
The Weisfeiler-Leman Algorithm
and Recognition of Graph Properties

Frank Fuhlbrück1, Johannes Köbler1, Ilia Ponomarenko2,3,
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Abstract. The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a
very useful combinatorial tool in graph isomorphism testing. We address
the applicability of k-WL to recognition of graph properties. Let G be
an input graph with n vertices. We show that, if n is prime, then vertex-
transitivity of G can be seen in a straightforward way from the output of
2-WL on G and on the vertex-individualized copies of G. This is perhaps
the first non-trivial example of using the Weisfeiler-Leman algorithm
for recognition of a natural graph property rather than for isomorphism
testing. On the other hand, we show that, if n is divisible by 16, then
k-WL is unable to distinguish between vertex-transitive and non-vertex-
transitive graphs with n vertices unless k = Ω(

√
n).

1 Introduction

The k-dimensional Weisfeiler-Leman algorithm (k-WL), whose original, 2-dimen-
sional version [20] appeared in 1968, has played a prominent role in isomorphism
testing already for a half century. Given a graph G with vertex set V , k-WL
computes a canonical coloring WLk(G) of the Cartesian power V k. Let ̂WLk(G)
denote the multiset of colors appearing in WLk(G). The algorithm decides that
two graphs G and H are isomorphic if ̂WLk(G) = ̂WLk(H), and that they
are non-isomorphic otherwise. While a negative decision is always correct, Cai,
Fürer, and Immerman [5] constructed examples of non-isomorphic graphs G and
H with n vertices such that ̂WLk(G) = ̂WLk(H) unless k = Ω(n). Nevertheless,
a constant dimension k suffices to correctly decide isomorphism for many special
classes of graphs (when G is in the class under consideration and H is arbitrary).
For example, k = 2 is enough if G is an interval graph [10], k = 3 is enough for
planar graphs [15], and there is a constant k = k(M) sufficient for all graphs
not containing a given graph M as a minor [13]. Last but not least, k-WL is an
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important component in Babai’s quasipolynomial-time algorithm [3] for general
graph isomorphism.

In the present paper, we initiate a discussion of the applicability of k-WL to
recognition of graph properties rather than to testing isomorphism. That is, given
a single graph G as input, we are interested in knowing which properties of G can
be easily detected by looking at WLk(G) or, in other words, for which decision
problems the execution of k-WL on an input graph is a reasonable preprocessing
step. Of course, some regularity properties are recognized in a trivial way. For
example, G is strongly regular if and only if 2-WL splits V 2 just in the diagonal
{(u, u) : u ∈ V }, the adjacency relation of G, and the complement.

For a graph property P, we use the same character P to denote also the class
of all graphs possessing this property. While the multiset of canonical colors
̂WLk(G) retains the isomorphism type of the original graph G only if k is suffi-
ciently large, the coloring WLk(G) of V k does this for every k. This means that,
at least implicitly, WLk(G) contains the information about all properties P of
G. It is, however, a subtle question whether any certificate of the membership of
G in P can be extracted from WLk(G) efficiently. Even when the isomorphism
type of every graph in P is known to be identifiable by k-WL for some k, we can
only be sure that k-WL distinguishes P from its complement, in the following
sense: If G ∈ P and H /∈ P, then ̂WLk(G) �= ̂WLk(H). However, given the last
inequality, we might never know whether G ∈ P and H /∈ P or whether H ∈ P
and G /∈ P. As a particular example, the fact that 2-WL decides isomorphism
of interval graphs or that 3-WL decides isomorphism of planar graphs does not
seem to imply, on its own, any efficient recognition algorithm for these classes.

We address the applicability of k-WL to recognition of properties saying that
a graph is highly symmetric.

