to open it, while the
PKE scheme is still hard. Our axis of choice in this paper, is basic computation
time. As a result, our theorem statement requires the KeyGen algorithm to be
sub-exponentially CPA compatible, i.e. to give rise to a sub-exponentially secure
CPA encryption scheme. This could also potentially lead to issues if the original
PKE scheme had parameters “on edge” of being broken: since we would need
commitment scheme to be even easier to break in terms of computation time.

We point out that in these cases, there could be other different axes of hard-
ness (e.g.,time-lock puzzles [3,24]) that could be exploited to achieve the same
effect. As another example, following [18], one could show that any KeyGen
that gives rise to polynomially hard PKE scheme secure against quantum adver-
saries can be combined with a commitment scheme that is quantum in-secure, to
achieve CCA compatibility. As a result, there is still a way to open the commit-
ments in BQP, while the CPA-secure PKE scheme is still hard. These approaches
could improve the concrete parameters that one would need to use to instantiate
these transformations, and the exact axis of hardness can be chosen depending
upon the specifics of the application.

In the coming sections, we first discuss some key building blocks used by our
transformations in Sect. 3, and define the notion of compatibility in Sect. 4. Next,
we describe our CCA2 compatibility construction in Sect. 5, with analysis and
proof of security deferred to the full version. We can use simpler assumptions
and a simpler construction to achieve the weaker goal of CCA1 compatibility, as
discussed above. This construction and analysis are deferred to the full version
due to lack of space.
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3 Preliminaries

In this section we will provide notions and security definitions for public key
encryption, keyless collision resistant hash functions and non-interactive per-
fectly binding commitments. For public key encryption we will formulate a def-
inition that can capture IND-CPA, IND-CCA1 and IND-CCA2 security. For all
of our definitions we will be explicit to whether we are describing security against
uniform or non-uniform adversaries as our results will be sensitive to this nuance.

We will use κ to denote the security parameter. We will denote by negl(κ) a
function that is asymptotically smaller than the inverse of every polynomial in
κ.

Public Key Encryption

A public key encryption scheme is specified by a triple of algorithms
(KeyGen,Enc,Dec),where KeyGen(1κ; rKeyGen) → (sk, pk), Enc(pk,msg; rEnc) → ct
and Dec(sk, ct) → msg. These algorithms satisfy (perfect) correctness, and
IND-CPA/CCA1/CCA2 security, which we will describe below. In addition, we
require the following additional properties.

Security Parameter Retrievability. A PKE scheme is security parameter retriev-
able if there exists a polynomial time algorithm RetrieveParam that can extract
the security parameter used to generate a public key. More formally ∀κ, rKeyGen
it must be that RetrieveParam(pk) = κ where (sk, pk) ← KeyGen(1κ; rKeyGen).

Message Recovery from Randomness. We will additionally assume a message
recovery from randomness property as given in [22]. Suppose that ct is an
encryption of message msg under a (valid) public key cpa.pk and randomness
r. Then the exists an algorithm CPA.Recover where CPA.Recover(cpa.pk, ct, r) =
msg.

The encryption algorithm of any IND-CPA secure PKE scheme can be mod-
ified to include this property, as follows. Assume that messages are n bits long.
Then one can use n additional random coins r′ during encryption and append
msg ⊕ r′ to the end of the ciphertext. The message can then be recovered from
the random coins by a simple XOR operation with r′. Moreover, since the r′

portion of the coins are not used elsewhere in encryption, IND-CPA security is
preserved. This simple transformation only modifies the encryption algorithm
and not the public key. Thus, from a compatibility perspective the setup algo-
rithm remains the same. Therefore in our presentation we will assume that the
public key encryption scheme has this property.

Security. We now describe security for public key encryption schemes. We will
present a single game of (full) chosen ciphertext security and then derive IND-
CCA-1 and IND-CPA security. We define the following security game between
a challenger C and a stateful attacker A.
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1. C runs KeyGen(1κ; rKeyGen) → (sk, pk) and gives pk to A.
2. A then is allowed to make oracle queries to the function Dec(sk, ·)
3. A submits two messages msg0,msg1 ∈ M × M to C.
4. C chooses a coin b ∈ {0, 1} and outputs ct∗ ← Enc(pk,msgb; rEnc) for random

rEnc.
5. A then is allowed to make oracle queries to the function Dec(sk, ·) with the

restriction that ct∗ is not given as input to the oracle.
6. A outputs a bit b′.

We refer to the above security game as the IND-CCA2 security game. We define
IND-CCA1 security as above, with the exception that the attacker is not allowed
any decryption oracle queries in Step 5. We define the IND-CPA security game
as above with the exception that the attacker is not allowed any decryption
oracle queries in Step 2 and none in Step 5.

Definition 1 (Secure Public Key Encryption). We will say that a public
key encryption scheme is (IND-CCA2, IND-CCA1, IND-CPA) secure if for all
non-uniform poly-time attackers A there exists a negligible function negl such that
Pr[b′ = b] ≤ 1

2 + negl(κ) in the (IND-CCA2, IND-CCA1, IND-CPA) security
game.

Definition 2 (Uniform Secure Public Key Encryption). We will say that
a public key encryption scheme is (IND-CCA2, IND-CCA1, IND-CPA) secure
if for all poly-time uniform attackers A we have that there exists a negligible
function negl such that Pr[b′ = b] ≤ 1

2 +negl(κ) in the (IND-CCA2, IND-CCA1,
IND-CPA) security game.

In our construction we will also need to consider more fined-grained notions of
security where we will specify a time function T that the attacker is allowed to
run in. Typically, this will be used to specify security against an attacker that
runs in time subexponential in the security parameter.

Definition 3 (Non-uniform T -secure Public Key Encryption). We will
say that a public key encryption scheme is T -(IND-CCA2, IND-CCA1, IND-
CPA) secure if for every polynomial p(·), all non-uniform attackers A running
in time at most p(T (κ)) and with at most p(T (κ)) bits of advice there exists a
negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(κ) in the (IND-CCA2,
IND-CCA1, IND-CPA) security game.

Definition 4 (Uniform T -secure Public Key Encryption). We will say
that a public key encryption scheme is T -(IND-CCA2, IND-CCA1, IND-CPA)
secure if for every polynomial p(·) and all uniform attackers A running in time
at most p(T (κ)) we have that there exists a negligible function negl such that
Pr[b′ = b] ≤ 1

2 + negl(κ) in the (IND-CCA2, IND-CCA1, IND-CPA) security
game.
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Non-interactive Perfect Binding Commitments

Definition 5 (Non-interactive Perfectly Binding Commitments with
Non-Uniform Security). A non-interactive perfectly binding commitment is
specified by a poly-time computable randomized algorithm Com that on input
(1κ,msg; r) outputs a commitment string c of length �(κ), where �(·) is a poly-
nomially bounded function, satisfying:

– Perfect Binding: For all c ∈ {0, 1}∗, κ, �(msg0,msg1, r0, r1) such that
msg0 �= msg1, and c = Com(1κ,msg0; r0) and c = Com(1κ,msg1; r1).

– Computational Hiding: There exists a negligible function negl(·) such that
∀msg0,msg1 ∈ {0, 1}∗ s.t. |msg0| = |msg1|,∀ non-uniform PPT A,

∣

∣

∣ Pr[A
(Com(1κ,msg0, r)) = 1] − Pr[A (Com(1κ,msg1, r)) = 1]

∣

∣

∣ ≤ negl(κ) where M
denotes message space and the probability is over r.

We will also assume a property of message recovery from randomness for our
commitment scheme. Suppose that c is a commitment of message msg under ran-
domness r. Then the exists an algorithm Com.Recover where Com.Recover(c, r) =
msg. A similar argument to the one given above for public key encryption shows
how one can derive a commitment scheme with the message recover from ran-
domness property from any ordinary one. Finally, we will implicitly assume that
any message m committed to using security parameter 1κ can be retrieved with
probability 1 by an algorithm running in time 2κq(κ) for some polynomial func-
tion q. We denote Com.Dec as the algorithm for doing this.

Equivocal Commitments without Setup

Equivocal commitments were proposed by DiCrescenzo, Ishai and Ostrovsky [9]
as a bit commitment scheme with a trusted setup algorithm. During normal
setup, the bit commitment scheme is statistically binding. However, there exists
an alternative setup which produces public parameters along with a trapdoor,
that produces commitments which can be opened to either 0 or 1. Moreover,
the public parameters of the normal and alternative setup are computationally
indistinguishable.

Here we will define a similar primitive, but without utilizing a trusted setup
algorithm. In order for such a notion to be meaningful, we will require the com-
mitment scheme to be computationally binding for any uniform T -time attacker,
but there will exist an algorithm running in time poly(2κ) that can be opened
to 0 or 1. Moreover, such a commitment with one of the openings should be sta-
tistically indistinguishable from a commitment created in the standard manner.
An equivocal commitment scheme without setup consists of 3 algorithms:

Equiv.Com(1κ, b) → (c, d) is a randomized PPT algorithm that on input a bit b
and the 1κ outputs a commitment c and decommitment d.

Equiv.Decom(c, d) → {0, 1,⊥} is a deterministic polytime algorithm that takes
in part of the commitment and it’s opening and reveals the bit that it was
committed to or ⊥ to indicate failure.
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Equiv.Equivocate(1κ) → (c, d0, d1) is an (inefficient) randomized algorithm that
in input 1κ outputs decommitments to both 0 and 1.

An equivocal commitment is perfectly correct if ∀b ∈ {0, 1}

Pr

⎡

⎣

(c, d) ← Equiv.Com(1κ, b)
b′ ← Equiv.Decom(c, d)

b′ = b

⎤

⎦ = 1

An equivocal commitment is efficient if Equiv.Com and Equiv.Decom run in
poly(κ) time, and Equiv.Equivocate runs in time 2κ.

An equivocal commitment without setup scheme (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) is said to be T (·) binding secure if for any uniform adversary A
running in time p(T (κ)) for some polynomial p, there exists a negligible function
negl(·) such that

Pr
[
(c, d0, d1) ← A(1κ) : Equiv.Decom(c, d0) = 0 ∧ Equiv.Decom(c, d1) = 1

] ≤ negl(κ).

We sat that a scheme is equivocal if for all b ∈ {0, 1} the statistical difference
between the following two distributions is negligible in κ.

– D0 = (c, d) where Equiv.Com(1κ, b) → (c, d).
– D1 = (c, db) where Equiv.Equivocate(1κ) → (c, d0, d1).

We observe that our security definitions do not include an explicit hiding prop-
erty of a committed bit. This property is actually implied by our equivocal
property, and hiding will not be explicitly needed by our proof.

Hinting PRGs

We now provide the definition of hinting PRGs taken from [22]. Let n(·, ·) be a
polynomial. A n-hinting PRG scheme consists of two PPT algorithms Setup,Eval
with the following syntax.

Setup(1κ, 1�): The setup algorithm takes as input the security parameter κ, and
length parameter �, and outputs public parameters pp and input length n =
n(κ, �).

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the
public parameters pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs
an � bit string y.

Definition 6. A hinting PRG scheme (Setup,Eval) is said to be secure if for
any PPT adversary A, polynomial �(·) there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds:

∣

∣

∣

∣

Pr
[

β ← A

(

pp,

(

yβ
0 ,

{

yβ
i,b

}

i∈[n],b∈{0,1}

))]

− 1
2

∣

∣

∣

∣

≤ negl(λ)

where the probability is over (pp, n) ← Setup(1κ, 1�(λ)), s ← {0, 1}n, β ←
{0, 1}, y0

0 ← {0, 1}�, y1
0 = Eval(pp, s, 0), y0

i,b ← {0, 1}� ∀ i ∈ [n], b ∈
{0, 1}, and y1

i,si
= Eval(pp, s, i), y1

i,si
← {0, 1}� ∀ i ∈ [n].
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Computation Enabled CCA Commitments

We now define “computation enabled” CCA secure commitments [13]. Intu-
itively, these are tagged commitments where a commitment to message m under
tag tag and randomness r is created as CCA.Com(tag,m; r) → Com. The scheme
is statistically binding in that for all tag0, tag1, r0, r1 and m0 �= m1 we have that
CCA.Com(tag0,m0; r0) �= CCA.Com(tag1,m1; r1).

Our hiding property follows along the lines of chosen commitment security
definitions [6] where an attacker gives a challenge tag tag∗ along with messages
m0,m1 and receives a challenge commitment Com∗ to either m0 or m1 from the
experiment. The attacker’s job is to guess the message that was committed to
with the aid of oracle access to an (inefficient) value function CCACom.Val where
CCACom.Val(Com) will return m if CCA.Com(tag,m; r) → Com for some r. The
attacker is allowed oracle access to CCACom.Val(·) for any tag �= tag∗.

The computation enabled property allows the attacker to submit a random-
ized turing machine P at the beginning of the game. The challenger will run
the program P and output the result for the attacker at the beginning of the
game. This added property will be useful in our proof of security. In addition, we
require a message recovery from randomness property, which allows one to open
the commitment given all the randomness used to generate said commitment.

A computation enabled CCA secure commitment is parameterized by a tag
space of size N = N(κ) and tags in [1, N ]. It consists of 3 algorithms:

CCA.Com(1κ, tag,m; r) → Com is a randomized PPT algorithm that takes as
input the security parameter κ, a tag tag ∈ [N ], a message m ∈ {0, 1}∗

and outputs a commitment Com, including the tag Com.tag. We denote the
random coins explicitly as r.

CCACom.Val(Com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes
in a commitment Com and outputs either a message m ∈ {0, 1}∗ or a reject
symbol ⊥.

CCACom.Recover(Com, r) → m is a deterministic algorithm which takes a com-
mitment Com and the randomness r used to generate Com and outputs the
underlying message m.

We now define the correctness, efficiency properties, as well as the security
properties of perfectly binding and message hiding.

A computation enabled CCA secure commitment scheme is perfectly correct
if the following holds. ∀m ∈ {0, 1}∗, tag ∈ [N ] and r we have that

CCACom.Val(CCA.Com(1κ, tag,m; r)) = m.

A computation enabled CCA secure commitment scheme is efficient if
CCA.Com, CCACom.Recover run in time poly(|m|, κ), while CCACom.Val runs
in time poly(|m|, 2κ).

A computation enabled CCA secure commitment is perfectly binding if
∀m0,m1 ∈ {0, 1}∗ s.t. m0 �= m1 there does not exist tag0, tag1, r0, r1 such that
CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1).
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Remark 1. We remark that this is implied by correctness, as we know that if
CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1), then

m0 = CCACom.Val(CCA.Com(1κ, tag0,m0; r0))
= CCACom.Val(CCA.Com(1κ, tag1,m1; r1)) = m1,

but m0 �= m1, a contradiction.

We define our message hiding game between a challenger and an attacker.
The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P .
The challenger runs the program on random coins and sends the output to
the attacker. If the program takes more than 22

κ

time to halt, the outputs
halts the evaluation and outputs the empty string.1

2. The attacker sends a “challenge tag” tag∗ ∈ [N ].
3. The attacker makes repeated commitment queries Com. If Com.tag = tag∗

the challenger responds with ⊥. Otherwise it responds as

CCACom.Val(Com).

4. For some w, the attacker sends two messages m0,m1 ∈ {0, 1}w.
5. The challenger flips a coin b ∈ {0, 1} and sends Com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
6. The attacker again makes repeated queries of commitment Com. If Com.tag =

tag∗ the challenger responds with ⊥. Otherwise it sends

CCACom.Val(Com).

7. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the

probability is over all the attacker and challenger’s coins.

Definition 7. An attack algorithm A is said to be e-conforming for some real
value e > 0 if:

1. A is a (randomized) uniform algorithm.
2. A runs in polynomial time.
3. The program P output by A in Step 1 of the game terminates in time p(2κe

)
and outputs at most q(κ) bits for some polynomial functions p, q (For all
possible random tapes given to the program P ).

Definition 8. A computation enabled CCA secure commitment scheme given
by algorithms (CCA.Com,CCACom.Val,CCACom.Recover) is said to be e-
computation enabled CCA secure if for any e-conforming adversary A there
exists a negligible function negl(·) such that the attacker’s advantage in the game
is negl(κ).

1 The choice of 22κ

is somewhat arbitrary as the condition is in place so that the
game is well defined on all P .



254 D. Khurana and B. Waters

Definition 9. We say that our CCA secure commitment scheme can be recov-
ered from randomness if the following holds. For all m ∈ {0, 1}∗, tag ∈ [N ], and
r, CCACom.Recover(CCA.Com(1κ, tag,m; r), r) = m.

Claim. Let (CCA.Com,CCACom.Val) be a set of algorithms which satisfy the
correctness, efficiency, binding and Definition 8. Then there exists a set of algo-
rithms (CCA′.Com,CCA′.Val, CCA′.Recover) which satisfy the same properties
as well as Definition 9.

Proof. Consider the following transformation:

RecoverRandom(NM = (CCA.Com,CCACom.Val)) → NM′ =

(CCA′.Com,CCA′.Val,CCA′.Recover) :

CCA′.Com(tag,m; r = (r0, r1)) : Let Com = CCA.Com(tag, r0), and c = r1 ⊕ m.
Output (Com, c).

CCA′.Val(Com′ = (Com, c)) : Output CCACom.Val(Com).
CCA′.Recover(Com′ = (Com, c), r = (r0, r1)) : Output c ⊕ r1.

We can see that correctness, efficiency and binding all hold if they do in the
underlying scheme as they call the underlying CCA.Com,CCACom.Val once. To
see that Definition 8 still holds, we can consider an attacker A against NM′.
We can construct an attacker for NM by taking the challenge commitment Com,
appending w uniformly random bits c′ to it, and running A on (Com, c′). Let m be
the underlying message in Com. Since c′ is independent and uniformly random,
so is c′ ⊕ m, meaning that (Com, c′) produces a distribution of Com′ identical to
CCA′.Com. Finally, we can see that our transformation satisfies Definition 9 as
c ⊕ r1 = m ⊕ r1 ⊕ r1 = m.

Connecting to Standard Security. We now connect our computation enabled
definition of security to the standard notion of chosen commitment security. In
particular, the standard notion of chosen commitment security is simply the com-
putation enabled above, but removing the first step of submitting a program P .
We prove two straightforward lemmas. The first showing that any computation
enabled CCA secure commitment scheme is a standard secure one against uni-
form attackers. The second is that any non-uniformly secure standard scheme
satisfies e-computation enabled security for any constant e ≥ 0.

Definition 10. A commitment (CCA.Com,CCACom.Val,CCACom.Recover) is
said to be CCA secure against uniform/non-uniform attackers if for any poly-
time uniform/non-uniform adversary A there exists a negligible function negl(·)
such that A’s advantage in the above game with Step 1 removed is negl(κ).
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Claim. If (CCA.Com,CCACom.Val,CCACom.Recover) is an e-computation
enabled CCA secure commitment scheme for some e as per Definition 8, then it
is also a scheme that achieves standard CCA security against uniform poly-time
attackers as per Definition 10.

Proof. This follows from the fact that any uniform attacker A in the standard
security game with advantage ε(κ) = ε immediately implies an e-conforming
attacker A′ with the same advantage where A′ outputs a program P that imme-
diately halts and then runs A.

Claim. If (CCA.Com,CCACom.Val,CCACom.Recover) achieves standard CCA
security against non-uniform poly-time attackers as per Definition 10, then it
is an e-computation enabled CCA secure commitment scheme for any e as per
Definition 8.

Proof. Suppose A is an e-conforming attacker for some e with some advantage
ε = ε(κ). Then our non-uniform attacker A′ can fix the random coins of A and
to maximize its probability of success. Since now A is deterministic save for
randomness produced by the challenger in step 5, this deterministically fixes
the P A sends, so A′ can fix the coins of P to maximize success. Thus, A′ can
simulate A given the above aforementioned random coins of A and the output
of P , both of which are poly-bounded by the fact that A is e-conforming. Since
all non-challenger randomness was non-uniformly fixed to maximize success, A′

has at least advantage ε as well. By our definition of standard security hiding,
the advantage of A′ must be negligible, so A’s advantage must be as well.

Decryption in Exponential Time. We will implicitly assume that any message
m committed to using security parameter 1κ can be retrieved with probability
1 by an algorithm running in time 2κq(κ) for some polynomial function q. We
denote CCACom.Dec as the algorithm for doing this.

4 Defining CCA Compatibility

In this section we provide formal definitions of what it means for a scheme to be
CPA/CCA compatible. This will be a property of any KeyGen algorithm, and
our main technical result will establish that CPA compatibility implies CCA
compatibility (under appropriate hardness assumptions).

Definition 11 (CPA Compatibility). An algorithm KeyGen is said to
be non-uniform (resp., uniform) T -CPA-compatible for T = T (κ) and mes-
sage space M(κ), if there exist poly-time algorithms Enc,Dec such that
(KeyGen,Enc,Dec) comprise a public key encryption scheme for message space
M(κ), that satisfies p(T )-IND-CPA according to Definition 3 (resp., Definition
4), for every polynomial function p(·).
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Definition 12 (CCA1 Compatibility). An algorithm KeyGen is said to be
non-uniform (resp., uniform) T -CCA1-compatible for message space M(κ), if
there exist poly-time algorithms Enc,Dec such that (KeyGen,Enc,Dec) comprise
a public key encryption scheme for message space M(κ), that satisfies p(T )-
IND-CCA1 according to Definition 3 (resp., Definition 4), for every polynomial
function p(·).
Definition 13 (CCA2 Compatibility). An algorithm KeyGen is said to be
non-uniform (resp., uniform) T -CCA2-compatible for message space M(κ), if
there exist poly-time algorithms Enc,Dec such that (KeyGen,Enc,Dec) comprise
a public key encryption scheme for message space M(κ), that satisfies p(T )-
IND-CCA2 according to Definition 3 (resp., Definition 4), for every polynomial
function p(·).

Our main result is that any KeyGen that is non-uniform T (λ)-CPA-
compatible where T = 2λc

for any constant c > 0, is uniform λ-CCA1-compatible
and uniform λ-CCA2-compatible, under appropriate computational hardness
assumptions.

5 On CCA2 Compatibility

Our Construction

Let κ denote the security parameter, 0 < δ < 1 be a constant and κ′ = κδ. We
now provide our construction of an IND-CCA2 secure encryption system that
uses any 2κ′

-CPA compatible KeyGen algorithm, according to Definition 11. Our
construction relies on a hinting PRG, non-interactive computation enabled CCA
commitments and subexponentially secure equivocal commitments.

Let (CPA.Enc,CPA.Dec) be the encryption and decryption algorithms of the
non-uniform 2κ′

-IND-CPA secure public key encryption scheme with randomness-
recoverable ciphertexts and perfect decryption correctness, that is guaranteed to
exist by Definition 11. We will also assume that the following exist:

– An equivocal commitment (Equiv.Com,Equiv.Decom,Equiv.Equivocate) that
is T = 2κ′

binding secure.
– A 2κ′

-secure hinting PRG scheme HPRG = (HPRG.Setup,HPRG.Eval) against
non-uniform adversaries.

– A non-interactive e-computation enabled CCA commitment scheme repre-
sented by algorithms (CCA.Com,CCACom.Val,CCACom.Recover), with secu-
rity parameter κ′ and with e = 1/δ (for the same δ), such that the commit-
ment scheme can be broken in brute force in time 2κ′

.
– An existentially unforgeable under chosen message attack (EUF-CMA) sig-

nature (Signature.Setup,Sign,Verify) with security parameter κ′.
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We will now describe our CCA secure public key encryption scheme PKECCA

= (KeyGen, CCA.Enc, CCA.Dec) with message space {0, 1}�(κ). For simplicity of
notation, we will skip the dependence of � on κ. We will also assume that the
CPA scheme has message space {0, 1}κ+1 and uses �(κ) bits of randomness for
encryption.

KeyGen(1κ): The KeyGen algorithm outputs a public key cca.pk.
CCA.Enc(cca.pk,m ∈ {0, 1}�): The encryption algorithm is as follows:

1. It runs RetrieveParam(cca.pk) → κ and then calculates κ′ = κδ.
2. It samples (HPRG.pp, 1n) ← HPRG.Setup(1λ, 1�).
3. It then chooses s ← {0, 1}n.
4. For each i ∈ [n], it chooses random ri ← {0, 1}� and sets r̃i =

HPRG.Eval(HPRG.pp, s, i).
5. For each i ∈ [n], it chooses vi ← {0, 1}κ. It sets σi = Equiv.Com(1κ, si; vi),

and yi = si|vi.
6. It sets c = HPRG.Eval(HPRG.pp, s, 0) ⊕ m and for each i ∈ [n]

– If si = 0, c0,i = CPA.Enc(cpa.pk, yi; r̃i), c1,i = CCA.Com(1κ′
, vk, yi; ri).

– If si = 1, c0,i = CPA.Enc(cpa.pk, yi; ri), c1,i = CCA.Com(1κ′
, vk, yi;

r̃i).2

7. It sets α =
(

HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)

.

8. It samples (vk, sk) ← Signature.Setup(1κ′
).

9. Finally, it computes τ = Sign(sk, α), and outputs (vk, α, τ) as the cipher-
text.

PKE.Find(cca.pk, cca.sk, α)

Inputs: Public Key cca.pk = cpa.pk

Secret Key cca.sk = cpa.sk

Ciphertext α =
(
HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
Output: d ∈ {0, 1}n

– Let κ = RetrieveParam(cpa.pk).
– For each i ∈ [n], do the following:

1. Let mi = CPA.Dec(cpa.sk, c0,i).
2. If mi = 0|vi and σi = Equiv.Com(1κ, 0; vi), set di = 0. Else

set di = 1.
– Output d = d1d2 . . . dn.

Fig. 1. Routine PKE.Find

2 For ease of exposition we assume that � coins are both used for encryption with
security parameter κ as well as a commitment with security parameter κ′. In practice
if one is less than then other the extraneous bits can be truncated.



258 D. Khurana and B. Waters

PKE.Check(cca.pk, cca.ct, d)

Inputs: cca.pk = cpa.pk, cca.ct = (vk, α, τ) where

α =
(
HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
, d ∈ {0, 1}n

Output: msg ∈ {0, 1}� ∪ ⊥

– Let κ = RetrieveParam(cpa.pk). Compute κ′ = κe.
– Let flag = true. For i = 1 to n, do the following:

1. Let r̃i = HPRG.Eval(HPRG.pp, d, i).
2. If di = 0, let m ← CPA.Recover(cpa.pk, c0,i, r̃i). Parse m =

(s′|v′) and perform the following checks. If any of the checks
fail, set flag = false and exit loop.

• s′ = 0, CPA.Enc(cpa.pk, m; r̃i) = c0,i.
• σi = Equiv.Com(1κ, s′; v′).

3. If di = 1, let m ← CCACom.Recover(1κ′
, c1,i, r̃i). Parse m =

(s′|v′) and perform the following checks. If any of the checks
fail, set flag = false and exit loop.

• s′ = 1, CCA.Com(1κ′
, vk, m; r̃i) = c1,i.

• σi = Equiv.Com(1κ, s′; v′).

– If flag = true, output c ⊕ HPRG.Eval(HPRG.pp, d, 0). Else ⊥.

Fig. 2. Routine PKE.Check

CCA.Dec(cca.sk, cca.pk, cca.ct): Parse ciphertext cca.ct as (vk, α, τ) where cca.sk

= cpa.sk and α =
(

HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)

. Output ⊥ if Verify(vk,

α, τ) = 0. Otherwise, set d = PKE.Find(cca.pk, cca.sk, α) (where PKE.Find is
defined in Fig. 1), and output PKE.Check(cca.pk, cca.ct, d) (where PKE.Check
is defined in Figure 2).
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Abstract. Verifiable Oblivious Pseudorandom Functions (VOPRFs)
are protocols that allow a client to learn verifiable pseudorandom func-
tion (PRF) evaluations on inputs of their choice. The PRF evaluations
are computed by a server using their own secret key. The security of
the protocol prevents both the server from learning anything about the
client’s input, and likewise the client from learning anything about the
server’s key. VOPRFs have many applications including password-based
authentication, secret-sharing, anonymous authentication and efficient
private set intersection. In this work, we construct the first round-optimal
(online) VOPRF protocol that retains security from well-known subexpo-
nential lattice hardness assumptions. Our protocol requires constructions
of non-interactive zero-knowledge arguments of knowledge (NIZKAoK).
Using recent developments in the area of post-quantum zero-knowledge
arguments of knowledge, we show that our VOPRF may be securely
instantiated in the quantum random oracle model. We construct such
arguments as extensions of prior work in the area of lattice-based zero-
knowledge proof systems.

1 Introduction

A verifiable oblivious pseudorandom function (VOPRF) is an interactive proto-
col between two parties; a client and a server. Intuitively, this protocol allows a
server to provide a client with an evaluation of a pseudorandom function (PRF)
on an input x chosen by the client using the server’s key k. Informally, the secu-
rity of a VOPRF, from the server’s perspective, guarantees that the client learns

The full version of this work is available as [1].
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nothing more than the PRF evaluated at x using k as the key where the server
has committed to k in advance. Informally, security from the perspective of the
client guarantees the conditions below:

1. the server learns nothing about the input x;
2. the client’s output in the protocol is indeed the evaluation on input x and

key k;

The fact that the client is ensured that its output corresponds to the key com-
mitted to by the server makes the protocol a verifiable oblivious PRF. If we were
to remove this requirement, the protocol would be an oblivious pseudorandom
function (OPRF). From a multi-party computation perspective, an OPRF can be
seen as a protocol that securely achieves the functionality g(x, k) = (Fk(x),⊥)
where Fk is a PRF using key k and ⊥ indicates that the server receives no
output. Applications of (V)OPRFs include secure keyword search [24], private
set intersection [32], secure data de-duplication [33], password-protected secret
sharing [29,30], password-authenticated key exchange (PAKE) [31] and privacy-
preserving lightweight authentication mechanisms [18].

A number of these applications have had recent and considerable real-world
impact. The work of Jarecki et al. [31] constructs a PAKE protocol, known
as OPAQUE, using an OPRF as a core primitive. The OPAQUE protocol is
intended for integration with TLS 1.3 to enable password-based authentication,
and it is currently in the process of being standardised [34] by the Crypto Forum
Research Group (CFRG)1 as part of the PAKE selection process [17]. In addition,
the work of Davidson et al. [18] constructs a privacy-preserving authorisation
mechanism (known as Privacy Pass) for anonymously bypassing Internet reverse
Turing tests based entirely on the security of a VOPRF. The Privacy Pass pro-
tocol is currently used at scale by the web performance company Cloudflare [46],
and there have also been recent efforts to standardise the protocol design [19].
Both Privacy Pass and OPAQUE use discrete-log (DL) based (V)OPRF con-
structions to produce notably performant protocols. Finally, there is a separate
and ongoing effort being carried forward by the CFRG [20] focusing directly on
standardising performant DL-based VOPRF constructions.

Unfortunately, and in spite of the practical value of VOPRFs, all of the
available constructions in the literature to date (at the time of writing) are based
on classical assumptions, such as decisional Diffie-Hellman (DDH) and RSA. As
such, all current VOPRFs would be insecure when confronted with an adversary
that can run quantum computations. Therefore, the design of a post-quantum
secure VOPRF is required to ensure that the applications above remain secure
in these future adversarial conditions.2 In fact, for full post-quantum security,
both the PRF and the VOPRF protocol itself must be secure in the quantum
adversarial model. While PRF constructions with claimed post-quantum security
are standard, it remains an open problem to translate these into secure VOPRF
protocols.
1 A subsidiary of the Internet Research Task Force (IRTF).
2 Note that using post-quantum secure VOPRF primitives in either the OPAQUE or

Privacy Pass examples above would immediately result in PQ-secure alternatives.
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Constructions of PRFs arising from lattice-based cryptography originated
from the work of Banerjee, Peikert and Rosen [6]. These constructions are post-
quantum secure assuming the hardness of the learning with errors (LWE) prob-
lem against quantum adversaries [45]. To get around the fact that the LWE
problem involves the addition of random small errors, carefully chosen rounding
is used to obtain deterministic outputs for PRFs based on the LWE assump-
tion [5,6,11]. These earlier works on LWE-based PRFs were followed by con-
structions of more advanced variants of PRFs [14,16,44]. Despite this, there is
yet to be an OPRF protocol for any LWE-based PRF. The same is true for
variants of these constructions based on the ring LWE (RLWE) problem [5].

Contributions. In this work, we instantiate a round-optimal3 VOPRF whose
security relies on subexponential hardness assumptions over lattices. Our con-
struction assumes certain non-interactive zero-knowledge arguments of knowl-
edge (NIZKAoKs). We use the protocol of Yang et al. [47] as an example instan-
tiation of the required NIZKAoKs, to argue knowledge of inputs to the input-
dependent part of PRF evaluations from the Banerjee and Peikert design [5]
(henceforth BP14) in the ring setting. Alternatively, one can use Stern-like meth-
ods such as those in [36] and the recent protocol of Beullens [7]. These choices
come with the advantage that results stating the validity of the Fiat-Shamir
transform in the quantum random oracle model (QROM) [22,37] will apply.

We stress that our results show the feasibility of round-optimal VOPRF pro-
tocols based on lattice assumptions, rather than practicality. The performance
of the VOPRF is negatively impacted by the required size of parameters (see
Sect. 5.3). These parameters are necessary for instantiating our construction
using reasonable underlying lattice assumptions – a consequence of using the
BP14 PRF construction with our proof technique. Moreover, we require heavy
zero-knowledge proof computations to ensure that neither participant deviates
from the protocol. Some of these proofs may be removed by considering certain
optimisations of our main protocol (see Sect. 3.2). Additionally, removing all
zero-knowledge proofs and considering an honest-but-curious setting may result
in a relatively efficient protocol (see Sect. 5.3).

Technical Overview. We design a VOPRF for a particular instantiation of the
BP14 PRF in the ring setting. Specifically, for a particular function aF :
{0, 1}L → R1×�

q where Rq := Zq[X]/〈Xn + 1〉, we set out to design a VOPRF
for the PRF

Fk(x) =
⌊

p

q
· aF (x) · k

⌉

where the key k ∈ Rq has small coefficients when represented in {−q/2, . . . , q/2},
and �·� represents rounding a rational to the nearest natural number. Our
VOPRF protocol can be easily modified to handle other choices of aF (x) (up to
a change in parameter requirements). The security of this BP14 PRF construc-
tion can be reduced to the hardness of RLWE. Consider the PRF for 2-bit

3 Meaning that only two messages are sent in the online (query) phase.
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inputs: then aF (x) = a1 ·G−1 (a2) where a1,a2 ∈ R1×�
q are uniform and public,

G = (1, 2, . . . , 2�−1) and G−1 (a2) ∈ R�×�
2 is binary. Very informally, for small

e,e′′ ∈ R1×�
q , uniform e′ ∈ R1×�

q /(Rq ·G) and q much larger than p, we can write⌊
p

q
· aF (x) · k

⌉
=

⌊
p

q
· k · a1 · G−1(a2)

⌉
=

⌊
p

q
· (k · a1 + e) · G−1(a2)

⌉

≈c

⌊
p

q
· (u) · G−1(a2)

⌉
(RLWE)

=
⌊

p

q
(u′G + e′) · G−1(a2)

⌉
=

⌊
p

q
(u′a2 + e′′) +

p

q
e′ · G−1(a2)

⌉

≈c

⌊
p

q
· u′′ +

p

q
· e′ · G−1(a2)

⌉
(RLWE)

=
⌊

p

q
· ũ

⌉

where u,u′′, ũ are uniform in R1×�
q and u′ is uniform in Rq. The proof of pseu-

dorandomness builds on these ideas.
To provide intuition for our VOPRF design, we describe the rough form of

our protocol (without zero-knowledge proofs). Given a public uniform a ∈ R1×�
q ,

the high level overview is as follows:

1. The server publishes some commitment c := a · k + e to a small key k ∈ Rq.
2. On input x, the client picks small s ∈ Rq, small e1 ∈ R1×�

q and sends cx =
a · s + e1 + aF (x).

3. On input small k ∈ Rq, the server sends dx = cx · k + e′ for small e′ ∈ R1×�
q .

4. The client outputs y =
⌊

p
q · (dx − c · s)

⌉
.

For server security, note that dx = a·s·k+aF (x)·k+e1·k+e′. Suppose that we
choose e′ from a distribution that hides addition of terms e1 ·k,e·s and ex (where
ex is from some other narrow distribution). Then, from the perspective of the
client, the server might as well have sent dx = (a·k+e)·s+e′+(aF (x)·k+ex) =
c ·s+(aF (x) ·k+ex)+e′. Picking ex from an appropriate distribution [5] makes
the term in brackets i.e. aF (x) · k + ex computationally indistinguishable from
uniform random under a RLWE assumption, even given the value of c which is
also indistinguishable from random by a RLWE assumption. This implies that
the message dx leaks nothing about the server’s key k.

For client security, we pick s from a valid RLWE secret distribution and a
Gaussian e. This implies that cx = a · s + e + aF (x) is indistinguishable from
uniform by RLWE. Finally, we must show that the client does indeed recover
Fk(x) as its output y. For correctness, we would like to say that⌊

p

q
· (dx − c · s)

⌉
=

⌊
p

q
· aF (x) · k +

p

q
(e1 · k − e · s + e′)

⌉
=

⌊
p

q
· aF (x) · k

⌉
.

Thus, we guarantee correctness if all coefficients of p
q · aF (x) · k are at least∣∣∣p

q (e1 · k − e · s + e′)
∣∣∣
∞

away from Z + 1
2 . It turns out that this condition is
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satisfied with extremely high probability due to the 1-dimensional short integer
solution (1D-SIS) assumption [15] regardless of the way an efficient server chooses
its key. The form of aF (x) is crucial to the connection with the 1D-SIS problem.
In particular, we rely on the fact that we can decompose aF (x) as a′

1 ·a′
2 where

a′
1 ∈ R1×�

q is uniform random and a′
2 ∈ R�×�

q has entries that are polynomials
with binary coefficients.

Ultimately, the security of our VOPRF construction (with particular choices
of NIZKAoK instantiations) holds in the QROM and relies on the hardness of
sub-exponential RLWE and 1D-SIS which are both at least as hard as certain
lattice problems. We discuss parameters in Sect. 5.3.

Related Work and Discussion. Subsequent to this work, Boneh et al. [10] con-
structed a post-quantum (V)OPRF with comparatively good efficiency from iso-
genies. Their construction also uses the random oracle model, but is also proven
secure in the universal composability (UC) model unlike the construction in this
work. A related primitive to a VOPRF is a verifiable random function (VRF).
A VRF is a keyed pseudorandom function allowing an entity with the key to
create publicly verifiable proofs of correct evaluation. Recently, Yang et al. [47]
showed a lattice-based construction of a VRF using the definition of [42]. In
fact, the proof systems of Yang et al. serve as a crucial foundation for one way
of instantiating the proof systems used in our VOPRF. However, it should be
noted that the Yang et al. construction (like ours) is not in the standard model
due to the use of the Fiat-Shamir [23] transform.

While our work provides a first construction for a post-quantum VOPRF, it
does not resolve this question completely. The reason VOPRFs enjoy popularity
is their efficiency in the discrete logarithm setting. In contrast, our construction –
while practically instantiable – is far less efficient. This relative inefficiency is
partly due to our choice of relying on lattice-based constructions for our zero-
knowledge proof systems, along with the super-polynomial factors required for
the RLWE-based PRF and noise drowning. Improving these areas thus suggests
ways to achieve concretely more efficient schemes. In fact, we do discuss attempts
to optimise our main protocol with a view to reducing the impact of the zero-
knowledge proofs. In particular, one can amortise the costs of the client zero-
knowledge proof by sending queries in batches and sending one proof of a more
complex statement. This saves a small additive term in the overall cost compared
to sending the queries one at a time. Additionally, we discuss the use of a cut-and-
choose approach to removing the server’s zero-knowledge proof at the effective
cost of extra repetitions of the protocol. Ultimately, this does not improve overall
efficiency, but it does dramatically reduce the burden on the server. For more
details, see Sect. 3.2. An alternative approach is to accept, for now, that VOPRFs
are less appealing building blocks in a post-quantum world, and to revisit their
applications to provide post-quantum alternatives on a per application basis.

One could alternatively instantiate VOPRFs using generic techniques for
establishing Multi-Party Computation (MPC) protocols by treating a single exe-
cution of the VOPRF protocol, for a PRF like AES, as a single invocation of
a classical two-party actively secure MPC protocol. But this does not give the
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round-optimality that we are after. See the full version of this work for a discus-
sion about this.

Road Map. We begin with preliminaries in Sect. 2. Note that Definition 1 devi-
ates from the usual MPC definition. In particular, we argue security against
malicious clients when k is sampled from a key distribution for which the PRF
is pseudorandom, rather than arguing security for arbitrary fixed k. Next is the
VOPRF construction and discussion of optimisations (Sect. 3) followed by a high-
level description of the zero-knowledge proof instantiations (Sect. 4). Finally, we
give the security proof for our VOPRF protocol in Sect. 5.

2 Preliminaries

All algorithms will be considered to be randomised algorithms unless explicitly
stated otherwise. A PPT algorithm is a randomised (i.e. probabilistic) algorithm
with polynomial running time in the security parameter κ. We consider the prob-
ability distribution of outputs of algorithms as being over all possible choices of
the internal coins of the algorithm. For a distribution D, we denote the sampling
of x according to distribution D by x ← D. We write x ← S for a finite set S to
indicate sampling uniformly at random from S. We use the notation D1 ≈c D2 to
mean the distributions D1 and D2 are computationally indistinguishable and ≈s

to denote statistical indistinguishability. We use the standard asymptotic nota-
tions. We let negl(κ) denote a negligible function (i.e. a function that is κ−ω(1))
and write r1 � r2 as short-hand for r1 ≥ κω(1) · r2. We say a distribution D is
(B, δ)-bounded if Pr[‖x‖ ≥ B | x ← D ] < δ. If a distribution is (B, δ)-bounded
for a negligible δ, then we say that distribution is simply B-bounded.

In this work we will use power of two cyclotomic rings. In particular, for some
integer q, we will be considering polynomials in the power-of-two cyclotomic ring
R = Z[X]/〈Xn + 1〉 and Rq := R/qR where n is a power-of-two. R≤c is the set
of elements of R where all coefficients have an absolute value at most c. We also
use a rounding operation from Zq to Zq′ where q′ < q. For x ∈ Zq, this rounding
operation is defined as

�x�q′ := �(q′/q) · x�
where �·� denotes rounding to the nearest integer (rounding down in the case
of a tie). If q′ divides q, we can lift rounded integers back up to Zq by simply
multiplying by q/q′. Note that lifting the result of a rounding takes an x ∈ Zq to
the nearest multiple of q/q′. Therefore, the difference between x and the result
of this rounding then lifting is at most q/(2 · q′). Polynomials and vectors are
rounded component-wise. We write ‖·‖ for the Euclidean norm and ‖·‖∞ for the
infinity norm. We define the norms of ring elements by considering the norms of
their coefficient vectors. Vectors whose entries are ring elements will be denoted
using bold characters and integer vectors will be indicated by an over-arrow e.g.
v has ring entries and #»w has integer entries. Suppose v = (v1, . . . , vn). A norm
of v is the norm of the vector obtained by concatenating the coefficient vectors
of v1, . . . , vn.
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Gaussian distributions. For any σ > 0, define the Gaussian function on R
n

centred at c ∈ R
n with parameter σ to be:

ρσ,c(x) = e−π·‖x−c‖2/σ2
, ∀x ∈ R

n.

Define ρσ(Z) :=
∑

i∈Z
ρσ(i). The discrete Gaussian distribution over Z, denoted

χσ assigns probability ρσ(i)/ρσ(Z) to each i ∈ Z and probability 0 to each non-
integer point. The discrete Gaussian distribution over R, denoted as R(χσ),
is the distribution over R where each coefficient is distributed according to χσ.
Using the results of [13,25], χσ can be sampled in polynomial time. Moreover the
Euclidean norm of a sample from R(χσ) can be bounded using an instantiation
of Lemma 1.5 of [4]. We state this lemma next.

Lemma 1. Let σ > 0 and n = poly(κ). Then

Pr
[
‖x‖ ≥ σ

√
n

∣∣ x ← R(χσ)
]

< negl(κ) .

In addition, following the same reasoning as in [21] we have the following “drown-
ing/smudging” lemma.

Lemma 2. Let σ > 0 and y ∈ Z. The statistical distance between χσ and χσ +y
is at most |y|/σ.

2.1 Verifiable Oblivious Pseudorandom Functions

Recall that the main goal of our work is to build a verifiable oblivious pseu-
dorandom function (VOPRF). A VOPRF is a protocol between two parties: a
server S and a client C, securely realising the ideal functionality in Fig. 1. The
functionality consists of two phases, the initialisation phase and the query phase.
The initialisation phase is divided into two steps: one run once by the server,
and one run once by any client who wishes to utilise the VOPRF provided by
the server. In the event that the functionality FVOPRF receives a valid input k
from S during the initialisation phase, it stores the key for use during the query
phase. This models a server (S) in a real protocol committing to a PRF key k.

Next comes the query phase, where a client C sends some value x to FVOPRF.
Once this value x has been received, the server S either sends the functionality
an instruction to abort or to deliver the value y = Fk(x) to C. Finally, the
functionality carries out this instruction. Importantly, (assuming that no abort
is triggered) the client has the guarantee that its output is indeed Fk(x) i.e. the
output of the client is verifiably correct when interacting with FVOPRF.

We now describe the distributions that arise in the security requirement. We
consider malicious adversaries throughout that behave arbitrarily and begin with
the distributions of interest when a server has been corrupted. First, we consider
a “real” world protocol Π between C(x) and S(k) along with an adversary A.
We denote realΠ,A,S(x, k, 1κ) to be the joint output distribution of A(k) (when
corrupting S(k)) and C(x) where C(x) behaves as specified by Π. In this setting,
A interacts directly with C. Now we introduce a simulator denoted Sim that lives
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This is a two party functionality between a server S and a client C. We assume
there is a fixed PRF function defined by Fk(x).

Init-S: On input of init from the server the functionality waits for an input k
from party S. If S returns abort then the functionality aborts. Otherwise, the
functionality stores the value k if it is a valid key† and aborts if not.

Init-C: On input of init from a client, the functionality will return abort if the init
procedure for the server has not successfully completed.

Query: On input of (query, x) from a client C, if x �=⊥ then the functionality
waits for an input from party S. If S returns deliver then the functionality sends
y = Fk(x) to party C. If S returns abort then the functionality aborts.

Fig. 1. The Ideal Functionality FVOPRF.
†The notion of a valid key refers to whether

the key conforms to a pre-determined distribution. See Definition 1 for more details on
this requirement.

in the “ideal” world. Specifically, still assuming A corrupts a server, Sim interacts
with A on one hand and with C(x) via FVOPRF on the other. In this setting, for
any client/server input pair (x, k), we define idealFVOPRF,Sim,A,S(x, k, 1κ) to be the
joint output distribution of A(k) and the honest client C(x) when A(k) interacts
via Sim. Informally, one may interpret Sim as an attacker-in-the-middle between
A and the outside world where Sim interacts with FVOPRF external to the view
of A. Security argues that whatever A can learn/affect in the real protocol can
be emulated via Sim in the ideal setting.

Next, we describe the distributions of interest when a client has been cor-
rupted by an adversary A. We let K denote the key distribution under which
PRF security of F holds. First, consider a “real” world case where A corrupts
C(x) and directly interacts with honest S(k) which follows the specification of
protocol Π. In this case, we use realΠ,A,C(x,K, 1κ) to denote the joint out-
put distribution of A(x) and S(k)4 where k ← K. Now consider an alternative
“ideal” world case where we introduce a simulator Sim interacting with A on
one hand and with S(x) via FVOPRF on the other hand. Once again, one may
wish to interpret the simulator as an attacker-in-the-middle interacting with
FVOPRF external to the view of A. In this alternative case, we denote the joint
output distribution of A(x) and S(k) where A interacts via Sim and k ← K as
idealFVOPRF,Sim,A,C(x,K, 1κ).

Finally, for protocol Π, let output(Π,x, k) denote the output distribution of
a client with input x running protocol Π with a server whose input key is k.
Using the notation established above, we can present our definition of a VOPRF.

Definition 1. A protocol Π is a verifiable oblivious pseudorandom function if
all of the following hold:

1. Correctness: For every pair of inputs (x, k),

Pr[output(Π,x, k) �= Fk(x)] ≤ negl(κ) .

4 Note that the output of S(k) is ⊥ in our construction.
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2. Malicious server security: For any PPT adversary A corrupting a server,
there exists a PPT simulator Sim such that for every pair of inputs (x, k):

idealFVOPRF,Sim,A,S(x, k, 1κ) ≈c realΠ,A,S(x, k, 1κ).

3. Average case malicious client security: For any PPT adversary A cor-
rupting a client, there exists a PPT simulator Sim such that for all client
inputs x:
– idealFVOPRF,Sim,A,C(x,K, 1κ) ≈c realΠ,A,C(x,K, 1κ).
– If A correctly outputs Fk(x) with all but negligible probability over the

choice k ← K when interacting directly with S(k) using protocol Π, then
A also outputs Fk(x) with all but negligible probability when interacting
via Sim.

We now discuss this definition. Note that the correctness and malicious server
security requirements are the standard ones used in MPC. Therefore, we restrict
this discussion to the condition that we call average case malicious client security.
The motivation for this non-standard property is that an honest server will
always sample a key from distribution K as it wishes to provide pseudorandom
function evaluations. In particular, PRF security holds with respect to this key
distribution K. Therefore, it makes sense to ask what a malicious client may
learn/affect only in the case where k ← K which leads to the first point of
our average case malicious client security requirement. The second point of the
requirement captures the fact that adversaries may have access to an oracle that
checks whether the PRF was evaluated correctly or not. Suppose that we give
the adversary A access to an oracle which can check an input/output pair to
the PRF is valid or not. Then A should not be able to distinguish whether
it is interacting with a real server S or a simulation Sim. Note that our proof
structure relies heavily on our alternative malicious client security definition. In
particular, the definition above allows us to argue over the entropy of secret keys
when making indistinguishability claims.

Alternative Definitions. Note that alternative security definitions exist for
(V)OPRFs. In the UC security models that are favoured by Jarecki et al. [29,30]
the output of the PRF is wrapped in the output of a programmable random
oracle evaluation. This is a fact that is utilised by the OPAQUE PAKE pro-
tocol [31] that allows arguing that the pseudorandom function evaluations are
pseudorandom even to the server (the key-holder). Unfortunately, using a sim-
ilar technique here is difficult as constructing programmable random oracles in
the quantum random oracle model (QROM) is known to be difficult [9].

2.2 Computational Assumptions

Here we present the presumed quantum hard computational problems that will
be used in our security proofs. Evidence that these problems are indeed quantum
hard follows via reductions from standard lattice problems (see the full version of
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this work). These reductions from lattice problems will be used to asymptotically
analyse secure parameter settings for our VOPRF. The first is the standard
decisional RLWE problem [40].

Definition 2. (RLWE problem) Let q,m, n, σ > 0 depend on κ (q,m, n are
integers). The decision-RLWE problem (dRLWEq,n,m,σ) is to distinguish between:

(ai, ai · s + ei)i∈[m] ∈ (Rq)
2 and (ai, ui)i∈[m] ∈ (Rq)

2

for ai, ui ← Rq; s, ei ← R(χσ).

We sometimes write dRLWEq,n,σ, leaving the parameter m (representing the
number of samples) implicit. The second problem is slightly less standard. It is
the short integer solution problem in dimension 1 (1D-SIS). The following for-
mulation of the problem was used in [15] in conjunction with a lemma attesting
to its hardness. See the full version of this work for more details.

Definition 3. (1D-SIS, [15, Definition 3.4]) Let q,m, t depend on κ. The one-
dimensional SIS problem, denoted 1D-SISq,m,t, is the following: Given a uniform
v ← Z

m
q , find non-zero z ∈ Z

m such that ||z||∞ ≤ t and 〈v,z〉 ∈ [−t, t] + qZ.

2.3 Non-interactive Zero-Knowledge Arguments of Knowledge

The foundations of zero-knowledge (ZK) proof systems were established in a
number of works [8,23,27,28]. At a high level, a ZK proof system for language L
allows a prover P to convince a verifier V that some instance x is in L, without
revealing anything beyond this statement. Further, a ZK argument of knowledge
(ZKAoK) system allows P to convince V that they hold a witness w attesting to
the fact that x is in L (where the L is defined by a relation predicate PL(x,w)).

Definition 4. (NIZKAoK) Let P be a prover, let V be a verifier, let L be a
language with accompanying relation predicate PL(·, ·). Let WL(x) be a generic
set of witnesses attesting to the fact that x ∈ L, i.e. ∀x ∈ L, and w ∈ WL(x) we
have PL(x,w) = 1. Let nizk = (Setup,P,V) be a tuple of algorithms defined as
follows:

– crs ← nizk.Setup(1κ): outputs a common random string crs.
– π ← nizk.P(crs, x, w): on input crs, a word x ∈ L and a witness w ∈ WL(x);

outputs a proof π ∈ {0, 1}poly(κ).
– b ← nizk.V(crs, x, π): on input crs, a word x ∈ L and a proof π ∈ {0, 1}poly(κ);

outputs b ∈ {0, 1}.

Definition 5. (NIZKAoK Security) We say that nizk is a non-interactive zero-
knowledge argument of knowledge (NIZKAoK) for L if the following holds.

1. (Completeness): Consider x ∈ L and w ∈ WL(x), where PL(x,w) = 1. Then:

Pr
[
1 ← nizk.V(crs, x, π)

∣∣∣crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

]
≥ 1 − negl(κ).
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2. (Computational knowledge extraction): The proof system satisfies computa-
tional knowledge extraction with knowledge error κ̄ if, for any PPT prover
P

∗ with auxiliary information aux, the following holds. There exists a PPT
algorithm nizk.Extract and a polynomial p such that, for any input x, then:

Pr[1 ← PL(x,w′)|w′ ← nizk.Extract(P∗(crs, x, aux))] ≥ ν − κ̄

p(|x|)

is satisfied, where ν is the probability that nizk.V(crs, x,P∗(crs, x, aux)) outputs
1.

3. (Computational zero-knowledge): There exists a simulated setup algorithm
nizk.SimSetup(1κ) outputting crsSim and a trapdoor T along with a PPT algo-
rithm nizk.Sim(crsSim, T , x) satisfying
{
crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

}
≈c

{ crsSim
πSim←nizk.Sim(crsSim,T ,x)|(crsSim, T ) ← nizk.SimSetup(1κ)

}

∀x ∈ L and w ∈ WL(x).

Interactive Proof Systems. An interactive proof system is one where the proving
algorithm (P) requires interaction with the verifier. Such an interaction could be
an arbitrary protocol, with many message exchanges, but a typical (in the hon-
est verifier case) scenario is a three-move protocol consisting of a commitment
(from the prover), a uniformly chosen challenge (from the verifier) and then a
response (from the prover). Such protocols are referred to as Σ-protocols. Fiat
and Shamir [23] established a mechanism of switching a (constant-round) hon-
est verifier zero-knowledge interactive proof of knowledge into a non-interactive
zero-knowledge proof of knowledge in the random oracle model (ROM). In par-
ticular, the random challenge provided by the verifier is replaced with the output
of a random oracle evaluation taking as input the statement x and the provers ini-
tial commitment. It was recently shown that the standard Fiat-Shamir transform
is also secure in the quantum ROM (QROM) [22,37] assuming the underlying
Σ-protocol satisfies certain properties.

2.4 Lattice PRF

We will use an instantiation of the lattice PRF from [5]. Below, we present
relevant definitions/results, all of which are particular cases of definitions/results
from [5]. We set � = �log2 q� throughout. The construction from [5] makes use
of gadget matrices that can be found in many previous works [5,15,26,43].

Gadgets G,G−1. Define G : R�×�
q → R1×�

q to be the linear operation correspond-
ing to left multiplication by (1, 2, . . . , 2�−1). Further, define G−1 : R1×�

q → R�×�
q

to be the bit decomposition operation that essentially inverts G i.e. the ith col-
umn of G−1(a) is the bit decomposition of ai ∈ Rq into binary polynomials.

The instantiation of [5] that we will present our VOPRF with respect to is
defined as Fk(x) = �ax · k�p for ax ∈ R1×�

q given below.
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Definition 6. Fix some a0,a1 ← R1×�
q . For any x = (x1, . . . , xL) ∈ {0, 1}L.

We define ax ∈ R1×�
q as

ax := ax1 · G−1
(
ax2 · G−1

(
ax3 · G−1

(
. . .

(
axL−1 · G−1 (axL

)
))))

∈ R1×�
q .

The pseudorandomness of this construction follows from the ring learning
with errors (RLWE) assumption (with normal form secrets).

Theorem 1 ([5]). Sample k ← R(χσ). If q � p · σ ·
√

L · n · �, then the function
Fk(x) = �ax · k�p is a PRF under the dRLWEq,n,σ assumption.

When we eventually prove security of our VOPRF, it will be useful to define
a special error distribution such that ax · k + e remains indistinguishable from
uniform (under RLWE) when e is sampled from this special error distribution.
To this end, we introduce the distributions Ea0,a1,x,σ followed by a lemma that
is implicit in the pseudorandomness proof of the PRF from [5].

Definition 7. For a0,a1 ∈ R1×�
q , define

ax\i := G−1
(
axi+1 · G−1

(
axi+2 · G−1

(
· · ·

(
axL−1 · G−1 (axL

)
)
· · ·

)))
∈ R�×�

q .

Furthermore, let Ea0,a1,x,σ be the distribution that is sampled by choosing ei ←
R(χσ)1×� for i = 1, . . . , L and outputting

e =
L−1∑
i=1

ei · ax\i + eL.

Lemma 3 (Implicit in [5]). If a0,a1 ← R1×�
q ,e ← Ea0,a1,x,σ and s ← R(χσ),

then for any fixed x ∈ {0, 1}L,

(a0, a1, ax · s + e)

is indistinguishable from uniform random by the dRLWEq,n,σ assumption.

In addition to introducing Ea0,a1,x,σ, it will be useful to write down an upper
bound on the infinity norm on errors drawn from this distribution. The following
lemma follows from the fact that for y ← χσ, ‖y‖∞ ≤ σ

√
n with all but negligible

probability by Lemma 1. In fact, we could use the result that ‖y‖∞ ≤ σnc′
with

probability at least 1−c ·exp(−πn2c′
) for any constant c′ > 0 and some universal

constant c to reduce the upper bound, but we choose not to for simplicity.

Lemma 4 (Bound on Errors). Let x ∈ {0, 1}L, � = �log2 q� and n = poly(κ).
Samples from Ea0,a1,x,σ have infinity norm at most L · � · σ · n3/2 with all but
negligible probability.
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3 A VOPRF Construction from Lattices

In this section, we provide a construction emulating the DH blinding construction
H(x)k = (H(x) · gr)k

/(gk)r. In what follows, we will initially ignore the zero-
knowledge proofs establishing that all computations are performed honestly. A
detailed description of the protocol is in Fig. 2 but the main high-level idea
follows.

Recall that we are working with power-of-two cyclotomic rings. Informally,
suppose a client wants to obtain a′ · k + e′ ∈ Rq (where e′ is relatively small)
from a server holding a short k without revealing a′ ∈ Rq. Further, suppose that
the server has published an LWE instance (a, c := a ·k + e) for truly uniformly a
and small Gaussian e. One way to achieve our goal is to have the client compute
cx := a · s + e1 + a′ for Gaussian (s, e1). Next the server responds by computing
dx := cx · k + e′′ for relatively small e′′ and the client finally outputs

dx − c · s = (a · s + e1 + a′) · k + e′′ − (a · k + e) · s

= a′ · k + (e1 · k − e · s + e′′)
≈ a′ · k.

The above gives the intuition behind our actual protocol. Roughly, the idea
is to replace a′ with ax from a BP14 evaluation. As mentioned above, a more
detailed formulation of our construction is given in Fig. 2. In the protocol descrip-
tion, Pi and Vi denote prover and verifier algorithms for three different zero-
knowledge argument systems indexed by i ∈ {0, 1, 2}.

3.1 Zero-Knowledge Argument of Knowledge Statements

The arguments of Pi algorithms fall into two groups separated by a colon. Argu-
ments before a colon are intended as “secret” information pertaining to a witness
for a statement. Arguments after a colon should be interpreted as “public” infor-
mation specifying the statement that is being proved.

Client Proof. The client proof denoted P1(x, s,e1 : crs1, cx,a,a0,a1) should
prove knowledge of

– x ∈ {0, 1}L

– s ∈ R where ‖s‖∞ ≤ σ · √
n

– e1 ∈ R1×� where ‖e1‖∞ ≤ σ
√

n

such that cx = a · s + e1 + ax mod q.
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CRS SetUp: To set up the CRS execute the following steps:
– Pick a0,a1 ← R1×�

q

– Sample a ← R1×�
q , sample crs0 for proof system P0 and set crs0 := (crs0,a)

– Sample crs1 and crs2 for proof systems P1 and P2 respectively
Init: The initialisation procedure is executed by the server S and a client C both

with initial input crs0.
– Init-S: The server S executes the following steps

• k ← R(χσ),e ← R(χσ)1×�.
• c ← a · k + e mod q.
• π0 ← P0(k, e : crs0,c).

and sends (c, π0) to a client C.
– Init-C: On receipt of (c, π0) a client executes

• b ← V0(crs0,c, π0).
• Output abort if b = 0, otherwise store c.

Query: This is a two round protocol between a client and the server, with a client
going first.
1. On input of (x ∈ {0, 1}L, crs1, crs2) a client C executes the following steps

– s ← R(χσ),e1 ← R(χσ)1×�.
– ax = ax1 · G−1 · · · axL−1 · G−1 (axL)

) · · · ) mod q.
– cx ← a · s + e1 + ax mod q.
– π1 ← P1(x, s,e1 : crs1,cx,a,a0,a1).

and sends (cx, π1) to the server S.
2. On receipt of (cx, π1) the server S executes the following steps

– b ← V1(crs1,cx,a0,a1, π1).
– Output abort if b = 0
– e′ ← R(χσ′)1×�.
– dx = cx · k + e′ mod q.
– π2 ← P2(k,e′,e : crs2,c,dx,cx,a).

and sends (dx, π2) to a client C while outputting ⊥.
3. On receipt of (dx, π2) a client C executes

– b ← V2(crs0, crs2,c,dx,cx, π2).
– Output abort if b = 0.
– yx = �dx − c · s�p.
– Output yx.

Fig. 2. VOPRF construction

Server Proofs. The server proof in the initialisation phase denoted P0(k,e :
crs0, c) has the purpose of proving knowledge of k ∈ R,e ∈ R1×� where ‖k‖∞,
‖e‖∞ ≤ σ · √n such that c = a · k + e mod q where crs0 contains a.
The server proof in the query phase denoted by P2(k,e′,e : crs2, c,dx, cx,a) has
the purpose of proving that there is some

– k ∈ R where ‖k‖∞ ≤ σ · √
n

– e ∈ R1×� where ‖e‖∞ ≤ σ · √n
– e′ ∈ R1×� where ‖e′‖∞ ≤ σ′ · √

n
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such that

c = a · k + e mod q,

dx = cx · k + e′ mod q. (1)

It is important to note that both c and dx each consist of � ring elements.
Therefore, the above system consists of a total of 2� noisy products of public
ring elements and k. Note that the well-definedness of normal form RLWE (where
the secret is drawn from the error distribution) implies that the witnesses used
by the prover in π0 and π2 share the same value k.

3.2 Optimisations

Removing P0 using Trapdoors. The main purpose of proof system 0 is to
allow the security proof to extract k and forward it on to the functionality.
On removing this proof, if the server does not commit to its key properly, it
cannot carry out the zero-knowledge proof in the Query phase, leading to a
protocol where no evaluations are given to clients. An alternative to the server’s
NIZKAoK in the Init-S phase, the proof could extract k via trapdoors. Using
the methods of Micciancio and Peikert [41], one can sample a trapdoored a ∈ Rm

q

for m = O(�) that is indistinguishable from uniform where the trapdoor permits
efficient inversion of the function ga(k,e) = a · k + e for small e. Therefore, the
malicious server security proof could extract k in the Init-S phase by using a
trapdoored a along with the inversion algorithm. For clarity and simplicity, we
do not incorporate these ideas directly into our protocol.

Truncating the PRF. Although the protocol in Fig. 2 is concerned with
the evaluation of the full BP14 PRF, we may consider a truncated version of
the PRF to improve efficiency. In particular, the BP14 PRF is evaluated as
Fk(x) := �ax · k�p ∈ R1×�

p but we could easily truncate particular quantities in
our protocol to consider the PRF F ′

k(x) := �ax · k�p where ax is the ring element
appearing in the first entry of ax. The relevant values that are truncated from
� ring elements to a single ring element from our protocol are c,ax, cx,dx,yx.
Ignoring the zero-knowledge elements of the protocol, this saves us a factor of
�. However, computation of the full ax must still be performed by the client
in order to calculate the truncated value. Additionally, the computation of ax

will still need to be considered by the client’s zero-knowledge proof. As we will
see in Sect. 4, the computation of ax is the main source of inefficiency in the
zero-knowledge proofs and our overall protocol. Therefore, we do not trivially
save a factor of � in computation time and zero-knowledge proof size by using a
truncated BP14 PRF.
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Batching Queries. We can save on the cost of zero-knowledge proof of the
server in the Query phase by batching VOPRF queries. When the client sends
a single value cx, the server proves that c and cx are computed with respect
to the same k. If the client sends N individual queries, the server proves that
c and cx1 are with respect to the same k and then independently proves that
c and cx2 are with respect to the same k and so on. Instead, the server could
simply prove that c, cx1 , . . . , cxN

are all with respect to the same k in one shot,
saving an additive term of O(N · �) in communication over N different VOPRF
evaluations (although the overall complexity of the communication does not
change asymptotically).

Cut-and-Choose. Another way in which we can improve efficiency (from the
server’s perspective) is to remove some of the zero-knowledge proofs using a
cut-and-choose methodology. In particular, we can remove the need for the zero-
knowledge proof from the server in the Query phase as follows. Firstly, in the
Init-S phase, we make the server publish (for small k) the value y := �ax′ · k�p

for some fixed x′ in addition to the value a · k + e as well as a zero-knowledge
proof attesting to the correct computation of these values for small k. The next
change comes in the client message in the Query phase. Instead of sending a
single pair (cx, π1), the client chooses a uniform subset X of {1, . . . , N} of size K.
The client then sends N values (cx1 , . . . , cxN

) where for all j ∈ X, xj = x′ and
for all j′ /∈ X, xj′ = x for some x chosen by the client and a NIZKAoK attesting
to this computation. The server then computes dx1 , . . . ,dxN

as it does in Fig. 2
using cx1 , . . . , cxN

respectively. Next, the client processes each dxi
individually

to compute the values yx1 . . .yxN
as in the plain protocol. Finally, the client

aborts if any of the following hold:

– there exists a j∗ ∈ X such that yxj∗ �= y
– yxj′ are not all equal for j′ /∈ X
– yxj′ = y for all j′ /∈ X (see explanation below)

Otherwise, the client accepts yx = yxj′ for any j′ /∈ X as the evaluation at
x. The client now must create N proofs for the most complex statements. On
the other hand, the server does not need to create any proofs whatsoever in the
online phase. The only way for the server to cheat now is to somehow guess
the N − K transcripts containing input x which can be done with probability
at most 1/

(
N
K

)
. Thus, the computational burden is mostly shifted to the client,

which might be desirable in some settings.
On close inspection, there is a slight problem with the cut-and-choose opti-

misation described above. The issue is that a client might ask for an eval-
uation on input x such that �ax · k�p = �ax′ · k�p in which case the third
condition causes an abort, even though the client obtained the correct eval-
uation. One way to get around this is to redefine the PRF slightly so that
such collisions only occur with negligible probability. For example, for L − 1 bit
inputs x ∈ {0, 1}L−1, suppose we use the alternative PRF F ′

k(x) :=
⌊
a0‖x · k

⌉
p
.

Since we can rewrite a0‖x · k = a0 · Zx,k where Zx,k has small entries as
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long as k is short. Then a collision in this PRF must lead to an equation
a0 · (Zx,k − Zx′,k) = u mod q where ‖u‖∞ ≤ q/p. Rearranging, this equation

becomes [1|a0] ·
[

u
(Zx,k − Zx′,k)

]
= 0 mod q which means that such a collision

would imply a solution to a ring-SIS problem with respect to [1|a] (in Hermite
normal form). Therefore, for fixed x and any short k, it is unlikely that a collision
in this alternative PRF will occur under some SIS assumption.

3.3 Correctness

Before proving correctness, we present a lemma that we will apply below. The
proof of this lemma is in the full version of this work.

Lemma 5. Fix any x ∈ {0, 1}L. Suppose there exists a PPT algorithm
Dx(a0,a1) that outputs r ∈ R such that ‖r‖∞ ≤ B and at least one coefficient of
ax · r is in the set (q/p) ·Z+ [−T, T ] with non-negligible probability (over a uni-
form choice of a0,a1 ← R�

q and its random coins). Then there exists an efficient
algorithm solving 1D-SISq/p,n�,max{n�B,T} with non-negligible probability.

Lemma 6 (Correctness). Adopt the notation of Fig. 2, assuming an honest
client and server. Define T := 2σ2 n2 + σ′√n. For any x ∈ {0, 1}L, k ∈ Rq such
that ‖k‖∞ ≤ σ · √n, we have that

Pr[yx �= Fk(x)] ≤ negl(κ)

over the choice of PRF parameters a0,a1 ← R1×�
q assuming the hardness of

1D-SISq/p,n�,T .

Proof. Fix an arbitrary x. Assume there exists a k′ such that ‖k′‖ ≤ σ ·√n where
Pr[yx �= Fk′(x)] is non-negligible over the choice of a0,a1 ← R1×�

q . Expanding
c and dx from the protocol, we have that

yx = �ax · k′ + e1 · k′ + e′ − e · s�p .

Note that e′′ := e1 · k′ − e · s + e′ has infinity norm less than T as defined in
the lemma statement with all but negligible probability. It follows that there
must be at least one coefficient of ax · k′ in the set (q/p) · Z + [T, T ] with non-
negligible probability, otherwise yx = �ax · k′�p =: Fk′(x). Applying Lemma 5
to the algorithm Dx(a0,a1) that ignores a0,a1 and simply outputs k′ implies
an efficient algorithm solving 1D-SISq/p,n�,max{n3/2�σ,T}. ��

The remainder of the security proof can be found in Sect. 5.

4 Lattice-Based NIZKAoK Instantiations

We now describe various instantiations of our zero-knowledge arguments of
knowledge. Note that we use the Fiat-Shamir transform (on parallel repetitions)
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to obtain non-interactive proofs. We recall that the Fiat-Shamir transform has
recently been shown to be secure in the QROM [22,37] in certain settings. We
place most of our attention on discussing how to instantiate Proof System 1,
as the other proof systems may be derived straight-forwardly using a subset of
the techniques arising in Proof System 1. For more precise details on how to
instantiate Proof System 1 using the protocol of Yang et al. [47], see the full
version of this work. Alternatively, one could use the same techniques as in [36]
to represent the statement of interest in Proof System 1 as a permuted kernel
problem and use the recent protocol of Beullens [7]. The advantage of doing so
would be that the protocol of Beullens has been shown to be compatible with
the aforementioned security results of the Fiat-Shamir transform in the QROM.

Note that the argument system of Yang et al. requires the modulus q to be
a prime power. In contrast, 1D-SIS is known to be at least as hard as standard
lattice problems when q has many large coprime factors [15]. In order to justify
the use of a prime power modulus along with the use of the 1D-SIS assumption,
we apply two minor lemmas given in the full version of this work. Alternatively,
if one wished to use a highly composite modulus, then a Stern-based protocol
such as in [35,36] or the more efficient recent protocol of Beullens [7] may still be
used. Nonetheless, all of the aforementioned argument systems involve rewriting
PRF evaluations as a large system of linear equations. In our context, applying
the argument system of Yang is slightly simpler. Additionally, a single execution
of the protocol of Yang et al. achieves a soundness error of 2/(2p̄ + 1) for some
polynomial p̄ much less than q. This is similar to the soundness error encountered
in the Beullens protocol, but significantly improves on the soundness of Stern-
based protocols. Therefore, roughly κ/ log p̄ repetitions are required to reach a
2−κ soundness error when using either of the protocol of Yang et al. or Beullens
protocols.

Proof System 0: Small Secret RLWE Sample. Let A ∈ Z
n�×n
q be the

vertical concatenation of the negacyclic matrices associated to multiplication by
the ring elements of a ∈ R1×�

q respectively. Further, let #»c ∈ Z
n�
q be the vertical

concatenation of coefficient vectors of ring elements in c ∈ R1×�
q respectively.

The first proof aims to prove in zero knowledge, knowledge of a short solution
#»x := ( #»x 1,

#»x 2), where ‖ #»x‖∞ ≤ σ · √n to the system

#»c = A · #»x 1 + #»x 2 mod q.

This is an inhomogeneous SIS problem, so the zero-knowledge proof may
be instantiated using either the protocol of Yang et al. or Beullens. Addition-
ally, for this proof system, we may also use the protocol from [12]. All of these
options avoid the so-called soundness gap seen in many lattice-based proof sys-
tems (e.g. [38,39]) although the efficient protocol in [39] has been shown to be
secure in the QROM when the Fiat-Shamir transform is applied [37]. Therefore,
for simplicity and neatness we prefer to consider these systems when writing the
security proof for our VOPRF although one may use the more efficient protocol
of [39] in practice.
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Proof System 1: Proofs of Masked Partial PRF Computation. This
proof system aims to prove that for a known a and c, the prover knows short
s and e along with a bit-string x such that c = a · s + e + ax where ax is
part of the BP14 PRF evaluation. At a high level, we will run the protocol of
Yang et al. [47] O(κ/ log p̄) times (for some p̄ = poly(κ)) in parallel and apply
the Fiat-Shamir heuristic. We focus on this instantiation for simplicity. We do
not actually concretely present any ZKAoK protocol in this work, but we do
highlight the reduction in the full version of this work showing that we may use
the protocol of Yang et al. Similar methods (e.g. the decomposition-extension
framework used by[36]) can be used to prove compatibility with the protocol of
Beullens. Let Pn represent the power set of {1, . . . , n}3. The protocol of Yang et
al. is a ZKAoK for the instance-witness set given by

R∗ =
{(

(A, #»y ,M), #»x
)

∈ Z
m×n
q × Z

m
q × Pn × Z

n
q : A · #»x= #»y mod q ∧

∀(i,j,k)∈M,xi=xj ·xk mod q

}
.

Therefore, in order to show that we may use the protocol, we simply reduce
our statement of interest to an instance ((A′, #»y ′,M′), #»w ′) ∈ R∗. Then, the
protocol of Yang et al. allows to argue knowledge of a witness #»w ′ such that
((A′, #»y ′,M′), #»w ′) ∈ R∗. Details on reducing statements of the relevant form
to instances in R∗ are given in the full version of this work, but a high level
overview follows.

First note that we can compute ax recursively (similarly to [36]) by setting
variables Bi ∈ R�×�

q for i = L − 1, . . . , 0 via BL−1 = G−1(axL−1), and Bi =
G−1(axi

· Bi+1) for i = L − 2, . . . , 0. Using this, we have ax = G · B0. We can
therefore use the system G ·Bi = axi

·Bi−1 to facilitate computation of ax along
with the linear equation c = a·s+e1+G·B0 to completely describe the statement
being proved. However, the resulting system is over ring elements and is not
linear in unknowns. To solve these issues, we simply replace ring multiplication
by integer matrix-vector products and then linearise the resulting system (which
places quadratic constraints amongst the entries of the solution). We also make
use of binary decompositions to bound the infinity norms of valid solutions and
ensure that necessary entries are in {0, 1} via quadratic constraints5.

Proof System 2: Proofs of Secret Equivalence. Recall that we wish to
prove existence of a solution to Eq. (1). Note that dx from the protocol in
Sect. 3 are vectors holding � ring elements. Therefore, Eq. (1) can be expressed
as a system

ci = ai · k + ei i = 1, . . . , �,

(dx)i = (cx)i · k + e′
i i = 1, . . . , �,

where ‖ei‖∞, ‖k‖∞ ≤ σ · √
n, ‖e′

i‖∞ ≤ σ′ · √
n. We can conceptualise the above

as a large linear system A′ · #»x = #»c where #»x is the concatenation of coefficient

5 Using the fact that x2 = x mod q ⇐⇒ x ∈ {0, 1} assuming q is a prime power.
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vectors of k, e1, . . . , e�, e
′
1, . . . , e

′
� and #»c is the concatenation of the coefficient vec-

tors of c1, . . . , c�, (dx)1, . . . , (dx)�. Using this interpretation, we may instantiate
this proof system using the same methods as in Proof System 0.

5 Security Proof

In this section, we show that the protocol in Fig. 2 is a VOPRF achieving security
against malicious adversaries. In particular, corrupted clients and servers that
attempt to subvert the protocol learn/affect only as much as in an ideal world,
where they interact via the functionality FVOPRF.

Theorem 2. (Security) Assume p|q. The protocol in Fig. 2 is a secure VOPRF
protocol (according to Definition 1) if the following conditions hold:

– ∀i ∈ {0, 1, 2}, (Pi,Vi) is a NIZKAoK
– dRLWEq,n,σ is hard,
– q

2p � σ′ � max{L · � · σn3/2, σ2n2},
– 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard.

Note that correctness of our protocol with respect to honest clients and
servers is shown in Sect. 3.3. Therefore, what remains is to show average mali-
cious client security and malicious server security.

Correctness of Non-aborting Malicious Protocol Runs. During the mali-
cious client proof, it will be useful to call on the fact that a non-aborting protocol
transcript enables computation of Fk(x) with overwhelming probability:

Lemma 7. Assume that dRLWEq,n,σ is hard, σ and n are poly(κ), and q
2p �

σ′ � max{L · � · σn3/2, σ2n2}. For any x ∈ {0, 1}L, consider a non-aborting run
of the protocol in Fig. 2 between a (potentially malicious) efficient client C∗ and
honest server S. Further, let s be the value that is extractable from the client’s
proof in the query phase. Then, the value of �dx − c · s�p is equal to �ax · k�p

with all but negligible probability.

Proof. We use the notation from Fig. 2. First note that for a non-aborting pro-
tocol run, any efficient client C

∗ must have produced cx correctly using some
x ∈ {0, 1}L, s,e1 where ‖s‖∞, ‖e1‖∞ ≤ σ · √

n. Suppose that ex ← Ea0,a1,x,σ.
We now use the fact that if σ′ � max{L · � · σn3/2, σ2n2}, then e′ ← R(χσ′)1×�

and (ex − e1 · k − e · s) + e′ are statistically close which follows from Lemmas 4
and 2. Therefore, replacing e′ by (ex − e1 · k − e · s) + e′ and noting that cx

must be well-formed due to the NIZKAoK, the client output equation in Fig. 2
can be written as ⌊

p

q
(dx − c · s)

⌉
=

⌊
p

q
(ax · k + ex) +

p

q
e′

⌉

To complete the proof, we will use the fact that p
q (ax · k + ex) is computation-

ally indistinguishable from uniform random over p
q R1×�

q when ex ← Ea0,a1,x,σ
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assuming the hardness of dRLWEq,n,σ (Lemma 3). This implies that every coef-
ficient in p

q (axk + ex) is at least T away from Z + 1/2 with all but negligible
probability for any T � 1. Setting T = p

q

(
σ′ · √

n + L · � · σn3/2
)

� 1 ensures
that T ≤ p

q · ‖ex + e′‖∞ with all but negligible probability. It then follows that

⌊
p

q
(ax · k + ex) +

p

q
e′

⌉
=

⌊
p

q
ax · k

⌉

as required. ��

5.1 Malicious Client Proof

Lemma 8 (Average-case malicious client security). Assume that σ and
n are poly(κ), and p|q, and let conditions (i) and (ii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) q

2p � σ′ � max{L · � · σn3/2, σ2n2}.

If the above conditions hold and (P1,V1) is a NIZKAoK, then the protocol in Fig. 2
has average-case security against malicious clients according to Definition 1.

Proof. We describe a simulation S that communicates with the functionality
FVOPRF (environment) on one hand, and the malicious client C∗ on the other. S
carries out the following steps:

1. During CRS SetUp, publish honest a,a0,a1, crs1 and (dishonest) simulated
versions of crs0 and crs2. Denote the simulated CRS elements crs′0 and crs′2.

2. Pass the init message onto FVOPRF, then send C
∗ a uniform c ← R1×�

q with a
simulated proof π0,Sim. Initialise an empty list received.

3. During the Query stage, for each message (cx, π1) from C
∗, do:

(a) b ← V1(crs1, cx,a,a0,a1, π1). If b = 0 send abort to the functionality and
abort the protocol with the malicious client. If b = 1 continue.

(b) Extract the values x, s,e1 from π1 using the ZKAoK extractor and send
(query, x) to the functionality.

(c) – If FVOPRF aborts:
S aborts.

– If FVOPRF returns y ∈ R1×�
p and ∀y∗, (x,y∗) /∈ received: (i.e. if this is

the first time x is queried) uniformly sample

yq ← R1×�
q ∩

(
q

p
y + R1×�

≤ q
2p

)

and do received.add(x,yq).
– If FVOPRF returns y ∈ R�

p and ∃y∗s.t.(x,y∗) ∈ received:
(i.e. x was previously queried) Then set yq = y∗.
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(d) Next pick ē′ ← χσ′ and set

d̄x = c · s + ē′ + yq mod q.

Finally, produce a simulated proof π2,Sim using crs′2 and send (d̄x, π2,Sim)
to C

∗.

We now argue that C
∗ cannot decide whether it is interacting with S or with a

genuine server. Firstly, recognise that (crs′0, crs
′
2) is indistinguishable from hon-

estly created (crs0, crs2). Secondly, the malicious client cannot distinguish the
simulator’s uniform c sent during the Init phase from the real protocol by the
dRLWEq,n,σ assumption (condition (i)). This implies that both the CRS SetUp
and Init phases that S performs are indistinguishable from the real protocol.

The most challenging step is arguing that the simulator’s behaviour in the
Query phase is indistinguishable from the real protocol from the malicious
client’s point of view. We will analyse the behaviour of the simulator assum-
ing that no abort is triggered. We begin by arguing that the server message
dx in the real protocol with respect to any triple (x, s,e1) can be replaced by a
related message c·s+ax ·k+ex+e′′′ where ex ← Ea0,a1,x,σ and e′′′ ← R(χσ′)1×�

without detection by the following statistical argument. We have that the server
response in the real protocol has dx of the form

c · s + e1 · k + ax · k + e′ (2)

where e′ ← R(χσ′)1×�. By Lemma 2, the message distribution in Eq. (2) is
statistically indistinguishable from

a · k · s + e · s + ax · k + e′′ = c · s + ax · k + e′′ (3)

where e′′ ← R(χσ′)1×� due to the fact that σ′ � σ2n2. By a similar argument
along with Lemma 4, the quantity given in Equation (3) is statistically close in
distribution to

c · s + e′′′ + (ax · k + ex). (4)

where ex ← Ea0,a1,x,σ and e′′′ ← R(χσ′)1×�. Next, using Lemma 3 and condition
(i), we have that the bracketed term in Equation (4) is indistinguishable from
random over R1×�

q by the hardness of dRLWEq,n,σ (Lemma 3). In particular, from
an efficient C

∗’s point of view, dx cannot be distinguished from

c · s + e′′′ + ux

Note that on repeated queries, the errors sampled from R(χσ′)1×� are fresh.
The fact that S samples yq as a uniformly chosen element of a uniformly cho-
sen interval implies the indistinguishability part of average-case malicious client
security.

Next, we show that if the malicious client does indeed compute the correct
value from the messages it receives from the honest server (in the real protocol),
then it can do the same with the messages that it receives from the simulator.
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In Lemma 7, we show that a malicious client which does not cause an abort can
compute �ax · k�p from the messages it receives from the honest server with all
but negligible probability. We now show that this is also the case with the mes-
sages it receives from S. Consider yq sampled by S and also the corresponding
value d̄x. In addition, define e� := yq − (q/p) ·y ∈ R1×�

≤ q
2p

so that e� follows the

uniform distribution over R1×�
≤ q

2p
. We have that

⌊
p

q

(
d̄x − c · s

)⌉
=

⌊
y +

p

q

(
e� + ē′)⌉ . (5)

We also know that with all but negligible probability, ‖ē′‖∞ ≤ σ′√n, and that
‖e�‖∞ is less than q/(2p) − T with all but negligible probability as long as
T � (q/2p). Taking T = σ′√n, we get that with all but negligible probability,

∥∥∥∥p

q

(
e� + ē′)∥∥∥∥

∞
≤ 1

2
,

implying that the quantity in Equation (5) rounds correctly to y with all but
negligible probability. Therefore, both the real protocol and simulator enable
correct evaluation of the PRF. ��

5.2 Malicious Server Proof

Lemma 9. Let conditions (i) and (ii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard.

If the above conditions hold and (P0,V0) and (P2,V2) are both NIZKAoKs, then
the protocol in Fig. 2 is secure in the presence of malicious servers.

Proof. We construct a simulator S interacting with the malicious server S
∗ on

one hand and with the functionality FVOPRF on the other. The simulator S
behaves as follows:

1. During the CRS.SetUp phase, publish honest a,a0,a1, crs0, crs2 and (dishon-
est) simulated crs′1 to use with the proof systems.

2. During the Init-C phase, if S∗ sends c ∈ R1×�
q and an accepting proof π0,

then use the zero knowledge extractor to obtain a key k′ from π0 and forward
this on to the functionality. If the message is not of the correct format, or the
proof does not verify, then abort.

3. During the Query phase, select a uniform random value u ← R1×�
q , and

using the ZK simulator, produce a simulated proof π1,Sim using crs′1. Send the
message (u, π1,Sim). Wait for a response of the form (d̃x, π̃2) from S

∗. If the
proof π̃2 verifies, forward on deliver to FVOPRF. Otherwise, forward abort to
FVOPRF.
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We will show that the joint output of an honest client C and S
∗ in the real

world (where they interact directly) and the ideal world (where they interact via
FVOPRF and S) are computationally indistinguishable. We begin by arguing that
the malicious server S

∗ cannot distinguish whether it is interacting with a real
client or S, as described above. Firstly, replacing crs1 by crs′1 is indistinguishable
from the point of view of S∗ by definition of a simulated CRS. Importantly, if S∗

can produce valid proofs in the Init phase, the key k′ obtained by the simulator
is the unique ring element consistent with c (see the full version of this work for
more details).

All that is left to consider is the Query phase. Note that in the real protocol,
the client produces cx which takes the form of a RLWE sample offset by some
independent value. This implies that the value cx is pseudorandom under the
hardness of dRLWEq,n,σ. Therefore, the malicious server S∗ cannot distinguish a
real cx from the pair u that S uses. By the properties of a ZK simulator, it follows
that a real client message (cx, π1) and crs1 is indistinguishable from (u, π1,Sim)
and crs′1. Next, if the response from S

∗ has a valid proof, then S forwards on
deliver. This means that the ideal functionality passes a PRF evaluation to the
client using the server key k′. We now argue that this emulates the output on
the client side when running the real protocol with malicious server S

∗.
The case where the proof verification fails is trivial since the client aborts

in the real and ideal worlds. As a result, we focus on the case where the zero
knowledge proof produced by S

∗ verifies correctly. Let s ← R(χσ) and e1 ←
R(χσ)1×� be sampled by the honest client. For this honest client interacting
with malicious S

∗ in the real protocol, observe that
p

q
(dx − c · s) =

p

q
ax · k′ +

p

q
(e1 · k′ − e · s + e′) (6)

for k′,e′ chosen by S
∗ where ‖k′‖∞ ≤ σ · √

n and ‖e′‖∞ ≤ σ′ · √
n. Therefore,

rounding the quantity in Eq. (6) is guaranteed to result in the correct value if
every coefficient of p

q · ax · k′ is further than∥∥∥∥p

q
(e1 · k′ − e · s + e′)

∥∥∥∥
∞

away from Z + 1/2. In other words if S∗ can force incorrect evaluation, it has
found k′ ≤ σ · √

n such that a coefficient of ax · k′ is within a distance∥∥∥e1 · k′ − e · s + e′
∥∥∥

∞
≤ 2σ2n2 + σ′√n

of q
pZ+ q

2p ⊂ q
2pZ. We now apply Lemma 5 with 2 ·p, T = 2σ2n2 +σ′√n to show

that S
∗ forcing incorrect evaluation with non-negligible probability violates the

assumption that 1D-SISq/2p,n·�,max{�·σn3/2,2σ2n2+σ′√n} is hard. Therefore, condi-
tion (ii) enforces correct evaluation. ��

5.3 Setting Parameters

Let κ be the security parameter. Ignoring the NIZKAoK requirements for sim-
plicity, Theorem 2 requires the following conditions:
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– dRLWEq,n,σ is hard,
– q

2p � σ′ � max{L · � · σn3/2, σ2n2},
– 1D-SISq/(2p),n·�,max{�·σn3/2,2σ2 n2+σ′√n} is hard.

We will be using the presumed hardness of SIVPγ for approximation factors
γ = 2o(

√
n). The SIVPγ lattice dimension associated to RLWE will be n = κc

(for some constant c > 2); the dimension associated to 1D-SIS hardness will be
n′ = κ. We first choose L = κ, σ = poly(n) and σ′ = σ2n2 · κω(1), and then set
q = p·

∏n′

i=1 pi by picking coprime p, p1, . . . , pn′ = σ′ ·ω(
√

nn′ log q log n′). Having
made these choices, we argue that each of the three conditions are satisfied.
We argue RLWE hardness via SIVP for sub-exponential approximation factors
2 ˜O(n1/c) (for c > 2), noting that σ = poly(n) and

q = (σ′)n′ · ω((n · n′ · log q · log n′)n′/2)

= 2(2 log(nσ)+ω(1) log κ)·n1/c · ω((n · n′ · log q · log n′)n′/2)

= 2ω(1)·n1/c·log n · ω((n1+ 1
c · log q · log n)n1/c/2)

= 2 ˜O(n1/c).

Now substituting in � = log q implies that the second condition can be satisfied.
Finally for the 1D-SIS condition, we note that q/p =

∏n′

i=1 pi and

p1 = σ′ · ω(
√

n · n′ log q · log n′)

= σ2n2 · κω(1) · ω(
√

n · n′ · log q · log n′)

= (n′)ω(1) · ω(
√

n′1+c · log q · log n′).

So we get hardness of our 1D-SIS instance via the presumed hardness of SIVP
on n′-dimensional lattices for (n′)ω(1) · poly(n′) approximation factors. We sum-
marise the parameters of our construction in Table 1.

Table 1. Parameters of our VOPRF

Parameter Description Requirement Asymptotic

n Ring dimension n = poly(κ) poly(κ)

q Original modulus q = p · σ′ · κω(1) κω(1)

p Rounding modulus — poly(κ)

� log2(q) — ω(1)

σ Secret/error distribution q/σ = 2o(
√

n) poly(κ)

σ′ Drowning distribution σ′ = σ2n2 · κω(1) κω(1)

L Bit-length of PRF input — —

To give a rough estimate for concrete bandwidth costs, we start by observing
that we need q to be super-polynomial in κ for (a) PRF correctness and (b)
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noise drowning on the server side. We may pick log q ≈ 256 for κ = 128. Apply-
ing the “estimator” from [2] with the quantum cost model from [3] and noise
standard deviation σ = 3.2 suggests that n = 16, 384 provides security of > 2128

operations (indeed, significantly more, suggesting room for fine tuning). Thus, a
single RLWE sample takes about 0.5 MB. As specified in Sect. 3 our construc-
tion sends 2 � such samples. However, an implementation could send only two
such samples (see Sect. 3.2). Thus, each party would send about 1MB of RLWE
sample material. Of course, a more careful analysis and optimisation – picking
parameters, analysing bounds, applying rounding, perhaps removing the need
for super-polynomial drowning – would reduce this magnitude.

In addition to this, each party must send material for the zero-knowledge
proofs. In the full version of this work, we show that the statement associated
to the client proof may be written as an instance of R∗ consisting of more
than m′ = n�2(L−1) equations where the witness has a dimension of more than
n′ = 4n�2(L−1). Additionally, there are at least |M| := 4n�2(L−1) constraints.
This implies that the argument system of [47] requires the communication of at
least m′ +3n′ +4|M| = 9n�2(L− 1) integers modulo q per repetition. Using the
concrete parameters laid out above, we require > 9·16, 384·2562 ·127 > 240 bits of
communication per repetition. We remind the reader that choosing parameters of
the ZKAoK of Yang appropriately would allow us to only repeat a small number
of times and stress that this discussion gives a crude lower bound designed to
give an intuition on the inefficiency of our scheme, rather than a formal analysis
of the concrete cost of our scheme. We note that applying a SNARK or STARK
would reduce the bandwidth requirement for proofs.
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Abstract. In the past decades, user authentication has been dominated
by server-side password-based solutions that rely on “what users know”.
This approach is susceptible to breaches and phishing attacks, and poses
usability challenges. As a result, the industry is gradually moving to
biometric-based client-side solutions that do not store any secret infor-
mation on servers. This shift necessitates the safe storage of biometric
templates and private keys, which are used to generate tokens, on user
devices.

We propose a new generic framework called Biometric Enabled
Threshold Authentication (BETA) to protect sensitive client-side infor-
mation like biometric templates and cryptographic keys. Towards this,
we formally introduce the notion of Fuzzy Threshold Tokenizer (FTT)
where an initiator can use a “close” biometric measurement to generate
an authentication token if at least t (the threshold) devices participate.
We require that the devices only talk to the initiator, and not to each
other, to capture the way user devices are connected in the real world. We
use the universal composability (UC) framework to model the security
properties of FTT, including the unforgeability of tokens and the privacy
of the biometric values (template and measurement), under a malicious
adversary. We construct three protocols that meet our definition.

Our first two protocols are general feasibility results that work for
any distance function, any threshold t and tolerate the maximal (i.e.
t − 1) amount of corruption. They are based on any two round UC-
secure multi-party computation protocol in the standard model (with
a CRS) and threshold fully homomorphic encryption, respectively. We
show how to effectively use these primitives to build protocols in a con-
strained communication model with just four rounds of communication.

For the third protocol, we consider inner-product based distance met-
rics (cosine similarity, Euclidean distance, etc.) specifically, motivated by
the recent interest in its use for face recognition. We use Paillier encryp-
tion, efficient NIZKs for specific languages, and a simple garbled circuit
to build an efficient protocol for the common case of n = 3 devices with
one compromised.
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1 Introduction

Traditionally, password-based authentication has been the dominant approach
for authenticating users on the Internet, by relying on “what users know”. How-
ever, this approach has its fair share of security and usability issues. It typically
requires the servers to store a (salted) hash of all passwords, making them sus-
ceptible to offline dictionary attacks. Indeed, large-scale password breaches in
the wild are extremely common [6,8]. Passwords also pose challenging usability
problems. High entropy passwords are hard to remember by humans, while low
entropy passwords provide little security, and research has shown that introduc-
ing complex restrictions on password choices can backfire [39, Sec A.3].

There are major ongoing efforts in the industry to address some of these
issues. For example, “unique” biometric features such as finger-print [4], facial
scans [1], and iris scans [9] are increasingly popular first or second factor authen-
tication mechanisms for logging into devices and applications. Studies show that
biometrics are much more user-friendly [2], particularly on mobile devices, as
users do not have to remember or enter any secret information. At the same
time, a (server-side) breach of biometric data is much more damaging because,
unlike passwords, there is no easy way to change biometric information regularly.

Therefore, the industry is shifting away from transmitting or storing user
secrets on the server-side. For example, biometric templates and measurements
are stored and processed on the client devices where the matching also takes
place. A successful match then unlocks a private signing key for a digital signa-
ture scheme which is used to generate a token on a fresh challenge. Instead of
the user data, the token is transmitted to the server, who only stores a public
verification key to verify the tokens. (Throughout the paper, we shall use the
terms token and signature interchangeably.) Thus, a server breach does not lead
to a loss of sensitive user data.

Most prominently, this is the approach taken by the FIDO Alliance [3],
the world’s largest industry-wide effort to enable an interoperable ecosystem
of hardware-, mobile- and biometric-based authenticators that can be used by
enterprises and service providers. This framework is also widely adopted by
major Internet players and incorporated into all major browsers in the form of
W3C standard Web Authentication API [10].

Hardware-Based Protection. With biometric data and private keys (for generat-
ing tokens) stored on client devices, a primary challenge is to securely protect
them. As pointed out before, this is particularly crucial with biometrics since
unlike passwords they are not replaceable. The most secure approach for doing
so relies on hardware-based solutions such as secure enclaves [5] that provide
physical separation between secrets and applications. However, secure hardware
is not available on all devices, can be costly to support at scale, and provides
very little programmability.

Software-Based Protection. Software-based solutions such as white-box cryp-
tography are often based on ad-hoc techniques that are regularly broken [11].
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The provably secure alternative, i.e. cryptographic obfuscation [13,37], is not yet
practical for real-world use-cases.

A simple alternative approach is to apply “salt-and-hash” techniques, often
used to protect passwords, to biometric templates before storing them on the
client device. Here, näıve solutions fail because biometric matching is almost
always a fuzzy match that checks whether the distance between two vectors is
above a threshold or not.

Using Fuzzy Extractors. It is tempting to think that a better way to implement
the hash-and-salt approach for biometric data is through a cryptographic prim-
itive known as fuzzy extractor [21,33]. However, as also discussed by Dupont
et al. [34], this approach only works for high-entropy biometric data and is sus-
ceptible to offline dictionary attacks.

Distributed Cryptography to the Rescue. Our work is motivated by the fact
that most users own and carry multiple devices (laptop, smart-phone, smart-
watch, etc.) and have other IoT devices around when authenticating (smart
TV, smart-home appliances, etc.). We introduce a new framework for client-
side biometric-based authentication that securely distributes both the biometric
template as well as the secret signing key among multiple devices. These devices
can collectively perform biometric matching and token generation without ever
reconstructing the template or the signing key on any one device. We refer to
this framework as Biometric Enabled Threshold Authentication (BETA for short)
and study it at length in this paper.

Before diving deeper into the details, we note that while our primary motiva-
tion stems from a client-side authentication mechanism, our framework is quite
generic and can be used in other settings. For example, it can also be used to
protect biometric information on the server-side by distributing it among mul-
tiple servers who perform the matching and token generation (e.g., for a single
sign-on authentication token) in a fully distributed manner.

1.1 Our Contributions

To concretely instantiate our framework BETA, we formally introduce the notion
of fuzzy threshold tokenizer (FTT). We provide a universally composable (UC)
security definition for FTT and design several protocols that realize it. We first
briefly describe the notion of a Fuzzy Threshold Tokenizer.

Fuzzy Threshold Tokenizer. Consider a set of n parties/devices, a distribu-
tion W over vectors in Z

�
q, a threshold t on the number of parties, a distance

predicate Dist and an unforgeable threshold signature scheme TS. Initially, in
a global setup phase, a user generates some public and secret parameters (in
a trusted setting), and distributes them amongst the n devices she owns. Fur-
ther, she also runs the setup of the scheme TS and secret shares the signing key
amongst the devices. In an enrollment phase, user samples a biometric template
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−→w ∈ Z
�
q according to W and securely shares it amongst all the devices. Any set

of t devices can, together, completely reconstruct the biometric template −→w and
the signing key of the threshold signature scheme. Then, during an online sign
on session, an initiating device P , with a candidate biometric measurement −→u
as input, can interact in a protocol with a set S of (t − 1) other devices. At the
end of this, if −→u is “close enough” to the template −→w (with respect to distance
predicate Dist), the initiating device P obtains a token (signature) on a message
of its choice.

It is important to note that we do not allow the other participating (t − 1)
devices to interact amongst themselves1 and all communication goes through the
initiating device P . This is a critical requirement on the communication model for
FTT since in a typical usage scenario, one or two primary devices (e.g., a laptop
or a smart-phone) play the role of the initiating device and all other devices are
only paired/connected to the primary device. (These devices may not even be
aware of the presence of other devices.) Indeed, this requirement makes the design
of constant-round FTT protocols significantly more challenging. Further, in any
round of communication, we only allow unidirectional exchange of messages, i.e.,
either P sends a message to some subset of the other (t−1) devices or vice versa.

Security Definition. Consider a probabilistic polynomial time adversary A that
corrupts a set T of devices where |T | < t. Informally, the security properties
that we wish to capture in an FTT scheme are as follows:

(i) Privacy of biometric template: From any sign on session initiated by a cor-
rupt device, A should not be able to learn any information about the bio-
metric template −→w apart from just the output of the predicate Dist(−→u ,−→w)
for its choice of measurement −→u . If the sign on session was initiated by an
honest device, A should learn no information about −→w . Crucially, we do
not impose any restriction on the entropy of the distribution from which
the template is picked.

(ii) Privacy of biometric measurement: For any sign on session initiated by an
honest device, A should learn no information whatsoever about the mea-
surement −→u .

(iii) Token unforgeability : A should not be able to compute a valid token (that
verifies according to the threshold signature scheme TS) unless it initiated a
sign on session on behalf of a corrupt party with a measurement −→u such that
Dist(−→u ,−→w) = 1. Furthermore, A should only be able to compute exactly
one token from each such session.

Our first contribution is a formal modeling of the security requirements of a
fuzzy threshold tokenizer via a real-ideal world security definition in the universal
composability (UC) framework [26]. We refer the reader to Sect. 4 for the formal
definition and a detailed discussion on its intricacies.
Our next contribution is a design of several protocols that realize this primitive.

1 Note that corrupt parties can of course freely interact amongst themselves.
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Protocol-1(πmpc). Given any threshold signature scheme TS, for any distance
measure Dist, any n, t, we construct a four round2 UC-secure FTT protocol
πmpc. Our construction is based on any two-round (over a broadcast channel)
UC-secure multi-party computation (MPC) protocol [15,38,45,48] in the CRS
model that is secure against up to all but one corruption along with other basic
primitives. πmpc tolerates up to (t − 1) (which is maximal) malicious devices.

Protocol-2 (πtfhe). Given any threshold signature scheme TS, for any distance
measure Dist, any n, t, we construct a four round UC-secure FTT protocol πtfhe.
Our construction is based on any t out of n threshold fully homomorphic encryp-
tion scheme (TFHE) and other basic primitives. Like πmpc, this protocol is secure
against (t − 1) malicious devices.

The above two feasibility results are based on two incomparable primitives
(two round MPC and threshold FHE). On the one hand, two-round MPC seems
like a stronger notion than threshold FHE. But, on the other hand, two-round
MPC is known from a variety of assumptions like LWE/DDH/Quadratic Resid-
uosity, while threshold FHE is known only from LWE. Further, the two protocols
have very different techniques which may be of independent interest.

Protocol-3 (πip). We design the third protocol πip specifically for the cosine
similarity distance metric, which has recently been shown to be quite effective
for face recognition (CosFace [55], SphereFace [43], FaceNet [53]). We pick a
threshold of three for this protocol as people nowadays have at least three devices
on them most of the time (typically, a laptop, a smart-phone and a smart-watch).
πip is secure in the random oracle model as long as at most one of the devices is
compromised. We use Paillier encryption, efficient NIZKs for specific languages,
and a simple garbled circuit to build an efficient four-round protocol.

Efficiency analysis of πip. Finally, we perform a concrete efficiency analysis of
our third protocol πip. We assume that biometric templates and measurements
have � features (or elements) and every feature can be represented with m bits.
Let λ denote the computational security parameter and s denote the statistical
security parameter. In the protocol πip, we use Paillier encryption scheme to
encrypt each feature of the measurement and its product with the shares of the
template. The initiator device proves that the ciphertexts are well-formed and
the features are of the right length. For Paillier encryption, such proofs can be
done efficiently using only O(�m) group operations [30,31].

2 Recall that by one communication round, we mean a unidirectional/non-simultaneous
message exchange channel over a peer-to-peer network. That is, in each round either
the initiator sends messages to some subset of the other participating devices or vice
versa. In contrast, one round of communication over a broadcast channel means that
messages are being sent simultaneously by multiple (potentially all) parties connected
to the channel and all of them receive all the messages sent in that round. All our FTT
protocols use peer-to-peer channels which is the default communication model in this
paper.
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The other devices use the homomorphic properties of Paillier encryption
to compute ciphertexts for inner-product shares and some additional values.
They are sent back to the initiator but with a MAC on them. Then the other
devices generate a garbled circuit that takes the MAC information from them
and the decrypted ciphertexts from the initiator to compute if the cosine value
exceeds a certain threshold. The garbled circuit constructed here only does 5
multiplications on numbers of length O(m+log �+s). Oblivious transfers can be
preprocessed in the setup phase between every pair of parties so that the online
phase is quite efficient (only symmetric-key operations). Furthermore, since only
one of the two helping devices can be corrupt, only one device needs to transfer
the garbled circuit [44], further reducing the communication overhead. (We have
skipped several important details of the protocol here, but they do not affect the
complexity analysis. See Sect. 2.3 for a complete overview of the protocol.)

An alternate design appropach is to use the garbled circuit itself to compute
the inner-product. However, there are two disadvantages of this approach. First,
it does not scale efficiently with feature vector length. The number of multipli-
cations to be done inside the garbled circuit would be linear in the number of
features, or the size of the circuit would be roughly O(m2�). This is an important
concern because the number of features in a template can be very large (e.g., see
Fig. 1 in the NISTIR draft on Ongoing Face Recognition Vendor Test (FRVT)
[7]). Second, the devices would have to prove in zero knowledge that the bits fed
as input to the circuit match the secret shares of the template given to them in
the enrollment phase. This incurs additional computational overheads.

1.2 Related Work

Fuzzy identity based encryption, introduced by Sahai and Waters [52], allows
decrypting a ciphertext encrypted with respect to some identity id if the decryp-
tor possesses the secret key for an identity that almost matches id. However,
unlike FTT, the decryptor is required to know both identities and which posi-
tions match. Recall that one of our main goals is to distribute the biometric
template across all devices so that no one device ever learns it.

Function secret sharing, introduced by Boyle et al. [22], enables to share the
computation of a function f amongst several users. Another interesting related
primitive is homomorphic secret sharing [23]. However, both these notions don’t
quite fit in our context because of the limitations on our communication model
and the specific security requirements against a malicious adversary.

Secure multiparty computation protocols in the private simultaneous mes-
sages model [14,36,41] consider a scenario where there is a client and a set of
servers that wish to securely compute a function f on their joint inputs wherein
the communication model only involves interaction between the client and each
individual server. However, in that model, the adversary can either corrupt the
client or a subset of servers but not both.

The work of Dupont et al. [34] construct a fuzzy password authenticated
key exchange protocol where each of the two parties have a password with low
entropy. At the end of the protocol, both parties learn the shared secret key
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only if the two passwords are “close enough” with respect to some distance
measure. In our work, we consider the problem of generating signatures and also
multiple parties. Another crucial difference is that in their work, both parties
hold a copy of the password whereas in our case, the biometric template is
distributed between parties and therefore is never exposed to any party. There is
also a lot of work on distributed password authenticated key exchange [16] (and
the references within) but their setting considers passwords (and so, equality
matching) and not biometrics.

There has been a lot of work in developing privacy-preserving ways to com-
pare biometric data [17,25,32] but it has mostly focused on computing specific
distance measures (like Hamming distance) in the two-party setting where each
party holds a vector. There has also been some privacy-preserving work in the
same communication model as ours [19,29,42] but it has mainly focused on pri-
vate aggregation of sensitive user data.

Open Problems. We leave it as an open problem to define weaker game-based
security definitions for FTT and to design more efficient protocols that satisfy
those. We also leave it open to design FTT protocols that tolerate adaptive
corruptions and/or support dynamic addition/deletion of parties and rotation
of signature keys.

2 Technical Overview

2.1 MPC Based Protocol

Emulating General Purpose MPC. Our starting point is the observation
that suppose all the parties could freely communicate, then any UC-secure MPC
protocol against a malicious adversary in the presence of a broadcast channel
would intuitively be very useful in the design of an FTT scheme if we consider the
following functionality: the initiator P ∗ has input (msg, S,−→u ), every party Pi ∈ S
has input (msg, S), their respective shares of the template −→w and the signing key.
The functionality outputs a signature on msg to party P ∗ if Dist(−→u ,−→w) = 1 and
|S| = t. Recently, several works [15,24,38,45,49] have shown how to construct
two round UC-secure MPC protocols in the CRS model in the presence of a
broadcast channel from standard cryptographic assumptions. However, the issue
with following this intuitive approach is that the communication model of our
FTT primitive does not allow all parties to interact amongst each other - in
particular, the parties in the set S can’t directly talk to each other and all
communication has to be routed through the initiator. Armed with this insight,
our goal now is to emulate a two round MPC protocol π in our setting.

For simplicity, let us first consider n = t = 3. That is, there are three parties:
P1, P2, P3. Consider the case when P1 is the initiator. Now, in the first round
of our FTT scheme, P1 sends msg to both parties. Then, in round 2, we have
P2 and P3 send their round one messages of the MPC protocol π. In round 3 of
our FTT scheme, P1 sends its own round one message of the MPC protocol to
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both parties. Along with this, P1 also sends P2’s round one message to P3 and
vice versa. So now, at the end of round 3 of our FTT scheme, all parties have
exchanged their first round messages of protocol π.

Our next observation is that since we care only about P1 getting output, in
the underlying protocol π, only party P1 needs to receive everyone else’s mes-
sages in round 2. Therefore, in round 4 of our FTT scheme, P2 and P3 can
compute their round two messages based on the transcript so far and just send
them to P1. This will enable P1 to compute the output of protocol π.

Challenges. Unfortunately, the above scheme is insecure. Note that in order to
rely on the security of protocol π, we crucially need that for any honest party
Pi, every other honest party receives the same first round message on its behalf.
Also, we require that all honest parties receive the same messages on behalf of the
adversary. In our case, since the communication is being controlled and directed
by P1 instead of a broadcast channel, this need not be true if P1 was corrupt and
P2, P3 were honest. Specifically, one of the following two things could occur: (i)
P1 can forward an incorrect version of P3’s round one message of protocol π to
P2 and vice versa. (ii) P1 could send different copies of its own round 1 message
of protocol π to both P2 and P3.

Signatures to Solve Challenge 2. To solve the first problem,we simply enforce
that P3 sends a signed copy of its round 1 message of protocol π which is for-
warded by P1 to P2. Then, P2 accepts the message to be valid if the signature
verifies. In the setup phase, we can distribute a signing key to P3 and a verifi-
cation key to everyone, including P2. Similarly, we can ensure that P2’s actual
round 1 message of protocol π was forwarded by P1 to P3.

Pseudorandom Functions to Solve Challenge 2. Tackling the second prob-
lem is a bit trickier. The idea is instead of enforcing that P1 send the same round
1 message of protocol π to both parties, we will instead ensure that P1 learns
their round 2 messages of protocol π only if it did indeed send the same round
1 message of protocol π to both parties. We now describe how to implement
this mechanism. Let us denote msg2 to be P1’s round 1 message of protocol π
sent to P2 and msg3 (possibly different from msg2) to be P1’s round 1 message
of protocol π sent to P3. In the setup phase, we distribute two keys k2, k3 of
a pseudorandom function (PRF) to both P2, P3. Now, in round 4 of our FTT
scheme, P3 does the following: instead of sending its round 2 message of protocol
π as is, it encrypts this message using a secret key encryption scheme where the
key is PRF(k3,msg3). Then, in round 4, along with its actual message, P2 also
sends PRF(k3,msg2) which would be the correct key used by P3 to encrypt its
round 2 message of protocol π only if msg2 = msg3. Similarly, we use the key
k2 to ensure that P2’s round 2 message of protocol π is revealed to P1 only if
msg2 = msg3.

The above approach naturally extends for arbitrary n, t. by sharing two PRF
keys between every pair of parties. There, each party encrypts its round 2 mes-
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sage of protocol π with a secret key that is an XOR of all the PRF evaluations.
There are additional subtle issues when we try to formally prove that the above
protocol is UC-secure and we refer the reader to the full version [12] for more
details about the proof.

2.2 Threshold FHE Based Protocol

The basic idea behind our second protocol is to use an FHE scheme to perform
the distance predicate computation between the measurement −→u and the tem-
plate −→w . In particular, in the setup phase, we generate the public key pk of an
FHE scheme and then in the enrollment phase, each party is given an encryp-
tion ct−→w of the template. In the sign on phase, an initiator P ∗ can compute a
ciphertext ct−→u that encrypts the measurement and send it to all the parties in
the set S which will allow them to each individually compute a ciphertext ct∗

homomorphically that evaluates Dist(−→u ,−→w). However, the first challenge is how
to decrypt this ciphertext ct∗? In other words, who gets the secret key sk of the
FHE scheme in the setup? If sk is given to all parties in S, then they can, of
course, decrypt ct−→u but that violates privacy of the measurement. On the other
hand, if sk is given only to P ∗, that allows P ∗ to decrypt ct−→w violating privacy
of the template.

Threshold FHE. Observe that this issue can be overcome if somehow the
secret key is secret shared amongst all the parties in S in such a way that each
of them, using their secret key share ski, can produce a partial decryption of ct∗

that can then all be combined by P ∗ to decrypt ct∗. In fact, this is exactly the
guarantee of threshold FHE. This brings us to the next issue that if only P ∗

learns whether Dist(−→u ,−→w) = 1, how do the parties in S successfully transfer the
threshold signature shares? (recall that the transfer should be conditioned upon
Dist evaluating to 1) One natural option is, in the homomorphic evaluation of
the ciphertext ct, apart from just checking whether Dist(−→u ,−→w) = 1, perhaps
the circuit could then also compute the partial signatures with respect to the
threshold signature scheme if the check succeeds. However, the problem then is
that, for threshold decryption, there must be a common ciphertext available to
each party. In this case, however, each party would generate a partial signature
using its own signing key share resulting in a different ciphertext and in turn
preventing threshold decryption.

Partial Signatures. To overcome this obstacle, at the beginning of the sign-on
phase, each party computes its partial signature σi and information-theoretically
encrypts it via one-time pad with a uniformly sampled one-time key Ki. The
parties then transfer the partial signatures in the same round in an encrypted
manner without worrying about the result of the decryption. Now, to complete
the construction, we develop a mechanism such that:

– Whenever the FHE decryption results in 1, P ∗ learns the set of one-time
secret keys {Ki} and hence reconstructs the set of partial signatures {σi}.
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– Whenever the FHE decryption results in 0, P ∗ fails to learn any of the one-
time secret keys, which in turn ensures that each of the partial signatures
remains hidden from P ∗.

To achieve that, we do the following: each party additionally broadcasts
ctKi

, which is an FHE encryption of its one-time secret key Ki, to every other
party during the enrollment phase. Additionally, we use t copies of the FHE
circuit being evaluated as follows: the ith circuit outputs Ki if Dist(−→u ,−→w) = 1
– that is, this circuit is homomorphically evaluated using the FHE ciphertexts
ct−→u , ct−→w , ctKi

.3 Now, at the end of the decryption, if Dist(−→u ,−→w) was indeed
equal to 1, P ∗ learns the set of one-time keys {Ki} via homomorphic evaluation
and uses these to recover the corresponding partial signatures.

Consider the case where the adversary A initiates a session with a measure-
ment −→u such that Dist(−→u ,−→w) = 0. Our security proof formally establishes that
the adversary A learns no information about each one-time key Ki of the honest
parties and hence about the corresponding signature share. At a high level, we
exploit the simulation and semantic security guarantees of the threshold FHE
scheme to: (a) simulate the FHE partial decryptions to correctly output 0 and
(b) to switch each ctKi

to be an encryption of 0. At this point, we can switch
each Ki to be a uniformly random string and hence “unrecoverable” to A. We
refer the reader to Sect. 6 for more details.

NIZKs. One key issue is that parties may not behave honestly - that is, in the
first round, P ∗ might not run the FHE encryption algorithm honestly and simi-
larly, in the second round, each party might not run the FHE partial decryption
algorithm honestly which could lead to devastasting attacks. To solve this, we
require each party to prove honest behavior using a non-interactive zero knowl-
edge argument (NIZK). Finally, as in the previous section, to ensure that P ∗

sends the same message ct−→u to all parties, we use a signature-based verification
strategy, which adds two rounds resulting in a four round protocol.

2.3 Cosine Similarity: Single Corruption

In this section, we build a protocol for a specific distance measure4 (Cosine
Similarity). It is more efficient compared to our feasibility results. On the flip
side, it tolerates only one corruption: that is, our protocol is UC-secure in the
Random Oracle model against a malicious adversary that can corrupt only one
party. For two vectors −→u ,−→w , CS.Dist(−→u ,−→w) = 〈−→u ,−→w〉

||−→u ||·||−→w || where ||−→x || denotes
the L2-norm of the vector. Dist(−→u ,−→w) = 1 if CS.Dist(−→u ,−→w) ≥ d where d is
chosen by Dist. Without loss of generality, assume that distribution W samples

3 Note that the creation and broadcasting of these ciphertexts can happen in parallel
within a single round of communication between P ∗ and the other parties in the
set S.

4 Our construction can also be extended to work for the related Euclidean Distance
function but we focus on Cosine Similarity in this section.
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vectors −→w with ||−→w || = 1. Then, we check if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 instead of
CS.Dist(−→u ,−→w) > d. This syntactic change allows more flexibility.

Distributed Garbling. Our starting point is the following. Suppose we had
t = 2. Then, we can just directly use Yao’s [56] two party semi-honest secure
computation protocol as a building block to construct a two round FTT scheme.
In the enrollment phase, secret share −→w into −→w1,

−→w2 and give one part to each
party. The initiator requests for labels via oblivious transfer (OT) corresponding
to his share of −→w and input −→u while the garbled circuit, which has the other
share of −→w hardwired, reconstructs −→w , checks if 〈−→u ,−→w〉 > (d · 〈−→u ,−→u 〉)2 and if
so, outputs a signature. This protocol is secure against a malicious initiator who
only has to evaluate the garbled circuit, if we use an OT protocol that is mali-
cious secure in the CRS model. However, to achieve malicious security against
the garbler, we would need expensive zero knowledge arguments that prove cor-
rectness of the garbled circuit. Now, in order to build an efficient protocol that
achieves security against a malicious garbler and to work with threshold t = 3,
the idea is to distribute the garbling process between two parties.

Consider an initiator P1 interacting with parties P2, P3. We repeat the below
process for any initiator and any pair of parties that it must interact with. For
ease of exposition, we just consider P1, P2, P3 in this section. Both P2 and P3

generate one garbled circuit each using shared randomness generated during
setup and the evaluator just checks if the two circuits are identical. Further,
both P2 and P3 get the share −→w2 and a share of the signing key in the enroll-
ment and setup phase respectively. Note that since the adversary can corrupt at
most one party, this check would guarantee that the evaluator can learn whether
the garbled circuit was honestly generated. In order to ensure that the evaluator
does not evaluate both garbled circuits on different inputs, we will also require
the garbled circuits to check that P1’s OT receiver queries made to both par-
ties was the same. The above approach is inspired from the three party secure
computation protocol of Mohassel et al. [44].

However, the issue here is that P1 needs a mechanism to prove in zero knowl-
edge that it is indeed using the share −→w1 received in the setup phase as input
to the garbled circuit. Moreover, even without this issue, the protocol is com-
putationally quite expensive. For cosine similarity, the garbled circuit will have
to perform a lot of expensive operations - for vectors of length �, we would
have to perform O(�) multiplications inside the garbled circuit. As mentioned in
the introduction, because the number of features in a template (�) can be very
large for applications like face recognition, our goal is to improve the efficiency
and scalability of the above protocol by performing only a constant number of
multiplications inside the garbled circuit.

Additive Homomorphic Encryption. Our strategy to build an efficient pro-
tocol is to use additional rounds of communication to offload the heavy com-
putation outside the garbled circuit and also along the way, solve the issue of
the initiator using the right share −→w1. In particular, if we can perform the inner
product computation outside the garbled circuit in the first phase of the proto-
col, then the resulting garbled circuit in the second phase would have to perform
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only a constant number of operations. In order to do so, we leverage the tool
of efficient additively homomorphic encryption schemes [35,47]. In our new pro-
tocol, in round 1, the initiator P1 sends an encryption of −→u . P1 can compute
〈−→u ,−→w1〉 by itself. Both P2 and P3 respond with encryptions of 〈−→u ,−→w2〉 com-
puted homomorphically using the same shared randomness. P1 can decrypt this
to compute 〈−→u ,−→w〉. The parties can then run the garbled circuit based protocol
as above in rounds 3 and 4 of our FTT scheme: that is, P1 requests for labels
corresponding to 〈−→u ,−→w〉 and 〈−→u ,−→u 〉 and the garbled circuit does the rest of
the check as before. While this protocol is correct and efficient, there are still
several issues.

Leaking Inner Product. The first problem is that the inner product 〈−→u ,−→w〉 is
currently leaked to the initiator P1 thereby violating the privacy of the template−→w . To prevent this, we need to design a mechanism where no party learns the
inner product entirely in the clear and yet the check happens inside the gar-
bled circuit. A natural approach is for P2 and P3 to homomorphically compute
an encryption of the result 〈−→u ,−→w2〉 using a very efficient secret key encryp-
tion scheme. In our case, just a one time pad suffices. Now, P1 only learns an
encryption of this value and hence the inner product is hidden, while the garbled
circuit, with the secret key hardwired into it, can easily decrypt the one-time
pad.

Input Consistency. The second major challenge is to ensure that the input
on which P1 wishes to evaluate the garbled circuit is indeed the output of the
decryption. If not, P1 could request to evaluate the garbled circuit on suitably
high inputs of his choice, thereby violating unforgeability! In order to prevent
this attack, P2 and P3 homomorphically compute not just x = 〈−→u ,−→w2〉 but also
a message authentication code (mac) y on the value x using shared random-
ness generated in the setup phase. We use a simple one time mac that can be
computed using linear operations and hence can be done using the additively
homomorphic encryption scheme. Now, the garbled circuit also checks that the
mac verifies correctly and from the security of the mac, P1 can not change the
input between the two stages. Also, we require P1 to also send encryptions of
〈−→u ,−→u 〉 in round 1 so that P2, P3 can compute a mac on this as well, thereby
preventing P1 from cheating on this part of the computation too.

Ciphertext Well-Formedness. Another important issue to tackle is to ensure
that P1 does indeed send well-formed encryptions. To do so, we rely on efficient
zero knowledge arguments from literature [30,31] when instantiating the addi-
tively homomorphic encryption scheme with the Paillier encryption scheme [47].
For technical reasons, we also need the homomorphic encryption scheme to be
circuit-private. We refer the reader to the full version [12] for more details.
Observe that in our final protocol, the garbled circuit does only a constant
number of multiplications, which makes protocol computationally efficient and
scalable.
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Optimizations. To further improve the efficiency of our protocol, as done in
Mohassel et al. [44], we will require only one of the two parties P2, P3 to actually
send the garbled circuit. The other party can just send a hash of the garbled
circuit and the initiator can check that the hash values are equal. We refer to
Sect. 7 for more details on this and other optimizations.

3 Preliminaries

Let P1, . . . ,Pn denote the n parties and λ the security parameter. Recall that the
L2 norm of a vector −→x = (−→x 1, . . . ,

−→x n) is defined as ||−→x || =
√−→x 2

1 + . . . + −→x 2
n.

〈−→u ,−→w〉 denotes the inner product between two vectors −→u ,−→w .

Definition 1. (Cosine Similarity). For any two vectors −→u ,−→w ∈ Z
�
q, the

Cosine Similarity between them is defined as follows:

CS.Dist(−→u ,−→w) =
〈−→u ,−→w〉

||−→u || · ||−→w || .

When using this distance measure, we say that Dist(−→u ,−→w) = 1 if and only if
CS.Dist(−→u ,−→w) ≥ d where d is a parameter specified by Dist(·).

3.1 Threshold Signature

Definition 2 (Threshold Signature [18]). Let n, t ∈ N. A threshold signature
scheme TS is a tuple of four algorithms (Gen,Sign,Comb,Ver) that satisfy the
correctness condition below.

– Gen(1λ, n, t) → (pp, vk, [[sk]]n). A randomized algorithm that takes n, t and
the security parameter λ as input, and generates a verification-key vk and a
shared signing-key [[sk]]n.

– Sign(ski,m) =: σi. A deterministic algorithm that takes a mesage m and
signing key-share ski as input and outputs a partial signature σi.

– Comb({σi}i∈S) =: σ/⊥. A deterministic algorithm that takes a set of partial
signatures {ski}i∈S as input and outputs a signature σ or ⊥ denoting failure.

– Ver(vk, (m,σ)) =: 1/0. A deterministic algorithm that takes a verification key
vk and a candidate message-signature pair (m,σ) as input, and outputs 1 for
a valid signature and 0 otherwise.

Correctness. For all λ ∈ N, any t, n ∈ N such that t ≤ n, all (pp, vk, [[sk]]n)
generated by Gen(1λ, n, t), any message m, and any set S ⊆ [n] of size at least
t, if σi = Sign(ski,m) for i ∈ S, then Ver(vk, (m,Comb({σi}i∈S))) = 1.

Definition 3 (Unforgeability). A threshold signatures scheme TS = (Gen,
Sign,Comb,Ver) is unforgeable if for all n, t ∈ N, t ≤ n, and any PPT adver-
sary A, the following game outputs 1 with negligible probability (in security
parameter).
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– Initialize. Run (pp, vk, [[sk]]n) ← Gen(1λ, n, t). Give pp, vk to A. Receive the
set of corrupt parties C ⊂ [n] of size at most t − 1 from A. Then give [[sk]]C
to A. Define γ := t − |C|. Initiate a list L := ∅.

– Signing queries. On query (m, i) for i ⊆ [n]\C return σi ← Sign(ski,m). Run
this step as many times A desires.

– Building the list. If the number of signing query of the form (m, i) is at least
γ, then insert m into the list L. (This captures that A has enough information
to compute a signature on m.)

– Output. Eventually receive output (m�, σ�) from A. Return 1 if and only if
Ver(vk, (m�, σ�)) = 1 and m� ∈ L, and 0 otherwise.

4 Formalizing Fuzzy Threshold Tokenizer (FTT)

In this section we formally introduce the notion of fuzzy threshold tokenizer
(FTT) and give a UC-secure definition. We first describe the algo-
rithms/protocols in the primitive followed by the security definition in the next
subsection.

Definition 4 (Fuzzy Threshold Tokenizer (FTT)). Given a security para-
meter λ ∈ N, a threshold signature scheme TS = (TS.Gen,TS.Sign,TS.Combine,
TS.Verify), biometric space parameters q, � ∈ N, a distance predicate Dist : Z�

q ×
Z

�
q → {0, 1}, n ∈ N parties P1, . . . ,Pn and a threshold of parties t ∈ [n], a FTT

scheme/protocol consists of the following tuple (Setup,Enrollment,SignOn,Ver)
of algorithms/protocols:

– Setup(1λ, n, t,TS) → (ppsetup, {si, sk
TS
i }i∈[n], vk) : The Setup algorithm is run

by a trusted authority. It first runs the key-generation of the threshold sig-
nature scheme, ({skTSi }i∈[n], vk) ← Gen(1λ, n, t). It generates other public
parameters ppsetup and secret values s1, . . . , sn for each party respectively. It
outputs (vk, ppsetup) to every party and secrets (skTSi , si) to each party Pi.
(ppsetup will be an implicit input in all the algorithms below.)

– Enrollment(n, t, q, �,Dist) → ({ai}i∈[n]) : On input the parameters from any
party, this algorithm is run by the trusted authority to choose a random sample−→w ← W. Then, each party Pi receives some information ai.

– SignOn(·) : SignOn is a distributed protocol involving a party P ∗ along with
a set S of parties. Party P∗ has input a measurement −→u , message msg and
its secret information (s∗, skTS∗ ). Each party Pi ∈ S has input (si, sk

TS
i ). At

the end of the protocol, P ∗ obtains a (private) token Token (or ⊥, denoting
failure) as output. Each party Pi ∈ S gets output (msg, i, S). The trusted
authority is not involved in this protocol.

– Ver(vk,msg,Token) → {0, 1} : Ver is an algorithm which takes input verifica-
tion key vk, message msg and token Token, runs the verification algorithm of
the threshold signature scheme b := TS.Verify(vk, (msg,Token)), and outputs
b ∈ {0, 1}. This can be run locally by any party or even any external entity.

Communication Model. In the SignOn(·) protocol, only party P∗ can com-
municate directly with every party in the set S. We stress that the other parties
in S can not interact directly with each other.
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4.1 Security Definition

We formally define security via the universal composability (UC) framework [26].
Similar to the simplified UC framework [28] we assume existence of a default
authenticated channel in the real world. This simplifies the definition of our ideal
functionality and can be removed easily by composing with an ideal authenti-
cated channel functionality (e.g. [27]).

Consider n parties P1, . . . , Pn. We consider a fixed number of parties in the
system throughout the paper. That is, no new party can join the execution sub-
sequently. Let πTS be an FTT scheme parameterized by a threshold signature
scheme TS. Consider an adversarial environment Z. We consider a static cor-
ruption model where there are a fixed set of corrupt parties decided a priori.5

Informally, it is required that for every adversary A that corrupts some subset
of the parties and participates in the real execution of the protocol, there exist
an ideal world adversary Sim, such that for all environments Z, the view of the
environment is same in both worlds. We describe it more formally below.

Real World. In the real execution, the FTT protocol πTS is executed in the
presence of an adversary A. The adversary A takes as input the security param-
eter λ and corrupts a subset of parties. Initially, the Setup algorithm is imple-
mented by a trusted authority. The honest parties follow the instructions of πTS.
That is, whenever they receive an “Enrollment” query from Z, they will run
the Enrollment phase of πTS. Similarly, whenever they receive a “Sign on” query
from Z with input (msg,−→u , S), they will initiate a SignOn(·) protocol with the
parties in set S and using input (msg, S, skTSi ). If a SignOn(·) protocol is initi-
ated with them by any other party, they participate honestly using input skTSi .
A sends all messages of the protocol on behalf of the corrupt parties following
any arbitrary polynomial-time strategy. We assume that parties are connected
by point to point secure and authenticated channels.

Ideal World. The ideal world is defined by a trusted ideal functionality FTS
ftt

described in Fig. 1 that interacts with n (say) ideal dummy parties P1, . . . ,Pn

and an ideal world adversary, a.k.a. the simulator Sim via secure (and authenti-
cated) channels. The simulator can corrupt a subset of the parties and may fully
control them. We discuss the ideal functionality in more detail later below.

The environment sets the inputs for all parties including the adversaries and
obtain their outputs in both the worlds. However, the environment does not
observe any internal interaction. For example, in the ideal world such interac-
tions takes between the ideal functionality and another entity (a dummy party,
or the simulator); in real world such interactions take place among the real par-
ties. Finally, once the execution is over, the environment outputs a bit denoting
either real or ideal world. For ideal functionality F , adversary A, simulator Sim,
environment Z and a protocol π we formally denote the output of Z by random
5 However, we allow the attacker to decide on the corrupt set adaptively after receiving

the public values.
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variable IDEALF,Sim,Z in the ideal world and REALπ,A,Z in the real world. We
describe the ideal functionality for a FTT scheme in Fig. 1 and we elaborate on
it in the next subsection.

Definition 5 (UC-Realizing FTT). Let TS be a threshold signature scheme
(Definition 3), FTS

ftt
be an ideal functionality as described in Fig. 1 and πTS be

a FTT scheme. πTS UC-realizes FTS
ftt

if for any real world PPT adversary A,
there exists a PPT simulator Sim such that for all environments Z,

IDEALFTS
ftt

,Sim,Z ≈c REALπTS,A,Z

Intuitively, for any adversary there should be a simulator that can simulate its
behavior such that no environment can distinguish between these two worlds.
Also, our definition can also capture setup assumptions such as random oracles
by considering a G-hybrid model with an ideal functionality G for the setup.

Ideal Functionality FTS
ftt

. The ideal functionality we consider is presented
formally in Fig. 1. We provide an informal exposition here. Contrary to most of
the UC ideal functionalities, our ideal functionality FTS

ftt
is parameterized with

a threshold signature scheme TS = (TS.Gen, TS.Sign, TS.Combine, TS.Verify)
(see discussion about this choice later in this section). The ideal functionality is
parameterized with a distance predicate Dist, which takes two vectors, a template
and a candidate measurement and returns 1 if and only if the two vectors are
“close”. Additionally, the functionality is parameterized with other standard
parameters and a probability distribution over the biometric vectors.

The ideal functionality has an interface to handle queries from different par-
ties. For a particular session, the first query it responds to “Setup” from Sim. In
response, the functionality FTS

ftt
generates the key pairs of the given threshold

signature scheme, gives the control for the corrupt parties to the simulator and
marks this session “Live”. Then, an “Enroll” query can be made by any party.
FTS

ftt
chooses a template −→w at random from the distribution W, stores it and

marks the session as “Enrolled”.
For any “Enrolled” session, FTS

ftt
can receive many “SignOn” queries (the

previous two queries are allowed only once per session). This is ensured by not
marking the session in response to any such query. The “SignOn” query from
a party Pi contains a set S of parties (i.e. their identities), a message to be
signed and a candidate measurement −→u . If the set S contains any corrupt party,
FTS

ftt
reaches out to the simulator for a response—this captures a corrupt party’s

power to deny a request.
Then, FTS

ftt
checks whether the measurement −→u is “close enough” by com-

puting b := Dist(−→u ,−→w). If b is 1, the size of the set S = t and all parties in S
send an agreement response, FTS

ftt
generates the partial signatures (tokens) on

behalf of the parties in S and sends them only to the initiator Pi; otherwise,
it sends ⊥ denoting failure to Pi. Note that the signatures (or even the failure
messages) are not sent to the simulator unless the initiator Pi is corrupt. This
is crucial for our definition as it ensures that if a “SignOn” query is initiated by
an honest party, then the simulator does not obtain anything directly, except
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Ideal Functionality FTS
ftt

Given a threshold signature scheme (TS.Gen,TS.Sign,TS.Combine,TS.Verify), the func-
tionality FTS

ftt is parameterized by a security parameter λ ∈ N, biometric space param-
eters q, � ∈ N, a distance predicate Dist : Z�

q × Z
�
q → {0, 1}, number of parties n ∈ N

and a threshold of parties t ∈ [n]. It interacts with an ideal adversary (the simulator)
Sim and n dummy parties P1, . . . , Pn via the following queries.

– On receiving a query of the form (“Setup”, sid, aux) from Sim, do as follows
only if sid is unmarked:
1. run (vk, {skTSi }i∈[n]) ← TS.Gen(1λ);
2. send (“VerKey”, sid, vk, aux) to Sim;
3. receive (“Corrupt”, sid, C ⊆ [n]) from Sim;
4. send (sid, skTSi ) to each Pi for all i ∈ [n].
5. store the tuple (sid, vk, {skTSi }i∈[n]) and mark this session as “Live”.

– On receiving a query of the form (“Enroll”, sid) from P, only if sid is marked
“Live”:
1. choose −→w ← W and store the tuple (sid, −→w);
2. send (“Enrolled”, sid) to Sim and mark sid as “Enrolled”.

– On receiving a query of the form (“SignOn”, sid, vk, msg, P, −→u , S ⊆ [n])
from P, if the session sid is not marked “Enrolled”, ignore this query. Else,
retrieve the record (sid, pp, vk, {skTSi }i∈[n]) and let {Pj}j∈S be the parties in the set.
Send (msg, Pi, S) to each Pj for j ∈ S. Then, if S∩C �= ∅ (contains a corrupt party),
send (“Signing Req”, sid,msg, P, S) to Sim. If Sim sends back (“Agreed”, sid, msg,
P) then do as follows:
1. if Dist(−→u , −→w) = 1, |S| = t then: generate {Tokenj ← TS.Sign(skTSj ,msg)}j∈S ;

and send (sid,msg, {Tokenj}j∈S) to P.

2. otherwise, return (sid,msg, ⊥) to P.

Fig. 1. The ideal functionality FTS
ftt .

when there is a corrupt party in S via which it knows such a query has been
made and only learns the tuple (m,Pi, S) corresponding to the query. In fact,
no one except the initiator learns whether “SignOn” was successful. Intuitively,
a protocol realizing FTS

ftt
must guarantee that a corrupt party can not compute

a valid sign-on token (signature) just by participating in a session started by an
honest party. In our definition of FTS

ftt
, such a token would be considered as a

forgery. To the best of our knowledge, this feature has not been considered in
prior works on threshold signatures.

We provide more discussions on our definition in the full version [12].

5 Any Distance Measure from MPC

In this section, we show how to construct a four round secure fuzzy threshold
tokenizer using any two round malicious UC-secure MPC protocol in a broadcast
channel as the main technical tool. Our tokenizer scheme satisfies Definition 1
for any n, t, for any distance measure. Formally, we show the following theorem:
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Theorem 1. Assuming unforgeable threshold signatures and a two round UC-
secure MPC protocols in the CRS model in a broadcast channel, there exists a
four round secure fuzzy threshold tokenizer protocol for any n, t and any distance
predicate.

Such two round MPC protocols can be built assuming DDH/LWE/QR/N th

Residuosity [15,38,45,49]. Threshold signatures can be built assuming
LWE/Gap-DDH/RSA [18,20,54]. Instantiating this, we get the following corol-
lary:

Corollary 1. Assuming LWE, there exists a four round secure FTT protocol
for any n, t and any distance predicate.

We describe the construction below and defer the proof to the full version [12].

5.1 Construction

Notation. Let π be a two round UC-secure MPC protocol in the CRS
model in the presence of a broadcast channel that is secure against a mali-
cious adversary that can corrupt upto (t − 1) parties. Let π.Setup denote
the algorithm used to generate the CRS. Let (π.Round1, π.Round2) denote
the algorithms used by any party to compute the messages in each of the
two rounds and π.Out denote the algorithm to compute the final output.
Let (TS.Gen,TS.Sign,TS.Combine,TS.Verify) be a threshold signature scheme,
(SKE.Enc,SKE.Dec) be a secret key encryption scheme, (Share,Recon) be a (t, n)
threshold secret sharing scheme and PRF be a pseudorandom function. We now
describe the construction of our four round secure fuzzy threshold tokenizer
protocol πAny for any n and t.

Setup: The following algorithm is executed by a trusted authority:

– Generate crs ← π.Setup(1λ).
– For each i ∈ [n], compute (ski, vki) ← Gen(1λ).
– For every i, j ∈ [n], compute (kPRFi,j , kPRFj,i ) as uniformly random strings.
– Compute (ppTS, vkTS, skTS1 , . . . , skTSn ) ← TS.Gen(1λ, n, t).
– For each i ∈ [n], give (crs, ppTS, vkTS, skTSi , ski, {vkj}j∈[n], {kPRFj,i , kPRFi,j }j∈[n]) to

party Pi.

Enrollment: In this phase, any party Pi that wishes to enroll queries the trusted
authority which then does the following:

– Sample a random vector −→w from the distribution W.
– Compute (−→w1, . . . ,

−→wn) ← Share(1λ,−→w , n, t).
– For each i ∈ [n], give (−→w i) to party Pi.

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input
vector −→u , a message msg on which it wants a token. P∗ interacts with the other
parties in the below four round protocol.



308 S. Agrawal et al.

Round 1: (P∗ →)6 Party P∗ does the following:

1. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity, without
loss of generality, we assume that P∗ is also part of set S.

2. To each party Pi ∈ S, send (msg, S).

Round 2: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Participate in an execution of protocol π with parties in set S using input
yi = (−→w i, sk

TS
i ) and randomness ri to compute circuit C defined in Fig. 2.

Compute first round message msg1,i ← π.Round1(yi; ri).
2. Compute σ1,i = Sign(ski,msg1,i).
3. Send (msg1,i, σ1,i) to party P∗.

Round 3: (P∗ → ) Party P∗ does the following:

1. Let Transfuzzy threshold tokenizer denote the set of messages received in round 2.
2. Participate in an execution of protocol π with parties in set S using input

y∗ = (−→w∗, skTS∗ , −→u ,msg) and randomness r∗ to compute circuit C defined in
Fig. 2. Compute first round message msg1,∗ ← π.Round1(y∗; r∗).

