
Tiziana Calamoneri
Federico Corò (Eds.)

LN
CS

 1
27

01 Algorithms
and Complexity
12th International Conference, CIAC 2021
Virtual Event, May 10–12, 2021
Proceedings



Lecture Notes in Computer Science 12701

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Tiziana Calamoneri • Federico Corò (Eds.)

Algorithms
and Complexity
12th International Conference, CIAC 2021
Virtual Event, May 10–12, 2021
Proceedings

123



Editors
Tiziana Calamoneri
Sapienza University of Rome
Rome, Italy

Federico Corò
Sapienza University of Rome
Rome, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-75241-5 ISBN 978-3-030-75242-2 (eBook)
https://doi.org/10.1007/978-3-030-75242-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapter “Algorithms for Energy Conservation in Heterogeneous Data Centers” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4099-1836
https://orcid.org/0000-0002-7321-3467
https://doi.org/10.1007/978-3-030-75242-2
http://creativecommons.org/licenses/by/4.0/


Preface

This volume contains the proceedings of CIAC 2021: the 12th International Conference
on Algorithms and Complexity; it includes all contributed papers and information on the
invited lectures delivered at the conference. This conference series presents original
research contributions in the theory and applications of algorithms and computational
complexity.

The conference was supposed to be held in Larnaca, Cyprus, during May 10–12,
2021, but, due to the COVID-19 pandemic, it was held remotely over the same period.

The volume begins with the descriptions of the invited lectures. We are grateful to
Henning Fernau (Trier University, Germany), Katharina Huber (University of East
Anglia, UK), and Seffi Naor (Technion Haifa, Israel) for kindly accepting our invitation
to give plenary lectures.

Then, the volume continues with all the contributed papers, arranged alphabetically
by the last names of their first author. In response to a Call for Papers, the Program
Committee received 78 submissions handled through the EasyChair system. Each
submission was reviewed by three Program Committee members and 27 papers were
selected for inclusion in the scientific program, on the basis of originality, quality, and
relevance to theoretical computer science. Among these papers, the Program Committee
selected as recipient of the best paper award the work entitled “The Weisfeiler-Leman
Algorithm and Recognition of Graph Properties” co-authored by Frank Fuhlbrück,
Johannes Koebler, Ilia Ponomarenko, and Oleg Verbitsky. The reason lies in its
potential future applications and in the novelty of the results and constructions. We
congratulate the authors and are grateful to Springer for sponsoring this award.

A special issue of Theoretical Computer Science will be devoted to publishing an
extended version of a selection of the papers presented at the conference.

We wish to thank all authors who submitted papers for consideration, the Program
Committee for its hard work, and the external reviewers who assisted the Program
Committee in the evaluation process.

Last but not least, for their very dedicated work, special thanks go to Chryssis
Georgiou and Anna Philippou, from the University of Cyprus, who served in the
organizing committee.

March 2021 Tiziana Calamoneri
Federico Corò
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Invited Talks

Henning Fernau1(B), Katharina T. Huber2, and Joseph (Seffi) Naor3

1 Universität Trier, Fachbereich 4, Informatikwissenschaften, CIRT,
54286 Trier, Germany

fernau@informatik.uni-trier.de
2 School of Computing Sciences, University of East Anglia, Norwich, UK

k.huber@uea.ac.uk
3 Computer Science Department, Technion, 32000 Haifa, Israel

naor@cs.technion.ac.il

https://people.uea.ac.uk/k_huber

Abstract. This document contains the summaries of the invited talks
that have been delivered at CIAC 2021. A detailed description of the lec-
ture by Henning Fernau (titled Abundant Extensions) is on pages 1–15,
while the abstracts of the lectures by Katharina T. Huber (Phylogenetic
networks, a way to cope with complex evolutionary processes) and Joseph
(Seffi) Naor (Recent Advances in Competitive Analysis of Online Algo-
rithms) are on pages 16 and 17, respectively.

Abundant Extensions
by Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei,
Jérôme Monnot, Florian Sikora1

Most algorithmic techniques dealing with constructing solutions to combinatorial
problems build solutions in an incremental fashion. Often, the whole procedure
could be visualized by means of a search tree. To the leaves of such a search tree,
we can associate solutions, while to the inner nodes, only pre-solutions can be
associated. By looking at all leaves of the search tree, an optimum solution can
be found if desired. In particular for reasons of speed, it is crucial to prune off
potential branches of the search tree by deciding at an early stage if a certain
pre-solution can be ever extended to a solution that is optimal. But, how easy
is it to tell if such pruning is possible?

In this survey paper, we first present a motivating example as an introduction,
followed by a general framework for extension problems. Then we show that such
problems are really abundant, and these examples also prove that the complexity
of these extension problems can be the same as or different from that of the
original combinatorial question.

1 Katrin Casel is with Hasso Plattner Institute, University of Potsdam and Universität
Trier; Henning Fernau is with Universität Trier, Mehdi Khosravian Ghadikolaei,
Jérôme Monnot, Florian Sikora are with Université Paris-Dauphine, PSL University.

c© Springer Nature Switzerland AG 2021
T. Calamoneri and F. Corò (Eds.): CIAC 2021, LNCS 12701, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-75242-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75242-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-75242-2_1
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1 Introduction

Let us start motivating our considerations by looking at one of the best-known
combinatorial graph notions, namely that of a vertex cover in an undirected
graph G, i.e., a set C of vertices such that each edge of G has at least one vertex
from C incident to it. To be more concrete, consider the task of finding a smallest
vertex cover in the graph G = (V,E), where V = {x, y1, y2, y3, y4} ∪ {zi,j | 1 ≤
i ≤ 4, 1 ≤ j ≤ 2}. The edge set E is given by E = {xyi | 1 ≤ i ≤ 4} ∪ {yizi,j |
1 ≤ i ≤ 4, 1 ≤ j ≤ 2} (see Fig. 1). How to approach this problem? As we
know that the corresponding general optimization problem Minimum Vertex

Cover cannot be solved in polynomial time, unless P = NP, we can follow
different strategies. (Clearly, for the concrete example, we could find a smallest
vertex cover even in linear time, as our example graph is a tree. We ignore this
possibility in the following and use the example for illustrative purposes only.)

x y1

y2

y3

y4

z1,1

z1,2

z2,1

z2,2

z3,1

z3,2

z4,1

z4,2

Fig. 1. Toy graph for our running example.

Design a Heuristics. A very natural greedy strategy is to recursively select a
vertex of highest degree to be put in a pre-solution. As after selecting a highest-
degree vertex v, all incident edges have been covered, it is clear that in the
recursion, we remove v and its incident edges from the graph. In our example,
this would mean that we first put x into the pre-solution and then, one after
the other, y1, y2, y3, and y4 (in any order). We are left with an edge-less graph
that has ∅ as a vertex cover. Hence, altogether we computed the vertex cover
{x, y1, y2, y3, y4}. However, notice that this cover is not inclusion-wise minimal,
as we can safely remove x from this solution to produce another (smaller) vertex
cover. Incidentally, this is also a smallest vertex cover for this example.

Of course, we could walk through our solution again and check if it is
inclusion-wise minimal. More precisely, whenever we detect a vertex such that
all its neighbors are contained in the solution, we can remove it from the solu-
tion. Yet, it feels a bit awkward to make such amendments with hindsight, it
would look more natural to avoid producing non-minimal vertex covers from the
very beginning. We could try to integrate a minimality check in the greedy step
itself: Pick a vertex of largest degree, unless this would mean that a previously
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selected vertex (put into the pre-solution) would be ‘completely encircled’. In
our example, this could mean that we avoid putting y4 into the solution after
having put x, y1, y2, y3 there. Then, we would necessarily arrive at the vertex
cover {x, y1, y2, y3, z4,1, z4,2}, which is indeed a minimal solution, but clearly not
the smallest one.

Design a Branching Algorithm. This means that we are really looking for a
smallest vertex cover in any input graph. Assuming P �= NP, we must be content
with an algorithm potentially using exponential time. Again, most such algo-
rithms would pick a vertex of highest degree and branch into two cases: to put
this vertex into a pre-solution or not, and then working further on recursively.
Clearly, we cannot hope for a good algorithmic solution of the question if there
is a solution of optimum size (or not) in a certain branch, as this is exactly the
same NP-hard question that we started out with. Therefore, we have to relax
our question. A natural relaxation would be to ask if (in a certain branch) there
is still an inclusion-wise minimal vertex cover. In a certain sense, this question
does sound easier, because we can clearly compute an inclusion-wise minimal
vertex cover of the whole graph by a sort of greedy strategy as described in the
previous paragraph. However, remember that along with running our branching
algorithm, we already put some vertices in a pre-solution. As we do not want to
undo this decision (because we even know that the case when a certain vertex is
not put into the cover is handled in a different branch), we like to know if there
is a minimal vertex cover extending the currently considered pre-solution. As we
will see, this type of question is indeed quite difficult to handle in general.

Approximation and Parameterized Algorithms. Minimum Vertex Cover is
one of the standard problems both concerning approximation and parameterized
algorithms. Often, heuristics as the one discussed above can be used or tweaked
to achieve provable (reasonable) approximation ratios. With our greedy idea,
we have to be somewhat cautious, but there is a randomized algorithm that
implements the intuition that high-degree vertices should be put with preference
into the vertex cover. Namely, we can associate a probability proportional to
the degree of each vertex to select it into a pre-solution in the next step of
the algorithm. More formally, the probability of v ∈ V in G = (V,E) would
be pv = |N(v)|

2|E| . With our example, it is interesting to note that at the very
beginning, px = 4

24 = 1
6 is clearly highest, but pyi

= 3
24 = 1

8 is only slightly
less, and as it does not really matter which of the yi we pick, the probability
to choose any of them is 1

2 , much higher than the probability of choosing x.
Assuming that we chose y4 in the first step, after the first recursion step, the
probability of choosing x is still p′

x = 3
18 = 1

6 , but the probability to choose any of
y1, y2, y3 is also 1

6 . Developing this example further shows that we actually arrive
at a smallest vertex cover with quite some probability. Conversely, the strategy
that we designed for a branching algorithm would indeed be also a standard
strategy in parameterized algorithmics. We only refer to the textbook [14]. As
a side-note, another strategy predominant in parameterized algorithmics would
work out perfectly on our example, namely the strategy of using reduction rules.
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In our example, a well-known rule says to always select the neighbor vertex of a
vertex of degree one. This strategy alone would solve our example to optimality.
Furthermore, in particular for Minimum Vertex Cover, algorithms have been
developed that combine both approaches, see [8,16].

More Scenarios: Enumeration and Counting. Recently, the task of enumerating
all inclusion-wise minimal vertex covers (or similar questions, related to other
combinatorial problems) has been given quite some considerations in the liter-
ature. A related task is to count all inclusion-wise minimal vertex covers. We
refer to [5–7,15,17,19–21,26,27,33,35]. Note that building up from only relevant
pre-solutions yields the possibility to define an order on solutions and hence enu-
merate without repetition. It was this scenario of enumeration where the question
of extension was asked for Vertex Cover Extension in [15].

Maximin and Minimax Problems. Especially greedily solving the task of find-
ing (and also approximating) a minimal vertex cover lower-bounded by a given
number k (a minimal vertex cover of maximum size) requires knowing that (at
least a significant part of) the pre-solution remains in a minimal solution. In fact
it is the difficulty of deciding extendability of pre-solutions that shows why all
approximation strategies that work for minimum vertex cover fail to be useful
for finding a minimal vertex cover of maximum size. The second part of the title
of this paragraph already indicates a further definitorial problem: What should
“extension” mean in the context of problems that maximize a certain value? We
will answer this question below by introducing a framework based on a partial
order approach, somewhat along the lines of Manlove’s work [31].

On a more general note, the following question was already asked in 1956
by Kurt Gödel in a famous letter to Joh(an)n von Neumann [36]: It would be
interesting to know [ . . . ] how strongly in general the number of steps in finite
combinatorial problems can be reduced with respect to simple exhaustive search.
The mentioned pruning of search branches and hence the question of finding
(pre-)solution extensions lies at the heart of this question.

2 A General Framework of Extension Problems

In order to formally define our concept of minimal extension, we define what we
call monotone problems which can be thought of as problems in NPO with the
addition of a set of pre-solutions (which includes the set of solutions) together
with a partial ordering on this new set. Formally, we define such monotone prob-
lems as 5-tuples Π = (I, presol, sol,�,m) (where I, sol,m with an additional
goal ∈ {min,max} yields an NPO problem) defined by:

– I is the set of instances, recognizable in polynomial time.
– For I ∈ I, presol(I) is the set of pre-solutions and, in a reasonable repre-

sentation of instances and pre-solutions, the length of the encoding of any
y ∈ presol(I) is polynomially bounded in the length of the encoding of I.

– For I ∈ I, sol(I) is the set of solutions, which is a subset of presol(I).
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– There exists an algorithm which, given (I, U), decides in polynomial time if
U ∈ presol(I); similarly there is an algorithm which decides in polynomial
time if U ∈ sol(I).

– For I ∈ I, � is a partial ordering on presol(I) and there exists an algorithm
that, given an instance I and U,U ′ ∈ presol(I), can decide in polynomial
time if U ′ � U .

– For each I ∈ I, the set of solutions sol(I) is upward closed with respect to
�, i.e., U ∈ sol(I) implies U ′ ∈ sol(I) for all U,U ′ ∈ presol(I) with U � U ′.

– m is a polynomial-time computable function which maps pairs (I, U) with
I ∈ I and U ∈ presol(I) to non-negative rational numbers; m(I, U) is the
value of U .

– For I ∈ I, m(I, ·) is monotone with respect to �, meaning that the property
U ′ � U for some U,U ′ ∈ presol(I) either always implies m(I, U ′) ≤ m(I, U)
or m(I, U ′) ≥ m(I, U).

Given a monotone problem Π = (I, presol, sol,�,m), we denote by μ(sol(I))
the set of minimal feasible solutions of I, formally given by

μ(sol(I)) = {S ∈ sol(I) : ((S′ � S) ∧ (S′ ∈ sol(I))) → S′ = S} .

Further, given U ∈ presol(I), we define

ext(I, U) = {U ′ ∈ μ(sol(I)) : U � U ′}

to be the set of extensions of U . Sometimes, ext(I, U) = ∅, which makes the ques-
tion of the existence of such extensions interesting. Hence, finally, the extension
problem for Π, written Ext Π, is defined as follows: An instance of Ext Π con-
sists of an instance I ∈ I together with some U ∈ presol(I), and the associated
decision problems asks if ext(I, U) �= ∅.

The reader is encouraged to work through all these definitions having Ver-

tex Cover in mind. Here, the partial ordering is simply set inclusion.
With these formal definitions, we try to capture aspects of extension that

could be used to transfer properties among different specific extension problems.
The requirement that the set of solutions is upward closed with respect to the
partial ordering relates to independence systems, see [34]. This choice also mod-
els greedy strategies that attempt to build up solutions gradually by stepwise
improvements towards feasibility. Note that such greedy approaches usually do
not employ steps that transform a solution back into a pre-solution that is not
feasible.

Adding the function m to the formal description of a monotone problem is
on the one hand reminiscent of the problem class NPO, on the other hand it also
allows us to study approximate extension as follows. For a monotone problem Π,
one might ask for input (I, U) not to extend exactly U (if this is not possible)
but to find a pre-solution U ′ as close as possible to U so that (I, U ′) has an
extension. Such optimization formulations were studied for extension versions
of the vertex cover and independent set problems under the notion price of
extension (PoE) in [11], where the partial order is the subset or superset relation.
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However, this idea was not yet studied in the general scenario presented so far.
Further discussions on this are contained in Sect. 4.

Further, the function m allows to discuss the parameterized complexity of
extension problems, where we define the standard parameter for an extension
problem Ext Π for a monotone problem Π = (I, presol, sol,�,m) to be the
value of the given pre-solution, i.e., the parameter for instance (I, U) of Ext Π
is m(I, U). The dual parameterizations as discussed in [11] and [10] to derive the
results summarized in Table 1, can be modelled as follows in this framework. The
dual parameter is given by the difference of the value of the given pre-solution
to the maximum mmax(I) := max{mI(y) : y ∈ presol(I)}, so the parameter for
instance (I, U) of Ext Π is mmax(I)−m(I, U). Note that this can only be prop-
erly defined for monotone problems Π where mmax(I) := max{mI(I, U) : U ∈
presol(I)} exists for all I ∈ I. In this case we say that Π admits a dual param-
eterization, and observe the following.

Proposition 1. Let Π = (I, presol, sol,�,m) be a monotone problem that
admits a dual parameterization. If, for all I ∈ I and U ∈ presol(I), Above(U) =
{V : V ∈ sol(I), U � V } can be enumerated in FPT-time, parameterized by
mmax(I) − m(I, U), then Ext Π with dual parameterization is in FPT.

In order to enumerate Above(U), it is often easiest to actually enumerate
(if possible in FPT-time) the superset {V : V ∈ presol(I), U � V } instead and
then check if the enumerated pre-solution is a solution, which can be done in
polynomial time in our framework.

Although we strongly linked the definition of monotone problems to NPO,
the corresponding extension problems do not generally belong to NP (in contrast
to the canonical decision problems associated to NPO problems), as we will see
in Example 5.

Still, we can prove a general upper bound as follows. Recall that Σp
1 = NP

and that co-NP ⊆ Σp
2 in the usual terminology regarding the first levels of the

polynomial-time hierarchy, see for example the textbook [1] for more definitions.

Proposition 2. If Π is a monotone problem, then Ext Π can always be solved
within Σp

2 .

One of the consequences is that we cannot expect to obtain PSPACE-hard
extension problems within our framework.

Under certain circumstances, as described in the following, we can prove
membership of Ext Π in Σp

1 = NP. To this end, consider the finer structure
of the ordering � defined on presol(I) for an instance I of Π. For U,U ′ ∈
presol(I), call U ′ an immediate predecessor of U if U ′ � U and U ′ is a maximal
element in Below(U) = {X ∈ presol(I) : X � U ∧ X �= U}, i.e., there exists
no U ′′ �= U ′ with U ′′ ∈ Below(U) and U ′ � U ′′. We say that a monotone
problem Π admits polynomial enumeration of predecessors if Below(U) never
contains infinite chains for any pre-solution U and if there exists a polynomial-
time algorithm that, given any instance I of Π and U ∈ presol(I), enumerates
all immediate predecessors of U in polynomial time.
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Proposition 3. If Π is a monotone problem that admits polynomial enumera-
tion of predecessors, then Ext Π can be solved within Σp

1 = NP.

For the proofs of the previous two propositions, we refer to [12].

3 Some Examples

We now discuss quite a number of examples. This should help the reader under-
stand how abundant extension problems are and how different they look. This
section also serves as a sort of literature survey. Let us start with a problem from
logic that seems to be one of the first ones that really fits into our framework.

Example 4. The question of finding extensions to minimal solutions was encoun-
tered in the context of proving hardness results for (efficient) enumeration algo-
rithms for Boolean formulae, in the context of matroids and similar situations;
see [6,27]. More precisely, it is NP-hard to decide if a pre-solution can be extended
for the problem of computing prime implicants of the dual of a Boolean function;
a problem which can also be seen as finding a minimal hitting set for the set of
prime implicants of the input function. Interpreted in this way, the proof of [6]
yields NP-hardness for an extension version of 3-Hitting Set. �

Logical problems also allow for constructing extension problems with very
specific features.

Example 5. Consider the monotone problem Πτ = (I, presol, sol,�,m) with:

– I = {F : F is a Boolean formula}.
– presol(F ) = sol(F ) = {φ | φ : {1, . . . , n} → {0, 1}} for a formula F ∈ I on n

variables.
– For φ, ψ ∈ presol(F ), φ � ψ if either φ = ψ, or assigning variables according

to ψ satisfies F while an assignment according to φ does not.
– m ≡ 1 (plays no role for the extension problem).

The associated extension problem Ext Πτ corresponds to the co-NP-
complete problem Tautology in the following way: Given a Boolean formula F
which, w.l.o.g., is satisfied by the all-ones assignment ψ1 ≡ 1, it follows that
(F,ψ1) is a yes-instance for Ext Πτ if and only if F is a tautology, as ψ1 is
in μ(sol(F )) if and only if there does not exist some ψ1 �= φ ∈ sol(F ) with
φ � ψ1, so, by definition of the partial ordering, an assignment φ which does not
satisfy F . Consequently, Ext Πτ is not in NP, unless co-NP = NP. �

Let us mention some well-known graph problems that can quite naturally be
modelled as monotone problems with I always as the set of undirected graphs.

Example 6. Denoting instances by G = (V,E), and the simple cardinality func-
tion as objective, i.e., m(G,U) = |U | for all U ∈ presol(G):

– Vertex Cover (VC): � = ⊆, presol(G) = 2V , C ∈ sol(G) iff each e ∈ E is
incident to at least one v ∈ C;
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– Edge Cover (EC): � = ⊆, presol(G) = 2E , C ∈ sol(G) iff each v ∈ V is
incident to at least one e ∈ C;

– Independent Set (IS): � = ⊇, presol(G) = 2V , S ∈ sol(G) iff G[S] contains
no edges;

– Edge Matching (EM): � = ⊇, presol(G) = 2E , S ∈ sol(G) iff none of the
vertices in V is incident to more than one edge in S;

– Dominating Set (DS): � = ⊆, presol(G) = 2V ,D ∈ sol(G) iff N [D] = V ;
– Edge Dominating Set (EDS): � = ⊆, presol(G) = 2E ,D ∈ sol(G) iff each

edge belongs to D or is adjacent to some e ∈ D.

When studying monotone graph problems restricted to some particular graph
classes, this formally means that the instance set I contains only graphs that
fall into the graph class under consideration. We hence arrive at problems like
Ext VC (or Ext IS, resp.), where the instance is specified by a graph G =
(V,E) and a vertex set U , and the question is if there is some minimal vertex
cover C ⊇ U (or some maximal independent set I ⊆ U). Notice that the instance
(G,V ) of Ext IS can be solved by the exhaustive greedy approach that, starting
from ∅, gradually adds vertices and deletes their closed neighborhood. Note that
this gives an independent set U that trivially satisfies U ⊂ V so V � U . Further,
for any w ∈ V \U , the set U ∪{w} is not an independent set by the construction
of U , which means that there exists no independent set U ′ �= U with U ⊂ U ′

(i.e., U ′ � U), as {U ∪ {w} | w ∈ V \ U} is the set of immediate predecessors
of U . Similarly, (G, ∅) is an easy instance of Ext VC. We will show that this
impression changes for other instances.

Ext VC and Ext IS were studied in [11]. While these problems are NP-
complete on planar bipartite sub-cubic graphs, they are polynomial-time decid-
able in chordal and in circular-arc graphs. Also, Ext VC remains NP-hard, even
restricted to planar cubic graphs, see [2]. Ext DS is treated in [12] and shown
to be NP-complete on planar bipartite sub-cubic graphs, also cf. [3]. In [12], it
is also explained why, under the standard parameterization, we obtain a W[3]-
complete problem, quite a peculiar thing in parameterized complexity theory;
see the comments in [13].

In [29], Khosravian et al. studied the following extension variant of the Con-

nected Vertex Cover problem, denoted by Ext CVC: given a connected
graph G = (V,E) together with a subset U ⊆ V of vertices, the goal is to decide
whether there exists a minimal connected vertex cover of G containing U . It
is shown that Ext CVC is polynomial-time decidable in chordal graphs while
it is NP-complete on bipartite graphs of maximum degree 3 even if U is an
independent set.

Extension variants of three edge graph problems, namely Edge Cover,
Edge Matching and Edge Dominating Set, (here denoted by Ext EC, Ext
EM and Ext EDS, respectively) were studied in [10]; it is shown that all these
problems are NP-hard in planar bipartite graphs of maximum degree 3. Further,
Ext EM is polynomial-time decidable when the forbidden edges U = E \ U
form an induced matching.
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In [11] and [10], extension variants of some classical graph problems were
also studied from a parameterized complexity point of view, in particular under
the standard or dual parameters. A summary of these parameterized results is
presented in Table 1. Further, [11] contains some complexity lower bounds for
extension problems assuming the Exponential Time Hypothesis (ETH)2.

The paragraph after Proposition 1 shows that, with the dual parameteriza-
tion, Ext DS belongs to FPT. �

Notice that, as illustrated for Ext IS, each of the above monotone graph
problems admits polynomial enumeration of predecessors. Therefore, the corre-
sponding extension problems all lie in NP. It is instructive to have another look
at the monotone problem Πτ from Example 5 whose extension variant corre-
sponds to Tautology. Here, the partial order � on {1, . . . , n}{0,1} can be also
described as follows (with respect to a given Boolean formula F ):

– All assignments that do not satisfy F are mutually incomparable, while
– each of them is strictly smaller (with respect to �) than any assignments that

satisfy F ,
– which are again incomparable amongst themselves.

As a formula may possess exponentially many non-satisfying assignments, Πτ

does not admit polynomial enumeration of predecessors. In view of our earlier
findings, this is a pre-requisite to prove co-NP-hardness of the extension variant.

In actual fact, a sort of generalization of Ext IS has been considered much
before as an extension problem, as discussed in the following. Supposedly, this
is really the first problem from the literature that fits into our framework.

Example 7. The extension problem Ext Ind Sys (also called Flashlight)3

for independent systems was proposed in [30]. An independent system is a set
system (V, E), E ⊆ 2V , that is hereditary under inclusion. In the extension
problem Ext Ind Sys, given as input X,Y ⊆ V , one asks for the existence of
a maximal independent set including X that does not intersect with Y . Lawler
et al. [30] proved that Ext Ind Sys is NP-complete, even when X = ∅. In order
to enumerate all (inclusion-wise) minimal dominating sets of a given graph,
Kanté et al. studied a restriction of Ext Ind Sys: the problem of deciding if
there exists a minimal dominating set containing X (denoted by Ext DS here).
They proved that Ext DS is NP-complete, even in special graph classes like split
graphs, chordal graphs and line graphs [24,25]. Moreover, they proposed a linear
algorithm for split graphs when X,Y is a partition of the clique part [23]. Further
discussions are contained in Example 6. Ext DS also links to the following

2 ETH is a conjecture asserting that there is no 2o(n) (i.e., no sub-exponential) algo-
rithms for solving 3-SAT, where n is the number of variables; the number of clauses
is somehow subsumed into this expression, as this number can be assumed to be
sub-exponential in n (after applying the famous sparsification procedure); cf. [22].

3 Presumably, this is the origin of the naming of “flashlight” for an algorithm that tries
to prune branches of a search tree when enumerating minimal sets with a certain
property, e.g., minimal vertex covers.
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open question in the area of enumeration algorithms: Is it possible to design an
exact algorithm for Upper Domination (the task to find a minimal dominating
set of maximum cardinality) that avoids enumerating all minimal dominating
sets? �

So far, it might appear that every classical decision problem yields exactly
one corresponding extension problem. However, different algorithmic (greedy)
strategies for a classical problem result in different corresponding sets of pre-
solutions and orderings, hence different extension problems. We explain this
point by discussing Graph Coloring.4

Example 8. Consider for example the following two greedy strategies of finding
a proper vertex coloring. Formally, vertex colorings of a graph G = (V,E) are
functions c : V → {1, . . . , k} for some k ∈ N, and they are proper (hence a
solution to the graph coloring problem) if c(u) �= c(v) for all edges uv ∈ E.
Starting from a base coloring c that assigns the same color to all vertices, formally
c : V → {1}, consider the following two options as greedy improvement strategies
for a coloring c : V → {1, . . . , k}:

(a) Pick an index i ∈ {1, . . . , k} and a subset Ci of {v ∈ V | c(v) = i}. Define
the improved coloring c′ on {1, . . . , k} by c′(v) = k + 1 for all v ∈ Ci, and
c′(v) = c(v) for all v ∈ V \ Ci. (split one color class into two)

(b) Pick an independent set C ⊆ V and define the improved coloring c′ on
{1, . . . , k} by c′(v) = k + 1 for all v ∈ C, and c′(v) = c(v) for all v ∈ V \ C.
(recolor an independent set)

These two ideas, expressed as partial orderings towards and among feasi-
ble solutions, yield the partial orderings denoted a-chromatic and b-chromatic
in [31], formally defined as follows. Two colorings c1, c2 for a graph G satisfy
c1 � c2 iff c2 uses exactly one color more than c1, i.e., c1 : V → {1, . . . , k} and
c2 : V → {1, . . . , k + 1} with the following conditions:

a-chromatic there exists a color i such that c1(v) �= c2(v) only for v with
c1(v) = i and c2(v) = k + 1 (split one color into two),

b-chromatic c1(v) �= c2(v) only for v with c2(v) = k + 1 AND the color class
k + 1 forms an independent set (recolor an independent set).

This would lead to problems like Ext a-chrom or Ext b-chrom. The com-
plexities of these extension problems seem to be completely unexplored. �
The reader is also referred to [31] as a rich source of other examples for instance
orderings. In actually fact, all these are barely explored from the viewpoint of
extension problems.

As a non-graph example for extension that fits within our framework, we will
now discuss an extension version of Bin Packing.
4 The reader might have expected us talking on Precoloring Extension and sim-

ilar problems known from the literature (see, e.g., [4,32]); however, these types of
extension problems do not really fit into our framework due to the lack of a suitable
notion of a partial order.
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Example 9. We consider as ordering the so-called partition ordering. Bin packing
can be modelled as monotone problem as follows. Instances in I are sets X =
{x1, . . . , xn} of items and a weight function w that associates rational numbers
w(xi) ∈ (0, 1) to items, presol(X) contains all partitions of X, and a partition π
of X is in sol(X), if for each set Y ∈ π,

∑
y∈Y w(y) ≤ 1. For two partitions π1, π2

of X, we define the partial ordering � by π1 � π2 iff π2 is a refinement of π1,
i.e., π2 can be obtained from π1 by splitting up its sets into a larger number of
smaller sets. The traditional aim of the bin packing problem is to find a feasible
π such that |π|, the number of bins, is minimized, hence we set m(X,π) = |π|.

Notice that {X} is the smallest partition with respect to �. Clearly, the set
of solutions is upward closed. Now, a solution is minimal if merging any two
of its sets into a single set yields a partition π such that there is some Y ∈ π
with w(Y ) :=

∑
y∈Y w(y) > 1. Aside from modeling the greedy strategy that

gradually splits up bins that are too large, fixing a pre-solution can be interpreted

Table 1. Survey on parameterized complexity results for extension problems

Param. Ext. of

EC EM EDS IS VC DS BP

Standard FPT FPT W[1]-hard FPT W[1]-compl W[3]-compl para-NP

Dual FPT FPT FPT W[1]-compl FPT FPT (Example 6) FPT (Example 9)

as encoding knowledge about which items should not be put together in one bin.
This describes the problem Ext BP, which takes as input a set of items X
with weight function w, a partition πU of X (i.e., πU ∈ presol(X)), and asks if
ext(X,πU ) �= ∅. In [12], it is shown that Ext BP is NP-complete, even if the
pre-solution πU contains only two sets. This also proves para-NP-hardness with
respect to the standard parameter.

Dual parameterization easily yields membership in FPT by kernelization.
Consider the reduction rule that, for a partition πU of X given by sets
X1, . . . , Xk, removes for all i with Xi = {xi} the elements xi from X and Xi from
πU , leaving the dual parameter kd = n − k unaffected. An irreducible instance
is then a partition πU = {X1, . . . , Xk} of X, |X| = n, with |Xi| ≥ 2 and hence
2k ≤ n = |X| =

∑k
i=1 |Xi|, so that kd = n−k ≥ 1

2n. It is known that the number
of partitions of an m-element set is given by the mth Bell number, which again
is upper-bounded by O(mm). Hence, by simple brute-force, an instance (X,πU )
can be solved in time O∗(kkd

d ). �
Our last example comes from the area of formal languages.

Example 10. In [18], extension variants of one of the most famous combinatorial
problems in automata theory, namely the Synchronizing Word problem for
deterministic finite automata (DFA), were considered. This means that we are
given a deterministic finite automaton A and an input word u, and the task is
to find a minimal extension w of u such that w is synchronizing A, where mini-
mality is defined with respect to a partial order � on the set Σ∗ of input words.
A word w ∈ Σ∗ is synchonizing A if there is some state qsync such that, wherever
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A starts processing w, it will end in the synchronizing state qsync. The complexity
status of these extension problems vary with the choice of �. For further details,
we refer to the discussions in [9,12,18]. Let us only mention that the complexity
status of this extension problem with respect to the subword ordering is open.
In particular, no polynomial-time algorithm is known. Conversely, for the prefix-
or suffix-orderings, the corresponding extension problem can be solved in polyno-
mial time. Observe that upward closedness of the solution space follows from the
fact that if w ∈ Σ∗ is a synchronizing word, then for any x, y ∈ Σ∗, xwy is also
synchronizing. �

4 Summary and Suggestions for Further Studies

In [10–12], extension variants of some classical graph problems were also studied
from a parameterized complexity point of view, in particular under the stan-
dard and dual parameterizations. A summary of these parameterized results is
presented in Table 1. All these problems are NP-hard, often for quite restric-
tive conditions, as also discussed above. Recall that the combinatorial problems
underlying Ext EC and Ext EM, namely those of finding minimum edge cov-
ers or maximum matchings, are solvable in polynomial time; still, the extension
variations are much harder. Example 10 shows the converse possibility, that from
NP-hard combinatorial questions (finding smallest synchronizing words), we may
result in polynomial-time solvable extension problems. The focus on this paper
is to introduce a general framework of this type of problems and to illustrate it
presenting several quite different examples. More examples are contained in [28].

Extension problems were also studied under the lens of approximability, lead-
ing to the notion price of extension already mentioned before. More precisely,
this notion was defined differently for the subset and superset orders in [10,11].

– For the subset order, given some I ∈ I and some U ∈ presol(I) of a monotone
problem Π = (I, presol, sol,⊆,m), with m = | · |, the task is to find an
S ∈ μ(sol(I)) that maximizes |S ∩ U |. This variation is called ExtmaxΠ. An
example would be Vertex Cover.

– For the superset order, given some I ∈ I and some U ∈ presol(I) of a
monotone problem Π = (I, presol, sol,⊇,m), with m = | · |, the task is to
find an S ∈ μ(sol(I)) that minimizes |U | + |S ∩ U | = |U ∪ S|. This variation
is called ExtminΠ. An example would be Independent Set.

One suggestion for further studies would be to define and study the price of
extension in the general scenario. We formulate some suggestions in the sequel.
Let Π = (I, presol, sol,�,m) be some monotone problem. This means that two
cases may happen, discussing some arbitrary I ∈ I:

(a) For all U,U ′ ∈ presol(I), U ′ � U implies m(I, U ′) ≤ m(I, U).
(b) For all U,U ′ ∈ presol(I), U ′ � U implies m(I, U ′) ≥ m(I, U).

In case (a), we can define ExtmaxΠ as the optimization problem that, given
I ∈ I and U ∈ presol(I), asks to find a pre-solution U ′ ∈ presol(I) with U ′ � U
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and ext(I, U ′) �= ∅ that maximizes m(I, U ′). Note that this exactly yields the
price of extension of Vertex Cover introduced in [11] with � = ⊆ and m = |·|.
To explain this notion with another concrete example, reconsider Example 10.
Instances are given by a DFA A with input alphabet Σ and some word u ∈ Σ∗.
Then, presol(A) = Σ∗ and sol(A) = {w ∈ Σ∗ | w synchronizes A}. Let � denote
the subword ordering on Σ∗. This defines the problem Ext Sync-sub. Then,
m is the length function on words. Now, in Extmax Sync-sub, we ask to find
a subword x of u of maximum length that is a subword of some synchronizing
word w such that w has no proper subword that is synchronizing.

In case (b), we can define ExtminΠ as the optimization problem that, given
I ∈ I and U ∈ presol(I), asks to find a pre-solution U ′ ∈ presol(I) with U ′ � U
and ext(I, U ′) �= ∅ that minimizes m(I, U ′). This second case generalizes the
price of extension for Independent Set, with � = ⊇ and m = | · |.

Alternatively, and somehowunifying both cases, we could also consider the task
to find a pre-solution U ′ ∈ presol(I) with U ′ � U and ext(I, U ′) �= ∅ that min-
imizes |m(I, U ′) − m(I, U)|. This variation has the caveat that the optimization
function can take the value zero, which happens especially in case ext(I, U) �= ∅.
In fact, for all examples discussed here, |m(I, U ′)−m(I, U)| = 0 and U ′ � U hold
if and only if U = U ′ which means that the optimization function takes value zero
if and only if (I, U) is a yes-instance of the extension problem.

Let us mention another research direction connected to what we defined
above: one could also consider the natural parameterizations of all variants of
optimization problems. For instance, in the last case, this parameterized deci-
sion problem (with natural parameter k) would read as follows, referring to a
monotone problem Π = (I, presol, sol,�,m):
Given I ∈ I, U ∈ presol(I) and k ∈ N, does there exists a pre-solution U ′ ∈
presol(I) with U ′ � U and ext(I, U ′) �= ∅ such that |m(I, U ′) − m(I, U)| ≤ k?

Especially considering the hardness often already encountered for k = 0, one
could (alternatively) consider |U | or its dual as a parameter for this problem,
possibly also touching the idea of parameterized approximation.

This whole area of optimization variants to extension problems is widely
open. Yet, there is so much more to explore in this area. Probably, we only
saw the peak of an iceberg so far. To mention one more research direction:
Relatively little is known about extension problems when restricting the range
of instances. For instance, what about extensions of graph problems restricted
to certain graph classes? Often, some kind of hardness results are derived when
looking at the corresponding enumeration problem; we only refer to [19,20,23,25]
and the discussions on dominating set in [28]. Yet, a more systematic discussion
of this topic is lacking. We finally recall that several concrete open questions
have been mentioned throughout this paper. We hope that this serves as an
appetizer to extension problems.
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Phylogenetic Networks, A Way to Cope with Complex
Evolutionary Processes
by Katharina T. Huber5

Understanding how pathogens such as Covid-19, birdflu, or ash dieback might
have arisen is among some of the most challenging scientific questions of today.
Phylogenetics is a burgeoning area at the interface of Computer Science, Mathe-
matics, Statistics, Evolutionary Biology and also Medicine concerned with devel-
oping powerful algorithms and mathematical methodology to help with this.
Going back to at least the beginning of the 19th century, treelike structures
(now formalized as phylogenetic trees) have been used to visualize and model
the evolution of a set of organisms of interest. Similar to a genealogy, such a tree
is a certain rooted or unrooted graph-theoretical tree whose leaf set is the set
of organisms of interest. In the rooted case, the unique root represents the last
common ancestor of the organisms under consideration and the interior vertices
correspond to hypothetical speciation events.

Growing evidence from the tsunami-like amounts of data generated by mod-
ern sequencing technologies however suggests that for certain organisms the
model of a phylogenetic tree might be too simplistic to explain their complex
evolutionary past (e.g. recombination in viruses or hybridization in plants). This
has led to the introduction of phylogenetic networks as a tool to model and
visualise evolutionary relationships between organisms. Introduced in rooted and
unrooted form, these graphs naturally generalize phylogenetic trees in terms of a
rooted directed acyclic graph (rooted case) or as a splits graph (unrooted case).

Although deep algorithmic and mathematical results concerning phylogenetic
networks have been established over the years, numerous questions (including
some very fundamental ones) have remained open so far. These include

(i) What kind of data do we require to be able to uniquely reconstruct the
evolutionary scenario that gave rise to it?

(ii) How can we combine potentially conflicting gene trees (i.e. phylogenetic
trees supported by a gene or a genomic region) into an overall evolutionary
scenario for a set of organisms of interest?

(iii) How many potential phylogenetic networks can a set of organisms of interest
support and what can we say about their space of phylogenetic networks?

(iv) How are rooted and unrooted phylogenetic networks related?

In this talk, we first give a brief introduction to phylogenetics in general and
phylogenetic networks in particular and then discuss recent developments regard-
ing some of the questions above. This will also include pointing out potential
further directions of research.

5 Katharina T. Huber is with School of Computing Sciences, University of East Anglia,
UK.
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Recent Advances in Competitive Analysis of Online
Algorithms
by Joseph (Seffi) Naor6

This talk will survey recent advances in competitive analysis of online algorithms.
I will discuss recent work on deriving online algorithms for several problems from
Bregman projections and its connections to previous work on online primal-dual
algorithms. A primal-dual approach to the k-taxi problem, a generalization of
the k-server problem, will be discussed, as well as non-standard caching models
such as writeback-aware caching.

6 Joseph (Seffi) Naor is with Computer Science Dept., Technion, Haifa 32000, Israel.
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Abstract. In this work, we solve three problems on well-partitioned
chordal graphs. First, we show that every connected (resp., 2-connected)
well-partitioned chordal graph has a vertex that intersects all longest
paths (resp., longest cycles). It is an open problem [Balister et al., Comb.
Probab. Comput. 2004] whether the same holds for chordal graphs.
Similarly, we show that every connected well-partitioned chordal graph
admits a (polynomial-time constructible) tree 3-spanner, while the com-
plexity status of the Tree 3-Spanner problem remains open on chordal
graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show
that the problem of finding a minimum-size geodetic set is polynomial-
time solvable on well-partitioned chordal graphs. This is the first example
of a problem that is NP-hard on chordal graphs and polynomial-time
solvable on well-partitioned chordal graphs. Altogether, these results
reinforce the significance of this recently defined graph class as a tool
to tackle problems that are hard or unsolved on chordal graphs.

Keywords: well-partitioned chordal graph · graph class · longest path
transversal · tree spanner · geodetic set

1 Introduction

In this work, we deepen the structural and algorithmic understanding of the
recently introduced class of well-partitioned chordal graphs [1]. This subclass of
chordal graphs generalizes split graphs in two ways. Split graphs can be viewed
as graphs whose vertices can be partitioned into cliques that are arranged in
a star structure, the leaves of which are of size one. Well-partitioned chordal
graphs are graphs whose vertex set can be partitioned into cliques that can be
arranged in a tree structure, without any limitations on the size of any clique.
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The star-like structure of split graphs is fairly restricted compared to the
tree-like structure of chordal graphs. Questions in structural or algorithmic graph
theory which are difficult to answer on chordal graphs may have an easy solution
on split graphs thanks to their restricted structure. A natural path to a resolution
of such questions on chordal graphs is to extend their solutions on split graphs
to graph classes that are structurally closer to chordal graphs. Well-partitioned
chordal graphs exhibit a tree-like structure, which makes them a natural target
in such a scenario. We consider two such questions: We show that every well-
partitioned chordal graph has a vertex that intersects all its longest paths (or
cycles), while the corresponding question on chordal graphs has remained an
open problem [4]. We also show that every well-partitioned chordal graph has a
polynomial-time constructible tree 3-spanner, while the complexity of the Tree
3-Spanner problem remains unresolved on chordal graphs [5]. We discuss these
problems in more detail below.

There are several examples of algorithmic problems in the literature that are
efficiently solvable in split graphs but hard on chordal graphs, see [1] and the
references therein. In such cases it is worthwhile to narrow down the complexity
gap between split and chordal graphs, especially due to the structural difference
between the two classes. For several variants of vertex-coloring problems that
are NP-hard on chordal graphs and polynomial-time solvable on split graphs, it
was observed [1] that they remain NP-hard on well-partitioned chordal graphs.
However, there was no example of such a problem that becomes polynomial-time
solvable on well-partitioned chordal graphs. We give the first such example by
showing that there is a polynomial-time algorithm that given a well-partitioned
chordal graph, constructs a minimum-size geodetic set. This problem is known
to be NP-hard on chordal graphs [15].

Transversals of Longest Paths and Cycles. It is well-known that in a connected
graph, every two longest paths always share a common vertex. In 1966, Gal-
lai [18] asked whether every graph contains a vertex that belongs to all of its
longest paths. This question, whose answer is already known to be negative in
general [33,34], was shown to have a positive answer on several well-known graph
classes. It is not difficult to see that it holds for trees, and it has been shown for
outerplanar graphs and 2-trees [31], which has later been generalized to series-
parallel graphs, or equivalently, graphs of treewidth at most 2 [13]. (Interestingly,
the couterexample for general graphs [33] has treewidth 3.) Besides that, Gallai’s
question has a positive answer on circular arc graphs [4,22], P4-sparse (which
includes cographs) and (P5,K1,3)-free graphs [10], dually chordal graphs [21],
and 2K2-free graphs [19]. As alluded to above, it has a positive answer on split
graphs [24], and this result has been generalized to starlike graphs [10]. Both split
graphs and starlike graphs are subclasses of well-partitioned chordal graphs [1].
It remains a challenging open problem to determine whether all chordal graphs
admit a longest path transversal of size one. As a step in the direction of answer-
ing this question for chordal graphs, we prove the following theorem.
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Theorem 1. Every connected well-partitioned chordal graph contains a vertex
that intersects all its longest paths.

A closely related question is whether a 2-connected graph has a vertex that
intersects all its longest cycles. This question has also been studied extensively
on graph classes, and several of the above mentioned references contain positive
answers to this question on the corresponding graph classes. In some cases the
results are not stated explicitly, but it is not too difficult to adapt the proofs for
the case of longest paths to the case of longest cycles. We answer this question
positively on 2-connected well-partitioned chordal graphs as well.

Theorem 2. Every 2-connected well-partitioned chordal graph contains a vertex
that intersects all its longest cycles.

Tree 3-Spanner. For a connected graph G and a positive integer t, a spanning
tree T of G is a tree t-spanner of G if for every pair (v, w) of vertices in G,
distG(v, w) ≤ t · distT (v, w), where distG(v, w) (resp., distT (v, w)) denotes the
length of shortest path in G (resp., T ) from v to w. The Tree t-Spanner
problem asks whether a given graph G has a tree t-spanner. Tree t-spanners
are motivated from applications including network research and computational
geometry [2,25]. Cai and Corneil [9] showed that Tree t-Spanner is linear-time
solvable if t ≤ 2, and is NP-complete if t ≥ 4. For t = 3, the complexity of Tree
3-Spanner is not yet unveiled. Brandstädt et al. [5] investigated the complexity
of Tree t-Spanner on chordal graphs of small diameter. They showed that for
even t ≥ 4 (resp., odd t ≥ 5) it is NP-complete to decide if a chordal graph
of diameter at most t + 1 (resp., t + 2) has a tree t-spanner. On the other
hand, for any even t (resp., odd t), every chordal graph of diameter at most
t − 1 (resp., t − 2) admits a tree t-spanner which can be found in linear time.
Brandstädt et al. [5] also showed that Tree 3-Spanner is polynomial-time
solvable on chordal graphs of diameter at most 2. On general chordal graphs,
the complexity of Tree 3-Spanner is still open. Several subclasses of chordal
graphs, such as split [32], very strongly chordal [5], and interval [26] graphs
were shown to be tree 3-spanner admissible, meaning that each of its members
admits a tree 3-spanner. In the above mentioned cases, such tree 3-spanners
can always be computed in polynomial time. We show that the same holds for
well-partitioned chordal graphs, generalizing the result for split graphs [32].

Theorem 3. Every connected well-partitioned chordal graph admits a tree 3-
spanner which can be constructed in polynomial time.

A subclass of chordal graphs that is not tree 3-spanner admissible and yet has a
polynomial-time algorithm for Tree 3-Spanner is that of 2-sep chordal graphs,
as shown by Das and Panda [28]. Other (non-chordal) graph classes that are
known to be tree 3-spanner admissible are bipartite ATE-free graphs [6] (which
include convex graphs) and permutation graphs [26]; and there are polynomial-
time algorithms for Tree 3-Spanner on cographs and co-bipartite graphs [8],
as well as planar graphs [17].



26 J. Ahn et al.

Geodetic Sets. Given a graph G and a vertex set S ⊆ V (G), the geodetic closure
of S is the set of vertices that lie on a shortest path between a pair of distinct
vertices in S. Such a set S is called a geodetic set if the geodetic closure of S is
the entire vertex set of G. The Geodetic Set problem asks, given a graph G,
for the smallest size of any geodetic set in G. The study of geodetic sets was
initiated by Harary et al. [20] in 1986, and is related to convexity measures
in graphs; we refer to [29] for an overview. Harary et al. [20] showed that the
Geodetic Set problem is NP-hard on general graphs, see also [3]. Dourado et
al. [15] showed that Geodetic Set remains NP-hard on chordal graphs, and
that it is polynomial-time solvable on split graphs. We extend their ideas to give
a polynomial-time algorithm for well-partitioned chordal graphs.

Theorem 4. There is a polynomial-time algorithm that given a well-partitioned
chordal graph G, computes a minimum-size geodetic set of G.

The complexity of Geodetic Set has been deeply studied on graph classes.
Besides the above mentioned results, it was shown to be NP-hard on chordal
bipartite [15] and bipartite [14] graphs, as well as co-bipartite [16], subcu-
bic [7], and planar graphs [12]. Very recently, Chakraborty et al. [11] showed NP-
hardness on subcubic partial grids, which unifies hardness on subcubic, planar,
and bipartite graphs. Interestingly, they showed that Geodetic Set is NP-hard
even on interval graphs, while a polynomial-time algorithm for proper interval
graphs is known due to Ekim et al. [16]. Other graph classes that are known
to admit polynomial-time algorithms are cographs [15], outerplanar graphs [27],
block-cactus graphs [16], and solid grid graphs [11]. Kellerhals and Koana [23]
recently assessed the parameterized complexity of Geodetic Set, and proved
it to be W[1]-hard parameterized by solution size plus pathwidth and feedback
vertex set, while devising FPT-algorithms for the parameter feedback edge set
as well as for tree-depth.

2 Preliminaries

In this paper, all graphs are simple and finite. For graphs G and H, let G ∪
H := (V (G) ∪ V (H), E(G) ∪ E(H)). For a vertex v of G, let NG(v) be the
set of neighbors of v in G, that is, NG(v) := {w ∈ V (G)|vw ∈ E(G)}, and
NG[v] := NG(v)∪{v}. For a vertex set X of G, let NG(X) :=

⋃
v∈X(NG(v)\X),

and NG[X] := NG(X) ∪ X. We may omit the subscript G if it is clear what is
the base graph.

For a vertex set X of G, the subgraph induced by X, denoted by G[X], is a
graph (X, {vw ∈ E(G)|v, w ∈ X}). We let G − X := G[V (G) \ X], and if X
consists of a singleton v, then we use the shorthand G − v instead of G − {v}.
For vertex sets X and Y of G, we denote by G[X,Y ] the graph (X ∪ Y, {xy ∈
E(G) | x ∈ X, y ∈ Y }). For disjoint vertex sets X and Y of G, we say that X is
complete to Y if each vertex in X is adjacent to every vertex in Y .

A graph G is connected if for every nonempty proper subset X � V (G), there
are vertices x ∈ X and y ∈ V (G) \ X such that xy ∈ E(G), and disconnected,



Three Problems on Well-Partitioned Chordal Graphs 27

otherwise. A component of G is a maximal connected subgraph of G, that is, an
induced subgraph G′ of G such that for any vertex v ∈ V (G)\V (G′), G[V (G′)∪
{v}] is disconnected. A graph G is 2-connected if G is connected and has no
vertex v such that G − v is disconnected. A hole in a graph G is an induced
subgraph of G isomorphic to a cycle of length at least 4. A graph is chordal if it
has no holes.

Throughout this work, proofs of statements marked with ‘♣’ are deferred to
the full version.

Well-Partitioned Chordal Graphs

Ahn et al. [1] introduced the class of well-partitioned chordal graphs, which is a
subclass of chordal graphs. A connected graph G is well-partitioned chordal if
V (G) admits a partition P and a tree T having P as a vertex set satisfying the
following conditions.