Deciding Vertex-Transitivity. A graph G is vertex-transitive if every ver-
tex can be taken to any other vertex by an automorphism of G. It is unknown
whether the class of vertex-transitive graphs is recognizable in polynomial time.
The isomorphism problem for vertex-transitive graphs reduces to their recogni-
tion problem, and its complexity status is also open. In the case of graphs with
a prime number p of vertices, a polynomial-time recognition algorithm is known
due to Muzychuk and Tinhofer [18]. Their algorithm uses 2-WL as preprocessing
and then involves a series of algebraic-combinatorial operations to find a Cayley
presentation of the input graph. It is known [19] that, if p is prime, then every
vertex-transitive graph with p vertices is circulant, i.e., a Cayley graph of the
cyclic group of order p. Our first result, Theorem 1, shows a very simple, purely
combinatorial way to recognize vertex-transitivity of a graph G with p vertices.
Indeed, vertex-transitivity can immediately be detected by looking at the outde-
grees of the monochromatic digraphs in WL2(G) and WL2(Gu) for all copies of
G with an individualized vertex u. Our algorithm takes time O(p4 log p), which is
somewhat better than the running time O(p5 log2 p) of the algorithm presented
in [18]. However, we believe that the main beneficial factor of our approach is
its conceptual and technical simplicity.
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Note that the research on circulant graphs has a long history; see, e.g., [2,17].
This class of graphs can be recognized in polynomial time [7], but whether or
not this can be done by means of k-WL is widely open. The dimension k = 2
would clearly suffice if the algorithm could identify a cyclic order of the vertices
in an input graph corresponding to its cyclic automorphism. However, it would
be too naive to hope for this because such an order is, in general, not unique, not
preserved by automorphisms and, hence, not canonical, even when the number
of vertices is prime.

The analysis of our algorithm is based on the theory of coherent configura-
tions (we provide a digest of main concepts in Sect. 3.1). In fact, our exposition,
apart from the well-known facts on circulants of prime order, uses only several
results about the schurity property of certain coherent configurations.

Lower Bounds for the WL Dimension. Since the work of Muzychuk and
Tinhofer [18] the polynomial-time recognizability of vertex-transitive graphs
with a prime number of vertices remains state-of-the-art in the sense that, to the
best of our knowledge, no polynomial-time algorithm is currently known that
recognizes vertex-transitivity on all n-vertex input graphs for infinitely many
composite numbers n. Motivated by this fact, we complement our algorithmic
result by exploring the limitations of the k-WL-based combinatorial approach
to vertex-transitivity. We prove that, if n is divisible by 16, then k-WL is unable
to distinguish between vertex-transitive and non-vertex-transitive graphs with
n vertices unless k = Ω(

√
n); see Theorem 7. This excludes extension of our

positive result to graphs with an arbitrary number of vertices. Indeed, since
the combination of 2-WL with vertex individualization is subsumed by 3-WL,
such an extension would readily imply that 3-WL distinguishes any vertex-
transitive graph from any non-vertex-transitive graph, contradicting our lower
bound k = Ω(

√
n). This bound as well excludes any other combinatorial app-

roach to recognizing vertex-transitivity as long as it is based solely on k-WL for
a fixed dimension k. It shows that, if such an algorithm succeeds on the n-vertex
input graphs for n in a set S, then S can contain only finitely many multiples
of 16.

Our lower bound is based on the Cai-Fürer-Immerman construction [5], which
converts a template graph F into a pair of non-isomorphic graphs G and H indis-
tinguishable by k-WL. To prove our lower bound for the WL dimension, we have
to ensure that G is vertex-transitive and H is not. This is faced with two tech-
nical complications. First, the original CFI gadget [5, Fig. 3] involves vertices of
different degrees and, hence, destroys vertex-transitivity even when the template
graph F is vertex-transitive. This can be overcome by using a modified version
of the CFI gadget with all vertex degrees equal, which apparently first appeared
in [9]; see also the survey in [12]. Note that this approach has already been
used to analyze vertex-transitivity of coherent configurations; see Evdokimov’s
thesis [8].