3. To each party Pi ∈ S, send (Transfuzzy threshold tokenizer,msg1,∗).

Round 4: (→ P∗) Each Party Pi ∈ S (except P∗) does the following:

1. Let Transfuzzy threshold tokenizer consist of a set of messages of the form
(msg1,j , σ1,j), ∀j ∈ S \ P∗. Output ⊥ if Verify(vkj ,msg1,j , σ1,j) = 1.

2. Let τ1 = {msg1,j}j∈S denote the transcript of protocol π after round 1. Com-
pute second round message msg2,i ← π.Round2(yi, τ1; ri).

3. Let (Transfuzzy threshold tokenizer,msg1,∗) denote the message received from
P∗ in round 3. Compute eki = ⊕j∈SPRF(kPRFi,j ,msg1,∗) and cti =
SKE.Enc(eki,msg2,i).

4. For each party Pj ∈ S, compute ekj,i = PRF(kPRFj,i ,msg1,∗).
5. Send (cti, {ekj,i}j∈S) to P∗.

Output Computation: Every party Pj ∈ S outputs (msg,P∗, S). Addition-
ally, party P∗ does the following to generate a token:

1. For each party Pj ∈ S, compute ekj = ⊕j∈Sekj,i, msg2,j = SKE.Dec(ekj , ctj).
2. Let τ2 denote the transcript of protocol π after round 2. Compute the output

of π: {Tokeni}i∈S ← π.Out(y∗, τ2; r∗).
3. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).
4. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}i∈S . Else, output ⊥.

Token Verification: Given a verification key vkTS, message msg and a token
{Tokeni}i∈S , where |S| = t, the token verification algorithm does the following:

1. Compute Token ← TS.Combine({Tokeni}i∈S).
2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.
6 The arrowhead denotes that in this round messages are outgoing from party P∗.
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Fig. 2. Circuit C

6 Any Distance Measure Using Threshold FHE

In this section, we construct a FTT protocol for any distance measure using
any fully homomorphic encryption (FHE) scheme with threshold decryption.
Our token generation protocol satisfies the definition in Sect. 4 for any n, t, and
works for any distance measure. Formally, we show the following theorem:

Theorem 2. Assuming threshold fully-homomorphic encryption, non-
interactive zero knowledge argument of knowledge (NIZK) and unforgeable
threshold signatures, there exists a four round secure FTT protocol for any n, t
and any distance predicate.

Threshold FHE, NIZKs and unforgeable threshold signatures can be built
assuming LWE [20,50]. Instantiating this, we get the following corollary:

Corollary 2. Assuming LWE, there exists a four round secure FTT protocol
for any n, t and any distance predicate.

6.1 Construction

Notation. Let (TFHE.Gen,TFHE.Enc,TFHE.PartialDec,TFHE.Eval,TFHE.
Combine) be a threshold FHE scheme and let (TS.Gen,TS.Sign,
TS.Combine,TS.Verify) be a threshold signature scheme. Let (Prove,Verify) be a
NIZK scheme and (Gen,Sign,Verify) be a strongly-unforgeable digital signature
scheme and Commit be a non-interactive commitment scheme. We now describe
the construction of our four round secure FTT protocol πAny−TFHE for any n and
k. We defer the proof to the full version [12].

Setup Phase: The following algorithm is executed by a trusted authority:

– Generate (pkTFHE, skTFHE1 , . . . , skTFHEN ) ← TFHE.Gen(1λ, n, t) and (ppTS, vkTS,
skTS1 , . . . , skTSn ) ← TS.Gen(1λ, n, t).

– For each i ∈ [n], compute comi ← Commit(skTFHEi ; rcomi ) and (ski, vki) ←
Gen(1λ).

– For each i ∈ [n], give the following to party Pi: (pkTFHE, skTFHEi , ppTS, vkTS,
skTSi , (vk1, . . ., vkn), ski, (com1, . . . , comn), rcomi ).
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Enrollment: In this phase, any party Pi that wishes to register a fresh template
queries the trusted authority, which then executes the following algorithm:

– Sample a template −→w from the distribution W over {0, 1}�.
– Compute and give ct−→w to each party Pi, where ct−→w = TFHE.Enc(pkTFHE,−→w).

SignOn Phase: In the SignOn phase, let’s consider party P∗ that uses input
vector −→u ∈ {0, 1}� and a message msg on which it wants a token. P∗ interacts
with the other parties in the below four round protocol.

– Round 1: (P∗ →)7 Party P∗ does the following:
1. Compute ciphertext ct−→u = TFHE.Enc(pkTFHE,−→u ; r−→u ).
2. Compute π−→u ← Prove(st−→u ,wit−→u ) for st−→u = (ct−→u , pkTFHE) ∈ L1 using

witness wit−→u = (−→u , r−→u ) (language L1 is defined in Fig. 3).
3. Pick a set S consisting of t parties amongst P1, . . . ,Pn. For simplicity,

without loss of generality, we assume that P∗ is also part of set S.
4. To each party Pi ∈ S, send (ct−→u , π−→u ).

Statement: The statement st is as follows: st = (ct, pk).

Witness: The witness wit is as follows: wit = (x, r).

Relation: R1(st,wit) = 1 if and only if ct = TFHE.Enc(pk, x; r).

Fig. 3. NP language L1

– Round 2: (→ P∗) Each party Pi ∈ S (except P∗) does the following:
1. Abort and output ⊥ if Verify(π−→u , st−→u ) = 1 for language L1 where the

statement st−→u = (ct−→u , pkTFHE).
2. Sample a uniformly random one-time key Ki ← {0, 1}λ and compute

ctKi
= TFHE.Enc (pkTFHE,Ki; rKi

).
3. Compute πKi

← Prove(stKi
,witKi

) for stKi
= (ctKi

, pkTFHE) ∈ L1 using
the witness witKi

= (Ki, rKi
) (language L1 is defined in Fig. 3).

4. Compute signatures σi,0 = Sign(ski, ct−→u ) and σi,1 = Sign(ski, ctKi
).

5. Send the following to the party P∗: (ctKi
, πKi

, σi,0, σi,1).
– Round 3: (P∗ → ) Party P∗ checks if there exists some party Pi ∈ S such

that Verify(πKi
, stKi

) = 1 for language L1 where stKi
= (ctKi

, pkTFHE). If
yes, it outputs ⊥ and aborts. Otherwise, it sends {(ctKi

, πKi
, σi,0, σi,1)}Pi∈S

to each party Pi ∈ S.
– Round 4: (→ P∗) Each party Pi ∈ S (except P∗) does the following:

1. If there exists some party Pj ∈ S such that Verify(πKj
, stKj

) = 1 for
language L1 where stKj

= (ctKj
, pkTFHE) (OR) Verify(vkj , ct−→u , σj,0) = 1

(OR) Verify(vkj , ctKj
, σj,1) = 1, then output ⊥ and abort.

7 The arrowhead denotes that in this round messages are outgoing from party P∗.
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Inputs: A template −→w ∈ {0, 1}�, measurement −→u ∈ {0, 1}� and string K ∈ {0, 1}λ.

Computation: If Dist(−→u , −→w) = 1, output K. Else, output 0λ.

Fig. 4. Circuit C

Statement: The statement st is as follows: st = (ct, μ, com).

Witness: The witness wit is as follows: wit = (skTFHE, r).

Relation: R2(st,wit) = 1 if and only if: (a) TFHE.PartialDec(skTFHE, ct) = μ and
(b) Commit(skTFHE, r) = com.

Fig. 5. NP language L2

2. Otherwise, for each Pj ∈ S, do the following:
• Compute ctC,j = TFHE.Eval(pkTFHE, CDist, ct−→w , ct−→u , ctKj

) using cir-
cuit C (Fig. 4). Note that ctC,j is either an encryption Kj or an encryp-
tion of 0λ.

• Compute a partial decryption: μi,j = TFHE.PartialDec(skTFHEi , ctC,j).
• Compute πi,j ← Prove(sti,j ,witi) for sti,j = (ctC,j , μi,j , comi) ∈ L2

using witi = (skTFHEi , rcomi ) (language L2 is defined in Fig. 5).
3. Compute partial signature Tokeni = TS.Sign(skTFHEi ,msg) and ciphertext

cti = Ki ⊕ Tokeni.
4. Send (cti, {(πi,j , μi,j)}Pj∈S) to P∗.

– Output Computation: Every party Pi ∈ S outputs (msg,P∗, S). Addition-
ally, party P∗ does the following to generate a token:
1. For each Pj ∈ S, do the following:

(a) For each Pi ∈ S, abort if Verify(πi,j , sti,j) = 1 for language L2 where
sti,j = (ctC,j , μi,j , comi).

(b) Set Kj = TFHE.Combine({μi,j}Pi∈S). If Kj = 0λ, output ⊥.
(c) Otherwise, recover partial signature Tokenj = Kj ⊕ ctj .

2. Reconstruct the signature as Token = TS.Combine({Tokeni}i∈S).
3. If TS.Verify(vkTS,msg,Token) = 1, then output {Tokeni}Pi∈S . Else, out-

put ⊥.

Token Verification: Given a verification key vkTS, message msg and a set
of partial tokens {Tokeni}Pi∈S , the token verification algorithm outputs 1 if
TS.Verify(vkTS,msg,Token) = 1, where Token = TS.Combine({Tokeni}Pi∈S).
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7 Cosine Similarity: Single Corruption

In this section, we construct an efficient four round secure FTT in the Random
Oracle (RO) model for Euclidean Distance and Cosine Similarity. Our protocol
satisfies Definition 1 for any n with threshold t = 3 and is secure against a
malicious adversary that can corrupt any one party. The special case of n = 3
corresponds to the popularly studied three party honest majority setting. We
first focus on the Cosine Similarity distance measure. In the full version, we
explain how to extend our result for Euclidean Distance. Formally:

Theorem 3. Assuming unforgeable threshold signatures, two message OT in
the CRS model, circuit-private additively homomorphic encryption and NIZKs
for NP languages L1, L2 defined below, there exists a four round secure fuzzy
threshold tokenizer protocol for Cosine Similarity. The protocol works for any n,
threshold t = 3 and is secure against a malicious adversary that can corrupt any
one party.

We describe the construction below and defer the proof to the full version [12].

Paillier Encryption Scheme. The Paillier encryption scheme [47] is an example
of a circuit-private additively homomorphic encryption based on the N th resid-
uosity assumption. With respect to Paillier, we can also build NIZK arguments
for languages L1 and L2 defined below, in the RO model. Formally:

Imported Theorem 1 ([31]). Assuming the hardness of the N th residuosity
assumption, there exists a NIZK for language L1, defined below, in the RO model.

Imported Theorem 2 ([30]). Assuming the hardness of the N th residuosity
assumption, there exists a NIZK for language L2, defined below, in the RO model.

The above NIZKs are very efficient and only require a constant number of group
operations for both prover and verifier. Two message OT in the CRS model
can be built assuming DDH/LWE/Quadratic Residuosity/N th residuosity [40,
46,51]. Threshold signatures can be built assuming LWE/Gap-DDH/RSA [18,
20,54]. Instantiating the primitives used in Theorem 3, we get the following
corollary:

Corollary 3. Assuming the hardness of the N th residuosity assumption and
LWE, there exists a four round secure fuzzy threshold tokenizer protocol for
Cosine Similarity in the RO model. The protocol works for any n, t = 3 and
is secure against a malicious adversary that can corrupt any one party.

NP Languages.
Let (AHE.Setup,AHE.Enc,AHE.Add,AHE.ConstMul,AHE.Dec) be an additively
homomorphic encryption scheme. Let epk ← AHE.Setup(1λ), m = poly(λ).
Language L1:
Statement: st = (ct, pk). Witness: wit = (x, r).
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Relation: R1(st,wit) = 1 if ct = AHE.Enc(epk, x; r) AND x ∈ {0, 1}m

Language L2:
Statement: st = (ct1, ct2, ct3, pk). Witness: wit = (x2, r2, r3).
Relation: R2(st,wit) = 1 if

ct2 = AHE.Enc(epk, x2; r2) AND ct3 = AHE.ConstMul(pk, ct1, x2; r3).

Construction. Let RO denote a random oracle, d be the threshold
value for Cosine Similarity. Recall that we denote Dist(−→u ,−→w) = 1 if
CS.Dist(−→u ,−→w) ≥ d. Let (Share,Recon) be a (2, n) threshold secret shar-
ing scheme, TS = (TS.Gen,TS.Sign,TS.Combine,TS.Verify) be a thresh-
old signature scheme, (SKE.Enc,SKE.Dec) denote a secret key encryption
scheme, PRF denote a pseudorandom function, (Garble,Eval) denote a gar-
bling scheme for circuits, (Prove,Verify) be a NIZK system in the RO
model, AHE = (AHE.Setup,AHE.Enc,AHE.Add,AHE.ConstMul,AHE.Dec) be
a circuit-private additively homomorphic encryption scheme and OT =
(OT.Setup,OT.Round1,OT.Round2,OT.Output) be a two message oblivious
transfer protocol in the CRS model. We now describe the construction of our
four round secure fuzzy threshold tokenizer protocol πCS for Cosine Similarity.

Setup: The trusted authority does the following:

– Compute (ppTS, vkTS, skTS1 , . . . , skTSn ) ← TS.Gen(1λ, n, k).
– For i ∈ [n], generate crsi ← OT.Setup(1λ) and pick a random PRF key ki.
– For i ∈ [n], give (ppTS, vkTS, skTSi , {crsj}j∈[n], {kj}j∈[n]\i) to party Pi.

Enrollment: In this phase, any party Pi that wishes to enroll, queries the
trusted authority which then does the following:

– Sample a random vector −→w from the distribution W. Without loss of gener-
ality, let’s assume that the L2-norm of −→w is 1.

– For each i ∈ [n], do the following:
• Compute (−→w i,

−→v i) ← Share(1λ,−→w , n, 2).
• Compute (eski, epki) ← AHE.Setup(1λ).
• Let −→w i = (wi,1, . . . ,wi,�). ∀j ∈ [�], compute [[wi,j ]] = AHE.Enc(epki,wi,j).
• Give (−→w i, ski, pki, {[[wi,j ]]}j∈[�]) to party Pi and (−→v i, pki, {[[wi,j ]]}j∈[�]) to

all the other parties.

SignOn Phase: In the SignOn phase, let’s consider party Pi that uses an input
vector −→u = (u1, . . . , u�) and a message msg on which it wants a token. Pi picks
two other parties Pj and Pk and interacts with them in the below protocol.
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Round 1: (Pi →)8 Party Pi does the following:

1. Let S = (Pj ,Pk) with j < k.
2. For each j ∈ [�], compute the following:

– [[uj ]] = AHE.Enc(epki, uj ; r1,j). π1,j ← Prove(st1,j ,wit1,j) for st1,j =
([[uj ]], epki) ∈ L1 using wit1,j = (uj , r1,j).

– [[u2j ]] = AHE.ConstMul(epki, [[uj ]], uj ; r2,j). π2,j ← Prove(st2,j ,wit2,j) for
st2,j = ([[uj ]], [[uj ]], [[u2j ]], epki) ∈ L2 using wit2,j = (uj , r1,j , r2,j).

– [[wi,j · uj ]] = AHE.ConstMul(epki, [[wi,j ]], uj ; r3,j).
π3,j ← Prove(st3,j ,wit3,j) for st3,j = ([[wi,j ]], [[uj ]], [[wi,j · uj ]], epki) ∈ L2

using wit3,j = (uj , r1,j , r3,j).
3. To both parties in S, send msg1 = (S,msg, {[[uj ]], [[u2j ]], [[wi,j · uj ]], π1,j , π2,j ,

π3,j}j∈[�]).

Round 2: (→ Pi) Both parties Pj and Pk do the following:

1. Abort if any of the proofs {π1,j , π2,j , π3,j}j∈[�] don’t verify.
2. Generate randomness (a, b, e, f, p, q, rz) ← PRF(ki,msg1).
3. Using the algorithms of AHE, compute [[x1]], [[x2]], [[y1]], [[y2]], [[z1]], [[z2]] as fol-

lows:
– x1 = 〈−→u ,−→w i〉, y1 = 〈−→u ,−→u 〉, z1 = (〈−→u ,−→v i〉 + rz).
– x2 = (a · x1 + b), y2 = (e · y1 + f), z2 = (p · z1 + q)

4. Send ([[x2]], [[y2]], [[z1]], [[z2]]) to Pi.

Round 3: (Pi → ) Party Pi does the following:

1. Abort if the tuples sent by both Pj and Pk in round 2 were not the same.
2. Compute x1 = 〈−→u ,−→w i〉, x2 = AHE.Dec(eski, [[x2]]).
3. Compute y1 = 〈−→u ,−→u 〉, y2 = AHE.Dec(eski, [[y2]]).
4. Compute z1 = AHE.Dec(eski, [[z1]]), z2 = AHE.Dec(eski, [[z2]]).
5. Generate and send msg3 = {otrecs,t ← OT.Round1(crsi, st)}s∈{x,y,z},t∈{1,2}.

Round 4: (Pj → Pi) Party Pj does the following:

1. Compute C̃ = Garble(C) for the circuit C described in Fig. 6.
2. For each s ∈ {x, y, z}, t ∈ {0, 1}, let lab0s,t, lab

1
s,t denote the labels of

the garbled circuit C̃ corresponding to input wires st. Generate otsens,t =
OT.Round2(crsi, lab0s,t, lab

1
s,t, ot

rec
s,t ). Let otsen = {otsens,t }s∈{x,y,z},t∈{1,2}

3. Compute pad = PRF(ki,msg3). Set ctj = SKE.Enc(pad,TS.Sign(skTSj ,msg)).
4. Send (C̃, otsen, ctj) to Pi.

Round 4: (Pk → Pi) Party Pk does the following:

1. Compute (C̃, otsen, pad) exactly as done by Pj .
2. Set ctk = SKE.Enc(pad,TS.Sign(skTSk ,msg)).
3. Send (RO(C̃, otsen), ctk) to Pi.

8 The arrowhead denotes that in this round messages are outgoing from party Pi.
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Output Computation: Parties Pj ,Pk output (msg,Pi, S). Party Pi does:

1. Let (C̃, otsen, ctj) be the message received from Pj and (msg4, ctk) be the
message received from Pk. Abort if RO(C̃, otsen) = msg4.

2. For each s ∈ {x, y, z}, t ∈ {0, 1}, compute labs,t = OT.Output(otsens,t , otrecs,t , r
ot
s,t).

Let lab = {labs,t}s∈{x,y,z},t∈{0,1}. Compute pad = Eval(C̃, lab).
3. Compute Tokenj = SKE.Dec(pad, ctj),Tokenk = SKE.Dec(pad, ctk),Tokeni =

TS.Sign(skTSi ,msg),Token ← TS.Combine({Tokens}s∈{i,j,k}).
4. Output {Tokens}s∈{i,j,k} if TS.Verify(vkTS,msg,Token). Else, output ⊥.

Inputs: (x1, x2, y1, y2, z1, z2). Hardwired values: (a, b, e, f, p, q, rz, pad, d2).
Computation:

– Abort if x2 �= (a · x1 + b) (or) y2 �= (e · y1 + f) (or) z2 �= (p · z1 + q)
– Compute IP = (z1 − rz) + x1
– If IP2 ≥ (d2 · y1), output pad. Else, output ⊥.

Fig. 6. Circuit C to be garbled.

Token Verification: Given a verification key vkTS, message msg and token
(Tokeni,Tokenj ,Tokenk), the token verification algorithm does the following:

1. Compute Token ← TS.Combine({Tokens}s∈{i,j,k}).
2. Output 1 if TS.Verify(vkTS,msg,Token) = 1. Else, output 0.
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Abstract. A classic approach to MPC uses preprocessed multiplication
triples to evaluate arbitrary Boolean circuits. If the target circuit features
conditional branching, e.g. as the result of a IF program statement, then
triples are wasted: one triple is consumed per AND gate, even if the output
of the gate is entirely discarded by the circuit’s conditional behavior.

In this work, we show that multiplication triples can be re-used across
conditional branches. For a circuit with b branches, each having n AND

gates, we need only a total of n triples, rather than the typically required
b · n. Because preprocessing triples is often the most expensive step in
protocols that use them, this significantly improves performance.

Prior work similarly amortized oblivious transfers across branches in
the classic GMW protocol (Heath et al., Asiacrypt 2020, [HKP20]). In
addition to demonstrating conditional improvements are possible for a
different class of protocols, we also concretely improve over [HKP20]:
their maximum improvement is bounded by the topology of the cir-
cuit. Our protocol yields improvement independent of topology: we need
triples proportional to the size of the program’s longest execution path,
regardless of the structure of the program branches.

We implemented our approach in C++. Our experiments show that
we significantly improve over a “näıve” protocol and over prior work:
for a circuit with 16 branches and in terms of total communication, we
improved over näıve by 12× and over [HKP20] by an average of 2.6×.

Our protocol is secure against the semi-honest corruption of p − 1
parties.

Keywords: MPC · Conditional branching · Beaver triples

1 Introduction

Secure Multiparty Computation (MPC) enables untrusting parties to compute a
function of their private inputs while revealing only the function output. In this
work, we consider semi-honest MPC protocols that use the classic trick of Beaver
to evaluate Boolean circuits by preprocessing ‘multiplication triples’ [Bea92].

In such protocols, XOR gates are ‘free’ (i.e., require no interaction), but each
AND gate consumes a distinct multiplication triple. To generate these triples, the
parties use a more expensive MPC protocol that can be run ahead of time in
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a preprocessing phase. The communication in this phase is proportional to the
number of triples and is usually the performance bottleneck. Hence, if we reduce
the number of required triples, then we significantly improve performance.

Because one triple is needed per AND gate, protocols waste significant work
if the computed function has conditional behavior, e.g. as the result of an IF
program statement. Each gate requires a distinct triple, even if the output of
the gate is entirely discarded by the function’s conditional behavior.

Our protocol re-uses multiplication triples across conditional branches. A sin-
gle triple can support any number of AND gates, so long as the gates occur in
mutually exclusive program branches. This re-use does require that the parties
hold additional correlated randomness, but the parties can generate this ran-
domness efficiently. Our approach greatly decreases total communication and
hence improves performance.

1.1 High Level Intuition

Multiplication triples typically cannot be re-used (Sect. 2.5 reviews multiplica-
tion triples in detail): triples are essentially one-time-pads on cleartext values in
the circuit: since no strict subset of parties knows the values in the triple, it is
secure to use the triple to mask cleartext values. However, if we use the same
triple for two different gates, then we violate security. We can work around this.

Consider two conditionally composed circuits C0 and C1, both with n AND
gates. For sake of example, suppose C0 is the active branch, but suppose the
parties do not know and should not learn this fact. We re-use the same triples
to evaluate gates in both C0 and C1 by carefully applying secret shared masks
to the triples. For the inactive branch C1, the parties mask the shares with
XOR shares of uniform masks, randomizing the triples and preventing us from
breaking the security of one-time-pad. By randomizing the triples, we violate
the correctness of AND gates on the inactive branch, but this is of no concern: the
output of each inactive AND gate is ultimately discarded. For the active branch
C0, the parties use the triples ‘as is’, meaning the active branch is evaluated
normally. Of course, the parties should not know which branch is inactive, so
from the perspective of the parties it should appear plausible that either branch
could have used randomized triples. To achieve this, for the active branch the
parties also XOR masks onto the triples, but in this case each mask is a sharing
of zero: hence the XORing is a no-op.

The problem of amortizing triples across branches thus reduces to the prob-
lem of generating secret shared masks, both uniform and ‘all-zero’. We present
techniques for efficiently generating these masks, the most general of which is
based on oblivious vector-scalar multiplication, achieved by a small number of
1-out-of-2 oblivious transfers. The crucial point is that the protocols for generat-
ing masks require far less communication than protocols for generating triples.1

Thus, we decrease communication and improve performance.
1 We emphasize communication improvement because multiplication triples are

often constructed from communication-expensive oblivious transfers (OTs). Silent
OT [BCG+19] is an exciting new primitive that largely removes the communication
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1.2 Advantage Over [HKP20]

Recent work showed an improvement similar to ours: [HKP20] showed that obliv-
ious transfers can be re-used across conditional branches in the classic GMW
protocol (see Sect. 2.4 for a review).

However, [HKP20] has one significant disadvantage: their performance
improvement depends on circuit topology. Efficient GMW implementations min-
imize latency by organizing circuits into layers of gates. The input wires into each
layer are the outputs of previous layers only, and hence all gates in a particular
layer can be executed simultaneously. This strategy yields latency proportional
to the circuit’s multiplicative depth instead of to the number of gates.

Due to this important optimization, [HKP20]’s performance improvement is
limited by the ‘relative alignment’ of the layers across branches: two branches are
highly aligned if each of their respective layers has a similar number of AND gates.
Their protocol issues oblivious transfers that simultaneously run one gate per
branch and hence cannot optimize gates that occur in different layers. The rela-
tive alignment of branches is dependent on the target application. [HKP20] sug-
gests resorting to compiler technologies to extract more performance.

Our approach does not depend on topology. Instead, we depend only on the
number of AND gates in each branch. The parties require enough triples to handle
the maximum number of AND gates across the branches. It is difficult to analyt-
ically quantify our improvement over [HKP20] without a specific application in
mind, but our experiments show that the improvement is significant. We ran both
approaches across a variety of topologies, and on average we improved commu-
nication by 2.6× (see Sect. 8). In addition to concretely outperforming [HKP20],
our approach also demonstrates that conditional improvement is possible for a
different class of protocols (i.e. those based on triples), and hence is of indepen-
dent interest.

1.3 Our Contributions

– Efficient Re-use of Beaver Triples. Our MPC protocol is secure against
the semi-honest corruption of up to p−1 parties. The protocol re-uses triples
across branches and requires a number of triples proportional only to the size
of the longest execution path rather than to the size of the entire circuit.

– Topology-Independent Improvement. Unlike [HKP20], our improvement
is independent of the topology of the conditional branches.

– Implementation and evaluation. We implemented our approach in C++
and report performance (see Sect. 8). For 2PC and a circuit with 16 branches,
we improve communication over state-of-the-art [HKP20] on average by

overhead of OT. The trade off is increased computation: the classic OT extension
of [IKNP03], which uses relatively little computation, is still preferable to Silent
OT in most settings. This said, even if we were to use Silent OT, our improvement
would be beneficial: we greatly reduce the needed number of OTs and hence would
significantly reduce Silent OT computation overhead.
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2.6× and over a standard triple-based protocol (i.e., without our conditional
improvement) by 12×.

2 Preliminaries

2.1 Notation

– p denotes the number of parties.
– b denotes the number of branches.
– Subscript notation associates variables with parties. E.g., ai is a variable held

by party Pi.
– G denotes a pseudo-random generator (PRG).
– κ is the computational security parameter (e.g. 128).
– t denotes the ‘taken’ branch in a conditional, i.e. the branch that is active

during the oblivious execution. t̄ implies an inactive branch.
– Superscript notation associates variables with a particular branch. E.g., x0 is

associated with branch 0 while x1 is associated with branch 1.
– ∈$ denotes that the left hand side is uniformly drawn from the right hand

set. E.g., x ∈$ {0, 1} denotes that x is a uniform bit.
– � denotes that the left hand side is defined to be the right hand side.
– We manipulate vectors and bitstrings (i.e., vectors of bits):

• Variables denoting vectors are indicated with bold notation, e.g. a. If
we wish to explicitly write out a vector, we use parenthesized, comma-
separated values, e.g. (a, b, ..., y, z).

• We index vectors with brackets and use 1-based indexing, e.g. a[1].
• When clear from context, n denotes vector length.
• When two bitstrings are known to have the same length, we use ⊕ to

denote the bitwise XOR sum:

a ⊕ b = (a[1], ...,a[n]) ⊕ (b[1], ..., b[n]) � (a[1] ⊕ b[1], ...,a[n] ⊕ b[n])

• We indicate a bitwise vector scalar product by writing the scalar to the
left of the vector:

ab = a(b[1], ..., b[n]) � (a(b[1]), ..., a(b[n]))

– We manipulate XOR secret shares. Section 2.2 presents our secret share nota-
tion and reviews basic properties.

2.2 XOR Secret Shares

Our main contribution is a Beaver-triple based construction for efficient condi-
tional branching. Additionally, we review prior work that is based on the classic
GMW protocol. Both techniques are based on XOR secret shares. Thus, we briefly
establish notation for XOR shares and review their properties.
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An XOR secret sharing held amongst p parties is a vector of bits (x1, ..., xp)
where each party Pi holds xi. We refer to the full vector as a sharing and to the
individual bits held by parties as shares. The semantic value of a sharing (i.e.,
the cleartext value that the sharing represents) is the XOR sum of its shares. If
the semantic value of a sharing (x1, ..., xp) is a bit x, i.e. x1 ⊕ ... ⊕ xp = x, then
we use the shorthand [[x]] to denote the sharing:

[[x]] � (x1, ..., xp) such that x1 ⊕ ... ⊕ xp = x

Typically, sharings are used in a context where no strict subset of parties
knows the semantic value of the sharing. Nevertheless, parties can easily perform
homomorphic linear operations over XOR sharings.

– Parties XOR two sharings by locally XORing their respective shares:

[[x]] ⊕ [[y]] = (x1, ..., xp) ⊕ (y1, ..., yp) Defn. sharing
= (x1 ⊕ y1, ..., xp ⊕ yp) Defn. vector XOR
= [[x ⊕ y]] XOR commutes, assoc., defn. sharing

– Parties AND a sharing with a public constant by locally scaling each share.

c[[x]] = c(x1, ..., xp) Defn. sharing
= (cx1, ..., cxp) Defn. vector scalar product
= [[cx]] AND distributes over XOR , defn. sharing

– Parties encode public constants as sharings by letting P1 take the constant
as his/her share and letting all other parties take 0 as his/her share.

[[c]] = (c, 0, ..., 0) 0 identity, defn. sharing

This allows the parties to XOR sharings with public constants.

A party can easily share her private bit x with the parties. She uniformly
draws p bits, with the constraint that the p bits XOR to x. She then distributes
[[x]] amongst the parties.

Parties can compute sharings of uniform values. To draw a uniform sharing,
each party locally draws a uniform share. In our protocols, we overload ∈$ nota-
tion to draw sharings: for example, [[x]] ∈$ {0, 1} indicates that each party Pi

draws a uniform share xi.
Finally, parties can reconstruct the semantic value of a sharing. To do so,

each party broadcasts his/her share (or sends it to a specified output party).
Upon receiving all shares, each party locally XORs the shares.

For security, we often require that each party’s share be uniformly chosen.
We point out where shares are uniform when relevant.
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Fig. 1. The functionality defining VS gate semantics. VS gates allow parties to multiply
a sharing of a bitstring by a sharing of a scalar.

2.3 Vector Scalar Multiplication

Next, we review how parties operate non-linearly over sharings. In contrast to
typical approaches that consider AND gates, we instead consider more general
vector scalar multiplication gates, which we call VS gates. We consider these
more expressive gates because they are needed to review prior work [HKP20]
and because we use VS gates in our constructions.

To begin, we extend the notion of sharings to vectors. Specifically, we define
the sharing of a vector to be a vector of sharings:

[[x]] = [[(x[1], ...,x[n])]] � ([[x[1]]], ..., [[x[n]]])

Suppose we wish to scale a shared vector x by a shared bit s. That is, we wish
to compute the scalar product [[sx]]. Unlike linear operations, this vector scalar
multiplication requires the parties to communicate.

[HKP20] showed that parties can use p(p − 1) oblivious transfers (OTs) to
implement a VS gate. We review their VS protocol at a high level; Fig. 1 specifies
the protocol functionality. For simplicity, we focus on p = 2 parties and length-2
vectors, but the approach generalizes to arbitrary p and n.

Suppose two parties P1, P2, holding sharings [[s]], [[(a, b)]], wish to compute
[[(sa, sb)]]: semantically, they wish to scale the vector (a, b) by the bit s.

Observe the following equality over the desired semantic value:

(sa, sb) = s(a, b) Distribute
= (s1 ⊕ s2)(a1 ⊕ a2, b1 ⊕ b2) Defn. sharing
= (s1a1 ⊕ s1a2 ⊕ s2a1 ⊕ s2a2, s1b1 ⊕ s1b2 ⊕ s2b1 ⊕ s2b2) Distribute
= s1(a1, b1) ⊕ s1(a2, b2) ⊕ s2(a1, b1) ⊕ s2(a2, b2) Group

The first and fourth summands can be computed locally by the respective
parties. Thus, we need only show how to compute s1(a2, b2) (the remaining third
summand is computed symmetrically). To compute this vector AND, the parties
perform a single 1-out-of-2 OT of length-2 secrets. Here, P2 plays the OT sender
and P1 the receiver. P2 draws two uniform bits x, y ∈$ {0, 1} and allows P1 to
choose between the following two secrets:

(x, y) (x ⊕ a2, y ⊕ b2)

P1 chooses based on s1 and hence receives (x⊕s1a2, y⊕s1b2). P2 uses the vector
(x, y) as her share of this summand. Thus, the parties hold [[s1(a2, b2)]].
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Put together, the full vector multiplication s(a, b) uses only two 1-out-of-2
OTs of length-2 secrets. VS gates generalize to arbitrary numbers of parties and
vector lengths: a vector scaling of n elements between p parties requires p(p− 1)
1-out-of-2 OTs of length-n secrets.

VS gates are important for our constructions. We present a modification to
the above protocol, used once per conditional branch, that is optimized for scalar
multiplication of long vectors (see Sect. 6.2). This modification is similar to tech-
niques in [KK13,ALSZ13] and reduces communication by up to half.

2.4 Efficient Conditionals from VS Gates: [HKP20] Review

[HKP20] was the first work to significantly reduce the cost of branching in the
multi-party setting. Their MOTIF protocol extends the classic GMW protocol
with VS gates in order to amortize oblivious transfers across conditional branches.
We review how VS gates enable this amortization.

For simplicity, consider two branches computed by two parties. Since the two
branches are conditionally composed, one branch is active and one is inactive.

MOTIF’s key invariant, set up by the protocol’s circuit gadgets, is that on each
wire of the inactive branch the parties hold a sharing [[0]], whereas on the active
branch they hold valid sharings. XOR gates immediately propagate this invariant:
on the inactive branch, XOR gates output [[0]], while on the active branch XOR gates
output valid sharings.2

Next, we review how VS gates make use of and propagate the invariant. Let
[[a0]], [[b0]] be sharings held on wires in branch 0 and [[a1]], [[b1]] be sharings held on
wires in branch 1. Suppose the parties wish to compute both [[a0b0]] and [[a1b1]].
Despite the fact that the parties compute two AND gates, they need only two
1-out-of-2 OTs. Let t denote the active branch. Hence, at̄ and bt̄ are both 0.

Observe the following equalities:

(at ⊕ at̄)bt = (at ⊕ 0)bt = atbt

(at ⊕ at̄)bt̄ = (at ⊕ 0)0 = 0

Thus computing both [[(at ⊕ at̄)bt]] and [[(at ⊕ at̄)bt̄]], propagates the invariant:
the active branch receives the correct sharing while the inactive branch receives
[[0]]. These products reduce to a vector-scalar product computable by a VS gate
(see Fig. 1).

[[(at ⊕ at̄)(bt, bt̄)]]

Thus, MOTIF computes two AND gates for the price of one. This improvement
generalizes to an arbitrary number of branches.

2 MOTIF does not natively support NOT gates because they would break the invariant:
NOT maps [[0]] to [[1]]. NOT gates can be implemented by XOR gates together with a
distinguished wire that holds [[1]] on the active branch and [[0]] on the inactive branch.
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Fig. 2. The Beaver Triple preprocessing functionality, TripleGen.

Branch Layer Alignment. As discussed in Sect. 1.2, the MOTIF protocol is
dependent on circuit topology. The less aligned the layers of the branches are
(branches that are highly aligned have similar numbers of AND gates in each
layer), the less the circuit benefits from MOTIF.

In the above example, the parties issued two OTs to implement the two AND
gates simultaneously. The parties can only perform this optimization if inputs
for both gates are available. If not, the parties cannot amortize the OTs. Hence,
gates in different layers cannot share OTs in layer-by-layer evaluation.

In the p-party protocol, in each layer MOTIF eliminates all OTs except for
the total of p(p − 1) · max(wi) OTs, where wi is the number of AND gates in
the current layer of branch i. In contrast, our technique does not depend on
the circuit’s topology and is always proportional only to the circuit’s longest
execution path.

2.5 Semi-honest Triple-Based Protocol Review

In this work, we amortize Beaver triples across conditional branches. We thus
review how triples enable non-linear operations over XOR sharings.

Suppose the parties hold sharings [[x]] and [[y]] and wish to compute a uni-
form sharing [[xy]]. Suppose further that the parties have a Beaver triple: they
have three uniform sharings [[a]], [[b]], [[ab]] where a, b ∈$ {0, 1} are uniform bits
unknown to any strict subset of parties. First, the parties locally compute [[a⊕x]]
and [[b⊕y]], then reconstruct the semantic values a⊕x and b⊕y by broadcasting
shares. This is secure: a ⊕ x leaks nothing about x because a is uniform and
secret (and similarly for y). The parties can now compute [[xy]] as follows:

(a ⊕ x)(b ⊕ y) ⊕ (a ⊕ x)[[b]] ⊕ (b ⊕ y)[[a]] ⊕ [[ab]] = [[xy]]

This protocol is simple and efficient: the parties broadcast only two bits per
AND gate. However, because the triple values a and b are used as one-time-pads
on semantic values, one triple is typically needed per gate. Thus, the parties
must preprocess many triples according to the functionality in Fig. 2. Computing
this functionality is often the most expensive step in triple-based protocols. For
example, triples might be achieved via the classic GMW protocol, requring p(p−
1) OTs per triple. In this work, we show a technique that re-uses triples across
conditional branches and hence decreases overall cost.
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3 Related Work

We review related work, focusing on works that optimize secure evaluation of
conditional branches or that use multiplication triples in the malicious model.
MOTIF. The most closely related work is MOTIF [HKP20]. MOTIF amortizes oblivi-
ous transfers across conditional branches in the classic semi-honest GMW proto-
col [GMW87]. We reviewed this approach in detail in Sect. 2.4, explained why our
approach outperforms MOTIF in Sect. 1.2, and present experimental comparisons
between the two approaches in Sect. 8.

Stacked Garbling. Recent works demonstrated similar conditional improvements
for the garbled circuit (GC) technique [Kol18,HK20b,HK20a]. [Kol18,HK20b]
reduced communication in settings where one party knows which branch is
active. [Kol18] is motivated by the use case where the GC generator knows the
active branch, such as when evaluating one of several database queries. [HK20b]
is motivated by zero knowledge proofs. [HK20a] superceded these prior works
and for the first time showed that communication can be greatly improved even
if no party knows which branch is active.

These works’ “stacking” technique does not have an obvious analog for inter-
active multiparty protocols, so different techniques are needed, such as explored
in [HKP20] and in this work. However, our approach follows the basic idea of
material re-use introduced by Stacked Garbling: the expensive material is safely
re-used in the (possibly incorrect) evaluation of inactive branches, whose output
is obliviously discarded

Universal Circuits. We improve branching via cryptographic techniques.
Another approach instead recompiles conditionals into a new form. Universal
circuits (UCs) are programmable constructions that can evaluate any circuit
up to a given size n. Branches can be compiled to one UC, potentially amortiz-
ing cost. At runtime, the UC can be programmed to compute the active branch.

Decades after Valiant’s original work [Val76], UC enjoyed renewed inter-
est due to its relevance to MPC, and UC constructions have steadily
improved [KS08,LMS16,GKS17,AGKS19,KS16,ZYZL18]. Even with these
improvements, representing conditional branches with UCs is often impracti-
cal. The state-of-the-art UC construction applied to a circuit with n gates still
has factor 3 log n overhead [LYZ+20]. Thus, UC-based conditional evaluation is
often more expensive than simply evaluating the condition näıvely. UC-based
branching is superceded by cryptographic techniques such as Stacked Garbling,
MOTIF, and this work.

Maliciously Secure Triple-Based Protocols. We present an improved triple-based
semi-honest protocol. Two exciting and related lines of work explore triple-
based protocols in the malicious model. These two lines differ primarily in how
they preprocess triples. One line generates triples using homomorphic encryption
[BDOZ11,DPSZ12,DKL+13,KPR18] while another generates them using oblivi-
ous transfer [NNOB12,LOS14,FKOS15,KOS16,CDE+18]. To achieve malicious
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security, these methods rely on expensive primitives such as zero knowledge
proofs and cut-and-choose. As a result, preprocessing is expensive.

Amortizing triples in these protocols would be an important improvement.
While we make no claims in the malicious model, malicious improvements have
historically been preceded by similar improvements in the semi-honest model.
We leave investigating triple amortization in the malicious model as future work.

4 Technical Overview

As reviewed in Sect. 2.5, Beaver triples can efficiently and securely implement AND
gates. In general, triples cannot be re-used, and hence a circuit with b branches
each with n AND gates typically requires n · b triples.

As discussed in Sect. 1.1, our key observation is that triples can be re-used
across conditional branches, as long as uniform XOR masks are additionally
applied. These masks allow us to re-use the same triple to compute b gates
across b branches. Thus b branches each with n gates require only n triples,
improving the number of needed triples by factor b. Our technique does require
the parties to hold additional shared per-branch masks, but these masks are
computed cheaply.

This section presents our protocol, ΠMT (the ‘masked triple protocol’), with
detail sufficient to understand our contribution. ΠMT securely computes Boolean
circuits among p parties, re-uses triples across conditional branches, and is secure
against the semi-honest corruption of up to p−1 parties. Full formal algorithms,
with accompanying proofs of correctness and security, are in Sect. 5.

4.1 Re-Using Beaver Triples

For simplicity, consider only two branches, C0 and C1 and, without loss of gen-
erality, let C0 be the active branch. The parties re-use the same set of triples for
both branches. For the inactive branch, the parties will mask the triples with
sharings of uniform bits; on the active branch the parties will mask the triples
with sharings of zeros.

Suppose the parties hold sharings [[x0]], [[y0]] on branch 0 and [[x1]], [[y1]] on
branch 1. Suppose further that they wish to obliviously compute one of [[x0y0]]
or [[x1y1]], depending on which branch is active. Let [[a]], [[b]], [[ab]] be a uniform
preprocessed triple. On the active branch, the parties mask [[a]] and [[b]] with
uniform sharings of 0:

[[a]] ⊕ [[0]] = [[a]] [[b]] ⊕ [[0]] = [[b]]

The parties use this masked triple to compute branch 0’s AND gate normally: the
parties compute and reconstruct a ⊕ x0 and b ⊕ y0, and then locally compute
the correct product:

(a ⊕ x0)(b ⊕ y0) ⊕ (a ⊕ x0)[[b]] ⊕ (b ⊕ y0)[[a]] ⊕ [[ab]] = [[x0y0]]
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Fig. 3. The MaskGen functionality provides parties with the pairs of masks needed
to implement our optimization. The functionality computes two shared bitstrings. One
bitstring is the all zero bitstring while the other is uniform. The two strings are swapped
according to s, and the parties are given [[s]].

In contrast, on the inactive branch the parties mask their shares with uniform
bits. Let r, s ∈$ {0, 1} be two such bits and let the parties hold uniform sharings
[[r]], [[s]]. The parties compute:

[[a]] ⊕ [[r]] = [[a ⊕ r]] [[b]] ⊕ [[s]] = [[b ⊕ s]]

When the parties use this masked triple, they compute and reconstruct a⊕r⊕x1

and b ⊕ s ⊕ y1, and then locally compute the following expression:

(a ⊕ r ⊕ x1)(b ⊕ s ⊕ y1) ⊕ (a ⊕ r ⊕ x1)[[b ⊕ s]] ⊕ (b ⊕ s ⊕ y1)[[a ⊕ r]] ⊕ [[ab]]

The above expression does not correctly compute [[x1y1]], but this is irrelevant
since all computations performed in the inactive branch are ultimately discarded
by the circuit’s conditional behavior.

Now, consider the security of the above re-use. As discussed above, each party
views the following reconstructed semantic values:

a ⊕ x0 b ⊕ y0 a ⊕ r ⊕ x1 b ⊕ s ⊕ y1

Because a, b, r, s are all uniform, this view is simulated by four uniform bits.
Thus, our approach is secure. See Sect. 5.3 for a formal proof.

Although we have shown that mask sharings allow triple amortization,
we have not discussed how these sharings are computed. Figure 3 formalizes
MaskGen, a preprocessing functionality that computes strings of masks M0 and
M1 such that (1) the parties receive a uniform sharing [[s]] where s ∈$ {0, 1}, (2)
Ms is a uniform sharing of all zeros, and (3) M s̄ is a uniform sharing of ran-
dom bits. During the preprocessing phase, the parties use MaskGen to preprocess
strings with size sufficient to mask each triple. We formalize and prove secure
ΠMT in the MaskGen-hybrid (and TripleGen-hybrid) model. Instantiations of
MaskGen are provided and proved secure in Sect. 6.
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Entering a Conditional. MaskGen constructs two bitstrings that are ordered
according to a uniform bit s (the parties hold a uniform sharing [[s]]). To use our
approach, the parties need to appropriately ‘line up’ the masks with the branches:
the active branch should use the all zeros mask and the inactive branch should
use the uniform mask. We assume the parties have explicit access to a sharing
of the branch condition: the parties hold [[t]]. Upon entering the conditional, the
parties compute [[s ⊕ t]] and then broadcast their shares to reconstruct s ⊕ t. If
s ⊕ t is 0, the parties do nothing. Otherwise, they locally swap their respective
shares of the strings M0 and M1. After performing this conditional swap, the
parties are assured that M t is the all zeros mask and M t̄ is uniform. Note, s ⊕ t
does not reveal the active branch t because s is uniform.

Exiting a Conditional. Exiting conditionals is performed using ordinary
Boolean logic. Let [[x0]], [[x1]] be corresponding output sharings from the two
branches. We leave the branch by multiplexing each such pair of outputs: we
compute [[x0 ⊕ t(x0 ⊕ x1)]] = [[xt]]. Thus, multiplexing requires one AND gate per
conditional output.

4.2 Nested Branches

We have presented a technique for handling conditionals with only two branches.
To generalize to higher branching factors, we nest conditionals. At each condi-
tional, we use MaskGen to generate fresh masks and then apply these masks to
the (possibly already masked) triples. This trivially and securely allows us to
handle arbitrary branching control flow.

As a brief argument of security, consider that each branch uses a distinct mask
string from each of its parent conditionals. Further, if the branch is inactive (1)
at least one mask string will be uniform and (2) the XOR sum of all uniform mask
strings for the branch is unique. Thus, all AND gate broadcasts can be simulated
by uniform bits. We argue this more formally in Sect. 5.3.

We note that instead of nesting, it is possible to generalize our approach to
directly handle vectors of conditionals, e.g., corresponding to program switch
statements. This direction is not necessarily preferable: for a circuit with b
branches, both techniques amortize a triple across up to b gates, and the work
required to generate masks is very similar. We present the nested formalization
due to its generality and relative simplicity.

5 ΠMT: Formalization and Proofs

We now present ΠMT formally. Section 5.1 begins by defining circuit syntax,
including circuits with explicit conditional branching. We then specify our pro-
tocol in Sect. 5.2 and prove it correct and secure in Sect. 5.3.
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5.1 Circuit Formal Syntax

Conditional branching is central to our approach. Thus, traditional circuits that
include only low-level gates are insufficient for our formalization. We instead use
the syntax of [HK20a] which makes explicit conditional branching. We review
and formally present their syntax.

Conventionally, a circuit is a list of Boolean gates together with specified
input and output wires. We refer to this representation as a netlist. We do not
modify the semantics of netlists and evaluate them using the standard triple-
based technique (see Sect. 2.5).

We extend the space of circuits with notion of a conditional. A conditional is
parameterized over two circuits, C0 and C1. By convention, the first bit of input
to the conditional is the branch condition t. The semantics of a conditional is
that branch Ct is given the remaining input to the overall conditional, and Ct’s
output is returned.

Finally, we require an extra notion that allows us to place conditionals ‘in
the middle’ of the overall circuit. A sequence is parameterized over two circuits
C ′ and C ′′. When executed, the sequence passes its input to C ′, feeds the output
of C ′ as input to C ′′, then returns the output of C ′′.

More formally, the space of circuits C is defined inductively. Let C0, C1, C ′, C ′′

be arbitrary circuits. The space of circuits is defined as follows:

C � Netlist(·) | Cond(C0, C1) | Seq(C ′, C ′′)

That is, a circuit is either a (1) netlist, a (2) conditional, or a (3) sequence. By
arbitrarily nesting conditionals and sequences, we may achieve complex branch-
ing control structure.

5.2 ΠMT Formalization

Figure 4 presents our protocol for handling circuits with conditional branching.
ΠMT first delegates to TripleGen, generating sufficient multiplication triples to
handle the circuit, and then delegates to the sub-protocol eval. eval recursively
walks the structure of the circuit and securely achieves circuit semantics.

ΠMT formalizes the ideas stated in Sect. 4 in a natural manner. The most
interesting case in eval is the handling of conditionals, where we (1) invoke
the MaskGen oracle, (2) mask the available triples, and (3) recursively evaluate
both branches. Although we for clarity write MaskGen inline, the actual MaskGen
protocol does not depend on any circuit values, and thus can be moved to a pre-
processing phase. After evaluating both branches, we discard the inactive branch
outputs and propagate the active branch outputs via a multiplexer. The multi-
plexer is implemented simply as a netlist, and computes the following function
for each corresponding pair of branch outputs [[x0]], [[x1]]:

[[x0 ⊕ t(x0 ⊕ x1)]] = [[xt]] (1)

For simplicity, we abstract some algorithms and briefly describe them below.
Other than ΠBase, which is discussed in Sect. 2.5, we do not write these algorithms
in full, as they are simple.
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Fig. 4. ΠMT allows p parties to securely compute a circuit C ∈ C. ΠMT delegates to a
recursive sub-procecure eval.
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– ΠBase is the standard triple-based protocol as specified in Sect. 2.5. ΠBase takes
as input (1) a vector of gates (g1, ..., gk), (2) a vector of (possibly masked)
triples [[triples]] and (3) the netlist input [[inp]]. ΠBase returns a sharing of
outputs [[out]].
We emphasize that while we do not, for simplicity, explicitly list ΠBase, the
protocol is not a black-box functionality.3

– neededtriples computes the number of needed triples for the circuit C. This
computed number is equal to the number of AND gates on the circuit’s longest
execution path.

– shareinput allows the parties to construct and distribute sharings of their
respective private inputs.

– reconstruct allows parties to reconstruct a sharing via broadcast.
– mux computes the per-output multiplexer function (Eq. 1).
– applymask specifies how mask sharings are XORed onto triples. Specifically,

for each uniformly shared triple [[a]], [[b]], [[c]], we draw two bits from the mask
sharing and XOR one bit onto both [[a]] and [[b]].

5.3 ΠMT Proofs

Now that we have introduced ΠMT, we prove it both correct and secure in the
MaskGen- and TripleGen-hybrid model. We instantiate MaskGen in Sect. 6.

In both proofs, we refer to the notion of a valid triple. A triple is valid if it
is uniformly shared and of the following form: [[a]], [[b]], [[ab]]. That is, the third
term is a share of the product of the first two terms. An invalid triple is a triple
[[a]], [[b]], [[c]] such that c �= ab. Invalid triples arise in our protocol due to the
application of extra masks to the first two entries in triples.

Theorem 1 (ΠMT correctness). For all circuits C ∈ C and all private inputs
inp1, ..., inpp ∈ {0, 1}∗:

ΠMT(C, inp1, ..., inpp) = C(inp1, ..., inpp)

Proof. By induction on the structure of C. The inductive invariant is as follows:

If the triples passed to eval are valid, then eval correctly implements the
semantics of C.

We focus on conditionals; the correctness of netlists follows trivially from the
standard triple-based protocol. The correctness of sequences is immediate.

Suppose C is a conditional Cond(C0, C1). Further, suppose [[t]] is the branch
condition. If the triples passed to the conditional are invalid, then the inductive
invariant vacuously holds. Thus, we need only consider evaluation of a condi-
tional on valid triples. The oracle call to MaskGen constructs two mask strings
3 We cannot support ΠBase as a black-box because it is possible to implement a protocol

that securely handles netlists, but that is insecure when given masked triples. For
example, the parties could out-of-band check the validity of triples and reveal all
inputs if the triples are found invalid. Therefore, ΠBase is a white-box protocol.
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M0,M1 such that Ms is all-zero and M s̄ is uniform. By reconstructing s ⊕ t
and accordingly locally swapping the two mask strings, the parties ensure M t is
the all-zero string. Thus, Ct is given valid triples (the valid triples are masked
by sharings of zeros and hence remain valid) and, by induction, returns the cor-
rect semantic outputs. C t̄ will not return correct values, but these outputs are
discarded by the multiplexer. Thus, conditionals support the inductive invariant.

The top level circuit is given valid triples via the oracle call to TripleGen.
This fact, combined with the inductive invariant, implies that ΠMT is correct. ��
Theorem 2 (ΠMT security). ΠMT is secure against semi-honest corruption of
up to p − 1 parties in the TripleGen-hybrid and MaskGen-hybrid model.

Proof. By construction of a simulator for one party, which we later generalize to
simulate up to p−1 parties. Each broadcast received by a party can be simulated
by a uniform bit.4 We prove this simulation secure by induction on the structure
of the circuit C. The inductive invariant is as follows:

Let [[a]], [[b]], [[c]] be a (possibly invalid) triple. For each triple, we refer to
the semantic values a and b as the one-time-pad parts. eval uses both
one-time-pad parts of each triple to mask at most one cleartext value.

For netlists, this is trivial: we use a distinct triple for each AND gate, and
each one-time-pad part is used only to mask one of the gate inputs. Similarly,
sequences satisfy the inductive invariant trivially: we provide different triples to
both parts of the sequence.

Therefore we focus on conditionals. Consider a conditional Cond(C0, C1). As
a brief aside from proving that the inductive invariant holds, while the parties
reconstruct s⊕t, s is uniform, and hence this leaks nothing about t (i.e., s⊕t can
be simulated by a uniform bit). Now, returning to the invariant: We first split the
triples into sufficient numbers for the conditional body and for the multiplexer.
The multiplexer is implemented by a netlist, and hence trivially satisfies our
invariant. The conditional body is more complicated. Indeed, we use the same
triples to evaluate both branches. However, our call to MaskGen together with the
conditional swap ensures that M t̄ is a sharing of uniform bits. When we apply
M t̄ to the triples, we re-randomize the one-time-pad parts of the triples. (Note,
applying M t (the all zeros mask) has no effect on the one-time-pad parts.) Thus,
we provide independent one-time-pad parts to both C0 and C1, satisfying the
inductive invariant.

Because each one-time-pad part is (1) uniform and (2) used to mask at most
one cleartext value, and because each broadcast is masked by a one-time-pad
part, each broadcast can be simulated by a uniform bit. Thus, we can simulate
a single party’s view.

4 One caveat is that broadcasts used to reconstruct the circuit’s outputs must XOR to
the correct output value. The simulator must arrange the simulated output broad-
casts such that they appropriately add up. This is typical in MPC proofs and is easy
to set up.
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The generalization from simulating one party to simulating up to p − 1 is
based on a simple observation about XOR secret shares: the view of p − 1 parties
holds no more information than the share of 1 party. The remaining broadcasts
from the remaining, unsimulated parties can be simulated by uniform bits.

ΠMT is secure against semi-honest corruption of up to p − 1 parties. ��
Some MPC techniques, e.g., computing multiplicative inverse [BIB89], rely on

opening (randomized) intermediate values. This may not always be compatible
with our optimization, since our randomization of the inactive branch may cause
an invalid opened value, thereby revealing that it was in fact inactive.

6 Semi-Honest MaskGen Instantiations

In this section, we instantiate MaskGen (Fig. 3). We present three protocols, two
formally and one informally, that follow two general approaches:

1. The first approach is generic in that it works for an arbitrary number of parties
and is based on vector scalar multiplication (Sect. 2.3). Since our approach
often uses long masks, we introduce a useful trick that improves vector scalar
multiplication for long vectors.

2. In special cases, masks can be more efficiently derived starting from short
seeds. We present two and three-party protocols which require communication
proportional only to κ rather than to the mask length n.

6.1 p-Party Mask Generation

Our general mask generation technique, Π - MaskGen - VS (Fig. 5), allows p parties
to preprocess length-n masks using only a single VS gate.

In this protocol, parties jointly sample a uniform sharing of a uniform bit [[s]]
and a uniform bitstring [[r]]. The parties compute [[sr]] via a VS gate, set the first
mask to [[M0]] = [[sr]], and set the second mask to [[M1]] = [[sr]] ⊕ [[r]].

Π - MaskGen - VS is correct and secure.

Theorem 3. Π - MaskGen - VS correctly implements MaskGen.

Proof. s and r are uniform. Depending on s, the product sr is, of course, either
all zeros or r. Thus, setting [[M0]] = [[sr]] and [[M1]] = [[sr]] ⊕ [[r]] places the all
zeros mask in Ms. ��

Theorem 4. Π - MaskGen - VS is secure against semi-honest corruption of up to
p − 1 parties in the VS-hybrid model.

Proof. We communicate only once: when evaluating a single VS gate. Hence, the
simulator is trivially constructed from the VS gate simulator. ��
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Fig. 5. Protocol Π - MaskGen - VS is our default method for generating masks, and is
secure for an arbitrary number of parties.

Vector Scalar Multiplication for Long Vectors. We have shown that VS
gates can efficiently compute pairs of masks. However, this requires us to evaluate
VS gates over potentially long vectors: we compute VS gates over vectors with
length proportional to the number of AND gates, which can be arbitrarily high.

As discussed in Sect. 2.3, we decompose vector scalar products into sum-
mands, some that are computed locally and others that are computed interac-
tively. For each interactive summand, one party holds a bit a, one a vector b,
and the two must jointly compute [[ab]]. Let n be the length of b. To compute
this product, the protocol presented by [HKP20] requires two messages of length
n. In this section, we introduce a natural trick, Π - Half - VS - Long, that reduces
this communication cost by half: only one message of length n need be sent,
and the other can be derived from a pseudo-random seed. Both the functional-
ity and the protocol are listed in Fig. 6. We explain the Π - Half - VS - Long trick
in more detail in our proof of correctness. Our trick is similar to techniques
in [KK13,ALSZ13]. Recall (from Sect. 2.3) that p(p − 1) interactive summands
emerge from a single vector scalar multiplication. Thus, we can compose a full
vector scalar multiplication protocol from p(p − 1) calls to Π - Half - VS - Long.
We refer to this full protocol as Π - VS - Long.

Theorem 5. Π - Half - VS - Long, and hence Π - VS - Long, is correct.

Proof. The key observation is that P1’s input bit a determines one of two possible
outcomes for the vector scalar multiplication. If a = 0, the output is a sharing
of all zeros. In this case, P1 and P2’s output shares must XOR to zeros. If a = 1,
the output is a sharing of P2’s input vector b.
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Fig. 6. Π - Half - VS - Long can be used to evaluate the interactive subterms that emerge
from computing a VS gate.

We achieve this functionality with a single 1-out-of-2 OT of length κ strings.
P1 acts as the OT receiver and uses as her choice bit a. If a = 0, P1 receives
the seed that P2 used to generate her share. P1 expands this seed and obtains
the same share as P2. If a = 1, P1 receives a key that helps him to decrypt a
ciphertext sent separately by P2. The ciphertext holds a valid share of b.

The correctness of Π - VS - Long is immediate from the correctness of
Π - Half - VS - Long and [HKP20]’s VS instantiation. ��

Next, we prove this faster vector scalar multiplication procedure secure.
Ideally, we would modularly prove Π - Half - VS - Long and Π - VS - Long secure
by simulation. Unfortunately, this is not possible. Specifically, suppose that in
Π - Half - VS - Long P1 provides input a = 0. In this case, P1 outputs the expan-
sion of the pseudorandom seed w received by the OT oracle. Now we need to
simulate w that matches the expansion G(w) output by the protocol. Since G
is assumed secure, this simulation is infeasible. Therefore, we forego modularity,



338 D. Heath et al.

and instead prove the security of our top level circuit protocol, ΠMT, but where
we instantiate the MaskGen functionality based on Π - VS - Long. With our PRG-
utilizing subprocedures ‘inlined’, we can prove the top-level protocol secure, since
the expansions of PRG seeds no longer appear as protocol outputs and we can
simulate the seeds simply by random strings.

Theorem 6. Let Π - MaskGen - VS′ be the protocol Π - MaskGen - VS (Fig. 5), with
VS instantiated by Π - VS - Long. Let Π ′

MT be the protocol ΠMT (Fig. 4), with
MaskGen instantiated by Π - MaskGen - VS′. Π ′

MT is secure against semi-honest cor-
ruption of up to p − 1 parties in the TripleGen-hybrid and OT-hybrid model.

Proof. By construction of a simulator.
The proof is similar to that of Theorem 2, so we elide most details. Because

we explicitly instantiate MaskGen with Π - MaskGen - VS′, we focus on the corre-
sponding difference in the proof and explain how we simulate Π - MaskGen - VS′

messages. Namely, we argue that all messages of Π - MaskGen - VS′ are simulated
by uniform bits.

Π - MaskGen - VS′ invokes Π - VS - Long, which in turn makes 2(p − 1) per-
party calls to Π - Half - VS - Long. Each pair of parties Pi, Pj jointly call
Π - Half - VS - Long twice, once where Pi is the receiver and once where Pi is
the sender.

When Pi is the receiver, he receives two messages:

– First, Pi receives from Pj an encrypted share of b: Pj chooses a PRG seed
k, expands G(k), and then sends G(k) ⊕ G(S) ⊕ b to Pi. The simulator can
simulate this received message by uniform bits because k and S are both
uniform and because G is a secure PRG.

– Second, Pi receives a message from the OT oracle. Depending on its input bit
ai, Pi receives either the seed k or the seed S (which was used to generate
(ab)2). In either case, k and S are simulated by a uniform string. This does
not conflict with the previously simulated message G(k) ⊕ G(S) ⊕ b, since
one of the seeds k or S remains hidden from Pi.

If Pi is the sender, no message is received; Pi’s view is trivially simulated.
It is easy to see that the masks produced by Π - MaskGen - VS′ are used exactly

once in Π ′
MT, and hence the inductive invariant of Theorem2 is maintained.

Π ′
MT is secure. ��

6.2 Efficient 2PC and 3PC Mask Generation

In this section, we present two efficient implementations of MaskGen, one for
two parties, and one for three. At a high level, these methods are based on
(1) distributing pseudo-random seeds and (2) expanding the seeds with a PRG
into n-bit masks. The advantage of these seed-based methods is that they use
communication proportional only to κ. This is a significant improvement over
Π - MaskGen - VS, which uses communication proportional to the mask length n.
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Fig. 7. Π - MaskGen - 2P is an efficient two-party protocol for generating masks.

Two Party Improved Protocol. Figure 7 presents our protocol for two par-
ties, ΠMT - 2P. Here, the parties use vector scalar multiplication to distribute
XOR sharings of two length-κ strings; one sharing encodes a uniform string
and one encodes the all zeros string. The parties then interpret their respective
shares as PRG seeds and apply G. Because of the nature of XOR sharings, this
means that for the all zeros sharing, the parties generate the same pseudorandom
expansion, so the resultant expansions are a sharings of all zeros. In contrast,
the expansion of the random sharing leads to a larger pseudorandom sharing.

By using this protocol, the two parties can share arbitrarily long masks at
the cost of only O(κ) bits of communication.

Theorem 7. Π - MaskGen - 2P correctly implements MaskGen.

Proof. By the correctness of VS gates and properties of XOR shares.
One of [[S0]] and [[S1]] is a sharing of zeros while the other is a sharing of

a random bitstring. The position of the all-zeros sharing is determined by a
uniform bit s. Consider one such sharing, and interpret both shares as PRG
seeds. If the parties’ two seeds are the same, then the expanded masks will also
be the same, and will therefore XOR to zeros. If the parties’ two seeds differ, then,
by the properties of the PRG, the expanded masks will XOR to a uniform value.

Π - MaskGen - 2P is correct. ��
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We next prove Π - MaskGen - 2P secure. Like Π - Half - VS - Long, we unfortu-
nately cannot modularly prove this protocol secure by simulation: each party
outputs the expansion of a PRG seed that appears in the party’s view. We there-
fore instead prove that ΠMT is secure in the case where we instantiate MaskGen
with Π - MaskGen - 2P. This higher level approach works because the output of a
PRG does not appear as final output, so the PRG seeds can be simulated.

Theorem 8 (ΠMT - 2P Security). Let ΠMT - 2P be ΠMT (Fig. 4), where we
instantiate MaskGen with Π - MaskGen - 2P. ΠMT - 2P is secure against semi-honest
corruption of a single party in the TripleGen-hybrid and VS-hybrid model.

Proof. The proof is nearly identical to that of ΠMT (Theorem 2); we therefore
focus our discussion on the call to Π - MaskGen - 2P.

In Π - MaskGen - 2P, the parties jointly sample uniform sharings [[s]] and [[S]],
and then compute [[sS]] via VS. VS outputs uniform sharings, and so the message
each party receives from the VS oracle is simulated by uniform bits. The parties
locally expand their shares to obtain masks [[M0]] and [[M1]]. Because G is a
secure PRG, [[M s̄]] is a sharing of a uniform string.

Now, recall Theorem 2’s inductive invariant: we must ensure that the top-
level protocol uses the one-time-pad part of each multiplication triple at most
once. ΠMT - 2P XORs the current triples with both [[M0]] and [[M1]]. Because
[[M s̄]] is a sharing of a uniform string, this appropriately rerandomizes the triples
into the inactive branch, and hence we support the inductive invariant.

ΠMT - 2P is secure against semi-honest corruption of a single party. ��
Three Party Informal MaskGen Protocol. The three party efficient MaskGen
protocol is a relatively straightforward generalization of the two party proto-
col. However, the mask generation is notationally complex, so for simplicity we
present informally. A similar technique was used in [BKKO20] to help to con-
struct a two-private three-server distributed point function.

Unlike the two-party protocol, P1, P2, and P3 each obtain two pairs of seeds.
Each pair is used to generate one mask by (1) expanding both seeds with a PRG
into an n-bit string and (2) XORing the two expanded outputs together. At a
high level, we ensure that:

1. For the all zeros mask, each party holds the same seed as one other party.
Thus, their PRG expansions XOR to zeros.

2. For the uniform mask, each party holds a seed distinct from all other parties.
Thus, their PRG expansions XOR to a uniform mask.

The key difficulty is in making the two above scenarios indistinguishable from
the perspective of any strict subset of parties. We contrast these two scenarios,
showing that they appear indistinguishable.

In the first case, the parties are given seeds as follows:

P1 : S1,S2 P2 : S1,S3 P3 : S2,S3

If we consider an adversary who corrupts any two parties, he will see that one
seed is shared between them and the others appear uniform.
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In the second case the parties are given seeds as follows:

P1 : S4,S5 P2 : S4,S6 P3 : S4,S7

As in the first case, an adversary that corrupts two parties sees one seed in
common; the others are uniform. Hence, the cases are indistinguishable for any
one or two parties.

Thus, ΠMT instantiated with this three party MaskGen trick results in a secure
and correct protocol. Seed distribution can easily be implemented by GMW
extended with VS gates: the parties sample seven uniform seeds S1, ...,S7 ∈$

{0, 1}κ, swap them using a VS gate, and output each of them to the appropriate
party.

7 Implementation

We implemented our approach in C++. Specifically, we implemented ΠMT, instan-
tiating MaskGen with both Π - MaskGen - VS and Π - MaskGen - 2P (we did not imple-
ment the three-party variant). We instantiated TripleGen with the natural app-
roach based on random OT. For comparison, we also (1) implemented a stan-
dard triple-based protocol and (2) incorporated MOTIF’s implementation into our
repository. We discuss key aspects of our implementation in Sect. 7.1.

To the best of our knowledge, there is no comprehensive suite of MPC bench-
mark circuits, particularly for circuits that include conditional branches. Thus,
we implemented a random circuit generator to produce benchmarks. In design-
ing the circuit generator, our key goal was to capture the impact of branch
alignment on MOTIF’s performance such that we can highlight our improvement.
The circuit generator samples circuits with a variety of branch alignments. We
describe details of circuit generation in Sect. 7.2.

7.1 Key Implementation Aspects

Our implementation of ΠMT is straightforward, but we note some of its inter-
esting aspects. We use the 1-out-of-2 OT protocol of [IKNP03] as implemented
by EMP [WMK16] in order to generate both triples and masks. In ΠMT and
standard triple-based protocol, we list AND gates in layers so that we can paral-
lelize broadcasts for ANDs in the same circuit layer. MOTIF similarly parallelizes
OTs for VS gates in the same layer. Thus, all three protocols use communication
rounds proportional to the circuit’s multiplicative depth.

7.2 Random Circuit Generation

Circuit generation consists of three main steps:

1. We parameterize circuits on the numbers of conditional branches, the number
of circuit layers, the number of XOR and AND gates per branch, and the number
of input/output wires to each branch. Each branch uses the same parameters.
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2. We uniformly assign a number of gates to each branch’s layers. We implement
this functionality with a RANCOM algorithm [NW78], which is based on the
balls-in-cells problem and is called separately for each branch.

3. We connect the gates layer by layer. Specifically, we maintain a pool of wires
whose value has already been assigned (i.e., it is a branch input or the output
of a gate). For each gate, we uniformly sample two inputs from the pool and
choose a fresh output wire. Once a layer has been entirely connected, we add
all of that layer’s gate outputs to the pool.

The above strategy is relatively ad-hoc, and may not be representative of
all applications. Again, we adopt the above approach (1) to show the impact
of circuit alignment on our relative performance over MOTIF and (2) because no
standard benchmark suite exists.

8 Performance Evaluation

We compare ΠMT to MOTIF and the standard triple-based protocol. We compare
these protocols for various numbers of parties. All experiments were run on a
commodity laptop running Ubuntu 20.04 with an Intel(R) Core(TM) i5-8350U
CPU @ 1.70 GHz and 16 GB RAM. All parties were run on the same machine
and network settings were configured with the tc command. We averaged each
data point over 100 runs.

In each experiment, we generated random circuits as described in Sect. 7.2.
We fixed the circuit parameters to 10 layers, 30, 000 AND gates per branch and
30, 000 XOR gates per branch. We set the number of branch input and output
wires to 128. We generated a new circuit with these same parameters for each
run of each experiment. We performed and report on three experiments:

1. We fixed the number of branches to two, fixed the number of parties to two,
and explore variation in performance based on branch alignment (Sect. 8.1).

2. We fixed the number of parties to two, varied the number of branches, and
explore corresponding communication and wall-clock runtime (Sect. 8.2 and
Sect. 8.3).

3. We fixed the branching factor to 16, varied the number of parties, and explore
corresponding communication.

Each experiment shows that our approach is preferred in almost every setting.

8.1 Branch Alignment

We first demonstrate MOTIF’s dependence on circuit topology in the case of two
branches. Figure 8 plots the distribution of the number of random OTs needed for
two parties to evaluate each protocol. Across all 100 runs, ΠMT and the standard
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Fig. 8. Random OTs required to evaluate a circuit with two branches.

triple-based protocol always need the same number of OTs. On the other hand,
MOTIF’s performance differs depending on branch alignment. Because we sample
alignments uniformly, this results in an increased number of consumed OTs.

Discussion. For two branches and on average, our approach required 1.5× fewer
OTs than MOTIF and consistently required 2× fewer OTs than the standard
triple-based protocol. Given that random OTs are the main communication
bandwidth bottleneck, MOTIF is far from reducing communication by the opti-
mal factor 2×. ΠMT never used more OTs than MOTIF. MOTIF’s best run required
1.12× more OTs than ΠMT and 1.71× in the worst case.

8.2 Communication

We next report our 2PC communication improvement over both MOTIF and the
standard triple-based protocol as a function of branching factor. We instantiated
MaskGen with Π - MaskGen - 2P.

Figure 9 plots both preprocessing communication and total communication.
For further reference, Fig. 10 tabulates our communication improvement.

In our measurements, preprocessing constitutes both triple generation and
mask generation. Each data point is averaged over 100 runs; the amount of
communication may differ from run to run because each circuit has a randomly
generated topology. In ΠMT the total communication is constant. In contrast,
MOTIF communication differs significantly across runs due to the layering issue
explained in Sect. 2.4.

Discussion. In this metric, ΠMT is preferred:

– Preprocessing Communication. On 16 branches, we improve communi-
cation by 2.96× over MOTIF and by 14.4× over the standard triple-based
protocol. There are three reasons we did not achieve 16× improvement over
standard triple-based protocol. First, both the standard triple-based app-
roach and ours must perform the same number of base OTs to set up an
OT extension matrix [IKNP03]. This adds a small amount of communication
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Fig. 9. 2PC comparison of ΠMT against MOTIF and a standard triple-based protocol.
We plot the following metrics as functions of the branching factor : the preprocessing
per-party communication (top), the total per-party communication (bottom).

# Branches ΠMT(MB) Π - MOTIF(MB) Broadcast (MB)
2 0.57 0.86 1.11
4 0.58 1.16 2.19
8 0.61 1.46 4.10

16 0.67 1.79 8.19
32 0.80 2.14 16.09

Fig. 10. Per-party communication improvement for our 2PC random circuit experi-
ment as a function of the branching factor.

(around 20KB) common to both approaches, which cuts slightly into our
advantage. Second, we need one OT per each of b − 1 mask pairs. Third,
entering and exiting conditionals have very small overhead differences.

– Total Communication. On 16 branches, our approach improves total com-
munication by 2.6× over MOTIF and by 12× over the standard protocol. Our
total communication improvement is lower than our preprocessing improve-
ment because our evaluation phase communication is not improved. While
improvement over the standard protocol is almost constant across runs, the
improvement over MOTIF differs due to varying circuit topology: our improve-
ment ranges from 2.16× to 2.93×.
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8.3 Wall-Clock Time
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Fig. 11. 2PC comparison of ΠMT against MOTIF and a standard triple-based protocol.
We plot the following metrics as functions of branching factor: wall-clock time on a LAN
(left), the wall-clock time on a LAN where other processes share bandwidth (center),
and the wall-clock time on a WAN (right).

We next present the wall-clock time improvements over MOTIF and the standard
triple-based protocol. We consider three simulated network settings:

1. LAN: A simulated gigabit ethernet connection with 1Gbps bandwidth and
2ms round-trip latency.

2. Shared LAN: A simulated local area network connection where the protocol
shares network bandwidth with a number of other processes. The connection
features 50Mbps bandwidth and 2ms round-trip latency.

3. WAN: A simulated wide area network connection with 100Mbps bandwidth
and 20ms round-trip latency.

Figure 11 plots total wall-clock time for each network setting.

Discussion. In these metrics, ΠMT is preferred:

– LAN wall-clock time. On a fast LAN, our approach’s improvement is
diminished compared to our communication improvement. On average and
for 16 branches, we improve by 1.52× over MOTIF and by 1.81× over the
standard protocol. A 1Gbps network is very fast, and our modest hardware
struggles to keep up with available bandwidth.

– Shared LAN wall-clock time. On the more constrained shared LAN, our
hardware easily keeps up with the communication channel, and we see cor-
responding improvement. On average and for 16 branches, we achieve 2.26×
speedup over MOTIF and 7.43× speedup over the standard protocol.

– WAN wall-clock time. On this high-latency network our advantage is less
pronounced. On average and for 16 branches, we achieve 1.14× speedup over
MOTIF and 2.04× speedup over the standard protocol. This high-latency net-
work highlights the weakness of multi-round protocols in such settings.
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Fig. 12. Protocol per-party communication usage as a function of the number of par-
ties. Like MOTIF and the standard protocol, we consume per-party communication linear
in the number of parties.

8.4 Scaling to MPC

Our last experiment emphasizes our approach’s scaling to the multiparty setting.
This experiment uses the same circuit parameters as the former experiments, but
we fix the number of branches to 16. We implemented Π - MaskGen - VS and ran
the circuit among 4-8 parties. Figure 12 plots per-party communication as a
function of the number of parties.

Discussion. ΠMT works well in the multiparty setting. Our optimization does not
add additional costs as compared to MOTIF and standard triple-based protocol.
Each technique consumes communication quadratic in the number of parties.
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Abstract. In multi-party threshold private set intersection (PSI), n par-
ties each with a private set wish to compute the intersection of their
sets if the intersection is sufficiently large. Previously, Ghosh and Simkin
(CRYPTO 2019) studied this problem for the two-party case and demon-
strated interesting lower and upper bounds on the communication com-
plexity. In this work, we investigate the communication complexity of the
multi-party setting (n ≥ 2). We consider two functionalities for multi-
party threshold PSI. In the first, parties learn the intersection if each of
their sets and the intersection differ by at most T . In the second func-
tionality, parties learn the intersection if the union of all their sets and
the intersection differ by at most T .

For both functionalities, we show that any protocol must have com-
munication complexity Ω(nT ). We build protocols with a matching
upper bound of O(nT ) communication complexity for both functionali-
ties assuming threshold FHE. We also construct a computationally more
efficient protocol for the second functionality with communication com-
plexity ˜O(nT ) under a weaker assumption of threshold additive homo-
morphic encryption. As a direct implication, we solve one of the open
problems in the work of Ghosh and Simkin (CRYPTO 2019) by designing

a two-party protocol with communication cost ˜O(T ) from assumptions
weaker than FHE.

As a consequence of our results, we achieve the first “regular” multi-
party PSI protocol where the communication complexity only grows with
the size of the set difference and does not depend on the size of the input
sets.

1 Introduction

Private set intersection (PSI) protocols allow several mutually distrustful par-
ties P1, P2, . . . , Pn each holding a private set S1, S2, . . . , Sn respectively to
jointly compute the intersection I =

⋂n
i=1 Si without revealing any other

information. PSI has numerous privacy-preserving applications, e.g., DNA test-
ing and pattern matching [TPKC07], remote diagnostics [BPSW07], botnet
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 349–379, 2021.
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detection [NMH+10], online advertising [IKN+17,MPR+20]. Over the last
years enormous progress has been made towards realizing this functional-
ity efficiently [HFH99,FNP04,KS05,DCT10,DCW13,PSZ14,PSSZ15,KKRT16,
OOS16,RR17,KMP+17,HV17,PSWW18,PRTY19,GN19,PRTY20,CM20] in
the two-party, multi-party, and server-aided settings with both semi-honest and
malicious security.

Threshold PSI. In certain scenarios, the standard PSI functionality is not
sufficient. In particular, the parties may only be willing to reveal the intersection
if they have a large intersection. For example, in privacy-preserving data mining
and machine learning [MZ17] where the data is vertically partitioned among
multiple parties (that is, each party holds different features of the same object),
the parties may want to learn the intersection of their datasets and start their
collaboration only if their common dataset is sufficiently large. If their common
dataset is too small, in which case they are not interested in collaboration,
it is undesirable to let them learn the intersection. In privacy-preserving ride
sharing [HOS17], multiple users only want to share a ride if large parts of their
trajectories on a map intersect. In this case, the users may be interested in the
intersection of their routes, but only when the intersection is large. This problem
can be formalized as threshold private set intersection, where, roughly speaking,
the parties only learn the intersection if their sets differ by at most T elements.

Many works [FNP04,HOS17,PSWW18,ZC18,GN19] achieve this functional-
ity by first computing the cardinality of the intersection and then checking if
this is sufficiently large. The communication complexity of these protocols scales
at least linearly in the size of the smallest input set. Notice that Freedman et al.
[FNP04] proved a lower bound of Ω(m) on the communication complexity of any
private set intersection protocol, where m is the size of the smallest input set.
This lower bound directly extends to protocols that only compute the cardinality
of the intersection, which constitutes a fundamental barrier to the efficiency of
the above protocols.

Recently, the beautiful work of Ghosh and Simkin [GS19a] revisited the com-
munication complexity of two-party threshold PSI and demonstrated that the
Ω(m) lower bound can be circumvented by performing a private intersection car-
dinality testing (i.e., testing whether the intersection is sufficiently large) instead
of computing the actual cardinality. After passing the cardinality testing, their
protocol allows each party to learn the set difference, where the communica-
tion complexity only grows with T , which could be sublinear in m. Specifically,
[GS19a] proved a communication lower bound of Ω(T ) for two-party threshold
PSI and presented a protocol achieving a matching upper bound O(T ) based
on fully homomorphic encryption (FHE). They also showed a computationally
more efficient protocol with communication complexity of Õ(T 2) based on weaker
assumptions, namely additively homomorphic encryption (AHE).

In this work, we investigate the communication complexity of multi-party
threshold PSI. In particular, we ask the question of whether sublinear lower and
upper bounds can also be achieved in the multi-party setting.
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1.1 Our Contributions

We first identify and formalize the definition of multi-party threshold private set
intersection. We put forth and study two functionalities that are in fact equiv-
alent in the two-party case but are vastly different in the multi-party scenario.
Assume there are n parties P1, P2, . . . , Pn, and each party Pi holds a private set
Si of size m. The first functionality allows the parties to learn the intersection
I =

⋂n
i=1 Si only if ∀i, |Si \ I| ≤ T , or equivalently, |I| ≥ m − T . In the second

functionality, the parties can learn the intersection I only if | (⋃n
i=1 Si) \ I| ≤ T .

We briefly discuss the difference between the two functionalities. The first
functionality focuses on whether the intersection is sufficiently large, hence we
call it FTPSI-int. The second functionality focuses on whether the set difference
is sufficiently small, thus we call it FTPSI-diff . In the two-party case, we have the
guarantee that | (⋃n

i=1 Si) \ I| = 2 · |Si \ I|, so we do not have to differentiate
between these two functionalities. However, in the multi-party case, we only
know that 2 · |Si \ I| ≤ | (⋃n

i=1 Si) \ I| ≤ n · |Si \ I|, hence the two functionalities
could lead to very different outcomes. Which functionality to choose and what
threshold to set in practice highly depend on the actual application.

Sublinear Communication. The core contribution of this work is demon-
strating sublinear (in the set sizes) communication lower and upper bounds for
both functionalities. We summarize our results in Table 1. For lower bound, we
prove that both functionalities require at least Ω(nT ) bits of communication. For
upper bound, we present protocols for both functionalities achieving a match-
ing upper bound of O(nT ) based on n-out-of-n threshold fully homomorphic
encryption (TFHE) [BGG+18]. We also give a computationally more efficient
protocol based on weaker assumptions, namely n-out-of-n threshold additively
homomorphic encryption (TAHE) [Ben94,Pai99], with communication complex-
ity of Õ(nT ) that almost matches the lower bound.1 All these protocols achieve
semi-honest security where up to (n − 1) parties could be corrupted.

Table 1. Communication lower and upper bounds for multi-party threshold PSI.

Functionality Communication
lower bound

TFHE-based
upper bound

TAHE-based
upper bound

FTPSI-int Ω(nT ) O(nT ) Unknown

FTPSI-diff Ω(nT ) O(nT ) ˜O(nT )

Our Protocols. As summarized in Table 1, we present three protocols for upper
bounds, one for FTPSI-int and two for FTPSI-diff . At a high level, all three proto-
cols compute their functionality in two phases. In the first phase, they perform

1
˜O(·) hides polylog factors. All the upper bounds omit a poly(λ) factor where λ is the
security parameter.
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a multi-party private intersection cardinality testing where the parties jointly
decide whether their intersection is sufficiently large. In particular, for FTPSI-int,
the cardinality testing, which we call FCTest-int, allows all the parties to learn
whether |I| ≥ (m − T ). For FTPSI-diff , the cardinality testing, which we call
FCTest-diff , allows all the parties to learn whether | (⋃n

i=1 Si) \ I| ≤ T . The com-
munication complexity of our protocols for FCTest-int and FCTest-diff is summarized
in Table 2. In particular, for FCTest-int, we present a protocol with communica-
tion complexity O(nT ) based on TFHE. For FCTest-diff , we show a TFHE-based
construction with communication complexity O(nT ) and a TAHE-based con-
struction with communication complexity Õ(nT ).

Table 2. Communication complexity of our protocols for multi-party private cardinal-
ity testing.

Functionality protocol TFHE-based protocol TAHE-based

FCTest-int O(nT ) Unknown

FCTest-diff O(nT ) ˜O(nT )

If the intersection is sufficiently large, namely it passes the cardinality testing,
then the parties start the second phase of our protocols, which allows each party
Pi to learn their set difference Si \ I. We present a singe protocol for the second
phase, which works for both FTPSI-int and FTPSI-diff . The second-phase protocol is
based on TAHE and has communication complexity of O(nT ). Thus, to construct
a protocol for multi-party threshold PSI, we combine the first-phase protocols
summarized in Table 2 with the second-phase one described above. Doing so, we
achieve the communication upper bounds in Table 1.

This modular design enables our constructions to minimize the use of TFHE
as it is not needed in the second phase. Moreover, it allows future work to
focus on improving Table 2. In particular, to design a protocol for FTPSI-int from
assumptions weaker than TFHE, future work could focus on building protocols
for FCTest-int and directly plug in our second phase protocol after that.

Communication Topology. All our protocols are designed in the so-called
star network topology, where a designated party communicates with every other
party. An added benefit of this topology is that not all parties must be online
at the same time. Our communication lower bounds are proved in point-to-point
fully connected networks, which are a generalization of the star network.

For networks with broadcast channels, we prove another communication
lower bound of Ω(T log n + n) for FTPSI-int in the full version and leave further
exploration in the broadcast model for future work.

1.2 Other Implications

Two-Party Threshold PSI. Recall that in the two-party case, both func-
tionalities FTPSI-int and FTPSI-diff are identical. Ghosh and Simkin [GS19a] built
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a two-party threshold PSI protocol from AHE with communication complexity
Õ(T 2). They left it as an open problem to build a two-party threshold PSI proto-
col with communication complexity Õ(T ) from assumptions weaker than FHE.
Observe that for the special case of n = 2, we can achieve a two-party threshold
PSI protocol with communication complexity Õ(T ) from AHE thereby solving
this open problem (refer to Sect. 6 and Sect. 7 for more details).

Sublinear Communication PSI. Our multi-party threshold PSI protocols
for both FTPSI-int and FTPSI-diff can also be used to achieve multi-party “regu-
lar” PSI2 where the communication complexity only grows with the size of the
set difference and independent of the input set sizes. In particular, if we run
a sequence of multi-party threshold PSI protocols on T = 20, 21, 22, . . . until
hitting the smallest T = 2k where the protocol outputs the intersection, then
we can achieve multi-party PSI. The communication complexity of the resulting
protocol is a factor log T times that of a single instance but still independent
of the input set sizes. Therefore, when the intersection is very large, namely
the set difference is significantly smaller than the set sizes, this new approach
achieves the first multi-party PSI with sublinear (in the set sizes) communication
complexity.

Compact MPC. It is an open problem to construct a compact MPC protocol
in the plain model where the communication complexity does not grow with the
output length of the function. Prior works [HW15,BFK+19] construct compact
MPC for general functions in the presence of a trusted setup (CRS, random
oracle) from strong computational assumptions such as obfuscation. Our multi-
party threshold PSI protocols have communication complexity independent of
the output size (the set intersection). To the best of our knowledge, ours are the
first compact MPC protocols for any non-trivial function in the plain model. The
only prior compact protocol in the plain model we are aware of is the two-party
threshold PSI protocol [GS19a].

1.3 Concurrent and Independent Work

Concurrent to our work, a recent update to the full version of the paper by
Ghosh and Simkin [GS19b] extends the two-party threshold PSI protocol to
the multi-party setting and consider the functionality FTPSI-int. They do not
consider the functionality FTPSI-diff that we additionally consider in our work. For
FTPSI-int, [GS19b] also first constructs a TFHE-based protocol for the intersection
cardinality testing FCTest-int with communication complexity O(nT ). Then in
the second phase for computing the intersection, they use an MPC protocol
to compute the evaluations of a random polynomial, where the communication
complexity depends on how the MPC is instantiated, which is not discussed

Another concurrent work by Branco, Döttling, and Pu [BDP21] studies multi-
party private intersection cardinality testing with the functionality FCTest-int and
presents a TAHE-based protocol with communication complexity Õ(nT 2), which

2 By “regular” PSI, we refer to the standard notion of PSI without threshold.
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complements our Table 2. They also do not consider the other functionality
FCTest-diff .

1.4 Roadmap

We describe some notations and definitions in Sect. 2, a technical overview in
Sect. 3, and the lower bound in Sect. 4. We present the TFHE based protocols for
FCTest-int and FCTest-diff in Sect. 5 and the TAHE based protocol for FCTest-diff in
Sect. 6. We present the second phase protocol to compute the actual intersection
in Sect. 7.

2 Preliminaries

In this section, we introduce some notations and define the our ideal function-
alities. See the full version for the remaining definitions.

2.1 Notations

We use λ to denote the security parameters. By poly(λ) we denote a polynomial
function in λ. By negl(λ) we denote a negligible function, that is, a function f
such that f(λ) < 1/p(λ) holds for any polynomial p(·) and sufficiently large λ.
We use [[x]] to denote an encryption of x. We use Õ(x) to ignore any polylog

factor, namely Õ(x) = O(x · polylog(x)).

2.2 Multi-party Threshold Private Set Intersection

Setting. Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn respectively.
Throughout the paper, we consider all the sets to be of equal size m. We assume
that the set elements come from a field Fp, where p is a Θ(λ)-bit prime. Also,
throughout the paper, we focus only on the point-to-point network channels.
For the lower bounds, we consider a setting where every pair of parties has a
point-to-point channel between them. For the upper bounds, we consider a more
restrictive model – the star network, where only one central party has a point-to-
point channel with every other party and the other parties cannot communicate
with each other.

The goal of the parties is to run an MPC protocol Π at the end of which
each party learns the intersection I of all the sets if certain conditions hold.
In the definition of two-party threshold PSI, both parties P1 and P2 learn the
intersection I if the size of their set difference is small, namely |(S1 \ S2) ∪ (S2 \
S1)| < 2T . In the multi-party case, we consider two different functionalities, each
of which might be better suited to different applications.

Functionalities. In the first definition, we consider functionality FTPSI-int, in
which each party Pi learns the intersection I if the size of its own set minus the
intersection is small, namely |Si \ I| ≤ T for some threshold T . Recall that we
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consider all the sets to be of equal size, hence either all the parties learn the
output or all of them don’t. In the second definition, we consider a functionality
FTPSI-diff , where each party learns the intersection I if the size of the union of all
the sets minus the intersection is small, namely |(⋃n

i=1 Si) \ I| ≤ T . The formal
definitions of the two ideal functionalities are shown in Fig. 1 and Fig. 2.

Parameters: Parties P1, . . . , Pn. Each party has a set ofm elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai
1, . . . , a

i
m} where ai

j ∈ Fp for all j ∈ [m].

Output: Each party Pi receives I =
⋂n

i=1 Si if and only if |Si \ I| ≤ T .

Fig. 1. Ideal functionality FTPSI-int for multi-party threshold PSI.

Parameters: Parties P1, . . . , Pn. Each party has a set ofm elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai
1, . . . , a

i
m} where ai

j ∈ Fp for all j ∈ [m].

Output: Each party Pi receives I = n
i=1 Si if and only if n

i=1 Si \ I ≤ T .

Fig. 2. Ideal functionality FTPSI-diff for multi-party threshold PSI.

2.3 Multi-party Private Intersection Cardinality Testing

An important building block in our multi-party threshold PSI protocols is a
multi-party protocol for private intersection cardinality testing which we define
below. Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn respectively of
equal size m. Their goal is to run an MPC protocol Π at the end of which
each party learns whether the size of the intersection I of all the sets is suffi-
ciently large. As before, we consider two functionalities. In the first functionality
FCTest-int, each party Pi learns whether |Si \ I| ≤ T . In the second functionality
FCTest-diff , each party learns whether |(⋃n

i=1 Si) \ I| ≤ T . The formal definitions
of the two ideal functionalities are presented in Fig. 3 and Fig. 4.

Parameters: Parties P1, . . . , Pn. Each party has a set ofm elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai
1, . . . , a

i
m} where ai

j ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if |Si \ I| ≤ T and different otherwise where
I =

⋂n
i=1 Si.

Fig. 3. Ideal functionality FCTest-int for multi-party intersection cardinality test.
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Parameters: Parties P1, . . . , Pn. Each party has a set ofm elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai
1, . . . , a

i
m} where ai

j ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if
∣
∣ ⋃n

i=1 Si

) \ I
∣
∣ ≤ T and different otherwise

where I =
⋂n

i=1 Si.

Fig. 4. Ideal functionality FCTest-diff for multi-party intersection cardinality test.

3 Technical Overview

We now give an overview of the techniques used in our work. We denote P1 as
the designated party that can communicate with all the other parties.

3.1 TFHE-Based Protocol for FCTest-int

In Sect. 5.1 we construct a protocol for FCTest-int from TFHE. Our starting point
is the two-party protocol of [GS19a]. Recall that there are two parties Alice and
Bob with sets SA = {a1, . . . , am} and SB = {b1, . . . , bm} respectively. These
sets define two polynomials pA(x) :=

∏m
i=1(x − ai) and pB(x) :=

∏m
i=1(x − bi).

Let I := SA ∩ SB be the intersection. A key observation in [MTZ03,GS19a] is
that p(x) := pB(x)

pA(x) = pB\I(x)

pA\I(x)
. Both the numerator and denominator of p have

degree m − |I|. If m − |I| = |SA \ I| ≤ T , then p(x) has degree at most 2T and
can be recovered from 2T + 1 evaluations by rational function interpolation.3

Given p(x), the elements in SA \ I are simply the roots of the polynomial in the
denominator.

Two-Party Protocol. At a high level, the two-party protocol [GS19a] works
as follows. First, Alice and Bob evaluate their own polynomials on 2T + 1 pub-
licly known distinct points {α1, . . . , α2T+1} to obtain {pA(α1), . . . , pA(α2T+1)}
and {pB(α1), . . . , pB(α2T+1)}, respectively. Then, Alice generates a public-secret
key pair for FHE and sends Bob the FHE public key, encrypted evaluations
{[[pA(α1)]], . . . , [[pA(α2T+1)]]}, a uniformly random z and encrypted evaluation
[[pA(z)]]. Bob can homomorphically interpolate the rational function [[p(x)]] from
{[[pA(α1)]], . . . , [[pA(α2T+1)]]} and {pB(α1), . . . , pB(α2T+1)}, and then homomor-
phically compute [[p(z)]]. Bob can also compute pB(z) and homomorphically
compute pB(z)

[[pA(z)]] . We know that p(z) = pB(z)
pA(z) if and only if the degree of p(x) is

≤ 2T . Therefore Bob homomorphically computes an encryption of the predicate
[[b]] :=

(
[[p(z)]] ?= pB(z)

[[pA(z)]]

)
and sends the encryption [[b]] back to Alice. Finally

Alice decrypts and learns b.

3 A rational function is a fraction of two polynomials. We refer to Minskey
et al. [MTZ03] for details on rational function interpolation over a field. Also, we
note that monic polynomials can be interpolated with 2T evaluation but we use
2T + 1 for consistency with our other protocols.
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Multi-party Protocol. For n parties, a natural idea is to consider

p(x) :=
p2(x) + · · · + pn(x)

p1(x)
=

p2\I(x) + · · · + pn\I(x)
p1\I(x)

, (1)

where pi(x) encodes the set Si = {ai
1, . . . , a

i
m} as pi(x) :=

∏m
j=1(x − ai

j).
The n parties first jointly generate the TFHE keys. Each party Pi sends
encrypted evaluations {[[pi(α1)]], . . . , [[pi(α2T+1)]], [[pi(z)]]} to P1. Now P1 can
interpolate [[p(x)]] from 2T + 1 evaluations and compute an encryption [[b]] :=(
[[p(z)]] ?= [[p2(z)]]+···+[[pn(z)]]

p1(z)

)
. Finally the parties jointly decrypt [[b]].

Unexpected Degree Reduction. This seemingly correct protocol has a subtle
issue.4 Intuitively, we want to argue that p(x) in Eq. 1 has degree ≤ 2T if and only
if |S1 \ I| ≤ T . However, this is not true because elements not in the intersection
might be accidentally canceled out, which results in a lower degree than the
intersection carnality would imply. As a concrete example, consider three sets
with distinct elements S1 = {a}, S2 = {b}, S3 = {c}, where b + c = 2 · a. The
intersection I = ∅. Ideally we hope the rational polynomial p(x) has degree 1 in
both the numerator and denominator because |S1 \ I| = 1. However,

p(x) =
(x − b) + (x − c)

x − a
=

2x − (b + c)
x − a

=
2x − 2a

x − a
= 2.

Randomness to the Rescue. On first thought, this approach seems funda-
mentally flawed as additional roots can always be created if we add polynomials
in the numerator. To solve this problem, we add a random multiplicative term
(x − ri) to each polynomial pi and set a new polynomial p′

i(x) := pi(x) · (x − ri)
for a random ri chosen by party Pi. Now, consider the rational polynomial

p′(x) :=
p′
2(x) + · · · + p′

n(x)
p′
1(x)

=
p′
2\I(x) + · · · + p′

n\I(x)

p′
1\I(x)

.

At a high level, the terms (x − ri) will randomize the roots of the numerator
sufficiently to ensure that these roots are unlikely to coincide with the roots of
the denominator.

3.2 TFHE-Based Protocol for FCTest-diff

In Sect. 5.2 we present an TFHE-based protocol for FCTest-diff . In summary, party
P1 tries to homomorphically interpolate

p̃i(x) =
pi(x)
p1(x)

=
pi\1(x)
p1\i(x)

4 In fact, this subtle issue was initially overlooked by [GS19b] in their recent update
of the multi-party protocol. It has subsequently been fixed after we notified them.
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from (2T +1) evaluations and computes encrypted D1,i = S1\Si as well as Di,1 =
Si \S1 for every other party Pi. Note that if | (⋃m

i=1 Si)\I| ≤ T , then |Si \I| ≤ T
for all i and the degree of each p̃i(x) is at most 2T , hence P1 can interpolate
it using (2T + 1) evaluations. Observe that (

⋃m
i=1 Si) \ I =

⋃m
i=2 (D1,i ∪ Di,1),

because each element a ∈ (
⋃m

i=1 Si) \ I must be one of the two cases: (1) a ∈ S1

and a /∈ Si for some i (i.e., a ∈ D1,i), or (2) a /∈ S1 and a ∈ Si for some i (i.e.,
a ∈ Di,1). Therefore, party P1 can homomorphically compute an encryption

of (
⋃m

i=1 Si) \ I and an encryption of the predicate b =
(

|(⋃m
i=1 Si) \ I| ?≤ T

)

.

Finally, as before, the n parties jointly decrypt [[b]] to learn the output.

3.3 TAHE-Based Protocol for FCTest-diff

Section 6 presents our protocol for FCTest-diff based on TAHE. This protocol
reduces the communication complexity for two-party from Õ(T 2) to Õ(T ) as
well as generalizes it to multi-party with communication Õ(Tn).

Two-Party Protocol. For two parties Alice and Bob with private sets SA

and SB , if we encode their elements into two polynomials pA(x) =
∑m

i=1 xai

and pB(x) =
∑m

i=1 xbi , then the number of monomials in the polynomial
p(x) := pA(x) − pB(x) is exactly |(SA \ SB) ∪ (SB \ SA)|. Now the problem
of cardinality testing (i.e., determining if |(SA \ SB) ∪ (SB \ SA)| ≤ 2T ) has be
reduced to determining whether the number of monomials in p(x) is ≤ 2T . Using
the polynomial sparsity test of Grigorescu et al. [GJR10], we can further reduce
the problem to determining whether the Hankel matrix below is singular or not:

H =

⎡

⎢
⎢
⎢
⎣

p(u0) p(u1) . . . p(u2T )
p(u1) p(u2) . . . p(u2T+1)

...
...

. . .
...

p(u2T ) p(u2T+1) . . . p(u4T )

,

⎤

⎥
⎥
⎥
⎦

where u is chosen uniformly at random. In the two-party protocol, Alice gener-
ates a public-secret key pair for AHE and sends Bob the public key, a uniformly
random u along with encrypted Hankel matrix for pA. Then Bob can homomor-
phically compute encrypted Hankel matrix for p. Now Alice holds the secret key
and Bob holds an encryption of matrix H. They need to jointly perform a secure
matrix singularity testing to determine if the matrix is singular, which can be
done using the protocol of Kiltz et al. [KMWF07] with communication Õ(T 2).

Our Approach. Our key observation is that the protocol of Kiltz
et al. [KMWF07] can be used to perform singularity testing for arbitrary matri-
ces, while we are only interested in testing the singularity of Hankel matrices.
Since a Hankel matrix only has linear (in its dimension) number of distinct
entries, there is a more efficient way to test its singularity. In particular, the
work of Brent et al. [BGY80] demonstrates an elegant connection between the
problem of testing singularity of a Hankel matrix and the so-called “half-GCD”
problem, which can be solved in quasi-linear time. Thus, testing singularity of
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the Hankel matrix H only takes Õ(T ) computation. In our scenario, we can first
let Alice and Bob learn an additive share of H, and then engage in a two-party
computation (using AHE or Yao’s garbled circuits) to jointly test if H is singu-
lar or not. The important point to note here is that both communication and
computation are only quasi-linear in the dimension of H. This is already an
improvement over the quadratic cost of protocol in [KMWF07] and solves the
open problem posed by Ghosh and Simkin [GS19a].

Multi-party Protocol. In designing a multi-party protocol, our strategy is to
first find a polynomial where the number of monomials equals the size of the
set difference |(⋃m

i=1 Si) \ I|. Furthermore, the polynomial should only involve
linear operations among the parties, which allows the parties to obtain additive
secret shares of the Hankel matrix for the polynomial. Then, the parties perform
an MPC protocol to test singularity of the Hankel matrix.

3.4 Computing Set Intersection

In Sect. 7 we present a single construction that computes the concrete set inter-
section for both FTPSI-int and FTPSI-diff after the cardinality testing.

Two-Party Protocol. For two parties Alice and Bob, we use the first encoding
method to encode the elements into two polynomials pA(x) =

∏m
i=1(x − ai)

and pB(x) =
∏m

i=1(x − bi). After the cardinality testing, we already know that
the rational polynomial p(x) := pB(x)

pA(x) = pB\I(x)

pA\I(x)
has degree at most 2T . If Alice

learns the evaluation of pB(·) on 2T +1 distinct points {α1, . . . , α2T+1}, then she
can evaluate pA on those points by herself and compute {p(α1), . . . , p(α2T+1)}.
Using these evaluations of p(·), Alice can recover p(x) by rational polynomial
interpolation, and then learn the set difference SA \ I from the denominator
of p(x). However, p(x) also allows Alice to learn SB \ I, which breaks security.
Instead of letting Alice learn the evaluations of pB(·), the two-party protocol
of [GS19a] enables Alice to learn the evaluations of a “noisy” polynomial V(x) :=
pA(x) ·R1(x)+pB(x) ·R2(x), where R1 and R2 are uniformly random polynomials
of degree T . Note that

p′(x) :=
V(x)
pA(x)

=
pA\I(x) · R1(x) + pB\I(x) · R2(x)

pA\I(x)

has degree at most 3T . Given 3T + 1 evaluations of V(·), Alice can interpolate
p′(x) and figure out the denominator, but now the numerator is sufficiently
random and does not leak any other information about SB.

Multi-party Protocol. For n parties, we first encode each set Si =
{ai

1, . . . , a
i
m} as a polynomial pi(x) :=

∏m
j=1(x − ai

j), and then define

V(x) := p1(x) · R1(x) + · · · + pn(x) · Rn(x)
:= p1(x) · (R1,1(x) + · · · + Rn,1(x)) + · · · + pn(x) · (R1,n(x) + · · · + Rn,n(x)) ,
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where (Ri,1, . . . ,Ri,n) are random polynomials of degree T generated by party Pi.
Different from the two-party protocol, it is crucial that each party Pi contributes
a random term in every polynomial R1, . . . ,Rn. For both functionalities FTPSI-int

and FTPSI-diff , if the protocol passes the cardinality testing, then

p′(x) :=
V(x)
p1(x)

=
p1\I(x) · R1(x) + · · · + pn\I(x) · Rn(x)

p1\I(x)

has degree at most 3T . If P1 learns 3T + 1 evaluations of V(·), then it can
interpolate p′(x) and recover S1 \ I from the denominator while the numerator
does not leak any other information. Since V(·) can be broken down to linear
operations among the parties, it can be securely evaluated by TAHE.

Communication Blow-Up. However, this protocol requires O(n2) communi-
cation complexity per evaluation, and the total communication complexity is
O(n2T ) for (3T + 1) evaluations. Observe that the bottleneck of the communi-
cation in this approach is that every party Pi needs to contribute n randomizing
polynomials (Ri,1, . . . ,Ri,n). Through a careful analysis we demonstrate that it
is sufficient for each party to only contribute two randomizing polynomials. The
first is used to randomize their own polynomial while the second randomizes
the polynomials from the other parties. Nevertheless, there is a subtle issue of
unexpected degree reduction, similar to what we have seen in the TFHE-based
protocol FCTest-int. We follow the same approach as in the TFHE-based protocol
by adding additional randomness in th polynomial, which reduces the commu-
nication complexity to O(nT ).

3.5 Lower Bounds

We briefly discuss the communication lower bound for multi-party threshold
PSI. To prove lower bound in the point-to-point network, we perform a reduc-
tion from two-party threshold PSI (for which [GS19a] showed a lower bound of
Ω(T )) to multi-party threshold PSI. We first prove that the total “communi-
cation complexity of any party” is Ω(T ) which denotes the sum of all the bits
exchanged by that party (both sent and received). As a corollary, the total com-
munication complexity of any multi-party threshold PSI protocol is Ω(nT ). We
refer to Sect. 4 for more details about the reduction.

To prove a lower bound in the broadcast model, we rely on the communication
lower bound of the multi-party set disjointness problem shown by Braverman
and Oshman [BO15]. We reduce the problem of multi-party set disjointness to
multi-party threshold PSI FTPSI-int and prove a lower bound Ω(T log n + n) for
any multi-party threshold PSI protocol in the broadcast network. We refer to
the full version for more details about the reduction.

4 Communication Lower Bound

In this section, we prove communication lower bounds for multi-party threshold
PSI protocols in the point-to-point network model. Recall that we consider all
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parties to have sets of the same size m. We show that any secure protocol must
have communication complexity at least Ω(n·T ) for both functionalities FTPSI-int

and FTPSI-diff . We prove the lower bound for FTPSI-int and defer the proof for
FTPSI-diff to the full version. Before proving the lower bound, we first prove
another related theorem below.

Theorem 1. For any multi-party threshold PSI protocol for functionality
FTPSI-int that is secure against a semi-honest adversary that can corrupt up to
(n−1) parties, for every party Pi, the communication complexity of Pi is Ω(T ).5

Proof. Suppose this is not true. That is, suppose there exists a secure multi-party
threshold PSI protocol Π for functionality FTPSI-int in which for some party Pi∗ ,
CC(Pi∗) = o(T ) where CC(·) denotes the communication complexity. We will
now use this protocol Π as a subroutine to design a secure two-party threshold
PSI protocol which has communication complexity o(T ).

Consider two parties Q1 and Q2 with input sets X1 and X2 (of same size
m) who wish to run a secure two-party threshold PSI protocol for the following
functionality: both parties learn the output if |(X1 \X2)∪ (X2 \X1)| ≤ 2 ·T . We
invoke the multi-party threshold PSI protocol Π with threshold T as follows:
Q1 emulates the role of party Pi∗ with input set Si∗ = X1 and Q2 emulates the
role of all the other (n − 1) parties with each of their input sets as X2. From
the definition of the functionality FTPSI-int, Q1 learns the output at the end of
the protocol if and only if |X1 \ I| ≤ T . Similarly, Q2 learns the output at the
end of the protocol if and only if |X2 \ I| ≤ T . Notice that since |X1| = |X2|
and I = X1 ∩ X2, |X1 \ I| = |X2 \ I|. Thus, the parties learn the output if and
only if (|X1 \ I|) + (|X2 \ I|) ≤ 2 · T , namely |(X1 \ X2) ∪ (X2 \ X1)| ≤ 2 · T ,
which is the functionality of the two-party threshold PSI. Therefore, correctness
is easy to observe. For security, notice that if Q1 is corrupt, we can simulate
it by considering only a corrupt Pi∗ in the underlying protocol Π and if Q2 is
corrupt, we can simulate it by considering all parties except Pi∗ to be corrupt
in the underlying protocol Π.

Finally, notice that the communication complexity of the two-party protocol
is exactly the same as CC(Pi∗) in the multi-party protocol Π, which is o(T ).
However, recall from the work of Ghosh and Simkin [GS19a] that any two-party
threshold PSI for this functionality has communication complexity lower bound
Ω(T ) leading to a contradiction. Thus, the assumption that there exists a secure
multi-party PSI protocol Π in which for some party Pi∗ , CC(Pi∗) = o(T ) is
wrong and this completes the proof of the theorem.

It is easy to observe that as a corollary of the above theorem, in a setting
with only point-to-point channels (which also includes the star network), the
overall communication complexity of the protocol must be at least n times the
minimum communication complexity that each party is involved in, giving the
lower bound of Ω(n · T ). Formally,
5 We define the communication complexity of a party Pi in any protocol execution

as the complexity of all the communication that Pi is involved in. That is, the
complexity of the messages both incoming to and outgoing from Pi.
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Corollary 1. For any multi-party threshold PSI protocol for functionality
FTPSI-int that is secure against a semi-honest adversary that can corrupt up to
(n − 1) parties, the communication complexity is Ω(n · T ).

5 TFHE-Based Private Intersection Cardinality Testing

In this section, we present two protocols for private intersection cardinality
testing, one for functionalities FCTest-int (described in Fig. 3) and the other for
FCTest-diff (described in Fig. 4). Both protocols are based on n-out-of-n threshold
fully homomorphic encryption with distributed setup. The former functionality
states that the intersection must be of size at least (m − T ) where m is the size
of each set. The latter functionality requires the difference between the union
of all the sets and the intersection be of size at most T . Due to the possibility
of elements appearing in a strict subset of the sets, these two functionalities are
not equivalent.

5.1 Protocol for Functionality FCTest-int

In this protocol, we compute the cardinality predicate b where b = 1 if and only if
∀i, |Si \ I| ≤ T . The communication complexity of this protocol involves sending
O(nT ) TFHE ciphertexts and performing a single decryption of the result. We
briefly describe the approach below.

Each party Pi first encodes their set Si as a polynomial pi(x) :=
∏

a∈Si
(x −

a) ∈ F[x]. Each of these polynomials are then randomized as p′
i(x) := pi(x) ·

(x − ri) where Pi uniformly samples ri
$← F. The central party also picks a

random z
$← F which is sent to every other party. Each party Pi then computes

ei,j := p′
i(j) for j ∈ [2T + 3] and e′

i := p′
i(z). Pi sends the ciphertexts [[ei,j ]] :=

TFHE.Enc(pk, ei,j) and [[e′
i]] := TFHE.Enc(pk, e′

i) to P1. Party P1 considers the
rational polynomial

p′(x) =
p′
2(x) + · · · + p′

n(x)
p′
1(x)

and homomorphically computes 2T + 3 encrypted evaluations
(

j, [[
e2,j + · · · + en,j

e1,j
]]
)

for j = [2T + 3]. Using these encrypted evaluations, P1 homomorphically com-
putes an encrypted rational polynomial [[p∗(x)]] using rational polynomial inter-
polation. Note that p∗(x) = p′(x) if p′(x) has degree at most 2T + 2. Fur-
thermore, P1 can homomorphically compute an encryption of the predicate
b :=

(
p∗(z) ?= e′

2+···+e′
n

e′
1

)
. Finally the parties jointly perform a threshold decryp-

tion of [[b]] and party P1 learns the output which is sent to every other party.
The full protocol is detailed in Fig. 5.
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Fig. 5. Multi-party private intersection cardinality testing protocol ΠTFHE-CTest-int for
FCTest-int.

Theorem 2. Assuming threshold FHE with distributed setup, protocol
ΠTFHE-CTest-int (Fig. 5) securely realizes FCTest-int (Fig. 3).

Proof. Correctness. We first prove the protocol is correct. By the correctness
of the TFHE scheme, we only need to show that the computed predicate b = 1
if and only if ∀i, |Si \ I| ≤ T . First consider the case where the protocol should
output similar. Since

p′(x) =
p′
2(x) + · · · + p′

n(x)
p′
1(x)

=
p2\I(x) · (x − r2) + · · · + pn\I(x) · (x − rn)

p1\I(x) · (x − r1)
,

the degree of each term pi\I(x) · (x − ri) is at most T + 1 and therefore the
rational polynomial interpolation requires a total of (2T + 3) evaluation points.
Therefore p∗(x) = p′(x) and p∗(z) = p′(z) = e′

2+···+e′
n

e′
1

. Thus b = 1 as required.
Now consider the case where the protocol should output different, namely

when |I| < m − T . Observe that gcd(p1\I , · · · , pn\I) = 1 by construction and
therefore

gcd
(
p′
2\I(x) + · · · + p′

n\I(x), p′
1\I(x)

)
= 1
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except with negligible probability, where p′
i\I(x) := pi\I(x)·(x−ri). The algebraic

proof is deferred to the full version.
Assuming gcd

(
p′
2\I(x) + · · · + p′

n\I(x), p′
1\I(x)

)
= 1, it then follows that the

degree of the rational polynomial p′(x) is the degree of p′
2\I(x) + · · · + p′

n\I(x)
plus the degree of p′

1\I(x). The former must have a leading term with degree
(m − |I| + 1) > (T + 1). Similarly, the latter also has degree (m − |I| + 1) >
T + 1. Hence the degree of p′(x) is at least 2T + 4. The probability of b = 1
is Prz[p′(z) = p∗(z)] where p∗(x) is the polynomial interpolated by P1 using
(2T + 3) evaluations. However, since the degree of p′(x) is at least 2T + 4,
Prz[p′(z) = p∗(z)] ≤ negl(λ).

Communication Cost. Each party sends (2T +4) TFHE encryptions and one
partial decryption to P1 where each plaintext is a field element. P1 sends one
ciphertext to every other party. The size of each encryption and each partial
decryption is poly(λ). Thus, the overall communication complexity is O(n · T ·
poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties where
n∗ < n. The simulator Sim has output w ∈ {similar, different} from the ideal
functionality. Sim sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise. Also, for
each corrupt party Pi, Sim has as input the tuple (Si, ri) indicating the party’s
input and randomness for the protocol. The strategy of the simulator Sim for
our protocol is described below.

1. Sim runs the distributed key generation algorithm TFHE.DistSetup(1λ, i) of
the TFHE scheme honestly on behalf of each honest party Pi as in the real
world. Note that Sim also knows ({ski}i∈S∗) as it knows the randomness for
the corrupt parties.

2. In Steps 2–4 of the protocol, Sim plays the role of the honest parties exactly
as in the real world except that on behalf of every honest party Pi, when-
ever Pi has to send any ciphertext, compute [[0]] = TFHE.Enc(0) using fresh
randomness.

3. In Step 5, on behalf of each honest party Pi, instead of sending the value
[[b : ski]] by running the honest TFHE.PartialDec algorithm as in the real world,
Sim computes the partial decryptions by running the simulator TFHE.Sim
as follows: {[[b : Simi]]}i∈[n]\S∗ ← TFHE.Sim(C, b∗, [[b]], {ski}i∈S∗) where the
circuit C denotes the whole computation done by P1 in the real world to
evaluate bit b. On behalf of the honest party Pi the simulator sends [[b : Simi]].
This corresponds to the ideal world.

We now show that the above simulation strategy is successful against all
environments Z that corrupt parties in a semi-honest manner. We will show this
via a series of computationally indistinguishable hybrids where the first hybrid
Hybrid0 corresponds to the real world and the last hybrid Hybrid2 corresponds
to the ideal world.

– Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that
plays the role of the honest parties as in the real world.
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– Hybrid1 - Simulate Partial Decryptions: - In this hybrid, in Step 5,
SimHyb simulates the partial decryptions generated by the honest parties
as done in the ideal world. That is, the simulator calls {[[b : Simi]]}i∈[n]\S ←
TFHE.Sim(C, b∗, [[b]], {ski}i∈S). On behalf of the honest party Pi the simulator
sends [[b : Simi]] instead of [[b : ski]].

– Hybrid2 - Switch Encryptions: In this hybrid, SimHyb now computes every
ciphertext generated on behalf of any honest party as encryptions of 0 as done
by Sim in the ideal world. This hybrid corresponds to the ideal world.

We show that every pair of consecutive hybrids is computationally indistinguish-
able in the full version.

5.2 Protocol for Functionality FCTest-diff

This protocol will compute the cardinality predicate b where b = 1 if and only
if |(⋃n

i=1 Si) \ I| ≤ T . The core idea behind the protocol is that P1 (the star of
the network) and Pi first run a protocol to compute an encryption (via TFHE)
of their set differences D1,i = S1 \ Si and Di,1 = Si \ S1 with O(T ) commu-
nication complexity if |S1 \ Si| ≤ T . Before we describe how this is achieved,
notice that at this point, the protocol enables P1 to reconstruct an encryption
of (

⋃n
i=1 Si) \ I =

⋃
i∈[n]\{1}(D

∗
1,i ∪ D∗

i,1) and a predicate b where b = 1 if and
only if |(⋃n

i=1 Si) \ I| ≤ T . P1 can then send this encryption to all parties to run
threshold decryption.

We now describe in more detail how the encryption of D1,i and Di,1

are computed. The idea follows from the two-party protocol of Ghosh and
Simkin [GS19a]. Each party Pi encodes their set Si as pi(x) := Πa∈Si

(x − a) ∈
F[x]. Pi then computes ei,j := pi(j) for j ∈ [2T + 1] and e′

i := pi(z) on a special
random point z ∈ F (picked uniformly at random by P1). Party Pi encrypts
these values as [[ei,j ]], [[e′

i]] and sends them to P1. Party P1 considers the rational
polynomial

p̃i(x) =
pi(x)
p1(x)

=
pi\1(x)
p1\i(x)

and homomorphically computes 2T +1 encrypted evaluations
(
j, [[ ei,j

e1,j
]]
)

for j =
[2T + 1]. Using these encrypted evaluations, P1 homomorphically computes an
encrypted rational polynomial [[p̃∗

i (x)]] using rational polynomial interpolation.
P1 then homomorphically reconstructs the roots of pi\1(x) and p1\i(x) from p̃∗

i

to obtain [[D∗
i,1]], [[D

∗
1,i]]. Note that p̃∗

i (x) = p̃i(x) if p̃i(x) has degree at most 2T ,
in which case D∗

i,1 = Di,1 and D∗
1,i = D1,i.

In the final protocol, P1 homomorphically computes encrypted predicates bi

where bi = 1 iff p̃∗
i (z) = e′

i

e′
1

for each i ∈ [n]\{1} and encrypted predicate b′ where

b′ = 1 iff
∣
∣
∣
⋃

i∈[n]\{1}(D
∗
1,i ∪ D∗

i,1)
∣
∣
∣ ≤ T . The output predicate b is homomorpically

computed as [[b]] = [[b′ · ∏
i∈[n]\{1} bi]] and jointly decrypted by all the parties.

The protocol is formally described in Fig. 6.
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Fig. 6. Multi-party private intersection cardinality testing protocol ΠTFHE-CTest-diff for
FCTest-diff

Theorem 3. Assuming threshold FHE with distributed setup, protocol
ΠTFHE-CTest-diff (Fig. 6) securely realizes FCTest-diff (Fig. 4).

Proof. Correctness. We first prove the protocol is correct. By the correctness
of the TFHE scheme, we only need to show that the computed predicate b = 1 if
and only if |(⋃n

i=1 Si) \ I| ≤ T . First consider the case where the protocol should
output similar. Since

p̃i(x) =
pi(x)
p1(x)

=
pi\1(x)
p1\i(x)

,

both the numerator and denominator have degree at most T and therefore the
rational polynomial interpolation requires at most (2T + 1) evaluation points.
Hence p̃∗

i (x) = p̃i(x) and p̃∗
i (z) = p̃i(z) = e′

i

e′
1
, thus bi = 1. Since the roots of

pi\1 is simply the set difference Di,1 = Si \ S1, we have D∗
i,1 = Di,1 = Si \ S1.
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Similarly D∗
1,i = S1 \ Si. Since

∣
∣
∣
⋃

i∈[n]\{1}(D
∗
1,i ∪ D∗

i,1)
∣
∣
∣ = |(⋃n

i=1 Si) \ I| ≤ T ,
we have b′ = 1. Hence the protocol will output b = 1.

Now consider the case where the protocol should output different, namely
|(⋃n

i=1 Si) \ I| > T . There are two possible cases. In the first case, |Si \ S1| > T
for some i. Then p̃i has degree at least 2T +2 but p̃∗

i is interpolated from 2T +1
evaluation points, hence b′

i = 0 with all but negligible probability. In the second
case, |Si \S1| ≤ T for all i ∈ [n]\{1}. Then D∗

i,1 = Di,1 = Si \S1, D∗
1,i = S1 \Si,

and bi = 1 for all i. Since |(⋃n
i=1 Si) \ I| > T , b′ = 0. In both cases, we have

b = b′ · ∏
i∈[n]\{1} bi = 0 with all but negligible probability.

Communication Cost. Each party sends (2T +2) TFHE encryptions and one
partial decryption to P1 where each plaintext is a field element. P1 sends one
ciphertext to every other party. The size of each encryption and each partial
decryption is poly(λ). Thus, the overall communication complexity is O(n · T ·
poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. The proof of security is identical to the proof of Theorem2. We defer
the formal proof to the full version.

6 TAHE-Based Protocol for FCTest-diff

In this section, we present a multi-party protocol for private intersection car-
dinality testing for functionality FCTest-diff based on threshold additive homo-
morphic encryption with distributed setup. That is, the parties learn whether
their sets satisfy |(⋃n

i=1 Si) \ I| ≤ T . Our protocol works in the star network
communication model where P1 is the central party.

In our construction, we need a secure multi-party computation (MPC) pro-
tocol that tests the singularity of a specific Hankel matrix (defined later), which
we discuss in Sect. 6.1. Using this, we present our complete protocol in Sect. 6.2.

6.1 Singularity Testing of Hankel Matrices

In Sect. 6.2, we will see that intersection cardinality testing can be reduced to
determining whether the determinant of a specific matrix is 0 or not. The latter
problem can be reduced to computing the so-called “Half-GCD” of two specific
polynomials. In this section, we present a summary of the various results that go
into these reductions and refer the reader to the cited works for further details.

Half-GCD Problem. Consider the ring of polynomials F[x]. Note that since
F[x] is a Euclidean domain, Euclid’s GCD algorithm can be applied to poly-
nomials as well. Consider p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0. The
Euclidean algorithm can be viewed as a sequence of transformations of 2-vectors
as below: (

p0
p1

)
M1−→

(
p1
p2

)
M2−→ . . .

Mh−1−→
(

ph−1

ph

)
Mh−→

(
ph

0

)

(2)
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Here, M1, . . . , Mh are 2 × 2 matrices, p2, . . . , ph ∈ F[x]. For vectors U, V and a
matrix M , we write U

M−→ V to denote U = MV .
Equation 2 can be correctly interpreted if we define

Mi =
(

qi 1
1 0

)

.

We call such matrices elementary matrices, where qi is a polynomial of positive
degree. We also refer to qi as the partial quotient in Mi. A regular matrix M is
a product of zero or more elementary matrices, namely

M = M1M2 . . . Mk (k ≥ 0)

where if k = 0, then M is defined to be the identity matrix of order 2.
We define the half-GCD (HGCD) problem for the polynomial ring F[x] as

follows. Given p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0, compute a regular
matrix

M = HGCD(p0, p1)

such that if (
p0
p1

)
M−→

(
p2
p3

)

,

then
deg(p2) ≥ d/2 > deg(p3).

We now recall the result of Thull and Yap [TY90] on the computational com-
plexity of HGCD.

Imported Theorem 4. Consider the polynomial ring F[x] and the polynomials
p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0. The computational complexity of
the HGCD problem is O(d log2 d).

Singularity Testing of Hankel Matrices. Next, we proceed to outline the
results that enable us to use the HGCD problem to test singularity of Hankel
matrices. A Hankel matrix is a matrix in which each ascending skew-diagonal
from left to right is constant. We will be working with square Hankel matrices.
In particular, a (k + 1) × (k + 1) Hankel matrix takes the form

H =

⎛

⎜
⎜
⎜
⎝

a0 a1 . . . ak

a1 a2 . . . ak+1

...
...

...
...

ak ak+1 . . . a2k

⎞

⎟
⎟
⎟
⎠

where the 2k + 1 entries a0, a1, . . . , a2k define H. Define the two polynomials

p0(x) = x2k+1

p1(x) = a0 + a1x + a2x2 + . . . + a2kx2k
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where p0, p1 ∈ F[x]. Let M = HGCD(p0, p1) and
(

p0
p1

)
M−→

(
p2
p3

)

.

Then we have
deg(p2) ≥ k + 1 > deg(p3).

We recall the setting and results of Brent, Gustavson and Yun [BGY80] that
elegantly connect the singularity of H with the HGCD of p0(x) and p1(x).

Imported Theorem 5. The Hankel matrix H is singular iff deg(p3) < k.

Putting Imported Theorems 4 and 5 together, we have the following theorem.

Imported Theorem 6. The computational complexity of testing singularity of
a (k + 1) × (k + 1) Hankel matrix is O(k log2 k).

Multi-party Singularity Testing. Looking ahead, in our multi-party inter-
section cardinality testing protocol, we will need to test for the singularity of
a Hankel matrix H which the parties have additive shares of, and the parties
will run a secure multi-party computation (MPC) protocol to jointly test for the
singularity of H. The ideal functionality FSingTest for the multi-party minimal
polynomial computation is defined in Fig. 7. We will need an MPC protocol that
realizes FSingTest with communication complexity at most Õ(k · n · poly(λ)). Any
such protocol suffices, and we denote by ΠSingTest the MPC protocol realizing
FSingTest.

Fig. 7. Ideal functionality FSingTest for multi-party singularity testing of a Hankel
matrix.

Here we describe two such protocols with communication complexity Õ(k ·n ·
poly(λ)) based on TAHE. In the first protocol, after the TAHE setup, each party
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Pi sends [[Hi]] to P1 and P1 homomorphically computes [[H]]. Afterwards P1 can
homomorphically evaluate a circuit C that computes a predicate b

?= (det(H) =
0), following the ideas from [FH96,CDN01]. Finally the parties jointly decrypt
the encrypted output. Since the size and depth of C are both O(k log2 k) by
Imported Theorem 6, the total communication complexity of this protocol is
O(k log2 k · n · poly(λ)) and the round complexity is O(k log2 k).

As a second protocol, the parties jointly compute another C ′ that takes H and
a random PRF key r as input and outputs a Yao’s garbled circuit [Yao86] that
computes C. This approach is inspired by the work of Damg̊ard et al. [DIK+08].
Since both H and r are additively shared among all the parties, this MPC can
be done similarly as in the previous protocol, namely P1 first obtains [[H]] and
[[r]] and then homomorphically evaluates C ′. Since the size C ′ is Õ(k · poly(λ))
and the depth of C ′ is constant assuming PRG is a circuit in NC1 [AIK05], the
total communication complexity of this protocol is Õ(k · n · poly(λ)) and the
round complexity is O(1).

Two-Party Case. Notice that for two parties, FSingTest can be instantiated via
Yao’s garbled circuits with communication complexity Õ(k · poly(λ)).

6.2 Our Protocol

In this section we present our multi-party private intersection cardinality testing
protocol. That is, the parties learn whether their sets satisfy |(⋃n

i=1 Si) \ I| ≤ T .
At a high level, our protocol first encodes each party Pi’s set as a polynomial

pi(x) =
∑m

j=1 xai
j , and let p(x) := (n − 1)p1(x) − ∑n

i=2 pi(x). Notice that a term
xa is cancelled out in the polynomial p if and only if the element a is in the set
intersection I. Therefore, the number of monomials in p is exactly |(⋃n

i=1 Si) \ I|.
To determine if the number of monomials in p is ≤ T , we can apply the

polynomial sparsity test of Grigorescu et al. [GJR10] similarly as in [GS19a]. In

particular, pick a field Fq, sample u
$← Fq uniformly at random, and compute

the Hankel matrix

H =

⎡

⎢
⎢
⎢
⎣

p(u0) p(u1) . . . p(uT )
p(u1) p(u2) . . . p(uT+1)

...
...

. . .
...

p(uT ) p(uT+1) . . . p(u2T )

⎤

⎥
⎥
⎥
⎦

.

Determining if the number of monomials in p is ≤ T can be reduced to testing
the singularity of H. In particular, we take the following theorem from [GJR10,
Theorem 3] and [GS19a, Theorem 1].

Imported Theorem 7. Let q > T (T + 1)(p − 1)2κ be a prime. If the number
of monomials in p is ≤ T , then Pr[det(H) = 0] = 1, and if the number of
monomials in p is > T , then Pr[det(H) = 0] ≤ 2−κ,
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Fig. 8. Multi-party private intersection cardinality testing protocol ΠCTest-diff .

In our multi-party private intersection cardinality testing protocol, the par-
ties will first compute additive shares of H and then run a multi-party minimal
polynomial computation protocol to jointly test the singularity of H. The pro-
tocol is presented in Fig. 8.

Theorem 8. Let q > T (T +1)(p−1)2κ be a prime. Assuming threshold additive
homomorphic encryption scheme with distributed setup, the protocol ΠCTest-diff

(Fig. 8) securely realizes FCTest-diff in the FSingTest-hybrid model.

Proof. Correctness. By the correctness of FSingTest, in Step 2 all the parties
learn a bit b and b = 0 if and only if H is singular, where H is the Hankel matrix
H =

∑n
i=1 Hi and each Hankel matrix Hi is defined by the inputs of party Pi as

Hi =

⎛

⎜
⎜
⎜
⎝

a0,i a1,i . . . aT,i

a1,i a2,i . . . aT+1,i

...
...

. . .
...

aT,i aT+1,i . . . a2T,i

⎞

⎟
⎟
⎟
⎠

for i = 1, . . . , n. By Imported Theorem 7, b = 0 if and only if |(⋃n
i=1 Si) \ I| ≤ T

with all but negligible probability. Therefore the protocol is correct with all but
negligible probability.

Communication Cost. The communication cost is the same as the protocol
ΠSingTest. In particular, the round complexity is O(1) in a star network and the
total communication complexity is Õ(T · n · poly(λ)).

Security. We construct a PPT Sim which simulates the view of the corrupted
parties. The simulator Sim gets the output w ∈ {similar, different} from the ideal
functionality. Sim sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise. Also, for
each corrupt party Pi, Sim has as input the tuple (Si, ri) indicating the party’s
input and randomness for the protocol. The strategy of the simulator Sim for
our protocol is described below.

1. Invoke the corrupted parties with their corresponding inputs and randomness.
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2. Play the role of the honest parties as follows: Run the protocol honestly.
Note that P1 is the only party that ever sends a message, so this step in the
simulation is trivial.

3. In Step 2, play the role of FSingTest and respond b∗.
4. Finally, output the view of the corrupted parties.

Next we argue that the view of the corrupted parties generated by Sim is
computationally indistinguishable to their view in the real world from Z’s point
of view. The only difference between the real and ideal worlds is that in the
ideal world, the output from FSingTest is replaced by 0 if |(⋃n

i=1 Si) \ I| ≤ T
and 1 otherwise. This is computationally indistinguishable from the real world
because of the correctness of the protocol.

Corollary 2. Assuming TAHE with distributed setup, protocol ΠCTest-diff

(Fig. 8) securely realizes FCTest-diff in the star network communication model with
communication complexity Õ(n · T · poly(λ)) and round complexity O(1).

7 Threshold PSI for FTPSI-diff

Recall that in a multi-party threshold PSI protocol for functionality FTPSI-diff

defined in Fig. 2, each party wishes to learn the intersection of all their sets
if |(⋃n

i=1 Si) \ I| ≤ T , that is, if the size of the union of all their sets minus
the intersection is less than the threshold T . In this section, we describe our
multi-party threshold PSI protocol based on any protocol for multi-party private
intersection cardinality testing. We rely on TAHE with distributed setup.

Theorem 9. Assuming threshold additive homomorphic encryption with dis-
tributed setup, protocol ΠTPSI-diff (Fig. 9) securely realizes FTPSI-diff in the
FCTest-diff-hybrid model in the star network communication model. Our proto-
col is secure against a semi-honest adversary that can corrupt up to (n − 1)
parties.

The protocol runs in a constant number of rounds and the communication
complexity is O(n·T ·poly(λ)) in the FCTest-diff -hybrid model. We then instantiate
the FCTest-diff -hybrid with the two protocols from the previous sections: one based
on TFHE from Sect. 5.2 that has round complexity O(1) and O(n · T · poly(λ))
communication complexity and the other based on TAHE from Sect. 6 that has
round complexity O(1) and communication complexity Õ(n · T · poly(λ)). For-
mally, we get the following corollaries:

Corollary 3. Assuming TFHE (resp. TAHE) with distributed setup, protocol
ΠTPSI-diff (Fig. 9) securely realizes FTPSI-diff in the star network communication
model with communication complexity O(n ·T · poly(λ)) (resp. Õ(n ·T · poly(λ)))
and round complexity O(1).

Our threshold PSI protocol for functionality FTPSI-int is almost identical and we
defer the details to the full version.
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7.1 Protocol

Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn of size m and a star
network where the central party is P1. The parties first run the private intersec-
tion cardinality testing protocols for functionality FCTest-diff from the previous
sections and proceed if |(⋃n

i=1 Si) \ I| ≤ T . Then, each party Pi encodes its set
as a polynomial p′

i(x) = (x − ri) · ∏m
j=1(x − ai

j) where ri is picked uniformly at
random. The parties then compute (3T + 4) evaluations of the following poly-
nomial V(·) on points 1, . . . . , (3T + 4) using threshold additive homomorphic
encryption: V(x) =

∑n
i=1 (p′

i(x) · Ri(x)) where each Ri(·) is a uniformly random
polynomial of degree T that is computed as an addition of n random polynomi-
als - one generated by each party. Then, each party Pi interpolates the degree
(3T + 3) rational polynomial V(·)

p′
i(·) using the (3T + 4) evaluations. Finally, each

party outputs the intersection as Si \Di where Di denotes the roots of the above
interpolated polynomial. Our protocol is formally described in Fig. 9.

Two-Party Case. For two parties Alice and Bob, we can rely on AHE
alone, where Alice holds the secret key. In particular, define V(x) := pA(x) ·(
RA
1 (x) + RB

1 (x)
)

+ pB(x) · (
RA
2 (x) + RB

2 (x)
)
, where (RA

1 ,RA
2 ) and (RB

1 ,RB
2 ) are

uniformly random polynomials of degree T generated by Alice and Bob, respec-
tively. To obtain an evaluation of V(x), Alice first sends an encryption of pA(x)
and RA

2 (x) to Bob. Then Bob homomorphically computes an encryption of
r = pA(x) ·RB

1 (x)+pB(x) ·(RA
2 (x) + RB

2 (x)
)

and sends it back. Alice can decrypt
[[r]] and compute V(x) = pA(x) · RA

1 (x) + r. The communication complexity is
O(T · poly(λ)).

7.2 Security Proof

Correctness. If |(⋃n
i=1 Si) \ I| > T , then the protocol terminates after the

first step – private intersection cardinality testing. If, on the other hand,
|(⋃n

i=1 Si) \ I| ≤ T , observe that polynomial V(x) can be rewritten as∑n
i=1 p′

i(x) · Ui(x) where each Ui is a uniformly random polynomial of degree
at most T + 1. Now, from the correctness of the TAHE scheme, each party Pi

learns 3T + 4 evaluations of the rational polynomial:

qi(x) =
V(x)
p′

i(x)
=

∑n
i=1 p′

i(x) · Ui(x)
p′

i(x)
=

∑n
i=1 pi\I(x) · (x − ri) · Ui(x)

pi\I(x) · (x − ri)
.

Since |Si − I| ≤ T for each i ∈ [n], the numerator is a polynomial of degree
at most 2T + 2 and the denominator is a polynomial of degree at most T + 1.
Further, since each Ui is uniformly random, we can show that the numerator is
a random degree 2T + 2 polynomial, and that the gcd of the polynomials in the
numerator and denominator is 1 and hence no other terms will get canceled out.
The algebraic proofs are deferred to the full version. Therefore, each party Pi can
interpolate this rational polynomial using 3T + 4 evaluation points and thereby
learn the numerator and denominator. Finally, observe that for each party Pi,
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Fig. 9. Multi-party threshold PSI protocol ΠTPSI-diff for functionality FTPSI-diff .

the roots of the denominator contains the set Si \I and a random ri, from which
Pi can easily compute the intersection I.

Communication Cost. The first phase of the protocol, namely private inter-
section cardinality testing, has a communication complexity of O(n ·T · poly(λ))
when instantiated with the TFHE-based scheme in Sect. 5.2 and a communica-
tion complexity of Õ(n · T · poly(λ)) when instantiated with the TAHE-based
scheme in Sect. 6.
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We now analyze the communication cost for the second phase where the par-
ties compute the concrete intersection. The TAHE key generation is independent
of the set sizes and the threshold T and has a communication complexity of only
O(n ·poly(λ)). The bottleneck of the protocol is in Step 3, that is, evaluating the
random polynomial. In Steps 3b, 3d, and 3f, every party sends 3T +4 encryptions
or partial decryptions to P1 hence the cost for these steps is O(n · T · poly(λ)).
In Steps 3c, 3e, and 3g, P1 sends 3T + 4 ciphertexts or plaintexts to every other
party so the cost of these steps is O(n ·T ·poly(λ)). Finally, the last stage, namely
computing the set intersection, does not involve any communication. Thus, the
overall communication cost for computing the intersection is O(n · T · poly(λ)).

Therefore, when the private intersection cardinality testing protocol is instan-
tiated with the TFHE-based protocol, the overall communication complexity is
O(n·T ·poly(λ)) and when instantiated with the TAHE-based scheme, the overall
communication complexity is Õ(n ·T ·poly(λ)) for some apriori fixed polynomial
poly(·) and is independent of the size of each input set m.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties where
n∗ < n. The simulator Sim has the output of the functionality FTPSI-diff , namely
the intersection set I or ⊥. Sim sets w = similar if the output is I and w = different
if the output is ⊥. In addition, Sim has the tuple (Si, ri) for each corrupt party
Pi indicating the party’s input and randomness for the protocol. The strategy of
the simulator Sim for our multi-party threshold PSI protocol is described below.

(a) Private Intersection Cardinality Testing: Sim plays the role of the
ideal functionality FCTest-diff and responds with w.
(b) TAHE Key Generation: Sim runs the distributed key generation algo-
rithm TAHE.DistSetup(1λ, i) of the TAHE scheme honestly on behalf of each
honest party Pi as in the real world. Note that Sim also knows ({ski}i∈S∗) as
it knows the randomness for the corrupt parties.
(c) Evaluations of Random Polynomial: Sim does the following:

1. Encode the intersection set I = {b1, . . . , b|I|} as a polynomial as follows:
pI(x) = Π

|I|
i=1(x − bi).

2. Pick a random polynomial U(·) of degree 2T +2 and set the polynomial V(x)
as follows: V(x) = pI(x) · U(x).

3. In Steps 3b–3e, on behalf of every honest party Pi, whenever Pi has to send
any ciphertext, send [[0]] using fresh randomness.

4. For each x ∈ [3T + 4], let [[vx]] denote the ciphertext that is sent to all the
parties at the end of Step 3f.

5. In Step 3f, for each j ∈ [3T +4], on behalf of each honest party Pi, instead of
computing {[[vx : ski]]} by running the honest TAHE.PartialDec algorithm as
in the real world, Sim computes the partial decryptions by running the simu-
lator TAHE.Sim as follows: {[[vx : ski]]} ← TAHE.Sim(C,V(x), [[vx]], {ski}i∈S∗),
where C is the public linear circuit to compute V(x) by P1.

6. Finally, in Step 3g, if P1 is honest, send the evaluations of polynomial V(x)
as in the real world description.
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Hybrids. We now show that the above simulation strategy is successful against
all environments Z that corrupt parties in a semi-honest manner. That is, the
view of the corrupt parties along with the output of the honest parties is com-
putationally indistinguishable in the real and ideal worlds. We will show this
via a series of computationally indistinguishable hybrids where the first hybrid
Hybrid0 corresponds to the real world and the last hybrid Hybrid4 corresponds
to the ideal world.

– Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that
plays the role of the honest parties as in the real world.

– Hybrid1 - Private Intersection Cardinality Testing: In this hybrid,
SimHyb plays the role of the ideal functionality FCTest-diff and responds with
similar if |(⋃n

i=1 Si) \ I| ≤ T and different otherwise.
– Hybrid2 - Simulate Partial Decryptions: In this hybrid, in the evaluations

of random polynomial, SimHyb simulates the partial decryptions generated
by the honest parties in Step 3f as done in the ideal world. That is, for each
j ∈ [3T + 4], SimHyb computes the partial decryptions as {[[vx : ski]]} ←
TAHE.Sim(C,V(x), [[vx]], {ski}i∈S∗). Observe that the polynomial V(·) is still
computed as in the real world (and in Hybrid2).

– Hybrid3 - Switch Polynomial Computation: In this hybrid, the polyno-
mial V(·) is no longer computed as in the real world. Instead, SimHyb now
picks a random polynomial U(·) of degree 2T + 2 and sets the polynomial
V(·) as follows: V(x) = pI(x) · U(x).

– Hybrid4 - Switch Encryptions: In this hybrid, in the evaluations of random
polynomial, SimHyb now computes every ciphertext generated on behalf of
any honest party as encryptions of 0 as done by Sim in the ideal world. This
hybrid corresponds to the ideal world.

We show that every pair of consecutive hybrids is computationally indistin-
guishable in the full version.
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Abstract. Oblivious Pseudorandom Function (OPRF) is a protocol
between a client holding input x and a server holding key k for a PRF
F . At the end, the client learns Fk(x) and nothing else while the server
learns nothing. OPRF’s have found diverse applications as components
of larger protocols, and the currently most efficient instantiation, with
security proven in the UC model, is Fk(x) = H2(x, (H1(x))k) computed
using so-called exponential blinding, i.e. the client sends a = (H1(x))r

for random r, the server responds b = ak, which the client unblinds as
v = b1/r to compute Fk(x) = H2(x, v).

However, this protocol requires two variable-base exponentiations on
the client, while a more efficient multiplicative blinding scheme replaces
one or both client exponentiations with fixed-base exponentiation, lead-
ing to the decrease of the client’s computational cost by a factor between
two to six, depending on pre-computation.

We analyze the security of the above OPRF with multiplicative blind-
ing, showing surprising weaknesses that offer attack avenues which are
not present using exponential blinding. We characterize the security of
this OPRF implementation as a “Correlated OPRF” functionality, a
relaxation of UC OPRF functionality used in prior work.

On the positive side, we show that the Correlated OPRF suffices for
the security of OPAQUE, the asymmetric PAKE protocol, hence allow-
ing OPAQUE the computational advantages of multiplicative blinding.
Unfortunately, we also show examples of other OPRF applications which
become insecure when using such blinding. The conclusion is that usage
of multiplicative blinding for Fk(x) defined as above, in settings where
correct value gk (needed for multiplicative blinding) is not authenticated,
and OPRF inputs are of low entropy, must be carefully analyzed, or
avoided all together. We complete the picture by showing a simple and
safe alternative definition of function Fk(x) which offers (full) UC OPRF
security using either form of blinding.
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1 Introduction

An Oblivious Pseudorandom Function (OPRF) scheme consists of a Pseudoran-
dom Function (PRF) F for which there exists a two-party protocol between a
server S holding a PRF key k and a client C holding an input x through which
C learns Fk(x) and S learns nothing (in particular, nothing about the input
x or the output Fk(x)). More generally, the security properties of the PRF,
namely indistinguishability from a random function under polynomially many
queries, must be preserved by the protocol. The OPRF notion was introduced
explicitly in [8] but constructions, particularly those based on blinded DH, were
studied earlier (e.g., [5,7,23]). OPRF has been formally defined under different
models [8,10,11,18] with the last two works framing them in the Universally
Composable (UC) framework [4]. The OPRF notion has found many applica-
tions, and recently such applications have been proposed for actual deployment
in practice, including the Privacy Pass protocol [6] and the OPAQUE password-
authenticated key exchange protocol [17]. This gave rise to standardization pro-
posals for OPRFs [25] and the OPAQUE protocol [21,22,26], which further moti-
vates understanding the costs and benefits of possible OPRF implementations.

Exponential vs. Multiplicative Blinding in Hashed Diffie-Hellman
PRF.1 In several of the above mentioned applications, the underlying PRF
is instantiated with a (Double) Hashed Diffie-Hellman construction (2HashDH)
[11], namely:

Fk(x) = H2(x, (H1(x))k) (1)

where hash functions H1,H2 are defined respectively as H1 : {0, 1}∗ → G\{1}
and H2 : {0, 1}∗ × G → {0, 1}τ for a multiplicative group G of prime order q,
and the PRF key k is a random element in Zq, while τ is a security parameter.
The protocol for the oblivious computation of 2HashDH used e.g. in [2,7,10,11]
employs the so-called exponential blinding method, i.e. protocol Exp-2HashDH
shown in Fig. 1: Client C sends to server S its input x blinded as a = (H1(x))r,
for r ←R Zq, and then unblinds the server’s response b = ak as v = b1/r [=
(ak)1/r = (((H1(x))r)k)1/r = (H1(x))k] and outputs H2(x, v). It is easy to see
that the client’s input is perfectly hidden from the server because if H1(x) �= 1
then a is a random element in G independent from x.

An alternative multiplicative blinding technique, denoted Mult-2HashDH, is
shown in Fig. 2. The protocol is an equivalent of Chaum’s technique for blinding
RSA signatures: Given generator g of group G, the client blinds its input as
a = H1(x) · gr, and using the server’s public key z = gk corresponding to the
PRF key k, the client unblinds the server’s response b = ak as v = b · z−r [=
ak · (gk)−r = (H1(x) · gr)k · g−kr = (H1(x))k]. It is easy to see that this blinding
hides x with perfect security, as in the case of Exp-2HashDH.

Comparing the computational cost of the two techniques, we see that both
require a single variable-base exponentiation for the server. However, for the
1 In the context of additive groups, “multiplicative” would be replaced with “additive”

and “exponential” with “scalar-multiplicative”. A less confusing terminology could
refer to these as fixed-base and var-base blindings, respectively.
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Parameters: group G of order q, functions H1, H2 onto resp. G \ {1} and {0, 1}�

Client C(x) Server S(k)

Pick r ←R Zq, set a ← (H1(x))r �a

If b ∈ G output y = H2(x, v) for
v = b1/r (otherwise abort)

� b If a ∈ G set b ← ak

(otherwise abort)

Fig. 1. Exp-2HashDH: Oblivious PRF using Exponential Blinding [11]

Parameters: as in Fig. 1, plus generator g of group G

Client C(x) Server S(k, z = gk)

Pick r ←R Zq, set a ← H1(x) · gr �a

If b, z ∈ G output y = H2(x, v) for
v = b · z−r (otherwise abort)

�(b, z) If a ∈ G set b ← ak

(otherwise abort)

Fig. 2. Mult-2HashDH: Oblivious PRF using Multiplicative Blinding

client, Exp-2HashDH requires two variable-base exponentiations (for blinding
and unblinding) while Mult-2HashDH involves a single fixed-base exponentiation
for blinding and a variable-base exponentiation (to the base z) for unblinding.

In applications where the client stores z,2 the latter exponentiation can use
fixed-base optimization, reducing the client’s total computation to two-fixed base
exponentiations. Given that exponentiation with a fixed base is about 6–7 times
faster than with a variable base (cf. [3,13]), Mult-2HashDH becomes at least
1.7 faster than Exp-2HashDH and 6x faster if z is stored at the client and
treated as a fixed base. On the other hand, in cases where the client does not
hold z, Mult-2HashDH requires the server to store z and send it with each
execution of the OPRF protocol. This cost may not be significant in some cases
but in constrained environments where bandwidth and/or storage is a costly
resource (e.g., mobile and IoT scenarios) [9], Exp-2HashDH may be preferred.
Fortunately, 2HashDH allows an application to choose the blinding mechanism
that best fits its needs, possibly choosing one technique or the other depending
on the network setting and client configuration.

These are good news for performance and implementation flexibility, but
regarding security, things are not as straightforward, as we explain next.

2 For example, in a password protocol such as OPAQUE [17], a user can cache values
z corresponding to servers it accesses frequently, e.g., Google, Facebook, etc.
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Is Multiplicative Blinding Secure? On the face of it, it would seem
that exponential and multiplicative blindings are equivalent, functionally and
security-wise, thus allowing for performance optimization and flexibility as dis-
cussed above. However, determining the security of Mult-2HashDH turns out
to be non-trivial, showing unexpected attack avenues which are not present in
Exp-2HashDH. In particular, while Exp-2HashDH has been proven to satisfy
the UC OPRF notion from [11], protocol Mult-2HashDH is not secure under
this same definition. The problem is, broadly speaking, that the dependency
of the protocol on z implies that multiplicative blinding does not ensure full
independence between OPRF instances indexed by different public keys.3

Let us elaborate. In protocol Exp-2HashDH, server’s response b to the client’s
message a �= 1 defines a unique key k = DL(a, b) for which C computes y =
Fk(x). (Since client’s output is y = H2(x, v) for v = b1/r and a = (H1(x))r, it
follows that v = ak/r = (H1(x))k and therefore y = Fk(x) for k = DL(a, b).) In
other words, server’s response b commits the server to a single value k, hence
to a unique function Fk(x). This commitment to a unique function is central
to the OPRF UC modeling from [11]. The same, however, does not hold for
Mult-2HashDH where the server’s response (b, z) to the client’s message a gives
the attacker an additional degree of freedom in manipulating C’s output y =
H(x, b · z−r). Specifically, response (b, z) given a determines pair (δ, z) where
δ = b/ak for k = DL(g, z), thus leading to the following function:

F(δ,z)(x) � H2(x, δ · (hx)k) for z = gk and hx = H1(x) (2)

which an honest C computes on its input x given S’s response (b, z) in the
Mult-2HashDH protocol. Indeed, if a = hx · gr, z = gk and δ = b/ak then

v = b · z−r = b · (gk)−r = b · (gr)−k = b · (a/hx)−k = (b/ak) · (hx)k = δ · (hx)k

The important point is that value δ = b/ak for k = DL(g, z) introduces a mul-
tiplicative shift in the value v computed by C. Moreover, an adversarial S can
exploit this shift to create correlated responses that leak information on the
client’s input. In particular, for any choice of client input x̄, an attacker S can
find values δ1, δ2, k1, k2 such that

δ1 · (hx̄)k1 = δ2 · (hx̄)k2 for z1 = gk1 , z2 = gk2 and hx̄ = H1(x̄) (3)

Using these values the attacker can respond to the first client’s query a1 with
(b1, z1) = (δ1a1

k1 , gk1), and to a second query a2 with (δ2a2
k2 , gk2), leading C to

compute values v1, v2 that coincide if C’s input is x = x̄ and do not coincide if
x �= x̄. In other words, F(δ1,z1)(x̄) = F(δ2,z2)(x̄), showing that in contrast to the
family {Fk} defined by Eq. (1), the function family {F(δ,z)} defined by Eq. (2)
is not a family of independent random functions in ROM.4

3 The potential insecurity of multiplicative blinding as UC OPRF was pointed out in
[17], which left its security analysis as an open question.

4 Note that an honest server’s response (b, z) = (ak, gk) corresponds to δ = 1 and the
evaluated function F(1,z) is identical to the intended function Fk.
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Potential Vulnerabilities. The core advantage a corrupt server may gain by
exploiting the above correlations is the ability to test whether a given value of
x has been input by the client in a previous interaction with the server. Our
analysis of Mult-2HashDH shows that the server can test at most one such
input per interaction. For OPAQUE, this property suffices to prove the security
of the protocol with Mult-2HashDH. The intuitive reason is that in OPAQUE, a
malicious server already has the ability to test guesses for the client’s inputs (a
password in the case of OPAQUE) with each interaction with the client, thus
the above attack based on correlation does not add to the attacker’s power. In
contrast, in Sect. 7 we show examples of applications where the correlated nature
of Mult-2HashDH opens attack avenues not available with exponential blinding.
This demonstrates that the two OPRF implementations, Exp-2HashDH and
Mult-2HashDH, are not equivalent vis-à-vis security, and replacing one with
another within some application needs to be analyzed on a per-case basis, as we
do here for OPAQUE.

Modeling Mult-2HashDH as Correlated OPRF. To analyze the security
of applications that use Mult-2HashDH, we show that there are limits on the
correlations which an adversary can create among the functions effectively eval-
uated in the Mult-2HashDH protocol. Specifically, each pair of functions can be
correlated only as in Eq. (3) and only on one argument x. We prove this for-
mally by introducing a relaxation of the UC OPRF functionality of [11] which
we call Correlated OPRF. The purpose of this relaxation is to model the exact
nature of function correlations which multiplicative blinding gives to a malicious
server. We show that Mult-2HashDH realizes the Correlated OPRF functionality
under the Gap+-OMDH assumption in ROM, a mild strengthening of the Gap-
OMDH assumption which sufficed for Exp-2HashDH to satisfy the UC OPRF
functionality [11].

Security of OPAQUE under both Blindings. Based on the UC modeling
of Mult-2HashDH as a Correlated OPRF, we prove the OPAQUE strong asym-
metric PAKE protocol [17] secure using 2HashDH with multiplicative blinding.
(Strong asymmetric PAKE is secure against pre-computation of password hashes
before server compromise.) Specifically, we show that OPAQUE remains secure
if the OPRF building block it uses is relaxed from the UC OPRF notion of [11]
to the Correlated OPRF defined here. This means that the asymmetric PAKE
standard being defined by the IETF on the basis of OPAQUE [21,22,26] can
use the 2HashDH function and leave the choice of exponential or multiplicative
blinding to individual implementations.

We believe that the same holds for another construction from [17], which
shows that a composition of UC OPRF and any asymmetric PAKE results in
a strong asymmetric PAKE. This transformation was proven secure using UC
OPRF, implemented by Exp-2HashDH and we believe that this result can also
be “upgraded” to the case of UC Correlated OPRF, i.e. using Mult-2HashDH,
but we leave the formal verification of that claim to future work.



On the (In)Security of the Diffie-Hellman Oblivious PRF 385

When is it Safe to Use Mult-2HashDH? In cases where the client has access
to the value gk in some authenticated/certified form, such as in applications
requiring a Verifiable OPRF [10], e.g., Privacy Pass [6], one can use (1) with
either blinding. For multiplicative blinding, one just uses the authenticated z in
the unblinding. However, when z is received from the server in unauthenticated
way, much care is needed, and security under multiplicative blinding needs to be
proven on a per-application basis. Even then, small changes in applications and
implementations may turn this mechanism insecure as evidenced by the case of
using OPAQUE with a threshold OPRF which we show in Sect. 7 to be insecure
if used with Mult-2HashDH. As a rule of thumb, it seems prudent to advise not
to use Mult-2HashDH in setting with unauthenticated gk and where the input to
the OPRF is taken from a low-entropy space.

An Alternative OPRF Specification. Another fix is to replace function
2HashDH defined in Eq. (1) with the following simple modification, where z = gk

is included under the hash, which is secure using either blinding:

F ′
k(x) = H2(x, z,H1(x)k) where z = gk (4)

It can be shown that this scheme avoids the correlation attacks5, and therefore
can be proven secure with either blinding method as a realization of the UC
OPRF functionality from [11]. The security holds even when the value z input
into the hash by the client is the (unauthenticated) z received from the server.

However, while this scheme allows an implementation to choose (even at
execution time) the blinding mechanism it prefers, it forces the transmission of
z from server to client even in the case of exponential blinding, a drawback in
constrained settings discussed above, e.g. [9]. In the case of OPAQUE, one can
still use the simpler 2HashDH without transmitting z but with the subtleties
and warnings surrounding security as demonstrated in this paper.6

2 Preliminaries

The Gap One-More Diffie-Hellman Assumptions. The security of protocol
Mult-2HashDH as UC Correlated OPRF relies on the interactive Gap+One-More
Diffie-Hellman (Gap+-OMDH) assumption, a mild strengthening of the Gap-
OMDH assumption used to realize UC OPRF [11] or verifiable UC OPRF [10].
Let G be a group of prime order q, and let g be an arbitrary generator of G. Let
(·)k for k ∈ Zq denote an oracle which returns y = xk on input x ∈ G. Let CDHg

denote a CDH oracle which returns gxy on input (gx, gy). Let DDHg denote
a DDH oracle which returns 1 on input (A,B,C) s.t. C = CDHg(A,B), and 0

5 The correlation between functions F(δ1,z1) and F(δ2,z2) would now require that z1 =
z2, hence k1 = k2, in which case Eq. (3) holds only if δ1 = δ2, hence (δ1, z1) = (δ2, z2).

6 Another way for 2HashDH to realize UC OPRF with multiplicative blinding, is to
add to Mult-2HashDH a zero-knowledge proof that (g, z, a, b) is a DDH tuple, but
this would void the performance benefit of Mult-2HashDH.
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otherwise. Let DDH+
g denote an oracle which returns 1 on input (A,B,A′, B′, C)

s.t. C = CDHg(A,B) ·CDHg(A′, B′), and 0 otherwise. The (N,Q)-Gap+-OMDH
assumption on group G states that for any polynomial-time algorithm A,

Pr
k←RZq, h1,...,hN←RG

[
A(·)k,DDH+

g (g, gk, h1, . . . , hN ) = (J, S)
]

is negligible, where J = (j1, . . . , jQ+1), S = ((hj1)
k, . . . , (hjQ+1)

k), Q is the
number of A’s (·)k queries, and j1, . . . , jQ+1 are distinct elements in {1, . . . , N}.

In other words, Gap+-OMDH models the following experiment: Let A have
access to a DDH+ oracle and an “exponentiation to k-th power” oracle for ran-
dom k in Zq, and the number of queries to the latter is limited by Q. A is given
N random elements in G as the challenge values, and since A is allowed to query
the exponentiation oracle Q times, it is able to compute the k-th power of any
Q of the N elements, but the assumption postulates that it is infeasible that
A computes the k-th power of any Q+ 1 of the N group elements, i.e. that it
computes the k-th power of “one more” element.

The Gap-OMDH assumption is defined in the exact same way as Gap+-
OMDH, except A has access to oracle DDHg instead of DDH+

g . We believe that
Gap+-OMDH is a mild strengthening of Gap-OMDH because assuming OMDH
in a group with a bilinear map implies both assumptions: Given an efficiently
computable map e : G × G → GT s.t. e(ga, gb) = e(g, g)ab, one can implement
DDHg oracle, by checking if e(A,B) = e(g, C), as well as DDH+

g oracle, by
checking if e(A,B) · e(A′, B′) = e(g, C). In the full version [15] we show that
the Gap+-OMDH assumption holds in the generic group model, which extends
similar argument given for Gap-OMDH in [12].

3 The Correlated OPRF Functionality FcorOPRF

As we explain in Sect. 1, we will model the type of PRF-correlations which
protocol Mult-2HashDH allows with a correlated OPRF functionality, and here
we define it as functionality FcorOPRF shown in Fig. 3. In Sect. 4 we will argue that
protocol Mult-2HashDH, i.e. the multiplicative blinding protocol together with
the PRF defined in Eq. (1), realizes functionality FcorOPRF under Gap-OMDH
assumption in ROM.

Functionality FcorOPRF is a relaxation of the OPRF functionality FOPRF of
[17], which is an adaptive extension of the UC OPRF defined in [11]. To make
this relation easier to see we mark in Fig. 3 all the code fragments which are
novel with respect to functionality FOPRF of [17]. Below we will first explain
the basic properties which FcorOPRF shares with FOPRF, and then we explain the
crucial differences which make FcorOPRF a relaxation of FOPRF.

Correlated OPRF Model: Basic Logic. Functionality FcorOPRF models
OPRF in a similar way as FOPRF of [11,17]. First, when an honest server S
initializes a PRF by picking a random key, this is modeled in the ideal world
via call Init from S, which initializes a random function FS : {0, 1}∗ → {0, 1}�.
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Public Parameters: PRF output-length �, polynomial in security parameter τ .
Conventions: ∀ i, x value Fi(x) is initially undefined, and if undefined Fi(x) is
referenced then FcorOPRF sets Fi(x) ←R {0, 1}�. Variable P ranges over all honest
network entities and A∗, and we assume all corrupt entities are operated by A∗.

Initialization

– On (Init, sid) from S, set tx ← 0, N ← [S], E ← {}, G ← (N , E) .
Ignore all subsequent Init messages.
Below “S” stands for the entity which sent the Init message.

Server Compromise

– On (Compromise, sid) from A∗, declare server S as compromised.
(If S is corrupted then it is declared compromised as well.)

Offline Evaluation

– On (OfflineEval, sid, i, x, L ) from P do:

(1) If P = A∗ and i N∈� then append i to N and run Correlate(i, L);
(2) Ignore this message if P = A∗, S is not compromised, and (i, S, x) ∈ E ;
(3) Send (OfflineEval, sid, Fi(x)) to P if (i) P= S and i = S or (ii) P = A∗

and either i �= S or S is compromised.

Online Evaluation

– On (Eval, sid, ssid, S′, x) from P, send (Eval, sid, ssid,P, S′) to A∗. On prfx
from A∗, reject it if prfx was used before. Else record 〈ssid,P, x, prfx, 0〉 and
send (Prefix, ssid, prfx) to P.

– On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′, S) to
A∗. On prfx′ from A∗ send (Prefix, ssid′, prfx′) to S. If there is a record
〈ssid,P, x, prfx, 0〉 s.t. prfx=prfx′, change it to 〈ssid,P, x, prfx, 1〉, else set tx++.

– On (RcvComplete, sid, ssid,P, i, L ) from A∗, retrieve 〈ssid,P, x, prfx, ok?〉
(ignore the message if there is no such record) and do:

(1) If i N∈� then append i to N and run Correlate(i, L);
(2) If S is not compromised and ok? = 0 do:

If i = S or [(i,S, x) ∈ E and P = A∗] do:
If tx=0 then ignore this message, else set tx−−;

(3) Send (Eval, sid, ssid, Fi(x)) to P.

Correlate(i, L):

– Reject if list L contains elements (j, x), (j′, x′) s.t. j = j′ and x �= x′.
Else, for all (j, x) ∈ L s.t. j ∈ N , add (i, j, x) to E and set Fi(x) ← Fj(x).

Fig. 3. The Correlated OPRF functionality FcorOPRF. The (adaptive) OPRF function-

ality FOPRF of [16] is formed by omitting all text in gray boxes .



388 S. Jarecki et al.

Second, the real-world S can evaluate FS off-line on any argument, which is mod-
eled in the ideal world by call (OfflineEval, sid, i, x, L) from S with i = S and
L =⊥, which gives FS(x) to S. (The role of list L, which a malicious server can
make non-empty, is discussed further below.) Third, in addition to the off-line
evaluation, any client C can start an on-line OPRF protocol instance with S
on local input x, which is modeled by call (Eval, sid, ssid,S′, x) from P = C
with S′ = S, where ssid stands for sub-session ID, a fresh identifier of this
OPRF instance. If S honestly engages in this protocol, which is modeled by
call (SndrComplete, sid, ssid) from S, functionality FcorOPRF increments the
server-specific ticket-counter tx, initially set to 0. If the real-world adversary
allows an uninterrupted interaction between C and S, which is modeled by a
call (RcvComplete, sid, ssid,C, i, L) with i = S and L =⊥ from the ideal-world
adversary A∗, then FcorOPRF decrements counter tx and sends FS(x) to C.7

The man-in-the-middle adversary (our OPRF model does not rely on authen-
ticated links) who interacts with client C, can make C output Fi(x) for a different
function Fi �= FS, using a call (RcvComplete, ssid,C, i, L) for i �= S, which mod-
els a real-world adversary acting like the server but on a wrong key ki �= k in this
interaction. To model a real-world adversary choosing different PRF keys in
either offline or online evaluations, functionality FcorOPRF keeps a list of indexes
N of independent random functions, and effectively associates each real-world
key with a distinct index in N , whereas the key of the honest server S is associ-
ated with a special symbol S.

Practical Implications. Note that RcvComplete computes function FS on
P’s input x only if tx> 0, i.e. if the number of instances completed by S is
greater than the number of instances completed by any client. This implies that
if S engages in n OPRF instances this allows function FS to be computed, by all
other parties combined, on at most n arguments. However, the functionality does
not establish strict binding between these server and client instances. Indeed,
this ticket-based enforcement allows an OPRF functionality to be realized using
homomorphic blinding without zero-knowledge proofs. Note that in protocol
Exp-2HashDH of Fig. 1 the interaction between C and S can be “double blinded”
by the network adversary, who can modify P’s original message a as a′ = as,
and then modify S’s response b = ak as b′ = b1/s. Such interaction produces the
correct output on the client, but a′ which S sees is a random group element,
independent of a sent by C, which makes it impossible to identify the pair of C
and S instances which the network adversary effectively pairs up.

Another feature which enables efficient FcorOPRF realization is that the
argument x of client C engaging in an OPRF instance can be defined only
after server S completes this instance. Note that in the ideal world C out-
puts FS(x) even if S completes an OPRF instance first, by sending message
(SvrComplete, sid, ssid), and C only afterwards sends (Eval, sid, ssid,S, x), fol-

7 As in the adaptive version of UC OPRF FOPRF [17], we allow server S to be adaptively
compromised, via call Compromise from A∗, which models a leakage of the private
state of S, including its PRF key and all its authentication tokens. One consequence
of server compromise is that RcvComplete will no longer check that tx > 0.
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lowed by RcvComplete from A∗. Indeed, this “delayed input extraction” fea-
ture of FcorOPRF enables protocol Exp-2HashDH to realize it in ROM, where
the ideal-world adversary can extract argument x from the local computation of
the real-world client, namely from H2 query (x, v) for v = (H1(x))k, but that
computation (and input-extraction) happens after S completes the protocol.

In some applications, notably OPAQUE [17], see Sect. 5, it is useful for OPRF
to output a transcript, or its prefix, as a handle on OPRF instance in a higher-
level protocol. Functionality FcorOPRF allows each party to output a transcript
prefix prfx, and if prfx output by S and C match then FcorOPRF allows C session
to compute the PRF output without using the tx counter. This does not affect
the logic of tx-checking: Each run of SndrComplete either increments tx or
ok’s some particular client OPRF instance, so either way the number of on-line
OPRF evaluations is limited by the number of SndrComplete instances.

Relaxation of the UC OPRF Model. The crucial difference between the
Correlated OPRF functionality FcorOPRF and the OPRF functionality FOPRF of
[11] is that when any party evaluates function Fi for a new index i �∈ N , which
corresponds to a real-world adversary evaluating the (O)PRF either offline or
online on a new key, the adversary can supply a list L of correlations which
the new function Fi will have with previously initialized functions Fj , j ∈ N ,
potentially including the honest server function FS. Such correlations were not
allowed in FOPRF, and indeed FcorOPRF reduces to FOPRF if A∗ sets L as an empty
list in OfflineEval and RcvComplete messages. Argument L can specify a
sequence of pairs (j, x) where j ∈ N is an index of a previously initialized
function Fj , and the correlation consists of setting the value of the new function
Fi on x as Fj(x). After setting Fi(x) ← Fj(x) for all (j, x) ∈ L, the values of
Fi on all other arguments are set at random by FcorOPRF. Functionality FcorOPRF

keeps track of these correlations in a graph G = (N , E), where (i, j, x) ∈ E if
Fi(x) is set to Fj(x) in the above manner, i.e., an edge between i and j, labeled
x, represents a correlation between functions Fi and Fj on argument x.

A crucial constraint on the correlation list L is that for each j ∈ N list L can
contain only one entry of the form (j, ·), i.e. two functions Fi, Fj can be correlated
on at most one argument. Note that if the adversary correlates Fi with the honest
server function FS on argument x, and then evaluates Fi(x) via the online OPRF
instance, i.e. Eval and RcvComplete where P = A∗, functionality FcorOPRF

treats this as an evaluation of FS and decrements the ticket-counter tx. This
restriction is necessary because otherwise the adversary could effectively compute
FS on more than n arguments even if an honest server S engages in only n OPRF
instances: It could first correlate n′ > n adversarial functions F1, ..., Fn′ with FS,
each function Fi on a different argument xi, and each evaluation of Fi(xi) would
reveal the value of FS on all these arguments as well. However, our FcorOPRF

model allows A∗ to let any honest party P compute Fi(x) for Fi correlated with
FS without decrementing the ticket-counter tx. This is a weakness, e.g. if the
higher-level application reveals these OPRF outputs to the attacker. A stronger
version of FcorOPRF would decrement tx even if Fi(x) = FS(x) is computed by
honest parties, but we used a weaker version for two reasons: First, it suffices for
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OPAQUE security. Second, we can show that Mult-2HashDH realizes this weaker
version under Gap+-OMDH, and it is an open problem whether the same can
shown for the stronger version of the functionality.

Necessity of the Relaxation. As noted in Sect. 1, Exp-2HashDH satisfies
the UC OPRF notion of [11] because S’s response b to C’s message a defines
key k = DL(a, b) s.t. C outputs y = Fk(x) for function Fk defined in Eq. (1).
However, in Mult-2HashDH, S’s response (b, z) defines the function which C
effectively computes as F(δ,z) defined in Eq. (2). Moreover, different choices of
(δ, z) do not define independent random functions. Indeed, an efficient attacker
can easily pick (δ1, z1) and (δ2, z2) which satisfy Eq. (3) for any x, which implies
that the two functions will be correlated by constraint F(δ1,z1)(x) = F(δ2,z2)(x).

The consequences of such correlations can be illustrated by the following
example. Assume that the higher-level application allows a malicious server to
detect whether in two OPRF instances the client outputs the same two values or
not. Let x1 and x2 be two client input candidates. If the server picks two indexes
(δ1, z1) and (δ2, z2) s.t. F(δ1,z1)(x1)= F(δ2,z2)(x1) and F(δ1,z1)(x2) �= F(δ2,z2)(x2)
and inputs (δ1, z1) into the first OPRF instance and (δ2, z2) into the second one,
then the client’s outputs in these two executions will be the same if its input
is x1 and different if its input is x2, and by the assumption on the application
context the server will learn which one is the case. (In Sect. 7 we show examples
of applications where this knowledge creates an attack avenue.)

The UC OPRF notion of [11] does not allow for this attack avenue because
in that model each choice of a function index which server S can input into
an OPRF instance defines an independent (pseudo)random function. However,
no choice of two functions Fi, Fj for these two instances allows S to distinguish
between C’s input x1 and x2: If Fi = Fj then C’s output in the two instances will
be the same for any x, and if Fi �= Fj then C’s output in the two instances will
be different, also for any x, except for a negligible probability that S finds two
functions Fi, Fj among the polynomially-many random functions it can query
offline s.t. Fi(x) = Fj(x) for x ∈ {x1, x2}.

4 Security Analysis of Multiplicative DH-OPRF

Figure 2 in Sect. 1 shows the OPRF protocol Mult-2HashDH, which uses multi-
plicative blinding for oblivious evaluation of the (Double) Hashed Diffie-Hellman
function defined in Eq. (1), i.e. Fk(x) = H2(x, (H1(x))k). Here, in Fig. 4, we
render the same protocol as a realization of the Correlated OPRF functional-
ity FcorOPRF defined in Fig. 3. As we explain in Sect. 3, functionality FcorOPRF

reflects the correlations which a real-world adversary can introduce in the PRF
functions the honest users compute in this protocol. Indeed, as we show in
Theorem 1 below, under the Gap One-More Diffie-Hellman assumption protocol
Mult-2HashDH securely realizes this functionality in ROM.

Theorem 1. Protocol Mult-2HashDH realizes correlated OPRF functionality
FcorOPRF in the FRO-hybrid world under the Gap-OMDH assumption.
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Setting: − Group G of prime order q with generator g.
− Hash functions H2, H1 with ranges {0, 1}� and G, respectively.

Functions H2, H1 are specific to the OPRF instance initialized for a unique session
id sid, and in practice they should be implemented by folding sid into their inputs.

Initialization: On input (Init, sid), S picks k ←R Zq and records (sid, k, z = gk).

Server Compromise: On (Compromise, sid, S) from A, reveal k to A.

Offline Evaluation:
On (OfflineEval, sid, S, x, ·), S outputs (OfflineEval, sid, F (k, x)) where

F (k, x) � H2(x, (H1(x))k))
Evaluation:

– On input (Eval, sid, ssid, S, x), C picks r ←R Zq, records (sid, ssid, r), sends
(ssid, a) to S for a = H1(x) · gr, and locally outputs (Prefix, ssid, a).

– On input (SndrComplete, sid, ssid′) and message (ssid, a) from C s.t. a ∈ G,
server S retrieves (sid, k, z), sends (ssid, b, z) to C for b = ak, and locally
outputs (Prefix, ssid′, a). (Note that ssid and ssid′ can be different.)

– On S’s message (ssid, b, z) from S s.t. b, z ∈ G and C holds tuple (sid, ssid, r)
for some r, party C outputs (Eval, sid, ssid, y) for y = H2(x, b · z−r).

Fig. 4. Protocol Mult-2HashDH of Fig. 2 as a realization of FcorOPRF.

Proof: We show that for any efficient environment Z and the real-world adver-
sary A (more precisely, for A in the FRO-hybrid world, i.e. the real world
amended by random oracle hash functions), there exists an efficient simulator
SIM, a.k.a. an “ideal-world adversary”, s.t. the environment’s view in the real
world, where the honest parties implement the Mult-2HashDH protocol interact-
ing with adversary A, is indistinguishable from its view in the ideal world, where
the honest parties are “dummy” entities which pass their inputs to (and outputs
from) the ideal functionality FcorOPRF, and where the real-world adversary A
is replaced by the simulator SIM (who locally interacts with A). The construc-
tion of SIM is shown in Fig. 5. While the real-world adversary A works in a
hybrid world with the random oracle modeled by functionality FRO, for notation
simplicity in Fig. 5 we short-circuit the FRO syntax and we assume that SIM
implements oracles H1, H2. Without loss of generality, we assume that A is a
“dummy” adversary who merely passes all messages between Z and SIM, hence
we will treat A as just an interface of Z. For brevity we also denote FcorOPRF

as F , and we omit the (fixed) session identifier sid from all messages. Also, the
simulator assumes that a unique party S for which this F instance is initialized
is honest, and that its identity “S” encoded as a bitstring is different from any
pair (δ, z) ∈ G

2.
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Initialization: Pick k ←R Z
∗
q //SIM picks S’s key//, set TH1 as an empty table,

set functions H1, H2 as undefined on all arguments, and set NSIM ← [S] //NSIM is
the list of identified function indices//.

Server Compromise: On (Compromise, S) from A, send (Compromise, S) to F
and reveal k to A.

Hash query to H1: On A’s fresh query x to H1, pick u ←R Zq \ {0}, define
hx � gu, set H1(x) ← hx, and add (x, u, hx) to table TH1 .
//TH1 records hx = H1(x) and the discrete-logarithm trapdoor u = DL(g, hx)//

Online Evaluation:

1. On (Eval, ssid,C, S′) from F , pick w ←R Zq, record (C, ssid, w), send (ssid, a)
for a ← gw to A, and send prfx = a to FcorOPRF. (Abort if FcorOPRF rejects it.)

2. On (SndrComplete, ssid′, S) from F and message (ssid, a′) from A s.t. a′ ∈ G,
send ssid and (b′, z∗) = ((a′)k, gk) to A and prfx′ = a′ to FcorOPRF.

3. On message (ssid, b, z) to C from A s.t. b, z ∈ G, retrieve record (C, ssid, w)
(ignore the message if there is no such record) and do:
//C should output F(δ,z)(x) for δ = b/aDL(g,z) = b/zw//
(1) Set δ ← b/zw, i ← (δ, z), L ← [];
(2) If i =(1, gk) //A lets C evaluate on FS// then (re)set i ← S;
(3) If i N∈� SIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = δ · zu then add (j, x′) for j =(δ′, z′) to L;
//correlation on x′ between Fi and Fj for j = (δ′, z′)//
If (hx′)k = δ · zu then add (S, x′) to L; //correlation on x′ with FS//

(4) Send (RcvComplete, ssid,C, i, L) to F , and append i to NSIM if i N∈� SIM.

Hash query to H2: On A’s fresh query (x, v) to H2, do:

1. If (x, u, hx) ∈ TH1 and v =(hx)k //A evaluates FS(x)// then do:
– If S is compromised, send (OfflineEval, S, x, ⊥) to F ; on F ’s response

(OfflineEval, y), set H2(x, v) ← y;
– Otherwise send (Eval, ssid, S, x) and then (RcvComplete, ssid, SIM, S, ⊥) to

F for a fresh ssid; if F replies (Eval, ssid, y) then set H2(x, v) ← y, otherwise
output halt and abort.

2. If (x, u, hx) ∈ TH1 and v �= (hx)k then for the first (δ, z) ∈ NSIM s.t. v = δ · zu

//A evaluates F(δ,z)(x)// send (OfflineEval, i =(δ, z), x, ⊥) to F ; on F ’s
response (OfflineEval, y), set H2(x, v) ← y.

3. If H2(x, v) remains undefined set i =(v, 1) and: //A evaluates F(v,1)(x)//
(1) If i N∈� SIM then for each (x′, u, hx′) ∈ TH1 and (δ′, z′) ∈ NSIM do:

If δ′ · (z′)u = v then add (j, x′) for j =(δ′, z′) to L;
If (hx′)k = v then add (S, x′) to L;

(2) Send (OfflineEval, i, x, L) to F ; on F ’s response (OfflineEval, y), set
H2(x, v) ← y, and append i to NSIM if i N∈� SIM.

Fig. 5. Simulator SIM for Protocol Mult-2HashDH //with comments inline//
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For a fixed environment Z, let qH1 , qH2 be the number of A’s queries to resp.
H1 and H2 hash functions, and let qC, qS be the number of Z’s invocations of
resp. client and server OPRF instances, via resp. queries Eval sent to some C
and query SndrComplete sent to S.

The Simulator. The simulator SIM, shown in Fig. 5, follows a similar simulation
strategy to the one used to show that exponential blinding protocol realizes UC
OPRF notions of [10,11,17]. At initialization, the simulator picks a random key
k on behalf of server S. If SIM receives SndrComplete from F , i.e. server S
wants to complete an OPRF instance, and SIM receives message a with matching
ssid from adversary A playing a client, SIM replies as the real-world S would,
i.e. with (b, z) = (ak, gk). Responding to A playing a server is more complex.
The simulator prepares for this by embeding discrete-logarithm trapdoors in H1

outputs and in messages a formed on behalf of honest clients. Namely, for each
x, SIM defines H1(x) as hx = gu for random u, and it forms each message a on
behalf of some honest client as a = gw for random w. The discrete-logarithm
trapdoor u = DL(g, a) enables SIM to compute, given response (b, z) sent by
A on behalf of some server, the function index i = (δ, z) for which a real-life
honest client would effectively compute its output as y = F(δ,z)(x) for F(δ,z)

defined as in Eq. (2). This is done by setting δ = b/zw because then δ = b/ak for
k = DL(g, z). (See Is multiplicative blinding secure? in Sect. 1 for why the client
effectively evaluates F(δ,z) for δ = b/ak.) If A responds as the honest server S
(or forwards S’s response), SIM detects it because then δ = 1, in which case SIM
sets the function index to the “honest S function”, i ← S.

Finally, SIM checks if i = (δ, z) is in NSIM, a sequence of function indices
which SIM has previously identified, and if i �∈ NSIM, i.e. if it is a new function,
SIM uses the trapdoors it embedded in H1 outputs to detect if Fi(x) = Fj(x)
for any x queried to H1 (without such query A cannot establish a correlation
on x except for negligible probability) and any previously seen function index
j ∈ NSIM or j = S. The first condition holds if δ′ · (hx)DL(g,z′) = δ · (hx)DL(g,z)

for i = (δ, z) and j = (δ′, z′) while the second one holds if (hx)k = δ · (hx)DL(g,z).
The simulator cannot compute DL(g, z) for an adversarial public key z, but the
trapdoor in the hash function output H1(x) = hx = gu allows for computing
(hx)DL(g,z) as zu.

There is a further complication in the simulator’s code, in responding to A’s
local H2 queries (x, v). Such calls can represent either (I) an offline PRF evalua-
tion on argument x of function F(δ,z) s.t. v = δ · (hx)DL(g,z), where (δ, z) ∈ NSIM,
or, if S is compromised (or corrupted), for (δ, z) = (1, gk); or (II) in case v = (hx)k

and S is not compromised, they can represent a finalization of the computation
of FS(x) by a malicious client in the online OPRF instance. Case (I) is treated
similarly as the detection of the correlations explained above: SIM searches for
index i = (δ, z) in NSIM s.t. v = δ · (hx)DL(g,z) = δ · zu where H1(x) = hx = gu,
in which case this is interpreted as evaluation of Fi and SIM sets H2(x, v) to
the value of Fi(x) which the functionality defines in response to the offline
evaluation call (OfflineEval, i, x, ·). If S is compromised then the simulator
does this also for i = S if v = (hx)k. However, in Case (II), i.e. if v = (hx)k
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but S is not compromised, such query could come from A’s post-processing of
an online OPRF evaluation, hence SIM in this case sends (Eval, ssid,S, x) and
(RcvComplete, ssid,SIM,S,⊥) to F . If F allows this call to evaluate success-
fully, i.e. if tx> 0, then F return y = FS(x) and SIM defines H2(x, v) ← y. Oth-
erwise F will ignore this RcvComplete call, in which case SIM outputs halt

and aborts, which the environment will detect as a simulation failure. Indeed,
this case corresponds to A evaluating function FS on more arguments than the
number of OPRF instances performed by S, i.e. the number of SndrComplete

calls from an ideal-world S to F .
Finally, SIM must carefully handle H2(x, v) queries which are not recognized

as evaluations of Fi(x) for any i ∈ NSIM ∪ {S}, because they can correspond
to evaluating F(δ,z)(x) for index (δ, z) which A will reveal in the future. SIM

picks the simplest pair (δ, z) s.t. δ · (hx)DL(g,z) = v, namely (δ, z) = (v, 1). If any
future index (δ, z) �= (v, 1) defined in a subsequent OPRF evaluation satisfies
δ · (hx)DL(g,z) = v, this will be detected by SIM as a correlation between F(δ,z)

and F(v,1). Note that SIM must process H2(x, v) query as evaluation of F(v,1)(x)
even if H1(x) is undefined, because regardless of the value of hx = H1(x) it will
hold that F(v,1)(x) = H2(x, v), because v · (hx)DL(g,1) = v · (hx)0 = v. Indeed, an
adversary can first query H2(x, v) for some (x, v), then compute hx = H1(x), and
then input (δ, z) into an OPRF instance for δ = v/(hx)DL(g,z), which corresponds
to oblivious evaluation of F(δ,z), which is correlated with F(v,1) on argument x.

Sequence of Games. Our proof uses the standard sequence of games method,
starting from the interaction of Z (and “dummy” adversary A) with the real-
world protocol, and ending with the ideal world, in which Z instead interacts
with the simulator SIM and functionality F . We fix an arbitrary efficient envi-
ronment Z which without loss of generality outputs a single bit, we use Gi

to denote the event that Z outputs 1 when interacting with Game i, and for
each two adjacent games, Game i and Game i+ 1, we argue that these games
are indistinguishable to Z, i.e. that there is a negligible difference between the
probabilities of events Gi and Gi+1, which implies that Z’s advantage in dis-
tinguishing between the real world and the ideal world is also negligible. Let
qH1 , qH2 be the total number of resp. H1,H2 queries made in the security game
with A and Z. Let qC and qS and q′

S be the number of resp. C and S sessions and
S offline PRF evaluations started by Z via resp. the Eval, SndrComplete, and
(OfflineEval,S, ·, ·) commands. Let εOMDH(G, N,Q) be the maximum advan-
tage of any algorithm with computational resources comparable to Z against
the (N,Q)-Gap+-OMDH problem in G.

Game 1: (Real world, except for discrete-logarithm trapdoors in H1 outputs)
This is the real-world interaction, shown in Fig. 6, i.e. the interaction of envi-
ronment Z and its subroutine A with honest entities C and S executing protocol
Mult-2HashDH of Fig. 4. We assume that the interaction starts with server ini-
tialization, triggered by Init command from Z to S. We denote the public key
of server S as z∗ = gk. For visual clarity we omit the fixed sid tag and the
variable ssid tags from all messages in Fig. 6. We assume that when functions
H1,H2 are executed by C1, C2, and S2, these hash function calls are serviced
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as described in the lower-half of Fig. 6. Queries H2(x, v) are implemented as in
the real world except that the game records tuples (x, v,H2(x, v)) in table TH2 .
However, queries H1(x) are implemented with trapdoors embedded in values
hx = H1(x) by setting hx = gux for random ux ←R Zq and recording (x, ux, hx)
in table TH1 .

Game 2: (Abort on hash H1 collisions) Abort if the security game ever
encounters a collision in H1, i.e. if for some argument x queried either by A
or by the security game in oracles C1 and S2 (see Fig. 6), oracle H1 picks u s.t.
tuple (x′, u, gu) for some x′ �= x is already in TH1 . Clearly

|Pr[G2] − Pr[G1]| ≤ (qH1)
2

q

C1: �(Eval, S′, x) Z Server Initialization:
r ←R Zq;
a ← H1(x) · gr

�a A k ←R Zq; z∗ ← gk

Z �SndrComplete S1:
A �a

b ← ak

A � (b, z∗)

C2: � (b, z) A
y ←
H2(x, b · z−r)

�y Z

Z �(OfflineEval, S, x, ·)
S2:

Z � y
y ← H2(x, (H1(x))k)

H1: On query x, pick ux ←R Zq, set hx ← gux and H1(x) ← hx, add (x, ux, hx) to TH1 ;
H2: On query (x, v), pick y ←R {0, 1}�, set H2(x, v) ← y, add (x, v, y) to TH2 ;
S-compromise: On A’s message Compromise, send k to A.

Fig. 6. Game 1: Interaction of Z/A with Mult-2HashDH protocol.

Game 3: (Making C’s message input-oblivious) We change how oracle C1
generates message a so that it is generated obliviously of input x. Namely, instead
of computing a = H1(x) · gr = gux+r for r ←R Zq, oracle C1 will now generate
a = gw for w ←R Zq. The input x for this session ssid will be then passed to
oracle C2, which (1) queries H1 on x to retrieve (or create) tuple (x, ux, gux)
from TH1 , and (2) outputs y = H2(x, v) for v = b · zux−w. Note that for every x,
and hence every ux, value w = (ux + r) mod q is random in Zq if r random in
Zq, hence this modification does not change the distribution of values a output
by C1. Moreover, if w = (ux + r) mod q then z−r = zux−w, thus C2’s output is
the same as in Game 2, hence Game 3 and Game 2 are externally identical.
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Game 4: (Defining adversarial functions) We make a notational change in
oracle C2, so that it outputs y = H2(x, v) for v = δ · zux where δ = b/zw. Since
this is a merely notational difference, Game 4 and Game 3 are identical.

Note that this change makes oracles C1/C2 implement the following process:
C1’s message a = gw together with A’s response (b, z) define (δ, z) s.t. δ = b/zw,
which defines a function which C2 evaluates on Z’s input x as F(δ,z) for

F(δ,z)(x) � H2(x, δ · zux) where ux � DL(g,H1(x)) (5)

Note that Eq. (5) is equivalent to Eq. (2) where F(δ,z)(x) = H2(x, δ · (H1(x))k)
for k s.t. z = gk. For notational convenience we define also a “helper” function
family fi : {0, 1}∗ → G for i ∈ G

2 s.t.

f(δ,z)(x) = δ · zux where ux � DL(g,H1(x)) (6)

Note that F(δ,z)(x) = H2(x, f(δ,z)(x)).

We will argue that pairs (δ, z) encountered in the security game can be
thought of as indexes of random functions, including pair (δ, z) = (1, z∗) for
z∗ = gk which defines the “honest” random function of S, except that the
adversary can “program” a limited number of correlations in these functions,
by setting i = (δ, gk) and j = (δ′, gk′

) s.t. δ′/δ = (hx)k−k′
, which implies that

Fi(x) = Fj(x). In the next few game changes we will show that these correla-
tions are constrained as prescribed by functionality FcorOPRF, i.e. that (1) each
two functions can be “programmed” to have equal output only for a single argu-
ment, (2) that if an adversarial function Fi is correlated on some x with function
FS of the honest server S then evaluating Fi(x) is treated the same as FS(x), and
in particular requires that tx> 0, and (3) that otherwise all adversarial functions
are indistinguishable from independent random functions.

Game 5: (Building correlation graph) The security game will build a graph
of correlations between functions F(δ,z) occurring in the game. In particular the
game will maintain sequence NSIM and sets XH1 , E , all initially empty:

1. Set XH1 contains all inputs x queried to H1, by either A, C2, or S2.
2. Set NSIM contains all (δ, z) function indexes, including (1) the honest server

function index (1, z∗), (2) each (δ, z) defined by A’s interaction with oracles
C1/C2, as described in Game 4, and (3) (δ, z) = (v, 1) for every direct query
(x, v) of A to H2.

3. Set E contains labeled edges between indexes in NSIM, maintained as follows:
(1) When function index i = (β, z) �∈ NSIM is specified in C1/C2 then for each
j = (δ′, z′) in NSIM and x′ ∈ XH1 , test if fj(x′) = fi(x′), and if so then add
(i, j, x′), i.e. an edge (i, j) with label x′, to E .
(2) If H2 is queried on new (x, v) by A or by oracles C2 or S2 for (v, 1) �∈ NSIM

then do step (1) above for i = (v, 1). (Note that f(v,1)(x′) = v for all x′.)

Since these are only notational changes Game 5 and Game 4 are identical.
Game 6: (Discarding double links) We add an abort if there are two distinct

values x, x′ in XH1 and two distinct function indexes i = (δ, z) and j = (δ′, z′) in
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NSIM s.t. fi(x) = fj(x) and fi(x′) = fj(x′). These conditions imply respectively
that δ′/δ = (z/z′)ux and δ′/δ = (z/z′)ux′ . Since H1 collisions are discarded
beginning in Game 2, it follows that ux′ �= ux, which implies that (δ, z) = (δ′, z′),
i.e. this abort cannot happen. Consequently, Game 6 and Game 5 are identical.

Game 7: (Discarding future correlations) We add an abort in H1 processing
if new query x �∈ XH1 samples hx = H1(x) s.t. there exists two distinct function
indexes i, j ∈ NSIM s.t. fi(x) = fj(x). Note that in this case there would be
no edge (i, j, x) in E , and that this is the only case in which fi(x) = fj(x) but
(i, j, x) �∈ E . However if query x to H1 is made after defining i, j then hx = H1(x)
is independent of i, j, in which case Pr[fi(x) = fj(x)] = 1/q, because this equa-
tion holds only for a single value hx s.t. ux = DL(g, hx) = DL((zi/zj), (δj/δi)). If
there are qC instances of C2 and qH2 queries to H2 then there can be at most qC
indexes (δ, z) in NSIM s.t. z �= 1 and at most qH2 indexes (δ, z) s.t. z = 1. Since
condition fi(x) = fj(x) cannot be met if i = (v, 1) and j = (v′, 1) for v �= v′,
each new query x to H1 causes an abort only if ux falls in the solution set of at
most qC · (qH2 + qC) equations, which implies that

|Pr[G7] − Pr[G6]| ≤ qH1 · qC · (qH2 + qC)
q

– Init: Initialize RF R, pick k ←R Zq, set NSIM ← [(1, gk)] and XH1 ← {}.
– H1: On input x �∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.
– S2: On input x, set i ← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x, w), send a = gw to A.
– C2: On input (b, z) ∈ G

2, recover (x, w) stored by C1 and set δ ← b/zw.
Assign i ← (δ, z). If i N∈� SIM then run Process(i). Send R(i, x) to A.

– H2: On new input (x, v) from A for v ∈ G, set i ← (v, 1). If i N∈� SIM then
run Process(i). Send R(i, x) to A.

– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z) ← i. Define list L s.t.

L = { (j, x) ∈ NSIM × XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }
Abort it L contains (j, x), (j, x′) s.t. x �= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x) ← R(j, x).

Fig. 7. Interaction defined by Game 9.

Game 8: (Implementing H2 using correlated random functions) We replace
hash function H2 using an oracle R that maintains a random function family, in
which the adversary can “program” correlations as follows:

– When R starts it initializes a random function R : {0, 1}∗ ×{0, 1}∗ → {0, 1}�

and an index sequence I ← [(1, z∗)];
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– On query Correlate(i, L), R rejects if i �∈ I or list L contains (j, x) and
(j′, x′) s.t. j = j′ and x �=x′. Otherwise it appends i to I, and for each
(j, x) ∈ L it re-defines R(i, x) ← R(j, x);

– On query Eval(i, x), R replies R(i, x) if i ∈ I, else ignores this query.

We use oracle R to change the implementation of H2 function called by oracles
S2, C2, or the direct calls to H2:

1. When A calls S2 on x: Assign H2(x, fi(x)) ← R.Eval(i, x) for i = (1, z∗).
2. When oracle C2 calls H2 on (x, fi(x)) for some i= (δ, z):

(a) if i �∈ NSIM then send Correlate(i, L) to R where L consists of all tuples
(j, x′) s.t. fi(x′) = fj(x′) for some j ∈ NSIM and x′ ∈ XH1 ;

(b) set H2(x, fi(x)) ← R.Eval(i, x).
3. When A calls H2 on (x, v): Service it as in Step 2 but use i = (v, 1).

To see the correspondence between Game 8 and Game 7, observe that starting
from Game 5 function H2 is evaluated only on pairs of the form (x, fi(x)) for
some i ∈ NSIM. Define R(i, x) as H2(x, fi(x)). Function R is not random even
if H2 is, because we have that R(i, x) = R(j, x) for any i, j, x s.t. fi(x) = fj(x).
However, from Game 7 this equation can hold, for any i, x s.t. H2 is queried on
(x, fi(x)), only if i is a new index, i = (δ, z) or i = (v, 1), appended to NSIM in a
query to oracles resp. C1/C2 and H2, for values j, x s.t. j ∈ NSIM and x ∈ XH1

at the time this query is made. Note that list L sent for a new function fi to
R in Game 8 by oracles C1/C2 and H2 consists exactly of all such pairs (j, x),
hence it follows that Game 8 and Game 7 are identical.

Game 9: (Walking back aborts in H1) We remove the aborts in H1 introduced
in Game 2 and Game 7, i.e. we no longer abort if (1) the same uX was chosen
before on some previous query to H1, or (2) if there are two function indices
i = (z, δ) and j = (z′, δ′) in NSIM s.t. fi(x) = fj(x), i.e. δ ·zux = δ′ ·(z′)ux . By the
same arguments used above where these games are introduced, these two changes
can be observed with probability at most (q2H1

)/q and (qH1 · qC · (qH2 + qC))/q,
respectively, which implies that

|Pr[G9] − Pr[G8]| ≤ q2H1
+ qH1 · qC · (qH2 + qC)

q

Security Game Review. In Fig. 7 we put together all the changes made so far
and review how the game oracles operate in Game 9.

Game 10: (Identifying existing functions in H2 processing) In Game 9 a
fresh query (x, v) to H2 is answered as R(i, x) for i = (v, 1), and if (v, 1) �∈ NSIM

then function R((v, 1), ·) is created and correlated with all previous functions
{R(i, ·)}i∈NSIM

by the rule that R((v, 1), x′) ← R(i, x′) for each x′ ∈ XH1 and
i ∈ NSIM s.t. fi(x′) = v. In Game 10 we modify the code of oracle H2 so that
when it gets a fresh query (x, v) s.t. x ∈ XH1 it first checks if

v = fi(x) for any index i ∈ NSIM (7)
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(Note that if x ∈ XH1 the game can evaluate f(δ,z)(x) = δ · zux for any δ, z.) If
v = fi(x) for some i ∈ NSIM then Game 10 takes the first index i in NSIM s.t.
v = fi(x) holds, replies R(i, x), and does not create a new function R((v, 1), ·)
even if (v, 1) �∈ NSIM. (Note that this condition can hold for several indexes i in
NSIM, and indeed it will hold for all indexes of functions which are correlated on
argument x. Note also that the index i = (1, z∗) of the “honest server function”
occurs as the first in NSIM.) If x �∈ XH1 or for all i ∈ NSIM v �= fi(x) then the
processing is as before, i.e. the game processes this query as a call to R((v, 1), x).
We show the modification done by Game 10 in Fig. 8.

– H2: On new input (x, v) from A for v ∈ G:
1. If x ∈ XH1 and v = (gk)ux : Set i ← (1, gk), send R(i, x) to A
2. If x ∈ XH1 and v �= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i

to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A
3. Else set i ← (v, 1). If i N∈� SIM then run Process(i). Send R(i, x) to A.

Fig. 8. Game 10: modification in Fig. 7

Note that this modification doesn’t change the value returned by H2(x, v):
If condition (7) holds then either way H2(x, v) = R(i, x). The only other change
this modification causes is that if (7) holds then function R((v, 1), ·) is not cre-
ated. However, this does not affect any future interactions with the random func-
tion R. Let XH1 and NSIM are the values of these variables at the time R((v, 1), ·)
is created in Game 9. Consider that at some subsequent step an evaluation call,
either C2 or H2, creates a new function R(i, ·) s.t. fi(x) = f(v,1)(x) for some
x ∈ X ′

H1
where X ′

H1
and N ′

SIM denote the new values of these variables. Assume
also that until this point there was no other opportunity to create R((v, 1), ·)
in Game 10, i.e. i = (v, 1) was not used in oracle C2, and H2(x′, v) was not
queried on any x′ s.t. fi(x′) �= v for some i ∈ N ′

SIM. (This is the case when
the modification of Game 10 can affect the security experiment.) There are two
cases to consider: (1) If x ∈ XH1 and f(v,1)(x) = fj(x) for some j ∈ NSIM, then
whether or not R((v, 1), ·) is created in both games it holds that R(i, x) = R(j, c);
(2) If x �∈ XH1 , or x ∈ XH1 but f(v,1)(x) �= fj(x) for any j ∈ NSIM, then
R((v, 1), x) is uncorrelated with previous functions, but since R((v, 1), x) is not
used before, it does not matter if R(i, x) is chosen at random or assigned as
R(i, x) ← R((v, 1), x). It follows that Game 10 and Game 9 are identical.

Game 11: (Ideal-world interaction) In Fig. 9 we show the ideal-world game,
denoted Game 11, defined by the interaction of simulator SIM of Fig. 5 and
functionality FcorOPRF of Fig. 3. We use the same notation used for Game 9
for the correlated random functions, i.e. we define FS(x) = R((1, z∗), x) and for
all i �= S we define Fi(x) = R(i, x). Also, we rename oracles which the game
implements as in Game 9: S1 implements Z’s query SndrComplete to S, S2
implements Z’s query OfflineEval to S, C1 implements Z’s query Eval to C,
and C2 responds to A’s message (b, z) to C.
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– Init: Initialize RF R, k ←R Z
∗
q , NSIM ← [(1, gk)], XH1 ← {}, tx ← 0.

– H1: On input x �∈ XH1 , pick ux ←R Zq, add x to XH1 , output gux to A.
– S1: On input a ∈ G, send (b, z) = (ak, gk) to A.

If ∃ record (x, w, a, 0) change it to (x, w, a, 1), else tx++.
– S2: On input x, set i ← (1, gk) and send R(i, x) to A.
– C1: On input x, pick w ←R Zq, store (x, w, a, 0), send a = gw to A.
– C2: On input (b, z) ∈ G

2, recover (x, w, a, ok?) stored by C1 and set δ ← b/zw.
Assign i ← (δ, z). If i N∈� SIM then run Process(i). Send R(i, x) to A.
If S not compromised, ok? = 0, and i = (1, gk) then do:

If tx = 0 then abort the game, else set tx−−
– H2: On new input (x, v) from A for v ∈ G:

1. If x ∈ XH1 and v = (gk)ux : Set i ← (1, gk), send R(i, x) to A, and do:
If S not compromised and tx = 0 then abort the game
If S not compromised and tx > 0 then set tx−−

2. If x ∈ XH1 and v �= (gk)ux , but ∃ (δ, z) ∈ NSIM s.t. v = δ · zux then set i
to the first (δ, z) ∈ NSIM for which it holds and send R(i, x) to A

3. Else set i ← (v, 1). If i N∈� SIM then run Process(i). Send R(i, x) to A.
– S-Compromise: On message (Compromise, S) from A, send k to A.

– Subprocedure Process(i): Parse i as (δ, z) ← i. Define list L s.t.

L = { (j, x) ∈ NSIM × XH1 s.t. j = (δ′, z′) and δ · zux = δ′ · (z′)ux }
Abort it L contains (j, x), (j, x′) s.t. x �= x′.
Otherwise append i to NSIM, and for each (j, x) in L, reset R(i, x) ← R(j, x).

Fig. 9. Game 11: Interaction of Z/A with the ideal-world execution

Figure 9 simplifies the ideal-world game by not accounting for function cor-
relations using edge set E , as done by FcorOPRF, and ignoring some of the con-
ditional clauses in the code of simulator SIM. However, we argue that these
overlooked clauses are never triggered. Assume that whenever sub-procedure
Process(i) programs a correlation R(i, x) ← R(j, x) the game adds set (i, j, x)
to E . The conditional clauses missing from Game 11 figure are in clauses (2)
and (3) in H2 processing. In clause (2), SIM ignores this call, and the game
does not send R(i, x) to A, if S was not compromised and either i = (1, gk)
or (i, (1, gk), x) ∈ E . However, condition i = (1, gk) implies that v = (gk)ux ,
which is excluded by case (2). Likewise, condition (i, (1, gk), x) ∈ E implies that
fi(x) = f(1,gk)(x) = (gk)ux , which would trigger case (1) and is excluded in case
(2). In clause (3) SIM would ignore this call and not send R(i, x) to A under
the same conditions, i.e. if S was not compromised and either i = (1, gk) or
(i, (1, gk), x) ∈ E . Case i = (v, 1) = (1, gk) implies k = 0, which is excluded by
sampling k in Z

∗
q = Zq \ {0}, and case (i, (1, gk), x) ∈ E implies that x ∈ XH1

and fi(x) = f(1,gk)(x), which would trigger clause (1).
Finally, in Fig. 9 in two clauses when tx = 0, in C2 and H2 case (1), we wrote

that the game aborts. In the actual ideal-world game, the first case corresponds to
functionality FcorOPRF dropping the (RcvComplete, ...,C, ...) call from SIM, and
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not sending R(i, x) to C, and thus to Z. The second case corresponds to FcorOPRF

not responding with R(i, x) to SIM’s call (RcvComplete, ...,SIM, ...), in which
case SIM aborts. The difference is in the first case, but it is a syntactical difference
because we can equate Z’s not receiving any output from C in response to
(RcvComplete, ...,C, ...), or any output from H2 call, with the game returning
an abort symbol.

The differences between Game 10 and Game 11, apart of the trivial difference
of constraining key k s.t. k �= 0 in Game 11, consist of the following:

1. S1 either increments tx or changes ok? in some C1-record from 0 to 1.
2. C2 decrements tx if S not compromised, ok? = 0, i = (1, gk), and tx > 0.
3. C2 aborts the game if S not compromised, ok? = 0, i = (1, gk), and tx = 0.
4. H2, clause 1, decrements tx if S not compromised, i = (1, gk), and tx > 0
5. H2, clause 1, aborts the game if S not compromised, i = (1, gk), and tx = 0.

Let E be the event that game aborts either in C2 or H2, denoted resp.
EC2 and EH2 . Note that unless event E happens Game 10 and Game 11 are
identical (except for 1/q probability that k = 0 in Game 10), and that event E
can happen only if S is not compromised, thus the two games diverge only before
S compromise. Note that EC2 requires that i = (1, gk), i.e. that A sends (b, z) to
C2 s.t. z = gk and b = zw = gkw = ak. Call such C2 query k-computed. Note that
EH2 requires that i = (1, gk), i.e. that A queries H2 on (x, v) for v = (hx)k. Call
such H2 query k-computed as well. Since counter tx is decremented, or C-record
(x,w, a, 1) is “processed” only on such k-computed C2 and H2 queries, and tx
is incremented or record (x,w, a, 1) is created with each query to S1, hence E
happens only if A triggers more k-computed C2/H2 queries than S1 queries.

Correlations Monitored only at Evaluation. Before we show that event E can
happen with at most negligible probability, we need to change the way Game 10
and Game 11 build correlations in function R. Instead of setting them at the
time a new function is added, in the modified games the correlations are checked
only when a function is evaluated, i.e. the game keeps track of each referenced
value of function R, i.e. each triple (δ′, z′, x′) s.t. R((δ′, z′), x′) was queried eiter
in S2, C2, or H2. When the game queries a new point, R(i, x) for i = (δ, z),
the game looks for the first record (δ, z′, x′) on the list of queries s.t. x′ = x
and f(δ′,z′)(x) = f(δ,z)(x), i.e. δ′(z′)ux = δ(z)ux . If so, the game first assigns
R(i, x) ← R(i′, x) for i = (δ, z) and i′ = (δ′, z′) and only then replies R(i, x). It
is easy to see that this is an equivalent process of keeping correlations because
indeed the only information about these functions R(i, ·) which the game reveals
is through evaluated points, so it makes no difference if we postpone correlating
values of R(i, x) with R(i′, x) until R(i, x) is actually queried.

We show a reduction to the Gap+-OMDH assumption in the case E happens
in Game 10. Reduction R takes the Gap+-OMDH challenge (g, z∗, h1, . . . , hN )
where N = (qH1 + qC), and responds to A’s queries as follows:
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1. Initialize NSIM ← [(1, z∗)] and S ← [].
2. Embed OMDH challenges into H1 and C1 outputs, i.e. assign each H1(x)

output, and each value a sent by C1, to a unique OMDH challenge hi.
3. On message a to S1, use oracle (·)k to send back b = ak and z = z∗.
4. On query x to S2, set (a, b, z) ← (1, 1, z∗), run Correlate((a, b, z), x), and

output R((a, b, z), x)
5. On message (b, z) to C2, recovers C1 input x and output a, run

Correlate((a, b, z), x), and output R((a, b, z), x).
6. On query (x, v) to H2, set (a, b, z) ← (1, v, 1), run Correlate((a, b, z), x),

and output R((a, b, z), x).
7. If A queries S-Compromise, R aborts.
8. Correlate((a, b, z), x): Return if (a, b, z, x) ∈ S. Otherwise, set hx ← H1(x),

and if ∃ (a′, b′, z′, x) in S s.t.

b · CDHg(z, hx/a) = b′ · CDHg(z′, hx/a′) (8)

then set R((a, b, z), x) ← R((a′, b′, z′), x). Otherwise add (a, b, z, x) to S.

Observe that R can verify Eq. (8) using oracle DDH+
g . Secondly, observe that

b · CDHg(z, hx/a) correctly evaluates fi(x) for the corresponding index i: In S2
we set (a, b, z) = (1, 1, z∗), so b · CDHg(z, hx/a) = CDHg(z∗, hx) = (hx)k where
z∗ = gk, as in Game 10; In C2, in Game 10 we compute fi(x) = f(δ,z)(x) =
δ · (z)ux = δ ·CDH(z, hx), but since δ = b/zw = b ·CDH(z, a−1) this implies that
fi(x) = δ ·CDH(z, hx/a); In H2 we set (a, b, z) = (1, v, 1), so b ·CDHg(z, hx/a) =
v · CDHg(1, hx) = v, also as in Game 10.

Therefore R presents a view which is ideantical to Game 10 as long as S-
Compromise is not queried. Therefore event E occurs in the interaction with
R with the same probability as in Game 10. Let Q = qS be the number of S1
queries, hence the number of (·)k oracle accesses by R. Event E implies that the
number of k-computed C2 queries and k-computed H2 queries is larger than Q,
i.e. at least Q+1. Note that a k-computed H2 query is a pair (x, v) s.t. v = (hx)k,
so each such query computes (hi)k = CDH(hi, z

∗) on a unique OMDH challenge
hi. Likewise, a k-computed C2 query is a response (b, z) = (ak, gk) to C1’s
message a, and since R embeds a unique OMDH challenge hi into each a, such
query also computes ak = CDH(hi, z

∗) on a unique OMDH challenge hi. Since R
can use DDH+

g oracle to implement DDH, and test whether any H2 or C2 query
is k-computed, R will solve Q + 1 OMDH challenges if event E happens, which
implies

|Pr[G11] − Pr[G10]| ≤ εOMDH(G, qH1 , qS)

Summing up we conclude that the real-world and the ideal-world interactions
are indistinguishable under the Gap-OMDH assumption.

5 Strong aPAKE Protocol Based on FcorOPRF

We show that the OPAQUE protocol of [17] remains secure as UC Strong aPAKE
even if it is instantiated with the UC Correlated OPRF of Sect. 3 instead of UC
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OPRF of [11]. This implies that one can safely modify the OPAQUE protocol
by replacing the exponential blinding in the Hashed Diffie-Hellman OPRF with
the multiplicative blinding (as done in [22]), thus shaving off either 1 variable-
base exponentiation from the client, or 2 such exponentiations if the protocol is
routinely performed with the same server.

Technically, we show that the OPAQUE compiler construction of [17], which
shows that OPRF + AKE → saPAKE, can be used to construct UC saPAKE
from any UC Correlated OPRF and any UC AKE which is adaptively secure
and resilient to Key-Compromise Impersonation attack (AKE-KCI). We call
this compiler OPAQUE+ and show it in Fig. 10. It is exactly the same as the
OPAQUE compiler except that the OPRF functionality FOPRF used in [16] is
replaced with the Correlated OPRF functionality FcorOPRF. We show that pro-
tocol OPAQUE+ realizes the UC saPAKE functionality.

The saPAKE and AKE-KCI Functionalities. Protocol OPAQUE+ and its
analysis build on two functionalities from of [16]: The (strong) aPAKE function-
ality FsaPAKE and the adaptively-secure UC AKE-KCI functionality FAKE−KCI.
We refer to that paper for their detailed description and rationale. We note that
AKE-KCI protocol can be instantiated, for example, by the 3-message version of
the HMQV protocol, called HMQV-C in [20], or the 3-message SIGMA protocol
[19] underlying the design of TLS 1.3.

Security of OPAQUE+. We now state the security of OPAQUE+ in
Theorem 2. As in [17], we assume that the adversary A always sends
(Compromise, sid) aimed at FcorOPRF and (StealPwdFile, sid) aimed at S
simultaneously, since in the real world when the attacker compromises the server,
the corresponding OPRF session is always compromised simultaneously.

Theorem 2. If protocol Π realizes functionality FAKE−KCI, then protocol
OPAQUE+ in Fig. 10 realizes the strong aPAKE functionality FsaPAKE in the
(FcorOPRF,FRO)-hybrid model.

The security argument is very similar to that of OPAQUE in [17]; we briefly
explain the differences. First of all, note that when the adversary acts as the client
in Correlated OPRF, its power is exactly the same as the client in OPRF, hence
for that case the security argument is the same in OPAQUE+ as in OPAQUE.

Secondly, an additional power which Correlated OPRF gives to the adversary
is to make correlations between OPRF functions while acting as the server. Yet,
this does not change the fact that for every function index i (no matter if i = S
or i is an index created by the adversary) and every value y ∈ {0, 1}�, with
overwhelming probability there is at most one argument x s.t. y = Fi(x). In
Correlated OPRF the adversary can find Fi with two arguments that form a
collision in Fi if it finds (i1, x1) and (i2, x2) s.t. Fi1(x1) = Fi2(x2) and then sets
Fi to be correlated with Fi1 on x1 and with Fi2 on x2. In OPRF the adversary
must look for such collisions within each function separately, but in either case
the probability of a collision is upper-bounded by q2/2� where q is the number
of F evaluations on all indices. Hence the ciphertext c∗ sent from the adversary
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Public Components:

– KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pu, Pu;
– Random-key robust and equivocable authenticated encryption

(AuthEnc,AuthDec) (see [17] for definitions of these properties);
– Functionality FcorOPRF with output length parameter τ ;

Password Registration

1. On input (StorePwdFile, sid,C, pw), S generates keys (ps, Ps) and
(pc, Pc) and sends (Init, sid) and (OfflineEval, sid, S, pw, ⊥) to
FcorOPRF. On FcorOPRF’s response (OfflineEval, sid, rw), S computes
c ← AuthEncrw(pc, Pc, Ps) and records file[sid] ← (ps, Ps, Pc, c).

Server Compromise

1. On (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.

Login

1. On (UsrSession, sid, ssid, S, pw′), C sends (Eval, sid, ssid, S, pw′) to FcorOPRF

and records FcorOPRF’s response (Prefix, ssid, prfx).
2. On (SvrSession, sid, ssid), S retrieves file[sid] = (ps, Ps, Pc, c), sends c to C,

sends (SndrComplete, sid, ssid) to FcorOPRF, and given FcorOPRF’s response
(Prefix, ssid, prfx′) it runs Π on input (ps, Ps, Pc) and ssidΠ = [ssid||prfx′].

3. On (Eval, sid, ssid, rw′) from FcorOPRF and c from S, C computes m ←
AuthDecrw′(c). If m = (p′

c, P
′
c, P

′
s) then C retrieves (Prefix, ssid, prfx) and runs

Π on input (p′
c, P

′
c, P

′
s) and ssidΠ = [ssid||prfx]; else C outputs (abort, sid, ssid)

and halts.
4. Given Π’s local output SK, each party outputs (sid, ssid, SK).

Fig. 10. OPAQUE+: Strong aPAKE in the (FcorOPRF,FRO)-Hybrid World

to an honest client together with index i∗ of the random function Fi∗ which the
adversary makes that honest client compute on its password, together commit to
a unique password guess pw∗ such that AuthDecrw∗(c∗) �=⊥ for rw∗ = Fi∗(pw∗).

Lastly, in the Correlated OPRF an adversarial function Fi∗ is not guaranteed
to be completely independent from the honest server’s function Fk for every
i∗ �= S. Instead, the adversary can correlate Fi∗ with Fk, although on only a
single point x. This allows the adversary a potentially damaging behavior in
which it forwards ciphertext c∗ = c from the honest server to the honest client
and lets the honest client evaluate Fi∗ on its password. In case both parties’
passwords are equal to x the client will compute Fi∗(x) = Fk(x), and thus the
two parties will establish a key if their shared passwords are equal to x, and
fail to establish a key otherwise. This “conditional password test” could not be
done in protocol OPAQUE, and yet it is not an attack on saPAKE, because it
requires the adversary to guess the password; therefore, the simulator can (1)
use a TestAbort command to check if the client and server’s passwords match,
and if so, it can then (2) use a TestPwd command to check if the adversary’s
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password guess is correct. If both checks pass, the simulator can compromise
both client’s and server’s sessions, and make these two sessions connect with the
same session key; if either check fails, the simulator can force the client to abort.

We present the full proof of Theorem2 in the full version of this paper [15].

6 Concrete OPAQUE+ Instantiation Using HMQV

Figure 11 shows a concrete instantiation of protocol OPAQUE+ of Fig. 10, where
the UC Correlated OPRF is instantiated with protocol Mult-2HashDH, and UC
AKE is instantiated with HMQV [20]. Note that the protocol takes 3 flows
(τs can be piggybacked with S’s earlier message), and 2 fixed-base (fb) and 2
variable-base (vb) (multi-base) exp’s for C and resp. 1fb and 2vb exp’s for S.

7 Insecure Applications of Multiplicative Blinding

As we noted in the introduction, the correlations allowed by Mult-2HashDH can
be exploited in some applications for the benefit of a corrupt server. We illustrate
this ability with several examples.

Consider a setting where a client C with input x interacts using
Mult-2HashDH with a server S with key k to compute y = Fk(x) = H2(x, (hx)k)
where hx denotes H1(x). C then uses y for some task; for concreteness, think of
x as a password and y as a key that allows C to authenticate to some applica-
tion. At some point S becomes corrupted and wants to check whether a given
value x′ equals the user’s input x. Using correlations as described in the intro-
duction, e.g., Eq. (3), S mounts the following attack: When C sends its blinded
value a = hxgr, S chooses random k′, sets z = gk′

and b = (hx′)k−k′
ak′

, and
sends (b, z) to C, who computes the unblinded value v = b(z)−r and outputs
y′ = H2(x, v). It can be checked that v = (hx)k if and only if x′ = x.8 If S can
observe whether C recovered the correct value y′ = y, e.g. whether it successfully
authenticated using the recoverd y′, then S learns whether C’s secret x equals
S’s guess x′.

The Correlated OPRF functionality, which Mult-2HashDH realizes, assures
that server S cannot test more than one guess x′ per interaction, and while in
some applications, like the PAKE protocol OPAQUE, this ability doesn’t affect
the application, e.g. because the application itself allows the attacker such on-line
guess-and-test avenue, in other cases this suffices to break the application. Below
we show a few application examples which are all secure with Exp-2HashDH,
but not with Mult-2HashDH. In all examples the application doesn’t expose the
client to on-line attacks, and using Exp-2HashDH ensures that the implemen-
tation does not either, but using Mult-2HashDH adds this exposure and breaks
the application.

8 Observe that v = bz−r = (hx′)k−k′
(hxgr)k′

(gk′
)−r = hk

x′(hx′/hx)k′
, hence v = (hx)k

iff hx = hx′ . Using the terminology of Eq. (2), C computes y′ = F(δ,z)(x) for F(δ,z)

which is correlated with Fk on x′, hence y′ = Fk(x) iff x = x′.
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Public Parameters and Components
Group G of prime order q with generator g;
Random-key robust and equivocable authenticated encryption
(AuthEnc,AuthDec) (see [17] for definitions of these properties);
Hash functions H1, H3, H5 : {0, 1}∗ → {0, 1}τ , H2 : {0, 1}∗ →G, H4 : {0, 1}∗ → Zq

Pseudorandom function (PRF) f : {0, 1}∗ → {0, 1}τ

S on (StorePwdFile, sid, pw)

Pick k, ps, pc ←R Zq, set (z, Ps, Pc) ← (gk, gps , gpc), rw ← Fk(pw), c ←
AuthEncrw(pc, Ps); record file[sid] ← 〈k, z, c, ps, Pc〉 and erase everything else

C on (UsrSession, sid, ssid, S, pw) S on (SvrSession, sid, ssid)

retrieve 〈k, z, c, ps, Pc〉 ← file[sid]
r, xc ←R Zq xs ←R Zq

a ← H2(pw) · gr, Xc ← gxc �a, Xc

rw ← H1(pw, b · z−r) �b, z, Xs, c
b ← ak, Xs ← gxs

parse (pc, Ps) ← AuthDecrw(c)
(if this parsing fails C outputs abort)

C and S set ssid′ ← H5(sid, ssid, a), ec ← H4(Xc, S, ssid′), es ← H4(Xs,C, ssid′)
K ← H3 (XsP

es
s )xc+ecpc

)
K ← H3 (XcP

ec
c )xs+esps

)

� τs τs ← fK(1, ssid′)

if τs �= fK(1, ssid′): (SK, τc) ← (⊥, ⊥)
else: SK ← fK(0, ssid′) and τc ← fK(2, ssid′)

�τc if τc �= fK(2, ssid′): SK ← ⊥
else: SK ← fK(0, ssid′)

output (sid, ssid, SK (tuptuo) sid, ssid, SK)

Fig. 11. Protocol OPAQUE+ (Fig. 10) with Mult-2HashDH and HMQV

OPAQUE with Outsourced Envelope. Recall that OPAQUE [17] combines
an OPRF with an authenticated key-exchange (AKE) protocol as follows: At
registration, the server and the user choose private-public AKE key pairs. The
user then runs an OPRF with the server where the user’s input is a password pw
and the server’s input is an OPRF key k. The output of the OPRF, learned only
by the user, is a random key rw = Fk(pw), and the user uses rw to authenticate-
encrypt her AKE private key and the server’s public key. The ciphertext c that
results from this encryption is stored by the server, together with the OPRF
key k, the user’s public AKE key, and the server’s AKE key pair. At login, the
user runs the OPRF with the server on input pw, learns rw, uses rw to decrypt
its own private key and the server’s public key encrypted in c, and uses these
keys to run the AKE with the server. Only a user in possession of the registered
password can successfully run the AKE.
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However, consider a modification where the user stores ciphertext c at some
other location than server S, e.g. a laptop or another server. In this case a
malicious S, who holds only OPRF key k and the AKE keys, cannot stage either
online or offline attacks on the user’s password: Without ciphertext c, S cannot
test candidate values rw = Fk(pw). However, this property is not ensured if
OPRF is implemented with Mult-2HashDH. Indeed, using the strategy described
above, a malicious S can test whether the user’s password is equal to a chosen
pw∗, by running login using function Fk∗ which is correlated on argument pw∗

with function Fk used in registration. If the user recovers its credentials and
authenticates in that login, S learns that pw = pw∗. Crucially, this online attack
opportunity for server S is not available using Exp-2HashDH.

Device-Enhanced PAKE. [14,24] presents a password protocol that uses an
auxiliary device (typically a smartphone but can also be an online server) in the
role of a password manager. When the user wishes to password-authenticate to a
server S, it communicates with the device who holds key k for 2HashDH OPRF.
The user’s input to the OPRF is her password, and the OPRF result rw = Fk(pw)
is used as the “randomized” password with service S. Using Exp-2HashDH, a
corrupt device learns nothing about the user’s password, but it can test a guess
for the user’s password at the cost of one online interaction with S per guess.
However, using Mult-2HashDH, the corrupt device can validate a guess without
interacting with S, by watching if the user’s interaction with S succeeded, thus
resulting in weaker security guarantees.

Threshold OPRF (Including Threshold OPAQUE). A multi-server
threshold implementation of Exp-2HashDH is presented in [12]. It ensures the
security of the OPRF as long as no more than a threshold of servers are compro-
mised. Such threshold OPRF can be used e.g. to construct Password-Protected
Secret Sharing (PPSS) [1,11], which in turn can implement Threshold PAKE. It
is straightforward to see that the above correlation attacks apply to these con-
structions if Exp-2HashDH is replaced with Mult-2HashDH. They allow a single
corrupted server to choose correlated values with which it can verify guesses for
the client’s inputs. As an illustration, consider a 2-out-of-2 Threshold OPRF
that computes hk

x as hk1+k2
x using two servers S1, S2 with respective keys k1, k2.

Such a scheme should ensure that nothing can be learned about the input x
without compromising both servers. However, a corrupted S2 can check whether
C’s input x equals any guess x′ by mounting the above attack using ony key
k2. If C reconstructs the correct y, then x = x′. This attack also applies to
OPAQUE with a multi-server threshold implementation of Mult-2HashDH.

All these examples show that in order to use Mult-2HashDH in an application
where an authenticated gk is not available to the client, a dedicated proof of
security (as the one we develop here for OPAQUE) is essential. Even in that
case, one can consider this as “fragile evidence”, as eventual changes to the
application may void the security proof. Thus a safer alternative is to use the
scheme (4) presented in the introduction, which implements UC OPRF using
both forms of blinding, and would be secure in all the above applications.
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Abstract. The Signal protocol is a secure instant messaging protocol
that underlies the security of numerous applications such as WhatsApp,
Skype, Facebook Messenger among many others. The Signal protocol
consists of two sub-protocols known as the X3DH protocol and the dou-
ble ratchet protocol, where the latter has recently gained much atten-
tion. For instance, Alwen, Coretti, and Dodis (Eurocrypt’19) provided
a concrete security model along with a generic construction based on
simple building blocks that are instantiable from versatile assumptions,
including post-quantum ones. In contrast, as far as we are aware, works
focusing on the X3DH protocol seem limited.

In this work, we cast the X3DH protocol as a specific type of authen-
ticated key exchange (AKE) protocol, which we call a Signal-conforming
AKE protocol, and formally define its security model based on the vast
prior work on AKE protocols. We then provide the first efficient generic
construction of a Signal-conforming AKE protocol based on standard
cryptographic primitives such as key encapsulation mechanisms (KEM)
and signature schemes. Specifically, this results in the first post-quantum
secure replacement of the X3DH protocol on well-established assump-
tions. Similar to the X3DH protocol, our Signal-conforming AKE proto-
col offers a strong (or stronger) flavor of security, where the exchanged
key remains secure even when all the non-trivial combinations of the long-
term secrets and session-specific secrets are compromised. Moreover, our
protocol has a weak flavor of deniability and we further show how to
strengthen it using ring signatures. Finally, we provide a full-fledged,
generic C implementation of our (weakly deniable) protocol. We instan-
tiate it with several Round 3 candidates (finalists and alternates) to the
NIST post-quantum standardization process and compare the resulting
bandwidth and computation performances. Our implementation is pub-
licly available.
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1 Introduction

Secure instant messaging (SIM) ensures privacy and security by making sure that
only the person you are sending the message to can read the message, a.k.a. end-
to-end encryption. With the ever-growing awareness against mass-surveillance
of communications, people have become more privacy-aware and the demand
for SIM has been steadily increasing. While there have been a range of SIM
protocols, the Signal protocol [1] is widely regarded as the gold standard. Not
only is it used by the Signal app1, the Signal protocol is also used by WhatsApp,
Skype, Facebook Messenger among many others, where the number of active
users is well over 2 billions. One of the reasons for such popularity is due to the
simplicity and the strong security properties it provides, such as forward secrecy
and post-compromise secrecy, while simultaneously allowing for the same user
experience as any (non-cryptographically secure) instant messaging app.

The Signal protocol consists of two sub-protocols: the X3DH protocol [45]
and the double ratchet protocol [44]. The former protocol can be viewed as a type
of key exchange protocol allowing two parties to exchange a secure initial session
key. The latter protocol is executed after the X3DH protocol and it allows two
parties to perform a secure back-and-forth message delivery. Below, we briefly
recall the current affair of these two protocols.

The Double Ratchet Protocol. The first attempt at a full security analysis
of the Signal protocol was made by Cohn-Gordon et al. [18,19]. They considered
the Signal protocol as one large protocol and analyzed the security guarantees in
its entirety. Since the double ratchet protocol was understood to be the root of
the complexity, many subsequent works aimed at further abstracting and formal-
izing (and in some cases enhancing) the security of the double ratchet protocol
by viewing it as a stand-alone protocol [2,9,26,36,37,49]. Under these works, our
understanding of the double ratchet protocol has much matured. Notably, Alwen
et al. [2] fully abstracted the complex Diffie-Hellman based double ratchet pro-
tocol used by Signal and provided a concrete security model along with a generic
construction based on simple building blocks. Since these blocks are instantiable
from versatile assumptions, including post-quantum ones, their work resulted in
the first post-quantum secure double ratchet protocol. Here, we elucidate that all
the aforementioned works analyze the double ratchet protocol as a stand-alone
primitive, and hence, it is assumed that any two parties can securely share an
initial session key, for instance, by executing a “secure” X3DH protocol.

The X3DH Protocol. In contrast, other than the white paper offered by Sig-
nal [45] and those indirectly considered by Cohn-Gordon et al. [18,19], works
focusing on the X3DH protocol seems to be limited. As far as we are aware,
there is one recent work that studies the formalization [14] and a few papers
that study one of the appealing security properties, known as (off-line) deniabil-
ity, claimed by the X3DH protocol [51–53].

1 The name Signal is used to point to the app and the protocol.
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Brendel et al. [14] abstract the X3DH protocol and provides the first generic
construction based on a new primitive they call a split key encapsulation mecha-
nism (KEM). However, so far, instantiations of split KEMs with strong security
guarantees required for the X3DH protocol are limited to Diffie-Hellman style
assumptions. In fact, the recent result of Guo et al. [33] implies that it would be
difficult to construct them from one of the promising post-quantum candidates:
lattice-based assumptions (and presumably coded-based assumptions). On the
other hand, Vatandas et al. [53] study one of the security guarantees widely
assumed for the X3DH protocol called (off-line) deniability [45, Section 4.4] and
showed that a strong knowledge-type assumption would be necessary to formally
prove it. Unger and Goldberg [51,52] construct several protocols that can be used
as a drop-in replacement of the X3DH protocol that achieves a strong flavor of
(on-line) deniability from standard assumptions, albeit by making a noticeable
sacrifice in the security against key-compromise attacks: a type of attack that
exploits leaked secret information of a party. For instance, while the X3DH pro-
tocol is secure against key-compromise impersonation (KCI) attacks [11],2 the
protocols of Unger and Goldberg are no longer secure against such attacks.3

Motivation. In summary, although we have a rough understanding of what the
X3DH protocol offers [18,19,45], the current state of affairs is unsatisfactory for
the following reasons, and making progress on these issues will be the focus of
this work:

– It is difficult to formally understand the security guarantees offered by the
X3DH protocol or to make a meaningful comparison among different protocols
achieving the same functionality as the X3DH protocol without a clearly
defined security model.

– The X3DH protocol is so far only instantiable from Diffie-Hellman style
assumptions [14] and it is unclear whether such assumptions are inherent
to the Signal protocol.

– Ideally, similarly to what Alwen et al. [2] did for the double ratchet protocol,
we would like to abstract the X3DH protocol and have a generic construc-
tion based on simple building blocks that can be instantiated from versatile
assumptions, including but not limited to post-quantum ones.

– No matter how secure the double ratchet protocol is, we cannot completely
secure the Signal protocol if the initial X3DH protocol is the weakest link
in the chain (e.g., insecure against state-leakage and only offering security
against classical adversaries).

2 Although [45, Section 4.6] states that the X3DH protocol is susceptible to KCI
attacks, this is only because they consider the scenario where the session-specific
secret is compromised. If we consider the standard KCI attack scenario where the
long-term secret is the only information being compromised [11], then the X3DH
protocol is secure. .

3 Being vulnerable against KCI attacks seems to be intrinsic to on-line deniability [45,
51,52].
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1.1 Our Contribution

In this work, we cast the X3DH protocol (see Fig. 1) as a specific type of authen-
ticated key exchange (AKE) protocol, which we call a Signal-conforming AKE
protocol, and define its security model based on the vast prior work on AKE pro-
tocols. We then provide an efficient generic construction of a Signal-conforming
AKE protocol based on standard cryptographic primitives: an (IND-CCA secure)
KEM, a signature scheme, and a pseudorandom function (PRF). Since all of
these primitives can be based on well-established post-quantum assumptions,
this results in the first post-quantum secure replacement of the X3DH pro-
tocol. Similarly to the X3DH protocol, our Signal-conforming AKE protocol
offers a strong flavor of key-compromise security. Borrowing terminologies from
AKE-related literature, our protocol is proven secure in the strong Canetti-
Krawczyk (CK) type security models [15,30,39,42], where the exchanged ses-
sion key remains secure even if all the non-trivial combinations of the long-term
secrets and session-specific secrets of the parties are compromised. In fact, our
protocol is more secure than the X3DH protocol since it is even secure against
KCI-attacks where the parties’ session-specific secrets are compromised (see
Footnote 5).4 We believe the level of security offered by our Signal-conforming
AKE protocol aligns with the level of security guaranteed by the double ratchet
protocol where (a specific notion of) security still holds even when such secrets
are compromised. Moreover, while our Signal-conforming AKE already provides
a weak form of deniability, we can strengthen its deniability by using a ring
signature scheme instead of a signature scheme. Likewise to the X3DH pro-
tocol [53] although our construction seemingly offers (off-line) deniability, the
formal proof relies on a strong knowledge-type assumption. However, relying on
such assumptions seems unavoidable considering that all known deniable AKE
protocols secure against key-compromise attacks, including the X3DH protocol,
rely on them [24,53,57].

We implemented our (weakly deniable) Signal-conforming AKE protocol in
C, building on the open source libraries PQClean and LibTomCrypt. Our imple-
mentation5 is fully generic and can thus be instantiated with a wide range of
KEMs and signature schemes. We instantiate it with several Round 3 candidates
(finalists and alternates) to the NIST post-quantum standardization process, and
compare the bandwidth and computation costs that result from these choices.
Our protocol performs best with “balanced” schemes, for example most lattice-
based schemes. The isogeny-based scheme SIKE offers good bandwidth perfor-
mance, but entails a significant computation cost. Finally, schemes with large
public keys (Classic McEliece, Rainbow, etc.) do not seem to be a good match
for our protocol, since these keys are transferred at each run of the protocol.

4 The X3DH can be made secure against leakge of session-specific secrets by using
NAXOS trick [42], but it requires additional computation. Because it affects effi-
ciency, we do not consider AKE protocols using NAXOS trick (e.g., [30,40,56]).

5 It is available at the URL [41].
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1.2 Technical Overview

We now briefly recall the X3DH protocol and abstract its required properties by
viewing it through the lens of AKE protocols. We then provide an overview of
how to construct a Signal-conforming AKE protocol from standard assumptions.

Recap on the X3DH Protocol. At a high level, the X3DH protocol allows for
an asynchronous key exchange where two parties, say Alice and Bob, exchange a
session key without having to be online at the same time. Even more, the party,
say Bob, that wishes to send a secure message to Alice can do so without Alice
even knowing Bob. For instance, imagine the scenario where you send a friend
request and a message at the same time before being accepted as a friend. At
first glance, it seems what we require is a non-interactive key exchange (NIKE)
since Bob needs to exchange a key with Alice who is offline, while Alice does not
yet know that Bob is trying to communicate with her. Unfortunately, solutions
based on NIKEs are undesirable since they either provide weaker guarantees than
standard (interactive) AKE or exhibit inefficient constructions [10,17,29,50].

The X3DH protocol circumvents this issue by considering an untrusted server
(e.g., the Signal server) to sit in the middle between Alice and Bob to serve as a
public bulletin board. That is, the parties can store and retrieve information from
the server while the server is not assumed to act honestly. A simplified description
of the X3DH protocol, which still satisfies our purpose, based on the classical
Diffie-Hellman (DH) key exchange is provided in Fig. 1.6 As the first step, Alice
sends her DH component gx ∈ G to the server7 and then possibly goes offline. We
point out that Alice does not need to know who she will be communicating with
at this point. Bob, who may ad-hocly decide to communicate with Alice, then
fetches Alice’s first message from the server and uploads its DH component gy

to the server. As in a typical DH key exchange, Bob computes the session key kB
using the long-term secret exponent b ∈ Zp and session-specific secret exponent
y ∈ Zp. Since Bob can compute the session key kB while Alice is offline, he can
begin executing the subsequent double ratchet protocol without waiting for Alice
to come online. Whenever Alice comes online, she can fetch whatever message
Bob sent from the server.

Casting the X3DH Protocol as an AKE Protocol. It is not difficult to
see that the X3DH protocol can be cast as a specific type of AKE protocol. In
particular, we can think of the server as an adversary that tries to mount a man-
in-the-middle (MIM) attack in a standard AKE protocol. Viewing the server as
a malicious adversary, rather than some semi-honest entity, has two benefits:
the parties do not need to put trust in the server since the protocol is supposed

6 We assume Alice and Bob know each other’s long-term key. In practice, this can be
enforced by “out-of-bound” authentications (see [45, Section 4.1]).

7 In the actual protocol, Alice also signs gx sent to the server (i.e., signed pre-keys).
We ignore this subtlety as it does not play a crucial role in the analysis of security.
See Remark 4.2 for more detail. Also, we note that in practice, Bob may initiate the
double ratchet protocol using kB and send his message to Alice along with gy to the
server before Alice responds. .



An Efficient and Generic Construction for Signal’s Handshake (X3DH) 415

Fig. 1. Simplified description of the X3DH Protocol. Alice and Bob have the long-term
key pairs (lpkA, lskA) and (lpkB, lskB), respectively. Alice and Bob agree on a session key
kA = kB, where KDF denotes a key derivation function.

to be secure even against a malicious server, while the server or the company
providing the app is relieved from having to “prove” that it is behaving honestly.
One distinguishing feature required by the X3DH protocol when viewed as an
AKE protocol is that it needs to be a two-round protocol where the initiator
message is generated independently from the receiver. That is, Alice needs to
be able to store her first message to the server without knowing who she will
be communicating with. In this work, we define an AKE protocol with such
functionality as a Signal-conforming AKE protocol.

Regarding the security model for a Signal-conforming AKE protocol, we
base it on the vast prior works on AKE protocols. Specifically, we build on the
recent formalization of [20,32] that study the tightness of efficient AKE proto-
cols (including a slight variant of the X3DH protocol) and strengthen the model
to also incorporate state leakage compromise; a model where an adversary can
obtain session-specific information called session-state. Since the double ratchet
protocol considers a very strong form of state leakage security, we believe it
would be the most rational design choice to discuss the X3DH protocol in a
security model that captures such leakage as well. Informally, we consider our
Signal-conforming AKE protocol in the Canetti-Krawczyk (CK) type security
model [15,30,39,42], which is a strengthening of the Bellare-Rogaway security
model [7] considered by [20,32]. A detailed discussion and comparison between
ours and the numerous other security models of AKE protocols are provided in
Sect. 3.

Lack of Signal-Conforming AKE Protocol. The main feature of a Signal-
conforming AKE protocol is that the initiator’s message does not depend on the
receiver. Although this seems like a very natural feature considering DH-type
AKE protocols, it turns out that they are quite unique (see Brendel et al. [14] for
some discussion). For instance, as far as we are aware, the only other assump-



416 K. Hashimoto et al.

tion that allows for a clean analog of the X3DH protocol is based on the gap
CSIDH assumption recently introduced by De Kock et al. [22] and Kawashima
et al. [38]. Considering the community is still in the process of assessing the con-
crete parameter selection for standard CSIDH [13,48], it would be desirable to
base the X3DH protocol on more well-established and versatile assumptions. On
the other hand, when we turn our eyes to known generic construction of AKE
protocols [30,31,34,54,55] that can be instantiated from versatile assumptions,
including post-quantum ones, we observe that none of them is Signal-conforming.
That is, they are all either non-2-round or the initiator’s message depends on
the public key of the receiver.

Our Construction. To this end, in this work, we provide a new practical
generic construction of a Signal-conforming AKE protocol from an (IND-CCA
secure) KEM and a signature scheme. We believe this may be of independent
interest in other scenarios where we require an AKE protocol that has a fla-
vor of “receiver obliviousness.”8 The construction is simple: The construction
is simple: Let us assume Alice and Bob’s long-term key consist of KEM key
pairs (ekA, dkA) and (ekB, dkB) and signature key pairs (vkA, skA) and (vkB, skB),
respectively. The Signal-conforming AKE protocol then starts by Alice (i.e., the
initiator) generating a session-specific KEM key (ekT , dkT ) and sending ekT to
Bob (i.e., the receiver).9 Here, observe that Alice’s message does not depend on
who she will be communicating with. Bob then constructs two ciphertexts: one
using Alice’s long-term key (KA,CA) ← KEM.Encap(ekA) and another using the
session-specific key (KT ,CT ) ← KEM.Encap(ekT ). It then signs these ciphertext
M := (CA,CT ) as σB ← SIG.Sign(skB,M), where we include other session-specific
components in M in the actual construction. Since sending σB in the clear may
serve as public evidence that Bob communicated with Alice, Bob will hide this.
To this end, he derives two keys, a session key kAKE and a one-time pad key kOTP,
by running a key derivation function on input the random KEM keys (KA,KT ).
Bob then sends (CA,CT , c := σB ⊕ kOTP) to Alice and sets the session key as
kAKE. Once Alice receives the message from Bob, she decrypts the ciphertexts
(CA,CT ), derives the two keys (kAKE, kOPT), and checks if σ := c ⊕ kOTP is a
valid signature of Bob’s. If so, she sets the session key as kAKE. At a high level,
Alice (explicitly) authenticates Bob through verifying Bob’s signature and Bob
(implicitly) authenticates Alice since Alice is the only party that can decrypt
both ciphertexts (CA,CT ). We turn this intuition into a formal proof and show
that our scheme satisfies a strong flavor of security where the shared session
key remains pseudorandom even to an adversary that can obtain any non-trivial
combinations of the long-term private keys (i.e., dkA, dkB, skA, skB) and session-
specific secret keys (i.e., dkT ). Notably, our protocol satisfies a stronger notion
of security compared to the X3DH protocol since it prevents an adversary to

8 This property has also been called as post-specified peers [16] in the context of Inter-
net Key Exchange (IKE) protocols.

9 As we briefly commented in Footnote 10, Alice can sign her message ekT as in the
X3DH protocol. This will only make our protocol more secure. See Remark 4.2 for
more detail.
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impersonate Alice even if her session-specific secret key is compromised [45,
Section 4.6].

Finally, our Signal-conforming AKE protocol already satisfies a limited form
of deniability where the publicly exchanged messages do not directly leak the
participant of the protocol. However, if Alice at a later point gets compromised
or turns malicious, she can publicize the signature σB sent from Bob to crypto-
graphically prove that Bob was communicating with Alice. This is in contrast
to the X3DH protocol that does not allow such a deniability attack. We, there-
fore, show that we can protect Bob from such attacks by replacing the signature
scheme with a ring signature scheme. In particular, Alice now further sends a
session-specific ring signature verification key vkT , and Bob signs to the ring
{vkT , vkB}. Effectively, when Alice outputs a signature from Bob σB,T , she can-
not fully convince a third party whether it originates from Bob since she could
have signed σB,T using her signing key skT corresponding to vkT . Although the
intuition is clear, it turns out that turning this into a formal proof is quite
difficult. Similar to all previous works on AKE protocols satisfying a strong fla-
vor of key-compromise security [24,57] (including the X3DH protocol [53]), the
proof of deniability must rely on a strong knowledge-type assumption. We leave
it as future work to investigate the deniability of our Signal-conforming AKE
protocols from more standard assumptions.

2 Preliminaries

The operator ⊕ denotes bit-wise “XOR”, and ‖ denotes string concatenation.
For n ∈ N, we write [n] to denote the set [n] := {1, . . . , n}. For j ∈ [n], we
write [n\j] to denote the set [n\j] := {1, . . . , n} \ {j}. We denote by x ←$S the
sampling of an element x uniformly at random from a finite set S. PPT (resp.
QPT) stands for probabilistic (resp. quantum) polynomial time. Due to page
limitation, we refer standard definitions to the full version.

3 Security Model for Signal-Conforming AKE Protocols

In this section, we define a security model for a Signal-conforming authenticated
key exchange (AKE) protocol; AKE protocols that can be used as a drop-in
replacement of the X3DH protocol. We first provide in Sects. 3.1 to 3.3 a game-
based security model building on the recent formalization of [20,32] targeting
general AKE protocols. We then discuss in Sect. 3.4 the modifications needed to
make it Signal-conforming. A detailed comparison and discussion between ours
and other various security models for AKE protocols are provided in Sect. 3.5.

3.1 Execution Environment

We consider a system of μ parties P1 , . . . ,Pμ. Each party Pi is represented by a
set of � oracles

{
π1

i , . . . , π�
i

}
, where each oracle corresponds to a single execution
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of a protocol, and � ∈ N is the maximum number of protocol sessions per party.
Each oracle is equipped with fixed randomness but is otherwise deterministic.
Each oracle πs

i has access to the long-term key pair (lpki, lski) of Pi and the public
keys of all other parties, and maintains a list of the following local variables:

– rands
i is the randomness hard-wired to πs

i ;
– sids

i (“session identifier”) stores the identity of the session as specified by the
protocol;

– Pids
i (“peer id”) stores the identity of the intended communication partner;

– Ψs
i ∈ {⊥, accept, reject} indicates whether oracle πs

i has successfully com-
pleted the protocol execution and “accepted” the resulting key;

– ks
i stores the session key computed by πs

i ;
– states

i holds the (secret) session-state values and intermediary results required
by the session;

– roles
i ∈ {⊥, init, resp} indicates πs

i ’s role during the protocol execution.

For each oracle πs
i , these variables, except the randomness, are initialized to ⊥.

An AKE protocol is executed interactively between two oracles. An oracle that
first sends a message is called an initiator (role = init) and a party that first
receives a message is called a responder (role = resp). The computed session
key is assigned to the variable ks

i if and only if πs
i reaches the accept state, that

is, ks
i �= ⊥ ⇐⇒ Ψs

i = accept.

Partnering. To exclude trivial attacks in the security model, we need to define
a notion of “partnering” of two oracles. Intuitively, this dictates which oracles
can be corrupted without trivializing the security game. We define the notion
of partnering via session-identifiers following the work of [15,23]. Discussions on
other possible choices of the definition for partnering is provide in Sect. 3.5.

Definition 3.1 (Partner Oracles). For any (i, j, s, t) ∈ [μ]2 × [�]2 with i �= j,
we say that oracles πs

i and πt
j are partners if (1) Pids

i = j and Pidt
j = i; (2)

roles
i �= rolet

j; and (3) sids
i = sidt

j.

For correctness, we require that two oracles executing the AKE protocol faith-
fully (i.e., without adversarial interaction) derive identical session-identifiers. We
also require that two such oracles reach the accept state and derive identical ses-
sion keys except with all but a negligible probability. We call a set S ⊆ ([μ]×[�])2

to have a valid pairing if the following properties hold:

– For all ((i, s), (j, t)) ∈ S, i ≤ j.
– For all (i, s) ∈ [μ] × [�], there exists a unique (j, t) ∈ [μ] × [�] such that i �= j

and either ((i, s), (j, t)) ∈ S or ((j, t), (i, s)) ∈ S.

In other words, a set with a valid pairing S partners off each oracle πs
i and πt

j

in a way that the pairing is unique and no oracle is left out without a pair. We
define correctness of an AKE protocol as follows.
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Definition 3.2 ((1 − δ)-Correctness). An AKE protocol ΠAKE is (1 − δ)-
correct if for any set with a valid pairing S ⊆ ([μ] × [�])2, when we execute the
AKE protocol faithfully between all the oracle pairs included in S, it holds that

(1 − δ) ≤ Pr
[

πs
i and πt

j are partners ∧ Ψs
i = Ψ t

j = accept
∧ks

i = kt
j �= ⊥ for all ((i, s), (j, t)) ∈ S

]
,

where the probability is taken over the randomness used in the oracles.

3.2 Security Game

We define security of an AKE protocol via the following game, denoted by
GΠAKE

(μ, �), played between an adversary A and a challenger C. The security
game is parameterized by two integers μ (the number of honest parties) and �
(the maximum number of protocol executions per party), and is run as follows:

Setup: C first chooses a secret bit b ←$ {0, 1}. Then C generates the public param-
eter of ΠAKE and μ long-term key pair {(lpki, lski) | i ∈ [μ]}, and initializes
the collection of oracles {πs

i | i ∈ [μ], s ∈ [�]}. C runs A providing the public
parameter and all the long-term public keys {lpki | i ∈ [μ]} as input.

Phase 1: A adaptively issues the following queries any number of times in an
arbitrary order:

– Send(i, s,m): This query allows A to send an arbitrary message m to
oracle πs

i . The oracle will respond according to the protocol specification
and its current internal state. To start a new oracle, the message m takes
a special form:
〈START : role, j〉; C initializes πs

i in the role role, having party Pj as its
peer, that is, C sets Pids

i := j and roles
i := role. If πs

i is an initiator (i.e.,
role = init), then C returns the first message of the protocol.10

– RevLTK(i): For i ∈ [μ], this query allows A to learn the long-term secret
key lski of party Pi . After this query, Pi is said to be corrupted.

– RegisterLTK(i, lpki): For i ∈ N \ [μ], this query allows A to register a
new party Pi with public key lpki. We do not require that the adversary
knows the corresponding secret key. After the query, the pair (i, lpki)
is distributed to all other oracles. Parties registered by RegisterLTK are
corrupted by definition.

– RevState(i, s): This query allows A to learn the session-state states
i of

oracle πs
i . After this query, states

i is said to be revealed.
– RevSessKey(i, s): This query allows A to learn the session key ks

i of ora-
cle πs

i .
Test: Once A decides that Phase 1 is over, it issues the following special Test-

query which returns a real or a random key depending on the secret bit b.
– Test(i, s): If (i, s) /∈ [μ] × [�] or Ψs

i �= accept, C returns ⊥. Else, C returns
kb, where k0 := ks

i and k1 ←$K (where K is the session key space).
10 Looking ahead, when the first message is independent of party Pj (i.e., C can first

create the first message without knowledge of Pj and then set Pidsi := j), we call the
scheme receiver oblivious. See Sect. 3.4 for more details.
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After this query, πs
i is said to be tested.

Phase 2: A adaptively issues queries as in Phase 1.
Guess: Finally, A outputs a guess b′ ∈ {0, 1}. At this point, the tested oracle

must be fresh. Here, an oracle πs
i with Pids

i = j11 is fresh if all the following
conditions hold:
1. RevSessKey(i, s) has not been issued;
2. if πs

i has a partner πt
j for some t ∈ [�], then RevSessKey(j, t) has not been

issued;
3. Pi is not corrupted or states

i is not revealed;
4. if πs

i has a partner πt
j for some t ∈ [�], then Pj is not corrupted or statet

j

is not revealed;
5. if πs

i has no partner oracle, then Pj is not corrupted.
If the tested oracle is not fresh, C aborts the game and outputs a random bit
b′ on behalf of A. Otherwise, we say A wins the game if b = b′.

The advantage of A in the security game GΠAKE
(μ, �) is defined as AdvAKEΠAKE

(A) :=∣
∣Pr [b = b′] − 1

2

∣
∣ .

Definition 3.3 (Security of AKE Protocol). An AKE protocol ΠAKE is
secure if AdvAKEΠAKE

(A) is negligible for any QPT adversary A.

3.3 Security Properties

In this section, we explain the security properties captured by our security model.
Comparison between other protocols is differed to Sect. 3.5.

The freshness clauses Items 1 and 2 imply that we only exclude the reveal
of session keys for the tested oracle and its partner oracles. This captures key
independence; if the revealed keys are different from the tested oracle’s key, then
such keys must not enable computing the session key. Note that key independence
implies resilience to “no-match attacks” presented by Li and Schäge [43]. This is
because revealed keys have no information on the tested oracle’s key. Moreover,
the two items capture implicit authentication between the involved parties. This
is because an oracle π that computes the same session key as the tested oracle
but disagrees on the peer would not be a partner of the tested oracle, and
hence, an adversary can obtain the tested oracle’s key by querying the session
key computed by π. Specifically, our model captures resistance to unknown key-
share (UKS) attacks [12]; a successful UKS attack is a specific type of attack
that breaks implicit authentication where two parties compute the same session
key but have different views on whom they are communicating with.

The freshness clauses Items 3 to 5 indicate that the game allows the adversary
to reveal any subset of the four secret information—the long-term secret keys
and the session-states of the two parties (where one party being the party defined
by the tested oracle and the other its peer)—except for the combination where
both the long-term secret key and session-state of one of the party is revealed.
These clauses capture weak forward secrecy [39]: the adversary can obtain the
11 Note that by definition, the peer id Pidsi of a tested oracle πs

i is always defined.
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long-term secret keys of both parties if it has been passive in the protocol run
of the two oracles. Another property captured by our model is resistance to
key-compromise impersonation (KCI) attacks [11]. Recall that KCI attacks are
those where the adversary uses a party Pi ’s long-term secret key to impersonate
other parties towards Pi . This is captured by our model because the adversary
can learn the long-term secret key of a tested oracle without any restrictions.
Most importantly, our model captures resistance to state leakage [15,30,39,42]
where an adversary is allowed to obtain session-states of both parties. We point
out that our security model is strictly stronger than the recent models [20,32]
that do not allow the adversary to learn sessions-states. More discussion on state
leakage is provided in Sect. 3.5.

3.4 Property for Signal-Conforming AKE: Receiver Obliviousness

In this work, we care for a specific type of (two-round) AKE protocol that is
compatible with the X3DH protocol [45] used by the Signal protocol [1]. As
explained in Sect. 1.2, the X3DH protocol can be viewed as a special type of
AKE protocol where the Signal server acts as an (untrusted) bulletin board,
where parties can store and retrieve information from. More specifically, the
Signal server can be viewed as an adversary for an AKE protocol that controls the
communication channel between the parties. When casting the X3DH protocol as
an AKE protocol, one crucial property is that the first message of the initiator
is generated independently of the communication partner. This is because, in
secure messaging, parties are often offline during the key agreement so if the first
message depended on the communication partner, then we must wait until they
become online to complete the key agreement. Since we cannot send messages
without agreeing on a session key, such an AKE protocol where the first message
depends on the communication partner cannot be used as a substitute for the
X3DH protocol.

We abstract this crucial yet implicit property achieved by the X3DH protocol
as receiver obliviousness.12

Definition 3.4 (Receiver Obliviousness/Signal-Conforming). An AKE
protocol is receiver oblivious (or Signal-conforming) if it is two-rounds and the
initiator can compute the first-message without knowledge of the peer id and
long-term public key of the communication peer.

Many Diffie-Hellman type AKE protocols (e.g., the X3DH protocol used in Signal
and some CSIDH-based AKE protocols [22,38]) can be checked to be receiver
oblivious. In contrast, known generic AKE protocols such as [30,31,34,54,55]
are not receiver oblivious since the first message requires the knowledge of the
receiver’s long-term public key.

12 This property has also been called as post-specified peers [16] in the context of Inter-
net Key Exchange (IKE) protocols.



422 K. Hashimoto et al.

Fig. 2. Our Signal-conforming AKE protocol ΠSC-AKE.

3.5 Relation to Other Security Models

In the literature of AKE protocols, many security models have been proposed:
the Bellare-Rogaway (BR) model [7], the Canetti-Krawczyk (CK) model [15], the
CK+ model [30,39], the extended CK (eCK) model [42], and variants therein [3,
20,21,32,34,35]. Although many of these security models are built based on
similar motivations, there are subtle differences. (A comparison between our
model and the models listed above can be found in the full version.)

4 Generic Construction of Signal-Conforming AKE
ΠSC-AKE

In this section, we propose a Signal-conforming AKE protocol ΠSC-AKE that can
be used as a drop-in replacement for the X3DH protocol. Unlike the X3DH
protocol, our protocol can be instantiated from post-quantum assumptions, and
moreover, it also provides stronger security against state leakage. The protocol
description is presented in Fig. 2. Details follow.

Building Blocks. Our Signal-conforming AKE protocol ΠSC-AKE consists of the
following building blocks.

– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM
scheme that is IND-CCA secure and assume we have (1− δKEM)-correctness.13

13 To prove the security of ΠSC-AKE, we require ΠKEM and ΠwKEM to have high min-
entropy of the encapsulation key and the ciphertext.
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– ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a
KEM schemes that is IND-CPA secure (and not IND-CCA secure) and assume
we have (1 − δwKEM)-correctness.

– ΠSIG = (SIG.Setup,SIG.KeyGen,SIG.Sign,SIG.Verify) is a signature scheme
that is EUF-CMA secure and (1 − δSIG)-correctness. We denote d as the bit
length of the signature generated by SIG.Sign.

– F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key
space FK.

– Ext : S × KS → FK is a strong randomness extractor.

Public Parameters. All the parties in the system are provided with the follow-
ing public parameters as input: (s, ppKEM, ppwKEM, ppSIG). Here, s is a random
seed chosen uniformly from S, and ppX for X ∈ {KEM,wKEM,SIG} are public
parameters generated by X.Setup.

Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ←
KEM.KeyGen(ppKEM) and (vki, ski) ← SIG.KeyGen(ppSIG). Party Pi ’s long-term
public key and secret key are set as lpki = (eki, vki) and lski = (dki, ski), respec-
tively.

Construction. A key exchange between an initiator Pi in the s-th session (i.e.,
πs

i ) and responder Pj in the t-th session (i.e., πt
j) is executed as in Fig. 2. More

formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT , ekT ) ←
wKEM.KeyGen(ppwKEM) and sends ekT to party Pj . Pi stores the ephemeral
decapsulation key dkT as the session-state i.e., states

i := dkT .14

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving ekT , Pj first com-
putes (K,C) ← KEM.Encap(eki) and (KT ,CT ) ← wKEM.Encap(ekT ). Then
Pj derives two PRF keys K1 ← Exts(K), K2 ← Exts(KT ). It then defines
the session-identifier as sidt

j := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and computes
kj‖k̃ ← FK1(sidj)⊕FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d, and sets the
session key as kt

j := kj . Pj then signs σ ← SIG.Sign(skj , sid
t
j) and encrypts it

as c ← σ ⊕ k̃. Finally, it sends (C,CT , c) to Pi and sets Ψj := accept. Here,
note that Pj does not require to store any session-state, i.e., statet

j = ⊥.
3. Upon receiving (C,CT , c), Pi first decrypts K ← KEM.Decap(dki,C) and

KT ← wKEM.Decap(dkT ,CT ), and derives two PRF keys K1 ← Exts(K)
and K2 ← Exts(KT ). It then sets the session-identifier as sids

i :=
Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and computes ki‖k̃ ← FK1(sidi)⊕FK2(sidi), where
kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕ k̃ and checks
whether SIG.Verify(vkj , sid

s
i , σ) = 1 holds. If not, Pi sets (Ψi, k

s
i , statei) :=

(reject,⊥,⊥) and stops. Otherwise, it sets (Ψi, k
s
i , statei) := (accept, ki,⊥).

Here, note that Pi deletes the session-state states
i = dkT at the end of the

key exchange.
14 Notice the protocol is receiver oblivious since the first message is computed inde-

pendently of the receiver.



424 K. Hashimoto et al.

Remark 4.1 (A Note on Session-State). The session-state of the initiator Pi

contains the ephemeral decryption key dkT and Pi must store it until the peer
responds. Any other information that is computed after receiving the message
from the peer is immediately erased when the session key is established. In
contrast, the responder Pj has no session-state because the responder directly
computes the session key after receiving the initiator’s message and does not
have to store any session-specific information. That is, all states can be erased
as soon as a session key is computed.

Remark 4.2 (Signed Prekeys). In the X3DH protocol, the initiator sends the first
message with a signature attached called signed prekey. Informally, this allows
Bob to explicitly authenticate Alice, while otherwise without the signature, Bob
can only implicitly authenticate Alice. Moreover, this signature enhances the
X3DH protocol to be perfect forward secret rather than being only weak forward
secret, where the former allows the adversary to be active in the protocol run
of the two oracles. Indeed, according to [45], the X3DH is considered to have
perfect forward secrecy. We observe that adding such signature in our protocol
has the same effect as long as the added signature is not included in the session-
identifier. This is due to Li and Schäge [43, Appendix D], who showed that
adding new messages to an already secure protocol cannot lower the security as
long as the derived session keys and the session-identifiers remain the same as
the original protocol. Here, note the latter implies that the partnering relation
remains the same. Similarly, Cremers and Feltz [21] show that adding a signature
to the exchanged messages can enhance weak forward secrecy to perfect forward
secrecy for natural classes of AKE protocols.

Security. Correctness holds by a routine check. The following establishes the
security or ΠSC-AKE. We provide a proof overview and refer the full proof to the
full version.

Theorem 4.1 (Security of ΠSC-AKE). Assume ΠwKEM is IND-CPA secure,
ΠKEM is IND-CCA secure, ΠSIG is EUF-CMA secure, and F is secure PRF. Then
ΠSC-AKE is secure AKE protocol with respect to Definition 3.3.

Proof Sketch. Let A be an adversary that plays the security game GΠSC-AKE(μ, �).
We distinguish between all possible strategies that can be taken by A. Specif-
ically, A’s strategy can be divided into the eight types of strategies listed in
Table 1.

Here, each strategy is mutually independent and covers all possible (non-
trivial) strategies. We point out that for our specific AKE construction we have
stateresp := ⊥ since the responder does not maintain any states (see Remark 4.1).
Therefore, the Type-1 (resp. Type-3, Type-7) strategy is strictly stronger than
the Type-2 (resp. Type-4, Type-8) strategy. Concretely, for our proof, we only
need to consider the following four cases and to show that A has no advantage
in each cases: (a) A uses the Type-1 strategy; (b) A uses the Type-3 strategy;
(c) A uses the Type-5 or Type-6 strategy; (d) A uses the Type-7 strategy.
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Table 1. The strategy taken by the adversary in the security game when the tested
oracle is fresh. “Yes” means the tested oracle has some (possibly non-unique) partner
oracles and “No” means it has none. “✓” means the secret-key/session-state is revealed
to the adversary, “✗” means the secret-key/session-state is not revealed. “-” means the
session-state is not defined.

Strategy Role of tested oracle Partner oracle lskinit stateinit lskresp stateresp

Type-1 init or resp Yes ✓ ✗ ✓ ✗

Type-2 init or resp Yes ✓ ✗ ✗ ✓

Type-3 init or resp Yes ✗ ✓ ✓ ✗

Type-4 init or resp Yes ✗ ✓ ✗ ✓

Type-5 init No ✓ ✗ ✗ –

Type-6 init No ✗ ✓ ✗ –

Type-7 resp No ✗ – ✓ ✗

Type-8 resp No ✗ – ✗ ✓

In cases (a), (b) and (d), the session key is informally protected by the
security properties of KEM, PRF, and randomness extractor. In case (a), since
the ephemeral decapsulation key dkT is not revealed, KT is indistinguishable from
a random key due to the IND-CPA security of ΠwKEM. On the other hand, in case
(b) and (d), since the initiator’s decapsulation key dkinit is not revealed, K is
indistinguishable from a random key due to the IND-CCA security of ΠKEM. Here,
we require IND-CCA security because there are initiator oracles other than the
tested oracle that uses dkinit, which the reduction algorithm needs to simulate.
This is in contrast to case (a) where dkT is only used by the tested oracle. Then,
in all cases, since either KT or K has sufficient high min-entropy from the view
of the adversary, Ext on input KT or K outputs a uniformly random PRF key.
Finally, we can invoke the pseudo-randomness of the PRF and argue that the
session key in the tested oracle is indistinguishable from a random key.

In case (c), the session key is informally protected by the security property
of the signature scheme. More concretely, in case (c), the tested oracle is an
initiator and the signing key skresp included in the long-term key of its peer is
not revealed. Then, due to the EUF-CMA security of ΠSIG, A cannot forge the
signature for the session-identifier of the tested oracle sidtest. In addition, since
the tested oracle has no partner oracles, no responder oracle ever signs sidtest.
Therefore, combining these two, we conclude that the tested oracle cannot be in
the accept state unless A breaks the signature scheme. In other words, when
A queries Test, the tested oracle always returns ⊥. Thus the session key of the
tested oracle is hidden from A.

5 Instantiating Post-quantum Signal-Conforming AKE
ΠSC-AKE

In this section, we present the implementation details of our post-quantum
Signal-conforming AKE protocol ΠSC-AKE. We take existing implementations of
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post-quantum KEMs and signature schemes submitted for the NIST PQC stan-
dardization. To instantiate our Signal-conforming AKE we pair variants of KEMs
and signature schemes corresponding to the same security level. We consider
security levels 1, 3 and 5 as defined by NIST for the PQC standardization. With
more than 30 variants of KEM and 13 variants of signature schemes, we can cre-
ate at least 128 different instantiations of post-quantum Signal-conforming AKE
protocols. The provided implementation simulates post-quantum, weakly deni-
able authenticated key exchange between two entities. We study the efficiency
of our instantiations through two metrics—the total amount of data exchanged
between parties and run-time performance. Our implementation is available at
the URL [41].

5.1 Instantiation Details

Our implementation is instantiated with the following building blocks:

– s: (pseudo)-randomly generated 32 bytes of data calculated at session initial-
ization phase,

– Exts : uses HMAC-SHA256 as a strong randomness extractor. As an input
message we use a key KT prepended with byte 0x02 which works as a domain
separator (since we also use HMAC-SHA256 as a PRF). Security of using
HMAC as a strong randomness extractor is studied in [28],

– PRF: uses HMAC-SHA256 as a PRF. The session-specific sid is used as an
input message to HMAC, prepended with byte 0x01. An output from Exts is
used as a key. Security of using HMAC as a PRF is studied in [4],

– b: depends on the security level of the underlying post-quantum KEM scheme,
where b ∈ {128, 192, 256},

– d: depends on the byte length of the signature generated by the post-quantum
signature scheme ΠSIG,

– ΠKEM, ΠwKEM, ΠSIG: to instantiate ΠSC-AKE, implementation uses pairs of
KEM and signature schemes. List of the schemes used can be found in the
table (Table 2) below. We always use the same KEM scheme for ΠKEM and
ΠwKEM.

Table 2. Considered KEM and signature schemes under NIST security level 1, 3, and 5.

NIST security level KEM Signature

1 SABER, CLASSIC-MCELIECE, KYBER, NTRU

HQC, SIKE, FRODOKEM, BIKE

RAINBOW, FALCON, DILITHIUM

SPHINCS, PICNIC

3 SABER, NTRU, CLASSIC-MCELIECE, KYBER,

SIKE, HQC, BIKE, FRODOKEM

DILITHIUM, RAINBOW

PICNIC, SPHINCS

5 SABER, CLASSIC-MCELIECE, NTRU, KYBER

FRODOKEM, SIKE, HQC

FALCON, RAINBOW

PICNIC, SPHINCS

At a high level, the implementation is split into 3 main parts. The initiator’s
ephemeral KEM key generation (offer function), the recipient’s session key
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generation (accept function), and initiator’s session key generation (finalize
function). Additionally there is an initialization part which performs the genera-
tion and exchange of the long-term public keys as well as dynamic initialization
of memory. To evaluate the computational cost of ΠSC-AKE, we instantiate it
with concrete parameters as described above. The implementation runs 3 main
functions in a loop for a fixed amount of time. We do not include the time
spent in the initialization phase, hence the cost of key generation and memory
initialization has no impact on the results.

Finally, we use an implementation of post-quantum algorithms that can be
found in libOQS15. We also use LibTomCrypt16 which provides an implementa-
tion of the building blocks HMAC, HKDF and SHA-256.

5.2 Efficiency Analysis

In this subsection, we provide an assessment of the costs related to running the
concrete instantiation of ΠSC-AKE. We provide two metrics:

– Communication cost: the amount of data exchanged between two parties try-
ing to establish a session key.

– Computational cost: number of CPU cycles spent in computation during ses-
sion establishment by both parties.

The computational cost of the protocol depends on the performance of the
cryptographic primitives used. More precisely, the most expensive operations are
those done by the post-quantum schemes. ΠSC-AKE performs 7 such operations
during a session agreement: the initiator runs a KEM key generation, two KEM
decapsulations and one signature verification, and the recipient performs two
KEM encapsulations and one signing.

For benchmarking, we modeled a scenario in which two parties try to establish
a session key. Alice generates and makes her long-term public key lpkA and
ephemeral KEM key ekT publicly available. Bob retrieves the pair (lpkA, ekT ) and
uses it to perform his part of the session establishment. Namely, Bob generates
the triple (C,CT , c) and sends it to Alice along with its long-term public key lpkB.
Upon receipt, Alice finalizes the process by computing the session key on her side.
We note that in the case of the Signal protocol, both parties communicate with
a server (e.g., the Signal server), and not directly. For simplicity, we abstract this
fact out of our scenario. Further note that in the Signal protocol, the long-term
public keys lpk must be fetched from the server as the parties do not store the
keys lpk corresponding to those that they have not communicated with before17

Table 3 provides the results for Round 3 candidates of the NIST PQC stan-
dardization process.18 The CPU cycles column is related to the computational

15 https://github.com/open-quantum-safe/liboqs.
16 https://github.com/libtom/libtomcrypt.
17 The X3DH protocol assumes the parties authenticate the long-term public keys

through some authenticated channel [45, Section 4.1].
18 The results for all 128 instantiations can be found at the URL [41].

https://github.com/open-quantum-safe/liboqs
https://github.com/libtom/libtomcrypt
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cost. It is the number of cycles needed on both the initiator and responder side
to run the protocol for a given instantiation. We run benchmarking on the Intel
Xeon E3-1220v3 @3.1 GhZ with Turbo Boost disabled. The last four columns
relate to communication cost. They contain the byte size of the data exchanged
during session key establishment. In particular, the lpk column contains the size
of the long-term public key. The ekT column contains the size of the ephemeral
KEM key. The (C,CT , c) column is the size of the triple generated by Bob. Here,
the amount of data transferred from Alice to Bob is the sum of lpk and ekT ,
while the amount of data transferred from Bob to Alice is the sum of lpk and
C,CT , c. Finally, the column Total contains the total size of data exchanged
between Alice and Bob.

Table 3. Computational and communication cost of running ΠSC-AKE instantiated with
various post-quantum schemes.

Scheme CPU cycles lpk ekT (C,CT , c) Total

NIST security level 1

Dilithium2/Saber Light 2770622 1856 672 3516 7900

Dilithium2/Kyber512 3059898 1984 800 3516 8284

Falcon512/NTRU hps2048509 28830055 1596 699 2088 5979

SPHINCS-SHAKE256-128f-s/Saber Light 269464814 704 672 18448 20528

NIST security level 3

Dilithium4/Saber 4204171 2752 992 5542 12038

Dilithium4/NTRU hps2048677 24513381 2690 930 5226 11536

SPHINCS-SHAKE256-192f-s/Kyber768 337783175 1232 1184 37840 41488

Dilithium4/SIKE p610 790625496 2222 462 4338 9244

NIST security level 5

Falcon1024/Saber Fire 37423092 3105 1312 4274 11796

Falcon1024/Kyber1024 37875710 3361 1568 4466 12756

Falcon1024/SIKE p751 356918904 2357 564 2522 7800

SPHINCS-SHAKE256-256f-s/SIKE p751 1041010995 628 564 50408 52228

In a scenario as described above, instantiations with Falcon, Dilithium, Saber
and Kyber schemes seem to be the most promising when it comes to compu-
tational cost. The communication cost can be minimized by using the SIKE
scheme as ΠKEM and ΠwKEM, but this significantly increases the computational
cost.

We note that the computational cost is far less absolute as it depends on
the concrete implementation of the post-quantum schemes. Our implementation
is biased by the fact that it uses unoptimized, portable C code. There are two
reasons for such a choice. First, our goal was to show the expected results on a
broad number of platforms. Second, the libOQS library that we used does not
provide hardware-assisted optimizations for all schemes, hence enabling those
optimizations only for some algorithms would provide biased results.

Our implementation is based on open-source libraries, which makes it possi-
ble to perform fine-tuning and further analysis. For example, one could imagine
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a scenario for IoT devices that knows in advance which devices it may communi-
cate with. Then, the long term keys of the devices can be exchanged prior to the
session key establishment. In such a scenario, schemes with larger public keys
may become more attractive since transferring long-term public keys could be
done ahead of time.

Note on Low Quality Network Links. We anticipate ΠSC-AKE to be used
with handheld devices and areas with a poor quality network connection. In
such cases, larger key, ciphertext and signature sizes generated may negatively
impact the quality of the connection. Network packet loss is an additional factor
which should be considered when choosing schemes for concrete instantiation.

Data on the network is exchanged in packets. The maximum transmission
unit (MTU) defines the maximal size of a single packet, usually set to 1500
bytes. Ideally, the size of data sent between participants in a single pass is less
than MTU. Network quality is characterized by a packet loss rate. When a
packet is lost, the TCP protocol ensures that it is retransmitted, where each
retransmission causes a delay. A typical data loss on a high-quality network link
is below 1%, while data loss on a mobile network depends on the strength of the
network signal.

Depending on the scheme used, increased packet loss may negatively impact
session establishment time (see [47]). For example, a scheme instantiated with
Falcon512/NTRU hps2048509 requires exchange of npacks = 7 packets over
the network, where instantiation with SPHINCS-SHAKE256-128f-simple/Saber
Light requires 16. Assuming increased packet rate loss of 5%, the probability
of losing a packet in the former case is 1 − (1 − rate)npacks = 30%, where in
the latter it is 56%. In the latter case, at the median, every other session key
establishment will experience packet retransmission and hence a delay.

6 Adding Deniability to Our Signal-Conforming AKE
ΠSC-AKE

In this section, we provide a theory-oriented discussion on the deniability aspect
of our Signal-conforming AKE protocol ΠSC-AKE. In the following, we first infor-
mally show that ΠSC-AKE already has a very weak form of deniability that may
be acceptable in some applications. We then show that we can slightly modify
ΠSC-AKE to satisfy a more stronger notion of deniability. As it is common with all
deniable AKE protocols secure against key-compromise attacks [24,53,57], we
prove deniability by relying on strong knowledge-type assumptions , including a
variant of the plaintext-awareness (PA) for the KEM scheme [5,6,8].

Weak Deniability of ΠSC-AKE. Our Signal-conforming AKE protocol ΠSC-AKE

already satisfies a weak notion of deniability, where the communication tran-
script does not leave a trace of the two parties if both parties honestly executed
the AKE protocol. Namely, an adversary that is passively collecting the commu-
nication transcript cannot convince a third party that communication between
two parties took place. Informally, this can be observed by checking that all the
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contents in the transcript can be simulated by the adversary on its own. We
discuss a stronger notion of deniability next.

6.1 Definition of Deniability and Tool Preparation

We follow a simplified definition of deniability for AKE protocols introduced
by Di Raimondo et al. [24]. Discussion on the simplification is provided in
Remark 6.2. Let Π be an AKE protocol and KeyGen be the key generation algo-
rithm. That is, for any integer μ = μ(κ) representing the number of parties in the
system, define KeyGen(1κ, μ) → (pp,

−→
lpk,

−→
lsk), where pp is the public parameter

used by the system and
−→
lpk := {lpki | i ∈ [μ]} and

−→
lsk := {lski | i ∈ [μ]} are the

corresponding long-term public and secret keys of the μ parties, respectively.
Let M denote an adversary that engages in an AKE protocol with μ-honest

parties in the system with long-term public keys
−→
lpk, acting as either an initiator

or a responder. M may run individual sessions against an honest party in a
concurrent manner and may deviate from the AKE protocol in an arbitrary
fashion. The goal of M is not to impersonate someone to an honest party P
but to collect (cryptographic) evidence that an honest party P interacted with
M. Therefore, when M interacts with P, it can use a long-term public key
lpkM that can be either associated to or not to M’s identity (that may possibly
be generated maliciously). We then define the view of the adversary M as the
entire sets of input and output of M and the session keys computed in all the
protocols in which M participated with an honest party. Here, we assume in
case the session is not completed by M, the session key is defined as ⊥. We
denote this view as ViewM(pp,

−→
lpk,

−→
lsk).

In order to define deniability, we consider a simulator SIM that simulates the
view of honest parties (both initiator and responder) to the adversary M without
knowledge of the corresponding long-term secret keys

−→
lsk of the honest parties.

Specifically, SIM takes as input all the input given to the adversary M (along
with the description of M) and simulates the view of M with the real AKE
protocol Π. We denote this simulated view as SIMM(pp,

−→
lpk). Roughly, if the

view simulated by SIMM is indistinguishable from those generated by ViewM,
then we say the AKE protocol is deniable since M could have run SIMM (which
does not take any secret information as input) to generate its view in the real
protocol. More formally, we have the following.

Definition 6.1 (Deniability). We say an AKE protocol Π with key gener-
ation algorithm KeyGen is deniable, if for any integer μ = poly(κ) and PPT
adversary M, there exist a PPT simulator SIMM such that the following two
distributions are (computationally) indistinguishable for any PPT distinguisher
D:

FReal := {pp,−→lpk,ViewM(pp,
−→
lpk,

−→
lsk) : (pp,

−→
lpk,

−→
lsk) ← KeyGen(1κ, μ)},

FSim := {pp,−→lpk,SIMM(pp,
−→
lpk) : (pp,

−→
lpk,

−→
lsk) ← KeyGen(1κ, μ)}.
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When M is semi-honest (i.e., it follows the prescribed protocol), we say Π is
deniable against semi-honest adversaries. When M is malicious (i.e., it takes
any efficient strategy), we say Π is deniable against malicious adversaries.

Remark 6.1 (Including Public Information and Session Keys). It is crucial that
the two distributions FReal and FSim include the public information (pp,

−→
lpk).

Otherwise, SIMM can simply create its own set of (pp′,
−→
lpk′,

−→
lsk′) and simulate

the view to M. However, this does not correctly capture deniability in the real-
world since M would not be able to convince anybody with such a view using
public information that it cooked up on its own. In addition, it is essential that
the value of the session key is part of the output of SIMM. This guarantees that
the contents of the sessions authenticated by the session key can also be denied.

Remark 6.2 (Comparison between Prior Definition). Our definition is weaker
than the deniability notion originally proposed by Di Raimondo et al. [24]. In
their definition, an adversary M (and therefore the simulator SIMM) is also
provided as input some auxiliary information aux that can depend non-trivially
on (pp,

−→
lpk,

−→
lsk).19 For instance, this allows to capture information that M may

have obtained by eavesdropping conversations between honest parties (which is
not modeled by ViewM). Since our goal is to provide a minimal presentation
on the deniability of our protocol, we only focus on the weaker definition where
M does not obtain such auxiliary information. We leave it as future work to
prove our protocol deniable in the sense of Di Raimondo et al. [24]. We also note
that stronger forms of deniability are known and formalized in the universally
composable (UC) model [25,51,52], however, AKE protocols satisfying such a
strong deniability notion are known to achieve weaker security guarantees. For
instance, as noted in [52], an AKE protocol cannot be on-line deniable while also
being secure against KCI attacks.

Remark 6.3 (Extending to Malicious Quantum Adversaries). We only consider
classical deniability above. Although we can show deniability for semi-honest
quantum adversaries, we were not able to do so for malicious quantum adver-
saries. This is mainly due to the fact that to prove deniability against mali-
cious classical adversaries, we require a strong knowledge type assumption (i.e.,
plaintext-awareness for KEM) that assumes an extractor can invoke the adver-
sary multiple of times on the same randomness. We leave it as an interesting
problem to formally define a set of tools that allow to show deniability even
against malicious quantum adversaries.

Required Tools. To argue deniability in the following section we rely on the
following tools: ring signature, plaintext-aware (PA-1) secure KEM scheme, and
19 Although in [24, Definition 2], aux is defined as fixed information that M cannot

adaptively choose, we observe that in their proof they implicitly assume that aux

is sampled adaptively from some distribution dependent on (pp,
−→
lpk,

−→
lsk). Such a

definition of aux is necessary to invoke PA-2 security of the underlying encryption
scheme.
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a non-interactive zero-knowledge (NIZK) argument.20 We use standard notions
of ring signatures and NIZK arguments. On the other hand, we use a slightly
stronger variant of PA-1 secure KEM schemes than those originally defined in
[5,6,8]. Informally, a KEM scheme is PA-1 secure if for any adversary M that
outputs a valid ciphertext C, there is an extractor ExtM that outputs the match-
ing session key K. In our work, we require PA-1 security to hold even when M
is given multiple public keys rather than a single public key [46]. We note that
although Di Raimondo et al. [24] considered the standard notion of PA-1 security,
we observe that their proof only works in the case where multiple public keys
are considered. Finally, we further require the extractor ExtM to be efficiently
computable given M.

6.2 Deniable Signal-Conforming AKE ΠSC-DAKE Against
Semi-Honest Adversaries

We first provide a Signal-conforming AKE protocol ΠSC-DAKE that is deniable
against semi-honest adversaries. The construction of ΠSC-DAKE is a simple mod-
ification of ΠSC-AKE where a standard signature is replaced by a ring signature.
In the subsequent section, we show how to modify ΠSC-DAKE to a protocol that
is deniable against malicious adversaries by relying on further assumptions. The
high-level idea presented in this section naturally extends to the malicious set-
ting. An overview of ΠSC-DAKE and Π ′

SC-DAKE is provided in Fig. 3.

Building Blocks. Our deniable Signal-conforming AKE protocol ΠSC-DAKE

against semi-honest adversaries consists of the following building blocks.

– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM
scheme that is IND-CCA secure and assume we have (1− δKEM)-correctness.21

– ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a
KEM schemes that is IND-CPA secure (and not IND-CCA secure) and assume
we have (1 − δwKEM)-correctness.

– ΠRS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is a ring signature scheme
that is anonymous and unforgeable and assume we have (1−δRS)-correctness.
We denote d as the bit length of the signature generated by RS.Sign.

– F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key
space FK.

– Ext : S × KS → FK is a strong randomness extractor.

Public Parameters. All the parties in the system are provided the follow-
ing public parameters as input: (s, ppKEM, ppwKEM, ppRS). Here, s is a random
seed chosen uniformly from S, and ppX for X ∈ {KEM,wKEM,RS} are public
parameters generated by X.Setup.