(i) Each partite set X ∈ P is a clique in G.
(ii) For each edge XY of T , there are subsets X ′ ⊆ X and Y ′ ⊆ Y such that

E(G[X,Y ]) = {xy | x ∈ X ′, y ∈ Y ′}.

(iii) For each pair of distinct nodes X,Y in T with XY /∈ E(T ), E(G[X,Y ]) = ∅.

We call the tree T a partition tree of G, and the elements in P the bags of G.
A graph is well-partitioned chordal if each of its components is well-partitioned
chordal. Given a partition tree T of a connected well-partitioned chordal graph
G and distinct nodes X and Y of T , the boundary of X with respect to Y,
denoted by bd(X,Y ), is the set of vertices in X having neighbors in Y . Namely,
bd(X,Y ) := {x ∈ X|NG(x)∩Y 
= ∅}. Note that by the second item of the above
definition, bd(X,Y ) and bd(Y,X) are complete to each other.

Theorem 5 (Ahn et al. [1]). Given a graph G, in polynomial time, one can
either determine that G is not well-partitioned chordal, or find a partition tree
for each component of G.

3 Transversals of Longest Paths and Cycles

In this section, we show that well-partitioned chordal graphs admit both longest
path transversals and longest cycle transversals of size one. We start with the
following lemma, the proof of which exploits the Helly property of subtrees of
a tree to show the existence of a bag of the partition tree that intersects all
longest paths of a well-partitioned chordal graph. The same proof strategy has
been used by Rautenbach and Sereni [30] to show that for any graph G, there
exists a set of size tw(G) + 1 that intersects all the longest paths of G.

Lemma 1. Let G be a well-partitioned chordal graph with partition tree T . Then
there exists X ∈ V (T ) such that every longest path of G contains a vertex of X.
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Proof. Let P1, . . . , P� be the longest paths of G. Since G is connected, for each
1 ≤ i ≤ �, the set of bags of T containing at least one vertex from Pi forms a
subtree of T . Let Ti be such a subtree. Since in any connected graph every two
longest paths have a vertex in common, we have that V (Ti) ∩ V (Tj) 
= ∅ for
every i 
= j. By the Helly property1 of subtrees of a tree, there exists X ∈ V (T )
such that X ∈ V (Ti) for every 1 ≤ i ≤ �. That is, X is a bag of T that intersects
every longest path of G. ��

We prove a similar lemma for longest cycles of 2-connected well-partitioned
chordal graphs. The proof of this lemma follows the same lines as the one pre-
sented above, hence we omit it here.

Lemma 2. Let G be a 2-connected well-partitioned chordal graph with partition
tree T . Then there exists X ∈ V (T ) such that every longest cycle of G contains
a vertex of X.

Restatement of Theorem 1. Every connected well-partitioned chordal graph
has a vertex that intersects all its longest paths.

Proof. Let P1, . . . , P� be the longest paths of G. By Lemma 1, there exists a bag
B ∈ V (T ) such that V (Pi) ∩ B 
= ∅ for every i. Let B1, . . . , Bk be the neighbors
of B in T . We define Ti to be the connected component of T − B containing
Bi and Gi to be the subgraph of G induced by the vertices contained in the
bags of Ti. Let pi be the length of a longest path in Gi with one endpoint in
bd(Bi, B). We may assume without loss of generality that p1 ≥ pi for every
i > 1. We will now show that every longest path of G contains all the vertices
of bd(B,B1). Let P be a longest path of G and suppose for a contradiction that
there exists v ∈ bd(B,B1) such that v /∈ V (P ). Recall that V (P ) ∩ B 
= ∅. If
there exists x, y ∈ B such that xy ∈ E(P ), then we can obtain a path longer
than P by inserting v between x and y in P , a contradiction with the fact that
P is a longest path of G. Similarly, no endpoint of P belongs to B, otherwise
we would also find a path longer than P in G. The same holds also if there
exists x ∈ bd(B,B1) and y ∈ bd(B1, B) such that xy ∈ E(P ). Indeed, since
bd(B,B1) ∪ bd(B1, B) is a clique, we would again find a path longer than P by
inserting v between x and y in P . Therefore P contains no edge crossing from B
to B1, which implies that V (P ) ∩ V (G1) = ∅. Let P = x1x2 . . . xt and let xj be
a vertex of V (P ) ∩ B such that for every i ≥ 1 we have xj+i /∈ B. Such a vertex
exists since xt /∈ B. Assume without loss of generality that xj+1 ∈ bd(Bj , B).
Note that xj+1xj+2 . . . xt is a path in Gj with an endpoint in bd(Bj , B). Hence
the length of this path is at most p1. Let P ′ = x1x2 . . . xj and P ′′ be a longest
path in G1 with an endpoint in bd(B1, B). Then P ′ · v · P ′′ is a path in G that
is longer than P , a contradiction. ��

With a more careful argument, we can prove the analogous result for longest
cycles.
1 The Helly property of trees states that in every tree, every collection of pairwise

intersecting subtrees has a common nonempty intersection.
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Restatement of Theorem 2. Every 2-connected well-partitioned chordal
graph has a vertex that intersects all its longest cycles.

Proof. We start as in the proof of Theorem 1. Let C1, . . . , C� be the longest cycles
of G. By Lemma 2, there is a bag B ∈ V (T ) such that V (Ci) ∩ B 
= ∅ for every
i. Note that we can assume B is not a leaf of T , since if all the longest cycles
intersect a bag that is a leaf, they also intersect the bag that is the neighbor
of such a leaf. Let B1, . . . , Bk be the neighbors of B in T . We define Ti to be
a maximal subtree of T containing Bi and not containing B and Gi to be the
subgraph of G induced by the vertices contained in the bags of Ti.

Now, let pi be the length of a longest path in Gi with both endpoints in
bd(Bi, B). Note that this is well-defined, since |bd(Bi, B)| ≥ 2 for every i, as G
is a 2-connected graph. We may assume without loss of generality that p1 ≥ pi

for every i > 1. We will now show that every longest cycle of G contains all
the vertices of bd(B,B1). Let C be a longest cycle of G and suppose for a
contradiction that there exists v ∈ bd(B,B1) such that v /∈ V (C). We first point
out the following.

Claim 1. |V (C) ∩ B| ≥ 2.

Proof. We already know that |V (C) ∩ B| ≥ 1. Suppose for a contradiction that
|V (C) ∩ B| = 1. Then there exists x1, x2, x3 ∈ V (C) such that x1, x2, and x3

appear consecutively in the cycle, and x2 ∈ B and x1, x3 /∈ B. In particular, x2

belongs to the boundary between B and some neighboring bag Bi, and x1, x3 ∈
bd(Bi, B). Since G is 2-connected, there exists u ∈ bd(B,Bi), with u 
= x2, such
that u /∈ V (C). Thus, we can add u between x2 and x3 in C and obtain a cycle
longer than C, a contradiction.

If there exists x, y ∈ B such that xy ∈ E(C), then we can obtain a cycle
longer than C by inserting v between x and y in C, a contradiction with the
fact that C is a longest cycle of G. The same holds if there exists x ∈ bd(B,B1)
and y ∈ bd(B1, B) such that xy ∈ E(C). Indeed, since bd(B,B1) ∪ bd(B1, B)
is a clique, we would again find a cycle longer than C by inserting v between x
and y in C. Therefore C contains no edge crossing from B to B1, which implies
that V (C) ∩ V (G1) = ∅. Consider u ∈ bd(B,B1) such that u 
= v. We consider
two cases.

If u ∈ V (C), since C cannot have two consecutive vertices in B, then there
exists i 
= 1 such that u ∈ bd(B,Bi), and there exists u′ ∈ bd(Bi, B) such that
uu′ ∈ E(C). Moreover, by the above claim, there exists u′′ ∈ V (C) ∩ bd(B,Bi)
such that if P is the subpath of C starting in u, ending in u′′ and containing u′,
then (V (P ) \ {u, u′′}) ⊆ V (Gi). Note also that |P | ≤ pi + 2, since the neighbors
of u and u′′ in P belong to bd(Bi, B). Let P1 be a longest path of G1 with both
endpoints in bd(B1, B) and let P ′ = u · P1 · vu′′. Let C ′ be the cycle obtained
from C by replacing P by P ′. Since |P ′| = p1 + 3 and p1 ≥ pi, we have that C ′

is a cycle longer than C, a contradiction.
Now we consider the case in which u /∈ V (C). Recall that C cannot have

two consecutive vertices in B. By Claim 1, there exists i 
= 1 such that
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V (C) ∩ V (Gi) 
= ∅. Let x, x′, y, y′ ∈ V (C) be such that x, y ∈ bd(B,Bi),
x′, y′ ∈ bd(Bi, B), xx′, yy′ ∈ E(C) and the subpath P of C starting in x, ending
in y and containing x′ and y′ is such that (V (P ) \ {x, y}) ⊆ V (Gi). Note that it
can be the case that x′ = y′. Moreover, |P | ≤ pi + 2. Let P1 be a longest path
of G1 with both endpoints in bd(B1, B) and let P ′ = xu · P1 · vy. Let C ′ be the
cycle obtained from C by replacing P by P ′. Since |P ′| = p1 +4 and p1 ≥ pi, we
have that C ′ is a cycle longer than C, a contradiction. This concludes the proof
that all the vertices of bd(B,B1) are contained in all longest cycles of G. ��

4 The Tree 3-Spanner Problem

In this section, we show that Tree 3-Spanner on well-partitioned chordal
graphs can be solved in polynomial time. More specifically, we show that given a
connected well-partitioned chordal graph, one can always find a tree 3-spanner
in polynomial time.

Restatement of Theorem 3. Every connected well-partitioned chordal graph
admits a tree 3-spanner, which one can find in polynomial time.

Proof. Let G be a connected well-partitioned chordal graph with partition tree
T . We choose a bag R of T and consider it as a root bag. For each non-root bag
B, let P (B) denote the parent bag of B. For each non-root bag B,

• let S∗
B be a star whose center is in bd(B,P (B)) and all leaves are exactly the

vertices in V (B) \ bd(B,P (B)),
• let S∗∗

B be a star whose center is in bd(P (B), B) and all leaves are exactly
the vertices in bd(B,P (B)), and

• let SB := S∗
B ∪ S∗∗

B .

Observe that the vertex set of SB consists of all vertices of B and one vertex in
bd(P (B), B). Moreover, SB is a tree. For the root bag R, let SR be a star on
V (R). We claim that U :=

⋃
B∈V (T ) SB is a tree 3-spanner of G. It is sufficient

to show that U is a spanning tree, and for every edge vw in G, distU (v, w) ≤ 3.
We first verify that U is a tree. Note that for each non-root bag B, SB is a

tree containing all vertices of B and at least one edge between B and P (B), and
furthermore, SR is a spanning tree of R. Therefore, U is a connected subgraph
containing all vertices of G. Suppose that U contains a cycle C.

Observe that for each non-root bag B of T , the center of S∗∗
B separates

V (B) and V (P (B)) in U . Let B′ be the bag containing a vertex of C such that
distT (R,B′) is minimum. Since U [V (B′)] has no cycle, there is a child bag B′′

of B′ containing a vertex of C. By the above observation, V (B′)∩V (C) has only
one vertex that is the center of S∗∗

B′′ . As |V (B′) ∩ V (C)| = 1, there is no other
child bag of B′ containing a vertex of C.

By a repeated argument, we can see that there is no child bag of B′′ con-
taining a vertex of C. Then C contains SB′ , but by the construction, SB′ has
no cycle. We conclude that U is a spanning tree.
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Now, we claim that for every edge vw in G, distU (v, w) ≤ 3. Choose an edge
vw of G. If vw is an edge in a bag B, then distU (v, w) = distSB

(v, w) ≤ 3. Assume
that vw is an edge between a bag B and its parent P (B) so that v ∈ V (B) and
w ∈ V (P (B)). If vw ∈ E(SB), then it is trivial. Assume that w /∈ V (SB).
Let z be the vertex of SB contained in PB . Then distU (v, w) = distSB

(v, z) +
distSP (B)(z, w) ≤ 3.

Our construction of a tree 3-spanner for G immediately follows the partition
tree T of G. By Theorem 5, a partition tree of a well-partitioned chordal graph
can be obtained in polynomial time, and therefore one can find a tree 3-spanner
for G in polynomial time. ��

5 Geodetic Sets

We now give a polynomial-time algorithm for the Geodetic Set problem on
well-partitioned chordal graphs. Recall that a geodetic set of a graph G is a
subset S of its vertices such that each vertex that is not in S lies on a shortest
path between some pair of vertices in S, and that the Geodetic Set problem
asks, given a graph G, for a smallest-size geodetic set of G. Throughout the
following, given a vertex set S ⊆ V (G), we denote by I[S] the interval of S in G,
which is the set of all vertices lying on a shortest path between a pair of vertices
in S. Note that S ⊆ I[S].

We first observe that any geodetic set of a graph contains all its simplicial
vertices. Since the neighborhood of a simplicial vertex v is a clique, v is never an
internal vertex of any shortest path: Suppose v is an internal vertex of a path P ,
and let u1 and u2 be the two neighbors of v in P . Since u1 and u2 are adjacent,
we can obtain a shorter path P ′ from P by replacing u1vu2 with u1u2 such that
P ′ has the same endpoints as P .

Observation 1. Let G be a graph and let v ∈ V (G) be a simplicial vertex in G.
Then, every geodetic set of G contains v.

From now on we assume that we are given a connected well-partitioned
chordal graph G with partition tree T , such that T has at least two nodes
(otherwise, G is simply a complete graph). If G is not connected, we can apply
the procedure described below to each of its connected components. As a con-
sequence of Observation 1, we have that each leaf bag of T has a vertex that is
contained in every geodetic set of G. Let B ∈ V (T ) be a leaf with neighbor C. If
bd(B,C) 
= B, then each vertex in B \ bd(B,C) is simplicial. If bd(B,C) = B,
then each vertex in B is simplicial. This also immediately implies that each non-
simplicial vertex in a leaf bag is on some shortest path between two simplicial
vertices: if we have a non-simplicial vertex in B, then bd(B,C) 
= B and the
non-simplicial vertices are precisely the ones in bd(B,C). Since T has at least
two nodes, there is some other leaf bag in T which again has some simplicial ver-
tex, say x. Now, each shortest path from a simplicial vertex in B to x uses some
vertex from bd(B,C), and since the vertices in bd(B,C) are twins in G[B ∪ C],
each of them is on such a shortest path.
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Observation 2. Let G be a connected well-partitioned chordal graph with par-
tition tree T , and let S be the set of simplicial vertices of G. Each leaf bag B of
T contains a simplicial vertex, and B ⊆ I[S].

Dourado et al. [15] showed that the geodetic number of split graphs can be
computed in polynomial time. In the following, we adapt their construction to
the case of internal bags of a partition tree in a well-partitioned chordal graph.
First, we need a small auxiliary lemma.

Lemma 3 (♣). Let G be a connected well-partitioned chordal graph with parti-
tion tree T , let S denote the set of simplicial vertices of G, and let B ∈ V (T )
be an internal bag.

(i) Let u ∈ B. If there are two distinct C1, C2 ∈ NT (B) such that u ∈
bd(B,C1) ∩ bd(B,C2), then u ∈ I[S].

(ii) For all C1, C2 ∈ NT (B) with bd(B,C1) ∩ bd(B,C2) = ∅, we have that
bd(B,C1) ∪ bd(B,C2) ⊆ I[S].

Using the previous lemma, we can prove that any vertex in a bag that contains
a simplicial vertex is on some shortest path between two simplicial vertices.

Lemma 4 (♣). Let G be a connected well-partitioned chordal graph with parti-
tion tree T , let S denote the set of simplicial vertices of G, and let B ∈ V (T )
be an internal bag. If B contains a simplicial vertex, then B ⊆ I[S].

In the remainder, we show how to deal with vertices that are not on shortest
paths between simplicial vertices. We call such vertices problematic, and they are
the ones that are contained in internal bags without simplicial vertices and do
not fall under one of the cases of Lemma 3. For an illustration of a problematic
vertex, see Fig. 1a.

Definition 1. Let G be a connected well-partitioned chordal graph with partition
tree T , and let B ∈ V (T ) be an internal bag that does not contain any simplicial
vertex. A vertex v ∈ B is called problematic if

(i) there is a unique C ∈ NT (B) such that v ∈ bd(B,C), and
(ii) for each C ′ ∈ NT (B) \ {C}, bd(B,C) ∩ bd(B,C ′) 
= ∅.

In this case we call C a problematic neighbor bag.

Suppose that some bag B has no simplicial vertex. Then each shortest path
in G between two simplicial vertices that uses a vertex from B passes through
two neighbors of B. If a vertex is problematic, then it cannot be on any such
shortest path, and if it is not problematic, then it falls under one of the cases of
Lemma 3, which leads to the following observation.

Observation 3. Let G be a connected well-partitioned chordal graph with par-
tition tree T , let S denote the set of simplicial vertices of G, and let B ∈ V (T )
be an internal bag with B ∩ S = ∅. Let P be the set of problematic vertices of B,
then P = B \ I[S].
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v

B
C

(a) Illustration of a problematic vertex v.
The only boundary v is contained in is
bd(B,C), and every other boundary in B
intersects bd(B,C).

v

x

(b) Illustration of a problem solver v. Note
that v may be in I[S], and that x is a
problem solver as well.

Fig. 1. Problematic vertices and problem solvers.

By similar reasoning, we observe that if a problematic vertex in B is on some
shortest path, then this shortest path has to have an endpoint in B.

Observation 4. Let G be a connected well-partitioned chordal graph with par-
tition tree T , and let B ∈ V (T ) be an internal bag. Let v ∈ B be a problematic
vertex. Any shortest path that has v as an internal vertex has one endpoint in B.

By Observations 3 and 4, we know that if a bag B has no simplicial vertex
and it has at least one problematic vertex, then we need at least one more vertex
from B in any geodetic set. The following notion captures in which situation a
single additional vertex suffices. We illustrate the following definition in Fig. 1b.

Definition 2. Let G be a connected well-partitioned chordal graph with partition
tree T and let B ∈ V (T ). Let P ⊆ B denote the set of problematic vertices in B
and C1, . . . , C� the problematic neighbor bags. A vertex v ∈ B is called a problem
solver if for each i ∈ [�], either v /∈ bd(B,Ci) or bd(B,Ci) ∩ P = {v}.

Lemma 5 (♣). Let G be a connected well-partitioned chordal graph with parti-
tion tree T and let S ⊆ V (G) be the simplicial vertices of G. Let B ∈ V (T ) be a
bag with B ∩S = ∅. For each v ∈ B, B ⊆ I[S ∪{v}] if and only if v is a problem
solver.

If there are at least two distinct problematic neighbor bags, then two addi-
tional vertices always suffice.

Lemma 6 (♣). Let G be a connected well-partitioned chordal graph with parti-
tion tree T , let S denote the set of simplicial vertices of G, let B ∈ V (T ) be an
internal bag with B ∩ S = ∅. If there are two distinct problematic neighbor bags
of B, then there are two vertices v1, v2 ∈ B such that B ⊆ I[S ∪ {v1, v2}].

Finally, in the remaining case when there is only one problematic neighbor
bag and no problem solver, any geodetic set of G has to include all problematic
vertices.
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Input : A connected well-partitioned chordal graph G with partition tree T .
Output: A minimum-size geodetic set of G.

1 Find the set S of simplicial vertices of G;
2 foreach internal bag B ∈ V (T ) do
3 if B contains a simplicial vertex then do nothing;
4 else if there is a problem solver v ∈ B then S ← S ∪ {v};
5 else if B has two distinct problematic neighbor bags C1 and C2 then
6 Let v1 ∈ bd(B,C1) and v2 ∈ bd(B,C2) be problematic;
7 S ← S ∪ {v1, v2};

8 else S ← S ∪ P , where P is the set of problematic vertices in B;

9 return S;

Algorithm 1: A polynomial-time algorithm for finding a minimum-size
geodetic set of a well-partitioned chordal graph.

Lemma 7 (♣). Let G be a connected well-partitioned chordal graph with parti-
tion tree T , let S denote the set of simplicial vertices of G, let B ∈ V (T ) be an
internal bag with B ∩ S = ∅. Let P ⊆ B be the set of problematic vertices of B,
and suppose there is a neighbor C ∈ NT (B) such that P ⊆ bd(B,C). If there is
no problem solver, then every geodetic set of G contains P .

The resulting procedure is given in Algorithm 1. We now argue its correct-
ness. In line 1, it adds all simplicial vertices to the set it produces. This is safe
by Observation 1. Moreover, by Observation 2, any vertex contained in any leaf
of the partition tree is contained in the interval of the simplicial vertices. Let B
be any internal bag in the partition tree. In line 3, the algorithm asserts that if
B contains a simplicial vertex, then no additional vertex of B has to be added.
Correctness of this decision is argued in Lemma 4. Suppose B has no simplicial
vertex. By Observation 3, each vertex in B that is not in the interval of the
simplicial vertices is problematic, and by Observation 4, a shortest path that
has a problematic vertex as an internal vertex has one endpoint in B. Therefore,
any geodetic set of G has to contain at least one vertex from B. Lemma 5 char-
acterizes the situation in which one additional vertex (a problem solver) suffices,
which is checked for next by the algorithm, in line 4. If no such vertex exists,
then each geodetic set uses at least two vertices from B. If there are at least two
distinct problematic neighbor bags, then two additional vertices suffice as shown
in Lemma 6. The algorithm checks this next in line 5. Otherwise, there is pre-
cisely one problematic neighbor bag C, there is no problem solver, and bd(B,C)
contains at least two problematic vertices. By Lemma 7, all these vertices are in
any geodetic set of G, so the algorithm is correct in line 8.

It is easy to verify that each line in Algorithm 1 takes polynomial time, and
that the main loop has a polynomial number of iterations. Since well-partitioned
chordal graphs can be recognized in polynomial time by an algorithm that pro-
duces a partition tree if one exists, see Theorem 5, this proves Theorem 4.

Restatement of Theorem 4. There is a polynomial-time algorithm that given
a well-partitioned chordal graph G, computes a minimum-size geodetic set of G.
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Abstract. We prove that the distance-r dominating set, distance-r con-
nected dominating set, distance-r vertex cover, and distance-r connected
vertex cover problems admit constant factor approximations in the CON-
GEST model of distributed computing in a constant number of rounds on
classes of sparse high-girth graphs. In this paper, sparse means bounded
expansion, and high-girth means girth at least 4r + 2. Our algorithm is
quite simple; however, the proof of its approximation guarantee is non-
trivial. To complement the algorithmic results, we show tightness of our
approximation by providing a loosely matching lower bound on rings.

Our result is the first to show the existence of constant-factor approx-
imations in a constant number of rounds in non-trivial classes of graphs
for distance-r covering problems.

1 Introduction

In the sequential setting, many APX-hard covering problems can be well approx-
imated if they are limited to the class of sparse graphs. Hence, it is interesting
to understand how sparsity enables better distributed algorithms in distributed
computing models, which could mean improving the approximation factor or
reducing the number of communication rounds. In the distributed setting every
node is considered as a processor that can communicate with its neighbors per
synchronized rounds. The aim is to reduce the total number of such rounds while
providing a good solution.

In this work, we continue the line of study on sparse graphs and explore
the algorithmic properties of a wide range of sparse graphs, namely the class
of graphs of bounded expansion, with an extra combinatorial property: sparse
graphs of high girth. The girth of the graph is the length of its shortest cycle
and for instance girth of a tree is infinity.

Girth plays a role in understanding structural properties of graphs. Sparse
graphs of high girth appear in important constructions such as spanner
graphs [1]. Similarly random graphs have only a few short cycles and at the
same time, depending on their parameters, they could be quite sparse. In such a
graph class (we will formally specify them later) we study several central covering
problems in their most generic form: distance-r covering problems.
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As a result, we answer some more cases of the famous question of Naor
and Stockmeyer: “What can be computed locally?” [21] More precisely, we show
that the following problems on the considered graph class have constant fac-
tor approximation in a constant number of rounds in the CONGEST model of
computation, if r (the distance) is constant. Whenever feasible, we also give the
precise relation to r.

1. Distance-r Dominating Set 2. Distance-r Connected Dominating Set
3. Distance-r Vertex Cover and 4. Distance-r Connected Vertex Cover.

The aforementioned problems are hard in general graphs when it comes to dis-
tributed settings. For instance there is no constant-factor approximation CON-
GEST algorithm for the distance-2 dominating set even if we let the algorithm
to run for o(n2) rounds [9], where n is the number of nodes. Observe that in
order to exchange information, two nodes require at most O(n) rounds of com-
munication, however, for such a restricted case of the problem (only distance-2)
the amount of data to be transferred is too big to fit in one message that respects
the bandwidth of the network. Hence it needs Ω(n2) rounds of computation to
merely approximate the optimum solution. Thus, a natural approach to progress
on such problems is to consider them on restricted graph families.

Throughout the paper, we assume that a graph G = (V,E) is given. In the
(distance 1) dominating set problem, we seek a set D ⊆ V such that every
other vertex of G is a neighbor of a vertex in D. In the connected version of the
problem, the induced graph of G on the vertices of D should be connected.

In the vertex cover problem, we seek a set C of vertices of the graph such
that every edge in the graph is incident to at least one of the vertices in C.
Similarly, the connected version of the problem asks for a vertex cover Ĉ such
that the induced graph of C on G is connected. In all of the above problems we
would like to minimize the size of the corresponding set.

The distance-r versions of covering problems are defined similarly to the clas-
sic versions: for the dominating set problem, we consider the distance-r neigh-
borhood. In the distance-r vertex cover problem, we say that vertex v covers
edge e if and only if vertex v is within distance r of both endpoints.

We consider problems in the LOCAL and CONGEST distributed models
of computation. Intuitively speaking, in both of these models, each vertex in
the graph is a processor, has a unique identifier, and communicates only with
its neighbors once per round. The CONGEST model restricts the bandwidth of
communication links to a reasonable complexity. The aim is to solve the problem
with the least number of communication rounds. A more rigorous definition fol-
lows in Sect. 2. We specifically look into the problem of finding a small distance-r
dominating set, distance-r connected dominating set, distance-r vertex cover, or
distance-r connected vertex cover where each vertex has to output its member-
ship in the set.

Our main algorithmic contribution is that the distance-r dominating set prob-
lem admits a constant factor approximation in a constant number of rounds in
sparse high-girth graphs (for constant r). We also extend this algorithm to the
described related covering problems.
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Related Work

In distributed settings, for the dominating set problem on general graphs, Kuhn
et al. [14] provided a (1 + ε)(1 + log(Δ + 1))-approximation in f(n) rounds. In
this bound, Δ is the maximum degree and f : N → N is the number of rounds
that is needed to compute the network decomposition [5,6,16]. Given the recent
breakthrough result of Rozhon and Ghaffari [25], the aforementioned algorithm
runs in a polylogarithmic number of rounds.

For the vertex cover problem, Bar-Yehuda et al. [10] provided a constant
factor approximation in a sublogarithmic number of rounds. This is comple-
mented by the lower bound of Kuhn, Moscibroda and Wattenhofer (KMW) [17]
shows that a logarithmic approximation in almost sublogarithmic time for the
vertex cover problem and the minimum dominating set (and some other cov-
ering problems) is impossible in general graphs, even in the LOCAL model of
computation. Their lower-bound graph for vertex cover has high girth, but it is
also of unbounded arboricity (more generally unbounded average degree).

We investigate what happens in between graph classes. If we consider a graph
class of very high girth and very low edge density, e.g. trees, then these problems
are easy to approximate in zero rounds: take all non-leaf vertices. The above
observations raises the questions: In which graph classes does the problem admit
a constant approximation factor in a constant number of rounds? What about
distance-r problems?

For the dominating set problem, Lenzen et al. [12,18] provided the first
constant-factor approximation in a constant number of rounds in planar graphs,
which was improved by Czygrinow et al. [12]. Later, Amiri et al. [3,4] provided
a new analysis method to extend the result of Lenzen et al. to bounded genus
graphs. This has been improved by Czygrinow et al. [13] to excluded minor
graphs.

A natural generalization of excluded minor graphs is the class of bounded
expansion graphs. Simply put, bounded expansion graphs only exclude minors
on a localized level; there may still be large clique minors in the graph.

On graphs of bounded expansion, only a logarithmic time constant factor
approximation is known for the dominating set problem; however, it seems that
one can extend the algorithm of [13] to bounded expansion graphs, as they
only consider “local” minors. If we go slightly beyond these graphs, to graphs
of bounded arboricity (where every subgraph has a constant edge density), the
situation is worse: only an O(logΔ)-approximation in O(log n) rounds is known.
There is a O(log n) round O(1)-approximation in such graphs; however, this
algorithm is randomized [19].

All these results are about the distance-1 dominating set problem. Signifi-
cantly less work exists on the topic of the distance-r dominating set problem.
We are only aware of the algorithm of Amiri et al. [2] for bounded expansion
graphs that provides a constant factor approximation in a logarithmic number
of rounds.
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We are not aware of any paper tackling the distance-r vertex cover problem,
except the general techniques known for bounded degree graphs and the generic
algorithmic techniques that one can apply to bounded arboricity graphs.

Existing Approaches for (Distance-r) Dominating Set

There are several existing approaches one might employ to tackle the problem:
1) Take the r-th power of the graph and go back to the distance-1 dominating
set, 2) Decentralize existing decomposition methods in the sequential setting and
employ them, 3) Use existing fast distributed graph decomposition methods for
sparse graphs. In the following, we explain how all of the above approaches, with-
out introducing new ideas, are impractical in providing sublogarithmic round
algorithms for distance-r covering problems.

For the first approach, we lose the sparsity of the graph already on stars.
Hence, we cannot rely on existing algorithms for solving the domination problem
in sparse graphs.

Decentralizing the existing sequential decomposition methods does not seem
promising if one hopes to achieve anything better than logarithmic rounds: To
the best of our knowledge, every such sequential decomposition already consumes
polylogarithmically many rounds. Even assuming the decomposition is given in
advance, such methods handle the clusters sequentially; however the number of
clusters is usually at least logarithmic, requiring at least logarithmically many
rounds.

For the third approach, these existing fast distributed graph decomposition
methods are mostly inspired by existing methods in classical settings, like Baker’s
method [8]; this includes, e.g., the O(log∗ n) round algorithm of [11]. The idea is
to partition a sparse graph into connected clusters such that each cluster has a
small diameter and the number of in-between cluster edges is small. Then, find
the optimal solution inside each cluster efficiently, and because the number of
edges between a pair of clusters is small, we can just ignore conflicts.

However, this fails already for distance-2 domination, since the number of
edges between clusters in the power graph is high. As mentioned earlier, recent
research has shown that there is a lowerbound of Ω̃(n2) for distance-2 dominat-
ing set, both for solving it exactly [7], and even for constant-factor approxima-
tions [9].

Also, we cannot rely on global properties (such as tree decomposition) like in
the sequential setting, since this increases the number of rounds to the diameter
of the graph, which can easily be superlogarithmic.

Therefore, any distributed algorithm that solves distance-r covering prob-
lems has to exploit special properties of the underlying graph class or problem,
motivating our choice of sparse high-girth graphs.

Our Approach and Results

We consider a generalization of the dominating set and vertex cover problem,
and fill a gap between the lower bounds and upper bounds by analyzing the



Distributed Distance-r Covering Problems on Sparse High-Girth Graphs 41

complexity of the problems on graphs of high girth, similar to the lower bound
graph by Kuhn et al. Given that the lower bound graph in that work is relatively
dense, we restrict the graph class further to sparse graphs, in particular, to
bounded expansion graphs (similar to the work of [2]).

Let us present the algorithm for the distance-r dominating set problem: Each
vertex chooses its dominator to be the neighbor that has a maximum degree in
the r-th power graph. To implement such a simple algorithm in the CONGEST
model without actually constructing the r-th power graph (which is basically
impossible in our desired running time even for r = 2), we exploit the fact that
the neighborhood of a vertex looks like a tree. The output of the algorithm is
the set D of dominators, which solves the problem.

To prove the correctness of the algorithm, we partition the vertices of the
graph into Voronoi cells where the center of each cell is one of the vertices of the
optimum distance-r dominating set. Then we divide the vertices chosen by our
algorithm into two subsets: those that are the dominators of vertices inside their
Voronoi cell (DI) and those that are the dominator of vertices outside their cell
(DO). We show (by non-trivial arguments) these sets are bounded in terms of
the optimal distance-r dominating set, which also bounds |D|.

This is used to prove Theorem 1. We generalize the algorithm to handle
the Distance-r Connected Dominating Set (proven by Theorem 5), Distance-r
Vertex Cover (Theorem 6), and Distance-r Connected Vertex Cover (Corollary
8) problem.

Theorem 1. Let C be a graph class of bounded expansion f(r) and girth at least
4r + 3. There is a CONGEST algorithm that runs in O(r) rounds and provides
an O(r · f(r))-approximation of minimum distance-r dominating set on C.

Given that the distance-r dominating set problem is equivalent to the dom-
inating set problem of the r-th power of the input graph, the algorithm can
also be used to provide a constant factor approximation in a non-trivial class
of dense graphs for covering problems. There are very few known algorithms
with a constant factor guarantee in a constant number of rounds on non-trivial
dense graphs, e.g., the algorithm of Schneider et al. [26] on graphs of bounded
independence number (for the independent set and the connected dominating
set problem) partially falls into this category.

To show that our upper bound is reasonably tight, we provide a lower bound
as well. This we obtain by a reduction from a lower bound for independent set
on the ring [12,18] to the distance-r dominating set on the ring (naturally, a ring
with high girth). More formally we prove Theorem 2.

Theorem 2. Assume an arbitrary but fixed δ > 0 and r > 1, with r ∈ o(log∗ n).
Then, there is no deterministic LOCAL algorithm that finds in O(r) rounds a
(2r + 1 − δ)-approximation of distance-r dominating set for all G ∈ C, where C
is the class of cycles of length � 4r + 3.

We will formally introduce the notion of bounded expansion in Sect. 2. The
relation between the sparse graph classes is shown in Fig. 1.
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Fig. 1. Diagram of the relation of sparse graph classes. The graph class in the lower
bound construction of Kuhn et al. [17] is a subclass of logarithmic girth class of
unbounded arboricity. The bounded expansion class is a subclass of bounded arboricity
class. Bounded expansion is also a superclass of many common sparse graph classes:
planar, bounded genus, excluded minors, and bounded degree. The class of bounded
expansion with high girth intersects each of the other four classes, but neither contains
nor is fully contained in any of them.

2 Preliminaries and Notation

We assume basic familiarity with graph theory. In the following, we introduce
basic graph notation to avoid ambiguities. We refer to the book by Diestel [15]
for further reading.

Graph, Neighborhood, Distance-r: We only consider simple, connected,
undirected graphs G = (V,E). For u, v ∈ V , define d(u, v) as the distance
(in number of edges) between the two vertices. For a set S ⊆ V , we define
d(u, S) as the maximum distance between vertex u and any vertex in S. Two
vertices u, v ∈ V are neighbors in G if there is an edge e = {u, v} ∈ E. We
extend this definition to the distance-r neighborhood Nr[v] and open distance-r
neighborhood Nr(v) of a vertex v in the following way:

Nr[v] ..= {u ∈ V | d(u, v) ≤ r} Nr(v) ..= Nr[v] \ {v}

Similarly for a set S ⊆ V we define:

Nr[S] ..=
⋃

v∈S

Nr[v] Nr(S) ..= Nr[S] \ S

Girth, Radius: The girth g of a graph G is the length of its shortest
cycle, or ∞ if acyclic. The radius R of G is the minimum integer R for which
∃v ∈ V : NR[v] = V .
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Distance-r dominating set: A set M ⊆ V is a distance-r dominating set
if V = Nr[M ]. If there is no smaller such set, then M is a minimum distance-r
dominating set of G.

Distance-r Connected Dominating Set: A set of vertices D ⊆ V is a
distance-r connected dominating set of G if D is a distance-r dominating set of
G and the subgraph of G induced on vertices in D is connected.

Distance-r Vertex Cover: A set C ⊆ V is a distance-r vertex cover of G if
for every edge e = {u, v}, there exists a vertex w ∈ C such that the distance of
both u and v from w is at most r. The special case of r = 1 is the standard vertex
cover problem. Note that in contrast to dominating set, there is no equivalence
for vertex cover between the distance-r and power graph version.

Distance-r Connected Vertex Coverxspace: Similarly, a set Ĉ is a
distance-r connected vertex cover of G if it is a distance-r vertex cover of G and
the induced subgraph of G on vertices of Ĉ is connected.

Edge Density, r-Shallow Minor, Expansion: Let G = (V,E) be a graph;
its edge density is |E|/|V |. A graph H is an r-shallow minor of G if H can be
obtained from G by the following operations. First, we take a subgraph S of
G and then partition the vertices of S into vertex disjoint connected subgraphs
S1, . . . , St of S, each of radius at most r and, at the end, contract each Si (i ∈ [t])
to a single vertex to obtain H. We denote by ∇r(G) the maximum edge density
among all r-shallow minors of the graph G.

A graph class C is bounded expansion if there is a function f : N → N such
that for every graph G ∈ C and integer r ∈ N we have ∇r(G) ≤ f(r); here f is
the expansion function. A class of graphs C has constant expansion if for every
integer r, we have f(r) ∈ O(1).

Every planar, bounded genus, and excluded minor graph is a constant expan-
sion graph. Every class of bounded degree graphs is also bounded expansion, but
not of constant expansion. For more information on bounded expansion graphs,
we refer the reader to the book by Nešetřil and Ossona de Mendez [22].

LOCAL and CONGEST Model of Computation: The LOCAL model
of computation assumes that the problem is being solved in a distributed manner:
Each vertex in the graph is also a computational node, the input graph is also
the communication graph, and initially, each vertex only knows its own unique
identifier and its neighbors. An algorithm proceeds in synchronous rounds on
each vertex in parallel. In each round, the algorithm can run an arbitrary amount
of local computation, send a message of arbitrary size to its neighboring vertices,
and then receive all messages from its neighbors. Each vertex can decide locally
whether it halts with an output or continues. The most common metric is the
number of communication rounds.

This model was first introduced by Linial [20]; later Peleg [23] named it
LOCAL model.

The CONGEST model is very similar to the LOCAL model, except that
identifiers can be represented in O(log n) bits, and each message can only hold
O(log n) bits, where n is the number of vertices in the network.



44 S. Akhoondian Amiri and B. Wiederhake

3 Distributed Approximation Algorithm for Dominating
Set

In this section we prove the following theorem.

Theorem 1. Let C be a graph class of bounded expansion f(r) and girth at least
4r + 3. There is a CONGEST algorithm that runs in O(r) rounds and provides
an O(r · f(r))-approximation of a minimum distance-r dominating set on C.

We prove this by providing Algorithm 1, satisfying all bounds. At its core,
the algorithm is simple: Each vertex computes the size of its distance-r neighbor-
hood, i.e., the distance-r degree. This degree is propagated so that each vertex
selects in its distance-r neighborhood the vertex with the highest such degree.
The output is the set of all selected vertices. We expect this to yield a good
approximation because only few candidates can be selected.

Algorithm 1 defines this formally. The main technical contribution is Lemma
6, which concludes that Algorithm 1 is correct and thus proves Theorem 1.

Algorithm 1: CONGEST computation of r-MDS, on each vertex v in
parallel

1: Compute |Nr(v)|, e.g. using Algorithm 2
2: // Phase 1: Select the vertex with the highest degree:
3: (priov, selv) ..= (|Nr(v)| , v)
4: for r rounds do
5: Send (priov, selv) to all neighbors
6: Receive (priou, selu) from each neighbor u
7: (priov, selv) ..= maxu∈N1[v]{(priou, selu)}
8: Remember all received messages that contained (priov, selv)
9: end for

10: // Phase 2: Propagate back to the selected vertex:
11: Dv ..= {selv}
12: for r − 1 rounds do
13: for each neighbor u ∈ N1(v) do
14: Determine which vertices sent by u in Phase 1 are in Dv

15: Send these to u, encoded as a bitset of size r
16: end for
17: Receive bitsets, extend Dv accordingly
18: end for
19: Join the dominating set if and only if v ∈ Dv, in other words:
20: return v ∈ Dv

We say that Algorithm 1 computes a set D by returning 
 for all vertices in
the set, and ⊥ for all others. Naturally, messages and comparisons only consider
the ID of vertices, and not the vertices themselves. This abuse of notation sim-
plifies the algorithm and analysis. In line 7, we order tuples lexicographically:
Tuples are ordered by the first element (the size of the distance-r neighborhood);
ties are broken by the second element (the ID of the vertex).
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Algorithm 2: CONGEST computation of |Nr(v)|, on each vertex v in
parallel

1: nu
..= 1 for all u ∈ N1(v)

2: for r − 1 rounds do
3: To each vertex u ∈ N1(v), send 1 +

∑
w∈N1(v)\{u} nw

4: nu
..= the number received from u, for each u ∈ N1(v)

5: end for
6: return

∑
w∈N1(v) nw

Algorithm 2 implements the computation of the distance-r neighborhood.
The intuition is to compute the size of a rooted tree, for all possible roots at
once. The high girth of G and line 3 mean that each vertex is counted only once
(if at all).

The remainder of this section proves Algorithm 1’s correctness and approxi-
mation factor.

Correctness

First, we will show basic correctness properties. One can trivially check that all
messages contain only O(log n) many bits. Specifically, the bitsets have only size
r ∈ o(log∗ n).

Lemma 1. Algorithm 2 computes the size of Nr(v) for each vertex v in parallel.

Next, we show that Algorithm 1 selects the maximum degree neighbor:

Lemma 2. In Algorithm 1, at the start of Phase 2 (line 10 et seq.), each
vertex v has selected a vertex selv. This is the unique vertex argmaxu∈Nr[v]

{(|Nr(u)| , u)}.

Proof. By construction, only tuples of the form (|Nr(w)| , w) with w ∈ V are
ever stored. The max operator is commutative and associative, so it is sufficient
to prove that each vertex v considers precisely the tuples for w ∈ Nr[v]. This
can be shown by straightforward induction: After round i, vertex v considers
precisely the tuples for w ∈ N i[v]. The base case is i = 0, and the induction step
is straight-forward.

Hence, each vertex selects the maximum neighbor. Next, we show that this
is back-propagated:

Lemma 3. If there is a vertex u that selects v (selu = v), then v ∈ Dv.

Proof. Consider the path along which v was forwarded during the selection
phase. By straight-forward induction, one can see that after i rounds of propa-
gation, for all vertices w on the path with d(w, u) ≤ i, have v ∈ Dw. The path
has length at most r edges, so v ∈ Dv after r rounds.
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And because no further vertices are added into any Dv, we get:

Corollary 1. The selected vertices are precisely the computed set: D = {selv |
v ∈ V }

Together with Lemma 2, this shows that Algorithm 1 computes a dominating
set.

Lemma 4. The computed set D is a distance-r dominating set.

Proof. Assume towards contradiction that a vertex v is not dominated. Lemma
2 shows that v selected a vertex selv in its distance-r neighborhood. Corollary
1 shows that selv ∈ D, which distance-r-dominates v, which is a contradiction.

The time complexity analysis is trivial.

Lemma 5. Algorithm 1 runs in O(r) rounds.

Approximation Analysis

So far we have seen the correctness of the algorithm and the running time bound.
In this subsection, we prove the approximation bound of Lemma 6. Specifically,
we prove that the size of D, the set of selected vertices, is within factor 1+4·r·f(r)
of |M |, a minimum distance-r dominating set.

Lemma 6. If the graph class C has expansion f(r) and girth at least 4r+3, then
the set of vertices D selected by Algorithm 1 is small: |D|/|M | ∈ O(r · f(r)).

In the remainder of this subsection, we prove Lemma 6. Note that this means
that if r is constant, then the approximation factor is constant, too.

We now analyze the behavior of Algorithm 1 on a particular graph G ∈ C.
We begin by showing that the optimal solution implies a partition into Voronoi
cells [24], which we will use throughout the analysis. First, we define what a
covering vertex is. Note that this can be (and often is) different from the vertex
selected by the algorithm.

Definition 1. Let c : V → M be the mapping from vertices in V to corre-
sponding dominating vertices in M , breaking ties first by distance and then by
ID:

c(v) ..= argmin
u∈Nr[v]∩M

{(d(u, v), u)} (1)

We order tuples lexicographically, again. The equivalent term argminu∈M

{(d(u, v), u)} provides shorter notation: By construction, each vertex v has a
vertex in M in its r-neighborhood, so argmin will select from Nr[v] anyway.
Next, we partition V into Voronoi cells Hm

..= {v ∈ V |c(v) = m} for each
m ∈ M .

Corollary 2. Each Hm is connected and has radius at most r.
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Proof. As vertex m dominates all vertices in Hm, we know that Hm has radius
r.

We use the high-girth property to show that the Voronoi cells behave nicely:

Lemma 7. The subgraph induced by Hm in G is a tree.

Proof. Assume towards contradiction that there is a cycle C ′ in Hm. We con-
struct a cycle that has length at most 2r + 1, a contradiction.

Specifically, construct a BFS-tree of Hm rooted in m. Then, the cycle C ′

must contain an edge e between u, v ∈ Hm. Consider the cycle that consists of
the path from u to v along the BFS-tree and the edge {u, v}. This cycle must
have length at most r + r + 1, because the BFS-tree has depth at most r. This
contradicts G having a girth of at least 4r + 3.

Lemma 8. For any two Voronoi cells Hm �= Hn, there is at most one edge
between them.

Proof. Let {u, v} ∈ E and {s, t} ∈ E be two different edges between Hm and
Hn. W.l.o.g. assume c(u) = c(s) = m and c(v) = c(t) = n, and assume v �= t
(but u = s is possible).

By Corollary 2, we know that the subgraphs induced by Hm and Hn are each
connected, so there must be a path pm entirely in Hm between vertices u and
s, possibly of length 0. Likewise, a path pn must exist entirely in Hn between
vertices v and t. The union of the paths and the assumed edges forms a cycle
Cu,v,s,t, as no vertex can be repeated. We will now prove that Cu,v,s,t is too
small.

The paths pm and pn have length at most 2r each. Therefore, we have found
the cycle Cu,v,s,t to have length at most 4r+2, in contradiction to the minimum
girth 4r + 3.

Let G′ = (V ′, E′) be the result of contracting Hm to a single vertex, for each
m ∈ M .

Lemma 9. The edge set E′ is small: |E′| ≤ f(r) · |M |
Proof. Using Corollary 2, we can apply the definition of the function f(r):

|E′| = |E′|
|V ′| · |V ′| ≤ f(r) · |M |

Now we can take a closer look at the set of vertices D selected by the algo-
rithm. We construct two sets of bounded size whose union is D; this bounds the
size of D.

Definition 2. We consider the set DO of vertices v that were selected by a
vertex u in a different Voronoi cell (i.e. c(v) �= c(u)) and the possibly overlapping
set DI of vertices v that were selected by a vertex u in the same Voronoi cell
(i.e. c(v) = c(u)):

DO ..= {d ∈ D | ∃v. v selected d with c(v) �= c(d)}
DI ..= {d ∈ D | ∃v. v selected d with c(v) = c(d)}
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Note that D = DI ∪ DO, and |D| ≤
∣∣DI

∣∣ +
∣∣DO

∣∣. In order to prove Lemma
6, it is therefore sufficient to show

∣∣DI
∣∣ ,

∣∣DO
∣∣ ∈ O(r · f(r) · |M |).

First, we consider DO, the set of vertices selected across Voronoi cells. There
are only few crossing edges, so there can only be few such selections:

Lemma 10. The set DO of vertices selected across Voronoi cells is small:∣∣DO
∣∣ ∈ O(r · f(r) · |M |).

Proof. Lemmas 8 and 9 tell us that there are at most f(r) · |M | edges across
Voronoi cells. Across each edge, at most 2r distinct messages are passed (i.e.,
r vertex proposals in each direction); therefore, there are at most f(r) |M | · 2r
many candidates for DO.

Next, we prove a bound on set DI of Definition 2: the set of vertices selected
from within a Voronoi cell. We see that these always fall on the spanning tree
inside Voronoi cells, which are small. First, we define the candidate set:

Definition 3. For each Voronoi cell Hm, we define the set of vertices Tm as
the union of all shortest paths Pm,u between vertex m and each vertex u on the
Voronoi boundary:

Tm
..=

⋃

{u,v}∈E
c(u)=m,c(v) �=m

Pm,u T ..=
⋃

m∈M

Tm

This is well-defined due to Lemma 7. Observe that Tm is not necessarily equal
to Hm: All leaves in Tm have edges in G that lead outside the Voronoi cell. A
vertex in Hm that has no such edges will not be in Tm. Next, we prove in two
steps that DI is contained in T .

Lemma 11. If |M | ≥ 1, then there is always a vertex not in distance r:

∀v ∈ V ∃u ∈ V d(u, v) = r + 1 (2)

Proof. Assume towards contradiction that there is a vertex v for which no such
vertex u exists. Then, there is also no vertex u′ with d(u′, v) > r + 1, because
one could pick a shortest path and construct such a u. Therefore, D′ = {v} is a
dominating set, a contradiction.

With this, we can show that only vertices in Tm are selected.

Lemma 12. Let v be a vertex selected by u in the same Voronoi cell. Then
v ∈ Tc(v): (

selu = v ∧ c(u) = c(v)
)

=⇒ v ∈ Tc(v) (3)

Proof. Assume towards contradiction that v /∈ Tc(v). For brevity, let m ..= c(v).
Observe that m �= v, because m ∈ Tm. Let w be the next vertex on a shortest
path from v towards m; possibly m itself. We now analyze the properties of
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Hm

H... H...

Tv

m

w

v

Fig. 2. Typical vertex layout in proof of Lemma 12. The identity of vertex u does not
matter; hence, it is not shown.

vertex w and conclude that vertex u should not have selected v. Refer to Fig. 2
for an overview.

By Lemma 7, the subgraph induced by Hm is a tree. If we root this Hm-tree
at vertex m, we can denote the subtree rooted at v as Tv. This subtree has depth
at most r−1, so w covers the entire subtree: Tv ⊆ Nr(w). All vertices x ∈ V \Tv

are closer to w than to v, as all paths from x to v must go through w. So, the
neighborhood of v is included in the neighborhood of w: Nr[v] ⊆ Nr[w].

Now we can use Lemma 11: There must be a vertex t that has distance r+1
to vertex v, so t /∈ Nr(v). This means that t /∈ Tv, and, therefore, t ∈ Nr(w). In
summary, the degree of w is strictly larger: |Nr(w)| > |Nr(v)|. Thus, vertex u
would prefer selecting w over v.

All that is left is to show that vertex u is indeed able to select vertex w: If
u ∈ Tv, then the maximum depth of r − 1 means the distance to w is at most r.
If u /∈ Tv, then w is on every shortest path between u and v, and therefore in
reach, too.

This leads to a contradiction: Vertex u selected v, although vertex w is in
reach, has a strictly larger distance-r neighborhood, and should be preferred by
the algorithm.

Corollary 3. Selections within a Voronoi cell are restricted to T : DI ⊆ T

Then we bound the size of DI by providing a bound on the size of T :

Lemma 13. The set T is small: |T | ≤ (1 + 2r · f(r)) |M |

Proof. Consider an arbitrary but fixed {v, u} ∈ E with c(v) �= c(u). Each path
Pc(v),v has at most r vertices not in M , because it is a shortest path, and by
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construction all vertices are dominated by c(v). Each edge in E′ corresponds to
at most two such paths. With Lemma 9, this bounds the number of paths to at
most 2f(r) |M |.

Therefore, T contains at most 2r · f(r) |M | + |M | vertices.

Corollary 4. The set DI is small:
∣∣DI

∣∣ ≤ (1 + 2r · f(r)) |M |

Proof. Follows from Corollary 3 and Lemma 13.