The second point is more subtle. The CFI construction replaces each vertex
of the template graph F with a cell of new vertices, and vertices in different cells
receive different colors. In many contexts the vertex coloring can be removed by
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using additional gadgets, but this is hardly possible without losing the vertex-
transitivity. The vertex colors constrain the automorphisms of the CFI graphs
G and H and ensure that these graphs are non-isomorphic. We establish rather
general conditions on a template graph F under which the CFI graphs retain
their functionality even without colors. This result of independent interest pro-
vides a very straight way of making the CFI graphs colorless, which can be used
in any of their numerous applications.

The analysis of the regularized and discolored version of the CFI construction
and the proof of our lower bound (Theorem 7) can be found in a long version of
this paper [11].

2 Notation and Definitions

We denote the vertex set of a graph G by V (G). The notation Aut(G) stands
for the automorphism group of G.

Cayley Graphs. Let Γ be a group and Z be a set of non-identity elements of
Γ such that Z−1 = Z, that is, any element belongs to Z only together with its
inverse. The Cayley graph Cay(Γ,Z) has the elements of Γ as vertices, where
x and y are adjacent if x−1y ∈ Z. This graph is connected if and only if the
connection set Z is a generating set of Γ . Every Cayley graph is obviously
vertex-transitive.

The Weisfeiler-Leman Algorithm. The original version of the Weisfeiler-
Leman algorithm, 2-WL, operates on the Cartesian square V 2 of the vertex set
of an input graph G. Below it is supposed that G is undirected. We also suppose
that G is endowed with a vertex coloring c, that is, each vertex u ∈ V is assigned
a color denoted by c(u). The case of uncolored graphs is covered by assuming
that c(u) is the same for all u. 2-WL starts by assigning each pair (u, v) ∈ V 2

the initial color WL0
2(u, v) = (type, c(u), c(v)), where type takes on one of three

values, namely edge if u and v are adjacent, nonedge if distinct u and v are
non-adjacent, and loop if u = v. The coloring of V 2 is then modified step by
step. The (r + 1)-th coloring is computed as

WLr+1
2 (u, v) = {{(WLr

2(u,w), WLr
2(w, v))}}w∈V , (1)

where {{}} denotes the multiset. In words, the new color of a pair uv is a
“superposition” of all old color pairs observable along the extensions of uv to
a triangle uwv. Let Sr denote the partition of V 2 determined by the color-
ing WLr

2(·, ·). It is easy to notice that WLr+1
2 (u, v) = WLr+1

2 (u′, v′) implies
WLr

2(u, v) = WLr
2(u

′, v′), which means that Sr+1 is finer than or equal to Sr.
It follows that the partition stabilizes starting from some step t ≤ n2, where
n = |V |, that is, St+1 = St, which implies that Sr = St for all r ≥ t. As the
stabilization is reached, 2-WL terminates and outputs the coloring WLt

2(·, ·),
which will be denoted by WL2(·, ·).

Note that the length of WLr
2(u, v) grows exponentially as r increases. The

exponential blow-up is remedied by renaming the colors after each step.
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Let φ be an automorphism of G. A simple induction on r shows that
WLr

2(φ(u), φ(v)) = WLr
2(u, v) for all r and, hence

WL2(φ(u), φ(v)) = WL2(u, v). (2)

In particular, if G is vertex-transitive, then the color WL2(u, u) is the same for
all u ∈ V . If the last condition is fulfilled, we say that 2-WL does not split the
diagonal on G, where by the diagonal we mean the set of all loops (u, u).

In general, the automorphism group Aut(G) of the graph G acts on the
Cartesian square V (G)2, and the orbits of this action are called 2-orbits of
Aut(G). Thus, the partition of V (G)2 into 2-orbits is finer than or equal to the
stable partition S = St produced by 2-WL.

3 Vertex-Transitivity on a Prime Number of Vertices

We begin with a few simple observations about the output produced by 2-WL on
an input graph G. Recall that in this paper we restrict our attention to undirected
graphs. Even though G is undirected, the equality WL2(u, v) = WL2(v, u) need
not be true in general. Thus, the output of 2-WL on G can naturally be seen as
a complete colored directed graph on the vertex set V (G), which we denote by
WL2(G). That is, WL2(G) contains every pair (u, v) ∈ V (G)2 as an arc, i.e., a
directed edge, and this arc has the color WL2(u, v) returned by 2-WL. We will
see WL2(G) as containing no loops, but instead we assign each vertex u the color
WL2(u, u). Any directed subgraph of WL2(G) formed by all arcs of the same
color is called a constituent digraph.