20 Due to the page limitation, the formal definitions of these tools are provided in the
full version.

21 Similar to ΠSC-AKE, to prove the security of ΠSC-DAKE, we require ΠKEM and ΠwKEM

to have high min-entropy of the encapsulation key and the ciphertext.
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Fig. 3. Deniable Signal-conforming AKE protocol ΠSC-DAKE and Π ′
SC-DAKE. The com-

ponents that differ from the non-deniable protocol ΠSC-AKE is indicated by a box. The
protocol with (resp. without) the gray and dotted-box component satisfies deniability
against malicious (resp. semi-honest) adversaries.

Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ←
KEM.KeyGen(ppKEM) and (vki, ski) ← RS.KeyGen(ppRS). Party Pi ’s long-term
public key and secret key are set as lpki = (eki, vki) and lski = (dki, ski) , respec-
tively.

Construction. A key exchange between an initiator Pi in the s-th session (i.e.,
πs

i ) and responder Pj in the t-th session (i.e., πt
j) is executed as in Fig. 2. More

formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT , ekT ) ←
wKEM.KeyGen(ppwKEM) and (vkT , skT ) ← RS.KeyGen(ppRS), and sends
(ekT , vkT ) to party Pj . Pi erases the signing key skT and stores the ephemeral
decapsulation key dkT as the session-state i.e., states

i := dkT .22

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving (ekT , vkT ), Pj first
computes (K,C) ← KEM.Encap(eki) and (KT ,CT ) ← wKEM.Encap(ekT ) and
derives two PRF keys K1 ← Exts(K), K2 ← Exts(KT ). It then defines the
session-identifier as sidt

j := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes

22 Notice the protocol is receiver oblivious since the first message is computed inde-
pendently of the receiver.
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kj‖k̃ ← FK1(sidj) ⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pj sets
the session key as kt

j := kj . Pj then signs σ ← RS.Sign(skj , sid
t
j , {vkT , vkj})

and encrypts it as c ← σ ⊕ k̃. Finally, it sends (C,CT , c) to Pi and sets
Ψj := accept. Here, note that Pj does not require to store any session-state,
i.e., statet

j = ⊥.
3. Upon receiving (C,CT , c), Pi first decrypts K ← KEM.Decap(dki,C) and

KT ← wKEM.Decap(dkT ,CT ), and derives two PRF keys K1 ← Exts(K)
and K2 ← Exts(KT ). It then sets the session-identifier as sids

i :=
Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes ki‖k̃ ← FK1(sidi) ⊕ FK2(sidi),
where ki ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕
k̃ and checks whether RS.Verify({vkT , vkj} , sids

i , σ) = 1 holds. If not,
Pi sets (Ψi, k

s
i , statei) := (reject,⊥,⊥) and stops. Otherwise, Pi sets

(Ψi, k
s
i , statei) := (accept, ki,⊥). Here, note that Pi deletes the session-state

states
i = dkT at the end of the key exchange.

Security. We first check that ΠSC-DAKE is correct and secure as a standard AKE
protocol. Since the proof is similar in most parts to the non-deniable protocol
ΠSC-AKE, we defer the details to the full version. The main difference from the
security proof of ΠSC-AKE is that we have to make sure that using a ring signature
instead of a standard signature does not allow the adversary to mount a key-
compromise impersonation (KCI) attack (see Sect. 3.3 for the explanation on
KCI attacks).

The following guarantees deniability of our protocol ΠSC-DAKE against semi-
honest adversaries.

Theorem 6.1 (Deniability of ΠSC-DAKE against Semi-Honest Adver-
saries). Assume ΠRS is anonymous. Then, the Signal-conforming protocol
ΠSC-DAKE is deniable against semi-honest adversaries.

Proof. Let M be any PPT semi-honest adversary. We explain the behavior of
the simulator SIMM by considering three cases: (a) M initializes an initiator
Pi , (b) M queries the initiator Pi on message (C,CT , c), and (c) M queries the
responder Pj on message (ekT , vkT ). In case (a), SIMM runs the honest initiator
algorithm and returns (ekT , vkT ) as specified by the protocol. In case (b), since
M is semi-honest, we are guaranteed that it runs the honest responder algorithm
to generate (C,CT , c). In particular, since M is run on randomness sampled
by SIMM, SIMM gets to learn the key K that was generated along with C.
Therefore, SIMM runs the real initiator algorithm except that it uses K extracted
from M rather than computing K ← KEM.Decap(dki,C). Here, note that SIMM
cannot run the latter since it does not know the corresponding dki held by
an honest initiator party Pi . In case (c), similarly to case (b), SIMM learns
dkT and skT used by M to generate ekT and vkT . Therefore, SIMM runs the
honest responder algorithm except that it runs σ ← RS.Sign(skT , sidj , {vkT , vkj})
instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}) as in the real protocol. Here,
note that SIMM cannot run the latter since it does not know the corresponding
skj held by an honest responder party Pj .
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Let us analyze SIMM. First, for case (a), the output by SIMM is distributed
exactly as in the real transcript. Next, for case (b), the only difference between
the real distribution and SIMM’s output distribution (which is the derived ses-
sion key k) is that SIMM uses the KEM key K output by KEM.Encap to compute
the session key rather than using the KEM key decrypted using KEM.Decap with
the initiator party Pi ’s decryption key dki. However, by (1 − δKEM)-correctness
of ΠKEM, these two KEM keys are identical with probability at least (1− δKEM).
Hence, the output distribution of SIMM and the real view are indistinguish-
able. Finally, for case (c), the only difference between the real distribution and
SIMM’s output distribution (which is the derived session key and the message
sent (C,CT , c)) is how the ring signature is generated. While the real protocol
uses the signing key skj of the responder party Pj , the simulator SIMM uses
skT . However, the signatures outputted by these two distributions are compu-
tationally indistinguishable assuming the anonymity of ΠRS. Hence, the output
distribution of SIMM and the real view are indistinguishable.

Combining everything together, we conclude the proof. ��

6.3 Deniable Signal-Conforming AKE Π ′
SC-DAKE Against Malicious

Adversaries

We discuss security of our Signal-conforming AKE protocol Π ′
SC-DAKE against

malicious adversaries. As depicted in Fig. 3, to achieve deniability against mali-
cious adversaries, we modify the protocol so that the initiator party adds a NIZK
proof attesting to the fact that it constructed the verification key of the ring
signature vkT honestly. Formally, we require the following additional building
blocks.

Building Blocks. Our deniable Signal-conforming AKE protocol Π ′
SC-DAKE

against malicious adversaries requires the following primitives in addition to
those required by ΠSC-DAKE in the previous section.

– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is an IND-CCA
secure KEM scheme as in the previous section that additionally satisfies PAμ-1
security with an efficiently constructible extractor, where μ is the number of
parties in the system.

– ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK argument system
for the relation RRS where (X,W) ∈ RRS if and only if the statement X =
(pp, vk) and witness W = (sk, rand) satisfy (vk, sk) = RS.KeyGen(pp; rand).

Additional Assumption. We require a knowledge-type assumption to prove
deniability against malicious adversaries. Considering that all of the previous
AKE protocols satisfying a strong form of security and deniability require such
knowledge-type assumptions [24,53,57], this seems unavoidable. On the other
hand, there are protocols achieving a strong form of deniability from standard
assumptions [25,51,52], however, they make a significant compromise in the
security such as being vulnerable to KCI attacks and state leakages.
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The following knowledge assumption is defined similarly in spirit to those of
Di Raimondo et al. [24] that assumed that for any adversary M that outputs
a valid MAC, then there exists an extractor algorithm Ext that extracts the
corresponding MAC key. Despite it being a strong knowledge-type assumption
in the standard model, we believe it holds in the random oracle model if we
further assume the NIZK comes with an online knowledge extractor23 like those
provide by Fischlin’s NIZK [27]. We leave it to future works to investigate the
credibility of the following assumption and those required to prove deniability
of the X3DH protocol [53].

Assumption 6.2 (Key-Awareness Assumption for Π ′
SC-DAKE). We say that

Π ′
SC-DAKE has the key-awareness property if for all PPT adversaries M inter-

acting with a real protocol execution in the deniability game as in Definition 6.1,
there exists a PPT extractor ExtM such that for any choice of (pp,

−→
lpk,

−→
lsk) ∈

KeyGen(1κ, μ), whenever M outputs a ring signature verification key vk and
a NIZK proof π for the language LRS, then ExtM taking input the same input
as M (including its randomness) outputs a signing key sk such that (vk, sk) ∈
RS.KeyGen(ppRS) for any ppRS ∈ RS.Setup(1κ).

With the added building blocks along with the key-awareness assumption, we
prove the following theorem. The high-level approach is similar to the previous
proof against semi-honest adversaries but the concrete proof requires is rather
involved. The main technicality is when invoking the PAμ-1 security: if we do
the reduction naively, the extractor needs the randomness used to sample the
ring signature key pairs of the honest party but the simulator of the deniability
game does not know such randomness. We circumvent this issue by hard-wiring
the verification key of the ring signature of the adversary and considering PAμ-1
security against non-uniform adversary. The proof is presented in the full version.

Theorem 6.3 (Deniability of Π ′
SC-DAKE against Malicious Adversaries).

Assume ΠKEM is PAμ-1 secure with an efficiently constructible extractor, ΠRS

is anonymous, ΠNIZK is sound,24 and the key-awareness assumption in Assump-
tion 6.2 holds. Then, the Signal-conforming protocol Π ′

SC-DAKE with μ parties is
deniable against malicious adversaries.

Finally, we show Π ′
SC-DAKE is correct and secure as a standard Signal-

conforming AKE protocol in the full version.

Acknowledgement. The second author was supported by JST CREST Grant Num-
ber JPMJCR19F6. The third and fourth authors were supported by the Innovate UK
Research Grant 104423 (PQ Cybersecurity).

23 This guarantees that the witness from a proof can be extracted without rewinding
the adversary.

24 We note that this is redundant since it is implicitly implied by the key-awareness
assumption. We only include it for clarity.
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Abstract. Randomness is an essential resource for cryptography. For
practical randomness generation, the security notion of pseudorandom
generators (PRGs) intends to automatically preserve (computational)
security of cryptosystems when used in implementation. Nevertheless,
some opposite case such as in computational randomness extractors
(Barak et al., CRYPTO 2011) is known (but not yet systematically stud-
ied so far) where the security can be lost even by applying secure PRGs.
The present paper aims at pushing ahead the observation and under-
standing about such a phenomenon; we reveal such situations at layers
of primitives and protocols as well, not just of building blocks like ran-
domness extractors. We present three typical types of such cases: (1)
adversaries can legally see the seed of the PRGs (including the case of
randomness extractors); (2) the set of “bad” randomness may be not
efficiently recognizable; (3) the formulation of a desired property implic-
itly involves non-uniform distinguishers for PRGs. We point out that the
semi-honest security of multiparty computation also belongs to Type
1, while the correctness with negligible decryption error probability for
public key encryption belongs to Types 2 and 3. We construct examples
for each type where a secure PRG (against uniform distinguishers only,
for Type 3) does not preserve the security/correctness of the original
scheme; and discuss some countermeasures to avoid such an issue.

Keywords: Pseudorandom generators · Public key encryption ·
Multiparty computation

1 Introduction

Randomness is an essential resource for cryptography. While theoretical design
of cryptosystems usually relies on ideal randomness, it is practically expensive to
generate a large amount of (almost) ideal randomness, therefore some efficient
“approximation” of randomness is necessary. When computational security is
sufficient, a standard way is to use cryptographically secure pseudorandom gen-
erators (PRGs) in implementation. Due to the way of defining the security of
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PRGs (i.e., computational indistinguishability of the output from being uni-
formly random), it is widely expected in the area of cryptography that if the
cryptosystem is secure assuming ideal randomness, and the PRG is also secure,
then the cryptosystem implemented by the PRG instead of the ideal random-
ness will be secure as well. Indeed, usually no security caution is given when a
cryptosystem is implemented by using a cryptographically secure PRG; such a
use of PRG is even frequently recommended by professional cryptographers.

However, in fact there exists some situation where (computational) security of
a cryptographic scheme is not preserved by implementation using a secure PRG.
Namely, Barak et al. has shown in Sect. 4.1 of [3] the following. Let Ext(X;S)
be a randomness extractor with source distribution X and random seeds chosen
from S. We consider the situation that a random seed s ← S is replaced by a
PRG’s output R(s0) with shorter seed s0 ← S0. Roughly speaking, their result
gives a pair of a secure extractor Ext(X;S) and a secure PRG R that yields
an insecure extractor Ext(X;R(S0)). A consequence is that the aforementioned
standard methodology of implementing the randomness by secure PRGs does
not always guarantee the security of the implemented scheme. (Some conditions
to avoid such a loss of security are also discussed in their paper.) This fact should
have impact for evaluating security of practically used cryptosystems where the
use of cryptographic PRGs is recommended. Nevertheless, to the author’s best
knowledge, such a phenomenon caused by PRGs has not been systematically
studied in the literature. The present paper aims at pushing ahead the observa-
tion and understanding about such a phenomenon for the case of other kinds of
cryptographic schemes.

1.1 Our Contributions

In this paper, we look at the aforementioned possible phenomenon that some
required property of (computationally secure) cryptographic schemes may be lost
by applying PRGs even if the PRG itself is secure. We point out the following
three types of typical situations where such a phenomenon may happen.

Type 1: The Seed of the PRG is Visible for Adversaries
This includes the known case of randomness extractors Ext mentioned above.
Namely, its security is defined as Ext((X;S), S, Z)

c≈ (U, S, Z) under certain
conditions for X and Z where

c≈ denotes the computational indistinguishability
and U denotes the uniform distribution on some set (see Definition 4 of [3]
for details). The essence is that the adversary in the security notion (i.e., the
distinguisher behind the notation

c≈) can also see the internal randomness S

of Ext. On the other hand, the security definition R(S0)
c≈ U for a PRG R

supposes that the seed (internal randomness) is not visible for the adversary.
Intuitively, as the security of PRGs does not suppose the case where the internal
randomness is visible for the adversary, the security of the PRG may be useless
to preserve the security of the randomness extractor with visible seeds.

Here we point out that such a security notion with visible randomness in fact
also appears in situations closer to real applications (rather than just building
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blocks like randomness extractors). Concretely, the standard security notion for
multiparty computation (MPC) is also of this type (see Sect. 3.1 for details). Here
we focus on two-party computation (2PC) among MPC for the sake of simplicity,
and give the following result.

Theorem 1 (Informal). Under a certain assumption, there is a pair of a 2PC
protocol π and a secure PRG R with the following property: π is secure (in the
semi-honest model) against a party P but the protocol becomes insecure against
the party P when the internal randomness for P is generated by using R.

See Sect. 3 for details. Roughly summarizing, we construct two pairs (π1,R1)
and (π2,R2) as in the statement; π1 is artificially constructed but is very sim-
ple; while π2 is complicated but is a practical protocol chosen from a paper by
Asharov et al. in ACM CCS 2013 [1] (more precisely, Protocol 51 in Sect. 5.2
of its full version [2]). We note that possibilities for such connections between a
party’s randomness and the security against the same party have been suggested
in some previous papers [17,22], but no concrete example of the connection was
given in the literature before the present work. (We also note that the underlying
assumption in the theorem is not a standard one, which is a main drawback of
the result. Nevertheless, the assumption is at least not immediately falsifiable,
which suggests that it would not be able to guarantee in general that a secure
PRG preserves the security of MPC.)

It should be emphasized that there is no contradiction in the theorem where
the semi-honest security is lost by applying a secure PRG, as the semi-honest
model requests each party to follow the protocol precisely, including the ideal
randomness generation. However, the possible gap between security of MPC with
ideal randomness and with PRGs seems to be not recognized in the research area;
our result here gives a caution for this point. In the author’s opinion, the situation
for (semi-honest) MPC with PRGs would have to be similar to cryptography in
the random oracle model (ROM) where most of the cryptographers know the
gap between ROM and the real (cf. Sect. 1.2 below) and they explicitly accept
the rigorous imperfectness as a trade-off with practical efficiency.

We might expect that such a loss of security would not occur for “natural”
cases, especially with “natural” PRGs, as the construction of PRG R in our
theorem above is very artificial and impractical. But the meaning of “natural”
here is not rigorous; it is worthy to establish some sufficient conditions for prov-
ably preventing such a loss of security. Towards this affirmative direction, in this
paper we give the following result. Here we say (roughly) that a simulator S for a
party P in a security proof of a 2PC protocol is with raw randomness, if S gener-
ates the simulated randomness for P by using a part of randomness for S “as is”
(rather than adjusting according to the other part of the output of S); see Defi-
nition 1 in Sect. 3.5 for the precise definition. We also recall that the min-entropy
of a random variable X is defined by H∞(X) = −maxx log2 Pr[X = x].

Theorem 2 (Informal). Let π be a semi-honest 2PC protocol that is informa-
tion-theoretically secure against a party P with raw randomness for simulator
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(see above for the terminology). Let R be a PRG and suppose that the differ-
ence of min-entropy of R’s output distribution from that of ideal randomness is
at most of logarithmic order (with respect to the security parameter). Then by
generating the randomness for P with R, the protocol π remains information-
theoretically secure against semi-honest P with raw randomness for simulator.

See Sect. 3.5 for details. We emphasize that if we remove the condition of
“with raw randomness for simulator” (respectively, “information-theoretically
secure”) from the hypothesis, then the protocol-PRG pair (π1,R1) (respectively,
(π2,R2)) appeared in the proof of Theorem 1 gives a counterexample, therefore
the condition is essential in the statement.

On the other hand, the current condition for PRG in the theorem (which
implies that the PRG has only logarithmic stretch) looks very severe and it
is important to weaken the condition. In particular, it is desirable for such a
theorem to be based on some computational property of PRGs, rather than
information-theoretic one such as min-entropy. Here we intuitively explain a
difficulty behind the problem; let S and SPRG be simulators to be constructed
in the security of an original protocol Π and its variant ΠPRG using a PRG
R, respectively. To show that the security of Π implies the security of ΠPRG, it
suffices to show an implication from S to SPRG, or equivalently, that if the output
of SPRG can be distinguished by an algorithm DPRG then the output of S will
also be distinguished by some algorithm D. When constructing D from DPRG,
a straightforward strategy (using DPRG in a black-box manner) would involve a
process to convert a given input for D into an input for DPRG. However, now
an input for D involves randomness for Π (to be generated by R in the case of
ΠPRG) and an input for DPRG involves a seed for R; hence, such a conversion
as above might require a kind of “inversion” of R from its output to its seed,
which would be difficult due to the security of R. Our proof in this paper escapes
successfully from such a difficulty in the reduction-based proof by utilizing the
extremely high min-entropy for the PRG. It looks a challenging task to handle
such a difficulty by basing on computational security of the PRG.

Type 2: The “Bad” Randomness may be not Efficiently Recognizable
Intuitively, when the security of some cryptosystem against a (polynomial-time)
adversary (who cannot see the internal randomness) is concerned, it suffices
for the PRG to fool this adversary only, therefore the usual security of the
PRG can ensure that the security of the cryptosystem is preserved. In contrast,
here we point out that the security of PRGs may be not sufficient to preserve
the correctness of a cryptosystem; the security is of course important, but the
correctness should be even more important. We focus only on the case of public
key encryption (PKE); to point out the existence of such a phenomenon is a
main purpose of the present work, and more exhaustive studies among other
kinds of cryptographic schemes are future research topics.

When a PKE scheme has perfect (zero-error) correctness, the way of random-
ness generation does not affect the correctness at all. On the other hand, here we
deal with PKE schemes with negligible but non-zero decryption error probability,
and we want to generate the randomness for key generation by using a PRG. The
issue we point out is the following: even if the ratio of “bad” randomness yielding
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a key with high error probability is negligible among the whole space, in general
the set of “bad” randomness may be not efficiently recognizable1. If the set were
efficiently recognizable, the security of a PRG would ensure that the probability
of choosing “bad” randomness is only negligibly changed by the PRG, therefore
the correctness would be preserved. But it is in general not true, therefore the
probability of choosing “bad” randomness may increase non-negligibly even if
the PRG is secure2:

Theorem 3 (Informal). Under a certain assumption, there is a pair of a PKE
scheme and a secure PRG with the following property: the probability of choosing
“bad” randomness in the key generation is exponentially small when the ideal
randomness is used but becomes 1 when the output of the PRG is used instead.

See Sect. 4 for details. Such an issue of “bad” randomness may potentially
occur also in other cryptosystems. Although the example in the theorem is arti-
ficially constructed and the author has not found any such example among the
schemes proposed in the literature, the result still suggests that it might be
important to check if the set of “bad” randomness is efficiently recognizable
when designing a new cryptosystem; such an issue in correctness (rather than
security) has not been noticed in the literature to the author’s best knowledge.

We note that there is a general solution (at least for PKE) to avoid such an
issue, which is a conversion method to make the scheme perfectly correct, pro-
posed by Bitansky and Vaikuntanathan [5]3. But the method has large overhead
and is not very practical. The situation is similar also for the Type 3 below.

Type 3: Non-uniform Distinguishers are Implicitly Related
For example, the standard security notion for MPC (cf. Sect. 7.2 of [16]) is explic-
itly based on the indistinguishability of random variables against non-uniform
distinguishers with advice z = zλ dependent solely on the security parameter λ.
Then it is natural that the PRG should also be secure against non-uniform dis-
tinguishers. In contrast, here we point out that there are cases in cryptography
where non-uniform security (not just the security against uniform distinguish-
ers) is required for the PRG but the relevance of non-uniformity is implicit.
Concretely, we again deal with the correctness with negligible errors for PKE,
but here we focus on the encryption algorithm rather than key generation. To

1 “Performing key generation (using the randomness), encryption, and decryption and
then checking if the result is correct” is in general not an efficient procedure, as the
corresponding “bad” plaintext to be encrypted may be not efficiently samplable.

2 The issue remains even if the PRG is secure against non-uniform distinguishers with
advice. Although the set of “bad” randomness is fixed for each security parameter,
this set may be too complicated to be included in the advice of polynomial length.

3 Such so-called “immunization” methods had also been studied before, e.g., [13,20,
23], but those methods remove the errors only partially. We note also that such meth-
ods did not concern the issue as in the paper and their motivations were different;
e.g., preventing attacks that utilize decryption errors (e.g., [21]).
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the author’s best knowledge, such relevance of non-uniform security for PRGs
to the correctness4 of PKE has not been studied in the literature.

An intuitive explanation is as follows. In a usual definition for correctness,
the decryption error probability has to be negligible for any plaintext. When
falsifying the correctness (under the use of a PRG), the error probability will
be non-negligible for some plaintext. The essence is that such a “bad” plaintext
mλ at each security parameter λ is not necessarily found in polynomial time,
therefore a distinguisher for the PRG that utilizes the plaintexts mλ should be
non-uniform with advice mλ. More precisely, we give the following result.

Theorem 4 (Informal). Under a certain assumption (including the gap bet-
ween uniform and non-uniform security for PRGs5), there is a pair of a PKE
scheme and a (uniformly) secure PRG for which the decryption error probabil-
ity is exponentially small when the ideal randomness is used in encryption but
becomes non-negligible when the output of the PRG is used instead.

See Sect. 5 for details. We note that any non-uniformly secure PRG used
in the encryption algorithm preserves the correctness. But switching from uni-
form to non-uniform security may worsen the security parameter in practical
implementations, due to some results on attacks by non-uniform algorithms,
e.g., [4,7,26]. We also give a possible strategy of avoiding non-uniformly secure
PRGs in ensuring the correctness after the use of a PRG; see Theorem 10 for
details.

1.2 Related Work

One may feel some similarity of the results in this paper to a famous result by
Canetti, Goldreich, and Halevi [6] showing that there is a scheme involving a
(keyless) hash function that is provably secure when the hash function is modeled
as a random oracle but becomes insecure for any concrete implementation of the
hash function. In some sense, both of the present paper and theirs reveal gaps
between cryptography based on idealized frameworks (ideal randomness/ROM)
and that based on real objects (PRGs/hash functions). We emphasize, how-
ever, that there exists the following difference between the two results; the “real
objects” in [6] (hash functions) themselves do not have provable security, while
the present paper shows that even provably secure “real objects” (PRGs) can
cause insecurity in implementation, which may have stronger impact. (On the
other hand, a point of the present paper weaker than theirs is that our result
here shows the existence of at least one “problematic” real object, while [6] shows
that any such real object is “problematic”.)

We also note another related result by Hirose [18] that for any (keyless) hash
function under a certain model of construction that is secure when an ideal block
cipher is used in the construction, there exists a block cipher that is provably
4 For the security of PKE, the theory can be reasonably based on the uniform com-

plexity treatment [14].
5 The issue discussed here will disappear if there is no such gap.
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secure but by which the resulting hash function becomes insecure. This result
also focused on insecurity caused by provably secure building blocks, but our
result in this paper covers wider situations, not just hash functions.

One may also feel that the topic of the present paper seems to be related
to some other topics concerning non-ideal randomness in cryptography, such
as cryptography based on so-called “imperfect randomness” (e.g., [10,12]) and
the security issues caused by “backdoored PRGs” (e.g., [8,9]). But actually, the
former topic above mainly deals with randomness that is significantly far from
being ideal; in contrast, the present paper focuses on the use of randomness that
is significantly close to ideal. On the other hand, the latter topic above studies
the problem of the use of maliciously (and secretly) designed PRGs; while the
main concern of the present paper originates from the practical impossibility of
implementing the ideal randomness even if an engineer is honest and makes a
best effort. Hence our problem setting is significantly different.

Finally, we mention about a previous work by Dodis et al. [11] which also
studies situations where some internal states of a PRG are leaked to an adver-
sary. An advantage of their result is that security notions for PRGs concerning
such situations are established and precise constructions of PRGs satisfying their
conditions are given. However, we emphasize that their security notion in fact
considers only partial leakage of inputs to the PRG; in sequential updates of the
internal state depending on newly supplied random seeds, an adversary obtains
some intermediate states and then the PRG intends to quickly recover an unpre-
dictable state with the help of subsequent unknown seeds. In contrast, Type 1
in our argument here considers more severe cases where the entire input (seed)
to the PRG is known by an adversary; due to the difference of situations, the
affirmative results in [11] would not (straightforwardly) resolve our problem.

2 Preliminaries

For a probabilistic algorithm A, we may write A(x; r) instead of A(x) to empha-
size the choice of randomness r. We adopt a convention that an advice z = zλ

for a non-uniform algorithm A = A(zλ) depends solely on the security param-
eter λ.6 We let “polynomial-time” mean “polynomial-time with respect to λ”.
For a finite set S, let Δ(X,Y ) = (1/2)

∑
z∈S |Pr[z ← X] − Pr[z ← Y ]| be the

statistical distance of random variables X and Y on S. Let U [S] denote the
uniform distribution on S. We write x ←R S to mean that x is sampled from S
uniformly at random. We may identify a bit sequence with an integer via binary
expressions of integers.

Let Iλ (λ ≥ 1) be index sets. Let X = (Xλ,w)λ,w and Y = (Yλ,w)λ,w be
families of random variables indexed by λ ≥ 1 and w ∈ Iλ. We say that X
and Y are uniformly (respectively, non-uniformly) indistinguishable, denoted
by X

u.c≈ Y (respectively, X
nu.c≈ Y ), if for any probabilistic polynomial-time

6 By an appropriate padding to the input, our convention here can be made consistent
with a standard convention where an advice depends solely on the input length.
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(PPT) uniform (respectively, non-uniform) distinguisher D, there is a negligible
function ε(λ) ∈ λ−ω(1) satisfying that the advantage |Pr[D(1λ,Xλ,w) = 1] −
Pr[D(1λ, Yλ,w) = 1]| is at most ε(λ) for any λ and w ∈ Iλ. We say that X and

Y are information-theoretically indistinguishable, denoted by X
i≈ Y , if there is

a negligible function ε(λ) with Δ(Xλ,w, Yλ,w) ≤ ε(λ) for any λ and w ∈ Iλ.
In this paper, we let a pseudorandom generator (PRG) R be a determin-

istic polynomial-time algorithm that takes security parameter 1λ and a seed
s ∈ {0, 1}�in(λ) as input and outputs an element of {0, 1}�out(λ), where �in(λ)
and �out(λ) are some polynomially bounded and polynomial-time computable
functions satisfying that λ ≤ �in(λ) < �out(λ) and �in(λ) is a strictly increas-
ing function7. We say that a PRG R is uniformly (respectively, non-uniformly)
secure, if R(1λ, U [{0, 1}�in(λ)])

u.c≈ (respectively,
nu.c≈ ) U [{0, 1}�out(λ)].

3 Type 1: Schemes with Visible Seeds

In this section, we observe (as mentioned in Sect. 1.1) that the standard security
notion for (semi-honest) two-party computation (2PC) is formalized in a way
that the internal randomness is visible for adversaries; and consequently, the
security of PRGs (where the seed is supposed to be not visible for adversaries)
may be unable to in general preserve the security of a protocol when a PRG is
applied. We state and prove Theorems 1 and 2 in a more precise manner.

3.1 Basic Definitions

Let π be a 2PC protocol with parties P1 and P2 to compute function values
�f(�x) = (f1(�x), f2(�x)) from input pair �x = (x1, x2). Let �r = (r1, r2) be the pair of
randomness for P1 and P2, �mi(1λ, �x;�r) (i = 1, 2) be the list of messages received
by Pi during the protocol, and π(1λ, �x;�r) denote the pair of outputs by P1 and
P2 in π. Following the standard formulation (cf. Sect. 7.2 of [16]), we say that
π is secure against semi-honest Pi, if there is a PPT simulator Si for which(
Si(1λ, xi, fi(�x)), �f(�x)

)

λ,�x

nu.c≈
(
xi, ri, �mi(1λ, �x;�r), π(1λ, �x;�r)

)
λ,�x

(see Sect. 2 for

the notation
nu.c≈ ). We also say “information-theoretically secure”, if the relation

i≈ holds instead of
nu.c≈ .

An important observation is that the internal randomness ri for party Pi

is included in the input to the distinguisher behind the notation
nu.c≈ . This is

practically reasonable, as a corrupted party will be able to see the party’s internal
randomness for the protocol which is stored in the party’s own device.

For a 2PC protocol π, a PRG R, and i ∈ {1, 2}, let π ◦i R denote the
modified version of π where, for internal randomness (r′

1, r
′
2), party Pi executes

the protocol π with randomness ri ← R(1λ, r′
i), while the other party P3−i

executes π by using randomness r3−i ← r′
3−i as is.

7 One may think that the seed length of a PRG should satisfy �in(λ) = λ; but our
seemingly generalized style is just for the sake of technical ease and our argument
can indeed be translated into the more strict style where �in(λ) = λ always holds.
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Algorithm 1: First 2PC protocol π1 for Theorem 1
Input : (P1) Blum integer N (as in the text); and randomness r1 ∈ {0, 1}3λ

(P2) λ-bit prime factors p < q of N ; and randomness r2 ∈ {0, 1}2

Output: none
1 (By P1) y ← r1 mod N and send y to P2

2 (By P2) if y ∈ QRpq then
3 uniformly sample one of the four square roots ξ of y ∈ (Z/pqZ)×

4 send η ← ξ to P1

5 else
6 send η ← ⊥ to P1

7 end

3.2 First Protocol for Theorem 1

We define a 2PC protocol π1 as in Algorithm 1.8 For security parameter λ ≥ 5,
an input pair is given by x1 = N and x2 = (p, q) where N = pq is a Blum integer
with λ-bit primes p < q (i.e., p ≡ q ≡ 3 (mod 4)). Let QRN = QRpq ⊆ (Z/NZ)×

denote the set of quadratic residues modulo N = pq. Note that the computation
by P2 is of polynomial time as P2 has the prime factors p, q of N . Here we focus
only on the security against semi-honest P1, though π1 is also secure against P2.

Proposition 1. π1 is information-theoretically secure against semi-honest P1.

Proof. We consider the PPT simulator S as in Algorithm 2.9 We write η = η(y)
in π1. Moreover, for y′ ∈ Z/NZ, let g(y′) denote the uniform random variable on
the set {r′ ∈ {0, 1}3λ | r′ mod N = y′} (see also Line 9 of Algorithm 2). Then we

have (r1, η(y))
i≈ (g(y), η(y)) by the definition of g. Now, as N is a Blum integer,

±1 and ±a in S are complete representatives for (Z/NZ)×/QRN . Therefore

y′ i≈ U [(Z/NZ)×] and η† = η(y′), while y
i≈ U [(Z/NZ)×] in π1 as r1 is λ-bit

longer than N = pq. Hence y
i≈ y′ and (g(y), η(y))

i≈ (g(y′), η(y′))
i≈ (r†

1, η
†).

Summarizing, we have (N, r1, η)
i≈ (N, r†

1, η
†) = S(1λ, N), which implies the

claim. 
�

3.3 First PRG for Theorem 1

We define a PRG for P1’s randomness in π1. In order to describe the underlying
assumption, first we introduce some terminology. We say that a deterministic
8 Some reader may feel strange because the two parties’ inputs in the protocol are

very correlated and the protocol has no output. This is for the sake of simplifying
the argument, and in fact our protocol can be converted into a more “natural” but
complicated form. See Appendix A for the details.

9 In fact, in order to let the internal randomness for S be a bit sequence, we have to,
and indeed we can, approximate (with exponentially small deviation from the ideal)
the procedures in Lines 1, 2 and 9 by PPT algorithms with random bit sequences.
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Algorithm 2: Simulator S for P1 in protocol π1

Input : 1λ and P1’s local input N
Output: N , simulated randomness r†

1, and simulated message η† from P2

1 x′ ←R (Z/NZ)×

2 take some a ∈ (Z/NZ)× with Jacobi symbol
(

a
N

)
= −1

3 a′ ←R {±1, ±a} and y′ ← (x′)2 · a′ ∈ (Z/NZ)×

4 if y′ = (x′)2 then

5 η† ← x′

6 else

7 η† ← ⊥
8 end

9 sample a value r†
1 ∈ {0, 1}3λ of the uniform random variable, denoted by g(y′),

on the set of all r′ ∈ {0, 1}3λ with r′ mod N = y′

10 return (N, r†
1, η

†)

polynomial-time algorithm B = B(1λ) is a Blum integer generator, if its output
B(1λ) (with λ ≥ 5) is a Blum integer with two λ-bit prime factors10. We say that
B is efficiently factorizable, if there is a PPT uniform algorithm F satisfying
that F(B(1λ)) is a prime factor of B(1λ) with probability Ω(1).11 Then our
assumption here is described as follows.

Assumption 1. There exists a Blum integer generator B that is not efficiently
factorizable; and there exists a non-uniformly secure PRG for any choices of
�in(λ) and �out(λ) (satisfying the constraints in our definition of PRGs)12.

Now let �S(λ) denote the bit length of the randomness for S. We define
R∗

1(1
λ, r∗) for r∗ ∈ {0, 1}�S(λ) to be the second component r†

1 of the output of
S(1λ,B(1λ); r∗). Then our PRG R1 : {0, 1}3λ−1 → {0, 1}3λ is defined as follows:
first it converts r′

1 ∈ {0, 1}3λ−1 to r∗ ∈ {0, 1}�S(λ) by using a PRG R†
1 as in

Assumption 1 (with �in(λ) = 3λ − 1 and �out(λ) = �S(λ)), and then it outputs
R∗

1(1
λ, r∗). The PRG satisfies the following:

Proposition 2. The PRG R1 is non-uniformly secure.

Proof. We have r∗ nu.c≈ U [{0, 1}�S(λ)] by the security of R†
1, therefore we have

R1(1λ, r′
1) = R∗

1(1
λ, r∗)

nu.c≈ R∗
1(1

λ, U [{0, 1}�S(λ)])
i≈ U [{0, 1}3λ] by Proposi-

tion 1 (for
i≈) and the fact that R∗

1 is PPT (for
nu.c≈ ). Hence the claim follows.


�

Now we give a precise version of Theorem 1 as follows:
10 The reason of restricting B to be deterministic is that B will be used as a component

of the desired PRG and hence may not have its own internal randomness.
11 The factorization is trivially easy if F may be non-uniform, as B is deterministic.
12 Such a PRG can be obtained from a PRG with 1-bit stretch by a standard technique

based on hybrid argument (cf. Construction 3.3.2 and Theorem 3.3.3 of [15]).
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Algorithm 3: Non-uniform distinguisher D for the simulator S for π1

Input : 1λ and P1’s view (N, r̂1, η̂), either in real π1 or simulated by S
(also given prime factors pλ < qλ of Nλ ← B(1λ) as advice)

Output: b ∈ {0, 1}
1 always return b ← 0 when N �= Nλ; below we assume N = Nλ

2 emulate the protocol π1 with inputs Nλ and (pλ, qλ) where r̂1 plays the role of
randomness for P1, and get emulated P2’s message η

3 return b ← χ[η̂, η ∈ (Z/NλZ)× and (η̂)2 = (η)2 and η �∈ {η̂, −η̂}]

Theorem 5. Under Assumption 1, the protocol π1 is secure against semi-honest
P1 and the PRG R1 is non-uniformly secure, but the protocol π1 ◦1 R1 is not
secure against semi-honest P1.

Before giving the proof, we first explain an intuitive idea towards the proof
and an outline of the proof. We observe that if π1◦1R1 were secure, then for P1’s
input N = B(1λ) in π1 ◦1 R1, P1 would be unable to obtain any information
that cannot be deduced directly from N . In particular, as B is not efficiently
factorizable by Assumption 1, P1 would be unable to obtain a prime factor of
N . However, in fact a corrupted P1 can factorize N during the protocol π1 ◦1 R1

as follows: (1) Given randomness r′
1 ∈ {0, 1}3λ−1, P1 generates r∗ ∈ {0, 1}�S(λ)

as above, and executes S(1λ, N ; r∗) and obtains (N, r†
1, η

†). (2) P1 executes the
protocol π1 with input N and randomness r†

1, and obtains P2’s message η (note
that this is a correct execution of π1 ◦1 R1). (3) If η† = ⊥ and η = ±η† mod N ,
then P1 computes p′ ← gcd(η2 − (η†)2, N) and outputs p′.

Now if η† = ⊥ (which occurs with probability 1/4), then η† is a square root
of y′ = r†

1 mod N . Hence by the construction of π1, η is one of the four square
roots of y′, therefore η = ±η† occurs with probability 1/2. In this case, we have
η2−(η†)2 = (η−η†)(η+η†) and η±η† ≡ 0 (mod N), therefore η−η† is divisible
by precisely one of the two prime factors of N , which is equal to p′. Hence P1

can factorize N with probability Ω(1), a contradiction. This shows the claim.
We start the proof of Theorem 5. Owing to Propositions 1 and 2, it suffices to

show that π1 ◦1R1 is not secure against P1. This follows from the contraposition
of the following proposition and Assumption 1 on B.

Proposition 3. Suppose that the protocol π1 ◦1 R1 is secure against P1. Then
there exists a PPT uniform algorithm F that outputs a prime factor of B(1λ)
with probability Ω(1).

Proof. Let S̃ denote a simulator for P1 in π1 ◦1 R1 implied by the hypothesis.
First we consider a PPT non-uniform distinguisher D in Algorithm 3 for the
simulator S for the protocol π1, where we let χ[P ] = 1 if a condition P holds
and χ[P ] = 0 otherwise.

When (Nλ, r̂1, η̂) is a view in real π1, y ← r̂1 mod Nλ is in QRN with prob-
ability ≈ 1/4 (where “≈” means “the difference is negligible”). If it is the case,
then η̂ is a square root of y modulo Nλ. Moreover, in the emulation in Line 2
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Algorithm 4: Distinguisher D̃ for the simulator S̃ for π1 ◦1 R1

Input : 1λ and P1’s view (N, s̃, η̃), either in real π1 ◦1 R1 or simulated by S̃
Output: b ∈ {0, 1}

1 always return b ← 0 when N �= Nλ = B(1λ); below we assume N = Nλ

2 (Nλ, r̂1, η̂) ← S(1λ, Nλ; R†
1(1

λ, s̃))
3 return b ← χ[η̂, η̃ ∈ (Z/NλZ)× and (η̂)2 = (η̃)2 and η̃ �∈ {η̂, −η̂}]

using the same randomness r̂1 for P1 and fresh randomness for P2, the emu-
lated P1 sends the same y, while the emulated P2 replies a uniformly random
square root η of y independent of η̂. Therefore, when y ∈ QRN , we have b = 1
with conditional probability 1/2. Hence D outputs 1 with probability ≈ 1/8.
Now Proposition 1 implies that D also outputs 1 with probability ≈ 1/8 when
(Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗) with ideally random s∗.

We regard the process “run D for input (Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗)” as a
PPT non-uniform distinguisher with advice (pλ, qλ) against the non-uniformly
secure PRG R†

1. Then it follows that the probability of b = 1 is still at least
1/8 − negl(λ) ∈ Ω(1) when s∗ ← R†

1(1
λ, s) and s is a uniformly random seed for

R†
1, where negl denotes some negligible function.
For the latter case (Nλ, r̂1, η̂) ← S(1λ, Nλ; s∗) with s∗ ← R†

1(1
λ, s), the

component r̂1 coincides with the output of the PRG R1 with seed s, therefore
the emulated protocol in Line 2 of D is nothing but the protocol π1 ◦1 R1 with
randomness s for P1. Now we consider a PPT distinguisher D̃ in Algorithm 4 for
simulator S̃.

By the argument above, when (Nλ, s̃, η̃) is a view in real π1 ◦1 R1 with
input (pλ, qλ) for P2, the probability distribution of η̃ conditioned on the given
(s̃, r̂1, η̂) coincides with that of η in D for the same (r̂1, η̂), therefore the prob-
ability that D̃ outputs b = 1 is also Ω(1) in this case. Now the hypothesis
on the simulator S̃ implies that the probability of b = 1 is also Ω(1) even when
(Nλ, s̃, η̃) is simulated by S̃. That is, by generating (Nλ, s̃, η̃) ← S̃(1λ,B(1λ)) and
(Nλ, r̂1, η̂) ← S(1λ, Nλ;R†

1(1
λ, s̃)), the conditions η̂, η̃ ∈ (Z/NλZ)×, (η̂)2 = (η̃)2,

and η̃ ∈ {η̂,−η̂} are satisfied with probability Ω(1); and if it is the case, then
a prime factor of Nλ can be found by computing gcd(η̃ − η̂, Nλ). As the afore-
mentioned process of generating η̃ and η̂ from B(1λ) is PPT and uniform, this
yields the algorithm F as in the statement. Hence Proposition 3 holds. 
�

3.4 Second Protocol and PRG for Theorem 1

We give another pair of a 2PC protocol π2 and a PRG R2 for Theorem 1. An out-
line of the argument is as follows. The protocol π2 is an oblivious transfer (OT)
protocol proposed by Asharov et al. in ACM CCS 2013 [1], or more precisely,
Protocol 51 in Sect. 5.2 of its full version [2]. The key idea of their OT protocol is
to construct a function, denoted here by H, that can sample a random element
h of an underlying cyclic group G = 〈g〉 in a way that the discrete logarithm of
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h with respect to g is unknown even if the seed used for sampling h is known.
Now the Receiver of the 1-out-of-2 OT protocol with input σ ∈ {0, 1} generates
h ∈ G by using H and gα with random α, and sends (gα, h) when σ = 0 and
(h, gα) when σ = 1 to the Sender. The Sender encrypts the two inputs in a way
like the hashed ElGamal encryption where each of the two elements of G given
from the Receiver is used as a public key, and sends the two ciphertexts (c0, c1)
to the Receiver. Then the Receiver can decrypt cσ and obtain the correspond-
ing input of the Sender as the “secret key” α is known; while the other c1−σ

cannot be decrypted (hence the other input remains secret) as the “secret key”
corresponding to h is not known as mentioned above.

Then our construction of the PRG R2 is based on the following observation:
there is a secure PRG R′

2 that can “cancel” the effect of the function H. Namely,
when h ∈ G is sampled by H using an input generated by R′

2 with seed s, now the
discrete logarithm of h can be efficiently recovered from s. Then we construct a
secure PRG R2 that involves R′

2 to convert a part s of the seed (s, α) into R′
2(s).

By using the output (R′
2(s), α) of R2 in π2 instead of the Receiver’s original

randomness, now the Receiver can also decrypt c1−σ and break the security, as
the corresponding “secret key” can be recovered from s as mentioned above.

Now we move to a precise argument. First, we recall the construction of the
OT protocol π2 mentioned above. To make the argument precise, here we explic-
itly state that the internal randomness for the two parties are bit sequences, and
the uniform samplings of objects in the protocol are performed approximately
with exponentially small deviation. The input objects for the protocol (except
the security parameter) can be classified into global parameters that can be
reused for several protocol executions (such as the underlying cyclic group) and
“actual” inputs for each individual protocol execution. For the global parame-
ters, in this paper we put an assumption that a secure global parameter can be
chosen efficiently and deterministically (see Assumption 2 below). This techni-
cal assumption would also have some practical meaning, as it may sometimes
happen that an implementation of a protocol hard-wires such a reusable global
parameter.

In order to specify our choice of global parameters, we quote the following
description from the text in the second paragraph of Sect. 5.2 in [2] (where
“[......]” indicates omission by the author of the present paper):

[......] We also assume that it is possible to sample a random element of
the group, and the DDH assumption will remain hard even when the coins
used to sample the element are given to the distinguisher (i.e., (g, h, ga, ha)
is indistinguishable from (g, h, ga, gb) for random a, b, even given the coins
used to sample h). [......] For finite fields, one can sample a random element
h ∈ Zp of order q by choosing a random x ∈R Zp and computing h =
x(p−1)/q until h = 1. [......]

Accordingly, we use the subgroup of a given order q in the multiplicative group
(Fp)× of a finite field Fp (denoted by Zp in the quoted text) as the underlying
group of the protocol, where p is a t-bit prime for some polynomially bounded
t ≥ λ and q is a divisor of p−1. Then the aforementioned sampling method H for
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Algorithm 5: The algorithm H to sample a subgroup element
Input : x′ ∈ {0, 1}2t

Output: an element h in the order-q subgroup of (Fp)×

1 x ← x′ mod p
2 if x �= 0 then

3 return h ← x(p−1)/q mod p
4 else
5 return h ← 1
6 end

the group elements can be realized as in Algorithm 5, where slight modification
is made in order to ensure that it always halts within finite (and polynomial)
time. This algorithm has the following property.

Lemma 1. The output H(x′) for x′ ←R {0, 1}2t is in the unique subgroup of
order q in (Fp)× and its probability distribution is exponentially close to uniform
over this subgroup.

Proof. First, if x = 0 in the algorithm, then the output h is 1; while if x = 0,
then h = x(p−1)/q mod p is an element of (Fp)× of order dividing q, as (Fp)×

is a cyclic group of order p − 1. This implies the former part of the statement.
On the other hand, for the latter part of the statement, as the bit length of p is
t ≥ λ, the distribution of x is exponentially close to the uniform distribution over
(Fp)×. Therefore, we may assume without loss of generality that x ←R (Fp)×.
Then h = x(p−1)/q mod p becomes a uniformly random element of the subgroup.
This implies the latter part of the statement. Hence Lemma 1 holds. 
�

Our assumption mentioned above, which is a (possibly nonstandard) variant
of the decisional Diffie–Hellman (DDH) assumption, is the following:

Assumption 2. There exists a deterministic polynomial-time algorithm to
choose a t-bit prime p with t ≥ λ, a divisor q of p − 1, a generator g of the
subgroup of order q in (Fp)×, and a deterministic polynomial-time key deriva-
tion function KDF : 〈g〉 → {0, 1}L for some L, satisfying the following: the two
distributions of

(p, q, g, gr mod p, x′,KDF(H(x′)r mod p))

and
(p, q, g, gr mod p, x′, z)

with r ←R {0, . . . , q − 1}, x′ ←R {0, 1}2t, z ←R {0, 1}L are non-uniformly
indistinguishable.

Then the protocol π2 is described in Algorithm 6; here the global parameters
are chosen as in Assumption 2 (in particular, the choice of global parameters is
deterministic given a security parameter 1λ). The result in the original paper
implies that π2 is secure in the semi-honest model under Assumption 2.

The following is another precise version of Theorem1 to be proved here.
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Algorithm 6: The OT protocol in [2] (called π2 here)
Input : (global parameters) t-bit prime p, divisor q of p − 1, g ∈ (Fp)× of

order q, and KDF : 〈g〉 → {0, 1}L

(P1 (Sender)) (x〈0〉, x〈1〉) ∈ ({0, 1}L)2; and randomness r1 ∈ {0, 1}2t

(P2 (Receiver)) σ ∈ {0, 1}; and randomness (r′
2, r

′′
2 ) ∈ ({0, 1}2t)2

Output: (P1) none
(P2) x ∈ {0, 1}L // To be equal to x〈σ〉

1 (By P2) h ← H(r′
2) and α ← r′′

2 mod q
2 (By P2) if σ = 0 then

3 (h(0), h(1)) ← (gα mod p, h)
4 else

5 (h(0), h(1)) ← (h, gα mod p)
6 end

7 (By P2) send (h(0), h(1)) to P1

8 (By P1) r ← r1 mod q and u ← gr mod p

9 (By P1) (k(0), k(1)) ← ((h(0))r mod p, (h(1))r mod p)

10 (By P1) (v(0), v(1)) ←
(
x(0) ⊕ KDF(k(0)), x(1) ⊕ KDF(k(1))

)

11 (By P1) send u, v(0), and v(1) to P2

12 (By P2) return x ← v(σ) ⊕ KDF(uα mod p)

Theorem 6. Assume that there exists a non-uniformly secure PRG for any
choices of �in(λ) and �out(λ) (satisfying the constraints in PRGs). Assume more-
over that the parameters in the protocol π2 satisfy that (p − 1)/q is coprime to
q, and that a generator g0 of (Fp)× can also be chosen in deterministic poly-
nomial time. Then there is a non-uniformly secure PRG R2 with 1-bit stretch
�out(λ) − �in(λ) = 1 satisfying that π2 ◦2 R2 is not secure against P2.

As mentioned above, the basic strategy for constructing R2 is to enable P2 to
know the discrete logarithm of h(1−σ) ← H(r′

2) from the seed for R2 generating
the input r′

2 for H. Then the party P2 using the PRG R2 will be able to also
unmask v(1−σ) by using the seed for R2 and hence obtain the other x(1−σ) as
well, violating the security of the OT.

To make the argument precise, we first recall the current assumptions
described above: the global parameters p, q, g, and KDF, as well as a gen-
erator g0 of (Fp)×, can be deterministically chosen in polynomial time, and
(p − 1)/q is coprime to q. We construct a prototype algorithm R∗

2 for our
PRG as in Algorithm7; our PRG R2 is then constructed as the composition
R2 = R∗

2 ◦ R†
2 : {0, 1}4t−1 → {0, 1}4t where R†

2 : {0, 1}4t−1 → {0, 1}9t is a non-
uniformly secure PRG implied by the hypothesis of Theorem6. Now we have the
following result on the R∗

2.

Proposition 4. For s = (s1, s2, s3, s4) ←R {0, 1}9t, the output distribution of
R∗

2(1
λ, s) is exponentially close to U [{0, 1}2t × {0, 1}2t], and the e and r† com-

puted in R∗
2 satisfy that H(r†) = ge mod p.
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Algorithm 7: The prototype R∗
2 of our PRG

Input : 1λ and seed
s = (s1, s2, s3, s4) ∈ {0, 1}2t × {0, 1}2t × {0, 1}3t × {0, 1}2t

Output: (r′
2, r

′′
2 ) ∈ {0, 1}2t × {0, 1}2t

1 choose p, q, g, KDF, and g0 deterministically as in the text
2 compute the multiplicative inverse d of (p − 1)/q modulo q
3 e ← s1 mod q

4 h† ← ge mod p
5 e′ ← s2 mod (p − 1)

6 h†† ← (h†)d · g0
qe′

mod p

7 r† ← h†† + (s3 mod K) · p where K = �(22t − 1 − h††)/p� + 1

// we have 0 ≤ r† ≤ 22t − 1

8 return (r′
2, r

′′
2 ) ← (r†, s4) // identify r† with a 2t-bit sequence

Proof. For the latter part of the statement, we have r† mod p = h†† and

(h††)(p−1)/q = (h†)d·(p−1)/q · g0
qe′·(p−1)/q = h† · g0

e′(p−1) = h† = ge in (Fp)×

as h† ∈ 〈g〉 and d · (p − 1)/q ≡ 1 (mod q). Hence we have H(r†) = ge mod p by
the construction of H, as desired.

For the former part of the statement, it suffices to show that the distribution
of r† is exponentially close to uniform over {0, 1}2t. Let f ∈ {0, . . . , p − 2} be
the discrete logarithm of g with respect to g0. Then f is a multiple of (p − 1)/q
as gq = 1 in Fp; we put f = f ′(p − 1)/q with 1 ≤ f ′ ≤ q − 1. Now both f ′ and
(p − 1)/q are coprime to q, so is f .

As s1 and s2 are of 2t-bit lengths and t ≥ λ, the distributions of e and e′ are
exponentially close to uniform over {0, . . . , q−1} and {0, . . . , p−2}, respectively.
Hence we assume from now that e ←R {0, . . . , q − 1} and e′ ←R {0, . . . , p − 2}
without loss of generality.

We have h†† = ged · g0
qe′

= g0
fed+qe′

in Fp. Let β = fed + qe′ mod (p − 1).
Then we have β mod q = e · fd mod q ∈ {0, . . . , q − 1}. As fd is coprime to q by
the argument above, β mod q is uniformly random (as well as e) and independent
of e′. On the other hand, we have �β/q� = e′ + �fed/q� mod ((p − 1)/q). As
e′ ←R {0, . . . , p − 2}, it follows that the pair (β mod q, �β/q�) is also uniformly
random, so is β. Hence h†† = g0

β is uniformly random over (Fp)×.
Moreover, as s3 has 3t-bit length and t ≥ λ, it follows that, given an h††,

the conditional distribution of r† is exponentially close to uniform over the set
{r′

2 ∈ {0, 1}2t | r′
2 mod p = h††}. This implies that, if the distribution of r′

2 mod p
with r′

2 ←R {0, 1}2t were identical to the uniform distribution of h††, then the
distribution of r† would be exponentially close to uniform over {0, 1}2t. In fact,
as p has t-bit length and t ≥ λ, the distribution of r′

2 mod p is exponentially
close to uniform; therefore the distribution of r† is indeed exponentially close to
uniform, as desired. Hence the former part of the statement holds. This completes
the proof of Proposition 4. 
�
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The former part of Proposition 4 and the non-uniform security of R†
2 imply

that our PRG R2 = R∗
2 ◦R†

2 is also non-uniformly secure. Moreover, when party
P2 in the protocol π2 uses the PRG R2 with seed s̃ to generate the internal
randomness (r′

2, r
′′
2 ) = (r†, s4) ← R∗

2(1
λ, s) with s ← R†

2(1
λ, s̃), the element h is

equal to H(r′
2) = H(r†) = ge mod p and its discrete logarithm e can be recovered

from the seed s̃ for R2 by computing s ← R†
2(1

λ, s̃) and then computing e from
s as in Line 3 of Algorithm 7. This enables P2 to obtain x(1−σ) as well as x(σ) as
explained above, which means that now the protocol is not secure against P2.
This completes the proof of Theorem 6.

3.5 Sufficient Conditions for Preserving the Security

To prevent the loss of security as in Theorem 1, here we give some sufficient
conditions for a 2PC protocol π and a PRG R to ensure that π ◦i R is also
secure, as in Theorem 2 in Sect. 1.1. We introduce the following notion.

Definition 1. We say that a simulator Si for party Pi is with raw randomness,
if the randomness for Si is of the form (ri, τi) where ri is the same as the ran-
domness for Pi, and we have Si(1λ, xi, fi(�x); ri, τi) = 〈ri, TSi

(1λ, xi, fi(�x), ri; τi)〉
for a PPT algorithm TSi

, where the notation 〈ri, Vi〉 denotes the simulated view
for Pi consisting of the randomness ri and the remaining part Vi (here the com-
ponents in 〈ri, Vi〉 are appropriately reordered to keep consistency with the syntax
in the definition of a party’s view).

Namely, such a simulator Si generates the randomness part of Pi’s view by
just outputting a part ri of Si’s own randomness, and then Si generates the
other parts of Pi’s view by using the remaining part τi of the randomness (in a
way specified by the algorithm TSi

). For example, the simulator S in the proof
of Proposition 1 for the security of protocol π1 is not with raw randomness (as
it generates the randomness part r†

1 according to the other part), while the
simulator in the security proof of protocol π2 above given in the original paper
[2] is in fact with raw random tape. We give a precise version of Theorem2.

Theorem 7. Let π be a 2PC protocol that is information-theoretically secure
against a party P in the semi-honest model where the corresponding simulator is
with raw randomness (see above for the terminology). Let R be a PRG to generate
the randomness for P. Suppose moreover that �out(λ)−H∞(R(1λ, ∗)) ∈ O(log λ)
with uniformly random seed for R where λ denotes the security parameter and
�out(λ) denotes the bit length of outputs of R. Then, even by generating the ran-
domness for P using R, the protocol π remains information-theoretically secure
against semi-honest P and the corresponding simulator is with raw randomness.

Proof. Let S be the simulator with raw randomness in the hypothesis. By sym-
metry, we suppose P = P1, and we give a simulator S̃ for P1 in the protocol
π ◦1 R as stated. Put I = {0, 1}�in(λ) and O = {0, 1}�out(λ).

Given 1λ, �x = (x1, x2), a local output o1 of P1, and randomness r1 ∈ O for
P1 in π, the simulated view for P1 in π is given by 〈r1, TS(1λ, x1, o1, r1)〉 (see
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Definition 1 for the notations). On the other hand, let Vreal(1λ, �x, r1) denote the
random variable of the view for P1 except the randomness r1 in a real execution
of π with input pair �x and randomness r1 for P1. Then the view for P1 in a real
π is 〈r1, Vreal(1λ, �x, r1)〉. Now we define the simulator S̃ in π ◦1 R as follows:

– Given 1λ and a local input/output pair (x1, o1) as input, S̃ chooses r̃1 ←R I,
computes r1 ← R(1λ, r̃1), and outputs 〈r̃1, TS(1λ, x1, o1, r1)〉.

This S̃ is with raw randomness by the construction.
Note that the view for P1 in real π◦1R is given by 〈r̃1, Vreal(1λ, �x,R(1λ, r̃1))〉.

Now let Δ and Δ̃ denote the statistical distances between the real and simulated
views for P1 in π and in π ◦1 R, respectively, for given 1λ, �x = (x1, x2), and o1.
Then we have the following (where notations 1λ are omitted):

2Δ̃ =
∑

s̃1∈I,V1

|Pr[〈r̃1, TS(x1, o1,R(r̃1))〉 = 〈s̃1, V1〉]

−Pr[〈r̃1, Vreal(�x,R(r̃1))〉 = 〈s̃1, V1〉]|

=
∑

s̃1∈I,V1

∣
∣
∣
∣

1
|I| Pr[TS(x1, o1,R(s̃1)) = V1] − 1

|I| Pr[Vreal(�x,R(s̃1)) = V1]
∣
∣
∣
∣

=
1
|I|

∑

s1∈O,V1

|Is1 | · |Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]|

where we write Is1 = {s̃1 ∈ I | R(s̃1) = s1}. Now we have |Is1 |/|I| ≤ 2−H∞(R)

for each s1 (where H∞(R) = H∞(R(1λ, ∗))) by the definition of min-entropy,
therefore

2Δ̃ ≤ 2−H∞(R)
∑

s1∈O,V1

|Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]| .

On the other hand, we have

2Δ

=
∑

s1∈O,V1

|Pr[〈r1, TS(x1, o1, r1)〉 = 〈s1, V1〉] − Pr[〈r1, Vreal(�x, r1)〉 = 〈s1, V1〉]|

=
∑

s1∈O,V1

∣
∣
∣
∣

1
|O| Pr[TS(x1, o1, s1) = V1] − 1

|O| Pr[Vreal(�x, s1) = V1]
∣
∣
∣
∣

=
1

|O|
∑

s1∈O,V1

|Pr[TS(x1, o1, s1) = V1] − Pr[Vreal(�x, s1) = V1]| .

Hence we have Δ̃ ≤ 2−H∞(R) · |O| ·Δ = 2�out(λ)−H∞(R) ·Δ. By the hypothesis, Δ
is negligible due to the information-theoretic security of π, and 2�out(λ)−H∞(R) ∈
2O(log λ) is polynomially bounded in λ. This implies that Δ̃ is also negligible, as
desired. This completes the proof of Theorem 7. 
�
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4 Type 2: Non-recognizable “Bad” Randomness

In this and the next sections, we focus on the correctness for PKE schemes13 with
negligible but non-zero decryption error probability, and point out (as mentioned
in Sect. 1.1) that the use of a secure PRG may violate the correctness.

First we introduce some terminology. A PKE scheme Π = (Gen,Enc,Dec)
consists of three PPT algorithms as follows; Gen(1λ) outputs a pair (pk, sk)
of a public key pk and a secret key sk; Encpk(m) for a plaintext m outputs
a ciphertext c; and Decsk(c) deterministically outputs either a plaintext or a
“decryption failure” symbol ⊥. We say that a key pair (pk, sk) for a PKE scheme
Π = (Gen,Enc,Dec) is α(λ)-correct, if

Pr[Decsk(Encpk(m)) = m] ≥ α(λ) for any plaintext m

where the probability is taken for the randomness in Enc. Here “perfectly correct”
means 1-correct; we also say that Π is perfectly correct, if all key pairs are
perfectly correct. On the other hand, we say that (pk, sk) is β(λ)-erroneous, if

Pr[Decsk(Encpk(m)) = m] ≥ β(λ) for at least one plaintext m.

Here we show the following result, which is a precise version of Theorem 3:

Theorem 8. Assume that there exist a perfectly correct PKE scheme Π∗ for
any (polynomially bounded) choice of plaintext length14 and a (uniformly or
non-uniformly) secure PRG R∗ for any choices of �∗

in(λ) and �∗
out(λ) (satis-

fying the constraints in PRGs). Then there exists a pair of a PKE scheme
Π = (Gen,Enc,Dec) and a secure PRG R with the following two properties:

– The original Gen generates a not perfectly correct key pair with only exponen-
tially small probability.

– When the PRG R is used in Gen, all key pairs generated by the resulting Gen
are 1-erroneous.

Proof. We assume that �∗
out(λ) − �∗

in(λ) ≥ λ for the PRG R∗ and that the PKE
scheme Π∗ = (Gen∗,Enc∗,Dec∗) has plaintext space {0, 1}�∗

in(λ) in the hypothesis
of the theorem. We construct the PKE scheme Π in the theorem by modifying
Π∗ as follows:

– A public key pk for Π consists of a public key pk∗ for Π∗ and r ←R

{0, 1}�∗
out(λ); pk = (pk∗, r). The secret key sk = sk∗ is not changed.

– For a plaintext m ∈ {0, 1}�∗
in(λ), the encryption algorithm Enc first checks

if R∗(1λ,m) = r or not. If R∗(1λ,m) = r, then encryption and decryption
are performed in the same way as Π∗. If R∗(1λ,m) = r, then Enc outputs a
broken ciphertext (say ⊥) which always yields decryption error.

13 As the security is not the central topic here, we just implicitly assume IND-CPA
security for the PKE schemes in the following arguments.

14 Again, such a PKE scheme can be obtained via a hybrid argument (cf. Sect. 5.2.5.3
of [16]) from a perfectly correct PKE scheme with 1-bit plaintexts.
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As �∗
out(λ) − �∗

in(λ) ≥ λ, the probability that the component r of pk is in the
range of R∗ is at most 2−λ. As the behavior of Π coincides with Π∗ whenever
r is not in the range of R∗, the requirement for correctness of Π is satisfied.

We define the PRG R in a way that, it ideally samples the internal ran-
domness rgen for Gen∗ and samples r ∈ {0, 1}�∗

out(λ) by r ← R∗(1λ, s) with
s ←R {0, 1}�∗

in(λ); (rgen, r) ← R(1λ, (rgen, s)).15 Then the modified key genera-
tion algorithm chooses the components pk∗ and r of pk by using the two output
components of R, respectively. Note that the security of R∗ implies the security
of R straightforwardly. Now for any public key pk = (pk∗, r) in Π generated by
using R with seed (rgen, s) as above, we have r = R∗(1λ, s) by the construction,
therefore decryption error will occur with probability 1 for plaintext m = s.
Hence, now any key pair for Π is 1-erroneous, and the claim holds. 
�

5 Type 3: Implicit Non-uniform Distinguishers

In this section, we continue to focus on the correctness for PKE schemes with
negligible errors, but here we deal with the randomness in the encryption algo-
rithm instead of the key generation studied in the previous section. We point out
the implicit relation to non-uniform security of PRGs, and show the following
result which is a precise version of Theorem 4.

Theorem 9. Assume that there exist a perfectly correct PKE scheme Π∗ for
any (polynomially bounded) choice of plaintext length. Assume moreover that
there exists a uniformly secure PRG R∗ that is not non-uniformly secure, for
any choices of �∗

in(λ) and �∗
out(λ) (satisfying the constraints in PRGs). Then

there exist a PKE scheme Π = (Gen,Enc,Dec) and a uniformly secure PRG R
with the following two properties:

– All key pairs of Π are (1 − ε(λ))-correct for an exponentially small ε(λ).
– When the PRG R is used in Enc of Π, all key pairs are β(λ)-erroneous with

respect to the resulting Enc for a non-negligible β(λ).

We explain an outline of the proof. First, by the hypothesis on R∗, there
is a PPT non-uniform distinguisher D∗ for R∗ with non-negligible advantage.
We assume that the PKE scheme Π∗ = (Gen∗,Enc∗,Dec∗) in the hypothesis has
plaintext space involving the advice for D∗. The PKE scheme Π has the same
key generation and decryption algorithms as Π∗.

The encryption algorithm Enc for Π is defined by modifying Enc∗ as follows.
For the internal randomness, two blocks called Block k (k = 0, 1) of polynomi-
ally many random bit sequences is added, each of which follows a probability
distribution Xk. Originally, X0 and X1 are identical and uniform. Then, given a
plaintext m, Enc first tries to distinguish the distributions X0 and X1 by using
the polynomially many random samples provided in Blocks 0 and 1. Here Enc
uses the distinguisher D∗ with advice m. If D∗ detects a significant bias between
15 The technical constraint for R that the seed length should be a strictly increasing

function of λ can be ensured by adjusting the seed length of R∗.
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the two blocks then Enc outputs a broken ciphertext (say ⊥) that always yields
decryption error; otherwise Enc encrypts m in the same way as Enc∗.

In the original Enc, X0 and X1 are identical, therefore (if the size of two
blocks is sufficiently large) D∗ detects a significant bias with only exponentially
small probability whatever the plaintext (the advice for D∗) is. This implies the
first condition in the statement. On the other hand, we construct the PRG R
in a way that R replaces the distribution X0 with the output distribution of
R∗ while it keeps the distribution X1 unchanged (the standard hybrid argument
implies that R is uniformly secure as well as R∗). When the R is applied to
Enc (denoted by Enc′), D∗ with the correct advice m can distinguish the output
distribution X0 of R∗ from the uniform distribution X1, therefore (if the size of
two blocks is sufficiently large) the D∗ inside Enc′ detects a significant bias with
non-negligible probability. As this case yields decryption error, the decryption
error probability of Enc′ for the plaintext m becomes non-negligible, implying
the second condition in the statement. Hence the claim holds.

Now we move to a precise proof of the theorem.

Proof (Theorem 9). First, by the hypothesis on R∗, there is a PPT non-uniform
distinguisher D∗ for R∗ with non-negligible advantage; that is, there are an
integer k ≥ 1 and infinitely many λ’s for which the advantage is larger than
λ−k. We focus on those λ’s from now on. Let Q(λ) be a polynomial bound
for the length of advice which the PPT D∗ can read. We assume that the PKE
scheme Π∗ = (Gen∗,Enc∗,Dec∗) in the hypothesis has plaintext space {0, 1}Q(λ).
The PKE scheme Π has the same key generation and decryption algorithms as
Π∗.

The encryption algorithm Enc for Π is defined as in Algorithm 8, where
we set ρ(λ) = 16λ2k+1 and θ(λ) = 8λk+1. Roughly summarizing, the internal
randomness for Enc involves (besides the other components) uniformly random
�∗
out(λ)-bit sequences ri,j with i ∈ {0, 1} and 1 ≤ j ≤ ρ(λ). Before encrypting

plaintext m, for each i, Enc runs D∗ (with randomly fixed prefix m∗ of m as
advice) ρ(λ) times independently for inputs ri,1, . . . , ri,ρ(λ) and counts the num-
ber μi of output bits being 1. If the numbers μ0 and μ1 differ at most θ(λ),
then Enc encrypts m in the same way as Π∗. Otherwise, Enc outputs a broken
ciphertext (say ⊥) that always yields decryption error.

Intuitively, when the ri,j ’s are ideally random, all the corresponding output
distributions of D∗ are identical, therefore the difference of the numbers of 1’s
in “i = 0 part” and “i = 1 part” will be small with high probability, implying
the required correctness for Π. Precisely, the opposite condition |μ0−μ1| > θ(λ)
implies that |μi −ρ(λ) ·p1| > θ(λ)/2 for at least one i ∈ {0, 1}, where p1 denotes
the probability that D∗ outputs 1 for a uniformly random input from {0, 1}�∗

out(λ).
By Hoeffding’s Inequality (Lemma 2 below) with n = ρ(λ) = 16λ2k+1 and nt =
θ(λ)/2 = 4λk+1 (hence nt2 = (nt)2/n = λ), the latter condition holds with
probability at most 2 · 2 exp(−2nt2) = 4e−2λ. Hence the behavior of Π deviates
from the correct Π∗ with exponentially small probability, as desired.

Lemma 2 (Hoeffding’s Inequality [19]). Let X1, . . . , Xn be independent
random variables, each taking the value 1 with probability p and the value 0
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Algorithm 8: Encryption algorithm Enc for our PKE scheme Π

Input : 1λ and plaintext m ∈ {0, 1}Q(λ)

(the internal randomness involves components ri,j ∈ {0, 1}�∗
out(λ)

with i ∈ {0, 1} and 1 ≤ j ≤ ρ(λ), as well as the other components)
Output: (possibly broken) ciphertext c

1 choose a prefix m∗ of m uniformly at random
2 for i ← 0 to 1 do
3 μi ← 0
4 for j ← 1 to ρ(λ) do

5 if D∗(m∗)(1λ, ri,j) (with fresh randomness) outputs 1 then
6 μi ← μi + 1
7 end

8 end

9 end
10 if |μ0 − μ1| ≤ θ(λ) then
11 return c ← Enc∗(m)
12 else
13 return a broken ciphertext c (yielding decryption error)
14 end

with probability 1 − p for a common p. Then for any t > 0, we have

Pr
[∣
∣
∣
∣
X1 + · · · + Xn

n
− p

∣
∣
∣
∣ ≥ t

]

≤ 2 exp
(
−2nt2

)
.

On the other hand, the seed for our PRG R is the same as the internal ran-
domness for Enc except that the components r0,1, . . . , r0,ρ(λ) are replaced with
independent and uniformly random s1, . . . , sρ(λ) ∈ {0, 1}�∗

in(λ). When R gener-
ates the internal randomness for Enc, each r0,j is chosen by r0,j ← R∗(1λ, sj),
while the other components, including the r1,j ’s, are ideally sampled. By a stan-
dard hybrid argument, the uniform security of R∗ implies the uniform security
of R. (We note that, the technical constraint for the seed length to be a strictly
increasing function of λ can be ensured by adding some dummy components to
the seed.) Intuitively, as D∗ can distinguish the PRG R∗ from ideal randomness,
now the difference of the numbers of 1’s in the pseudorandom “i = 0 part” and
the ideally random “i = 1 part” will be large with high probability, which yields
a broken ciphertext with high probability as well.

To make the argument precise, let m∗ be a prefix of some plaintext m that is
the correct advice for D∗ to distinguish R∗. Let p0 denotes the probability that
D∗ outputs 0 for an input R∗(1λ, s) with s ←R {0, 1}�∗

in(λ), while p1 is the same
as above. Then the hypothesis on D∗ implies that |p0 − p1| > λ−k and hence
|ρ(λ) · p0 − ρ(λ) · p1| > ρ(λ)λ−k = 2θ(λ) for this choice of m∗. Now the opposite
condition |μ0 − μ1| ≤ θ(λ) implies that |μi − ρ(λ) · pi| > θ(λ)/2 for at least one
i ∈ {0, 1}. Hoeffding’s Inequality with the same parameters n, t as above also
implies that the latter condition holds with probability at most 4e−2λ. By taking



Cryptographic PRGs Can Make Cryptosystems Problematic 463

into account the choice of m∗ among the Q(λ) + 1 candidates, it follows that
decryption error occurs for the m with probability at least

β(λ) =
1 − 4e−2λ

Q(λ) + 1
.

We moreover set β(λ) = 0 for the remaining λ’s not focused in the argument
above; the resulting β(λ) is still a non-negligible function. Hence all key pairs
are β(λ)-erroneous when the PRG R is applied, as desired. This completes the
proof of Theorem9. 
�

From now, given an individual correct PKE scheme Π = (Gen,Enc,Dec),
we provide a possible strategy to generically convert (depending on the Π) a
uniformly secure PRG R into a uniformly secure PRG R that preserves the
correctness when applied to generate the randomness for Enc.

We introduce some notations. Let (pk, sk) be a key pair for Π with security
parameter λ, let m be a plaintext, and let r ∈ {0, 1}L(λ) where L(λ) is the length
of randomness for Enc. We define a function Fλ,pk,sk,m,r : {0, 1}L(λ) → {0, 1} by

Fλ,pk,sk,m,r(r†) =

{
0 if Decsk(Encpk(m; r ⊕ r†)) = m ,

1 if Decsk(Encpk(m; r ⊕ r†)) = m .

We say that a PRG R† with output length �†
out(λ) = L(λ) η(λ)-fools the function

family F , if for any ind = (λ, pk, sk,m, r) as above, we have
∣
∣
∣Pr

[
Find(R†(1λ, U [{0, 1}�†

in(λ)])) = 1
]

− Pr
[
Find(U [{0, 1}L(λ)]) = 1

]∣
∣
∣ ≤ η(λ) .

Then we define the PRG16 R with seed s = (s, s†) ∈ {0, 1}�in(λ) × {0, 1}�†
in(λ) by

R(1λ, s) = R(1λ, s) ⊕ R†(1λ, s†) .

Such an XOR-ing construction of a PRG combining two PRGs of different types
has been studied in the literature in some different contexts; for example, this
is similar to the “dual-mode PRG” in [25]. Now if R† is PPT, then the security
R(1λ, U [{0, 1}�in(λ)])

u.c≈ U [{0, 1}L(λ)] of R implies that

R(1λ, U [{0, 1}�in(λ)])
u.c≈ U [{0, 1}L(λ)] ⊕ R†(1λ, U [{0, 1}�†

in(λ)]) = U [{0, 1}L(λ)] ,

i.e., R is uniformly secure. Moreover, we have the following result.

Theorem 10. Suppose that the PRG R† η(λ)-fools the function family F (see
above for the terminology) and a key pair (pk, sk) of Π with security parameter
λ is α(λ)-correct. Then, when the randomness for Enc is generated by the PRG
R, the key pair (pk, sk) becomes (α(λ) − η(λ))-correct.

16 We assume that the PRG R satisfies the constraint �in(λ) = �in(λ) + �†
in(λ) <

�out(λ) = L(λ) for input/output lengths.
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Proof. Let m be any plaintext. We have to evaluate the probability

ε = Pr[Decsk(Encpk(m;R(1λ, U [{0, 1}�in(λ)]))) = m]

=
∑

s

2−�in(λ) Pr[Decsk(Encpk(m;R(1λ, s) ⊕ R†(1λ, U [{0, 1}�†
in(λ)]))) = m]

=
∑

s

2−�in(λ) Pr[FR(1λ,s)(R†(1λ, U [{0, 1}�†
in(λ)])) = 1]

where s runs over {0, 1}�in(λ) and we write Fr = Fλ,pk,sk,m,r. Now, as R† η(λ)-
fools the function family F by the hypothesis, we have

ε ≤ 2−�in(λ)
∑

s

(
Pr[FR(1λ,s)(U [{0, 1}L(λ)]) = 1] + η(λ)

)

= η(λ) + 2−�in(λ)
∑

s

Pr[Decsk(Encpk(m;R(1λ, s) ⊕ U [{0, 1}L(λ)])) = m] .

As each R(1λ, s) ⊕ U [{0, 1}L(λ)] is identical to U [{0, 1}L(λ)], it follows that

ε ≤ η(λ) + Pr[Decsk(Encpk(m)) = m] ≤ η(λ) + (1 − α(λ)) = 1 − (α(λ) − η(λ))

by the hypothesis on (pk, sk). This implies the claim. 
�

Theorem 10 reduces our task to develop a “special-purpose” PRG R† that
fools the explicitly restricted function family F . The complexity of each function
in the family is almost the sum of complexity of Enc, Dec, and the given PRG
R, which will be fairly small when the PKE scheme Π and the PRG R are
efficient. Developing a PRG fooling this function family might be a relatively
easier task than developing a non-uniformly secure PRG, the latter having to
fool any non-uniform distinguisher with arbitrarily large (polynomially bounded)
complexity. To develop such a special-purpose PRG R†, some techniques in the
area of derandomization such as those in [24,27] would be useful.
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A A “Natural” Variant of Algorithm 1

Here we give a “natural” variant of 2PC protocol π1 defined in Sect. 3.2 (Algo-
rithm1) where the inputs for two parties are not correlated and the parties have
outputs in the protocol. The modified protocol is given in Algorithm9. Here
FEQ denotes an ideal functionality for two-party equality test, where the com-
mon output β = 1 (respectively, β = 0) means that the two inputs are equal
(respectively, not equal).
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Algorithm 9: A variant of protocol π1

Input : (P1) a non-negative integer N < 22λ

(P2) λ-bit integers p, q
Output: (common to P1 and P2) an integer ι ∈ {0, 1, 2}

1 (By P2) if p ≥ q, or p or q is not a prime ≡ 3 (mod 4) then
2 halt the protocol, where both parties output ι = 2
3 end
4 (By P1 and P2) execute FEQ(N, pq) and obtain common output β
5 if β = 0 then
6 halt the protocol, where both parties output ι = 1
7 end
8 (By P1 and P2) execute the protocol π1 with inputs N and (p, q)
9 halt the protocol, where both parties output ι = 0

In the part of the protocol before executing π1, the two parties check if their
inputs satisfy the required conditions in the original protocol π1. More precisely,
first, the input (p, q) for P2 in π1 should satisfy that p < q, p and q are primes,
and p ≡ q ≡ 3 (mod 4). In the protocol here, P2 first checks if these conditions
hold, and if it fails then the protocol halts at this step. Secondly, assuming the
conditions for P2’s input, the input N for P1 should satisfy that N = pq. This
condition is checked by using FEQ, and if it fails then the protocol halts at
this step. Once these conditions have been verified, the parties can execute the
protocol π1 with the correct input pair. By focusing on the input pairs satisfying
the conditions in π1, the protocol here inherits from π1 the property that the
security will be lost by applying a certain secure PRG to the randomness for P1.

For the security against P1, if the output is ι = 2, then P1 receives no message
and hence the security holds trivially. If ι = 1, then P1 just participates in the
execution of FEQ and obtains the output β = 0, therefore the security follows
from the security of FEQ. Finally, if ι = 0, then P1 participates in the execution
of FEQ with output being always β = 1 and also participates in π1, therefore the
security also follows from the security of FEQ and π1.

For the sake of completeness, we describe in Algorithm 10 a well-known imple-
mentation of FEQ using the lifted-ElGamal cryptosystem. Here � and � denote
the homomorphic addition and homomorphic scalar multiplication, respectively.
We analyze the behavior of the protocol as follows:

– If x1 = x2, then the ciphertext c in the protocol is a random ciphertext of
plaintext r(x2−r1) = 0 (note that the randomness in c has also been perfectly
rerandomized, as a random ciphertext Enc(0) was homomorphically added).
Hence the protocol outputs the correct value β = 1, and now the message
received by P1 is a random ciphertext Enc(0) as mentioned above, which can
be perfectly simulated.

– If x1 = x2, then x2 − x1 ∈ (FP )× by the property P > 22λ+1, while r ←R

(FP )×. Therefore the plaintext r(x2 − x1) for c is also uniformly random
over (FP )× and hence the protocol outputs the correct value β = 0 (note
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Algorithm 10: Implementation of the functionality FEQ

Input : (Pi (i = 1, 2)) a non-negative integer xi < 22λ

Output: (common to P1 and P2) a bit β
1 (By P1) generate a key pair (pk, sk) for the lifted-ElGamal cryptosystem

(Gen,Enc,Dec) with plaintext space FP of prime order P > 22λ+1

2 (By P1) send pk and Enc(−x1) to P2

3 (By P2) generate r � (Enc(x2) � Enc(−x1)) � Enc(0) = Enc(r(x2 − x1)) for
r ←R (FP )×, and send c ← Enc(r(x2 − x1)) to P1

4 (By P1) if c is a ciphertext of plaintext 0 then
5 halt the protocol, where both parties output β = 1
6 else
7 halt the protocol, where both parties output β = 0
8 end

that, though r(x2 − x1) can be large and the lifted-ElGamal cryptosystem
enables to efficiently decrypt small plaintexts only, the protocol just checks
if the ciphertext c has plaintext 0 or not, which is still efficiently checkable).
Moreover, in this case, the received message c is a random ciphertext for a
uniformly random non-zero plaintext, which can be perfectly simulated.

Hence the correctness and the security (against P1) of the implemented FEQ

have been verified. In particular, the security against P1 is information-theoretic.
Therefore, as well as the original protocol π1, the variant of π1 given here also
has information-theoretic security against P1, as desired.
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Abstract. Publicly Verifiable Zero-Knowledge proofs are known to exist
only from setup assumptions such as a trusted common reference string
or a random oracle. Unfortunately, the former requires a trusted party
while the latter does not exist.

Blockchains are distributed systems that already exist and provide
certain security properties (under some honest majority assumption),
hence, a natural recent research direction has been to use a blockchain
as an alternative setup assumption.

In TCC 2017 Goyal and Goyal proposed a construction of a publicly
verifiable zero-knowledge (pvZK) proof system for some proof-of-stake
blockchains. The zero-knowledge property of their construction however
relies on some additional and not fully specified assumptions about the
current and future behavior of honest blockchain players.

In this paper we provide several contributions. First, we show that
when using a blockchain to design a provably secure protocol, it is dan-
gerous to rely on demanding additional requirements on behaviors of
the blockchain players. We do so by showing an “attack of the clones”
whereby a malicious verifier can use a smart contract to slyly (not
through bribing) clone capabilities of honest stakeholders and use those
to invalidate the zero-knowledge property of the proof system by Goyal
and Goyal.

Second, we propose a new publicly verifiable zero-knowledge proof
system that relies on non-interactive commitments and on an assump-
tion on the min-entropy of some blocks appearing on the blockchain.

Third, motivated by the fact that blockchains are a recent innovation
and their resilience in the long run is still controversial, we introduce the
concept of collapsing blockchain, and we prove that the zero-knowledge
property of our scheme holds even if the blockchain eventually becomes
insecure and all blockchain players eventually become dishonest.
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1 Introduction

Following the success of Bitcoin many other cryptocurrencies based on
blockchain technology have been proposed and, despite a few security issues,
they are still expanding their networks with gigantic market capitalizations.
What is so appealing in decentralized blockchains?

Public Verifiability. One of the most supported answers is the paradigm shift
from trust in some entity to “public verifiability”. This property allows every
one to check that the system works consistently with the pre-specified rules
of the game. This makes users willing to be involved in transactions recorded
in a blockchain therefore investing their real-world money. In many blockchain
applications both anonymity and public verifiability are required, calling for
advanced cryptographic primitives such as publicly verifiable zero-knowledge
proofs. For example, when the blockchain is used to record payments, confidential
transactions are indeed implemented using publicly verifiable zero-knowledge
proofs called zk-SNARKs [9,20].

Publicly Verifiable Zero-Knowledge Proofs. Known constructions of publicly
verifiable zero-knowledge (pvZK) proofs are instantiated with non-interactive
zero-knowledge proofs (NIZK) and, as such, require setup assumptions. Indeed,
despite a significant effort of the research community, constructions of NIZK
proofs either rely on the existence of a trusted common reference string (CRS)
computed by a trusted entity or are based on heuristic assumptions (e.g., ran-
dom oracles). Recent existing work has shown mechanisms to relax the trust
assumptions required to generate the CRS [14] or to mitigate the effect of a
malicious CRS [26,30]. While this line of work is very promising, it still requires
the employment of third entities that help computing the CRS.

Publicly Verifiable Zero-Knowledge Proofs from a “Blockchain Assumption”.
Since its introduction in 2008 with Nakamoto’s protocol [31], blockchain pro-
tocols have been scrutinized by many communities, and currently, we have a
good understanding of the security properties they provide and the class of
adversaries they withstand. In particular, several works from the cryptographic
community provided a formalization of the Bitcoin security guarantees [19,32],
a formalization of the ideal functionality it implements [5] as well as game-
theoretic analysis [3]. Furthermore, new blockchain designs have been proposed,
based on different assumptions on the collective power of the adversary. Some
prominent examples that are also implemented in practice are Ouroboros [4] and
Algorand [22].

Given that blockchains have been formally analyzed and are up and running
in practice, a natural question to ask is whether we can use a blockchain as a
setup assumption to replace trusted setups required for certain cryptographic
tasks, particularly, for publicly verifiable zero-knowledge proof systems that are
needed the most in blockchain applications.
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This question was first investigated by Goyal and Goyal in [23], where they
aimed to construct NIZK using as setup the existence of a proof-of-stake (PoS)
blockchain. The security of the NIZK proof provided in [23] – that we will denote
by GG-NIZK– however is analyzed in a threat model that does not faithfully
match the threat model of PoS blockchains, since it considers only static adver-
saries and additionally requires that honest stakeholder never reveal their secret
keys. Specifically, the zero-knowledge property of GG-NIZK is proved in the pres-
ence of a static adversary who decides in advance which stakeholder will corrupt
in its entire attack. This does not match the widely accepted threat model for
proof-of-stake blockchains where an adversary is allowed to corrupt stakeholders
at any time, and the only restriction is that, at any point, the total amount
of stake held by the adversary is a minority of the total stake of the system.
Moreover, in the GG-NIZK security analysis, the zero-knowledge property holds
under the additional assumption that honest stakeholders will never leak their
stakeholder keys, not even when such keys become irrelevant for the blockchain
protocol (for example, because there is zero stake associated to them).

It was observed in [34] that the assumption on stakeholder keys further limits
the generality of GG-NIZK since it cannot be used in conjunction with any proof-
of-stake (PoS) blockchain. In particular [34] observes that one could design a PoS
blockchain where stakeholders are required to often refresh their stakeholder
keys, by regularly publishing new public keys and voiding old keys by posting
their secret keys on the blockchain. Such blockchain protocol, while being a
potentially valid PoS blockchain protocol, cannot be used to instantiate GG-
NIZK.

The full version of [23] has been recently updated [24] adding a section in
the appendix where the authors confirm the security of their construction even
in light of the counter-example of [34] by stressing that they expect honest
stakeholders to delete keys when they lose significance.

In light of the observations of [34] and of the counter-argument of [24], a
natural question to ask is whether such additional assumptions/expectations on
the behavior of honest stakeholders required in [23,24] could be symptomatic
of unexpected security flaws that would manifest when GG-NIZK is executed
with a real blockchain environment, even one that complies with all GG-NIZK
assumptions/expectations. In other words, assuming that the additional restric-
tions on the power of the adversary and the behavior of honest stakeholders are
met, would GG-NIZK be actually secure when executed in the presence of a PoS
blockchain that complies with them?

A negative answer to the above question would signify that constructing a
publicly verifiable zero-knowledge proof that leverages any blockchain assump-
tion is still an open question.

1.1 Our Contribution

In this paper we target the problem of constructing publicly verifiable zero-
knowledge proofs leveraging a blockchain assumption and provide the following
contributions.
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A More Realistic Blockchain Threat Model. We consider a model where
the blockchain can potentially be used to post and fulfill arbitrary smart con-
tracts. Since all existent blockchain protocols either already support or aim to
support smart contracts capabilities (e.g., Ethereum Casper, Cardano) and, since
smart contracts are among the most appealing feature of blockchains, this model
is arguably realistic. Within this model, an adversary can consequently also
leverage her ability to publish smart contracts just like any party who uses the
blockchain.

Within this threat model, we show that the zero-knowledge property of GG-
NIZK is easily violated even assuming that all restrictions required by the secu-
rity analysis of GG-NIZK are satisfied, that is, even assuming that the adver-
sary can only perform static corruption and that honest stakeholders will never
reveal their keys. Specifically, we present an adversarial strategy that leverages
legitimate smart contracts to collect information that are useful to disturb the
security of the external cryptographic protocols that use the blockchain as a
building block. We name this type of attacks “attack of the clones” to high-
light the adversary’s aim to clone the capability of a honest player to perform
computations using her secret key. However, the smart contract posted by the
adversary is completely harmless for a honest stakeholder. Indeed, it does not
ask the stakeholder to do anything that will make her lose her stake, or perform
any operation against the consensus protocol. Yet, it allows the adversary to
break the zero knowledge of the GG-NIZK proof. Our attack leverages a specific
dangerous use of stakeholder identifiers in the GG-NIZK. The starting point is
that the NIZK proof of [23] includes encryptions of shares of the witness under
the public keys inferred by the identifiers of the stakeholders. To break the zero-
knowledge property of the NIZK of [23] our attack is rather simple: after the
NIZK proof π is received, the adversarial verifier posts a smart contract con-
taining ciphertexts (these are the ciphertext contained in π) and a promised
reward (e.g., money, raffle tickets for a vacation in Barbados, etc.) in exchange
for decryptions.

Notice that an honest stakeholder participating in this smart contract
remains fully honest, does not subtract any resource (unlike in bribing attacks
against proof-of-work blockchains) from the participation to the consensus pro-
tocol and does not reveal her secret keys to anyone. She just plays with smart
contracts as contemplated by the blockchain rules and uses her stake for some
harmless entertainment. Indeed, the crux of this attack is that a stakeholder is
not aware that an external cryptographic protocol is basing its zero-knowledge
property on the assumption that stakeholders would not entertain in smart con-
tracts that are harmless for the underlying blockchain protocol.

One might object that it is plausible that a PoS blockchain would simply
forbid the execution of such “weird” smart contracts. However, it is not clear
what a “weird” smart contract is, and whether the above smart contract could be
redesigned in order to look innocent and harmless (furthermore, the well known
DAO attack inflicted to Ethereum suggests that it is unclear whether we are
able to identify and stop an harmful smart contract too much in advance).
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Our attack is obviously a simple example and after-the-fact can possibly
be mitigated, for instance by adding specific further restrictions on how the
stakeholder should use her secret keys. However, the point of our attack is not
prove that there is no blockchain for which GG-NIZK can be secure. Instead,
we want to highlight the vulnerabilities arising when the long-term security of a
cryptographic protocol relies on the behavior of blockchain players.

The main lesson of our attack is the following: when designing protocols that
leverage a blockchain assumption, one has to consider a threat model where
the adversary is allowed to perform the same actions that are allowed on the
blockchain (e.g., run smart contracts1). Note that this should be true even when
analyzing the consensus protocol itself. However, since this is out of the scope
of this paper, we assume that the underlying blockchain consensus protocol is
secure in the presence of smart contracts.

Another lesson to be drawn by our attack is that, when using the blockchain
as an underlying assumption, one should take into account the unstable and
evolving nature of blockchains. Unlike a common reference string, blockchains
evolve over time –due to software updates for example, or governance decisions–
stake is transferred among players, new smart contracts are installed etc. Last
but not least one might take into account the possibility that a blockchain that
todays is reliable tomorrow could collapse and could then be completely con-
trolled by an adversary.

The above attack on the ZK of GG-NIZK leaves open the following natural
question.

Can we design a pvZK proof leveraging the existence of blockchains, that
makes no particular assumption on the underlying consensus mechanism
neither on the way honest keys must be used (for instance, they can still
be used in smart contracts)?

Publicly Verifiable Zero Knowledge from a Generic Blockchain in Our
Threat Model. As a second contribution we provide a new protocol for pvZK
that is secure in the blockchain threat model discussed above even in the presence
of adaptive adversaries. To show this security guarantee, we will prove that once
the proof (computed using our protocol) is published, it will preserve its security
even if the blockchain collapses, that is, even if the adversary corrupts all the
players of the blockchain (and gets all the secrets). We now proceed describing
our protocol and our blockchain assumption.

A recent work by Choudhuri et al. [16] shows that using a blockchain as a
black-box object that provides only a global ledger does not allow to overcome
some impossibility results in the plain model and in particular it does not allow

1 We note that this threat model was never considered before. [34] only made obser-
vations about additional limitations that GG-NIZK imposes on their underlying
blockchain. Instead, in this work we are showing an attack that works for any PoS
blockchain (even the ones that comply with GG-NIZK pre-requirement) allowing the
execution of such smart contracts.
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to construct NIZK proofs. We notice that their argument can be extended also
to pvZK proofs (see Sect. 5 for more details). Therefore, in order to build a
publicly verifiable zero-knowledge proof system from a blockchain, it seems that
one needs to provide more power to the simulator besides black-box access to
a global ledger. Thus, following [23] we will assume that the simulator has the
power of controlling the honest players. However, unlike [23] we assume that the
adversary can adaptively corrupt players and moreover we want our pvZK proof
to remain zero knowledge even in case of blockchain failure, in the sense that in
the future the adversary might take full control over the blockchain.

To leverage this simulation power while making no assumption on the con-
sensus protocol underlying the blockchain (i.e., we do not assume that the
blockchain is based on proof-of-work, proof-of-stake, etc.), we require that the
blockchain satisfies a more nuanced notion of chain quality. Very informally (a
formal definition is provided in Assumption 1) we assume the blockchain has the
following mild structure. First, every block contains a distinguished field v. For
concreteness, the reader can assume that this field is the same as the “coinbase”
value of any Bitcoin block, and to ease the discussion, in the text that follows,
we will call this field wallet. Our blockchain assumption, very roughly, is that
there exists a parameter d, such that, for any sequence of d blocks, considering
the new wallets2 observed in the sequence, we have that a majority of those
wallets has been generated by honest players using independent randomnesses.
Essentially our blockchain assumption builds on top of the standard chain qual-
ity assumption, requiring that the adversary will be the “winning” node that
decides the next block using a fresh wallet less often than honest players. Sim-
ilar assumptions have been leveraged in the literature. For example [25,33] use
the assumption that the majority of mined blocks are honest, to select a commit-
tee for secure computation. The difference between our blockchain assumption
and the standard chain quality property is mainly that we additionally require
that many of the honest blocks will additionally have an high-min entropy field.
We discuss more extensively our blockchain assumption Sect. 3.1.

We will leverage this blockchain assumption and the simulator’s control of
the honest majority to build a pvZK proof as follows. The high-level idea is to
follow the FLS approach [17] and prove the OR of two statements: either “x in
L” or “Previously I have predicted the majority of fresh wallets appeared in the
last d blocks”. In particular our idea reminds the implementation of the FLS
approach proposed by Barak [7] where the trapdoor theorem consists of some
unpredictable information that becomes predictable during the straight-line sim-
ulation. The soundness of our construction will follow from similar arguments
and will actually be simpler. The reason is that we implement the prediction step
with perfectly binding commitments and thus, unlike Barak, we will not have to
worry about a prover finding collisions in a collision-resistant hash function.

To implement this approach we need two ingredients: a non-interactive com-
mitment scheme (that can be constructed from 1–1 one-way functions) and a

2 Here we refer to wallets identifying the block leader cashing the reward and not to
wallets involved in transactions.
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publicly verifiable witness indistinguishable proof system pvWI. We use the
pvWI proof system recently constructed in [34] which is the first pvWI proof
system from a blockchain assumption. Our blockchain assumption implies the
one of [34]. The pvWI proof system of [34] leverages the underlying blockchain
assumption by providing an interactive prover and a non-interactive verification
function. Concretely, the pvWI proof of [34] builds on a classic 3-round WI proof
system where the first two rounds are played by the prover and blockchain: the
prover posts the first round of the classic WI proof on the blockchain, then she
waits for a few blocks extending the block containing the first message and from
those extracts a challenge that corresponds to the second round of a classic 3-
round WI proof. The third round of the classic WI proof is then sent to the actual
verifier, who can use the blockchain to validate all 3 rounds, non-interactively.
If the third round is posted on the blockchain then all verifiers can validate the
proof. We need the following 3 properties from the pvWI proof: (1) delayed-
input completeness, which means that the prover will use the theorem and the
witness only for computing the last message of the protocol, which implies that
all other messages of the pvWI proof are independent from the witness; (2) WI
in the presence of blockchain failure, that is, (2.1) the WI property holds even
when the prover is the only honest player and therefore the blockchain could be
completely controlled by the adversary; (2.2) the WI property is preserved even
when, after a pvWI proof is computed, the adversary could corrupt the prover;
(3) unconditional soundness3 in the presence of our blockchain assumption (i.e.,
Assumption 1). Since such properties were not explicitly claimed in [34] we show
in the full version of this paper [35] that through minor updates to their proto-
col those 3 properties are satisfied. The reason why we need the above 3 special
properties will be explained later when we will highlight the security proof.

With the above ingredients in hands, our pvZK proof system works as follows.
First, the prover, using a non-interactive commitment scheme, commits to u · d
strings com1, . . . , comu·d (u is the blockchain parameters associated to our chain-
quality assumption (Assumption 1), more details about u will be provided later)
and posts the commitments on the blockchain. Note that the prover securely
erases the decommitment information of com1, . . . , comu·d. Then, she waits until
the blockchain is extended by a sequence of d blocks B1, . . . , Bd, that include n
blocks B1, . . . , Bn with fresh wallets (that is, with wallets that were not observed
before). Let v1, . . . , vn be such fresh wallets observed on the blockchain. In the
final step, the prover computes the pvWI proof, for the theorem:“x ∈ L or
(com1, . . . , comu·d) are commitments of at least n/2+1 of the wallets (v1, . . . , vn)”.

The simulator SpvZK uses the same power of the simulator of [23] controlling
the honest players in the simulated experiment (in particular, the simulator
adds the blocks in the blockchain on behalf of honest players). Therefore SpvZK
can predict the majority of the unpredictable new wallets associated with a
sequence of d future blocks, and can use this knowledge as a trapdoor theorem
when computing the messages of the pvWI proof. Notice that the simulator can
not tightly predict the future wallets that will be permanently added to the

3 See the paragraph below about the power of the adversary.
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blockchain since there will be several other honest blocks to simulate that will
circulate in the network, they might even appear in some forks but eventually
will not be part of the blockchain. Since the simulator has no direct power to
decide which branch of a fork will remain in the blockchain, we require way more
than just d commitments. Indeed we consider the parameter u that measures
the upper bound on the amount of valid blocks that honest players propose for
each index of the sequence of blocks of the blockchain.

The pvZK that we construct preserves zero knowledge even in case of adaptive
corruption during the protocol execution and in case the blockchain completely
collapses and the adversary gets the state of all players. To achieve this strong
form of zero knowledge, we use secure erasure so that differences in the com-
mitted values are not detected. Moreover we rely on the delayed-input pvWI
so that the simulator can run the prover procedure of the pvWI except that a
different witness is used in last message. Therefore before the last message is
played, adaptive corruption is not harmful since the simulator played exactly
like a prover of the pvWI. Assuming that the underlying pvWI is secure in case
the blockchain collapses (fact that we prove), the proof remains zero-knowledge
forever.

A crucial aspect of our construction is that the security of the prover is in the
hands of the prover only and does not depend on the behavior of the stakeholders.
To achieve adaptive security we rely on secure erasure. In contrast, even if the
prover of GG-NIZK would erase its randomness, the proof would still suffer of
our attack.

For the soundness proof, the main observation is that, as long as our
blockchain assumption holds, even an unbounded malicious prover cannot break
soundness since it cannot predict enough future wallets. This together with
the perfect binding property of the commitment scheme and the unconditional
soundness of the pvWI guarantees the soundness of our pvZK.

An additional property of our construction is that all messages except the
last one can be computed even before knowing the statement to prove (i.e.,
it satisfies delayed-input completeness and adaptive-input zero knowledge and
soundness).

Finally, we remark that even though messages of our pvZK proof can be very
long, therefore exceeding some rule of the blockchain, one can anyway resort to
techniques (and assumptions) like IPFS that allow to keep off-chain long message
but still accessible by everyone and succinctly notarized on chain.

On the Computational Power of the Adversary and Rationality of Players. In
a publicly verifiable proof assuming that an adversarial prover is PPT does not
really say much about his limits with respect to the security of the blockchain.
Indeed in case of proof-of-work blockchains the limitation of the adversary should
be compared to the overall computational capabilities of the network rather
than compared to a generic polynomial on input the security parameter. In our
definition of soundness we will therefore consider an unbounded prover. When
proving the security of our construction we will state explicitly our blockchain
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assumption and implicitly we will assume that the constraints on the adversary
(see Sect. 3.2) required by the underlying blockchain are maintained.

We remark that this work following [23,24,34] considers either honest or
corrupted players, without exploring the game-theoretic scenario where players
are instead rational.

1.2 Related Work

The idea of using a blockchain as a trusted setup has been explored already (e.g.,
fair multi-party computation [12], extraction of week randomness [2]). In [11] a
randomness beacon is obtained assuming players to be somehow rational (i.e.,
they assume that the adversary that will prefer to be honest cashing mining
rewards rather than misbehaving compromising the beacon). In our work, as
well as the one of [23], we consider zero-knowledge proofs with public verifiabil-
ity sticking with the traditional setting where security holds against malicious
players.

In [16] a blockchain is used as a global setup assumption to obtain concurrent
self-composable secure computation protocol, which is impossible in the standard
model. We stress that [16] does not provide public verifiability (for the interested
reader we expand this discussion in Sect. 5). Recently in [10,25] a blockchain is
used to maintain a secret via proactive secrete sharing. As mentioned above[25]
requires some chain quality parameters (n

2 + 1, n) which means that for any
sequence of n blocks, the majority of them n

2 +1 are computed by honest parties.
In [10] the adversary controls up to 25% of the stake. However using the technique
discussed in [21] one could lift up this requirement to less than 50%.

In [6] the notion of Crowd verifiable zero-knowledge (CVZK) is introduced4.
In CVZK a prover wants to convince a set of n verifiers of the validity of a certain
statement. In more detail, a CVZK is a 3-round protocol where first the prover
speaks, then n verifiers compute a private state and send as a second-round a
string that may contain some entropy, finally, the prover finishes the proof π. The
verification procedure takes as input π the corresponding statement and also the
states of the n verifiers. Instead we consider a different notion requiring a zero-
knowledge proof that is publicly verifiable (i.e., any verifier with no additional
information could check the veracity of the statement). Moreover, the definition
of CVZK does not require any setup at the price of allowing the simulator to run
in super-polynomial time. Our goal is also to diminish the trust in the setups,
however, instead of requiring super-polynomial time simulation, we exploit more
realistic setups like the blockchains.

2 The Attack of the Clones to GG-NIZK [23]

A high-level overview of the NIZK presented in [23] was provided in the Intro-
duction. In this section we describe an attack of clones with which a malicious
4 Our results were publicly announced in [1] way before we have noticed CVZK, there-

fore the two works are independent.
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verifier, using a smart contract, is able to break the zero-knowledge property of
GG-NIZK without corrupting any player.

Our attack leverages the fact that, if a blockchain is used as setup assumption
for a protocol Π, the security proof of Π must take into account the fact that
a player of Π is also a legitimate player of the blockchain protocol. As such,
legitimate blockchain activities – such as smart contracts – can be performed by
her.

Before describing the attack, we provide a formal description of the GG-
NIZK.

Notation for GG-NIZK

– Blockchain B: this is the latest version blockchain which might contain uncon-
firmed blocks.

– Stable Blockchain B
′
: this is defined as B��1 , which is the blockchain B pruned

of �1 blocks (that are possibly unconfirmed blocks).
– Parameter �2: number of last blocks taken into consideration in B

′
.

– Stakeholders M: set of public keys associated to the player that have added
at least one block in the last �2 blocks of B

′
. In [23], such public keys are

crucially used for both encryption and signature.
– Chain quality parameters: �3, �4 used in the soundness proof.
– params:= (1�1 , 1�2 , 1�3 , 1�4).

GG-NIZK: The Proof. A proof π for theorem x is computed as follows. Let w
be the witness s.t. (x,w) ∈ R.

1. Secret share the witness w using a weighted secret sharing scheme, using as
weights the stake of the public keys appearing in M. Do the same with the
zero-string.
Namely, produce the following two sets5:

{sh1,i}i∈M = Share(w, {stakei}i∈M, β · staketotal, s1)
{sh2,i}i∈M = Share(0, {stakei}i∈M, β · staketotal, s2)

2. Encrypt each weighted share using the public key of the corresponding player.
Namely for all i such that PKi ∈ M, sample random strings r1,i, r2,i and
compute: ctx1,i = Enc(PKi, sh1,i, r1,i) ctx2,i = Enc(PKi, sh2,i, r2,i).

3. Compute a non-interactive witness indistinguishable proof (NIWI) πniwi for
the theorem: (1) either the first set of ciphertexts are correct encryptions
under the public keys in M of shares of the witness w or (2) (trapdoor
witness) the second set of ciphertexts is a collection of correct encryptions
under the public keys in M of shares of a valid fork of length �3 + �4.

5 The role of s1, s2 and β is not relevant for our discussion and therefore they can be
ignored.
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Hence, a proof π for theorem x ∈ L consists of the tuple:

π = (B, {ctx1,i, ctx2,i}i∈M, πniwi, params)

Note that the proof π is not published on the blockchain and it is only sent
to the verifier.

Security of GG-NIZK: Intuition. Zero knowledge follows from the assumption of
honest majority of stake. Under such assumption, the simulator –controlling all
honest players– is able to compute a valid fork that constitutes a valid trapdoor
witness for the NIWI. Even if the trapdoor witness is encrypted in (ctx2,i)PKi∈M,
a malicious verifier cannot detect that the trapdoor witness was used, since it
does not control enough secret keys (associated to the public keys in M) that
would allow for collection of enough shares.

Soundness is proved by witness extraction: the extractor controls a sufficient
fraction of honest secret keys (associated to the public keys in M) and this allows
the decryption of enough ciphertexts, that leads to enough shares to reconstruct
the witness.

Clearly by obtaining in the future (e.g., when those keys will correspond
to a reduced amount of stake) the secrets of the involved stakeholders (through
adaptive corruptions or by naturally receiving the keys from honest stakeholders)
the adversary would be able to decrypt those ciphertexts therefore breaking the
zero knowledge property and without violating the proof-of-stake assumption.
This problem imposes the assumptions/limitations of the GG-NIZK discussed
previously.

A Simple Smart Contract that Breaks the ZK Property of GG-NIZK.
The zero-knowledge property of GG-NIZK crucially relies on the assumption that
the malicious verifier – controlling only a minority of stake– does not have enough
secret keys for the public keys in M to be able to decrypt enough ciphertexts
and thus reconstruct the witness.

Our main observation is that in order to obtain decryptions of enough cipher-
texts, a malicious verifier, does not necessarily need to own enough of the
stake/secret keys of the honest players. Instead, the malicious verifier can upload
a smart contract – that we called DecryptionForBarbados– where she promises
a reward for a valid decryption of a certain ciphertext ctx under a certain public
key PK. Notice that to run such smart contract the adversary does not need to
corrupt the stakeholders, or get a stake transfer. So, the attack to works even
if no-one is corrupted and even if no-stake is transferred. Obviously, when con-
sidering a blockchain with additional restrictions the our attack based on the
above smart contract might not work, but still, the potential existence of other
attacks should not be overlooked.

In more details, once the malicious verifier obtains π = (B, {ctx1,i, ctx2,i}i∈M,
πniwi, params) from an honest prover she can publish a DecryptionForBarbados
for some of (they could also be rerandomized if useful) the ciphertexts ctx1,i

for which she does not possess the secret key. The malicious verifier using
DecryptionForBarbados is able to collect enough shares and reconstruct the
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witness that is encrypted in {ctx1,i, ctx2,i}i∈M, thus directly invalidating the ZK
property of [23].

In Fig. 1 we give a more detailed description of DecryptionForBarbados. In
order to keep the smart contract simple we assume that the decryption procedure
of the underlying encryption scheme gives in output a pair (m, r) where r is the
randomness used to encrypt and m is the message encrypted (see for instance
[8]). For the same reason, we also assume that (m, r) are unique (for a public
key PK).

Notation (borrowed from [27]).
- Ledger: the blockchain.
- Ledger[Pti] denotes the amount of money possessed by the secret key of party Pti.

DecryptionForBarbados

1. Init: Upon receiving (init, $reward, ctx,PKi) from a contractor C:
- Assert Ledger[C] > $reward.
- Ledger[C] := Ledger[C]− $reward.
- Set state := init.

2. Claim: On input (claim, v) from a player Pti:
- Parse v = (m, r).
- If ctx = EncPKi(m, r) then set rewards Ledger[Pt] := Ledger[Pt] + $reward.
- Set state := claimed.

Fig. 1. Description of DecryptionForBarbados.

Observations on the Smart Contract. We note that a player that uses her secret
key to trigger DecryptionForBarbados in order to win the reward is not vio-
lating any assumption of the underlying PoS protocol or of GG-NIZK. Indeed,
he is not exposing his secret key but simply providing a valid decryption of a
certain ciphertext. Thus this is legitimate behavior of a honest player, she is
simply executing an other application that runs on top of the blockchain.

Our smart contract is not a “bribing attack”. Bribing assumes that one is
paying somebody to do something wrong/break the rules. Instead in this context
an honest player is still behaving honestly and he is not breaking any rule of the
underlying PoS protocol.

We also note that since the proof π is not published on the blockchain (and
is not required to be), honest players could be not aware that they are helping
a malicious verifier to break the security of π.

3 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concate-
nation operator (i.e., if a and b are two strings then by a||b we denote the
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concatenation of a and b). We use the abbreviation ppt that stays for probabilis-
tic polynomial time. We use poly(·) to indicate a generic polynomial function.
A polynomial-time relation R (or polynomial relation, in short) is a subset of
{0, 1}∗ × {0, 1}∗ such that membership of (x,w) in R can be decided in time
polynomial in |x|. For (x,w) ∈ R, we call x the instance and w a witness for x.
For a polynomial-time relation R, we define the NP-language LR as LR = {x
s.t. ∃ w : (x,w) ∈ R}. Analogously, unless otherwise specified, for an NP-
language L we denote by R the corresponding polynomial-time relation (that
is, R is such that L = LR). We will denote by Pst a stateful algorithm P with
state st. We will use the notation r ∈R {0, 1}λ to indicate that r is sampled at
random from {0, 1}λ. When we want to specify the randomness r used by an
algorithm Al we use the following notation Al(·; r).

3.1 Blockchain Protocols

In the next two sections we borrow the description of a blockchain protocol of
[23,32], moreover we explicitly define the procedure executed by an honest player
in order to add a block. A blockchain protocol Γ is parameterized by a validity
predicate V that captures the semantics and rules of the blockchain. Γ consists
of 4 polynomial-time algorithms (UpdateState,GetRecords,Broadcast,GenBlock)
with the following syntax.

– UpdateState(1λ, st): It takes as input the security parameter λ, state st and
outputs the updated state st.

– GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records messages.

– Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

– GenBlock(st,B, x): It takes as input a state st, a blockchain B6, x ∈ {0, 1}∗

and outputs a candidate block B that contains a string v computed running
a function fID that is defined as follows. The functionfID(1λ; r) takes as input
the security parameter λ and running with poly(λ) bits of randomness r
outputs a q bit string v, where q = poly(λ). Moreover every time that fID runs
on input a freshly generated randomness it holds that H∞(fID(1λ; ·)) ≥ λ7.
The generated block B could satisfy or not the validity predicate V.
We will denote by Bv a block B that contains the string v computed using
fID.

6 In order to simplify the notation we make an abuse of notation and we explicitly add
the blockchain as input of GenBlock even though the blockchain can be computed
running GetRecords on input st.

7 In the existing blockchains the value v could be an identifier of a wallet and fID is
the randomized function that generates it.
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Blockchain Notation. With the notation B ≤ B′ we will denote that the
blockchain B is a prefix of the blockchain B′. We denote by B�n the chain result-
ing from “pruning” the last n blocks in B. We will denote by ΓV a blockchain
protocol Γ that has validate predicate V. A blockchain B generated by the execu-
tion of ΓV is the blockchain obtained by an honest player after calling GetRecords
during an execution of ΓV. An honest execution of GenBlock is an execution of
GenBlock computed by an honest player. A blockchain protocol Γ can satisfy the
property of chain-consistency, chain-growth and chain-quality defined in previ-
ous works [19,32]. In the rest of the paper we will denote by η(·) the chain
consistency parameter of ΓV.

Definition 1 (Block Trim Function). Let Bv be a block generated using
GenBlock that satisfies the validate predicate V. We define a block trim function
as a deterministic function trim that on input Bv outputs v.

Note that for two blocks B, B′ that satisfy V and are generated by an honest
execution of GenBlock it could happen that trim(B) = trim(B′). For instance
this is the case when a honest player Pt runs GenBlock twice and both executions
run fID on input the same randomness stored in the state of Pt.

Definition 2 (Good Execution of GenBlock). Let B be a blockchain gener-
ated by an execution of ΓV. An execution of GenBlock is good w.r.t. a blockchain
B if it holds that GenBlock runs on input B s.t. B ≤ B

�η(λ)
, moreover GenBlock

runs fID on input fresh randomness and outputs a block that satisfies the validity
predicate V.

Definition 3 (Pristine Block). Let trim be the block trim function defined
in Definition 1. Let B be a blockchain composed of k blocks generated by an
execution of ΓV. The j-th block Bj of B is pristine if for each Bi of B with
0 < i < j it holds that v �= vi where v = trim(Bj) and vi = trim(Bi).

Assumption 1. Let B be a blockchain generated during an execution of ΓV.
There exists d = poly(λ) and u = poly(λ) such that for any sequence of d con-
secutive blocks Bi+1, . . . , Bi+d added to B during the execution of ΓV, let n be
the number of pristine blocks in Bi+1, . . . , Bi+d, it holds that:

1. At least �n/2 + 1� of the pristine blocks in the sequence Bi+1, . . . , Bi+d have
been generated by honest players through good executions of GenBlock w.r.t.
B;

2. For each j ∈ {1, . . . d}, the probability that honest players obtain through
honest executions of GenBlock w.r.t. B u′ > u different blocks satisfying the
validity predicate for the position i + j in the blockchain is negligible in λ.

We refer to d as the pristine parameter and to u as the attempts parameter.

Notice that n is a non-constant value that depends on the content of the
specific d consecutive blocks taken into account. For the sake of simplifying the
description of our construction we will assume wlog that n is also a pristine
parameter.
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On the Applicability of Our Assumption. It is well known that blockchains need
an incentive mechanism and this is typically implemented by assigning a reward
each time a block is added to the chain. This process is often implemented as a
lottery and some coins are generated and assigned to the winner of the lottery
that is also the player that generated the new block added to the chain. In order
to get the coin assigned, the winner also includes an identifier of her wallet to
the block. Such identifiers usually correspond to public keys of signature schemes
and as such they have a significant amount of min-entropy. Therefore, whenever
such identifier is selected by a honest blockchain player and has never circulated
in the network, it represents an unpredictable string. More concretely one could
think in the case of Bitcoin to the coinbase transaction, since sometimes the
rewards is cashed on a new wallet.

Our blockchain assumption assumes that given a sufficiently long sequence
of blocks, if we restrict to identifiers that appear for the first time on the chain,
then a majority of them was unpredictable before the long sequence of blocks
started. Obviously an adversary can sometimes be the winner and therefore can
use an identifier that is “fresh” in the eyes of others but that she knew already
before the long sequence of blocks started. Therefore our assumption requires
the adversary to have limited resources so that she places in the chain less blocks
than what honest players using fresh identifiers do.

For concreteness, one can consider the current modus operandi of Bitcoin
blockchain. To avoid double spending it is in general recommended to wait for
6 more blocks after the block including the spending transaction, this is called
confirmation time. The choice of 6 blocks for a confirmation time suggests that it
is believed that it would be very unlikely that the adversary could have produced
in the meanwhile 7 blocks that cancel the spending transaction. If for instance
we quantify “very unlikely” with something less than 2−70 then as a consequence
the adversary must have probability of being the winner (therefore deciding the
next block) less than 2−10. Following this example, if an honest block includes
a “fresh” wallet with probability at least 2−9 (which is very reasonable), then
our assumption clearly holds for a sufficiently large sequence of blocks (i.e.,
considering a sufficiently large d).

We have considered Bitcoin and the 6-block confirmation rule just because it
is the most popular example of blockchain and thus it is a natural target to check
the concreteness of our assumption. Indeed, also coinbase transaction is just an
example of a field with min-entropy that could be find in the blockchain (see
also the examples mentioned in [13]). One could consider, for instance, privacy-
preserving blockchains (e.g., [18,28] for the case of PoS blockchains), observing
that the cryptographic material used to ensure privacy might imply the presence
of fields with high min-entropy in a block.

Our construction is a mere feasibility result aiming at showing that publicly
verifiable zero knowledge is possible with generic8 blockchains.

8 In the sense of the underlying consensus mechanism.
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3.2 Execution of Γ V in an Environment

At a very high level, the execution of the protocol ΓV proceeds in rounds that
model time steps. Each participant in the protocol runs the UpdateState algo-
rithm to keep track of the current (latest) blockchain state. This corresponds
to listening on the broadcast network for messages from other nodes. The
GetRecords algorithm is used to extract an ordered sequence of blocks encoded in
the blockchain state variable. The Broadcast algorithm is used by a player when
she wants to post a new message m on the blockchain. Note that the message m
is accepted by the blockchain protocol only if it satisfies the validity predicate
V given the current state, (i.e., the current sequence of blocks).

Following prior works [19,29,32], we define the protocol execution following
the activation model of the Universal Composability framework of [15] (though
like [23] we will not prove UC-security of our results). For any blockchain proto-
col ΓV(UpdateState,GetRecords,Broadcast,GenBlock), the protocol execution is
directed by the environment Z(1λ). The environment Z activates the players as
either honest or corrupt and is also responsible for providing inputs/records to
all players in each round.

All the corrupt players are controlled by the adversary A that can corrupt
players adaptively during the execution of ΓV.

Specifically A can send a corruption request 〈corr,Pti〉 to player Pti at
any point during the execution of ΓV. The adversary is also responsible for the
delivery of all network messages. Honest players start by executing UpdateState
on input 1λ with an empty state st = ε.

– In round r, each honest player Pti potentially receives a message(s) m from
Z and potentially receives incoming network messages (delivered by A). It
may then perform any computation, broadcast a message (using Broadcast
algorithm) to all other players (which will be delivered by the adversary; see
below) and update its state sti. It could also attempt to “add” a new block to
its chain: Pti will run the procedure GenBlock, and this execution of GenBlock
could use fresh randomness for the function fID(1λ; ·) if requested by Z.

– A is responsible for delivering all messages sent by players (honest or cor-
rupted) to all other players. A cannot modify the content of messages broad-
cast by honest players, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages within a certain time limit.

– At any point Z can communicate with adversary A.

Constraints on the Adversary. In order to show that a blockchain enjoys
some useful properties (e.g., chain consistency) prior works [19,32] restrict their
analysis to compliant executions of ΓV where some specific restrictions9 are
imposed to Z and A. Those works showed that certain desirable security proper-
ties are respected except with negligible probability in any compliant execution.
Obviously, when in our work we claim results assuming some properties of the
blockchain, we are taking into account compliant executions of the underlying
blockchain protocol only. The same is done by [23].
9 For instance, they require that any broadcasted message is delivered in a maximum

number of time steps.
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3.3 Publicly Verifiable ZK Proof System from BlockchainS

Here we define delayed-input publicly verifiable zero knowledge w.r.t. blockchain
failure over a blockchain protocol ΓV = (UpdateState,GetRecords,Broadcast,
GenBlock). We will make use of the following notation.

The view of a blockchain player Pt consists of the messages received
during an execution of ΓV, along with its randomness and its inputs. Let
ExecΓ V

(A,H,Z, 1λ) be the random variable denoting the joint view of all players
in the execution ΓV, with adversary A and set of honest players H in environ-
ment Z, such a joint view fully determines the execution. Let ΓV

view(A,H,Z, 1λ)
denote an execution of ΓV(A,H,Z, 1λ) producing view as joint view.

Definition 4 (Publicly Verifiable Proof System from Blockchain). A
pair of stateful ppt algorithms Π = (P,V) over a blockchain protocol ΓV is a
publicly verifiable proof system for the NP-language L with witness relation R
if it satisfies the following properties:

Completeness. ∀ x,w s.t. (x,w) ∈ R, ∀ ppt adversary A any ppt Ptj ∈ H
where H is the set of honest parties, and for any environment Z, assuming
that P ∈ H, there exist negligible functions ν1(·), ν2(·) such that:

Pr

⎡
⎢⎢⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

⎤
⎥⎥⎦ ≥ 1 − ν1(|x|) − ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ).

The running time of P is polynomial in the size of the blockchain B =
GetRecords(1λ, stj) where stj is the state of Ptj at the end of the execution
ΓV
view(A,H,Z, 1λ).10

Soundness. ∀ x /∈ L, ∀ stateful adversary A and ppt honest player Ptj ∈ H
where H is the set of honest players and for any environment Z, there exist
negligible functions ν1(·), ν2(·) such that:

Pr

⎡
⎢⎢⎣

view ← ExecΓ V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x ← AstA

B = GetRecords(1λ, stj)

⎤
⎥⎥⎦ ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ). Fur-

thermore stj is the state of Ptj at the end of the execution ΓV
view(A,H,Z, 1λ).

The proof π might consist of multiple messages, i.e., π = (π1, . . . , πm), in this
case, we will say that Π is an m-messages proof system. Moreover if π is com-
posed of m-messages π = (π1, . . . , πm), A is allowed to choose x just before
computing the last message πm of the proof π = (π1, . . . , πm).

10 Note that the execution of Γ V
view(A,H,Z, 1λ) could continue even after π is provided

by P.
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Definition 5 (Delayed-Input Completeness from Blockchain). An m-
messages proof system Π over a blockchain protocol ΓV is delayed-input, if
x,w are not involved before the computation of the last message πm of the proof
π = (π1, . . . , πm).

Definition 6 (Witness Indistinguishability w.r.t. Blockchain Failure).
A publicly verifiable proof system Π = (P,V) over a blockchain protocol ΓV for
the NP-language L with witness relation R is witness indistinguishable (WI)
w.r.t. blockchain failure if it satisfies the following property:

∀x,w0, w1 such that (x,w0) ∈ R and (x,w1) ∈ R, ∀ ppt adversary A and
set of ppt honest players H and any ppt environment Z, where P ∈ H it holds
that:

{
viewA : viewA ← Exp0A,Π,Γ V(λ)

}
≈

{
viewA : viewA ← Exp1A,Π,Γ V(λ)

}

where ExpbA,Π,Γ V(λ) is defined below, for b ∈ {0, 1}.
ExpbA,Π,Γ V(λ, x,wb):
- P runs on input 1λ.
- An execution of ΓV(A,Z,H, 1λ) starts.

- PstP outputs messages π1, . . . , πm−1, where stP is the state of P
in the execution ΓV(A,Z,H, 1λ).

- Upon receiving (x,w0) ∈ R, (x,w1) ∈ R from A.
- PstP computes πm on input πm−1, x, wb and outputs
π = (π1, . . . , πm).

- A can send a collapse request 〈corr, all〉 obtaining:
The state sti from the honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP from P.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.

Remark 1. The above definition does not assume that the blockchain satisfies the
predicate V, even when P is the only honest player of ΓV, and thus the blockchain
could be completely controlled by the adversary. In this scenario we will say that
Π = (P,V) enjoys WI w.r.t. blockchain failure over any blockchain protocol.

Definition 7 (Zero Knowledge w.r.t. Blockchain Failure). A publicly
verifiable proof system Π = (P,V) over a blockchain protocol ΓV for the NP-
language L with witness relation R is Zero Knowledge (ZK) w.r.t. blockchain
failure if there is a stateful ppt algorithm S such that ∀ x,w s.t. (x,w) ∈ R, ∀
ppt adversary A and set of ppt honest players H and for any ppt environment
Z, where P ∈ H it holds that:

{
viewA : viewA ← Exp0A,Π,Γ V(λ)

}
≈

{
viewA : viewA ← Exp1A,Π,S,Γ V(λ)

}
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where Exp0A,Π,Γ V(λ) and Exp1A,Π,S,Γ V(λ) are defined below.

Exp0A,Π,Γ V(λ):
- P runs on input 1λ.
- An execution of ΓV(A,H,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t. (x,w) ∈
R) to P obtaining from P her state stP .

2. PstP outputs messages π1, . . . , πm−1.
3. If A did not compute Step 1 P receives (x,w′) ∈ R from A.
4. PstP outputs π = (π1, . . . , πm).
5. If A sends a collapse request 〈corr, all〉 obtains:

The state sti from honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP from P, if A did not compute Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.
Exp1A,Π,S,Γ V(λ):
- S runs on input 1λ.
- An execution of ΓV(A,S,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t. (x,w) ∈
R) to S obtaining from S a state stP .

2. S outputs messages π1, . . . , πm−1.
3. If A did not compute Step 1: S receives (x,w′) ∈ R from A, S ignores

w′.
4. S outputs π = (π1, . . . , πm).
5. If A sends a collapse request 〈corr, all〉 obtains from S:

The state sti for each honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP for the honest prover of Π, if A did not compute
Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.

4 Publicly Verifiable ZK w.r.t. Blockchain Failure

We construct a delayed-input publicly verifiable zero-knowledge proof sys-
tem w.r.t. blockchain failure ΠpvZK = (PpvZK,VpvZK) over any blockchain pro-
tocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) satisfying chain-
consistency property, chain-growth property and Assumption 1. The parameters
of ΠpvZK are reported in Table 1. We assume wlog that in a sequence of d blocks,
n of them are pristine, where n is an even non-negative integer. ΠpvZK for the
NP-language L makes use of the following tools:

– The block trim function trim defined in Definition 1, that on input a block
B outputs a q-bits long string v.
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– A non-interactive statistically binding commitment scheme ΠCom =
(Com,VrfyOpen).

– A delayed-input publicly verifiable proof system ΠpvWI = (PpvWI,VpvWI) over
any blockchain protocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock)
that satisfies chain-consistency property, chain-growth property and Assump-
tion 1. Moreover ΠpvWI enjoys WI w.r.t. blockchain failure over any blockchain
protocol. ΠpvWI is for NP-language LpvWI which is associated to the relation
RpvWI =

{
((x, xcom), w) : (x,w) ∈ R ∨ (xcom, w) ∈ Rcom

}
, where R is the

relation associated to the NP-language L and Rcom is the relation associated
to the following NP-language:

Lcom =
{

{comj}u·d
j=1, {vi}n

i=1 : ∃ 1 ≤ j1 < · · · < jn/2+1 ≤ n, {openjk
}n/2+1

k=1

s.t. VrfyOpen(comjk , openjk
, vjk) = 1 ∀k = 1, . . . , n/2 + 1

}

Loosely speaking the relation Rcom is satisfied if the message committed in
comjk is vjk for at least n/2 + 1 distinct values of jk. The instance length of
LpvWI is � and the size of the proof generated by PpvWI is of m messages.

Our delayed-input publicly verifiable zero-knowledge proof system w.r.t.
blockchain failure ΠpvZK = (PpvZK,VpvZK) is described in Fig. 2.

Table 1. Parameters of ΠpvZK.

Table of notation

� Size of the theorem for LpvWI

m Number of messages of ΠpvWI

q Output-length of the block trim function trim. See Definition 1

η Chain consistency parameter of Γ V

d, n Pristine parameters of Γ V. See Assumption 1

u Attempts parameter of Γ V. See Assumption 1

Theorem 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be any
blockchain protocol that satisfies chain-consistency property, chain-growth prop-
erty and Assumption 1. Let ΠCom = (Com,VrfyOpen) be a non-interactive sta-
tistically binding commitment scheme. Let ΠpvWI = (PpvWI,VpvWI) be a delayed-
input publicly verifiable proof system over ΓV for NP-language LpvWI. Moreover
ΠpvWI enjoys WI w.r.t. blockchain failure over any blockchain protocol. Assuming
secure erasure, ΠpvZK = (PpvZK,VpvZK) (described in Fig. 2) is a delayed-input
publicly verifiable zero-knowledge proof system w.r.t. blockchain failure over ΓV

for NP.

We note that a pvWI proof system that satisfies delayed-input completeness
can be instantiated from OWPs using the work of [34]. In the full version [35] we
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Fig. 2. Description of ΠpvZK = (PpvZK,VpvZK).
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prove that ΠpvWI satisfies Definitions 4 and 6. Therefore we have the following
corollary.

Corollary 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a
blockchain protocol that satisfies chain-consistency property, chain-growth prop-
erty and Assumption 1. Assuming secure erasure, if one-way permutations exists,
then ΠpvZK = (PpvZK,VpvZK) is a delayed-input publicly verifiable zero-knowledge
proof system w.r.t. blockchain failure over ΓV for NP.

The proof of the Theorem1 and the description of the simulator SpvZK for ΠpvZK

can be found in the next subsections.
Note that the inputs of ΠpvZK (i.e., the statement x and the witness w) are

used only in the last message of the protocol. Therefore the prover can pre-process
all the other messages ahead of time (even without knowing the statement) and
complete the last message whenever the statement becomes available.

4.1 Delayed-Input Completeness (Definition 5)

Let st and stPti be respectively the states of P and of an honest player Pti after
Step 7 of ΠpvZK (that is, after the proof has been computed). Since both P and
V are running the protocol honestly, from the chain-consistency property follows
that B�η ≤ B̃ (with overwhelming probability), where B = GetRecords(st) and
B̃ = GetRecords(stPti). Therefore V performs all the blockchain checks on B̃
successfully. After that P posts the commitments {comj}u·d

j=1 in the blockchain B
we are guaranteed by the chain growth property of ΓV and by Assumption 1 that
new d blocks will be added to B and among them n will be pristine. Therefore
P can construct the instance xcom (as defined in Step 3 of Fig. 2) in order to
complete her execution running ΠpvWI.

Finally the completeness of ΠpvZK follows from the completeness of ΠpvWI

and the correctness of ΠCom.

4.2 Soundness (Definition 4)

Claim 1. If Assumption 1 holds for ΓV then ΠpvZK is sound.

Proof. Let P�
pvZK be a successful adversary. Recall that P�

pvZK is successful if it
produces with non-negligible probability an accepting π of ΠpvZK w.r.t. x /∈ L,
where x is adaptively chosen by P�

pvZK before the last message of π.
Let B∗ be the block in the blockchain B where the last commitment of the

set of the commitments com1, . . . , comu·d is posted by P�
pvZK, and let B1, . . . , Bn

be the n pristine blocks (in a sequence of d blocks) appeared in B after the block
B∗.

From Assumption 1 it follows that in a sequence of n pristine blocks
B1, . . . , Bn at least n/2 + 1 are generated by honest players through good exe-
cutions of GenBlock w.r.t. B. Let B1, . . . , Bn/2+1 be the n/2 + 1 blocks gen-
erated by honest players through good executions of GenBlock w.r.t. B in the
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sequence of pristine blocks B1, . . . , Bn, and the value vj be s.t. vj = trim(Bj),
for j = 1, . . . , n/2+1. When P�

pvZK posts com1, . . . , comu·d, it has no information
about the values v1, . . . , vn/2+1, because when P�

pvZK posts com1, . . . , comu·d each
value vj (for j = 1, . . . , n/2 + 1) can be guessed with probability 2−λ (since
Assumption 1 holds and each vj has at least λ bits of min-entropy). Moreover,
since ΠCom is a perfectly binding commitment scheme, the committed message
is uniquely identified in the commitment phase. Therefore the probability that
P�
pvZK correctly commits the values v1, . . . , vn/2+1 is negligible. It follows that

the values v1, . . . , vn/2+1 are committed in com1, . . . , comu·d only with negligible
probability, therefore xcom /∈ Lcom. Since by contradiction we are assuming that
P�
pvZK is successful w.r.t. x /∈ L, it follows that with non-negligible probability

xpvWI = (xcom, x) /∈ LpvWI. This contradicts the soundness property of ΠpvWI

4.3 Zero Knowledge w.r.t. Blockchain Failure (Definition 7)

Simulator SpvZK. The simulator SpvZK is presented in Fig. 3, the red steps denote
the steps of SpvZK that are different from the one of PpvZK.

Zero Knowledge w.r.t. Blockchain Failure. Let A be the adversary as defined in
Definitions 7. Intuitively, we want to prove that even if the blockchain collapses,
the zero-knowledge property of ΠpvZK is still preserved.

In order to show that ΠpvZK satisfies zero knowledge w.r.t. blockchain failure
we will consider the following hybrid experiments.

– Hybrid H0. In hybrid experiment H0(λ) the simulator S′
pvZK follows the honest

prover procedure of PpvZK.
– Hybrid H1. Experiment H1(λ) is described as H0(λ) except that the simulator

S′
pvZK emulates the honest players in the execution of ΓV, more precisely S′

pvZK

follows Step 3 and Steps 14 and 15 of Fig. 3.
Note that after that the commitments are posted in the blockchain in H0(λ)
when an honest player Ptj ∈ H receives a request from Z of an execution of
GenBlock using fresh randomness for fID(1λ; ·) Ptj runs fID on input freshly
generated randomness obtaining a freshly generated value v. It easy to see
that in H1(λ) the value v is generated in the same way as Ptj ∈ H does in
H0(λ) except that v is computed at the start of ΠpvZK. Since (1) the values
vj ← fID(1λ; rj) for j = 1, . . . , d · u are identically distributed in the two
hybrid experiments and (2) S′

pvZK is behaving in the same way of the honest
players in an execution of ΓV, we have that H1 ≡ H0.

– Hybrid H2. If a corruption of the form 〈ZKcorr(x,w)〉 occurs when ΠpvZK

starts, H2(λ) corresponds to H1(λ), otherwise we consider a series of hybrid
experiments H0

2 (λ), . . . , Hu·d
2 (λ) where H0

2 (λ) = H1(λ) and H2(λ) = Hu·d
2 (λ)

and they are described as follows.
Hybrid Hk

2 with k ∈ {1, . . . , u · d}. The hybrid experiment Hk
2 (λ) is

describe ad Hk−1
2 (λ) except that S′

pvZK computes the k-th commitment
following Steps 2–4 of Fig. 3. Indeed, S′

pvZK computes (comj , openj) ←
Com(vj) for j = 1, . . . , k (where vj ← fID(1λ; rj)) and it computes
(comj , openj) ← Com(0q) for j = k + 1, . . . , u · d.
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Fig. 3. Simulator SpvZK of ΠpvZK.
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Assuming secure erasure, from Claim 2 it holds that Hk−1
2 ≈ Hk

2 for all
k = 1, . . . , u ·d, therefore since H1 corresponds to H0

2 and H2 corresponds
to Hu·d

2 we conclude that H1(λ) ≈ H2(λ).
– Hybrid H3. If a corruption of the form 〈ZKcorr(x,w)〉 occurs during the com-

putation of the first m−1 messages of ΠpvWI, we have that H2(λ) corresponds
to H3(λ). Indeed due to the delayed-input property of ΠpvWI, S′

pvZK computes
the first m − 1 messages of ΠpvWI as PpvZK does. Note that the decommit-
ment information {openj}u·d

j=1 are securely erased by PpvZK, therefore if S′
pvZK

receives a corruption request during the computation of the first m − 1 mes-
sages of ΠpvWI she is able to exhibit randomness that is identically distributed
to the one that PpvZK would have in her state.
If a corruption of the form 〈ZKcorr(x,w)〉 does not occur during the compu-
tation of the first m − 1 messages of ΠpvWI, then H3 is defined as follow.

The hybrid experiment H3(λ) is described exactly as H2(λ) except for the
witness used to compute the last message πm

pvWI generated using ΠpvWI,
for which S′

pvZK is acting as SpvZK. In more details, for the computation
of the message πm

pvWI S
′
pvZK is behaving as described in Steps 11 of Fig. 3.

Assuming secure erasure, since ΠpvWI satisfies WI w.r.t. blockchain failure
it follows that H2(λ) ≈ H3(λ) (see Claim 3).

H0(λ) corresponds to the experiment where PpvZK is interacting with A and
H3(λ) corresponds to the experiment where SpvZK is interacting with A. Since
H3(λ) ≈ H0(λ) it follows that A distinguishes the two experiments only with
negligible probability.

Claim 2. Assume that Πcom satisfies computationally hiding secure erasure, and
the blockchain protocol ΓV satisfies Assumption 1, then for every pair of messages
m0,m1 ∈ {0, 1}q it holds that Hk−1

2 (λ) ≈ Hk
2 (λ) for k ∈ {1, . . . , u · d}.

Proof. Suppose by contradiction that the above claim does not hold, this implies
that there exists an adversary A that is able to distinguish between Hk−1

2 (λ) and
Hk

2 (λ). Note that A could wait until the protocol ΠpvZK ends and then can send
a collapse request 〈corr, all〉. Using A it is possible to construct a malicious
receiver ACom that breaks the hiding of ΠCom with non-negligible probability.
Let CH be the challenger of the hiding game of ΠCom. ACom computes the fol-
lowing steps:

1. Compute vk running fID(1λ; r) where r is an uniformly chosen randomness
and sends the messages m0 = 0q and m1 = vk to CH.

2. Upon receiving ˜comk from CH, ACom interacts with A computing all the
messages of S′

pvZK following the steps described in Hk
2 (λ) (and in Hk−1

2 (λ))
except for the k-th commitment for which she uses ˜comk.

3. Emulation of the state stPpvZK
of PpvZK after π is compute: acts as S′

pvZK in
Hk

2 (λ) (and in Hk−1
2 (λ)) and securely erase the decommitment information

{openj}u·d
j=1 (except for ˜openk that was never available to ACom), set the state

stPpvZK
as described Hk

2 (λ) (and in Hk−1
2 (λ)) that is as described in Step 12

of Fig. 3.
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4. execution of ΓV :
4.1. Emulate the honest players acting as the honest player of ΓV (as described

in Section Hk
2 (λ) (and in Hk−1

2 (λ))).
4.2. After π of ΠpvZK is computed if A sends a collapse request 〈corr, all〉,

disclose the states of all the honest players stPt1 , . . . , stPt|H| and stPpvZK
.

5. When A stops, ACom outputs the outcome of A.

ACom emulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect
manner, since ACom just acts as the honest players in the execution of ΓV. More-
over, stPpvZK

after π is computed in Step 3 of the above procedure, corresponds to
the state of an honest PpvZK in Hk

2 (λ) (and in Hk−1
2 (λ)). The proof is concluded

observing that if CH uses the message m0 to compute ˜comk then the reduction
is distributed as Hk−1

2 and as Hk
2 otherwise.

Claim 3. Assume that ΠpvWI satisfies WI w.r.t. blockchain failure as in Defini-
tion 6 over any blockchain protocol, secure erasure, and the blockchain protocol
ΓV satisfies Assumption 1, then for every xpvWI, w0, w1 s.t. (xpvWI, w0) ∈ RpvWI

and (xpvWI, w1) ∈ RpvWI it holds that H2(λ) ≈ H3(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies
that there exists an adversary A that is able to distinguish between H2(λ) and
H3(λ). Note that A could wait until the protocol ΠpvZK ends and then can send
a collapse request 〈corr, all〉. Using A it is possible to construct a malicious
verifier ApvWI that breaks the WI w.r.t. blockchain failure w.r.t. any blockchain
protocol property of ΠpvWI. We remark that ΠpvWI enjoys WI w.r.t. blockchain
failure w.r.t. any blockchain protocol (i.e., even w.r.t. a blockchain protocol
where PpvWI is the only honest player of the blockchain protocol). Let CH be the
challenger of the WI w.r.t. blockchain failure game of ΠpvWI. ApvWI computes
the following steps.

1. ApvWI acts as described in H2(λ) and H3(λ) until Step 6 of Fig. 3. In par-
ticular, ApvWI computes the instance xcom and the witness wcom as explained,
respectively, in Step 6 and in Steps 7, 14 and 15 of Fig. 3.