As both
∣∣DI

∣∣ and
∣∣DO

∣∣ are in O(r ·f(r) · |M |), this proves Lemma 6, and thus
Theorem 1. More specifically, we have proved the upper bound (1 + 4 · r · f(r)) ·
|M | on |D|.

It is possible to show that the above computed upper bound is tight and we
postponed this proof entirely to Appendix A.

4 Lower Bound

In this section, we prove that a significantly better approximation of the prob-
lem is hard. Intuitively speaking, this is because symmetry cannot be broken
in o(log∗ n) rounds, and without that, it is hard to construct any non-trivial
distance-r dominating set. Due to the pages limit we only present the idea of
the proof and state our main theorem.

We show the hardness by a reduction from the “large” independent set prob-
lem to the distance-r dominating set problem, on the graph class of cycles.
Intuitively speaking we find a distance-r dominating set D on cycle C; two con-
secutive vertices of D on C are of distance at most 2r + 1 from each other, and
hence, these vertices help us to break the symmetry, and as r ∈ o(log∗ n) it yields
an independent set of size O(n) in o(log∗ n) rounds.
Theorem 2. Assume an arbitrary but fixed δ > 0 and r > 1, with r ∈ o(log∗ n).
Then, there is no deterministic LOCAL algorithm that finds in O(r) rounds a
(2r + 1 − δ)-approximation of distance-r dominating set for all G ∈ C, where C
is the class of cycles of length � 4r + 3.

5 Vertex Cover, Connected Dominating Set, and
Connected Vertex Cover

In this section, we extend Algorithm 1 to solve several other covering prob-
lems, namely Distance-r Vertex Cover, Distance-r Connected Vertex Cover, and
Distance-r Connected Dominating Set. However, due to page limits we moved
the complete proofs to Appendix C.

Proposition 3. There is a CONGEST algorithm that computes an O((r·f(r))2)
approximation of Distance-r Connected Dominating Set in graphs of bounded
expansion with high girth in O(r) rounds.
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Proposition 4. There is a CONGEST algorithm that computes an O(r · f(r) ·
f(r)) approximation of Distance-r Vertex Cover in graphs of bounded expansion
with high girth in O(r) rounds.

Corollary 5. There is a CONGEST algorithm that computes a constant factor
approximation of the minimum Distance-r Connected Vertex Cover in a constant
number of rounds.

Let us explain the rough idea of proof of all of the above: for connected
variations, we take the original set and connect two vertices that are within
small distance via short paths. It is possible to show that due to the structure of
bounded expansion graphs, this approach does not add much extra overhead and
it is a constant factor approximation to the problem. For vertex cover, observe
that every vertex cover is already a dominating set, to go the other way around
we define boundary vertices of each Voronoi cell of the dominating set, then
include them into the solution to vertex cover. It is possible to show that this
approach provides a constant factor approximation for the problem (distance-r
variation).

6 Conclusion

We have analyzed important distance-r covering problems in a deterministic set-
ting on graphs of bounded expansion f(r) (e.g. planar graphs) and high girth. We
have provided CONGEST algorithms and proved that they achieve a constant
factor approximation in constant rounds (for a constant r). We have shown that
the standard Ω(log∗ n) lower bound on bounded degree graphs also holds here,
even if r is super-constant. This means that Algorithm 1 can only be improved
up to a factor of f(r), if at all.

We believe that with our algorithmic analysis tools it is possible to prove that
the lower bound of Kuhn et al. [17] extends to high-girth graphs for dominating
set; we believe that this can be done without taking the line graph. On the other
hand, the necessity of some kind of sparsity requirement seems clear. To what
extent can this requirement be reduced?

We have covered the dominating set problem and related covering problems.
The next step is to weaken either the sparsity condition or the girth require-
ment, with the goal of finding the most generic class of graphs with a reasonable
approximation in constant rounds, and eventually discovering their connection
to dense graphs.

For distance-r computation, one might also consider other interesting prob-
lems such as independent set and coloring problems. These relate to network
decomposition, and it might help to find a faster network decomposition in the
CONGEST model.

A Omitted Proofs of the Main Algorithm

This proves that the algorithm to count the neighborhood indeed works as
intended.
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Lemma 1. Algorithm 2 computes the size of Nr(v) for each vertex v in parallel.

Proof. First, observe that in only r − 1 rounds of communication, no cycle can
be detected, as the girth is at least 4r + 3. This means that N i(v) is a tree for
every i ≤ r − 1 and v ∈ V . We define the tree T¬v

u,i as the (set of vertices in the)
tree of edge-depth i, rooted at vertex u, excluding the branch to vertex v, where
v is a neighbor of vertex u.

We prove by induction: At vertex v, after the i-th round1 (where 0 ≤ i ≤
r − 1), nu stores the size of the tree T¬v

u,i .
For the induction basis i = 0, we know ∀u, v : nu = 1 =

∣∣T¬v
u,0

∣∣ = |{u}|.
This leaves the induction step: At the beginning of the i-th round (for 1 ≤

i ≤ r−1), we know that nu =
∣∣T¬v

u,i−1

∣∣ by the induction hypothesis, for every u, v.
Consider vertex v. By construction, its distance-i open neighborhood is the union
of all edge-depth i − 1 trees of v’s neighbors, so: N i(v) =

⋃
u∈N1(v) T¬v

u,i−1. Due
to the high girth requirement, we know that all sets in this union are disjoint.
Vertex v can therefore compute

∣∣N i(v)
∣∣ by summing up all its nus, and can

even compute
∣∣T¬u

v,i

∣∣ for an arbitrary vertex u by subtracting the corresponding
nu again. This is exactly what happens in line 3. Then v sends

∣∣T¬u
v,i

∣∣ to each
neighbor u, which stores it in the corresponding variable nv. By symmetry, this
also means that vertex v now has stored

∣∣T¬v
u,i

∣∣ in nu, thus proving the induction
step.

With the meaning of nu established, line 6 of Algorithm 2 must compute
|Nr(v)|.

Lemma 12. Let v be a vertex selected by u in the same Voronoi cell. Then
v ∈ Tc(v): (

selu = v ∧ c(u) = c(v)
)

=⇒ v ∈ Tc(v) (4)

Proof. Assume towards contradiction that v /∈ Tc(v). For brevity, let m ..= c(v).
Observe that m �= v, because m ∈ Tm. Let w be the next vertex on a shortest
path from v towards m; possibly m itself. We now analyze the properties of
vertex w and conclude that vertex u should not have selected v. Refer to Fig. 2
for an overview.

By Lemma 7, the subgraph induced by Hm is a tree. If we root this Hm-tree
at vertex m, we can denote the subtree rooted at v as Tv. This subtree has depth
at most r−1, so w covers the entire subtree: Tv ⊆ Nr(w). All vertices x ∈ V \Tv

are closer to w than to v, as all paths from x to v must go through w. So, the
neighborhood of v is included in the neighborhood of w: Nr[v] ⊆ Nr[w].

Now we can use Lemma 11: There must be a vertex t that has distance r+1
to vertex v, so t /∈ Nr(v). This means that t /∈ Tv, and, therefore, t ∈ Nr(w). In
summary, the degree of w is strictly larger: |Nr(w)| > |Nr(v)|. Thus, vertex u
would prefer selecting w over v.

All that is left is to show that vertex u is indeed able to select vertex w: If
u ∈ Tv, then the maximum depth of r − 1 means the distance to w is at most r.

1 We interpret “after the zeroth round” as “before the first round”.
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If u /∈ Tv, then w is on every shortest path between u and v, and therefore in
reach, too.

This leads to a contradiction: Vertex u selected v, although vertex w is in
reach, has a strictly larger distance-r neighborhood, and should be preferred by
the algorithm.

Tightness of Approximation

We have seen that the algorithm is an O(r · f(r)) approximation. Is it possi-
ble that the algorithm actually performs significantly better what the analysis
guarantees? This subsection proves that there are graphs for which the algo-
rithm yields an Ω(r · f(r)) approximation, meaning that the above analysis of
the algorithm is asymptotically tight.

Lemma 14. There is a computable function f : N → N and a class of graphs C of
expansion f(r) and girth at least 4r+3 such that Algorithm 1 takes Θ(r) rounds
and provides an Ω(r · f(r))-approximation of minimum distance-r dominating
set on C. (Cf. Theorem 1.)

Proof. The rest of this subsection constructs such a set C from graphs Gr,f(r)

for all values of r ≥ 1 and f(r) ≥ 2.

This does not mean that the problem is hard. It only shows that in the worst
case, the presented algorithm may use up the approximation slack.

The construction is a modified version of the subdivided biclique. Let X and
Y be two disjoint sets of vertices, each of size 2f(r). For each pair (x, y) ∈ X×Y ,
connect them with a path Px,y of 2r vertices, such that d(x, y) = 2r + 1. This
means that no vertex can simultaneously cover x and y, i.e., is within distance
r of both x and y. For each x ∈ X, y ∈ Y , create a set Bx,y of k = 2r · f(r) new
vertices, and connect each vertex in Bx,y by a single edge to the vertex closest
to x of each path. Let V be the union of all these sets and E as described, then
Gr,f(r) = (V,E) is the constructed graph.

First, we prove that the graph class satisfies all requirements.

Lemma 15. For arbitrary but fixed r ≥ 1 and f(r) ≥ 2, the graph class C has
expansion f(r) and girth at least 4r + 3.

Proof. Let Gr,f(r) ∈ C be a fixed graph from the constructed graph class. The
girth is at least 4 · (2r + 1) > 4r + 3, as a cycle needs to pass through at least
two vertices from X and two vertices from Y . The low expansion can be shown
by contracting as much as possible around all vertices in X ∪ Y , which results
in the biclique K2f(r),2f(r), with 4f(r) vertices and 4f(r)2 edges. Therefore, the
constructed graph has fG(r) ≥ f(r). As this is the optimal contraction choice,
this also shows fG(r) = f(r).

This graph class causes worst-case behavior. The running time is trivial:

Lemma 16. Algorithm 1 runs in Ω(r) rounds on graphs in C.
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Proof. Follows from the construction of Algorithm 1.

Next, we show that the algorithm computes a comparatively large dominating
set:

Lemma 17. Algorithm 1 provides an Ω(r · f(r))-approximation of minimum
distance-r dominating set on C.

Proof. By construction, X∪Y is a dominating set, meaning |M | ≤ 4f(r). There-
fore, it suffices to show that |D| ≥ 4r · f(r)2.

We do so by simulating the algorithm on G. We only need to consider the
vertices selected by vertices on the paths do. Specifically, pick a specific path Px,y

between x ∈ X and y ∈ Y . Vertices vx closer to x than to y cover the attached
vertices Bx,y, so |Nr(vx)| ≥ 2r+ k = 2r+2r · f(r). The vertices closer to vertex
x cover more of the other paths ending in x, each step increases |Nr(vx)| by at
least 2f(r) − 1, and loses at most 1 vertex out of sight in the y direction. Note
that we ignore the vertices in Bx,y′ with y′ �= y, which would only make this
argument stronger. The important property is that |Nr(vx)| strictly increases
towards x, among vertices vx with d(vx, x) < d(vx, y).

Each vertex vy closer to y than to x does not cover the attached vertices Bx,y

close to vertex x, as distance r from them would imply distance r to x. We can
compute |Nr(vy)| ≤ r+Nr(vr)+1−1 = r+r ·2f(r) < 2r+2r ·f(r) ≤ |Nr(vx)|,
so vertex vy will choose some vertex vx. As we already established, |Nr(vx)|
increases with decreasing distance to x. Therefore, each vy will select the vertex
closest to x, meaning at least half of each path will be selected, specifically the
one on the vl side.

This means the algorithm selects at least r vertices per path, and there is
one such path for each X ×Y combination. Hence |D| ≥ r · 4 · f(r)2. Recall that
|M | ≤ 4f(r), so the algorithm achieves an approximation factor of at least r·f(r)
for the constructed graph. Compared with the upper bound of 1+(4r ·f(r)) this
is asymptotically tight.

This concludes the proof of Lemma 14 (tightness of approximation).

B Lower Bound

In this section we prove the following.

Theorem 2. Assume an arbitrary but fixed δ > 0 and r > 1, with r ∈ o(log∗ n).
Then, there is no deterministic LOCAL algorithm that finds in O(r) rounds a
(2r + 1 − δ)-approximation of distance-r dominating set for all G ∈ C, where C
is the class of cycles of length � 4r + 3.

As we will see later, the trivial distance-r dominating set V (i.e., the set of
all vertices), is a (2r + 1)-approximation in the case of cycles.

This has been proved implicitly in the work of [18]. However, we find it simpler
to provide a new proof tailored for our setting, but only for n being a multiple
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of 2r + 1. In essence, we show a reduction from the “large” independent set
problem to the distance-r dominating set problem, on the graph class of cycles.
Intuitively speaking, any algorithm that does significantly better than the trivial
dominating set anywhere on the cycle leads to a linear sized independent set;
and the bound is constructed such that the algorithm needs to do better than
trivial somewhere indeed.

The idea is simple: Find a distance-r dominating set D on cycle C; we know
two consecutive vertices of D on C are of distance at most 2r+1 from each other,
and hence, these vertices help us to break the symmetry, and as r ∈ o(log∗ n) it
yields an independent set of size O(n) in o(log∗ n) rounds. In the remainder, we
formalize this argument.

Assume towards contradiction that ALG is such a deterministic distributed
algorithm, which finds a distance-r dominating set in G ∈ C of size at most
(2r + 1 − δ) |M |, where M is a minimum distance-r dominating set.

We show that ALG can be used to construct an algorithm violating known
lowerbounds on “large” independent set [12,18]:

Lemma 18 (Lemma 4 of [12]). There is no deterministic distributed algo-
rithm that finds an independent set of size Ω(n/ log∗ n) in a cycle on n vertices
in o(log∗ n) rounds.

We present the reduction algorithm in Algorithm 3.

Algorithm 3: CONGEST computation of an IS on a cycle G ∈ Cr, for
each v in parallel

1: Compute a distance-r dominating set D by simulating ALG.
2: Determine the connected components V \ D.
3: for each component Ci do
4: Determine the two adjacent vertices to Ci, i.e. u, v ∈ N(Ci).
5: Let u be the vertex with the lower ID, name it representor of Ci.
6: All vertices of odd distance to u in Ci join I.
7: end for
8: return I

We begin by showing basic correctness:

Lemma 19. Algorithm 3 runs in o(log∗ n) rounds.

Proof. By assumption, ALG executes in O(r) rounds. On the other hand, observe
that each vertex in D only covers up to a distance of r. Because D is a domi-
nating set, all components must have length at most 2r. Hence, discovering the
adjacent vertex of lowest ID can be done in O(r) as well as propagating the dis-
tance information. By construction r ∈ o(log∗ n), so Algorithm 3 takes o(log∗ n)
rounds.

Lemma 20. Algorithm 3 computes set I, which is an independent set.
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Proof. For two distinct vertices u, v ∈ I, if they belong to different components,
then there is no edge between them; otherwise, if they are in the same component,
their distance is at least 2, as they are distinct vertices of odd distance from their
representor.

Now we can show that this yields a large independent set:

Lemma 21. The dominating set is not too large: |D| ≤ (1 − δ′)n for some
δ′ > 0.

Proof. By assumption, we know |D| ≤ (2r+1−δ) |M |, where M is the minimum
distance-r dominating set. Construct M ′ by picking every 2r + 1-th vertex so
that |M ′| = n/(2r + 1). Note that M ′ is a distance-r dominating set, so we
have |M | ≤ |M ′|. Together we get |D| ≤ (2r + 1 − δ)n/(2r + 1) = (1 − δ′)n, for
δ′ ..= 1/(2r + 1) > 0.

Lemma 22. The set I is large: |I| ∈ Ω(n/ log∗ n)

Proof. Many vertices must be part of some component: |V \ D| ≥ δ′n for some
δ′ > 0 by Lemma 21. At least half of those vertices are taken into I, thus
|I| ≥ δ′n/2 ∈ Ω(n/ log∗ n).

Proof (Proof of Theorem 2). Lemmas 18 and 22 imply that algorithm ALG
cannot exist.

Note that this does not preclude randomized algorithms. This is because
randomized algorithms can indeed achieve a better approximation quality, at
least on cycles, by randomly joining the dominating set with sufficiently small
probability if necessary, for several rounds, and finally all uncovered vertices join.

C Omitted Proofs of the Extensions

The basic version of these problems are well studied in the literature; our exten-
sion to distance-r can be found in Sect. 2. We explain the extension of Algorithm
1 to each of these problems and show their correctness. Again, we assume the
input graph is G = (V,E) so that we can directly refer to its edge and vertex
set.

We begin with the Distance-r Connected Dominating Set problem:

Proposition 5. There is a CONGEST algorithm that computes an O((r·f(r))2)
approximation of Distance-r Connected Dominating Set in graphs of bounded
expansion with high girth in O(r) rounds.

Proof. We prove this by constructing Algorithm 4 as a simple extension of Algo-
rithm 1, or any other appropriate CONGEST distance-r dominating set algo-
rithm.

Algorithm 4 is a CONGEST algorithm, as the distance-r dominating set
algorithm is CONGEST, and all other messages only contain a constant amount
of identifiers.
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Algorithm 4: CONGEST computation of connected r-MDS, on each ver-
tex v in parallel

1: Compute a Distance-r Dominating Set D of the graph
2: Determine the closest dominating vertex selv

3: Determine the path P v from v to selv

4: If any neighbor u has a selu �= selv, call vertex v a border
5: return D̂ as the union of D, all border vertices, and all paths P v

Algorithm 4 takes O(r) rounds, because the distance-r dominating set algo-
rithm does so, too, and all other steps also only take O(r) rounds.

D̂ is a dominating set because D ⊆ D̂ is a dominating set.
Define Voronoi cells Hm according to selv for v ∈ V . Note that Corollary 2

and Lemma 7 apply analogously.
We show that D̂ is connected by construction, if G is connected: Vertices

v within a Voronoi cell Hm ∩ D̂ are connected by construction, as they are all
connected to m ∈ D̂. Furthermore, for every path PG in the input graph G, one
can construct a corresponding walk WH in the Voronoi graph by mapping each
vertex to its Voronoi cell (i.e. selv). Thus, the Voronoi cells are connected.

Finally, we show the approximation quality: Consider the minimal Distance-r
Connected Dominating Set M̂ . One can easily see that the minimum distance-r
dominating set M is not larger: |M | ≤

∣∣∣M̂
∣∣∣. An argument similar to Lemma 9

shows that the number of border vertices is bounded in |D|; and by construction
of D the Voronoi cells have radius at most r (and therefore so do the paths). By
Theorem 1, we can now deduce:

∣∣∣D̂
∣∣∣ ∈ O(r · f(r) · |D|) ⊆ O((r · f(r))2 · |M |) ⊆

O((r · f(r))2 ·
∣∣∣M̂

∣∣∣)

For constant r, the terms simplify to:

Corollary 6. There is a CONGEST algorithm that computes a constant factor
approximation of Distance-r Connected Dominating Set for constant r in graphs
of bounded expansion with high girth in constant number of rounds.

Likewise, we can solve the related vertex cover problem. Intuitively speaking,
we can define Voronoi cells according to the computed dominating set, deter-
mine borders between cells, and include all borders into the vertex cover. More
formally:

Proposition 6. There is a CONGEST algorithm that computes an O(r · f(r) ·
f(r)) approximation of Distance-r Vertex Cover in graphs of bounded expansion
with high girth in O(r) rounds.

Proof. We prove this by constructing Algorithm 5 as a simple extension of Algo-
rithm 1, or any other appropriate CONGEST distance-r dominating set algo-
rithm.



58 S. Akhoondian Amiri and B. Wiederhake

Algorithm 5: CONGEST computation of distance-r vertex cover, on each
vertex v in parallel

1: Compute a Distance-r Dominating Set D of the graph
2: Determine the closest dominating vertex selv

3: If any neighbor u of vertex v has a selu �= selv, call v a border
4: return C as the union of D and all border vertices

Algorithm 5 is a CONGEST algorithm as the Distance-r Dominating Set
algorithm is CONGEST, and all other messages only contain a constant amount
of identifiers. Algorithm 5 takes O(r) rounds, because the Distance-r Dominating
Set algorithm does so, too, and all other steps also only take O(r) rounds.

Define Voronoi cells according to selv for v ∈ V . The set C is a distance-r
vertex cover by simple case distinction: All edges e = u, v that are fully inside
a Voronoi cell, i.e., there is a vertex w ∈ C with w = selu = selv, is covered by
vertex w. All edges e = u, v with selu �= selv are covered by vertices u and v, as
both vertices were detected as borders.

Finally, we show the approximation quality: Consider the minimal Distance-r
Vertex Cover MV C . One can easily see that the minimum distance-r dominating
set M is smaller: |M | ≤

∣∣MV C
∣∣. An argument similar to Lemma 9 shows that

the number of border vertices is bounded in |D|. By Theorem 1, we can now
deduce: |C| ∈ O(f(r) · |D|) ⊆ O(r · f(r) · f(r) · |M |) ⊆ O(r · f(r) · f(r) ·

∣∣MV C
∣∣)

Again, for constant r, the terms simplify to:

Corollary 7. There is a CONGEST algorithm that computes a constant factor
approximation of the minimum Distance-r Vertex Cover in a constant number
of rounds.

From Theorem 5 and Corollary 7, the following is straight-forward to see:

Corollary 8. There is a CONGEST algorithm that computes a constant factor
approximation of the minimum Distance-r Connected Vertex Cover in a constant
number of rounds.

The proof is omitted for brevity and follows exactly the same scheme.
This proves that Algorithm 1 can be extended to compute a Distance-r Vertex

Cover instead, as mentioned in Sect. 5.
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Abstract. Motivated by applications in gerrymandering detection, we
study a reconfiguration problem on connected partitions of a connected
graph G. A partition of V (G) is connected if every part induces a con-
nected subgraph. In many applications, it is desirable to obtain parts of
roughly the same size, possibly with some slack s. A Balanced Con-
nected k-Partition with slack s, denoted (k, s)-BCP, is a partition
of V (G) into k nonempty subsets, of sizes n1, . . . , nk with |ni −n/k| ≤ s,
each of which induces a connected subgraph (when s = 0, the k parts
are perfectly balanced, and we call it k-BCP for short).

A recombination is an operation that takes a (k, s)-BCP of a graph
G and produces another by merging two adjacent subgraphs and repar-
titioning them. Given two k-BCPs, A and B, of G and a slack s ≥ 0, we
wish to determine whether there exists a sequence of recombinations that
transform A into B via (k, s)-BCPs. We obtain four results related to this
problem: (1) When s is unbounded, the transformation is always possi-
ble using at most 6(k − 1) recombinations. (2) If G is Hamiltonian, the
transformation is possible using O(kn) recombinations for any s ≥ n/k,
and (3) we provide negative instances for s ≤ n/(3k). (4) We show that
the problem is PSPACE-complete when k ∈ O(nε) and s ∈ O(n1−ε), for
any constant 0 < ε ≤ 1, even for restricted settings such as when G is
an edge-maximal planar graph or when k ≥ 3 and G is planar.

1 Introduction

Partitioning the vertex set of a graph G = (V,E) into k nonempty subsets
V =

⋃k
i=1 Vi that each induces a connected graph G[Vi] is a classical problem,

known as the Connected Graph Partition problem [9,16]. Motivated by fault-
tolerant network design and facility location problems, it is part of a broader
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family of problems where each induced graph G[Vi] must have a certain graph
property (e.g., �-connected or H-minor-free). In some instances, it is desir-
able that the parts V1, . . . , Vk have the approximately the same size (depend-
ing on some pre-established threshold). A Balanced Connected k-Partition
(for short, k-BCP) is a connected partition requiring that |Vi| = n/k, for
i ∈ {1, . . . , k} where n = |V (G)| is the total number of vertices. Dyer and
Frieze [7] proved that finding a k-BCP is NP-hard for all 2 ≤ k ≤ n/3.
For k = 2, 3 the problem can be solved efficiently when G is bi- or tricon-
nected, respectively [20,22], and is equivalent to the perfect matching prob-
lem for k = n/2. Later Chleb́ıková [4] and Chataigner et al. [3] obtained
approximation and inapproximability results for maximizing the “balance” ratio
maxi |Vi|/minj |Vj | over all connected k-partitions. See also [12,14,19,23] for
variants under various other optimization criteria.

In this paper, our basic element is a connected k-partition of a graph G =
(V,E) that is balanced up to some additive threshold that we call a slack s ≥
0, denoted (k, s)-BCP. We explore the space of all (k, s)-BCPs of the graph
G = (V,E). Note that the total number of (k, s)-BCPs for all s ≥ 0, is bounded
above by the number k-partitions of V , which is the Stirling number of the
second kind S(n, k), and asymptotically equals (1 + o(1))kn/k! for constant k.
This bound is the best possible for the complete graph G = Kn.

In a recent application [1,6,18], G = (V,E) represents the adjacency graph
of precincts in an electoral map, which should be partitioned into k districts
V1, . . . , Vk where each district will elect one representative. Motivated by the
design and evaluation of electoral maps under optimization criteria designed to
promote electoral fairness, practitioners developed empirical methods to sample
the configuration space of potentialdistrict maps by a random walk on the graph
where each step corresponds to some elementary reconfiguration move [8].
From a theoretical perspective, the stochastic process converges to uniform sam-
pling [13,15]. However, the move should be local, i.e., it must affect a constant
number of districts, to allow efficient computation of each move, and it should
support rapid mixing (i.e., the random walk should converge, in total variation
distance, to its steady state distribution in time polynomial in n). Crucially, the
space of (approximately balanced) k-partitions of G must be connected under
the proposed move. Previous research considered the single switch move, in
which a single vertex v ∈ V switches from one set Vi to another set Vj (assuming
that both G[Vi] and G[Vj ] remain connected). Akitaya et al. [2] proved that the
configuration space is connected under single switch moves if G is biconnected,
but in general it is NP-hard both to decide whether the space is connected and
to find a shortest path between two valid k-partitions. While the single switch is
local, both worst-case constructions and empirical evidence [5,18] indicate that
it does not support rapid mixing.

In this paper we consider a different move. Specifically, we consider the con-
figuration space of k-partitions under the recombination move, proposed by
DeFord et al. [5], in which the vertices in Vi ∪ Vj , for some i, j ∈ {1, . . . , k},
are re-partitioned into V ′

i ∪ V ′
j such that both G[V ′

i ] and G[V ′
j ] are connected.

We also study variants restricted to balanced or near-balanced partitions, that
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is, when |Vi| = n/k for all i ∈ {1, . . . , k}, or when
∣
∣|Vi| − n/k

∣
∣ ≤ s for a given

slack s ≥ 0. In application domains mentioned above, the underlying graph G is
often planar or near-planar, and in some cases it is a triangulation (i.e., an edge-
maximal planar graph). Results pertaining to these special cases are of particular
interest. Our results lay down theoretical foundations for this model in graph
theory and computational tractability. Although our results imply lower bounds
in the mixing time of worst-case instances, they have no direct implication for
the average case analysis.

Definitions. Let G = (V,E) be a graph with n = |V (G)|. For a positive integer k,
a connected k-partition Π of G is a partition of V (G) into disjoint nonempty
subsets {V1, . . . , Vk} such that the induced subgraph G[Vi] is connected for all
i ∈ {1, . . . , k}. Each subgraph induced by Vi is called a district. We write Π(v)
for the subset in Π that contains vertex v.

Denote by Part(G, k) the set of connected k-partitions on G. We also consider
subsets of Part(G, k) in which all districts have the same or almost the same
number of vertices. A connected k-partition of G is balanced (k-BCP) if every
district has precisely n/k vertices (which implies that n is a multiple of k);
and it is balanced with slack s ≥ 0 ((k, s)-BCP), if

∣
∣|U | − n/k

∣
∣ ≤ s for every

district U ⊂ V . Let Bals(G, k) denote the set of connected k-partitions on G that
are balanced with slack s, i.e., the set of all (k, s)-BCPs. The set of balanced
k-partitions is denoted Bal(G, k) = Bal0(G, k); and Part(G, k) = Bal∞(G, k).

We now formally define a recombination move as a binary relation
on Bals(G, k). Two non-identical (k, s)-BCPs, Π1 = {V1, . . . , Vk} and Π2 =
{W1, . . . , Wk},are related by a recombination move if there exist i, j ∈ {1, . . . , k},
and a permutation π on {1, . . . , k} such that Vi ∪ Vj = Wπ(i) ∪ Wπ(j) and
V� = Wπ(�) for all � ∈ {1, . . . , k}\{i, j}. We say that Π1 and Π2 are a recombi-
nation of each other. This binary relation is symmetric and defines a graph on
Bals(G, k) for all s ≥ 0. This graph is the configuration space of Bals(G, k)
under recombination, denoted by Rs(G, k).

Balanced Recombination Problem BR(G, k, s): Given a graph G = (V,E) with
|V | = n vertices and two (k, s)-BCPs A and B, decide whether there exists a path
between A and B in Rs(G, k), i.e. whether there is a sequence of recombination
moves that carries A to B such that every intermediate partition is a (k, s)-BCP.

Our Results. We prove, in Sect. 2, that the configuration space R∞(G, k) is
connected whenever the underlying graph G is connected and the size of the dis-
tricts is unrestricted. It is easy, however, to construct a graph G where R0(G, k)
is disconnected. We study what is the minimum slack s, as a function of n and k,
that guarantees that Rs(G, k) is connected for all connected (or possibly bicon-
nected) graphs G with n vertices. We prove that Rs(G, k) is connected and its
diameter is O(nk) for s = n/k when G is a Hamiltonian graph (Sect. 3). As a
counterpart, we construct a family of Hamiltonian planar graphs G such that
Rs(G, k) is disconnected for s < n/(3k) (Sect. 4).

We prove in Sect. 5 that BR(G, k, s) is PSPACE-complete even for the special
case when G is a triangulation (i.e., an edge-maximal planar graph), k is O(nε)
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and s is O(n1−ε) for constant 0 < ε ≤ 1. As a consequence we show that finding
a (k, s)-BCP of G is NP-hard in the same setting. Note that the previously
known hardness proofs for finding k-BCPs either require that G is weighted and
nonplanar [3] or G contain cut vertices [7]. In contrast, if G is planar and 4-
connected, then G admits a Hamilton cycle [21] and, therefore, a (k, s)-BCP is
easily obtained by partitioning a Hamilton cycle into the desired pieces. Finally,
we modify our construction to also show that BR(G, k, s) is PSPACE-complete
even for the special case when G is planar, k ≥ 3, and s is bounded above by
O(n1−ε) for constant 0 < ε ≤ 1.

2 Recombination with Unbounded Slack

In this section, we show that the configuration space R∞(G, k) is connected
under recombination moves if G is connected (cf. Theorem 1). The proof proceeds
by induction on k, where the induction step depends on Lemma 2 below.

We briefly review some standard graph terminology. A block of a graph G is
a maximal biconnected component of G. A vertex v ∈ V (G) is a cut vertex if it
lies in two or more blocks of G, otherwise it is a block vertex. In particular, if
v is a block vertex, then G − v is connected. If G is a connected graph with two
or more vertices, then every block has at least two vertices. A block is a leaf-
block if it contains precisely one cut vertex of G. Every connected graph either
is biconnected or has at least two leaf blocks. The arboricity of a graph G is the
minimum number of forests that cover all edges in E = (G). The degeneracy
of G is the largest minimum vertex degree over all induced subgraphs of G. It is
well known that if the arboricity of a graph is a, then its degeneracy is between
a and 2a − 1.

Lemma 1. If the arboricity of a graph is a, then it contains a block vertex of
degree at most 2a − 1.

The proof of Lemma 1 can be found in [17]. The heart of the induction step
of our main result hinges on the following lemma.

Lemma 2. Let G be a connected graph, k ≥ 2 an integer, and Π1,Π2 ∈
Part(G, k) be two k-partitions of G. Then there exists a block vertex v ∈ V (G)
such that up to three recombination moves can transform Π1 and Π2 each to two
new k-partitions in which {v} is a singleton distinct.

Proof. Let Π1 = {V1, . . . , Vk} and Π2 = {W1, . . . , Wk}. We construct two span-
ning trees, T1 and T2, for G that each contain k−1 edges between the districts of
Π1 and Π2, respectively. Specifically, for i ∈ {1, . . . , k}, let T (Vi) be a spanning
tree of G[Vi], T (Wi) a spanning tree of G[Wi]. As G is connected, we can augment
the forest

⋃k
i=1 T (Vi) to a spanning tree T1 of G, using k − 1 new edges, which

connect vertices in distinct districts. Similarly, we can augment
⋃k

i=1 T (Wi) to
a spanning tree T2 of G. Now, let G′ = T1 ∪ T2. By definition, the arboricity of
G′ is at most 2. By Lemma 1, G′ contains a block vertex v with degG′(v) ≤ 3.
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We show that we can modify Π1 (resp., Π2) to create a singleton district
{v} in at most three moves. Assume without loss of generality that v ∈ V1

and v ∈ W1. Since degG′(v) ≤ 3, we have degT (V1)(v) ≤ 3 and degT (W1)(v) ≤
3. Consequently, T (V1) − v (resp., T (W1) − v) has at most three components,
each of which is adjacent to some other district, since G′ − v is connected.
Up to three successive recombinations can decrease the district V1 with the
components of T (V1)−v, and reduce V1 to {v}. Similarly, at most three successive
recombinations can reduce W1 to {v}. �

Theorem 1. Let G be a connected graph and k ≥ 1 a positive integer. For all
Π1,Π2 ∈ Part(G, k), there exists a sequence of at most 6(k − 1) recombination
moves that transforms Π1 to Π2.

Proof. We proceed by induction on k. In the base case, k = 1, and Π1 = Π2.
Assume that k > 1 and claim holds for k − 1. By Lemma 2, we can find a block
vertex v ∈ V (G) and up to six recombination moves transform Π1 and Π2 into
Π ′

1 and Π ′
2 such that both contain {v} as a singleton district. Since v is a block

vertex, G − v is connected; and since {v} is a singleton district in both Π ′
1 and

Π ′
2, we have Π1−{v},Π2−{v} ∈ Part(G−v, k−1). By induction, a sequence of

up to 6(k−2) recombination moves in G−v can transform Π1−{v} into Π2−{v}.
These moves remain valid recombination moves in G if we add singleton district
{v}. Overall, the combination of these sequences yields a sequence of up to
6 + 6(k − 2) = 6(k − 1) recombination moves that transforms Π1 to Π2. This
completes the induction step. �

3 Recombination with Slack

In this section, we prove that the configuration space Rs(G, k) is connected if
the slack is greater or equal to the average district size, that is, s ≥ n/k, and
the underlying graph G is Hamiltonian (Theorem 2).

Let G be a graph with n vertices that contains a Hamilton cycle C. Assume
that n is a multiple of k. A k-partition in Bals(G, k) is canonical if each dis-
trict consists of consecutive vertices along C. Using a slack of s ≥ n/k, we can
transform any canonical k-partition to any other using O(k2) reconfigurations.

Lemma 3. Let G be a graph with n vertices and a Hamilton cycle C, k ≥ 1 is a
divisor of n, and s ≥ n/k. Then the subgraph of Rs(G, k) induced by canonical
k-partitions is connected and its diameter is at most k2 + 1.

Proof Sketch. We proceed by induction: We assume that the first � ∈ {0, . . . , k}
districts each have size n

k , and we change the size of the (� + 1)st district to n
k

using at most k − � − 1 recombinations. Since the average size of the remaining
k − � districts is n/k, there are two consecutive districts of size at most n

k and at
least n

k , respectively. We recombine the first such pair of districts, and propagate
the changes to the (� + 1)st district, completing the induction step. �

In the remainder of this section, we show that every k-partition in Bals(G, k)
can be brought into canonical form by a sequence of O(nk) recombinations.
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Preliminaries. We introduce some terminology. Let Π = {V1, . . . , Vk} ∈
Bals(G, k) with a slack of s ≥ n/k. For every i ∈ {1, . . . , k}, a fragment of
G[Vi] is a maximum set F ⊂ Vi of vertices that are contiguous along C. Every
set Vi is the disjoint union of one or more fragments. The k-partition Π is canon-
ical if and only if every district has precisely one fragment. Our strategy is to
“defragment” Π if it is not canonical, that is, we reduce the number of fragments
using recombination moves.

We distinguish between two types of districts in Π: A district Vi is small
if |Vi| ≤ n/k, otherwise it is large. Every edge in E(G) is either an edge or a
chord of the cycle C. For every i ∈ {1, . . . , k}, let fi be the number of fragments
of Vi. Let Ti be a spanning tree of G[Vi] that contains the minimum number of
chords. The edges of G[Vi] along C form a forest of fi paths; we can construct
Ti by augmenting this forest to a spanning tree of G[Vi] using fi − 1 chords.

The center of a tree T is a vertex v ∈ V (T ) such that each component of
T − v has up to |V (T )|/2 vertices. It is well known that every tree has a center.
For i ∈ {1, . . . , k}, let ci be a center of the spanning tree Ti of G[Vi]. Let the
fragment of Vi be heavy if it contains ci; and light otherwise. We also define a
parent-child relation between the fragments of Vi. Fragments A and B are in a
parent-child relation if they are adjacent in Ti and if ci is closer to A than to B
in Ti. Note that a light fragment and its descendants jointly contain less than
|Vi|/2 ≤ (n/k + s)/2 vertices; see Fig. 1.

A1

A6
A5

A4

A3

A2

A1

ci ∈ A3

A4

A2

A5

A6

C 6

7

5

A1

3 9

4

ci

Fig. 1. Left: A distinct Vi with 26 vertices (hollow dots) in six fragments (bold arcs)
along C. The spanning tree Ti of G[Vi] contains five edges, with a center at ci. Right:
Parent-child relationship between fragments is defined by the tree rooted at the frag-
ment containing ci.

The following four lemmas show that we can decrease the number of frag-
ments under some conditions. In all four lemmas, we assume that G is a graph
with a Hamiltonian cycle C, and Π is a noncanonical (k, s)-BCP with s ≥ n/k.

Lemma 4. If a light fragment of a large district is adjacent to a small district
along C, then a recombination move can decrease the number of fragments.
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Proof. Assume without loss of generality that v1v2 is an edge of C, where v1 ∈
F1 ⊂ V1, v2 ∈ F2 ⊆ V2, F1 is a light fragment of a large district V1, and F2 is
some fragment of a small district V2. Let F 1 be the union of fragment F1 and all
its descendants. By the definition of the center c1, we have |F 1| < |V1|/2. Apply
a recombination replacing V1 and V2 with W1 = V1\F 1 and W2 = V2 ∪ F 1.

We show that the resulting partition is a (k, s)-BCP. Note also that both
G[F 1] and G[V1\F 1] = G[W1] are connected. Since v1v2 ∈ E(G), then G[V2 ∪
F 1] = G[W2] is also connected. As W1 contains the center of V1, we have |W1| ≥ 1
and |W1| < |V1| ≤ n/k+s. As V2 is small, have |W2| = |V2|+ |F 1| < n/k+n/k ≤
2n/k ≤ n/k + s. Finally, note that F1 ∪ F2 is a single fragment in the resulting
k-partition, hence the number of fragments decreased by at least 1. �

Lemma 5. If no light fragment of a large district is adjacent to any small dis-
trict along C, then there exists two adjacent districts along C whose combined
size is at most 2n/k.

Proof. Suppose, to the contrary, that every small district is adjacent only to
heavy fragments along C, and the combined size of every pair of adjacent districts
along C is greater than 2n

k , meaning that at least one district is large. We assign
every small district to an adjacent large district as follows. For every small
district Vi, let Fi be one of its arbitrary fragments. We assign Vi to the large
district whose heavy fragment is adjacent to Fi in the clockwise direction along
C. Since every large district has a unique heavy fragment, and at most one
district precedes it in clockwise order along C, the assignment is a matching of
the small districts to large districts. Denote this matching by M . Every district
that is not part of a pair in M must be large. By assumption, every pair in M
has combined size greater than 2n

k , so the average district size over the districts
in M is greater than n

k . The districts not in M are large so their average size also
exceeds n

k . Overall the average district size exceeds n
k . But Π is a k-partition of

n vertices, hence the average district size is exactly n
k , a contradiction. �

Lemma 6. If districts V1 and V2 are adjacent along C and |V1 ∪V2| ≤ n/k + s,
then there is a recombination move that either decreases the number of fragments,
or maintains the same number of fragments and creates a singleton district.

Proof. Assume, w.l.o.g., that v1 ∈ F1 ⊆ V1, v2 ∈ F2 ⊆ V2, where v1v2 is an edge
of C, and F1 and F2 are fragments of V1 and V2, respectively. The induced graph
G[V1 ∪ V2] is connected, and T1 ∪ T2 ∪ v1v2 is one of its spanning trees. If T1 or
T2 contains a chord, say e, then (T1 ∪T2 ∪ v1v2)− e has two components, T3 and
T4, each of size at most n/k + s − 1. A recombination move can replace V1 and
V2 with V (T3) and V (T4). Since fragments F1 and F2 merge into one fragment,
the number of fragments decreases by at least one. Otherwise, neither T1 nor T2

contains a chord. Then V1 and V2 each has a single fragment, so V1∪V2 is a chain
of vertices along C. Let v be the first vertex in this chain. A recombination move
can replace V1 and V2 with W1 = {v} and W2 = (V1 ∪ V2)\{v}. By construction
both G[W1] and G[W2] are connected, |W1| = 1, |W2| = |V1∪V2|−1 ≤ n/k+s−1,
and the number of fragments does not change. �
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Lemma 7. If there exists a singleton district, then there exists a sequence of at
most k − 1 recombination moves that decreases the number of fragments.

Proof. Let C = (v1, . . . , vn). Assume without loss of generality that V1 = {v1}
is a singleton district, and v2 ∈ F2 ⊆ V2, where F2 is a fragment of district V2.
Since not all districts are singletons, we may further assume that |V2| ≥ 2. We
distinguish between two cases.

Case 1: F2 �= V2 (i.e., V2 has two or more fragments). Let e be an arbitrary
chord in T2, and denote the two subtrees of T2 −e by T−

2 and T+
2 such that v2 is

T−
2 . Since |V2| ≤ n/k+s, the subtrees T−

2 and T+
2 each have at most n/k+s−1

vertices. We can recombine V1 and V2 into W1 = V1 ∪ V (T−
2 ) and W2 = V (T+

2 ).
Then |W1| ≤ 1 + (n/k + s − 1) = n/k + s and |W2| ≤ n/k + s − 1; they both
induce a connected subgraph of G. As the singleton fragment V1 and F2 merge
into one fragment of W1, the number of fragments decreases by at least one.

Case 2: F2 = V2 (i.e., district V2 has only one fragment). Let t > 2 be
the smallest index such that vt is in a district that has two or more fragments
(such district exists since Π is not canonical). Then the chain (v1, . . . , vt−1) is
covered by single-fragment districts that we denote by V1, . . . , V� along C. By
recombining Vi and Vi+1 for i = 1, . . . , � − 1, we create new single-fragment
districts W1, . . . , W� such that |Wi| = |Vi+1| for i = 1, . . . , � + 1 and |W�| =
|V1| = 1. Now we can apply Case 1 for the singleton district W�. �

We are now ready to prove the main result of this section.

Theorem 2. If G is a Hamiltonian graph on n vertices and s ≥ n/k, then
Rs(G, k) is connected and its diameter is O(nk).

Proof. Based on Lemmas 4–7, the following algorithm successively reduces the
number of fragments to k, thereby transforming any balanced k-partition to a
canonical partition. While the number of fragments is more than k, do:

1. If a fragment of a small district is adjacent to a light fragment of a large
district along C, then apply the recombination move in Lemma4, which
decreases the number of fragments.

2. Else, by Lemma 5, there are two adjacent districts along C whose combined
size is at most 2n/k. Apply a recombination move in Lemma6. If this move
does not decrease the number of fragments, it creates a singleton district, and
then up to k − 1 recombination moves in Lemma 7 decrease the number of
fragments by at least one.

There can be at most n different fragments in a k-partition of a set of n vertices.
We can reduce the number of fragments using up to k recombination moves.
Overall, O(nk) recombination moves can bring any two (k, s)-BCPs to canonical
form, which are within k2 + 1 moves apart by Lemma 3. �

4 Disconnected Configuration Space

In this section we show that the configuration space is not always connected,
even in Hamiltonian graphs. Specifically, we show the following result:
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Theorem 3. For any k ≥ 4 and s > 0 there exists a Hamiltonian planar graph
G of n = k(3s + 2) vertices such that Rs(G, k) is disconnected.

Fig. 2. Problem instance showing that Rs(G, k) is not always connected (for k = 4,
n = 56 and s = 4 = n

3k
− O(1)). (Color figure online)

Proof Sketch. The proof is constructive and can be found in [17]. We construct
an instance that consists of a cycle and 4 chords (shown in Fig. 2). Each district
consists of two contiguous arcs along the cycle, which are connected by a unique
chord. We prove that no sequence of recombinations can change this fact. Indeed,
the chords are sufficiently limiting that a district can only gain/lose vertices in
a very restricted fashion (e.g., the district of represented by orange squares can
gain up to s vertices from the district of blue circles). �

5 Hardness Results

This section presents our hardness results. Only a sketch of our reductions
are included in this extended abstract; see [17] for full details. Our reductions
are from Nondeterministic Constrained Logic (NCL) reconfiguration which is
PSPACE-complete [10,11]. An instance of NCL is given by a planar cubic undi-
rected graph GNCL where each edge is colored either red or blue. Each vertex is
either incident to three blue edges or incident to two red and one blue edges. We
respectively call such vertices OR and AND vertices. An orientation of GNCL

must satisfy the constraint that at every vertex v ∈ V (GNCL), at least one blue
edge or at least two red edges are oriented towards v. A move is an operation
that transforms a satisfying orientation to another by reversing the orientation
of a single edge. The problem gives two satisfying orientations A and B of GNCL

and asks for a sequence of moves to transform A into B. As in [2], we subdivide
each edge in GNCL obtaining a bipartite graph G′

NCL with one part formed
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by original vertices in V (GNCL) and another part formed by degree-2 vertices.
We require that an orientation must additionally satisfy the constraint that each
degree-2 vertex v must have an edge oriented towards v. The question of whether
there exists a sequence of moves transforming orientation A′ into B′ of G′

NCL

remains PSPACE-complete. We follow the framework in [2] with a few crucial
differences. The main technical challenge is dealing with the slack constraints
while maintaining the desired behavior for the gadgets. We first describe the
reduction to instances with slack equals zero, and We then generalize the proofs.

Zero Slack. In the following reduction, we are given a bipartite instance of
NCL given by (G′

NCL, A′, B′), and we produce an instance of BR(G, k, s) of the
balanced recombination problem consisting of two (k, s)-BCP of a planar graph
G, ΠA and ΠB , with k = O(|V (GNCL)|) districts, and slack s = 0. Here we give
a brief overview of the reduction. Details can be found in [17].

The AND, OR and degree-2 gadgets are shown in Figs. 3(a), (b) and (c)
respectively. The green (black) dots are called heavy (light) vertices and are
considered to be weighed with integer weight more than one (equal to one). We
can implement weights by attaching an appropriate number of degree-1 vertices
to a heavy vertex so that, in order for a k-BCP to be connected, whichever
district contains the heavy vertex must also contain all degree-1 vertices attached
to it. Every edge e ∈ E(G′

NCL) is represented by two light vertices of G, e+ and
e−, that belong to two neighboring gadgets as shown in Figs. 3(d).

Fig. 3. Gadgets for the reduction from NCL to BR(G, k, 0). (Color figure online)

The weights of heavy vertices are set up so that, for each AND or OR gadget,
a district must contain its heavy vertices va, vb and vc and no heavy vertices of
neighbor degree-2 gadgets. Then, for all degree-2 gadget, there is a district that
contains va and vb and no other heavy vertex. Additionally, for all OR gadgets, a
district must contain v′ and exactly one vertex in {v′

a, v′
b, v

′
c}. We encode whether

an edge e points toward a vertex by whether a district of the corresponding
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gadget contains e+. Then, the connectivity constrains of the districts simulate
the NCL constraints. See Fig. 4.

Fig. 4. Equivalence between a satisfying orientation of G′
NCL and a k-BCP of G.

Lemma 8. BR(G, k, 0) is PSPACE-complete even for a planar graph G with
constant maximum degree.

Generalizations. We generalize the reduction of Lemma 8.

Bounded-Degree Triangulation G. The main new technical tool presented in
this section is the filler gadget shown in Fig. 5(b). Each face marked with a dot
is called a heavy face associated with an integer weight, and whose recursive
construction is shown in Fig. 5(a). Figure 5(c) shows how to use copies of the filler
gadget to transform G in a triangulation. The main property of the filler gadget
is that we set the weights of heavy faces so that each red vertex must belong to
a different district and the gadget only intersects 5 districts. Then, such districts
are “trapped” in the filler gadget and don’t interfere with the other gadgets.

Fig. 5. Construction of the filler gadget. (Color figure online)

Theorem 4. BR(G, k, s) is PSPACE-complete even if G is maximal planar of
constant maximum degree, k ∈ O(nε), and s ∈ O(n1−ε) for 0 < ε ≤ 1.



72 H. A. Akitaya et al.

Finding Balanced Connected Partitions. The NCL orientation problem
is defined by an input undirected graph GNCL edge colored as before, and asks
whether there exist an orientation of GNCL that satisfies the NCL constraints.
This problem is NP-complete [11]. We remark that our construction implies the
following theorem.

Theorem 5. It is NP-complete to decide whether there exist a (k, s)-BCP of a
graph G, even if G is maximal planar of constant maximum degree, k ∈ O(nε),
and s ∈ O(n1−ε) for 0 < ε ≤ 1.

Constant Number of Districts. The drawback of the previous construction
is that it requires 5 new districts for each filler gadget. We obtain PSPACE-
hardness with k = 3, but we lose the restriction that G is a triangulation, and
instead we only require that G is a bounded-degree planar graph. The main
technical difficulty is to guarantee that the same subset of heavy vertices is
always contained in the same district. This property is obtained by a careful
setting of the weights so that there is a unique partition of weights of the heavy
vertices that allow for the 3 districts to be balanced within s slack. This allow
us to label the districts according to the heavy vertices that is contains. One
of the districts then locally acts like the districts that previously contained va,
vb and v3 in each AND and OR gadgets, maintaining the equivalency between
the connectedness of this district and the NCL constraints. Our proof can be
adapted for any k ≥ 3.

Theorem 6. BR(G, 3, s) is PSPACE-complete even if G is planar with constant
maximum degree, and s ∈ O(n1−ε) for 0 < ε ≤ 1.

6 Conclusion and Open Problems

We have shown that the configuration space Rs(G, k) of (k, s)-BCPs is connected
when G is connected and s = ∞, or when G is Hamiltonian and s ≥ n/k. We
hope that our results inform future research on the properties of G, k, and s
that are sufficient to obtain an efficient sampling of Bals(G, k). We also leave
it as an open problem whether our results in Sect. 3 generalize to other classes
of graphs. We conjecture that the configuration space Rs(n, k) is connected
for every biconnected graph G on n vertices when s ≥ n/k. However, our
techniques do not directly generalize; it is unclear how to extend the notion of
canonical k-partitions in the absence of a Hamilton cycle.

We have shown that BR(G, k, s) is PSPACE-complete even in specific set-
tings that are of interest in applications such as sampling electoral maps. Our
results imply that the configuration space Rs(G, k) has diameter exponential
in n, establishing as well an exponential lower bound on the mixing time of a
Markov chain on Rs(G, k) for these settings. We note that Theorems 4 and 6 do
not include other settings of interest such as when G is maximal planar (or even
3-connected) and k is a constant. We leave these as open problems.
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Abstract. Power consumption is the major cost factor in data centers.
It can be reduced by dynamically right-sizing the data center according
to the currently arriving jobs. If there is a long period with low load,
servers can be powered down to save energy. For identical machines, the
problem has already been solved optimally by [25] and [1].