Let (u, v) and (u′, v′) be arcs of a constituent digraph C of WL2(G).
Note that the vertices u and u′ must be equally colored in WL2(G). Indeed,
since the color partition of WL2(G) is stable, there must exist w such that
(WL2(u′, w),WL2(w, v′)) = (WL2(u, u),WL2(u, v)). The equality WL2(u′, w) =
WL2(u, u) can be fulfilled only by w = u′ because any non-loop (u′, w) is initially
colored differently from the loop (u, u) and, hence, they are colored differently
after all refinements.

Note also that, if u and v are equally colored in WL2(G), then they have the
same outdegree in every constituent digraph C; in particular, they simultane-
ously belong or do not belong to V (C). Otherwise, contrary to the assumption
that the color partition of WL2(G) is stable, the loops (u, u) and (v, v) would
receive different colors in another refinement round of 2-WL. It follows that for
each constituent digraph C there is an integer d ≥ 1 such that all vertices in C
with non-zero outdegree have outdegree d. We call d the outdegree of C.

Let u ∈ V (G). A vertex-individualized graph Gu is obtained from G by assign-
ing the vertex u a special color, which does not occur in G. If G is vertex-
transitive, then all vertex-individualized copies of G are obviously isomorphic.

Consider now a simple and still instructive example. Let G = C7 be the com-
plement of the cycle graph on seven vertices 0, 1, . . . , 6 passed in this order. It is
not hard to see that 2-WL splits V (G)2 into the four 2-orbits of Aut(G); the diag-
onal {(u, u) : u ∈ V (G)} is one of them. Note that the three constituent digraphs
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WL2(G) G0 WL2(G0)

Fig. 1. The output of 2-WL on input G = C7 and on its vertex-individualized copy
G0. In this example, the arcs between two equally colored vertices u and v (those with
WL2(u, u) = WL2(v, v)) have equal colors in both directions, that is, WL2(u, v) =
WL2(v, u). If u and v are colored distinctly, then clearly WL2(u, v) �= WL2(v, u). As
a general fact, WL2(u, v) = WL2(u

′, v′) exactly when WL2(v, u) = WL2(v
′, u′). This

allows us to improve the visualization by showing only one of the two mutually reversed
colors. (Color figure online)

of WL2(G) are of the same degree 2; see Fig. 1. Applying 2-WL to the vertex-
individualized graph G0, it can easily be seen that 2-WL again splits V (G)2 into
the 2-orbits of Aut(G0). Note that WL2(G0) also has exactly three constituent
digraphs of outdegree 2, while all other constituent digraphs of WL2(G0) have
outdegree 1. We see that the outdegrees of the constituent digraphs for G and
its vertex-individualized copies are distributed similarly. This similarity proves
to be a characterizing property of vertex-transitive graphs on a prime number
of vertices.

Theorem 1. Let p be a prime, and G be a graph with p vertices. Suppose that
G is neither complete nor empty. Then G is vertex-transitive if and only if the
following conditions are true:

1. If run on G, 2-WL does not split the diagonal, that is, all vertices in WL2(G)
are equally colored.

2. All constituent digraphs of WL2(G) have the same outdegree d > 1 and, hence,
there are p−1

d constituent digraphs.
3. For every u ∈ V (G), exactly p−1

d constituent digraphs in WL2(Gu) have
outdegree d, and all others have outdegree 1.

Since the color partition of WL2(G) for a p-vertex graph G can be computed
in time O(p3 log p) [14], Conditions 1–3 can be verified in time O(p4 log p), which
yields an algorithm of this time complexity for recognition of vertex-transitivity
of graphs with a prime number of vertices.