2. ApvWI interacts as a proxy between CH and A for the messages π1
pvWI,

. . . , πm−1
pvWI , and interacting with the blockchain as a PpvWI would do upon

request of CH.
3. A chooses (x,w) ∈ R before the last message of ΠpvZK and therefore ApvWI

(that is acting as PpvZK) will obtain w s.t. (x,w) ∈ R and sends xpvWI =
(x, xcom), w, wcom to CH before the message πm

pvWI. ApvWI completes the proof
π of ΠpvZK using πm

pvWI and interacting with the blockchain as a PpvWI would
do upon request of CH.

3.1. Emulation of the state stPpvZK
of PpvZK after π is computed:

i. ApvWI sends a collapse request 〈corr, all〉 to CH obtaining stPpvWI

from the challenger CH.
ii. ApvWI is acting as S′

pvZK in H2(λ) (and in H3(λ)) and securely erases
the decommitment information {openj}u·d

j=1, set stPpvZK
= stPpvWI

.
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4. execution of ΓV :
4.1. ApvWI emulates the honest players acting as the honest players of ΓV as

described in H3(λ) (and in H2(λ)).
4.2. After π is computed if A sends a collapse request 〈corr, all〉, ApvWI

discloses the states of all the honest players stPt1 , . . . , stPt|H| and stPpvZK
.

5. When A stops, ApvWI outputs the outcome of A.

We note that ApvWI simulates the states of all the honest players
stPt1 , . . . , stPt|H| in a perfect way, this is because in the execution of ΓV, ApvWI

is behaving in the same way of the honest players of an execution of ΓV (as
described in H3(λ) (and in H2(λ))). The proof is concluded observing that if
CH uses the witness w to compute πm

pvWI then the reduction is distributed as H2,
and as H3 otherwise.

5 On Public Verifiability in [16]

A recent work [16] models the blockchain as a global ledger functionality Gledger

available to all the participants of a cryptographic protocol. [16] constructs con-
current self-composable secure computation protocol for general functionalities
in such global ledger model. The protocols constructed in [16] are not publicly
verifiable, and therefore do not satisfy the main feature that we study and achieve
in this work. Indeed the authors of [16] already notice in their work that non-
interactive zero knowledge for NP is impossible in their model. We remark that
actually the impossibility extends also to publicly verifiable zero knowledge for
languages that are not in BPP and we give now a high-level intuition. First of all,
note that in the model of [16], since the blockchain is modeled as a global ledger,
the simulator S of the zero-knowledge property has the same power of the adver-
sary while accessing Gledger. Suppose now by contradiction that it is possible to
construct a publicly verifiable zero-knowledge argument Π = (P,V) for the NP-
language L in the Gledger model. This means that there exists a simulator S that
having access to Gledger on input any instance x ∈ L outputs an accepting proof
π w.r.t. x that is (computationally) indistinguishable from a proof generated
by a honest prover P. Let us now consider a malicious polynomial-time prover
P∗ that in the Gledger-model wants to prove a false statement x∗ to an honest
verifier V. We will show that P∗ proves a false theorem with non-negligible prob-
ability, P∗ works as follows. P∗ internally runs S on input x∗. Moreover, each
interaction that S wants to do with Gledger is emulated by P∗ and this is possible
since S and P∗ are accessing Gledger in the same way. At the end of the execu-
tion, S outputs π∗ w.r.t. x∗. P∗ forwards π∗ to V. Note that we are guaranteed
by the zero-knowledge property that π∗ is accepting and the view of an honest
verifier that receives π∗ from P∗ is (computationally) indistinguishable from the
view that V has when she receives a proof from an honest prover. Finally we
note that public verifiability guarantees that π∗ can be accepted by any verifier
non-interactively, The only caveat in the above reasoning can concern the fact
that S might refuse to produce an accepting proof when x �∈ L. However this
immediately shows that the language L is in BPP.
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Abstract. Distributed ORAM (DORAM) is a multi-server variant of
Oblivious RAM. Originally proposed to lower bandwidth, DORAM has
recently been of great interest due to its applicability to secure computa-
tion in the RAM model, where circuit complexity and rounds of communi-
cation are equally important metrics of efficiency. All prior DORAM con-
structions either involve linear work per server (e.g., Floram) or logarith-
mic rounds of communication between servers (e.g., square root ORAM).
In this work, we construct the first DORAM schemes in the 2-server, semi-
honest setting that simultaneously achieve sublinear server computation
and constant rounds of communication. We provide two constant-round
constructions, one based on square root ORAM that has O(

√
N log N)

local computation and another based on secure computation of a doubly
efficient PIR that achieves local computation of O(N ε) for any ε > 0 but
that allows the servers to distinguish between reads and writes. As a build-
ing block in the latter construction, we provide secure computation proto-
cols for evaluation and interpolation of multivariate polynomials based on
the Fast Fourier Transform, which may be of independent interest.

Keywords: Distributed oblivious RAM · Square root ORAM · Doubly
efficient PIR · Secure multi-party computation · Fast fourier transform

1 Introduction

Oblivious RAM (ORAM) has been a vigorous area of study for the last three
decades since it was introduced by Goldreich and Ostrovsky [17]. ORAM focuses
on a client-server model where the server stores an outsourced database upon
which the client wishes to execute a series of reads and writes. ORAM pro-
vides privacy, hiding the contents of the database, as well obliviousness, hiding
the client’s access patterns. In the traditional client-server model the client is
assumed to be trusted. Recent efforts in the field have focused on lower bounds
[35], optimal bandwidth [2,31], and various different settings [15,32].

Distributed ORAM (DORAM) is a variant of the basic client-server ORAM
model in which there are multiple non-colluding servers. Data is duplicated across
c© International Association for Cryptologic Research 2021
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_18


500 A. Hamlin and M. Varia

the servers and the client interacts with both as part of an access. The client again
remains the only trusted party. It was first introduced by Ostrovsky and Shoup
[30], and later formally defined by Lu and Ostrovsky [26]. Lu and Ostrovsky were
motivated by the desire to circumnavigate existing lower bounds in the single-
server setting for bandwidth overhead, and their construction achieved O(log N)
overhead by leveraging two non-communicating servers. Following their seminal
paper there have been a number of works in the DORAM model that further
reduce bandwidth [1,7], reduce blocksize [25], or achieve practical efficiency [37].

Another advantage of the multi-server model of DORAM is its natural appli-
cation to secure computation over databases in the RAM model. Traditional
secure computation relies on a circuit representation that is at least linear in
the size of the data over which it computes. This is prohibitive for any sublin-
ear computation run on a database, such as binary search. Lu and Ostrovsky
observe in [26] that the application of DORAM in this case is highly advanta-
geous. The parties in the secure computation can simply emulate the DORAM
client for any database access. In particular, they present a generic transforma-
tion from a 2-server DORAM scheme to a 2-party secure computation. It should
be noted that works applying ORAM to secure computation are not limited to
the DORAM setting, but also include adaptations of single server schemes. For
example, there has been significant work on adapting tree-based ORAM schemes
[33,34] for secure computation. All of these DORAM constructions can be used
in general-purpose secure computation like garbled RAM schemes [13,14,16,27],
or in special-purpose protocols like dynamic searchable encryption schemes [21].

There are two main approaches to constructing ORAM for secure computa-
tion: the first is to apply a generic MPC compiler, such as Garbled Circuits, to
a ORAM or DORAM client [18,19,33,34], and the second is to design a client
specifically implemented by the two servers [5,11,23,36]. Even if we start with
an ORAM with our desired asymptotics (i.e. square-root ORAM [17]) applying
a generic MPC compilers results in a server computation cost at least linear in
the database size if we are to maintain constant rounds. There are a number of
works that focus directly on the second model, which offers greater flexibility
since the servers are typically afforded much more storage space than the client.

However, in both approaches, the multi-server setting introduces a new set
of challenges apart from those found in the single-server ORAM setting. Wang
et al. [33] also observe that the traditional efforts to optimize bandwidth over-
head are ineffective in a setting where there are other controlling factors, such as
the size of the circuit representation of the ORAM client. This is the motivation
behind their Circuit ORAM construction, which focuses on optimizing circuit
size. Doerner and shelat [11] also show that in many cases, bandwidth is not the
limiting factor but rather the latency between the two servers. This encouraged
them to build a constant round DORAM for secure computation. Previous con-
structions had relied on recursive structures, which incurred a O(log N) rounds
for each access, a prohibitive cost for latency dominated secure computation set-
tings. Subsequent works in the constant round setting worked on improving on
the O(

√
N) overhead of Floram, achieving O(log3 N) overhead [23], or O(

√
N) in
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a black-box setting [5]. As with the original construction, these subsequent works
require linear local computation for each server. While for small N , latency costs
may still dominate, for sufficiently large N this linear work is prohibitive. This
leaves us with the following question:

Can we construct a 2-server Distributed ORAM for secure computation
that achieves both constant round and sublinear server work?

In this work, we answer the above question in the affirmative.

1.1 Our Contributions

We present the first DORAM constructions in the 2-server, semi-honest secure
computation setting to achieve constant rounds and sublinear local computation
on the servers.

– Our first sublinear DORAM construction achieves constant rounds and amor-
tized local computation and bandwidth cost of O(

√
N log N) per access. It

is based on square-root ORAM and has a modular build, allowing for subse-
quent improvements in the functionalities we rely on to be easily substituted.

– Our second sublinear DORAM construction is based on a secure computation
of Doubly Efficient Private Information Retrieval (DEPIR) where the distinc-
tion between reads and writes is no longer hidden. In this setting, we achieve
constant rounds with local computation and bandwidth of O(N ε · poly(λ))
for any ε > 0.

As an crucial building block toward the second construction, we present a secure
two-party computation protocol for the Fast Fourier Transform (FFT) for mul-
tivariate polynomial evaluation and interpolation in quasilinear time and with
only local computation; this may be of independent interest.

1.2 Technical Overview

In this section, we describe both of our DORAM constructions in more detail.

Sublinear DORAM. We start with describing the original square-root ORAM
(introduced by Goldreich and Ostrovsky [17]) that our construction is based
on. There is a single read-only array of size N , which we call the store, and
a writable stash of

√
N size. Elements in the store are (address, value) pairs;

at initialization, the elements are permuted with a permutation known only to
the client, and all elements are encrypted. To perform a read at a particular
address, the client checks the stash using a linear scan; if not present then it
reads the permuted element from the read-only store, and if present then it is
retrieved from the stash and a random ‘dummy’ element is read from the store
instead. The newly-read element is placed in the stash, in order to maintain the
invariant that each element is read only once from the store. In the case of a
write, a dummy is read from the store and the element is written in the stash.
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After enough queries have been made to fill the stash, a duration that which
we call an epoch, the elements from the stash are reshuffled back into the main
store, with only the newest write at each location being kept.

While the basic square-root ORAM construction achieves constant rounds
with sublinear communication and server computation, it is non-trivial to con-
vert it to a two-party DORAM. There are two major issues incurred by shifting
this to the two party case: (1) representing the permutation over the elements
of the store and (2) merging the elements from the stash back into the store.

We first discuss how to represent the permutation that maps addresses to
physical locations in the store. In [36], which is also based on square root ORAM,
they choose to represent the permutation as a shared array in recursive ORAMs.
This improves computation complexity but leads to O(log N) rounds of commu-
nication. To maintain constant rounds, we must instead find a compact represen-
tation of the permutation. We look for inspiration from the original square-root
scheme. There, they generate a random ‘tag’ for each element in the store using
a random oracle and then sort the elements according to the tag. A lookup then
involves only a random oracle evaluation and a binary search across the sorted
elements. However, because it is a single server scheme, they must use an obliv-
ious sorting network in order to break the correlation between items in different
epochs, which does not run efficiently in constant rounds. We leverage the fact
that we have a two servers to break up the oblivious sort into its two components,
‘oblivious’ + ‘sort’. To prevent the server from mapping items between epochs,
we use a simple constant round functionality to obliviously permute elements
that allows each server to permute the elements in turn. As long as one server
is honest, the data is permuted obliviously. This allows us to generate the tags
using an oblivious pseudorandom function (OPRF), rather than a random ora-
cle, on the newly obliviously permuted elements and then sort the tags locally.
Lookup again is just an OPRF evaluation on the address shares and then a local
binary search on the store.

The second challenge arises during the reshuffling phase of the protocol. In
the original square-root ORAM, elements are simply moved back into their orig-
inal locations (updated elements in the store, dummies back in the stash) by
executing another oblivious shuffle. To solve this in constant rounds, we again
exploit the ability to obliviously permute elements by using our two server archi-
tecture. In order to do that though, we must ensure that the elements that we
are permuting do not contain any duplicates. For example, if a read was exe-
cuted on index i, there would be two copies of element i, one in the stash and
one in the store. To solve this issue, we note that the elements that have been
read in the store is public knowledge to both servers. As long as we maintain
the invariant if an element has been read (or written to), it is in the stash, and
each element only occurs in the stash once, we can simply concatenate elements
in the stash with the unread elements in the store at the end of an epoch. Once
we have concatenated the elements we can obliviously permute them to get our
new store. The stash can then just be filled with new dummy elements.

A more detailed discussion of our construction can be found in Sect. 3.
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DORAM with Unlimited Reads. Thanks to the modularity of our base
scheme, the components are easily extensible. In the second half of this work, we
improve the performance of the read-only data store while keeping the rest of
the construction (the stash, our periodic shuffling technique at the end of each
epoch, etc.) mostly intact.

The separation of our read-only store from a read-and-writable stash suggests
an intriguing tradeoff: if we are willing to leak whether each operation is a read
or a write operation, then it is beneficial to design an efficient read-only store
that supports unlimited reads, and only pay for accessing the stash on (hopefully
infrequent) write operations. This optimization allows us to increase the duration
of each epoch, or in other words to amortize the cost of each shuffle over more
reads. Concretely, in a scenario where the ratio of reads-to-writes is about N -to-
1, then for any constant ε > 0 we can construct a read-only store where whose
amortized cost per query is just Oλ(N ε). Here, the notation Oλ means that we
suppress poly(λ) terms in order to focus on the dependency on the database size.
By reducing the size of the stash to Oλ(N ε), we can support write operations
with this performance as well.

Our strategy to construct a unlimited-reads store might seem counterintuitive
at first: we start from a doubly efficient PIR [4,6] that supports unlimited reads
and convert it into a two-server distributed data store. A doubly efficient private
information retrieval (DEPIR) scheme is a client-server protocol for oblivious
access to a public dataset that only requires sublinear computation for both the
client and server operations and constant rounds of communication between the
two. At first glance, it may seem that a 1-server DEPIR is a strictly stronger
primitive than a 2-server DORAM, so we might expect to construct the latter
generically as a secure computation of the former. However, this intuition isn’t
true because there are three properties that we aim to satisfy with DORAM,
but that (even a doubly efficient) PIR does not:

– Support for writes,
– Hiding the contents of the database, in addition to access patterns, and
– Ensuring that the secure computation is constant rounds when the two parties

collectively emulate the (sublinear but not constant time) client, in addition
to the client-server communication.

The main observation underlying this approach is that the SK-DEPIR proto-
col of Canetti et al. [6] is highly amenable to secure computation as operations
mostly involve linear algebra in a finite field that can be done purely locally,
plus bitstring and set operations that are easy to handle in constant rounds.
SK-DEPIR constructions are based on a locally decodable code (LDC) in the
style of a Reed-Muller code, which encodes a dataset as a multivariate poly-
nomial. As a result, the most challenging part of our multiparty computation
protocol involves securely emulating the client’s procedures to evaluate or inter-
polate a multivariate polynomial at O(N) points. The naive methods for poly-
nomial evaluation (via application of the Vandermonde matrix) or polynomial
interpolation (via the Lagrange interpolation polynomial) involve multiplication
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of a public matrix by a secret-shared vector, which can be done non-interactively
but requires O(N2) computation, which is too slow for our purposes.

Given a binary field F = GF(2�) and a subspace Hm ⊂ F
m, we construct

secure computation protocols for evaluating or interpolating an m-variate poly-
nomial p ∈ F[x1, . . . , xm] on all points in Hm in time that is quasilinear (rather
than quadratic) in |Hm|. This protocol may be of independent interest, and in
our protocol it is needed to achieve our goal of sublinear computation for the
overall DORAM scheme. We construct this secure computation scheme in two
stages: first we construct a secure computation protocol for the Additive Fast
Fourier Transform protocol of Gao and Mateer [12] for univariate polynomials
over a binary field, and then we bootstrap this protocol to handle multivariate
polynomials by using recursion on the number of variables in the polynomial as
previously shown by Kedlaya and Umans [24]. All operations in this protocol
reduce to linear combinations of secret variables, so the entire computation can
be done locally by each party on their own boolean secret shares without the
need for any communication.

1.3 Related Work

We focus on schemes that are directly designed for secure computation. A direct
comparison of their local computation, bandwidth, and number of rounds can be
seen in Table 1. The construction of Zahur et al. [36] is very similar to our basic
construction, but instead of implementing the permutation by OPRF evalua-
tion, they use Waksman networks and a recursive position map. This allows for
sublinear server work but that the cost of non-constant rounds. Doerner et al.
[11] uses function secret sharing to obtain a scheme with very good practical effi-
ciency, but their need for linear server work limits scalability to large database
lengths N . Gordon et al. [19] is in the more general DORAM model but uses
PIR over tree-based ORAM. They are able to obtain O(log N) bandwidth but
as with Doerner et al. they require linear local computation. Jarecki et al. focus
on decreasing the round complexity and bandwidth of SC-DORAMs while still
maintaining sublinear server computation. They are able to get the best com-
bined set of parameters, but are still not able to achieve constant rounds of
communication. Finally, Bunn et al. [5] achieve a 3-server DORAM scheme that
achieves constant rounds and sublinear bandwidth, while providing a black-box
construction. However, as with [11,19] they require linear server work.

2 Preliminaries

In this section, we provide several definitions and constructions of existing cryp-
tographic primitives that we leverage in this work. We begin with a brief sum-
mary of our notation.

Given a bitstring x ∈ {0, 1}�, a 2-of-2 boolean secret sharing 〈x〉 denotes the
uniformly selection of two bitstrings x1 for party 1 and x2 for party 2 subject to
the constraint that their boolean-xor x1⊕x2 = x. A binary field F = GF(2�) is a
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Table 1. Comparison of access in DORAM schemes for Secure Computation. Asterisks
indicate schemes where the stash size is assumed to be O(log N) and O(N ε), respec-
tively, and the distinction between read and write is not hidden.

No. Servers Local Comp. Bandwidth Rounds

Zahur et al. [36] 2 O
(√

N log3 N
)

O
(√

N log3 N
)

O(logN)

Floram [11] 2 O(N) O(
√
N) O(1)

Florom* [11] 2 O(N) O(logN) O(1)

Gordon et al. [19] 2 O(N) O(logN) O(1)

Jarecki et al. [23] 3 O(log3 N) O(log3 N) O(logN)

Bunn et al. [5] 3 O(N) O(
√
N) O(1)

Sublinear DORAM 2 O(
√
N logN) O(

√
N logN) O(1)

Unlimited Reads DORAM* 2 Oλ(N
ε) Oλ(N

ε) O(1)

finite field of characteristic 2; there is a canonical bijection F ↔ {0, 1}� such that
field addition corresponds to boolean-xor. Hence, we overload the notation 〈f〉
so that it applies to field elements f ∈ F. This secret sharing scheme commutes
with linear algebra in the field, i.e., 〈cf + c′f ′〉 = c〈f〉 + c′〈f ′〉 can be computed
locally by each server from public constants c, c′ ∈ F. and secret shares 〈f〉, 〈f ′〉.

We use the convention of 0-indexing, with [N ] = {0, 1, . . . , N −1} as contain-
ing all whole numbers less than N . Additionally, S × S′ denotes the Cartesian
product of two sets. Bold letters v denote vectors, subscripts vi indicate the
ith element of a vector, and (wi)i∈[N ] constructs a vector from an ordered list
of items w0, w1, . . . , wN−1. The notation ‖ denotes concatenation of bitstrings,
sets, or vectors into a single object of longer length containing the (ordered)
union of all elements.

The notation x ← D indicates taking a sample from a probability distri-
bution D. By abuse of notation, x ← S indicates sampling from the uniform
distribution over set S; we sometimes use x

$← S for emphasis. We use ≈ to
indicate computational indistinguishability of two distributions; that is, D ≈ D′

if no probabilistic polynomial time adversary A has a noticeable difference in
output when given a sample from D or D′.

2.1 Distributed Memory

First introduced by Bunn et al. [5], the ideal functionality Fmem in Fig. 1 cap-
tures the behavior achieved by a DORAM. The database is initialized on secret
shares of the database, and subsequent accesses are also secret shared, as is their
resulting output. This version of the definition deviates from the original in that
the Init functionality returns shares of the database, and the access protocol
takes in those same shares. This syntactic difference is included only to make
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1. On input of (Init, D̃B), set DB = D̃B, return random additive shares of DBs

to party s.
2. On input additive shares of (op, elem, DB) from two parties do:

(a) if op = read then set o = DB[addr]
(b) if op = write then set o = DB[addr] and DB[addr] = val
(c) Let o1, o2 be random, additive shares of o, and DBs be random additive

shares of DB. Return (os, DBs) to party s.

Fig. 1. Functionality Fmem

our own proofs cleaner and does not fundamentally change the definition. While
Bunn et al. provide a viable 3-server construction that meets this ideal func-
tionality and provides the necessary performance; we leverage the construction
of Doerner et al. [11] that requires only 2-servers. From their construction, we
obtain Lemma 1.

Lemma 1. There exists a protocol ΠDORAM that implements the functionality
Fmem with the following complexity:

– Access of op = read or op = write results in O(1) rounds of communication,
O(n) local server computation, and O(

√
n) communication bandwidth.

– Initializing the functionality results in O(1) rounds of communication, O(n)
local server computation, and O(n) communication bandwidth.

2.2 Distributed Oblivious Pseudo-random Function

Distributed Oblivious Pseudo-random Function (DOPRF) achieves a distributed
evaluation of a PRF between two parties. Typically one party hold the key, and
the other the input, and only the second party learns the output. We require a
variation of this ideal functionality, presented in Fig. 2, in which both the key
and the input are additively secret shared between two the two parties and both
parties receive the output of the evaluation.

We introduce a construction in Fig. 3 which meets our new ideal functionality
that is effectively the semi-honest version of the DOPRF of Miao et al. [28],
which itself is based on the work of Jarecki and Liu [22]. With only a small
modification that allows the input and key to be secret-shared between the
two servers. The construction leverages the Dodis-Yampolskiy pseudorandom
function F (k, x) = g1/(k+x) [10], and it is secure under the q-Diffie Hellman
inversion (q-DHI) assumption using a similar argument as in [28].

2.3 Constant-Round Equality Check

The functionality introduced in Fig. 4 allows for two parties to check if the ele-
ment for which they both hold shares is present in a database for which they also



DORAM with Sublinear Computation and Constant Rounds 507

The functionality is assumed to be initialized with PRF f .

1. Upon receiving (x1, k1) from party 1 and (x2, k2) from party 2, compute
σ = fk1+k2(x1 + x2) .

2. Returns σ to both party 1 and 2

Fig. 2. Functionality FDOPRF

Server 1 input: x1, k1 Common: G, q = |G|, g ← G Server 2 input: x2, k2

choose key pair (sk, pk) pk, C = ENCpk(k1 + x1) choose a ← [q], b ← [q2λ]

let α = a(k2 + x2) + bq

decrypt β = DECsk(C∗) C∗, h = ga

let C∗ = ENCpk(α) · Ca

let γ = β−1 mod q

= a(k + x)

output σ = hγ σ output σ

Fig. 3. DOPRF Protocol, using ElGamal encryption (ENC,DEC)

hold shares. In particular it returns shares of a boolean b indicating the pres-
ence of a match, and if so the shares of that address. The database follows the
invariant that there is only a single match within the database for the element.
Both Damgard et al. and Nishide et al. [9,29] construct solutions that achieve
the computation1 with constant rounds.

2.4 Doubly Efficient Private Information Retrieval

First introduced by Canetti et al. and Boyle et al. [4,6], Doubly Efficent Pri-
vate Information Retrieval (DEPIR) is a variant of PIR achieving sub-linear
server work by allowing pre-processing of the database. The major building
block DEPIR is locally decodably codes (LDCs). Specifically, an application
of Reed-Muller Codes, which allows for smooth LDCs.

Definition 1 (Smooth LDC). A s-smooth, k-query locally decodable code
with message length N , codeword size M , with alphabet Σ is denoted
by (s, k,N,M)Σ-smooth LDC and consists of a tuple of PPT algorithms
(Enc,Query,Dec) with the following syntax:

1 The exact functionality including the indicator bit is not included in their construc-
tions, but they can be easily be extended with an additional round of a conditional
computations.
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1. Upon receiving additive shares of x ∈ {0, 1}B and DB ∈ {0, 1}B
)N from

both parties 1 and 2, computes DBeq = {xi
?= x | xi ∈ DB}.

2. Let b =
∨

xi∈DBeq
xi indicate if there was a match. If b is non-zero, let addrs

be random, additive shares of addr such that DBeq[addr] = 1 otherwise, let
addrs be random shares of zero. Return (bs, addrs) to party s.

Fig. 4. Functionality FEQ−DB

– Enc takes a message m ∈ ΣN and outputs a codeword c ∈ ΣM

– Query takes a index i ∈ [N ] and outputs a vector x = (x1, . . . , xk) ∈ [M ]N

– Dec takes in vector codeword symbols c = (cx1 , . . . , cxk
) ∈ ΣN and outputs a

symbol y ∈ Σ

And has the following properties:

– Local Decodability: For all messages m ∈ ΣL and every index i ∈ [N ]:

Pr[Dec(Enc(m)x) = mi : x ← Query(i)] = 1

– Smoothness: For all indices i ∈ [N ], a LDC is s-smooth if when sampling
(x1, . . . , xk) ← Query(i), (x1, . . . , xk) is uniformly distributed on [N ]s for
every distinct subset of size s.

We now formally introduce DEPIR, in particular the secret key variant, called
SK-DEPIR. Constructions rely on the hidden permutation with noise (HPN)
assumption introduced by [6].2 While it is a new assumption, the validity of the
class of permuted puzzles assumptions has been explored by Boyle et al. [3].

Assumption 1 (Hidden permutation with noise). Let m < t < r < u <
|F| be functions of λ and N such that |F|m = poly(λ) and |F|t = λω(1). Define the
distribution D(π, addr, T ) that executes the Query protocol of Π̃store in the clear
(without secret shares) to retrieve a set of vectors Ỹ = (ỹi)i∈[u] and then outputs
Z = (π(ỹi))i∈[u], when given a randomly-chosen permutation π : F

m � F
m,

integer addr ∈ N , and set T ⊂ [u] as input. The hidden permutation with
noise assumption states that the distribution D(π, addr, T ) is computationally
indistinguishable from the uniform distribution over (Fm)u.

Definition 2 (Doubly Efficient PIR). A Doubly Efficient PIR (DEPIR) for
alphabet Σ consists of a tuple of PPT algorithms (KeyGen,Process,Query,Resp,
Dec) with the following syntax:

2 A concurrent work by Boyle et al. [4] relies on an equivalent assumption called
Oblivious LDC.
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– KeyGen takes the security parameter 1λ and outputs the key k
– Process takes a key k, database DB ∈ ΣN and outputs processed database D̃B
– Query takes a key k, database index i ∈ [N ] and outputs a query q and tem-

porary state State
– Resp takes a query q, processed database D̃B and outputs a server response c
– Dec takes a key k, server response c, temporary state State and outputs a

database symbol y ∈ Σ

And has the following properties:

– Correctness: For all DB ∈ ΣN and i ∈ [N ]:

Pr

⎡
⎢⎢⎢⎣Dec(k,State, c) = DBi :

k ← KeyGen
(
1λ

)
D̃B ← Process (k,DB)

(q,State) ← Query (k, i)
c ← Resp

(
D̃B, q

)

⎤
⎥⎥⎥⎦ = 1

– Double Efficiency: The runtime of KeyGen is poly (λ), the runtime of
Process is poly (N,λ), and the runtime of Query,Dec is o (N) ·poly (λ), where
N is the database size.

– Security: Any non-uniform PPT adversary A has only negl (λ) advantage
in the following security game with a challenger C:
1. A sends to C a database DB ∈ ΣN .
2. C picks a random bit b ← {0, 1}, and runs k ← KeyGen

(
1λ

)
to obtain a

key k, and then runs D̃B ← Process (k,DB) to obtain a processed database
D̃B, which it sends to A.

3. A selects two addresses i0, i1 ∈ [N ], and sends (i0, i1) to C.
4. C samples (q,State) ← Query(k, ib), and sends 1 to A.
5. Steps 3. and 4. are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b′, and his advantage in the game is defined to be Pr[b =

b′] − 1
2 .

As shown in [4,6] we can achieve SK-DEPIR with sublinear or poly-log
parameters. We will describe one such construction in Sect. 4.

Lemma 2. There exists SK-DEPIR schemes with the following parameters,
where N is the database size and λ is the security parameter:

– Sublinear SK-DEPIR: For any ε > 0, the running time of Process can be
N1+ε · poly(λ), and the running time of Query and Dec can be N ε · poly(λ).

– Polylog SK-DEPIR: The running time of Process can be poly(λ,N), and
the running time of Query and Dec can be poly(λ, log N).

3 DORAM with Sublinear Computation

In this section we present our construction of Fmem that achieves sublinear server
work and communication with constant rounds.
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3.1 Construction

In this section, we describe how we bootstrap from a linear-work Fmem to a
new protocol ΠDORAM that also instantiates Fmem but with sublinear work
and constant rounds, as desired. The overall architecture of the scheme can be
found in Fig. 5. We describe below our implementations of the store and stash.

We implement the stash as an another two-party DORAM (matching the
Fmem functionality). We require a 2-party scheme with constant rounds, this
can be instantiated by FLORAM [11] or Gordon et al. [19]. While they have
linear server work for each access, because our stash is t =

√
N records in size,

this still results in sublinear server work within our protocol.
We implement the store in Fig. 9 as a permuted array of elements sorted by

PRF evaluation on the address of the element. Neither server knows the underly-
ing permutation because it is created using our oblivious permutation protocol
shown in Fig. 8. We perform an FDOPRF evaluation across the shares of the
addresses, which allows us to look up records in constant rounds by computing
the OPRF based on the address of the element being searched for, and then each
party performs a local binary search on their own store to find the shares of the
element.

At the start of an epoch, the stash contains all the dummy elements and
the store contains all the elements of the database concatenated with t dummy
elements. The elements in the store are all permuted and indexed as above.
Note that we consider dummy to be addressed from 1 to t, so valid elements are
indexed started at t. We also have (in the clear) a counter, starting at 1. The
access logic is encapsulated within our access protocol in Fig. 7 and proceeds
as follows. When we want to do a read, we check if the element is in the stash
by calling FEQ−DB, which returns a secret shared boolean b indicating if the
element is present, as well as the shares of the address to each party if it is
present. We then use b as a selector bit in a shared conditional computation to
see if we read the element (if the element is present in the stash) or the next
dummy element (addressed at the counter) in the stash. Then we read an element
from the store, using Fstore, again based on the selector bit. If the element is in
the stash, we read the next dummy element at address counter, if it is not in
the stash, we read the element itself. Finally, we write an element back to the
stash, using Fmem, either the dummy element we read (which is just overwriting
the same element) if the element was in the stash, or the element read from
the stash. The element is written back at the ‘counter’ location in the stash.
The protocol then returns random additive shares of the element being read. If
the operation is instead was a write the only variation in the above process is
in the final step writing elements back to the stash, rather that writing to the
‘counter’ location automatically, if the element was previously in the stash, it is
overwritten at that location.

At the end of an epoch (when the counter reaches t), the overarching
ΠDORAM invokes Πshuffle in Fig. 10, which resets the state as mentioned above.
In the original square-root ORAM scheme, removing duplicates required a costly
oblivious sort operation, which is not constant round. By contrast, we achieve
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ΠDORAM

Faccess Fshuffle

FEQ−DB Fmem Fstore Fpermute

FDOPRF

Fig. 5. The overall architecture of the ideal functionalities used in the ΠDORAM con-
struction.

a constant-round reshuffling algorithm by leveraging the following invariant of
Faccess: if an element has been read (or written to) it is in the stash, and each
element only occurs in the stash once. This invariant allows us to simply note
which elements in the store have been read during the epoch and eliminate
them, knowing that their most recent copy is represented in the stash. This
claim applies to dummy elements as well: during the shuffle operation, we only
need to insert new dummy elements to replace those that have been overwrit-
ten in the stash by real writes. Once the unread elements and the current stash
have been permuted obliviously by Fpermute, the stash is reinitialized with the
dummy values and counter is reset to 1. We also note that we leverage Fshuffle

when we first initialize the DORAM. We call Fshuffle on the original shares of
the secret shared database, concatenated with the necessary dummy elements.
The set of read elements is empty as is the stash, resulting in a permutation of
the original database and dummies after Fpermute is called.

Our oblivious permutation protocol in Fig. 8 does two things: it rerandom-
izes the shares held by each server and applies the same random permutation
to each server’s shares. Beginning with a vector of secret shares 〈M〉, server 2
begins Πpermute by encrypting her own shares M2 using an additively homo-
morphic encryption scheme and sending the result to server 1. Next, server 1
applies the same randomly-chosen permutation to her own shares M1 as well as
the ciphertexts from server 2, and she then rerandomizes each pair of shares by
adding a random value to her own share and subtracting the same value (homo-
morphically) from server 2’s share. She sends encrypted versions of both shares to
server 2, who performs the same permute-and-rerandomize operation and sends
the result to server 1 to complete the constant-round oblivious permutation.
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On (Init, 〈DB〉):

1. Server 1 computes V = {(i, 0) | i ∈ [t]}
2. Each server calls Fshuffle on (shuffle, I, State)) where I = {} and State =

{DB || V, 0, {}}. Server s receives (Ss, Ms, ks) as output.
3. Let ctr = 1 and I = {}. For Server s its current state is States =

(ctr, Ms, Ss, ks), returns States

On additive shares of (op, elem, State):

1. If ctr = t, call Fshuffle on (shuffle, I, State) and update state for Server s with
(S′s, M′s, k′s). Set ctr = 1 and I = {}.

2. Call Faccess on additive shares (opi, elemi, State), recovering
(iM, 〈elem〉, 〈State〉) and update state for Server s with S′s. Set I = I ∪ iM and
ctr = ctr + 1

3. Return (elems, States) to Server s.

Fig. 6. ΠDORAM Protocol

3.2 Complexity Analysis

Now consider the asymptotic complexity of our scheme. We first evaluate the
complexity of the underlying protocols, and then compute the amortized com-
plexity of the overall ΠDORAM protocol. The overall complexity when t =

√
N

is shown in Table 2.

– Πpermute: Each server must perform O(N + t) encryption, decryption and
other local operations. The entire encrypted store is sent, again resulting in
O(N + t) bandwidth. The protocol runs in 3 rounds, or O(1).

– Πstore: Here we consider two separate costs, one for initialization, and one
for performing an access. During initialization, local computation is domi-
nated by the sorting across the OPRF outputs, O ((N + t) log(N + t)), and
bandwidth by the OPRF computation itself, O(N + t). We obtain constant
rounds in initialization by executing all of the OPRF evaluations in par-
allel. On access, local computation is dominated by searching for the tag,
O(log(N + t)), and the only round of interaction and bandwidth is the OPRF
evaluation.

– Πaccess: Finding the element in the stash only takes local computation and
bandwidth linear in the stash size and constant rounds. The two other oper-
ations of cost are accessing stash and the store, each of which take O(t) and
O(log(N +t)) local computation and O(

√
t) and O(1) bandwidth respectively.

This leaves access dominated by finding the element in the stash, O(t) local
computation and bandwidth3.

– Πshuffle: Shuffle is dominated by the initialization of the store, inheriting the
performance and bandwidth complexity directly from Πstore.

3 For any value of t < log(N + t) then the cost of Πstore controls, but in our setting
we consider a t greater than that.
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1. On additive shares of (op, elemin, State), let elemin = (addrin, valin) and State =
(ctr, Ms, ks, Ss), where S is an array of elem.

2. Find element in stash or read next dummy address:
(a) Compute additive shares of index i by calling FEQ−DB in Figure 4 on

additive shares of (addrin, S), receiving random additive shares (b, i) as
output.

(b) Jointly compute random additive shares of iS such that:

iS =

{
i b = 1, element in stash.
ctr b = 0, element not in stash.

(c) Then recover elemS by calling Fmem on secret shares of (read, (iS, 0), S).
3. Look up either the next dummy element or the original element in the store:

(a) Jointly compute random additive shares of addrM:

addrM =

{
ctr b = 1, element in stash.
addrin b = 0, element not in stash.

(b) Call Fstore on the additive shares of (read, addrM, M, ks), recovering
(iM, 〈elemM〉).

4. Write the read elemM or input elemin back to stash:
(a) If op = read, jointly compute random additive shares of:

(iW, elemW, elem) =

{
(ctr, elemM, elemS) b = 1, element in stash.
(ctr, elemM, elemM) b = 0, element not in stash.

(b) If op = write, jointly compute random additive shares of:

(iW, elemW, elem) =

{
(iS, elemin, elemin) b = 1, element in stash.
(ctr, elemin, elemin) b = 0, element not in stash.

(c) Call Fmem on additive shares of (write, (iW, elemW), S)a.
5. Server s returns (iM, 〈elem〉, 〈State〉).
a Any functionality that returns an updated share of S or M is assumed to update

the held state State, but is elided for notational simplicity.

Fig. 7. Πaccess Protocol

We now consider the amortized complexity of the overall local computation of
ΠDORAM during access. We consider the cost of shuffling averaged over an epoch
of t accesses. The cost of accessing a single block, represented by Πaccess, is O(t).
The cost of shuffle is O((N + t) log(N + t)). We can consider the total cost of
local computation during an epoch as:

DLC(N, t) = t(t) + (N + t) log(N + t)
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On input (permute, 〈M〉):

1. Each server runs pks, sks ← KeyGen(1λ) and sends pks to the other server.
2. For s ∈ {1, 2}, and s′ = 3 − s

(a) Server s′ encrypts their additive shares of the values Cs′
=

{ENCpk
s′ (elem

s′
i ) | elems′

i ∈ Ms′ } and sends Cs′
to Server s.

(b) Server s chooses vector of random values {ri ∈ {0, 1}B}i∈[N], and a random permu-
tation π and updates locally {elems

π(i)+rs
i | elems

i ∈ Ms}. It then computes permutes

and re-randomizes s′ encrypted shares: Cs′
r = {cs′

π(i)s ·ENC
pks′ (−rs

i ) | cs′
i ∈ Cs′ } and

sends Cs′
r to Server s′

(c) Server s′ decrypts Cs′
r to get Ms′

= {elems′
π(i) − rs

i | i ∈ [N ]}.
3. Return (M′s) to Server s.

Fig. 8. Πpermute Protocol

On input (Init, 〈M〉):

1. Choose the new random PRF keys for k1 and k2.
2. Server 1 and 2 call on FDOP RF on inputs (k1, addr1i ) and (k2, addr2i ) respectively for all

(addri, vali) ∈ M in parallel. Let σi = fk1+k2 (addr1i + addr2i ), and Σ = {σi | i ∈ [N ]}. Both
servers sort M′s = {σi, elemi}i∈[N] in lexicographic order by σ.

3. Return (Σ, M′s, ks)

On input (read, 〈addri〉, 〈k〉, 〈M〉):

1. Server 1 and Server 2 engage in FDOP RF on inputs (k1, addr1i ) and (k2, addr2i ) respectively.
Both servers obtain the output ˜addr = fk1+k2 (addr1i + addr2i )

2. Each Server s performs a local binary search in Ms for ˜addr and recover its index i and
additive shares of the element elemi. Each server returns (i, elems

i ).

Fig. 9. Πstore Protocol

On input (shuffle, State, I):

1. Let State = (Ms, ks, Ss).
2. Let Ms

r be all unread elements in M1 and M2, i.e. Mr /∈ I. Set Rs = Ms
r || Ss.

3. Let V = {(i, 0) | i ∈ [t]} each server calls Fmem on additive shared input (Init, V). Server
s receives Ss as output.

4. Servers 1 and 2 call Fpermute on (permute, 〈R〉). Server s receives (M′s) as output, which
in turn it calls Fstore on (Init, M′s) and receives (Ms, ks) as output.

5. Server s returns (Ss, Ms, ks).

Fig. 10. ΠShuffle Protocol

Averaging over t-accesses we get:

DLC(N, t) = t +
N

t
log(N + t) + log(N + t)

If we set t =
√

N we get DLC(n) = O(
√

N log N). For bandwidth, we do a
similar computation and get DB(n) = O(

√
N log N).
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Table 2. A evaluation of each of the protocol’s server computation, bandwidth and
rounds of communication where t =

√
N . Note that the numbers for Πmem are taken

from Lemma 1 and ΠDORAM has been amortized where appropriate.

Local Computation Bandwidth Rounds

ΠDORAM (Init) O(N log N) O(N log N) O(1)

ΠDORAM (op) O(
√

N log N) O(
√

N log N) O(1)

Πaccess O(
√

N) O(
√

N) O(1)

Πshuffle O(N log N) O(N log N) O(1)

Πmem(Init) O(
√

N) O(
√

N) O(1)

Πmem(read) O(
√

N) O( 4
√

N) O(1)

Πstore(Init) O(N log N) O(N) O(1)

Πstore(read) O(log N) O(1) O(1)

Πpermute O(N) O(N) O(1)

3.3 Security

In this section we provide the overall security statement and ideal functionalities.
We refer the reader to the full paper [20] for the proof.

Notation and Valid Inputs. We define a set of notations and valid inputs
for our various protocols used in the following proofs. We assume op ∈ {0, 1}
where op = 0 represents a read operation and op = 1 is write. Valid elements
are a tuple of an address and a value where addr ∈ [N ] and val ∈ {0, 1}B . The
input database DB is made up of N valid elements. The store M is represented
as key-value store, where the keys are the output of PRF f with key k and the
values consist of valid elements. The stash S is an array of t valid elements. We
define the set of valid inputs for an DORAM of N elements of block size B and
t dummies as DomN,B,t.

Theorem 1. ΠDORAM (Fig. 6) implements functionality Fmem and for each
party there exists a PPT simulator for each Server s ∈ {1, 2} SimD. such that:

〈
inputA, outputΠD. , viewΠD.

A
〉
input∈DomN,B,t

≈
〈inputA,Fmem (input) ,Sims

D. (inputA,Fmem (input)A)〉input∈DomN,B,t

where input = {(Init,DB), (opi, elemi, ctr,M,S, k)}, and output = {(ctr,M,S, k),
(elem, ctr,M,S, k)}.
Proof (Theorem 1). See full paper [20] for proof.
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On additive shares of (op, elemin, State) where State = (ctr, M, k, S) and elemin =
(addrin, valin) set iS, addrM, iW, elemW and elem during the protocol according to the
below table (as defined by op and if addr∈ is found in the stash):

op addrin ∈ S iR addrM iW elemW elem

read yes addrin ctr ctr elemM elemS

read no ctr addrin ctr elemM elemM

write yes addrin ctr addrin elemin elemin

write no ctr addrin ctr elemin elemin

1. Recover elemS by calling Fmem on secret shares of (read, (iR, 0), S).
2. Call Fstore on the additive shares of (read, addrM, M, ks), recovering

(iM, 〈elemM〉).
3. Call Fmem on additive shares of (write, (iW, elemW), S)a.
4. Return (iM, 〈elem〉, 〈State〉)
a Any functionality that returns an updated share of S or M is assumed to update

the held state State, but is elided for notational simplicity.

Fig. 11. Functionality Faccess

On input of (permute, 〈M̃〉):
1. Choose random permutation π and set M = {M̃π(i) | i ∈ [N ]}.
2. Let Ms be a random additive share of M, and return Ms to Server s.

Fig. 12. Functionality Fpermute

1. On input of (Init, 〈M〉): Choose PRF key k and for all elemi ∈ M compute
σi = fk(addri) and let Σ = {σi | i ∈ [N ]}. Set M = {(σi, elemi) | elemi ∈ M}
and sort M in lexicographic order by σ. Let elems

i and ks be random additive
shares of elemi and k respectively, and Ms = {(σi, elems

i ) | elemi ∈ M}. Return
(Σ, Ms, ks) to Server s.

2. On input additive shares of (read, addri, k, M) from two parties return additive
shares of M[iM] where σiM = fk(addri) and iM to each server.

Fig. 13. Functionality Fstore
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On input (shuffle, State, I):

1. Let State = (M, k, S).
2. Let Mr be all unread elements in M, i.e. Mr /∈ I. Set R = Mr || S.
3. Let V = {(i, 0) | i ∈ [t]} and call Fmem on additive shared input (Init, V),

receiving S′ as output.
4. Call Fpermute on (permute, 〈R〉) receiving M′ as output, which in turn is passed

into Fstore as (Init, M′). Finally, (M′′, k′) is received as output.
5. Server s returns random additive shares (S′s, M′′s, k′s).

Fig. 14. Functionality Fshuffle

4 Sublinear DORAM with Unlimited Reads

In this section, we introduce an alternative DORAM construction Π̃DORAM that
also implements the Fmem functionality with constant rounds, sublinear server
work, and sublinear communication. This protocol differs from the construction
in Sect. 3 in that it does not attempt to hide whether a query is a read or write
operation, and in exchange it achieves better performance.

The construction in this section only needs to invoke the shuffle functionality
Fshuffle after t write operations, independent of the number of read operations.
In scenarios where writes are infrequent, the amortized cost per read can have
a small Oλ(N ε) dependency on the database size N for any constant ε > 0.
To build the new DORAM protocol Π̃DORAM, we start from a SK-DEPIR that
supports unlimited reads while hiding access patterns, and we emulate the server
using secure 2-party computation (which hides the database contents as well).

We first describe how we instantiate the new version of store that relies on SK-
DEPIR in Sect. 4.1, then show how to use the new Fstore in the larger Π̃DORAM

protocol in Sect. 4.2. Finally we show how to construct secure compuation of
multivariate polynomial evaluation and interpolation using FFT in Sect. 4.3.

4.1 Instantiating Fstore Using Secure Computation of SK-DEPIR

In this section, we show that a secure 2-party computation (2PC) of the Canetti
et al. construction leads to an instantiation Π̃store of the Fstore functionality.
The construction we present in this section achieves sublinear communication
with a constant number of rounds and quasilinear server work. To do so, we first
construct a 2PC protocol for a locally decodable code, and then we construct
Π̃store as a 2PC of a secret key doubly efficient private information retrieval
(SK-DEPIR) protocol based on an LDC.

We focus on a block size B = �, so that each block can canonically be encoded
as a field element in F = GF(2�). Put another way, all references to the database
size N are enumerated in terms of the number of blocks, but if one desires a
lower block length like B = 1 then N should instead be interpreted in terms of
the number of bits of the database.
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Given a binary field F, a subspace H ⊂ F, and an integer m, let N = |H|m and
M = |F|m. Let (xi)i∈[r] be arbitrary, distinct non-zero constants. Finally, define
the bijections ι : [N ] → Hm and δ : B → F via lexicographic ordering.

On input (Enc, 〈D〉) for database D ∈ BN :

1. For all i ∈ [N ], compute shares of ci = ι(i) ∈ Hm and di = δ(D[i]) ∈ F.
2. Securely interpolate polynomial ψ : Fm → F of degree t from {(ci, di)}i∈[N ].
3. Securely evaluate E = (v, ψ(v))v∈Fm , the truth table of ψ on F

m. Output 〈E〉.
On input (Query, 〈q〉) for an index q ∈ [N ]:

1. Randomly choose a degree-t polynomial φ : F → F
m such that φ(0) = ι(q).

2. Securely evaluate yi = φ(xi) for all i ∈ [r], and output shares (〈yi〉)i∈[r].

On input (Dec, (〈ai〉)i∈[r]):

1. Securely interpolate polynomial φ̃ : F → F of degree r − 1 with φ̃(xi) = ai ∀i.
2. Output shares 〈δ−1(φ̃(0))〉 of the block corresponding to field element φ(0).

Fig. 15. Π̃ldc protocol for secure 2-party computation of a Reed-Muller-style LDC

2PC for a Locally Decodable Code. First, we construct a secure 2-party
computation protocol Π̃ldc of the locally decodable code used by Canetti et al.
[6], which is a Reed-Muller-based polynomial code. We depict our construction
in Fig. 15, in which the two parties maintain boolean secret shares of all input,
intermediate, and output data from the LDC of Canetti et al.

Our 2PC protocol Π̃ldc operates over a binary field F = F2[z]/(ρ(z)) of size
|F| = 2� defined using an irreducible polynomial ρ of degree �. Elements of F can
be represented using bitstrings of length � in the canonical way, such that the
addition of two elements corresponds to the boolean-xor of their bitstring values.
Furthermore, we consider H ⊂ F to be the subspace of F of size |H| = 2h con-
taining the span of basis elements H = {zh−1, zh−2, . . . , z, 1}; this corresponds
to bitstrings that have � − h leading 0s. Also, protocol Π̃ldc performs operations
in the vector spaces Hm and F

m of sizes N = |H|m and M = |F|m, respectively.
We claim that this protocol can be securely evaluated efficiently and non-

interactively. Throughout this section, we only consider boolean secret shares
〈·〉, so that field addition and scalar multiplication can be performed locally by
each server, without interaction. Hence, our claim amounts to the statement
that all operations in Π̃ldc involve only linear algebra in the field along with
concatenation/truncation of bitstrings, because all of these operations commute
with boolean-xor.

Theorem 2. Let m < t < r < N < M be parameters of a Reed-Muller locally
decodable code such that N and M are powers of 2. Then, protocol Π̃ldc in
Fig. 15 is a secure two-party computation of an LDC with local decodability and
smoothness. Furthermore, Π̃ldc requires no interaction between parties, and its
computation cost is O(M log2(M)) for Enc and O(r2) for Query and Dec.
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On input (Init, 〈M〉), run the following steps of the SK-DEPIR:

1. KeyGen: Randomly choose a subset T ⊂ [u] of size r.
2. Process: Run Π̃ldc on input (Enc, 〈M〉) to obtain shares of encoded database

〈E〉. Run u instances of Πpermute on 〈E〉 to form permuted {〈Ei〉}i∈[u]. Run
Πstore on input (Init, ∪i∈[u],j∈[M ](i ‖ j, 〈Ei[j]〉) to obtain (Σ, 〈M〉, 〈k〉).

3. Output (Σ, 〈M〉 ∪ 〈T 〉, 〈k〉), the state from KeyGen and Process.

On input (read, 〈addr〉, 〈k〉, 〈M〉 ∪ 〈T 〉), run the following steps of the SK-DEPIR:

1. Query: Run Π̃ldc on input (Query, 〈addr〉) to obtain shares of r elements Y =
((〈yi〉)i∈[r]. Construct a longer vector Ỹ = (〈ỹi〉)i∈[u] such that Ỹ |T = Y and
the remaining elements {ỹi | i ∈ [u] \ T} are chosen uniformly at random.

2. Resp: For i ∈ [u], run Πstore on (read, (i ‖ 〈ỹi〉), 〈k〉, 〈M〉). Construct a list
L = (〈elemi〉)i∈[u] of the shares of elements returned in response.

3. Dec: Truncate the list 〈L|T 〉 to responses of queries in Y . Run Π̃ldc on input
(Dec, 〈L|T 〉) to obtain shares of a field element 〈val〉. Output (〈addr〉, 〈val〉).

Fig. 16. Π̃store protocol, based on secure 2PC of the SK-DEPIR scheme of Canetti
et al., given any integers m < t < r < u < N < M satisfying the HPN assumption.

Proof. Our 2PC protocol Π̃ldc contains methods for the servers to securely com-
pute each of the 3 methods of an LDC on boolean secret-shared data. Ergo,
the local decodability and smoothness of Π̃ldc follow immediately from the same
properties of its non-secure-computation counterpart [6].

There are four types of operations used throughout Π̃ldc, and we show below
how to compute all of them non-interactively. The first two operations are used
in Enc, and the last two in Query and Dec.

– Computing the lexicographic maps δ and ι: δ is the identity operation on
bitstrings, and thanks to the specific basis we chose for H, computing ι(i)
merely involves partitioning the bits of i ∈ [N ] into m strings of length h,
padding with 0s in the � − h leftmost bits. These string operations can can
be performed independently in O(N) time on each boolean secret share of i.

– Interpolation and evaluation of multivariate polynomial ψ: this task is chal-
lenging; we show in Sect. 4.3 a non-interactive secure 2-party protocol that
performs these operations across all of Fm in time O(M log2(M)).

– Random sampling of multivariate polynomial φ: the parties already hold
shares of the constant term φ0 = φ(0), and they can randomly choose all
other t coefficients in O(t) time.

– Evaluation of φ at r points and interpolation of φ̃ from r points: since the
evaluation points (xi)i∈[r] are publicly known, the coefficients for polynomial
evaluation and Lagrange interpolation can also be publicly (pre-)computed.
Ergo, evaluating or interpolating a polynomial of degree ≤ r only involves
linear algebra and takes O(r2) time.

Constructing Π̃store as a Secure Computation of SK-DEPIR. Next, we
construct a new protocol Π̃store that also instantiates Fstore . It is a secure
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two-party computation of the client-server SK-DEPIR protocol of Canetti et
al. [6] in which the two parties jointly emulate the server. In Fig. 16, we show
simultaneously a secure computation of the SK-DEPIR protocol and how its
methods (along with Π̃ldc, Πpermute, and Πstore) combine to instantiate a new
read-only storage protocol Π̃store.

At a high level, the protocol Π̃store operates as follows. During initialization,
the parties collectively construct the LDC encoding of the database, permute it u
times, and store the concatenation of these u encoded databases E0,E1, . . . ,Eu−1

in an instance of Πstore; the address corresponding to each element Ei[j] is
the concatenation of the the instance number i and the location j within this
instance. During a read operation, the parties look up Π̃store at one location
within each permuted database Ei; r of these lookup operations retrieve data
that can collectively be used to decode the desired value, and the remaining u−r
lookups are “decoy” lookups that provide security under the HPN assumption.

Lemma 2 shows two settings of parameters that satisfy the HPN assumption.
Using these parameters, we show that Π̃store is an efficient and secure read-only
data store.

Theorem 3. Under the HPN assumption, the protocol Π̃store in Fig. 16 securely
implements functionality Fstore with constant rounds of communication. Further-
more, given any constant ε > 0, there exist parameters m, t, u, and M such that
the computation and communication cost of Π̃store is:

– Oλ(N1+ε) for Init and Oλ(N ε) for read, or
– Oλ(poly(N)) for Init and Oλ(log(N)) for read.

Proof. Our 2PC protocol Π̃store computes all methods of the Canetti et al.
SK-DEPIR protocol over boolean secret-shared data, In particular, there exist
constant-round secure computation protocols for all set operations in Π̃store.

– Within KeyGen: to choose a subset T ⊂ [u], form a set of r 1s and (u − r) 0s,
then permute this set using Πpermute. The result is a secret-shared indicator
vector 〈T 〉 of length u indicating which elements are in T .

– Within Query: form the set Ỹ by oversampling. Run the LDC Query operation
on u values rather than r values (using an LDC protocol with u constants xi)
to compute Y = (〈yi〉)i∈[u], and let Ȳ = (〈ȳ〉)i∈[u] be a secret-shared set of
u random values. Compute Ỹ by multiplexing: in parallel, set each element
〈ỹi〉 = 〈T [i]∧yi ⊕ (T [i]⊕1)∧ ȳi〉. (Since all values are boolean secret-shared,
the bitwise-AND should be performed in 1 round between the T [i] and each
bit of yi in turn, and similarly for the second term.)

– To truncate the list 〈L〉|T within Dec: first form a secret sharing of the index
vector 〈I〉 that equals 0 at decoy values and where I|T = {1, 2, . . . , r} at
real values by bit composing 〈T 〉 to an additive secret sharing [[T ]] [9,29],
computing [[Ii]] = [[T i · ∑i

j=0 T j ]] ∀i ∈ [u], and bit decomposing [[I]] into
a boolean secret sharing 〈I〉. Then, concatenate componentwise the elements
of 〈I〉 and 〈L〉, permute this set using Πpermute, open all shares of indices I
in parallel, and locally sort the values of 〈L〉 using the indices.
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The computational cost of Query is O(u2) due to oversampling, and the cost of
the set truncation within Dec is O(u log(u)) as shown by Damgard et al. [9].

As a secure two-party computation of an existing SK-DEPIR scheme, Π̃store

inherits the correctness property from Definition 2, which states that the
read operation always returns the correct decoded database entry. Addition-
ally, the use of Πpermute within the protocol provides the random permuta-
tion π as required for use of the HPN assumption, so we also inherit the
indistinguishability-style security property from Definition 2. Using these prop-
erties, it is straightforward to prove that Π̃store instantiates Fstore using a similar
sequence of hybrids as in the original proof; we omit the details for brevity.

The claims about computational costs follow from Lemma 2 plus the following
two observations. First, the cost of Init is dominated by the cost of the SK-DEPIR
Process method, since the O(M) cost of Πpermute and the O(u log(u)) cost of the
oblivious search in KeyGen are smaller than the parameters in Lemma 2. Second,
the cost of read is dominated by the cost of the LDC Query and Dec since the call
to Πstore within Resp costs O(log(u · M)) as per Table 2, which is Oλ(log(N))
since u < N and M = Oλ(N).

4.2 The New DORAM Construction Π̃DORAM

In this section, we show how to construct the new DORAM construction
Π̃DORAM using this new instantiation Π̃store of the Fstore functionality, which
only needs to be shuffled and reconstructed after a specified bound t of write
operations have been performed, irrespective of the number of read operations.

The updated Π̃DORAM protocol is shown in the full version. The protocol
now initializes two versions of the store, one to keep track of which elements are
written and leaks access patterns and the other, Π̃access, that supports unlimited
reads and does not leak access patterns. This first store is critical to maintain
invariant used for reshuffling. In order to know what written elements that are
found in the stash, we use this store to keep track of the items ‘written’ into the
store. With the distinction between reads and writes no longer hidden, Π̃DORAM

only increments the epoch counter when a write is performed. Reads do not count
towards the contents of the stash.

The most significant change is within the access protocol, shown in the full
version [20]. It now differentiates between read and write operations. For a read
operation it calls Π̃store and does not write anything back to the stash. The write
operation continues to be unchanged from the original protocol.

Reshuffling is shown in the full version [20]. When it comes time to reshuffle
after t writes, the protocol is similar except in one key difference. Though we
now support two different stores, we perform the concatenation with elements in
the stash only with the original store, not the augmented SK-DEPIR store. The
latter does not keep track of the elements read (the indices iM returned by Π̃store

are simply random values and do not allow for the recovery of the elements).
Instead we have to rely on the unread elements in the original store; namely the
elements that were not written to as part of the store. The unread elements are
identical to the elements found in the augmented store, so concatentation will
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Table 3. A evaluation of each of the protocol’s server computation, bandwidth and
rounds of communication where stash size, t = N ε. Note that we assume N reads for
every 1 write and Π̃DORAM has been amortized where appropriate.

Local Computation Bandwidth Rounds

Π̃DORAM(Init) Oλ(N1+ε log(N1+ε)) Oλ(N1+ε log(N1+ε)) O(1)

Π̃DORAM(op) Oλ(N ε) Oλ(N ε) O(1)

Π̃access Oλ(N ε) Oλ(N ε) O(1)

Π̃shuffle Oλ(N1+ε log(N1+ε)) Oλ(N1+ε log(N1+ε)) O(1)

Π̃store(Init) Oλ(N1+ε) Oλ(N1+ε) O(1)

Π̃store(read) Oλ(N ε) Oλ(N ε) O(1)

result in the correct operation of Π̃shuffle. The only other change is to instantiate
these two stores, rather than the one store used within the original protocol.

We also consider the complexity of these new schemes in Table 3. Recall that
we use Oλ to indicate complexities that only depend on N , ignoring any poly(λ)
terms. The main difference between the complexity of our two schemes is the
blowup incurred by the new implementation of Π̃store. The LDC encoding incurs
a Oλ(N1+ε) overhead for any choice of ε > 0. This means any protocols that
were original dominated by the computation or bandwidth of Π̃store initialization
inherit this new cost. Recall in the original scheme the dominate cost of Πaccess

was the linear scan of the stash. In this setting, with the disparity of reads vs
writes, we consider a smaller stash size. If we assume one write for every N reads
and our smaller stash size, Π̃DORAM accesses amortize to be Oλ(N ε).

4.3 2PC for Multivariate FFT over Binary Fields

The one remaining task in the specification of protocol Π̃ldc is to construct a
secure computation of multivariate polynomial evaluation and interpolation. One
effective, but slow, technique is to use Lagrange interpolation. For a univariate
polynomial p =

∑
i p · xi, we can transform secret shares of a vector p = (p) of

coefficients into shares of the vector p̂ = (p(i)) of its evaluation at all points (or
vice-versa) via multiplication by the Vandermonde matrix p̂ = A·p, or its inverse
p = A−1 · p̂, and shares of this matrix-vector multiplication can be computed
locally by each party since the Vandermonde matrix A is public. However, the
computational cost for matrix-vector multiplication is Ω(N2).

The Fast Fourier Transform (FFT) [8] is a well-known algorithm for com-
puting polynomial evaluation in quasilinear time, and the Inverse FFT simi-
larly calculates polynomial interpolation efficiently. The fastest known FFT for
binary fields is the additive FFT algorithm by Gao and Mateer [12]. As its name
suggests, this algorithm solely involves linear operations. In this section, we
design a secure computation protocol Π̃mFFT of FFT for multilinear polynomials
over binary fields that can be performed locally (i.e., without interaction) with
quasilinear computational cost. While this contribution may be of independent
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Input: public integer h and basis H = {v0, v1, . . . , vh−1} of a subspace of F of size
2h, plus shares 〈p〉 of coefficients of a polynomial p ∈ F[x] of degree 2h − 1.

Output: shares 〈p̂〉 = FFT(h, H, 〈p〉) of the evaluations of p on all points spanned
by H, in the ordering specified by H[i] =

∑h−1
j=0 ijvj , where ij = the jth bit of i.

1. As the base case: if h = 1, then return (〈p(0)〉, 〈p(v0)〉). For a degree-1 poly-
nomial p, we compute 〈p(0)〉 = 〈p0〉 and 〈p(v0)〉 = 〈p0〉 + v0〈p1〉.

2. Compute the new bases H̄ = {v̄i} and H̃ = {ṽi} of size h−1 containing basis
elements v̄i = vi · v−1

h−1 and ṽi = v̄2
i − v̄i for all i ∈ [h − 1].

3. Compute coefficients 〈qi〉 = vi
h−1 · 〈pi〉 of the polynomial q = p(vh−1 · x).

4. Execute the Taylor expansion algorithm T(h, 〈q〉) in Fig. 18. Let 〈f〉 and 〈g〉
denote the shares of the resulting polynomials, each of degree 2h−1 − 1.

5. Recursively compute 〈f̂〉 = FFT(h−1, H̃, 〈f〉) and 〈ĝ〉 = FFT(h−1, H̃, 〈g〉).
6. Set 〈p̂i〉 = 〈f̂i〉 + H̄[i] · 〈ĝi〉 and 〈p̂i+2h−1〉 = 〈p̂i〉 + 〈ĝi〉 ∀i ∈ [2h−1]. Return p̂.

Fig. 17. Π̃1FFT protocol for secure 2-party computation of the Additive Fast Fourier
Transform of a univariate polynomial p in a binary field F.

interest, in this work it completes the task from Sect. 4.1 of constructing a non-
interactive Π̃ldc protocol with quasilinear (rather than quadratic) computation
cost. For example, in the Enc protocol within Π̃ldc, it allows for securely com-
puting the coefficients of the polynomial ψ : Hm → F in time O(N log2 N) and
securely evaluating the polynomial ψ at all locations in F

m in time O(M log2 M).
We describe this protocol in two steps. First, we show how to securely eval-

uate FFT for univariate polynomials (building a secure computation of Taylor
series expansion as a building block). Second, we bootstrap to a secure evaluation
of FFT for multivariate polynomials. For brevity, we show these FFT protocols
only in the forward (polynomial evaluation) direction. It is straightforward to
validate that the same techniques apply to construct a secure computation pro-
tocol of inverse FFT (i.e., polynomial interpolation) in quasilinear time.

2PC Protocol Π̃1FFT for univariate FFT. In this section, we present a secure
two-party computation protocol Π̃1FFT. Let H ⊂ F be a subspace (possibly the
entire field) of size |H| = 2h defined by a basis H, and let p =

∑2h−1
i=0 pi · xi be a

univariate polynomial of degree less than 2h. This protocol begins with shares of
the 2h coefficients 〈p〉 = (〈pi〉)i∈[2h] of the polynomial, and it returns the shares
〈p̂〉 = (〈p(i)〉)i∈[2h] of its evaluation at all 2h points in H.

The protocol Π̃1FFT is shown in Fig. 17, and it uses the Taylor series expan-
sion algorithm in Fig. 18 as a building block. Each step of these algorithms only
involves addition and scalar multiplication of secret-shared values, so the secure
computation Π̃1FFT can be performed locally. These algorithms are precisely
the secret-shared versions of their counterparts in Gao and Mateer [12].

We provide a high-level intuition of Π̃1FFT when considering the basis H =
{zh−1, zh−2, . . . , z, 1}, in which case q = p; full details are given in [12]. The core
idea of the Fast Fourier Transform is to reduce the evaluation of one polynomial q
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Input: public integer h, shares of coefficients 〈q〉 of a polynomial of degree 2h − 1.

Output: 〈f〉, 〈g〉 = T(h, 〈q〉) such that each vector is of length ≤ 2h−1 and they
collectively form the Taylor series expansion q(x) =

∑2h−1

i=0 (fi + gix) · (x2 − x)i.

1. As the base case: if h = 1 so deg(q) = 1, return 〈f0〉 = 〈q0〉 and 〈g0〉 = 〈q1〉.
2. Partition the vector 〈q〉 into 〈t0〉 containing the first 2h−1 elements, 〈t1〉

containing the next 2h−2 elements, and 〈t2〉 containing the last 2h−2 elements.
3. Compute the vectors 〈t〉 = 〈t1〉 + 〈t2〉 of length 2h−2, 〈q0〉 = 〈t0〉 + (0 ‖ 〈t〉)

of length 2h−1, and 〈q1〉 = (〈t〉 ‖ 〈t2〉) of length 2h−1. Here, 0 denotes the
vector containing 2h−2 zero elements, and ‖ denotes vector concatenation.

4. Recursively, find 〈f0〉, 〈g0〉 = T(h − 1, 〈q0〉) and 〈f1〉, 〈g1〉 = T(h − 1, 〈q1〉).
5. Return the concatenated vectors 〈f〉 = 〈f0〉 ‖ 〈f1〉 and 〈g〉 = 〈g0〉 ‖ 〈g1〉.

Fig. 18. Protocol for Taylor expansion of a polynomial q(x) ∈ F[x] at x2 − x.

into the evaluation of two polynomials f and g of half the degree, plus quasilinear
work to “stitch” the results together into an evaluation of q. Gao and Mateer
[12] show how this can be done over binary fields, based on these observations:

– The Taylor expansion q(x) =
∑2h−1

i=0 (fi + gix) · (x2 − x)i leads to an equation

q(x) = f(x2 − x) + x · g(x2 − x) involving polynomials f(z) �
∑2h−1

i=0 fi · zi

and g(z) �
∑2h−1

i=0 g · zi of lower degree 2h−1 − 1.
– The function x �→ x2 −x is 2-to-1, and specifically it maps the 2h-sized space

spanned by H into the smaller 2h−1 space spanned by the basis H̃.

Ergo, in order to evaluate the polynomial q at all points spanned by H, it suffices
to evaluate polynomials f and g at all points spanned by the smaller basis H̃ and
combine the results using the Taylor expansion q(x) = f(x2 − x) + x · g(x2 − x).

We provide a secure 2-party computation of Gao and Mateer’s method of
computing the Taylor expansion of q in Fig. 18, and we provide a 2PC of poly-
nomial evaluation in Fig. 17. The only operations that involve secret-shared data
are linear combinations and splitting/joining vectors, all of which can be per-
formed locally. Note that step 2 of Fig. 17 involves more complicated algebra,
but it only involves public (non-secret-shared) values, so it can be performed
locally and pre-computed before parties receive their input shares.

2PC Protocol Π̃mFFT for Multivariate FFT. Recall that the locally decod-
able code used in Π̃ldc is based on Reed-Muller codes, and as a result it uses
multivariate polynomials. Here, we show how to bootstrap from an FFT for uni-
variate polynomials into one for multivariate polynomials. The full protocol is
shown in Fig. 19, and it is based on a technique used by Kedlaya and Umans [24].

Protocol Π̃mFFT operates via recursion over many evaluations of univari-
ate polynomials. Given an m-variate polynomial p of total degree < 2h − 1
for which the parties have shares of all coefficients, we rewrite the polynomial
by conditioning on the power of the first variable: p(x0, . . . , xm−1) =

∑2h−1
i=0 xi

0 ·
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Input: shares of coefficients 〈p〉 of an m-variate polynomial p of total degree 2h−1.

Output: shares 〈p̂〉 of evaluations p(x) at all points x ∈ Hm.

1. As the base case: if m = 1, then run protocol Π̃1FFT as shown in Fig. 17.
2. By rearranging terms, write p(x) =

∑2h−1
i=0 xi

0 · pi(x1, x2, . . . , xm−1). Observe
that the parties collectively hold shares of the coefficients of each 〈pi〉.

3. Recursively, get shares 〈p̂i〉 of evaluations of each pi at all points in Hm−1.
4. For each vector c ∈ Hm−1, compute shares of the evaluation of the univariate

polynomial 〈p(x0, c)〉 =
∑2h−1

i=0 〈pi(c)〉 · xi
0 on all points in H using Π̃1FFT.

Fig. 19. Π̃mFFT protocol for secure 2-party evaluation of a multivariate polynomial
p(x0, . . . , xm−1) at all points in a subspace Hm ∈ F

m.

pi(x1, x2, . . . , xm−1). We can evaluate the (m − 1)-variate polynomials pi recur-
sively, and use the results to evaluate the univariate polynomial over x0. Since each
univariate polynomial evaluation takes time quasilinear in |H|, a simple recurrence
relation shows that the entire evaluation is quasilinear in |H|m = N . This com-
pletes the construction, and it is the necessary building block to complete the proof
of Theorem 2 and achieve quasilinear server computation for our LDC protocol.
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Abstract. We consider the problem of verifiable and private delegation
of computation [Gennaro et al. CRYPTO’10] in which a client stores pri-
vate data on an untrusted server and asks the server to compute functions
over this data. In this scenario we aim to achieve three main properties:
the server should not learn information on inputs and outputs of the com-
putation (privacy), the server cannot return wrong results without being
caught (integrity), and the client can verify the correctness of the outputs
faster than running the computation (efficiency). A known paradigm to
solve this problem is to use a (non-private) verifiable computation (VC)
to prove correctness of a homomorphic encryption (HE) evaluation on
the ciphertexts. Despite the research advances in obtaining efficient VC
and HE, using these two primitives together in this paradigm is con-
cretely expensive. Recent work [Fiore et al. CCS’14, PKC’20] addressed
this problem by designing specialized VC solutions that however require
the HE scheme to work with very specific parameters; notably HE cipher-
texts must be over Zq for a large prime q.

In this work we propose a new solution that allows a flexible choice
of HE parameters, while staying modular (based on the paradigm com-
bining VC and HE) and efficient (the VC and the HE schemes are both
executed at their best efficiency). At the core of our new protocol are new
homomorphic hash functions for Galois rings. As an additional contri-
bution we extend our results to support non-deterministic computations
on encrypted data and an additional privacy property by which verifiers
do not learn information on the inputs of the computation.

1 Introduction

We address the problem of verifiable computation on encrypted data. This prob-
lem arises in situations where a client wants to compute some function over pri-
vate data on an untrusted machine (a cloud server for example) and is concerned
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about three issues. The first one is efficiency: the client wants to take advantage
of the machine’s computing power and to do many fewer operations than those
needed to execute the computation. The second one is privacy—the client wants
to keep the data hidden to the server—and the third one is integrity—the client
wants to ensure that the results provided by the untrusted machine are correct.

If the goal is to solve privacy (and efficiency), then fully homomorphic encryp-
tion (FHE) is the answer. With FHE the server can receive data encrypted and
compute any function on it. The first FHE scheme was proposed in 2009 by Gen-
try [Gen09], and since then we have several families of more efficient schemes,
e.g., [BV11,BGV12,FV12,CKKS17,GSW13,DM15,CGGI16,CGGI17].

If the goal is to solve integrity (and efficiency), then the problem is in
the scope of verifiable computation (VC) [GGP10]. In a nutshell, with a VC
protocol the server can produce a proof about the correctness of a com-
putation, and this proof can be checked by the client faster than recom-
puting the function. As of today, there exist several solutions to this prob-
lem based on different approaches, such as doubly-efficient interactive proofs
[GKR08], FHE and garbled circuits [GGP10], functional/attribute-based encryp-
tion [PRV12,GKP+13], and succinct (interactive and non-interactive) argu-
ments for NP, e.g., [Kil92,GGPR13,AHIV17,WTs+18,BCR+19].

When it comes to solving both privacy and integrity (while retaining effi-
ciency), there exist fewer solutions. Gennaro et al. [GGP10] proposed a VC
scheme with privacy based on combining garbled circuits and FHE, and Gold-
wasser et al. [GKP+13] proposed a VC scheme with privacy of inputs (but not
outputs) based on succinct single-key functional encryption. Unfortunately, the
concrete efficiency of these two solutions is not satisfactory, e.g. [GGP10] require
the full FHE power, and [GKP+13] needs attribute-based encryption for expres-
sive predicates and works for functions with single-bit outputs.

A third approach is that of Fiore et al. [FGP14] who proposed a generic
construction of VC with privacy, obtained by combining an FHE scheme and
a VC scheme: the basic idea is to use VC to prove the correctness of the FHE
evaluations on ciphertexts. Efficiency-wise this approach is promising as it tries
to reconcile the best of the two lines of work that individually address privacy
(FHE) and integrity (VC) and that have advanced significantly in terms of effi-
ciency.

The Efficiency Challenges of Proving Correctness of FHE Evalua-
tion. The instantiation of [FGP14] generic construction still faces two challenges
related to efficiency:

1. When executing a function g, the VC scheme must prove the FHE evaluation
of g, whose representation is typically much larger than g, as it acts over FHE
ciphertexts.

2. The FHE ciphertext space may not match the message space natively sup-
ported by the VC scheme. Although in theory this is not an issue for general-
purpose VCs, in practice it would require expensive conversions that can
significantly affect the cost of generating the VC proof. For example, many
succinct arguments work for arithmetic circuits over a field Zp = Z/pZ where
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p is a large prime (e.g., the order of bilinear groups), whereas the FHE cipher-
text spaces may be polynomial rings Zq[X]/(f), f ∈ Zq[X], where q is not
necessarily a prime of exponential size (in the security parameter).

Fiore et al. [FGP14] proposed a concrete instantiation of their generic con-
struction that, though supporting only the evaluation of quadratic functions,
addresses both the two challenges above as follows. First, they use the HE scheme
from [BV11], where a ciphertext consists of two polynomials in Zq[X]/(f), and
“force it” to work with q = p, where p is the prime order of bilinear groups used
by their VC scheme. Second, they reduce the dependency of their VC scheme on
the size of the ciphertexts (i.e., the degree df of the polynomial f) via a tech-
nique called homomorphic hashing. When executing a function g on n inputs, a
strawman solution would require the VC to prove g’s homomorphic evaluation,
of size more than O(df · |g|). By using homomorphic hashing, they can have
proofs generated in time O(df · n + |g|). Essentially, the ciphertext size impacts
the cost of proof generation only on the number of inputs, which is unavoidable.

Recently, [FNP20] extended the approach of [FGP14] to support public ver-
ifiability and the evaluation of more than quadratic functions (still of constant
degree) via the use of specialized zkSNARKs for polynomial rings. However, the
scheme of [FNP20] still requires to instantiate the [BV11] HE scheme with a
specific q order of the bilinear groups used by the zkSNARK.

To summarize, existing solutions [FGP14,FNP20] manage to avoid expensive
conversions and achieve efficient proof generation, but pay the price of imposing
specific values to the parameters of the HE scheme. This choice has several draw-
backs. One problem is the efficiency of the HE scheme: the size of the modulus
q mainly depends on the complexity of the computations to be supported (for
correctness) and there are many cases where it can be as small as 50–60 bits
and not necessarily a prime. Forcing it to be a prime of, say, 256 bits (because
of discrete log security in bilinear groups) not only makes it unreasonably larger
but also requires, due to security of the RingLWE problem, to increase the size
of the polynomial ring, i.e., the degree of f . Similarly, in cases where for HE cor-
rectness q would be larger than 256 bits, then one must instantiate the bilinear
groups at a security level higher than necessary. So, all in all, the techniques of
[FGP14,FNP20] do not allow flexible choices of HE parameters.

1.1 Our Contributions

In this paper we provide new VC schemes with privacy of inputs and outputs
that solve the two aforementioned efficiency challenges while staying modular
(based on VC and FHE used independently) and flexible (no need to tweak the
HE parameters).

Our VC schemes support HE computations of constant multiplicative depth,
offer public delegation and public verifiability, and are multi-function, i.e., one
can encode inputs with a function-independent key and delegate the execution
of multiple functions on these inputs (see [PRV12]). These features are similar
to those of the recent work [FNP20].
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In contrast to previous works [FGP14,FNP20], we can use the [BV11] some-
what homomorphic encryption scheme (where ciphertexts are in Zq[X]/(f))
instantiated with any choice of the ciphertext modulus q (Table 1).1 This flex-
ibility enables better and faster instantiations of the HE component than in
[FGP14,FNP20].

For instance, in applications where q can be of about 50 bits we can set
deg(f) = 211, which makes ciphertexts 40× shorter than using a 250-bits prime
q, which would require deg(f) = 214. Furthermore, the fact that our modulus
q does not have to be prime may lead to use optimized circuits and thus to
faster executions in practice (an example is the lowest-digit-removal polynomial
in [CH18], that has a lower degree for a modulus pe than for a close prime
modulus).

Table 1. Comparison of efficient VC schemes with privacy of inputs/outputs based on
homomorphic encryption.

Scheme Delegation Verification Max degree HE modulus q

[FGP14] priv priv 2 Prime > 2λ

[FNP20] pub pub const Prime > 2λ

Ours pub pub const Any

As a key technique to achieve flexibility and to gain efficiency by working
on smaller spaces, we define and construct new, more general, homomorphic
hash functions for Galois rings. Briefly speaking, these functions can compress a
ciphertext element from a polynomial ring Zq[X]/(f), where q = pe for a prime
p and f is arbitrary, into a smaller Galois ring (i.e., a polynomial ring Zq[X]/(h)
such that h is monic and its reduction modulo p is irreducible in Zp[X]). Next,
thanks to the homomorphic property, we can use any VC scheme for proving
arithmetic circuits over Zq[X]/(h). As a concrete example, we show how to
use the efficient GKR protocol [GKR08] for this task. In terms of efficiency,
h ∈ Zq[X] is a polynomial whose degree governs the soundness of the proofs (we
need that 1/pdeg(h) is negligible) and is concretely smaller than the degree of f ,
e.g., deg(h) can be between 24× (when p = 2) and 211× (when p = q) smaller.

We stress that previous homomorphic hash functions from [FGP14,FNP20]
only map from Zq[X]/(f) to Zq and need q be a large prime. So they would not
allow flexible choices of parameters. Our constructions instead have no restriction
on q and can fine-tune the output space according to the desired soundness.

At the core of our result is a technique to speed up the prover costs in
verifiable computation over polynomial rings. Given that polynomial rings are
common algebraic structures used in many lattice-based cryptographic schemes,
our methods and analysis might be easily reusable in other contexts different

1 Precisely, our basic scheme in Sect. 3 works for a q that is a prime power; in the full
version of this paper we generalize it to any (possibly composite) integer q.
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from FHE. As an example, in Sect. 3.2 we show how our technique can be
used to obtain a verifiable computation scheme for parallel, single-instruction
multiple-data (SIMD) computations where the proof generation costs are mini-
mally dependent on the number of parallel inputs.

Extensions for Non-deterministic Computations and Context-Hiding.
As an additional contribution, we generalize the notion of private VC to support
non-deterministic computations along with context-hiding.

In brief, supporting nondeterministic computations means to consider func-
tions of the form g(x,w) in which the untrusted worker receives an encryption
of the input x, holds an additional input w and can produce an encoding of
g(x,w). In this case, the security property becomes analogous to the one we have
in proof systems for NP, namely the untrusted worker can produce an encoding
y that is accepted only if there exists a w such that y = g(x,w). Nondeter-
minism is useful to handle more complex computations, such as ones that use
random coins, non-arithmetic operations (e.g., bit-decompositions) or (secret)
computation parameters. For instance, with this we can prove re-randomization
of ciphertexts, or evaluate polynomials with coefficients provided by the server.

To provide privacy against verifiers, we consider the notion of context hiding
of [FNP20], which guarantees that the verifier learns no information about the
input x beyond what can be inferred from the output y = g(x). In our work,
we extend context-hiding to the non-deterministic setting to ensure that the
verifier learns nothing about (x,w). This includes both verifiers that only receive
computation’s results, and those who generated the input and the corresponding
ciphertext/encoding (in which case x is already known).

Next, we extend our flexible VC constructions to support non-deterministic
computations and achieve context-hiding. In particular, we show a scheme that is
based on proving correctness of [BV11] HE evaluations and in which we address
the two efficiency challenges mentioned earlier using our homomorphic hashing
technique, thanks to which we keep the cost of proof generation O(df · n +
|g|). To achieve context-hiding, however, instead of a verifiable computation for
arithmetic circuits over the Galois ring Zq[X]/(h), we use a commit-and-prove
succinct zero-knowledge argument for circuits over this Galois ring. The latter
could be instantiated by using existing schemes for Zp (recall p is the prime
such that q = pe). The design of efficient ZK arguments that can directly and
efficiently handle Galois rings is an interesting open problem for future research.

1.2 Organization

In Sect. 2, we introduce notation and preliminary definitions. Section 3 presents
our generic VC scheme on encrypted data. In Sect. 4, we discuss an instantiation
of our VC scheme and present our homomorphic hash functions. In Sect. 5,
we further develop our scheme to handle nondeterministic computations with
context-hiding.
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2 Preliminary Definitions

In this section, we recall notation and basic definitions. Some of them are recalled
only informally; we refer to the full version for more formal definitions.

Notation. Let λ ∈ N be the security parameter. We say that a function F
is negligible in λ and denote it by negl(λ) if F (λ) = o(λ−c) for all c > 0. A
probability is said to be overwhelming if it is 1− negl(λ). Let D be a probability

distribution and S be a set. The notation r
$← D means that r is randomly

sampled from the distribution D, while r
$← S means that r is sampled uniformly

randomly from the set S. All adversaries A and entities (a prover P and a verifier
V) in this paper are probabilistic polynomial-time (PPT) Turing machines. In
this paper, a ring is always a commutative ring with a multiplicative identity 1.

2.1 Verifiable Computation

We recall the definition of a verifiable computation (VC) scheme [GGP10]. We
use the notion of Multi-Function VC scheme from [PRV12], with a slight modi-
fication to handle public delegatability and verifiability (we will simply call this
a VC scheme in the rest of this work). A multi-function VC scheme allows the
computation of several functions on a single input and satisfies an adaptive secu-
rity notion where the adversary can see many input encodings before choosing
the function (similarly as the definition of a Split Scheme in [FGP14]).

Definition 1 (Verifiable Computation). A verifiable computation scheme
VC consists of a tuple of algorithms (Setup,KeyGen,ProbGen,Compute,
Verify,Decode):

Setup(1λ) → (PK,SK) : produces the public and private parameters that do not
depend on the functions to be evaluated.

KeyGenPK(g) → (PKg, SKg) : produces a keypair for evaluating a specific func-
tion g.

ProbGenPK(x) → (σx, τx) : The problem generation algorithm uses the public
key PK to encode the input x as a value σx that is given to the server to
compute with, and a public value τx which is given to the verifier.

ComputePKg
(σx) → σy : Using a public key for a function g and the encoded

input σx, the server computes an encoded version σy of the function’s output
y = g(x).

VerifyPKg
(τx, σy) → acc : Using the public key for a function g, and a verification

token τx for an input x, the verification algorithm converts the server’s output
σy into a bit acc. If acc = 1 we say the client accepts (which means that σy

decodes to y = g(x) – see below), otherwise if acc = 0 we say the client
rejects.

DecodeSK,SKg
(σy) → y : using the secret keys, this algorithm decodes an output

encoding σy to some value y.
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Remark 1. In our definition we did not include PK among the inputs of Compute
and Verify; this can be done without loss of generality as in any scheme one can
include PK into PKg. Also, note that ProbGen takes only PK (and not PKg)
as an input; this highlights the fact that inputs can be encoded independently of
the functions g that will be executed on them. Finally, we could have included
SK among the inputs of KeyGen; in this case, however, one would partially lose
the public delegation property.

A VC scheme satisfies correctness, security, privacy, and outsourceability
whose definition is as follows:

Correctness. For any function g and input x,

Pr

⎡
⎢⎢⎣

VerifyPKg
(τx, σy) = 1

∧ DecodeSK,SKg
(σy) = g(x)

∣∣∣∣∣∣∣∣

(PK,SK) ← Setup(1λ)
(PKg, SKg) ← KeyGenPK(g)

(σx, τx) ← ProbGenPK(x)
σy ← ComputePKg

(σx)

⎤
⎥⎥⎦ = 1.

To define security and privacy, we first describe the following experiments:
Experiment ExpV erif

A [VC, λ]
(PK,SK) ← Setup(1λ);
(x, st) ← AOKeyGen(·)(PK);
(σx, τx) ← ProbGenPK(x);
(g, σ̂y) ← AOKeyGen(·)(st, σx, τx);
acc ← VerifyPKg

(τx, σ̂y);
if acc = 1 and DecodeSK,SKg

(σ̂y) �= g(x)
output 1;

else output 0;

Experiment ExpPriv
A [VC, g, λ]

b ← {0, 1};
(PK,SK) ← Setup(1λ);
(x0, x1, st) ← AOKeyGen(·)(PK);
(σb, τb) ← ProbGenPK(xb);
b̂ ← AOKeyGen(·)(st, σb, τb);
if b = b̂ output 1;
else output 0;

In the experiments above, OKeyGen(g) is an oracle that can be called only once,
it runs PKg ← KeyGenPK(g) and returns PKg. The one-time use of the oracle
is done for simplicity. Indeed, consider an experiment in which the adversary
is allowed to query this oracle multiple times: an adversary playing in such
an experiment can be reduced to one playing in the experiment above in a
straightforward way, as the KeyGen algorithm uses only a public key and thus
can be easily simulated. Similarly, this is why it is enough to give to the adversary
only one specific encoding using ProbGen.

Security. For any PPT adversary A, Pr[ExpV erif
A [VC, λ] = 1] ≤ negl(λ). Note

that this is an adaptive notion of security, as defined in [FGP14].

Privacy. For any PPT adversary A and for any function g,

Pr[ExpPriv
A [VC, g, λ] = 1] ≤ 1

2
+ negl(λ).

Remark 2. Our definition of verifiable computation has public verifiability (any-
one can use Verify only with public keys and τx) and public delegatability (anyone
can run ProbGen and KeyGen). This immediately implies the notion of privacy
in the presence of verification queries given in [FGP14], namely the scheme stays
private even if the adversary learns whether its results are accepted or not.
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Outsourceability. For any x and any honestly produced σy, the time required
for ProbGenPK(x), VerifyPKg

(τx, σy), and DecodeSK,SKg
(σy) is o(T ) where T is

the time required to compute g(x), i.e., it allows efficient problem generation
and verification followed by decoding.

The VC constructions we present in this paper are first built as public-coin
interactive protocols which can be made non-interactive using the Fiat-Shamir
heuristic. Therefore, we also consider interactive versions of Compute and Verify.
Also, our constructions work in a simpler model in which KeyGen only outputs
a public key without SKg.

2.2 Fully Homomorphic Encryption

We briefly recall the notion of (public-key) fully homomorphic encryption scheme
(FHE), which is a tuple of algorithms (FHE.ParamGen,FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval) working as follows:

FHE.ParamGen(1λ) : generates the public parameters (e.g., description of plain-
text space M, ciphertext space, key space, randomness distributions, etc.)
which are assumed input to all subsequent algorithms.

FHE.KeyGen(1λ) → (pk, evk, dk) : outputs a public encryption key pk, a public
evaluation key evk, and a secret decryption key dk.

FHE.Encpk(m) → c : encrypts a message m ∈ M, and outputs ciphertext c.
FHE.Decdk(c) → m∗ : decrypts a ciphertext c into a plaintext m∗ ∈ M.
FHE.Evalevk(g, c1, . . . , cn) → c∗ : Given the evaluation key evk, a circuit g :

Mn → M, and n ciphertexts c1, . . . , cn, it computes an output ciphertext c∗.

An FHE scheme should satisfy the usual notion of correctness and semantic
security. In addition, we say that FHE is compact if the ciphertext size is bounded
by some fixed polynomial in the security parameter, and is independent of the
size of the evaluated circuit or the number of inputs it takes. We refer to the full
version for the formal definitions.

In our work, we mainly consider SHE (a.k.a. somewhat homomorphic encryp-
tion), a restricted FHE notion that guarantees above-mentioned properties only
if the circuit g is of a bounded degree which is fixed a-priori in SHE.ParamGen.

2.3 Succinct Argument Systems

Let R be an NP relation. An argument system Π for R comprises three algo-
rithms (Π.Setup,P,V) working as follows:

Π.Setup(1λ) → crs : outputs a common reference string crs.
P(crs, x, w) : given a statement x and a witness w, the prover interacts with the

verifier below.
V(crs, x) : given a statement x, the verifier outputs 0 (reject) or 1 (accept) after

interacting with the prover.
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We denote by 〈P(crs, x, w),V(crs, x)〉Π = b, with b ∈ {0, 1}, an execution between
P and V where b is V’s output at the end of the interaction. If V uses public
randomness only, Π is said public-coin. Π is said succinct if the protocol’s com-
munication is at most polylogarithmic in the witness size. An argument system
Π satisfies the standard completeness and soundness properties (see full version
for the formal definitions).

3 Our VC Scheme - Generic Solution

In this section, we present our generic VC scheme for private verifiable compu-
tation. The high-level idea is to apply a succinct argument system on the image
of evaluation process (SHE.Evalevk(g, c1, . . . , ct)) of SHE under a homomorphic
hash function.

3.1 Building Blocks and Assumptions

Our generic VC scheme consists of three building blocks: SHE, Homomorphic
Hash Functions, and a Succinct Argument System for deterministic polynomial-
time computations. We first describe the assumptions on each building block
necessary for the construction of the generic VC scheme. It will be shown, in
Sect. 4, that these assumptions can be met to provide an instantiation of the
VC scheme.

Notation. Let R = Z[X]/(f) denote a quotient polynomial ring with f ∈
Z[X], a monic polynomial of degree df . For a positive integer t, Rt := R/tR =
Zt[X]/(f). We use q to denote a power of some prime p, i.e., q = pe.

Somewhat Homomorphic Encryption. We assume that the ciphertext space
of given SHE is RD

q = (Zq[X]/(f))D where q = pe is a power of prime p, and D
is a positive integer. We also assume that the evaluation algorithm SHE.Evalevk
can be represented by an arithmetic circuit2 over the ring Rq (or RD

q ).

Homomorphic Hash Functions. To gain efficiency in proving (and verifica-
tion), we exploit a homomorphic hash function defined by a ring homomorphism
H : Zq[X]D → DH to a ring DH . Let H be a family of hash functions {H} where
each H is as described above and the uniform sampling of H ∈ H can be done
with a public-coin process. We assume that H, when the domain is restricted to
a subset D ⊂ Zq[X]D, is ε-universal whose definition follows.

Definition 2 (ε-Universal Hash Functions). A family H of hash functions
is ε-universal if for all c, c′ ∈ D such that c �= c′, it holds that

Pr[H $← H : H(c) = H(c′)] ≤ ε.

2 It is composed of gates performing addition or multiplication.
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We additionally assume that the set D in the above definition is large enough
so that all ciphertexts arising can be embedded into it.

Succinct Argument System. We assume a public-coin succinct argument sys-
tem Π that works for the relations represented by a (polynomial-size) arithmetic
circuit over the rings DH for all H ∈ H.

3.2 The Generic Scheme

We now give a description of the generic private VC scheme using the building
blocks and notation from Sect. 3.1. Our scheme follows the VC syntax from
Sect. 2.1, except for Compute and Verify that we describe as a public-coin inter-
active protocol for two main reasons. First, we make use of a succinct argument
system that can be interactive. Second, for security reasons, a homomorphic hash
function must be sampled uniformly at random, unpredictably by a prover, e.g., a
verifier samples and notifies a homomorphic hash function after a prover claimed
an output. Note that a non-interactive version of our VC can be obtained in the
random oracle model by applying the Fiat-Shamir transform.

In our VC scheme, a verifier V encrypts the input x = (x1, x2, . . . , xn) (with
SHE) and sends the encrypted inputs (ci)n

i=1 = (SHE.Enc(xi))n
i=1 ∈ (RD

q )n =
((Zq[X]/(f))D)n to a prover P. We remark that P performs the homomor-
phic evaluation SHE.Evalevk(g, c1, . . . , cn) without reduction modulo f , and then
proves this computation. Namely, P computes the function ĝ : (RD

q )n → Zq[X]D

(not RD
q ) that describes SHE.Evalevk(g, ·) without reduction modulo f . In other

words, ĝ is such that:

ĝ(c1, ..., cn) mod f = SHE.Evalevk(g, c1, ..., cn) ∈ RD
q .

The VC scheme consists of a tuple of algorithms (Setup,KeyGen,ProbGen,
Compute,Verify,Decode) as follows.

Setup(1λ) → (PK,SK):
– Run (pk, evk, sk) ← SHE.KeyGen(1λ) to generate keys for SHE.
– Set PK = (pk, evk) and SK = sk.

KeyGenPK(g) → (PKg, SKg):
– Run crs ← Π.Setup(1λ) to generate the common reference string of Π for

the circuit ĝ : (RD
q )n → Zq[X]D over the ciphertexts.

– Set PKg = (PK, ĝ, crs) and SKg = ∅.
ProbGenPK(x) → (σx, τx):

– Parse x as (x1, x2, . . . , xn).
– Run ci ← SHE.Encpk(xi) for i ∈ {1, 2, . . . , n} to get ciphertexts cx =

(c1, c2, . . . , cn) ∈ (
RD

q

)n.
– Set σx = τx = cx.

〈ComputePKg
(σx),VerifyPKg

(τx)〉: prover and verifier proceed as follows.
– Compute computes cy = ĝ(cx) and sends it to Verify.

– Verify samples and sends a homomorphic hash function H
$← H.
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– Compute and Verify both compute γ1 = H(c1), . . . , γn = H(cn), γy =
H(cy).

– Compute and Verify run the argument system 〈P(crs, ĝ, γ1, . . . , γn, γy),
V(crs, ĝ, γ1, . . . , γn, γy)〉Π in the roles of prover and verifier respectively.
This is for P to convince V that γy = ĝ(γ1, . . . , γn) over the ring DH .

– Let σy include cy and the transcript of the interactive argument.
– Let b be the bit returned by V. Verify accepts if and only if b = 1.

DecodeSK(σy) → y: Compute y = SHE.Decsk(cy mod f).

Notice that if Π is a k-round public-coin interactive protocol, then the VC
protocol described above is a (k + 1)-round public-coin protocol. By apply-
ing Fiat-Shamir to such a protocol, we obtain a non-interactive VC scheme
in which the random oracle is used to derive the homomorphic hash function
H and all the random challenges of V in Π. Then, Compute can be described
as a non-interactive algorithm that on input σx outputs σy = (cy, π) where π
are all the messages of P, while Verify(τx, σy) is the algorithm that returns
the acceptance bit of the non-interactive verifier on the hashed inputs, i.e.,
V(PKg,H(c1), . . . , H(cn),H(cy)).

The application of Fiat-Shamir may incur a security loss, which mainly boils
down to its application to the k-round Π protocol. As shown in [BCS16], if Π
satisfies the notion of state-restoration soundness this loss is only polynomial in
the number of rounds. Notably, Canetti et al. [CCH+18] proved that the GKR
protocol (that we consider in Sect. 4 to instantiate Π) satisfies this property.

Remark 3 (On a variant using universal arguments). Note that, if Π is a
preprocessing argument system with a universal CRS (i.e., following the
notion in [CHM+20]), then one can modify our VC scheme as follows:
Π.Setup can be executed in Setup (of VC scheme) and the universal CRS is
included in PK, while KeyGen would only run the deterministic preprocessing
crsg ← Preprocess(CRS, g). The main benefit of this variant is that only the Setup
algorithm must be executed in a trusted manner.

The generic scheme satisfies the properties of VC scheme given that all the
building blocks satisfy the required properties.

Theorem 1. For given security parameter λ, if we exploit a correct, compact,
and secure SHE scheme, an ε-universal family of hash functions with ε = negl(λ),
and a complete succinct argument system Π with soundness δ = negl(λ), then
our VC scheme is correct, secure, private and outsourceable.

Proof. We refer to the formal definition of VC scheme (Definition 1) in Sect. 2.1.
Our VC scheme is an interactive version of the generic private VC scheme from
[FGP14], with the difference that there is an interactive Verify algorithm that
uses homomorphic hashing. Therefore, we get the result as in [FGP14], except
for the security for which we give a detailed proof.

The correctness of our VC scheme follows from the correctness of SHE and
the completeness of the argument system Π.
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The privacy of our VC scheme follows from the semantic security of SHE:
if P could break the privacy of VC, it can run the VC scheme by itself on a
ciphertext SHE.Enc(xb) from the semantic security game of SHE then guess b
with non-negligible advantage.

The outsourceability follows from the compactness of SHE scheme and the
succinctness of the argument system Π that has verifier complexity o(S) where
S is the size of the circuit ĝ (see next Lemma for a detailed complexity analysis).

For the security, we consider a slightly different version of the security exper-
iment ExpV erif

A [VC, λ] in Sect. 2.1, adapted to handle the case of protocols in
which Compute and Verify interact. Namely, instead of an adversary that directly
provides the result σy, we consider an adversary A that interacts with the chal-
lenger acting as an honest verifier, and A wins if the challenger accepts but the
transcript decodes to a wrong result.

Let x and g respectively be the input and function chosen by A in the game,
cx be the encryption of x sent to A, ĉy be the result claimed by A in the first
round, and cy be the true result. We note y = g(x) (if ĉy does not encrypt y
then necessarily ĉy �= cy). We now study the Verify algorithm: a homomorphic
hash function H ∈ H is randomly sampled, either by V or by a random oracle
using A’s inputs and outputs, so that A cannot know it before sending ĉy. Thus,
if we denote by A the event {H(ĉy) = H(cy)} and if H is a ε-universal family
then Pr[A|cy �= ĉy] ≤ ε. If H(ĉy) �= H(cy) then the only way left for A to
have V accept is to cheat when applying Π with the false result H(ĉy). Let
B denote the event {Π(V,A,H(c),H(ĉy), r) = 1}. If Π has soundness δ then
Pr

[
B|Ā ∩ (cy �= ĉy)

] ≤ δ.
The output bit b of the security game satisfies:

Pr[b = 1] = Pr[(A ∪ B) ∩ (SHE.Dec(ĉy mod f) �= y)]
≤ Pr[(A ∪ B)|cy �= ĉy]

≤ Pr
[
B|Ā ∩ (cy �= ĉy)

]
+ Pr[A|cy �= ĉy]

≤ δ + ε

This proves the result when ε and δ are negl(λ). ��
The required computational (or communication) cost of our VC scheme can

be easily derived from that of the argument system Π and the homomorphic
hash functions H.

Lemma 1. Let TΠ
P , TΠ

V , and CΠ respectively denote the time complexity of P,
that of V, and the communication cost in the argument system Π, which will
be signified as, e.g., TΠ

P (g;R) when denoting the complexity of P (in Π) for a
circuit g over a ring R. Then, for a circuit g with n inputs and 1 output, the time
complexity of ComputePKg

(σx), that of VerifyPKg
(τx), and the communication

cost in the execution of 〈ComputePKg
(σx),VerifyPKg

(τx)〉, in our VC scheme
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(Theorem 1) is as follows:

Time [ComputePKg
(σx)] : Tĝ + (n + 1) · THash + TΠ

P (ĝ;DH)

Time [VerifyPKg
(τx)] : (n + 1) · THash + TΠ

V (ĝ;DH)

Comm [〈ComputePKg
(σx),VerifyPKg

(τx)〉] : |ĝ(c)| + |H| + CΠ(ĝ;DH)

where ĝ is the circuit corresponding to g over the ciphertext, DH is the range
space (ring) of a hash function H ∈ H, Tĝ and THash are the times for computing
ĝ (without reduction modulo f) and for evaluating a homomorphic hash function,
respectively, |ĝ(c)| is the size of the output ciphertext (from P), and |H| is the
size of a homomorphic hash function.

The proof of this lemma directly follows from the description of the VC
scheme. We remark that the complexity mainly depends on the ring DH which
can be much smaller than the ciphertext space RD

q ⊆ Zq[X]D (see Sect. 4.3). It
makes our VC scheme show better efficiency (in both asymptotic and concrete
cost) than a naive VC (over the ciphertext space) without our homomorphic
hash functions (see Sect. 4.4 for detailed analysis).

Applications to VC for SIMD Computations. Besides the application to
HE computations, the use of ε-universal family of homomorphic hash functions
can have broader applications in improving prover efficiency in VC over polyno-
mial rings, i.e., when proving and verifying the computations over a polynomial
ring. By combining this observation with the “packing” techniques of HE [SV14]
one can obtain a VC scheme for SIMD (single-instruction multiple-data) oper-
ations where the prover’s costs are less dependent on the number of (parallel)
inputs. A bit more in detail, with the packing techniques of [SV14] one can encode
a vector (vi)i of m elements of Zt into a polynomial p ∈ Rt (such that df ≥ m)
in such a way that the result of computing ĝ((pj)j) over Rt := Zt[X]/(f) can be
decoded to the vector (g((vj,i)j))i over Zt. By using a homomorphic hash from
Rt to Zt[X]/(h) we can obtain a prover time which depends on |g| · dh + df , as
opposed to |ĝ| ≈ |g| · df .3 We remark that dh ≈ logt λ (when t is prime) while
df can be as large as the number of parallel inputs.

4 Instantiating Our VC Scheme

In this section, we provide concrete instantiations of the building blocks for
our generic scheme presented in the previous section. In particular, our novel
contributions are the constructions of two homomorphic hash functions. We also
give a detailed efficiency analysis with example parameters.

3 We assume that the cost of basic operation over a ring (Zt[X]/(h) or Zt[X]/(f))
depends on its degree (dh or df ) for simplicity.
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4.1 SHE - The BV Homomorphic Encryption Scheme

As an instantiation of SHE, we exploit the BV scheme [BV11] which allows homo-
morphic evaluation of circuits of limited multiplicative depth. The advantage of
the BV scheme for our purpose is that its homomorphic additions and multipli-
cations over ciphertexts are composed of arithmetic operations over RD

q only.4

As a result, this scheme can be easily combined with the homomorphic hash
functions (which will be described in the following subsection) defined in our
generic VC scheme.

Parameters. Let q and t (t < q) be coprime integers, f ∈ Z[X] be a monic poly-
nomial of degree df , and R := Z[X]/(f). The plaintext space is Rt := Zt[X]/(f),
and the ciphertext space is RD

q = (Zq[X]/(f))D where D(≥2) bounds the total
degree of a multi-variate polynomial which can be evaluated on ciphertexts, i.e.,
products of at most D − 2 input ciphertexts are allowed.

Homomorphic Operations. A ciphertext c = (c0, c1, . . . , cD−1) ∈ RD
q is iden-

tified as a polynomial c(Y ) ∈ Rq[Y ] of degree at most D − 1 as follows:

c(Y ) =
D−1∑
i=0

ciY
i.

Then, addition and multiplication of two ciphertexts c = Enc(m), c′ = Enc(m′)
are defined, respectively, by the usual addition and multiplication in Rq[Y ]:

• cadd(Y ) := c(Y ) + c′(Y ), i.e., cadd := (c0 + c′
0, c1 + c′

1, . . . , cD−1 + c′
D−1).

• cmult(Y ) := c(Y ) · c′(Y ), i.e., cmult := (ĉ0, ĉ1, . . . , ĉD−1) where
∑D−1

i≥0 ĉiY
i =

c(Y ) · c′(Y ).

The correctness (Dec(cadd) = m + m′, Dec(cmult) = m · m′) is guaranteed only
if the degree (in Y ) of result ciphertext (cadd or cmult) does not exceed D − 1.
We remark that a fresh ciphertext is of degree 1 (in Y ), i.e., ci = 0 for all
i > 2, and the correctness is guaranteed for the computation represented by a
(multivariate) polynomial of total degree at most D − 1.

We refer to the full version of this article for the description of other algo-
rithms (KeyGen,Enc,Dec) of BV scheme and the concrete conditions for the
correctness and security of BV scheme.

4.2 Argument System - The GKR Protocol over Rings

The GKR protocol [GKR08] is a (public-coin) interactive proof system for arith-
metic circuits over a finite field. In [CCKP19], Chen et al. showed that the proto-
col can be generalized to handle arithmetic circuits over a finite ring. We exploit
this GKR protocol over rings [CCKP19] (with Fiat-Shamir) as our instantia-
tion of argument system, since it can efficiently prove and verify arithmetic of
4 This is not the case in other schemes, e.g., BGV [BGV12] or FV [FV12] schemes

where multiplication of ciphertexts accompanies rounding or bitwise operations.
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rings5 which constitutes the range DH (Zq[X]/(h) or (Zq[X]/(h))D) of our hash
functions (Sect. 4.3).

One drawback of the GKR protocol is that the circuit (to be verified)
should be log-space uniform and be layered in low depth for efficient verifi-
cation. A line of work has shown that many computations of interest are in this
form [CMT12,Tha13] or can be converted to this form [WTs+18]. Therefore,
we (plausibly) assume that the given circuit is log-space uniform and that a
succinct description of the circuit can be found during the preprocessing phase
(e.g., KeyGenPK(g) finds such description for g and puts it into PKg). We remark
that, in our instantiation, the circuit already has low depth to be supported by
the BV scheme.

In this section, we recall the definition of Galois rings, the Schwartz-Zippel
lemma for rings, and give a summary of the GKR protocol over rings. In the
full version of this article we add a detailed description of the GKR proto-
col [GKR08,Tha13] and its generalization to rings [CCKP19]. In this section,
rings are commutative rings with multiplicative identity 1.

Galois Rings. Galois rings play a central role in the GKR protocol over rings
and in our instantiation of hash functions. Galois rings are a natural generaliza-
tion of Galois fields GF(pn) = Zp[X]/(f), and proofs of the following properties
of Galois rings can be found in [Wan03].

Definition 3 (Galois ring). A Galois ring is a ring of the form

Zpe [X]/(f)

where p is a prime number, e is a positive number, f ∈ Zpe [X] is a monic
polynomial whose reduction modulo p is an irreducible polynomial in Zp[X].

We remark that a Galois ring Zpe [X]/(f) has many more invertible elements
than the base ring Zpe :

Lemma 2 (Units of Galois ring). In a Galois ring Rq := Zpe [X]/(f), the
set of units of Rq is Rq\pRq, i.e., the elements which are not divisible by p. In
fact, we have a ring isomorphism Rq/pRq

∼= F
pdf where df is the degree of f .

Schwartz-Zippel Lemma for Rings. We now present the Schwartz-Zippel
lemma for rings, specifically, we focus on the case of Galois rings which is closely
related to our instantiation.

Definition 4 (Sampling set). Let R be a finite ring and A ⊂ R. We call A a
sampling set if

for all x, y ∈ A such that x �= y, x − y is invertible.

5 Usual argument systems deal mainly with arithmetic of a field, and it requires to
represent arithmetic of a ring by that of a field, resulting in substantial inefficiency.
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Lemma 3 (Schwartz-Zippel). Let R be a finite ring, and let A ⊂ R be a
sampling set. Let f : Rn → R be an n-variate nonzero polynomial of total degree
D. Then

Pr
x←An

[f(x) = 0] ≤ D

|A| .

Examples of Sampling Set. In a ring Zpe with p prime, A = {0, 1, .., p−1} is a
maximal sampling set with cardinality p. In a Galois ring Zpe [X]/(f) where f is
a monic polynomial of degree df , the set {a0+a1X + · · ·+adf −1X

df −1 | ai ∈ A}
is a maximal sampling set with cardinality pdf .

In the following, we borrow the result of [CCKP19], the generalized GKR
protocol on the circuit over Galois rings. The soundness of the protocol is guar-
anteed by the Schwartz-Zippel lemma (Lemma 3), thus it depends on the size
of sampling set, e.g., pdf in the following.

Theorem 2 (GKR protocol over Galois rings [CCKP19]). Let Rq :=
Zpe [X]/(f) be a Galois ring where f is of degree df . Let C : Rn

q → Rq be
an arithmetic circuit over Rq taking n inputs and outputting 1 output. Let C be
of size (the number of arithmetic gates contained) S and depth d. Then, there
exists an interactive protocol (with public coins) for C with perfect completeness
and soundness 7dlogS

pdf
, which requires the same number of operations (over Rq)

for a prover and a verifier as the GKR protocol over a finite field (where the
required operations are over a finite field).

Efficiency of GKR Protocol. The latest refinement [XZZ+19] of the GKR
protocol reduced the prover’s cost to O(S). Since their technique can also be
adapted to the protocol over Galois rings (their technique only uses addition,
multiplication, and bookkeeping which are all available in arbitrary rings), the
complexity of our instantiation is also (TΠ

P , TΠ
V , CΠ)6 = (O(S), O(n + d log S)7,

O(d log S)). We remark that the space complexity of a verifier V can be O(log S)
only (without increasing other cost) and that the time complexity O(d log S) of
V can be regarded as o(S) since d is a small constant in the usual utilization of
BV scheme.

4.3 Our Homomorphic Hash Functions Realizations

In this section, we present explicit constructions of two families of ε-universal
homomorphic hash functions on some domain D ⊂ Zq[X]D with q = pe for a
prime p. Both of our hash function families, taking as input D polynomials of
Zq[X], are based on the map of modulo reduction by a polynomial h ∈ Zq[X],

6 We refer to Lemma 1 for this notation.
7 Here, we assume that the wiring predicate [CMT12] of the circuit is computable in

O(log S) complexity. Generally, if the circuit is log-space uniform, the cost of verifier
has an additional O(poly(log S)) term.
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which is a natural generalization of the evaluation map (f ∈ Zq[X] → f(r) ∈ Zq)
exploited in the previous works [FGP14,FNP20]. The range of our hash function
families are (Zq[X]/(h))D or Zq[X]/(h) where h ∈ Zq[X] is a monic polynomial
whose reduction modulo p is irreducible in Zp[X], i.e., Zq[X]/(h) is a Galois ring.

4.3.1 Homomorphic Hash Function - I. Single Hash
We first give the definition of our hash functions specifying the domain D.

Definition 5 (Single Hash Function). Let N,D be positive integers and q =
pe for a prime p, and let D = {(zi)D−1

i=0 ∈ Zq[X]D : degX(zi) ≤ N}. For a monic
polynomial h ∈ Zq[X], the hash function Hh on D is defined as follows.

Hh : D ⊂ Zq[X]D −→ (Zq[X]/(h))D

(
zi

)D−1

i=0
�→ (

zi (mod h)
)D−1

i=0

where zi (mod h) is the remainder of zi when divided by h in Zq[X].

We can gather these hash functions into a family of hash functions which
satisfies the ε-universality as follows.

Theorem 3. Let N,D, dH be positive integers and q = pe for a prime p. On
D = {(zi)D−1

i=0 ∈ Zq[X]D : degX(zi) ≤ N}, the family of functions H := {Hh :
h ∈ Zq[X] is monic, degree-dH, and irreducible (in Zp[x])} is homomorphic and
ε-universal for ε = 2N

pdH .
In other words, for all z, z′ ∈ D such that z �= z′,

Pr[H(z) = H(z′) : H
$← H] ≤ 2N

pdH
.

Proof. The homomorphic property of hash functions Hh ∈ H follows from that
of the modulo reduction by h ∈ Zq[X]. For the probability of a collision, let
Δ ∈ Zq[X] be a non zero element among the components of z − z′. Then, Δ is
a non zero polynomial of degree at most N , and Hh(z) = Hh(z′) implies that
Δ has h ∈ Zq[X] as a factor, which is equivalent to that Δ has h as a factor in
Zp[X] (after modulo reduction by p).8 Therefore,

Pr[H(z) = H(z′) : H
$← H] ≤ Pr[h divides Δ in Zp[X] : h

$← A(dH, p)]

≤ N

dH
× 1

I(dH, p)
≤ 2N

pdH
,

where A(n, p) (and I(n, p)) denote the set (resp., the number) of monic irre-
ducible polynomials of degree n in Zp[X]; the second inequality follows from the
fact that, in Zp[X], a degree-N polynomial can have at most N/d irreducible
factors of degree d; the third inequality follows from the lower bound of I(n, p)
in the following lemma. ��
8 More precisely, the argument follows if Δ is not zero when reduced modulo p.

Otherwise, Δ = pkδ for some k < e and a polynomial δ which is not zero when
reduced modulo p, and δ has h as a factor in Zp[X]: h|Δ gives that, by division,
δ(X) = h(X)Q(X) + pe−kr(X) in Zq[X] and h is a factor of δ in Zp[X].
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Lemma 4. Let μ be the Möbius function,9 p be a prime number, and n ≥ 1 be
an integer. Let I(n, p) be the number of monic irreducible polynomials in Zp[X]
of degree n. Then,

I(n, p) =
1
n

∑
d|n

μ
(n

d

)
pd.

It also holds for all n that I(n, p) ≥ 1
n (pn − 2p� n

2 �) and I(n, p) ≥ pn

2n . Moreover,
if n is also a prime number, then I(n, p) = 1

n (pn − p). Finally, asymptotically
we have I(n, p) ∼

n→∞
pn

n .

Proof. (sketch) We refer to [VZGG13, Lemma 14.38] for details. Let A(d, p)
denote the set of monic irreducible polynomials of degree d in Zp. Then, from the
fact that Xpn − X =

∏
d|n

∏
φ∈A(d,p) φ, computing the degree of that product

and using the Möbius inversion formula, we get the equation on I(n, p). If n
is prime, then this formula has only two summands, namely for d = 1, and
d = n. From the definition of μ, we get I(n, p) = 1

n (pn − p). The bounds
1
npn ≥ I(n, p) ≥ 1

n (pn − 2p� n
2 �) are not difficult to prove for all n. This implies

the asymptotic statement. For pn ≥ 16, the lower bound above directly implies
I(n, p) ≥ pn

2n . For n = 1 clearly I(1, p) = p ≥ p
2n . Finally for the remaining cases

(pn = 4, 8, 9) it can be checked that I(n, p) ≥ pn

2n also holds. ��
Remark 4 (Setting ε). We can set ε of the homomorphic hash family negligibly
small, e.g., dH ≈ λ logp 2 gives that ε ≈ 1

2λ . In case of our instantiation with BV,
the degree N of polynomials in D is bounded by (df − 1)(D − 1), and ε can be
bounded by 2(df −1)(D−1)

pdH .

Remark 5 (Sampling h). For an efficient instantiation of above homomorphic
hash functions, one has to efficiently sample (uniformly randomly) an h from the
set A(n, p) of monic irreducible polynomials in Zp[X] of degree n. We explain
how to do so in Sect. 4.3.3.

4.3.2 Homomorphic Hash Function - II. Double Hash
Recall that ciphertext additions and multiplications of BV scheme (Sect. 4.1)
respectively correspond to the additions and multiplications of polynomials in
Rq[Y ] and that, in our generic VC scheme (Sect. 3.2), those ciphertext operations
are carried on (Zq[X])[Y ] (polynomials in Y having coefficients from Zq[X]) by
postponing the modulo f operation. Then, we can define a homomorphic hash
with much smaller range Zq[X]/(h), instead of (Zq[X]/(h))D in the previous
section.

Definition 6 (Double Hash Function). Let N and D be positive integers,
and let D = {z ∈ Zq[X][Y ] : degX(z) ≤ N and degY (z) < D}. For a monic

9 For n ∈ Z+, the function is defined as follows: if n is square-free with k prime factors,
μ(n) = (−1)k; if n = 1, μ(n) = 1; otherwise, μ(n) = 0.
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polynomial h ∈ Zq[X] and an element r ∈ Zq[X]/(h), the hash function Hr,h on
D is defined as follows.

Hr,h : D ⊂ Zq[X][Y ] −→ (Zq[X]/(h))[Y ] −→ Zq[X]/(h)∑D−1
i=1 ziY

i �→ ∑D−1
i=1 z̄iY

i �→ ∑D−1
i=1 z̄ir

i

where z̄i := zi (mod h) is the remainder of zi when divided by h in Zq[X].

Note that Hr,h is indeed the composition of Hh (Definition 5) and an eval-
uation map (z(Y ) → z(r)) on (Zq[X])[Y ]. Similarly as the case of single hash
functions (Sect. 4.3.1), we can gather this hash functions into a family of hash
functions which satisfies the ε-universality as follows.

Theorem 4. Let N,D, dH be positive integers and q = pe for a prime p. On
D = {z ∈ Zq[X][Y ] : degX(z) ≤ N and degY (z) < D}, the family of functions
H := {Hr,h : h ∈ Zq[X] is monic, degree-dH, and irreducible (in Zp[x]), and
r ∈ Zq[X]/(h) is from the maximal sampling set (Definition 4) of Zq[X]/(h)} is
homomorphic and ε-universal for ε = 2N+D−1

pdH .
In other words, for all z, z′ ∈ D such that z �= z′,

Pr[H(z) = H(z′) : H
$← H] ≤ 2N + D − 1

pdH
.

Proof. As we noted, Hr,h is the composition of Hh (Definition 5) and an eval-
uation map (z(Y ) → z(r)) on R′

q[Y ] where R′
q := Zq[X]/(h). Therefore, the

homomorphic property of Hr,h ∈ H follows from that of the Hh (Theorem 3)
and that of the evaluation map (z(Y ) ∈ R′

q[Y ] → z(r) ∈ R′
q). For the probability

of a collision, let Δ := z − z′ ∈ Zq[X][Y ]. Then, Δ is a non zero polynomial of
degree at most N in X and of degree less than D in Y . In the following, let
A = A(dH, p) be the set of monic irreducible polynomials of degree n in Zp[X],
and let B be the maximal sampling set (Definition 4) of R′

q. Then,

Pr[H(z) = H(z′) : H
$← H] ≤ Pr

h←A
[Hh(Δ) = 0 ∈ R′

q[Y ]]

+ Pr
r←B

[Hh(Δ)(r) = 0|Hh(Δ) �= 0 ∈ R′
q[Y ]]

≤ 2N

pdH
+

D − 1
pdH

,

where the second inequality follows from Theorem 3 and Lemma 3: on the right
side, the first summand is the result of Theorem 3 while the second summand
follows from the fact that the degree of Hh(Δ) in Y is less than D and that the
size of the maximal sampling set B of R′

q is pdH since R′
q is a Galois ring (see

examples following Lemma 3). ��
We can also set ε of the double hash family negligibly small: in our instan-

tiation with BV, since the degree N of polynomials in D is bounded by
(df − 1)(D − 1),

ε ≤ 2(df − 1)(D − 1) + D − 1
pdH

. (1)
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Remark 6 (Comparison to Single Hash). Utilizing double hashes instead of single
hashes gives better efficiency. With double hash, each addition (resp. multiplica-
tion) gate on the ciphertext space (Zq[X])D = Zq[X][Y ] maps to each addition
(resp. multiplication) gate of R′

q = Zq[X]/(h) while the single hash maps each
of them to at most D additions (resp. D2 multiplications and D additions) of
R′

q. See Sect. 4.4.2 for detailed analysis.

Remark 7 (Sampling r). Recall that the Galois ring Zq[X]/(h) can be identified
as a set {∑dh−1

i=0 aiX
i : ai ∈ {0, 1, 2, . . . , q − 1}} where dh is the degree of h.

Therefore, sampling (uniformly randomly) r from the maximal sampling set
(Definition 4) of Zq[X]/(h) is simple, since the set can be identified as a set
{∑dh−1

i=0 aiX
i : ai ∈ {0, 1, 2, . . . , p − 1}} ⊆ Zq[X]/(h).

4.3.3 Efficient, Public-Coin Sampling of h
We now turn our attention to an efficient sampling method of a monic irreducible
polynomial h of degree dh in Zp[X] for our hash functions (Sect. 4.3). We first
recall a method that is based on a textbook algorithm [Ben81,VZGG13]. It sam-
ples an irreducible polynomial by repeatedly sampling a random monic polyno-
mial, and then checking if it is irreducible by verifying whether it is coprime with
Xpi − X for every i ≤ dh/2. In our version, we slightly change this algorithm
to make explicit the number of public random coins needed to make it fail with
negligible probability.

Theorem 5 (Ben-Or’s Generation of Irreducible Polynomials [Ben81]).
There exists an algorithm that, on input 2dh(dh − 1)λ random elements of Zp,
returns a uniformly sampled monic irreducible polynomial of degree dh in Zp[X],
takes expected number of Õ(d2h log p) operations in Zp (Õ hides logarithmic fac-
tors in dh), and fails with probability ≤ 2−λ.

In the full version we include a description of the algorithm and the proof.
A drawback of the above algorithm is its rejection sampling nature, which in

a public coin instantiation (especially when applying the Fiat-Shamir heuristic to
our protocol) forces us to sample a significant number of random coins (2dh(dh−
1)λ Zp-elements) to make the probability of failure negligible.

To avoid this, we propose an alternative sampling method that achieves a
similar complexity and uses much less random coins, 2dh Zp-elements. It is based
on the following observation: Let Fpdh := Zp[X]/(φ) be a finite field. Then,
it suffices to sample an element of Fpdh which is not contained in any of the
subfields Fpk with k|dh, since the minimal polynomial of such element is monic,
irreducible, and of degree dh in Zp[X]. It turns out that given a generator α of
the multiplicative group F×

pdh
, these sampleable elements are exactly αj where

j =
∑dh−1

i=0 aip
i and (a0, a1, . . . , adh−1) /∈ ⋃

k|dh,k �=dh
Badk, where10

Badk = {(v dh/k) ∈ Zdh
p : v ∈ {0, . . . , p − 1}k}.

10 �v � denotes � concatenations of �v.
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Theorem 6 (Sampling Irreducible Polynomials). The following algorithm,
on input 2dh random elements of Zp, returns a uniformly sampled monic irre-
ducible polynomial of degree dh in Zp[X], takes O(dhM(dh) log p) operations in
Zp where M(dh) denotes the complexity of multiplying polynomials of degree dh

in Zp[X], and fails with probability ≤ 4p−(dh−1) ≈ 2−λ.
[Algorithm]

– Input: A prime p and a degree dh ∈ Z>0.
– Random coins: ρ

(1)
0 , . . . , ρ

(1)
dh−1, ρ

(2)
0 , . . . , ρ

(2)
dh−1 ∈ Zp.

– Output: A monic irreducible polynomial of degree dh in Zp[X].
– Setup:

• Fix a finite field Fpdh := Zp[X]/(φ) with an irreducible polynomial φ ∈
Zp[X] of degree dh.

• Let α be a generator of the multiplicative group F×
pdh

, compute and store

αi = αpi

for i ∈ {1, . . . , dh − 1}.
– Procedure:

1. If (ρ(1)0 , . . . , ρ
(1)
dh−1) /∈ ⋃

k|dh,k �=dh
Badk, set β =

∏dh−1
i=0 α

ρ
(1)
i

i , go to 4.

2. Else if (ρ(2)0 , . . . , ρ
(2)
dh−1) /∈ ⋃

k|dh,k �=dh
Badk, set β =

∏dh−1
i=0 α

ρ
(2)
i

i , go to 4.
3. Else, return fail.
4. Find the minimal polynomial h of β, using the algorithm in [Sho99].
5. Return h

See the full version of the paper for a proof of this result.

Remark 8. Using Fast Fourier Transform algorithms or the Schönhage-Strassen
algorithm we can set M(dh) = Õ(dh) and the complexity above becomes
Õ(d2h log p) (where Õ hides logarithmic factors in dh).

Remark 9. If dh is prime, we only need the coins ρ
(1)
i as step 1 succeeds with

overwhelming probability since |⋃k|dh,k �=dh
Badk| = |Bad1| = p � pdh .

4.4 Efficiency Analysis

In this section, we analyze the efficiency of the generic VC scheme (Sect. 3.2)
instantiated with the concrete building blocks described so far. As before, let
Rt := Zt[X]/(f), let g : (Rt)n → Rt denote the (delegated) computation of
degree less than D over the plaintext space Rt, and P computes (then proves)
the function ĝ : (RD

q )n → Zq[X]D (not RD
q ) that describes SHE.Evalevk(g, ·)

without reduction modulo f .

4.4.1 Combining Instantiations
The aggregation of building blocks can be summarized as follows:

SHE - BVscheme: In the setup, take a polynomial f of (large enough) degree
df and a ciphertext modulus q satisfying 2λ security and correctness of com-
putation of any multivariate polynomial of degree < D for plaintext modulus
t, which sets the ciphertext space RD

q = (Zq[X]/(f))D. See more details in
the full version.
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Homomorphic Hash: Note that the ciphertext space RD
q can be identified as

(a subset of) Zq[X]D or Zq[X][Y ].11 We can use our single hash or double
hash, whose domain and range are as follows.

* Single: {(zi)D−1
i=0 ∈ Zq[X]D : degX(zi) ≤ N} −→ (Zq[X]/(h))D

* Double: {z ∈ Zq[X][Y ] : degX(z) ≤ N and degY (z) < D} −→
Zq[X]/(h)

In both cases, N = (df − 1)(D − 1) as noted before (in Remark following
Theorem 3, 4). Note, in the range of both hash functions, that Zq[X]/(h) is
a Galois ring.

Argument System - GKR protocol over Zq[X]/(h): Since the image of
computations under the hash functions are in the ring Zq[X]/(h) which is a
Galois ring, we can use the GKR protocol to prove and verify such compu-
tations.

Security: We remark that the polynomial h ∈ Zq[X] (where q = pe) should be
chosen of degree logp λ to guarantee ≈ 1

2λ universality (and ≈ 1
2λ soundness)

in the hash functions (resp. in the GKR protocol), from which our scheme
gets ≈ 1

2λ soundness (see Theorem 1, 2, 3, 4).

4.4.2 Complexity of the Instantiation
As expected from the complexity analysis (Lemma 1) in Sect. 3.2, the efficiency
of the instantiation mainly depends on the range space (ring) of hash functions
and the costs of the argument system on that space.

Theorem 7. In the instantiation of our VC scheme with soundness 2−λ and the
BV scheme having Rq := Zq[X]/(f) as a ciphertext ring, assume that a verifier
delegates a function g : Rn

t → Rt of degree less than D, which is described by an
arithmetic circuit C over Rt of size S and depth d. Then, the required complexity
(TP , TV , CC)12 measured by the number of operations (or elements) of Zq is as
follows.

(i) with Single hash:

(Õ((n + D2)df + λD2S), Õ((n + D2)df + λd log (D2S)), O(D2df + λd log (D2S)))

(ii) with Double hash:

(Õ((n + D2)df + λS), Õ((n + D2)df + λd log S), O(D2df + λd log S))

where df is the degree of f ∈ Zq[X] and Õ hides the logarithmic factors. In TP ,
we assume that the prover P already has the result of computation ĝ : (RD

q )n →
Zq[X]D over the ciphertexts.

11 For this, we skip the modulo reduction by f at the (delegated) computation.
12 Each signifies the time complexity of P, that of V, and the communication cost.
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Proof. (sketch) It follows from the fact that the homomorphic image of computa-
tion ĝ : (RD

q )n → Zq[X]D under the single or double hash function, respectively,
is composed of O(D2S) operations or O(S) operations over Zq[X]/(h) (with
deg h = O(λ)), respectively. The output ĝ(c1, . . . , cn) ∈ Zq[X]D ⊂ Zq[X][Y ] is
a polynomial of degree O(D) in Y and of O(Ddf ) in X, hence is composed of
O(D2df ) elements of Zq, and the cost of evaluating hash function (on n input
and 1 output) is Õ((n + D2)df ). See full version for the full proof. ��

Note that computing ĝ : (RD
q )n → Zq[X]D over ciphertexts costs Ω(dfD2S)

operations over Zq, and is roughly ×D costly than the original ciphertext com-
putation SHE.Evalevk(g, ·) : (RD

q )n → RD
q (with mod f) which costs Ω(dfDS).

However, this gap is not significant given that the degree D of computation is
not large.

Remark 10 (Ciphertext Computation vs Proof Generation). Since df =
Ω(

√
λ log q) for the security of BV scheme (from the hardness of LWE), double

hash makes the proof generation cost TP = Õ((n + D2)df + λS) asymptoti-
cally negligible to the cost of computing ĝ (while single hash does not). In other
words, with our scheme, there is no significant additional overhead for P to prove
the correctness of its computation, as will be also demonstrated with concrete
example parameters in the following section.

Table 2. Example parameters for our VC scheme: λBV and λs respectively denote the
bit security of BV scheme and our VC scheme.

Circuit BV scheme GKR and Hash Security

g n d D log t log q log df dh λBV λs

Inn Prod. 28 2 3 8 54 11 136 128.4

Inn Prod. 28 2 3 16 73 12 136 ≥128 128.4

Inn Prod. 210 2 3 16 73 12 136 128.2

Poly Eval. 210 2 4 2 62 11 136 117.5 128.1

Poly Eval. 210 4 6 2 110 12 137 128.8

Poly Eval. 210 4 6 16 187 13 137 ≥128 128.7

Poly Eval. 212 16 18 16 685 15 138 128.6

4.4.3 Concrete Parameters and Examples
To demonstrate the efficiency of our VC, we give some explicit parameters for
the example computation. For Rt := Zt[X]/(f), assume that a verifier delegates
a (multivariate) polynomial g : Ru

t → Rt of (total) degree D. We let g be one of
the two examples given below:

• Inner Product of two input vectors of dimension n over Rt, i.e.,

g : Rn
t × Rn

t −→ Rt

((a1, a2, . . . , an), (b1, b2, . . . , bn)) �→ ∑n
i=1 aibi.
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• (Degree-dF ) Polynomial Evaluation on n parallel input points of Rt, i.e.,

g : Rn
t × RdF +1

t −→ Rn
t

((a1, a2, . . . , an), (F0, F1, . . . , FdF )) �→ (
∑dF

i=0 Fia
i
1,

∑dF
i=0 Fia

i
2, . . . ,

∑dF
i=0 Fia

i
n).

We refer to the full version for the detailed description of above computations
and the derivation of parameters.

In Table 2, we present several parameters for our VC scheme with double
hash for those computations varying n, the depth d (equivalent to the degree of
the input polynomial in the second example) of the circuit g : Ru

t → Rt, and the
plaintext modulus t.

Efficiency Improvement. With Table 2, we can give more concrete analysis
on the efficiency of our VC scheme. In a naive approach without our hashing, the
prover should generate a proof on the computation over Rq = Zq[X]/(f) where
the degree df of f is 211–215 in above examples. In contrast, in our scheme with
hashing, the proof is generated on the computation over Zq[X]/(h) where the
degree dh of h is only 136–139 (≈ λs as expected). Therefore, we can expect
roughly × df

dh
≈ ×15–235 improvement in the cost of proof generation and the

size of proof. It also implies that the cost of proof generation is not significant
compared to the ciphertext computation, since the former is done over the ring
Zq[X]/(h) which is much smaller than the ring Zq[X]/(f) of ciphertext.

We remark that the size of dh does not increase seriously though the tar-
get computation g has more inputs and depth, and aforementioned efficiency
improvement also appears in other computation. In addition, the improvement
can be more drastic if the ciphertext modulus q is a power of prime bigger than
2: if q = pe for a prime p, we can take dh = 139

log p in our examples, resulting in
additional × log p improvement.

5 Context-Hiding VC for Nondeterministic Computations

In this section, we generalize the notion of private VC to support nondetermin-
istic computations and public verifiability with context-hiding. Next, we show
how to extend our construction of Sect. 3 to achieve these properties.

In brief, supporting nondeterministic computations means to consider func-
tions of the form g(x,w) in which the untrusted worker receives an encoding σx

of the input x (which may hide x), holds an additional input w and can produce
an encoding σy that, if computed honestly, is supposed to decode to g(x,w). This
is useful to handle more complex computations, such as ones that use random
coins, non-arithmetic operations (e.g., bit-decompositions) or (secret) computa-
tion parameters. For instance, with this we can prove correct re-randomization of
ciphertexts, or to evaluate polynomials with coefficients provided by the server.

For security, we require a notion similar to the soundness of proof systems,
namely that a dishonest prover holding σx cannot produce an output σy which
decodes to a value y for which there exists no w such that y = g(x,w).

On the other hand, context-hiding—introduced in [FNP20] for deterministic
computations g(x) only—is a property that guarantees that the verifier does not
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learn any information about (x,w) beyond what can be inferred from y. Finally,
public verifiability allows the computation to be verifiable by anyone (possibly
a party different from the one who provided the input).

In the next section we introduce our definitions of context-hiding VC for
nondeterministic computations, and then in the following section we sketch a
construction of this primitive (fully detailed in the full version).

5.1 Definition of VC for Nondeterministic Computation and
Context-Hiding

We extend the notion of verifiable computation from Sect. 2.1 to support non-
deterministic computations and context-hiding, as informally explained above.

Formally, a VC scheme for non-deterministic computations is a tuple of algo-
rithms as defined in Sect. 2.1 with the following differences.

ComputePKg
(σx, w) → σy: Using the public keys, the encoded input σx and an

additional input w, the server computes an encoded version of the function’s
output y = g(x,w).

The notion of correctness considers the additional input w:

Correctness. For any function g and input x and w,

Pr

⎡
⎢⎢⎣

VerifyPKg
(τx, σy) = 1

∧ DecodeSK,SKg
(σy) = g(x,w)

∣∣∣∣∣∣∣∣

(PK,SK) ← Setup(1λ)
(PKg, SKg) ← KeyGenPK(g)

(σx, τx) ← ProbGenPK(x)
σy ← ComputePKg

(σx, w)

⎤
⎥⎥⎦ = 1.

Privacy and Security. The notion of privacy is the same as in the Definition
1. For security, we instead consider the following experiment where OKeyGen(g)
is an oracle that calls KeyGenPK,SK(g) and returns PKg as in Sect. 2.1 (the
difference lies in the final if condition).

Experiment ExpV erif
A [VC, λ]

(PK,SK) ← Setup(1λ);
(x, st) ← AOKeyGen(·)(PK);
(σx, τx) ← ProbGenPK(x);
(g, σ̂y) ← AOKeyGen(·)(st, σx, τx);
acc ← VerifyPKg

(τx, σ̂y);
if acc = 1 and �w : DecodeSK,SKg

(σ̂y) = g(x,w) output 1;
else output 0;

Context-Hiding. Note that, in the definition of a publicly verifiable VC scheme,
anyone with PKg and τx can run Verify on σy to verify the correctness of the
computation. A party who has the secret keys SKg, SK can additionally get
the computation result y encoded in σy.
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In some applications, however, one may want to be assured that σy reveals
nothing beyond y. In particular, it should not leak information about the inputs
(x,w). We formalize this property in the following context-hiding notion. More
specifically, we are interested in modeling two cases:

(a) no information about (x,w) should be leaked to a party that has τx (for
verification) and SK,SKg (for decoding of σy) together with σy;

(b) no information about w should be leaked to a party that, in addition to the
information above (i.e., SK,SKg, τx) has σx.

To motivate the properties above, consider an application where Alice stores
encrypted confidential data x on a server P and allows a user Bob to get the
results of a classification algorithm (computed by P with its own secret parame-
ters w) on her data. In this case, one can be interested that no information about
Alice’s data x and the server’s parameters w are leaked to Bob from the encoding
σy when he decodes the result, e.g., in the case of lattice-based encryption, the
noise revealed during the decryption of ciphertexts exposes such information.
Furthermore, there can be use cases where Alice and Bob are the same entity,
in which case we want to keep w hidden even to the party that knows x and its
encoding σx.

Definition 7 (Context Hiding). A VC scheme is context-hiding if there exist
simulator algorithms Sτ , S1, S2, S3,a, S3,b such that:

1. the keys (PK,SK) and (PK∗, SK∗) are statistically indistinguishable, where
(PK,SK)← Setup(1λ) and (PK∗, SK∗, td)← S1(1λ);

2. for any g the keys (PKg, SKg) and (PK∗
g , SK∗

g ) are statistically indistinguish-
able, where (PKg, SKg)← KeyGenPK,SK(g) and (PK∗

g , SK∗
g , tdg)← S2(td, g);

3. for any simulated keys (PK∗, SK∗, td)← S1(1λ), (PK∗
g , SK∗

g , tdg)←
S2(td, g), any function g, any inputs (x,w), and any honestly generated
input/output encodings (σx, τx)← ProbGenPK(x), σy ← ComputePKg

(σx, w),
the following distributions are negligibly close:
(a) (PK∗, SK∗, PK∗

g , SK∗
g , τx, σy) ≈ (PK∗, SK∗, PK∗

g , SK∗
g , τ∗

x , σ∗
y)

where τ∗
x ← Sτ (td) and σ∗

y ←S3,a(tdg, τ
∗
x , g(x,w));

(b) (PK∗, SK∗, PK∗
g , SK∗

g , σx, τx, σy) ≈ (PK∗, SK∗, PK∗
g , SK∗

g , σx, τx, σ∗
y)

where σ∗
y ← S3,b(tdg, τx, g(x,w)).

In the following lemma we show that property (3.a) of Definition 7 can be
reduced to a simpler requirement essentially saying that τx statistically hides x.

Lemma 5. Let VC be a VC scheme for which there exist simulator algo-
rithms S1, S2, S3,b such that properties 1,2,3.b of Definition 7 hold. Fur-
thermore, assume there exists a simulator algorithm Sτ such that, for any
(PK∗, SK∗, td)← S1(1λ), for any input x and (σx, τx)← ProbGenPK(x), we
have Sτ (td) ≈ τx. Then VC satisfies Definition 7.
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Proof. We prove the lemma by constructing the simulator S3,a from S3,b and Sτ

as follows. Let S3,a(td, τ∗
x , y) be the algorithm that simply outputs S3,b(td, τ∗

x , y).
To see that property (3.a) of Definition 7 is satisfied: first, observe that property
3.b holds even when removing σx from the view; second, we can create an hybrid
view in which we replace τx with a simulated one τ∗

x ←Sτ (td). By the simulation
property of Sτ this view is negligibly close to the previous one (i.e., that of
property (3.b) without σx). Also, the latter view is identical to that in the right-
hand side of property (3.a). ��

Note that, as introduced in [FNP20], context-hiding is a meaningful property
even in the case of deterministic computations, i.e., for empty w, where it assures
that the values τx and σy do not reveal additional information on the input x.

5.2 Overview of Our Construction

We give an informal description of our VC construction that supports non-
deterministic computations and context-hiding. For space restrictions, a detailed
description of the scheme and the necessary building blocks are in the full version.