In this paper, we study how a data-center with heterogeneous servers
can dynamically be right-sized to minimize the energy consumption.
There are d different server types with various operating and switch-
ing costs. We present a deterministic online algorithm that achieves a
competitive ratio of 2d as well as a randomized version that is 1.58d-
competitive. Furthermore, we show that there is no deterministic online
algorithm that attains a competitive ratio smaller than 2d. Hence our
deterministic algorithm is optimal. In contrast to related problems like
convex body chasing and convex function chasing [17,30], we investi-
gate the discrete setting where the number of active servers must be an
integral, so we gain truly feasible solutions.

1 Introduction

Energy management is an important issue in data centers. A huge amount of a
data center’s financial budget is spent on electricity that is needed to operate the
servers as well as to cool them [12,20]. However, server utilization is typically
low. In fact there are data centers where the average server utilization is as
low as 12% [16]; only for a few days a year is full processing power needed.
Unfortunately, idle servers still consume about half of their peak power [29].
Therefore, right-sizing a data center by powering down idle servers can save a
significant amount of energy. However, shutting down a server and powering it
up immediately afterwards incurs much more cost than holding the server in
the active state during this time period. The cost for powering up and down
does not only contain the increased energy consumption but also, for example,
wear-and-tear costs or the risk that the server does not work properly after
restarting [26]. Consequently, algorithms are needed that manage the number
of active servers to minimize the total cost, without knowing when new jobs
will arrive in the future. Since about 3% of the global electricity production
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is consumed by data centers [11], a reduction of their energy consumption can
also decrease greenhouse emissions. Thus, right-sizing data centers is not only
important for economical but also for ecological reasons.

Modern data centers usually contain heterogeneous servers. If the capacity
of a data center is no longer sufficient, it is extended by including new servers.
The old servers are still used however. Hence, there are different server types
with various operating and switching costs in a data center. Heterogeneous data
centers may also include different processing architectures. There can be servers
that use GPUs to perform massive parallel calculations. However, GPUs are not
suitable for all jobs. For example, tasks with many branches can be computed
much faster on common CPUs than on GPUs [31].

Problem Formulation. We consider a data center with d different server
types. There are mj servers of type j. Each server has an active state where it is
able to process jobs, and an inactive state where no energy is consumed. Powering
up a server of type j (i.e., switching from the inactive into the active state) incurs
a cost of βj (called switching cost); powering down does not cost anything. We
consider a finite time horizon consisting of the time slots {1, . . . , T}. For each
time slot t ∈ {1, . . . , T}, jobs of total volume λt ∈ N0 arrive and have to be
processed during the time slot. There must be at least λt active servers to process
the arriving jobs. We consider a basic setting where the operating cost of a server
of type j is load and time independent and denoted by lj ∈ R≥0. Hence, an active
server incurs a constant but type-dependent operating cost per time slot.

A schedule X is a sequence x1, . . . ,xT with xt = (xt,1, . . . , xt,d) where each
xt,j indicates the number of active servers of type j during time slot t. At the
beginning and the end of the considered time horizon all servers are shut down,
i.e., x0 = xT+1 = (0, . . . , 0). A schedule is called feasible if there are enough
active servers to process the arriving jobs and if there are not more active servers
than available, i.e.,

∑d
j=1 xt,j ≥ λt and xt,j ∈ {0, 1, . . . ,mj} for all t ∈ {1, . . . , T}

and j ∈ {1, . . . , d}. The cost of a feasible schedule is defined by

C(X) :=
T∑

t=1

⎛

⎝
d∑

j=1

ljxt,j +
d∑

j=1

βj(xt,j − xt−1,j)+

⎞

⎠ (1)

where (x)+ := max(x, 0). The switching cost is only paid for powering up.
However, this is not a restriction, since all servers are inactive at the begin-
ning and end of the workload. Thus the cost of powering down can be folded
into the cost of powering up. A problem instance is specified by the tuple
I = (T, d,m,β, l, Λ) where m = (m1, . . . ,md), β = (β1, . . . , βd), l = (l1, . . . , ld)
and Λ = (λ1, . . . , λT ). The task is to find a schedule with minimum cost.

We focus on the central case without inefficient server types. A server type j
is called inefficient if there is another server type j′ �= j with both smaller (or
equal) operating and switching costs, i.e., lj ≥ lj′ and βj ≥ βj′ . This assumption
is natural because a better server type with a lower operating cost usually has
a higher switching cost. An inefficient server of type j is only powered up, if all
servers of all types j′ with βj′ ≤ βj and lj′ ≤ lj are already running. Therefore,
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excluding inefficient servers is not a relevant restriction in practice. In related
work, Augustine et al. [6] exclude inefficient states when operating a single server.

Our Contribution. We analyze the online setting of this problem where
the job volumes λt arrive one-by-one. The vector of the active servers xt has
to be determined without knowledge of future jobs λt′ with t′ > t. A main
contribution of our work, compared to previous results, is that we investigate
heterogeneous data centers and examine the online setting when truly feasible
(integral) solutions are sought.

In Sect. 2, we present a 2d-competitive deterministic online algorithm, i.e.,
the total cost of the schedule calculated by our algorithm is at most 2d times
larger than the cost of an optimal offline solution. Roughly, our algorithm works
as follows. It calculates an optimal schedule for the jobs received so far and
ensures that the operating cost of the active servers is at most as large as the
operating cost of the active servers in the optimal schedule. If this is not the
case, servers with high operating cost are replaced by servers with low operating
cost. If a server is not used for a specific duration depending on its switching
and operating costs, it is shut down.

In Sect. 3, we devise a randomized version of our algorithm achieving a com-
petitive ratio of e

e−1d ≈ 1.582d against an oblivious adversary.
In Sect. 4, we show that there is no deterministic online algorithm that

achieves a competitive ratio smaller than 2d. Therefore, our algorithm is optimal.
Additionally, for a data center that contains m unique servers (that is mj = 1
for all j ∈ {1, . . . , d}), we show that the best achievable competitive ratio is 2m.

Related Work. The design of energy-efficient algorithms has received quite
some research interest over the last years, see e.g. [3,10,21] and references therein.
Specifically, data center right-sizing has attracted considerable attention lately.
Lin and Wierman [25,26] analyzed the data-center right-sizing problem for data
centers with identical servers (d = 1). The operating cost is load dependent and
modeled by a convex function. In contrast to our setting, continuous solutions
are allowed, i.e., the number of active server xt can be fractional. This allows
for other techniques in the design and analysis of an algorithm, but the created
schedules cannot be used directly in practice. They gave a 3-competitive deter-
ministic online algorithm for this problem. Bansal et al. [9] improved this result
by randomization and developed a 2-competitive online algorithm. In our previ-
ous paper [1] we showed that 2 is a lower bound for randomized algorithms in
the continuous setting; this result was independently shown by [4]. Furthermore,
we analyzed the discrete setting of the problem where the number of active
servers is integral (xt ∈ N0). We presented a 3-competitive deterministic and
a 2-competitive randomized online algorithm. Moreover, we proved that these
competitive ratios are optimal.

Data-center right-sizing of heterogeneous data centers is related to convex
function chasing, which is also known as smoothed online convex optimization
[15]. At each time slot t, a convex function ft arrives. The algorithm then has
to choose a point xt and pay the cost ft(xt) as well as the movement cost
‖xt − xt−1‖ where ‖ · ‖ is any metric. The problem described by Eq. (1) is a
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special case of convex function chasing if fractional schedules are allowed, i.e.,
xt,j ∈ [0,mj ] instead of xt,j ∈ {0, . . . ,mj}. The operating cost

∑d
j=1 ljxt,j in

Eq. (1) together with the feasibility requirements can be modeled as a convex
function that is infinite for

∑d
j=1 xt,j < λt and xt,j /∈ [0,mj ]. The switching cost

equals the Manhattan metric if the number of servers is scaled appropriately.
Sellke [30] gave a (d + 1)-competitive algorithm for convex function chasing. A
similar result was found by Argue et al. [5].

In the discrete setting, convex function chasing has at least an exponential
competitive ratio, as the following setting shows. Let mj = 1 and βj = 1 for
all j ∈ {1, . . . , d}, so the possible server configurations are {0, 1}d. The arriving
convex functions ft are infinite for the current position xt−1 of the online algo-
rithm and 0 for all other positions {0, 1}d\{xt−1}. After T := 2d − 1 functions
arrived, the switching cost paid by the algorithm is at least 2d − 1 (otherwise it
has to pay infinite operating costs), whereas the offline schedule can go directly
to a position without any operating cost and only pays a switching cost of at
most d.

Already for the 1-dimensional case (i.e. identical machines), it is not trivial
to round a fractional schedule without increasing the competitive ratio (see [26]
and [2]). In d-dimensional space, it is completely unclear, if continuous solutions
can be rounded without arbitrarily increasing the total cost. Simply rounding
up can lead to arbitrarily large switching costs, for example if the fractional
solution rapidly switches between 1 and 1 + ε. Using a randomized rounding
scheme like in [2] (that was used for homogeneous data centers) independently
for each dimension can result in an infeasible schedule (for example, if λt = 1
and xt = (1/d, . . . , 1/d) is rounded down to (0, . . . , 0)). Therefore, Sellke’s result
does not help us for analyzing the discrete setting. Other publications handling
convex function chasing or convex body chasing are [8,13,17].

Goel and Wierman [19] developed a (3 + O(1/μ))-competitive algorithm
called Online Balanced Descent (OBD) for convex function chasing, where the
arriving functions were required to be μ-strongly convex. We remark that the
operating cost defined by Eq. (1) is not strongly convex, i.e., μ = 0. Hence their
result cannot be used for our problem. A similar result is given by Chen et al. [15]
who showed that OBD is (3 + O(1/α))-competitive if the arriving functions are
locally α-polyhedral. In our case, α = minj∈{1,...,d} lj/βj , so α can be arbitrarily
small depending on the problem instance.

Another similar problem is the Parking Permit Problem by Meyerson [28].
There are d different permits which can be purchased for βj dollars and have a
duration of Dj days. Certain days are driving days where at least one parking
permit is needed (λt ∈ {0, 1}). The permit cost corresponds to our switching cost.
However, the duration of the permit is fixed to Dj , whereas in our problem the
online algorithm can choose for each time slot if it wants to power down a server.
Furthermore, there is no operating cost. Even if each server type is replaced by
an infinite number of permits with the duration t and the cost βj + lj · t, it is
still a different problem, because the algorithm has to choose the time slot for
powering down in advance (when the server is powered up).
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Data-center right-sizing of heterogeneous data centers is related to geograph-
ical load balancing analyzed in [24] and [27]. Other applications are shown in
[7,14,18,22,23,32,33].

2 Deterministic Online Algorithm

In this section we present a deterministic 2d-competitive online algorithm for
the problem described in the preceding section. The basic idea of our algorithm
is to calculate an optimal schedule for the problem instance that ends at the
current time slot. Based on this schedule, we decide when a server is powered
up. If a server is idle for a specific time, it is powered down.

Formally, given the original problem instance I = (T, d,m,β, l, Λ), the
shortened problem instance It is defined by It := (t, d,m,β, l, Λt) with Λt =
(λ1, . . . , λt). Let X̂t denote an optimal schedule for It and let XA be the schedule
calculated by our algorithm A.

W.l.o.g. there are no server types with the same operating and switching
costs, i.e., βj = βj′ and lj = lj′ implies j = j′. Furthermore, let l1 > · · · > ld,
i.e., the server types are sorted by their operating costs. Since inefficient server
types are excluded, this implies that β1 < · · · < βd.

Let [n] := {1, . . . , n} where n ∈ N. We separate a problem instance into
m :=

∑d
j=1 mj lanes. At time slot t, there is a single job in lane k ∈ [m], if

and only if k ≤ λt. We can assume that λt ≤ m holds for all t ∈ [T ], because
otherwise there is no feasible schedule for the problem instance. Let X be an
arbitrary feasible schedule with xt = (xt,1, . . . , xt,d). We define

yt,k :=

{
max{j ∈ [d] | ∑d

j′=j xt,j′ ≥ k} if k ∈
[∑d

j=1 xt,j

]

0 else
(2)

to be the server type that handles the k-th lane during time slot t. If yt,k = 0,
then there is no active server in lane k at time slot t. By definition, the values
yt,1, . . . , yt,m are sorted in descending order, i.e., yt,k ≥ yt,k′ for k < k′. Note that
yt,k = 0 implies λt < k, because otherwise there are not enough active servers
to handle the jobs at time t. For the schedule X̂t, the server type used in lane
k at time slot t′ is denoted by ŷt

t′,k. Our algorithm calculates yA
t,k directly, the

corresponding variables xA
t,j can be determined by xA

t,j = |{k ∈ [m] | yA
t,k = j}|.

Our algorithm works as follows: First, an optimal solution X̂t is calculated.
If there are several optimal schedules, we choose a schedule that fulfills the
inequality ŷt

t′,k ≥ ŷt−1
t′,k for all time slots t′ ∈ [t] and lanes k ∈ [m], so X̂t

never uses smaller server types than the previous schedule X̂t−1. We will see in
Lemma 2 that such a schedule exists and how to construct it.

If there is a server type j with lj = 0, then in an optimal schedule such a
server can be powered up before it is needed, although λt = 0 holds for this
time slot. Similarly, such a server can run for more time slots than necessary.
W.l.o.g. let X̂t be a schedule where servers are powered up as late as possible
and powered down as early as possible.
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Beginning from the lowest lane (k = 1), it is ensured that A uses a server
type that is not smaller than the server type used by X̂t, i.e., yA

t,k ≥ ŷt
t,k must be

fulfilled. If the server type yA
t−1,k used in the previous time slot is smaller than

ŷt
t,k, it is powered down and server type ŷt

t,k is powered up. A server of type j that
is not replaced by a greater server type stays active for t̄j := �βj/lj	 time slots.
If X̂t uses a smaller server type j′ ≤ j in the meantime, then server type j will
run for at least t̄j′ further time slots (including time slot t). Formally, a server
of type j in lane k is powered down at time slot t, if ŷt′

t′,k �= j′ holds for all server
types j′ ≤ j and time slots t′ ∈ [t − t̄j′ + 1 : t] with [a : b] := {a, a + 1, . . . , b}.

The pseudocode below clarifies how algorithm A works. The variables ek for
k ∈ [m] store the time slot when the server in the corresponding lane will be
powered down.

Algorithm 1. Algorithm A
1: for t := 1 to T do
2: Calculate X̂t such that ŷt

t′,k ≥ ŷt−1
t′,k for all t′ ∈ [t] and k ∈ [m]

3: for k := 1 to m do
4: if yA

t−1,k < ŷt
t,k or t ≥ ek then

5: yA
t,k := ŷt

t,k

6: ek := t + t̄yA
t,k

7: else
8: yA

t,k := yA
t−1,k

9: ek := max{ek, t + t̄ŷt
t,k

} where t̄0 := 0

Structure of Optimal Schedules. Before we can analyze the competitive-
ness of algorithm A, we have to show that an optimal schedule with the desired
properties required by line 2 actually exists. First, we will investigate basic prop-
erties of optimal schedules. In an optimal schedule X̂, a server of type j that
runs in lane k does not change the lane while running. Formally, if ŷt−1,k = j and
ŷt,k �= j, then there exists no other lane k′ �= k with ŷt−1,k′ �= j and ŷt,k′ = j.
Furthermore, a server is only powered up or powered down if the number of jobs
is increased or decreased, respectively. Finally, in a given lane k, the server type
does not change immediately, i.e., there must be at least one time slot, where
no server is running in lane k. These properties are proven in the full version of
this paper.

Given the optimal schedules X̂u and X̂v with u < v, we construct a minimum
schedule Xmin(u,v) with y

min(u,v)
t,k := min{ŷu

t,k, ŷv
t,k}. Furthermore, we construct a

maximum schedule Xmax(u,v) as follows. Let zl(t, k) be the last time slot t′ < t
with ŷu

t′,k = ŷv
t′,k = 0 (no active servers in both schedules) and let zr(t, k) be the

first time slot t′ > t with ŷu
t′,k = ŷv

t′,k = 0. The schedule Xmax(u,v) is defined by

y
max(u,v)
t,k := max

t′∈[zl(t,k)+1:zr(t,k)−1]
{ŷu

t′,k, ŷv
t′,k}. (3)
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Another way to construct Xmax(u,v) is as follows. First, we take the maximum
of both schedules (analogously to Xmin(u,v)). However, this can lead to situa-
tions where the server type changes immediately, so the necessary condition for
optimal schedules would not be fulfilled. Therefore, we replace the lower server
type by the greater one until there are no more immediate server changes. This
construction is equivalent to Eq. (3).

We will see in Lemma 2 that the maximum schedule is an optimal schedule for
Iv and fulfills the property required by algorithm A in line 2, which says that
the server type used in lane k at time t never decreases when the considered
problem instance is expanded. To prove this property, first we have to show that
Xmin(u,v) and Xmax(u,v) are feasible schedules for the problem instances Iu and
Iv, respectively.

Lemma 1. Xmin(u,v) and Xmax(u,v) are feasible for Iu and Iv, respectively.

The proof can be found in the full version of this paper. Now, we are able to
show that the maximum schedule is optimal for the problem instance Iv.

Lemma 2. Let u, v ∈ [T ] with u < v. Xmax(u,v) is optimal for Iv.

The works roughly as follows (the complete proof can be found in the full
paper). First, we prove that the sum of the operating costs of X̂u and X̂v is
greater than or equal to the sum of the operating cost of Xmin(u,v) and Xmax(u,v).
Each server activation in Xmin(u,v) and Xmax(u,v) can be mapped to exactly one
server activation in X̂u and X̂v with the same or a greater server type. Therefore,
C(Xmin(u,v))+C(Xmax(u,v)) ≤ C(X̂u)+C(X̂v) holds and by using Lemma 1, it
is shown that Xmax(u,v) is optimal for Iv.

Feasibility. In the following, let {X̂1, . . . , X̂T } be optimal schedules that
fulfill the inequality ŷt

t′,k ≥ ŷt−1
t′,k for all t, t′ ∈ [T ] and k ∈ [m] as required

by algorithm A. Lemma 2 ensures that such a schedule sequence exists (and
also shows how to construct it). Before we can prove that algorithm A is 2d-
competitive, we have to show that the computed schedule XA is feasible. In an
optimal schedule X̂t, the values ŷt

t′,1, . . . , ŷ
t
t′,m are sorted in descending order by

definition. This also holds for schedule calculated by our algorithm.

Lemma 3. For all time slots t ∈ [T ], the values yA
t,1, . . . , y

A
t,m are sorted in

descending order, i.e., yA
t,k ≥ yA

t,k′ for k < k′.

The proof uses the fact that the running times t̄j are sorted in ascending
order, i.e., t̄1 ≤ · · · ≤ t̄d, because l1 > · · · > ld and β1 < · · · < βd. In other
words, the higher the server type is, the longer it stays in the active state. See
the full paper for more details. By means of Lemma 3, we are able to prove the
feasibility of XA.

Lemma 4. The schedule XA is feasible.

Proof Idea. A schedule is feasible, if (1) there are enough active servers to handle
the incoming jobs (i.e.,

∑d
j=1 xA

t,j ≥ λt) and (2) there are not more active servers
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than available (i.e., xA
t,j ≤ mj). The first property directly follows from the

definition of algorithm A, since
∑d

j=1 xA
t,j ≥ ∑d

j=1 x̂t
t,j ≥ λt. Lemma 3 is used

to prove that xA
t,j ≤ mj is always fulfilled after setting yA

t,k in line 5 or 8. The
complete proof is presented in the full paper. 
�

Competitiveness. To show the competitiveness of A, we divide the schedule
XA into blocks At,k with t ∈ [T ] and k ∈ [m]. Each block At,k is described by its
creation time t, its start time st,k, its end time et,k, the used server type jt,k and
the corresponding lane k. The start time is the time slot when jt,k is powered
up and the end time is the first time slot, when jt,k is inactive, i.e., during the
time interval [st,k : et,k − 1] the server of type jt,k is in the active state.

There are two types of blocks: new blocks and extended blocks. A new block
starts when a new server is powered up, i.e., lines 5 and 6 of algorithm A are
executed because yA

t−1,k < ŷt
t,k or t ≥ ek ∧ yA

t−1,k > ŷt
t,k ∧ ŷt

t,k > 0 (in words:
the previous block ends and X̂t has an active server in lane k, but the server
type is smaller than the server type used by A in the previous time slot). It ends
after t̄yA

t,k
time slots. Thus st,k := t and et,k := t + t̄yA

t,k
(i.e., et,k equals ek after

executing line 6).
An extended block is created when the running time of a server is extended,

i.e., the value of ek is updated, but the server type remains the same (that is
yA

t−1,k = yA
t,k). We have et,k := t+ t̄ŷt

t,k
(i.e., the value of ek after executing line 9

or 6) and st,k := et′,k, where At′,k is the previous block in the same lane. Note
that an extended block can be created not only in line 9, but also in line 6, if
t = ek and yA

t−1,k = ŷt
t,k. If line 8 and 9 are executed, but the value of ek does

not change (because t + t̄ŷt
t,k

is smaller than or equal to the previous value of
ek), then the block At,k does not exist.

Let dt,k := et,k − st,k be the duration of the block At,k and let C(At,k) be
the cost caused by At,k if the block At,k exists or 0 otherwise. The next lemma
describes how the cost of a block can be estimated.

Lemma 5. The cost of the block At,k is upper bounded by

C(At,k) ≤
{

2βjt,k if At,k is a new block
ljt,kdt,k if At,k is an extended block

(4)

The lemma follows from the definition of t̄j (see the full paper for more
details). To show the competitiveness of algorithm A, we introduce another
variable that will be used in Lemmas 7 and 8. Let

ỹu
t,k := max

t′∈[t:u]
ŷt′

t′,k

be the largest server type used in lane k by the schedule X̂t′
at time slot t′ for

t′ ∈ [t : u]. The next lemma shows that ỹu
t,k is monotonically decreasing with

respect to t as well as k and increasing with respect to u.

Lemma 6. Let u′ ≥ u, t′ ≤ t and k′ ≤ k. It is ỹu
t,k ≤ ỹu′

t′,k′ .
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This lemma follows from the definition of ỹu
t,k. A proof can be found in the

full paper. The cost of schedule X in lane k during time slot t is denoted by

Ct,k(X) :=

⎧
⎪⎨

⎪⎩

lyt,k
+ βyt,k

if yt−1,k �= yt,k > 0
lyt,k

if yt−1,k = yt,k > 0
0 otherwise.

(5)

The total cost of X can be written as C(X) =
∑T

t=1

∑m
k=1 Ct,k(X). The technical

lemma below will be needed for our induction proof in Theorem1. Given the
optimal schedules X̂u and X̂v with u < v, the inequality

∑m
k=1

∑u
t=1 Ct,k(X̂u) ≤

∑m
k=1

∑u
t=1 Ct,k(X̂v) is obviously fulfilled (because X̂u is an optimal schedule

for Iu, so X̂v cannot be better). The lemma below shows that this inequality
still holds if the cost Ct,k(·) is scaled by ỹu

t,k.

Lemma 7. Let u, v ∈ [T ] with u < v. It holds that

m∑

k=1

u∑

t=1

ỹu
t,kCt,k(X̂u) ≤

m∑

k=1

u∑

t=1

ỹu
t,kCt,k(X̂v). (6)

The proof is shown in the full paper. The next lemma shows how the cost of
a single block Av,k can be folded into the term 2

∑v−1
t=1 ỹv−1

t,k Ct,k(X̂v) which is
the right hand side of Eq. (6) given in the previous lemma with u = v − 1.

Lemma 8. For all lanes k ∈ [m] and time slots v ∈ [T ], it is

2
v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + C(Av,k) ≤ 2

v∑

t=1

ỹv
t,kCt,k(X̂v). (7)

Proof. If the block Av,k does not exists, Eq. (7) holds by Lemma 6 and C(Av,k) =
0.

If Av,k is a new block, then C(Av,k) ≤ 2βj with j := jv,k = ŷv
v,k by Lemma 5.

Since Av,k is a new block, server type j was not used in the last time slot of the
last t̄j schedules, i.e., ŷt

t,k ≤ j − 1 for t ∈ [v − t̄j : v − 1]. If ŷ
v−t̄j
v−t̄j ,k = j would

hold, then yA
v−1,k = j and there would be an extended block at time slot v. By

using the facts above and the definition of t̃vt,k, for t ∈ [v − t̄j : v − 1], we get

ỹv−1
t,k = max

t′∈[t:v−1]
ŷt′

t′,k ≤ j − 1 = ŷv
v,k − 1 ≤ max

t′∈[t:v]
ŷt′

t′,k − 1 = ỹv
t,k − 1. (8)

By using Lemma 6 and Eq. (8), we can estimate the first sum in (7):

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v)

L6,(8)

≤
v−t̄j−1∑

t=1

ỹv
t,kCt,k(X̂v) +

v−1∑

t=v−t̄j

(ỹv
t,k − 1)Ct,k(X̂v)

≤
v∑

t=1

ỹv
t,kCt,k(X̂v) − βj . (9)
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For the second inequality, we add (ỹv
v,k − 1) · Cv,k(X̂v) ≥ 0 and use

∑v
t=v−t̄j

Ct,k(X̂v) ≥ βj which holds because either j was powered up in X̂v

during [v − t̄j : v] (then there is the switching cost of βj) or j runs for t̄j + 1
time slots resulting in an operating cost of lj · (t̄j + 1) = lj · (�βj/lj	 + 1) ≥ βj .
Altogether, we get (beginning from the left hand side of Eq. (7) that has to be
shown)

2
v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + C(Av,k)

(9),L5

≤ 2
v∑

t=1

ỹv
t,kCt,k(X̂v) − 2βj + 2βj

≤ 2
v∑

t=1

ỹv
t,kCt,k(X̂v).

If Av,k is an extended block, the proof of Eq. (7) is quite similar (see the full
version of this paper for more details). 
�
Theorem 1. Algorithm A is 2d-competitive.

Proof. The feasibility of XA was already proven in Lemma 4, so we have to show
that C(XA) ≤ 2d · C(X̂T ). Let Cv(XA) :=

∑v
t=1

∑m
k=1 C(At,k) denote the cost

of algorithm A up to time slot v. We will show by induction that

Cv(XA) ≤ 2
m∑

k=1

v∑

t=1

ỹv
t,kCt,k(X̂v) (10)

holds for all v ∈ [T ]0.
For v = 0, we have no costs for both XA and X̂v, so inequality (10) is

fulfilled. Assume that inequality (10) holds for v − 1. By using the induction
hypothesis as well as Lemmas 7 and 8, we get

Cv(XA) = Cv−1(XA) +
m∑

k=1

C(Av,k)

I.H.≤ 2
m∑

k=1

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v−1) +

m∑

k=1

C(Av,k)

L7,L8

≤ 2
m∑

k=1

v∑

t=1

ỹv
t,kCt,k(X̂v). (11)

Since ỹv
t,k ≤ d, we get

CT (XA)
(11)

≤ 2
m∑

k=1

T∑

t=1

ỹT
t,kCt,k(X̂T ) ≤ 2d

m∑

k=1

T∑

t=1

Ct,k(X̂T ) ≤ 2d · C(X̂T ).

The schedule X̂T is optimal for the problem instance I, so algorithm A is 2d-
competitive. 
�
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3 Randomized Online Algorithm

The 2d-competitive algorithm can be randomized to achieve a competitive ratio
of e

e−1d ≈ 1.582d against an oblivious adversary. The randomized algorithm B
chooses γ ∈ [0, 1] according to the probability density function fγ(x) = ex/(e−1)
for x ∈ [0, 1]. The variables t̄j are set to �γ · βj/lj	, so the running time of a
server is randomized. Then, algorithm A is executed. Note that γ is determined
at the beginning of the algorithm and not for each block.

Theorem 2. Algorithm B is e
e−1d-competitive against an oblivious adversary.

The complete proof of this theorem is shown in the full paper. Most lemmas
introduced in the previous section still hold, because they do not depend on
the exact value of t̄j , only Lemmas 5 and 8 have to be adapted. For the proof
of Theorem 2, we first give an upper bound for the expected cost of block At,k

(replacing Lemma 5). This bound is used to show that

e

e − 1
·

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + E[C(Av,k)] ≤ e

e − 1
·

v∑

t=1

ỹv
t,kCt,k(X̂v)

holds for all lanes k ∈ [m] and time slots v ∈ [T ] (similar to Lemma 8). Finally,
Theorem 2 is proven by induction.

4 Lower Bound

In this section, we show that there is no deterministic online algorithm that
achieves a competitive ratio that is better than 2d.

We consider the following problem instance: Let βj := N2j and lj := 1/N2j

where N is a sufficiently large number that depends on the number of servers
types d. The value of N will be determined later. The adversary will send a
job for the current time slot if and only if the online algorithm has no active
server during the previous time slot. This implies that the online algorithm has
to power up a server immediately after powering down any server. Note that
λt ∈ {0, 1}, i.e., it is never necessary to power up more than one server. The
optimal schedule is denoted by X∗. Let A be an arbitrary deterministic online
algorithm and let XA be the schedule computed by A.

W.l.o.g. in XA there is no time slot with more than one active server. If
this were not the case, we could easily convert the schedule into one where the
assumption holds without increasing the cost. Assume that at time slot t a new
server of type k is powered up such that there are (at least) two active servers
at time t. If we power up the server at t + 1, the schedule is still feasible, but
the total costs are reduced by lk. We can repeat this procedure until there is at
most one active server for each time slot.

Lemma 9. Let k ∈ [d]. If XA only uses servers of type lower than or equal to
k and if the cost of A is at least C(XA) ≥ Nβk, then the cost of A is at least
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C(XA) ≥ (2k − εk) · C(X∗) (12)

with εk = 9k2/N and N ≥ 6k.

Proof Idea. We will prove the lemma by induction. The base case k = 1 is shown
in the full version of this paper, so we assume that Lemma 9 holds for k − 1.

We divide the schedule XA into phases L0,K1, L1,K2, . . . , Ln such that in
the phases K1, . . . ,Kn server type k is used exactly once, while in the interme-
diate phases L0, . . . , Ln the other server types 1, . . . , k − 1 are used. A phase Ki

begins when a server of type k is powered up and ends when it is powered down.
The phases Li can have zero length (if the server type k is powered up immedi-
ately after it is powered down, so between Ki and Ki+1 an empty phase Li is
inserted).

The operating cost during phase Ki is denoted by δiβk. The operating and
switching costs during phase Li are denoted by piβk. We divide the intermediate
phases Li into long phases where pi > 1/N holds and short phases where pi ≤
1/N . Note that we can use the induction hypothesis only for long phases. The
index sets of the long and short phases are denoted by L and S, respectively.

To estimate the cost of an optimal schedule we consider two strategies: In
the first strategy, a server of type k is powered up at the first time slot and
runs for the whole time except for phases Ki with δi > 1, then powering down
and powering up are cheaper than keeping the server in the active state (βk vs.
δiβk). The operating cost for the phases Ki is δ∗

i βk with δ∗
i := min{1, δi} and

the operating cost for the phases Li is at most 1
N2 piβk, because algorithm A

uses servers whose types are lower than k and therefore the operating cost of A
is at least N2 times larger. Thus, the total cost of this strategy is at most

βk

(

1 +
n∑

i=1

δ∗
i +

∑

i∈L∪S

1
N2

pi

)

≥ C(X∗).

In the second strategy, for the long phases L we use the strategy given by our
induction hypothesis, while for the short phases S we behave like algorithm A
and in the phases Ki we run the server type 1 for exactly one time slot (note
that in Ki we only have λt = 1 in the first time slot of the phase). Therefore the
total cost is upper bounded by

βk

(
∑

i∈L

1
α

pi +
∑

i∈S
pi + 2nβ1/βk

)

≥ C(X∗)

with α := 2k − 2 − εk−1.
The total cost of A is equal to βk

(∑n
i=1(1 + δi) +

∑
i∈L∪S pi

)
, so the com-

petitive ratio is given by

C(XA)
C(X∗)

≥
∑n

i=1(1 + δi) +
∑

i∈L∪S pi

C(X∗)/βk
.
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By cleverly separating the nominator into two terms and by estimating C(X∗)
with strategy 1 and 2, respectively, it can be shown that C(XA)

C(X∗) ≥ 2+α− 16k
N ≥

2k − εk. The complete calculation including all intermediate steps is shown in
the full paper. 
�
Theorem 3. There is no deterministic online algorithm for the data-center
optimization problem with heterogeneous servers and time and load independent
operating costs whose competitive ratio is smaller than 2d.

Proof Idea. Assume that there is an (2d − ε)-competitive deterministic online
algorithm A. We construct a workload as described at the beginning of this
section until the cost of A is greater than Nβd (note that lj > 0 for all j ∈
[d], so the cost of A can be arbitrarily large). By using Lemma 9 with k = d
and N := max{6d, 9k2/ε + 1�}, we get C(XA) > (2d − ε) · C(X∗) which is a
contradiction to our assumption. See the full paper for more details. 
�

The schedule constructed for the lower bound only uses at most one job in
each time slot, so there is no reason for an online algorithm to utilize more than
one server of a specific type. Thus, for a data center with m unique servers (i.e.
mj = 1 for all j ∈ [d]), the best achievable competitive ratio is 2d = 2m.
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Abstract. Given a degree sequence d of length n, the Degree Realiza-

tion problem is to decide if there exists a graph whose degree sequence is
d, and if so, to construct one such graph. Consider the following natural
variant of the problem. Let G = (V, E) be a simple undirected graph of
order n. Let f ∈ R

n
≥0 be a vector of vertex requirements, and let w ∈ R

n
≥0

be a vector of provided services at the vertices. Then w satisfies f on
G if the constraints

∑
j∈N(i) wj = fi are satisfied for all i ∈ V , where

N(i) denotes the neighborhood of i. Given a requirements vector f , the
Weighted Graph Realization problem asks for a suitable graph G
and a vector w of provided services that satisfy f on G. In the original
degree realization problem, all the provided services must be equal to
one.

In this paper, we consider two avenues. We initiate a study that
focuses on weighted realizations where the graph is required to be of
a specific class by providing a full characterization of realizable require-
ment vectors for paths and acyclic graphs. However, checking the respec-
tive criteria is shown to be NP-hard.

In the second part, we advance the study in general graphs. In [7]
it was observed that any requirements vector f where n is even can be
realized. For odd n, the question of whether f is realizable is framed
as whether fn (largest requirement) lies within certain intervals whose
boundaries depend on the requirements f1, . . . , fn−1. Intervals were iden-
tified where f can be realized but for their complements the question is
left open. We describe several new, realizable intervals and show the exis-
tence of an interval that cannot be realized. The complete classification
for general graphs is an open problem.

1 Introduction

Background. Given a degree sequence d of length n, the degree realization
problem is to decide if d has a realization, that is, an n-vertex graph whose
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degree sequence is d, and if so, to construct such a realization (see [1,10,12–
14,16–19]). The problem was well researched over the recent decades and plays
an important role in the field of Social Networks (cf. [8,11,15]). For additional
graph realization problems see [2–4,6] including a survey [5].

Bar-Noy, Peleg, and Rawitz [7] introduced a natural variant of the problem:
Let G = (V,E) be a simple undirected graph on V = {1, 2, . . . , n}. Let f ∈ R

n
≥0

be a vector of vertex requirements, and let w ∈ R
n
≥0 be a vector of vertex weights.

Vector w satisfies the requirement vector f on G if the constraints
∑

j∈N(i) wj =
fi are satisfied for all i ∈ V , where N(i) denotes the (open) neighborhood of
vertex i. The vertex-weighted realization problem is now as follows: Given a
requirement vector f , find a suitable graph G and a weight vector w that satisfy
f on G (if exist). This yields a conceptual generalization of the original degree
realization problem, which corresponds to the case where it is required that all
vertex weights are equal to one.

As noted in [7], any vector f of even length can be realized by a graph
composed of n

2 independent edges (vi, ui), using the weights wui
= fvi

and
wvi

= fui
for every i.

Theorem 1 ([7]). Any requirements vector of even length can be realized.

The problem becomes significantly harder for odd n. A preliminary observa-
tion shows that for odd n, f can be realized if either min{fi} = 0, or fi = fj for
two distinct indices i, j ∈ [1, n], hence we focus w.l.o.g. on the domain

Fn �
{
f ∈ R

n
≥0 : 0 < f1 < f2 < · · · < fn

}
.

As a simple example, consider the domain F3. Note that any graph that poten-
tially realizes some f ∈ F3 must be connected since f1 > 0. For n = 3, the
only two connected graphs are the path P3 (Fig. 1a) and the complete graph K3

(Fig. 1c). The graph layout implies an equation system that the requirements
and weights must satisfy; see Figs. 1b and 1d for P3 and K3, respectively.

1

2

3

(a) P3

f1 = w3

f2 = w3

f3 = w1 + w2

(b) P3 equations

1

2

3

(c) K3

f1 = w2 + w3

f2 = w1 + w3

f3 = w1 + w2

(d) K3 equations

Fig. 1. Graphs that realize vectors of F3 and their equation systems.

The system in Fig. 1b implies that f1 = f2 must hold. In general, P3 implies
that f must satisfy fi = fj where i, j are the labels of the two vertices of degree
one. As a consequence, P3 cannot realize a vector f ∈ F3. For K3, the labeling
is immaterial due to the graph’s symmetry. Solving this system for the weights
yields:

w1 = (f2 + f3 − f1)/2, w2 = (f1 + f3 − f2)/2, w3 = (f1 + f2 − f3)/2.
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The problem requires the weights to be non-negative, so each equation implies
a constraint, yielding

0 ≤ f2 + f3 − f1, 0 ≤ f1 + f3 − f2, 0 ≤ f1 + f2 − f3.

The first two equations are satisfied by any f ∈ F3; the third one yields the
constraint that f ∈ F3 can be realized if and only if f3 ≤ f1 + f2. The exam-
ple demonstrates an approach used in this study: Given a graph G, we deduce
constraints, and use them to define the domain realizable by G.

A full characterization of the vertex weighted problem up to n = 5 is pre-
sented in [7]. For odd n, it was shown that a vector f ∈ Fn cannot be realized
if it belongs to the exponential growth domain

Dexp
n =

{
f : ∀i ∈ [1, n], fi >

∑
j<i fj

}
.

On the other hand, f can be realized if it falls in the sub-exponential growth
domain

Dsub
n =

{
f : ∃i ∈ [1, n − 1], fi ≤ ∑

j<i fj

}
.

Theorem 2 ([7]). Let n ≥ 3 be an odd integer. Then,

1. a requirements vector f ∈ Dexp
n cannot be realized.

2. a requirements vector f ∈ Dsub
n can be realized.

Note that in the definition of Dsub
n , there is no inequality for bounding fn. The

“unknown domain” at this point, for which the realizability problem is still unset-
tled, is the “almost exponential” domain

Dexp-
n =

{
f : ∀i ∈ [1, n − 1], fi >

∑
j<i fj and fn ≤ ∑

j<n fj

}
.

Hence, subsequent analysis should concentrate on the domain Dexp-
n , resolve the

status of some of its subdomains and thus narrow down the unknown regions.
Based on these results, the question whether a vector f ∈ Dexp-

n can be
realized or not, depends on the value of fn in relation to the other requirements.
Hence, subdomains of Dexp-

n are typically defined in terms of intervals in the
range of possible values for fn. The situation at the two extremes of this range is
clear. If fn is larger than

∑
i<n fi, then a vector f ∈ Fn cannot be realized due to

Theorem 2. At the other end, if fn ≤ fn−1 +fn−2, then there exists a realization
for f that uses K3 and a matching graph as described in [7]. Consequently, our
analysis concentrates on vectors f ∈ Dexp-

n where fn is in the intermediate range,
fn ∈ [fn−1 + fn−2,

∑
i<n fi].

It is shown in [7] that parts of this interval can be realized by two types of
domains called the windmill and the kite domains that are both defined by a
lower and upper bound on fn (see Sect. 3 for more details). Combining these
domains, the following collection of ranges are identified as realizable: for even
� ∈ [2, n − 5],

DW∪K
n,� =

{
f ∈ Dexp-

n :
∑n−1

j=�+1(fj − f�+1) ≤ fn ≤ ∑n−1
j=�−1 fj − f�

}
.
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fn

DnDW∪K
n,2

?DW∪K
n,4

?DW∪K
n,6

DM
n,0DM

n,2DM
n,4DM

n,6 D U
n,1D U

n,3D U
n,5

Fig. 2. Coverage of fn’s line plot by the domains DM
n,� and D U

n,k. The blue intervals are
the known, realizable intervals due to [7]. The green intervals are shown to be realizable
in Sect. 3, and the red interval D U

n,1 is shown to be unrealizable in Sect. 4.

Our Results. We consider the task of classifying requirement vectors that can
be realized by specific graph classes. More specifically, we focus on paths and
acyclic graphs. For any even sequence, Theorem 1 provides a realization with the
caveat that the graph is disconnected. We redeem this shortcoming by showing
how to realize any even sequence with a path. Additionally, we classify odd
sequences that can be realized by a path. Alas, deciding whether a given odd
sequence can be realized using a path is shown to be NP-hard.

We then turn to acyclic (not necessarily connected) graphs. For even
sequences, the results mentioned above yield realizations. For odd sequences, we
provide a full characterization: f can be realized by a forest if and only if there
exist two disjoint nonempty index sets I and J such that

∑
i∈I fi =

∑
j∈J fj

and |I| + |J | ≤ �n/2�. Determining whether this condition holds is shown to be
NP-hard as well.

For general graphs, we present extended windmill and kite domains, which
are based on graphs that were used in [7] to define the windmill and kite domains.
The extensions result from using different vertex-labelings. Moreover, we show
that certain collections of these domains have pairwise overlapping intervals, i.e.,
they form a single, larger interval. We use the larger intervals to define the meta-
domains DM

n,� for every even integer 0 ≤ � ≤ n − 5. Given this result, we define
the complements of the meta-domains as the (so far) unknown domains D U

n,k, for
odd integers 1 ≤ k ≤ n − 4. Figure 2 illustrates the placements of the domains’
intervals on a line plot of fn.

The second result for general graphs focuses on the first unknown domain
of [7], namely on D U

n,1 (see Fig. 2). We analyze it using an opposite approach to
the earlier one (of generating a set of constraints from a graph). Assume that
a vector f ∈ D U

n,1 is realized by a graph G and weights w. Then f is subject
to a set of constraints, namely, upper and lower bounds on fn, and exponen-
tial growth constraints for f1, . . . , fn−1, implied by the definition of Dexp-

n . From
these, we deduce structural properties of G. For example, we show that vertex
n must be adjacent to at least n − 2 vertices. Based on the exponential growth
of f1, . . . , fn−1, we show that each vertex must have a neighbor with a dedicated
weight which ensures that its requirement is met. We show that this depen-
dency is pairwise by deducing a one-to-one correspondence between weights and
requirements, revealed by decomposing the graph G. The decomposition process
can be viewed as removing pairs of vertices in n−1

2 many steps. Each pair of
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1 8 3 6 5 4 7 2

w1 = f8 − f6 + f4 − f2

w8 = f1

w3 = f6 − f4 + f2

w6 = f3 − f1

w5 = f4 − f2

w4 = f5 − f3 + f1

w7 = f2

w2 = f7 − f5 + f3 − f1

Fig. 3. The alternating path realization for the domain 0 < f1 ≤ f2 · · · ≤ fn with
n = 8. The alternating permutation is π(i) = i, if i is odd, and π(i) = n + 2 − i, if i is
even.

vertices is connected by an edge and all these edges form a matching in G, such
that the matching partner of a vertex carries its dedicated weight. Based on the
knowledge of G′s structure, we deduce constraints on fn which contradict some
of the constraints implied by D U

n,1. Consequently, a requirement vector f ∈ D U
n,1

cannot be realized. As mentioned above, Bar-Noy et al. [7] give a full character-
ization for n = 5 and show that D U

5,1 cannot be realized. We generalize some of
their ideas.

Organization. In Sect. 2, we characterize requirement vectors realizable by
paths and acyclic graphs. Section 3 presents the extended windmill and kite
domains. In Sect. 4, we show that D U

n,1 is an un-realizable domain.

2 Realizations with Acyclic Graphs

In this section, we consider vertex weighted realizations where the graph must
be acyclic. For an even n, we show that any sequence can be realized by a path
graph, and therefore by an acyclic graph. We provide a necessary and sufficient
condition for acyclic and path realizations when n is odd.

Path Realizations for Even n. We first show that every requirement vector
in Fn can be realized using a path when n is even. Denote the vertices of the
path graph G = (V,E) by V = {1, 2, . . . , n}. Let the edge set of G be E =
{(π(i), π(i + 1)) : 1 ≤ i < n}, where π is a permutation of V . A permutation is
called alternating if the following two conditions are satisfied:

π(1) ≤ π(3) ≤ · · · ≤ π(n − 3) ≤ π(n − 1) (C1)
π(2) ≥ π(4) ≥ · · · ≥ π(n − 2) ≥ π(n). (C2)

That is, odd indexed vertices generate an increasing sequence while even indexed
vertices generate a decreasing sequence. An example of such a permutation is
given in Fig. 3.

Theorem 3. Let f ∈ R
n
≥0, where n is even. Also, let π be an alternating per-

mutation. Then, there exists a nonnegative weight vector w that realizes f with
the path graph whose labeling is π.
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Proof. On this graph, the requirement constraints take the form: fπ(1) = wπ(2),
fπ(n) = wπ(n−1), and fπ(i) = wπ(i−1) + wπ(i+1), for i ∈ {2, . . . , n − 1}. It is not
hard to verify that these requirements are satisfied by the weight assignment
wπ(2i) =

∑i
j=1(−1)i−jfπ(2j−1) and wπ(n+1−2i) =

∑i
j=1(−1)i−jfπ(n+2−2j), and

that all of these weights are nonnegative. 	


Path Realizations of Odd n. Next, we identify requirement vectors in Fn

that can be realized using a path, when n is odd. Let G = (V,E) be a path
graph, V = {1, 2, . . . , n}, and E = {(π(i), π(i + 1)) : 1 ≤ i < n}, where π is a
permutation of V . A permutation is called sound if the following conditions
hold:

1. π(i) ≤ π(i + 2), for every even i ∈ {2, 4, . . . , n − 3}.
2.

∑k/2
i=1(−1)i−1fπ(k−2i+1) ≥ 0, for all even k < n.

3.
∑(n+1)/2

i=1 (−1)ifπ(2i−1) = 0.

Theorem 4. A vector f ∈ R
n
≥0 can be realized by a path if and only if there

exists a sound permutation of V .

Proof. First assume that there exists a sound permutation π of V . Define the
following weights: For the vertex π(k) in vertex k on the path,

wπ(k) =

{∑k/2
i=1(−1)i−1fπ(k−2i+1), k is even,

∑(k−1)/2
j=1 (−1)(k−1)/2−jfπ(2j), k is odd

Since π is sound, the weights are nonnegative. It is not hard to verify that G
and w satisfy f .

For the other direction, assume that f can be realized by a path P of length n,
and let π be a corresponding permutation. Observe that weights on even nodes
of P (namely, those placed in the even locations on P ) satisfy the requirements
of the odd nodes. To prove Conditions 2 and 3, observe that for an even k we
have

fπ(k−1) − wπ(k) = wπ(k−2) = fπ(k−3) − wπ(k−4)

= fπ(k−3) − fπ(k−5) + wπ(k−6)

= . . .

=
∑k/2−1

i=1 (−1)i−1fπ(k−2i−1).

Condition 2 holds since, for k < n, we have

fπ(k−1) − ∑k/2−1
i=1 (−1)i−1fπ(k−2i−1) =

∑k/2
i=1(−1)i−1fπ(k−2i+1) = wπ(k) ≥ 0.

Moreover, Condition 3 is implied, since

fπ(n) = wπ(n−1) =
∑(n−1)/2

i=1 (−1)i−1fπ(n−2i).
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fπ(1) = 1 fπ(3) = 3 fπ(5) = 7 fπ(5) = 3 fπ(5) = 3

wπ(2) = 1 wπ(4) = 2 wπ(4) = 5

Fig. 4. An example that shows that Condition 2 is needed.

Since the weights on the odd nodes of P are only used for satisfying the require-
ments of the even nodes, we can change the order of the requirements in the
even locations on the path so that their requirements appear in nonincreasing
order, thus getting a new permutation π′ that satisfies Condition 1. (The weights
assigned to the even locations in the given realization remain in place, though,
and are not moved along with the requirements.) Consequently, we need to mod-
ify the weights of the odd nodes by setting wπ(k) =

∑(k−1)/2
j=1 (−1)(k−1)/2−jfπ(2j)

for every odd node k, to obtain a sound permutation. 	

The following example shows that Condition 2 is indeed necessary. Consider

the vector f = (1, 1, 3, 3, 3, 7, 25, 50, 100, 200, 400). Assume towards a contradic-
tion that f can be realized by a path of length n = 11, and let π be a corre-
sponding permutation. It must be that

fπ(1) + fπ(5) + fπ(9) =
∑5

i=1 wπ(2i) = fπ(3) + fπ(7) + fπ(11),

Hence, without loss of generality we have that

{π(1), π(2), π(6)} = {1, 5, 9} {π(3), π(4), π(5)} = {3, 7, 11} .

Since fπ(3) = 3, it must be that fπ(1) = 1. Hence wπ(2) = 1 and wπ(4) = 2. It
follows that fπ(5) = 7. This implies that wπ(6) = 5 and we get a contradiction.
See Fig. 4.

Alas, deciding whether a given requirement vector can be realized by a
weighted path is NP-hard. The proof is given in the full version of the paper.

Theorem 5. Deciding if a vector f ∈ R
n
≥0 admits a sound permutation is NP-

hard.

Acyclic Realizations of Odd n. Finally, we turn to realizations for arbitrary
acyclic graphs. For an even n, the realizations from Theorems 1 & 3 are done
with acyclic graphs. For an odd n, we classify all the requirement vectors that
can be realized by a forest. The proofs are presented in the full version.

Theorem 6. A vector f ∈ R
n
≥0 can be realized by a forest if and only if there

exist two disjoint index sets I and J such that
∑

i∈I fi =
∑

j∈J fj and |I|+ |J | ≤
�n/2�.
Theorem 7. Deciding whether a vector f of order nf satisfies the condition
in Theorem6, namely if there exist two disjoint index sets I and J such that∑

i∈I fi =
∑

j∈J fj and |I| + |J | ≤ �nf/2�, is NP-hard.

The proof uses a reduction from the Equal Sum Subsets problem, which
was shown to be NP-hard in [20].
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3 Extended Windmill and Kite

In this section, we provide extended versions of the kite and windmill domains
introduced in [7]. The details are presented in the full paper where we also
combining several of these new domains to define meta domains. Let n ≥ 5 and
let � ∈ [2, n − 1] be an even number. Let

DM
n,� =

{
f ∈ Dexp-

n :
∑n−1

j=�+1(fj − f�+1) ≤ fn ≤ ∑n−1
j=1 fj − f�

}
, and

DM
n,0 =

{
f ∈ Dexp-

n :
∑n−1

j=2 (fj − f1) ≤ fn ≤ ∑n−1
j=1 fj

}
.

We refer to this interval as �-th meta domain (see Fig. 5).

6
i=1 fi

D7 ([1, 7])

6
i=1 fi − 6f1

?

6
i=1 fi − f2

D −
7 (1, 2)

6
i=3 fi − 4f1

6
i=3 fi

D7 (2, 2)

6
i=3 fi − 4f3

?