As it will be discussed in Remark 6 below, there are graphs G and H with a
prime number of vertices such that G is vertex-transitive, H is not, and still they
are indistinguishable by 2-WL. This implies that Theorem 1 is optimal in that
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it uses as small WL dimension as possible and, also, that the condition involving
the vertex individualization cannot be dropped. Note that 1-WL, which stands
for the classical degree refinement, does not suffice even when run on G and all
Gu because the output of 1-WL on these inputs is subsumed by the output of
2-WL on G alone.

Theorem 1 is proved in Subsect. 3.2. The next subsection provides the nec-
essary preliminaries.

3.1 Coherent Configurations

A detailed treatment of the material presented below can be found in [6]. The
stable partition SG of V (G)2 produced by 2-WL on an input graph G has certain
regularity properties, which are equivalent to saying that the pair (V,S) forms
a coherent configuration. This concept is defined as follows.

A coherent configuration X = (V,S) is formed by a set V , whose elements
are called points, and a partition S = {S1, . . . , Sm} of the Cartesian square V 2,
that is,

⋃m
i=1 Si = V 2 and any two Si and Sj are disjoint. An element Si of S is

referred to as a basis relation of X . The partition S has to satisfy the following
three conditions:

(A) If a basis relation S ∈ S contains a loop (u, u), then all pairs in S are loops.
(B) For every S ∈ S, the transpose relation S∗ = {(v, u) : (u, v) ∈ S} is also

in S.
(C) For each triple R,S, T ∈ S, the number

p(u, v) = |{w : (u,w) ∈ R, (w, v) ∈ S}|

for a pair (u, v) ∈ T does not depend on the choice of this pair in T .

In other words, if S is seen as a color partition of V 2, then such a coloring is
stable under 2-WL refinement.

We describe two important sources of coherent configurations. Let T be an
arbitrary family of subsets of the Cartesian square V 2. There exists a unique
coarsest partition S of V 2 such that every T ∈ T is a union of elements of S and
X = (V,S) is a coherent configuration; see [6, Section 2.6.1]. We call X = (V,S)
the coherent closure of T and denote it by Cl(T ).

Given a vertex-colored undirected graph G on the vertex set V , let T consist
of the set of the pairs (u, v) ∈ V 2 such that {u, v} is an edge of G and the sets
of loops (u, u) for all vertices u of the same color in G. Then Cl(T ) is exactly
the stable partition produced by 2-WL on input G. We denote this coherent
configuration by Cl(G).

Given a coherent configuration X = (V,S) and a point u ∈ V , the coherent
configuration Xu = Cl(S ∪{{(u, u)}}) is called a one-point extension of X . This
concept is naturally related to the notion of a vertex-individualized graph, in
that

Cl(Gu) = Cl(G)u. (3)
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Another source of coherent configurations is as follows. Let K be a permuta-
tion group on a set V . Denote the set of 2-orbits of K by S. Then X = (V,S) is
a coherent configuration, which we denote by Inv(K). Coherent configurations
obtained in this way are said to be schurian.

We define an automorphism of a coherent configuration X = (V,S) as a
bijection α from V onto itself such that, for every S ∈ S and every (u, v) ∈ S,
the pair (α(u), α(v)) also belongs to S. The group of all automorphisms of X is
denoted by Aut(X ). A coherent configuration X is schurian if and only if

X = Inv(Aut(X )). (4)

Note also that the connection between the coherent closure of a graph and 2-WL
implies that

Aut(Cl(G)) = Aut(G). (5)

A set of points X ⊆ V is called a fiber of X if the set of loops {(x, x) : x ∈ X}
is a basis relation of X . Denote the set of all fibers of X by F (X ). By Property
A, F (X ) is a partition of V . Property C implies that for every basis relation S
of X there are, not necessarily distinct, fibers X and Y such that S ⊆ X × Y .
We use the notation NS(x) = {y : (x, y) ∈ S} for the set of all points in Y that
are in relation S with x. Note that |NS(x)| = |NS(x′)| for any x, x′ ∈ X. We
call this number the valency of S. If every basis relation S of X has valency 1,
then X is called semiregular.