Let g : Rn
t × Rm

t → Rt denote the nondeterministic computation to be
delegated, and let x ∈ Rn

t and w ∈ Rm
t be the inputs of the client C and the prover

P respectively. Also, assume that P receives an encryption cx = SHE.Encpk(x).
In order to compute an encryption of g(x,w), P can first encode w in a

ciphertext cw,13 and then perform the corresponding encrypted computation
ĝ : (RD

q )n × (RD
q )m → Zq[X]D (without reduction modulo f)14 to obtain cy =

ĝ(cx, cw). Note that checking the validity of such cy means to check that

∃cw ∈ Ω : cy = ĝ(cx, cw)

where Ω is a (sub)set of valid ciphertexts.
Computing cy in this way would not be enough for context-hiding, as cy (in

particular its “noise”) may contain information on (x,w). To solve this issue, we
exploit the noise flooding technique: P adds to the result ĝ(cx, cw) an encryption
c0 of 0 with large noise that statistically hides the noise in ĝ(cx, cw). If we let
Ω0 ⊂ {SHE.Encpk(0)} be a subset of encryptions of 0 with the appropriate noise
level, then checking the validity of such computation means to check that

∃cw ∈ Ω, c0 ∈ Ω0 : cy = ĝ(cx, cw) + c0

For the sake of achieving context-hiding, the above statement must be ver-
ifiable without knowing cx, as context-hiding asks for hiding x even against a
party who has the decryption key SK and may thus figure out x from cx. For
this reason, we follow an approach similar to [FNP20]: the client creates a com-
mitment comx to cx and gives to the verifier τx = comx, while the prover proves
that it knows (cx, cw, c0) such that comx opens to cx, cw ∈ Ω, c0 ∈ Ω0 and
cy = ĝ(cx, cw) + c0.
13 This operation can be deterministic, e.g., embedding w in the ciphertext space.
14 Recall that Rq := Zq[X]/(f) and ĝ(cx, cw) mod f = FHE.Evalpk(g, (cx, cw)).
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Next, to avoid that the cost of generating the proof above depends on
O(|ĝ| · df ) we adapt the homomorphic hashing technique to this context. In
our (interactive) protocol, the prover sends to the verifier the result cy (as in
Sect. 3) as well as commitments (comw, com0) to (cw, c0) and proves knowledge
of their opening; next the verifier picks a homomorphic hash function H; finally,
the prover creates a proof that the openings (cx, cw, c0) of (comx, comw, com0)
are such that:

H(cy) = ĝ(H(cx),H(cw)) + H(c0) ∧ cw ∈ Ω ∧ c0 ∈ Ω0

Starting from this idea, we enhance it in two ways.
First, by using the commit-and-prove paradigm we split further the statement

above into two statements linked by the same commitment. Namely, we let the
prover commit to (γx = H(cx), γw = H(cw), γ0 = H(c0)) in (com′

x, com′
w, com′

0)
and then prove the following two relations w.r.t. such commitment:

RH : γx = H(cx) ∧ γw = H(cw) ∧ γ0 = H(c0) ∧ cw ∈ Ω ∧ c0 ∈ Ω0

Rĝ : H(cy) = ĝ(γx, γw) + γ0

With this splitting we can use two separate proof systems: one for Rĝ which is
the computation ĝ(·) (over the small ring DH), and one for RH which is about
correct hashing and the suitability of the committed ciphertexts cw, c0.

Second, by exploiting the structure of the BV HE scheme, we discuss how
to encode the checks cw ∈ Ω ∧ c0 ∈ Ω0 in an efficient manner. For c0 ∈ Ω0, we
assume that in the (trusted) key generation one generates a vector of ciphertexts
ω0 = (ω0,i)z

i=1 such that each of them is an encryption of 0. Then, c0 can be
generated as 〈β, ω0〉 where β ∈ {0, 1}z is a random binary vector. This way
proving c0 ∈ Ω0 boils down to proving that ∃β ∈ {0, 1}z : c0 = 〈β, ω0〉.

For cw ∈ Ω, we prove the embedding of the plaintext in the ciphertext space.
Namely, parsing cw as the vector of coefficients (cw,1, . . . , cw,(D+1)·df

), we need
to prove that cw,i ∈ (−t/2, t/2] ∩ Z, for i = 1 to df , and cw,i = 0 for all i > df .

The solution sketched above needs two commit-and-prove arguments, one for
RH and one for Rĝ. We also present a variant VC construction in which the rela-
tion Rĝ can be proven using a non-zero-knowledge verifiable computation such as
GKR. In this case, we reveal the values (γx = H(cx), γw = H(cw), γ0 = H(c0))
to the verifiers, yet we show how this can preserve context-hiding. Roughly, we
prove that when c is a fresh ciphertext (and thus has enough entropy), its hash
H(c) does not reveal any information about it. To use this assumption we mod-
ify the VC construction so that cw is freshly encrypted (instead of embedding a
plaintext in a deterministic way), whereas for cx we show that it can be hashed
a bounded number of times without loosing information on it. This assump-
tion can also be removed if the prover re-randomizes cx and proves its correct
re-randomization in RH .
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Abstract. Transferable e-cash is the most faithful digital analog of
physical cash, as it allows users to transfer coins between them in isola-
tion, that is, without interacting with a bank or a “ledger”. Appropriate
protection of user privacy and, at the same time, providing means to
trace fraudulent behavior (double-spending of coins) have made instan-
tiating the concept notoriously hard. Baldimtsi et al. (PKC’15) gave a
first instantiation, but, as it relies on a powerful cryptographic primitive,
the scheme is not practical. We also point out a flaw in their scheme.

In this paper we revisit the model for transferable e-cash and propose
simpler yet stronger security definitions. We then provide the first con-
crete construction, based on bilinear groups, give rigorous proofs that it
satisfies our model, and analyze its efficiency in detail.

1 Introduction

Contrary to so-called “crypto”-currencies like Bitcoin [Nak08], a central ambition
of the predating cryptographic e-cash has been user anonymity. Introduced by
Chaum [Cha83], the goal was to realize a digital analog of physical cash, which
allows users to pay without revealing their identity; and there has been a long
line of research since [CFN88,Bra93,CHL05,BCKL09,FHY13,CPST16,BPS19]
(to name only a few). In e-cash, a bank issues electronic coins to users, who can
then spend them with merchants, who in turn can deposit them at the bank to
get their account credited. User privacy should be protected in that not even
the bank can link the withdrawing of a coin to its spending.

The main difference to the physical world is that digital coins can easily
be duplicated, and therefore a so-called “double-spending” of a coin must be
prevented. This can be readily achieved when all actors are online and connected
(as with cryptocurrencies), since every spending is broadcast and payees simply
refuse a coin that has already been spent.

Even in “anonymous” cryptocurrencies like Monero [vS13], which now also
uses confidential transactions [Max15], or systems based on the Zerocoin/-
cash [MGGR13,BCG+14] protocol, like Zcash [Zec20], or on Mimblewimble
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 559–590, 2021.
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[Poe16,FOS19], users must be connected when they accept a payment, in order
to prevent double-spending.

When users are allowed to spend coins to other users (or merchants) without
continuous connectivity, then double-spending cannot be prevented; however,
starting with [CFN88], ingenious methods have been devised for revealing a
double-spender’s identity while guaranteeing the privacy of all honest users.

Transferable E-Cash. In all traditional e-cash schemes, including such
“offline” e-cash, once a coin is spent (transferred) after withdrawal, it must
be deposited at the bank by the payee. A more powerful concept, and much
more faithful to physical e-cash, is transferable e-cash, which allows users to
re-transfer obtained coins, while at the same time remaining offline. Note that
cryptocurrencies are inherently online, and every transfer of a coin could be seen
as depositing a coin (and marking it spent) and re-issuing a new one (in the
ledger).

Transferable e-cash was first proposed by Okamoto and Ohta [OO89,OO91],
but the constructions only guaranteed very weak forms of anonymity. It was
then shown [CP93] that unbounded adversaries can recognize coins they owned
earlier and that a coin must grow in size with every transfer (since information
about potential double-spenders needs to be encoded in it).

While other schemes [Bla08,CGT08] only achieve unsatisfactory anonymity
notions, Canard and Gouget [CG08] define a stronger notion (which we call coin
transparency): it requires that a (polynomial-time) adversary cannot recognize
a coin he has already owned when it is later given back to him. This is not
achieved by physical cash, as banknotes can be marked by users (or the bank);
however, if an e-cash scheme allowed a merchant to identify users by tracing
the coins given out as change, then it would violate the central claim of e-
cash, namely anonymous payments. (Anonymous cryptocurrencies also satisfy a
notion analogous to coin transparency.) A limitation of this notion is that the
bank (more specifically, the part dealing with deposits) must be honest, as it
must be able to link occurrences of the same coin to detect double-spending.

Prior Schemes. The first scheme achieving coin transparency [CG08] was com-
pletely impractical, as at every transfer, the payer sends a proof of (a proof of
(. . . (a proof of a coin). . . )) that she received earlier. The first practical scheme
was given by Fuchsbauer et al. [FPV09], but it makes unacceptable compromises
elsewhere: when a double-spending is detected, all (even innocent) users up to
the double-spender must give up their anonymity.

Blazy et al. [BCF+11] overcome this problem and propose a scheme that
assumes a trusted party (called the “judge”) that can trace all coins and users
in the system and has to actively intervene to identify double-spenders. The
scheme thus reneges on the promise that users remain anonymous as long as
they follow the protocol. Moreover, their proof of anonymity was flawed, as
shown by Baldimtsi et al. [BCFK15].

Despite all its problems, Blazy et al.’s [BCF+11] scheme, which ele-
gantly combined randomizable non-interactive zero-knowledge (NIZK) proofs
[BCC+09] and commuting signatures [Fuc11], serves as starting point for our
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construction. In their scheme a coin consists of a signature by the bank and at
every transfer the spender adds her own signature (thereby committing to her
spending). To achieve anonymity, these signatures are not given in the clear;
instead, coins are NIZK proofs of knowledge of signatures. Since the proofs can
be rerandomized (that is, from a proof, anyone can produce a new proof of the
same statement that looks unrelated to the original proof), coins can change
appearance after every transfer. Users will thus not recognize a coin when they
see it again later, meaning the scheme satisfies coin transparency.

Baldimtsi et al. [BCFK15] give an instantiation that avoids the “judge” by
using a double-spending-tracing mechanism from classical offline e-cash. They
add “tags” to the coin that hide the identity of the owner of the coin, except
when she spends the coin twice, then the bank can from two such tags compute
the user’s identity. Users must also include signatures in the coin during transfer,
which represent irrefutable proof of double-spending.

The main drawback of their scheme is efficiency. They rely on the concept
of malleable signatures [CKLM14], a generalization of digital signatures, where
a signature on a message m can be transformed into a signature on a message
T (m) for any allowed transformation T . Simulation unforgeability requires that
from a signature one can extract all transformations it has undergone (even when
the adversary that created it has seen “simulated” signatures).

In their scheme [BCFK15] a coin is a malleable signature computed by the
bank, which can be transformed by a user if she correctly encodes her identity
in a double-spending tag, adds an encryption (under the bank’s public key) to
it and randomizes all encryptions of previous tags contained in the coin.

None of the previous schemes explicitly considers denominations of coins
(and neither do we). This is because efficient (“compact”) withdrawing and
spending can be easily achieved if the bank associates different keys to different
denominations (since giving change is readily supported in transferable e-cash).
Note that, in contrast to cryptocurrencies, where every transaction is publicly
posted, hiding the amount of a payment is meaningless in transferable e-cash.

Our Contribution: Security Model. We revisit the formal model for trans-
ferable e-cash, starting from [BCFK15], whose model was a refined version of
earlier ones. We then exhibit attacks against users who follow the protocol,
against which previous models did not protect:

– When a user receives a coin (that is, the protocol accepts the received coin),
then previous models did not guarantee that this coin will be accepted by
other (honest) users when transferred. An adversary could thus send a mal-
formed coin to a user, which the latter accepts but can then not spend.

– There were also no guarantees against a malicious bank which at coin deposit
refuses to credit the user’s account (e.g., by claiming that the coin was invalid
or had been double-spent). In our model, when the bank refuses a coin, it
must accuse a user of double-spending and provide a proof for this.

We then simplify the anonymity definitions, which in earlier version had
been cluttered with numerous oracles the adversary has access to, and for which
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the intuitive notion that they were formalizing was hard to grasp. While our
definitions are simpler, they are stronger in that they imply previous definitions
(except for the previous notion of “spend-then-receive (StR) anonymity”, whose
existing formalizations we argue are not relevant in practice).

We also show that the proof of “StR anonymity” (a notion similar to coin
transparency) of the scheme from [BCFK15] is flawed and that it only satisfies
a weakening of the notion (Sect. 3.2).

Our Contribution: Instantiation. Our main contribution is a transferable
e-cash scheme, which we prove satisfies our security model, and which is more
efficient than the only previous realization [BCFK15]. Unfortunately, the authors
do not provide concrete numbers, as they use malleable signatures in a black-
box way. Arguably, these signatures are the main source of inefficiency, due
to their generality and the strong security notions in the spirit of simulation-
sound extractability, requiring that a coin (i.e., a malleable signature) stores
every transformation it has undergone.

In contrast, we give a direct construction from the following primitives:
Groth-Sahai proofs [GS08], which are randomizable; structure-preserving sig-
natures [AFG+10], which are compatible with GS proofs; and rerandomizable
encryption satisfying RCCA-security [CKN03] (the corresponding variant of
CCA security, see Fig. 6). While we use signature schemes from the literature
[AGHO11,Fuc11], we construct a new RCCA-secure encryption scheme that is
tailored to our scheme, basing it on prior work [LPQ17]. Finally, our scheme also
uses the (efficient) double-spending tags used previously [BCFK15].

Due to the existence of an omnipotent “judge”, no such tags were required
by Blazy et al. [BCF+11]. Interestingly, although we do not assume any active
trusted parties, we achieve a comparable efficiency, which is a result of realizing
the full potential of the tags: previously [BCFK15], tags had only served to
encode a user’s identity; but, as we show, they can in addition be used to commit
the user. This allows us, contrary to all previous instantiations, to completely
forgo the inclusion of user signatures in the coins, which considerably reduces
their size. For a more detailed (informal) overview of our scheme see Sect. 5.1.

In terms of efficiency, our coins grow by around 100 elements from a bilinear
group per transfer (see table on p. 28). We view this as practical by current stan-
dards, especially in view of numbers for deployed schemes: e.g., the parameters
for Zcash consist of several 100 000 bilinear-group elements [Zec20].

2 Definition of Transferable E-Cash

The syntax and security definitions we present in the following are refinements
of earlier work [CG08,BCF+11,BCFK15].

2.1 Algorithms and Protocols

An e-cash scheme is set up by running ParamGen and the bank generating its key
pair via BKeyGen. The bank maintains a list of users UL and a list of deposited
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coins DCL. Users run the protocol Register with the bank to obtain their secret
key, and their public keys are added to UL. With her secret key a user can run
Withdraw with the bank to obtain coins, which she can transfer to others via the
protocol Spend.

Spend is also used when a user deposits a coin at the bank. After receiving a
coin, the bank runs CheckDS (for “double-spending”) on it and the previously
deposited coins in DCL, which determines whether to accept the coin. If so, it is
added to DCL; if not (in case of double-spending), CheckDS returns the public
key of the accused user and a proof Π, which can be verified using VfyGuilt.

ParamGen(1λ),on input the security parameter λ in unary, outputs public param-
eters par, which are an implicit input to all of the following algorithms.

BKeyGen() is run by the bank B and outputs its public key pkB and its secret
key skB = (skW , skD, skCK), where skW is used to issue coins in Withdraw
and to register users in Register; skD is used as the receiver secret key when
coins are deposited via Spend; and skCK is used for CheckDS.

Register〈B(skW),U(pkB)〉 is a protocol between the bank and a user. The user
obtains a secret key sk and the bank gets pk, which it adds to UL.

Withdraw〈B(skW),U(skU , pkB)〉is run between the bank and a user, who outputs
a coin c (or ⊥ in case of error), while the bank outputs ok (in which case it
debits the user’s account) or ⊥.

Spend〈U(c, sk, pkB),U ′(sk′, pkB)〉 is run between two users and lets U spend a
coin c to U ′ (who could be the bank). U ′ outputs a coin c′ (or ⊥), while U
outputs ok (or ⊥).

CheckDS(skCK,UL,DCL, c), run by the bank, takes as input its checking key,
the lists of registered users UL and of deposited coins DCL and a coin c. It
outputs an updated list DCL (when the coin is accepted) or a user public key
pkU and an incrimination proof Π.

VfyGuilt(pkU ,Π) can be executed by anyone. It takes a user public key and an
incrimination proof and returns 1 (acceptance of Π) or 0 (rejection).

Note that we define a transferable e-cash scheme as stateless, in that there is
no state information shared between the algorithms. A withdrawn coin, whether
it was the first or the n-th coin issued to a specific user, is always distributed
the same. Moreover, a received coin will only depend on the spent coin (and not
on other spent or received coins). Thus, the bank and the users need not store
anything about past transactions for transfer; the coin itself must be sufficient.

In particular, the bank can separate withdrawing from depositing, in that
CheckDS, used during deposit, need not be aware of the withdrawn coins.

2.2 Security Definitions

Global Variables. In our security games, we store all information about users
and their keys in the user list UL. Its entries are of the form (pki, ski,udsi),
where udsi indicates how many times user Ui has double-spent.

In the coin list CL, we keep information about the coins created in the system.
For each withdrawn or spent coin c, we store a tuple (owner, c, cds, origin), where
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owner stores the index i of the user who withdrew or received the coin (coins
obtained by the adversary are not stored); cds counts how often this specific
instance of the coin has been spent; origin is set to “B” if the coin was issued
by the honest bank and to “A” if it originates from the adversary; if the coin
was originally spent by the challenger itself, then origin indicates which original
coin this transferred coin corresponds to.

Finally, we maintain a list of deposited coins DCL.

Oracles. Our security games use oracles, which differ depending on whether the
adversary impersonates a corrupt bank or users. If during the oracle execution
an algorithm fails (i.e., it outputs ⊥) then the oracle also stops. Otherwise the
call to the oracle is considered successful ; a successful deposit oracle call must
also not detect any double-spending.

Registration and Corruption of Users. The adversary can instruct the creation
of honest users and either play the role of the bank during registration, or pas-
sively observe registration. It can moreover “spy” on users, meaning it can learn
the user’s secret key. This will strengthen yet simplify our anonymity games
compared to [BCFK15], where once the adversary had learned the secret key
of a user (by “corrupting” her), the user could not be a challenge user in the
anonymity games anymore (yielding selfless anonymity, while we achieve full
anonymity).

BRegist() plays the bank side of Register and interacts with A. If successful, it
adds (pk,⊥,uds = 0) to UL (where uds is the number of double-spends).

URegist()plays the user side of the Register protocol when the bank is controlled
by the adversary. Upon successful execution, it adds (pk, sk, 0) to UL.

Regist() plays both parties in the Register protocol and adds (pk, sk, 0) to UL.
Spy(i), for i ≤ |UL|, returns user i’s secret key ski.

Withdrawal Oracles. The adversary can either withdraw a coin from the bank,
play the role of the bank, or passively observe a withdrawal.

BWith() plays the bank side of the Withdraw protocol. Coins withdrawn by A
(and thus unknown to the experiment) are not added to the coin list CL.

UWith(i) plays user i in Withdraw when the bank is controlled by the adversary.
Upon obtaining a coin c, it adds (owner = i, c, cds = 0, origin = A) to CL.

With(i) simulates a Withdraw protocol execution playing both B and user i. It
adds (owner = i, c, cds = 0, origin = B) to CL.

Spend and deposit oracles.

Spd(j) spends the coin from the j-th entry (ownerj , cj , cdsj , originj) in CL to A,
who could be impersonating a user, or the bank during a deposit. The oracle
plays U in the Spend protocol with secret key skownerj . It increments the coin
spend counter cdsj by 1. If afterwards cdsj > 1 then the owner’s double-
spending counter udsownerj is incremented by 1.
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Fig. 1. Game for soundness (protecting users from financial loss)

Rcv(i)makes honest user i receive a coin from A. The oracle plays U ′ in the Spend
protocol with user i’s secret key. It adds a new entry (owner = i, c, cds = 0,
origin = A) to CL.

S&R(j, i) spends the j-th coin in CL to user i. It runs (ok, c) ← Spend〈U(cj ,
skownerj , pkB),U ′(ski, pkB)〉 and adds (owner = i, c, cds = 0, origin = j) to
CL. It increments the coin spend counter cdsj by 1. If afterwards cdsj > 1,
then udsownerj is incremented by 1.

BDepo()lets A deposit a coin. It runs U ′ in Spend using the bank’s secret key skD
with the adversary playing U . If successful, it runs CheckDS on the received
coin and either updates DCL or returns a pair

(
pk,Π

)
.

Depo(j),the honest deposit oracle, runs Spend between the owner of the j-th coin
in CL and an honest bank. If successful, it increments cdsj by 1; if afterwards
cdsj > 1, it also increments udsownerj . It runs CheckDS on the received coin
and either updates DCL or returns a pair

(
pk,Π

)
.

(No “UDepo” is needed since Spd lets user deposit at an adversarial bank.)

2.3 Economic Properties

We distinguish two types of security properties of transferable e-cash schemes.
Besides anonymity notions, economic properties ensure that neither the bank
nor users will incur an economic loss when participating in the system.

The following property was not required in any previous formalization of
transferable e-cash in the literature and is analogous the property clearing
defined for classical e-cash [BPS19].

Soundness. If an honest user accepted a coin during a withdrawal or a transfer,
then she is guaranteed that the coin will be accepted by others, either honest
users when transferring, or the bank when depositing. The game is formalized
in Fig. 1 where i2 plays the role of the receiver of a spending or the bank. For
convenience, we define probabilistic polynomial-time (PPT) adversaries A to be
stateful in all our security games.

Definition 1 (Soundness). A transferable e-cash system is sound if for any
PPT A, we have Advsound

A (λ) := Pr[ExptsoundA (λ) = 1] is negligible in λ.
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Unforgeability. This notion covers both unforgeability and user identification
from [BCFK15] (which were not consistent as we explain in Sect. 3.2). It protects
the bank, ensuring that no (coalition of) users can spend more coins than the
number of coins they withdrew. Unforgeability also guarantees that whenever a
coin is deposited and refused by CheckDS, it returns the identity of a registered
user, who is accused of double-spending. (Exculpability, below, ensures that no
innocent user will be accused.) The game is given in Fig. 2 and lets the adversary
impersonate all users.

Fig. 2. Game for unforgeability (protecting the bank from financial loss)

Definition 2 (Unforgeability). A transferable e-cash system is unforgeable
if Advunforg

A (λ) := Pr[ExptunforgA (λ) = 1] is negligible in λ for any PPT A.

Exculpability. This notion, a.k.a. non-frameability, ensures that the bank, even
when colluding with malicious users, cannot wrongly accuse an honest user of
double-spending. Specifically, it guarantees that an adversarial bank cannot pro-
duce a double-spending proof Π∗ that verifies for the public key of a user i∗ that
has never double-spent. The game is formalized as in Fig. 3.

Fig. 3. Game for exculpability (protecting honest users from accusation)

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
Advexcul

A (λ) := Pr[ExptexculA (λ) = 1] is negligible in λ for any PPT A.
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2.4 Anonymity Properties

Instead of following previous anonymity notions [BCF+11,BCFK15], we intro-
duce new ones which clearly distinguish between the adversary’s capabilities; in
particular, whether or not it is able to detect double-spending. When the adver-
sary impersonates the bank, we consider two cases: user anonymity and coin
anonymity (and explain why this distinction is necessary).

As transferred coins necessarily grow in size [CP93], we can only guarantee
indistinguishability of comparable coins. We therefore define comp(c1, c2) = 1 iff
size (c1) = size (c2), where size(c) = 1 after c was withdrawn and it increases
by 1 after each transfer.

Coin Anonymity. This notion is closest to (and implies) the anonymity notion
of classical e-cash: an adversary, who also impersonates the bank, issues two coins
to the challenger and when she later receives them (via a deposit in classical e-
cash), she should not be able to associate them to their issuances. In transferable
e-cash, we allow the adversary to determine two series of honest users via which
the coins are respectively transferred before being given back to the adversary.

The experiment is specified on the left of Fig. 4: users i(0)0 and i(1)0 withdraw
a coin from the adversarial bank, user i(0)0 passes it to i(0)1 , who passes it to i(0)2 ,
etc., In the end, the last users of the two chains spend the coins to the adversary,
but the order in which this happens depends on a bit b that parametrizes the
game, and which the adversary must decide.

Fig. 4. Games for coin and user anonymity (protecting users from a malicious bank)

User Anonymity. Coin anonymity required that users who transfer the coin
are honest. If one of the users through which the coin passes colluded with the
bank, there would be a trivial attack: after receiving the two challenge coins, the
bank simulates the deposit of one of them and the deposit of the coin intercepted
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by the colluding user. If a double-spending is detected, it knows that the received
coin corresponds to the sequence of users which the colluder was part of.

Since double-spending detection is an essential feature of e-cash, attacks of
this kind are impossible to prevent. However, we still want to guarantee that,
while the bank can trace coins, the involved users remain anonymous. We formal-
ize this in the game on the right of Fig. 4, where, in contrast to coin anonymity,
there is only one coin and the adversary must distinguish the sequence of users
through which the coin passes before returning to her. In contrast to coin
anonymity, we now allow the coin to already have some “history”, rather than
being freshly withdrawn.

Fig. 5. Game for coin transparency (protecting users from malicious users)
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Coin Transparency. This is arguably the strongest anonymity notion and it
implies that a user that transfers a coin cannot recognize it if she receives it
again. As the bank can necessarily trace coins (for double-spending detection),
it is assumed to be honest for this notion. Actually, only the detection key skCK
must remain hidden from the adversary, while skW and skD can be given.

The game formalizing this notion, specified in Fig. 5, is analogous to coin
anonymity, except that the challenge coins are not freshly withdrawn; instead,
the adversary spends two coins of its choice to users of its choice, both are passed
through a sequence of users of the adversary’s choice and one of them is returned
to the adversary.

There is another trivial attack that we need to exclude: the adversary could
deposit the coin that is returned to him and one, say the first, of the coins
he initially transferred to an honest user. Now if the deposit does not succeed
because of double-spending, the adversary knows that it was the first coin that
was returned to him. Again, this attack is unavoidable due to the necessity of
double-spending detection. It is a design choice that lies outside of our model to
implement sufficient deterrence from double-spending, so that it would exceed
the utility of breaking anonymity.

This is the reason why the game aborts if the adversary deposits twice a
coin from the set of “challenge coins” (consisting of the two coins the adversary
transfers and the one it receives). The variable ctr counts how often a coin from
this set was deposited. Note also that because A has skW , and can therefore
create unregistered users, we do not consider UL in this game.

Definition 4 (Anonymity). For x ∈ {c − an, u − an, c − tr} a transferable e-
cash scheme satisfies x if Advx

A(λ) := Pr[ExptxA,1 (λ) = 1] − Pr[ExptxA,0 (λ) =
1] is negligible in λ for any PPT adversary A.

3 Comparison with Previous Work

3.1 Model Comparison

In order to justify our new model, we start with discussing a security vulnera-
bility of the previous model [BCFK15].

No Soundness Guarantees. In none of the previous models was there a secu-
rity notion that guaranteed that an honest user could successfully transfer a coin
to another honest user or the bank, even if the coin was obtained regularly.

Fuzzy Definition of “Unsuccessful Deposit”. Previous models defined a
protocol called “Deposit”, which we separated into an interactive (Spend) and a
static part (CheckDS). In their definition of unforgeability, the authors [BCFK15]
use the concept of “successful deposit”, whose meaning is unclear, since an
“unsuccessful deposit” could mean one of the following:

– The bank detects a double-spending and provides a proof accusing the cheater
(who could be different from the depositer).
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– The user did not follow the protocol (e.g., by sending a malformed coin), in
which case we cannot expect a proof of guilt from the bank.

– The user followed the protocol but using a coin that was double-spent (either
earlier or during deposit); however, the bank does not obtain a valid proof of
guilt and outputs ⊥.

Our interpretation of the definition in [BCFK15] is that it does not distinguish
the second and the third case. This is an issue, as the second case cannot be
avoided (and must be dealt with outside the model, e.g. by having users sign
their messages). But the third case should be prevented so the bank does not
lose money without being able to accuse the cheater. This is now guaranteed by
our unforgeability notion in Definition 2.

Simplification of Anonymity Definitions. We believe that our notions are
more intuitive and simpler (e.g. by reducing the number of oracles of previous
work). Our notions imply prior notions from the literature: we can prove that
the existence of an adversary in a game from a prior notion implies the existence
of an adversary in one of our games. (The general idea is to simulate most of
the oracles using the secret keys of the bank or users, which in our notions can
be obtained via the Spy oracle.) In particular:

c-an ⇒ OtR-fa and u-an ⇒ StR*-fa

where OtR-fa is observe-then-receive full anonymity [CG08,BCF+11,BCFK15]
and StR*-fa is a variant of spend-then-receive full anonymity from [BCFK15].

The notion StR-fa [CG08,BCF+11] is similar to our coin transparency c-tr,
with the following differences: in StR-fa, when the adversary deposits a coin,
the bank provides a guilt proof when it can; and it lets the adversary obtain
user secret keys. Coin transparency would imply StR-fa if CheckDS replaced its
argument UL by ∅. This change is justified since (in both StR-fa and c-tr) the
adversary can create unregistered users (using skW), and thus CheckDS could
return ⊥ because it cannot accuse anyone in UL.

Finally, no prior scheme, including [BCFK15], achieves StR-fa, as
shown next.

3.2 A Flaw in a Proof in BCFK15

The authors [BCFK15] claim that their scheme satisfies StR-fa as defined in
[BCF+11] (after having discovered a flaw in the StR-fa proof of the scheme of
that paper). To achieve this anonymity notion (the most difficult one, as they
note), they use malleable signatures, which guarantee that whenever an adver-
sary, after obtaining simulated signatures, outputs a valid message/signature
pair (m,σ), it must have derived the pair from received signatures. Formally,
there exists an extractor that can extract a transformation from σ that links m
to the messages on which the adversary queried signatures.

In the game formalizing StR-fa [BCF+11] (analogously to Exptc-tr in Fig. 5)
the adversary receives skW , which formalizes the notion that the part of the bank
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that issues coins can be corrupt. In their scheme [BCFK15], skW contains the
signing key for the malleable signatures. However, with this the adversary can
easily compute a fresh signature, and thus no extractor can recover a trans-
formation explaining the signed message. This shows that a scheme based on
malleable signatures only satisfies a weaker notion of StR-fa/c-tr, where all
parts of the bank must be honest.

In contrast, we prove that our scheme satisfies c-tr; it can therefore be seen
as the first scheme to satisfy the “spirit” of StR-fa, as captured by c-tr.

4 Primitives Used in Our Construction

4.1 Bilinear Groups

The building blocks of our scheme will be defined over a (Type-3, i.e., “asym-
metric”) bilinear group, which is a tuple Gr = (p,G, Ĝ,GT , e, g, ĝ), where G, Ĝ

and GT are groups of prime order p; 〈g〉 = G, 〈ĝ〉 = Ĝ, and e : G× Ĝ → GT is a
bilinear map (i.e., for all a, b ∈ Zp: e(ga, ĝb) = e(g, ĝ)ab) so that e(g, ĝ) generates
GT . We assume that the groups are discrete-log-hard and other computational
assumptions, such as SXDH, defined in the full version [BFQ20], hold as well.
We assume that there exists an algorithm GrGen that, on input the security
parameter λ in unary, outputs the description of a bilinear group with p ≥ 2λ−1.

4.2 Randomizable Proofs of Knowledge and Signatures

Commit-and-Prove Proof Systems. As coins must be unforgeable, at their
core lie digital signatures. To achieve anonymity, these must be hidden, which can
be achieved via non-interactive zero-knowledge (NIZK) proofs of knowledge; if
these proofs are re-randomizable, then they can not even be recognized by a past
owner. We will use Groth-Sahai NIZK proofs [GS08], which are randomizable
[FP09,BCC+09] and include commitments to the witnesses.

We let V be set of values that can be committed, C be the set of commitments,
R the randomness space and E the set of equations (containing equality) whose
satisfiability can be proved. We assume that V and R are groups. We will use
an extractable commitment scheme, which consists of the following algorithms:

C.Setup(Gr) takes as input a description of a bilinear group and returns a com-
mitment key ck, which implicitly defines the sets V, C,R and E .

C.ExSetup(Gr)returns an extraction key xk in addition to a commitment key ck.
C.SmSetup(Gr) returns a commitment key ck and a simulation trapdoor td.
C.Cm(ck, v, ρ), on input a key ck, a value v ∈ V and randomness ρ ∈ R, returns

a commitment in C.
C.ZCm(ck, ρ),used when simulating proofs, is defined as C.Cm(ck, 0V , ρ).
C.RdCm(ck, c, ρ) randomizes a commitment c to a fresh c′ using randomness ρ.
C.Extr(xk, c), on input extraction key xk and a commitment c, outputs a value

in V. (This is the only algorithm that might not be polynomial-time.)
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We extend C.Cm to vectors in Vn: for M = (v1, . . . , vn) and ρ = (ρ1, . . . , ρn) we
define C.Cm(ck,M, ρ) :=

(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn)

)
and likewise

C.Extr(xk, (c1, . . . , cn)) :=
(
C.Extr(xk, c1), . . . ,C.Extr(xk, cn)

)
.

We now define a NIZK proof system that proves that committed values satisfy
given equations from E . Given a proof for commitments, the proof can be adapted
to a randomization (via C.RdCm) of the commitments using C.AdptPrf.

C.Prv(ck,E, (v1, ρ1), . . . , (vn, ρn)), on input a key ck, a set of equations E ⊂ E ,
values (v1, . . . , vn) and randomness (ρ1, . . . , ρn), outputs a proof π.

C.Verify(ck,E, c1, . . . , cn, π), on input a commitment key ck, a set of equations
in E , a commitment vector (c1, . . . , cn), and a proof π, outputs a bit b.

C.AdptPrf(ck,E, c1, ρ1, . . . , cn, ρn, π), on input a set of equations, commitments
(c1, . . . , cn), randomness (ρ1, . . . , ρn) and a proof π, outputs a proof π′.

C.SmPrv(td, E, ρ1, . . . , ρn), on input the simulation trapdoor, a set of equations
E with n variables and randomness (ρ1, . . . , ρn), outputs a proof π.

M-Structure-Preserving Signatures. To prove knowledge of signatures, we
require a scheme that is compatible with Groth-Sahai proofs [AFG+10].

S.Setup(Gr),on input the bilinear group description, outputs signature parame-
ters parS , defining a message space M. We require M ⊆ Vn for some n.

S.KeyGen(parS), on input the parameters parS , outputs a signing key and a
verification key (sk, vk). We require that vk is composed of values in V.

S.Sign(sk,M), on input a signing key sk and a message M ∈ M, outputs a
signature Σ. We require that Σ is composed of values in V.

S.Verify(vk,M,Σ), on input a verification key vk, a message M and a signature
Σ, outputs a bit b. We require that S.Verify proceeds by evaluating equations
from E (which we denote by ES.Verify(·,·,·)).

M-Commuting Signatures. As in a previous construction of transferable e-
cash [BCF+11], we will use commuting signatures [Fuc11], which let the signer,
given a commitment to a message, produce a commitment to a signature on that
message, together with a proof, via the following functionality:

SigCm(ck, sk, c), given a signing key sk and a commitment c of a message M ∈
M, outputs a committed signature cΣ and a proof π that the signature in cΣ

is valid on the value in c, i.e., the committed values satisfy S.Verify(vk, ·, ·).
SmSigCm(xk, vk, c,Σ), on input the extraction key xk, a verification key vk, a

commitment c and a signature Σ, outputs a committed signature cΣ and a
proof π of validity for cΣ and c (the key xk is needed to compute π for c).

Correctness and Soundness Properties. We require the following properties
of commitments, proofs and signatures, when the setup algorithms are run on
any output Gr ← GrGen(1λ) for any λ ∈ N:

Perfectly binding commitments: C.Setup and the first output of C.ExSetup are
distributed equivalently. Let (ck, xk) ← C.ExSetup; then for every c ∈ C
there exists exactly one v ∈ V such that c = C.Cm(ck, v, ρ) for some ρ ∈ R.
Moreover, C.Extr(xk, c) extracts that value v.
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V ′-extractability: Committed values from a subset V ′ ⊂ V can be efficiently
extracted (e.g., V ′ = G1 ∪ G2 [GS08]). Let (ck, xk) ← C.ExSetup; then
C.Extr(xk, ·) is efficient for all c = C.Cm(ck, v, ρ) for any v ∈ V ′ and ρ ∈ R.

Proof completeness: Let ck ← C.Setup; then for all (v1, . . . , vn) ∈ Vn satisfying
E ⊂ E , and (ρ1, . . . , ρn) ∈ Rn and π ← C.Prv(ck,E, (v1, ρ1), . . . , (vn, ρn)) we
have C.Verify(ck,E,C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn), π) = 1.

Proof (knowledge) soundness: Let (ck, xk) ← C.ExSetup, E ⊂ E , (c1, . . . , cn) ∈
Cn. If C.Verify(ck,E, c1, . . . , cn, π) = 1 for some π, then letting vi :=
C.Extr(xk, ci), for all i, we have that (v1, . . . , vn) satisfy E.

Randomizability: Let ck ← C.Setup and E ⊂ E ; for all (v1, . . . , vn) ∈ Vn satisfy-
ing E, and ρ1, ρ

′
1, . . . , ρn, ρ′

n ∈ R the following are distributed equivalently:

(
C.RdCm(C.Cm(ck, v1, ρ1), ρ′

1), . . . ,C.RdCm(C.Cm(ck, vn, ρn), ρ′
n),

C.AdptPrf
(
ck,E,C.Cm(ck, v1, ρ1), ρ′

1, . . . ,C.Cm(ck, vn, ρn), ρ′
n,

C.Prv(ck,E, (v1, ρ1), . . . , (vn, ρn))
))

and
(
C.Cm(ck, v1, ρ1 + ρ′

1), . . . ,C.Cm(ck, vn, ρn + ρ′
n),

C.Prv(ck,E, (v1, ρ1 + ρ′
1), . . . , (vn, ρn + ρ′

n))
)

Signature correctness: Let (sk, vk) ← S.KeyGen(S.Setup) and M ∈ M; then we
have S.Verify(vk,M,S.Sign(sk,M)) = 1.

Correctness of signing committed messages: Let (ck, xk) ← C.ExSetup and let
(sk, vk) ← S.KeyGen(S.Setup), and M ∈ M; for ρ, ρ′ $←− R, the following
three are distributed equivalently:
(
C.Cm

(
ck, S.Sign(sk, M), ρ′), C.Prv

(
ck, ES.Verify(vk,·,·), (M, ρ), (Σ, ρ′)

))
and

SigCm
(
ck, sk,C.Cm(ck, M, ρ)

)
andSmSigCm

(
xk, vk,C.Cm(ck, M, ρ), S.Sign(sk, M)

)

The first equivalence also holds for ck ← C.Setup, since it is distributed like
ck output by C.ExSetup.

Security Properties

Mode indistinguishability: Let Gr ← GrGen(1λ); then the outputs of C.Setup(Gr)
and the first output of C.SmSetup(Gr) are computationally indistinguishable.

Perfect zero-knowledge in hiding mode: Let (ck, td) ← C.SmSetup(Gr), E ⊂ E
and v1, . . . , vn ∈ V such that E(v1, . . . , vn) = 1. For ρ1, . . . , ρn

$←− R the
following are distributed equivalently:
(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn),C.Prv

(
ck,E, (v1, ρ1), . . . , (vn, ρn)

))

and
(
C.ZCm(ck, ρ1), . . . ,C.ZCm(ck, ρn),C.SmPrv

(
td, E, ρ1, . . . , ρn

))

Signature unforgeability (under chosen message attack): No PPT adversary that
is given vk output by S.KeyGen and an oracle for adaptive signing queries
on messages M1,M2, . . . of its choice can output a pair (M,Σ), such that
S.Verify(vk,M,Σ) = 1 and M /∈ {M1,M2, . . . }.



574 B. Bauer et al.

4.3 Rerandomizable Encryption Schemes

In order to trace double-spenders, some information must be retrievable from
the coin by the bank. For anonymity, we encrypt this information. Since coins
must change appearance in order to achieve coin transparency (Definition 4), we
use rerandomizable encryption. We will prove consistency of encrypted messages
with values used elsewhere, and to produce such a proof, knowledge of parts of
the randomness is required; we therefore make this an explicit input of some
algorithms, which thus are still probabilistic.

A rerandomizable encryption scheme E consists of four algorithms:

E.KeyGen(Gr),on input the group description, outputs an encryption key ek and
a corresponding decryption key dk.

E.Enc(ek,M, ν) is probabilistic and on input an encryption key ek, a message M
and (partial) randomness ν outputs a ciphertext.

E.ReRand(ek, C, ν′), on input an encryption key, a ciphertext and (partial) ran-
domness, outputs a new ciphertext.

E.Dec(dk,C), on input a decryption key and a ciphertext, outputs either a mes-
sage or ⊥ indicating an error.

To prove statements about encrypted messages, we add two functionalities:
E.Verify lets one check that a ciphertext encrypts a given message M , for which
it is also given partial randomness ν. This will allow us to prove that a commit-
ment cM and a ciphertext C contain the same message. For this, we require that
the equations defining E.Verify are in the set E supported by C.Prv.

This lets us define an equality proof π̃ = (π, cν), where cν is a commitment
to the randomness ν, and π proves that the values in cM and cν verify the equa-
tions E.Verify(ek, ·, ·, C). To support rerandomization of ciphertexts, we define a
functionality E.AdptPrf, which adapts a proof (π, cν) to a rerandomization.

E.Verify(ek,M, ν, C), on input an encryption key, a message, randomness and a
ciphertext, outputs a bit.

E.AdptPrf(ck, ek, cM , C, π̃ = (π, cν), ν′),a probabilistic algorithm which, on input
keys, a commitment, a ciphertext, an equality proof (i.e., a proof and a
commitment) and randomness, outputs a new equality proof (π′, c′

ν).

Correctness Properties. We require the scheme to satisfy the following
correctness properties for all key pairs (ek, dk) ← E.KeyGen(Gr) for Gr ←
GrGen(1λ):

– For all M ∈ M and randomness ν we have: E.Enc(ek,M, ν) = C if and only
if E.Verify(ek,M, ν, C) = 1.

– For all M ∈ M and ν: E.Verify(ek,M, ν, C) = 1 implies E.Dec(dk,C) = M .
(These two notions imply the standard correctness notion.)

– For all M ∈ M and randomness ν, ν′, if C ← E.Enc(ek,M, ν) then the fol-
lowing are equally distributed: E.ReRand(ek, C, ν′) and E.Enc(ek,M, ν + ν′).
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– For all ck ← C.Setup, all (ek, dk) ← E.KeyGen, M ∈ M and randomness
ν, ν′, ρM , ρν , if we let

cM ← C.Cm(ck,M, ρM ) C ← E.Enc(ek,M, ν)

cν ← C.Cm(ck, ν, ρν) π ← C.Prv
(
ck,E.Verify(ek, ·, ·, C), (M,ρM ), (ν, ρν)

)

then the following are equivalently distributed (with ρ′
ν

$←− R):

E.AdptPrf
(
ck, ek, cM ,E.Enc(ek, C, ν), (π, cν), ν′) and

(
C.Prv(ck,E.Verify(ek, ·, ·,E.ReRand(ek, C, ν′)), (M,ρM ), (ν + ν′, ρν + ρ′

ν)),

C.RdCm(ck, cν , ρ′
ν)

)

Security Properties. We require two properties: the standard (strongest pos-
sible) variant of CCA security; a new notion that is easier to achieve.

Replayable-CCA (RCCA) Security. We use the definition by Canetti et al.
[CKN03], formalized in Fig. 6.

Fig. 6. Security games for rerandomizable encryption schemes

Indistinguishability of Adversarially Chosen and Randomized Ciphertexts
(IACR). An adversary that is given a public key, chooses two ciphertexts and
is then given the randomization of one of them cannot, except with a negligible
advantage, distinguish which one it was given. The game is formalized in Fig. 6.

Definition 5. For x ∈ {RCCA, IACR}, a rerandomizable encryption scheme is
x-secure if Pr[ExptxA,1(λ) = 1] − Pr[ExptxA,0(λ) = 1] is negligible in λ for any
PPT A.

4.4 Double-Spending Tag Schemes

Our e-cash scheme follows earlier approaches [BCFK15], where the bank repre-
sents a coin in terms of its serial number sn = sn0‖ . . . ‖snk, which grows with
every transfer. In addition, a coin contains tag = tag1‖ . . . ‖tagk, which enables
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tracing of double-spenders. The part sni is chosen by a user when she receives
the coin, while the tag tagi is computed by the sender as a function of sni−1,
sni and her secret key.

Baldimtsi et al. [BCFK15] show how to construct such tags so they perfectly
hide user identities, except when a user computes two tags with the same sni−1

but different values sni: then her identity can be computed from the two tags.
Note that this precisely corresponds to double-spending the coin that ends in
sni−1 to two users that choose different values for sni when receiving it.

We use the tags from [BCFK15], which we first formally define, and then show
that their full potential had not been leveraged yet: in particular, we realize that
the tag can also be used as method for users to authenticate the coin transfer. In
earlier works [BCF+11,BCFK15], at each transfer the spender computed a sig-
nature that was included in a coin and that committed the user to the spending
(and made her accountable in case of double-spending). Our construction does
not require any user signatures and thus gains in efficiency.

Furthermore, in [BCFK15] (there were no tags in [BCF+11]), the malleable
signatures took care of ensuring well-formedness of the tags, while we give
an explicit construction. To be compatible with Groth-Sahai proofs, we define
structure-preserving proofs of well-formedness for serial numbers and tags.

Syntax. An M-double-spending tag scheme T is composed of the following
polynomial-time algorithms:

T.Setup(Gr), on input a group description, outputs the parameters parT (which
are an implicit input to all of the following).

T.KeyGen(), on (implicit) input the parameters, outputs a tag key pair (sk, pk).
T.SGen(sk, n), the serial-number generation function, on input a secret key and

a nonce n ∈ N (the nonce space), outputs a serial-number component sn
and a proof sn − pf of well-formedness.

T.SGeninit(sk, n), a variant of T.SGen, outputs a message M ∈ M instead of a
proof. (SGeninit is used for the first SN component, which is signed by the
bank using a signature scheme that requires messages to be in M.)

T.SVfy(pk, sn, sn − pf ), on input a public key, a serial number and a proof ver-
ifies that sn is consistent with pk by outputting a bit b.

T.SVfyinit(pk, sn,M), on input a public key, a serial number and a message in
M, checks their consistency by outputting a bit b.

T.SVfyall,depending on the type of the input, runs T.SVfyinit or T.SVfy.
T.TGen(sk, n, sn), the double-spending tag generator, takes as input a secret

key, a nonce n ∈ N and a serial number, and outputs a double-spending tag
tag ∈ T (the set of the double-spending tags) and a tag proof t − pf .

T.TVfy(pk, sn, sn′, tag, t − pf ), on input a public key, two serial numbers, a
double-spending tag, and a proof, checks consistency of the tag w.r.t. the
key and the serial numbers by outputting a bit b.

T.Detect(sn, sn′, tag, tag′,L), double-spending detection, takes two serial num-
bers sn and sn′, two tags tag, tag′ ∈ T and a list of public keys L and outputs
a public key pk (of the accused user) and a proof Π.
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T.VfyGuilt(pk,Π), incrimination-proof verification, takes as input a public key
and a proof and outputs a bit b.

Fig. 7. Game for tag anonymity (with oracles also used in exculpability) for double-
spending tag schemes

Correctness Properties. For a double-spending tag scheme T we require that
for all parT ← T.Setup(Gr) the following hold:

Verifiability: For every n, n′ ∈ N , after computing
– (sk, pk) ← T.KeyGen; (sk′, pk′) ← T.KeyGen
– (sn,X) ← T.SGen(sk, n) or (sn,X) ← T.SGeninit(sk, n)
– (sn′, sn − pf ′) ← T.SGen(sk′, n′)
– (tag, t − pf ) ← T.TGen(sk, n, sn′)

we have T.SVfyall(pk, sn,X) = T.TVfy(pk, sn, sn′, tag, t − pf ) = 1.
SN-identifiability: For all tag public keys pk1 and pk2, all serial numbers sn and

all X1 and X2, which can be messages in M or SN proofs, if

T.SVfyall(pk1, sn,X1) = T.SVfyall(pk2, sn,X2) = 1

then pk1 = pk2.
Bootability: There do not exist an SN message M , serial numbers sn1 �= sn2 and

tag keys (not necessarily distinct) pk1, pk2 such that:

T.SVfyinit(pk1, sn1,M) = T.SVfyinit(pk2, sn2,M) = 1.

2-show extractability: Let pk0, pk1 and pk2 be tag public keys, sn0, sn1 and
sn2 be serial numbers, X0 be either an SN proof or a message in M, and
sn − pf 1 and sn − pf 2 be SN proofs. Let tag1 and tag2 be tags, and t − pf 1

and t − pf 2 be tag proofs, and let L be a set of tag public keys with pk0 ∈ L.
If

T.SVfyall
(
pk0, sn0, X0

)
= 1

T.SVfy
(
pk1, sn1, sn − pf 1

)
= T.SVfy

(
pk2, sn2, sn − pf 2

)
= 1

T.TVfy
(
pk1, sn0, sn1, tag1, t − pf 1

)
= T.TVfy

(
pk2, sn0, sn2, tag2, t − pf 2

)
= 1
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and sn1 �= sn2 then T.Detect(sn1, sn2, tag1, tag2,L) extracts (pk0,Π) effi-
ciently and we have T.VfyGuilt(pk0,Π) = 1.

N -injectivity: For any secret key sk, the function T.SGen(sk, ·) is injective.

Security Properties

Exculpability: This notion formalizes soundness of double-spending proofs, in
that no honestly behaving user can be accused. Let parT ← T.Setup and
(sk, pk) ← T.KeyGen(parT). Then we require that for a PPT adversary A
that is given pk and can obtain SNs and tags for receiver SNs of its choice,
both produced with sk (but no two tags for the same sender SN), is compu-
tationally hard to return a proof Π with T.VfyGuilt(pk,Π) = 1. Formally, A
gets access to oracles O1(sk) and O2(sk, ·, ·) defined in Fig. 7.

Tag anonymity: Our anonymity notions for transferable e-cash should hold even
against a malicious bank that gets to see the serial numbers and double-
spending tags for deposited coins and the secret keys of the users. We require
thus that as long as the nonce n is random and only used once, serial numbers
and tags reveal nothing about the user-specific values, such as sk and pk, that
were used to generate them. The game is given in Fig. 7.

Definition 6 (Tag anonymity). A double-spending tag scheme is anonymous
if Pr[Expttag−anon

A,1 (λ) = 1] − Pr[Expttag−anon
A,0 (λ) = 1] is negligible in λ for any

PPT A.

5 Our Transferable E-Cash Construction

5.1 Overview

The bank validates new users in the system and creates money, and digital
signatures can be used for both purposes: when a new user joins, the bank signs
her public key, which serves as proof of being registered; during a coin issuing,
the bank signs a message Msn that is associated to the initial serial-number (SN)
component sn0 of a coin (chosen by the user withdrawing the coin), and this
signature makes the coin unforgeable.

After a coin has been transferred k times, its core consists of a list of SNs
sn0, sn1, . . . , snk, together with a list of tags tag1, . . . , tagk (for a freshly with-
drawn coin, we have k = 0). When a user spends such a coin, the receiver
generates a fresh SN component snk+1, for which the spender must generate
a tag tagk+1, which is also associated with her public key and the last serial
number snk (which she generated when she received the coin.)

These tags allow the bank to identify the cheater in case of double-spending,
while they preserve honest users’ anonymity, also towards the bank. A coin more-
over contains the users’ public key w.r.t. which the tags were created, as well
as certificates from the bank on them. To provide anonymity, all these compo-
nents are not given in the clear, but as a zero-knowledge proof of knowledge.
As we use a commit-and-prove proof system, a coin contains commitments to
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its serial number, its tags, the user public keys and their certificates and proofs
that ensure all of them are consistent.

Recall that a coin also includes a signature by the bank on (a message related
to) the initial SN component. To achieve anonymity towards the bank (coin
anonymity), the bank must sign this message blindly, which is achieved by using
the SigCm functionality: the user sends a commitment to the serial number, and
the bank computes a committed signature on the committed value.

Finally, the bank needs to be able to detect whether a double-spending
occurred and identify the user that committed it. One way would be to give
the serial numbers and the tags (which protect the anonymity of honest users)
in the clear. This would yield a scheme that satisfies coin anonymity and user
anonymity (note that in these two notions the bank is adversarially controlled).
In contrast, coin transparency, the most intricate anonymity notion, would not
be achieved, since the owner of a coin could easily recognize it when she receives
it again by looking at its serial number.

Coin transparency requires to hide the serial numbers (and the associated
tags), and to use a randomizable proof system, since the appearance of a coin
needs to change after every transfer. At the same time we need to provide the
bank with access to them; we thus include encryptions, under the bank’s public
key, in the coin. And we add proofs of consistency of the encrypted values. Now
all of this must interoperate with the randomization of the coin, which is why
we require rerandomizable encryption. Moreover, this has to be tied into the
machinery of updating the proofs, which is necessary every time the ciphertexts
and the commitments contained in a coin are refreshed.

5.2 Technical Description

Primitives Used. The basis of our transferable e-cash scheme is a random-
izable extractable NIZK commit-and-prove scheme C to which we add com-
patible schemes: an M-structure-preserving signature scheme S that admits an
M-commuting signature add-on SigCm, as well as a (standard) M′-structure-
preserving signature scheme S′ (all defined in Sect. 4.2).

Our scheme moreover uses rerandomizable encryption (Sect. 4.3): a scheme E,
which only needs to be IACR-secure, and an RCCA-secure scheme E′, which will
only be used for a single ciphertext per coin. (One can instantiate E withmore
efficient schemes.) Finally, we use a double-spending tag scheme T (Sect. 4.4).
We require E, E′ and T to be compatible with the proof system C, that is, the
equations for E.Verify and E′.Verify, as well as T.SVfy, T.SVfyinit and T.TVfy, are
all in the set E of equations supported by C.

Auxiliary Functions. To simplify the description of our scheme, we first
define several auxiliary functions. We let Rand denote an algorithm that ran-
domizes a given tuple of commitments and ciphertext, as well as proofs for them
(and adapts the proofs to the randomizations) by internally running C.RdCm,
E.ReRand, C.AdptPrf and E.AdptPrf with the same randomness.
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Below, we define C.Prvsn,init that produces a proof that a committed initial
serial number sn was correctly generated w.r.t. a committed key pkT and a
committed message M (given the randomness ρpk, ρsn and ρM used for the
commitments). We also define C.Verifysn,init that verifies such proofs. C.Prvsn
and C.Verifysn do the same for non-initial serial numbers (for which there are no
messages, but which require a proof of well-formedness instead).

C.Prvsn,init(ck, pkT, sn,M, ρpk, ρsn, ρM ):
– Return π ← C.Prv

(
ck,T.SVfyinit(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (M,ρM )

)

C.Verifysn,init(ck, cpk, csn, cM , πsn):
– Return C.Verify(ck,T.SVfyinit(·, ·, ·) = 1, cpk, csn, cM , πsn)

C.Prvsn(ck, pkT, sn, sn − pf , ρpk, ρsn, ρsn−pf ):
– π ← C.Prv

(
ck,T.SVfy(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn − pf , ρsn−pf )

)

– Return (π,C.Cm(ck, sn − pf , ρsn−pf ))
C.Verifysn(ck, cpk, csn, π̃sn = (πsn, csn−pf )):

– Return C.Verify(ck,T.SVfy(·, ·, ·) = 1, cpk, csn, csn−pf , πsn)

C.Prvtag produces a proof that a committed tag was correctly generated w.r.t.
committed serial numbers sn and sn′; and C.Verifytag verifies such proofs.

C.Prvtag(ck, pkT, sn, sn′, tag, ρpk, ρsn, ρ′
sn, ρtag, t − pf , ρt−pf )

– π ← C.Prv
(
ck,T.TVfy(·, ·, ·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn′, ρ′

sn),
(tag, ρtag), (t − pf , ρt−pf )

)

– Return (π,C.Cm(ck, t − pf , ρt−pf ))
C.Verifytag(ck, cpk, csn, c′

sn, ctag, πtag = (π, ct−pf )):
– Return C.Verify(ck,T.TVfy(·, ·, ·, ·) = 1, cpk, csn, c′

sn, ctag, ct−pf , π)

C.E.Prvenc produces a proof that a ciphertext c̃ of M and C.Cm(ck,M, ρM ) con-
tain the same message; C.E.Verifyenc verifies such proofs. (Note that the output
of C.E.Prvenc is the same π as in the input of E.AdptPrf; moreover, since ρν is
not used outside of C.E.Prvenc, it can be sampled locally.)

C.E.Prvenc(ck, ek,M, ρM , νM , c̃):
– ρν

$←− R; π ← C.Prv(ck,E.Verify (ek, ·, ·, c̃) = 1, (M,ρM ), (νM , ρν))
– Return (π,C.Cm(ck, νM , ρν))

C.E.Verifyenc(ck, ek, cM , c̃M , π̃eq = (πeq, cν)):
– Return C.Verify(ck,E.Verify(ek, ·, ·, c̃M ) = 1, cM , cν , πeq)
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Components of the Coin. There are two types of components, the initial
components coininit, and the standard components coinstd. The first is of the
form

coininit =
(
c0pk, c0cert, π

0
cert, c

0
sn, π0

sn, ε, ε, cM , c0σ, π0
σ, c̃0sn, π̃0

sn, ε, ε
)
, (1)

where the “c-values” are commitments to the withdrawer’s key pk, her certificate
cert, the initial serial number sn and the related message M , the bank’s signature
σ on M ; and c̃sn is an encryption of sn. Moreover, πcert and πsn prove validity
of cert and sn, and π̃sn proves that csn and c̃sn contain the same value. We use
“empty values” ε for padding so that both coin-component types have the same
format. Validity of an initial component is verified w.r.t. an encryption key for
E′ and two signature verification keys for S and S′:

VERinit

(
ek′, vk, vk′, coininit

)
: Return 1 iff the following hold: // coininit as in (1)

– C.Verify
(
ck, S′.Verify(vk′, ·, ·) = 1, c0pk, c0cert, π

0
cert

)

– C.Verify
(
ck, S.Verify(vk, ·, ·) = 1, cM , c0σ, π0

σ

)

– C.Verifysn,init

(
ck, c0pk, c0sn, cM , π0

sn

) ∧ C.E′.Verifyenc
(
ck, ek′, c0sn, c̃0sn, π̃0

sn

)

Standard components of a coin are of the form

coinstd = (ci
pk, ci

cert, π
i
cert, c

i
sn, πi

sn, ci
tag, π

i
tag, ε, ε, ε, c̃

i
sn, π̃i

sn, c̃i
tag, π̃

i
tag

)
, (2)

and instead of M and the bank’s signature they contain a commitment ctag and
an encryption c̃tag of the tag produced by the spender (and a proof πtag of validity
and π̃tag proving that the values in ctag and c̃tag are equal). A coin is verified
by checking the validity and consistency of each two consecutive components. If
the first is an initial component then the values ci−1

tag , πi−1
tag , c̃i−1

tag and π̃i−1
tag are ε;

if it is a standard component then cM , ci−1
σ and πi−1

σ are ε.

VERstd

(
ek, vk′,

(
ci−1
pk , ci−1

cert, π
i−1
cert, c

i−1
sn , πi−1

sn , ci−1
tag , πi−1

tag , cM , ci−1
σ , πi−1

σ , c̃i−1
sn ,

π̃i−1
sn , c̃i−1

tag , π̃i−1
tag

)
, coinstd

)
: // coinstd as in (2)

Return 1 iff the following hold:

– C.Verify
(
ck, S′.Verify(vk′, ·, ·) = 1, ci

pk, ci
cert, π

i
cert

)

– C.Verifysn
(
ck, ci

pk, ci
sn, πi

sn

) ∧ C.Verifytag
(
ck, ci−1

pk , ci−1
sn , ci

sn, ci
tag, πi

tag

)

– C.E.Verifyenc
(
ck, ek, ci

sn, c̃i
sn, π̃i

sn

) ∧ C.E.Verifyenc
(
ck, ek, ci

tag, c̃i
tag, π̃i

tag

)

Our Scheme. We now formally define our transferable e-cash scheme.

ParamGen(1λ):

– Gr ← GrGen(1λ)
– parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
– parT ← T.Setup(Gr) ; ck ← C.Setup(Gr)
– Return par = (1λ,Gr,parS,parS′ ,parT, ck)
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Recall that par, parsed as above, is an implicit input to all other algorithms.

BKeyGen():

– (sk, vk) ← S.KeyGen(parS) ; (sk′, vk′) ← S′.KeyGen(parS′)
– (ek′, dk′) ← E′.KeyGen(Gr) ; (ek, dk) ← E.KeyGen(Gr)
– (skT, pkT) ← T.KeyGen(parT) // (skT, pkT, cert) let the bank act. . .
– cert ← S′.Sign(sk′, pkT) // dots as U ′ in Spend during
deposit

– Return
(
skW = (sk, sk′), skCK = (dk′, dk),

skD = (cert, pkT, skT), pkB = (ek′, ek, vk, vk′)
)

Register
〈
B(skW = (sk, sk′)),U(pkB = (ek′, ek, vk, vk′))

〉
:

U : (skT, pkT) ← T.KeyGen(parT) ; send pkT to B
B: certU ← S′.Sign(sk′, pkT) ; send certU to U ; output pkT

U : If S′.Verify(vk′, pkT, certU ) = 1, output skU ← (certU , pkT, skT); else ⊥

Withdraw
〈
B(skW = (sk, sk′), pkB = (ek′, ek, vk, vk′)),

U(skU = (certU , pkT, skT), pkB)
〉
:

U : − n
$←− N ; ρpk, ρcert, ρsn, ρM

$←− R
− (sn,Msn) ← T.SGeninit(skT, n)
− cpk ← C.Cm(ck, pkT, ρpk)
− ccert ← C.Cm(ck, certU , ρcert)
− csn ← C.Cm(ck, sn, ρsn)
− cM ← C.Cm(ck,Msn, ρM )
− πcert ← C.Prv(ck,S′.Verify(vk′, ·, ·) = 1, (pkT, ρpk), (certU , ρcert))
− πsn ← C.Prvsn,init(ck, pkT, sn,Msn, ρpk, ρsn, ρM )
− Send (cpk, ccert, πcert, csn, cM , πsn) to B

B: − if C.Verify(ck,S′.Verify(vk′, ·, ·) = 1, cpk, ccert, πcert) = 0 or
C.Verifysn,init(ck, cpk, csn, cM , πsn) = 0 then abort and output ⊥

− (cσ, πσ) ← SigCm(ck, sk, cM ) ; send (cσ, πσ) to U ′ ; return ok

U : − if C.Verify(ck,S.Verify(vk, ·, ·)=1, cM , cσ, πσ)=0 then abort and output
⊥

− νsn
$←− R ; c̃sn ← E′.Enc(ek′, sn, νsn)

− π̃sn ← C.E′.Prvenc(ck, ek′, sn, ρsn, νsn, c̃sn)
− ρ′

pk, ρ′
cert, ρ

′
sn, ρ′

M , ρ′
σ, ν′

sn, ρ′
π̃,sn

$←− R
//since π̃sn contains a commitment,

we also sample randomness for it

− c0 ← Rand
(
(cpk, ccert, πcert, csn, πsn, cM , cσ, πσ, c̃sn, π̃sn),

(ρ′
pk, ρ′

cert, ρ
′
sn, ρ′

M , ρ′
σ, ν′

sn, ρ′
π̃,sn)

)

− Output
(
c0, n, sn, ρsn + ρ′

sn, ρpk + ρ′
pk

)
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Spend
〈
U(c, skU = (cert, pkT, skT), pkB = (ek′, ek, vk, vk′)),

U ′(sk′
U = (cert′, pk′

T, sk′
T), pkB)

〉
:

U ′ : − n′ $←− N ; ρ′
pk, ρ′

cert, ρ
′
sn, ρ′

sn−pf , ν′
sn

$←− R
− (sn′, sn − pf ′) ← T.SGen(parT, sk′

T, n′)
− c′

pk ← C.Cm(ck, pk′
T, ρ′

pk) ; c′
cert ← C.Cm(ck, cert′, ρ′

cert)
− c′

sn ← C.Cm(ck, sn′, ρ′
sn) ; c′

sn−pf ← C.Cm(ck, sn − pf ′, ρ′
sn−pf )

− c̃′
sn ← E.Enc(ek, sn′, ν′

sn)
− π′

cert ← C.Prv(ck,S.Verify(vk′, ·, ·) = 1, (pk′
T, ρ′

pk), (cert′, ρ′
cert))

− π′
sn ← C.Prvsn(ck, pk′

T, sn′, sn − pf , ρ′
pk, ρ′

sn, ρ′
sn−pf )

− π̃′
sn ← C.E.Prvenc(ck, ek, sn′, ρ′

sn, ν′
sn, c̃′

sn)
− Send (sn′, ρ′

sn) to U
U : − Parse c as

(
c0,

(
cj =(cj

pk, cj
cert, π

j
cert, c

j
sn, πj

sn, cj
tag, π

j
tag,

c̃j
sn, c̃j

tag, π̃
j
sn, π̃j

tag)
)i

j=1
, n, sn, ρsn, ρpk

)
// i could be 0

− ρtag, νtag, ρt−pf
$←− R

− (tag, t − pf ) ← T.TGen(parT, skT, n, sn′)
− ctag ← C.Cm(ck, tag, ρtag) ; c̃tag ← E.Enc(ek, tag, νtag)
− πtag ← C.Prvtag(ck, pkT, sn, sn′, tag, t − pf , ρpk, ρsn, ρ′

sn, ρtag, ρt−pf )
− π̃tag ← C.E.Prvenc(ck, ek, tag, ρtag, νtag, c̃tag)
− Send c′ =

(
c0, (cj)i

j=1, ctag, πtag, c̃tag, π̃tag

)
to U ′ ; output ok

U ′: − If any of the following occur then abort and output ⊥:
− VERinit(ek′, vk, vk′, c0) = 0
− VERstd(ek, vk, vk′, cj−1, cj) = 0, for some j = 1, . . . , i
− C.Verifytag(ck, ci

pk, ci
sn, c′

sn, ctag, πtag) = 0
− C.E.Verifyenc(ck, ek, ctag, c̃tag, π̃tag) = 0

− pick uniform random 
ρ′′
− c′′ ← Rand

(
((cj)i

j=0, c′
pk, c′

cert, π′
cert, c′

sn, π′
sn, ctag, πtag, c̃′

sn, π̃′
sn, c̃′

tag,

π̃′
tag), 
ρ′′)

− Output
(
c′′, n′, sn′, ρ′

sn + ( 
ρ′′)sn′ , ρ′
pk + ( 
ρ′′)pk′

)

CheckDS
(
skCK = (dk′, dk),DCL,UL, c

)
:

– Parse c as
(
c0 = (c0pk, c0cert, π

0
cert, c

0
sn, π0

sn, c0M , cσ, πσ, c̃0sn, π̃0
sn),

(cj = (cj
pk, cj

cert, πj
cert, cj

sn, πj
sn, cj

tag, πj
tag, c̃j

sn, π̃j
sn, c̃j

tag, π̃j
tag))i

j=1, n, sn,

ρsn, ρpk

)

– 
sn ←
(
E′.Dec(dk′, c̃0sn),E.Dec(dk, c̃1sn), . . . ,E.Dec(dk, c̃i

sn)
)

– 
tag ←
(
E.Dec(dk, c̃1tag), . . . ,E.Dec(dk, c̃i

tag)
)

– If for all ( 
sn′, 
tag′) ∈ DCL : sn0 �= sn′
0 // initial SN of checked coin. . .

then return DCL‖ ( 
sn, 
tag)
// . . . different from those of deposited coins

– Else let j be minimal so that snj �= sn′
j // double-spent at j-th transfer

– (pkT,Π) ← T.Detect
(
snj , sn

′
j , tagj , tag′

j ,UL
)

– Return (pkT,Π)

VfyGuilt(pkT,Π): Return T.VfyGuilt(pkT,Π).
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5.3 Security Analysis

Theorem 7. Our transferable e-cash scheme is perfectly sound.

Because a user verifies the validity of all components of a coin before accepting
it, perfect soundness of our scheme is a direct consequence of the correctness
properties of S, S′ and C, as well as perfect soundness of C and verifiability of T.

Detailed proofs of the following theorems are given in the full version [BFQ20]

Theorem 8. Let N be the nonce space and S be the space of signatures of
scheme S. Let A be an adversary that wins the unforgeability game with advan-
tage ε and makes at most d calls to BDepo. Suppose that C is perfectly sound and
(M ∪ S)-extractable. Then there exist adversaries against the unforgeability of
the signature schemes S and S′ with advantages εsig and ε′

sig, resp., such that

ε ≤ εsig + ε′
sig + d2/|N |.

Assume that during the adversary’s deposits the bank never picks the same
final nonce twice. (The probability that there is a collision is at most d2/|N |.)
In this case, there are two ways for the adversary to win:
(1) CheckDS outputs ⊥, or an invalid proof, or an unregistered user: Suppose
that, during a BDepo call for a coin c, CheckDS does not return a coin list. Recall
that, by assumption, the final part (chosen by the bank at deposit) of the serial
number of c is fresh. Since CheckDS runs T.Detect, by soundness of C and two-
extractability of T, this will output a pair (pk,Π), such that VfyGuilt(pk,Π) = 1.
Since a coin contains a commitment to a certificate for the used tag key (and
proofs of validity), we can, again by soundness of C, extract an S′-signature
on pk. Now if pk is not in UL, then it was never signed by the bank, and A has
thus broken unforgeability of S′.
(2) qW < |DCL|: If the adversary creates a valid coin that has not been with-
drawn, then by soundness of C, we can extract a signature by the bank on a new
initial serial number and therefore break unforgeability of S.

Theorem 9. Let A be an adversary that wins exculpability game with advan-
tage ε and makes u calls to the oracle URegist. Then there exist adversaries
against mode-indistinguishability of C and tag-exculpability of T with advantages
εm-ind and εt-exc, resp., such that

ε ≤ εm-ind + u · εt-exc.

An incrimination proof in our e-cash scheme is simply an incrimination proof of
the tag scheme T. Thus, if the reduction correctly guesses the user u that will
be wrongfully incriminated by A (which it can with probability 1/u), then we
can construct an adversary against exculpability of T. The term εm-ind comes
from the fact that we first need to switch C to hiding mode, so we can simulate
πsn and πtag for the target user, since the oracles O1 and O2 in the game for tag
exculpability (see Fig. 7) do not return sn − pf and t − pf .
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Theorem 10. Let A be an adversary that wins the coin anonymity game
(c-an) with advantage ε and let k be an upper-bound on the number of users
transferring the challenge coins. Then there exist adversaries against mode-
indistinguishability of C and tag-anonymity of T with advantages εm-ind and εt-an,
resp., such that

ε ≤ 2
(
εm-ind + (k + 1) εt-an

)
.

Theorem 11. Let A be an adversary that wins the user anonymity game
(u-an) with advantage ε and let k be a bound on the number of users transferring
the challenge coin. Then there exist adversaries against mode-indistinguishability
of C and tag-anonymity of T with advantages εm-ind and εt-an, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an.

In the proof of both theorems, we first define a hybrid game in which the commit-
ment key is switched to hiding mode (hence the loss εm-ind, which occurs twice
for b = 0 and b = 1). All commitments are then perfectly hiding (and proofs
reveal nothing either) and the only information contained in a coin are the serial
numbers and tags. They are encrypted, but the adversary, impersonating the
bank, can decrypt them.

We then argue that, by tag anonymity of T, the adversary cannot link a
user to a pair (sn, tag), even when it knows the users’ secret keys. We define
a sequence of k + 1 hybrid games (as k transfers involve k + 1 users); going
through the user vector output by the adversary, we can switch, one by one, all
users from the first two the second vector. Each switch can be detected by the
adversary with probability at most εt-an. Note that the additional factor 2 for
εt-an in game c-an is due to the fact that there are two coins for which we switch
users, whereas there is only one in game u-an.

Theorem 12. Let A be an adversary that wins the coin-transparency game
(c − tr) with advantage ε, let � be the size of the two challenge coins, and k be an
upper-bound on the number of users transferring the challenge coins. Then there
exist adversaries against mode-indistinguishability of C, tag-anonymity of T,
IACR-security of E and RCCA-security of E′ with advantages εm-ind, εt-an, εiacr
and εrcca, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an + (2 � + 1) εiacr + εrcca.

The crucial difference to the previous anonymity theorems is that the bank
is honest (which makes this strong notion possible). We therefore must rely on
the security of the encryptions, for which the reduction thus does not know the
decryption key. At the same time, the reduction must be able to detect double-
spendings, when the adversary deposits coins. Since we use RCCA encryption,
the reduction can do so by using its own decryption oracle.

As for c-an and u-an, the reduction first makes all commitments perfectly
hiding and proofs perfectly simulatable (which loses εm-ind twice). Since all
ciphertexts in the challenge coin given to the adversary are randomized, the
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reduction can replace all of them, except the initial one, by IACR-security of
E. (Note that in the game these ciphertexts never need to be decrypted.) The
factor 2� is due to the fact that there are at most � encryptions of SN/tag pairs.
Finally, replacing the initial ciphertext (the one that enables detection of double-
spending) can be done by a reduction to RCCA-security of E′: the oracle Depo′

can be simulated by using the reduction’s own oracles Dec and GDec (depending
on whether Depo′ is called before or after the reduction receives the challenge
ciphertext) in the RCCA-security game. Note that, when during a simulation
of CheckDS, oracle GDec outputs replay, the reduction knows that a challenge
coin was deposited, and uses this information to increase ctr.

6 Instantiation of the Building Blocks and Efficiency

The instantiations we use are all proven secure in the standard model under
non-interactive hardness assumptions.

Commitments and Proofs. The commit-and-prove system C will be instan-
tiated with the SXDH-based instantiation of Groth-Sahai proofs [GS08].

Theorem 13 ([GS08]). The Groth-Sahai proof system, allowing to commit val-
ues from V := Zp ∪ G ∪ Ĝ is perfectly complete, perfectly sound and random-
izable; it is (G ∪ Ĝ)-extractable, mode-indistinguishable assuming SXDH, and
perfectly hiding in hiding mode.

We note that moreover, all our proofs can be made zero-knowledge [GS08], and
thus simulatable, because all pairing-product equations we use are homogeneous
(i.e., the right-hand term is the neutral element). We have (efficient) extractabil-
ity, as we only need to efficiently extract group elements from commitments (and
no scalars) in our reductions. (Note that for information-theoretic arguments
concerning soundness, Extr can also be inefficient.)

Signature Schemes. For efficiency and type-compatibility reasons, we use two
different signature schemes. The first one, S, must support the functionality
SigCm, which imposes a specific format of messages. The second scheme, S′, is
less restrictive, which allows for more efficient instantiations. While all our other
components rely on standard assumptions, we instantiate S with a scheme that
relies on a non-interactive q-type assumption defined in [AFG+10].

Theorem 14. The signature scheme from [AFG+10, Sect. 4] with message
space M := {(gm, ĝm) |m ∈ Zp} is (strongly) unforgeable assuming q-ADHSDH
and AWFCDH (see [BFQ20]), and it supports the SigCm functionality [Fuc11].

Theorem 15. The signature scheme from [AGHO11, Sect. 5] is structure-
preserving with message space M′ := Ĝ and (strongly) unforgeable assuming
SXDH.
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Randomizable Encryption Schemes. To instantiate the RCCA-secure
scheme E′ we follow the approach by Libert et al. [LPQ17]. Their construc-
tion is only for one group element, but by adapting the scheme, it can support
encryption of a vector in G

n for arbitrary n. In our e-cash scheme, we need to
encrypt a vector in G

2, and since it is not clear whether more recent efficient
schemes like [FFHR19] can be adapted to this, we give an explicit construction,
which we detail in the full version [BFQ20].

Recall that the RCCA-secure scheme E′ is only used to encrypt the initial part
of the serial number; using a less efficient scheme thus has a minor impact on the
efficiency of our scheme. From all other ciphertexts contained in a coin (which
are under scheme E) we only require IACR security, which standard ElGamal
encryption satisfies under DDH(!). Thus, we instantiate E with ElGamal vector
encryption. (Note that our instantiation of E′ is also built on top of ElGamal).
We prove the following in the full version [BFQ20].

Theorem 16. Assuming SXDH, our randomizable encryption scheme [BFQ20]
is RCCA-secure and ElGamal vector encryption is IACR-secure.

Double-Spending Tags. We will use a scheme that builds on the one given
in [BCFK15]. We have optimized the size of the tags and made explicit all the
functionalities not given previously. We defer this to the full version [BFQ20].

Efficiency Analysis

We conclude by summarizing the sizes of objects in our scheme in the table
below and refer to the full version [BFQ20] for the details of our analysis.

For a group G ∈ {G, Ĝ,Zp}, let |G| denote the size of an element of G.
Let cbtsrap denote the coin output by U at the end of the Withdraw protocol
(which corresponds to cinit plus secret values, like n, ρsn, etc., to be used when
transferring the coin), and let cstd denote one (non-initial) component of the
coin. After k transfers the size of a coin is |cbtsrap| + k|cstd|.

|skB| 9|Zp| + 2|G| + 2|Ĝ|
|pkB| 15|G| + 8|Ĝ|
|skU | |Zp| + 2|G| + 2|Ĝ|
|pkU | |Ĝ|

|Πguilt| 2|G|
|cbtstrap| 6|Zp| + 147|G| + 125|Ĝ|

|cstd| 54|G| + 50|Ĝ|
|( �sn, �tag)| (4t + 2)|G|
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Abstract. Private set intersection reveals the intersection of two private
sets, but many real-world applications require the parties to learn only
partial information about the intersection. In this paper we introduce
a new approach for computing arbitrary functions of the intersection,
provided that it is safe to also reveal the cardinality of the intersec-
tion. In the most general case, our new protocol provides the partici-
pants with secret shares of the intersection, which can be fed into any
generic 2PC protocol. Certain computations on the intersection can also
be done even more directly and efficiently, avoiding this secret-sharing
step. These cases include computing only the cardinality of intersection,
or the “cardinality-sum” application proposed in Ion et al. (ePrint 2017).
Compared to the state-of-the-art protocol for computing on intersection
(Pinkas et al., Eurocrypt 2019), our protocol has about 2.5 − 3× less
communication, and has faster running time on slower (50 Mbps) net-
works.

Our new techniques can also be used to privately compute the union of
two sets as easily as computing the intersection. Our protocol concretely
improves the leading private set union protocol (Kolesnikov et al., Asi-
acrypt 2020) by a factor of 2−2.5×, depending on the network speed. We
then show how private set union can be used in a simple way to realize
the “Private-ID” functionality suggested by Buddhavarapu et al. (ePrint
2020). Our protocol is significantly faster than the prior Private-ID pro-
tocol, especially on fast networks.

All of our protocols are in the two-party setting and are secure against
semi-honest adversaries.

1 Introduction

In 2-party private set intersection (PSI), Alice’s input is a set of items X, Bob’s
input is a set Y , and the output (given to one or both of them) is the entire
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contents of the intersection X ∩ Y . PSI protocols have become incredibly
efficient over the last decade.

The fastest PSI protocols generally follow the rough approach of Pinkas
et al. [PSZ14], which was the first special-purpose PSI protocols to be based
on efficient OT (oblivious transfer) extension. Since then, the techniques have
been considerably refined and improved for both semi-honest [PSSZ15,KKRT16,
PRTY19,CM20] and malicious [DCW13,RR17a,RR17b,PRTY20] security. An
entirely different approach to PSI requires public-key operations (e.g., key
agreement or partially homomorphic encryption) linear in the size of the
sets [Mea86,HFH99,FNP04,CT10,CT12,FHNP16]. Our focus in this work is
on faster OT-extension-based PSI techniques.

Computing on the Intersection. Many real-world applications are closely related
to PSI but in fact require only partial/aggregate information about the
intersection to be revealed. In a notable real-world deployment of secure com-
putation, Google is known to compute the cardinality of the intersection and
the sum of values in the intersection [IKN+19,MPR+20]. More generally, we
consider private computing on set intersection (PCSI): the problem of
securely computing g(X ∩ Y ) for a (mostly) generic choice of function g.

There are several techniques for computing set intersections within generic
2PC, so that the intersection can be easily fed into another function. Huang, Katz
and Evans [HEK12] gave an efficient sort-compare-shuffle circuit for use in either
GMW or Yao’s protocol. Further combinatorial improvements to intersection
circuits were proposed in [PSSZ15,PSWW18]. The current state of the art for
PCSI is due to [PSTY19], using a special-purpose preprocessing phase before
using general-purpose 2PC to perform the necessary comparisons.

Why the Performance Gap? Plain PSI and PCSI are clearly closely related prob-
lems, and yet the state-of-the-art protocols for these problems have significantly
different efficiency. Semi-honest PCSI – even in the simplest possible cases, like
cardinality of intersection – is concretely about 20× slower and requires over
30× more communication than semi-honest PSI. Why is this the case?

All PSI and PCSI protocols use various combinatorial techniques to reduce
the problem to a series of private equality tests. A private equality test (PEqT)
takes a private string from each party and reveals (only) whether the strings are
identical.

In the case of PSI, each party is allowed to learn whether each of their input
items is in the intersection or not. This fact leads PSI protocols to use efficient,
special-purpose PEqT subprotocols, which reveal the output of the equality test
directly to at least one of the parties. This approach doesn’t immediately work for
PCSI, since in that case the participants should not learn whether a particular
item is in the intersection or not. Instead, the outcome of the PEqTs should
remain “inside the secure computation,” prompting PCSI protocols to implement
PEqTs simply as circuits within a general-purpose 2PC protocol.

These divergent choices of PEqTs lead to the differences in performance
between PSI and PCSI. A general-purpose PEqT on �-bit strings is a
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boolean circuit with � non-free gates, leading to O(�) cryptographic opera-
tions and O(�κ) bits of communication. The state-of-the-art for special-purpose
PEqTs [KKRT16] has cost that is independent of �: only O(κ) bits of communi-
cation and O(1) symmetric-key cryptographic operations per equality test.

One exception to this general rule is due to Ciampi and Orlandi [CO18]. They
provide a special-purpose PEqT (actually a generalization where one party has
m items and the other has 1) that produces outputs in “encrypted form” that can
be subsequently fed into a generic 2PC. However, their approach still requires
Θ(κ�) bits of communication per comparison. While their concrete constants are
smaller than a circuit-based comparison, their approach is not an asymptotic
improvement.

Other Related Work. Another body of work studies the special case of comput-
ing the cardinality of intersection [HFH99,VC05,CZ09,CGT12,EFG+15,BA12,
KS05,DD15]. It is not clear how to extend such results for computing more gen-
eral functions of the intersection. The work of [BA12,EFG+15,MRR19] is in
the multi-party setting (n ≥ 3 parties) with an honest majority based on secret-
sharing. As a result, no cryptographic operations are needed but the techniques
are not applicable to the two-party setting.

1.1 Our Contribution

We describe a new approach for semi-honest PCSI, which leaks the cardinality
|X ∩ Y |. Hence, our protocol works to compute g(X ∩ Y ) for any g that leaks
the cardinality |X ∩ Y |.This class of g includes many applications of interest,
discussed below.

The main idea is to obliviously permute all of the strings that will be used
in the PEqTs, so that one party does not know which items are tested in which
PEqT instance. We can then use the more efficient special-purpose PEqTs, giving
output directly to the party who is oblivious to the permutation. This reveals
only the cardinality of the intersection (i.e., how many PEqTs give output true).

Obliviously permuting n items incurs a log n overhead. However, in return
for this extra cost we are able to replace general-purpose PEqTs with special-
purpose PEqTs, saving a factor of � (for strings of length �). In almost all situ-
ations, log n � � and the tradeoff is an asymptotic as well as concrete improve-
ment over the state of the art.

Extensions and Applications. Our protocol supports any symmetric function
g(X ∩ Y ) that leaks |X ∩ Y |. Useful such functions include:

– Computing the intersection; i.e., PSI (although our protocol is not competi-
tive with the most efficient PSI-only protocols).

– Computing only the cardinality of the intersection.
– Computing secret shares of the items in the intersection.
– The “intersection-sum” functionality proposed in [IKN+19], in which Alice

has a set of keys {x1, . . . , xn} and Bob has a set of key-value pairs
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{(y1, v1), . . . , (yn, vn)}. Both parties learn the cardinality of {x1, . . . , xn} ∩
{y1, . . . , yn} as well as the sum of values

∑
i:yi∈{x1,...,xn} vi. Although not

strictly an instance of PCSI as we have defined it, our protocol is easily mod-
ified to realize this functionality.

For all of these cases except the plain-PSI case, our protocol gives the most
concretely efficient solution to date.

We also show how to use our main techniques to also securely compute the
union of the input sets. Our private set union protocol is concretely more effi-
cient than the state-of-the-art protocol of [KRTW19].

Finally, we show how our techniques can be used to realize the “private ID”
functionality proposed in [BKM+20]. In this functionality, both parties learn
pseudorandom universal identifiers for the values in the union of their sets, as
well as the identifiers corresponding to their own items. This functionality allows
parties to locally sort their data sets according to these universal identifiers, and
feed them into any general-purpose 2PC protocol for simplified processing. Our
construction is the first instantiation of Private ID using OT-based techniques
that are dominated by symmetric-key crypto operations.

We have implemented our protocols and give a full comparison to existing
protocols.

2 Preliminaries

Security Model. We use the standard notion of security in the presence of semi-
honest adversaries. Let π be a protocol for computing the function f(x1, x2),
where party Pi has input xi. We define security in the following way.

For each party P , let viewP (1κ, x1, x2) denote the view of party P during
an honest execution of π on inputs x1 and x2. The view consists of P ’s input,
random tape, and all messages exchanged as part of the π protocol.

Definition 1. 2-party protocol π securely realizes f in the presence of semi-
honest adversaries if there exists a simulator Sim such that, for all inputs x1, x2

and all i ∈ {1, 2}:
Sim(1κ, i, xi, f(x1, x2)) ∼=κ viewPi

(1κ, x1, x2)

where ∼=κ denotes computational indistinguishability with respect to security
parameter κ.

Essentially, a protocol is secure if the view of a party leaks no more informa-
tion than f(x1, x2).

3 Protocol Building Blocks

3.1 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental cryptographic protocol widely used
in secure computation, and initially introduced in [Rab05]. It allows a sender
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with two inputs m0,m1 and a receiver with a bit b to engage in a protocol where
the receiver learns mb, and neither party learns any additional information. A
single OT requires public-key operations and hence is expensive. But a powerful
technique called OT extension [IKNP03,KK13,ALSZ13] allows one to perform
n OTs by only performing O(κ) public-key operations (where κ is a computa-
tional security parameter) and O(n) fast symmetric-key operations, allowing for
faster and more scalable implementation when invoking many OTs. In Fig. 1 we
formally define the ideal functionality for OT that provides n parallel instances
of OT.

3.2 Oblivious Switching Network

An oblivious switching network works as follows. One party chooses a permu-
tation π on n items, and the other party chooses a vector x. The parties learn
additive secret shares of π(x) (i.e., x permuted according to π). The formal
description of the functionality is given in Fig. 2.

Mohassel and Sadeghian [MS13] introduced oblivious switching and described
a semi-honest oblivious switching protocol that is based on oblivious transfers.
Briefly, the protocol works by considering a universal switching network (i.e.,
Waksman or Beneš network), which consists of O(n log n) 2-input, 2-output
switches. The receiver chooses programming of the switches (whether to swap
the order of the inputs or not) based on their permutation π. The sender chooses
a random one-time pad for each wire of the network, and the invariant is that
the receiver will learn the value on each wire but masked with the one-time pad
of that wire. The parties use oblivious transfer to allow the receiver to select
whether to learn the XOR of masks of input b and output b, or to learn the
XOR of masks of input b and output 1− b. These XOR values suffice to preserve
the invariant across the switches. At the output layer of the switching network,
the sender holds a vector of one-time pads, and the receiver holds the permuted
values masked by these one-time pads. We give more details in the full-version
of our paper.

The total cost of the switching network is O(n log n) oblivious transfers, one
for every switch in the switching network. Each OT is on a pair of 2�-bit strings
(two masks).

We described the ideal functionality to allow the input vector x to be longer
than the output (secret-shared) vectors, which leads to π being an injective func-
tion rather than a permutation. This can be accomplished by simply permuting
the input vector so that the desired items are “in the front”, and then both
parties truncating their vector of shares by the appropriate amount. In the full
version of our paper we describe an optimization for injective functions that
slightly improves over permuting-then-discarding.

3.3 Batch Oblivious PRF

Kolesnikov et al. [KKRT16] describe an efficient protocol for batched oblivious
PRF (OPRF) based on OT extension. The protocol provides a batch of oblivious
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Fig. 1. Ideal functionality Fot for n oblivious transfers.

Fig. 2. Ideal functionality Fosn for oblivious switching network.

Fig. 3. Ideal functionality FbOPRF for batch oblivious PRF.

Fig. 4. Ideal functionality FbEQ for batch string equality testing.

PRF instances in the following way. In the ith instance, the receiver has an input
xi; the sender learns a PRF seed ki and the receiver learns PRF(ki, xi). Note
that the receiver learns the output of the PRF on only one value per key, and
the sender does not learn which output the receiver learned. The batch OPRF
functionality is described formally in Fig. 3.

The KKRT batch OPRF protocol is based on OT extension and extremely
fast. Each OPRF instance requires roughly only 4.5κ total bits of communication
between the parties, and a few calls to a hash function. On a fast network, a
million OPRF instances can be generated in just a few seconds.

Technically speaking, the KKRT protocol realizes OPRF instances where the
keys ki are related in some sense. However, the PRF that it instantiates has all
the expected security properties, even in the presence of such related keys. For
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the sake of simplicity, we ignore this issue in our notation. For more details, see
[KKRT16].

3.4 Private Equality Tests

A private equality test (PEqT) allows two parties to determine whether their
two input strings are equal (while leaking nothing else about the inputs).

An oblivious PRF can be used to realize a secure equality test in a simple
way. Suppose Alice has input x and Bob has input y, and they would like to
learn whether x = y. Alice acts as OPRF receiver with input x and learns
PRF(k, x). Bob learns PRF seed k and sends the value PRF(k, y). If x �= y then
the PRF property ensures that Bob’s message looks random to Alice; otherwise
the message is the PRF output that Alice already knows.

Using the batch OPRF protocol of [KKRT16], the parties can realize a large
batch of equality tests in a natural way. The functionality FbEQ of Fig. 4 formal-
izes this batch equality testing. We take advantage of the fact that its output
can be given to just one party.

3.5 Reducing PSI to O(n) Comparisons

The leading protocol for PCSI is due to Pinkas et al. [PSTY19]. One of their
main contributions is to show how to interactively reduce a PSI computation to
O(n) comparisons, using only a linear amount of communication.

The main idea behind the PSTY19 preprocessing is for Alice to use hash
functions h1, h2, h3 to assign her items to m bins via Cuckoo hashing, so that
each bin has at most one item. Bob assigns each of his items y to all of the bins
h1(y), h2(y), h3(y). The parties use the batch OPRF functionality FbOPRF, with
Alice acting as receiver. If she has placed item x in bin j, then she will receive
output PRF(kj , x), while Bob learns each kj .

Now, Bob chooses a random value sj for each bin j. The goal is to arrange
that if Alice and Bob have a matching item in the jth bin, then Alice will
somehow learn that bin’s sj value. Suppose for example that one of Bob’s items
in bin #1 is y∗. Then Bob needs to somehow communicate to Alice “if you have
y∗ in bin #1, then XOR your PRF output with PRF(k1, y∗)⊕ s1”. But he needs
to do so without revealing y∗ and the rest of his input items. He can do this by
interpolating a polynomial P with the following property: if Bob has item y in
bin j, then P (y‖j) = PRF(kj , y) ⊕ sj . Using the pseudorandomness of PRF and
the randomness of the sj values, it is possible to show that P is indistinguishable
from a uniformly random polynomial, and hence it hides Bob’s y-values.

Alice therefore can take her PRF(kj , x) values and XOR with P (y‖j). In the
case that Bob also had this item x, then he would have assigned it to bin j (and
to other bins as well), so Alice’s result is sj . If Bob did not have this x, then
it is possible to show that Alice’s result matches sj with negligible probability
(assuming the polynomial is over a sufficiently large field).

Overall, Alice obtains a vector of values (call them t1, . . . , tm) where tj = sj

if and only if Alice’s item in the jth bin is in the intersection. Hence we have
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reduced the problem of intersection to the problem of m = O(n) string equality
tests. These pairs of strings must be compared privately, since comparing them
in the clear leaks information to both parties.

More Details. We write Cuckoo hashing with the following notation:

C ← Cuckoom
h1,h2,h3

(X)

This expression means to hash the items of X into m bins using Cuckoo hashing
on hash functions h1, h2, h3 : {0, 1}∗ → [m]. The output is C = (C1, . . . , Cm),
where for each x ∈ X there is some i ∈ {1, 2, 3} such that Chi(x) = x‖i.1 Some
positions of C will not matter, corresponding to empty bins.

Using this notation, the PSTY19 preprocessing is as follows:

1. Alice does A ← Cuckoom
h1,h2,h3

(X).
2. The parties call FbOPRF, where Alice is receiver with input A and Bob

is sender. Bob receives output (k1, . . . , km) and Alice receives output
(f1, . . . , fm). For each x ∈ X assigned to bin j by hash function i, we
have fj = PRF(kj , x‖i).

3. For each j ∈ [m], Bob choose a random sj . He then interpolates a poly-
nomial P of degree < 3n such that for every y ∈ Y and i ∈ {1, 2, 3}:

P (y‖i) = shi(y) ⊕ PRF(khi(y), y‖i)

He sends P to Alice.
4. Alice computes a vector (t1, . . . , tm) where tj = P (Aj) ⊕ fj .

Mega-Bin Optimization. The PSTY19 approach requires parties to interpolate
and evaluate a polynomial of degree 3n, where n can be very large (e.g., n = 220).
The fastest algorithms for interpolating such a polynomial (and evaluating it on
n points) runs in O(n log2 n) time. The cost of such polynomial operations can
be prohibitive, so the authors of PSTY19 propose an alternative way to encode
the same information.

Call a mapping “y‖i �→ shi(y) ⊕ PRF(khi(y), y‖i)” a hint. Bob must convey
3n such hints to Alice in the protocol. One way to do this is to make n′ = n/ log n
so-called mega-bins and assign each hint into a mega-bin using a hash function—
i.e., assign the hint for y‖i to the mega-bin indexed H(y‖i) for a public random
function H : {0, 1}∗ → [n′]. With these parameters, all mega-bins hold fewer
than O(log n) items, with overwhelming probability. Bob adds dummy hints to
each mega-bin so that all mega-bins contain the worst-case O(log n) number of
hints (since the number of “real” hints per mega-bin leaks information about his
input set). In each mega-bin, Bob interpolates a polynomial over the hints in that
bin, and sends all the polynomials to Alice. For each x‖i held by Alice, she can
find the corresponding hint (if it exists) in the polynomial for the corresponding
mega-bin.
1 Appending the index of the hash function is helpful for dealing with edge cases like
h1(x) = h2(x), which happen with non-negligible probability.
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The total communication cost is a degree-O(log n) polynomial for each of
n/ log n mega-bins; in other words, a constant-factor increase over sending a
single degree-3n polynomial. However, the total computation cost is an inter-
polation of a degree-O(log n) polynomial in each mega-bin, a total cost of
O

(
(n/ log n)(log n)(log log n)2

)
= O(n(log log n)2). In practice, the mega-bins

are small enough that the asymptotically inferior quadratic polynomial interpo-
lation algorithm is preferable, but this still leads to O(n log n) computational
cost overall.

For simplicity, we describe our protocol in terms of the simpler single-
polynomial solution, while our implementations use the mega-bins optimization.

4 Protocol Overviews and Details

In this section we give the details of our protocols for PCSI and related problems.

4.1 Our Protocol Core: Permuted Characteristic

All of our protocols build on the same core, which roughly consists of: (1) the
PSTY19 preprocessing, reducing the intersection computation to O(n) string
equality tests; (2) an oblivious shuffle; (3) special-purpose equality tests.

We formalize this “protocol core” in terms of a permuted characteristic
functionality Fpc defined in Fig. 5. Roughly speaking, the sender Alice learns a
permutation π of her items, and the receiver Bob learns a vector e, where ei = 1
if Alice’s π(i)’th item is in Bob’s set. In other words, e is the characteristic vector
of Alice’s (permuted) set with respect to the intersection.

Our protocol for permuted characteristic is given formally in Fig. 6.

Lemma 1. The protocol in Fig. 6 securely realizes Fpc against semi-honest
adversaries.

Proof. Alice’s view consists of her input, private randomness π̃, outputs from
FbOPRF and Fosn, and protocol message P from Bob. The simulator for a corrupt
Alice runs the protocol honestly with the following changes:

– In step 2, it simulates uniform outputs fj from FbOPRF.
– In step 4, it simulates a uniform polynomial P from Bob.
– In step 6, it chooses π̃ so that xπ(i) = Aπ̃(i), where π is the ideal output from

Fpc.

We show that this simulation is correct via the sequence of hybrids:

– Hybrid 0. The real interaction, in which Bob runs honestly with his input set
Y .

– Hybrid 1 The only change is that all terms of the form PRF(kj , ·) are replaced
with uniform values, including Alice’s outputs from the FbOPRF functionality
in step 2. This change is indistinguishable by the pseudorandomness of PRF.
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Fig. 5. Permuted characteristic functionality Fpc.

Fig. 6. Permuted characteristic protocol.
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– Hybrid 2 The only change is that in step 4 the polynomial P is chosen uni-
formly at random. Previously, P was interpolated through points of the form
shi(y) ⊕ PRF(khi(y), y‖i). If Alice didn’t have item y or didn’t place item y
according to hash function i, then the PRF-output term has been replaced
by a random term that is independent of her view, so this output of P is
uniform. For all other outputs of P (corresponding to Alice’s placement of
intersection items), the corresponding sj values are uniform, making those
P -outputs uniform as well. Overall, P is being interpolated to give only uni-
form outputs; hence P itself is distributed uniformly among polynomials of
degree <3n. Hence this change in hybrids has no effect on Alice’s view.

– Hybrid 3 In the previous hybrid, Alice first chooses injective function π̃ and
then uses it to compute permutation π. This induces a uniform distribution
on π, so the same distribution can be obtained by first choosing uniform π
and then computing the corresponding π̃.

The final hybrid corresponds to the simulator as described above.
Bob’s view consists of his input, private randomness {sj}j , outputs from

FbOPRF, Fosn, FbEQ. Clearly the outputs ki from FbOPRF are distributed inde-
pendently of the honest party’s inputs. By definition, the output b from Fosn is
uniformly distributed, as a secret-share. This leaves only the output e of FbEQ.
It is a simple matter to check that e is distributed exactly as the ideal output
of Fpc. Namely, it is a uniform bit-vector with exactly |X ∩ Y | ones. Hence, all
of Bob’s view can be trivially simulated given the ideal output e from Fpc.

4.2 Intersection and Union

Our protocol core (permuted characteristic) Fpc can be used to realize plain
private set intersection (PSI) and private set union (PSU) in a simple
way. After Fpc, say Alice holds a permutation of her input set, and Bob holds the
characteristic vector e. If the characteristic vector is 0 in position i, this means
that Alice’s ith item is in X\Y . If the characteristic vector is 1 in position i,
then Alice’s ith item is in X ∩ Y .

For PSI, the parties can use n = |X| oblivious transfers to allow Bob to learn
the items in X ∩Y . If ei = 1, Bob will choose to learn Alice’s ith item; otherwise
he will choose to learn nothing.

Observe that PSU is equivalent to letting Bob learn X\Y : Given the ideal
PSU output X ∪ Y and Bob’s input Y , he can indeed compute X\Y = (X ∪
Y )\Y . Conversely, given X\Y and Bob’s input Y , he can compute the PSU
output X ∪ Y = (X\Y ) ∪ Y . With that in mind, Bob can easily compute X\Y
by simply inverting his logic in the previous paragraph. If ei = 0, Bob will choose
to learn (via OT) Alice’s ith item; otherwise he will choose to learn nothing.

The formal details of these PSI/PSU protocols are given in Fig. 7. We remark
that this approach for PSI is not competitive with the state-of-the-art special-
purpose protocols for PSI. In particular, an oblivious shuffle is unnecessary for
PSI. We include this PSI protocol merely for illustrative purposes. However, as
we shall see, our approach for PSU is indeed competitive with the state of the
art, and is useful as a stepping stone to another interesting application.
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Fig. 7. Ideal functionalities for intersection/union (Fpsi/Fpsu).

Fig. 8. Protocols for intersection and union.

Lemma 2. The PSI and PSU protocols of Fig. 8 securely realize Fpsi and Fpsu,
respectively, (Fig. 7) against semi-honest adversaries.

Proof (Proof sketch) We focus on the security proof for PSI, as the proof for PSU
is analagous. Security against a corrupt sender is trivial, since their view consists
of only the output π from Fpc. For a corrupt receiver, their view consists of the
vector e and OT outputs. If xπ(i) ∈ Y , then ei = 1 and the ith OT output is
xπ(i). Otherwise, ei = 0 and the ith OT outputs is ⊥. Furthermore, π is uniform,
and therefore this distribution can be simulated given only ideal output X ∩ Y :
Sample a uniform binary vector e containing |X ∩Y | 1s. Then choose a uniform
assignment of elements of X ∩ Y to OT instances i for which ei = 1.

Our protocols give output only to one party (the receiver). In the semi-
honest setting, the receiver can simply report the output to the sender in order
to provide output to both parties.

4.3 PCSI: Computing on the Intersection

We now discuss PCSI: computing a function of the intersection. Our approach
inherently leaks the cardinality, and we formalize this in the ideal functionality
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Fpcsi+card of Fig. 9, which outputs the cardinality of the intersection along with
a function g of the intersection.

Fig. 9. Ideal functionality for computing cardinality and an arbitrary function of the
intersection Fg

pcsi+card.

Perhaps the most common instance of PCSI is to compute only the cardinality
(i.e., g is empty). This special case can be obtained trivially by our Fpc protocol
core:

Proposition 1. If the parties run Fpc on their inputs and the receiver outputs
the hamming weight of e, then the resulting protocol securely realizes Fg

pcsi+card

for g = ⊥, against semi-honest adversaries.

Proof (Proof sketch). Security against corrupt sender is trivial since the sender’s
view consists only of a uniformly distributed permutation (i.e., independent
of anyone’s inputs). Regarding a corrupt receiver: since π is uniformly chosen
among permutations, the vector e is distributed as a uniform vector of length
n with exactly |X ∩ Y | ones. This distribution can therefore be simulated given
only the ideal output |X ∩ Y |.

Note also that if the sizes of X and Y are public, then computing |X ∩ Y | is
equivalent to computing |X ∪ Y |, via the standard inclusion-exclusion formula.

Cardinality-Sum. If the function g is simple enough, then Fg
pcsi+card can be real-

ized in a very simple way from Fpc. We illustrate with an example, which does
not exactly fit into the definition of Fpcsi+card since one party has a set of key-
value pairs. Our example involves the cardinality-sum functionality proposed
by Ion et al. [IKN+19]. The functionality is described formally in Fig. 10. It
reveals the intersection of the cardinality as well as the sum of all values whose
keys are in the intersection.

In Fig. 11 we describe a simple protocol realizing the cardinality-sum func-
tionality. Similar to how we achieve PSI & PSU from Fpc, this protocol uses
oblivious transfers to let the receiver learn things, based on the characteris-
tic vector. In this case, instead of learning the sender’s items in the clear, the
receiver learns either an additive secret share of 0 or a secret share of that item’s
associated value. Then the receiver can compute the sum by locally adding the
shares.

Lemma 3. The protocol of Fig. 11 securely realizes ideal functionality Fcard+sum

(Fig. 10), against semi-honest adversaries.
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Fig. 10. Ideal functionality Fcard+sum for cardinality-sum.

Fig. 11. Protocol for cardinality-sum.

Proof (Proof sketch). Security against a corrupt sender is immediate. Relative
to the cardinality protocol, the only addition to a corrupt receiver’s view are the
outputs of the OTs. View these outputs as the vector r + q, where r is uniform
subject to having sum 0; and qi = vi if xi ∈ Y and qi = 0 otherwise. Since the
ri’s are a perfect additive secret share of 0, the distribution of r + q depends
only on

∑
i qi, which is the ideal output s.

General Case. More generally, suppose the sender has a set of key-value pairs
(xi, vi), and the receiver has a set of keys Y . The parties can use parallel oblivious
transfers to secret share a vector q, where:

qi =

{
vi xi ∈ Y

ṽ xi �∈ Y

where ṽ is some dummy/default value. In the case of cardinality-sum, ṽ = 0.
With secret shares of such a vector, the parties can compute a function g

that takes in a vector of inputs and ignores the dummy/default values in the
input. In the case of cardinality-sum, g was simple addition and no interaction
was required to compute it.
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4.4 Secret-Shared Intersection

In some settings, it is more convenient for the parties to obtain secret shares of
the items of the intersection, so that it can be fed into a generic 2PC.

To illustrate the challenges here, let’s first consider a very natural approach
that doesn’t work. The parties run Fpc, so that Bob learns the indices of Alice’s
intersection items, permuted according to the secret permutation π. Whereas
with PSI/PSU, Bob used OT to selectively learn the items of the intersection
(or set-difference), we might be tempted to have Bob now learn secret-shares of
the items in the intersection.

To see why this isn’t so straight forward, imagine that each party has 1
million items, and there are 10 in the intersection. Bob could indeed use OT
to learn secret shares of those 10 items. But now it is time to run the 2PC to
compute g on those 10 items. Alice prepared 1M additive shares, and she doesn’t
know which 10 of them should be given to g! Bob knows which ones are the right
ones, but he can’t tell Alice because she knows the secret permutation π—this
would reveal the entire contents of the intersection to Alice!

We address this challenge by simply doing another oblivious switching net-
work. Alice holds a secret permutation of her items. Bob knows which indices in
this permutation correspond to items in the intersection. He chooses an injec-
tive function ρ whose range covers exactly those intersection items. They use an
oblivious switching network, so that both parties learn additive shares of only
those items referenced by ρ.

Details of this protocol are given in Fig. 13. Bear in mind that the input to g
is necessarily given as an ordered vector. Most applications of PCSI will involve
a function g that is symmetric, meaning that g is insensitive to the order of its
inputs. However, note that the values that are fed into g are randomly permuted,
from both parties’ perspective (Bob didn’t know π and Alice didn’t know ρ).
Hence, our protocol is meaningful even if g is sensitive to the order of its input
items. In that case, we still achieve the most natural security, where the items
of the intersection are randomly shuffled before being given as input to g.

Lemma 4. The protocol of Fig. 13 securely realizes Fss-int (Fig. 12), against
semi-honest adversaries.

Proof. Beyond the output of Fpc, the only thing added to parties’ views in
Fig. 13 is the cardinality c and the secret shares output by Fosn. The former can
be inferred by the ideal output of Fss-int, and the latter coincides with the ideal
output itself.

4.5 Private ID

Buddhavarapu et al. [BKM+20] proposed a useful functionality that they called
private-ID. In this functionality, both parties provide a set of items. The func-
tionality assigns to each item a truly random identifier (where identical items
receive the same identifier). It then reveals to each party the identifiers corre-
sponding to their own items, and also the entire set of all identifiers (i.e., the
identifiers of the union of their input sets).
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Fig. 12. Ideal functionality for computing secret shares of the intersection Fss-int.

Fig. 13. Protocol for secret-shared intersection.

The advantage of Private ID is that both parties can sort their private data
relative to the global set of identifiers. They can then proceed item-by-item,
doing any desired private computation, being assured that identical items are
aligned.

Fig. 14. Private ID functionality Fpriv-ID.
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Fig. 15. Private-ID protocol.

Our Approach. Our approach for private-ID builds on oblivious PRF and private
set union. Roughly speaking, suppose the parties run an oblivious PRF twice:
first, so that Alice learns kA and Bob learns PRF(kA, yi) for each of his items yi;
and second so that Bob learns kB and Alice learns PRF(kB , xi) for each of her
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items xi. We will define the random identifier of an item x as

R(x) def= PRF(kA, x) ⊕ PRF(kB , x).

Note that after running the relevant OPRF protocols, both parties can compute
R(x) for their own items. To complete the private-ID protocol, they must simply
perform a private set union on their sets R(X) and R(Y ).

This approach indeed leads to a fine private-ID protocol. In the full-version
of our paper we present and prove secure an optimization we observe that a
full-fledged OPRF is not needed and a so-called “sloppy OPRF” would suffice.

In particular, if Bob has an item y∗ that is not held by Alice, then it
doesn’t matter whether Bob learns the “correct” value PRF(kA, y∗). Suppose
that Bob instead learns some other value z∗ instead. Then Bob will consider
z∗ ⊕ PRF(kB , y∗) to be the identifier of this item. Since Alice doesn’t know kB ,
this identifier looks random to Alice, which is the only property we need from
private-ID for an item that is held by Bob and not Alice.

Hence we instantiate this general OPRF-based approach, but with a more
efficient “sloppy OPRF” protocol. In a sloppy OPRF, Alice provides a set X;
Bob provides a set Y ; Alice learns kA and Bob learns a list of output values
z1, . . . , zn. For every yi ∈ Y , if yi ∈ X, then zi = PRF(kA, yi), but for other zi

values there is no correctness guarantee.
We achieve a sloppy OPRF using the OPPRF idea that is also used in the

PSTY19 pre-processing. Namely, Bob hashes his items into bins with Cuckoo
hashing. They perform a batch-OPRF, where Bob will learn PRF(khi(y), y‖i) if
he placed item y according to hash function hi. Alice chooses a random seed
s for a different PRF PRF′ and sends a polynomial P that satisfies P (x‖i) =
PRF′(s, x)⊕PRF(khi(y), y‖i) for all x ∈ X and all i ∈ {1, 2, 3}. Bob will compute
his final output as P (y‖i) ⊕ PRF(khi(y), y‖i), which will equal PRF′(s, y) in the
case that Alice held the item y.

Lemma 5. The protocol in Fig. 15 securely realizes the Fpriv-ID functionality
Fig. 14 in the presence of semi-honest adversaries.

Proof. The protocol is symmetric with respect to the parties’ roles, so we focus
on the case of a corrupt Alice.

Claim. In step 8, when Bob computes RB, it satisfies the property that if
y ∈ X ∩ Y then RB(y) = PRF′(sA, y) ⊕ PRF′(sB , y).

Proof. Suppose Bob placed item y into bin hi(y) according to hash function
i. Then Bob computed RB(y) as RB(y) = PA(y‖i) ⊕ PRF(kB

hi(y)
, y‖i) ⊕

PRF′(sB , y). Since y ∈ X also, the polynomial PA satisfies PA(y‖i) =
PRF(kB

hi(y)
, y‖i) ⊕ PRF′(sA, y). Substituting, we see that indeed RB(y) =

PRF′(sA, y) ⊕PRF′(sB , x). This implies in particular that RA(y) = RB(y)
for y ∈ X ∩ Y .

The simulator for corrupt Alice receives ideal output (R∗, R(x1), . . . , R(xn))
and simulates Alice’s view as follows:
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– in step 2, uniform output fA
j from FbOPRF.

– in step 4, a polynomial PB satisfying PB(x‖i) = fA
hi(x)

⊕ R(x) ⊕PRF′(sA, x)
for every item x ∈ X placed according to hash function i, and uniform oth-
erwise.

– in step 6, uniform keys kA
j from FbOPRF.

– in step 9, output U = R∗ from Fpsu.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid 0: The real protocol interaction.
– Hybrid 1: Replace all terms of the form PRF′(sB , y) with random; this change

is indistinguishable from the pseudorandomness property.
– Hybrid 2: Replace all terms of the form PRF(kj , x‖i) with random (including

outputs fA
j given to Alice); this change is indistinguishable from the security

of FbOPRF and the pseudorandomness of PRF.
Previously PB was interpolated as PB(y‖i) = PRF′(sB , y)⊕PRF(kB

hi(y)
, y‖i).

Now, if Alice did not have item y and placed it according to hash function i,
then the PRF(kB

hi(y)
, y‖i) term is now uniform and independent of her view,

making this output of PB random. For y‖i corresponding to Alice’s item
placement, the y’s are distinct, and the PRF′(sB , y) in those terms are now
uniform, making this output of PB random. In short, PB is now a uniform
polynomial.
Note also that RB(y) is uniform for y ∈ Y \X, because of the fresh random
PRF′(sB , y) term in its definition.

– Hybrid 3: Instead of computing RA(x) as in step 4, where one of the terms
PB(x‖i) is a uniform value, we instead compute RA(x) randomly and then
interpolate PB to go through the correct value (and be otherwise uniform),
i.e.,

PB(x‖i) = RA(x) ⊕ fA
hi(x)

⊕ PRF′(sA, x)

This change has no effect on Alice’s view distribution. Note that in this hybrid,
every RA(x) is random, and every RB(y) is random subject to RB(y) = RA(y)
in the case that y ∈ X ∩ Y .

This final hybrid corresponds to the final simulation, after some slight rear-
ranging. First, a random R(z) is chosen for every z ∈ X ∩ Y . Then the polyno-
mial PB is interpolated according to {R(x) | x ∈ X}, via the expression in the
simulator description. Finally, the output of Fpsu is {R(z) | z ∈ X ∩ Y }.

5 Comparing Communication Costs

In this section we compare our new approach to existing protocols. The focus
in this section is on quantitative differences and communication complexity. In
Sect. 6 we report on the running time of the implemented protocols.
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5.1 PSU

The state of the art PSU protocol is due to Kolesnikov et al. [KRTW19]. In
that protocol, each party’s n items are hashed into m = O(n/ log n) bins. The
expected number of items per bin is n/m, but the worst-case load among the
bins is larger by a constant factor. In order to hide the true number of items per
bin, each party must add dummy items up to this worst-case maximum.

Within each bin, the parties perform a subprotocol with linear number of
OPRFs, linear number of OTs, and quadratic communication. Specifically, the
additional communication for β items in a bin is β2σ, where σ = λ+2 log n and
λ is the statistical security parameter.

Let c be the constant factor expansion within a bin to accommodate the
dummy items (i.e., n/m expected items in a bin, padded to cn/m including
dummies). For usual set sizes, the constant is 3.2–3.6. Then the total communi-
cation cost for the protocol is:

cn · bOPRF + cn · OT + (c2n log n)σ

Here bOPRF and OT refer to the communication costs for a single bOPRF and
OT, respectively.

Our protocol requires the following: 1.27n OPRFs, sending one degree-3n
polynomial (for the PSTY19 preprocessing), roughly 1.27n log n OTs (for the
switching network), and then n additional OTs (to selectively transfer the union).
Note the constant bounding the size of the Beneš network is indeed 1. The total
communication cost is therefore:

1.27n · bOPRF + 3nσ + (1.27n log n + n) · OT

In comparings the protocols, the dominant term is the one containing
O(n log n). Our protocol is superior if 1.27OT < c2σ. Indeed, the cost of an
OT is κ + 2� (where � is the length of the item being transferred), which in our
implementation is 128 + 2.60 = 248. Hence 1.27OT ≈ 315. In [KRTW19], c2σ is
at least 10 · 80 = 800.

These pen-and-paper calculations match what we find empirically in Table 2
where our communication cost is half that of Kolesnikov et al. [KRTW19]. Our
protocol is a significant constant factor better.

5.2 PCSI

For general-purpose PCSI, the leading protocol is due to Pinkas et al. [PSTY19]
(PSTY19). Recall that our protocol builds on the first several steps of their
protocol, which we call the PSTY19 preprocessing. We focus on the difference
between the two approaches, after performing the common preprocessing. In
[PSTY19], the authors report that the cost of preprocessing is roughly 4% of the
total protocol cost; hence the differences we discuss in this section are reflective
of the overall cost difference in the protocols.
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In [PSTY19], the pre-processing is followed up with 1.27n private equality
tests, which are performed inside generic MPC (e.g., garbled circuits). To com-
pare �-bit items, the cost of such a private equality test is 2�κ using the state-
of-the-art garbled circuit construction [ZRE15]. Hence the total communication
cost is 2.54�κn.

In our protocol, the pre-processing is followed up by an oblivious switching
network of roughly 1.27n log n nodes, each requiring OT on strings of length
2�. The cost of each OT is κ + 4� bits, and our total communication cost is
1.27(n log n)(κ + 4�).

Focusing on the asymptotically dominant term, our implementation is supe-
rior if the costs per items satisfy 1.27(log n)(κ+4�) < 2.54�κ. In our implementa-
tions, � = 60 and κ = 128. Hence our cost per item is 1.27 ·368 · log n = 467 log n
and theirs is 2.54 · 60 · 128 ≈ 19500. We can see that for all reasonable values
of n, our cost will be significantly less than their cost (the break-even point for
these particular parameters is an unrealistic n = 241).

5.3 Cardinality-Sum, Private ID

For cardinality-sum, private-ID, and secret-shared intersection, our approach
is the first based on efficient symmetric-key operations. The prior protocols of
[IKN+19,MPR+20,BKM+20] are all based on public-key techniques (Diffie-
Hellman and partially homomorphic encryption). As such, their protocols will
have superior communication cost but significantly higher computation costs,
due to their use of public-key operations linear in the size of the input sets.

6 Performance

In this section we discuss details of our implementation and report our perfor-
mance in computing the following set operations: (1) card: cardinality of the
intersection (permuted characteristic); (2) psu: union of the sets/psi: intersec-
tion of the sets; (3) priv-ID: computing a universal identifier for every item
in the union; (4) card-sum sum of the associated values for every item in
the intersection. We compare our work with the current fastest known proto-
col implementation for each functionality. To the best of our knowledge, there is
no known implementation to compare our card-sum protocol and we leave it
out of our comparison. Our run times for card-sum is almost equal to that of
psu.

6.1 Experimental Setup

We ran all our protocols on a single Intel Xeon processor at 2.30 GHz with 256 GB
RAM. We execute the protocol on a single thread and emulate the two network
connections using Linux tc command. For the LAN setting, we set the network
latency to 0.02 ms and bandwidth of 10 Gbps and for the WAN setting the
latency is set to 80 ms and bandwidth 50 Mbps. We also use a tc sub-command
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to compute the communication complexity for all the protocols evaluated in
the performance section. We stress that we used the same methodology and
environment to compute all the reported costs in this section.

6.2 Implementation Details

For concrete analysis we set the computational security parameter κ = 128 and
the statistical security parameter σ = 40. Our protocols are written in C++ and
we use the following libraries in our implementation.

– PSTY19 pre-processing phase. We re-use the implementation by the authors
of the paper [PSTY19]. Found: https://github.com/encryptogroup/OPPRF-
PSI.git

– Private equality tests. We use the batch-OPRF construction of [KKRT16]
implemented in libOTe library to compute the string equality tests. Found:
https://github.com/osu-crypto/libOTe.git

– Oblivious transfers and switching. We generate many instances of oblivious
transfer using the implementation of IKNP OT extension [IKNP03] from
libOTe. Found: https://github.com/osu-crypto/libOTe.git
Recent advances in OT extension [BCG+19b,BCG+19a] provide better
asymptotic performance, but we found the existing implementations to
improve over IKNP only in the multi-threaded case, while we measure only
single-threaded performance. We developed our own implementation of Beneš
network programming/evaluation. We used the code base in https://github.
com/elf11/benes network implementation as a starting point. We emphasize
that we made many corrections, implemented the functions to evaluate the
network, augment it to an oblivious switching network. Further, we imple-
mented the generalized OSN that can process any choice of input size n as
opposed input sizes that are powers of 2.

– Additionally, we rely use the cryptoTools library as the general framework
to compute hash functions, PRNG calls, creating channels, sending 128-bit
blocks and so on. Found: https://github.com/ladnir/cryptoTools.git

In Table 1 we present a breakdown run time of each step in our permuted char-
acteristic protocol. Unsurprisingly, the oblivious switching network is the most
expensive step in the WAN setting, as its communication scales as O(n log n),
while all other steps are linear.

6.3 Comparison Running Times

Now, we compare the run time of our protocol with the state-of-the-art for
each of the functionalities. We analyse how our work compares to the previous
best protocol and highlight the settings in which we beat their performance.
For a fair comparison, we compiled and ran the comparison protocols and our
protocol in the same hardware environment. We report the numbers for 3 input
sizes n = {212, 216, 220} all executed over a single thread. We choose our LAN

https://github.com/encryptogroup/OPPRF-PSI.git
https://github.com/encryptogroup/OPPRF-PSI.git
https://github.com/osu-crypto/libOTe.git
https://github.com/osu-crypto/libOTe.git
https://github.com/elf11/benes_network_implementation
https://github.com/elf11/benes_network_implementation
https://github.com/ladnir/cryptoTools.git
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Table 1. Run time (in seconds) of our protocol core to compute the permuted charac-
teristic (with breakdown for each step) for input set sizes n = {212, 216, 220} executed
over a single thread for the LAN and WAN configurations.

LAN (s) WAN (s)

212 216 220 212 216 220

Protocol steps

PSTY19 0.70 2.97 43.47 1.03 6.27 67.53

OSN 0.39 2.39 32.44 2.72 12.19 186.68

PEqT 0.49 1.00 8.50 3.36 6.38 28.68

Protocol core 1.58 6.36 84.41 7.11 24.84 282.89

setting to have latency set to 0.02 ms and a bandwidth of 10 Gbps and our
WAN setting to have latency set to 80 ms and bandwidth of 50 Mbps. For our
protocol, we report the average run time over 5 iterations.

Private Set Union. From Table 2, we can see that the empirical communication
cost of our protocol is roughly half the cost of [KRTW19]. This is consistent with
our back-of-the-envelope estimates from Sect. 5. We highlight that our improve-
ment over [KRTW19] increases with the size of the input set. This is because
the run time is dominated by O(n log n) term and this becomes more significant
with increased input sizes.

Table 2. Communication (in MB) and run time (in seconds) of private set union
protocol for input set sizes n = {212, 216, 220} executed over a single thread for LAN
and WAN configurations.

PSU LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[KRTW19] 1.42 12.77 243.03 4.76 46.56 823.01 7.74 131.4 2476

Our protocol 1.87 8.54 114.42 9.56 28.80 319.87 3.85 67.38 1155

Cardinality of Intersection. From Table 3 we can observe that the communica-
tion cost of our protocol is roughly a third of the cost of [PSTY19]. This con-
tributes to our improved run time in the WAN setting. In the LAN setting, our
cardinality protocol is comparable but does not beat the numbers of [PSTY19].
This can be attributed to the time-intensive programming of the switching net-
work in the OSN step of our protocol.
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Table 3. Communication (in MB) and run time (in seconds) of cardinality of inter-
section protocol for input set sizes n = {212, 216, 220} executed over a single thread for
LAN and WAN configurations.

Card LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[PSTY19] 1.230 5.07 65.12 7.90 38.79 530.15 10.53 166.18 2656

Our protocol 1.60 6.56 84.882 8.40 24.57 284.62 2.93 55.49 1030

Private-ID. The implementation in Table 4 relies on techniques from public-key
cryptography which explains their significantly lower communication costs. In
comparison, our OT-based implementation that largely relies on symmetric-key
operations has better performance. This is more noticeable with larger input sets,
where the number of public-key operations increases linearly for [BKM+20]. It’s
consistent with this reasoning to see that our improvement in run times in more
noticeable in the LAN setting. Unlike our Private-ID protocol, the run time of
the protocol in [BKM+20] is a function of the intersection size. We sampled
inputs where roughly half the elements were present in the intersection, for
our experiments with both protocols. [BKM+20] implemented their protocol in
Rust programming language with specific libraries that are tailored to be more
efficient with elliptic curve operations speeding up their run time despite using
public-key operations.

Table 4. Communication (in MB) and run time (in seconds) of the private-ID protocol
for input set sizes n = {212, 216, 220} executed over a single thread for LAN and WAN
configurations.

priv-ID LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[BKM+20] 2.76 34.70 394.60 6.63 40.49 426.11 0.99 14.85 224.26

Our protocol 2.75 9.70 118.14 12.74 34.09 346.32 4.43 76.57 1293
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Abstract. Constructing interactive zero-knowledge arguments from
simple assumptions with small communication complexity and good com-
putational efficiency is an important, but difficult problem. In this work,
we study interactive arguments with noticeable soundness error in their
full generality and for the specific purpose of constructing concretely effi-
cient shuffle arguments.

To counterbalance the effects of a larger soundness error, we show how
to transform such three-move arguments into publicly-accountable ones
which allow the verifier to convince third parties of detected misbehavior
by a cheating prover. This may be particularly interesting for applica-
tions where a malicious prover has to balance the profits it can make
from cheating successfully and the losses it suffers from being caught.

We construct interactive, public-coin, zero-knowledge arguments with
noticeable soundness error for proving that a target vector of commit-
ments is a pseudorandom permutation of a source vector. Our argu-
ments do not rely on any trusted setup and only require the existence of
collision-resistant hash functions. The communication complexity of our
arguments is independent of the length of the shuffled vector. For a sound-
ness error of 2−5 = 1/32, the communication cost is 153 bytes without
and 992 bytes with public accountability, meaning that our arguments
are shorter than shuffle arguments realized using Bulletproofs (IEEE
S&P 2018) and even competitive in size with SNARKs, despite only
relying on simple assumptions.

1 Introduction

Zero-knowledge arguments allow a prover to convince a verifier of the truth of a
statement without leaking any additional information. Such arguments are a fun-
damental building block, ubiquitous in cryptography, with various applications
in both theory and practice.

The quality of an argument system can be measured in several different
ways. One of the most important quality measures is the size of the argument,
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i.e. how many bits the prover needs to exchange with the verifier to convince
them of the validity of the statement. Minimizing this measure is important for
real-world applications, where the statements itself may be over several giga-
bytes large and where communicating large amounts of data over a wide area
network can quickly turn into the main efficiency bottleneck. Another impor-
tant measure is the computational efficiency of both prover and verifier. We
would like our argument to incur as little computational overhead on both par-
ties as possible. Finally, we would also like our arguments to rely on simple and
well-studied assumptions. Arguments that rely on highly structured or even non-
falsifiable assumptions may be prone to cryptanalysis, those that rely on more
popular number-theoretic assumptions, like the discrete logarithm or the fac-
toring assumption, can be broken by quantum computers, and arguments that
require a common reference string need to rely on a trusted third party that has
to generate this string.

One particularly popular class of zero-knowledge arguments are those that
enable a prover to convince a verifier that two vectors of commitments or encryp-
tions contain the same multiset of plaintext messages without revealing the mes-
sages themselves or the permutation between the two vectors. Shuffle arguments
are used in applications like e-voting protocols [42], anonymous communication
systems [18,38], decentralized online poker [10], cryptocurrencies [20,22], and
others.

The idea of shuffle arguments originates in the work of Chaum on mix-
nets [18] and the first constructions were presented by Sako and Kilian [45]
and Abe [1–3]. These, as well as early subsequent works [25,30,34,42], all had
argument sizes, which were linear in the size � of the permuted vector. The first
sublinear shuffle argument, with an argument size of O

(
�2/3

)
, was presented by

Groth and Ishai [33]. Following this work, Groth and Bayer [9,31] presented argu-
ments with an argument size of O

(√
�
)

and recently Bünz et al. [17] showed how
to obtain arguments, based on the discrete logarithm assumption, of size O (log �)
via sorting circuits. A different line of works construct so called SNARKs [37,40],
which are constant-sized arguments for arbitrary statements. Unfortunately,
SNARKs inherently rely on strong non-falsifiable assumptions [26], require a
trusted setup, and are computationally expensive for the prover. Zero-knowledge
arguments based on the MPC-in-the-head technique [5,35] do not require any
trusted setup, base their security solely on the existence of collision-resistant hash
functions, but have a proof size of O

(√
�
)
. Interactive proofs based on proba-

bilistically checkable proofs [37] only rely on collision-resistant hash functions,
have proofs of size O (log �), but are prohibitively expensive from a computa-
tional perspective.

Given this state of the art, it is evident that constructing small shuffle argu-
ments, and more generally arbitrary arguments, from simple assumptions with
good computational efficiency is a challenging, but important task. In this work,
we ask:
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Can we construct shuffle arguments of size o(log �) with good
computational efficiency from simple assumptions that satisfy a relaxed,

but still meaningful security notion?

Answering this question is of practical importance. In certain real-world sce-
narios, arguments that satisfy the strongest possible security notion can sim-
ply be too inefficient. In these cases more efficient arguments that satisfy a
weaker security notion may provide an important trade-off between efficiency and
security.

1.1 Our Contribution

In this work, we study interactive arguments with noticeable soundness errors,
i.e. arguments that allow a cheating prover to convince a verifier of a false state-
ment with some noticeable probability. Such arguments can still be useful in
scenarios, where a malicious prover has to balance the profit that it can make
from successfully cheating and the loss it has, when cheating is detected. Con-
sider for instance a decentralized online poker game, where a malicious prover
wins $1 for every incorrect shuffle argument that is accepted by the verifier,
but loses a $100 security deposit if cheating is detected. In such a scenario, a
soundness error as large as 1/2 may be acceptable, since even then cheating is
not profitable for a rationally behaving prover.

We study arguments with noticeable soundness error both in their full gen-
erality and for specific purpose of constructing concretely efficient shuffle argu-
ments for pseudorandom shuffles. Concretely, we make the following contribu-
tions:

Publicly-Accountable Zero-Knowledge Arguments. To realize the idea
of punishing cheating provers, we need to take care of two things. First, we need
to ensure that a verifier, upon detecting a cheating attempt, obtains a publicly
verifiable certificate that can be used to convince a third party auditor of the
prover’s malicious behavior. Secondly, we need to ensure that an honest prover
cannot be falsely accused. We introduce the notion of publicly-accountable zero-
knowledge arguments that formally model the two requirements above.

In the full version of this work, we show how to transform any three-move,
honest-verifier zero-knowledge argument with a soundness error that is at least
inversely polynomial in the security parameter into a publicly-accountable argu-
ment with only slightly larger communication complexity. This is achieved via
two steps. We prove that those honest-verifier zero-knowledge arguments already
satisfy full zero-knowledge and then show how such zero-knowledge arguments
can be transformed into their publicly-accountable counterparts with the help
of symmetric private information retrieval. In this version of the work we show
how to make the shuffle arguments described below publicly accountable in a
concretely efficient manner.
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It is interesting to note that in contrast to sequential repetition, which is
commonly used to make the soundness error negligible at the cost of a multi-
plicative factor that is linear in the security parameter, our transformation only
incurs a small additive factor in terms of round and bandwidth complexity.

Shuffle Arguments for Pseudorandom Shuffles. Next, we focus on con-
structing efficient three-move (public-coin) honest-verifier zero-knowledge shuf-
fle arguments with inversely polynomial soundness error. For this purpose, we
make one additional observation that allows us to further simplify the problem
we aim to solve. When looking at the majority of applications, where shuffle
arguments are actually used, the concrete permutation between the input and
the output vector is chosen at random. Most often, the goal is to simply hide
the relation between entries in the input and the output vector, but the concrete
permutation itself is irrelevant as long as it is sufficiently random. In e-voting,
for example, users send their encrypted votes to an untrusted shuffling author-
ity, which shuffles them to hide the voting preference of any specific user. In
anonymous communication systems, users send messages through one or more
shuffling authorities to some recipients and shuffling of the ciphertexts ensures
that no outside observer can see which sender communicates with which recip-
ient. Thus, we focus on shuffle arguments for pseudorandom shuffles instead of
arbitrary shuffles.

We introduce the notion of zero-knowledge arguments for partially fixed state-
ments and present conceptually simple interactive shuffling arguments satisfying
this notion. The main idea behind our new notion is to consider statements that
are only partially fixed, i.e. that consist of a fixed and a non-fixed part. The fixed
part is known to both prover and verifier, whereas the non-fixed part is chosen
by the prover. At the end of an interaction between prover and verifier, the ver-
ifier learns the full statement and is convinced of its correctness. For the specific
case of shuffling, the fixed part is the initial vector of commitments and the non-
fixed part is a permutation thereof. Our notion aims to capture the fact that we
only care about the initial vector being permuted, but not about the concrete
permutation that is used. Rather than requiring that zero-knowledge holds for
all statements, we require that zero-knowledge holds for all partially fixed state-
ments with a uniformly random non-fixed part. Our notion is, in spirit, similar
to distributional zero-knowledge [19,27], but focuses on a particular distribution
over the statements.

For this notion, we present the first computationally efficient shuffle argu-
ments for pseudorandom permutations, whose argument size is independent of
the length of the vector that is being permuted. More specifically, we present
public-coin, three-move arguments in the standalone model based on simple
assumptions, such as collision-resistant hash functions.1 The soundness error in
our constructions can be set arbitrarily small as long as it remains inversely

1 Naturally, our arguments are only useful for vectors of rerandomizable commit-
ments/encryptions, which may require specific number-theoretic assumptions. The
arguments itself, however, only rely on simple assumptions.
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polynomial in the security parameter. The computational overhead of our con-
struction grows with smaller soundness errors. We show how an arbitrary number
of shuffle arguments can be batched without any additional communication cost.

We evaluate the practical efficiency of our constructions by providing con-
crete argument sizes when instantiated in the standard model. Our evaluation
shows that, for a soundness error of 2−5, the instantiation of our shuffle argu-
ment has a communication cost of 153 bytes without and 992 bytes with public
accountability,

This is on the same order of magnitude as SNARKs such as [32] at 144 bytes
and smaller than Bulletproofs even when the permuted vector of commitments2

is reasonably short. The size of our argument is independent of the specific
number of commitments being shuffled. The computational cost of shuffling an
�-length vector with soundness error 1/t is dominated by computing t · � reran-
domizations of the shuffled commitments for both prover and verifier. In practice
for Pedersen and similar commitments, the cost for the verifier can be reduced to
roughly 2� rerandomization at the cost of roughly doubling the communication
complexity. A detailed description of this modification can be found in the full
version of this paper.

Since the non-fixed part of the partially fixed shuffle statement is chosen
randomly in each execution, it follows that the fully fixed statement will be
different in each execution with high probability. For this reason, we cannot
reduce the soundness error via sequential repetition. Due to the non-negligible
soundness error, we can also not use the Fiat-Shamir transform [23] for making
them non-interactive.

1.2 Comparison to SNARKs

In terms of size, our shuffle arguments are similar to SNARKs. Our underlying
assumptions, however, are significantly weaker. We do not rely on non-falsifiable
assumptions or a trusted setup. In exchange, we have a noticeable soundness
error. As such, for the specific case of shuffle arguments, our work shows that
the need for a trusted setup and non-falsifiable assumptions can be overcome
in a practically efficient manner in applications that can tolerate a small, but
noticeable soundness error.

1.3 Relation to Secure Computation with Covert Security

Our concept of publicly-accountable zero-knowledge arguments is strongly
related to general two- and multiparty computation protocols with covert secu-
rity and public verifiability [6,7]. A protocol is said to be secure against covert
adversaries and publicly verifiable, if an actively misbehaving party in the proto-
col execution is caught with some constant probability and the honest parties are

2 For the sake of concreteness, we focus on commitments in this work. However, our
arguments are also applicable to other primitives such as rerandomizable encryption
schemes.
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guaranteed to obtain a certificate that can be shown to third parties to incrim-
inate the misbehaving party. Applying a generic secure computation compiler,
like the one of Damg̊ard, Orlandi, and Simkin [21], to transform zero-knowledge
arguments into publicly-accountable ones can potentially work, but would result
in arguments whose size has an exponentially worse dependence on the soundness
error.

1.4 Technical Overview

In the following, we present the main ideas behind our public-coin, zero-
knowledge shuffle argument and outline how it can be made publicly account-
able. In the full version, we show how arbitrary public-coin arguments with a
polynomially large challenge space can be made publicly accountable.

The Shuffle Argument. Initially, both prover and verifier are given an initial
vector of commitments V . The goal of the prover is to choose some vector V ′ and
convince the verifier that there exists some permutation π, such that V ′ = π(V ).
To be precise, the permutation π here does two things. It first rerandomizes and
then permutes all commitments in V . The high-level idea behind our construc-
tion is to let the prover choose a permutation π, which can be represented as
a sequence of t pseudorandom permutations π1, . . . , πt in a space-efficient man-
ner. The prover first computes V ′ by sequentially applying each permutation
πi for 1 ≤ i ≤ t and then sends a hash of the intermediate vectors Vi and V ′

to the verifier, who picks t − 1 permutations that shall be opened. The prover
sends descriptions of these t−1 permutations to the verifier. Skipping over some
details, the verifier now uses V to check every permutation πj with j < i and
V ′ to check every permutation πj with j > i by recomputing the intermediate
vectors. Since πi remains hidden from the verifier, it cannot learn the overall
permutation π. A malicious prover can only convince the verifier of a false state-
ment if it chose all πj with i �= j as correct and πi as an incorrect permutation.
Thus the probability of a prover cheating successfully is 1/t. An interesting open
question is whether our approach can be modified to get a better dependence
between t and the resulting soundness error.

If done naively, then the size of the argument described above is O (t · log(�!)),
since the prover has to send each permutation πj for 1 ≤ j ≤ t separately. This
can easily be brought down to O (t) by sending only short random seeds which
can be expanded into a pseudorandom permutation using a regular pseudoran-
dom generator. To further reduce the size of our argument, we use a puncturable
pseudorandom functions (PPRF), which behaves like a regular PRF but has an
additional algorithm Puncture that allows the holder of a secret key k to compute
a key k{x}, which can be used to evaluate the PPRF on every point x′ �= x.
Importantly, for a PPRF it holds that the key k{x} does not reveal anything
about its evaluation at the point x. Assuming that we have a PPRF F whose
range is the set of all possible permutations, we can now succinctly represent πj

as the evaluation F(k, j) for 1 ≤ j ≤ t. When the verifier asks to open all but
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Fig. 1. The prover chooses the permutation and rerandomization by sampling a key
k for a puncturable PRF. It then derives individual permutations and rerandomiza-
tion factors for each stage by feeding the stage index through the PRF. The final
result of performing the individual permutations forms the final shuffling and thus
the prover-chosen part of the statement. The prover then hashes all of the intermedi-
ate permutations. The puncturable key k will allow the prover to partially open the
computation of the intermediate permutations.

the i-th permutation, we return the punctured key k{i} to the verifier. Using
this approach, the size of the argument now mainly depends on the size of the
punctured key and not directly on t. Using a PPRF based on the GGM con-
struction [28], this brings down the size of the argument to O (log t). Using a
recent construction of PPRFs due to Aviram, Gellert, and Jager [8] we can make
the size of our arguments even completely independent of t in the random oracle
model. However, due to the large constants in Aviram et al.’s construction, this
approach is only of theoretical interest. A visual illustration of our construction
can be found in Fig. 1.

Making the Argument Publicly Accountable. To make the shuffle argu-
ment publicly-accountable, we need to ensure that a cheating prover produces
some form of self-incriminating evidence whenever it fails to cheat. Since we
want this evidence to be publicly verifiable, we need to assume that there exists
a public signature key pk that is associated with the prover, who holds the
corresponding signing key sk.

Ideally, we would like the prover to sign the transcript of all exchanged mes-
sages at the end of each execution and send this signature to the verifier. If the
prover were to always do this, then we would be done, since the verifier would
obtain a signature incriminating the prover, whenever it attempts to cheat, but
is caught; assuming the prover always sends some last message, even if it can
not respond correctly. Obviously this does not work, since the prover can simply
abort the execution without signing anything, when it receives a challenge that
it does not like. Our idea is to let the verifier receive the prover’s last message
corresponding to the verifier’s challenge, without revealing the challenge to the
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prover. On a high-level, we achieve this through the use of symmetric private
information retrieval, which enables a receiver holding an index i ∈ {1, . . . , t} to
obtain a value xi from the sender’s input vector X = (x1, . . . , xt) in a manner
that does not reveal i to the sender and does not reveal any xj for j �= i to the
receiver.

For the specific case of our shuffle arguments, the senders inputs will be a
sequence of punctured keys and the receiver will retrieve one of them. We observe
that in this instance the symmetric PIR can in fact be replaced by a very efficient
oblivious key puncturing protocol implicit in the work of Boyle et al. [14].