6
i=1 fi − f4

D −
7 (1, 4)

6
i=1 fi − f4 − 4f1

6
i=2 fi − f4

D7 (2, 4)

6
i=2 fi − f4 − 4f2

6
i=3 fi − f4

D −
7 (3, 4)

6
i=3 fi − f4 − 2f3

f5 + f6

D7 (4, 4)

DM
7,0DM

7,2DM
7,4 D U

7,1D U
7,3

Fig. 5. Coverage of the interval U for n = 7 by the windmill and kite domains. Values
for f7 are plotted on the line. The two gaps marked by a green, dotted line are analyzed
in this section. The (up to this point) unknown domains are marked by question marks.

Theorem 8. Let n ≥ 5 and let � < n be an even number. The vector f in the
meta domain DM

n,� can be realized.

We now describe the unknown domains located between the meta domains. Let
k be an odd index such that k ≤ n − 4. The k-th unknown domain is:

D U
n,k =

{
f ∈ Dexp-

n :
∑n−1

j=1 fj − fk+1 < fn <
∑n−1

j=k (fj − fk)
}

.

Note that such a domain only exists if
∑k−1

j=1 fj + (n − k)fk < fk+1.

4 An Unrealizable Domain

In this section, we show that a requirement vector f ∈ D U
n,1 cannot be realized.

We start with two observations that we need to prove the main result, The-
orem 9. Given a vertex-weight function w : V → R, let π be a permutation of V
for which wπ(i) ≤ wπ(i+1), for every i ∈ [1, n − 1].
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Lemma 1. Let n be an integer, and let f be a requirement vector such that∑
j<i fj < fi, for all i ∈ [1, �], where � ∈ [1, n − deg(1) + 1]. If (G,w) realize the

vector f , then (i)
∑deg(1)

j=1 wπ(j) ≤ f1, and (ii) wπ(j+deg(1)−1) ≤ fj, for every
j ∈ [2, �].

Proof. First, observe that deg(1) ≥ 1. Also,
∑deg(1)

j=1 wπ(j) ≤ ∑
j∈N(1) wj = f1

showing the first claim. We prove the second claim by induction on i. For the
base case, consider

∑deg(1)
j=1 wπ(j) ≤ f1 < f2. Since G realizes f , there is a vertex

k ∈ N(2) whose weight is larger than wπ(deg(1)). Hence, wπ(deg(1)+1) ≤ wk ≤ f2.
For the inductive step, let wπ(j+deg(1)−1) ≤ fj for every j < i. Hence,

∑deg(1)+i−2
j=1 wπ(j) =

∑deg(1)
j=1 wπ(j) +

∑i−1
j=2 wπ(deg(1)+j−1) ≤ ∑i−1

j=1 fj < fi

where the final, strict inequality holds by assumption. Similar to the base case,
there is a vertex k ∈ N(i) whose weight is larger than wπ(deg(1)+i−2). Hence,
wπ(deg(1)+i−1) ≤ wk ≤ fi.

Lemma 2. Let f ∈ Fn be a vector that is realized by (G,w). Also, let V ′ ⊆ V
and let f ′ be a new requirement vector which is defined on V ′ as follows: f ′

i �
fi − ∑

j∈N(i)\V ′ wj, for i ∈ V ′. Then, G[V ′] and w|V ′ realize f ′.

The correctness of the lemma follows readily from the construction.

Theorem 9. Let n ≥ 5 be an odd integer. A vector f ∈ D U
n,1 cannot be realized.

Proof. Towards a contradiction, suppose that f ∈ D U
n,1 is be realized by a graph

G = (V,E) and a weight function w. Since f1 > 0, the graph G cannot have an
isolated vertex. By definition of D U

n,1, the following equations hold:
∑

j<i fj < fi, for i ∈ [1, n − 1] (1)
∑n−1

i=1 fi − f2 < fn (2)

fn <
∑n−1

i=1 fi − (n − 1)f1 (3)

To show the theorem, we consider three cases depending on the size of neigh-
borhood of vertex 1: (1) deg(1) ≥ 3, (2) deg(1) = 1, and (3) deg(1) = 2.

Case 1. If deg(1) ≥ 3, then
∑deg(1)

j=1 wπ(j) ≤ ∑
j∈N(1) wj = f1. Lemma 1 implies

that ∑n
j=1 wπ(j) ≤ f1 +

∑n−deg(1)+1
j=2 fj < fn−deg(1)+2

where the last inequality is due to Eq. (1) which can be used since n − deg(1) +
2 ≤ n − 1. Hence, fn−deg(1)+2 cannot be realized and we reach the desired
contradiction.

Case 2. Let vertex N(1) = {k}. It follows that wk = f1. We use Lemma 2 with
V ′ = V \{1, k}. Hence, the new requirements vector

f ′
i =

{
fi − f1 i ∈ N(k),
fi i ∈ N(k),
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is realized by G′ = G[V ′] and w|V ′ . Consider i ∈ V ′. If i < n, we have that
∑

j<i,j∈V ′ f ′
j ≤ ∑

j<i,j∈V ′ fj ≤ ∑
j<i fj − f1 < fi − f1 ≤ f ′

i ,

where the third inequality follows from Eq. (1). If i = n, we have that

∑
j<n,j∈V ′ f ′

j ≤ ∑
j<n,j∈V ′ fj =

∑n−1
j=1 fj − fk − f1 ≤ ∑n−1

j=1 fj − f2 − f1

< fn − f1 ≤ f ′
i ,

where the third inequality is due to Eq. (2). We reach a contradiction since
f ′ ∈ Dexp

n−2.

Case 3. In this case, N(1) = {k, k′}. Hence, wπ(1) + wπ(2) ≤ wk + wk′ = f1. By
Eq. (2) and Lemma 1, we have that

wπ(1) + wπ(2) +
∑n

j=4 wπ(j) ≤ f1 +
∑n−1

j=3 fj < fn.

It follows that fn ≥ ∑n
j=3 wπ(j) and that deg(n) ≥ n − 2. Hence, vertex n has a

central role like in the windmill and kite graphs of Sect. 3. There are two cases:
If deg(n) = n − 2, then it must be that N(n) = {π(3), . . . , π(n)}. Otherwise,
N(n) = {π(1/2), π(3), . . . , π(n)}, where π(1/2) stands for either π(1) or π(2). It
follows that wn = wπ(1/2).

Claim. n ∈ N(1)

Proof. Towards a contradiction, suppose that n ∈ N(1). Consequently, deg(n) =
n − 2. By Lemma 1 and Eq. (2), we have that

∑n
j=4 wπ(j) ≤ ∑n−1

j=3 fj < fn − f1 =
∑n

j=3 wπ(j) − (wk + wk′) ≤ ∑n
j=5 wπ(j)

since k and k′ are adjacent to n. Hence, we reach a contradiction. 	

With N(1) = {k, n} we have f1 = wk +wn. Due to Lemma 1 and Eq. (2) we have

wn + wk +
∑n

j=4 wπ(j) ≤ f1 +
∑n−1

j=3 fj < fn.

If deg(n) = n−2, then N(n) = {π(3), . . . , π(n)} and fn =
∑n

j=3 wπ(j). Therefore
it must be that wk = wπ(2/1). It follows that k ∈ N(n).

The main part of the remaining proof is to show that vertices 2, . . . , n − 1,
except k, have degree 2 in G. For that, define V ′ = V \ {1, n, k} and consider
G′ = G[V ′]. Notice that in both cases (i.e., deg(n) = n − 1 or deg(n) = n − 2)
we have that V ′ ⊆ N(n).

Let i ∈ V ′. Since wn + wk = f1 < fi, it follows that i must have at least
one neighbor, apart from n, in G. Hence, deg′(i) ≥ 1, for every i ∈ V ′. The next
step in our proof is to show that deg′(i) ≤ 1, for every i ∈ V ′. We do so by
constructing a perfect matching M ′ in G′ and then proving that E′ = M ′.

Claim. Graph G′ contains a perfect matching M ′.
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Proof. Using Lemma 2 we get that the following requirement vector

f ′
i =

{
fi − wn − wk, i ∈ N(k),
fi − wn i ∈ N(k).

which is defined on V ′ and is realized by G′ and w|V ′ . With f1 = wn + wk and
Eq. (1) we get

∑
j<i,j �=1,k f ′

j ≤ ∑
j<i,j �=1,k fj < fi − f1 ≤ f ′

i

for i ∈ V ′. Thus, f ′ ∈ Dexp. Let H be a component of G′ and let h =
{fi1 , . . . , fim} be the subsequence of f ′ induced by the vertices of H. where
m = |V (H)|. Since f ′ ∈ Dexp, it must be that h ∈ Dexp. In addition, since H is
realized by h, it follows by Theorem2 that H contains an even number of ver-
tices. If deg′(i1) ≥ 2, then wπ(i1) + wπ(i2) ≤ fi1 , and thus by Lemma 1 we have
that

∑m
j=1 wπ(ij) ≤ ∑m−1

j=1 fij < fim , which means that fhm
cannot be realized.

Hence, deg′(i1) = 1. The edge connecting i1 and its only neighbor i′1 is added
to the matching M . Next remove i1 and i′1 from H. Let H ′ = H\ {i1, i

′
1}. Since

wi′
1

= hi1 , by Lemma 2 the requirement vector

h′
j =

{
hj − hi1 i ∈ N(h′

1),
hj i ∈ N(h′

1).

is realized by G[H ′] and w|H′ . Also, observe that h′ ∈ Dexp. Therefore we can
again argue that the vertex with the smallest requirement in H ′ has exactly
one neighbor. The edge connecting this vertex and its neighbor are part of our
matching M . We continue until the remaining subgraph is empty. By performing
this process on all components of G′ we obtain a perfect matching M ′ in G′. 	


Let M = M ′ ∪ {1, k} and define a function ϕ : V \{n} → V \{n} by ϕ(i) = j
if (i, j) ∈ M . Observe that ϕ(ϕ(i)) = i, wϕ(i) ≤ fi and wi ≤ fϕ(i).

Claim. For all i ∈ V ′, deg′(i) = 1, i.e., E′ = M ′.

Proof. Towards a contradiction, suppose that there is a vertex i ∈ V ′ such that
deg′(i) ≥ 2. Let p, q ∈ N ′(i), where ϕ(i) = p = q. It follows that wp + wq ≤ f ′

i ≤
fi. By the Eq. (2) we have that

f1 +
∑n−1

j=3 fj < fn ≤ ∑n−1
j=1 wj ≤ ∑

j �=p,q,n wj + fi ≤ ∑
j �=p,q,n fϕ(j) + fi

=
∑

j �=q,n fϕ(j) <
∑

j �=ϕ(q),n fj .

Since q ∈ V ′, we know that ϕ(q) = 1, and we get a contradiction. It follows
that deg′(i) = 1 for every i ∈ V ′, namely that E′ = M ′. Similarly, we show that
N(k) ⊆ {1, n}. Suppose k has a neighbor p ∈ V ′. In this case,

f1 +
∑n−1

j=3 fj < fn ≤ ∑n−1
j=1 wj ≤ ∑

j �=1,p,n wj + fk ≤ ∑
j �=1,q,n fϕ(j) + fk

=
∑

j �=q,n fϕ(j) <
∑

j �=ϕ(q),n fj ,

and we reach a contradiction. 	
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Since each vertex in V ′ has exactly one neighbor in G′ and k has no neighbors
in V ′, we get that fi = wϕ(i) + wn, for all i ∈ V ′. Also, if k ∈ N(n), we have
that fk = w1 + wn, and otherwise fk = w1. If deg(n) = n − 1,

∑n−1
j=1 fj =

∑n−1
j=1 (wϕ(j) + wn) =

∑n−1
j=1 (wj + wn) = fn + (n − 1)wn

≤ fn + (n − 1)f1,

and we have a contradiction with Eq. (3). On the other hand, if deg(n) = n − 2
and k ∈ N(n) we have that

∑n−1
j=1 fj =

∑
j �=k,n(wϕ(j) + wn) + w1 =

∑
j �=n wj + (n − 2)wn

= fn + wk + (n − 2)wn ≤ fn + (n − 1)f1,

yielding a contradiction to Eq. (3). Hence, f cannot be realized and the theorem
follows. 	


5 Conclusion

Based on the work of Bar-Noy et al. [7], we advanced the understanding of
the Weighted Graph Realization problem. With the extended kite and
windmill we found new, realizable domains. Qualitatively more important, we
showed the existence of an un-realizable domain, namely D U

n,1 for any odd n

(see Fig. 2). Up to this point we are left with several, unknown domains (D U
n,k,

for k > 1) where it is not clear whether a requirement vector can be realized
or not. Initial results exists showing that there are realizable and un-realizable
sub-domains, but these sub-domains do not cover the unknown domains entirely.
A full classification may result in a polynomial time algorithm to decide whether
a sequence can be realized since our domains are typically defined using a linear
function of the given sequence.

We classified the sequences realizable by paths and acyclic graphs. Even
sequences can always be realized by a path. We classified the odd sequences
that can be realized by a path and by a forest. As an intermediate result, it
would be interesting to classify odd sequences realizable by a tree. Note that the
Degree Realization problem was studied in trees (see, e.g., [9]). The graphs
that we use in Sect. 3 can have many odd cycles. Analyzing bipartite graphs,
which generalize forests, may help to understand how even cycles can be used
to realize additional sequences. Moreover, the question for connected graphs is
wide open. To show that Dsub

n is realizable, Bar-Noy et al. [7] use graphs that
are disconnected as are some of the graphs that we use in Sect. 3.

It might also be intriguing to study weighted graph realizations where the
neighborhoods are closed, i.e., vertices see also their own weight. There is a
simple realization for any sequence that uses a graph without edges and the
weight of a vertex is equal to its requirement. To make the problem interesting,
one would have to forbid isolated vertices or study the problem on specific classes
like connected graphs.
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Abstract. The 1-2-3 Conjecture states that every connected graph dif-
ferent from K2 admits a proper 3-labelling, i.e., can have its edges
labelled with 1, 2, 3 so that no two adjacent vertices are incident to the
same sum of labels. In connection with recent optimisation variants of
this conjecture, we study the role of label 3 in proper 3-labellings of
graphs. Previous studies suggest that, in general, it should always be
possible to produce proper 3-labellings assigning label 3 to a only few
edges. We prove that, for every p ≥ 0, there are various graphs needing
exactly p 3’s in their proper 3-labellings. Actually, deciding whether a
given graph can be labelled with p 3’s is NP-complete for every p ≥ 0. We
also focus on particular classes of 3-chromatic graphs (cacti, triangle-free
planar graphs, etc.), for which we prove there is no p ≥ 1 such that they
all admit proper 3-labellings assigning label 3 to at most p edges. In such
cases, we give lower and upper bounds on the number of needed 3’s.

Keywords: Proper labellings · 3-chromatic graphs · 1-2-3 Conjecture

1 Introduction

This work is mainly motivated by the so-called 1-2-3 Conjecture, which can be
defined through the following terminology and notation. Let G be a graph and
consider a k-labelling � : E(G) → {1, . . . , k}, i.e., an assignment of labels 1, . . . , k
to the edges of G. To every vertex v ∈ V (G), we associate, as its colour c�(v), the
sum of labels assigned by � to its incident edges. That is, c�(v) =

∑
u∈N(v) �(vu).

We say that � is proper if we have c�(u) �= c�(v) for every uv ∈ E(G), that is, if
no two adjacent vertices of G get incident to the same sum of labels by �.

The complete graph on two vertices, K2, is the only connected graph admit-
ting no proper labellings. Thus, when studying the 1-2-3 Conjecture, we focus on
nice graphs, which are those graphs with no connected component isomorphic to
K2, i.e., admitting proper labellings. If a graph G is nice, then we can investigate
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the smallest k ≥ 1 such that proper k-labellings of G exist. This parameter is
denoted by χΣ(G). A natural question to ask, is whether this parameter χΣ(G)
can be large for a given graph G. This question is precisely at the heart of the
1-2-3 Conjecture [11], which states that if G is a nice graph, then χΣ(G) ≤ 3.

To date, most of the progress towards the 1-2-3 Conjecture can be found
in [13]. Let us highlight that the conjecture was verified mainly for 3-colourable
graphs [11] and complete graphs [4]. Regarding the tightness of the conjecture,
it was proved that deciding if a given graph G verifies χΣ(G) ≤ 2 (denoted as
the 2-Labelling problem) is NP-complete in general [8], and remains so even
in the case of cubic graphs [6]. Hence, there is no nice characterisation of graphs
admitting proper 2-labellings (or, the other way round, of graphs needing 3’s in
their proper 3-labellings), unless P=NP. Lastly, to date, the best result towards
the 1-2-3 Conjecture, from [10], is that χΣ(G) ≤ 5 holds for every nice graph G.

This work takes place in a recent line of research studying optimisation
problems related to the 1-2-3 Conjecture which arise when considering proper
labellings fulfilling additional constraints. In a way, one of the main sources of
motivation here is further understanding the very mechanisms that lie behind
proper labellings. In particular, towards better comprehending the connection
between proper labellings and proper vertex-colourings, the authors of [1,3] stud-
ied proper labellings � for which the resulting vertex-colouring c� is required to
be close to an optimal proper vertex-colouring (i.e., with the number of distinct
resulting vertex colours being close to the chromatic number). Due to one of the
core motivations behind the 1-2-3 Conjecture, the authors of [2] also investigated
proper labellings minimising the sum of labels assigned to the edges.

Each of these previous studies led to presumptions of independent interest. In
particular, it is believed in [3], that every nice graph G admits a proper labelling
where the maximum vertex colour is at most 2Δ(G) (recall that Δ(G) and δ(G)
are used to denote the maximum and the minimum, resp., degree of any vertex
of G), while, from [2], it is believed that every G should admit a proper labelling
where the sum of assigned labels is at most 2|E(G)|. One of the main reasons
why these presumptions are supposed to hold is that, in general, it seems that
nice graphs admit 2-labellings that are almost proper, in the sense that they need
only a few 3’s to design proper 3-labellings. This belief on the number of 3’s is
long-standing, as, in a way, it lies behind the 1-2 Conjecture of Przyby�lo and
Woźniak [12], which states that we should be able to build a proper 2-labelling
of every graph if we can also locally alter each vertex colour a bit.

Our goal in this work is to study and formally establish the intuition that, in
general, graphs should admit proper 3-labellings assigning only a few 3’s. First,
we study whether, given a (possibly infinite) class F of graphs, the members of
F admit proper 3-labellings assigning only a constant number of 3’s. Note that
this holds, for instance, for all nice trees since they admit proper 2-labellings [4].
In case F admits no such constant cF , i.e., the number of 3’s the members of
F need in their proper 3-labellings is a function of their number of edges, the
second question we consider is whether the number of 3’s needed can be “large”
for a given member of F , with respect to the number of its edges.
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In this work, we investigate these two questions in general and for restricted
classes of graphs. We begin in Sect. 2 by formally introducing the terminology
that we employ throughout this work. In Sect. 3, we introduce proof techniques
for establishing lower and upper bounds on the number of 3’s needed in proper
3-labellings for some graph classes. In Sect. 4, we use these tools to establish
that, for several classes of graphs, the number of required 3’s in their proper
3-labellings is not bounded by an absolute constant. In such cases, we exhibit
bounds (functions depending on the size of said graphs) on this number.

2 Terminology and a Conjecture

For any notation on graph theory not defined in the paper, we refer the reader
to [7]. Let G be a (nice) graph, and � be a k-labelling of G. For any i ∈ {1, . . . , k},
we denote by nb�(i) the number of edges assigned label i by �. Focusing now
on proper 3-labellings, we denote by mT(G) the minimum number of edges
assigned label 3 by a proper 3-labelling of G. That is, mT(G) = min{nb�(3) :
� is a proper 3-labelling of G}. We extend this parameter mT to classes F of
graphs by defining mT(F) as the maximum value of mT(G) over the members
G of F . Clearly, mT(F) = 0 for every class F of graphs admitting proper
2-labellings (i.e., χΣ(G) ≤ 2 for every G ∈ F). Given a graph class F , we
are interested in determining whether mT(F) ≤ p for some p ≥ 0. From that
perspective, for every p ≥ 0, we denote by Gp the class of graphs G with mT(G) =
p. For convenience, we also define G≤p := G0 ∪ · · · ∪ Gp.

Since nice trees admit proper 2-labellings [4], if T is the class of all nice
trees, then the notation above allows us to state that T ⊂ G0. More generally
speaking, bipartite graphs form perhaps the most investigated class of graphs in
the context of the 1-2-3 Conjecture. A notable result, due to Thomassen, Wu,
and Zhan [14], is that bipartite graphs verify the 1-2-3 Conjecture. These graphs
were further studied in several works, such as [2], in which it was proved that:

Theorem 1 ([2]). If G is a nice bipartite graph, then G ∈ G≤2.

Theorem 1 is worrisome since, even without additional constraints, we do not
know much about how proper 3-labellings behave beyond the scope of bipartite
graphs. Our take in this work is to focus on the next natural case to consider,
that of 3-chromatic graphs, which fulfil the 1-2-3 Conjecture [11]. Unfortunately,
as will be seen later on, a result equivalent to Theorem 1 for 3-chromatic graphs
does not exist, even for very restricted classes of 3-chromatic graphs.

As mentioned earlier, we will see throughout this work that, for several graph
classes F , there is no p ≥ 0 such that F ⊂ G≤p. For such a class, we want to know
whether the proper 3-labellings of their members require assigning label 3 many
times, with respect to their number of edges. We study this aspect through the
following terminology. For a nice graph G, we define ρ3(G) := mT(G)/|E(G)|.
We extend this ratio to a class F by setting ρ3(F) = max{ρ3(G) : G ∈ F}.

In this work, we are interested in determining bounds on ρ3(F) for graph
classes F of 3-chromatic graphs, and, generally speaking, in how large this ratio
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Fig. 1. A graph G containing a graph H as a weakly induced subgraph X. In G, the
white vertices can have arbitrarily many neighbours in the red part, while the full
neighbourhood of the black vertices is as displayed. In H, the white vertices are the
border vertices, while the black vertices are the core vertices. (Color figure online)

can be. Among the sample of small connected graphs (e.g., of order at most 6),
the maximum ratio ρ3 is exactly 1/3, and is attained by C3 and C6. These are
the worst graphs we know of, which leads us to raising the following conjecture.

Conjecture 1. If G is a nice connected graph, then ρ3(G) ≤ 1
3 .

3 Tools for Establishing Bounds on mT and ρ3

3.1 Weakly Induced Subgraphs – A Tool for Lower Bounds

Our lower bounds on mT and ρ3 exhibited in Sect. 4 are through a graph con-
struction requiring the following terminology. For two graphs G and H, we say
that G contains H as a weakly induced subgraph X (see Fig. 1) if there exists
an induced subgraph X of G such that H is a spanning subgraph of X, and,
for every vertex v ∈ V (H), either dH(v) = 1 or dH(v) = dG(v) (note that
dG(v) = |{v ∈ V (G) : uv ∈ E(G)}| denotes the degree of v in a (sub)graph
G). In other words, if we add to H the edges of G that connect the vertices
of degree 1 in H, we get X. That is, for every edge uv ∈ E(G), if u ∈ V (X)
and v ∈ V (G)\V (X), then dH(u) = 1; we call these the border vertices of H.
Also, we call the other vertices of H (those that are not border vertices) its core
vertices. By the definitions, if G contains H as a weakly induced subgraph and
δ(H) ≥ 2, then G is isomorphic to H, and thus, this notion makes more sense
when δ(H) = 1.

Two weakly induced subgraphs of a graph G, X1 and X2, are disjoint (in
G) if they share no core vertices. It follows from the definition that, for every
v ∈ V (G), if v ∈ V (X1) ∩ V (X2), then v is a border vertex of both X1 and X2.

Let � be a labelling of G. For a subgraph H of G, we denote by �|H the
restriction of � to the edges of H, i.e., we have �|H(e) = �(e) for every edge
e ∈ E(H). Assume now that G contains H as a weakly induced subgraph X.
Abusing the notations, we will sometimes write �|H , which refers to the labelling
of H inferred from �|X , i.e., where �|H(e) = �|X(e) for every e ∈ E(H).

The key result is that, if a graph G contains other graphs H1, . . . ,Hn as
pairwise disjoint weakly induced subgraphs, then mT(G) ≥

∑n
i=1 mT(Hi).
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Lemma 1. Let G be a graph containing nice graphs H1, . . . , Hn as pairwise
disjoint weakly induced subgraphs X1, . . . , Xn. If � is a proper 3-labelling of G,
then �|Hi

is a proper 3-labelling of Hi for every i ∈ {1, . . . , n}. Consequently,
mT(G) ≥

∑n
i=1 mT(Hi).

Proof. Consider Hj for some 1 ≤ j ≤ n. Since, by any labelling of a nice graph,
a vertex of degree 1 cannot get the same colour as its unique neighbour, then it
cannot be involved in a conflict. This implies that �|Hj

is proper if and only if any
two adjacent core vertices of Hj get distinct colours by �|Hj

. By the definition
of a weakly induced subgraph, recall that we have dHj

(v) = dXj
(v) = dG(v) for

every core vertex v of Hj , which implies that c�|Hj
(v) = c�|Xj

(v) = c�(v). Thus,
for every edge uv ∈ E(Hj) joining core vertices, we have c�(u) = c�|Hj

(u) =
c�|Xj

(u) �= c�|Xj
(v) = c�|Hj

(v) = c�(v) since � is proper, meaning that �|Hj
is

also proper. Now, since G contains nice graphs H1, . . . , Hn as pairwise disjoint
weakly induced subgraphs X1, . . . , Xn, then mT(G) ≥

∑n
i=1 mT(Hi). 
�

The next lemma points out that, in some contexts, we can add some structure
to a given graph without altering its value of mT. This will be useful for applying
inductive arguments or simplifying the structure of a considered graph later on.

Lemma 2. Let G be a nice graph with minimum degree 1 and v ∈ V (G) be such
that d(v) = 1. If G′ is the graph obtained from G by adding x > 0 vertices of
degree 1 adjacent to v, then mT(G′) = mT(G).

Next, we prove each graph class Gp (p ≥ 1) contains infinitely many graphs.

Theorem 2. Given a graph G and any (fixed) integer p > 1, deciding if G ∈ G≤p

is NP-complete.

Sketch of Proof. We do a reduction from the 2-Labelling problem, which is
NP-hard even when the graph has minimum degree 1 [8]. Given an instance H of
2-Labelling such that δ(H) = 1, we construct a graph G such that mT(G) = p
if and only if H admits a proper 2-labelling. The graph G is constructed by
identifying (all to one vertex w) a vertex of degree 1 from each of p copies of a
nice graph H ′ and a vertex of degree 1 of H, where δ(H ′) = 1 and mT(H ′) = 1
(H ′ exists, see Sect. 4), and adding many leaves adjacent to w. The result follows
from Lemma 1 since G contains p copies of H ′ and one copy of H as pairwise
disjoint weakly induced subgraphs (and since it is easy to deduce a proper 3-
labelling of G using p + mT (H) 3’s). �

3.2 Switching Closed Walks – A Tool for Upper Bounds

Due to Theorem 1, investigating the parameters mT and ρ3 only makes sense for
graphs with chromatic number at least 3, i.e., that are not bipartite.

Theorem 3. If G is a connected 3-chromatic graph, then mT(G) ≤ |V (G)|, and
thus ρ3(G) ≤ |V (G)|

|E(G)| .
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Proof. Since G is not bipartite, there exists an odd-length cycle C in G. Let
H be a subgraph of G constructed as follows. Start from C = H. Then, until
V (H) = V (G), repeatedly choose a vertex v ∈ V (G)\V (H) such that there
exists a vertex u ∈ V (H) with uv ∈ E(G), and add the edge uv to H. In the
end, H is a connected spanning subgraph of G containing only one cycle, C,
which is of odd length. Then, we have |E(H)| = |V (G)|.

Let φ : V (G) → {0, 1, 2} be a proper 3-vertex-colouring of G. In what follows,
we construct a 3-labelling � of G such that c�(v) ≡ φ(v) mod 3 for every vertex
v ∈ V (G), thus making � proper. To prove the full statement, we also want �
to satisfy nb�(3) ≤ |V (G)|/|E(G)|. Aiming at vertex colours modulo 3, we can
instead assume that � assigns labels 0, 1, 2, and require nb�(0) ≤ |V (G)|/|E(G)|.
To obtain such a labelling, we start from � assigning label 2 to all edges of G.
We then modify � iteratively until all vertex colours are as desired modulo 3.

As long as G has a vertex v with c�(v) �≡ φ(v) mod 3, we apply the following
procedure. Choose W = (v, v1, . . . , vn, v), a closed walk1 of odd length in G start-
ing and ending at v, and going through edges of H only. This walk exists. Indeed,
consider, in H, a (possibly empty) path P from v to the closest vertex u of C
(if v lies on C, then note that u = v and P has no edge). Then, the closed walk
vPuCuPv is a possible W . We then follow the consecutive edges of W , start-
ing from v and ending at v, and, going along, we apply +2,−2,+2,−2, . . . ,+2
(modulo 3) to the labels assigned by � to the traversed edges. As a result, c�(x)
is not altered modulo 3 for every vertex x �= v, while c�(v) is incremented by 1
modulo 3. If c�(v) ≡ φ(v) mod 3, then we are done with v. Otherwise, we repeat
this switching procedure once again, so that v fulfils that property.

Eventually, c�(v) ≡ φ(v) mod 3 for every v ∈ V (G), meaning that � is proper.
Recall that we have �(e) = 2 for every e ∈ E(G)\E(H). Thus, only the edges of
H can be assigned label 0 by �. Since there are exactly |V (G)| such edges, and
we can replace all assigned 0’s with 3’s without breaking the modulo 3 property,
we have mT(G) ≤ |V (G)|, which implies that ρ3(G) ≤ |V (G)|/|E(G)|. 
�

In the next lemma, we show a way to play with φ in order to reduce the
number of 3’s assigned by � to certain sets of edges.

Lemma 3. Let G be a graph and � be a proper {0, 1, 2}-labelling of G such
that c�(u) �≡ c�(v) mod 3 for every edge uv ∈ E(G). If H is a (not necessarily
connected) spanning d-regular subgraph of G for some d ≥ 1, then there exists
a proper {0, 1, 2}-labelling �′ of G such that c�′(u) �≡ c�′(v) mod 3 for every edge
uv ∈ E(G) and that assigns label 0 to at most a third of the edges of E(H).
Moreover, for every edge e ∈ E(G)\E(H), �′(e) = �(e).

Proof. We construct the following labelling: starting from �, add 1 (modulo 3)
to all the labels assigned by � to the edges of H. The resulting labelling �1 is
a proper {0, 1, 2}-labelling of G such that c�1(u) �≡ c�1(v) mod 3 for every edge
uv ∈ E(G). Indeed, for every v ∈ V (G), we have c�1(v) ≡ c�(v)+d mod 3. Thus,
if there exist two vertices u, v ∈ V (G) such that c�1(u) ≡ c�1(v) mod 3, then

1 Recall that a walk in a graph is a path in which vertices and edges can be repeated.



On the Role of 3’s for the 1-2-3 Conjecture 109

Fig. 2. Proper 3-labellings � of A1 and A2 with nb�(3) = 1. The colours by c� are
indicated by integers within the vertices.

c�(u) ≡ c�(v) mod 3, a contradiction. We define �2 in a similar way, by adding
1 (modulo 3) to all the labels assigned by �1 to the edges of H. Similarly, �2 is
proper. Since, for every edge e ∈ E(H), we have {�(e), �1(e), �2(e)} = {0, 1, 2},
then at least one of �, �1, �2 assigns label 0 to at most a third of the edges of
E(H). Since none of the labels of the edges of E(G)\E(H) were changed to
obtain �1 from � and to get �2 from �1, the last statement of the lemma holds. 
�

In Lemma 3, if d = 2, then H forms a cycle cover of G. Thus, when H is
also a unicyclic spanning connected subgraph of G, an application of Lemma3
in conjunction with the proof of Theorem3 gives the following:

Corollary 1. If G is Hamiltonian, of odd order, and χ(G) = 3, then ρ3(G) ≤ 1
3 .

4 Results for mT and ρ3 for Some Graph Classes

We now use the tools from Sect. 3 to exhibit results on the parameters mT and
ρ3 for some classes of 3-chromatic graphs. In particular, we prove that, for many
classes F of 3-chromatic graphs, there is no p ≥ 1 such that F ⊂ G≤p. In most
cases, we provide upper bounds for ρ3(F).

4.1 Connected Graphs Needing Lots of 3’s

As mentioned before, we are aware of only two connected graphs for which ρ3 is
exactly 1/3, and these are C3 and C6

2. One question to ask, is if the bound in
Conjecture 1 is accurate in general, i.e., whether it can be attained by arbitrarily
large graphs. In light of these thoughts, our goal in this section is to provide a
class of arbitrarily large connected graphs achieving the largest possible ratio ρ3.

We ran computer programs to find graphs H with δ(H) = 1, mT(H) ≥ 1,
and with the fewest edges possible. It turns out that the smallest such graphs
have 10 edges. Two such graphs, which we call A1 and A2, are depicted in Fig. 2.
The following observation, proven by simple case analysis, allows us to use these
two graphs to build arbitrarily large connected graphs with large ρ3.
2 Conjecture 1 focuses on connected graphs since any disjoint union of C3’s and C6’s

reaches that value.
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Fig. 3. The planar graphs S3 (left) and Sg (right) of girths 3 and g, respectively.

Observation 4. mT(A1) = mT(A2) = 1.

Theorem 5. There are arbitrarily large connected graphs G with ρ3(G) ≥ 1
10 .

Proof. Let p ≥ 1 be fixed. We construct a connected graph G with 10p edges,
such that nb�(3) ≥ p for any proper 3-labelling � of G, which implies that
ρ3(G) ≥ 1/10. Start, as G, with p disjoint copies of A1 (or A2), and identify a
vertex of degree 1 from each of these p copies to a single vertex. The labelling
property follows from Lemma 1 and Observation 4, since G contains p copies of
A1 or A2 as pairwise disjoint weakly induced subgraphs. 
�

4.2 Bounds for Connected Planar Graphs with Large Girth

The girth g(G) of a graph G is the length of its shortest cycle. For any g ≥ 3,
we denote by Pg the class of planar graphs with girth at least g. Note that P3 is
the class of all planar graphs, and that P4 is the class of all triangle-free planar
graphs. Recall that the girth of a tree is set to ∞, since it has no cycle.

To date, it is still unknown whether planar graphs verify the 1-2-3 Conjecture,
which makes the study of the parameters mT and ρ3 adventurous for this class
of graphs. However, there is no p ≥ 1 such that planar graphs lie in G≤p by the
construction in the proof of Theorem5, since the graphs A1 and A2 are planar.
Thus, there exist arbitrarily large connected planar graphs G with ρ3(G) ≥ 1/10.

To go further, we consider planar graphs with large girth. By Grötzsch’s
Theorem [9], triangle-free planar graphs are 3-colourable, which means they
verify the 1-2-3 Conjecture (see [11]). In what follows, first, we prove that, for
every g ≥ 3, there is no p ≥ 1 such that Pg ⊂ G≤p. Second, we prove that, as the
girth g(G) of a planar graph G grows, the ratio ρ3(G) decreases. As a side result,
we prove Conjecture 1 for planar graphs with girth at least 36. To prove the first
result above, we cannot use the graphs A1 and A2 introduced previously, as they
contain triangles. Instead, we use the graph Sg illustrated in Fig. 3.

Lemma 4. For every g ≥ 3 with g ≡ 3 mod 4, we have mT(Sg) = 1.
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Sketch of Proof. Let � be a proper 2-labelling of Sg. Due to the length of each
outer cycle, it follows that c�(ui,1) = �(ui,1vi) + 3. Moreover, due to Cg being of
odd length, we can deduce that there must exist a vertex vx ∈ V (Cg) such that
vx �= v0 and c�(vx) = �(vxux,1) + 3 = c�(ux,1), a contradiction. The rest of the
result follows from identifying a proper 3-labelling �′ of Sg with nb�′(3) = 1. �

By taking arbitrarily many copies of the Sg graph and identifying their
respective roots (the vertex u0,1 in Fig. 3), we can prove that:

Theorem 6. For every g′ ≥ 3, there exist arbitrarily large connected planar
graphs G with g(G) ≥ g′ and ρ3(G) ≥ 1

g2+g , where g is the smallest natural
number such that g ≥ g′ and g ≡ 3 mod 4.

We now proceed to prove that ρ3(G) ≤ 2
k−1 for any planar graph G of girth

g ≥ 5k + 1, when k ≥ 7. The next theorem from [5] is one of the tools we use
to prove this result. Note that, for any k ≥ 1, a k-thread in a graph G is a path
(u1, . . . , uk+2), where the k inner vertices u2, . . . , uk+1 all have degree 2 in G.

Theorem 7 ([5]). For any integer k ≥ 1, every planar graph with minimum
degree at least 2 and girth at least 5k + 1 contains a k-thread.

We can now proceed with the main theorem.

Theorem 8. Let k ≥ 7. If G is a nice planar graph with g(G) ≥ 5k + 1, then
ρ3(G) ≤ 2

k−1 .

Proof. Throughout this proof, we set g = g(G). The proof is by induction on
the order of G. The base case is when |V (G)| = 3. In that case, G must be a
path of length 2 (due to the girth assumption), and the claim is clearly true. So
let us focus on proving the general case.

If G is a tree, then χΣ(G) ≤ 2 and we have ρ3(G) = 0. So, from now on, we
may assume that G is not a tree. We first deal with the case of planar graphs G of
girth g ≥ 5k+1 for which there exists at least one cut vertex v ∈ V (G) (meaning
that G−{v} has more connected components than G) such that G−{v} contains
a connected component T ′ that is a tree such that |E(T ′)| ≥ 1 and the induced
subgraph of G formed by the vertices of T ′ and v is also a tree. Let u ∈ V (T ′)
be the neighbour of v. By the inductive hypothesis, ρ3(G − V (T ′)) ≤ 2

k−1 since
removing a pendant tree from G can neither decrease its girth nor result in a
tree, and thus, by recursively applying Lemma2, there is a proper 3-labelling
of G such that ρ3(G) ≤ 2

k−1 . The same arguments can be applied for all such
connected components of G−{v}. Hence, we can assume that G does not contain
any such cut vertex v. Another way to state this, is that if G contains a vertex
v to which a pending tree T ′ is attached, then T ′ is a star with center v.

Let G− be the graph obtained from G by removing all vertices of degree 1.
Note that removing vertices of degree 1 from G can neither decrease its girth
nor result in a tree. Since G has girth g ≥ 5k + 1 and does not contain any
cut vertex v ∈ V (G) as described above, the graph G− has minimum degree
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2. By Theorem 7, G− contains a k-thread P . Let u1, . . . , uk+2 be the vertices
of P , where dH(ui) = 2 for all 2 ≤ i ≤ k + 1. Thus, the vertices of P exist
in G except that each of the vertices ui (for 2 ≤ i ≤ k + 1) may be adjacent
to some vertices of degree 1 in addition to their adjacencies in G−. Let G′ be
the graph obtained from G by removing the vertices u3, . . . , uk and all of their
neighbours that have degree 1 in G. Note that G′ might contain up to two
connected components. In case G′ has exactly two connected components, then,
due to a previous assumption, none of these can be a tree, which implies that
G′ is nice. If G′ is connected, then, because it has at least two edges (u1u2 and
uk+1uk+2), it must be nice. Furthermore, in both cases, the girth of G′ is at least
that of G. Then, by combining the inductive hypothesis and the fact that every
nice tree T verifies ρ3(T ) = 0, we deduce that ρ3(G′) ≤ 2

k−1 .
To obtain a proper 3-labelling � of G such that ρ3(G) ≤ 2

k−1 , we extend a
proper 3-labelling �′ of G′ corresponding to ρ3(G′) ≤ 2

k−1 , as follows. First, label
all of the edges incident to the vertices of degree 1 and the vertices u3, . . . , uk

with 1’s. Note that none of these vertices of degree 1 can, later on, be in conflict
with their neighbour since they have degree 1. Now, for each 2 ≤ j ≤ k − 2, in
increasing order of j, label the edge ujuj+1 with 1 or 2, so that the resulting
colour of uj does not conflict with the colour of uj−1. Finally, label the edges
uk−1uk and ukuk+1 with 1, 2 or 3, so that the resulting colour of uk−1 does not
conflict with that of uk−2, the resulting colour of uk does not conflict with that
of uk−1 nor with that of uk+1, and the resulting colour of uk+1 does not conflict
with that of uk+2. Indeed, this is possible since there exist at least two distinct
labels {α, β} ({α′, β′}, respectively) in {1, 2, 3} for uk−1uk (ukuk+1, respectively)
such that the colour of uk−1 (uk+1, respectively) is not in conflict with that of
uk−2 (uk+2, respectively). Thus, w.l.o.g., choose α and α′ for the labels of uk−1uk

and ukuk+1, respectively. If the colour of uk does not conflict with that of uk−1

nor with that of uk+1, then we are done. If the colour of uk conflicts with both
that of uk−1 and that of uk+1, then it suffices to change both the labels of uk−1uk

and ukuk+1 to β and β′, respectively. Lastly, w.l.o.g., if the colour of uk only
conflicts with that of uk−1, then it suffices to change the label of ukuk+1 to β′.
The resulting labelling � of G is thus proper. Moreover, |E(G)\E(G′)| ≥ k − 1
and � uses label 3 at most twice more than �′, and so, the result follows. 
�

4.3 Bounds for Connected Cacti

A cactus is a graph in which any two cycles have at most one vertex in common.
The graphs Sg introduced in Sect. 4.2, and those constructed in order to prove
Theorem 6, are all cacti. Since the smallest graph Sg is S3, which has 12 edges,
that theorem directly implies that there exist arbitrarily large connected cacti
G with ρ3(G) ≥ 1/12. We now prove Conjecture 1 for cacti.

Theorem 9. If G is a nice cactus, then ρ3(G) ≤ 1
3 .

Sketch of Proof. The proof is by induction on |V (G)|. The general case is proven
by focusing on end-cycles C1, . . . , Cq, to which pending trees might be attached,
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and sharing a root vertex r that separates these cycles from the rest of the
graph. By analysing the Ci’s, it can be proved that the induction hypothesis can
be invoked to get a desired labelling of G, as soon as one of their inner vertices
has a pending tree attached, or the pending tree attached to r is not a star
with center r. So the Ci’s can be assumed to be mostly cycles, in which case we
can remove their inner vertices, invoke the induction hypothesis, and extend a
labelling of the remaining graph to a desired one of G, by labelling the edges of
the Ci’s so that only a few 3’s are assigned. �

4.4 An Upper Bound for Halin Graphs

A Halin graph is a planar graph with minimum degree 3 obtained as follows.
Start from a tree T with no vertex of degree 2, and consider a planar embedding
of T . Then, add edges to form a cycle going through all the leaves of T in the
clockwise ordering in this embedding. A Halin graph is called a wheel if it is
constructed from a tree T with diameter at most 2. Halin graphs have triangles
and Hamiltonian cycles going through any given edge [15]. Also, Halin graphs
are 3-degenerate, so, due to the presence of triangles, each of them has chromatic
number 3 or 4. The dichotomy is well understood, as a Halin graph has chromatic
number 4 if and only if it is a wheel of even order [16]. It is easy to see that these
wheels admit proper 2-labellings, and so, we focus on 3-chromatic Halin graphs
in the proof of the next theorem. In particular, we use our tools from Sect. 3 to
establish an upper bound on ρ3 for the 3-chromatic Halin graphs.

Theorem 10. If G is a Halin graph, then ρ3(G) ≤ 1
3 .

Proof. As said above, we can assume that G is not a wheel of even order. Then
χ(G) = 3. If |V (G)| is odd, then the result follows from Corollary 1. Thus, we
can assume that |V (G)| is even.

By considering any non-leaf vertex r of T in G, and defining a usual root-to-
leaf (virtual) orientation, since no vertex has degree 2 in T , then G has a triangle
(u, v, w, u), where v, w are leaves in T with parent u. Furthermore, dG(v) =
dG(w) = 3, while dG(u) ≥ 3. Due to these degree properties, if we consider
C a Hamiltonian cycle traversing uv, then C must also include either wu or
vw. Precisely, if we orient the edges of C, resulting in a spanning oriented cycle
C, then, at some point, C enters (u, v, w, u) through one of its vertices, goes
through another vertex of the triangle and then through the third of its vertices,
before leaving the triangle. In other words, C traverses all vertices of (u, v, w, u)
at once.

Up to relabelling the vertices of (u, v, w, u), we can assume that C enters the
triangle through u, then goes to v, before going to w and leaving the triangle. Let
us consider H, the subgraph of G containing the three edges of (u, v, w, u), and
all successive edges traversed by C after leaving the triangle except for the edge
going back to u. Note that H is a unicyclic spanning connected subgraph of G,
in which the only cycle is the triangle (u, v, w, u) to which is attached a hanging
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path (w, x1, . . . , xn−3) containing all other vertices of G (i.e., n = |V (G)|). Fur-
thermore, in E(G)\E(H), if we set x = xn−3, then the edge xu exists. Since H is
spanning, connected, and unicyclic, |E(H)| = |V (G)|, which is at most 2|E(G)|/3,
since δ(G) ≥ 3.

All conditions are now met to invoke the arguments in the proof of Theorem3,
from which we can deduce a proper {0, 1, 2}-labelling of G where adjacent ver-
tices get distinct colours modulo 3 and in which only the edges of the chosen H
are possibly assigned label 0. Let us consider the subgraph H ′ of G obtained from
H by adding the edge xu, which is present in G. Recall that �(xu) = 2 by default.
Note that H ′ contains at least two disjoint perfect matchings M1,M2. Indeed,
since |V (G)| is even, then, in H, the hanging path attached at w has odd length.
A first perfect matching M1 of H ′ contains xn−3xn−4, xn−5xn−6, . . . , wx1 and
uv. A second perfect matching M2 of H ′ contains xn−4xn−5, xn−6xn−7, . . . , x2x1,
and wv and xu. By Lemma 3, we can assume that at most a third of the edges in
M1∪M2 are assigned label 0 by �. Since |M1|+|M2| = |E(H ′)|−1 = |E(H)|, this
gives nb�(0) ≤ E(H)

3 + 1, which is less than |E(G)|/3 since |E(G)| ≥ 3|V (G)|/2.
By turning 0’s by � into 3’s, we get a proper 3-labelling of G with the same
upper bound on the number of assigned 3’s. 
�

4.5 Bounds for Outerplanar Graphs

First off, we note that the construction described in the proof of Theorem5, when
performed with copies of A1 only, provides graphs that are outerplanar3, since
A1 is itself outerplanar. Recall as well that outerplanar graphs form a subclass of
series-parallel graphs. Thus, there exist arbitrarily large connected outerplanar
(series-parallel, resp.) graphs G (H, resp.) with ρ3(G) ≥ 1/10 (ρ3(H) ≥ 1/10,
resp.). Note however that the outerplanar graphs constructed above have cut
vertices. So the question remains, whether or not this lower bound still holds
when considering 2-connected outerplanar graphs (recall that outerplanar graphs
are 2-degenerate, and thus, each of them is 3-chromatic and either separable or
2-connected). As for an upper bound, we can provide the following:

Theorem 11. If G is a 2-connected outerplanar graph such that |E(G)| ≥
|V (G)| + 3, then ρ3(G) ≤ 1

3 .

Sketch of Proof. If |V (G)| is odd, the result follows from Corollary 1. If |V (G)| is
even, then there is an odd-length cycle of G that consists of consecutive vertices of
the outer face of G, and thus, since G is Hamiltonian, there is a unicyclic spanning
connected subgraph H containing an odd cycle. Theorem3 can be applied using
this H, and Lemma 3 can be applied to two disjoint perfect matchings containing
all the edges of H but one, as in the proof of Theorem10. �

Theorem 11 covers all 2-connected outerplanar graphs with at least three
chords but it can also be shown to hold when there are at most two chords.

3 An outerplanar graph admits a planar embedding with all vertices on the outer face.
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5 Further Work

A first direction for further research is to prove Conjecture 1 for more classes of
graphs such as for other classes of 3-chromatic graphs like separable outerplanar
graphs and, more generally, series-parallel graphs. Another one is to investigate
whether the bound of 1/3 in that conjecture is close to being tight or not, in
particular for large graphs. Also, we were not able to come up with examples of
arbitrarily large Halin graphs needing many 3’s in their proper 3-labellings.
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Abstract. Bucket Sort is known to run in expected linear time when the
input keys are distributed independently and uniformly at random in the
interval [0, 1). The analysis holds even when a quadratic time algorithm
is used to sort the keys in each bucket. We show how to obtain linear
time guarantees on the running time of Bucket Sort that hold with very
high probability. Specifically, we investigate the asymptotic behavior of
the exponent in the upper tail probability of the running time of Bucket
Sort. We consider large additive deviations from the expectation, of the
form cn for large enough (constant) c, where n is the number of keys
that are sorted.

Our analysis shows a profound difference between variants of Bucket
Sort that use a quadratic time algorithm within each bucket and variants
that use a Θ(b log b) time algorithm for sorting b keys in a bucket. When
a quadratic time algorithm is used to sort the keys in a bucket, the prob-
ability that Bucket Sort takes cn more time than expected is exponential
in Θ(

√
n log n). When a Θ(b log b) algorithm is used to sort the keys in

a bucket, the exponent becomes Θ(n). We prove this latter theorem by
showing an upper bound on the tail of a random variable defined on
tries, a result which we believe is of independent interest. This result
also enables us to analyze the upper tail probability of a well-studied
trie parameter, the external path length, and show that the probability
that it deviates from its expected value by an additive factor of cn is
exponential in Θ(n).

Keywords: Bucket Sort · Upper tail analysis · Running time

1 Introduction

The Bucket Sort algorithm sorts n keys in the interval [0, 1) as follows: (i) Dis-
tribute the keys among n buckets, where the jth bucket consists of all the keys
in the interval [j/n, (j + 1)/n). (ii) Sort the keys in each bucket. (iii) Scan the
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buckets and output the keys in each bucket in their sorted order. We consider
two natural classes of Bucket Sort algorithms that differ in how the keys inside
each bucket are sorted. The first class of BucketSort algorithms that we consider
sorts the keys inside a bucket using a quadratic time algorithm (such as Insertion
Sort). We refer to algorithms in this class as b2-Bucket Sort. The second class
of algorithms sorts the keys in a bucket using a Θ(b log b) algorithm for sorting
b keys (such as Merge Sort). We refer to this variant as b log b-Bucket Sort.

When the n keys are distributed independently and uniformly at random,
the expected running time of Bucket Sort is Θ(n), even when a quadratic time
algorithm is used to sort the keys in each bucket [3,17,19]. A natural question is
whether such linear time guarantees hold with high probability. For Quick Sort,
analyses of this sort have a long and rich history [7,10,16].

In this paper, we focus on analyzing the running time of Bucket Sort with
respect to large deviations, e.g., running times that exceed the expectation by
10n comparisons. In particular, we study the asymptotic behavior of the expo-
nent in the upper tail of the running time.

Rate of the Upper Tail. We analyze the upper tail probability of a random
variable using the notion of rate, defined as follows1.

Definition 1. Given a random variable Y with expected value μ, we define the
rate of the upper tail of Y to be the function defined on t > 0 as follows:

RY (t) � − ln (Pr [Y ≥ μ + t]) .

Note that we consider an additive deviation from the expectation, i.e., we
bound the probability that the random variable deviates from its expected value
by an additive term of t, for sufficiently large values of t2. In particular, we
consider values of t = cn, where n is the size of the input and c is a constant
greater than some threshold. Finally, we abbreviate and refer to RY (t) as the
rate of Y .