Proposition 2 (see [6, Exercise 2.7.35]). A semiregular coherent configura-
tion is schurian.

Given a set of points U ⊆ V that is a union of fibers, let SU denote the
set of all basis relations S ∈ S such that S ⊆ X × Y for some, not necessarily
distinct, fibers X ⊆ U and Y ⊆ U . As easily seen, XU = (U,SU ) is a coherent
configuration.

If a coherent configuration has a single fiber, it is called association scheme.

3.2 Proof of Theorem 1

Necessity. Given a vertex-transitive graph G with p vertices, where p is prime,
we have to check Conditions 1–3. Condition 1 follows immediately from vertex-
transitivity; see the discussion in the end of Sect. 2. For Condition 2, we use two
basic results on vertex-transitive graphs with a prime number of vertices. First,
every such graph is isomorphic to a circulant graph, i.e., a Cayley graph of a
cyclic group, because every transitive group of permutations of a set of prime
cardinality p contains a p-cycle (Turner [19]). Let Fp denote the p-element field,
F
+
p its additive group, i.e., the cyclic group of order p, and F

×
p its multiplicative

group, which is isomorphic to the cyclic group of order p−1. Another useful fact
(Alspach [1]) is that, if a set Z ⊂ Fp is non-empty and Z �= F

×
p , then the auto-

morphism group of the circulant graph Cay(F+
p , Z) consists of the permutations

x 
→ ax + b, x ∈ Fp, for all a ∈ M, b ∈ F
+
p , (6)
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where M = M(Z) is the largest subgroup of F×
p of even order such that Z is

a union of cosets of M . This subgroup is well defined because the condition
Z = −Z implies that Z is split into pairs {z,−z} and, hence, is a union of cosets
of the multiplicative subgroup {1,−1}. For example, C7 = Cay(F+

7 , {2, 3, 4, 5})
and M({2, 3, 4, 5}) = {1,−1}. Without loss of generality we assume that G =
Cay(F+

p , Z) and denote K = Aut(G).
Let X = (F+

p ,S) be the coherent closure of G. Recall that S is exactly the
stable partition of V (G)2 produced by 2-WL on input G. The irreflexive basis
relations of X are exactly the constituent digraphs of WL2(G), and we have to
prove that all of them have the same valency.

Condition 1 says that X is an association scheme. In general, not all asso-
ciation schemes with a prime number of points are schurian (see, e.g., [6,
Section 4.5]). Nevertheless, the theorem by Leung and Man on the structure
of Schur rings over cyclic groups implies the following fact.

Proposition 3 (see [6, Theorem 4.5.1]). Let X = (V,S) be an association
scheme with a prime number of points. If Aut(X ) acts transitively on V , then
X is schurian.

By Equality (5), Aut(X ) = K. Since the group K is transitive, Proposition 3
implies that X is schurian, and we have X = Inv(K) by Equality (4). This
yields Condition 2 for d = |M |. Indeed, every irreflexive basis relation S ∈ S has
valency |M |. To see this, it is enough to count the number of pairs (0, y) in S.
Fix an arbitrary pair (0, y) ∈ S. A pair (0, y′) is in the 2-orbit containing (0, y)
if and only if y′ = ay for a ∈ M , for which we have |M | possibilities.

It remains to prove Condition 3. By vertex-transitivity, all vertex-
individualized copies of G are isomorphic and, therefore, it is enough to consider
G0. We have to count the frequencies of valencies in X0. Note that X0 = Cl(G0)
by Equality (3).

It is generally not true that a one-point extension of a schurian coherent
configuration is schurian; see [6, Section 3.3.1]. Luckily, this is the case in our
setting.

Proposition 4 (see [6, Theorem 4.4.14]). If X = Inv(K), where K is the
group of permutations of the form (6) for a subgroup M of F×

p , then the one-point
extension X0 is schurian.