2 Preliminaries

We denote by λ ∈ N the security parameter that is implicitly given as input to
all algorithms in unary representation 1λ. We denote by {0, 1}� the set of all
bit-strings of length �. For a finite set S, we denote the action of sampling x
uniformly at random from S by x ← S, and we denote the cardinality of S by
|S|. An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y := A(x; r) we denote that A is run on
input x and with random coins r and produces output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins. We write this as y ← A(x). A function negl(λ) is negligible if for every
positive polynomial poly(λ) there exists an N ∈ N such that for all λ > N ,
negl(λ) ≤ 1

poly(λ) .
For two interactive Turing machines A and B we denote by 〈A(a), B(b)〉

the execution of the protocol between A and B an inputs a and b. We denote
by (t, s) ← 〈A(a), B(b)〉 the outputs of A and B after the protocol execution
respectively. In protocols where A does not receive an output, we write s ←
〈A(a), B(b)〉 to denote the output of B. We further denote by T := 〈A(a), B(b)〉
the transcript resulting from the interaction.

2.1 Puncturable Pseudorandom Functions

Puncturable pseudorandom functions (PPRFs) can be constructed from one-way
functions, where the key-length is O (log |D|) and D is the input domain of the
PRF [12,15,36]. Subsequent works have shown how to construct PPRFs with
short keys from the strong RSA [8] and lattice-based assumptions [16].

Definition 1 (Puncturable PRFs). The tuple (F ,Puncture) of PPT algo-
rithms is a secure puncturable pseudorandom function with key length κ(λ), input
length i(λ), and range O(λ) if the following conditions hold:

Functionality: For every λ ∈ N, k ∈ {0, 1}κ(λ), x, x′ ∈ {0, 1}i(λ) with x �= x′,
and k′ ← Puncture(k, x) it holds that F(k, x′) = F(k′, x′).
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Pseudorandomness: For any PPT adversary A it holds that
∣
∣
∣
∣
∣

Pr[x ← A(1λ) : A(Puncture(k, x),F(k, x)) = 1]

−Pr[x ← A(1λ); y ← O(λ) : A(Puncture(k, x), y) = 1]

∣
∣
∣
∣
∣
≤ negl(λ) .

For our shuffle arguments (for vectors of length �) we require a PPRF with
range Perm� × R� where R is the randomness space of a perfectly and inversely
rerandomizable commitment scheme and Perm� is the set of all �! permutations
over {0, . . . , �−1}. To obtain a PPRF over this range, one can simply use a PPRF
that outputs bit strings, potentially stretching the output using a pseudorandom
generator, and combine it with a shuffling algorithm like the Fisher-Yates shuf-
fle [24] by using the stretched output of the PPRF as the random tape of the
shuffling algorithm.

2.2 Oblivious Key Puncturing

We formalize the notion of an oblivious key puncturing protocol (OPP) between
a receiver R, who has a secret index i, and a sender S, who has a secret PRF key k.
At the end of the protocol execution, the receiver should learn the key punctured
at i, while the sender should learn nothing. An oblivious key puncturing protocol
is effectively a special case of a symmetric PIR, where the sender’s inputs are all
possible punctured keys.

Definition 2 (Oblivious Key Puncturing). Let (F ,Puncture) be a secure
puncturable PRF with key length κ(λ), input length i(λ), and range O(λ). A pair
of PPT algorithms (S,R) along with a setup algorithm Setup that outputs a crs is
a secure receiver-extractable, oblivious key puncturing protocol for (F ,Puncture),
if the following conditions hold:

Completeness: For any k ∈ {0, 1}κ(λ) and i ∈ {0, 1}i(λ), it holds that

Pr
[

crs ← Setup(1λ); k′ ← Puncture(k, i);
k′′ ← 〈S(crs, k),R(crs, i)〉

: k′ = k′′
]

= 1.

Receiver Privacy: For any i, i′ ∈ {0, 1}i(λ) and any malicious PPT sender S∗,
it holds that

∣
∣
∣
∣
∣

Pr[crs ← Setup(1λ); b ← 〈S∗(crs),R(crs, i)〉 : b = 1]

−Pr[crs ← Setup(1λ); b ← 〈S∗(crs),R(crs, i′)〉 : b = 1]

∣
∣
∣
∣
∣
≤ negl(λ) ,

where the probabilities are taken over the random coins of Setup, S∗ and R.
Sender Simulation: There exists a PPT simulator Sim = (Sim0,Sim1) such

such that for any key k ∈ {0, 1}κ(λ) and any malicious PPT receiver R∗ it
holds that

∣
∣
∣
∣
∣
∣
∣
∣

Pr[crs ← Setup(1λ); b ← 〈S(crs, k),R∗(crs, 1λ)〉 : b = 1]

− Pr

[
(crs, td) ← Sim0(1λ);

b ← 〈Sim
Puncture(k,·)
1 (crs, td),R∗(crs, 1λ)〉

: b = 1

]

∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ) ,
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where Sim1 can query its oracle at most once and the probability is taken
over the random coins of the involved parties.

Remark 1. Protocols that need a (non-empty) CRS, require a trusted setup. For
those protocols, using standard techniques, the trusted setup can be avoided at
the cost of a constant number of additional rounds of communication.

It turns out that for the PPRF based on one-way functions [12,15,36], highly
efficient instantiations of such an oblivious key puncturing protocol already exist
implicitly in [14]3. For a PPRF with domain D, the communication and compu-
tational complexity of their protocol is effectively that of log |D| invocations of
an actively secure 1-out-of-2 oblivious transfer.

2.3 Commitments

Shuffle proofs are generally only of interest for rerandomizable commitment
schemes. Our construction of shuffle proofs requires more than just perfect reran-
domizability. Specifically we require that rerandomization can also be performed
in reverse.

Definition 3 (Perfectly and Inversely Rerandomizable Commit-
ments). Let C = (Setup,Com) be a commitment scheme with message space M
and randomness space R. C is perfectly and inversely rerandomizable, if there
exist PPT algorithms Rerand,Rerand−1 such that the following conditions hold:

Perfect Rerandomization: For every ck ← Setup(1λ), m ∈ M, and c ←
Com(ck,m) it holds that for a uniformly chosen r ← R, Rerand(ck, c, r) and
Com(ck, c; r) are distributed identically.

Inverse Rerandomization: For every ck ← Setup(1λ), m ∈ M, r ∈ R, and
c ← Com(ck,m) it holds that Rerand−1(ck,Rerand(ck, c, r), r) = c.

One example of a popular commitment scheme satisfying the properties
described above is the Pedersen commitment scheme [43]. Note that since we
assume perfect rerandomizability, it is guaranteed that for any ck, c, r1, and r2,
there exists an r3 such that Rerand(ck,Rerand(ck, c, r1), r2) = Rerand(ck, c, r3).

3 Zero-Knowledge Argument for Partially Fixed
Statements

In a regular proof or argument system, the full statement is fixed a priori and
given to both the prover and verifier which then run an interactive protocol
between them. In contrast in an arguments for partially fixed statements only
a part x of the statement is fixed and the prover gets to sample the rest of the
3 The authors prove (in Theorem 7 in [14]) that their construction satisfies a weaker

notion than the one we defined here, but it can be easily seen that their construction
satisfies our notion aswell, when instantiatedwith an actively secure oblivious transfer.
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statement y together with auxiliary information aux that will allow the prover to
efficiently prove that (x, y) ∈ L. Note, that aux is not necessarily just a regular
witness for (x, y). In fact, in our shuffle proof, a regular witness for the statement
would merely be the permutation and rerandomization factors. However, the
auxiliary information used by our prover is a highly compact representation of a
decomposition of both the permutation and rerandomization. This also implies
that a prover in such a system is not necessarily capable of proving all (x, y) ∈ L,
but merely a, potentially small, subset. However, the definition of zero-knowledge
will imply that the full statement (x, y) chosen by the prover is indistinguishable
from a uniform choice of (x, y) ∈ L conditioned on x. To formally define such
argument systems, we first define partially fixable languages, as those languages
where y can be efficiently uniformly sampled conditioned on x.

Definition 4 (Partially Fixable Languages). Let X,Y be sets. Let L ⊆
X×Y be an NP language consisting of pairs (x, y) ∈ X×Y with the corresponding
NP-relation R. For any x ∈ X we denote by Lx the language Lx = {(x, y′) | y′ ∈
Y ∧ (x, y′) ∈ L}. L is called partially fixable if for all x ∈ X such that Lx �= ∅ it
is possible to uniformly sample from Lx in expected polynomial time.

We can now define argument systems for such languages.

Definition 5 (Arguments for Partially Fixed Statements). Let L ⊆
X × Y be a partially fixable language with the corresponding NP-relation R.
A probabilistic polynomial time two-stage prover P = (P0,P1) and a probabilistic
polynomial time verifier V are said to be an interactive argument for partially
fixed statements of L with soundness error ε if the following conditions hold:

Completeness: For any x ∈ X with Lx �= ∅ it holds that

Pr[(y, aux) ← P0(x); b ← 〈P1(x, y, aux),V(x, y)〉 : (x, y) ∈ L ∧ b = 1] = 1.

Soundness: For any malicious probabilistic polynomial time prover P∗ and any
(x, y) �∈ L it holds that

Pr[b ← 〈P∗(1λ),V(x, y)〉 : b = 1] ≤ ε + negl(λ) .

We are only interested in arguments that are zero knowledge. We define two
flavors of zero-knowledge.

Definition 6 (Zero-Knowledge Arguments for Partially Fixed State-
ments). Let (P,V) be an interactive argument for partially fixed statements of
L. The argument is said to be zero knowledge if there exists an expected poly-
nomial time simulator Sim, such that for any (potentially malicious) polynomial
time verifier V∗, all probabilistic polynomial time distinguishers D, and all x ∈ X
with Lx �= ∅ it holds that

∣
∣
∣
∣
∣

Pr[(y, aux) ← P0(x); s ← 〈P1(x, y, aux),V∗(x, y)〉 : D(x, y, s) = 1]

−Pr[(x, y) ← Lx; s ← SimV∗(x,y)(x, y) : D(x, y, s) = 1]

∣
∣
∣
∣
∣
≤ negl(λ)

where Sim has the power of rewinding V∗.
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Definition 7 (Honest Verifier Zero-Knowledge). Let (P,V) be an inter-
active argument for partially fixed statements of L. The argument is said to be
honest verifier zero knowledge if there exists an expected polynomial time simu-
lator Sim, such that for all probabilistic polynomial time distinguishers D, and
all x ∈ X with Lx �= ∅ it holds that

∣
∣
∣
∣
∣

Pr[(y, T ) ← Simu(x) : D(x, y, T ) = 1]
−Pr[(y, T ) ← Real(x) : D(x, y, T ) = 1]

∣
∣
∣
∣
∣
≤ negl(λ) ,

where Real and Simu are defined as follows

Real(x)

(y, aux) ← P0(x)

T := 〈P1(x, y, aux),V(x, y)〉
return (y, T )

Simu(x)

(x, y) ← Lx

T ← Sim(x, y)

return (y, T )

We note several important differences compared to regular argument systems.
When defining an argument systems where the prover can choose part of the
statement completeness can no longer be defined by simply quantifying over
all valid statements. Instead, completeness explicitly specifies that the honest
prover will always choose valid statements. Further, in the definition of zero-
knowledge, it is not necessarily clear how y should be chosen in the simulated
case. The definition above requires that y is chosen uniformly at random from Lx

in this case as opposed to also being chosen by the prover. This has an important
implication. Namely it implicitly requires the honest prover to choose y in a way
that is computationally indistinguishable from uniform, since otherwise there
exists a trivial distinguisher. Lastly we note that these definitions coincide with
the standard zero-knowledge argument definitions, when |Lx| = 1.

4 On Three-Move Public-Coin HVZK Arguments
and Zero-Knowledge

In the following, we show that any three-move public-coin4 argument with a
polynomially large challenge space that satisfies (computational) HVZK is also
(computationally) zero-knowledge against malicious verifiers. A corollary of this
result is that our shuffle argument from Sect. 5, which we will prove to be HVZK,
is automatically fully zero-knowledge.

Theorem 1. Let (P,V) be some three-move public-coin honest verifier zero-
knowledge argument for language L ⊆ X × Y and let C be the associated chal-
lenge space. If |C| ≤ poly(λ) then (P,V) is also zero-knowledge against malicious
verifiers.
4 We call a three-move argument system public-coin if the second message is a uni-

formly random bit-string.
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Proof. Let V∗ be an arbitrary malicious polynomial time verifier. Let Sim′ be the
honest verifier zero-knowledge simulator for the 3-move public-coin argument as
specified in Definition 7. To prove the theorem, we specify a zero-knowledge
simulator Sim that takes as input a statement (x, y), has blackbox access to
V∗, and produces an output that is computationally indistinguishable from the
output of V∗ in a real protocol execution.

At first sight, the proof of the theorem statement may seem trivial. Intuitively,
Sim picks a random challenge d, runs the simulator Sim′ to obtain a transcript
(e, d, z), feeds the first message e to V∗ and if the verifier outputs a challenge d∗

with d∗ = d, then we are done and otherwise we simply restart this whole process
until we guess the verifier’s challenge correctly. Unfortunately, this approach only
works if we have an argument that satisfies perfect HVZK and it turns out that
this naive simulator is not guaranteed to run in expected polynomial time if our
argument system is only computationally HVZK.

To make sure that our simulator V∗ does indeed run in expected polynomial
time, we closely follow a proof strategy due to Goldreich and Kahan [29].5 We
specify the zero-knowledge simulator Sim in Fig. 2.

Fig. 2. Zero-knowledge simulator for any three-move public coin honest verifier zero
knowledge argument with a polynomially large challenge space.

We first observe in Lemma 2 that for any verifier V∗ the probability of abort-
ing after seeing a simulated first message output by Sim′ does not differ signifi-
cantly from the probability of aborting after seeing a real first protocol message.

5 See [39] for a very nice and detailed discussion of this proof strategy.
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Lemma 2. For any polynomial time algorithm V∗ and any x ∈ X, such that
Lx �= ∅ it holds that

∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = abort]
− Pr [(y, e, d, z) ← Real(x) : V∗(x, y, e) = abort]

∣
∣
∣
∣
∣
≤ negl(λ)

Proof. Let V∗ be an arbitrary malicious polynomial time verifier. Consider the
following distinguisher D against the honest verifier zero-knowledge property
of the argument: Upon receiving (x, y) and (e, d, z) as input, the distinguisher
D invokes V∗ with fresh random coins and input (x, y, e). If V∗ aborts then D
outputs 1. Otherwise it outputs 0. We observe that D’s distinguishing advantage
against the honest verifier zero-knowledge property of the argument corresponds
exactly to the difference in the abort probabilities of V∗. Since the argument is
honest verifier zero-knowledge, D’s distinguishing advantage must be negligible
and Lemma 2 thus follows. �

Furthermore, we use an observation made previously by Goldreich and
Kahan [29].

Lemma 3 ([29]). For any algorithm V∗, let δ = δ(λ) be the probability that it
does not abort upon seeing a simulated first message. With probability at least
1−2−λ, the estimate δ̃ in line 5 of Sim in Fig. 2 is within a constant factor of δ.

Using these two observations we will now analyze the probability that one
iteration of Sim’s main loop is successful. I.e. we will show that the probability
that for a precomputed transcript (e, d, z), V∗ upon receiving input e will return
d∗ with d = d∗ with probability at least δ/ |C| − negl(λ).

Lemma 4. Let (P,V) be a three-move public-coin honest verifier zero-knowledge
argument for language L ⊆ X×Y and let C be the associated challenge space with
|C| ≤ poly(λ). Let further V∗ be any polynomial time verifier. For any x ∈ X,
such that Lx �= ∅ it then holds that

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C| − negl(λ) .

Proof. Let V∗ be an arbitrary polynomial time verifier. Now consider the follow-
ing distinguisher D against the honest verifier zero-knowledge property of the
argument. The distinguisher D receives as input (x, y) and (e, d, z). It initializes
V∗, provides it with (x, y, e), and receives back d∗. If d∗ = abort, then D flips a
random coin b and return that as its guess. Otherwise, D outputs 1 if d = d∗ and
0 if d �= d∗. Let δ + γ be the probability that V∗ aborts after seeing a first real
message, where |γ| = negl(λ) by Lemma 2. By the honest verifier zero-knowledge
property of the argument it must then hold that

negl(λ) ≥
∣
∣
∣
∣
∣

Pr[(y, e, d, z) ← Simu(x) : D(x, y, e, d, z) = 1]
− Pr[(y, e, d, z) ← Real(x) : D(x, y, e, d, z) = 1]

∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) �= abort]
· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort]

+ Pr [(y, e, d, z) ← Simu(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) = abort]
· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = abort]
︸ ︷︷ ︸

=1−δ

−Pr [(y, e, d, z) ← Real(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) = abort]
· Pr [(y, e, d, z) ← Real(x) : V∗(x, y, e) = abort]
︸ ︷︷ ︸

=1−δ−γ

−Pr [(y, e, d, z) ← Real(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) �= abort]
· Pr [(y, e, d, z) ← Real(x) : V∗(x, y, e) �= abort]
︸ ︷︷ ︸

=δ+γ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]
· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort]

+ Pr [b ← {0, 1} : b = 1]
︸ ︷︷ ︸

=1/2

·(1 − δ) − Pr [b ← {0, 1} : b = 1]
︸ ︷︷ ︸

=1/2

·(1 − δ − γ)

−
=1/|C|

︷ ︸︸ ︷
Pr [(y, e, d, z) ← Real(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]
· (δ + γ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] +
γ

2
− δ + γ

|C|

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] − δ

|C| +
(|C| − 2)γ

2 |C|

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] − δ

|C| + negl(λ)

∣
∣
∣
∣
∣
∣
. (1)

We can now consider the two cases of the value between the absolute value bars
in Eq. 1 being positive, or negative. If it’s positive, then it holds that

δ

|C| − negl(λ) ≤Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] . (2)

If it’s negative, then it must hold that

negl(λ) ≥ − Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] +
δ

|C| − negl(λ)
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and thereby that

δ

|C| − negl(λ) ≤Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) �= abort]

· Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) �= abort] . (3)

Combining the two cases, i.e., Eqs. 2 and 3 we can use the law of total prob-
ability to conclude that

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C| − negl(λ) .

as claimed. �

We now want to use Lemma 4 to argue that the output of the simulator is
indistinguishable from the output of V∗ in a real execution. For this, consider
the following. By Lemma 4, there exists a negligible function ε, such that

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C| − ε(λ).

For each security parameter λ ∈ N we can consider two cases:

Case i. If it holds that δ(λ) > 2 |C| ε(λ), then we have ε(λ) < δ/(2 |C|) and it
therefore holds that

Pr [(y, e, d, z) ← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C| − ε(λ) >
δ

2 |C| .

It follows that in expectation the simulator needs at most 2 |C| /δ rewind-
ing attempts to obtain one non-aborting and correctly guessed execution. Via
markov-inequality it follows that the probability of not having seen a single
non-aborting correctly guessed execution after 4λ |C| /δ rewindings is negligible.

Lastly observe that by Lemma 3 the estimate δ̃ is within a constant factor of
δ with probability 1−2−λ. Therefore, the simulator will output a valid transcript
with a probability of 1 − negl(λ), ensuring that the output of the simulator is
indistinguishable from the output of V∗ in a real execution with overwhelming
probability.

Case ii. If it holds that δ(λ) ≤ 2 |C| ε(λ), then δ is smaller than a negligible
function for this λ. Assume that in this case the rewinding strategy always fails.
Then a real execution of V ∗ results in abort with probability at least 1 − (δ −
negl(λ)) by Lemma 2, while Sim outputs abort with probability 1 − δ. That
means the statistical distance between the two output distributions is at most
δ + negl(λ) which is an overall negligible function. Combining the two cases, we
can conclude that the distinguishing advantage against Sim is upper bounded
by a negligible function for each λ ∈ N and thus is overall computationally
indistinguishable from the output of V∗ in a real execution.
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It remains to bound the expected runtime of Sim. Again, by Lemma 3, the
estimate δ̃ is within a constant factor of δ with probability 1−2−λ. But whenever
the estimate is wrong, the runtime of the main loop is still bounded by the worst
case running time of 2λ with the simulator outputting fail. We thus have an
upper bound on the expected runtime of

lines 1-4︷ ︸︸ ︷

poly(λ) +δ

(
EstimateDelta︷ ︸︸ ︷

poly(λ) +
12λ

δ
poly(λ) +

lines 6-12︷ ︸︸ ︷(
(1 − 2−λ)

4λ |C|
δ̃

+ 2−λ2λ

)
· poly(λ)

)

≤poly(λ) + (12λ + O(1) · 4λ |C| + δpoly(λ)) · poly(λ) ≤ poly(λ) .

�

5 An Efficient Shuffle Argument

Let C = (Setup,Com,Rerand) be a perfectly and inversely rerandomizable com-
mitment scheme with message space M and randomness space R. To define
shuffle arguments for C, we first need to define partially fixable language of valid
shuffles relative to a rerandomizable commitment scheme. To this end, we first
define π as an algorithm that takes a vector of C commitments V , a permutation
p ∈ Perm�, and randomnesses r0, . . . , r�−1 ∈ R� as input, permutes the elements
of V and randomizes each commitment. The algorithm π as well as it’s inverse
is described in Fig. 3. We can now define the partially fixable language of valid
shuffles relative to π as follows.

Definition 8 (Valid Shuffle). Let C be a perfectly rerandomizable commitment
scheme with commitment space C. The language Shuffle� ⊆ C� × C� of valid
shuffles of vectors of length � is defined as

Shuffle� =
{
(V, V ′) ∈ C� × C�

∣
∣ ∃ (p, 	r) ∈ Perm� × R�. V ′ = π(V, p, 	r)

}

Shuffles are transitive as stated by the following lemma.

Lemma 5. If (V, V ′) ∈ Shuffle� and (V ′, V ′′) ∈ Shuffle�, then (V, V ′′) ∈ Shuffle�.

Proof. Since permutations are closed under composition and since, by assump-
tion on the commitment scheme, it holds that for any r1, r2 ∈ R, there exists an
r3 ∈ R such that Rerand(ck,Rerand(ck, c, r1), r2) = Rerand(ck, c, r3), the lemma
immediately follows. �

Fig. 3. The algorithms for rerandomizing and permuting a vector of ciphertexts, as
well as its inverse.
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Definition 9 (Shuffle Argument). An interactive arguments for partially
fixed statements of Shuffle� relative to any perfectly rerandomizable commitment
scheme C is called a shuffle argument for C.

Now, let (F ,Puncture) be a puncturable pseudorandom function with key
length k(λ), input length i(λ), and range Perm�×R�. Let H be a collision resistant
hash function. In Fig. 4 we then describe a simple three-move shuffle argument.
We will first prove that this protocol is a zero knowledge shuffle argument as
stated in the following theorem.

Fig. 4. An algorithmic description of the shuffle argument.

Theorem 6. Let C = (Setup,Com,Rerand) be a perfectly and inversely reran-
domizable commitment scheme with message space M and randomness space R.
Let (F ,Puncture) be a puncturable pseudorandom function with key length k(λ),
input length i(λ), and range Perm� × R�. Let H be a collision resistant hash
function. Then the argument system 〈P = (P0,P1,P2),V = (V1,V2)〉 described
in Fig. 4 is a zero-knowledge shuffle argument with soundness error 1/t for C.

Theorem 6 follows from Lemmas 7 and 10 as well as Corollary 12, which we
prove in the following.

Lemma 7. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Fig. 4 is complete.

Proof. We need to show that it always holds that (V0, V
′
t ) ∈ Shuffle� and that, in

an interaction with the honest prover, the verifier always accepts and outputs 1.

Claim 8. For any V0 ∈ C� and any (Vt, (c, k)) ← P0(V0) it holds that (V0, V
′
t ) ∈

Shuffle�.
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The prover computes each Vi as Vi := π(Vi−1,F(k, i)), where F(k, i) outputs
the description of a permutation and � random values in R. It then follows
from the definition of π in Fig. 3 and the perfect rerandomizability of C, that
for 0 < i ≤ t, (Vi−1, Vi) ∈ Shuffle�. Using Lemma 5 we can then conclude by
induction, that (V0, Vt) ∈ Shuffle�.

Claim 9. For any V0 ∈ C� and any (Vt, (c, k)) ← P0(V0) any honest execution
of 〈P(V0, Vt, (c, k)),V(V0, Vt)〉 will always output 1.

We note that V2 uses k′ to recompute all V ′
i for 1 ≤ i < t. For 1 ≤ i < d, this

happens by computing V ′
i := π(V ′

i−1,F(k′, i)) = π(V ′
i−1,F(k, i)), where the last

equality holds by the functionality requirement of the puncturable PRF, since
i �= d. As it always holds that V ′

0 = V0, it follows by induction over i, that
V ′

i = Vi for 1 ≤ i < d.
For d ≤ i < t, the verifier computes V ′

i := π−1(V ′
i+1,F(k′, i + 1)). It always

holds that Vt = V ′
t and the prover computes Vt := π(Vt−1,F(k, t)). This gives

us V ′
t−1 = π−1(π(Vt−1,F(k, t)),F(k, t)), since t �= d. By the definition of π and

π−1 we thus have that for 0 ≤ j < � it holds that

V ′
t−1[j] = Rerand−1(Rerand(V ′[j], rj), rj) = Vt−1[j]

for some value of rj . The last equality follows from the inverse rerandomizability
of C. Therefore, it follows that V ′

t−1 = Vt−1 and by induction that V ′
i = Vi for

d ≤ i < t.
We thus have that with probability 1, (V ′

1 , . . . , V
′
t−1) = (V1, . . . , Vt−1) and

therefore H(V ′
1 , . . . , V

′
t−1) = c. It thus follows that V2 outputs 1.

Combining the two claims Lemma 7 immediately follows. �
Lemma 10. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Fig. 4 is sound with soundness error 1/t.

Proof. Let (V ∗
0 , V ∗

t ) �∈ Shuffle� and let P∗ be an arbitrary probabilistic polyno-
mial time prover. We will show, that

Pr[b ← 〈P∗(1λ),V(x, y)〉 : b = 1] ≤ 1/t + negl(λ) .

We will assume without loss of generality, that P∗ actually sends a first message
c and that c is fixed.6

Let d0, d1 ∈ {1, . . . , t} be two arbitrary distinct challenges and let k′
0 ←

P∗(d0) and k′
1 ← P∗(d1) be the corresponding responses. Consider, that the

verifier works by recomputing Vb = (V b
1 , . . . , V b

t−1) and checking that it hashes
to c. The verifier computes V b

i as V b
i = π(V b

i−1,F(k′
b, i)) for i < db and as

π−1(V b
i+1,F(k′

b, i + 1)) for i ≥ db.
By definition of π and π−1, this implies for i < d0 that (V 0

i−1, V
0
i ) ∈ Shuffle�

and for i ≥ d0 that (V 0
i , V 0

i+1) ∈ Shuffle�. By Lemma 5 we can thus conclude
that

(V0, V
0
d0−1) ∈ Shuffle� and (V 0

d0
, Vt) ∈ Shuffle�. (4)

6 This is without loss of generality, since we can fix the prover’s random coins to those
that lead to the highest success probability.



On Publicly-Accountable Zero-Knowledge and Small Shuffle Arguments 637

Since d1 �= d0, we have by the same reasoning, that

(V 1
d0−1, V

1
d0

) ∈ Shuffle�. (5)

If it were true, that (V 0
d0−1, V

0
d0

) = (V 1
d0−1, V

1
d0

) then it would follow from Eqs. 4
and 5 by Lemma 5 that (V0, Vt) ∈ Shuffle� which would contradict the initial
assumption. Therefore, it must hold that (V 0

d0−1, V
0
d0

) �= (V 1
d0−1, V

1
d0

) and V0 �=
V1. This would mean, however, that we could break collision resistance of H by
presenting V0,V1 with probability

Pr[(k′
0, r0) ← P∗(d0) : V2(k′

0) = 1] · Pr[(k′
1, r1) ← P∗(d1) : V2(k′

1) = 1].

Since the hash function is collision resistant, it follows that the above prob-
ability can be bounded by a negligible function. Thus, at least one of the two
probabilities must be itself negligible. Since we have shown the above for all
pairs of distinct challenges, this means that there can exist at most one chal-
lenge d ∈ {1, . . . , t} such that Pr[(k′, r) ← P∗(d) : V2(k′) = 1] is non-negligible.
It thus ultimately follows that

Pr[b ← 〈P∗(1λ),V(x, y)〉 : b = 1]

=
t∑

d=1

Pr[V1(c) = d] · Pr[k′ ← P∗(d) : V2(k′) = 1]

=
1
t

·
t∑

d=1

Pr[k′ ← P∗(d) : V2(k′) = 1]

≤1
t

· (1 + (t − 1) · negl(λ)) ≤ 1
t

+ negl(λ)

as claimed.

Lemma 11. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Fig. 4 is honest verifier zero-knowledge.

Before we prove Lemma 11, we first state the following simple corollary which
follows immediately from by combining Lemma 11 with Theorem 1.

Corollary 12. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argu-
ment system described in Fig. 4 is zero-knowledge.

Proof (Lemma 11). By Definition 7 we need to show that there exists a simulator
Sim, such that

∣
∣
∣
∣
∣

Pr[(Vt, T ) ← Simu(V0) : D(V0, Vt, T ) = 1]
−Pr[(Vt, T ) ← Real(V0) : D(V0, Vt, T ) = 1]

∣
∣
∣
∣
∣
≤ negl(λ) . (6)

We specify the honest-verifier zero-knowledge simulator in Fig. 5 and use a series
of game hops specified in Figs. 6 and 7 to prove that the above equation holds.
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Fig. 5. Honest-verifier zero knowledge
simulator for the three-move protocol
specified in Fig. 4

Fig. 6. Game 1 for the proof of honest
verifier zero-knowledge.

We first observe that

Pr[(Vt, T ) ← Simu(V0) : D(V0, Vt, T ) = 1] = Pr[Game1(V0) = 1] (7)

This is easily verified. Vt is chosen uniformly at random from all valid shufflings
in both cases. Further, c, d and k′ are all computed in exactly the same way.
Similarly, we observe that

Pr[(Vt, T ) ← Real(V0) : D(V0, Vt, T ) = 1] = Pr[Game4(V0)] (8)

This is also easily verified. Game4 computes Vt and (c, k) in exactly the same
way as P0, lets the honest verifier V1(V0, Vt, c) choose d and finally computes
k′ in exactly the same manner as P2. What remains is to bound the differences
between each pair of consecutive games.

Hop from Game1 to Game2. The changes between the two games are purely
syntactic. In Game1 the final shuffling Vt is sampled uniformly at random from
all valid shuffles of V0. In Game2 the final shuffling Vt is computed as the compo-
sition of several intermediate valid shuffles. The shuffling at position d is chosen
uniformly at random and independently from all other shuffles. Since all previ-
ous shuffles are valid, this makes Vd a uniformly random shuffling of V0. Further,
since all following shuffles are valid and the shuffling of Vd was independent,
this makes Vt a uniformly random shuffling of V0. Therefore Vt is distributed
identically in both games. By the perfect and inverse rerandomizability of C, it
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Fig. 7. Game 2 through 4 for the proof of honest verifier zero-knowledge.

makes no difference, whether the Vi for d < i < t are computed in the “forward”
direction from Vi−1 or in the “backwards” direction from Vi+1. Therefore the
two games are perfectly equivalent, and it holds that

Pr[Game1(V0) = 1] = Pr[Game2(V0) = 1]. (9)

Hop from Game2 to Game3. Note that the only difference between the two games
is in the computation of Vd, which is computed as a uniformly random shuffle in
Game2 and as a pseudorandom shuffle in Game3. This means we can bound the
difference between the two games using a reduction to the pseudorandomness of
the puncturable pseudorandom function. Specifically we use D as a distinguisher
against F by requesting a key punctured on d and after receiving k′ and y =
(p, 	r), computing Vi with key k′ as in Game2 except that we compute Vd using
y = (p, 	r). It is easy to see, that if y is uniformly random, then we perfectly
simulate Game2, whereas if y = F(k, d) we perfectly simulate Game3. By the
security of F it must therefore hold that

|Pr[Game2(V0) = 1] − Pr[Game3(V0) = 1]| ≤ negl(λ) (10)

Hop from Game3 to Game4. The changes between the two games are again
merely syntactic. In particular, the games behave identically, except that Game3
chooses d uniformly at random from {1, . . . , t} whereas Game4 lets the verifier
choose d ← V0(V0, Vt, c). However, by definition of V0 these two sampling strate-
gies are identical and it holds that

Pr[Game3(V0) = 1] = Pr[Game4(V0) = 1]. (11)
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Finally, combining Eqs. 9 through 11, we get

|Pr[Game1(V0) = 1] − PrGame4(V0) = 1| ≤ negl(λ) , (12)

which combined with Eq. 7 and Eq. 8 gives us Eq. 6 thus concluding the
proof. �

In the full version of this paper, we additionally show how to modify the
constrution to achieve straightline simulation in strict polynomial time in the
CRS model. We also show how the amortized efficiency of the construction can
be improved through batching and how the verifier’s computational overhead
can be optimized at the cost of a slightly worse communication complexity.

6 Public Accountability

If a public-key infrastructure (PKI), which associates the prover with a public
key pk, is available, then we can discourage malicious provers from attempting
to cheat by ensuring that the verifier obtains a publicly verifiable certificate that
attests any failed cheating attempt by the prover. In the context of blockchains,
such a certificate could for example be used to punish the prover through finan-
cial penalties.

In the following definition, we define this property by requiring the exis-
tence of a judge algorithm that can verify valid certificates and cannot be fooled
by invalid certificates that falsely accuse an honest prover of misbehavior. For
the sake of readability, we implicitly assume that the verifier has access to the
prover’s public key amd the prover has access to their own public and secret
keys.

Definition 10 (Publicly-Accountable Zero-Knowledge Arguments).
Let L ⊆ X × Y be a partially fixable language. Let (P,V) be an interactive
zero-knowledge argument for L with soundness error ε in the PKI model. We
say that the argument system is publicly accountable, if there exists a PPT algo-
rithm Setup and a deterministic polynomial time judge algorithm J, such that
the following conditions hold:

Accountability: Fix any (x, y) �∈ L and let P∗ be a malicious probabilistic
polynomial time prover with

Pr[crs ← Setup(1λ); b ← 〈P∗(crs),V(crs, x, y)〉 : b = 1] ≥ δε,

where the probability is taken over the random coins of the prover and the
verifier and 0 < δ ≤ 1. Then it holds that

Pr[crs ← Setup(1λ); cert ← 〈P∗(crs),V(crs, x, y)〉 : J(crs, pk, cert) = 1]
≥δ(1 − ε) − negl(λ) ,

where the probability is taken over the random coins of the prover and the
verifier.
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Defamation-Freeness: For any x ∈ X with Lx �= ∅, for any honest prover P
and malicious probabilistic polynomial time verifier V∗, it holds that

Pr

⎡

⎣
crs ← Setup(1λ);

(y, aux) ← P0(crs, x);
cert ← 〈P1(x, y, aux),V∗(crs, x, y)〉

: J(pk, cert) = 1

⎤

⎦ ≤ negl(λ) .

We show that the three move zero-knowledge shuffle argument (P,V)
described in Fig. 4 in Sect. 5 can be transformed into a publicly-accountable
zero-knowledge argument.

Fig. 8. The publicly-accountable transformation of the three-move shuffle argument.
Here rR refers to the random tape V uses to execute R in the OPP. TOPP refers to the
full transcript resulting from the OPP execution.

Theorem 13. Let 〈P′,V′〉 be the three-move zero-knowledge shuffle argument
described in Fig. 4 in Sect. 5. Let (S,R) be a secure receiver-extractable, obliv-
ious key puncturing protocol for the puncturable PRF used in 〈P′,V′〉. Let
(Gen,Sig,Vf) be an existentially unforgeable signature scheme. Then the protocol
〈P,V〉 with P = (P′

0,P1), with P1 and V as specified in Fig. 8 is a publicly-
accountable zero-knowledge argument with soundness error 1/t.

Proof. We now show that this construction is indeed a publicly-accountable
zero-knowledge argument.

Lemma 14. The argument system (P,V) is complete.

Proof. This directly follows from the completeness of the underlying argument
system (P′,V′), the completeness of the oblivious key puncturing protocol, and
the correctness of the signature scheme. �

Lemma 15. The argument system (P,V) is sound with soundness error 1/t.
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Proof. Let (V0, Vt) �∈ Shuffle� and let P ∗ be an arbitrary malicious probabilistic
polynomial time prover against (P,V). We use P ∗ to construct a probabilis-
tic polynomial time prover P̃ against the original three move argument system
(P′,V′) as follows. P̃ initializes P∗ with uniform random coins. Without loss of
generality assume that P∗ outputs a first message c, which P̃ forwards to the
verifier. The verifier outputs a challenge d. P̃, acting on behalf of a simulated
verifier towards P∗, engages in an execution of the oblivious puncturing protocol
as the receiver, where d is the choice index. Let k′ be the output that P̃ receives
from P∗ in this execution. P̃ forwards k′ to the verifier. It is straightforward to
see that P̃’s success probability is at least as large as the success probability of
P∗. Since by Theorem 6 P̃’s success probability is bounded by 1/t + negl(λ) the
lemma follows. �

Lemma 16. The argument system (P,V) is zero-knowledge.

Proof. Let V∗ be an arbitrary verifier to which we have blackbox access. Let
(Sim0,Sim1) be the simulator from the sender simulation property of the OPP.
We construct a verifier Ṽ′ for the underlying argument system, which makes
blackbox use of V∗ and works as follows. First we let Ṽ′ sample a signature key
pair (sk, pk) and whenever V∗ asks the (simulated) PKI for the verification key
of the prover, our verifier will return pk. Then Ṽ′ generates a simulated common
reference string for the OPP as (crs, td) ← Sim0(1λ) and initializes V∗(crs, 1λ).
Upon receiving a first prover message c, verifier Ṽ′ forwards the message to
V∗. Then, Ṽ′ uses Sim1(crs, td) to execute the oblivious key puncturing protocol
with V∗. If and when Sim1 makes its single query d to its puncturing oracle,
Ṽ′ simulates the oracle by outputting d as its challenge message and returning
the response k′ as the answer. Finally, Ṽ′ outputs whatever V∗ outputs. Due
to the sender simulation property of the OPP, the view of V∗ when simulated
by Ṽ′ is computationally indistinguishable from a real execution. Therefore the
output of Ṽ′ is computationally indistinguishable from the output of V∗ in a
real execution of the publically accountable protocol. Since, Ṽ′ is a verifier for
the underlying three-move argument and by Corollary 12 that argument is zero-
knowledge, there exists a zero-knowledge simulator Sim′ that can simulate this
output given only blackbox access to Ṽ′. We can, thus, define the zero-knowledge
simulator Sim with blackbox access to V∗ simply as Sim′ with blackbox access
to Ṽ′. �

Lemma 17. The argument system (P,V) satisfies accountability.

Proof. The judge algorithm J is specified in Fig. 9. Let (V0, Vt) �∈ Shuffle�, let
P∗ be an arbitrary malicious PPT prover. Let noAbort(	r) be the event that P∗

does not abort and sends a valid signature when the parties run on random
tapes 	r = (rP, rV). Let d(	r) be the function that returns the verifier’s challenge.
Without loss of generality, we assume that for any fixed first message of the
prover, there exists a set of verifier challenges D(	r), which the prover successfully
answers in such a way that the verifier accepts.
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Fig. 9. The judge algorithm J for the publicly-accountable transformation of a three-
move zero-knowledge argument. Here TCheck refers to an algorithm that given a CRS,
an OPP transcript T , an input d and a random tape rR outputs R’s output, if the
transcript is consistent with d and rR and ⊥ otherwise.

From the receiver privacy of the OPP, it follows that
∣
∣Pr[noAbort(	r) | d(	r) ∈ D(	r)] − Pr[noAbort(	r) | d(	r) �∈ D(	r)]

∣
∣ ≤ negl(λ) ,

where the probability is taken over the random coins 	r of the parties. We observe
that

Pr[cert ← 〈P∗(1λ; rP),V(x, y; rV)〉 : J(pk, cert) = 1 | (V0, Vt) �∈ Shuffle�]
≥Pr[noAbort(	r) | d(	r) �∈ D(	r)] · Pr[d(	r) �∈ D(	r)]
≥ (Pr[noAbort(	r) | d(	r) ∈ D(	r)] − negl(λ)) · Pr[d(	r) �∈ D(	r)]
≥ (δ − negl(λ)) · (1 − ε − negl(λ))
≥δ(1 − ε) − negl(λ)

�
Lemma 18. The argument system (P,V) is defamation-free.

Proof. Let (V0, Vt, d, rR, c, T , σ)) be the certificate presented by V∗. We observe,
that the existential unforgeability of the signature scheme implies that except
with negligible probability, c and T must have originated from an interaction
with the honest prover on input (V0, Vt). The completeness of the OPP implies
that TCheck will either output ⊥, in which case J will output 0, or the correct
response k′ to the challenge d. It follows that (c, d, k′) is the view of V′ in an
honest execution of the three-move shuffle argument. If (V0, Vt) ∈ Shuffle�, the
completeness of the argument implies that have V′

2(k
′) = 1 and J will output 0.

The lemma directly follows from the above observations. �
The theorem statement follows from Lemmas 15, 16, 17, and 18. �

7 Instantiation and Comparison

To evaluate the practical usefulness of the shuffle argument from Sect. 5 and
its publicly accountable counterpart from Sect. 6, we explore how to instantiate
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Table 1. Transcript size of shuffle arguments for vectors of length 100, 000. The
reported numbers for our constructions correspond to the instantiations described in
Sect. 7 and are independent of the vector length and the type of commitment being
shuffled. The numbers for Bayer-Groth [9] are taken from their paper for an instan-
tiation in a q order subgroup of Z∗

p with |q| = 160 and |p| = 1024 shuffling ElGamal
ciphertexts. For Bulletproofs [17], we consider an instantiation in ristretto255 [48] for
shuffling Pedersen commitments. For the Groth SNARK [32] we consider an instanti-
ation with curve BLS12-381 [13] and observe that the numbers are independent of the
kind of commitments being shuffled and the vector length.

Scheme Assumptions Trusted setup Soundness Communication cost (byte)

This Work CRHF, PRG None 2−2 81

2−5 153

2−γ 32 + �γ · 24 1
8 �

This Work (with
accountability)

CRHF, PRG,

DDH

CRS 2−2 416

2−5 992

2−γ 32 + γ · 192
This Work (with
accountability)

CRHF, PRG,

RLWE

CRS 2−2 0.44 · 220
2−5 1.1 · 220
2−γ 32 + γ · 0.215 · 220

Bayer-Groth [9] Discrete

logarithm

CRS negl(λ) 700, 000

Bulletproofs [17] Discrete

logarithm

CRS negl(λ) 1, 600

SNARKs [32] Generic

bilinear

group

SRS negl(λ) 144

them in practice. We are particularly interested in the concrete communication
complexities of such instantiations, since this is where our constructions shine.
Towards this goal, we need to pick specific instantiations of the underlying build-
ing blocks, such as the collision-resistant hash function and the PPRF with its
oblivious puncturing protocol. We aim for a security level of roughly 128 bits.

The Hash Function. The collision resistant hash function can in practice be
instantiated using any of SHA-256 [46], SHA3-256, or SHAKE256 [47] with 256
bit output length. Any of these instantiations leads to hashes of size |c| = 256
bits.

The Puncturable PRF. The PPRF can be instantiated using the construction
of Goldreich, Goldwasser and Micali (GGM) [28]. This construction relies on
an internal length-doubling pseudorandom generator which can be instantiated
using a secure stream cipher, such as AES [4] in CTR mode or ChaCha20 [11].
Taking the losses introduced by both the security proof of GGM as well as the
proof of zero-knowledge into account, we require a PRG with 128 + �2 log t +
log log t� bits of security to achieve our security goal of 128 bits. For reasonable
values of t, using AES-192 in CTR mode would thus suffice. Simply instantiating
GGM like this yields a PPRF with range {0, 1}192. As explained in Sect. 2, to
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construct a PPRF with range Perm� × R�, the output can be stretched using
a PRG and combined with the Fisher-Yates shuffle [24] by using the stretched
output as the random tape of the shuffling algorithm. The necessary PRG can
again be instantiated using, e.g., AES-192 in CTR mode or ChaCha20. Overall,
the size of a punctured key with the AES-192 instantiation is |k′| = �log t� · 192
bits.

The Oblivious Puncturing Protocol. Using the PPRF construction of GGM men-
tioned above, we can use the oblivious puncturing protocol described in [14],
which itself relies on �log t� many oblivious transfers with active security. These
can be instantiated with the 2-round UC secure protocol of Peikert, Vaikunan-
than, and Waters [44] over ristretto255 [48] by relying on the DDH assumption.
From a computational point of view, the parties need to perform 10 �log t� expo-
nentiations, 6 �log t� multiplications, and 2t evaluations of a PRG for one obliv-
ious puncturing. Using our instantiation, the OPP runs in two rounds and thus
the overall protocol runs in three, since the signature σ can be sent in parallel
with the second message of the OPP from the prover to the verifier.

To obtain post-quantum security, we can instantiate the oblivious transfer
with the protocol of Micciancio and Sorrell [41], which relies on the ring learning
with errors assumption.

Acknowledgments. The authors would like to thank the anonymous PKC reviewer
for pointing out the efficient OPP instantiation implicit in [14] as a practical replace-
ment for general purpose PIR. The authors would also like to thank Ivan Damg̊ard
for the insightful discussions about the Goldreich and Kahan proof technique as well
as Diego F. Aranha and Cathie Yun for information about practical instantiations of
SNARKs and Bulletproofs respectively.
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Abstract. Secure asynchronous two-party communication applies
ratcheting to strengthen privacy, in the presence of internal state expo-
sures. Security with ratcheting is provided in two forms: forward security
and post-compromise security. There have been several such secure pro-
tocols proposed in the last few years. However, they come with a high
cost.

In this paper, we propose two generic constructions with favorable
properties. Concretely, our first construction achieves security awareness.
It allows users to detect non-persistent active attacks, to determine which
messages are not safe given a potential leakage pattern, and to acknowl-
edge for deliveries.

In our second construction, we define a hybrid system formed by com-
bining two protocols: typically, a weakly secure “light” protocol and a
strongly secure “heavy” protocol. The design goals of our hybrid con-
struction are, first, to let the sender decide which one to use in order
to obtain an efficient protocol with ratchet on demand ; and second, to
restore the communication between honest participants in the case of a
message loss or an active attack.

We can apply our generic constructions to any existing protocol.

1 Introduction

In recent messaging applications, protocols are secured with end-to-end encryp-
tion to enable secure communication services for their users. Besides security,
there are many other characteristics of communication systems. The nature of
two-party protocols is that it is asynchronous: the messages should be trans-
mitted regardless of the counterpart being online; the protocols do not have
any control over the time that participants send messages; and, the participants
change their roles as a sender or a receiver arbitrarily.

Many deployed systems are built with some sort of security guarantees. How-
ever, they often struggle with security vulnerabilities due to the internal state
compromises that occur through exposures of participants. In order to prevent
the attacker from decrypting past communication after an exposure, a state
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update procedure is applied. Ideally, such updates are done through one-way
functions which delete the old states and generate new ones. This guarantees
forward secrecy. Additionally, to further prevent the attacker from decrypting
future communication, ratcheting is used. This adds some source of randomness
in every state update to obtain what is called future secrecy, or backward secrecy,
or post-compromise security, or even self-healing.

Formal definitions of ratcheting security given have been recently studied,
by Bellare et al. [2], followed by many others subsequent studies [1,7–10]. Some
of these schemes are key-exchange protocols while others are secure messaging.
Since secure ratcheted messaging boils down to secure key exchange, we consider
these works as equivalent.

Previous Work. Early ratcheting protocols were suggested in Off-the-Record
(OTR) and then Signal [3,11]. The security of Signal was studied by Cohn-
Gordon et al. [5]. Unger et al. [12] surveyed many ratcheting techniques. Alwen
et al. [1] formalized the concept of “double ratcheting” from Signal.

Cohn-Gordon et al. [6] proposed a ratcheted protocol at CSF 2016 but
requiring synchronized roles. Bellare et al. [2] proposed another protocol at
CRYPTO 2017, but unidirectional and without forward secrecy. Poettering and
Rösler (PR) [10] designed a protocol with “optimal ” security (in the sense that
we know no better security so far), but using a random oracle, and heavy algo-
rithms such as hierarchical identity-based encryption (HIBE). Yet, their proto-
col does not guarantee security against compromised random coins. Jaeger and
Stepanovs (JS) [8] proposed a similar protocol with security against compro-
mised random coins: with random coin leakage before usage. Their protocol also
requires HIBE and a random oracle.

Durak and Vaudenay (DV) [7] proposed a protocol with slightly lower secu-
rity1 but relying on neither HIBE nor random oracles. They rely on a public-
key cryptosystem, a digital signature scheme, a one-time symmetric encryption
scheme, and a collision-resistant hash function. They further show that a uni-
directional scheme with post-compromise security implies public-key cryptogra-
phy, which obviates any hope of having a fully secure protocol solely based on
symmetric cryptography. At EUROCRYPT 2019, Jost, Maurer, and Mularczyk
(JMM) [9] proposed concurrently and independently a protocol with security
between optimal security and the security of the DV protocol.2 They achieve it
even with random coin leakage after usage. Contrarily to other protocols achiev-
ing security with corrupted random coins, in their protocol, random coin leakage
does not necessarily imply revealing part of the state of the participant. In the
same conference, Alwen, Coretti, and Dodis [1] proposed two other ratcheting
protocols denoted as ACD and ACD-PK with security against adversarially cho-
sen random coins and immediate decryption. Namely, messages can be decrypted
even though some previous messages have not been received yet. The ACD-PK
protocol offers a good level of security, although having immediate decryption

1 More precisely, the security is called “sub-optimal ” [7].
2 They call this security level “near-optimal ” [9].
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may lower it a bit as it will be discussed shortly. On the other hand, during a
phase when the direction of communication does not change, the ACD protocol
is fully based on symmetric cryptography, hence has lower security (in particular,
no post-compromise security in this period). However, it is much more efficient.
Following the authors of ACD, we consider Signal and ACD as equivalent.

We summarize these results in Table 1. The first four rows are based on DV [7,
Table 1]. The other rows of the table will be discussed shortly.

Recently, Yan and Vaudenay [13] proposed Encrypt-then-Hash (EtH), a sim-
ple, natural, and extremely efficient ratchet protocol based on symmetric cryp-
tography only, which provides forward secrecy but not post-compromise secu-
rity. In short, it replaces the encryption key by its hash after every encryption
or decryption, and needs one key for each direction of communication.

We are mostly interested in the DV model [7]. It gives a simple description of
the KIND security and FORGE security. The former deals with key indistinguisha-
bility where the generated keys are indistinguishable from random strings and
the latter states that update messages for ratcheted key exchange are unforge-
able. Additionally, they present the notion of RECOVER-security which guar-
antees that participants can no longer accept messages from their counterpart
after they receive a forged message. Even though FORGE security avoids non-
trivial forgeries, there are still (unavoidable) trivial forgeries. They occur when
the state of a participant is exposed and the adversary decides to impersonate
him. With RECOVER security, when an adversary impersonates someone (say
Bob), the impersonated participant is out and can no longer communicate with
the counterpart (say Alice). It does not mean to bother participants but rather
work for their benefit. Indeed, this security notion guarantees that the attack is
eventually detected by Bob if he is still alive. If the protocol has a way to resume
secure communication based on an explicit action from the users, this property
is particularly appealing.

What makes the DV model simple is that all technicalities are hidden in a
cleanness notion which eliminates trivial attack strategies. The adversary can
only win when the attack scenario trace is “clean”. This model makes it easy to
consider several cleanness notions, specifically for hybrid protocols. The difficulty
is perhaps to provide an exhaustive list of criteria for attacks to be clean.

Our Contributions. We start with formally and explicitly defining a notion of
security awareness in which the users detect active attacks by realizing they can
no longer communicate; users can be confident that nothing in the protocol can
compromise the confidentiality of an acknowledged message if it did not leak
before; and users can deduce from an incoming message which of the messages
they sent have been delivered when the incoming message was formed.

More concretely, we elaborate on the RECOVER security to offer optimal
security awareness. We start by defining a new notion called s-RECOVER. We
make sure that not only is a receiver of a forgery no longer able to receive genuine
messages via r-RECOVER-security but he can no longer send a message to his
counterpart either via s-RECOVER-security. The r-RECOVER security is equal
to RECOVER security of the DV protocol. Both r-RECOVER and s-RECOVER
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notions imply that reception of a genuine message offers a strong guarantee of
having no forgery in the past: after an active attack ended, participants real-
ize they can no longer communicate. Our security-awareness notion makes also
explicit that the receiver of a message can deduce (in absence of a forgery) which
of his messages have been seen by his counterpart (which we call an acknowledg-
ment extractor). Hence, each sent message implicitly carries an acknowledgment
for all received messages. Finally, what we want from the history of receive/send
messages and exposures of a participant is the ability to deduce which message
remains private (or “clean”). We call it a cleanness extractor.

Then, we give another generic construction to compose “any” two protocols
with different security levels to allow a sender to select which security level
to use. By composing a strongly secure protocol (such as PR, JS, JMM, DV)
with a lighter and weakly secure one (such as EtH [13], which is solely based on
symmetric cryptography), we obtain the notion of ratchet on-demand. When the
ratcheting becomes infrequent, we obtain the excellent software performances
of EtH as we will show in our implementation results. Hybrid constructions
already exist, like Signal/ACD. However, they offer no control on the choice of
the protocol to be used. Instead, they ratchet if (and only if) the direction of
communication alternates.

We find that there would be an advantage to offer more fine grained flexibility.
The decision to ratchet or not could of course be made by the end user or rather
be triggered by the application at an upper layer, based on a security policy. For
instance, it could make sense to ratchet on a smartphone for every new message
following bringing back the app to foreground, or to ratchet no more than once
an hour.

Another interesting outcome of our hybrid system is that we can form our
hybrid system with two identical protocols: an upper one and a lower one. The
lower protocol is used to communicate the messages and the upper protocol is
used to control the lower protocol: to setup or to reset it. With this hybrid
structure with identical protocols, we can repair broken communication in the
case of a message loss or active attacks. As far as we observe, the complexity
of the hybrid system is the same as the complexity of the underlying protocol.
Since our security-aware property breaks communication in the case of an active
attack, this repairing construction is a nice additional tool.

Last but not least, we implemented the many existing protocols: PR, JS, DV,
JMM, ACD, ACD-PK, together with EtH. We observe that EtH is the fastest one.
This is not surprising for all protocols which heavily use public-key cryptogra-
phy, but it is surprising for ACD. Our goal is to offer a high level of security
with the performances of EtH. We reach it with on-demand ratcheting when the
participant demands healing scarcely.

Finally, we conclude that security awareness can be added on top of an exist-
ing protocol (even a hybrid one) in a generic way to strengthen security. We pro-
pose this generic strengthening (called chain) of protocol to obtain r-RECOVER
and s-RECOVER security on the top of any protocol. As an example, we apply
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it on the ratchet-on-demand hybrid protocol composed with DV and EtH and
obtain our final protocol.

We provide a comparison of all the protocols with r-RECOVER-security,
s-RECOVER-security, acknowledgment extractor and cleanness extractor in
Table 1. Note that this table is made to help both the authors and the read-
ers to have a fair understanding of what specified properties each protocol has
or not. We stress that “any” protocol could form a hybrid system to provide
ratchet-on-demand and repairing a broken communication in the case of mes-
sage loss or active attacks. The protocol which is shown in the last column is
the case where we chose to use DV and EtH to construct our hybrid system.

Table 1. Comparison of Several Protocols with our protocol chain(hybrid(ARCADDV,
EtH)) from Corollary 29 in Sect. 3.3: security level; worst case complexity for excha-
nging n messages; types of coin-leakage security; plain model (i.e. no random oracle);
PKC or less (i.e. no HIBE). DV and ARCADDV have identical characteristics. ARCADDV

is based on DV and described in Appendix B. The terms “optimal”, “near-optimal”, and
“sub-optimal” from Durak-Vaudenay [7] are mentioned on p. 2. “Pragmatic” degrades
a bit security to offer on-demand ratcheting. “id-optimal” is optimal among protocols
with immediate decryption.

PR [10] JS [8] JMM [9] DV [7] ACD-PK [1] Ours

Security Optimal Optimal Near-optimal Sub-optimal Id-optimal Pragmatic

Worst case complexity O(n2) O(n2) O(n2) O(n) O(n) O(n)

Coins leakage resilience No Pre-send Post-send No Chosen coins No

Plain model (no ROM) No No No Yes Yes Yes

PKC or less No No Yes Yes Yes Yes

Immediate decryption No No No No Yes No

r-RECOVER security No Yes No Yes No Yes

s-RECOVER security No Yes No No No Yes

ack. extractor Yes Yes Yes Yes No Yes

Cleanness extractor Yes Yes Yes Yes Yes Yes

Category BARK ARCAD ARCAD BARK ARCAD ARCAD

To summarize, our contributions are:

– we formally define the notion of security awareness, construct a generic pro-
tocol strengthening called chain, and prove its security;

– we define the notion of on-demand ratcheting, construct a generic hybrid
protocol called hybrid, define and prove its security;

– we implement PR, JS, DV, JMM, ACD, ACD-PK, and EtH protocols in order
to clearly compare their performances.

Notation. We have two participants named Alice (A) and Bob (B). Whenever we
talk about either one of the participants, we represent it as P, then P refers to P’s
counterpart. We have two roles send and rec for sender and receiver respectively.
We define send = rec and rec = send. When the communication is unidirectional,
the participants are called the sender S and the receiver R.
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Structure of the Paper. In Sect. 2, we revisit the preliminary notions from Durak-
Vaudenay [7] and Alwen-Coretti-Dodis [1]. They all are essential to be able to
follow our results. In Sect. 3, we define a new notion named security awareness
and build a protocol with regard to the notion. In Sect. 4, we define a new
protocol called on-demand ratcheting with better performance than state-of the-
art. Finally, in Appendix A, we present our implementation results with the
figures comparing various protocols. Appendix B presents ARCADDV: the DV
protocol in a simplified form and in the frame of ARCAD.

2 Preliminaries

2.1 ARCAD Definition and Security

In this section, we recall the DV model [7] and we slightly adapt it to define
asynchronous ratcheted communication with additional data denoted as ARCAD.
That is, we consider message encryption instead of key agreement (BARK: bidi-
rectional asynchronous ratcheted key agreement). The difference between BARK
and ARCAD is the same as the difference between KEM and cryptosystems: pt
is input to Send instead of output of Send. Additionally, we treat associated
data ad to authenticate. Like DV [7]3, we adopt asymptotic security rather than
exact security, for more readability. Adversaries and algorithms are probabilistic
polynomially bounded (PPT) in terms of a parameter λ.

As we slightly change our direction from key exchange to encryption, we feel
that it is essential to redefine the set of definitions from BARK for ARCAD. In this
section, some of the definitions are marked with the reference [7]. It means that
these definitions are unchanged except for possible necessary notation changes.
The other definitions are straightforward adaptations to fit ARCAD. We try not
to overload this section by redefining already existing terminology, hence, we let
less essential definitions in the full version [4].

Definition 1 (ARCAD). An asynchronous ratcheted communication with addi-
tional data (ARCAD) consists of the following PPT algorithms:

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Gen(1λ, pp) $−→ (sk, pk): This generates the secret key sk and the public key pk
of a participant.

– Init(1λ, pp, skP, pkP,P) → stP: This sets up the initial state stP of P given his
secret key, and the public key of his counterpart.

– Send(stP, ad, pt) $−→ (st ′
P, ct): it takes as input a plaintext pt and some associ-

ated data ad and produces a ciphertext ct along with an updated state st ′
P.

– Receive(stP, ad, ct) → (acc, st ′
P, pt): it takes as input a ciphertext ct and some

associated data ad and produces a plaintext pt with an updated state st ′
P

together with a flag acc.4

3 Proceedings version.
4 In our work, we assume that acc = false implies that st ′

P = stP and pt = ⊥, i.e. the
state is not updated when the reception fails. Other authors assume that st ′

P = pt =
⊥, i.e. no further reception can be done.
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An additional Initall(1λ, pp) → (stA, stB, z) algorithm, which returns the initial
states of A and B as well as public information z, is defined as follows:

Initall(1λ, pp):
1: Gen(1λ, pp) → (skA, pkA)

2: Gen(1λ, pp) → (skB, pkB)

3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z ← (pp, pkA, pkB)

6: return (stA, stB, z)

Initall is defined for convenience as an initialization procedure for all games. None
of our security games actually cares about how Initall is made from Gen and Init.
This is nice because there is little to change to define a notion of “symmetric-
cryptography-based ARCAD” with a slight abuse of definition: we only need to
define Initall. This approach was already adopted for EtH [13] which was proven
as a “secure ARCAD” in this way.

For all global variables v in the game such as receivedP
ct, stP, or ctP (which

appear in Fig. 1 and Fig. 2, for instance), we denote the value of v at time t by
v(t). The notion of time is participant-specific. It refers to the number of ele-
mentary operations he has done. We assume neither synchronization nor central
clock. Time for two different participants can only be compared when they are
run non-concurrently by an adversary in a game.

Definition 2 (Correctness of ARCAD). Consider the correctness game given
on Fig. 1.5 We say that an ARCAD protocol is correct if for all sequence sched
of tuples of the form (P, “send”, ad, pt) or (P, “rec”), the game never returns 1.
Namely,

– at each stage, for each P, receivedP
pt is prefix of sentPpt

6;
– each RATCH(P, “rec”) call returns acc = true.

We note that RATCH(P, “rec”, ad, ct) ignores messages when decryption fails.
For this reason, when we say that a participant P “receives” a message, we may
implicitly mean that the message was accepted. More precisely, it means that
decryption succeeded and RATCH returned acc = true.

In addition to the RATCH oracle (in Fig. 1) which is used to ratchet (either to
send or to receive), we define several other oracles (in Fig. 2): EXPst to obtain the
state of a participant; EXPpt to obtain the last received message pt; CHALLENGE
to send either the plaintext or a random string. All those oracles are used without
change throughout all security notions in this paper.

Definition 3 (Matching status [7]). We say that P is in a matching status
at time t for P if

5 We use the programming technique of “function overloading” to define the RATCH
oracle: there are two definitions depending on whether the second input is “rec” or
“send”.

6 By saying that receivedP
pt is prefix of sentPpt, we mean that sentPpt is the concatenation

of receivedP
pt with a (possible empty) list of (ad, pt) pairs.
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Fig. 1. The Correctness Game of ARCAD Protocol.

1. at any moment of the game before time t for P, receivedP
ct is a prefix of sentPct—

this defines the time t for P when P sent the last message in receivedP
ct(t);

2. at any moment of the game before time t for P, receivedP
ct is a prefix of sentPct.

We further say that time t for P originates from time t for P.

Intuitively, P is in a matching status at a given time if his state is not influenced
by an active attack (i.e. message injection/modification/erasure/replay).

Definition 4 (Forgery). Given a participant P in a game, we say that
(ad, ct) ∈ receivedP

ct is a forgery if at the moment of the game just before P

received (ad, ct), P was in a matching status, but no longer after receiving (ad, ct).

Definition 5 (Trivial forgery). Let (ad, ct) be a forgery received by P. At the
time t just before the RATCH(P, “rec”, ad, ct) call, P was in a matching status.
We assume that time t for P originates from time t for P. If there is an EXPst(P)
call between time t for P and the next RATCH(P, “send”, ., .) call (or just after
time t is there is no further RATCH(P, “send”, ., .) call), we say that (ad, ct) is a
trivial forgery.

We give a brief description of the DV security notions [7] as follows.
FORGE-security: It makes sure that there is no forgery, except trivial ones.
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r-RECOVER-security7: If an adversary manages to forge (trivially or not) a
message to one of the participants, then this participant can no longer accept
genuine messages from his counterpart.

PREDICT-security: The adversary cannot guess the value ct which will be out-
put from the Send algorithm.

KIND-security: We omit this security notion which is specific to key exchange.
Instead, we consider IND-CCA-security in a real-or-random style.

We define the ratcheting security with IND-CCA notion. Before defining it, we
like to introduce a predicate called Cclean as IND-CCA is relative to this predicate.
The purpose of Cclean is to discard trivial attacks. Somehow, the technicality of
the security notion is hidden in this cleanness notion. An “optimal” cleanness
predicate discards only trivial attacks but other predicates may discard more
and allow to have more efficient protocols [7].

More precisely, for “clean” cases, a security property must be guaranteed. A
“trivial” attack (i.e. an attack that no protocol can avoid) implies a non-clean
case. If the cleanness notion is tight, this is an equivalence.

In the full version [4] we recall the most useful cleanness predicates. In short,
Cleak ∧ C

A,B
trivial forge corresponds to the DV-cleanness notion for post-compromise

security (“sub-optimal”) and Csym is the weaker cleanness notion for forward
secrecy only which is adapted to symmetric cryptographic schemes.

Fig. 2. IND-CCA Game. (Oracle RATCH is defined in Fig. 1)

Definition 6 (Cclean-IND-CCA security). Let Cclean be a cleanness predicate.
We consider the IND-CCAA

b,Cclean
game of Fig. 2. We say that the ARCAD is

Cclean-IND-CCA-secure if for any PPT adversary, the advantage

Adv(A) =
∣
∣Pr

[

IND-CCAA
0,Cclean

(1λ) → 1
]

− Pr
[

IND-CCAA
1,Cclean

(1λ) → 1
]∣
∣

of A in IND-CCAA
b,Cclean

security game is negligible.

7 It is called RECOVER-security in DV [7]. We call it r-RECOVER because we will
enrich it with an s-RECOVER notion in Sect. 3.1.
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Fig. 3. FORGE, r-RECOVER, and PREDICT Games. (Oracles RATCH, EXPst, EXPpt are
defined in Fig. 1 and Fig. 2.)

Definition 7 (Cclean-FORGE security). Given a cleanness predicate Cclean,
consider FORGEA

Cclean
game in Fig. 3 associated to the adversary A. Let the advan-

tage of A be the probability that the game outputs 1. We say that ARCAD is
Cclean-FORGE-secure if, for any PPT adversary, the advantage is negligible.

In this definition, we added the notion of cleanness which determines if an attack
is trivial or not. The original notion of FORGE security [7] is equivalent to using
the following Ctrivial predicate Cclean:

Ctrivial: the last (ad, ct) message is not a trivial forgery (following Definitions 5).

The purpose of this update in the definition is to allow us to easily define a
weaker form of FORGE-security for symmetric protocols and in Sect. 3.3.

Definition 8 (r-RECOVER security [7]). Consider the r-RECOVERA game in
Fig. 3 associated to the adversary A. Let the advantage of A in succeeding in the
game be Pr(win = 1). We say that the ARCAD is r-RECOVER-secure, if for any
PPT adversary, the advantage is negligible.

Definition 9 (PREDICT security [7]). Consider PREDICTA(1λ) game in
Fig. 3 associated to the adversary A. Let the advantage of A in succeeding in the
game be the probability that 1 is returned. We say that the ARCAD is PREDICT-
secure, if for any PPT adversary, the advantage is negligible.

PREDICT-security is useful to reduce the notion of matching status to the two
conditions that receivedP

ct is a prefix of sentPct at time t for P and receivedP
ct is a

prefix of sentPct at time t for P.
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2.2 The Epoch Notion in Secure Communication

We define the epochs in an equivalent way to the work done by Alwen et al. [1].8

Epochs are useful to designate the sequence of messages, as both participants
may not see exactly the same. We will use epoch numbers in the design of our
hybrid scheme for on-demand ratcheting in Sect. 4.1.

Epochs are a set of consecutive messages going in the same direction. An
epoch is identified by an integer counter e. Each message is assigned one epoch
counter em. Hence, the epochs are non-intersecting. For convenience, each par-
ticipant P keeps the epoch value ePsend of the last sent message and the epoch
value ePrec of the last received message. They are used to assign an epoch to a
message to be sent.

Definition 10 (Epoch). Epochs are non-intersecting sets of messages which
are defined by an integer. During the game, we let ePrec (resp. ePsend) be the epoch of
the last received (resp. sent) message by P. At the very beginning of the protocol,
we define ePsend and ePrec specifically. For the participant A, eArec = −1 and eAsend = 0.
For the participant B, eBsend = −1 and eBrec = 0. The procedure to assign an epoch
em to a new sent message follows the rule described next:
If ePrec < ePsend, then the message is put in the epoch em = ePsend. Otherwise, it is
put in epoch em = ePrec + 1.

Let eP = max{ePrec, e
P
send}. Let bA = 0 and bB = 1. We have

ePsend =

{
eP if eP mod 2 = bP

eP − 1 otherwise
ePrec =

{
eP if eP mod 2 �= bP

eP − 1 otherwise

Therefore, it is equivalent to maintain (ePrec, e
P
send) or eP. The procedure to

manage eP and em is described by Alwen et al. [1].
We will use a counter c for each epoch e. We will use the order on (e, c) pairs

defined by
(e, c) < (e ′, c ′) ⇐⇒ (e < e ′ ∨ (e = e ′ ∧ c < c ′))

3 Security Awareness

3.1 s-RECOVER Security

We gave the DV r-RECOVER security definition [7] in Definition 8. It is an
important notion to capture that P cannot accept a genuine ct from P after
P receives a forgery. However, r-RECOVER-security does not capture the fact
that when it is P who receives a forgery, P could still accept messages which
come from P. We strengthen r-RECOVER security with another definition called
s-RECOVER.

8 The notion of epoch appeared in Poettering-Rösler [10] before.
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Definition 11 (s-RECOVER security). In the s-RECOVERA game in Fig. 4
with the adversary A, we let the advantage of A in succeeding in the game be
Pr(win = 1). We say that the ARCAD is s-RECOVER-secure, if for any PPT
adversary, the advantage is negligible.

Fig. 4. s-RECOVER Security Game. (RATCH and EXP oracles are defined in Fig. 1 and
Fig. 2.)

Ideally, what we want from the protocol is that participants can detect forg-
eries by realizing that they are no longer able to communicate to each other. We
cannot prevent impersonation to happen after a state exposure but we want to
make sure that the normal exchange between the participants is cut. Hence, if
a participant eventually receives a genuine message (e.g. because it was authen-
ticated after meeting in person), he should feel safe that no forgeries happened.
Contrarily, detecting a communication cut requires an action from the partic-
ipants, such as restoring communication using a super hybrid structure, as we
will suggest in Sect. 4.1.

We directly obtain the following useful result:9

Lemma 12. If an ARCAD is r-RECOVER, s-RECOVER, and PREDICT secure,
whenever P receives a genuine message from P (i.e., an (ad, ct) pair sent by P

is accepted by P), P is in a matching status (following Definition 3), except with
negligible probability.

Our notion of RECOVER-security and forgery is quite strong in the sense
that it focuses on the ciphertext. Some protocols such as JMM [9] focus on the
plaintext. In JMM, ct includes some encrypted data and some signature but only
the encrypted data is hashed. Hence, an adversary can replace the signature by
another signature after exposure of the signing key. It can be seen as not so
important because it must sign the same content. However, the signature has a

9 The proof is provided in the full version [4].
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key update and the adversary can make the receiver update to any verifying key
to desynchronize, then re-synchronize at will. Consequently, the JMM protocol
does not offer RECOVER security as we defined it. Contrarily, PR [10] hashes
(ad, ct) but does not use it in the next ad or to compute the next ct. Thus, PR
has no RECOVER security either.10 One may think that it is easy to fix this by
hashing all messages but this is not as simple. We propose in Sect. 3.3 the chain
transformation which can fix any protocol, thanks to Lemma 18.

3.2 Security Awareness

To have a security-awareness notion, we want r-RECOVER, s-RECOVER, and
PREDICT security11, we want to have an acknowledgment extractor (to be aware
of message delivery), and we want to have a cleanness extractor (to be aware of
the cleanness of every message, if not subject to trivial exposure). The last two
notions are defined below. This means that on the one hand, impersonations are
eventually discovered, and on the other hand, by assuming that no impersonation
occurs and assuming that exposures are known, a participant P knows exactly
which messages are safe, at least after one round-trip occurred.

Definition 13 (Security-awareness). A protocol is Cclean-security-aware if

– it is r-RECOVER, s-RECOVER, and PREDICT-secure;
– there is an acknowledgment extractor (Definition 15);
– there is a cleanness extractor for Cclean (Definition 16).

To make participants aware of the security status of any (challenge) message,
they need to know the history of exposures, they need to be able to reconstruct
the history of RATCH calls from their own view, and they need to be able to
evaluate the Cclean predicate. Thankfully, the Cclean predicates that we consider
only depend on these histories. We first formally define the notion of transcript.

Definition 14 (Transcript). In a game, for a participant P, we define the
transcript of P as the chronological sequence TP of all (oracle, extra) pairs involv-
ing P where each pair represents an oracle call to oracle with P as input
(i.e. either RATCH(P, “rec”, ., .), RATCH(P, “send”, ., .), EXPpt(P), EXPst(P), or
CHALLENGE(P)), except the unsuccessful RATCH calls which are omitted. For
each pair with a RATCH or CHALLENGE oracle, extra specifies the role (“send”
or “rec”) and the message (ad, ct) of the oracle call. For other pairs, extra = ⊥.

10 More precisely, in PR, if A is exposed then issues a message ct, the adversary can
actually forge a ciphertext ct ′ transporting the same pk and vfk and deliver it to B

in a way which makes B accept. If A issues a new message ct ′′, delivering ct ′′ to B

will pass the signature verification. The decryption following-up may fail, except if
the kuKEM encryption scheme taking care of encryption does not check consistency,
which is the case in the proposed one [10, Fig. 3, eprint version]. Therefore, ct ′′ may
be accepted by B so PR is not r-RECOVER secure. The same holds for s-RECOVER
security.

11 We want it to be able to apply Lemma 12 and be aware of matching status.
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The partial transcript of P up to time t is the prefix TP(t) of TP of all oracle
calls until time t. The RATCH-transcript of P is the list TRATCH

P of all extra
elements in TP which are not ⊥ (i.e. it only includes RATCH/CHALLENGE calls).
Similarly, the partial RATCH-transcript of P up to time t is the list TRATCH

P (t)
of extra elements in TP(t) which are not ⊥.

Next, we formalize that a participant can be aware of which of his messages
were received by his counterpart.

Definition 15 (Acknowledgment extractor). We consider a game Γ where
the transcript TP is formed for a participant P. Given a message (ad, ct) success-
fully received by P at time t and which was sent by P at time t, we let (ad ′, ct ′)
be the last message successfully received by P before time t. (If there is no such
message, we set it to ⊥.)

An acknowledgment extractor is an efficient function f such that
f(TRATCH

P (t)) = (ad ′, ct ′) for any time t when P is in a matching status (Defini-
tion 3).

Given this extractor, P can iteratively reconstruct the entire flow of messages,
and which messages crossed each other during transmission.

We formalize awareness of a participant for the safety of each message.

Definition 16 (Cleanness extractor). We consider a game Γ where the tran-
script TP is formed for a participant P. Let t be a time for P and t be a
time for P. Let TP(t) and TP(t) be the partial transcripts at those time. We
say that there is a cleanness extractor for Cclean if there is an efficient func-
tion g such that g(TP(t), TP(t)) has the following properties: if there is one
CHALLENGE in the TP(t) transcript and, either P received (adtest, cttest) or there
is a round trip P → P → P starting with P sending (adtest, cttest) to P, then
g(TP(t), TP(t)) = Cclean(Γ). Otherwise, g(TP(t), TP(t)) = ⊥.

The function g is able to predict whether the game is “clean” for any challenge
message. The case with an incomplete round trip P → P → P starting with P

sending (adtest, cttest) to P is when the tested message was sent but somehow
never acknowledged for the reception. If the message never arrived, we cannot
say for sure if the game is clean because the counterpart may later either receive
it and make the game clean or have a state exposure and make the game not
clean. In other cases, the cleanness can be determined for sure.

3.3 Strongly Secure ARCAD with Security Awareness

In this section, we take a secure ARCAD (it could be ARCADDV, in the full
version [4], or the hybrid one defined in Sect. 4) which we denote by ARCAD0

and we transform it into another secure ARCAD which we denote by ARCAD1 =
chain(ARCAD0), that is security aware. We achieve security awareness by keeping
some hashes in the states of participants. The intuitive way to build it is to
make chains of hash of ciphertexts (like a blockchain) which will be sent and
received and to associate each message to the digest of the chain. This enables a
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participant P to acknowledge its counterpart about received messages whenever
P sends a new message.

We define a tuple (Hsent,Hreceived, snt noack, rec toack) and store it in the
state of a participant. Hsent is the hash of all sent ciphertexts. It is computed
by the sender and delivered to the counterpart along with ct. It is updated with
hashing key hk and the old Hsent every time a new Send operation is called.
Likewise, Hreceived is the hash of all received ciphertexts. It is computed with
hk and the last stored Hreceived by the receiver upon receiving a message. It is
updated every time a new Receive operation is run.

Using Hsent and Hreceived alone is sufficient for r-RECOVER security but not
for s-RECOVER security.

rec toack is a counter of received messages which need to be reported when
the next Send operation is run. For each Send operation, the protocol attaches
to ct the last Hreceived to acknowledge for received messages and reset rec toack
to 0. rec toack is incremented by each Receive.

snt noack is a list of the hashes of sent ciphertexts which are waiting for an
acknowledgment. Basically, it is initialized to an empty array in the beginning
and whenever a new Hsent is computed, it is accumulated in this array. The
purpose of such a list is to keep track of the sent messages for which the sender
expects an acknowledgment. More precisely, when the participant P keeps its
list of sent ciphertexts in snt noack, the counterpart P keeps a counter rec toack
telling that an acknowledgment is needed. Remember that P sends Hreceived
back to the participant P to acknowledge him about received messages. As soon
as P acknowledges, P deletes the hash of the acknowledged ciphertexts from
snt noack.

The principle of our construction is that if an adversary starts to impersonate
a participant after exposure, there is a fork in the list of message chains which
is viewed by both participants and those chains can never merge again without
making a collision.

We give our security aware protocol on Fig. 5. The security of the protocol
is proved with the following lemmas.

Theorem 17. If ARCAD0 is correct, then chain(ARCAD0) is correct.

The proof is straightforward.

Lemma 18. If H is collision-resistant, chain(ARCAD0) is RECOVER-secure (for
both s-RECOVER and r-RECOVER security).

Proof. All (ad, ct) messages seen by one participant P in one direction (send
or receive) are chained by hashing. Hence, if receivedP

ct = (seq1, (ad, ct), seq2),
the (ad, ct) message includes (in the second field of ct) the hash h of seq1. If
sentPct = (seq3, (ad, ct), seq4), the (ad, ct) message includes the hash h of seq3. If
H is collision-resistant, then seq1 �= seq3 with negligible probability. Hence, we
have r-RECOVER security.

Additionally, all genuine (ad, ct) messages include (in the third field of ct)
the hash ack of messages which are received by the counterpart. This list must
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Fig. 5. Our Security-Aware ARCAD1 = chain(ARCAD0) Protocol.

be approved by P, thus it must match the list of hashes of messages that P sent.
Hence, if receivedP

ct is prefix of sentPct and t is the time when P sent the last
message in receivedP

ct, then this message includes the hash of receivedP
ct(t) which

must be a hash of a prefix of sentPct. Thus, unless there is a collision in the hash
function, receivedP

ct(t) is a prefix of sentPct and we have s-RECOVER security. 	

Lemma 19. chain(ARCAD0) has an acknowledgment extractor.

Proof. Let (ad, ct) be a message sent by P to P in a matching status. Let (ad ′, ct ′)
be the last message received by P before sending (ad, ct). Due to the protocol,
ct includes the value of Hreceived after receiving (ad ′, ct ′). Since this message is
from P, P recognizes this hash Hreceived = Hsent from snt noack. Both (ad ′, ct ′)
and this hash can be computed from TRATCH

P (t). Hence, chain(ARCAD0) has an
extractor. 	

Lemma 20. chain(ARCAD0) has a cleanness extractor for the following predi-
cates:

Cleak,CPtest

trivialforge,C
A,B
trivialforge,C

Ptest

forge,C
A,B
forge,Cratchet,Cnoexp

Hence, there is an extractor for all cleanness predicates which we considered.12

The following result is trivial.

Lemma 21. If ARCAD0 is PREDICT-secure, then chain(ARCAD0) is PREDICT-
secure.

Consequently, if ARCAD0 is PREDICT-secure, chain(ARCAD0) is security-aware.

12 The proof is given in the full version [4].
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4 On-Demand Ratcheting

In this section, we define a bidirectional secure communication messaging proto-
col with hybrid on-demand ratcheting. The aim is to design such a protocol to
integrate two ratcheting protocols with different security levels: a strongly secure
protocol using public-key cryptography and a weaker but much more efficient
protocol with symmetric key primitives. The core of the protocol is to use the
weak protocol with frequent exchanges and to use the strong one on demand
by the sending participant. Hence, we build a more efficient protocol with on-
demand ratcheting. Yet, it comes with a security drawback. Even though the
security for the former is to provide post-compromise security, we secure part of
the communication only with the forward secure protocol.

The sender uses a flag to tell which level of security the communication will
have and apply ratcheting with public-key cryptography or the lighter primi-
tives such as the EtH protocol [13]. The flag is set in the ad input and it is
denoted as ad.flag. We call the strong protocol as ARCADmain and the weak one
as ARCADsub. Ideally, the time to set the flag for specific security can be decided
during the deployment of the application using the protocol. This choice may
also be left to the users who can decide based on the confidentiality-level of their
communication. The more often the protocol turns the flag on, the more secure
is the hybrid on-demand protocol. If we do it for every message exchange, then
we obtain ARCADmain without ARCADsub. If we do it for no message exchange,
then we obtain ARCADsub.

4.1 Our Hybrid On-Demand ARCAD Protocol

We give our on-demand ARCAD protocol on Fig. 6. It uses two sub-protocols
called ARCADmain and ARCADsub. The former is to represent a strong-but-slow
protocol such as ARCADDV (Fig. 11). The latter is typically a weaker-but-faster
protocol like EtH [13]. The use of one or the other is based on a flag that can be
turned on and off in ad (it is checked with ad.flag operation in the protocol). To
have the flag on lets the protocol run ARCADmain while setting the flag off means
to run ARCADsub. Assuming that ARCADmain is ratcheting (i.e. post-compromise
secure) and ARCADsub is not, this defines on-demand ratcheting. We denote our
hybrid protocol as hybridARCAD = hybrid(ARCADmain,ARCADsub).

We use as a reference the (e, c) number of messages in the ARCADmain thread.
Every ARCADmain message creates a new ARCADsub send/receive state pair. The
sending participant keeps the generated send state in a sub[e, c] register under
the (e, c) number of the message and sends the generated receive state together
with his message. The very first message which a participant sees (either in
sending or receiving) forces the flag to indicate ARCADmain as we have no initial
ARCADsub state. The (e, c) number if authenticated and also explicitly added
in the ciphertext. The receiving participant checks that (e, c) increases and uses
the sub[e, c] register state to receive the message.

Theorem 22. If the protocols ARCADmain and ARCADsub are both correct, then
the protocol hybrid(ARCADmain,ARCADsub) is correct.
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The proof is provided in the full version [4].

4.2 Application: Super-Scheme to (Re)set a Protocol

Our hybrid construction finds another application than on-demand ratcheting:
defense against message loss or active attacks. Indeed, by using ARCADmain =
ARCADsub, we can set ad.flag to restore an ARCADsub communication which was
broken due to a message loss. Normal communication works in the ARCADsub

session, hence with a flag down. However, we may use ARCADmain to start a new
ARCADsub session. If ARCADsub gets broken due to a message loss or an active
attack on it, ARCADmain can be used to restart a new ARCADsub session. We
cannot resume if the ARCADmain session is broken. However, we can also make
nested hybrid protocols with more than two levels of protocols inside for safety.
It may increase the state sizes but the performance should be nearly the same.
Then, only persistent message drop attacks would succeed to make a denial of
service.

4.3 Security Definitions

We modify the predicates and the notion of FORGE-security from Sect. 2. In our
hybrid protocol, each message (ad, ct) has a clearly defined (e, c) pair. A ct which
is input or output from RATCH comes with an ad which has a clearly defined
ad.flag bit.

Sub-games. Given a game Γ for the hybridARCAD scheme with an adversary A,
we define a game main(Γ) for ARCADmain with an adversary A ′ which simulates
everything but the ARCADmain calls in Γ . Namely, A ′ simulates the enrichment
of the states and all ARCADsub management together with A.

Given a game Γmain for ARCADmain using no CHALLENGE oracle and an (e, c)
pair, we denote by maine,c(Γmain) the variant of Γmain in which the RATCH Send
call making the message (ad, ct) with pair (e, c) is replaced by a CHALLENGE
query with b = 1. This perfectly simulates Γmain and produces the same value,
and we can evaluate a predicate Cclean relative to this challenge message. We
define C

e,c
clean(Γmain) = Cclean(maine,c(Γmain)). Intuitively, C

e,c
clean(Γmain) means that

the message of pair (e, c) was safely encrypted and should be considered as
private because no trivial attack leaks it.

We also define sube,c(Γ) and sub ′
e,c(Γ). We let P be the sending participant

of the ARCADmain message of pair (e, c). In sub ′
e,c(Γ), the adversary A ′ sim-

ulates everything but the ARCADsub calls involving messages with pair (e, c).
The initial states of P and P are also set by the game sub ′

e,c(Γ). However, it
makes an EXPst(P) call at the beginning of the protocol to get the initial state
stR for ARCADsub. With this state, A ′ can simulate the encryption of stR with
ARCADmain and all the rest. Clearly, the simulation is perfect but it adds an
initial EXPst(P) call.

The sube,c(Γ) game is a variant of sub ′
e,c(Γ) without the additional EXPst(P).

To simulate the encryption of stR, A ′ encrypts a random string instead. When it
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Fig. 6. On-Demand hybridARCAD = hybrid(ARCADmain,ARCADsub) Protocol.
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comes to decrypt the obtained ciphertext, the random plaintext is ignored and
the RATCH calls with stR are simulated with the RATCH calls for the ARCADsub

game. The simulation is no longer perfect but it does not add an EXPst(P) call.

Hybrid Cleanness. We assume two cleanness predicates Cclean and Cmain (which
could be the same) for ARCADmain and one cleanness predicate Csub for
ARCADsub. We define a hybrid predicate CCclean

Cmain,Csub
as follows. By abuse of nota-

tion, we write Cclean
main,sub instead, for more readability. Let Γ be a game played by

an adversary A against hybridARCAD.

We let (ad, ct) be the challenge message (adtest, cttest) if it exists. Otherwise,

(ad, ct) is the last message in Γ . We let (e, c) be the number of (ad, ct). We let

Cclean
main,sub(Γ) =

⎧⎨
⎩

if (ad, ct) belongs to ARCADmain : Cmain(main(Γ))

else :

{
if C

e,c
clean(main(Γ)) :

else :

Csub(sube,c(Γ))

Csub(sub
′
e,c(Γ))

This means that if the challenge holds on an ARCADmain message, we only care for
main(Γ) to be Cmain-clean. Otherwise, either the ARCADmain message initiating
the relevant ARCADsub session is Cclean or not. If it is clean, we can replace it and
consider Csub-cleanness for sube,c(Γ). Otherwise, the initial ARCADsub state stR
trivially leaked (or was exposed, equivalently) and we consider Csub-cleanness for
sub ′

e,c(Γ). The role of Cclean is to control which of the two games to use. Cclean

must be a privacy cleanness notion for main. Contrarily, Cmain and Csub could be
either privacy or authenticity notions.

Note that Csub(sub
′
e,c(Γ)) = false for Csub = Cnoexp, due to the EXPst call.

We easily obtain the following result.

Lemma 23. If ARCADmain is Cmain-IND-CCA-secure and ARCADsub is Csub-
IND-CCA-secure, then hybridARCAD is Cclean-IND-CCA with Cclean = Cmain

main,sub.

Proof (sketch).13 Let us assume that Γ is clean in the sense of Cclean.
Let (ad, ct) be the challenge (or last) message. If (ad, ct) belongs to

ARCADmain, then main(Γ) is Cmain-clean. The outcome of main(Γ) and Γ is the
same. Due to the Cmain-IND-CCA security of ARCADmain, the advantage in Γ is
negligible. Let us now assume that (ad, ct) belongs to ARCADsub.

C
e,c
Cmain

indicates if the ARCADmain message of pair (e, c) can be replaced by
the encryption of something random to produce the same result, except with
negligible probability. In this case, sube,c(Γ) produces the same outcome as Γ

and Cclean implies that it must be Csub-clean. Due to the Csub-IND-CCA security
of ARCADsub, the advantage in Γ is negligible.

Similarly, if C
e,c
Cmain

(Γ) does not hold, Cclean implies that sub ′
e,c(Γ) is clean. It

produces the same outcome as Γ . Due to the Csub-IND-CCA security of ARCADsub,
the advantage in Γ is negligible. 	


13 More details are provided in the full version [4].
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In the FORGE game, we replace the Ctrivial predicate. Typically, by taking
Cmain as the predicate that tests if the last (ad, ct) message is a trivial forgery and
by taking Csub as the predicate that additionally tests if no EXPst occurred, the
Cclean

main,sub predicate defines a new FORGE notion for hybrid(ARCADDV,EtH). More
generally, if ARCADmain is Cmain-FORGE-secure and ARCADsub is Csub-FORGE-
secure, we would like to have CCclean

Cmain,Csub
-FORGE-security.

Fig. 7. Relaxed FORGE Security.

We almost have the reduction but there is something missing. Namely, a
forgery for hybridARCAD in Γ may not be a forgery for neither ARCADmain in
main(Γ) nor ARCADsub in sube,c(Γ). This happens if the adversary in Γ drops the
delivery of the last messages in a sub scheme. We relax FORGE-security using the
FORGE∗ game in Fig. 7. Only Steps 4 and 8 are new. Our chain strengthening
in Sect. 3 can later make the protocols fully FORGE-secure. We easily prove the
following result.

Lemma 24. If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure
and if ARCADsub is Csub-FORGE∗-secure, then hybridARCAD is Chybrid-FORGE∗,
where Chybrid = Cclean

main,sub.

Proof (sketch).14 If (ad, ct) belongs to ARCADmain and Γ = FORGE∗ succeeds to
return 1, then Cmain(main(Γ)) holds and main(Γ) succeeds to return 1 as well.
Similarly, if (ad, ct) belongs to ARCADsub and Γ returns 1, then, depending on
C

e,c
clean(Γ), either Csub(sube,c(Γ)) or Csub(sub

′
e,c(Γ)) holds, and either game suc-

ceeds to return 1 (thanks to IND-CCA security in the latter case). Applying
FORGE∗ security of those protocols, this occurs with negligible probability. 	


What FORGE∗ security does not guarantee is that some forgeries in a sub-
scheme may occur in the far future, due to state exposure. Fortunately, our
protocol mitigates this problem by making sure that old sub-protocols become
obsolete. Indeed, our protocol makes sure that sent messages always have an
increasing sequence of (e, c) pairs, and the same for received messages. Hence, we

14 More details are provided in the full version [4].
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cannot have a forgery with an old (e, c) pair. Another problem which is explicit
in Step 8 of the game is that the adversary may prevent P from receiving a
sequence seq2 sent from P (namely in a sub-protocol). In Sect. 3, making the
protocol r-RECOVER-secure fixes both problems. (See Lemma 26.) Hence, we
will obtain FORGE-security.

4.4 Security-Aware Hybrid Construction

In this section, we apply our results from Sect. 3.3 to our hybrid constructions.

Lemma 25. Let Cclean ∈ {Ctrivial,Cnoexp} and ARCAD1 = chain(ARCAD0). If
ARCAD0 is Cclean-FORGE-secure (resp. Cclean-FORGE∗-secure), then ARCAD1 is
Cclean-FORGE-secure (resp. Cclean-FORGE∗-secure).

Proof. We reduce an adversary playing the FORGE game with ARCAD1 to an
adversary playing the FORGE game with ARCAD0 by simulating the hash-
ings. ARCAD1 is an extension of ARCAD0 such that an ARCAD1 message
(ad, (ct ′,h, ack)) is equivalent to an ARCAD0 message ((ad,h, ack), ct ′). It is just
reordering (ad, ct). Hence, a forgery for ARCAD1 must be a forgery for ARCAD0.
FORGE∗-security works the same. 	

Lemma 26. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain,ARCADsub) , ARCAD1 = chain(ARCAD0)

If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure and ARCADsub

is Csub-FORGE∗-secure, then ARCAD1 is Cclean
main,sub-FORGE

∗-secure. If H is addi-
tionally collision-resistant, then ARCAD1 is Cclean

main,sub-FORGE-secure.

Proof. Due to Lemma 24, Cclean
main,sub-FORGE

∗-security works like in the previous
result. To extend to Cclean

main,sub-FORGE-security, we just observe that ARCAD1 is
r-RECOVER-secure due to Lemma 18. We thus deduce seq2 = ⊥ from having
receiveP

ct = (seq1, (ad, ct)) and sentPct = (seq1, seq2, (ad, ct), seq3). Hence, we have
a full forgery, except with negligible probability. 	

Lemma 27. Let Cclean = Cleak, Cratchet, Cnoexp, or CS

tforge (t = trivial or ⊥},
S = Ptest or {A,B}), If ARCAD0 is Cclean-IND-CCA-secure, then ARCAD1 is Cclean-
IND-CCA-secure.

Proof. We reduce an adversary playing the IND-CCA game with ARCAD1 to an
adversary playing the IND-CCA game with ARCAD0 by simulating the hash-
ings. We easily see that the cleanness is the same and that the simulation is
perfect. 	

We easily extend this result to hybrid constructions. We conclude with our final
result.
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Theorem 28. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain,ARCADsub) , ARCAD1 = chain(ARCAD0)

We assume that 1. H is collision-resistant; 2. ARCADmain is Cclean-IND-CCA-
secure and Cmain-FORGE∗-secure; 3. ARCADsub is Csub-FORGE∗-secure and
C ′

clean-IND-CCA-secure. Then, ARCAD1 is 1. r-RECOVER-secure, 2. s-RECOVER-
secure, 3. Cclean

main,sub-FORGE-secure, 4. Cclean
clean,clean′-IND-CCA-secure, 5. with

acknowledgement extractor.

Corollary 29. Let ARCAD1 = chain(hybrid(ARCADDV,EtH)) (where ARCADDV

is defined on Fig. 11) and let Cclean = Cleak ∧ C
A,B
forge. With the assump-

tions from Theorem30 and the EtH result [13, Th.2], if H is collision-
resistant, ARCAD1 is Cclean

trivial,noexp-FORGE-secure, Cclean
clean,sym-IND-CCA-secure, and

with security-awareness.

In particular, when a sender deduces an acknowledgment for his message m from
a received message m ′, if he can make sure that m ′ is genuine and that no trivial
exposure for m happened, then he can be sure that his message m is private, no
matter what happened before or what will happen next.

5 Conclusion

We revisited the DV security model. We proposed an hybrid construction which
would mostly use EtH and occasionally a stronger protocol, upon the choice
of the sender, thus achieving on-demand ratcheting. Finally, we proposed the
notion of security awareness to enable participants to have a better idea on
the safety of their communication. We achieved what we think is the optimal
awareness. Concretely, a participant is aware of which of his messages arrived to
his counterpart when he sent the last received one. We make sure that any forgery
(possibly due to exposure) would fork the chain of messages which is seen by both
participants and result in making them unable to continue communication. We
also make sure that assuming that the exposure history is known, participants
can deduce which messages leaked.

A Implementations/Comparisons with Existing
Protocols

We compare the performances of ARCADDV and EtH to other ratcheted messag-
ing and key agreement protocols that have surfaced since 2018. In particular,
we implemented five other schemes from the literature15. Namely, the bidirec-
tional asynchronous key-agreement protocol BRKE by PR [10], the similar secure
messaging protocol by JS [8], the secure messaging protocol by JMM [9] and a
modularized version of two protocols by ACD [1].In ACD [1], the given protocols

15 Our code is available at https://github.com/qantik/ratcheted.

https://github.com/qantik/ratcheted
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are both with symmetric key cryptography ACD and public-key cryptography
ACD-PK. We did not implement the DV protocol [7], as ARCADDV is a slightly
modified version of DV, hence has identical performances.

Fig. 8. Runtime Benchmarks The protocol in [10] is represented with PR; [8] with JS;
[9] with JMM; and [1] with ACD and ACD-PK. ACD-PK is the public-key version with
stronger security.

All the protocols were implemented in Go16 and measured with its built-
in benchmarking suite17 on a regular fifth generation Intel Core i5 processor.
In order to mitigate potential overheads garbage collection has been disabled
for all runs. Go is comparable in speed to C/C++ though further performance
gains are within reach when the protocols are re-implemented in the latter two.
Additionally, some protocols deploy primitives for which no standard implemen-
tations exist, which is, for example, the case for the HIBE constructions used in
the PR and JS protocols, making custom implementations necessary that can
certainly be improved upon. For the deployed primitives, when we needed an

16 https://golang.org/.
17 https://golang.org/pkg/testing/.

https://golang.org/
https://golang.org/pkg/testing/
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Fig. 9. State Size Benchmarks Due to the equivalent state sizes in unidirectional and
deferred unidirectional traffic, one figure is omitted

AEAD scheme, we used AES-GCM. For public key cryptosystem, we used the
elliptic curve version of ElGamal (ECIES); for the signature scheme, we used
ECDSA. And, finally for the PRF-PRNG in [1] protocol, we used HKDF with
SHA-256. Lastly, the protocols themselves may offer some room for performance
tweaks.

The benchmarks can be categorized into two types as depicted in Fig. 8–9.

(a) Runtime designates the total required time to exchange n messages, ignoring
potential latency that normally occurs in a network.

(b) State size shows the maximal size of a user state throughout the exchange of
n messages.

A state is all the data that is kept in memory by a user. Each type itself is
run on three canonical ways traffic can be shaped when two participants are
communicating. In alternating traffic the parties are synchronized, i.e. take turns
sending messages. In unidirectional traffic one participant first sends n

2 messages
which are received by the partner who then sends the other half. Finally, in
deferred unidirectional traffic both participants send n

2 messages before they
start receiving. ACD-PK adds some public-key primitives to the double ratchet
by ACD [1] to plug some post-compromise security gaps. These two variations
serve as baselines to see how the metrics of a protocol can change when some of
its internals are replaced or extended. Also note that due to the equivalent state
sizes in unidirectional and deferred unidirectional traffic one figure is omitted.

As we can see, overall, the fastest protocol is EtH, followed by the two ACD
protocols, then ARCADDV, then the JMM protocol, and lastly the strongest pro-
tocols PR and JS. ARCADDV and JMM may be comparable except for deferred
unidirectional communication.

The smallest state size is obtained with EtH. ARCADDV performs well in
terms of state size.
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Clearly, hybrid(ARCADDV,EtH) has performances which are weighted aver-
ages of the ones of ARCADDV and EtH, depending on the frequency of on-demand
ratcheting.

B ARCADDV Formal Protocol

With slight modifications, we transform the DV protocol [7] into an ARCAD that
we call ARCADDV.

ARCADDV is based on a hash function H18, a one-time symmetric cipher
Sym19, a digital signature scheme DSS20, and a public-key cryptosystem PKC21.

ARCADDV, just as DV, consists of many modules which are built on top of
each other. The “smallest” module is a “naive” signcryption scheme SC which
can be of the form

SC.Enc(

stS︷ ︸︸ ︷
skS, pkR, ad, pt) = PKC.Enc(pkR, (pt,DSS.Sign(skS, (ad, pt))))

SC.Dec(skR, pkS︸ ︷︷ ︸
stR

, ad, ct) =
[
(pt,σ) ← PKC.Dec(skR, ct) ;
DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

]

SC extends to a multiple-state (and multiple-key) encryption called onion. It
handles the the case where the states get accumulated during a sequential send or
receive operation during the communication. It generates a secret key to encrypt
a plaintext. This secret key is, then, secret shared and encrypted under different
states so that if a state is exposed, its shares would still remain confidential. onion
leads to a unidirectional scheme called uni where participants have fixed roles as
either senders or receivers. The underlying idea of unidirectional communication
is to let the sender generate the next send/receive states for the future exchange
during the current send operation and transmit the next receive state to the
receiver. These future states are shown as st ′

S and st ′
R in the second row of

Fig. 10. After each uni.Send and uni.Rec operations, the states are completely
flushed to ensure security.

Finally, unidirectional communication allow us to construct the bidirectional
ARCADDV as shown in the last row of Fig. 10. Since the communication become
bidirectional, the participant P also keeps states for receiving. More specifically,
the sender generates a pair of fresh states and transmits the send state to the
counterpart so that s/he can use it to send a reply to back to the sender with
this states.

ARCADDV is depicted on Fig. 11.

18 H uses a common key hk generated by H.Gen and an algorithm H.Eval.
19 Sym uses a key of length Sym.kl, encrypts over the domain Sym.D with algorithm

Sym.Enc and decrypts with Sym.Dec.
20 DSS uses a key generation DSS.Gen, a signing algorithm DSS.Sign, and a verification

algorithm DSS.Verify.
21 PKC uses a key generation PKC.Gen, an encryption algorithm PKC.Enc, and a decryp-

tion algorithm PKC.Dec.
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Note that we removed some parts of the protocol which ensure r-RECOVER
security. This is because the generic transformation in Sect. 3 which we apply on
ARCADDV will restore it in a stronger and generic way.

We recall the security results.

Theorem 30 (Security of ARCADDV [7]). ARCADDV is correct. If Sym.kl(λ) =
Ω(λ), H is collision-resistant, DSS is SEF-OTCMA, PKC is IND-CCA-secure,
and Sym is IND-OTCCA-secure, then ARCADDV is Ctrivial-FORGE-secure, (Cleak∧

C
A,B
forge)-IND-CCA-secure and PREDICT-secure.22,23

Fig. 10. High-level overview of the protocol described in Fig. 11

22 SEF-OTCMA is the strong existential one-time chosen message attack. IND-OTCCA is
the real-or-random indistinguishability under one-time chosen plaintext and chosen
ciphertext attack. Their definitions are given in [7].

23 Following Durak-Vaudenay [7], for a Ctrivial-FORGE-secure scheme, (Cleak ∧ C
A,B
forge)-

IND-CCA security is equivalent to (Cleak ∧ C
A,B
trivial forge)-IND-CCA security, which cor-

responds to the “sub-optimal” security in Table 1.
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Fig. 11. ARCADDV Protocol Adapted from DV [7] without RECOVER-Security.
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Abstract. Group encryption (GE), introduced by Kiayias, Tsiounis and
Yung (Asiacrypt’07), is the encryption analogue of group signatures. It
allows to send verifiably encrypted messages satisfying certain require-
ments to certified members of a group, while keeping the anonymity of
the receivers. Similar to the tracing mechanism in group signatures, the
receiver of any ciphertext can be identified by an opening authority -
should the needs arise. The primitive of GE is motivated by a number
of interesting privacy-preserving applications, including the filtering of
encrypted emails sent to certified members of an organization.

This paper aims to improve the state-of-affairs of GE systems. Our
first contribution is the formalization of fully dynamic group encryption
(FDGE) - a GE system simultaneously supporting dynamic user enrol-
ments and user revocations. The latter functionality for GE has not been
considered so far. As a second contribution, we realize the message fil-
tering feature for GE based on a list of t-bit keywords and 2 commonly
used policies: “permissive” - accept the message if it contains at least
one of the keywords as a substring; “prohibitive” - accept the message
if all of its t-bit substrings are at Hamming distance at least d from
all keywords, for d ≥ 1. This feature so far has not been substantially
addressed in existing instantiations of GE based on DCR, DDH, pairing-
based and lattice-based assumptions. Our third contribution is the first
instantiation of GE under code-based assumptions. The scheme is more
efficient than the lattice-based construction of Libert et al. (Asiacrypt’16)
- which, prior to our work, is the only known instantiation of GE under
post-quantum assumptions. Our scheme supports the 2 suggested poli-
cies for message filtering, and in the random oracle model, it satisfies the
stringent security notions for FDGE that we put forward.
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1 Introduction

The study of group encryption - the encryption analogue of group signatures [17]
- was initiated by Kiayias, Tsiounis and Yung (KTY) [29] in 2007. While group
signatures allow the signers to hide their identities within a set of certified
senders, group encryption protects the anonymity of the decryptors within a
set of legitimate receivers. To keep users accountable for their actions, signa-
tures/ciphertexts can be de-anonymized in cases of disputes, using a secret key
possessed by an opening authority.

In a group encryption scheme, the sender of a ciphertext can generate pub-
licly verifiable proofs that: (i) The ciphertext is well-formed and can be decrypted
by some registered group member; (ii) The opening authority can identify the
intended receiver should the needs arise; (iii) The plaintext satisfies certain
requirements, such as being a witness for some public relation.

Group encryption (GE) schemes are motivated by a number of appealing
privacy-preserving applications. A natural application is for encrypted email
filtering, where GE allows a firewall to accept only those incoming emails that
are intended for some certified organization user. If accepted, the encrypted
messages are guaranteed to satisfy some prescribed requirements, such as the
absence of spammy/unethical keywords or the presence of keywords that are of
the organization’s interests.

As pointed out in [29] and subsequent work [1,15,32,36], GE can also find
interesting applications in the contexts of anonymous trusted third parties, obliv-
ious retriever storage systems or asynchronous transfers of encrypted datasets.
For instance, it allows to archive on remote servers encrypted datasets intended
for some anonymous client who paid a subscription to the storage provider. Fur-
thermore, the recipient can be identified by a judge if a misbehaving server is
found guilty of hosting suspicious transaction records or any other illegal content.

From the theoretical point of view, one can build a secure GE scheme
based on anonymous CCA2-secure public key encryption schemes, digital sig-
natures, commitments and zero-knowledge proofs. The designs of GE are typi-
cally more sophisticated than for group signatures, due to the need of proving
well-formedness of ciphertexts encrypted via hidden-but-certified users’ public
keys. In particular, as noted by Kiayias et al. [29], GE implies hierarchical group
signatures [50] - a proper generalization of group signatures [4,5].

In their pioneering work, Kiayias et al. instantiated GE based on the Deci-
sional Composite Residuosity (DCR) and the Decisional Diffie Hellman (DDH)
assumptions. The zero-knowledge proof of ciphertext well-formedness in their
scheme is interactive, but can be made non-interactive in the random oracle
model using the Fiat-Shamir transformation [21]. Cathalo et al. [15] subse-
quently proposed a non-interactive realization based on pairings in the standard
model. El Aimani and Joye [1] then suggested various efficiency improvements
for pairing-based GE. The first construction of GE from lattice assumptions was
later presented by Libert et al. [32].

Libert et al. [36] enriched the KTY model of GE by introducing a refined
tracing mechanism inspired by that of traceable signatures [28]. In this setting,
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the opening authority can release a user-specific trapdoor that enables public
tracing of ciphertexts sent to that specific users without violating other users’
privacy. Izabachène et al. [26] suggested mediated traceable anonymous encryp-
tion - a related primitive that addresses the problem of eliminating subliminal
channels.

Current Limitations of GE. To date, GE has been much less well-studied
than group signatures [17], even though they are functionally dual to each other.
The group signature primitive has a longer history of development, and serves as
a primary case study for privacy-preserving authentication systems. Meanwhile,
GE was introduced close to the rises of powerful encryption systems such as
attribute-based [25], functional [8] and fully-homomorphic [22] encryption, and
has not gained much traction. Nevertheless, given its compelling features and
the nice applications it can potentially offer, we argue that GE deserves more
attention from the community. In this work, we thus aim to contribute to the
development of GE. To start with, we identify several limitations of existing GE
systems.

First, the problem of user revocation, which is a prominent issue in multi-
user cryptosystems, has not been formally addressed. The KTY model [29], while
allowing dynamic enrolments of new users to the group, does not provide any
mechanism to prevent revoked users (e.g., those who were expelled for misbe-
haviours, stopped subscribing to the services or retired from the organizations)
from decrypting new ciphertexts intended for them (unless the whole system
is re-initiated). We next observe that, although it was not discussed by authors
of [36], their refined tracing method might pave the way for a mechanism akin to
verifier-local revocation [9], in which verifiers test incoming ciphertexts using the
trapdoors corresponding to all revoked users. Beside incurring complexity linear
in the number of revoked users, such a mechanism is known to only provide a
weak notion of anonymity (called selfless-anonymity) for non-revoked users. A
formal treatment of fully dynamic GE (i.e., which supports both dynamic enrol-
ments and revocations of users) with strong security requirements is therefore
highly desirable.

The second limitation is about the usefulness of existing GE schemes in the
context of email filtering - which is arguably the most natural application of
the primitive. Recall that such filtering functionality is supposed to be done
by defining a relation R = {(x,w)} and accepting only messages w such that
(x,w) ∈ R, for a publicly given x. However, in all known instantiations of GE,
the relations for messages are defined according to the computationally hard
problems used in other system components. More precisely, the KTY scheme [29]
employs the discrete-log relation, i.e., it only accepts w if gw = h for given
(g, h). Subsequent works follow this pattern: pairing-based relations are used
in [1,15,36] and a Short-Integer-Solution relation is used in [32] for message
filtering. While such treatment does comply the definitions of GE, it seems too
limited to be useful for filtering spams. Designing GE schemes with expressive
policies that capture real-life spam filtering methods is hence an interesting open
question.
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Third, regarding the diversity of concrete computational assumptions used
in building GE, among all existing schemes, the only one that is not known
to be vulnerable against quantum computers [48] is the lattice-based construc-
tion from [32]. This raises the question of realizing GE based on alternative
quantum-resistant assumptions, e.g., those from codes, multivariates and isoge-
nies. In terms of privacy-preserving cryptographic protocols, other post-quantum
candidates are much less developed compared to lattice-based constructions, and
it would be tempting to catch up in the scope of GE.
Our Contributions and Techniques. This work addresses all the 3 limita-
tions of existing GE that we discussed above. Our first contribution is a formal
model for fully dynamic group encryption (FDGE), with carefully defined syntax
and robust security notions. Our model empowers the KTY model with the user
revocation functionality and paves the way for new instantiations of GE in which
enrolling new users and revoking existing users can be done simultaneously and
efficiently. As a second contribution, we suggest to realize message filtering for
GE not based on computationally hard problems, but a list of keywords and how
these keywords match with substrings of the encrypted messages. To this end,
we define 2 policies for accepting “good” messages and rejecting “bad” ones,
that capture the spirit of the String Matching problem and the Approximate
String Matching problem that are widely used in contemporary spam filtering
techniques. Our third contribution is the first code-based GE scheme that follows
our FDGE model and that supports both of the 2 message filtering policies we
propose. We provide more technical details in the following.
Group Encryption with Full Dynamicity. We formalize the primitive of
FDGE as the encryption analogue of fully dynamic group signatures [10]. Beyond
the usual joining algorithm of the KTY model [29], FDGE makes it possible to
update the group periodically to reflect user revocations. Our model is defined in
a way such that it captures the 2 most commonly used approaches for handling
user revocations in group signatures, based on revocation lists [13] and accu-
mulators [14]. As noted in [10], there is an attack inherently to group signature
schemes following the revocation-list-based approach. When translated into the
GE context, such attack would permit group users to decrypt ciphertexts sent
to them even before they join the group. Our FDGE model does not allow such
attack, and we view this as a preventative measure in case a revocation-list-based
revocable GE will be proposed in the future.

Regarding security requirements, we define the notions of message secrecy,
anonymity, and soundness that are inline with and carefully extended from the
KTY model [29]. We consider adversaries with strong capabilities, including
the ability to corrupt the group manager (GM) and/or the opening authority
(OA) to a large extent. Specifically, not only do we permit full corruption1 of
the GM and/or OA when defining message secrecy and anonymity, but we also
tolerate maliciously generated keys for the fully corrupted authorities. In terms

1 Full corruption means that the adversary entirely controls the authority - who may
no longer follow its program.
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of soundness, only partial corruption2 of OA is allowed. Note that the assumption
on partially corrupted OA is minimal, since otherwise a fully corrupted OA could
simply refuse to open ciphertexts.

Message Filtering. Spamming and spam filtering are complicated areas, and
currently there is no single filtering solution that can address all the clever tricks
of spammers. In the present work, we do not attempt to invent such a solution.
Our goal is to equip GE schemes with some basic, yet commonly used policies
for filtering. More precisely, we suggest to employ a public list S = {s1, . . . , sk}
of k binary keywords, each of which has bit-length t, to test against length t
substrings of the encrypted message w ∈ {0, 1}p. This list can be regularly
updated by the GM, depending on the interests and needs of the organization.
The keywords si could either be “good” ones that all legitimate messages are
expected to contain, or be “bad” ones that should be far - in terms of Hamming
distance - from all substrings of w. Respectively, we consider the following 2
policies.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. This policy captures the String Match-
ing problem and can be applied when the current interests of the group are
reflected by the keywords si’s, and all messages that do not contain any of
these keywords are rejected.

2. “Prohibitive”: w is a legitimate message if and only if for every length-
t substring y of w and every si ∈ S, their Hamming distance is at least d.
This policy is related to the Approximate String Matching problem. Here, the
keywords si’s could correspond to topics that are unethical, illegal, adultery,
or simply out of the group’s interests. The requirement on minimum Hamming
distance d is to address spammers who might slightly alter si so that it passes
the filtering while still being somewhat readable.

Having defined the policies, our next step is to derive methods for proving in
zero-knowledge that the secret message w satisfies each of the policies, which
will be used by the message sender when proving the well-formedness of the
ciphertext. Let us discuss the high-level ideas.

Regarding the permissive policy, our observation is that if we form matrix
W ∈ {0, 1}t×(p−t+1) whose columns are length-t substrings of w, and matrix
S ∈ {0, 1}t×k whose columns are the keywords si, then w is legitimate if and
only if there exist weight-1 vectors g ∈ {0, 1}p−t+1 and h ∈ {0, 1}k such that
W · g = S · h. Then, to handle this relation, we employ Stern’s permuting
technique [49] to prove knowledge of such g,h and we adapt Libert et al.’s
technique [32] for proving the well-formedness of the quadratic term W · g.

As for the prohibitive policy, we consider all the (p−t+1)·k sums zi,j ∈ {0, 1}t

over Z2 of substrings of w and keywords in S. Then, w is legitimate if and only
if all these sums have Hamming weight at least d. To prove these statements, we
perform the following extension trick, inspired by [37].
2 Partial corruption means that the adversary only knows the secret key of the author-

ity who still follows its prescribed program.
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We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗
i,j ∈ {0, 1}2t−d with

Hamming weight exactly t. Such an extension is always possible if zi,j has weight
at least d. Furthermore, the converse also holds: if z∗

i,j has weight t, then the
original zi,j must have weight at least t − (t − d) = d. At this point, it suffices
to use Stern’s permuting technique [49] for proving knowledge of fixed-weight
binary vectors.

The techniques sketched above can be smoothly integrated into our code-
based instantiation of FDGE.

Code-Based Instantiation. To design a scheme satisfying our model of
FDGE, we would need: (1) An anonymous CCA2-secure public-key encryption
to encrypt messages under a group user’s public key and to encrypt the user’s
public key under the OA’s public key; (2) A secure digital signature to certify
public keys of group members; and (3) Zero-knowledge proofs compatible with
the encryption and signature layers, as well as with the message filtering layer.

In the code-based setting, the first ingredient can be obtained from the ran-
domized McEliece encryption scheme [46] that satisfies CPA-security and the
Naor-Yung transformation [44]. The second ingredient seems not readily avail-
able, as code-based signatures for which there are efficient zero-knowledge proofs
of knowledge of message/signature pairs are not known to date. To tackle this
issue, we adapt the strategy of Ling et al. in their construction of lattice-based
fully dynamic group signatures [38]. This amounts to replacing the signature
scheme by an accumulator scheme [6] equipped with zero-knowledge arguments
of membership. We hence can make use of the code-based realization of Merkle-
tree acummulators recently proposed by Nguyen et al. [45].

The main idea is to use Merkle-tree accumulators to certify users’ public key.
Let N = 2� be the maximum expected number of group users. Let pk = (G0,G1)
be a user public key, where G0,G1 are 2 McEliece encryption matrices (recall
that we employ the Naor-Yung double encryption technique). Then pk is hashed
to a vector d �= 0, which is placed at the tree leaf corresponding to the identity
j ∈ {0, 1}� of the user in the group. A tree root is then computed based on all
the 2� leaves. The user’s certificate, which is made available to message senders,
consists of pk, j and hash values in the path from her leaf to the root.

When sending a message w satisfying “permissive” or “prohibitive” policy to
user j, the sender uses pk to encrypt w as cw, and uses the OA’s public key to
encrypt j as coa, so that OA can recover j if necessary. As for well-formedness
of ciphertext, sender proves in zero-knowledge that:

1. w satisfies the given policy. This can be done using the discussed techniques.
2. coa is an honestly computed ciphertext of j. This part is quite straightforward

to realize via techniques for Stern’s protocol.
3. cw is a correct ciphertext of the w from (1.), computed under some hidden

public key pk, whose hash value d �= 0 is at the tree leaf corresponding to
the j from (2.). This is indeed the most sophisticated portion of our scheme.
It requires to demonstrate: (i) membership of d in the tree and d �= 0 is the



684 K. Nguyen et al.

hash of value of pk; (ii) cw has the form cw = pk ·
[
r
w

]
+e, where (r, e) is the

encryption randomness.

While statement (i) can be handled using the techniques from [37,45], (ii) would
require to prove an Learning-Parity-with-Noise-like relation with hidden-but-
certified matrix pk. We then tackle this problem by adapting the techniques for
Learning-with-Errors relations [47] from [32] into the binary setting.

Having discussed the main technical ingredients of the scheme, let us now
explain how user revocations and dynamic user enrolments can be done in a
simple manner based on Merkle trees. The ideas, first suggested in [38], are as
follows. At the setup phase, all leaves in the tree are set as 0. When a new user
joins the group, as mentioned, 0 is changed to d �= 0. If the user is later revoked
from the group, the value is set back to 0. For each change, the GM can efficiently
update the tree by re-computing the path in time O(log N). Note that in the
zero-knowledge layer above, the sender in part proves that d is non-zero - which
is interpreted as “the sender is indeed an active group user”.

Putting everything together, we obtain the first construction of code-based
(fully dynamic) GE. In the random oracle model, we prove that the scheme
satisfies all the stringent security notions of FDGE, namely, message secrecy,
anonymity and soundness, based on the security of the code-based technical
ingredients we employ.

The scheme, however, should only be viewed as a proof-of-concept, as it
is not practical - due to the involvement of heavy zero-knowledge arguments.
However, in comparison with [32] the only known GE scheme from post-quantum
assumptions, ours is more efficient. The main reason is that ours uses a Merkle
tree - which can be viewed as a weak form of signatures, while theirs relies on a
standard-model lattice-based signature scheme, whose supported zero-knowledge
arguments incurred an overhead factor of log2 q, where q > 230. We estimate
that, for 128 bits of security, our argument size is about 2 orders of magnitude
smaller than theirs. In other words, our scheme is more efficient than [32], but
is still not practical. We leave the problem of obtaining practically usable FDGE
schemes from post-quantum assumptions as an interesting open question.
Other related Work. Enabling efficient user revocations in advanced
privacy-preserving cryptographic constructions is generally a challenging prob-
lem, since one has to ensure that revoked users are no longer able to act as active
users, and the workloads of other parties (managers, non-revoked users, verifiers)
do not significantly increase in the meantime. In the context of group signatures,
several different approaches have been suggested [9,13,14] to address this prob-
lem, and efficient pairing-based constructions supporting both dynamic joining
and efficient revocation were given in [34,35,43]. Bootle et al. [10] pointed out
a few shortcomings of previous models, and put forward robust security notions
for fully dynamic group signatures. Here, we adapt the [10] model to provide the
first formal treatment of user revocation in the context of GE.

The major tools for building those privacy-preserving constructions are zero-
knowledge (ZK) proof [24] and argument [12,23] systems that allow to prove
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the truth of a statement while revealing no additional information. Almost all
known zero-knowledge proof/argument systems used in code-based cryptography
follow Stern’s framework [49]. Variants of Stern’s protocol have been employed
to design privacy-preserving constructions, such as proofs of plaintext knowl-
edge [42], linear-size ring signatures [11,18,40,41], linear-size and sublinear-size
group signatures [2,20], proofs of valid openings for commitments and proofs for
general relations [27]. Recently, Nguyen et al. [45] proposed a number of new
code-based privacy-preserving protocols, including accumulators, range proofs,
logarithmic-size ring signatures and group signatures. However, prior to our
work, no construction of code-based GE was known.
Organization. The rest of the paper is organized as follows. In Sect. 2, we
recall the background on Stern-like protocols and previous techniques for design-
ing zero-knowledge protocols in Stern’s framework. In Sect. 3, we present our ZK
argument for a quadratic relation. This is crucial for proving the permissive
relation in Sect. 4 - where we also present the strategies for proving the pro-
hibitive relation. Section 5 introduces the model and security requirements of
FDGE. Next, we present our code-based instantiation of FDGE in Sect. 6. Due to
space limit, several supporting materials are deferred to the full version of the
paper [51].

2 Preliminaries

Notations. Let a, b ∈ Z. Denote [a, b] as the set {a, . . . , b}. We simply write [b]
when a = 1. Let ⊕ denote the bit-wise addition operation modulo 2. If S is a finite
set, then x

$←− S means that x is chosen uniformly at random from S. Throughout
this paper, all vectors are column vectors. When concatenating vectors x ∈
{0, 1}m and y ∈ {0, 1}k, for simplicity, we use the notation (x‖y) ∈ {0, 1}m+k

instead of (x�‖y�)�. The Hamming weight of vector x ∈ {0, 1}m is denoted
by wt(x). The Hamming distance between vectors x,y ∈ {0, 1}m is denoted by
dH(x,y), and is equal to wt(x ⊕ y). Denote by B(n, ω) the set of all binary
vectors of length n with Hamming weight ω, and by Sn the symmetric group of
all permutations of n elements.

2.1 Stern-Like Protocols

The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [49] protocols. In particular, they are Σ-protocols in the general-
ized sense defined in [7,27] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commit-
ment is employed in the first move, then one obtains a statistical zero-knowledge
argument of knowledge (ZKAoK) with perfect completeness, constant soundness
error 2/3. In many applications, the protocol is repeated a sufficient number
of times to make the soundness error negligibly small. For instance, to achieve
soundness error 2−80, it suffices to repeat the basic protocol 137 times.
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An abstraction of Stern’s protocols. We recall an abstraction, adapted
from [31], which captures the sufficient conditions to run a Stern-like protocol.
Looking ahead, this abstraction will be helpful for us in presenting our ZK argu-
ment systems: we will reduce the relations we need to prove to instances of the
abstract protocol, using our specific techniques. Let K,L be positive integers,
where L ≥ K, and let VALID be a subset of {0, 1}L. Suppose that S is a finite set
such that one can associate every φ ∈ S with a permutation Γφ of L elements,
satisfying the following conditions:
{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(1)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{(

(M,v);w
)

∈ Z
K×L
2 × Z

K
2 × VALID : M · w = v

}
.

The conditions in (1) play a crucial role in proving in ZK that w ∈ VALID: To

do so, the prover samples φ
$←− S and lets the verifier check that Γφ(w) ∈ VALID,

while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− Z
L
2 , and convinces the verifier instead

that M · (w ⊕ rw) = M · rw ⊕ v.
The interaction between prover P and verifier V can be found in [31] or the

full version of the paper. The resulting protocol is a statistical ZKAoK with
perfect completeness, soundness error 2/3, and communication cost O(L).

2.2 Previous Extension and Permutation Techniques

In this section, we first recall the permutation technique that is designed to prove
knowledge of a binary vector of fixed hamming weight, which originates from
Stern [49].

Technique for Handling Binary Vector with Fixed Hamming Weight.
For any e ∈ B(n, ω) and σ ∈ Sn, it is easy to see that the following equivalence
holds 3.

e ∈ B(n, ω) ⇐⇒ σ(e) ∈ B(n, ω), (2)

To show that the vector e has hamming weight ω, the prover samples a uniformly
random permutation σ ∈ Sn and shows the verifier that σ(e) ∈ B(n, ω). Due to
the above equivalence (2), the verifier should be convinced that e ∈ B(n, ω).
Furthermore, σ(e) reveal no information about e due to the uniformity of σ.

The above technique was later developed to prove various forms of secret
vectors. We now review the extension and permutation techniques for proving
the knowledge of arbitrary binary vectors, which were presented in [33].

3 Note that for e = [e1| · · · |em]�, σ(e) is defined as σ(ei) = eσ(i) for i ∈ [n].
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Let ⊕ denote the bit-wise addition operation modulo 2. For any bit b ∈ {0, 1},
denote by b the bit b = b ⊕ 1. Note that, for any b, d ∈ {0, 1}, we have b ⊕ d =
b ⊕ d ⊕ 1 = b ⊕ d.

Techniques for Handling Arbitrary Binary Vectors. To prove the knowl-
edge of a binary vector x ∈ {0, 1}n, define the extension process and permutation
as follows.

– For a binary vector x = [x1 | . . . |xn ]� ∈ {0, 1}n, where n ∈ Z
+, denote by

Encode(x) the vector [x1 |x1 | . . . |xn |xn ]� ∈ {0, 1}2n.
– Let I∗

n ∈ Z
n×2n
2 be an extension of the identity matrix In, obtained by insert-

ing a zero-column 0n right before each column of In. We have for x ∈ {0, 1}n,

x = I∗
n · Encode(x). (3)

– For b = [ b1 | . . . | bn ]� ∈ {0, 1}n, define the permutation Fb that transforms
vector z = [ z1,0 | z1,1 | . . . | zn,0 | zn,1 ]� ∈ {0, 1}2n into:

Fb(z) = [ z1,b1 | z1,b1
| . . . | zn,bn

| zn,bn
]�.

Note that, for any b,x ∈ {0, 1}n, we have:

z = Encode(x) ⇐⇒ Fb(z) = Encode(x ⊕ b). (4)

The above equivalence (4) is useful in the Stern’s framework [49] for proving
knowledge of binary witness-vectors. Towards the goal, one encodes x to z =
Encode(x), samples a random binary vector b and permutes z using Fb. Then
one demonstrates to the verifier that the permuted vector Fb(z) is of the correct
form Encode(x ⊕ b). Due to (4), the verifier should be convinced that z is well
formed, which further implies the knowledge of a binary vector x. Meanwhile,
vector b serves as a “one-time pad” that perfects hides x. In addition, if we have
to show that x appears somewhere else, we can use the same b at those places.

3 Zero-Knowledge Arguments for Quadratic Relations

In this section, we present our ZKAoK for quadratic relations. More concretely,
our arguments demonstrate that a given value c is an honest evaluation of the
form A · r ⊕ e, where A, r, e are all secret and may satisfy other constraints.
In the following, we present our ZKAoK for a variant of LPN relation, where we
consider secret A ∈ Z

n×m
2 , r ∈ B(m, tr), e ∈ B(n, t). Looking ahead, this protocol

is crucial in Sect. 4.2 that proves a message satisfies the permissive relation.

3.1 Proving a Variant of LPN Relation with Hidden Matrix

Let n,m, t, tr be positive integers, A ∈ Z
n×m
2 , r ∈ B(m, tr), e ∈ B(n, t), c ∈ Z

n
2 .

We now present our ZKAoK that allows P to prove its knowledge of A, r, e such
that c = A · r ⊕ e. The associated relation is defined as follows:

RVLPN =
{(

c; (A, r, e)
)

∈ Z
n
2 ×

(
Z

n×m
2 × B(m, tr) × B(n, t)

)
: c = A · r ⊕ e

}
.
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To prove r has fixed hamming, we introduce the following Hadamard product
extension and extended matrix-vector product expansion and their correspond-
ing permutations.

Hadamard Product Extension. Let vectors a ∈ {0, 1}m, r ∈ B(m, tr) and
c = [a1 ·r1|a2 ·r2| · · · |am ·rm]�. The goal is to prove the well-formedness of c, i.e.,
c is a Hadamard product of two binary vectors, one of which has fixed hamming
weight tr. We therefore introduce the following extension and permutation.

– Define extension of ci = ai · ri as ext′(ci)
�
= ext′(ai, ri) = [ai · ri|ai · ri]� ∈

{0, 1}2. Let h′ = [0|1], then we obtain ci = h′ · ext′(ci).
– Define the extension of c to be vector of the form

ext′(a, r) = [a1 · r1 |a1 · r1 |a2 · r2 |a2 · r2 | · · · |am · rm |am · rm ]� ∈ {0, 1}2m.

– For any b = [b1|b2| · · · |bm]� ∈ {0, 1}m, σ ∈ Sm, define permutation Ψb,σ that
transforms a vector

z = [ z(0)1 | z(1)1 | z(0)2 | z(1)2 | · · · | z(0)m | z(1)m ]� ∈ Z
2m

to a vector

Ψb,σ(z) = [ z(bσ(1))

σ(1) | z(bσ(1))

σ(1) | z(bσ(2))

σ(2) | z(bσ(2))

σ(2) | · · · | z(bσ(m))

σ(m) | z(bσ(m))

σ(m) ]�.

– For any a,b ∈ {0, 1}m, r ∈ B(m, tr), σ ∈ Sm, it is verifiable that the following
equivalence holds.

z = ext′(a, r) ⇐⇒ Ψb,σ(z) = ext′
(
σ(a ⊕ b), σ(r)

)
. (5)

Example. Let m = 4, tr = 2, a = [1|1|0|1]�, b = [0|1|0|1]�, r = [1|0|0|1]�,
σ(i) = i + 1 for i ∈ [3] and σ(4) = 1. We have d = σ(a ⊕ b) = [0|0|0|1]�,
e = σ(r) = [0|0|1|1]�, and

z = ext′(a, r) = [ z(0)1 | z(1)1 | z(0)2 | z(1)2 | z(0)3 | z(1)3 | z(0)4 | z(1)4 ]�

= [ 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 ]�;

Ψb,σ(z) = [ z(b2)2 | z(b2)2 | z(b3)3 | z(b3)3 | z(b4)4 | z(b4)4 | z(b1)1 | z(b1)1 ]�

= [ z(1)2 | z(0)2 | z(0)3 | z(1)3 | z(1)4 | z(0)4 | z(0)1 | z(1)1 ]�

= [ 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 ]�;
ext′(d, e) = [ d1 · e1 | d1 · e1 | d2 · e2 | d2 · e2 | d3 · e3 | d3 · e3 | d4 · e4 | d4 · e4 ]

= [ 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 ]�.

Extended Matrix-Vector Product Expansion. Let vectors a, r be of the
form a = [a1,1| · · · |a1,n| · · · |am,1| · · · |am,n]� ∈ Z

mn
2 and r = [r1| · · · |rm]� ∈

B(m, tr), and c ∈ Z
mn
2 be of the form

c = [a1,1 · r1 | · · · |a1,n · r1 |a2,1 · r2 | · · · |a2,n · r2 | · · · |am,1 · rm | · · · |am,n · rm ]�.
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We now present the techniques to show the well-formedness of c.
Define extension of c to be a vector expand′(a, r) ∈ Z

2mn
2 of the form:

expand′(a, r) =
[

a1,1 · r1 | a1,1 · r1 | a1,2 · r1 | a1,2 · r1 | · · · |a1,n · r1 | a1,n · r1|
a2,1 · r2 | a2,1 · r2 | a2,2 · r2 |a2,2 · r2 | · · · |a2,n · r2 | a2,n · r2 | · · · |

am,1 · rm | am,1 · rm | am,2 · rm | am,2 · rm | · · · |am,n · rm | am,n · rm

]�
Now for b = [b1,1 | · · · |b1,n |b2,1 | · · · |b2,n | · · · |bm,1 | · · · |bm,n ]� ∈ Z

mn
2 and

σ ∈ Sm, we define Ψ ′
b,σ that transform vector z ∈ {0, 1}2mn of the following form

z =
[

z
(0)
1,1 | z

(1)
1,1 | z

(0)
1,2 | z

(1)
1,2 | · · · | z

(0)
1,n | z

(1)
1,n |

z
(0)
2,1 | z

(1)
2,1 | z

(0)
2,2 | z

(1)
2,2 | · · · | z

(0)
2,n | z

(1)
2,n | · · · |

z
(0)
m,1 | z

(1)
m,1 | z

(0)
m,2 | z

(1)
m,2 | · · · | z(0)m,n | z(1)m,n

]

to vector Ψ ′
b,σ of the following form

Ψ ′
b,σ(z) =

[
y
(0)
1,1 | y

(1)
1,1 | y

(0)
1,2 | y

(1)
1,2 | · · · | y

(0)
1,n | y

(1)
1,n |

y
(0)
2,1 | y

(1)
2,1 | y

(0)
2,2 | y

(1)
2,2 | · · · | y

(0)
2,n | y

(1)
2,n | · · · |

y
(0)
m,1 | y

(1)
m,1 | y

(0)
m,2 | y

(1)
m,2 | · · · | y(0)

m,n | y(1)
m,n

]

such that y
(0)
i,j = z

(bσ(i),j)

σ(i),j and y
(1)
i,j = z

(bσ(i),j)

σ(i),j for i ∈ [n], j ∈ [m]. For ease
of notation, given f = (f1‖ · · · ‖fm) ∈ {0, 1}mn, where each fi ∈ {0, 1}n, and
σ ∈ Sm, define

σ(n)(f) = ( fσ(1) ‖ · · · ‖ fσ(m) ).

Precisely, σ(n) permutes the blocks of f using σ. The following equivalence then
immediately follows from (5) for a,b ∈ {0, 1}mn, r ∈ B(m, tr), σr ∈ Sm.

z = expand′(a, r) ⇐⇒ Ψ ′
b,σr

(z) = expand′(σ(n)
r (a ⊕ b), σr(r)

)
. (6)

The Zero-Knowledge Argument. We now transform the relation RVLPN

to an instance of Rabstract such that the equivalences in (1) hold. Write A =
[a1 | · · · |am ] ∈ Z

n×m
2 and r = [ r1 | · · · | rm ]� ∈ Z

m
2 , then we have
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A · r =
m∑

i=1

ai · ri =
m∑

i=1

[ ai,1 · ri | ai,2 · ri | · · · |ai,n · ri ]�

=
m∑

i=1

[
h′ · ext′(ai,1, ri) |h′ · ext′(ai,2, ri) | · · · |h′ · ext′(ai,n, ri)

]�

=
m∑

i=1

H′
n,1

(
ext′(ai,1, ri) ‖ ext′(ai,2, ri) ‖ · · · ‖ ext′(ai,n, ri)

)

=
m∑

i=1

H′
n,1 · zi

= [H′
n,1| · · · |H′

n,1]︸ ︷︷ ︸
m times

·( z1 ‖ · · · ‖ zm ),

where H′
n,1 =

⎛
⎜⎜⎜⎝

h′

h′

. . .
h′

⎞
⎟⎟⎟⎠ ∈ Z

n×2n
2 and zi = (ext′(ai,1, ri)‖ · · · ‖ext′(ai,n,

ri)) ∈ Z
2n
2 . Denote H′

n,m = [H′
n,1| · · · |H′

n,1]︸ ︷︷ ︸
m times

∈ Z
n×2mn
2 , z = (z1‖ · · · ‖zm) ∈

Z
2mn
2 , and a = [a1,1| · · · |a1,n|a2,1| · · · |a2,n| · · · |am,1| · · · |am,n]� ∈ Z

mn
2 . Then z

is indeed the extended expansion vector of a and r, i.e., z = expand′(a, r). If no
ambiguity caused, we write z = expand′(A, r). Hence, we obtain the following:

c = A · r ⊕ e ⇐⇒ c = H′
n,m · expand′(A, r) ⊕ e. (7)

Denote MVLPN = [H′
n,m|In] ∈ Z

n×LVLPN
2 and wVLPN = (expand′(A, r)‖e) ∈

Z
LVLPN
2 with LVLPN = 2mn + n. Hence c

�
= vVLPN = MVLPN · wVLPN mod 2.

Now we are ready to specify the set VALIDVLPN that contains of secret vector
wVLPN, the set SVLPN, and permutations {Γφ : φ ∈ SVLPN} such that the
equivalences in (1) hold. To this end, let VALIDVLPN contain all vectors ŵVLPN =
(ẑ‖ê) ∈ Z

2mn+n
2 satisfying the following constraints:

– There exists â ∈ Z
nm
2 and r̂ ∈ B(m, tr) such that ẑ = expand′(â, r̂).

– ê ∈ B(n, t).

It is easy to that the secret vector wVLPN belongs to VALIDVLPN. Let SVLPN =
{0, 1}mn × Sm × Sn. Then for each φ = (b, σr, σe) ∈ SVLPN, define the
permutation Γφ that transforms vector of the form ŵVLPN = ( ẑ ‖ ê ) with
ẑ ∈ Z

2mn
2 , ê ∈ Z

n
2 to vector Γφ(ŵVLPN) = (Ψ ′

b,σr
(ẑ) ‖σe(ê) ).

Based on the equivalence observed in (6) and (2), it can be checked that
the conditions in (1) are satisfied and we have successfully reduced the consider
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relation RVLPN to an instance of Rabstract. Now P and V can run the Stern-like
protocol for the reduced statement RVLPN (see the full version). The resulting
protocol is a statistical ZKAoK with perfect completeness, soundness error 2/3,
and communication cost O(LVLPN) = O(mn) = O(λ2) bits.

4 Message Filtering in Zero-Knowledge

In this section, we first specify the 2 policies we use for filtering messages
encrypted in the code-based FDGE scheme of Sect. 6. Then we discuss our main
ideas for proving in ZK that the underlying messages satisfy the given policies.

4.1 Formulation

Let p, t, d ∈ Z
+ such that p > t > d. A string y = [y1| · · · |yt]� ∈ {0, 1}t is called

a substring of string w = [w1| · · · |wp]� ∈ {0, 1}p, denoted as y � w, if there
exists an integer i ∈ [1, p − t + 1] such that yj = wi+j−1 for all j ∈ [1, t]. The
Hamming distance between x,y ∈ {0, 1}t, denoted by dH(x,y), is the number
of coordinates at which x and y differ. In other words, dH(x,y) = wt(x ⊕ y).

Let w ∈ {0, 1}p be an encrypted message and let S = {s1, . . . , sk} be a given
list of k ≥ 1 keywords, where si ∈ {0, 1}t, for all i ∈ [1, k]. We will realize 2
commonly used policies of message filtering.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. The induced relation Rpermit is defined as

Rpermit =
{(

(s1, . . . , sk),w
) ∈ ({0, 1}t)k × {0, 1}p : ∃i ∈ [1, k] s.t. si � w

}
. (8)

2. “Prohibitive”: w is a legitimate message if and only if for every length-t
substring y of w and every si ∈ S, their Hamming distance is at least d. The
corresponding relation Rprohibit is defined as

Rprohibit =
{(

(s1, . . . , sk),w
)

∈ ({0, 1}t)k × {0, 1}p :

dH(si,y) ≥ d,∀i ∈ [1, k],∀y � w
}
. (9)

In the following, we will discuss our strategies for proving that message w satisfies
each of the above policies.

4.2 Zero-Knowledge for the Permissive and Prohibitive Relations

Let w = [w1| · · · |wp]�, and for each i ∈ [p− t+1], let w[i] = [wi| · · · |wi+t−1]� be
its i-th substring of length t. Our ideas for proving that

(
(s1, . . . , sk),w

)
∈ Rpermit

in ZK are as follows. First, we form matrices

W = [w[1] | · · · | w[p−t+1]] =

⎡
⎢⎢⎢⎣

w1 w2 · · · wp−t+1

w2 w3 · · · wp−t+2

...
...

...
...

wt wt+1 · · · wp

⎤
⎥⎥⎥⎦ ∈ {0, 1}t×(p−t+1),
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S = [s1 | · · · | sk] ∈ {0, 1}t×k, and denote permit(w) = (w[1]‖ · · · ‖w[p−t+1]) ∈
{0, 1}t(p−t+1). We note that

(
(s1, . . . , sk),w

)
∈ Rpermit if and only if there exist

a column w[i] of W and a column sj of S such that w[i] = sj . Then, we observe
that the task of the prover P is equivalent to proving the existence of W,g,h
such that

W · g = S · h ∧ g ∈ B(p − t + 1, 1) ∧ h ∈ B(k, 1).