We study the rates of the running times of deterministic Bucket Sort algo-
rithms in which the input is sampled from a uniform probability distribution.
We also consider parameters of tries induced by infinite prefix-free binary strings
chosen independently and uniformly at random.

1.1 Our Contributions

Our first two results derive the rates of the two classes of Bucket Sort algorithms
and show that they are different. Specifically, we prove the following:

Theorem 1. There exists a constant C > 0 such that, for all c > C, the rate
Rb2(·) of the b2-Bucket Sort algorithm on n keys chosen independently and uni-
formly at random in [0, 1) satisfies Rb2(cn) = Θ(

√
n log n).

1 Throughout the paper, ln x denotes the natural logarithm of x and log x denotes the
logarithm of base 2 of x.

2 One should not confuse this analysis with concentration bounds that address small
deviations from the expectation.



118 I. O. Bercea and G. Even

Since the expected running time of b2-Bucket Sort is Θ(n), Theorem 1 states
that the probability that b2-Bucket Sort on random keys takes more than dn
time is e−Θ(

√
n log n) (for a suffciently large constant d)3. Theorem 1 proves both

a lower bound and an upper bound on the asymptotic rate Rb2(cn). In particular,
Theorem 1 rules out the possibility that the probability that the running time
of b2-Bucket Sort is greater than 100n is bounded by e−Θ(n).

We prove the lower bound on Rb2(cn) by applying multiplicative Chernoff
bounds in different regimes of large (superconstant, in fact) deviations from the
mean. In such settings, the dependency of the exponent of the Chernoff bound
on the deviation from the mean can have a significant impact on the quality of
the bounds we obtain. Indeed, we employ a rarely used form of the Chernoff
bound that exhibits a δ log δ dependency in the exponent when the deviation
from the mean is δ (see Chapter 10.1.1 in [5]). Although the proof of this bound
is straightforward, the proof of Theorem 1 crucially relies on this additional
(superconstant) log δ factor (see Claim 4).

For b log b-Bucket Sort on random keys, we show that the rate is linear in the
size of the input:

Theorem 2. There exists a constant C > 0 such that, for all c > C, the rate
Rb log b(·) of the b log b-Bucket Sort algorithm on n keys chosen independently
and uniformly at random in [0, 1) satisfies Rb log b(cn) = Θ(n).

We prove the lower bound on Rb log b(cn) by analyzing a random variable
arising in random tries. Specifically, we consider tries on infinite binary strings in
which each bit is chosen independently and uniformly at random. The parameter
we study is called the excess path length and is defined formally in Sect. 2. We
show that the time it takes to sort the buckets in b log b-Bucket Sort can be
upper bounded by the excess path length in a random trie (Lemma 1). We then
bound the upper tail of the excess path length (Theorem 4) and use it to lower
bound Rb log b(cn).

We also use the upper tail of the excess path length to derive the rate of a
well-studied trie parameter, the sum of root to leaf paths in a minimal trie, called
the nonvoid external path length [13,20]. It is known that the expected value of
the nonvoid external path length in a random trie is n log n + Θ(n) [13,20,22].
We show the following:

Theorem 3. There exists a constant C > 0 such that, for all c > C, the rate
R0(·) of the nonvoid external path length of a minimal trie on n infinite binary
strings chosen independently and uniformly at random satisfies R0(cn) = Θ(n).

Note that Theorem 3 implies that the probability that the nonvoid external
path length is more than n log n + dn is e−Θ(n) (for a sufficiently large constant
d).

3 The threshold C depends on: (1) the constant that appears in the sorting algorithm
used within each bucket, and (2) the constant that appears in the expected running
time of b2-Bucket Sort.
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1.2 Related Work

Showing that Bucket Sort runs in linear expected time when the keys are dis-
tributed independently and uniformly at random in [0, 1) is a classic textbook
result [3,17,19]. Bounds on the expectation as well as limiting distributions
for the running time have also been studied for different versions of Bucket
Sort [4,14]. We are not aware of any work that directly addresses the rate of the
running time of Bucket Sort. The upper and lower tails of the running time of
Quick Sort have been studied in depth [7,10,18], including in the regime of large
deviations [16].

The expected value of the nonvoid external path length of a trie is a clas-
sic result in applying the methods of analytic combinatorics to the analysis of
algorithms [2,13,15,20,22]. We consider the case in which the binary strings
are independent and random (i.e., the bits are independent and unbiased).
In [13,15,20,22] it is shown that for random strings, the expected value of the
nonvoid external path length is n log n + Θ(n). The variance of the nonvoid
external path length and limiting distributions for it have also been studied
extensively for different string distributions [9,12,23].

In Knuth [13, Section 5.2.2], the nonvoid external path length is shown to
be proportional to the number of bit comparisons of radix exchange sort. The
bound in Theorem 3 therefore applies to the rate of the number of bit compar-
isons of radix exchange sort when the strings are distributed independently and
uniformly at random.

The connection between the running time of sorting algorithms and vari-
ous trie parameters (including external path length) has also been studied by
Seidel [21], albeit in a significantly different model than ours. Specifically, [21]
analyzes the expected number of bit comparisons of Quick Sort and Merge Sort
when the input is a randomly permuted set of strings sampled from a given
distribution. In Seidel’s model, the cost of comparing two strings is proportional
to the length of their longest common prefix. Seidel shows that the running
time of these algorithms can be naturally expressed in terms of parameters of
the trie induced by the input strings. We emphasize that our analysis connects
the running time of Bucket Sort to the excess path length in the comparison
model (in which the cost of comparing two keys does not depend on their binary
representation).

1.3 Paper Organization

Preliminaries and definitions are in Sect. 2. In Sect. 3, we present reductions from
the running time of b log b-Bucket Sort and the nonvoid external path length to
the excess path length. The bound on the upper tail of the excess path length is
proved in Sect. 4. Section 5 proves a lower bound on the rate of b2-Bucket Sort.
Upper bounds on the rates are proved in the full version of the paper [1]. Theo-
rems 1, 2 and 3 are completed in Sect. 6. Finally, in the full version of the paper,
we also include a discussion on the difference between the rate of Bucket Sort
and that of Quick Sort.
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2 Preliminaries and Definitions

Bucket Sort. The input to Bucket Sort consists of n keys X � {x1, . . . , xn}
in the interval [0, 1). We define bucket j to be the set of keys in the interval
[j/n, (j + 1)/n). Let b(X) � (B0, . . . Bn−1) be the occupancy vector for input
X, where Bj denotes the number of keys in X that fall in bucket j.

The buckets are separately sorted and the final output is computed by scan-
ning the sorted buckets in increasing order. The initial assignment of keys to
buckets and the final scanning of the sorted buckets takes Θ(n) time. We hence-
forth focus only on the time spent on sorting the keys in each bucket, i.e., the
number of integer comparisons performed.

We consider the two natural options for sorting buckets: (i) Sort b keys in
time Θ(b2), using a sorting algorithm such as Insertion Sort or Bubble Sort.
We refer to this option as b2-Bucket Sort. (ii) Sort b keys in time Θ(b log b)
using a sorting algorithm such as Merge Sort or Heap Sort. We refer to this
option as b log b-Bucket Sort. Let [n] denote the set {0, . . . , n − 1} and let b =
(B0, . . . , Bn−1) denote an arbitrary occupancy vector. We define the functions

f(b) �
∑

j∈[n]
B2

j g(b) �
∑

j∈[n],Bj>0
Bj log Bj .

We let Tb2(X) and Tb log b(X) denote the running time on input X of
b2-Bucket Sort and b log b-Bucket Sort, respectively. Then, Tb2(X) = Θ(n +
f(b(X)) and Tb log b(X) = Θ(n + g(b(X))4.

Excess Path Length and Tries. We let |α| denote the length of a binary
string α ∈ {0, 1}∗. For a set L, let |L| denote the cardinality of L.

Definition 2. A set of strings {α1, . . . , αs} is prefix-free if, for every i �= j, the
string αi is not a prefix of αj.

A trie is a rooted binary tree with edges labeled {0, 1} such that the two
edges emanating from the same trie node are labeled differently. Every binary
string can be mapped to a node in a trie. Futhermore, any set L of prefix-free
binary strings can be represented by a unique trie T (L) in which the strings in
L correspond to leaves of the trie. Conversely, any trie corresponds to a unique
set of prefix-free strings corresponding to all root-to-leaf paths.

Given a set L of prefix-free binary strings, we are interested in the smallest
subtree of T (L) that can still separate the strings in L, i.e., we want to trim T (L)
of trailing node-to-leaf paths that only consist of nodes of degree one. Namely,
let ϕ0(L) denote the set of minimal prefixes of strings in L such that every string
in L has a distinct prefix in ϕ0(L) and ϕ0(L) is prefix-free. The trie T (ϕ0(L)) is
called the minimal trie on L. Note that the structure of ϕ0(L) (or of T (ϕ0(L)))
does not change if we append more bits to the strings in L

The following definition extends the definition of ϕ0(L) by requiring that the
prefixes have length at least k, i.e., each leaf must be at a depth of at least k.
4 Interestingly, the sum of squares of bin occupancies, i.e., f(b), also appears in the

FKS perfect hashing construction [8].
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Definition 3 (minimal k-prefixes). Let L = {α0, . . . , αn−1} denote a set of
n distinct infinite binary strings. Given a parameter k ≥ 0, the set of minimal
k-prefixes of L, denoted by ϕk(L) � {β0, . . . , βn−1}, is the set that satisfies the
following properties:

1. for all i ∈ [n], the string βi is a prefix of αi,
2. for all i ∈ [n], |βi| ≥ k,
3. the set ϕk(L) is prefix-free,
4. for all i ∈ [n], βi is minimal with respect to all other prefixes of αi that satisfy

the first 3 conditions.

The definition of ϕk(L) can be modified to handle strings of length less than k
by appending an arbitrary infinite string (say, zeros) to them.

In this paper, we are interested in the following trie parameter defined on ϕk(L):

Definition 4. The k-excess path length pk(L) of a set L of distinct infinite
binary strings is defined as:

pk(L) �
∑

β∈ϕk(L)
(|β| − k) .

In [20], p0(L) is called the nonvoid external path length of the minimal trie
T (ϕ0(L)) on L. When k = �log |L|�, we simply refer to pk(L) as the excess path
length of L.

Distributions. Let Xn denote the uniform distribution over [0, 1)n. Note that
if the set X = {x0, . . . , xn−1} is chosen according to Xn, then x0, . . . , xn−1 are
chosen independently and uniformly at random from the interval [0, 1). Let μb2

(res. μb log b) denote the expected running time Tb2(X) (resp., Tb log b(X)) when
X ∼ Xn. Similarly, let μf (res. μg) denote the expected values of f(b(X))
(resp., g(b(X))) when X ∼ Xn. It is known that μf = 2n − 1 (see [3,17]), and
consequently, we have that μb2 = Θ(n). Since g ≤ f , we also have μg = Θ(n) as
well as μb log b = Θ(n).

Let Ln denote the uniform distribution over all sets of n infinite-length binary
strings. Note that if L = {α0, . . . , αn−1} is chosen according to Ln, then all
the bits of the strings are independent and unbiased. We let μ0 denote the
expected value of the external nonvoid path p0(L) when L ∼ Ln. It is know that
μ0 = n log n + Θ(n) (see [13,20,22]).

Rates. Let Rb2(·) (resp., Rb log b(·)) denote the rate of Tb2(X) (resp., Tb log b(X))
when X ∼ Xn. Similarly, let Rf (·) (resp., Rg(·)) denote the rate of f(b(X))
(resp., g(b(X))) when X ∼ Xn.

We first note that, to study the asymptotic behavior of Rb2 (for sufficiently
large deviations) it suffices to study the asymptotic behavior of Rf . The proof
of the following observation appears in the full version [1].

Observation 1. For every c > 0, there exist constants δ1 = Θ(c) and δ2 = Θ(c)
such that Rf (δ1 · n) ≤ Rb2(c · n) ≤ Rf (δ2 · n).

An analogous statement holds for the rates Rb log b and Rg. The rate of the
nonvoid external path length p0(L) is denoted by R0(·).



122 I. O. Bercea and G. Even

3 Reductions

3.1 Balls-into-Bins Abstraction

We interpret the assignment of keys to buckets using a balls-into-bins abstrac-
tion. The keys correspond to balls, and the buckets correspond to bins. The
assumption that X ∼ Xn implies that the balls choose the bins independently
and uniformly at random. The value Bj then equals the occupancy of bin j.

A similar balls-into-bins abstraction holds for the embedding of the minimal
(log n)-prefixes of L ∼ Ln in a trie (assuming n is a power of 2). Indeed, let
{v0, . . . , vn−1} denote the n nodes of the trie T (L) at depth log n. For a node
vj , we say that a string α chooses vj , if the path labeled α contains vj . Since
the strings are random, each string chooses a node of depth log n independently
and uniformly at random. Let Cj denote the number of strings in L who choose
node vj .5 We refer to Cj as the occupancy of vj with respect to L and define the
vector c(L) � (C0, . . . , Cn−1).

Observation 2. When X ∼ Xn and L ∼ Ln, the occupancy vector b(X) has
the same joint probability distribution as c(L).

3.2 Lower Bounding the Rate of b log b-Bucket Sort

By Observation 1, to prove a lower bound in Rb log b it suffices to prove a lower
bound on Rg. In this section we show how to lower bound Rg by bounding the
upper tail probability of the excess path length plog n(L). We begin with the
following observation about the nonvoid external path length p0(L):

Observation 3. For every set L of n infinite prefix-free binary strings, p0(L) ≥
n log n.

Now consider an arbitrary vector c(L) and apply Observation 3 to each node
of depth log n in T (ϕlog n(L)) separately. We obtain the following corollary:

Corollary 1. For every set L of n infinite prefix-free binary strings,

plog n(L) ≥
∑n−1

j=0
Cj log Cj = g(c(L)).

In other words, the contribution to the excess path length plog n(L) of the
strings that choose node vj is lower bounded by the number of comparisons that
b log b-Bucket Sort performs to sort a bin of occupancy Cj (up to a constant
multiplicative factor). Since the distribution on occupancies of {vj}n−1

j=0 is the
same as the distribution of bin occupancies in Bucket Sort (Observation 2), we
can lower bound the rate of g(b(X)) by bounding the upper tail of the excess
path length as follows:

5 Formally, T (L) may contain a subset of these n nodes. If a node vj at depth log n is
not chosen by any string, then define Cj = 0.
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Lemma 1. For every c > 0,

PrX←Xn
[g(b(X)) ≥ μg + cn] ≤ PrL←Ln

[plog n(L) ≥ cn] . (1)

Proof. Recall that μg denotes the expected value of g(b(X)). Since μg > 0, we
have that Pr [g(b(X)) ≥ μg + cn] ≤ Pr [g(b(X)) ≥ cn]. Observation 2 implies
that PrX←Xn

[g(b(X)) ≥ cn] = PrL←Ln
[g(c(L)) ≥ cn]. The claim then follows

by Corollary 1. 
�

3.3 Lower Bounding the Rate of the Nonvoid External Path Length

In this section, we show how to use the upper tail of plog n(L) to lower bound
the rate of the nonvoid external path length p0(L).

Observation 4. For every set L of n infinite prefix-free binary strings, we have
that p0(L) ≤ n log n + plog n(L).

Proof. The strings in ϕ0(L) are themselves prefixes of strings in ϕlog n(L). We
therefore get that

∑
α∈ϕ0(L) |α| ≤ ∑

β∈ϕlog n(L) |β|, and the claim follows. 
�

Observation 3 implies that μ0 ≥ n log n. Together with Observation 4 this implies
that:

Corollary 2. For every L ∼ Ln and every c > 0.

Pr [p0(L) ≥ μ0 + cn] ≤ Pr [plog n(L) ≥ cn] .

4 The Upper Tail of the Excess Path Length

We bound the upper tail of plog n(L) as follows:

Theorem 4. Let L ∼ Ln. For every c > 0:

Pr [plog n(L) ≥ cn] ≤ exp
(

−c − 1 − ln c

4
· n

)
.

Proof. Let L = {α1, . . . , αn} be a set of infnite random binary strings. We
consider the evolution of the set ϕlog n(L) of minimal log n-prefixes as we process
the strings αi one by one. Specifically, let L(i) � {α1, . . . , αi}, for 1 ≤ i ≤ n, and
L0 = ∅.

Let ϕ(L(i)) �
{

sj ◦ δ
(i)
j

∣∣∣ |sj | = �log n� and sj ◦ δ
(i)
j is a prefix of αj , for 1 ≤

j ≤ i
}

. Note that

plog n(L(i)) =
∑

j∈[i]

∣∣∣δ(i)j

∣∣∣.
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We bound plog n(L) by considering the increase Δi � plog n(L(i)) −
plog n(L(i−1)). Since plog n(L(0)) = 0 and plog n(L(n)) = plog n(L), then plog n(L) =∑n

i=1 Δi.
The addition of the string αi has two types of contributions to Δi. The

first contribution is δ
(i)
i . The second contribution is due to the need to extend

colliding strings. Indeed, since the set L(i−1) is prefix-free, there exists at most
one j < i such that sj ◦ δ

(i−1)
j is a prefix of αi. If sj ◦ δ

(i−1)
j is a prefix of αi, then

Δi =
∣∣∣δ(i)j

∣∣∣ −
∣∣∣δ(i−1)

j

∣∣∣ +
∣∣∣δ(i)i

∣∣∣. Because δ
(i)
j and δ

(i)
i are minimal subject to being

prefix-free, we also have that
∣∣∣δ(i)j

∣∣∣ =
∣∣∣δ(i)i

∣∣∣. Hence, Δi ≤ 2 ·
∣∣∣δ(i)i

∣∣∣. This implies
that, for every τ :

Pr [Δi ≥ 2τ ] ≤ Pr
[∣∣∣δ(i)i

∣∣∣ ≥ τ
]

.

We now proceed to bound Pr
[∣∣∣δ(i)i

∣∣∣ ≥ τ
]
. Fix i ≥ 1 and let δi(	) denote the prefix

of length 	 of δ
(i)
i . We denote by n� the number of leaves in the subtree rooted

at si ◦ δi(	) in the trie T (L(i−1)) (i.e., right before the string αi is processed).
Formally,

n� �
∣∣∣
{

j < i
∣∣∣ si ◦ δi(	) is a prefix of sj ◦ δ

(i−1)
j

}∣∣∣ .

Clearly, n0 =
∣∣{j < i

∣∣ si = sj

}∣∣ and n∣
∣
∣δ

(i)
i

∣
∣
∣
= 0. We bound

∣∣∣δ(i)i

∣∣∣ by bounding

the minimum 	 for which n� becomes zero as follows:

E [n�] =
∑

j<i

Pr
[
si ◦ δi(	) is a prefix of sj ◦ δ

(i−1)
j

]

=
∑

j<i

1
2log n+�

≤ n

2log n+�
=

1
2�

.

In fact E
[
n�

∣∣ ∧
j<i Δj = ξj

]
≤ 1/2� for every realization {ξj}j<i of {Δj}j<i.

By Markov’s inequality:

Pr
[
|δ(i)i | ≥ τ

]
= Pr [nτ−1 ≥ 1] ≤ E [nτ−1] ≤ 1

2τ−1
.

Therefore,

Pr [Δi ≥ 2τ ] ≤ 2−τ+1 . (2)

Note that Eq. 2 also holds under every conditioning on the realizations of
{Δj}j<i.

Let Δ′
i � 1

2 · Δi and note that Pr [Δ′
i ≥ τ ] ≤ 2−τ+1. Let {Gi}i denote inde-

pendent geometric random variables, where Gi ∼ Ge(1/2). Since Pr [Gi ≥ τ ] =
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2−(τ−1), we conclude that Δ′
i is stochastically dominated by Gi. In fact, the ran-

dom variables {Δ′
i}i∈[f ] are unconditionally sequentially dominated by {Gi}i∈[n].

By [5, Lemma 8.8], it follows that
∑

i∈[n] Δ
′
i is stochastically dominated by∑

i∈[n] Gi
6. The sum of independent geometric random variables is concen-

trated [11] and so we get:

Pr

⎡

⎣
∑

i∈[n]

Δ′
i ≥ c · n/2

⎤

⎦ ≤ Pr

⎡

⎣
∑

i∈[n]

Gi ≥ c · n/2

⎤

⎦ ≤ exp
(

−c − 1 − ln c

4
· n

)

as required. 
�

5 Lower Bound for b2-Bucket Sort

This section deals with proving the following lower bound on the rate Rf . By
Observation 1, this also implies a lower bound on the rate Rb2 .

Lemma 2. There exists a constant C > 0 such that, for all c > C, we have that
Rf (cn) = Ω(

√
n log n), for all sufficiently large n.

5.1 Preliminaries

Given an input X of n keys and its associated occupancy vector b(X) =
(B0, B1, . . . , Bn−1), define Si � {j ∈ [n] | Bj ≥ i} to be the set of buckets with
at least i keys assigned to them. Note that the random variables {|Si|}i are
negatively associated because they are monotone functions of bin occupancies,
which are a classical example of negatively associated RVs [6].

Claim 1. For every occupancy vector (B0, B1, . . . , Bn−1), the following holds:

∑

j∈[n]

(|Bj | + 1
2

)
=

∑

i∈[n+1]

i · |Si| . (3)

Proof. Consider an n × n matrix A in which Ai,j = i if Bj ≥ i and 0 otherwise.
Let S �

∑
i,j Ai,j . The sum of entries in column j equals

(|Bj |+1
2

)
. The sum of

entries in row i equals i · |Si|. Hence both sides of Eq. 3 equal S. 
�
The following lemma states that, in order to prove Lemma 2, it suffices

to prove a lower bound on the upper tail probability of the random variable∑
i∈[n+1] i · |Si|.

Lemma 3. For every c, we have that

Pr [f(b(X)) ≥ μf + cn] = Pr

⎡

⎣
∑

i∈[n+1]

i |Si| ≥ (3 + c)n − 1
2

⎤

⎦ .

6 Note that RVs {Δ}i are not independent and probably not even negatively associ-
ated. Hence, standard concentration bounds do not apply to

∑
Δi.
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Proof. By Claim 1, f(b(X)) = 2 · ∑
i∈[n+1] i |Si| − n. The lemma follows from

the fact that μf = 2n − 1 [3,17]. 
�

Next, we upper bound E [|Si|]. Let Ei �
(

e
i

)i and note the following:

Claim 2. For every i ∈ {1, . . . , n}, we have that E [|Si|] ≤ n · Ei.

Proof. Fix i and let Xi,j be the indicator random variable that is 1 if Bj ≥ i
and 0 otherwise. We get that |Si| =

∑
j Xi,j . Because each key chooses a bucket

independently and uniformly at random, we have that:

Pr [Bj ≥ i] ≤
(

n

i

)
·
(

1
n

)i

≤
(en

i

)i

·
(

1
n

)i

=
(e

i

)i

= Ei .

The claim follows by linearity of expectation. 
�
One can analytically show that:

Observation 5.
∑∞

i=1 i · Ei ≤ 10.

5.2 Applying Chernoff Bounds in Different Regimes

In order to prove a lower bound on the upper tail of
∑

i∈[n+1] i · |Si|, we partition
the sum according to three thresholds on bin occupancies τ1 ≤ τ2 ≤ τ3, defined
as follows:

τ1 � max
{

i
∣∣∣Ei ≥ c log n√

n

}
, τ2 � n1/4

√
log n

, τ3 �
√

n .

We invoke different versions of the multiplicative Chernoff bound depend-
ing on the specific partition we are considering. We include here the two most
interesting cases, including the proof that invokes the rarely used form of the
Chernoff bound mentioned in the introduction (Claim 4). We defer the rest to
the full version of the paper [1].

Claim 3. For every c > 0, there exists a γ = γ(c) > 0 such that for n sufficiently
large:

Pr

⎡

⎣
	τ2
∑

i=�τ1�
i |Si| ≥ cn +

	τ2
∑

i=�τ1�
iEi · n

⎤

⎦ ≤ exp
(−γ

√
n log n

)
.

Proof. For every τ1(c) < i ≤ τ2, define δi � (c log n)/(Ei
√

n) so that

∑

i≤τ2

δi · iEi =
∑

i≤τ2

i · c log n√
n

≤ (τ2)2 · c log n√
n

= c . (4)

Since δi > 1 for every i > τ1, by the standard Chernoff bound:
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Pr [|Si| > (1 + δi) · Ei · n] ≤ exp (−δi · n · Ei/3) = exp
(−c/3 · √

n log n
)

.

By applying a union bound over all τ1 ≤ i ≤ τ2, it follows that there exists a
constant γ > 0 such that:

Pr

⎡

⎣
	τ2
∑

i=�τ1�
i |Si| ≥

	τ2
∑

i=�τ1�
(1 + δi) · iEi · n

⎤

⎦ ≤ exp
(−δ

√
n log n

)
. (5)

The claim follows by Eq. 4 and 5. 
�
Claim 4. For every c > 0, there exists a γ = γ(c) > 0 such that for sufficiently
large n, we have that:

Pr

⎡

⎣
	τ3
∑

i=�τ2�
i |Si| > cn +

	τ3
∑

i=�τ2�
iEi · n

⎤

⎦ ≤ exp
(−γ

√
n log(n)

)
.

Proof. For every τ2 ≤ i ≤ τ3, define δi � c
5 · log n

i log i·Ei·√n
so that the following

holds for sufficiently large n:

	τ3
∑

i=�τ2�
δi · iEi =

c

5
·
⎛

⎝
	τ3
∑

i=�τ2�

1
log i

⎞

⎠ · log n√
n

(6)

≤ c

5
· τ3
log τ2

· log n√
n

≤ c

5
· log n

0.25 log n − 0.5 log log n
≤ c . (7)

For a sufficiently large n, it holds that δi > 1; moreover log δi ≥ Ω(i log i) for
every τ2 ≤ i ≤ τ3. By the Chernoff bound with a δi ln(δi) dependency in the
exponent 9 (see Chapter 10.1.1 in [5]):

Pr [|Si| > (1 + δi) · n · Ei] ≤ exp (−δi ln(δi) · n · Ei/2) ≤ exp
(−Ω(

√
n log n)

)
.

By applying a union bound over all τ2 ≤ i ≤ τ3, it follows that there exists a
δ(c) > 0 such that:

Pr

⎡

⎣
	τ3
∑

i=�τ2�
i |Si| >

	τ3
∑

i=�τ2�
(1 + δi) · i · Ei · n

⎤

⎦ ≤ exp
(−δ

√
n log n

)
. (8)

The claim follows by Eq. 7 and 8. 
�

6 Proofs of Theorems 1, 2 and 3

To prove Theorems 1 and 2, we employ Observation 1 that shows a reduction
from Rf (and Rg, respectively) to Rb2 (and Rb log b respectively). The lower
bound for Rf is discussed in Lemma 2. The lower bound for Rg follows from
Lemma 1 and Theorem 4. The lower bound for R0 follows from Corollary 2 and
Theorem 4. Matching upper bounds on Rf , Rg and R0 are discussed in the full
version of the paper [1].
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18. Régnier, M.: A limiting distribution for quicksort. RAIRO-Theoretical Inform.
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Abstract. We study a special case of a classical throughput maximiza-
tion problem. There is given a set of jobs, each job j having a processing
time pj , a release time rj , a deadline dj , and possibly a weight. The jobs
have to be scheduled non-preemptively on m identical parallel machines.
The goal is to find a schedule for a subset of jobs of maximum cardinal-
ity (or maximum total weight) that start and finish within their feasible
time window [rj , dj). In our special case, the additive laxity of every job
is equal, i.e., dj − pj − rj = δ with a common δ for all jobs. Through-
put scheduling has been studied extensively over decades. Understanding
important special cases is of major interest. From a practical point of
view, our special case was raised as important in the context of last-mile
meal deliveries. As a main result we show that single-machine through-
put scheduling with equal additive laxity can be solved optimally in
polynomial time. This contrasts the strong NP-hardness of the problem
variant with arbitrary (and even equal multiplicative) laxity. Further,
we give a fully polynomial-time approximation scheme for the weakly
NP-hard weighted problem. Our single-machine algorithm can be used
repeatedly to schedule jobs on multiple machines, such as in the greedy
framework by Bar-Noy et al. [STOC ’99], with an approximation ratio

of (m)m

(m)m−(m−1)m
< e

e−1
. Finally, we present a pseudo-polynomial time

algorithm for our weighted problem on a constant number of machines.

1 Introduction

We study one of the classical models for job scheduling that has been studied
since the Seventies [13,15]. There is given a set of n jobs to be assigned to m
parallel identical machines. Each job j is associated with a processing time pj ∈
N, a release time rj ∈ N, a deadline dj ∈ N and a weight wj ∈ N with wj ≥ 1.
The goal is to find a feasible schedule S for a subset of jobs U that maximizes∑

j∈U wj . A feasible schedule S for a set of jobs U assigns a starting time Sj ≥ rj

to each job j ∈ U such that the completion time for each job Cj = Sj +pj is not
later than the job’s deadline, i.e., Cj ≤ dj . Each machine can run at most one job
at each point in time, without the possibility of preemption. When jobs have unit
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(resp. arbitrary) weights, the problem is called (weighted) throughput scheduling
or, in the standard scheduling notation, P |rj |

∑
(1−Uj) resp. P |rj |

∑
wj(1−Uj).

When considering the single machine setting, we refer to 1|rj |
∑

(1 − Uj) and
1|rj |

∑
wj(1−Uj). The problems are all known to be strongly NP-complete [14].

Over decades, research efforts [3,4,6,16,17] have aimed for approximation
algorithms, that is, polynomial-time algorithms with a bounded worst-case ratio
of the objective values achieved by the algorithm and the optimal solution.
The best known approximation algorithm for weighted throughput scheduling,
P |rj |

∑
wj(1−Uj), yields a worst-case ratio of (m+1)m

(m+1)m−(m+ε)m , which is 2/(1−ε)
for m = 1 and any 0 < ε and monotonously decreases towards e/(e − 1) ≈ 1.582
for increasing m [4]. For the unweighted problem on any constant number of
machines, Pm|rj |

∑
(1−Uj), there exists an algorithm with approximation ratio

1.55 and running time exponentially dependent on m. This algorithm is com-
plemented by an algorithm with running time polynomial in n and m, whose
approximation ratio is converging to 1 as the number of machines m tends to
infinity [17]. The second part of the result also holds for the weighted problem.

Concurrently to the approximation efforts, progress has been made on iden-
tifying subinstances of the problem which are still tractable in polynomial time.
For example, in the case of all equal processing times, maximizing the weighted
throughput is polynomial-time solvable [2]. However, if the processing times
have at least two non-divisible options (such as {2, 3}), the decision problem of
scheduling all jobs becomes NP-complete [12].

In this paper, we study a special case regarding the scheduling flexibility.
Any job with processing time pj that is selected to be scheduled must be
started in the time interval [rj , dj − pj). We call the length of this time inter-
val the laxity of a job and denote it by lj := dj − pj − rj . We investigate
the special case in which all jobs have a normalized additive laxity, that is,
lj = δ for some δ ≥ 0 common for all jobs. We call this problem (weighted)
throughput scheduling with equal additive laxity.

This special case is motivated also from a practical point of view. The single
machine case has been raised as an open problem in the context of the scheduling
of last-mile meal delivery processes by Cosmi et al. [8–10]. Consider a restaurant
that schedules food deliveries using a single courier. Often restaurants guarantee
that orders are delivered within an interval of a specific length, e.g., 30 min,
after the delivery time requested by the customer. The time needed to travel
from the restaurant to a customer and back can be encoded by the processing
time pj of a corresponding job j, and the fixed length of the guaranteed time
interval can by modeled by a common additive laxity δ. To deliver within the
requested interval, the courier cannot start the delivery more than pj/2 time
units before the requested delivery time (modeled by rj) and, assuming the
courier returns immediately after the delivery, cannot return to the restaurant
more than pj/2+δ time units after the requested delivery time (modeled by dj).

Our Contribution. We resolve the complexity status of throughput scheduling
with equal additive laxity on single and parallel machines. As a main result, we
show how to solve the single-machine problem optimally in polynomial time.
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Theorem 1. The problem 1|rj |
∑

(1−Uj) with equal additive laxity can be solved
optimally in polynomial time.

This result is in stark contrast to the NP-hardness of the problem with arbitrary
laxity. Further, it contrasts the complexity for the alternative model with nor-
malized multiplicative laxity, in which lj = pj · δ for a multiplier δ common for
all jobs. In this setting, the problem continues to be strongly NP-hard, even on
a single machine, as was shown by reduction from 3-Partition [11].

The key to our main result is a characterization of job inversions deviating
from the release date order in an optimal schedule. While scheduling in release
date order (or using similar greedy strategies based, e.g., on deadlines or process-
ing times) does not solve the problem optimally, we show that there always exists
an optimal schedule that deviates from the release date order in a very limited
and particular way. By properly restricting the type of required inversions, we
define canonical schedules and find an optimal one by dynamic programming.

We transfer the techniques from the unweighted problem to the weighted
version. In that setting, even the single-machine problem is weakly NP-hard, as
it contains the knapsack problem. We give a fully polynomial-time approximation
scheme (FPTAS), which is the best we can hope for in this case, unless P=NP.
An FPTAS is a family of algorithms computing a (1+ε)-approximation for every
ε > 0 with a running time polynomial in the input size and 1

ε .

Theorem 2. There is an FPTAS for 1|rj |
∑

wj(1−Uj) with equal additive lax-
ity.

On identical parallel machines, throughput scheduling with equal additive laxity
is strongly NP-hard in general and weakly NP-hard if the number of machines
is constant. This follows directly by a standard reduction from Partition. A
natural greedy algorithm for the multi-machine problem iteratively executes a
single-machine algorithm on each machine using only the jobs that have not
yet been scheduled on previous machines. The analysis of Bar-Noy et al. [3,
Theorem 3.3] and our single machine results imply the following result.

Corollary 1. Consider P |rj |
∑

(1 − Uj) with equal additive laxity. The greedy
algorithm yields an approximation factor mm

mm−(m−1)m . For the weighted prob-

lem variant, the approximation factor is (m+ε)m

(m+ε)m−(m+ε−1)m with ε > 0 and the
running time is polynomial in the input and 1

ε .

Our algorithm is optimal resp. (1 + ε)-approximate for m = 1, and has an
approximation ratio monotonously increasing in m with its limit at e/(e − 1) ≈
1.582 (plus ε > 0).

In the unweighted setting, our result improves upon the best-known 1.55-
approximation ratio by Im et al. [17] if the number of machines is small, m ≤ 14.
In contrast to the 1.55-approximation, our algorithm is deterministic and purely
combinatorial, i.e., it does not involve solving any linear program, which often is
an advantage for the efficiency of an implementation. In the weighted case, we
improve, for any m, upon the best-known approximation ratio of (m+1)m

(m+1)m−(m+ε)m
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for arbitrary laxity by Berman and DasGupta [4]. For m = 1, 2, 3, . . . and assum-
ing an infinitesimally small ε, our result compares with the ratio in [4] as 1 (our
result) vs. 2 ([4]), 1.33 vs. 1.8, 1.42 vs. 1.73, 1.46 vs. 1.69, . . . with the gap
decreasing to 0 for m towards infinity.

As a final result, we give a pseudo-polynomial time algorithm for our problem
when m = O(1). More precisely, we show the following theorem.

Theorem 3. There is an optimal algorithm for Pm|rj |
∑

wj(1−Uj) with equal
additive laxity with its running time polynomial in min{δ,maxj∈J pj}, W =∑

j∈J wj and the input size. The running time dependency on W can be replaced
by a dependency on 1/ε, for any ε > 0, at the cost of a (1 + ε)-factor in the
objective.

In the case of arbitrary laxity, the best-known pseudo-polynomial time algo-
rithm for a constant number of machines and uniform weights is the 1.55-
approximation by [17]. For the problem with normalized additive laxity, our
result rules out strong NP-hardness on a constant number of machines.

Related Work. Throughput scheduling has been studied extensively under sev-
eral names and closely related variants, including job interval selection or real-
time scheduling. Bar-Noy et al. [3] initiated a line of research on approximation
algorithms for the weighted and unweighted setting.

The currently best known algorithm for P |rj |
∑

wj(1 − Uj) by Berman and
DasGupta [4] has an approximation ratio of (m+1)m

(m+1)m−(m+ε)m . When the weights
are uniform, Im, Li and Moseley [17] provide an approximation algorithm with
ratio 1.55 for m ∈ O(1). When m tends to infinity the ratio improves to 1.
This latter result extends also to the weighted case. Recently, Hyatt-Denesik,
Rahgoshay and Salavatipour [16] gave a (1 + ε)-approximation with a running
time exponential in 1/ε, m and c where c is the number of different processing
times. That is, if m, c ∈ O(1), the algorithm yields a PTAS.

Regarding polynomially tractable subcases, an important positive result is
due to Baptiste [2], who provides an algorithm for the problem 1|rj |

∑
wj(1−Uj)

when all processing times are equal with an asymptotic running time of O(n7).
For unweighted throughput, the fastest known, optimal algorithm by Chrobak
et al. [5] runs in time O(n5). Another polynomially tractable subcase is the
scheduling of agreeable instances, i.e., rj < rj′ implies dj < dj′ for all jobs
j, j′ ∈ J , on a single machine [18]. This result exploits that for agreeable instances
on a single machine there is always an optimal schedule which schedules all
feasible jobs in release date order.

For the case when all processing times pj are either 1 or p, Sgall [21] provides
a polynomial-time algorithm to check if all jobs on input can be scheduled.
The complexity of the unweighted and weighted maximization in this setting
remains open. Additionally, the existence of a polynomial-time algorithm for the
case when all jobs are equal and m is a part of the input is also open [21].

Special cases with assumptions on the laxity have been considered in dif-
ferent flavors. Chuzhoy, Ostrovski and Rabani [6] assume an upper bound on
the multiplicative laxity of all jobs, lmult := maxj∈J(dj − rj)/pj . They present
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an exact algorithm for 1|rj |
∑

wj(1 − Uj) that is polynomial in n and T ,
where T is the time horizon of the instance, and exponential in lmult. For the
same problem, Berman and DasGupta [4] also give a pseudo-polynomial time
2/(1 + 1/(2�lmult�+1 − 2 − �lmult�))-approximation.

Recently, the problem of throughput scheduling with bounded additive lax-
ity, ladd := maxj∈J lj , received quite some attention in the context of meal
deliveries [9,10]. Cosmi et al. [10] consider throughput scheduling parameter-
ized by ladd. Here, a dependence of the running time on ladd is necessary,
because a large value of ladd will contain many instances of the general prob-
lem of throughput scheduling. The main result of [10] is a dynamic algorithm
for unweighted throughput scheduling on a single machine with running time
O(n · (ladd + 2)2ladd+1 + n log n). For the case of unweighted throughput on m
identical machines, they adapt the dynamic algorithm to find an optimal solu-
tion in time O(n(lmult + 2)2m(lmult+1) + n log n). Comparing these results to our
contributions, we observe that the algorithm of [10] can solve a more general
set of instances than our algorithms if ladd is bounded by a constant small
enough such that the running time is still reasonable. On the other hand, the
running time of our algorithms is independent of δ, meaning that they perform
well for every choice of δ. For further research around meal deliveries we refer
to [1,19,20,23,24,26].

Van Bevern, Niedermeier and Suchý [25] also investigate scheduling instances
parametrized by ladd, lmult, or both, but they focus on designing algorithms that
solve the decision variant of the problem, where the goal is to decide whether all
jobs can be scheduled or not. Aside from showing hardness for several variants,
they contribute optimal algorithms with running times (ladd)O(lmult·m) ·n+n log n
and O((ladd + 1)(2ladd+1)·m · n · ladd · m · log(ladd · m) + n log n), respectively.

Further lines of research in non-preemptive throughput scheduling address
non-continuous scheduling intervals [6], minimizing the number of machines to
schedule all jobs, also with bounded laxity [7] and unrelated machines [3,4,22].

Overview: In Sect. 2 we prove crucial structural properties and characterize
canonical single-machine solutions. In Sect. 3 we derive a dynamic program (DP)
that optimally solves 1|rj |

∑
wj(1 − Uj) when jobs have equal laxity. We turn

the DP into an FPTAS for arbitrary weights and give a pseudo-polynomial time
algorithm for m ∈ O(1).

2 Canonical Solutions

In this section, we consider throughput scheduling with equal additive laxity on
a single machine. Firstly, we define the classical earliest release date first order.

Definition 1. Given a set of jobs J , the earliest release date first (ERF) order-
ing of J is an ordering ≺E where the jobs are ordered the same way as their
release dates. We extend the ordering to a linear ordering by giving priority to
jobs with smaller processing times, i.e. if ri = rj and pi < pj, then we set i ≺E j.
Finally, all remaining ties are broken arbitrarily.
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Fig. 1. An instance with
uniform weights for which
scheduling in ERF order is
not optimal.

Scheduling jobs in ERF order is not optimal
as the example in Fig. 1 shows. ERF schedules the
long job before the two short jobs which leads to
a solution with two jobs, whereas scheduling the
short jobs before the long job leads to three feasibly
scheduled jobs. There are similar examples showing
that other greedy strategies, such as earliest dead-
line first (EDF) and longest processing time first
(LPT), are not optimal in our setting, either. How-
ever, we show that there always exists an optimal
schedule which deviates from the ERF order in a
very limited and particular way. To characterize this, we study inversions.

2.1 Inversions

We give a formal definition of a schedule deviation from ERF order.

Definition 2. A job i inverts a job j (short i inv j) in a schedule S if i is before
j in the ERF order, but j is started earlier than i in S. Symbolically, i ≺E j but
Sj < Si. We say that there is an inversion between i and j if i inverts j.

Our goal is to show that each feasible schedule can be transformed into a
feasible schedule for the same set of jobs with limited inversions. We define a
safe exchange operation, which can be used to remove certain inversions from
a feasible schedule while maintaining feasibility. The operation consists of two
steps.

Suppose that there is an inversion i inv j. We partition the jobs scheduled
between i and j into a set A of jobs that are inverted by i and set a B of
jobs which are not inverted by i. In the first step of the operation, we alter the
schedule by scheduling the set B first, then j followed by i, and finally the set A.
In the second step of the operation, we also swap job j with i. See Fig. 2 for an
illustration. This exchange operation is not universally applicable, but it leads
to a decrease in the number of inversions in an important case.

j i

(1) j i

(2) i j

Fig. 2. The safe exchange operation applied to an inversion pair i inv j. The jobs
scheduled between i and j are partitioned into the set A (solid, red) and B (hatched,
blue). In Step (1), the jobs in B and A are moved so that the jobs i and j are adjacent.
In Step (2), the jobs i and j are swapped. (Color figure online)
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Lemma 1. A feasible schedule S with an inversion i inv j, which satisfies that
dj′ ≥ Si + pi holds for all jobs j′ with Sj ≤ Sj′ < Si, can be transformed into a
feasible schedule S ′ for the same job set without inversion i inv j.

Proof. Let S be a feasible schedule as described in the Lemma. Consider the
schedule S ′ after applying the safe exchange operation to inversion i inv j. In S ′,
all jobs in B are scheduled in the same order as in S, afterwards appears i
followed by j, and then all jobs in A in the same order as in S. All other jobs
are scheduled the same way as in S. Notice that S ′ contains the same jobs as S.

We now show that S ′ is feasible. Denote the starting time of a job l in S ′

by S′
l . The job i in S ′ respects its release date, since S′

i ≥ Sj holds by construction
of S ′, ri ≤ rj holds by assumption and S is feasible. As i is scheduled earlier
in S ′ than in S, it also does not miss its deadline. By construction of S ′, each
j′ ∈ A ∪ {j} starts in S ′ (at least by pi) later than in S and completes at the
latest by Si + pi ≤ dj′ . Thus, each j′ ∈ A ∪ {j} is feasibly scheduled in S ′. For
each l ∈ B holds rl ≤ ri as l started before i in S but is not inverted by i. By
construction of S ′, Sl ≥ S′

l ≥ Sj ≥ rj ≥ ri ≥ rl holds and, thus, l is feasibly
scheduled in S ′. Since jobs in J \ (A ∪ B ∪ {i, j}) are scheduled identically in S
as in S ′, it follows that S ′ is feasible. 
�
Applying Lemma 1 repeatedly, we restrict ourselves to schedules where for each
inversion pair i inv j there exists an obstruction job j′ with dj′ < Si + pi.

Definition 3. We call an inversion pair i inv j a critical inversion if dj <
Si + pi and j is the job with this property minimizing Sj − Si. We also call a
triple of jobs i, j, k a nested inversion if i inv j and j inv k.

An example of a nested inversion is shown in Fig. 3a). The key that allows
us to formulate a polynomial-time algorithm is the fact that there is always an
optimal schedule without nested inversions.

Lemma 2. Let S be a feasible schedule such that no inversion can be safely
exchanged. Then there are no three jobs i, j, k with i inv j and j inv k in S.

a)

0 1 2 3 4 5 6 7

c b aS
a

b

c

b)

≤ δ

ri Si

ii

j

k
rk dk

≥ δ + pk

Fig. 3. a) An instance of throughput scheduling (with non-equal additive laxity) where
a nested inversion a inv b, b inv c occurs for a feasible schedule S. The additional dashed
job in the instance is tight. b) A visual proof of Lemma 2. The top interval in a brace
is of length at most δ, but its sub-interval on the bottom has length at least δ + pk′ .
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Proof. By contradiction, assume that such a triple of jobs i, j and k exists in a
feasible schedule S. See Fig. 3b) for an illustration. In our equal additive laxity
setting, any job j has its time window set to dj − rj = pj + δ. By definition,
any feasible schedule satisfies Si − ri ≤ δ for every job i. Applying Lemma 1 on
j inv k gives us a job k′ for which dk′ < Sj + pj . Since i is scheduled after both
j and k′ in our triple inversion, we have that dk′ ≤ Sj + pj ≤ Si. However, this
implies a contradiction, as pk′ + δ = dk′ − rk′ ≤ Si − rk′ ≤ Si − ri ≤ δ. The
above equation is false for job k′ with non-zero processing time. 
�

In addition to the absence of inversion triples, we can also strengthen the
properties of a critical inversion pair. We have defined the critical inversion pair
i inv j′ to be as close in the schedule S as possible, but we can actually assume
that they are scheduled next to each other:

Lemma 3. Any feasible schedule S with a critical inversion i inv j′ can be
transformed into a feasible schedule S ′ for the same set of jobs that schedules j′

immediately before i, without affecting any other critical inversion pair.

Proof. Consider the critical inversion pair i inv j′. By definition, any job k sched-
uled between j′ and i is either not inverted with i or the deadline of k satisfies
dk ≤ Si + pi. Therefore, we can apply the first step of the safe exchange opera-
tion on the pair j′ and i. After the exchange, the job j′ is scheduled immediately
before i. By Lemma 2, this does not affect any other critical inversion pair. 
�

2.2 Canonical Schedules

With Lemmas 2 and 3 setting the structure of inversions in feasible schedules,
we wish to formally limit the set of feasible schedules that we consider (and that
our algorithm can create). Our goal is to characterize feasible schedules entirely
based on their critical inversion pairs. Let S be a feasible schedule that schedules
the subset of jobs U ⊆ J , for each critical inversion pair i inv j′ in S, we define
Jij′ = {j ∈ U \ {i, j′} | i ≺E j ≺E j′}.

Definition 4. A feasible schedule is canonical iff the following constraints hold:

1. For each critical inversion pair i inv j′, the set Jij′ is scheduled in ERF order
before j′ and i as a block. That is, no other jobs are scheduled in between jobs
of Jij′ ∪ {i, j′}.

2. For two critical inversion pairs i1 inv j1 and i2 inv j2 with (i1, j1) = (i2, j2)
it holds that {i1, j1} ∩ {i2, j2} = ∅ and Ji1j1 ∩ Ji2j2 = ∅.

3. Let i1 inv j1 and i2 inv j2 be two neighboring critical inversion pairs, i.e.,
no critical inversions are scheduled between the two blocks Ji1j1 ∪{i1, j1} and
Ji2j2 ∪{i2, j2}. Then all jobs l with j1 ≺E l ≺E i2 are scheduled in ERF order
between the two blocks. If i inv j is the first (resp. last) critical inversion pair
in the schedule, then all jobs that are before i (resp. after j) in the ERF order
are scheduled in ERF order before (resp. after) job block Jij ∪ {ij}.
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A canonical feasible schedule is defined entirely by the set of jobs that are
scheduled and by the set of critical inversion pairs. Given the set of critical
inversion pairs, Definition 4 defines a total order over all scheduled jobs, and
scheduling all jobs according to that order gives us the canonical schedule. Our
main result in this section is the following lemma:

Lemma 4. Every feasible schedule can be transformed into a canonical feasible
schedule that schedules the same set of jobs.

Proof. By Lemma 3 we can restrict ourselves to schedules where for each inver-
sion i inv j the job j′, that is scheduled directly before i, forms a critical inversion
pair with i. Further, by Lemma 2 there are no three jobs i,j and k with i inv j
and j inv k. It remains to argue about the constraints of Definition 4.

Constraint 1. We first show that all jobs in Jij′ are scheduled in ERF order
before j′. Assume a k ∈ Jij′ was scheduled after Ci = Si + pi. As j′ is the
critical inversion of i, we know that dj′ < Si + pi. Since k ∈ Jij′ and rk ≤ rj′ ,
but k is scheduled after d′

j , more than δ time units pass between rk and Sk.
This contradicts the feasibility of S, and so any k ∈ Jij′ must be started before
Si + pi. If two jobs k, k′ ∈ Jij′ are not scheduled in ERF order, then k inv k′

follows, which contradicts Lemma 2.
It remains to show that no other jobs are scheduled in between jobs of Jij′ .

Thus, we consider jobs k with either j′ ≺E k or k ≺E i. If i ≺E j′ ≺E k, then
the absence of nested inversions (Lemma 2) implies that k is scheduled after i.

For case k ≺E i, we know that k must be scheduled before i since i and j′

being a critical inversion implies that more than δ time units pass between rk

and Ci = Si + pi. We show that no job l ∈ Jij′ ∪ {j′} is scheduled before k.
Assume that there exists such a l with k ≺E i ≺E l but Sl < Sk < Si. The pair
l, k forms an inversion but the deadline dl is (by feasibility of the schedule) only
after the starting time of Si. This property of the deadline is true for any job k′

with Sl ≤ Sk′ < Sk, which follows from Lemma 2 and we can apply Lemma 1 to
remove the inversion k inv l. Note that this transformation does not affect the
fulfillment of the other criteria of the definition.

Constraint 2. Lemmas 2 and 3 directly imply {i1, j1} ∩ {i2, j2} = ∅. Assume
w.l.o.g. that i1 and j1 are scheduled before i2 and j2. Since {i1, j1}∩{i2, j2} = ∅,
the schedule is feasible, and both i1 inv j1 and i2 inv j2 are critical inversions,
it follows rj1 < ri2 . Thus, there cannot be any l ∈ Ji1j1 ∩ Ji2j2 .

Constraint 3. Let i1 inv j1 and i2 inv j2 be two neighboring critical inversion
pairs. Each job l with j1 ≺E l ≺E i2 must be scheduled between the two blocks
Ji1j1 ∪ {i1, j1} and Ji2,j2 ∪ {i2, j2}. Otherwise, it would form an inversion with
either j1 or i2 and would therefore contradict Lemma 2. If two jobs scheduled
between the two blocks are not in ERF order, they are inverted and Lemma 3
implies that there must also be a critical inversion. This contradicts i1 inv j1
and i2 inv j2 being neighbors. The case for jobs scheduled before the first (resp.
after the last) critical inversion pair can be shown analogous. 
�
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3 Algorithmic Results

In this section, we first show that the structure of canonical schedules admits a
dynamic program (DP) that optimally solves 1|rj |

∑
wj(1 − Uj) when all jobs

have equal laxity with running time polynomial in n and W =
∑

j∈J wj . After-
wards, we show how the DP can be turned into an FPTAS and finally derive a
pseudo-polynomial time algorithm for the multi-machine setting with m ∈ O(1).