Taking into account Equality (5), we have

Aut(X0) = Aut(Cl(G0)) = Aut(G0) = Aut(G)0 = K0,

where K0 is the one-point stabilizer of 0 in K, that is, the subgroup of K
consisting of all permutations α ∈ K such that α(0) = 0. Obviously, K0 = {x 
→
ax, x ∈ Fp}a∈M .

Let S be a 2-orbit of K0. If S contains a pair (0, y), then it consists of all pairs
(0, y′) for y′ ∈ My and, hence, has valency |M |. If S contains a pair (z, y) with
z �= 0 and y �= z, then (z, y) is the only element of S with the first coordinate z,
and S has valency 1. The proof of Condition 3 is complete.
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Sufficiency. Let G be a graph satisfying Conditions 1–3 stated in the theorem.
Let X = Cl(G). Condition 1 says that X is an association scheme. By Equality
(5), it suffices to prove that the group Aut(X ) is transitive. The proof is based
on the following lemma.

Lemma 5 (see [16, Theorem 7.1]). Let X = (V,S) be an association scheme.
Suppose that the following two conditions are true for every point u ∈ V :

(I) the coherent configuration (Xu)V \{u} is semiregular, and
(II) F (Xu) = {NS(u) : S ∈ S}.

Then the group Aut(X ) acts transitively on V .

Let u be an arbitrary vertex of G. By Equality (3), Xu = Cl(Gu). Now,
it suffices to derive Conditions I–II in the lemma from Conditions 1–3 in the
theorem.

For a fiber X ∈ F (Xu), note that {u} × X must be a basis relation of Xu.
Since this relation has valency |X|, Condition 3 implies that every fiber in F (Xu)
is either a singleton or consists of d ≥ 2 points. Denote the number of singletons
in F (Xu) by a. Besides of them, F (Xu) contains (p − a)/d fibers of size d.

For every X,Y ∈ F (Xu) with |X| = 1 and |Y | = d, X × Y is a basis relation
of Xu of valency d. It follows from Condition 3 that

p − 1
d

≥ a(p − a)
d

.

Therefore, p − 1 ≥ a(p − a) or, equivalently, p(a − 1) ≤ (a − 1)(a + 1). Assume
for a while that a > 1. It immediately follows that a ≥ p − 1. Since the equality
a = p − 1 is impossible, we conclude that a = p. However, this implies that
d = 1, a contradiction. Thus, a = 1. Consequently, every fiber of the coherent
configuration X ′ = (Xu)V \{u} is of cardinality d, and |F (X ′)| = (p − 1)/d.

Let S be a basis relation of X . If S is reflexive, then NS(u) = {u}. If S
is irreflexive, then NS(u) must be a union of fibers in F (X ′). By Condition 2,
the number of irreflexive basis relations in S is (p − 1)/d. It follows that NS(u)
actually coincides with one of the fibers of X ′. This proves Condition II.

Since Xu contains (p−1)/d basis relations of the kind {u}×X for X ∈ F (X ′),
Condition 3 implies that every basis relation of X ′ is of valency 1, yielding
Condition I.

The proof of Theorem 1 is complete.

Remark 6. We now argue that there is a vertex transitive graph G and a non-
vertex-transitive graph H such that G and H are indistinguishable by 2-WL.
Recall that a strongly regular graph with parameters (n, d, λ, μ) is an n-vertex
d-regular graph where every two adjacent vertices have λ common neighbors,
and every two non-adjacent vertices have μ common neighbors. As easily seen,
two strongly regular graphs with the same parameters are indistinguishable by
2-WL, and our example will be given by G and H of this kind. Let p be a prime
(or a prime power) such that p ≡ 1 (mod 4). The Paley graph on p vertices is
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the Cayley graph Cay(F+
p , Yp) where Yp is the subgroup of F

×
p formed by all

quadratic residues modulo p. The assumption p ≡ 1 (mod 4) ensures that −1
is a quadratic residue modulo p and, hence, Yp = −Yp. The Paley graph on p
vertices is strongly regular with parameters (p, p−1