To this end, we employ techniques for proving linear relation and quadratic rela-
tion (specifically the variant of LPN relation), as well as, for fix-weight relations in
the framework of Stern’s protocols. In the process, we prove the well-formedness
of W. Details are in the full version of this paper. The resulting protocol has
communication cost O(t ·(p−t)+k) and is a sub-protocol in our FDGE construc-
tion of Sect. 6, where we additionally prove that w is the same as the plaintext
encrypted in a given McEliece ciphertext.

On the other hand, to prove that
(
(s1, . . . , sk),w

)
∈ Rprohibit, we consider

(p− t+1) ·k pairs (w[i], sj) and aim to prove that all the sums zi,j = w[i] ⊕ sj ∈
{0, 1}t have Hamming weight at least d. In other words, we reduce the problem
to (p − t + 1) · k sub-problems, for each of which, we needs to prove that zi,j

contains at least d coordinates equal to 1. To this end, we perform the following
extension trick, adapted from [37].

We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗
i,j ∈ {0, 1}2t−d such

that wt(z∗
i,j) = t, i.e., z∗

i,j ∈ B(2t−d, t). We note that such an extension is always
possible if wt(zi,j) ≥ d. Furthermore, the converse also holds: if z∗

i,j ∈ B(2t−d, t),
then the original zi,j must have weight at least t − (t − d) = d. Details are in
the full version of this paper. As a result, we obtain a ZK protocol for Rprohibit

with communication cost O(t · (p − t + 1) · k). Similarly to the case of Rpermit,
this protocol can serve as a sub-protocol in our FDGE construction of Sect. 6,
allowing us to realize the “prohibitive” filtering policy.

5 Fully Dynamic Group Encryption: Model and Security
Requirements

In this section, we first present the model of fully dynamic group encryption
FDGE that offers both dynamic join and revocation, which is developed from
the one proposed by Kiayias et al. [29]. Our model is analogous to the fully
dynamic group signature one proposed by Bootle et al. [10]. In a FDGE scheme,
the parties involved are the sender, the verifier, the group manager GM who
manages the group of receivers, and the opening authority OA who is capable
of identifying the recipients of ciphertexts. R is a public relation for which a
FDGE should be verifiable. Receivers can join and leave the group at the choice
of the GM. We assume that the GM will publish group information infoτ at the
beginning of each time epoch τ . The information depicts changes to the group
such as the existing group members or the revoked members at current epoch
τ . It is required that anyone can verify the authenticity and well-formedness of
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the group information. In addition, by comparing the current group information
with the previous one, it is possible to recover the list of members revoked from
the group at the current epoch. We also assume that the epoch maintains the
order in which the group information was published, i.e., infoτ1 precedes infoτ2

if τ1 < τ2.
Compared to [29], our model enables the GM to remove some users from

the group through a group updating algorithm GUpdate. Another difference is
that we avoid interaction by employing a non-interactive zero-knowledge (NIZK)
proof, which has already been considered by Cathalo, Libert and Yung [15]. As
highlighted by the authors, non-interaction is highly desirable as the sender, who
might be required to repeat the proof with many verifiers, needs to maintain a
state and remember all the random coins used to generate the ciphertext.

Formally, a FDGE that is verifiable for a public relation R consists of the
following polynomial-time algorithms.

Setupinit(1λ) The algorithm takes as input the security parameter 1λ and outputs
a set of public parameters pp.

SetupOA(pp) This algorithm is run by the opening authority OA. It takes as input
pp and outputs a key pair (pkOA, skOA).

SetupGM(pp) This algorithm is run by the group manger GM. It takes as input
the public parameters pp and outputs a key pair (pkGM, skGM). Meanwhile,
GM initializes the group information info and a public registration directory
reg.

GR(1λ) This randomized algorithm takes as input the security parameter λ and
outputs public and secret parameters (pkR, skR) for the relation R. Note that
skR is an empty string if a publicly samplable relation R is considered.

SampleR(pkR, skR) This probabilistic algorithm takes (pkR, skR) as input and
outputs a statement and witness pair (x,w).

R(pkR, x, w) The polynomial-time testing algorithm takes as input (pkR, x, w)
and returns 1 if and only if (x,w) is in the relation based on the public
parameter pkR.

〈Join, Issue(skGM)〉(pkGM, infoτcurrent) This is an interactive protocol securely run
between a user and the GM. Both the Join and Issue algorithms takes as
inputs pkGM and infoτcurrent at current time epoch τcurrent while the the latter
algorithm takes skGM as an additional input. Upon successful completion, the
algorithm Join outputs a user key pair (pk, sk) while Issue adds a new record
in the directory reg. Note that GM may update group information and that
reg may store information like user identifier or user public key that may be
used by GM and OA for later updating and opening.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by the GM who will
advance the epoch and update the group information. Given the secret key
skGM, a set S of active users to be deleted from the group, current group
information infoτcurrent , and the directory reg, the GM computes new group
information infoτnew and may update the directory reg as well. If there is no
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change to the group information or S contains inactive users (who has never
joined the group yet or who has been revoked from the group), this algorithm
aborts.

Enc(pkGM, pkOA, infoτ , w, pk, L) This randomized encryption algorithm is run by
the sender who wishes to encrypt a witness w for its chosen user pk. It returns
a ciphertext ψ with a certain label L. As in [29], L is a public string bound to
the ciphertext that may contain some transaction related data or be empty.
If pk is not an active user at current time epoch τ or R(pkR, x, w) = 0, this
algorithm aborts. Let coinsψ be the random coins used to generate ψ.

P
(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
This randomized proof algo-

rithm is run by the sender who acts as a prover and demonstrates the honest
computation of ciphertext ψ. Given all the inputs, it outputs a proof πψ. The
proof ensures that there exists a certified and active group member at time
τ , who is able to decrypt ψ and obtain w′ such that R(pkR, x, w′) = 1, and
whose public key is encrypted under pkOA and can be later revealed using the
OA’s secret key skOA.

V
(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
This verification algorithm is run by

any verifier who on input the tuple (pp, pkGM, pkOA, infoτ , pkR, x, ψ, L) and a
corresponding proof πψ outputs bit 1 or 0. If the output is 1, we say the proof
πψ is valid.

Dec(infoτ , sk, ψ, L) This decryption algorithm is run by the user in possession of
the secret key sk. Given all the inputs, it outputs w′ such that R(pkR, x, w′) =
1 or ⊥ otherwise.

Open(infoτ , skOA, ψ, L) This opening algorithm is run by the OA who holds the
key skOA. Given the inputs, it returns an active user public key pk or ⊥ to
indicate opening failure.

To ease the notations, we additionally use the following algorithms in the security
experiments.

IsActive(infoτ , pk) This algorithm returns 1 if user pk is an active user at time τ
and 0 otherwise.

Correctness. Informally, correctness of a GE scheme requires that an honest
proof of correct encryption is always valid, that the designated receiver can
always recover the encrypted message, and that the GM is capable of identifying
the receiver. We model this requirement in the experiment ExptcorrA (1λ). Below,
we first define some oracles that are accessible to the adversary.

AddU(skGM) This oracle adds an honest user to the group at current time τcurrent.
It simulates the interactive protocol 〈Join, Issue(skGM)〉(pkGM, infoτcurrent) and
maintains an honest user list HUL. Let the output of Join be (pk, sk). It then
adds pk to HUL.

GUp(·) This oracle allows the adversary to remove a set of active users from the
group at current time epoch τcurrent. When a set S is queried, it advances
the time epoch to τnew and updates the group information to infoτnew by
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executing the algorithm GUpdate(skGM,S, infoτcurrent , reg). As the algorithm
GUpdate, it may update the reg.

Definition 1. Define Advcorr
A (1λ) = Pr[ExptcorrA (1λ) = 1] as the advantage of

an adversary A against correctness in the experiment ExptcorrA (1λ). A FDGE is
correct if, for any PPT adversary A, the advantage of A is negligible in λ.

Experiment ExptcorrA (1λ)
pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (pkGM, skGM) ←

SetupGM(pp).
(pkR, skR) ← GR(1λ); HUL ← ∅.
(pk, τ, x, w, L) ← AAddU,GUp(pp, pkOA, pkGM, pkR).
If pk /∈ HUL or infoτ = ⊥ or IsActive(infoτ , pk) = 0

or R(pkR, x, w) = 0, return 0.
ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L).
πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
.

w′ ← Dec(infoτ , sk, ψ, L); pk′ ← Open(infoτ , skOA, ψ, L).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0 or w′ �= w

or pk′ �= pk, return 1 otherwise return 0.

5.1 Formulation of the Security Requirements

We now present three security requirements: message secrecy, anonymity, and
soundness for FDGE, which are carefully adapted from the dynamic case. We
formulate those requirements through experiments that are run between a chal-
lenger and an adversary. As mentioned earlier, the adversary is empowered with
attack capability to the maximum extent possible. Specifically, in the definition
of message secrecy and anonymity, it fully corrupts GM and/or OA and generates
keys arbitrarily on behalf of them. Regarding soundness, only partial corruption
of the OA whose key is still honestly generated is allowed. Details of the security
requirements are described below.

Message Secrecy. This security notion protects the appointed receiver from
a malicious adversary who tries to extract the information about the encrypted
message. It requires that the adversary cannot distinguish a ciphertext that is an
encryption of a real witness or encryption of a randomly chosen one even though
it could fully corrupt the GM, the OA, and all group members except one that
is chosen as the receiver. We model this requirement using Exptsec−b

A (1λ) for
b ∈ {0, 1}. In the following, we define some oracles that will be used in the
experiment.

USER() This oracle simulates the algorithm Join, when interacted with adversary
A who plays the role of GM, to introduce an honest user to the group at
current time τcurrent. it maintains an honest user list HUL. Let the output of
this oracle be (pk, sk) and add pk to HUL.
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RevealU(·) This oracle allows the adversary to learn an honest user secret key.
It maintains a bad user list BUL. When a user public key pk is queried, it
returns the corresponding secret key sk and adds pk to BUL if pk /∈ BUL, and
aborts otherwise.

CHb
ror(τ, pk, w, L) This is a real-or-random challenge oracle which is only called
once. It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L) if
b = 1, whereas if b = 0 ψ ← Enc(pkGM, pkOA, infoτ , w′, pk, L) where w′ is sam-
pled uniformly from the space of all possible plaintexts. In both cases, coinsψ
are the random coins used for the computation of the challenged ciphertext
ψ.

DEC(sk, ·) This is an oracle for the decryption function Dec. When (ψ, τ, L) is
queried to this oracle, it returns the output of Dec(infoτ , sk, ψ, L). When a
tuple (pk, ψ, τ, L) should be rejected by this oracle, we write DEC¬(ψ,τ,L,)(·).

PROVEb
P,P′(pk, τ, pkR, x, w, L, ψ, coinsψ) This oracle can be invoked a polyno-

mial number times. It generates proofs of validity of the challenged cipher-
text. If b = 1, let πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
and return the output πψ. If b = 0, it runs a simulator P ′ that takes the same
inputs as P except (w, coinsψ) and returns whatever P ′ outputs.

In the experiment Exptsec−b
A (1λ), the adversary A fully controls the GM and

the OA, and enrolls honest users to the group by interacting with the oracle
USER. It is entitled to corrupt at most all but one honest users by querying
the RevealU oracle and to update the group information, insofar as info and reg
are well-formed. At some point, the adversary chooses a targeted receiver pk∗

and has access to the DEC oracle with respect to pk∗. It then specifies a certain
epoch τ∗, a label L∗ together with the relation pk∗

R and the statement witness
pair (x∗, w∗). Afterwards, the challenger encrypts the witness w∗ if b = 1 or a
random message if b = 0 to the receiver pk∗, and sends the resultant ciphertext
ψ∗ to A. After receiving it, A is allowed to query the PROVE oracle for proofs
of its validity and still has access to the DEC oracle with respect to pk∗ with the
natural restriction that (ψ∗, τ∗, L∗) is forbidden. Finally, A is asked to guess the
challenger’s choice.

Definition 2. Let the advantage of an adversary A against message secrecy be
Advsec−b

A (1λ) = |Pr[Exptsec−1
A (1λ) = 1] − Pr[Exptsec−0

A (1λ) = 1]|. A FDGE
satisfies message secrecy if, for any PPT adversary A, the advantage of A is
negligible in λ.

Experiment Exptsec−b
A (1λ)

pp ← Setupinit(1λ); (aux, pkGM, pkOA) ← A(pp); HUL ← ∅, BUL ← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗, aux) ← AUSER,RevealU(aux); if pk∗ /∈ HUL \ BUL, return 0.
Let sk∗ be the corresponding secret key of pk∗.
(τ∗, pk∗

R, x∗, w∗, L∗) ← ADEC(sk∗,·)(aux).
If IsActive(infoτ∗ , pk∗) = 0 or R(pk∗

R, x∗, w∗) = 0 return 0.
(ψ∗, coinsψ∗) ← CHb

ror(τ
∗, pk∗, w∗, L∗).
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Let ð
∗ = (pk∗, τ∗, pk∗

R, x∗, w∗, L∗, ψ∗, coinsψ∗).

b′ ← APRVOEb
P,P′ (ð∗),DEC¬(ψ∗,τ∗,L∗)(sk∗,·)(aux, ψ∗).

Return b′.

Anonymity. This notion aims to prevent the adversary from learning informa-
tion about the identity of the receiver of a ciphertext. It requires that an adver-
sary without possession of the secret key of OA is not capable of distinguishing
which one of two group members of its choice is the recipient of a ciphertext. Note
that the adversary is forbidden from corrupting these two challenged members
since they know whether a ciphertext is intended for them by simply decrypting
it. We model this requirement in Exptanon−b

A (1λ) for b ∈ {0, 1}, which will utilize
the following challenge oracle CHb

anon and opening oracle OPEN.

CHb
anon(τ, pk0, pk1, w, L) This is a challenge oracle that can be called only once.
It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pkb, L).

OPEN(skOA, ·) This is an oracle for the opening algorithm Open. When decryp-
tion of a tuple (ψ, τ, L) is requested, it returns Open(infoτ , skOA, ψ, L). When
a tuple (ψ, τ, L) is forbidden, we write OPEN¬(ψ,τ,L)(skOA, ·).

In the experiment, the adversary A can fully corrupt the GM. By interacting with
the oracles USER,RevealU, it can also introduce honest users to the group and
learn up to all but two secret keys at a later point. As in the Exptsec−b

A (1λ), A is
allowed to update the group at its will, provided that the group information info
and reg are well-formed. Moreover, A has access to the OPEN(skOA, ·) oracle.
At some point, A specifies two targeted receivers pk∗

0, pk
∗
1 and is granted access

to the DEC oracle with respect to both recipients. Next, it outputs a specific
epoch τ∗ and (pk∗

R, x∗, w∗) to the challenger, who will encrypt the witness to
receiver pk∗

b . Thereafter, the challenger sends the challenge ciphertext ψ∗ to A.
The latter is further allowed to query the proof of validity of ψ∗ and accessible to
oracles DEC(sk∗

0, ·),DEC(sk∗
1, ·),OPEN(skOA, ·) with the constraint that the tuple

(ψ∗, τ∗, L∗) is not queried to any of the oracles. Lastly, A is asked to guess which
one of the two users is the challenger’s choice.

Definition 3. Define the advantage of an adversary A against anonymity as
Advanon

A (1λ) = |Pr[Exptanon−1
A (1λ) = 1] − Pr[Exptanon−0

A (1λ) = 1]|. A FDGE
satisfies anonymity if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment Exptanon−b
A (1λ)

pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (aux, pkGM) ← A(pp, pkOA).
HUL ← ∅, BUL ← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗

0, pk
∗
1, aux) ← AUSER,RevealU,OPEN(skOA,·)(aux).

If pk∗
0 /∈ HUL \ BUL or pk∗

1 /∈ HUL \ BUL, return 0.
Let sk∗

0 and sk∗
1 be the secret keys of pk∗

0 and pk∗
1, respectively.

(τ∗, pk∗
R, x∗, w∗, L∗, aux) ← ADEC(sk∗

0 ,·),DEC(sk∗
1 ,·),OPEN(skOA,·)(aux).

If IsActive(infoτ∗ , pk∗
0) = 0 or IsActive(infoτ∗ , pk∗

1) = 0 or
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R(pk∗
R, x∗, w∗) = 0 return 0.

(ψ∗, coinsψ∗) ← CHb
anon(τ

∗, pk∗
0, pk

∗
1, w

∗, L∗).
Let ð

∗ = (pp, pkGM, pkOA, infoτ∗ , pk∗
R, x∗, ψ∗, L∗, w∗, pk∗

b , coinsψ∗).
Let t∗ = (ψ∗, τ∗, L∗).
b′ ← AP(ð∗),DEC¬t∗

(sk∗
0 ,·),DEC¬t∗

(sk∗
1 ,·),OPEN¬t∗

(skOA,·)(aux, ψ∗).
Return b′.

Soundness. This notion requires that the adversary cannot generate a cipher-
text with a valid proof associated with time epoch τ such that (1) the opening of
the ciphertext is a public key that does not belong to any active group member
at time τ , (2) the revealed public key is not in the language Lpp

pk of valid public

keys, (3) the ciphertext is not in the space L(pkGM,pkOA,τ,pkR,x,L,pk)
ciphertext of valid cipher-

texts. Note that Lpp
pk = {pk : ∃ sk such that (pk, sk) is a valid user key pair} and

that

L(pkGM,pkOA,τ,pkR,x,L,pk)
ciphertext = {ψ : ∃ w such that ψ = Enc(pkGM, pkOA, infoτ , w, pk, L),

R(pkR, x, w) = 1, and IsActive(infoτ , pk) = 1}.

We model this requirement in the experiment ExptsoundA (1λ). The adversary is
given the secret key of OA and is permitted to adaptively register users to the
group through oracle queries REG(skGM), as defined below. In addition, it can
remove some users from the group by querying the oracle GUp(·).

REG(skGM) This oracle simulates the GM and runs the algorithm Issue. When
queried by adversary A who plays the role of a user, it interacts with A and
if successful registers an adversarially controlled user to the group at current
time τcurrent. As the algorithm Issue, it maintains a public directory reg and
may update the group information as well.

Definition 4. Define Advsound
A (1λ) = Pr[ExptsoundA (1λ) = 1] as the advantage

of an adversary A against soundness in the experiment ExptsoundA (1λ). A FDGE
satisfies soundness if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment ExptsoundA (1λ)
pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (pkGM, skGM) ←

SetupGM(pp).
(τ, pkR, x, ψ, L, πψ, aux) ← AREG,GUp(pp, pkGM, pkOA, skOA).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0, return 0.

pk ← Open(infoτ , skOA, ψ, L).
If IsActive(infoτ , pk) = 0 or pk /∈ Lpp

pk or ψ /∈ L(pkGM,pkOA,pkR,x,L,pk)
ciphertext ,
return 1 else return 0.
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6 A Code-Based Fully Dynamic Group Encryption
Scheme

To build a code-based FDGE scheme, we require a key-private CCA2-secure
encryption scheme [3], a digital signature scheme, and a zero-knowledge proof
(argument) of knowledge protocol. In this paper, we work with the ZKAoK
within Stern’s framework [49]. In terms of the encryption scheme, we choose
to work with the McEliece cryptosystem [39], specifically the randomized vari-
ant from [46]. The latter indeed has pseudorandom ciphertexts, which implies
key-private CPA-security. To further achieve CCA2-security, we apply the Naor-
Yung double encryption technique [44]. Note that there are other CCA2-secure
variants of McEliece scheme like [16,19,30]. However, they either do not oper-
ate well in the Stern’s framework or are completely impractical. Regarding the
digital signature, we employ the Merkle-tree accumulator suggested in [45]. Pre-
cisely, when a user requests to join the group, it first generates its encryption
key pair (pk, sk), and sends pk and its non-zero hash value d to GM. The latter,
if accepts, then computes the Merkle tree root, where the leaf nodes are the
hash values of all users. The witness for d is the proof of user’s membership. To
achieve dynamicity, following [38], we use an updating algorithm akin to [38] to
set up the system so that (1) the value of the leaf node associated with a user
who has not joined or who has been removed from the group is 0 (2) while it is
updated to d when this user joins the group. When a sender encrypts messages
to a user at some epoch, it has to show that the user’s non-zero hash value is
accumulated in the tree in this epoch. This mechanism effectively distinguish
active users who are valid recipients of ciphertexts from those who are not.

As in the KTY model [29], we also require that user encryption keys are
valid (i.e., in the language Lpp

pk). One possible solution would be requiring a
proof of knowledge of the McEliece decryption key when a user joins the group.
This is however quite complicated and inefficient. Instead, GM encrypts random
messages under the user’s encryption key and asks the user to output the correct
messages. By choosing the parameters properly, the running time of guessing
correctly the messages if the user does not know the underlying decryption key
is exponential. This then enforces validity of user encryption keys.

6.1 Description of the Scheme

Our scheme allows encryption witness w ∈ {0, 1}p that satisfies the permis-
sive relation Rpermit and/or the prohibitive relation Rprohibit. For simplicity, we
present Rpermit in the following construction. The details are described below.

Setupinit(1λ) On input the security parameter 1λ, this algorithm proceeds as
follows.

– Specify an integer � = �(λ) that determines the maximum expected num-
ber N = 2� of potential users.
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– Choose n = O(λ), c = O(1) such that c divides n, and set m = 2c · 2n
c .

Choose an integer tm < m.
– Choose t1 = t1(λ), k1 = k1(λ) and t2 = t2(λ), k2 = k2(λ) such that

(n, k1, t1), (n, k2, t2) are two sets of parameters for the McEliece encryp-
tion scheme.

– Sample a random matrix B $←− Z
n×m
2 that specifies a hash function hB

that will be used build Merkle tree (see the full version of this paper, as
well as [45]).

– Pick a statistical hiding and computationally binding commitment scheme
COM : {0, 1}∗ → {0, 1}n like the one in [45, Section 3.1]. This will serve
as a building block for the ZK argument systems.

– Let HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), be a hash function that
will be modeled as a random oracle in the Fiat-Shamir transforms [21].

Output public parameters

pp = {N, �, n, c,m, tm, t1, k1, p, t2, k2, v,B,COM, κ,HFS}.

SetupOA(pp) This algorithm is run by the OA. Given the input pp, it triggers the
McEliece key generation algorithm KeyGenME(n, k1, t1) (see the full version)
twice to obtain encryption key pairs (Goa,0, sk

(oa,0)
ME ) and (Goa,1, sk

(oa,1)
ME ). Set

pkOA = (Goa,0,Goa,1) and skOA = (sk(oa,0)ME , sk
(oa,1)
ME ).

SetupGM(pp) This algorithm is run by the GM. It samples skGM
$←− B(m, tm), then

computes pkGM = B ·skGM mod 2, and outputs (pkGM, skGM). It also initializes
the following.

– Let the registration table be reg := (reg[0], reg[1], . . . , reg[N−1]), where
for each i ∈ [0, N −1]: reg[i][1] = 0n, reg[i][2] = −1, and reg[i][3] = −1.
Here, reg[i][1] denotes the hash value of the public encryption key of a
registered user while reg[i][2], reg[i][3] represent the epoch at which the
user joins and leaves the group, respectively.

– Construct a Merkle tree T on top of reg[0][1], . . . , reg[N −1][1]. (Note
that T is an all-zero tree at this stage, when a new user joins the group,
it will affect the Merkle tree.)

– Initialize a counter of registered users j := 0.
Then, GM outputs its public key pkGM and announces reg and the initial
group information info = ∅ while keeping T and j for himself. We remark
that reg and info are visible to everyone but only editable by a party who
knows skGM. In addition, anyone is able to verify the well-formedness of reg
and info.

〈GR,SampleR〉 The algorithm GR(1λ, pp) proceeds by sampling parameters t, k
for the relation Rpermit (8). Let (pkR, skR) = ((p, t, k), ε). Given pkR, the
algorithm SampleR outputs a set of keywords S = {s1, . . . , sk}, w ∈ Z

p
2 such

that (S,w) ∈ Rpermit.
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〈Join, Issue〉. This is an interactive protocol securely run between a user and the
GM. If a user requests to join the group at epoch τ , he will follow steps below.

1. The user first generates its encryption key pair. It runs McEliece key gen-
eration KeyGenME(n, k2, t2) twice, obtaining (G0, sk

(0)
ME) and (G1, sk

(1)
ME).

Set encryption key pk′ = (G0,G1) and secret key sk = (sk(0)ME, sk
(1)
ME).

2. It then computes the hash of its encryption key pk′. For b ∈ {0, 1}, write
Gb = [gk2b| · · · |gk2b+k2−1]. Let D = {g0,g1, . . . ,g2k2−1}. It then runs
the accumulation algorithm AccuB(D) (see the full version) to build a
(sub)-Merkle tree based on D and the hash function hB, obtaining an
accumulated hash value d ∈ Z

n
2 . We call d the hash of pk′. If there is no

ambiguity, we sometimes write AccuB(pk′) instead of AccuB(D).
3. If d = 0n, the user repeats Step 1 and 2. Otherwise, he sends (pk′,d) to

the GM.
Upon receiving the tuple (pk′,d) from the user, the GM first computes the
ranks r1, r2 of G0,G1, respectively, and d′ = AccuB(pk′). If r1 �= k2 or
r2 �= k2 or d′ �= d or d′ = 0n, GM rejects. Otherwise, the two parties proceed
as follows.
1. First, GM encrypts two random messages by running the determinis-

tic McEliece encryption algorithm using the key pk′. It first samples
m0,m1

$←− Z
k2
2 and e0, e1

$←− B(n, t2), then computes y0 = G0 · m0 ⊕
e0,y1 = G1 · m1 ⊕ e1, and sends y0,y1 to the user.

2. Upon receiving the ciphertexts, user runs the deterministic McEliece
decryption algorithm, obtaining m′

0,m
′
1. The user then sends m′

0,m
′
1

to the GM.
3. If m′

0 �= m0 or m′
1 �= m1, GM rejects. Otherwise GM issues an identifier

to the user as uid = bin(j) ∈ {0, 1}�. The user then sets his public key
as pk = (pk′, bin(j)). From now on, we write pk′

j = (Gj,0,Gj,1), skj =

(sk(j,0)ME , sk
(j,1)
ME ) to distinguish keys of different users.

4. GM also performs the following updates:
– Update T by running the algorithm TUpdateB(bin(j),d).
– Register the user to table reg as reg[j][1] := d; reg[j][2] := τ .
– Increase the counter j := j + 1.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by GM to update the
group information while also advancing the epoch to τnew. It works as follows.

1. Let the set S contain all the identifiers of registered users to be revoked.
If S = ∅, then go to Step 2.

Otherwise, S = {i1, . . . , ir}, for some i1, . . . , ir ∈ [0, N −1]. Then, for all
t ∈ [r], GM runs TUpdateB(bin(it),0n) to update the tree T . Meanwhile,
GM updates reg[j][3] = τnew.
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2. At this point, each of the zero leaves in the tree T corresponds to either
a revoked user or a potential user who has not yet registered. In other
words, only active users in the new epoch τnew have non-zero hashes of
their encryption keys, denoted by {dj}j , accumulated in the root uτnew

of the updated tree.
For each j, let w(j) ∈ {0, 1}� × ({0, 1}n)� be the witness for the fact that
dj is accumulated in uτnew . Then GM publishes the group information of
the new epoch as:

infoτnew =
(
uτnew , {w(j)}j

)
.

We remark that even though infoτnew can be as large as O(λ · 2� · �), it is not
necessary for the sender or verifier to download them all. In deed, the sender
when running the P algorithm only needs to download the respective witness
w(j) of size O(λ · �) bits. Meanwhile, the verifier who runs the V algorithm
only needs to download uτnew of size O(λ) bits. It is also worth noting that
one is able to verify the well-formedness of registration table reg from group
information infoτcurrent and infoτnew

4, and vice versa5.
Enc(pkGM, pkOA, infoτ ,w, pk, L) pkOA = (Goa,0,Goa,1), pk = (pk′

j , bin(j)) for
some j ∈ [0, N − 1] and let L ∈ {0, 1}∗. This algorithm is run by a sender
who wishes to send a message w ∈ Z

p
2 such that (S,w) ∈ Rpermit to a chosen

user j with encryption key pk′
j . If user j is an active user at current epoch τ ,

the sender downloads the corresponding witness w(j) = (bin(j), (w�, · · · ,w1))
from infoτ and performs the following steps.
1. It first encrypts the message w under the encryption key pk′

j .
– Parse pk′

j = (Gj,0,Gj,1).

– Sample randomnesses rw,0, rw,1
$←− Z

k2−p
2 and noises ew,0, ew,1

$←−
B(n, t2).

– For b ∈ {0, 1}, compute

cw,b = Gj,b ·
(

rw,b

w

)
⊕ ew,b ∈ Z

n
2 . (10)

Let cw = (cw,0, cw,1) ∈ Z
n
2 × Z

n
2 .

2. Next, it encrypts the user’s identity j under the key pkOA = (Goa,0,Goa,1).
– Let bin(j) = [j1| . . . |j�]� ∈ {0, 1}�.

– Sample randomnesses roa,0, roa,1
$←− Z

k1−�
2 and noises eoa,0, eoa,1

$←−
B(n, t1).

– For b ∈ {0, 1}, compute

coa,b = Goa,b ·
(

roa,b
bin(j)

)
⊕ eoa,b ∈ Z

n
2 . (11)

4 For instance, if w(j) does not appear in infoτcurrent but infoτnew then reg[j][2] = τnew.
On the other hand, if w(j) appears in infoτcurrent but not in infoτnew then reg[j][3] =
τnew.

5 It is easy to figure out all active users at specific time τ from reg, and thus enables
verification of well-formedness of infoτ .
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Let coa = (coa,0, coa,1) ∈ Z
n
2 × Z

n
2 .

3. It then generates a proof showing that cw,0, cw,1 both encrypt w and
that coa,0, coa,1 both encrypt bin(j). The proof employs a Stern-like inter-
active ZK protocol on public input (Goa,0,Goa,1, cw, coa, L) and secret
input (Gj,0,Gj,1,w, bin(j), rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1),
described in detail in the full version. The interactive protocol is repeated
κ times to achieve negligible soundness error and made non-interactive
via Fiat-Shamir transform [21]. The resulting proof is a triple of form
πct = ({CMTct,i}κ

i=1,Chct, {RSPct,i}κ
i=1) such that

Chct = HFS({CMTct,i}κ
i=1,Goa,0,Goa,1, cw, coa, L).

Output the ciphertext ψ = (cw,0, cw,1, coa,0, coa,1, πct) and coins

coinsψ = (rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1). (12)

P
(
pp, pkGM, pkOA, infoτ , S, ψ, L,w, pk, coinsψ

)
Let coinsψ be of the form (12) and

ψ = (cw,0,cw,1,coa,0,coa,1, πct). This algorithm is implemented by the sender
above who has encrypted a message w to a user j at time epoch τ . The sender
extracts B from pp. In addition to the witness w(j), he downloads uτ as well
from infoτ . The goal of the sender is to convince the verifier in zero-knowledge
that the following conditions hold.
1. The secret message w ∈ Z

p
2 is such that (S,w) ∈ Rpermit.

2. The user encryption key pk′
j is correctly hashed to a non-zero value dj .

In other words, AccuB(pk′
j) = dj and dj �= 0n.

3. The non-zero hash value dj is honestly accumulated to value uτ at epoch
τ , i.e., the equation VerifyB(uτ ,dj , w

(j)) = 1 holds.
4. (cw,0, cw,1), (coa,0, coa,1) are honest encryptions of w and bin(j), respec-

tively. In other words, for b ∈ {0, 1}, Eqs. (10) and (11) hold.
5. The randomnesses rw,0, rw,1, roa,0, roa,1 are binary vectors while noises

ew,0, ew,1 and eoa,0, eoa,1 are in the sets B(n, t2) and B(n, t1), respectively.

The proof employs a Stern-like interactive ZK protocol on public input(
B, pkOA,uτ , S, ψ, L

)
and secret input (w, pk, coinsψ, w(j)), provided in the

full version. To achieve negligible soundness error, the protocol is repeated κ
times. Then the Fiat-Shamir heuristic [21] is applied. The resulting proof is
a triple πψ = ({CMTi}κ

i=1,Ch, {RSPi}κ
i=1) where

Ch = HFS({CMTi}κ
i=1,B, pkOA,uτ , S, ψ, L) ∈ {1, 2, 3}κ.

V
(
(pp, pkGM, pkOA, infoτ , S, ψ, L), πψ

)
This algorithm verifies the legitimacy of

the ciphertext label pair (ψ,L) with respect to epoch τ and the set of keywords
S by checking the validity of the proof πψ. It proceeds as follows.
1. Download uτ from infoτ .
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2. Parse πψ = ({CMTi}κ
i=1,Ch, {RSPi}κ

i=1).
3. If Ch = [ch1| · · · |chκ]� �= HFS({CMTi}κ

i=1,B, pkOA,uτ , S, ψ, L), return 0.
4. For i ∈ [1, κ], verify the validity of RSPi with respect to the commitment

CMTi and the challenge chi. If any of the verifications does not hold,
return 0. Else return 1.

Dec(infoτ , sk, ψ, L) This algorithm is run by a user j with secret key sk. Parse
sk = (sk(j,0)ME , sk

(j,1)
ME ). It performs the following steps.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies the validity of πct as
follows.

– Let πct = ({CMTct,i}κ
i=1,Chct, {RSPct,i}κ

i=1).
– If Chct �= HFS({CMTct,i}κ

i=1,Goa,0,Goa,1, cw,0, cw,1, coa,0, coa,1, L),
return ⊥. Otherwise, let Chct = [chct,1| · · · |chct,κ]�.

– For i ∈ [1, κ], verify the validity of RSPct,i with respect to the com-
mitment CMTct,i and the challenge chct,i. If any of the verifications
does not hold, return ⊥.

2. If the above step does not return 0, it then runs the McElice decryption
algorithm DecME(sk

(j,0)
ME , cw,0) (see the full version), obtaining w′.

3. If (S,w′) ∈ Rpermit, return w′. Otherwise, return ⊥.
Open(infoτ , skOA, ψ, L) This algorithm is run by the OA who possesses the key

skOA = (sk(oa,0)ME , sk
(oa,1)
ME ). It proceeds as follows.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies πct as in the algorithm
Dec. It πct is invalid, it returns ⊥.

2. Otherwise, it runs the decryption algorithm DecME(sk
(oa,0)
ME , coa,0), obtain-

ing [j′
1| · · · |j′

�]
�.

3. If infoτ does not include a witness containing the string [j′
1| · · · |j′

�]
�, then

return ⊥.
4. Let j′ ∈ [0, N − 1] be the integer that has binary representation

[j′
1| · · · |j′

�]
�. Output j′.

6.2 Asymptotic Efficiency, Correctness, and Security

Efficiency. We now analyze the efficiency of our construction with respect to
the security parameter λ.

– The public key and secret key of GM have bit size O(λ).
– The public key and secret key of OA and each user have bit size O(λ2).
– At each epoch, the sender who runs the P algorithm needs to download data

of bit size O(λ · �) while the verifier who runs the V algorithm needs to
download data of bit size O(λ).

– The size of ciphertext ψ is O(λ2) and size of proof πψ is ω(log λ) ·O(λ2+� ·λ).
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Correctness. The above FDGE scheme is correct with all but negligible prob-
ability. It relies on the following three facts: (a) the correctness of the underly-
ing McEliece encryption scheme and (b) the perfect completeness of the zero-
knowledge argument used in the Enc algorithm and (c) the perfect complete-
ness of the zero-knowledge argument used in the P algorithm. Therefore, in
ExptcorrA (1λ) defined in Sect. 5, the V algorithm will output 1 by fact (c), and
the Dec and Open algorithms will output w′ = w and pk′ = pk, respectively, by
fact (a) and (b).
Security. In Theorem 1, we prove the given FDGE satisfies the proposed security
requirements in Sect. 5.1.

Theorem 1. Assume the zero-knowledge argument used in the Enc algorithm is
simulation-sound and zero-knowledge, the zero-knowledge argument used in the
P algorithm is sound and zero-knowledge, the randomized McEliece encryption
schemes have pseudorandom ciphertexts, and the hash function hB is collision
resistant. Then, in the random oracle model, the above FDGE scheme satisfies
message secrecy, anonymity, and soundness.

Due to space limit, details of the proof are provided in the full version.
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Abstract. Trusted execution environments (TEEs) enable secure exe-
cution of programs on untrusted hosts and cryptographically attest the
correctness of outputs. As these are complex systems, it is essential to for-
mally capture the exact security achieved by protocols employing TEEs,
and ultimately, prove their security under composition, as TEEs are typ-
ically employed in multiple protocols, simultaneously.

Our contribution is twofold. On the one hand, we show that under
existing definitions of attested execution setup, we can realise crypto-
graphic functionalities that are unrealisable in the standard model. On
the other hand, we extend the adversarial model to capture a broader
class of realistic adversaries, we demonstrate weaknesses of existing secu-
rity definitions this class, and we propose stronger ones.

Specifically, we first define a generalization of Functional Encryption
that captures Stateful and Randomised functionalities (FESR). Then,
assuming the ideal functionality for attested execution of Pass et al. (Euro-
crypt ’2017), we construct the associated protocol, Steel, andwe prove that
Steel UC-realises FESR in the universal composition with global subrou-
tines model by Badertscher et al. (TCC ’2020). Our work is also a valida-
tion of the compositionality of the Iron protocol by Fisch et al. (CCS ’2017),
capturing (non-stateful) hardware-based functional encryption.

As the existing functionality for attested execution of Pass et al. is too
strong for real world use, we propose a weaker functionality that allows
the adversary to conduct rollback and forking attacks. We demonstrate
that Steel (realising stateful functionalities), contrary to the stateless
variant corresponding to Iron, is not secure in this setting and discuss
possible mitigation techniques.

1 Introduction

Due to the rise of cloud computing, most people living in countries with active dig-
ital economies can expect a significant amount of information about them to be
stored on cloud platforms. Cloud computing offers economies of scale for compu-
tational resources with ease of management, elasticity, and fault tolerance driving
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 709–736, 2021.
https://doi.org/10.1007/978-3-030-75248-4_25
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further centralization. While cloud computing is ubiquitously employed for build-
ing modern online service, it also poses security and privacy risks. Cloud storage
and computation are outside the control of the data owner and users currently have
no mechanism to verify whether the third-party operator, even with good inten-
tions, can handle their data with confidentiality and integrity guarantees.

Hardware-Based Solutions. To overcome these limitations, trusted execution envi-
ronments (TEEs), such as Intel SGX [27], ARM Trustzone [45], RISC-V Keystone
[29,38], AMD-SEV [33] provide an appealing way to build secure systems. TEEs
provide a hardware-protected secure memory region called a secure enclave whose
residing code and data are isolated from any layers in the software stack including
the operating system and/or the hypervisor. In addition, TEEs offer remote attes-
tation for proving their trustworthiness to third-parties. In particular, the remote
attestation enables a remote party to verify that an enclave has a specific identity
and is indeed running on a genuine TEE hardware platform. Given they promise
a hardware-assisted secure abstraction, TEEs are now commercially offered by
major cloud computing providers including Microsoft Azure [47], Google Cloud
[46], and Alibaba Cloud [5].

Modeling Challenges. While TEEs provide a promising building block, it is not
straightforward to design secure applications on top of TEEs. In particular appli-
cations face the following three challenges: (1) Most practical applications require
combining trusted and untrusted components for improved performance and a
low trusted computing base; (2) TEEs are designed to protect only the volatile,
in-memory, “stateless” computations and data. Unfortunately, this abstraction
is insufficient for most practical applications, which rely on stateful computa-
tion on untrusted storage mediums (SSDs, disks). Ensuring security for such
untrusted storage mediums is challenging because TEEs are prone to rollback
attacks; and lastly, (3) TEE hardware designs are prone to numerous side chan-
nel attacks exploiting memory access patterns, cache timing channels, etc. These
side channel attacks have the potential to completely compromise the confiden-
tiality, integrity, and authenticity (remote attestation) of enclaves.

Therefore, it is important to carefully model the security achieved by the proto-
cols of such systems as well as the assumptions in the cryptography and the hard-
ware, and the trust afforded in protocol participants. Ideally such modelling must
be compositional to facilitate the construction of larger systems based on smaller
hardware and cryptography components. Given a sufficiently expressive model of
TEEs, they can be used as a powerful setup assumption to realise many protocols.

The model of Pass, Shi, and Tramer (PST) [44] takes an initial step towards
modelling protocols employing TEEs. The PST model provides a compositional
functionality for attested execution and shows how to instantiate various primi-
tives impossible in the standard model, as well as some limitations of TEEs. The
PST model was first weakened in [52], which provides a compelling example of how
an excessively weak enclave, susceptible to side channel attacks that break confi-
dentiality (but not integrity and authenticity), can still be used as setup for useful
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cryptographic primitives. Both models, however, live at two opposite extremes,
and thus fail to capture realistic instantiations of real world trusted execution.

Functional Encryption and Limitations. One of the core primitives that enables
privacy preserving computation and storage is Functional Encryption (FE),
introduced by [16]. FE is a generalisation of Attribute/Identify Based Encryp-
tion [48,49], that enables authorized entities to compute over encrypted data,
and learn the results in the clear. In particular, parties possessing the so-called
functional key, skf , for the function f , can compute f(x), where x is the plain-
text, by applying the decryption algorithm on skf and an encryption of x. Access
to the functional key is regulated by a trusted third party. While out of scope
for our work, identifying such a party is an interesting question that requires
establishing metrics for the trustworthiness of entities we might want to be able
to decrypt functions, and the kind of functions that should be authorised for a
given level of trust. An obvious option for the role of trusted authority would be
that of a data protection authority, who can investigate the data protection prac-
tices of organisations and levy fines in case these are violated. Another approach
could be decentralising this role, by allowing the functional key to be generated
collectively by a number of data owners [1,23].

FE is a very powerful primitive but in practice highly non-trivial to construct.
Motivated by the inefficiency of existing instantiations of FE for arbitrary func-
tions, the work of [28] introduces Iron, which is a practically efficient protocol
that realises FE based on Intel’s SGX. In [28] the authors formally prove secu-
rity of the proposed protocol, however their proof is in the standalone setting.
In a related work, Matt and Maurer [41] show (building on [3]) that composable
functional encryption (CFE) is impossible to achieve in the standard model,
but achievable in the random oracle model. For another important variant of
the primitive, namely, randomized functional encryption, existing constructions
[2,30,37], are limited in the sense that they require a new functional key for each
invocation of the function, i.e., decryptions with the same functional key always
return the same output. Finally, existing notions of FE only capture stateless
functionalities, which we believe further restricts the usefulness and applicability
of the primitive. For instance, imagine a financial institution that sets its global
lending rate based on the total liquidity of its members. Financial statements can
be sent, encrypted, by each member, with each of these transactions updating
the global view for the decryptor, who can then compute the function’s result
in real time.

Given the above limitations, in this work we leverage the power of hardware
assisted computation to construct FE for a broader class of functionalities under
the strongest notion of composable security.

1.1 Our Contributions

We consider a generalization of FE to arbitrary stateful and probabilis-
tic functionalities (FESR), that subsumes multi-client FE [23] and enables
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cryptographic computations in a natural way, due to the availability of inter-
nal randomness. Our contributions are as follows:

– We formally define functional encryption for stateful and randomized func-
tionalities (FESR), in the Universal Composition (UC) setting [28].

– We construct the protocol Steel and prove that it realizes FESR in the newly
introduced Universal Composition with Global Subroutines (UCGS) model
[9]. Our main building blocks are: (1) the functional encryption scheme of
[28] and (2) the global attestation functionality of PST. Our treatment lifts
the PST model to the UCGS setting, and by easily adapting our proofs one
can also establish the UCGS-security of [28].

– Finally, we introduce a weaker functionality for attested execution in the
UCGS model to allow rollback and forking attacks, and use it to demon-
strate that Steel does not protect against these. Finally, we sketch possible
mitigation techniques.

1.2 Technical Overview

Attested Execution via the Global Attestation Functionality Gatt of PST [44].
Our UC protocols assume access to the global attestation functionality, Gatt,
that captures the core abstraction provided by a broad class of attested execu-
tion processors, such as Intel SGX [27]. It models multiple hardware-protected
memory regions of a TEE, called secure enclaves. Each enclave contains trusted
code and data. In combination with a call-gate mechanism to control entry and
exit into the trusted execution environment, this guarantees that this memory
can only be accessed by the enclave it belongs to, i.e., the enclave memory is
protected from concurrent enclaves and other (privileged) code on the platform.
TEE processing environments guarantee the authenticity, the integrity and the
confidentiality of their executing code, data and runtime states, e.g. CPU regis-
ters, memory and others.

Gatt is parametrised by a signature scheme and a registry that captures all
the platforms that are equipped with an attested execution processor. At a
high level, Gatt allows parties to register programs and ask for evaluations over
arbitrary inputs, while also receiving signatures that ensure correctness of the
computation. Since the manufacturer’s signing key pair can be used in multiple
protocols simultaneously, Gatt is defined as a global functionality that uses the
same key pair across sessions.

Universal Composition with Global Subroutines [10]. In our work we model global
information using the newly introduced UCGS framework, which resolves incon-
sistencies in GUC [19], an earlier work that aims to model executions in the
presence of global functionalities. UCGS handles such executions via a man-
agement protocol, that combines the target protocol and one or more instances
of the global functionality, and creates an embedding within the standard UC
framework. In our work, Gatt (cf. Sect. 2.2) is modeled as a global functionality
in the UCGS framework (updating the original PST formulation in GUC).
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Setting, Adversarial Model and Security. Our treatment considers three types of
parties namely, encryptors, denoted by A, decryptors, denoted by B, as well as a
single party that corresponds to the trusted authority, denoted by C. The adver-
sary is allowed to corrupt parties in B and request for evaluations of functions of
it’s choice over messages encrypted by parties in A. We then require correctness
of the computation, meaning that the state for each function has not been tam-
pered with by the adversary, as well as confidentiality of the encrypted message,
which ensures that the adversary learns only the output of the computation
(and any information implied by it) and nothing more. Our treatment covers
both stateful and randomized functionalities.

Steel: UCGS-secure FE for Stateful and Randomized Functionalities. Steel is
executed by the sets of parties discussed above, where besides encryptors, all
other parties receive access to Gatt, abstracting an execution in the presence
of secure hardware enclaves. Our protocol is based on Iron [28], so we briefly
revisit the main protocol operations: (1) Setup, executed by the trusted party
C, installs a key management enclave (KME), running a program to generate
public-key encryption and digital signature, key pairs. The public keys are pub-
lished, while the equivalent secrets are kept encrypted in storage (using SGX’s
terminology, the memory is sealed). Each of the decryptors installs a decryption
enclave (DE), and attests its authenticity to the KME to receive the secret key
for the encryption scheme over a secure channel. (2) KeyGen, on input function
F, calls KME, where the latter produces a signature on the measurement of an
instantiated enclave that computes F. (3) When Encrypt is called by an encryp-
tor, it uses the published public encryption key to encrypt a message and sends
the ciphertext to the intended recipients. (4) Decrypt is executed by a decrypt-
ing party seeking to compute some function F on a ciphertext. This operation
instantiates a matching function enclave (or resume an existing one), whose role
is that of computing the functional decryption, if an authorised functional key
is provided.

Steel consists of the above operations, with the appropriate modifications
to enable stateful functionalities. In addition, Steel provides some simplifica-
tions over the Iron protocol. In particular, we repurpose attestation’s signature
capabilities to supplant the need for a separate signature scheme to generate
functional keys, and thus minimise the trusted computing base. In practice, a
functional key for a function F can be produced by just letting the key generation
process return F; as part of Gatt’s execution, this produces an attestation signa-
ture σ over F, which becomes the functional key skF for that function, provided
the generating enclave id is also made public (a requirement for verification, due
to the signature syntax of attestation in Gatt).

The statefulness of functional encryption is simply enabled by adding a state
array to each functional enclave. The array is also stored locally by the cor-
responding decryption enclave, and is updated for every decryption of a given
function. Similar to [44], a curious artefact in the protocol’s modeling is the
addition of a “backdoor” that programs the output of the function evaluation
subroutine, such that, if a specific argument is set on the input, the function
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evaluation returns the value of that argument. The reason for this addition is
to enable simulation of signatures over function evaluations that have already
been computed using the ideal functionality. We note that this addition does not
impact correctness, as the state array is not modified if the backdoor is used,
nor confidentiality, since the output of this subroutine is never passed to any
other party besides the caller B. Finally, a further addition is that our protocol
requires the addition of a proof of plaintext knowledge on top of the underlying
encryption scheme. The Steel protocol definition is presented in Sect. 4.

Security of Steel. Our protocol uses an existentially unforgeable under cho-
sen message attacks (EU-CMA) signature scheme, Σ, a CCA-secure public-key
encryption scheme, PKE, and a non-interactive zero knowledge scheme, N. Infor-
mally, Σ provides the guarantees required for realizing attested computation (as
discussed above), PKE is used to protect the communication between enclaves,
and for protecting the encryptors’ inputs. For the latter usage, it is possible
to reduce the security requirement to CPA-security as we additionally compute
a simulation-extractable NIZK proof of well-formedness of the ciphertext that
guarantees non-malleability.

Our proof is via a sequence of hybrids in which we prove that the real world
protocol execution w.r.t. Steel is indistinguishable from the ideal execution, in the
presence of an ideal functionality that captures FE for stateful and randomized
functionalities. The goal is to prove that the decryptor learns nothing more than
an authorized function of the private input plaintext, thus our hybrids gradu-
ally fake all relevant information accessed by the adversary. In the first hybrid,1

all signature verifications w.r.t. the attestation key are replaced by an ideal-
ized verification process, that only accepts message/signature pairs that have
been computed honestly (i.e., we omit verification via Σ). Indistinguishability is
proven via reduction to the EU-CMA security of Σ. Next we fake all ciphertexts
exchanged between enclaves that carry the decryption key for the target cipher-
text, over which the function is evaluated (those hybrids require reductions to
the CCA security of PKE).2 The next hybrid substitutes ZK proofs over the
target plaintexts with simulated ones, and indistinguishability with the previous
one reduces to the zero knowledge property of N. Then, for maliciously generated
ciphertexts under PKE – which might result via tampering with honestly gener-
ated encryptors’ ciphertexts – instead of using the decryption operation of PKE,
our simulator recovers the corresponding plaintext using the extractability prop-
erty of N. Finally, we fake all ciphertexts of PKE, that encrypt the inputs to the
functions (this reduces to CPA security). Note that, in [28], the adversary out-
puts the target message, which is then being encrypted and used as a parameter
to the ideal world functionality that is accessed by the simulator in a black box
way. In this work, we consider a stronger setting in which the adversary directly
outputs ciphertexts of it’s choice. While in the classic setting for Functional
Encryption (where Iron lives) simulation security is easily achieved by asking

1 Here we omit some standard UC-related hybrids.
2 Here CCA security is a requirement as the adversary is allowed to tamper with
honestly generated ciphertexts.
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the adversarial enclave to produce an evaluation for the challenge ciphertext,
in FESR the simulator is required to conduct all decryptions through the ideal
functionality, so that the decryptor’s state for that function can be updated. We
address the above challenge by using the extractability property of NIZKs: for
maliciously generated ciphertexts our simulator extracts the original plaintext
and ask the ideal FESR functionality for it’s evaluation. Simulation-extractable
NIZK can be efficiently instantiated, e.g., using zk-SNARKs [12]. Security of our
protocol is formally proven in Sect. 5. The simulator therein provided could be
easily adapted to show that the Iron protocol UCGS-realises Functional Encryp-
tion, by replacing the NIZK operations for maliciously generated ciphertexts
with a decryption from the enclave, as described above.

Rollback and Forking Attacks. Modeling attested execution via Gatt facilitates
composable protocol design, however, such a functionality cannot be easily real-
ized since real world adversaries can perform highly non-trivial rollback and
forking attacks against hardware components. In Sect. 6, we define a weaker
functionality for attested execution, called Grollback

att , that aims to capture roll-
back and forking attacks. To achieve this, we replace the enclave storage array
in Gatt with a tree data structure. While the honest party only ever accesses the
last leaf of the tree (equivalent to a linked list), a corrupt party is able to provide
an arbitrary path within the tree. This allows them to rollback the enclave, by
re-executing a previous (non-leaf) state, and to support multiple forks of the
program by interactively selecting different sibling branches. We give an exam-
ple FESR function where we can show that correctness does not hold if Grollback

att

is used instead of Gatt within Steel, and discuss how countermeasures from the
rollback protection literature can be adopted to address these attacks, with a
consideration on efficiency.

1.3 Related Work

Hardware is frequently used to improve performance or circumvent impossibility
results, e.g. [4,26,42]. As a relevant example, Chung et al. [25] show how to use
of stateless hardware tokens to implement functional encryption.

The use of attestation has been widely adopted in the design of computer
systems to bootstrap security [43]. In addition to formalising attested execution,
Pass, Shi and Tramer (PST) [44] show that two-party computation is realisable
in UC only if both parties have access to attested execution, and fair two-party
computation is also possible if additionally both secure processors have access to
a trusted clock. The PST model is the first work to formalise attested execution
in the UC framework. The compositional aspect of UC allows for the reused of
the model in several successive works [22,24,52,54]. Other attempts at providing
a formal model for attested execution include the game-based models of Barbosa
et al. [15], Bahmani et al. [13], Fisch et al. [28]. The latter model arises from
the need to evaluate the security of Iron, a hardware-based realisation of func-
tional encryption, which was later extended to verifiable functional encryption
in Suzuki et al. [51].
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Rollback attacks (also known as reset attacks in the cryptographic liter-
ature) are a common attack vectors against third-party untrusted computing
infrastructure. An attacker who is in control of the underlying infrastructure
can at times simply restart the system to restore a previous system state. Yilek
[55] presents a general attack that is applicable to both virtual machine and
enclave executions: it shows that an adversary capable of executing multiple
rollback attacks on IND-CCA or IND-CPA secure encryption schemes might
learn information about encrypted messages by running the encryption algo-
rithm on multiple messages with the same randomness. In the absence of true
hardware-based randomness that cannot be rolled back, these kinds of attacks
can be mitigated using hedged encryption, a type of key-wrap scheme [32], such
that for each encryption round, the original random coin and the plaintext are
passed through a pseudorandom function to generate the randomness for the
ciphertext.

The area of rollback attacks on TEEs is well studied. Platforms like SGX
[21], TPMs [39], etc. provide trusted monotonic counters, from which it is pos-
sible to bootstrap rollback-resilient storage. However, trusted counters are too
slow for most practical applications. Furthermore, they wear out after a short
period of time. As their lifetime is limited, they are unreliable for applications
that require frequent updates [40]. Moreover, an adversary that is aware of this
vulnerability can attack protocols that rely exclusively on counters, by instan-
tiating a malicious enclave on the same platform that artificially damages the
counters.

To overcome the limitation of SGX counters, ROTE [40] uses a consensus
protocol to build a distributed trusted counter service, with performance neces-
sarily reduced through several rounds of network communication. In the same
spirit, Ariadne [50] is an optimized (local) synchronous technique to increment
the counter by a single bit flip for deterministic enclaves.

Speicher [14] and Palaemon [31] proposed an asynchronous trusted counter
interface, which provide a systematic trade-off between performance and roll-
back protection, addressing some limitations of synchronous counters. The asyn-
chronous counter is backed up by a synchronous counter interface with a period
of vulnerability, where an adversary can rollback the state of a TEE-equipped
storage server in a system until the last stable synchronous point. To protect
against such attacks, these systems rely on the clients to keep the changes in
their local cache until the counter stabilizes to the next synchronisation point.

Lightweight Collective Memory (Brandenburger et al. [17]) is a proposed
framework that claims to achieve fork-linearizability: each honest client that
communicates with a TEE (on an untrusted server that might be rolled back)
can detect if the server is being inconsistent in their responses to any of the pro-
tocol clients (i.e. if they introduce any forks or non-linearity in their responses).
Finally, [35,36,53], protect hardware memory against active attacks, while [6,34],
protect cryptographic hardware against tampering and Trojan injection attacks,
respectively.
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2 Preliminaries

2.1 UC Background

Universal Composability (UC), introduced by Canetti [18], is a security frame-
work that enables the security analysis of cryptographic protocols. It supports
the setting where multiple instances of the same, or different protocols, can be
executed concurrently. Many extensions and variants of the framework have been
proposed over the years; our treatment is based on the recently released Uni-
versal Composability with Global Subroutines framework (UCGS) [10] and the
2020 version of UC [18]. We briefly summarise the aspects of UC and UCGS
necessary to understand our work.

Universal Composability. Consider two systems of PPT interactive Turing
machine instances (π,A,Z) and (φ,S,Z), where Z is the initial instance, and
π,A (and respectively φ,S) have comparable runtime balanced by the inputs of
Z. We say that the two systems are indistinguishable if Z making calls to π,A
(resp. φ,S) cannot distinguish which system it is located in. The two systems
are commonly referred to as the real and ideal world (respectively). Z can make
calls to instances within the protocol by assuming the (external) identity of arbi-
trary instances (as defined by the control function). Depending on the protocol
settings, it might be necessary to restrict the external identities available to the
environment. A ξ-identity-bounded environment is limited to assume external
identities as specified by ξ, a polynomial time boolean predicate on the current
system configuration.

We now recall a few definitions. Please consult [10,18] or our full version for
the formal definitions of terms such as balanced, respecting, exposing, compliant.

Definition 1 (UC emulation [18]). Given two PPT protocols π, φ and some
predicate ξ, we say that π UC-emulates φ with respect to ξ-identity bound envi-
ronments (or π ξ-UC-emulates φ) if for any balanced ξ-identity-bounded envi-
ronment and any PPT adversary, there exists a PPT simulator S such that the
systems (φ,S,Z) and (π,A,Z) are indistinguishable.

Given a protocol π which UC-emulates a protocol φ, and a third protocol ρ,
which calls φ as a subroutine, we can construct a protocol where all calls to φ
are replaced with calls to π, denoted as ρφ→π.

Theorem 1 (Universal Composition [18]). Given PPT protocols π, φ, ρ and
predicate ξ, if π, φ are both subroutine respecting and subroutine exposing , ρ is
(π, φ, ξ)-compliant and π ξ-UC-emulates φ, then protocol ρφ→π UC-emulates ρ

By the composition theorem, any protocol that leverages subroutine φ in its
execution can now be instantiated using protocol π.
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UCGS. As the name suggests, generalised UC (GUC) [19] is an important gen-
eralization of the UC model. It accounts for the existence of a shared subroutine
γ, such that both ρ and its subroutine π (regardless of how many instances of π
are called by ρ) can have γ as a subroutine. The presence of the global subroutine
allows proving protocols that rely on some powerful functionality that needs to
be globally accessible, such as a public key infrastructure (PKI) [20], a global
clock [8], or trusted hardware [44].

Unfortunately GUC has inconsistencies and has not been updated from the
2007 to the 2020 version of UC.3 Universal Composability with Global Subrou-
tines [10] aims to rectify these issues by embedding UC emulation in the presence
of a global protocol within the standard UC framework.

To achieve this, a protocol π with access to subroutine γ is replaced by a
new structured protocol μ = M [π, γ], known as management protocol; μ allows
multiplexing a single instance of π and γ into however many are required by
ρ, by transforming the session and party identifiers. μ is a subroutine exposing
protocol, and is given access to an execution graph directory instance, which
tracks existing machines within the protocol, and the list of subroutine calls
(implemented as a structured protocol). The execution graph directory can be
queried by all instances within the extended session of μ, and is used to redirect
the outputs of π and γ to the correct machine.

Below we revisit the UC emulation with global subroutines definition from [10].

Definition 2 (UC Emulation with Global Subroutines [10]). Given proto-
cols π, φ, and γ, π ξ-UC emulates φ in the presence of γ if M [π, γ] ξ-UC emulates
M [φ, γ]

Now we state the main UCGS theorem.

Theorem 2 (Universal Composition with Global Subroutines [10]).
Given subroutine-exposing protocols π, φ, ρ, and γ, if γ is a φ-regular setup and
subroutine respecting, φ, π are γ-subroutine respecting, ρ is (π, φ, ξ)-compliant
and (π,M [x, γ], ξ)-compliant for x ∈ {φ, π}, then if π ξ-UC-emulates φ in the
presence of γ, the protocol ρφ→π UC-emulates ρ in the presence of γ.

2.2 The Gatt Functionality

We now reproduce the Gatt global functionality defined in the PST model [44].
The functionality is parameterised with a signature scheme and a registry to
capture all platforms with a TEE. The below functionality diverges from the
original one in that we let vk be a global variable, accessible by enclave programs
as Gatt.vk. This allows us to use Gatt for protocols where the enclave program
does not trust the caller to its procedures to pass genuine inputs, making it
necessary to conduct the verification of attestation from within the enclave.
3 In a nutshell the inconsistency arises from a discrepancy in the proof that emu-
lation for a single-challenge session version, called EUC (used to prove protocols
secure), implies UC-emulation for the multi-challenge GUC notion (used to prove
the composition theorem).
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Functionality Gatt[Σ, reg, λ]

State variables Description

vk Master verification key, available to enclave programs
msk Master secret key, protected by the hardware

T ← ∅ Table for installed programs

On message initialize from a party P :

let (spk, ssk) ← Σ.Gen(1λ), vk ← spk, msk ← ssk

On message getpk from a party P :

return vk

On message (install, idx, prog) from a party P where P.pid ∈ reg:

if P is honest then
assert idx = P.sid

generate nonce eid ∈ {0, 1}λ, store T [eid,P ] = (idx, prog, ∅)
send eid to P

On message (resume, eid,input) from a party P where P.pid ∈ reg:

let (idx, prog, mem) ← T [eid,P ], abort if not found
let (output, mem′) ← prog(input, mem) , store T [eid,P ] = (idx, prog, mem′)
let σ ← Σ.Sign(msk, (idx, eid,prog, output)) and send (output, σ) to P

The Gatt functionality is a generalisation over other TEE formalisations,
such as the one in [28], which tries to closely model some SGX implementa-
tion details. For instance, their hardware primitive distinguishes between local
and remote attestation by exposing two sets of functions to produce and verify
reports (for local attestation) and quotes (for remote attestation). Both data
structure include enclave metadata, a tag that can uniquely identify the running
program, input and output to the computation and some authentication primi-
tive based on the former (MAC for local reports, signature for remote quotes).
The Gatt primitive, intended as an abstraction over different vendor implemen-
tations, removes much of this detail: both local and remote attestation consist
in verifying the output of a resume call to some enclave through a public ver-
ification key, available both to machines with and without enclave capabilities.
The output of computations is similarly the (anonymous) id of the enclave, the
UC session id, some unique encode for the code computed by the enclave (which
could be its source code, or its hash), and the output of the computation. Unlike
in the Iron model, input does not have to be included in the attested return
value, but if security requires parties to verify input, the function ca return it as
part of its output. On enclave installation, its memory contents are initialised by
the specification of its code; this initial memory state is represented by symbol ∅.
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3 Functional Encryption for Stateful and Randomized
Functionalities

In this section we define the ideal functionality of functional encryption for
stateful and randomized functionalities (FESR).

FESR syntax.

– (Setup): given security parameter 1λ as input, KeyGen outputs master keypair
mpk,msk

– (Key generation): Setup takes msk,F ∈ F and returns functional key skF
– (Encryption): given string x ∈ X and mpk, Enc returns ciphertext ct or an

error
– (Decryption): on evaluation over some ciphertext ct and functional key skF,

Dec returns y ∈ Y
While the above definition matches with that of classical functional encryption,
we inject non-determinism and statefulness (respectively) by adding two addi-
tional inputs to functions in the allowed function class

F : X × S × R → Y × S

where S = {0, 1}s(λ),R = {0, 1}r(λ) for polynomials s(·) and r(·).

3.1 Properties of FESR

Matt and Maurer [41] shows that the notion of functional encryption is equiva-
lent, up to assumed resources, to that of an access control (AC) repository, where
some parties A are allowed to upload data, and other parties B are allowed to
retrieve some function on that data, if they have received authorisation (granted
by a party C). A party B does not learn anything else about the stored data,
besides the function they are authorised to compute (and length leakage F0).

To allow stateful and randomized functions, we extend the function class
with support for private state and randomness as above. Whenever B accesses a
function on the data from the repository, the repository draws fresh randomness,
evaluates the function on the old state. The function updates the state and
evaluates to a value. Intuitively, this ideal world AC repository models both
confidentiality and correctness:

Confidentiality. Confidentiality holds as B does not learn anything about the
data besides the evaluations of these stateful randomized functions.

Correctness. A stateful functionality defines a stateful automaton, a set of
states S, the initial state ∅ ∈ S, a probabilistic transition function δ : X × S →
Y ×S. For every transition, a new input is sampled from R and given to F along
with the input, to determine the next state. The transition function determines,
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for a given input and the current state, the probability Prδ that the automaton
will find itself in a certain next state, as well as an output value. Correctness
requires that all consecutive outputs must always be justified by some input and
a state reachable via δ from ∅.

Correctness holds for the ideal world AC repository as B can make exactly
those state transitions by accessing a function on the data from the repository.

3.2 UC Functionality

Our treatment considers the existence of several parties of type A (encryptors),
B (decryptors), and a singular trusted authority C. The latter is allowed to run
the KeyGen,Setup algorithms; parties of type A run Enc, and those of type B
run Dec. The set of all decryptors (resp. encryptors) is denoted by B (resp. A).
When the functionality receives a message from such a party, their UC extended
id is used to distinguish who the sender is and store or retrieve the appropriate
data. For simplicity, in our ideal functionality we refer to all parties by their
type, with the implied assumption that it might refer to multiple distinct UC
parties. For the sake of conciseness, we also omit including the sid parameter as
an argument to every message.

The functionality reproduces the four algorithms that comprise functional
encryption. During KeyGen, a record P is initialised for all t instances of B, to
record the authorised functions for each instance, and its state. The Setup call
marks a certain B as authorised to decrypt function F, and initialises its state to
∅. The Enc call allows a party A, B, to provide some input x, and receive a unique
identifying handle h. This handle can then be provided, along with some F, to
a decryption party to obtain an evaluation of F on the message stored therein.
Performing the computation will also result in updating the state stored in P.

Functionality FESR[sid, F,A,B,C]

The functionality is parameterized by the randomized function class F such that
for each F ∈ F : X × S × R → Y × S, over state space S and randomness
space R, and by three distinct types of party identities A, B, C interacting with
the functionality via dummy parties (that identify a particular role). For each
decryptor/function pair, a state value is recorded.

State variables Description

F0 Leakage function returning the length of the message
setup[·] ← false Table recording which parties were initialized.

M[·] ← ⊥ Table storing the plaintext for each message handler
P[·] ← ⊥ Table of authorized functions and their states for all

decryption parties

On message (setup, P ) from party C, for P ∈ {A, B}:
setup[P ] ← true
send (setup, P ) to A

On message (setup, P ) from A, for P ∈ {A, B}:
setup[P ] ← true
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P[P,F0] ← ∅
send setup to P

On message (encrypt, x) from party P ∈ {A, B}:
if setup[P ] = true ∧ x ∈ X then

compute h ← getHandle

M[h] ← x
send (encrypted, h) to P

On message (keygen,F, B) from party C:

if F ∈ F+ ∧ setup[B] = true then
send (keygen,F, B) to A and receive Ack

P[B,F] ← ∅
send (assigned,F) to B

On message (decrypt, h,F) from party B:

x ← M[h]
if C is honest then

if P[B,F] �= ⊥ ∧ x ∈ X then
r ← R
s ← P[B,F]
(y, s) ← F(x, s, r)
P[B,F] ← s′

return (decrypted, y)

else
send (decrypt, h,F, x) to A and receive (decrypted, y)
return (Decrypted, y)

The functionality is defined for possible corruptions of parties in B, A. If C
is corrupted, we can no longer guarantee the evaluation to be correct, since C
might authorize the adversary to compute any function in F. In this scenario,
we allow the adversary to learn the original message value x and to provide an
arbitrary evaluation y.

Note that, our definition is along the lines of [11,41], however, as opposed
to [11], in which A and/or C might also get corrupted, in this work we primar-
ily focus on the security guarantees provided by FE, which is confidentiality of
the encrypted message against malicious decryptors, B. Yet, it provides secu-
rity against malicious encryptors, A, thus it satisfies input consistency, which
was originally introduced by [11]. In addition, our definition is the first one
that captures stateful and randomized functionalities, where the latter refers to
the standard notion of randomized functionalities in which each invocation of
the function uses independent randomness. Therefore, our protocol achieves a
stronger notion of randomized FE than [2,30,37], which require a new functional
key for each invocation of the function, i.e., decryptions with the same functional
key always return the same output.

Both correctness and confidentiality clearly hold for the ideal functionality by
inspection of the 4 lines r ← R, s ← P[B,F], (y, s′) ← F(x, s, r), and P[B,F] ← s′.
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4 A UC-Formulation of Steel

In this section we present Steel in the UCGS setting. As we already state above,
our treatment involves three roles: the key generation party C, the decryption
parties B, and the encryption parties A. Among them, only the encryptor does
not need to have access to an enclave. Like the FESR functionality, the protocol
fulfills confidentiality and correctness in the face of an adversarial B. We do not
give any guarantees of security for corrupted A,C; although we remark informally
that, as long as its enclave is secure, a corrupted C has little chances of learning
the secret key. Besides the evaluation of any function in F it authorises itself
to decrypt, it can also fake or extract from proofs of ciphertext validity π by
authorizing a fake reference string crs. Before formally presenting our protocol
we highlight important assumptions and conventions:

– For simplicity of presentation, we assume a single instance each for A, B
– all communication between parties (α, β) occurs over secure channels

SCβ
α,SCα

β

– Functional keys are (attestation) signatures by an enclave progKME on input
(keygen,F) for some function F; it is easy, given a list of keys, to retrieve the
one which authorises decryptions of F

– keyword fetch retrieves a stored variable from memory and aborts if the value
is not found

– on keyword assert , the program checks that an expression is true, and pro-
ceeds to the next line, aborting otherwise

– all variables within an enclave are erased after use, unless saved to encrypted
memory through the store keyword

Protocol Steel is parameterised by a function family F : X × S × R → Y × S,
UC parties A,B,C, a CCA secure public key encryption scheme PKE, a EU-CMA
secure signature scheme Σ, a Robust non-interactive zero-knowledge scheme N,
and security parameter λ.

Protocol Steel[F,A,B,C,PKE,Σ,N, λ]
State variables Description

mpk ← ⊥ Local copy of master public key for participants
prog{KME,DE,FE} ← . . . Source code of enclaves as defined below

K[·] ← ∅ Table of function keys at B
Key Generation Authority C:
On message (Setup, P ):

if mpk = ⊥ then
eidKME ← Gatt.install(C.sid, progKME)
send Get to CRS and receive (Crs, crs)
(mpk, ·) ← Gatt.resume(eidKME, (init, crs, C.sid))

if P = A then
send (setup, mpk) to SCA

else if P = B then
send (setup, mpk, eidKME) to SCB and receive (provision, σ, eidDE, pkKD)
(ctkey, σsk) ← Gatt.resume(eidKME, (provision, (σ,eidDE, pkKD, eidKME))))
send (provision, ctkey, σsk) to SCB
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On message (Keygen,F, B):

assert F ∈ F ∧ mpk �= ⊥
((keygen,F), σ) ← Gatt.resume(eidKME, (keygen,F))
skF ← σ; send (keygen, (F, skF)) to SCB

Encryption Party A:

On message (Setup, mpk) from SCC:

send Get to CRS and receive (Crs, crs)
store mpk, crs; return setup

On message (encrypt,m):

assert mpk �= ⊥ ∧ m ∈ X
ct

r←− PKE.Enc(mpk,m)
π ← P((mpk, ct), (m, r), crs), ctmsg ← (ct, π)
send (write, ctmsg) to REP and receive h
return (encrypted, h)

Decryption Party B:

On message (Setup, mpk, eidKME) from SCC:

store mpk; eidDE ← Gatt.install(B.sid, progDE)
send Get to CRS and receive (Crs, crs)
((pkKD, ·, ·), σ) ← Gatt.resume(eidDE, init-setup, eidKME, crs, B.sid)
send (provision, σ, eidDE, pkKD) to SCC and receive (provision, ctkey, σKME)
Gatt.resume(eidDE, (complete-setup, ctkey, σKME))
return setup

On message (keygen, (F, skF)) from SCC:

eidF ← Gatt.install(B.sid, progFE[F])
(pkFD, σF) ← Gatt.resume(eidF, (init, mpk, B.sid))
K[F] ← (σF, eidF, pkFD, skF)
return (assigned, F )

On message (decrypt,F, h):

assert K[F] �= ⊥
send (read, h) to REP and receive ctmsg

(σF, eidF, pkFD, skF) ← K[F]
((ctkey, crs), σDE) ← Gatt.resume(eidDE, (provision, σF, eidF, pkFD, skF,F))
((computed, y), ·) ← Gatt.resume(eidF, (run, σDE, eidDE, ctkey, ctmsg, crs, ⊥))
return (Decrypted, y)

progKME:
on input (init, crs, idx):

assert pk = ⊥; (pk, sk) ← PKE.PGen()
store sk, crs, idx; return pk

on input (provision, (σDE, eidDE, pkKD, eidKME)):
vkatt ← Gatt.vk; fetch crs, idx
assert Σ.Vrfy(vkatt, (idx, eidDE, progDE, (pkKD, eidKME, crs), σDE)
ctkey ← PKE.Enc(pkKD, sk)
return ctkey

on input (keygen,F):
return (keygen,F)
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progDE:
on input (init-setup, eidKME, crs, idx):

assert pkKD �= ⊥
(pkKD, skKD) ← PKE.Gen()
store skKD, eidKME, crs, idx
return pkKD, eidKME, crs

on input (complete-setup, ctkey, σKME):
vkatt ← Gatt.vk
fetch eidKME, skKD, idx
m ← (idx, eidKME, progKME, ctkey)
assert Σ.Vrfy(vkatt,m, σKME)
sk ← PKE.Dec(skKD, ctkey)
store sk, vkatt

on input (provision, σ, eid, pkFD, skF,F):
fetch eidKME, vkatt, sk, idx
m1 ← (idx, eidKME, progKME, (keygen,F))
m2 ← (idx, eid, progFE[F], pkFD)
assert Σ.Vrfy(vkatt,m1, skF) and
Σ.Vrfy(vkatt,m2, σ)
return PKE.Enc(pkFD, sk), crs

progFE[F]:
on input (init, mpk, idx):

assert pkFD = ⊥
(pkFD, skFD) = PKE.Gen(1λ)
mem ← ∅; store skFD, mem, mpk, idx
return pkFD

on input (run, σDE, eidDE, ctkey, ctmsg, crs, y
′):

if y′ �= ⊥
return (computed, y′)

vkatt ← Gatt.vk; (ct, π) ← ctmsg

fetch skFD, mem, mpk, idx
m ← (idx, eidDE, progDE, ctkey, crs)
assert Σ.Vrfy(vkatt,m, σDE)
sk = PKE.Dec(skFD, ctkey)
assert N.V((mpk, ct), π, crs)
x = PKE.Dec(sk, ct)
out, mem′ = F(x, mem)
store mem ← mem′

return (computed, out)

As we mention in the Introduction, our modeling considers a “backdoor” in
the progFE.run subroutine, such that, if the last argument is set, the subroutine
just returns the value of that argument, along with a label declaring computa-
tion. The addition of the label computed is necessary, otherwise the backdoor
would allow producing an attested value for the public key generated in subrou-
tine progFE.init.

As a further addition we strengthen the encryption scheme with a plaintext
proof of knowledge (PPoK). For public key pk, ciphertext ct, plaintext m, cipher-
text randomness r, the relation R = {(pk, ct), (m, r)|ct = PKE.Enc(mpk,m; r)}
defines the language LR of correctly computed ciphertexts. As a chosen-plaintext
secure PKE scheme becomes CCA secure when extended with a simulation-
extractable PPoK this is a natural strengthening of the CCA security require-
ment of Iron. However, it enables the simulator to extract valid plaintexts from
all adversarial ciphertexts. In our security proof the simulator will submit these
plaintexts to FESR on behalf of the corrupt B to keep the decryption states of
the real and ideal world synchronized.

5 UC-Security of Steel

We now prove the security of Steel in the UCGS framework. To make the PST
model compatible with the UCGS model, we first define the identity bound ξ.

The Identity Bound ξ on the Environment. Our restrictions are similar to [44],
namely we assume that the environment can access Gatt in the following ways:
(1) Acting as a corrupt party, and (2) acting as an honest party but only for
non-challenge protocol instances.

We now prove our main theorem.
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Theorem 3 Steel (Sect. 4) UC-realizes the FESR functionality (Sect. 3) in the
presence of the global functionality Gatt and local functionalities CRS,REP,SC,
with respect to the identity bound ξ defined above.

We present a simulator algorithm such that, for all probabilistic adversaries
running in polynomial time with the ability of corrupting B. Following [41],
our proof considers static corruption of a single party B, we did, however, not
encounter any road-blocks to adaptive corruption of multiple decryptors besides
increased proof notational complexity. The environment is unable to distinguish
between an execution of the Steel protocol in the real world, and the protocol
consisting of SFESR, dummy parties A, C and ideal functionality FESR. Both
protocols have access to the shared global subroutines of Gatt. While hybrid
functionalities REP, SC, CRS (for their definition, see the full version) are only
available in the real world and need to be reproduced by the simulator, we use
SC in the simulator to denote simulated channels, either between the simulator
and corrupted parties (for corrupt parties), or between the simulator and itself
(for honest parties).

Given protocols Steel, FESR, and Gatt, Steel ξ-UC emulates FESR in the
presence of Gatt if M [Steel, Gatt] ξ-UC emulates M [FESR, Gatt] (see Definition 2).
We focus or exposition on the messages exchanged between the environment and
the machine instances executing Steel, FESR, and Gatt, since the machine M is
simply routing messages; i.e., whenever Z wants to interact with the protocol,
M simply forwards the message to the corresponding party; the same holds for
Gatt.

The simulator operates in the ideal world, where we have the environment Z
sending message to dummy protocol parties which forward their inputs to the
ideal functionality FESR. SFESR is activated either by an incoming message from
a corrupted party or the adversary, or when FESR sends a message to the ideal
world adversary. As A is a dummy adversary which normally forwards all queries
between the corrupt party and the environment, SFESR gets to see all messages
Z sends to A. The simulator is allowed to send messages to the FESR and Gatt

functionalities impersonating corrupt parties. In the current setting, the only
party that can be corrupted such that FESR still gives non trivial guarantees is
party B. Thus, whenever the real world adversary or the ideal world simulator
call Gatt.install and Gatt.resume for the challenge protocol instance, they must do
so using an extended identity of B.

Simulator SFESR[PKE,Σ,N, λ, F]

State variables Description

H[·] ← ∅ Table of ciphertext and handles in public repository
K ← [] List of progFE[F] enclaves and their eidF

G ← {} Collects all messages sent to Gatt and its response
B ← {} Collects all messages signed by Gatt

(crs, τ) ← N.S1 Simulated reference string and trapdoor
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For Key Generation Authority C:
On message (setup, P ) from FESR:

if mpk = ⊥ then
eidKME ← Gatt.install(C.sid, progKME)
(mpk, ·) ← Gatt.resume(eidKME, init)

if P = A then
send (setup, mpk) to SCA

else if P = B then
send (setup, mpk, eidKME) to SCB and receive (provision, σ, eidDE, pkKD)
assert (C.sid, eidDE, progDE, pkKD) ∈ B[σ]
(ctkey, σsk) ← Gatt.resume(eidKME, (provision, (σ,eidDE, pkKD, eidKME, crs))))
send (provision, ctkey, σsk) to SCB

On message (keygen, F, B) from FESR:

assert F ∈ F ∧ mpk �= ⊥
((keygen,F), σ) ← Gatt.resume(eidKME, (keygen,F))
skF ← σ
send (keygen, (F, skF)) to SCB

For Decryption Party B:
On message Get from party B to CRS:

send (CRS, crs) to B

On message (read, h) from party B to REP:

send (decrypt,F0, h) to FESR on behalf of B and receive |m|
assert |m| �= ⊥
ct ← PKE.Enc(mpk, 0|m|)
π ← N.S2(crs, τ, (mpk, ct))
ctmsg ← (ct, π); H[ctmsg] ← h
send (read, ctmsg) to B

On message (install, idx, prog) from party B to Gatt:

eid ← Gatt.install(idx, prog)
G[eid].install ← (idx, prog)
// G[eid].install[1] is the program’s code

forward eid to B

On message (resume, eid, input) from party B to Gatt:

// The Gatt registry does not allow B to access eidKME in real

world

assert G[eid] �= ⊥ ∧ eid �= eidKME

if G[eid].install[1] �= progFE[·] ∨ input[−1] �= ⊥ then
(output, σ) ← Gatt.resume(eid, input)
G[eid].resume ← G[eid].resume ‖ (σ, input, output))
B[σ] ← (G[eid].install[0], eid, G[eid].install[1], output)
if G[eid].install[1] = progDE ∧ input[0] = provision then

(provision, σ, eid, pkFD, skF,F) ← input
fetch (·, (init-setup, eidKME, crs), ·) ∈ G[eid].resume
assert (idx, eidKME, progKME, (keygen,F)) ∈ B[skF]
assert (idx, eidDE, progDE, ctkey, crs) ∈ B[σDE]

forward (output, σ) to B
else
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idx, progFE[F] ← G[eid].install
(run, σDE, eidDE, ctkey, ctmsg, crs, ⊥) ← input
assert (σF, (init), (pkFD)) ∈ G[eid].resume
assert (idx, eid, progFE[F], pkFD) ∈ B[σF]
assert (idx, eidDE, progDE, ctkey, crs)) ∈ B[σDE]
// If the ciphertext was not computed honestly and saved to H
if H[ctmsg] = ⊥ then

(ct, π) ← ctmsg

(m, r) ← N.E(τ, (mpk, ct), π)
if m = ⊥ then send (decrypt,F, ⊥) to B and abort

send (encrypt,m) to FESR on behalf of B and receive h
H[ctmsg] ← h

h ← H[ctmsg]
send (decrypt,F, h) to FESR on behalf of B and receive y
((computed, y), σ) ← Gatt.resume(eidF, (run, ⊥, ⊥, ⊥, ⊥, ⊥, y))
G[eid].resume ← G[eid].resume ‖ (σ, input, (computed, y)))
B[σ] ← (G[eid].install[0], eid, G[eid].install[1], (computed, y))
forward ((computed, y), σ) to B

Designing the Simulation. The ideal functionality FESR and protocol Steel
share the same interface consisting of messages setup, keygen, encrypt,
decrypt. During Steel’s setup, the protocol generates public parameters when
first run, and provisions the encrypted secret key to the enclaves of B. As neither
of these operations are executed by the ideal functionality, we need to simulate
them, generating and distributing keys outside of party C.

As in Steel, we distribute the public encryption key on behalf of C to any
newly registered B and A over secure channels. Once B has received this message,
it will try to obtain the (encrypted) decryption key for the global PKE scheme
from party C and its provision subroutine of progKME. Since C is a dummy party
in the ideal world, it would not respond to this request, so we let SFESR respond.
In Steel key parameters are generated within the key management enclave, and
communication of the encrypted secret key to the decryption enclave produces
an attestation signature. Thus, the simulator, which can access Gatt imperson-
ating B, is required to install an enclave. Because of the property of anonymous
attestation, the environment cannot distinguish whether the new enclave was
installed on B or C. If the environment tries to resume the program running
under eidKME through B, this is intercepted and dropped by the simulator.

Before sending the encrypted secret key, the simulator verifies that B’s public
key was correctly produced by an attested decryption enclave, and was initialised
with the correct parameters. If an honest enclave has been instantiated and we
can verify that it uses pkKD, eidKME, crs, we can safely send the encrypted sk to
the corrupted party as no one can retrieve the decryption key from outside the
enclave.

On message (keygen,F, B) from the functionality after a call to keygen,
SFESR simply produces a functional key by running the appropriate progKME pro-
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cedure through Gatt. Similarly, on receiving (read, h) for REP, SFESR produces
an encryption of a canonical message (a string of zeros) and simulates the response.

When the request to compute the functional decryption of the corresponding
ciphertext is sent to progFE[F], we verify that the party B has adhered to the
Steel protocol execution, aborting if any of the required enclave installation or
execution steps have been omitted, or if any of the requests were made with
dishonest parameters generated outside the enclave execution (we can verify this
through the attestation of enclave execution). If the ciphertext was not obtained
through a request to REP, we use the NIZK extractor to learn the plaintext m
and submit a message (encrypt,m) to FESR on behalf of the corrupt B. This
guarantees that the state of FESR is in sync with the state of progFE[F] in the
real world.

If all such checks succeed, and the provided functional key is valid, SFESR

fetches the decryption from the ideal functionality. While the Steel protocol
ignores the value of the attested execution of run, we can expect the adversary
to check its result for authenticity. Therefore, it is necessary to pass the result
of our decryption y through the backdoor we constructed in progFE[F]. This will
produce an authentic attestation signature on y, which will pass any verification
check convincingly (as discussed in the previous section, the backdoor does not
otherwise impact the security of the protocol).

The full proof of security is available in the full version; for an overview, refer
to Sect. 1.2.

6 Rollback and Forking Attacks

While the Attested Execution functionality modelled by Gatt is a meaningful
first step for modeling attested execution, it is easy to argue that it is not
realisable (in a UC-emulation sense) by any of the existing Trusted Execution
Environment platforms to date. In a follow-up paper, Tramer et al. [52] weaken
the original Gatt model to allow complete leakage of the memory state. This is
perhaps an excessively strong model, as the use of side channel attacks might
only allow a portion of the memory or randomness to be learned by the adversary.
Additionally, there are many other classes of attacks that can not be expressed by
this model. We now extend the Gatt functionality to model rollback and forking
attacks against an enclave.

6.1 Grollback
att Functionality

Our model of rollback and forking attacks is drawn from the formulation
expressed in Matetic et al. [40], but with PST’s improved modelling of attesta-
tion, which does not assume perfectly secure authenticated reads/writes between
the attester and the enclave.

Matetic et al. model rollback by distinguishing between enclaves and enclave
instances. Enclave instances have a distinct memory state, while sharing the same
code. As with Gatt, where the outside world has to call subroutines individually,



730 P. Bhatotia et al.

the environment is not allowed to interact directly with a program once it is
instantiated, except for pausing, resuming, or deleting enclave instances. Addi-
tionally, their model provides functions to store encrypted memory outside the
enclave (Seal) and load memory back (Unseal).

In a typical rollback attack, an attacker crashes an enclave, erasing its volatile
memory. As the enclave instance is restarted, it attempts to restart from the
current state snapshot. By replacing this with a stale snapshot, the attacker is
able to rewind the enclave state.

In a forking attack an attacker manages to run two instances of the same
enclave concurrently, such that, once the state of one instance is changed by an
external operation, querying the other instance will result in an outdated state.
This relies on both enclaves producing signature that at the minimum attest
the same program. On a system where attestation uniquely identifies each copy
of the enclave, a forking attack can still be launched by an attacker conducting
multiple rollback attacks and feeding different stale snapshots to a single enclave
copy [17].

Our new functionality Grollback
att employs this idea to model the effect of both

rollback and forking attacks. We replace the internal mem variable of Gatt with
a tree data structure. The honest caller to the functionality will always continue
execution from the memory state of an existing leaf of the tree while an adversary
can specify an arbitrary node of the tree (through a unique node identifier),
to which the state of the enclave gets reset. The output mem′ will then be
appended as a new child branch to the tree. To model a rollback attack, the
adversary specifies the parent node for the next call to resume (or any ancestor
node to execute a second rollback). To model a forking attack, the adversary can
interactively choose nodes in different branches of the tree. The functionality is
parameterised with a signature scheme and a registry to capture all platforms
with a TEE, like in the original formulation.

Functionality Gatt[Σ, reg, λ]

State variables Description

vk Master verification key, available to enclave programs
msk Master secret key, protected by the hardware

T ← ∅ Table for installed programs

On message initialize from a party P :

let (spk, ssk) ← Σ.Gen(1λ), vk ← spk, msk ← ssk

On message getpk from a party P :

return vk

On message (install, idx, prog) from a party P where P.pid ∈ reg:

if P is honest then
assert idx = P.sid

generate nonce eid ∈ {0, 1}λ, store T [eid,P ] = (idx, prog,root, Tree(∅))
send eid to P

On message (resume, eid,input, node) from a party P where P.pid ∈ reg:
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let (idx, prog, lastnode, tree) ← T [eid,P ], abort if not found
if P is honest then

let node ← lastnode
let mem ← access(tree, node)
let (output, mem′) ← prog(input, mem)
let tree′, child ← insertChild(tree, node, mem′)
let update T [eid, P ] = (idx, prog, child, tree′)
let σ ← Σ.Sign(msk, (idx, eid,prog, output)) and send (output, σ) to P

The proposed rollback model is perhaps somewhat reductive, as it only allows
“discrete” rollback operations, where memory states are quantised by program
subroutines. It is conceivable that real world attackers would have a finer-grained
rollback model, where they can interrupt the subroutine’s execution, and resume
from an arbitrary instruction.

Attack on Stateful Functional Encryption. Although our protocol uses
probabilistic primitives, we deem the generic reset attack presented in [55] unre-
alistic for TEE platforms such as SGX, where an enclave is allowed direct access
to a hardware-based source of randomness [7].

On the other hand, it easy to find a protocol-specific rollback attack on
Steel. While F’s state remains secret to a corrupt B interacting with Grollback

att

(the memory is still sealed when stored), an adversary can make enclave calls
produce results that would be impossible in the simpler model. As an example,
take the following function from F that allows setting a key and sampling the
output of a PRF function F for a single message:

function PRF-Wrapper(x, mem)
if mem = ∅ then

K ← x
Store mem ← K
return ACK

else if mem = �1 then
return ⊥

else
Store mem ← �1
return FK(x)

An adversary who has completed initialisation of its decryption enclave with
enclave id eidDE, obtained a functional key sk through the execution of keygen
on eidKME, and initialised a functional enclave for PRF-Wrapper with enclave
id eidF, public key pkFD and attestation σ, executes the current operations for
three ciphertexts ctK, ctx, ctx′ , encrypting a key K and plaintexts x, x′:

1: ((ctkey, crs), σDE) ← Gatt.resume(eidDE, (provision, σ, eid, pkFD, sk))
2: ((computed, ACK), ·) ← Grollback

att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctk, crs,
⊥), node)

3: // node is the node id for a leaf for eidF’s mem tree

4: ((computed, y), ·) ← Grollback
att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctx, crs, ⊥),

node′)



732 P. Bhatotia et al.

5: // node′ is the node id for a leaf for eidF’s mem tree

6: ((computed, y′), ·) ← Grollback
att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctx′ , crs, ⊥),

node′)
7: // node′ is the same node id as in the previous call (and thus to the

parent of the current leaf in mem)

As a result of this execution trace, the adversary violates correctness by
inserting an illegal transition (with input ε) in the stateful automaton for PRF-

Wrapper, from state access(tree, node′.child) = 1 back to access(tree, node′) =
[K], and then back to state 1 with input x′. The adversary can then obtain the
illegal set of values y ← FK(x) and y′ ← FK(x′), whereas in the ideal world after
obtaining y, the only possible output for the function would be ⊥ (the only legal
transition from state 1 leads back to itself). The simulator is unable to address
this attack, as the memory state is internal to the ideal functionality, and the
key will always be erased after the second call.

One might think that the simulator could respond by sampling a value from
the uniform distribution and feed it through the enclave’s backdoor; however,
the environment can reveal the key k and messages x, x′ to the adversary, or
conversely the adversary could reveal the uniform value to the environment.
Thus the environment can trivially distinguish between the honest PRF output
and the uniform distribution, and thus between the real and ideal world. Note
that this communication between environment and adversary is necessary for
universal composition as this leakage of k, x, x′ could happen as part of a wider
protocol employing functional encryption.

Mitigation Techniques. In Sect. 1.3, we showed that rollback resilience for
trusted execution environments is an active area of research, with many compet-
ing protocols. However, most solutions inevitably entail a performance trade-off.

Due to the modular nature of Steel, it is possible to minimise the performance
impact. Observe that party B instantiates a single DE and multiple FE. We
can reduce the performance penalty by making only DE rollback resilient. We
guarantee correctness despite rollbacks of FE, by encoding a counter alongside
the function state for each F. On a decryption request, the progFE enclave is
required to check in with the progDE enclave to retrieve the decryption key as
part of the provision call. To enable rollback resilience, we include the counter
stored by progFE as an additional parameter of this call. progDE compares the
counter received for the current evaluation of F with the one received during
the last evaluation, and authorises the transfer of the secret key only if greater.
Before evaluating the function, progFE increases and stores its local counter.

To achieve rollback resilience for the progDE enclave, we can rely on existing
techniques in the literature, such as augmenting the enclave with asynchronous
monotonic counters [14], or using protocols like LCM [17] or ROTE [40]. For-
malising how these protocols can be combined with the Grollback

att functionality to
achieve the fully secure Gatt is left for future work.

We also note that Stateless functional encryption as implemented in IRON
is resilient to rollback and forking because there is little state held between
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computation. Since we assume C is honest, the only programs liable to be
attacked are DE and FE[F].

DE stores PKE Parameters after init setup, and the decrypted master secret
key after complete setup. The adversary could try to gain some advantage by
creating multiple PKE pairs before authenticating with the authority, but will
never has access to the raw sk unless combining it with a leakage attack. Denial
of Service is possible by creating concurrent enclaves (either DE or FE) with
different PKs, and passing encrypted ciphertexts to the “wrong” copy which
would be unable to decrypt (but it’s not clear what the advantage of using
rollback attacks would be, as the adversary could always conduct a DoS attack
by denying the necessary resources to the enclave).
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Abstract. A weak pseudorandom function (weak PRF) is one of the
most important cryptographic primitives for its efficiency although it
has lower security than a standard PRF.

Recently, Boneh et al. (TCC’18) introduced two types of new weak
PRF candidates, which are called a basic Mod-2/Mod-3 and alternative
Mod-2/Mod-3 weak PRF. Both use the mixture of linear computations
defined on different small moduli to satisfy conceptual simplicity, low
complexity (depth-2 ACC0) and MPC friendliness. In fact, the new can-
didates are conjectured to be exponentially secure against any adversary
that allows exponentially many samples, and a basic Mod-2/Mod-3 weak
PRF is the only candidate that satisfies all features above. However, none
of the direct attacks which focus on basic and alternative Mod-2/Mod-3
weak PRFs use their own structures.

In this paper, we investigate weak PRFs from two perspectives;
attacks, fixes. We first propose direct attacks for an alternative Mod-
2/Mod-3 weak PRF and a basic Mod-2/Mod-3 weak PRF when a circu-
lant matrix is used as a secret key.

For an alternative Mod-2/Mod-3 weak PRF, we prove that the adver-
sary’s advantage is at least 2−0.105n, where n is the size of the input
space of the weak PRF. Similarly, we show that the advantage of our
heuristic attack to the weak PRF with a circulant matrix key is larger
than 2−0.21n, which is contrary to the previous expectation that ‘struc-
tured secret key’ does not affect the security of a weak PRF. Thus, for an
optimistic parameter choice n = 2λ for the security parameter λ, param-
eters should be increased to preserve λ-bit security when an adversary
obtains exponentially many samples.

Next, we suggest a simple method for repairing two weak PRFs
affected by our attack while preserving the parameters.
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1 Introduction

A pseudorandom function (PRF) proposed by Goldreich, Goldwasser and Micali
[GGM86] is a keyed function which looks like a true random function. PRFs
have been widely used as building blocks to construct several cryptographic
primitives such as HMAC, digital signature and indistinguishability obfuscation
[Gol86,BCK96,App14,Bel15,ABSV15,BR17].

Weak PRFs, which satisfy weaker security and higher efficiency than
PRFs, are keyed functions whose input-output behaviors are indistinguish-
able from those of random functions when adversaries are limited to observ-
ing outputs mapped by randomly sampled inputs. Many cryptographic prim-
itives and applications are built from weak PRFs because of its efficiency
[DN02,MS07,Pie09,DKPW12,LM13,ASA17,BHI+20].

To construct more efficient weak PRFs, simple constructions are emphasized
to minimize the circuit complexity and depth. Akavia et al. proposed a simple
construction of weak PRFs which satisfies depth-3 ACC0 circuit complexity with
quasi-polynomial security [ABG+14].

As a line of work, Boneh et al. (TCC’18) proposed simple weak PRF can-
didates by mixing linear computations on different moduli [BIP+18]. Inspired
by a paper [ABG+14], they provided a weak PRF which satisfies the following
properties: conceptually simple structure, low complexity (depth-2 ACC0 cir-
cuit complexity) and MPC-friendliness. In particular, the new candidates are
the unique depth-2 weak PRFs conjectured to satisfy the exponential hardness
beyond the polynomial hardness. Moreover, they provided two types of param-
eters: optimistic and conservative. A conservative parameter is set to be secure
against the attacks for LPN problem, but it does not seem to be applicable to
weak PRFs. Thus, an optimistic choice was additionally proposed.

We now briefly describe the construction of Mod-2/Mod-3 weak PRFs in
[BIP+18]. For each Mod-2/Mod-3 weak PRF, a function F : Zn

2 × Z
m×n
2 → Z3

with an input x ∈ {0, 1}n is defined as follows. (For details, see the construction
3.1)

• Basic Mod-2/Mod-3:
For a “random” secret key A ∈ Z

m×n
2 , F(x,A) = map(A · x), where map is

a function from {0, 1}m to Z3 mapping a binary vector y = (yj) to an integer∑m
j=1 yj mod 3.1

• Circulant Mod-2/Mod-3:2

Take m = n. Then, it is exactly the same as a basic Mod-2/Mod-3 except A
is a circulant matrix.

1 For well-definedness, A · x is interpreted as a binary vector.
2 In the original paper [BIP+18], they used a Toeplitz matrix or a block-circulant

matrix as a secret key of weak PRF for its efficiency. However, in this paper, we
only deal with the case that a secret key of weak PRF is a circulant matrix which
is the same as block-circulant matrix in the original paper. Indeed, they said that
block-circulant matrix can be represented by a single vector’.
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• Alternative Mod-2/Mod-3:
Set m = 1. F(x,k) = (〈k,x〉 mod 2+〈k,x〉 mod 3) mod 2 for a random secret
key k ∈ {0, 1}n.

However, there is no direct or concrete attack for weak PRFs on their own
structures. Therefore, further cryptanalyses or security proofs are required to
break or support their conjectures and concrete security.

1.1 This Work

In this paper, we investigate Mod-2/Mod-3 weak PRFs in two perspectives;
attacks and fixes.

Attacks. Our concrete attacks mainly concentrate on two weak PRFs; an alter-
native and a circulant Mod-2/Mod-3 weak PRFs. As a result, we show that the
advantage of an alternative Mod-2/Mod-3 weak PRF is 2−0.105n with the size
of input space n. It is computed as the conditional probability of input vectors
given that the outputs are ‘zero’. Similarly, we provide a heuristic attack with
an advantage 2−0.21n and experimental results of a circulant weak PRF. This
result is contrary to the previous prediction that the parameters will not be
much affected by the structure of a key. Our attacks are the first attacks using
the structure of Mod-2/Mod-3 weak PRFs. Indeed, we first observe interesting
features of certain secret keys of weak PRFs and statistically attack them using
these features. As an example, a circulant matrix always preserves the number of
nonzero entries h in each column, so (1, ..., 1) is a left-eigenvector of a circulant
matrix with an eigenvalue h.

As a result, we introduce new concrete parameters of weak PRFs in Table 1. As
described in [BIP+18], we use two categories; optimistic and conservative parame-
ters. The optimistic parameter is chosen by the fact that the authors of the paper
speculate that the most efficient algorithm for solving LPN is not applicable to
attack weak PRF candidates. The conservative one is the same as a parameter that
is secure against LPN attacks, especially BKW attack [BKW03]. Moreover, we use
two types of concrete parameter estimation; λ = log2(T/ε2) and λ = log2(T/ε).
The latter one is traditionally used to measure the concrete security of symmet-
ric cryptography primitives [DS09], and the former one is proposed by Micciancio
and Walter [MW18] for measuring the concrete security of decision primitives.

Our attacks mainly exploit the conditional probabilities based on structures of
weak PRFs to distinguish weak PRF samples from uniform samples. More specif-
ically, an adversary model to attack an alternative Mod-2/Mod-3 weak PRF com-
putes Pr[xi = 0 | Fk(x) = 0 mod 2] for input x = (xj) ∈ {0, 1}n. If the probability
for some xi is far from 1/2 by 1

20.105n , we conclude that pairs of inputs and outputs
follow a distribution of an alternative weak PRF, not a uniform distribution. As
a result, this simple attack satisfies the following interesting features:

– Support a full parallel computing: when δ processors are given, the total time
complexity decreases from Ttotal to Ttotal/δ + O(δ)
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Table 1. Changes of concrete parameters for 128-bit security to prevent our attacks
with m = n. ‡

Mod-2/Mod-3 weak PRFs

Parameter choices Alternative Circulant key

[BIP+18] Optimistic − 256

Conservative 384 384

Ours log(T/ε2)-bit security 610 305

log(T/ε)-bit security 1220 610
‡ We take concrete parameters according to the guidance of
a paper [MW18]. For decision primitives, they recommended
λ = log2(T/ε2) rather than λ = log2(T/ε), with a cost T and
an advantage ε. The latter is also widely used in crypto commu-
nity. We include both results in Table 1. However, we mainly
deal with the measure λ = log2(T/ε2) in this paper.

– Require only O(n) memory space because calculating an average does not need
to store samples.

– Simply extend to Mod-p/Mod-q weak PRFs for any primes p and q: For an
alternative Mod-p/Mod-q, we show that the bigger pq is, the more powerful
our attack is. For example, an alternative and a circulant Mod-3/Mod-5 weak
PRFs should be set as n = 4000 and n = 2000, respectively, for 128-bit security
under the measure T/ε2.

For more details, we refer Sects. 4.1 and 4.2.

Fixes. We suggest simple variants of weak PRFs to be secure against our attacks
while preserving a depth of original weak PRFs and circuit class complexity
ACC0.

For an alternative case, our attack heavily relies on the number of nonzero
entries in the secret key k, so we easily present a new alternative candidate to
force the hamming weights of k. For instance, if we use the secret key with 310
nonzero entries, then it is secure against the statistical attack. Moreover, an
adversary cannot search k by brute-force attack since

(
384
310

) � 2256.
On the other hand, for repairing a circulant Mod-2/Mod-3 weak PRF, we

use two different vectors a and b to construct a secure circulant Mod-2/Mod-3
weak PRF. By the exploiting two secret vectors, we generate a new secret key
B such that for 1 ≤ i ≤ n/2, i-th row of B is rotation of the vector a, and
for n/2 < j ≤ n, j-th row vector is rotation of the vector b. Then, the fixed
Mod-2/Mod-3 weak PRF with the secret key B is secure against our attack since
a combination of two vectors can remove the structured weakness of circulant
matrix that the number of nonzero entries in column vector is always the same. In
other words, the vector of ones (1, · · · , 1) is not a left-eigenvector of B anymore.
Moreover, we heuristically confirm that combining the two vector strategy is an
appropriate approach for small n. Indeed, the experimental results show that
the advantage of a fixed candidate is larger than 2−0.5n, which means that it
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achieves 128-bit security against all known attacks without a parameter blow-up.
The size of PRF key of the fixed candidate is still smaller than that of random
key, and it preserves depth-2 ACC0 circuits and current parameter n. For more
details, we refer Sect. 5.

Discussion and Open Questions. Both attacks that we propose require expo-
nentially many samples. However, any of applications such as a secure multiparty
computation only requires a polynomial number of samples of weak PRFs. Thus,
they might be hard to affect any of the real world applications.

To overcome this situation, we discuss a few further works. Is there an
application for requiring an exponential number of samples? If it exists, the
application must consider parameters to be secure against our attacks. More-
over, it would be also interesting to extend our attack given a polynomial/sub-
exponential number of samples? Or is there an application to be possible to
amplify the number of samples?

One of the interesting approaches is to use the algebraic property of weak
PRFs since our attack only uses a statistical weakness of weak PRFs. Thus, it
still remains as an open problem that new algebraic or hybrid attacks against
these candidates.

Moreover, a direct attack as asymptotic and concrete perspectives for a basic
Mod-2/Mod-3 remains as an open question. Similarly, it would be interesting to
prove or disprove the exponential hardness of circular Mod-2/Mod-3 weak PRF
although the alternative one fails the exponential hardness due to the BKW
algorithm.

Organization. We describe preliminaries about definitions of PRF and weak
PRF, and some circuit complexities and results of k-xor problem in Sect. 2.
We explicitly describe the construction of weak PRF candidates in Sect. 3, and
provide cryptanalyses of an alternative Mod-2/Mod-3 weak PRF and a circulant
weak PRF in Sect. 4, respectively. In Sect. 5, we suggest a method to fix the
alternative and circulant Mod-2/Mod-3 weak PRFs.

2 Preliminaries

2.1 Notations

Matrices and vectors are written as bold capital letters, and bold lower-case
letters respectively. Moreover, we assume that the vectors are column form in
this paper, and i-th component of x will be denoted by xi. The transpose of a
matrix or vector is denoted by AT or xT . Moreover, we denote an inner product
between two vectors x and y by 〈x,y〉.

A square matrix A is called a circulant matrix which has a structure such
that (i, j) entry of A, Ai,j is given by Ai,j = aj−i mod n with a dimension n.
Thus, the circulant matrix is generated by a single vector (a1, a2, · · · an).

In is the n-dimensional identity matrix. Also, we denote the n-dimensional
vector that all entries are zero by 0n, and similarly, 1n is a vector that all entries
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are one. For the convenience of notation, we sometimes omit the subscript if it
does not lead to any confusion.

For any positive integer n, [n] is denoted by the set of integers {1, 2, · · · , n}.
All elements in Zq are represented by integers in range [0, q) for any positive
integer q. For a vector x, we use a notation [x]q to denote an “entrywise” modulo

q. i.e, [x]q = ([xi]q) for x = (xi). Let S be a finite set. Then, s
$←− S is denoted

that an element s is uniformly sampled from the set S.

Definition 2.1 (Pseudorandom function (PRF) in [BIP+18]). Let λ be
the security parameter. A (t(λ), ε(λ))-pseudorandom function family (PRF) is
a collection of functions Fλ : Xλ × Kλ → Yλ with a domain Xλ, a key space
Kλ and an output space Yλ such that for any adversary running time in t(λ), it
holds that ∣

∣
∣Pr[AFλ(·,k)(1λ) = 1] − Pr[Afλ(·)(1λ) = 1]

∣
∣
∣ ≤ ε(λ),

where k
$←− Kλ,and fλ

$←− Funs[Xλ,Yλ].

In this paper, PRF is sometimes called strong PRF to be distinguished from
the weak PRF in the below. The main difference between strong PRF and weak
PRF is that an adversary is limited to obtaining randomly chosen input vectors.

Definition 2.2 (Weak PRF). Let λ be the security parameter. A function
Fλ : Xλ × Kλ → Yλ with a domain Xλ, a key space Kλ and an output space Yλ

is called (�, t, ε)-weak PRF for any adversary running time in t(λ), it holds that

{(xi,Fλ(xi, k))}i∈[�] ≈ε {(xi, yi)}i∈[�]

where a key k
$←− Kλ, xi

$←− Xλ, and yi
$←− Yλ. We denote ≈ε by the advantage

of any adversary is smaller than ε.

3 Construction of Weak PRF Candidates

In this section, we briefly review how to construct weak PRF candidates proposed
by Boneh et al. [BIP+18]. All constructions consist of linear computations on
different moduli, which are deemed to be simple and efficient.

3.1 Mod-2/Mod-3 Weak PRF Candidate

In this section, we provide a basic construction of Mod-2/Mod-3 weak PRF
candidate. Mod-2/Mod-3 weak PRFs are easily extended to Mod-p/Mod-q con-
structions for arbitrary primes p and q.

Construction 3.1 (A basic Mod-2/Mod-3 weak PRF). For the security
parameter λ, a weak PRF candidate is a collection of functions Fλ : {0, 1}n ×
{0, 1}m×n → Z3 with a domain {0, 1}n, a key space {0, 1}m×n and an output
space Z3. For a fixed key A ∈ {0, 1}m×n, we use a notation FA : {0, 1}n → Z3

which defines as follows.
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1. Computes y = [A · x]2
2. Outputs map(y), where map is a function from {0, 1}m to Z3 which maps a

binary vector y = (yj) to an integer
∑m

j=1 yj mod 3.

Thus, we summarize FA(x) = map([A·x]2). This simple construction induced by
mixed linear computations on different moduli might be secure against previous
attacks. Moreover, the authors showed that a low-degree polynomial (rational
function) approximation of map is hard, and standard learning algorithms cannot
break these constructions. Furthermore, Conjecture 3.2 is proposed.

Conjecture 3.2 (Exponential Hardness of Mod-2/Mod-3 weak PRF).
Let λ be the security parameter. Then, there exist constants c1, c2, c3, c4 > 0
such that for n = c1λ,m = c2λ, � = 2c3λ, and t = 2λ, a function family {Fλ}
defined as Mod-2/Mod-3 construction is an (�, t, ε)-weak PRF for ε = 2−c4λ.

Remark 3.3. For the improved efficiency of Mod-2/Mod-3 weak PRFs in real
applications, a structured key A is used, not a random key from {0, 1}m×n. Thus
we expect the key size can be reduced when A is a block-circulant matrix or
Toeplitz matrix.3 Roughly speaking, a random key A requires mn key size, but
the key size of a structured key A is m + n, much smaller than mn. A basic
Mod-2/Mod-3 weak PRF with a circulant secret key A is called a circulant
Mod-2/Mod-3 weak PRF.

Concrete Parameters. They proposed two types of parameters; optimized and
conservative choices. The conservative choice, m = n = 384, is set to be robust
against the BKW attack for LPN problem. However, the BKW attack does not
seem to be applicable to this candidate, the optimized parameter, m = n = 2λ =
256, is also suggested to obtain 128-bit security.

3.2 Alternative Mod-2/Mod-3 Weak PRF Candidate

An alternative weak PRF is additionally proposed to obtain higher efficiency in
a two-party secure computation setting.

Construction 3.4 (Alternative Mod-2/Mod-3 weak PRF). For a secret
key k ∈ {0, 1}n, an alternative Mod-2/Mod-3 weak PRF is defined that for any
input x ∈ {0, 1}n,

F(k,x) = 〈k,x〉 mod 2 + 〈k,x〉 mod 3 mod 2.

For simplicity, we use a notation Fk(x) instead of F(k,x) on a key k ∈ {0, 1}n.

Concrete Parameters. Similar to a basic Mod-2/Mod-3 weak PRF, they con-
sider all known attacks to claim the security of the alternative candidate. More-
over, it resembles an LPN instance with a deterministic noise rate 1/3, so the
parameters are set as m = n = 384. For more details, see the original paper
[BIP+18] or later section.
3 In the original paper, the authors mentioned that a ‘block-circulant matrix’ can

be represented by a single vector. Thus, a block-circulant matrix is the same as a
circulant matrix in this paper.
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4 Cryptanalysis of Weak PRF Candidates

We now introduce our analysis on two weak PRF candidates; the alternative
Mod-2/Mod-3 and circulant Mod-2/Mod-3 weak PRFs. These attacks are also
applicable to an alternative and a circulant Mod-p/Mod-q weak PRF for arbi-
trary primes p and q.

4.1 Cryptanalysis of an Alternative Mod-2/Mod-3 Weak PRF

We briefly recall the construction of the alternative Mod-2/Mod-3 weak PRF
with the secret key k ∈ {0, 1}n

Fk(x) = (〈k,x〉 mod 2 + 〈k,x〉 mod 3) mod 2.

We simply observe that Fk(x) = 0 mod 2 if and only if 〈k,x〉 = 0, 1, 2 mod 6. In
other words, one can understand that Fk(x) is an operation on the Z6 space.

On the other hand, since the secret key k and input vector x are made up
of only 0 and 1, we conjecture that Fk(x) would not cover the whole uniformly.
Thus, we can present the statistical attack for the alternative alternative Mod-
2/Mod-3 weak PRF.

Based on the intuition, we obtain the following theorem.

Theorem 1. Let k ∈ {0, 1}n be the secret key of the alternative Mod-2/Mod-3
weak PRF and Fk a function as defined above. If h is the hamming weight of k,
then we can show that there exists j ∈ [n] such that

∣
∣
∣
∣Pr[xj = 0 | kj = 1 and Fk(x) = 0 mod 2] − 1

2

∣
∣
∣
∣ ≈ 1

20.21h

Therefore, if the number of samples, �, is O(20.21h), one can distinguish
{(xi,Fλ(xi,k))}i∈[�] from the uniform samples {(xi, yi)}i∈[�].

Then, our attack for alternative Mod-2/Mod-3 weak PRF is very simple.
After an adversary collects � = c1 · 20.21n samples whose output is 0 for some
constant c1, the distinguishing attack computes a conditional probability Pr[xj =
0 | Fk(x) = 0 mod 2] for each index j ∈ [n]. If there exists an index j such that
it is apart from 1/2 by 1

20.105n , we conclude that an adversary has alternative
Mod-2/Mod-3 weak PRF samples.

To compute the conditional probability, we exploit a simple lemma.

Lemma 4.1. Let n be a positive integer. For all 0 ≤ a ≤ 5, the following
equation holds.

∑

a+6k≤n

(
n

a + 6k

)

=
1
6

⎛

⎝
5∑

j=0

(wj)6−a · (1 + wj)n

⎞

⎠ .

where w is 6-th root of unity, 1+
√
3i

2 .
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Proof. Since w is 6-th root of unity, the following equations hold.

(1 + wj)n =
n∑

a=0

(
n

a

)

(wj)a, 1 + w + w2 + w3 + w4 + w5 = 0.

Then, the equations imply that
∑5

j=0(w
j)6−a · (1 + wj)n can be rewritten as

follows.

5∑

j=0

(wj)6−a · (1 + wj)n =
5∑

j=0

n∑

k=0

(
n

k

)

(wj)k(wj)6−a

=
n∑

k=0

(
n

k

)

{
5∑

j=0

(wj)6−a+k}

=
∑

k≡a (mod 6)

(
n

k

)

· 6

=
∑

a+6k≤n

(
n

a + 6k

)

· 6


�
For the sake of explanation, suppose that the first h elements of k are all 1,

and the others are zero. Then, we observe that

〈k,x〉 = x1 + · · · + xh.

Note that a value xi with i > h has no effect on the result 〈k,x〉 since ki is
zero. Therefore, we only consider xi for i ∈ [h]. For all j ∈ [h], the conditional
probability of xj given by Fk(x) = 0 mod 2 is that

Pr[xj = 0 | Fk(x) = 0 mod 2] =

∑� h−1
6 �

k=0

(
h−1
6k

)
+

(
h−1
6k+1

)
+

(
h−1
6k+2

)

∑� h
6 �

k=0

(
h
6k

)
+

(
h

6k+1

)
+

(
h

6k+2

) . (1)

For events A : [Fk(x) = 0 mod 2], and B : [xj = 0], the left-hand side of
the Eq. (1) equals to Pr[A

⋂
B]

Pr[A] . As we mentioned, it holds that Fk(x) = 0 mod 2
if and only if 〈k,x〉 = 0, 1, 2 mod 6. Moreover, for every k ∈ {0, · · · , �h−1

6 }
and a ∈ {0, · · · , 5},

(
h

6k+a

)
if and only if 〈k,x〉 = a mod 6 because of 〈k,x〉 =

∑h
i=1 xi. Thus, Pr[A] equals to the denominator of the right-hand side of the

Eq. (1).
On the other hand, for some j, A

⋂
B : [xj = 0 & Fk(x) = 0 mod 2]. Hence,

it holds that 〈k,x〉 =
∑h

i=1,i 	=j xi to satisfy the event A
⋂

B. Similarly, we also
show that Pr[A

⋂
B] is the same as the numerator of the right-hand side of the

Eq. (1) since the number of possible variables is h − 1 because of xj = 0. As a
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result, with the Lemma 4.1 and the properties of 6-th root of unity w, we can
calculate the conditional probability that we desired.

Pr[xj = 0 | Fk(x) = 0 mod 2] =

∑� h−1
6 �

k=0

(
h−1
6k

)
+

(
h−1
6k+1

)
+

(
h−1
6k+2

)

∑� h
6 �

k=0

(
h
6k

)
+

(
h

6k+1

)
+

(
h

6k+2

)

=

∑5
j=0(1 + (wj)5 + (wj)4) · (1 + wj)h−1

∑5
j=0(1 + (wj)5 + (wj)4) · (1 + wj)h

=
3 · 2h−1 + 2w5 · (1 + w)h−1 + 2w · (1 + w5)h−1

3 · 2h + 2w5 · (1 + w)h + 2w · (1 + w5)h

=
3 · 2h−1 + 2w5 · (w5i

√
3)h−1 + 2w · (−wi

√
3)h−1

3 · 2h + 2w5 · (w5i
√

3)h + 2w · (−wi
√

3)h

=
1

2
+

(w5i
√

3)h−1 · w4 + (−wi
√

3)h−1 · w2

3 · 2h + 2w5 · (w5i
√

3)h + 2w · (−wi
√

3)h

where w is 6-th root of unity, 1+
√
3i

2 . Thus, we can obtain the following lemma.

Lemma 4.2. Let h be the hamming weight of the secret key k. For all i ∈ [h],

Pr[xi = 0 | Fk(x) = 0 mod 2] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − (i

√
3)h

3·2h+2·(i√3)h
h = 6k

1
2 − (i

√
3)h−1

3·2h+6·(i√3)h−1 h = 6k + 1
1
2 h = 6k + 2
1
2 + 3(i

√
3)h−3

3·2h+18·(i√3)h−3 h = 6k + 3
1
2 + 9(i

√
3)h−4

3·2h+18·(i√3)h−4 h = 6k + 4
1
2 + 18(i

√
3)h−5

3·2h h = 6k + 5

Proof (of Lemma 4.2). The proof only requires straightforward (but tedious)
computations, so we only deal with a case of h = 6k. Computations of the
others are almost the same as the case h = 6k.

Pr[xi = 0 | Fk(x) = 0 mod 2] =
1

2
+

(w5i
√

3)6k−1 · w4 + (−wi
√

3)6k−1 · w2

3 · 26k + 2w5 · (w5i
√

3)6k + 2w · (−wi
√

3)6k

=
1

2
+

(w5 − w) · (i
√

3)6k−1

3 · 26k + 2(w5 + w) · (i
√

3)6k

=
1

2
+

−(i
√

3)6k

3 · 26k + 2(i
√

3)6k

=
1

2
− (i

√
3)h

3 · 2h + 2 · (i
√

3)h


�
Since the simple attack does not work if h ≡ 2 mod 6, another adversary is
required. A new adversary computes a conditional probability of xi = xj =
0 with i �= j given by Fk(x) = 0. Then, through similar computations from
Lemma 4.2, we obtain the below lemma.
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Lemma 4.3. Let h be the hamming weight of the secret key k. If i �= j ∈ [h]
and h ≡ 2 mod 6,

Pr[xi = 0, xj = 0 | Fk(x) = 0 mod 2] =

∑� h−2
6 �

k=0

(
h−2
6k

)
+

(
h−2
6k+1

)
+

(
h−2
6k+2

)

∑� h
6 �

k=0

(
h
6k

)
+

(
h

6k+1

)
+

(
h

6k+2

)

=
1
4

− (i
√

3)h−2

3 · 2h + 12(i
√

3)h−2

According to Lemmas 4.2, 4.3, the advantage of an alternative Mod-2/Mod-3

weak PRF is larger than ch ·
(√

3
2

)h

≈ 1
20.21h . Moreover, since k is chosen uni-

formly from the set {0, 1}n, we assume that h is n
2 without loss of generality.

Thus, the advantage is larger than 1
20.105n . As a result, to preserve 128-bit secu-

rity, a parameter n should increase from 384 to 610 or 1220 under the measure
log T

ε2 or log T
ε with a cost T and an advantage ε.

The Theorem 1 is proved by Lemma 4.2 and Lemma 4.3.

Compare to BKW Algorithm. The construction of the alternative Mod-
2/Mod-3 weak PRF is quite similar to LPN problem with a noise rate 1/3.
Thus, one expects that the algorithm proposed by Blum, Kalai, and Wasser-
man [BKW03], one of the current best attacks for LPN with a constant noise
rate, can be applicable to alternative Mod-2/Mod-3 weak PRF.

The difference between conventional LPN instances and pseudo-LPN
instances from alternative Mod-2/Mod-3 weak PRF is that the error terms of
pseudo-LPN instances are of the form

∑
i kixi mod 3 mod 2, which means that

the error terms are always correlated to the input x, and the secret key k. How-
ever, the error terms of conventional LPN instances are independent to the input,
and the independence has implicitly used to analyze the BKW algorithm.

On the other hand, Bogos, Tramèr and Vaudenay [BTV16] mentioned that
BKW algorithm heuristically works in spite of dependence of the error term.
Therefore, BKW attack can be heuristically applied to analyze the alternative
Mod-2/Mod-3 weak PRF. Therefore, it cannot achieve the exponential hardness
conjecture like the basic Mod-2/Mod-3 weak PRF since the time complexity of
BKW is sub-exponential in a dimension n. However, the BKW attack cannot
impact on the concrete parameter since the alternative candidate already sets
parameters to be secure against the BKW attack. The original paper already
mentioned that a parameter n = 384 captures 128-bits security.

Unlike the BKW attack, our attack which exploits statistical properties takes
exponential time in a dimension n, but when exponentially many samples are
allowed, our attack can affect the concrete parameters. To be secure against our
attack, the parameter n should be set at least 610 as in Table 1.

Remark 4.4. Our attack is easily extended to an alternative Mod-p/Mod-q weak
PRF for arbitrary primes p and q. Following our proof, the adversary’s advantage

of an alternative Mod-p/Mod-q is larger than ch ·
∣
∣
∣
wpq+1

2

∣
∣
∣
h

≈
(
cos

(
π
pq

))h

where
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wpq is pq-th root of unity. Therefore, our attach is getting more powerful as pq gets
bigger. For example, the advantage of an alternative Mod-3/Mod-5 weak PRF is
larger than

(
cos

(
π
15

))h ≈ 1
20.032h , so n should be increased to 4000 for the 128-bit

security under a measure T/ε2 if h = n/2.

Remark 4.5. Since our attack just computes conditional probabilities, there
exist interesting features.

• Full parallel computations are allowed. Hence, if there are δ processors, total
time complexity is reduced from O(20.21n) to O(20.21n/δ) + O(δ).

• An adversary does not need to store many weak PRF samples. Thus, Our
attack is a space efficient algorithm. It requires only O(n) space even though
our attack needs a lot of samples.

Remark 4.6. An alternative construction can be reinterpreted by operations on
mod 6 space. However, an input space of this construction is only {0, 1}n, not a
full space Zn

6 . This might be a statistical weakness of the alternative weak PRF.

4.2 Cryptanalysis of a Circulant Mod-2/Mod-3 Weak PRF

As stated in Remark 3.3, structured keys are widely used to provide higher
efficiency. In this section, we provide a heuristic analysis of a circulant Mod-
2/Mod-3 weak PRF candidate.4 We briefly recall a circulant Mod-2/Mod-3 weak
PRF. For a circulant matrix A ∈ Z

n×n
2 with generated by a vector a ∈ Z

n
2 ,

FA(x) = map(A · x),

where map is a function from {0, 1}n to Z3 mapping a binary vector y = (yj) to
an integer

∑m
j=1 yj mod 3.

We first present several observations of a circulant Mod-2/Mod-3 weak PRF
under the secret key A.

• 1T · A = h(1, · · · , 1)
• 1T · A · x = h · hx where hx is the number of 1’s in an input x
• 1T · [A · x]2 ≡ h · hx mod 2
• If hx is even, then the number of 1’s in [A · x]2 is also even.

The key ingredient of the attack for a circulant weak PRF is that [A · x]2 pre-
serves the parity of x if hx is even. If FA(x) truly behaves a random element,
it never keeps the parity even if hx is even. Similar to Sect. 4.1, by limiting the
parity of [A ·x]2, we could distinguish a circulant Mod-2/Mod-3 weak PRF from
uniform. Indeed, it might be conjectured that Pr[FA(x) ≡ 0 mod 3 | hx is even]
or Pr[FA(x) ≡ 2 mod 3 | hx is even] is apart from 1/2.

With the intuition, if [A · x]2 is component-wise independent, then we can
directly compute values Pr[FA(x) ≡ 0 mod 3 | hx is even] and Pr[FA(x) ≡ 2

4 As stated in Sect.1, a circulant matrix is exactly the same a block-circulant in
[BIP+18].



Adventures in Crypto Dark Matter 751

mod 3 | hx is even]. Then, we obtain that an adversary’s advantage is larger than

cn ·
(√

3
2

)n

≈ 1
20.21n for some very small constant cn.

Unfortunately, no one could be sure whether the components of [A·x]2 behave
independently since A is a circulant matrix. Therefore, we will give experimental
results to support that the above conditional probabilities are almost the same
as the results of Lemmas 4.7 and 4.8, where the lemmas are assumed to be
independent of each component. (See experimental results 4.9.) As a result, we
obtain the following theorem.

Theorem 2. Let A ∈ {0, 1}n×n be a circulant matrix used in a Mod-2/Mod-3
weak PRF as a secret key and hx be the hamming weights of a vector x. Then,
we can heuristically show that

∣
∣
∣
∣Pr[FA(x) ≡ 0 mod 3 | hx is even] − 1

3

∣
∣
∣
∣ ≈ 1

20.21n
if n �= 3 mod 6

∣
∣
∣
∣Pr[FA(x) ≡ 2 mod 3 | hx is even] − 1

3

∣
∣
∣
∣ ≈ 1

20.21n
if n = 3 mod 6

Therefore, if the number of samples, � = O(20.42n), one can distinguish
{(xi,FA(xi))}i∈[�] from the uniform samples {(xi, yi)}i∈[�].

Now, we give an analysis under the assumption that a vector is component-
wise independent. For the avoidance of confusion, we newly define a random
variable Y as follows. Let Y be a multivariate random variable that follows a
distribution on {0, 1}n that each entry is independently and uniformly sampled
from {0, 1}. Then, the conditional probability of 1T · y = 0 mod 3 given that y
is uniformly sampled from Y and hy is even is

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =
∑� n

6 �
k=0

(
n
6k

)

∑� n
6 �

k=0

(
n
6k

)
+

(
n

2+6k

)
+

(
n

4+6k

) (2)

We first note that hy = 1T ·y = 〈1,y〉 since y ∈ {0, 1}n, and will gain use the
fact that

(
n

6k+a

)
if and only if 〈1,y〉 = a mod 6 for every k ∈ {0, · · · , �n−1

6 } and

a ∈ {0, · · · , 5}. For events A : [y $←− Y & hy is even], and B : [1T ·y = 0 mod 3],
we easily observe that Pr[A] equals to the denominator of the right-hand side
of the Eq. (2). Moreover, we easily verify that the probability Pr[A

⋂
B] equals

to the numerator of the right-hand side of the Eq. (2). Therefore, with the
Lemma 4.1 and the properties of 6-th root of unity w, we obtain the following.

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =
∑� n

6 �
k=0

(
n
6k

)

∑� n
6 �

k=0

(
n
6k

)
+

(
n

2+6k

)
+

(
n

4+6k

)

=
∑5

k=0(1 + wk)n

6 · 2n−1
=

1
3

+
w2n((−i

√
3)n + (−1)n) + w4n((i

√
3)n + (−1)n)

6 · 2n−1

where w is 6-th root of unity, 1+i
√
3

2 . Similar to the above section, a straightfor-
ward computation leads us the following lemmas.
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Lemma 4.7. Let Y be a multivariate random variable that follows a distribution
on {0, 1}n that each entry is independently and uniformly sampled from {0, 1}.
Then, the conditional probability of 1T · y = 0 mod 3 given that y is uniformly
sampled from Y and hy is even is that

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 + 2(i

√
3)n+2

6·2n−1 n = 6k
1
3 + 3(i

√
3)n−1+1

6·2n−1 n = 6k + 1
1
3 − (i

√
3)n+1

6·2n−1 n = 6k + 2
1
3 + −2

6·2n−1 n = 6k + 3
1
3 − (i

√
3)n+1

6·2n−1 n = 6k + 4
1
3 − 3(i

√
3)n−1−1

6·2n−1 n = 6k + 5

Proof (of Lemma 4.7). Repetitive computations are required to prove this
lemma. Similar to the proof of Lemma 4.2, we only leave a proof of a case
n = 6k for readability.

Pr[1T · y = 0 mod 3 | y $←− Y, hy is even] =
∑� n

6 �
k=0

(
n
6k

)

∑� n
6 �

k=0

(
n
6k

)
+

(
n

6k+2

)
+

(
n

6k+4

)

=
2n + (1 + w)n + (1 + w2)n + (1 + w4)n + (1 + w5)n

3 · 2h

=
2n + (w5i

√
3)n + (−w4)n + (−w2)n + (−wi

√
3)n

3 · 2n

=
2n + 2(i

√
3)n + 2

3 · 2n
=

1
3

+
2(i

√
3)n + 2

6 · 2n−1


�
If n ≡ 3 mod 6, we require an extra analysis to point out a weakness of circulant
Mod-2/Mod-3 weak PRF. However, we easily overcome this situation by com-
puting a new conditional probability. Indeed, through similar computations of
Lemma 4.7, we obtain the below lemma.

Lemma 4.8. Let Y be a random variable defined on Lemma 4.7. If n is 6k +3,
then we have that

Pr[1T ·y = 2 mod 3| y $←− Y, hy is even] =

∑� n
6 �

k=0

(
n

6k+2

)

∑� n
6 �

k=0

(
n
6k

)
+

(
n

2+6k

)
+

(
n

4+6k

)

=
1
3

+
w2n+4((−i

√
3)n + (−1)n) + w4n+2((i

√
3)n + (−1)n)

6 · 2n−1

=
1
3

− 3(−i
√

3)n−1 + (−1)n

6 · 2n−1

Experiments 4.9. To support our expectation, we implement experiments in
accordance with
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1. Sample a random vector a from {0, 1}n.
2. Construct a circulant matrix A using the sampled vector a.5

3. Compute FA(x) for sufficiently many x’s.
4. Compute a conditional probability as done in the above two lemmas.
5. Go to 1 again.

Then, we can provide experimental results to support that Pr[FA(x) ≡ 0 mod
3 | hx is even] and Pr[FA(x) ≡ 2 mod 3 | hx is even] are almost the same as
results of Lemmas 4.7 and 4.8.

In Fig. 1, we first regard (logarithms of) the averages of the above conditional
probabilities for several n, as blue points. Then, we draw a trend line from them.
The (logarithm) trend line is 0.2038n+0.4537 similar to 2−0.21n induced by our
computations.

We also conducted several experiments for a fixed n. For case n ≤ 18, we ran
experiments for all possible base vectors to demonstrate that our experiments
are not lucky cases. For the same reason, 128 random base vectors were used to
support our heuristic assumptions for n = 32, 40 and 50.

Fig. 1. Averages of (logarithm) biases according to n and its trend line.

During experiments, we observed some irregularities outside of our expecta-
tions. For example, under the case n = 218, there are 3.2% = (8422/218) base
vectors that our assumption is invalid even though the analysis does not depend
on the form of A. Indeed, the value of red points drawn along the irregular
cases in Fig. 2a is much smaller than that of the green points that follow our
prediction. However, for these cases, we gathered x’s with odd hx. Then, we
observe that the maximum value M of {Mα,β}α∈{0,2},β∈{odd, even}, where Mα,β

is defined as (3), is far from 1/3 by at least 1
20.21n in Fig. 2b, which supports that

our attacks succeed regardless of the base vector a.

Mα,β :=
∣
∣
∣
∣Pr[FA(x) ≡ α mod 3 | hx is β] − 1

3

∣
∣
∣
∣ (3)

5 We call a a base vector.
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Fig. 2. Experimental results of all base vectors in {0, 1}n with n = 218. The x-axis is
the decimal representation of the all base vectors. Note that every binary vector with
the length n can be represented by an integer ≤ 2n.

The Theorem 2 is proved by Lemma 4.7, Lemma 4.8 and experimental
results 4.9.

Remark 4.10. The above mentioned Remarks 4.4 and 4.5 are also satisfied
with a circulant Mod-p/Mod-q weak PRF. As an example, we observe that the
advantage of a circulant Mod-3/Mod-5 weak PRF is larger than

(
cos

(
π
15

))n ≈
1

20.032n from the same computation, so n should be increased to 2000 for the
128-bit security under a measure T/ε2 = 2λ.

5 How to Fix a Weakness of Mod-2/Mod-3 Weak PRFs

In this section, we suggest modified weak PRF candidates to prevent statistical
attacks while preserving low depth and its circuit complexity. Thus, we think
that fixed weak PRFs are still MPC friendly. Since our attacks use the biases
of conditional probabilities, if the bias of the probability becomes smaller, our
attacks become weaker.

An Alternative Mod-2/Mod-3 weak PRF. We are easily able to fix an
alternative Mod-2/Mod-3 weak PRF since our attack heavily depends on the
hamming weights of the secret key k. More specifically, under the current param-
eter n = 384, when we set the hamming weights h = 310 that is larger than n/2,
it is secure against our statistical attacks. Moreover, this simple variant is secure
against all known attacks presented by the original paper since they do not
consider the hamming weights of the secret vector. Also, it is robust against
brute-force attacks for finding the secret key because of log2

(
384
310

) � 200. Thus,
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the fixed scheme preserves the depth-2 ACC0 circuit complexity and current
parameters.

A Circulant Mod-2/Mod-3 weak PRF. Our strategy is to break a weak
structure of a circulant Mod-2/Mod-3 weak PRF that preserves a parity of [Ax]2
if hx is even for any circulant matrix A. To avoid a weakness, we inject an extra
secret vector and generate a new secret key B with two secret vectors. We name
B a semi-circulant key. Previously, a circulant secret key is generated by a single
vector. For explanation, let a and b be secret vectors. Then, we construct a
secret matrix B as follows. For simplicity’s sake, assume that n is even.

– Set initial vectors such that the first row of B is a and n/2-th row of B is b.
– For each 2 ≤ i ≤ n/2, i-th row of B is ρi(a), where ρi(a) shifts one element

to the right relative to the ρi−1(a) with ρ1(a) = a and ρn+1(a) = a.
– Similarly, for each n/2 < j ≤ n, j-th row of B is ρj(b).

Then, we observe that each column of a matrix B does not preserve hamming
weights, so vectors of ones (1, · · · , 1) is not a left-eigenvector of B. Thus, we
can easily fix a circulant Mod-2/Mod-3 weak PRF against all known attacks
including our statistical attack. Moreover, the size of PRF key is still smaller
than that of random key, and it preserves the current parameter n and depth-2
ACC0 circuits.

To support that the simple modification to a semi-circulant key B is reason-
able, we conducted experiments for several n and types of secret key; random
A and semi-circulant B. To construct a semi-circulant key B, we randomly
choose two vectors from {0, 1}n. For n = 16, 18, we experimented with 128 dif-
ferent secret keys to compute (average of) logarithm biases of the statistical
attack. Similarly, for n = 24, 28, we provided experimental results for 20 dif-
ferent secret keys. Moreover, for each case, 2n samples were used to compute
accurate M = maxα,β{Mα,β}α∈{0,2},β∈{odd, even}.

According to the above graph, we observe that a semi-circulant weak PRF
with B, behaves Mod-2/Mod-3 weak PRF with random secret key A. More-
over, the fixed candidate is secure against all known attacks under the current
parameters n = m = 256 since its advantage is already larger than 2−0.5n.

The fixed candidate would be also interesting since it almost preserves the
advantage of a circulant Mod-2/Mod-3 weak PRF: a quasi-linear multiplication
time. Since the semi-circulant matrix consists of two secret vectors with their
rotations, by computing two circulant matrix-vector multiplications, we easily
obtain outputs of the semi-circulant Mod-2/Mod-3 weak PRFs. Thus, the fixed
candidate still allows a quasi-linear multiplication time although its real time is
twice slower than the circulant Mod-2/Mod-3 weak PRF (Fig. 3).
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Fig. 3. Averages of (logarithm) biases according to n and types of secret keys and their
trend lines.

Remark 5.1. We observe that the weakness of a circulant Mod-2/Mod-3 weak
PRF might come from a structured property of A. Indeed, we observe that if we
break down the property using two secret vectors, then a Mod-2/Mod-3 weak
PRF with secret key B is secure against our attack although a circulant with key
A is vulnerable to our attack. Thus, we can make a hypothesis that a structured
chaos of the secret key implies the security of weak PRF candidates.

Remark 5.2. The main idea of our revision of weak PRF candidates is to
change the way secret keys are sampled (a single vector with high hamming
weights, or a semi-circulant key) while preserving the parameters. Thus, it is
more efficient than the basic revision that increases the key size.
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A Definitions about Circuit Class

In this section, we deal with definitions about the circuit class in [BIP+18].

Definition A.1 (in [BIP+18]). For any integer m, the MODm gate outputs 1
if m divides the sum of its inputs, and 0 otherwise.

Definition A.2 (Circuit Class ACC0 in [BIP+18]). For integers m1, · · · ,
mk > 1, ACC0[m1, · · · ,mk] is the set of languages L decided by some cir-
cuit family {Cn}n∈N with constant depth, polynomial size, and consisting of
unbounded fan-in AND, OR, NOT and MODm1 , · · · ,MODmk

gates. Moreover,
ACC0 is denoted by the class of all languages that is in ACC0[m1, · · · ,mk] for
some k ≥ 0 and integers m1, · · · ,mk > 1.

B Simple Non-adaptive Attack

In this section, we provide a simple non-adaptive attack of a basic Mod-2/Mod-3
weak PRF, which runs in polynomial time n. The attack is motivated by rank
attack [CVW18,CHVW19].

Assume that adversary has exponentially many samples (zi, vi). The goal
is to determine whether vi is uniformly sampled from Z3 or sampled from a
Mod-2/Mod-3weak PRF.

Let s be an integer > max{m,n}. Then, our attack is:

1. Find s2 pairs of vectors {(xi,yj)}i,j∈[s] such that zi,j = xi + yj for some zi,j

in a list of samples.
2. Construct a matrix M = (vi,j), where vi,j is a sample corresponding to a

vector zi,j .
3. Compute a rank of M.

For an analysis, we borrow a polynomial representation of FA(x) in
[BIP+18].

FA(x) =
m∑

i=1

⎛

⎝
n∏

j=1

(1 + xj)ai,j − 1

⎞

⎠ ,

where a matrix A = (ai,j) ∈ {0.1}m×n and a vector x = (xi) ∈ {0, 1}n. Note
that since ai,j is 0 or 1, the following lemma is trivial.

Lemma B.1. Mod-2/Mod-3 weak PRF is interpreted as a product of matrices.
More precisely, for a key A = (ai,j) ∈ {0, 1}m×n and a vector x = (xi) ∈ {0, 1}n,

FA(x) + n =
n∑

i=1

fi(x) = 1T ·
n∏

i=1

(I + diag(xiAi)) · 1



758 J. H. Cheon et al.

where Ai is the i-th column of A, and fi(x) =
∏n

j=1(1+ai,jxj), and diag(xiAi)
is a diagonal matrix whose j-th diagonal entry is the same as j-th component of
a vector xiAi.

Based on the above lemma, we complete the non-adaptive attack. When vi,j ’s
are truly random, a rank of M is s with high probability. However, if it is of the
form map(A · ([xi + yj)]2), then a matrix M is divided into a product of two
matrices using Lemma B.1.

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1T · H(x1)
1T · H(x2)
1T · H(x3)

...
1T · H(xρ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
(
H(y1) · 1, H(y2) · 1, H(y3) · 1, · · · , H(yρ) · 1

)

Hence, a rank of M is bounded by min(m,n) with high probability. The attack
runs in O(n) time and space.

The rank attack only succeeds when an adversary is possible to use an oracle
access to input queries. However, in the setting of weak PRF, inputs are selected
randomly from {0, 1}n, our attack does not work anymore.
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