3.1 Optimal Algorithm for the Single Machine Case

The main result of this section is the following lemma, which implies a polynomial
time algorithm for the unweighted case and thus Theorem 1.

Lemma 5. The problem 1|rj |
∑

wj(1−Uj) with equal laxity can be solved opti-
mally with a running time polynomial in n and W =

∑
j∈J wj.

To prove the lemma, we introduce a DP that heavily exploits the structure of
canonical schedules. An algorithm that iteratively constructs a canonical sched-
ule starting at time t = 0 either schedules the first available job i in ERF order,
discards job i, or decides that i forms a critical inversion with some job j that
is released after i. If i is chosen to form a critical inversion pair with j, then
the algorithm next schedules a subset of J̄ij = {l ∈ J \ {i, j} | i ≺E l ≺E j} in
ERF order followed by j and i. Whenever the algorithm schedules some job j,
all jobs that are before j in the ERF order must have been already scheduled or
discarded, except for (possibly) a single job i that inverts j.

The DP is represented by table T [j, i] where j denotes the current job in
the ERF order and i denotes a job that was selected to invert j. According to
Definition 4, each job in a canonical schedule can only be inverted by a single
other job. If no job was selected to invert j, then i = 0.

The cell T [j, i] stores the set of all tuples (t, w) for which a feasible canonical
(sub-) schedule of jobs U ⊆ {j′ ∈ J \ {i} | j′ ≺E j} exists with a makespan of t
and

∑
j∈U wj = w. In case of i = 0, i was selected to invert j and i ≺E j must

hold. In those cases, the (sub-)schedule corresponding to (t, w) ∈ T [j, i] must be
of a structure that ensures the schedule to be canonical once the inversion job i
is finally scheduled, i.e., prevent triple inversions.

The cell T [n, 0] then contains (t, w), where w is the maximum throughput for
the instance. The corresponding schedule can be determined via backtracking.

To achieve the running time polynomial in n and W we, w.l.o.g., restrict
the tuples that are stored by a cell T [i, j] using a standard technique. We say
that (t, w) is dominated by (t′, w′) if t ≥ t′ and w ≤ w′. We define the cells of
our DP to only contain pairs that are not dominated by other contained pairs.
After computing the values of a DP cell including dominated pairs, we define our
algorithm to remove all dominated pairs. After removing all dominated pairs, the
pairs (t1, w1), . . . , (tl, wl) of a DP cell can be ordered by t1 < t2 < . . . < tl and
w1 < w2 < . . . < wl. As start times, processing times and weights are integers,
a DP cell can contain at most W elements.
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We now recursively define the DP table T and start with cells T [j, i] with
i = 0. In order to define the cells, we use the following auxiliary function:

h(t, w, j) =

{
{(max{t + pj , rj + pj}, w + wj)} | max{t + pj , rj + pj} ≤ dj

∅ | otherwise

In cells T [j, 0], no job is selected to invert j. In the first case, j is discarded or
scheduled after all jobs that are in front of j in the ERF order have already
been scheduled or discarded (first two parts of the T [j, 0] definition below). In
the second case, j has already been scheduled or discarded but some job i was
chosen to invert j and is now scheduled (last part of the definition below).

T [1, 0] := {(0, 0)} ∪ h(0, 0, 1)

T [j, 0] := T [j − 1, 0] ∪
⋃

(t,w)∈T [j−1,0]

h(t, w, j)
⋃

(t,w)∈T [j,i]:i∈J∧i≺Ej

h(t, w, i)

We continue by defining cells T [j, i] with i > 0, i.e., cells where a job i is selected
to invert j and not scheduled yet. The following definition distinguishes between
the case where the inversion job i is the current job in the ERF order (j = i),
and the case where the current job j is placed after i in the ERF order (j > i).

T [i, i] := T [i − 1, 0]

T [j, i] := T [j − 1, i] ∪
⋃

(t,w)∈T [j−1,i]

h(t, w, j) | j > i

In the first case, job i is the current job and selected as an inversion. By Definition
4, all jobs released before i must have been either scheduled or discarded and
there cannot be a different ongoing inversion. In the latter case, job j is either
scheduled or discarded after all jobs before j in the ERF order except i have
already been scheduled or discarded and i was already selected as an inversion
job. Since the DP only considers canonical schedules, j cannot be chosen to
invert another job. Otherwise, there would be a contradiction to Definition 4.

As all previous cells have been pre-computed and only contain O(W ) tuples,
a new cell can be computed in time O(nW · log nW ), leading to a total running
time of O(n3W ·log nW ). Once T [n, 0] is computed, the schedule with the highest
objective value can be constructed via backtracking. A straightforward induction
on the DP definition implies the optimality of the algorithm and thus Lemma 5.

3.2 FPTAS for the Weighted Single Machine Case

While the DP of the previous section implies a polynomial-time algorithm for
uniform weights, in general the running time is pseudo-polynomial in W =∑

j∈J wj . We turn the DP into an FPTAS by, for each j ∈ J , rounding the
weights to ŵj = �wj

μ � with μ = εwmax/n and wmax = maxj∈J wj for an ε > 0
and executing the DP on the rounded instance.
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Theorem 2. There is an FPTAS for 1|rj |
∑

wj(1−Uj) with equal additive lax-
ity.

Proof. Since the sum of rounded weights Ŵ =
∑

j∈J wj ≤ n2 · 1
ε is polynomial

in n and 1
ε , the running time of the algorithm is polynomial in n and 1

ε as well.
Let I be an arbitrary instance, let OPT (I) be the optimal solution value for I
and let Aε(I) be the solution value of the algorithm for an ε > 0. We show the
approximation factor by using a standard analysis where U and U∗ are the sets
of feasible jobs scheduled by Aε resp. OPT :

Aε(I) =
∑

j∈U

wj ≥ μ ·
∑

j∈U

ŵj ≥ μ
∑

j∈U∗
ŵj ≥

∑

j∈U∗
wj − εwmax ≥ (1 − ε) · OPT (I).


�

3.3 Optimal Pseudo-polynomial Time Algorithm for m ∈ O(1)

To extend the DP to the multiple-machine setting with m ∈ O(1), we can assume
that the schedule of each individual machine is canonical since Lemma 4 can be
applied to each individual machine. Similar to the single-machine case, we can
index the DP cells according to the ERF order. In the single-machine case we,
given an ERF index j, represent a state by the weight w that has already been
scheduled, the makespan t of the corresponding subschedule and the index i of
the unique job which is earlier in the ERF order than j but not yet scheduled.

We can extend the state representation to multiple machines and represent
a state S, corresponding to scheduling a subset of some prefix of the ERF order
with a total weight of w, as an m-tuple of pairs (t, i). The total number of states
is bounded by O(Tm · nm+1 · W ) with T = maxj∈J dj .

A possible dynamic programming algorithm updates for each job j in the
ERF order the list of all feasible states after considering this job – either dis-
carding j, placing j in the ERF order on one machine, or marking j as an
inversion on a machine where no inversion is yet planned – and stores the total
scheduled weight with each state.

Instead of storing the last completion time t for a machine M , an alternative
DP can instead store the pair (k, σk), where k is the currently last scheduled job
on M and σk ∈ [0, δ] is the relative start time of k, with σk := rk − Sk. This
observation is also present in [10]. Choosing the better of the two representations
and using the rounding scheme of Sect. 3.2, we obtain the following result.

Theorem 3. There is an optimal algorithm for Pm|rj |
∑

wj(1−Uj) with equal
additive laxity with its running time polynomial in min{δ,maxj∈J pj}, W =∑

j∈J wj and the input size. The running time dependency on W can be replaced
by a dependency on 1/ε, for any ε > 0, at the cost of a (1 + ε)-factor in the
objective.
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4 Final Remarks

We answer open questions on a special case of throughput scheduling in which
all jobs have the same laxity. It remains open whether there is an FPTAS for
Pm|rj |

∑
wj(1 − Uj) with equal additive laxity for any constant number of

machines m ≥ 2. In Theorem 3 we rule out strong NP-hardness.
In the meal delivery context, Cosmi et al. [9] consider the possibility of aggre-

gating orders into a single delivery. It would be interesting to incorporate this
feature into the scheduling model and investigate whether our algorithmic results
can be extended.

In general, it is a major open problem to find an approximation algorithm
for weighted throughput scheduling with arbitrary laxity on a small number of
machines improving upon the known approximation factor of (m+1)m

(m+1)m−(m+ε)m [4].
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Abstract. The fragile complexity of a comparison-based algorithm is
f(n) if each input element participates in O(f(n)) comparisons. In this
paper, we explore the fragile complexity of algorithms adaptive to var-
ious restrictions on the input, i.e., algorithms with a fragile complexity
parameterized by a quantity other than the input size n. We show that
searching for the predecessor in a sorted array has fragile complexity
Θ(log k), where k is the rank of the query element, both in a random-
ized and a deterministic setting. For predecessor searches, we also show
how to optimally reduce the amortized fragile complexity of the ele-
ments in the array. We also prove the following results: Selecting the kth
smallest element has expected fragile complexity O(log log k) for the ele-
ment selected. Deterministically finding the minimum element has fragile
complexity Θ(log(Inv)) and Θ(log(Runs)), where Inv is the number of
inversions in a sequence and Runs is the number of increasing runs in
a sequence. Deterministically finding the median has fragile complexity
O(log(Runs)+log log n) and Θ(log(Inv)). Deterministic sorting has frag-
ile complexity Θ(log(Inv)) but it has fragile complexity Θ(log n) regard-
less of the number of runs.

Keywords: Algorithms · Comparison based algorithms · Fragile
complexity

1 Introduction

Comparison-based algorithms have been thoroughly studied in computer science.
This includes algorithms for problems such as Minimum, Median, Sorting,
Searching, Dictionaries, Priority Queues, and many others. The cost
measure analyzed is almost always the total number of comparisons performed
by the algorithm, either in the worst case or the expected case. Recently, another
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type of cost measure has been introduced [1] which instead considers how many
comparisons each individual element is subjected during the course of the algo-
rithm. In [1], a comparison-based algorithm is defined to have fragile complexity
f(n) if each individual input element participates in at most f(n) comparisons.
The fragile complexity of a computational problem is the best possible fragile
complexity of any comparison-based algorithm solving the problem.

This cost measure has both theoretical and practical motivations. On the
theoretical side, it raises the question of to what extent the comparisons neces-
sary to solve a given problem can be spread evenly across the input elements.
On the practical side, this question is relevant in any real world situation where
comparisons involve some amount of destructive impact on the elements being
compared (hence the name of the cost measure). As argued in [1], one example of
such a situation is ranking of any type of consumable objects (wine, beer, food,
produce), where each comparison reduces the available amount of the objects
compared. Here, an algorithm like QuickSort, which takes a single object and
partitions the whole set with it, may use up this pivot element long before the
algorithm completes. Another example is sports, where each comparison consti-
tutes a match and takes a physical toll on the athletes involved. If a comparison
scheme subjects one contestant to many more matches than others, both fairness
to contestants and quality of result are impacted—finding a winner may not be
very useful if this winner has a high risk of being injured in the process. The
negative impact of comparisons may also be of non-physical nature, for instance
when there is a privacy risk for the elements compared, or when bias grows if
few elements are used extensively in comparisons.

1.1 Previous Work

In [1], the study of algorithms’ fragile complexity was initiated and a number of
upper and lower bounds on the fragile complexity for fundamental problems was
given. The problems studied included Minimum, the Selection, Sorting, and
Heap Construction, and both deterministic and randomized settings were
considered. In the deterministic setting, Minimum was shown to have fragile
complexity Ω(log n) and Sorting to have fragile complexity O(log n). Since
Sorting can solve Selection, which can solve Minimum, the fragile complex-
ity of all three problems is Θ(log n). The authors then consider randomized
algorithms, as well as a more fine-grained notion of fragile complexity, where
the objective is to protect selected elements such as the minimum or median
(i.e., the element to be returned by the algorithm), possibly at the expense of
the remaining elements. Among other results, it is shown in [1] that Minimum

can be solved incurring expected O(1) comparisons on the minimum element
itself, at a price of incurring expected O(nε) on each of the rest. Also a more
general trade-off between the two costs is shown, as well as a close to matching
lower bound. For Selection, similar results are given, including an algorithm
incurring expected O(log log n) comparisons on the returned element itself, at a
price of incurring expected O(

√
n) on each of the rest.
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An earlier body of work relevant for the concept of fragile complexity is the
study of sorting networks, started in 1968 by Batcher [5]. In sorting networks,
and more generally comparator networks, the notion of depth (the number of
layers, where each layer consists of non-overlapping comparators) and size (the
total number of comparators) correspond to fragile complexity and standard
worst case complexity, respectively, in the sense that a network with depth f(n)
and size s(n) can be converted into a comparison-based algorithm with fragile
complexity f(n) and standard complexity s(n) by simply simulating the network.

Batcher, as well as a number of later authors [10,17,18,21], gave sorting
networks with O(log2 n) depth and O(n log2 n) size. For a long time it was
an open question whether better results were possible. In 1983, Ajtai, Komlós,
and Szemerédi [2,3] answered this in the affirmative by constructing a sorting
network of O(log n) depth and O(n log n) size. This construction is quite complex
and involves expander graphs [23,24]. It was later modified by others [9,13,19,
22], but finding a simple, optimal sorting network, in particular one not based
on expander graphs, remains an open problem. Comparator networks for other
problems, such as selection and heap construction have also been studied [4,7,
16,20,27].

While comparator networks are related to fragile complexity in the sense
that results for comparator networks can be transferred to the fragile complexity
setting by simple simulation, it is demonstrated in [1] that the two models are not
equivalent: there are problems where one can construct fragile algorithms with
the same fragile complexity, but with strictly lower standard complexity (i.e.,
total number of comparisons) than what is possible by simulation of comparison
networks. These problems include Selection and Heap Construction.

1.2 Our Contribution

In many settings, the classical worst case complexity of comparison-based algo-
rithms can be lowered if additional information on the input is known. For
instance, sorting becomes easier than Θ(n log n) if the input is known to be
close to sorted. Another example is searching in a sorted set of elements, which
becomes easier than O(log n) if we know an element of rank close to the element
searched for. Such algorithms may be described as adaptive to input restrictions
(using the terminology from the sorting setting [11]). Given that the total num-
ber of comparisons can be lowered in such situations, the question arises whether
also reductions in the fragile complexity are possible under these types of input
restrictions.

In this paper, we expand the study of the fragile complexity of comparison-
based algorithms to consider the impact of a number of classic input restrictions.
We show that searching for the predecessor in a sorted array has fragile com-
plexity Θ(log k), where k is the rank of the query element, both in a randomized
and a deterministic setting. For predecessor searches, we also show how to opti-
mally reduce the amortized fragile complexity of the elements in the array. We
also prove the following results: Selecting the kth smallest element has expected
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fragile complexity O(log log k) for the element selected. Deterministically find-
ing the minimum element has fragile complexity Θ(log(Inv)) and Θ(log(Runs)),
where Inv is the number of inversions in a sequence and Runs is the number of
increasing runs in a sequence. Deterministically finding the median has fragile
complexity O(log(Runs) + log log n) and Θ(log(Inv)). Deterministic sorting has
fragile complexity Θ(log(Inv)) but it has fragile complexity Θ(log n) regardless
of the number of runs.

2 Searching

The problem of predecessor searching is, given a sorted array A with n ele-
ments, A[0]..A[n − 1], answer queries of the form “What is the index of the
largest element in A smaller than x?” Binary search is the classic solution to
the predecessor search problem. It achieves log n fragile complexity for x, and
fragile complexity at most one for each element of A. We can improve on this
in two ways. The first is where we try to keep the fragile complexity of x small,
which is possible if we know something about the rank of x. We show that the
optimal dependency on the rank of x is Θ(log k) where k is its rank, both for
deterministic and randomized algorithms.1 The second setting is where we are
concerned with the fragile complexity of the other elements. While there is no
way to improve a single search, classical deterministic binary search will always
do the first comparison with the same element (typically the median). Hence we
consider deterministic algorithms that improve the amortized fragile complexity
of any element of the array A over a sequence of searches.

2.1 Single Search

Theorem 1. Let A be a sorted array. Determining the predecessor of an element
x within A has fragile complexity Θ(log k) for deterministic and randomized
algorithms, where k is the rank of x in A.

Proof. The upper bound follows from standard exponential search [12]: We com-
pare x to A[2], A[4], A[8], . . . until we find the smallest i such that x < A[2i]. We
perform a binary search with the initial interval [2i−1, 2i]. If x has the predecessor
A[k], this requires O(log k) comparisons.

For the lower bound assume we have a deterministic algorithm to deter-
mine the rank of an element x. If the answer of the algorithm is k, let Bk be
the bit-string resulting from concatenating the sequence of the outcomes of the
comparisons performed by the algorithm, the i-th bit Bk[i] = 0 for x < A[k],
otherwise it is 1. Because the algorithm is deterministic and correct, all these
bit-strings are different and they are a code for the numbers 1, . . . , n. Now, for
any k, consider the uniform distribution on the numbers 0, . . . , k − 1, a distribu-
tion with entropy log k. By Shannon’s source coding theorem, the average code
length must be at least log k, i.e.,

∑k−1
i=0 |Bi| ≥ k log k.

1 For simplicity of exposition, we assume the rank is close to one, but the result clearly
holds for rank distance to other positions in A.
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For a contradiction, assume there would be an algorithm with |Bi| ≤ log i

(the binary logarithm itself). Then for k > 1,
∑k−1

i=0 |Bi| < k log k, in contrast
to Shannon’s theorem.

The bound
∑k−1

i=0 |Bi| ≥ k log k also holds for randomized algorithms if the
queries are drawn uniformly from [1, . . . , k], following Yao’s principle: Any ran-
domized algorithm can be understood as a collection of deterministic algorithms
from which the ’real’ algorithm is drawn according to some distribution. Now
each deterministic algorithm has the lower bound, and the average number of
comparisons of the randomized algorithm is a weighted average of these. Hence
the lower bound also holds for randomized algorithms. ��

2.2 Sequence of Searches

As mentioned, in binary search, the median element of the array will be compared
with every query element. Our goal here is to develop a search strategy so as to
ensure that data far away from the query will only infrequently be involved in a
comparison. Data close to the query must be queried more frequently. While we
prove this formally in Theorem 3, it is easy to see that predecessor and successor
of a query must be involved in comparisons with the query in order to answer
the query correctly.

Theorem 2. There is a search algorithm that for any sequence of predecessor
searches x1, x2, . . . , xm in a sorted array A of size n the number of comparisons
with any y ∈ A is O

(
log n +

∑m
i=1

1
d(xi,y)

)
where d(x, y) is the number of ele-

ments between x and y in A, inclusive. The runtime is O(log n) per search and
the structure uses O(n) bits of additional space.

Proof. We use the word interval to refer to a contiguous range of A; when we
index an interval, we are indexing A relative to the start of the interval. Call an
aligned interval I of A of rank i to be (A[k ·2i] . . . A[(k +1) ·2i]) for some integer
k, i.e., the aligned intervals of A are the dyadic intervals of A. There are O(n)
aligned intervals of A, and for each aligned interval I of rank i we store an offset
I.offset which is in the range [0, 2i), and it is initialized to 0.

The predecessor search algorithm with query x is a variant of recursive binary
search, where at each step an interval Iq of A is under consideration, and the
initial recursive call considers the whole array A. Each recursive call proceeds as
follows: Find the largest i such that there are at least three rank-i aligned inter-
vals in Iq, use Im to denote the middle such interval (or an arbitrary non-extreme
one if there are more than three), and we henceforth refer to this recursive call as
a rank-i recursion. Compare Im[Im.offset] with x, and then increment Im.offset
modulo 2i. Based on the result of the comparison, proceed recursively as in
binary search. The intuition is by moving the offset with every comparison, this
prevents a single element far from the search from being accessed too frequently.
We note that the total space used by the offsets is O(n) words, which can be
reduced to O(n) bits if the offsets are stored in a compact representation.
First, several observations:
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1. In a rank-i recursion, Iq has size at least 3 · 2i (since there must be at least
three rank-i, size 2i aligned intervals in Iq) and at most 8 ·2i, the latter being
true as if it was this size there would be three rank-i+1 intervals in Iq, which
would contradict Im having rank i.

2. If Iq has size k then if there is a recursive call, it is called with an interval
of size at most 7

8k. This is true by virtue of Im being rank-i aligned with at
least one rank-i aligned interval on either side of Im in i. Since Iq has size at
most 8 · 2i, this guarantees an eighth of the elements of Iq will be removed
from consideration as a result of the comparison in any recursive call.

3. From the previous two points, one can conclude that for a given rank i, during
any search there are at most 7 recursions with of rank i. This is because after
eight recursions any rank-i search will be reduced below the minimum for
rank i: 8 · 2i · (

7
8

)8
< 3 · 2i.

For the analysis, we fix an arbitrary element y in A and use the potential
method to analyse the comparisons involving y. Let Iy = {I1y , I2y . . .} be the
O(log n) aligned intervals that contain y, numbered such that Ii

y has rank i.
Element y will be assigned a potential relative to each aligned interval Ii

y ∈ Iy

which we will denote as ϕy(Ii
y). Let ty(Ii

y) be number of times Ii
y.offset needs

to be incremented before Ii
y[Ii

y.offset] = y, which is in the range [0, 2i). The

potential relative to Ii
y is then defined as ϕy(Ii

y) := 2i−ty(I
i
y)

2i , and the potential
relative to y is defined to be the sum of the potentials relative to the intervals
in Iy: ϕy :=

∑
Ii
y∈Iy

ϕy(Ii
y).

How does ϕy(Ii
y) change during a search? First, if there is no rank-i recursive

call during the search to an interval containing y, it does not change as Ii
y.offset

is unchanged. Second, observe from point 3 that a search can increase ϕy(Ii
y) by

only 7
2i . Furthermore if y was involved in a comparison during a rank-i recursion,

there will be a loss of 1− 1
2i units of potential in ϕy(Ii

y) as the offset of Ii
y changes

from 0 to 2i − 1.
Following standard potential-based amortized analysis, the amortized num-

ber of comparisons involving y during a search is the actual number of compar-
isons (zero or one) plus the change in the potential ϕy. Let imin be the smallest
value of i for which there was a rank-i recursion that included y. As the maximum
gain telescopes, the potential gain is at most 14

2imin
, minus 1 if y was involved in

a comparison. Thus the amortized number of comparisons with y in the search
is at most 14

2imin
.

Observe that if there was a rank-i recursion that included y, that d(x, y) is
at most 8 ·2i by point 1. This gives d(x, y) ≤ 8 ·2i ≤ 8 ·2imin . Thus the amortized
cost can be restated as being at most 14

2imin
≤ 112

d(x,y) .
To complete the proof, the total number of comparisons involving y over a

sequence of searches is the sum of the amortized costs plus any potential loss. As
the potential ϕy is always nonnegative and at most �log n	 (1 for each ϕy(Ii

y)),

this gives the total cost as O
(
log n +

∑m
i=1

1
d(xi,y)

)
. ��
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Note that the above proof was designed for easy presentation and not an
optimal constant. Also note that this theorem implies that if the sequence of
searches is uniformly random, the expected fragility of all elements is O( log n

n ),
which is asymptotically the best possible since random searches require Ω(log n)
comparisons in expectation.

2.3 Lower Bounds

It is well-known that comparison-based searching requires Ω(log n) comparisons
per search. In our method, taking a single search xi summing over the upper
bound on amortized cost of the number of comparisons with y, 42

d(xi,y)
, for all y

yields a harmonic series which sums to O(log n). But we can prove something
stronger:

Theorem 3. There is a constant c such that if a predecessor search algorithm
has an amortized number of comparisons of f(d(xi, y)) for an arbitrary y for
every sequence of predecessor searches x1, x2, . . . xm, then

∑p
k=1 f(k) ≥ c log p

for all p ≤ n.

Proof. This can be seen by looking at a random sequence of predecessor searches
for which the answers are uniform among A[0] . . . A[p − 1], if the theorem was
false, similarly to the proof of Theorem 1, this would imply the ability to execute
such a sequence in o(log p) amortized time per operation. ��

This shows that a flatter asymptotic tradeoff between d(xi, y) and the amor-
tized comparison cost is impossible; more comparisons are needed in the vicinity
of the search than farther away. For example, a flat amortized number of compar-
isons of log n

n for all elements would sum up to O(log n) amortized comparisons
over all elements, but yet would violate this theorem.

2.4 Extensions

Here we discuss extensions to the search method above. We omit the proofs as
they are simply more tedious variants of the above.

One can save the additional space used by the offsets of the intervals through
the use of randomization. The offsets force each item in the interval to take its
turn as the one to be compared with, instead one can pick an item at random
from the interval. This can be further simplified into a binary search where at
each step one simply picks a random element for the comparison amongst those
(in the middle half) of the part of the array under consideration.

To allow for insertions and deletions, two approaches are possible. The first
is to keep the same array-centric view and simply use the packed-memory array
[15,25,26] to maintain the items in sorted order in the array. This will give rise
to a cost of O(log2 n) time which is inherent in maintaining a dynamic collection
of items ordered in an array [8] (but no additional fragility beyond searching
for the item to insert or delete as these are structural changes). The second
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approach would be to use a balanced search tree such as a red-black tree [14].
This will reduce the insertion/deletion cost to O(log n) but will cause the search
cost to increase to O(log2 n) as it will take O(log n) time to move to the item
in each interval indicated by the offset, or to randomly choose an item in an
interval. The intervals themselves would need to allow insertions and deletions,
and would, in effect be defined by the subtrees of the red-back tree. It remains
open whether there is a dynamic structure with the fragility results of Theorem 2
where insertions and deletions can be done in O(log n) time.

3 Selection

In this section we consider the problem of finding the k-th smallest element of an
unsorted array. There is a randomized algorithm that selects the k-th smallest
element with expected fragile complexity of O(log log n) for the selected ele-
ment [1]. We consider the question if this complexity can be improved for small
k. In this section we define a sampling method that, combined with the algo-
rithm given in [1], selects the k-th smallest element with expected O(log log k)
comparisons.

Next, we define the filtering method ReSet in a tail-recursive fashion.
1: procedure ReSet(X, k) � Returns a small subset C of X that contains the k-th

element
2: Let n = |X| and C = ∅
3: if k ≥ n

2
− 1 � The set has size O(k + 1)

4: Let A′ = X
5: else � Recursively construct a sample of expected size O(k + 1)
6: Sample A uniformly at random from X, |A| = n

2

7: Let A′ = ReSet(A, k)

8: Choose the (k + 1)-th smallest element z from A′ (by standard linear time
selection)

9: Let C = {x ∈ X : x ≤ z}
10: return C

Theorem 4. Randomized selection is possible in expected fragile complexity
O(log log k) in the selected element.

Proof. Let us show that the following procedure for selecting the k-th element
in a set X with |X| = n, gives an expected fragile complexity O(log log k) in the
k-th element:

If k > n
1

100 , then let S′ = X. If k ≤ n
1

100 , then sample uniformly at random
S from X, where |S| = n

k . Let C = ReSet(S, k) and select the k +1-th smallest
element z from C by standard linear time selection. Let S′ = {x ∈ X : x ≤ z}.
Finally, apply to S′ the randomized selection algorithm of [1].

Let xk denote the k-th smallest element in X and let fk denote the frag-
ile complexity of xk. Note that if xk ∈ S, then, before constructing S′, fk

is given by the fragile complexity of xk in ReSet(S, k) plus O(|C|) when
finding the (k + 1)-th smallest element in C. Otherwise, xk is not com-
pared until S′ is constructed. On the other hand, recall that the expected
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fk in the algorithm in [1] is O(log log m) where m is the size of the input
set. Hence, the expected fk after selecting the k + 1-th element in C is 1
when creating S′ plus the expected fk in the randomized selection algorithm
in [1] that is

∑
|S′| O(log log |S′|)P[|S′|] = E[O(log log |S′|)]. Thus, E[fk] =

(E[fk in ReSet|xk ∈ S] + E[|C|])P[xk ∈ S] + 0P[xk /∈ S] + 1 + E[O(log log |S′|)].
Since the logarithm is a concave function, E[O(log log |S′|)] ≤ O(log log(E[|S′|])).
Therefore, if we prove that: (i) the expected fragile complexity of xk before cre-
ating S′ is O(1) and (ii) E[|S′|] = c′kc for some constants c and c′. Then, we
obtain that E[fk] ≤ O(1) + 1 + O(c log log k + log c′) = O(log log k), as desired.
In order to prove (i) and (ii) we consider 2 cases:
(1) k > n

1
100 , (2) k ≤ n

1
100 .

Case 1) S′ = X and it makes no previous comparisons in any element, proving
(i). In addition, S′ has size less than k100. Thus, (ii) holds.
Case 2) S is a sample of X with size n

k and S′ = ReSet(S, k).
First, let us show (i). If xk /∈ S, then there are no previous comparisons.
Hence, the expected fragile complexity of xk before constructing S′ is given by
(E[fk in ReSet|xk ∈ S′] + E[|C|])P[xk ∈ S] + 0. Since S is an uniform random
sample with size n

k , P[xk ∈ S] = 1
k , it suffices to show that E[fk in ReSet|xk ∈

S′] + E[|C|] = O(k), which gives an expectation of O(k) 1
k = O(1), proving (i).

So, let us show that E[fk in ReSet|xk ∈ S′] + E[|C|] = O(k). Let A0 = S and
let A1 be the sample of A0 when passing through line 6 in ReSet. Similarly,
denote by Ai to the sample of Ai−1 in the i-th recursive call of ReSet and let
A′

i = ReSet(Ai, k). Note that by definition A′
0 = C. Let � + 1 be the number of

recursive calls in ReSet(S, k).
Since Ai is a uniform random sample of size |Ai−1|

2 for all i ≥ 1, P[x ∈
Ai|x ∈ Ai−1] = 2−1 and P[x ∈ Ai|x /∈ Ai−1] = 0. Hence, P[xk ∈ Ai] = P[xk ∈
∩i

i=0Ai] = 2−i. Note that the number of comparisons of xk in ReSet is given by
the number of times xk is compared in lines 8 and 9. Thus, for each i-th recursive
call: if xk ∈ Ai, then xk is compared once in line 9; and if xk ∈ Ai ∩ A′

i, then
xk is compared at most |A′

i| times in line 8. Otherwise, xk is not compared in
that and the next iterations. Thus, E[fk in ReSet|xk ∈ S′]+E[|C|] ≤ ∑�

i=0(1+
E[|A′

i|])P[xk ∈ Ai] =
∑�

i=0 2−i(1 + E[|A′
i|]) ≤ 2(1 + E[|A′

i|]). Let us compute
E[|A′

i|]. Since the (�+1)-th iteration ReSet(A�, k) passes through the if in line
3, there is no new sample from A�. Thus, A′

� is given by the k+1 smallest elements
of A�. Therefore, E[|A′

�|] = k+1 Denote by a′i
j to the j-th smallest element of A′

i.
For the case of 0 ≤ i < �, we have A′

i = {x ∈ Ai+1 : x ≤ a′i+1
k+1}. Hence, E[|A′

i|] =
E[|{x ∈ Ai+1 : x ≤ a′i+1

k+1}|] = E[|{x ∈ Ai+1 : x ≤ a′i+1
1 ]}|] +

∑k
j=1 E[|{x ∈

Ai+1 : a′i+1
j−1 < x ≤ a′i+1

j ]}|] ≤ ∑k+1
j=1

∑∞
t=1 t2−1(2−(t−1)) = 2(k + 1). Therefore,

E[fk in ReSet|xk ∈ S′] + E[|C|] =
∑�

i=0 2−i(1 + E[|A′
i|]) ≤ 2 + 2E[|A′

i|] = O(k)
proving (i). Finally, let us show (ii): For simplicity, let cj denote the j-th smallest
element of C. Then, E[|S′|] = E[|{x ∈ X : x ≤ c1}|]+∑k

j=1 E[|{x ∈ X : cj ≤ x ≤
cj+1}|] ≤ ∑k+1

j=1

∑∞
j=0 jk−1(1 − k−1)j−1 = k(k + 1) = O(k2), proving (ii). ��
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4 Sorting

When the input is known to have some amount of existing order, sorting can
be done faster than Θ(n log n). Quantifying the amount of existing order is tra-
ditionally done using measures of disorder [11], of which Inv and Runs are two
classic examples.2 A sorting algorithm is adaptive to a measure of disorder if
it is faster for inputs with a smaller value of the measure. For the above mea-
sures, run times of O(n log(Inv/n)) and O(n log(Runs)) can be achieved. These
results are best possible for comparison-based sorting, by standard information-
theoretic arguments based on the number of different inputs having a given
maximal value of the measure.

The fact [1,3] that we can sort all inputs in Θ(n log n) time and Θ(log n)
fragile complexity can be viewed as being able to distribute the necessary com-
parisons evenly among the elements such that each element takes part in at most
Θ(log n) comparisons. Given the running times for adaptive sorting stated above,
it is natural to ask if for an input with a given value of Inv or Runs we are able
to sort in a way that distributes the necessary comparisons evenly among the
elements, i.e., in a way such that each element takes part in at most O(log(Inv))
or O(log(Runs)) comparisons, respectively. In short, can we sort in fragile com-
plexity O(log(Inv)) and O(log(Runs))? Or more generally, what problems can
we solve with fragile complexity adaptive to Inv and Runs? In this section, we
study the fragile complexity of deterministic algorithms for Minimum, Median,
and Sorting and essentially resolve their adaptivity to Inv and Runs.

Due to space limitations, some proofs are deferred to the full paper [6].

Theorem 5. Minimum has fragile complexity Θ(log(Runs)).

Proof. For the upper bound: identify the runs in O(1) fragile complexity by a
scan of the input. Then, use a tournament on the heads of the runs since the
minimum is the minimum of the heads of the runs. For the lower bound: apply
the logarithmic lower bound for Minimum [1] on the heads of the runs. ��
Theorem 6. Sorting has fragile complexity Θ(log n), no matter what value of
Runs is assumed for the input.

Proof. The upper bound follows from general sorting. For the lower bound: the
input consisting of a run R of length n−1 and one more element x has Runs = 2,
but log n comparisons on x can be forced by an adversary before the position of
x in R is determined. ��
Theorem 7. Median has fragile complexity O(log(Runs) + log log n).

2 The measure Inv is defined as the total number of inversions in the input, where
each of the

(
n
2

)
pairs of elements constitute an inversion if the elements of the pair

appear in the wrong order. The measure Runs is defined as the number of runs in
the input, where a run is a maximal consecutive ascending subsequence.
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Proof. Assume that 4 · Runs · log n < n/2, since otherwise the claimed fragile
complexity is O(log n) for which we already have a median algorithm [1]. Con-
sider the rank space [1, n] (i.e., the indices of the input elements in the total
sorted order) of the input elements and consider the rank interval [a, b] around
the median defined by a = n/2− 4 ·Runs · log n and b = n/2+4 ·Runs · log n. In
each step of the algorithm, elements are removed in two ways: type A removals
and type B removals. A removal of type A is a balanced removal, where a number
of elements with ranks in [1, a−1] are removed and the same number of elements
with ranks in [b + 1, n] are removed. The key behind the type A removal is that
the median element of the set prior to the removal is the same as the median of
the set after the removal, if the median prior to the removal has a rank in [a, b].

A removal of type B is a removal of elements with arbitrary rank. However,
the total number of elements removed by type B removals is at most 7·Runs·log n
during the entire run of the algorithm. Hence, repeated use of type A and type B
removals will maintain the invariant that the median of the remaining elements
has a rank in [a, b].

We now outline the details of the algorithm. The first step is to identify all
the runs in O(1) fragile complexity by a scan. A run will be considered short if
the run consists of fewer than 7 · log n elements and it will be considered long
otherwise. A step of the algorithm proceeds by first performing a type B removal
followed by a type A removal. A type B removal consists of removing all short
runs that are present. The short runs that are removed will be reconsidered again
at the end once the number of elements under consideration by the algorithm is
less than 64 · Runs · log n.

Once a type B removal step is completed, only long runs remain under con-
sideration. We now describe a type A removal step. Note that a long run may
become short after a type A removal step, in which case it will be removed
as part of the next type B removal step. Each run can become short (and be
removed by a type B removal) only once, hence the total number of elements
removed by type B removals will be at most 7 · Runs · log n, as claimed.

In the following, let N denote the elements under consideration just before a
type A removal (i.e., the elements of the remaining long runs), and let N = |N |.
The algorithm stops when N ≤ 64 · Runs · log n.

To execute the type A removal step, the algorithm divides each long run R
into blocks of length log n. The blocks of a run are partitioned by a partitioning
block. The partitioning block has the property that there are at least |R|/7
elements of R whose values are less than the values in the partitioning block and
at least 5|R|/7 elements of R whose value are greater than the elements in the
partitioning block. One element xR is selected from the partitioning block. We
will refer to this element as a partitioning element. These partitioning elements
are then sorted into increasing order, which incurs a cost of O(log(Runs)) fragile
complexity on each of the partitioning elements. The runs are then arranged in
the same order as their partitioning elements. Label this sequence of runs as
R1, R2, . . . , Rk, and let t be the largest index such that

∑t−1
i=1 |Ri| < N/8.
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Since the partitioning element xRt
is smaller than all the elements in the

blocks with values greater than their respective partitioning blocks in Rt, Rt+1,
. . . , Rk, we have that xRt

is smaller than (7/8)(5N/7) = 5N/8 of the remaining
elements. Hence in rank it is at least N/8 below the median of the remaining
elements. By the invariant on the position in rank space of this median and the
fact that N > 64 · Runs · log n, we note that xRt

has a rank below a. We also
note that all the elements below the partitioning blocks in R1, R2, . . . , Rt have
value less than xRt

. This constitutes at least (1/8)(N/7) = N/56 elements in N
with rank below a. Therefore, we can remove N/56 elements with rank below a.
In a similar manner, we can find at least N/56 elements in N with rank above b.
Removal of these 2N/56 = N/28 elements in N constitutes a type A removal
step.

Since the number of elements under consideration, i.e. N , decreases by a
constant factor at each step, the algorithm performs O(log n) type A and type B
removal steps before we have N ≤ 64 · Runs · log n. Since each block under
consideration in a type A removal step has size log n, we can guarantee that each
element in a partitioning block only needs to be selected as a partitioning element
O(1) times. This implies that a total cost of O(log(Runs)) fragile complexity is
incurred on each element once we have that N ≤ 64 · Runs · log n.

We now describe the final step of the algorithm. At this point, the algo-
rithm combines the last N elements with all the short runs removed during
its execution up to this point, forming the set S. This set is the original ele-
ments subjected to a series of type A removals, each of which are balanced and
outside the rank interval [a, b]. Hence, the median of S is the global median.
As |S| = O(Runs · log n), we can find this median in O(log(Runs · log n)) =
O(log(Runs)+ log log n) fragile complexity [1], which dominates the total fragile
complexity of the algorithm.

We note that for Runs = 2, we can improve the above result to O(1) fragile
complexity as follows. Let the two runs be R1 and R2, with |R1| ≤ |R2|. Compare
their middle elements x and y and assume x ≤ y. Then the elements in the
first half of R1 are below n/2 other elements, and hence are below the median.
Similarly, the elements in the last half of R2 are above the median. Hence, we
can remove |R1|/2 elements on each side of the median by removing that many
elements from one end of each run. The median of the remaining elements is
equal to the global median. By recursion, we in log |R1| steps end up with R1

reduced to constant length. Then O(1) comparisons with the center area of R2

will find the median. Because both runs lose elements in each recursive step,
both x and y will be new elements each time. The total fragile complexity of the
algorithm is therefore O(1). ��
Theorem 8. Minimum has fragile complexity Θ(log(Inv)).

Theorem 9. Median has fragile complexity Θ(log(Inv)).

Proof. As Median solves Minimum via padding with n elements of value −∞,
the lower bound follows from the lower bound on Minimum. For the upper
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bound, find R and I as in the upper bound for Minimum, sort I in fragile
complexity O(log(Inv)) and use the algorithm for Median for Runs = 2. ��
Theorem 10. Sorting has fragile complexity Θ(log(Inv)).
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Abstract. The three-in-a-tree problem asks for an induced tree of
the input graph containing three mandatory vertices. In 2006, Chud-
novsky and Seymour [Combinatorica, 2010] presented the first polyno-
mial time algorithm for this problem, which has become a critical sub-
routine in many algorithms for detecting induced subgraphs, such as
beetles, pyramids, thetas, and even and odd-holes. In 2007, Derhy and
Picouleau [Discrete Applied Mathematics, 2009] considered the natural
generalization to k mandatory vertices with k being part of the input,
and showed that it is NP-complete; they named this problem Induced

Tree, and asked what is the complexity of four-in-a-tree. Motivated
by this question and the relevance of the original problem, we study
the parameterized complexity of Induced Tree. We begin by showing
that the problem is W[1]-hard when jointly parameterized by the size
of the solution and minimum clique cover and, under the Exponential
Time Hypothesis, does not admit an no(k) time algorithm. Afterwards,
we use Courcelle’s Theorem to prove tractability under cliquewidth,
which prompts our investigation into which parameterizations admit sin-
gle exponential algorithms; we show that such algorithms exist for the
unrelated parameterizations treewidth, distance to cluster, and vertex
deletion distance to co-cluster. In terms of kernelization, we present a lin-
ear kernel under feedback edge set, and show that no polynomial kernel
exists under vertex cover nor distance to clique unless NP ⊆ coNP/poly.
Along with other remarks and previous work, our tractability and kernel-
ization results cover many of the most commonly employed parameters
in the graph parameter hierarchy.
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1 Introduction

Given a graph G = (V,E) and a subset K ⊆ V (G) of size three – here called
the set of terminal vertices – the three-in-a-tree problem consists of finding
an induced subtree of G that connects K. Despite the novelty of this problem,
it has become an important tool in many detection algorithms, where it usually
accounts for a significant part of the work performed during their executions. It
was first studied by Chudnovsky and Seymour [13] in the context of theta and
pyramid detection, the latter of which is a crucial part of perfect graph recogni-
tion algorithms [11] and the former was an open question of interest [10]. Across
more than twenty pages, Chudnovsky and Seymour characterized all pairs (G,K)
that do not admit a solution, which resulted in a O(

mn2
)

time algorithm for the
problem on n-vertex, m-edge graphs. Since then, three-in-a-tree has shown
itself as a powerful tool, becoming a crucial subroutine for the fastest known
even-hole [9], beetle [9], and odd-hole [12] detection algorithms; to the best of
our knowledge, these algorithms often rely on reductions to multiple instances
of three-in-a-tree, e.g. the theta detection algorithm has to solve O(

mn2
)

three-in-a-tree instances to produce its output [34]. Despite its versatility,
three-in-a-tree is not a silver bullet, and some authors discuss quite exten-
sively why they think three-in-a-tree cannot be used in some cases [14,39].
Nevertheless, Lai et al. [34] very recently made a significant breakthrough and
managed to reduce the complexity of Chudnovsky and Seymour’s algorithm for
three-in-a-tree to O(

m log2 n
)
, effectively speeding up many major detec-

tion algorithms, among other improvements to the number of three-in-a-tree
instances required to solve some other detection problems.

As pondered by Lai et al. [34], the usage of three-in-a-tree as a go-to
solution for detection problems may, at times, seem quite unnatural. In the
aforementioned cases, one could try to tackle the problem by looking for con-
stant sized minors or disjoint paths between terminal pairs and then resort to
Kawarabayashi et al.’s [32] quadratic algorithm to finalize the detection proce-
dure. The problem is that neither the minors nor the disjoint paths are guar-
anteed to be induced; to make the situation truly dire, this constraint makes
even the most basic problems NP-hard. For instance, Bienstock [1,2] proved that
two-in-a-hole and three-in-a-path are NP-complete. As such, it is quite
surprising that three-in-a-tree can be solved in polynomial time and be of
widespread importance. It is worth to note that the induced subgraph constraint
is also troublesome from the parameterized point of view. Maximum Match-

ing, for instance, can be solved in polynomial time [23], but if we impose that the
matching must be an induced subgraph, the problem becomes W[1]-hard when
parameterized by the minimum number of edges in the matching [36].

Derhy and Picouleau [18] were the first to ponder how far we may push
for polynomial time algorithms when considering larger numbers of terminal
vertices, i.e. they were interested in the complexity of k-in-a-tree for k ≥ 4.
They were also the firsts to investigate the more general problem where k is
not fixed, which they dubbed Induced Tree, for which we have the following
formal definition:
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Induced Tree

Instance: A graph G and a set K ⊆ V (G).
Question: Is there an induced subtree of G that contains all vertices of K?

Derhy and Picouleau proved in [18] that Induced Tree is NP-complete even
on planar bipartite cubic graphs of girth four, but solvable in polynomial time if
the girth of the graph is larger than the number of terminals. A few years later,
Derhy et al. [19] showed that four-in-a-tree is solvable in polynomial time on
triangle-free graphs, while Liu and Trotignon [35] proved that so is k-in-a-tree
on graphs of girth at least k; their combined results imply that k-in-a-tree
on graphs of girth at least k is solvable in polynomial time; it is important to
remark that the running time of the algorithm of Liu and Trotignon [35] has no
nf(k) term. In terms of the Induced Path problem, Derhy and Picouleau [18]
argued that their hardness reduction also applies to this problem and showed
that three-in-a-path is NP-complete even on graphs of maximum degree three.
Fiala et al. [24] proved that k-in-a-path, k-Induced Disjoint Paths, and k-
in-a-cycle can be solved in polynomial time on claw-free graphs for every fixed
k, but that Induced Path, Induced Disjoint Paths, and Induced Cycle

are NP-complete in fact, their positive results can be seen as XP algorithms for
the latter three problems when parameterized by the number of terminals on
claw-free graphs. Another related problem to Induced Tree is the well known
Steiner Tree problem, where we want to find a subtree of the input with cost at
most w connecting all terminals. Being one of Karp’s 21 NP-hard problems [31],
Steiner Tree has received a lot of attention over the decades. Relevant to
our discussion, however, is its parameterized complexity. When parameterized
by the number of terminals, it admits a single exponential time algorithm [22];
the same was proven to be true when treewidth [37] is the parameter [3]. On
the other hand, when parameterized by cliquewidth [16], it is paraNP-hard since
it is NP-hard even on cliques: we may reduce from Steiner Tree itself and
by replacing each non-edge with an edge of cost w + 1. As we see below, the
parameterized complexity of Steiner Tree and Induced Tree greatly differ.
Our Results. Given the hardness results for Induced Tree even on restricted
graph classes, we focus our study on the parameterized complexity of the prob-
lem. We begin by presenting some algorithmic results for Induced Tree in
Sect. 3, showing that the latter is W[1]-hard when simultaneously parameterized
by the number of vertices in the solution � and size of a minimum clique cover q
and, moreover, does not admit an no(�+q) time algorithm unless the Exponential
Time Hypothesis [30] (ETH) fails. On the positive side, we prove tractability
under cliquewidth using Courcelle’s Theorem [15], which prompts us, in Sect. 4,
to turn our attention to which parameters allow us to devise single exponential
time algorithms for Induced Tree. Using Bodlaender et al.’s dynamic pro-
gramming optimization machinery [3], we show that such algorithms exist under
treewidth, distance to cluster, and distance to co-cluster, all of which are widely
used in the literature [7,17,21,28,33,41] and were the smallest parameters for
which we managed to obtain such algorithms. We conclude the study of vertex
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cover-related parameters in Sect. 5, where we prove that the problem does not
admit a polynomial kernel when simultaneously parameterized by the size of
the solution, diameter, and distance to any non-trivial graph class, including the
class of independent sets; we also show no such kernel exists when parameteriz-
ing by bandwidth. All our negative kernelization results are obtained assuming
NP � coNP/poly. In the realm of structural parameters, a natural next step
would be to consider the max leaf number parameter. In Sect. 6 we do so by: (i)
showing that max leaf number and feedback edge set are equivalent parameteri-
zations for Induced Tree, and (ii) presenting a kernel with 16q vertices and 17q
edges when we parameterize by the size q of a minimum feedback edge set; aside
from our contribution we only know of one other problem for which kerneliza-
tion under feedback edge set was considered, namely the Edge Disjoint Paths

problem [27]. In terms of tractability and kernelization, our results encompass
most of the commonly employed parameters of Sorge and Weller’s graph param-
eter hierarchy [38]; we present a summary of our results in Fig. 1. To see why
the distance to solution parameter sits between vertex cover and feedback vertex
set, we refer to the end of Sect. 3. Missing proofs can be found in the full version
of the paper.

2 Preliminaries

We refer the reader to [17,25] for basic background on parameterized complexity,
and recall here only some basic definitions. A parameterized problem is a language
L ⊆ Σ∗ × N. For an instance I = (x, q) ∈ Σ∗ × N, q is called the parameter. A
parameterized problem is fixed-parameter tractable (FPT) if there exists an algo-
rithm A, a computable function f , and a constant c such that given an instance
(x, q), A correctly decides whether I ∈ L in time bounded by f(q) · |I|c; in this
case, A is called an FPT algorithm. A kernelization algorithm, or just kernel, for
a parameterized problem Π takes an instance (x, q) of the problem and, in time
polynomial in |x| + q, outputs an instance (x′, q′) such that |x′|, q′ � g(q) for
some function g, and (x, q) ∈ Π if and only if (x′, q′) ∈ Π. Function g is called
the size of the kernel and may be viewed as a measure of the “compressibil-
ity” of a problem using polynomial-time pre-processing rules. A kernel is called
polynomial (resp. quadratic, linear) if g(q) is a polynomial (resp. quadratic, lin-
ear) function in q. A breakthrough result of Bodlaender et al. [4] gave the first
framework for proving that some parameterized problems do not admit polyno-
mial kernels, by establishing so-called composition algorithms. Together with a
result of Fortnow and Santhanam [26], this allows to exclude polynomial kernels
under the assumption that NP � coNP/poly, otherwise implying a collapse of
the polynomial hierarchy to its third level [40].

All graphs in this work are finite and simple. We use standard graph theory
notation and nomenclature for our parameters; for any undefined terminology
in graph theory we refer to [6]. We denote the degree of vertex v on graph G by
degG(v), and the set of natural numbers {1, 2, . . . , t} by [t]. A graph is a cluster
graph if each of its connected components is a clique, while a co-cluster graph is
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Fig. 1. Hasse diagram of graph parameters and associated results for Induced Tree.
An edge from a lower parameter to a higher parameter indicates that the first is upper
bounded by the latter; we remark that the edge between “Distance to solution” and
“Vertex cover” exists when considering the reduction rule described in Sect. 3. Param-
eters surrounded by shaded ellipses have both single exponential time algorithms and
polynomial kernels. Solid boxes represent parameters under which the problem is FPT
but does not admit polynomial kernels; if the box is shaded, we have a single expo-
nential time algorithm for that parameterization. A single dashed box corresponds to
a W[1]-hard parameterization; double dashed boxes surround parameters under which
the problem is paraNP-hard. Aside from the paraNP-hardness for genus, max degree,
and distance to bipartite, all results are original contributions proposed in this work.

the complement of a cluster graph. The vertex deletion distance to cluster (co-
cluster) of a graph G, is the size of the smallest set U ⊆ V (G) such that G\U is
a cluster (co-cluster) graph; when discussing these parameters, we refer to them
simply as distance to cluster and distance to co-cluster. As defined in [8], a set
U ⊆ V (G) is an F-modulator of G if G\U belongs to the graph class F . When
the context is clear, we omit the qualifier F . For cluster and co-cluster graphs,
one can decide if G admits a modulator of size q in time FPT on q [7].