2 , p−5
4 , p−1

4 ).
Let G be the Paley graph on 29 vertices. It is known (Bussemaker and Spence;

see, e.g., [4, Section 9.9]) that there are 40 other strongly regular graphs with
parameters (29, 14, 6, 7). Let H be one of them. We have only to show that H
is not vertex-transitive. Otherwise, by Turner’s theorem [19] this would be a
circulant graph, that is, we would have H = Cay(F+

p , Z) for some connection
set Z. In this case, the coherent closure Cl(H) must be schurian by Proposi-
tion 3. Since H is strongly regular, 2-WL colors all pairs of adjacent vertices
uniformly and, therefore, they form a 2-orbit of Aut(H). It follows that the
stabilizer Aut(H)0 acts transitively on N(0), the neighborhood of 0 in H. The
aforementioned result of Alspach [1], implies that Z is the subgroup of F

×
p of

order (p − 1)/2, i.e., M = Z in (6). This means that Z = Yp and H = G, a
contradiction.

4 A Lower Bound for the WL Dimension

We now state a negative result on the recognizability of vertex-transitivity by
k-WL. We begin with a formal definition of the k-dimensional algorithm. Let
k ≥ 2. Given a graph G with vertex set V as input, k-WL operates on V k.
The initial coloring of ū = (u1, . . . , uk) encodes the equality type of this k-tuple
and the ordered isomorphism type of the subgraph of G induced by the vertices
u1, . . . , uk. The color refinement is performed similarly to (1). Specifically, k-WL
iteratively colors V k by WLr+1

k (ū) = {{(WLr
k(ū

w
1 ), . . . ,WLr

k(ū
w
k ))}}w ∈ V (G),

where ūw
i = (u1, . . . , ui−1, w, ui+1, . . . , uk). If G has n vertices, the color partition

stabilizes in t ≤ nk rounds, and k-WL outputs the coloring WLk(·) = WLt
k(·).

We say that k-WL distinguishes graphs G and H if the final color palettes are
different for G and H, that is, {{WLk(ū)}}ū ∈ V (G)k �= {{WLk(ū)}}ū ∈ V (H)k

(note that color renaming in each refinement round must be performed on G
and H synchronously).

Theorem 7.

1. For every n divisible by 16 there are n-vertex graphs G and H such that G is
vertex-transitive, H is not, and G and H are indistinguishable by k-WL as
long as k ≤ 0.01

√
n.

2. For infinitely many n there are n-vertex graphs G and H such that G is
vertex-transitive, H is not, and G and H are indistinguishable by k-WL as
long as k ≤ 0.001n.

5 Concluding Discussion

We have suggested a new, very simple combinatorial algorithm recognizing, in
polynomial time, vertex-transitivity of graphs with a prime number of vertices.
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The algorithm consists, in substance, in running 2-WL on an input graph and all
its vertex-individualized copies. This is perhaps the first non-trivial example of
using the Weisfeiler-Leman algorithm for recognition of a natural graph property
rather than for isomorphism testing.

One can consider another, conceptually even simpler approach. If an input
graph G is vertex-transitive, then k-WL colors all diagonal k-tuples (u, . . . , u),
u ∈ V (G), in the same color. Is this condition for a possibly large, but fixed
k sufficient to claim vertex-transitivity? In general, a negative answer immedi-
ately follows from Theorem 7. Does there exist a fixed dimension k such that
the answer is affirmative for graphs with a prime number of vertices? This is
apparently a hard question; it seems that we cannot even exclude that k = 3
suffices.

Another interesting question is whether k-WL is able to efficiently recognize
vertex-transitivity on n-vertex input graphs for n in a larger range than the set
of primes. The lower bound of Theorem 7 excludes this only for n divisible by
16, in particular, for the range of n of the form 16p for a prime p. Can k-WL be
successful on the inputs with 2p vertices? Conversely, can the negative result of
Theorem 7 be extended to a larger range of n?1

Finally, we remark that the results similar to Theorems 1 and 7 can be
obtained for recognition of arc-transitivity. We refer an interested reader to a
long version of this paper [11].
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