3 Fixed-Parameter Tractability and Intractability

While it has been known for some time that Induced Tree is NP-complete
even on planar bipartite cubic graphs, it is not known to be even in XP when
parameterized by the natural parameter: the number of terminals. We take a first
step with a negative result about this parameterization, ruling out the existence
of an FPT algorithm unless FPT = W[1]; in fact, we show this for stronger
parameterization: the maximum size of the induced tree that should contain the
set of k terminal vertices K and the size of a minimum clique cover.

Theorem 1. Induced Tree is W[1]-hard when simultaneously parameterized
by the number of vertices of the induced tree and size of a minimum clique cover.
Moreover, unless ETH fails, there is no no(k) time algorithm for Induced Tree.
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Since the natural parameters offer little to no hope of fixed-parameter
tractability, to obtain parameterized algorithms we turn our attention to the
broad class of structural parameters. Our first positive result is a direct applica-
tion of textbook MSO1 formulae. We remark that the edge-weighted version of
two-in-a-tree is strongly NP-complete [18].

Theorem 2. When parameterized by cliquewidth, Induced Tree can be solved
in FPT time. Moreover, the same holds true even for the edge-weighted version
of Induced Tree where we want to minimize the weight of the tree.

Towards showing that the minimum number of vertices we must delete to
obtain a solution sits between feedback vertex set and vertex cover in Fig. 1,
let S ⊂ V (G) be such that G\S is a solution. First, note that S is a feedback
vertex set of G; for the other inequality, take a vertex cover C of G and note that
placing two vertices of G\C with the same neighborhood in C either generates
a cycle in the solution or only one of them suffices – even if we have many
terminals, we need to keep only two of them – so |S| ≤ |C| + 2|C|+1. In terms of
paraNP-hardness results, we can easily show that Induced Tree is paraNP-hard
when parameterized by bisection width1: to reduce from the problem to itself, we
pick any terminal of the input and append to it a path with as many vertices as
the original graph to obtain a graph with bisection width one. Similarly, when
parameterizing by the size of a minimum dominating set and again reducing
from Induced Tree to itself, we add a new terminal adjacent to any vertex of
K and a universal vertex, which can never be part of the solution since it forms
a triangle with the new terminal and its neighbor.

4 Single Exponential Time Algorithms

All results in this section rely on the rank based approach of Bodlaender et al.
[3]. Even though our problem is unweighted, we found it convenient to solve the
slightly more general weighted problem below when parameterizing Induced

Tree by treewidth [37].

Light Connecting Induced Subgraph

Instance: A graph G, a set of k terminals K ⊆ V (G), and two integers �, f .
Question: Is there a connected induced subgraph of G on � + k vertices and
at most f edges that contains K?

Note that an instance (G,K) of Induced Tree is positive if and only if
there is some integer � where the Light Connecting Induced Subgraph

instance (G,K, �, � + k − 1) is positive. Our goal is to use the number of edges
in the solution to Light Connecting Induced Subgraph as the cost of a
1 The width of a bipartition (A,B) of V (G) is the number of edges between the parts.
The bisection width of G is equal to the minimum width among all bipartitions of
V (G) where |A| ≤ |B| ≤ |A| + 1.
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partial solution in a dynamic programming algorithm. This shall be particularly
useful for join nodes during our treewidth algorithm, as we may resort to the
optimality of the solution to guarantee that the resulting induced subgraph of
a join operation is acyclic. As usual, we assume that we are given a nice tree
decomposition [17] in the input to our algorithm.

Theorem 3. There is an algorithm for Light Connecting Induced Sub-

graph that, given a nice tree decomposition of width t of the n-vertex input
graph G, runs in time 2O(t)nO(1).

Corollary 1. There is an algorithm for Induced Tree that, given a nice tree
decomposition of width t of the n-vertex input graph G, runs in time 2O(t)nO(1).

We also use the framework of Bodlaender et al. [3] for the next two results.
For Theorem 4, we observe that a clique may have at most two vertices in any
solution to Induced Tree. For Theorem 5, observe that at most two parts of
a complete multipartite subgraph may intersect the solution and, if this is the
case, one part has at most one vertex, otherwise we would have an induced C4.

Theorem 4. There is an algorithm for Induced Tree that runs in time
2O(q)nO(1) on graphs with distance to cluster at most q.

Theorem 5. There is an algorithm for Induced Tree that runs in time
2O(q)nO(1) where q is the distance to co-cluster.

5 Kernelization Lower Bounds

In this section, we apply the cross-composition framework of Bodlaender et al. [5]
to show that, unless NP ⊆ coNP/poly, Induced Tree does not admit a polyno-
mial kernel under bandwidth2, nor when parameterized by the distance to any
graph class with at least one member with t vertices for each integer t, which
we collectively call non-trivial classes. We say that an NP-hard problem R OR-
cross-composes into a parameterized problem L if, given t instances {y1, . . . , yt}
of R, we can construct, in time polynomial in

∑
i∈[t] |yi|, an instance (x, k) of L

that satisfies k ≤ p(maxi∈[t] |yi| + log t) for some polynomial p(·) and admits a
solution if and only if at least one instance yi of R admits a solution; we say that
R AND-cross-composes into L if the first two conditions hold but (x, k) has a
solution if and only if all t instances of R admit a solution. We prove Theorem 6
using an AND-cross-composition from Induced Tree to itself. In our proof of
Theorem 7 and Corollary 2, we exhibit an OR-cross-composition from Hamil-

tonian Path to Induced Tree; as pointed by one of the reviewers, however,
Corollary 2 is also a consequence of Theorem 1 and the fact that Multicol-

ored Independent Set has no polynomial kernel when parameterized by the
sum of the size of all but the largest color class [29].
2 A layout of G is a bijection f : V (G) �→ [n]; the width of f is given by
maxuv∈E(G) |f(u) − f(v)|. The bandwidth of G is equal to the width of a minimum-
width layout.
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Theorem 6. When parameterized by bandwidth, Induced Tree does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Theorem 7. Induced Tree does not admit a polynomial kernel when param-
eterized by the number of vertices of the induced tree, and size of a minimum
vertex cover unless NP ⊆ coNP/poly.

Corollary 2. For every non-trivial graph class G, Induced Tree does not
admit a polynomial kernel when parameterized by the number of vertices of the
induced tree and size of a minimum G-modulator unless NP ⊆ coNP/poly.

6 A Linear Kernel for Feedback Edge Set

In this section, we prove that Induced Tree admits a linear kernel when param-
eterized by the size q of a minimum feedback edge set. Throughout this section,
we denote our input graph by G, the set of terminals by K, and the tree obtained
by removing the edges of a minimum size feedback edge set F by T (F ). Note
that, if G is connected and F is of minimum size, G\F is a tree; we may safely
assume the first, otherwise we either have that (G,K) is a negative instance if
K is spread across multiple connected components of G, or there must be some
edge of F that merges two connected components of G\F and does not create
a cycle, contradicting the minimality of F . The algorithm we describe takes as
input a graph G and feedback edge set F and works in two steps: (i) it normalizes
F into a feedback edge set that has a small number of edges incident to vertices
of degree two in T (F ), then (ii) compresses long induced paths of G; we believe
that (i) may be of independent interest to the community. We denote the set of
leaves of a tree H by leaves (H).

Reduction Rule 1. If G has a vertex v of degree one, remove v and, if v ∈ K,
add the unique neighbor of v in G to K.

Proof of Safeness of Rule 1. Safeness follows from the fact that a degree one
vertex is in the solution if and only if its unique neighbor also is. ��
Observation 1. After exhaustively applying Rule 1, for every minimum feed-
back edge set F of G, T (F ) has at most 2q leaves. Moreover, T (F ) has at most
as many vertices of degree at least three as leaves.

We begin with any minimum feedback edge set F of G. We partition
T (F )\leaves (T (F )) into (D2,D∗) according to the degree of the vertices of G in
T (F ): v ∈ D2 if and only if degT (F )(v) = 2. For u, v, f ∈ V (G), we say that u
F -links v to f if v = u or if T (F )\{u} has no v−f path. We say that vertices u, f
are an F -pair if the set of internal vertices of the unique u − f path PF (u, f)
of T (F ) is entirely contained in D2; we denote the set of internal vertices by
P ∗

F (u, f).
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Normalization Rule 2. Let u, f, w1, w2 ∈ V (G) be such that u, f form an F -
pair, w1 	= w2 	= u 	= w1, w2 is the unique neighbor of f that F -links it to u and
w1 F -links w2 to u. If fw1 ∈ F , remove edge fw1 from F and add edge fw2 to
F .

Proof of Safeness of Rule 2. Let F ′ = F\{fw1} and note that w2 F -links f to
w1; as such, edge fw2 is in the unique cycle of G\F ′, so F ′′ = F ′ ∪ {fw2} is
a feedback edge set of G of size q. Furthermore, w2 is the only vertex that has
fewer neighbors in T (F ′′) than in T (F ); since w2 had two neighbors in T (F ),
and F ′′ is a minimum feedback edge set of G, w2 is a leaf of T (F ′′), so it holds
that leaves (T (F )) ⊂ leaves (T (F ′′)). ��

Normalization Rule 2 guarantees that there are no edges in F between ver-
tices of the paths between F -pairs, otherwise |leaves (T (F )) | would not be max-
imal.

Normalization Rule 3. Let f, u, v ∈ V (G) be such that v /∈ leaves (T (F )) ∪
PF (u, f), u, f form an F -pair, and |PF (u, f)| ≥ 4. If there are adjacent vertices
w1, w2 ∈ P ∗

F (u, f) with vw1 ∈ F and w2 F -linking v and w1, remove edge vw1

from F and add edge w1w2 to F .

Proof of Safeness of Rule 3. Let F ′ = F\{w1w2}. Since G\F ′ has one more edge
than T (F ) and w2 F -links v and w (see Figure 2), the unique cycle of G\F ′

contains edge w1w2, so F ′′ = F ′ ∪ {vw1} is a feedback edge set of G of size q.
Since neither v nor w are leaves of T (F ) and w2 ∈ D2, degT (F ′′)(w2) = 1, so it
holds that |leaves (T (F )) | < |leaves (T (F ′′)) |. ��

w1w2

fvu

D2

D∗

Fig. 2. Example for Normalization Rule 3, where the thick edge vw1 is removed from
F and the dotted edge w1w2 added to F .

Note that, in Normalization Rule 3, the only properties that we exploit are
that v, w1, w2 /∈ leaves (T (F )) and that there is at least one pair of vertices
between v and f in D2. So even if v = u, u ∈ D2, or f ∈ leaves (T (F )), we can
apply Rule 3. Essentially, if Rule 3 is not applicable, for each edge e ∈ F that
contains a vertex w1 of D2 as an endpoint, either e has a leaf of T (F ) as its
other endpoint, or w1 is adjacent to two vertices not in D2.

Normalization Rule 4. Let f, u, v, z, w2 ∈ V (G) be such that v ∈
leaves ((T (F )) \{f}, w2 ∈ D2 is the unique neighbor of v in T (F ), u, f and
z, v are F -pairs, and u F -links f to z. If there is some w1 ∈ P ∗

F (u, f) with
vw1 ∈ F , remove vw2 from F and add vw1.



FPT and Kernelization Algorithms for the Induced Tree Problem 167

Proof of Safeness of Rule 4. Let F ′ = F\{vw1}. Since T (F ) is a tree and w2 F -
links w1 and v, edge vw2 is contained in the unique cycle of G\F ′; consequently,
F ′′ = F ′ ∪ {vw2} is a feedback edge set of G of size q, but it holds that the
degrees of v and w2 in T (F ′′) are equal to one. Since w2 /∈ leaves (T (F )), we
have that leaves (T (F )) ⊂ leaves (T (F ′′)). ��

Our analysis for Rule 4 works even if u = z or z = w2: what is truly crucial
is that w2 ∈ D2 and that v 	= f . We present an example of the general case in
Fig. 3.

w1w2

fvuz

D2

D∗ leaves (T (F ))

Fig. 3. Example for Normalization Rule 4, where the thick edge vw1 is removed from
F and the dotted edge vw2 is added to F .

Normalization Rule 5. Let f, u, v, z, w2, w3 ∈ V (G) be such that v ∈
leaves ((T (F )), w3 ∈ NT (F )(u) ∩ PF (u, f), w2w3, vz ∈ E(T (F )), u, f is an F -
pair, z ∈ D∗, and u F -links f to v. If v is adjacent to some w1 ∈ PF (u, f)\{w2}
that F -links w2 to f , remove vw1 from F and add w2w3 to F .

Proof of Safeness of Rule 5. Let F ′ = F\{vw3}. Since w1 F -links w2 to f , we
have that w2 F -links w1 to v, so edge w2w3 belongs to the unique cycle of G\F ′

and, consequently, F ′′ = F ′ ∪{w2w3} is a feedback edge set of G of size q. Since
degT (F )(w3) = degT (F )(w2) = 2, degT (F ′′)(w3) = degT (F ′′)(w2) = 1, however,
v is adjacent to both z and w1 in T (F ′′), so it holds that leaves (T (F ′′)) =
leaves (T (F )) ∪ {w2, w3}\{v}. ��

We present an example of Normalization Rule 5 in Fig. 4. Our next lemma
guarantees that the exhaustive application of rules 2 through 5 finds a set of
paths in T (F ) that have many vertices of degree two in G; essentially, at this
point, we are done minimizing the number of incident edges to vertices of D2.

Lemma 1. Let a, b ∈ V (G) be an F -pair such that a, b /∈ D2, |P ∗
F (a, b)| ≥ 5,

and let w be one of its inner vertices at distance at least three from both a and
b. If none of the Rules 2 to 5 are applicable, then degG(w) = degT (F )(w).

At this point, paths between F -pairs are mostly the same as in G: only the
two vertices closest to each endpoint may be adjacent to some leaves of T (F ),
while all others have degree two in G. We say that u, f are a strict F -pair if for
every w ∈ P ∗

F (u, f), degG(w) = 2.
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w1w2w3

fvzu

D2

D∗ leaves (T (F ))

Fig. 4. Example for Normalization Rule 5, where the dotted edge w2w3 is added to F
and the thick edge vw1 is removed from F .

Reduction Rule 6. Let u, f ∈ V (G) be a strict F -pair. If there are adjacent
vertices w1, w2 ∈ P ∗

F (u, f) such that either w1, w2 ∈ K or w1, w2 /∈ K, add a
new vertex w∗ to G that is adjacent to NG(w1) ∪ NG(w2)\{w1, w2} and remove
both w1, w2 from G. If w1, w2 ∈ K, set w∗ as a terminal vertex.

Proof of Safeness of Rule 6. Correctness follows directly from the hypotheses
that w1 ∈ K if and only if w2 ∈ K and that both are degree two vertices. So,
in a minimal solution H to (G,K), either both vertices are in H or neither is in
H. For the converse, any minimal solution H ′ to the reduced instance (G′,K ′)
either has w∗, in which H is obtained by replacing w∗ with both w1 and w2, or
w∗ /∈ V (H), in which case H ′ is a solution to (G,K). ��
Reduction Rule 7. Let u, f ∈ V (G) be a strict F -pair such that |P ∗

F (u, f)| ≥
4. If Rule 6 is not applicable, replace P ∗

F (u, f) with three vertices a, t, b so that a
is adjacent to u, b to f , t to both a and b, and t is a terminal of the new graph.

Proof of Safeness of Rule 7. Let G′ and K ′ be, respectively, the graph and set
of terminals obtained after the application of the rule. Suppose H is a minimal
solution to the Induced Tree instance (G,K), i.e. every vertex of H is con-
tained in a path between two terminals. Note that, if P ∗

F (u, f)∩V (H) = ∅, H is
also a solution to the instance (G′,K ′); as such, for the remainder of this para-
graph, we may assume w.l.o.g. that P ∗

F (u, f) ∩ V (H) 	= ∅ and that u ∈ V (H).
If PF (u, f)\{u} � V (H), H ′ = H ∪ {a, t}\P ∗

F (u, f) is a solution to (G′,K ′):
since at least one vertex of PF (u, f) is not in V (H) and every w ∈ P ∗

F (u, f)
has degree two in G, the subpaths of PF (u, f) in H are used solely for the col-
lection of terminal vertices of PF (u, f); consequently, H ′ is an induced tree of
G′ that contains all elements of K ′. On the other hand, if PF (u, f) ⊆ V (H),
H ′ = H ∪ {a, t, b}\P ∗

F (u, f) is a solution to (G′,K ′); to see that this is the case,
note that H\P ∗

F (u, f) is a forest with exactly two trees where u and f are in
different connected components since PF (u, f) is the unique path between them
in H, and K ′ ⊆ V (H ′) since P ∗

F ⊆ V (H) and K\P ∗
F (u, f) ⊆ V (H)\P ∗

F (u, f).
For the converse, let H ′ be a minimal solution to (G′,K ′). If {a, t, b} ⊆ V (H ′),

H = H ′ ∪ {P ∗
F (u, f)}\{a, t, b} is a solution of (G,K), as we are replacing one

path consisting solely of degree two vertices with another that satisfies the same
property. If a ∈ V (H ′) but b /∈ V (H ′), then t ∈ K ′ (recall that H ′ is minimal)
and u ∈ V (H), implying that there is at least one terminal vertex in P ∗

F (u, f).
We branch our analysis in the following subcases, where v ∈ P ∗

F (u, f) ∩ NG(f):
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– If v /∈ K, then H = H ′ ∪ P ∗
F (u, f)\{v} \ {a, t} is a solution to (G,K): all

terminals of P ∗
F (u, f) are contained in P ∗

F (u, v) and no cycle is generated
since all vertices of the path P ∗

F (u, v) have degree two.
– If v ∈ K but f /∈ V (H ′), H = H ′ ∪P ∗

F (u, f)\{a, t} is a solution to (G,K): we
cannot create any new cycle since f /∈ V (H) and u, f form a strict F -pair,
moreover all terminals of P ∗

F (u, f) are contained in H.
– If v ∈ K and f ∈ V (H ′), there is at least one non-terminal vertex w ∈

P ∗
F (u, v) since Rule 6 is not applicable to PF (u, f). As such, we set H =

H ′ ∪ P ∗
F (u,w) ∪ P ∗

F (w, f)\{a, t} and obtain a solution to (G,K).

Finally, if {a, t, b} ∩ V (H ′) = ∅, it follows immediately from the assumption
that H ′ is a solution to (G′,K ′) that H ′ is also a solution to (G,K). Note that
P ∗

F (u, f) ∩ K 	= ∅ since |P ∗
F (u, f)| ≥ 4 and Rule 6 is not applicable. ��

We are now ready to state our kernelization theorem.

Theorem 8. When parameterized by the size q of a feedback edge set, Induced
Tree admits a kernel with 16q vertices and 17q edges that can be computed in
O(

q2 + qn
)
time.

7 Concluding Remarks

In this work, we performed an extensive study of the parameterized complexity
of Induced Tree and the existence of polynomial kernels for the problem, moti-
vated by the relevance of three-in-a-tree in subgraph detection algorithms
and related work on Induced Tree itself, specially the question on the com-
plexity of four-in-a-tree posed by Derhy and Picouleau [18]. We presented
multiple positive and negative results for Induced Tree, of which we highlight
its W[1]-hardness under the natural parameter, the linear kernel under feedback
edge set, and the nonexistence of a polynomial kernel under vertex cover/distance
to clique. The main question about the complexity of k-in-a-tree for fixed k,
however, remains open; our hardness result showed that there is no no(k) time
algorithm under the ETH, but no XP algorithm is known to exist. There are
also no known running time lower bounds for the parameters we study, and
determining whether or not we can obtain 2o(q)nO(1) time algorithms seems a
feasible research direction; still in terms of algorithmic results, it would be quite
interesting to see how we can avoid Courcelle’s Theorem to get an algorithm
when parameterizing by cliquewidth. The natural investigation of k-in-a-tree
on different graph classes may provide some insights on how to tackle particular
cases, such as four-in-a-tree; this study has already been started in [20] and
in others – such as cographs – may even be trivial, but many other cases may
be quite challenging and much still remains to be done.
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41. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure
of the input graph. Discrete Appl. Math. 231, 78–94 (2017). Algorithmic Graph
Theory on the Adriatic Coast. https://doi.org/10.1016/j.dam.2016.11.016. http://
www.sciencedirect.com/science/article/pii/S0166218X1630539X

https://doi.org/10.1145/3357713.3384235
https://doi.org/10.1016/j.dam.2010.06.005
https://doi.org/10.1016/j.dam.2010.06.005
http://www.sciencedirect.com/science/article/pii/S0166218X10002131
https://doi.org/10.1016/j.dam.2008.07.011
https://doi.org/10.1016/j.dam.2008.07.011
http://www.sciencedirect.com/science/article/pii/S0166218X08003211
http://www.sciencedirect.com/science/article/pii/S0166218X08003211
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
http://www.sciencedirect.com/science/article/pii/0196677486900234
https://doi.org/10.1002/jgt.20405
https://doi.org/10.1002/jgt.20405
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20405
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20405
http://arxiv.org/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.20405
https://doi.org/10.1016/0304-3975(83)90020-8
https://doi.org/10.1016/0304-3975(83)90020-8
http://www.sciencedirect.com/science/article/pii/0304397583900208
https://doi.org/10.1016/j.dam.2016.11.016
http://www.sciencedirect.com/science/article/pii/S0166218X1630539X
http://www.sciencedirect.com/science/article/pii/S0166218X1630539X


The Multi-budget Maximum Weighted
Coverage Problem

Francesco Cellinese1(B), Gianlorenzo D’Angelo1, Gianpiero Monaco2,
and Yllka Velaj3

1 Gran Sasso Science Institute, L’Aquila, Italy
{francesco.cellinese,gianlorenzo.dangelo}@gssi.it

2 University of L’Aquila, L’Aquila, Italy
gianpiero.monaco@univaq.it

3 University of Vienna, Vienna, Austria
yllka.velaj@univie.ac.at

Abstract. In this paper we consider the multi-budget maximum
weighted coverage problem, a generalization of the classical maximum
coverage problem, where we are given k budgets, a set X of elements,
and a set S of bins where any S ∈ S is a subset of elements of X. Each
bin S has its own cost, and each element its own weight. An outcome
is a vector O = (O1, . . . , Ok) where each budget bi, for i = 1, . . . , k, can
be used to buy a subset of bins Oi ⊆ S of overall cost at most bi. The
objective is to maximize the total weight which is defined as the sum of
the weights of the elements bought with the budgets.

We consider the classical combinatorial optimization problem of com-
puting an outcome which maximizes the total weight and provide a(
1 − 1√

e

)
-approximation algorithm for the case when the maximum cost

of a bin is upper-bounded by the minimum budget, i.e. the case in which
each budget can be used to buy any bin. Moreover, we give a random-
ized Monte-Carlo algorithm for the general case that runs in polynomial
time, satisfies the budget constraints in expectation, and guarantees an
expected 1 − 1

e
approximation factor.

Keywords: Multi-Budget Coverage · Maximum Coverage ·
Approximation Algorithms

1 Introduction

Numerous problems with real-world applications in job scheduling, facility loca-
tions and resource allocations can be modeled through the classical maximum
coverage problem [16, Ch. 3]. In this problem we are given a ground set X, a col-
lection S of subsets of X with unit cost, and a budget k and the goal is selecting
a sub-collection S′ ⊆ S, such that |S′| ≤ k, and the number of elements of X
covered by S′ is maximized. Motivated by the fact that applications in complex
systems such as the Internet have spawned a recent interest in studying situations
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involving multiple entities with different budgets, in this paper we consider the
Multi-budget Maximum Weighted Coverage problem (MMWC), which is defined
as follows. We are given a set X of n elements, and a set S of m bins, where
any S ∈ S is a subset of elements of X (i.e. S ⊆ X). Each bin S has a cost that
we denote as cS ∈ R

+, and each element x ∈ X has a weight that we denote
as ux ∈ R

+. We are also given a set of k budgets B = {b1, . . . , bk} such that
bi > 0 for i = 1, . . . , k (sometimes, when it is clear from the context that we
refer to a budget, we denote it with i instead of bi). An outcome of the problem
is a vector O = (O1, . . . , Ok) where, for any budget i = 1, . . . , k, Oi ⊆ S and∑

S∈Oi
cS ≤ bi. That is, each budget bi can be used to buy a subset of elements

of S which overall cost is at most bi (sometimes, we say that a bin is assigned
to or covered by a budget meaning that it is bought using that budget).

We denote with Ci(O) =
⋃

S∈Oi
S the set of elements covered by budget bi in

the outcome O, and with C(O) =
⋃

bi∈B Ci(O) the overall set of elements covered
by the budgets in O. The total weight of an outcome O is defined as the sum of
the weights of the covered elements, i.e., R(O) =

∑
x∈C(O) ux. We consider the

classical combinatorial optimization problem of computing an outcome which
maximizes the total weight. Even if the model allows two budgets to be used for
buying the same bin, we can assume, without loss of generality, that each bin
is bought by at most one budget. Indeed, for any solution that does not satisfy
this condition it is possible to define another solution that satisfies it and that
does not decrease the value of the objective function. We notice that, when costs
are constant and k = 1, the MMWC is exactly the maximum coverage problem.

The importance of our problem is underlined by the attention that variants
of the classical coverage problem have attracted in the past years.

A greedy 1− 1
e approximation algorithm for the classical maximum coverage

problem (MC) has been proposed in [23], and such result is tight [10]. A 5
6

approximation algorithm has been showed in [3] for the case when each set
in S has size at most three. The budgeted maximum coverage problem is a
generalization of MC in which the subsets in S are associated with costs and
the aim is to find a sub-collection S′ ⊆ S that maximizes the number of covered
elements and whose overall cost does not exceed k. An algorithm that guarantees
a 1 − 1

e approximation factor for this case has been proposed in [19]. In [4] the
authors consider a generalization of MC, where we are given a ground set of
elements and a set of bins. Each bin has its own cost and the cost of each
element depends on its associated bin. The goal is to find a subset of elements
along with an associated set of bins, such that the overall cost is at most a given
budget, and the profit, measured by a monotone submodular function over the
elements, is maximized.

In the generalized maximum coverage problem we are given a budget L, a set
of elements X, and a collections of bins B. Each element x has a positive utility
P (b, x) and a non negative weight W (b, x) associated to each bin b. Also each
bin has a weight. The goal is to find a subset of elements and bins where each
element is associated to a bin such that the total weight is at most L and the
overall utility is maximized. In [8] the authors present a 1− 1

e − ε approximation
algorithm for the problem.
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Our Results. We first notice that, since our problem generalizes the classical
maximum coverage problem, the hardness result of 1 − 1

e for the maximum cov-
erage problem proved in [10] also holds in our case. We provide a deterministic
approximation algorithm for the case in which the maximum cost of a bin is
upper-bounded by the minimum available budget, i.e. the case in which each
budget can be used to buy any bin. The algorithm guarantees an approximation
factor of 1− 1√

e
. Moreover, we provide a randomized Monte-Carlo algorithm for

the general case that runs in polynomial time, satisfies the budget constraints
in expectation, and guarantees an expected 1 − 1

e approximation factor.

Further Related Work. The different budgets can represent different agents
who are allowed to spend part of the whole budget. Our problem can capture this
scenario, therefore in the following we review the literature related to coverage
problems with multiple agents.

A relevant setting was first presented in [14]. The authors study a class of
combinatorial problems with multi-agent submodular cost functions where we
are given a set of elements X and a collection C ⊆ 2X . We are also given k agents,
where each agent i specifies a normalized monotone submodular cost function
fi : 2X → R

+. The goal is to find a set S ∈ C and a partition S1, . . . , Sk of S
such that

∑
i fi(Si) is minimized. By fixing the collection C to any particular

combinatorial structure, the authors define a subclass of fundamental optimiza-
tion problems: vertex cover, shortest path, perfect matching and spanning tree.
They give upper and lower bounds for all these problems. These results are then
extended in [15] and in [24]. We note that the problem considered here is dif-
ferent from these previous works. In fact, in our setting, agents have budget
constraints to satisfy. Moreover, we have bins and a single element can belong
to more than one bin. Finally, we are interested in maximizing the sum of the
weights of the covered elements.

Chekuri and Kumar in [6] introduce a variant of the maximum coverage
problem called maximum coverage with group budget constraints (MCG). In
this problem we are given a collection of sets S = {S1, . . . , Sn} where each set Si

is a subset of a given ground set X. The collection S is partitioned into groups
G1, . . . , Gl. In MCG the goal is to pick k sets from S in order to maximize the
cardinality of their union, with the additional constraint of picking at least one
set from each group. For this setting the authors provide a 1

2 -approximation
algorithm. Even if this is not a paper about multi-agent settings, MCG can
model a variety of multi-agent problems related to coverage. The authors also
present a cost version of the problem where each set Si has an associated cost
c(Si), there is a budget Bj for each group Gj , and an overall budget B. In the
cost version the goal is to maximize the cardinality of the union of the selected
sets, respecting also the budget constraints: the total cost of the sets selected in
each group cannot exceed the group’s budget and the overall cost of the selected
sets cannot exceed B. The authors give a 1

12 -approximation algorithm for the
cost version of the problem. This factor was improved to 1

5 by Farbstein and
Levin [9]. We notice that our problem can be reduced to the cost version of



176 F. Cellinese et al.

MCG, however, the reduction would create instances where the groups are not
disjoint. As shown in [9], if the groups are not disjoint, the MCG problem cannot
be approximated within any constant factor.

Another interesting setting was presented in [5]. The authors consider the
maximum budgeted allocation problem where we are given a set of indivisible
items and agents. Each agent i is willing to pay bij on item j and has a budget
bi. The goal is to allocate items to agents to maximize the revenue, that is, the
sum, over all the agents, of the price for the items she bought. The main results
described in the paper are: a 3

4 -approximation algorithm that exploits a natural
LP relaxation of the problem, and a 15

16 hardness of approximation result. We
notice that our problem differs from the one considered in this work. In fact, in
our setting, we have bins and a single element can belong to more than one bin.
Moreover, we have costs for the bins and weights for the elements.

A further relevant work with multiple agents is [27] that considers the sub-
modular welfare problem: m items are to be distributed among n agents with
utility functions wi : 2[m] → R

+. Assuming that agent i receives a set of items Si,
the goal is to maximize the total utility

∑n
i=1 wi(Si). In this paper, the authors

work in the value oracle model where the only access to the utility functions
is through a black box returning wi(S) for a given set S. They develop a ran-
domized continuous greedy algorithm which achieves a

(
1 − 1

e

)
-approximation

for their problem in the value oracle model. Our problem is different because we
have bins with their own costs, a single element can belong to more than one
bin, and agents have a budget constraint to satisfy.

The last relevant setting that we mention which is related to multiple agents
maximum coverage problems is the general covering problem. We are given a
set of elements X where each x ∈ X is associated to a positive integer weight.
Moreover, we are given n collections S1, . . . , Sn of subsets of X where Si ⊂ 2X

is a subset of the power-set of the elements. The goal is to choose one subset si

from each collection Si such that their union ∪i∈[n]Si has maximum total weight.
In [13] the authors consider the general covering problem where the choice in
each collection is made by an independent agent. For covering an element, the
agents receive a revenue defined by a non-increasing revenue sharing function.
This function defines the fraction that each covering agent receives from the
elements. They study how to define a revenue sharing function such that every
Nash equilibrium approximates the optimal solution by a factor of 1 − 1

e . They
also show a centralized 1 − 1

e approximation algorithm for the general covering
problem. We notice that our MMWC can be modeled by the general covering
problem. Indeed, for each agent i, Si can be defined as the different subsets of
elements that can be covered by using budgets bi. However, notice that Si can
be exponential in |X|, which implies that the centralized algorithm proposed in
[13] is not polynomial in our setting.

Another important research topic is the maximization of submodular set
function: given a set of elements and a monotone submodular function, the goal
is to find the subset of elements that gives the maximum value, subjected to some
constraints. The case when the subset of elements must be an independent set of
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the matroid over the set of elements has been considered in [2], where the authors
show an optimal randomized

(
1 − 1

e

)
-approximation algorithm. A simpler algo-

rithm has been proposed in [12]. The case of multiple k matroid constraints
has been considered in [21], a 1

k+ε -approximation is given. An improved result
appeared in [28]. Unconstrained non-monotone submodular maximization, has
been considered in [1,11]. In the submodular set function subject to a knapsack
constraint maximization problem we have a cost c(x) for any element x ∈ X,
and the goal is selecting a set X ′ ⊆ X of elements that maximizes f(X ′), where
f is a monotone submodular function subject to the constraint that the sum of
the costs of the selected elements is at most k. This problem admits a polyno-
mial time algorithm that is

(
1 − 1

e

)
-approximation [26]. In [20] the authors focus

on multiple knapsack constraints: Given a d-dimensional budget vector L, for
some d ≥ 1, and an oracle for a non-decreasing submodular set function f over
a universe U , where each element e ∈ U is associated with a d-dimensional cost
vector, we seek a subset of elements S ⊆ U whose total cost is at most L, such
that f(S) is maximized.

In [7], the authors give a general framework that can be applied to the max-
imization of monotone and non-monotone submodular functions subject to the
intersection of several independence constraints, including knapsack, matroid,
and packing constraints. Their approach is based on approximately maximizing
the multilinear extension of the submodular objective function and then round
a fractional solution by means of suitable contention resolution schemes that
depend on the type of constraints.

A different setting called submodular cost submodular knapsack was con-
sidered in [18]: given a set of elements V = {1, 2, . . . , n}, two monotone non-
decreasing submodular functions g and f (f, g : 2V → R), and a budget b, the
goal is to find a set of elements X ⊆ V that maximizes the value g(X) under
the constraint that f(X) ≤ b. The authors show that the problem cannot be
approximated within any constant bound, give a 1/n approximation algorithm,
and mainly focus on bi-criterion approximation.

In [25], the authors consider the setting of multivariate submodular optimiza-
tion, where the argument of the function is a disjoint union of sets. They provide
a α

(
1 − 1

e

)
(resp. α ·0.385) for the maximization problem in the monotone (resp.

non-monotone) case, where α is the approximation ratio for a multilinear for-
mulation of the submodular maximization problem.

A last work that is worth mentioning is [22] where the authors consider a
class of games, called distributed welfare games, that can be utilized to model
the game theoretical version of the MMWC.

2 Single-Budget Case

The single-budget case corresponds to the budgeted maximum coverage problem
for which an algorithm that guarantees a 1 − 1

e approximation factor has been
proposed in [19]. The problem generalizes the maximum coverage problem which
is known to be NP -hard to approximate to within a factor greater than 1 − 1

e ,
therefore the algorithm in [19] is optimal from the approximation point of view.
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Algorithm 1: Greedy algorithm for single-budget case.
Input : S, X, b1

1 O1 := ∅; X ′ := X; S ′ := S;
2 repeat

3 Select S′ ∈ S that maximizes
∑

x∈S′∩X′ ux

cS′ ;

4 if cS′ +
∑

S∈O1
cS ≤ b1 then

5 O1 := O1 ∪ {S′};
6 X ′ := X ′ \ S′;

7 S ′ := S ′ \ {S′}
8 until S ′ = ∅;
9 return O = (O1);

In [19] the authors first notice that a natural greedy algorithm does not
guarantee any bounded approximation factor; then they show that the algorithm
which returns the maximum between the greedy solution and the single best bin
achieves an approximation factor of 1− 1√

e
; moreover, they provide an algorithm

which improves the approximation factor to 1 − 1
e by first guessing three bins

that are contained in an optimal solution, and then completing the solution with
the greedy algorithm.

In the following we describe the greedy algorithm and show a property that
will be used in the next section to prove an approximation bound on the multi-
budget case. The pseudo-code is reported in Algorithm 1. The algorithm starts
with an empty solution O1 and, at each iteration selects the bin S′ that maxi-
mizes the ratio between the weight of the elements in S′ that are not yet covered
and the cost of S′ (line 3). If the sum of the cost of S′ and that of the solu-
tion computed so far does not exceed the budget b1, then S′ is added to O1

(lines 4–5).
Let O∗ be an optimal solution. Let h be the number of iterations of Algo-

rithm 1 until the first bin is not added to O1 because it violates the budget
constraint (i.e. either h + 1 is the first iteration in which the condition at line 4
is not satisfied, or all the bins in S are added to O1). For each j = 1, . . . , h, let
Sj be the bin selected at iteration j and Oj

1 be the set of bins O1 computed at
the end of iteration j. The next lemma is used in [19] to show the approximation
ratio of Algorithm 1.

Lemma 1. [19] For each j = 1, . . . , h, the following holds:

R(Oj
1) ≥

[

1 −
j∏

�=1

(

1 − cS�

b1

)]

R(O∗).

The following proposition will be used in the next section to prove an approx-
imation guarantee in the multi-budget case.
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Algorithm 2: Algorithm for the case cmax ≤ bmin.
Input : S, X,B

1 Run Algorithm 1 with input (S, X,
∑k

i=1 bi);
2 Let O′

1 = {S1, . . . , Sg} be the output of Algorithm 1, where Sj is the bin chosen
at iteration j, for j = 1, . . . , g;

3 Oi := ∅, for each i = 1, . . . , k;
4 for j = 1, . . . , g do
5 if There exists an index i ≤ k such that cSj +

∑
S∈Oi

cS ≤ bi then

6 Let i be the smallest index such that cSj +
∑

S∈Oi
cS ≤ bi;

7 Oi := Oi ∪ {Sj};
8 return O = (O1, . . . , Ok);

Proposition 1. Let O∗ be an optimal solution for the single-budget case and
let α ∈ [0, 1]. For each j = 1, . . . , h, if the budget spent by iteration j is at least
αb1, then R(Oj

1) ≥ (
1 − 1

eα

)
R(O∗).

Proof. By hypothesis,
∑

S∈Oj
1
cS ≥ αb1. Then, by Lemma 1, we have:

R(O) ≥
[

1 −
j∏

�=1

(

1 − cS�

b1

)]

R(O∗) ≥
[

1 −
j∏

�=1

(

1 − αcS�∑
S∈Oj

1
cS

)]

R(O∗)

≥
[

1 −
(

1 − α

j

)j
]

R(O∗) ≥
(

1 − 1
eα

)

R(O∗),

where the last two inequalities are due to the following observation (see [4]):
For a sequence of numbers a1, . . . , an such that

∑n
�=1 a� = A, the function[

1 − ∏n
�=1

(
1 − a�·α

A

)]
achieves its minimum when a� = A

n and
[

1 −
n∏

�=1

(
1 − a� · α

A

)
]

≥ 1 −
(
1 − α

n

)n

≥ 1 − e−α.

	


3 Smallest Budget Greater Than or Equal to the Highest
Cost

In this section, we consider the multi-budget case (where we suppose that k ≥ 2)
in which all the budgets are large enough to be used to buy any bin in S.
Formally, if cmax = maxS∈S cS and bmin = mini∈B bi, then cmax ≤ bmin. Without
loss of generality, we assume that the budgets are sorted in non-increasing order,
that is b1 ≥ b2 ≥ · · · ≥ bk = bmin, ties are broken arbitrarily.

We give an algorithm that achieves a 1 − 1√
e

approximation ratio. The algo-
rithm, whose pseudo-code is given in Algorithm 2, first defines an instance of
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the single-budget case which has the same elements X and bins S, while the
unique budget is equal to

∑k
i=1 bi, which is the sum of all the budgets in the

multi-budget instance. Algorithm 2 approximately solves this instance by means
of Algorithm 1, and then assigns some of the bins returned to the k budgets in
such a way that the budget constraints are not violated. In detail, let {S1, . . . , Sg}
be the bins returned by Algorithm 1, where Sj is the bin chosen at iteration j
of Algorithm 1, for j = 1, . . . , g. Iteratively, for each j = 1, . . . , g, the algorithm
assigns Sj to the budget bi such that i is minimum (i.e. the budget is maximum)
and the cost of Sj plus that of the partial solution Oi does not exceed budget
bi, if such a budget exists, otherwise it discards Sj (lines 4–7).

The next theorem shows a constant approximation bound for Algorithm 2.
The assumption that cmax ≤ bk allows us to show that the cost of the bins
bought using a budget is at least half of the entire budget

∑k
i=1 bi. Moreover,

these assigned bins satisfy the hypotheses of Proposition 1, therefore, we can
exploit it with α = 1

2 to show the statement.

Theorem 1. Let O∗ be an optimal solution and O be the solution returned by
Algorithm 2, then R(O) ≥

(
1 − 1√

e

)
R(O∗).

Proof. Let us consider the last iteration h of Algorithm 1 for which the budget
constraint is not violated (i.e. either h + 1 is the first iteration in which the
condition at line 4 is not satisfied or Algorithm 1 includes all the bins in O′

1).
We first show that the cost of bins S1, . . . , Sh is at least a fraction 1 − 1

k of
the entire budget

∑k
i=1 bi or Algorithm 1 includes all the bins in S to O′

1 by
iteration h. Then, we show that there exists a j ≤ h such that Algorithm 2 is
able to assign to the k budgets all the bins S1, . . . , Sj and that the overall cost
of these bins is at least half of the entire budget used by Algorithm 1. Finally,
we exploit Proposition 1 to show the statement.

If Algorithm 1 does not include all the bins in S to O′
1 by iteration h, then

at iteration h + 1 the budget
∑k

i=1 bi is violated, that is
∑h+1

j=1 cSj
>

∑k
i=1 bi.

Therefore,
∑h

j=1 cSj
>

∑k
i=1 bi − cSh+1 ≥ ∑k

i=1 bi − cmax ≥ ∑k
i=1 bi − bk ≥

(
1 − 1

k

) ∑k
i=1 bi, where the third inequality is due to the hypothesis that cmax ≤

bk, and the last one is implied by the fact that bk is the minimum budget, which
implies that bk ≤ 1

k

∑k
i=1 bi.

Therefore, the cost of S1, . . . , Sh is at least a fraction 1 − 1
k of the entire

budget
∑k

i=1 bi or Algorithm 1 includes all the bins in S to O′
1 by iteration h.

We now show that there exists a j ≤ h such that Algorithm 2 is able to
assign to the k budgets all the bins S1, . . . , Sj and that the overall cost of these
bins is at least half of the entire budget.

If Algorithm 2 is able to assign all the bins S1, . . . , Sh to the budgets, then
either the overall cost of these bins is at least

(
1 − 1

k

) ∑k
i=1 bi ≥ 1

2

∑k
i=1 bi, for

k ≥ 2, or we found an optimal solution which assigns all the bins in S to the
budgets. In this case j = h.

Otherwise, let j < h be an index such that bins S1, . . . , Sj are all assigned
to the budgets and j + 1 ≤ h is the first iteration of the cycle at lines 4–7 of
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Algorithm 2 such that the condition at line 5 does not hold, that is Sj+1 is
the first bin in the greedy ordering that is not assigned to a budget because∑

S∈Oi
cS + cSj+1 > bi, for each i = 1, . . . , k, at iteration j + 1. Note that j ≥ 1

because at least one bin is always assigned, assuming that cmax ≤ bk.
We show that

∑j
f=1 cSf

≥ 1
2

∑k
i=1 bi. Equivalently, we show that at the

beginning of iteration j + 1 (at the end of iteration j),
∑k

i=1

∑
S∈Oi

cS ≥
1
2

∑k
i=1 bi.

Since Sj+1 is not assigned to any budget and cSj+1 ≤ bi, for each budget bi,
then all the budgets are used to buy at least one bin before iteration j + 1, that
is Oi �= ∅, for each i. Formally,

∑
S∈Oi

cS + cSj+1 > bi and cSj+1 ≤ bi, imply∑
S∈Oi

cS > 0, that is Oi �= ∅, for each i = 1, . . . , k.
If

∑
S∈Oi

cS ≥ 1
2bi, for each budget bi, then the statement holds. Otherwise,

let � be the smallest index such that
∑

S∈O�
cS < 1

2b�. We analyze two cases:

◦ If � = k, then the bins assigned to Ok in previous iterations have not
been assigned to any budget with i < k, which implies that

∑
S∈Oi

cS +
∑

S∈Ok
cS > bi ≥ 1

2 (bi + bk). This holds in particular for budget k − 1. For
any other budget i < k − 1, by hypothesis we have

∑
S∈Oi

cS ≥ 1
2bi. There-

fore, the overall cost of assigned bins is then
∑k−2

i=1

∑
S∈Oi

cS +
∑

S∈Ok−1
cS +

∑
S∈Ok

cS ≥ ∑k−2
i=1

1
2bi + 1

2 (bk−1 + bk) = 1
2

∑k
i=1 bi.

◦ If � < k, let us split the budgets different from � into two groups accord-
ing to their ordering. For each budget i > �, the bins assigned to Oi

in previous iterations have not been assigned to budget �, which implies
that

∑
S∈O�

cS +
∑

S∈Oi
cS > b�. From

∑
S∈O�

cS < 1
2b�, follows that

∑
S∈Oi

cS > b� − ∑
S∈O�

cS > 1
2b� ≥ 1

2bi. In particular, let us consider
budget i = � + 1 (note that this budget always exists, as � < k). From∑

S∈O�
cS +

∑
S∈Oi

cS > b� and b� ≥ b�+1 we have that
∑

S∈O�
cS +

∑
S∈O�+1

cS > 1
2 (b�+1 + b�). Finally, for any budget i < �, by hypothe-

sis we have
∑

S∈Oi
cS ≥ 1

2bi. Therefore, the overall cost of the assigned
bins is

∑�−1
i=1

∑
S∈Oi

cS +
∑

S∈O�
cS +

∑
S∈O�+1

cS +
∑k

i=�+2

∑
S∈Oi

cS ≥
∑�−1

i=1
1
2bi + 1

2 (b� + b�+1) +
∑k

i=�+2
1
2bi = 1

2

∑k
i=1 bi.

Let O′′
1 = {S1, . . . , Sj}. We have just proved that the cost of O′′

1 is a fraction
1
2 of the budget given to Algorithm 1. Therefore, we can apply Proposition 1

with α = 1
2 to obtain R(O′′

1 ) ≥
(
1 − 1√

e

)
R(O∗∗). Where O∗∗ is an optimal

solution to the single-budget instance that has elements X, bins S, and budget∑k
i=1 bi. Since this is a relaxation of the original multi-budget instance in which

the assignment constraints are relaxed, then R(O∗∗) ≥ R(O∗). As Algorithm 2
assigns all the bins in O′′

1 to the k budgets, the statement holds. 	

We notice that Algorithm 2 fails to achieve a constant approximation if cmax >
bmin. The problem is that, in this case, Algorithm 1 could select many sets that
only few budgets can buy. Specifically, consider the following instance: given
k budgets where b1 = 1 + ε, for a small positive ε > 0, and bi = 1 for any
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i = 2, . . . , k, the ground set X = {x1, . . . , x2k−2} contains 2k −2 elements where
the first k−1 elements have weight 1+2ε and the last k−1 have weight 1, that is
ux1 = ux2 = . . . = uxk−1 = 1+2ε and uxk

= uxk+1 = . . . = ux2k−2 = 1. Moreover,
S = {S1, . . . , S2k−2} such that Sj = {xj} for any j = 1, . . . , 2k − 2, where the
cost of the first k − 1 sets is 1 + ε and the cost of the last k − 1 is 1, that is
cS1 = cS2 = . . . = cSk−1 = 1 + ε and cSk

= cSk+1 = . . . = cS2k−2 = 1. Notice
that cmax > bmin. In such instance, for a sufficiently small ε, Algorithm 1 would
select all the first k − 1 sets S1, . . . , Sk−1 and none of the sets Sk, . . . , S2k−2,
and then Algorithm 2 would assign only S1 to budget b1 for an overall weight
of 1 + 2ε. However, an optimal solution has total weight k + 2ε where the set S1

is assigned to budget b1 and, for any i = 2, . . . , k, the set Sk−2+i is assigned to
budget bi.

4 Randomized Algorithm for the General Case

In this section, we give a randomized algorithm for the general case that returns
a solution that satisfies the budget constraints in expectation and achieves an
expected approximation ratio of 1 − 1

e .
We start by defining an integer program for the general multi-budget case.

Let D be all the pairs of a single bin and a single budged that satisfy the budget
constraint, that is, D := {(S, i) ∈ S × B | cS ≤ bi}. We define two types of
binary variables: yx indicates whether element x is covered by any budget, for
each x ∈ X, and zi

S , indicates whether bin S is assigned to budged i, for each
(S, i) ∈ D.

The integer program is then as follows.

max
∑

x∈X uxyx (IP)
∑

(S,i)∈D cSzi
S ≤ bi for i = 1, . . . , k (1)

∑
(S,i)∈D zi

S ≤ 1 for all S ∈ S (2)
∑

S:x∈S

∑
(S,i)∈D zi

S ≥ yx for all x ∈ X (3)

yx, zi
S ∈ {0, 1} for all x ∈ X, (S, i) ∈ D (4)

Constraints (1) guarantee that the cost of the bins assigned to a budget does
not exceed her budget. Constraints (2) guarantee that each bin is assigned to at
most one budget. We recall that this is not required by the problem definition,
however, in the centralized setting, we can assume that this condition holds for
any solution and, in particular, for any optimal solution. Therefore we can add
this constraint without loss of generality. Constraints (3), guarantee that, if an
element x is covered (i.e. yx = 1), then there exists at least a bin S that contains
x and that is assigned to some budget i (i.e. zi

S = 1, for some (S, i) ∈ D such
that x ∈ S).

The randomized algorithm is reported in Algorithm 3. It first solves the linear
relaxation of (IP) where the integrality constraints are replaced with bounds
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Algorithm 3: Randomized algorithm for the general case.
Input : S, X,B

1 Solve the relaxation of (IP) where Constr. (4) are replaced with yx, z
i
S ∈ [0, 1],

for x ∈ X, (S, i) ∈ D, and let (y∗, z∗) be an opt. fractional solution;

2 For each S ∈ S, independently, select at most one variable ziS , (S, i) ∈ D, to be

set to 1. Each variable is selected with probability zi∗S and no variable is selected
with probability 1 − ∑

(S,i)∈D zi∗S ;

3 Let O = (O1, . . . , Ok), where Oi = {S | ziS = 1};
4 return O = (O1, . . . , Ok);

between 0 and 1 on the variables. Let (y∗, z∗) be an optimal fractional solution
of this relaxation. To round this fractional solution to binary values, variables
zi
S are interpreted as probabilities. In detail, let us consider each bin S ∈ S,

independently. Among all variables zi
S , (S, i) ∈ D, we set at most a variable to

1 and all the other ones to 0. The probability that zi
S is set to 1 is proportional

to the value of the optimal fractional variable zi∗
S , while the probability that all

variables zi
S , (S, i) ∈ D, are set to 0 is 1−∑

(S,i)∈D zi∗
S . Eventually, Algorithm 3

defines Oi as Oi = {S | zi
S = 1}.

By the above process, we have that the probability that a bin S belongs to Oi,
for each (S, i) ∈ D, is P[S ∈ Oi] = P[zi

S = 1] = zi∗
S ; the probability that a bin

S ∈ S is assigned to some budget is equal to P[S ∈ ⋃
(S,i)∈D Oi] =

∑
(S,i)∈D zi∗

S ;
and the probability that S is not assigned to any budget is P[S �∈ ⋃

(S,i)∈D Oi] =
1 − ∑

(S,i)∈D zi∗
S .

The solution O = (O1, . . . , Ok) returned by Algorithm 3 satisfies the budget
constraints in expectation. Indeed, E

[∑
S∈Oi

cS

]
=

∑
(S,i)∈D cSP[S ∈ Oi] =

∑
(S,i)∈D cSzi∗

S ≤ bi, where the last inequality is due to Constraint (1).
The following theorem shows the expected approximation ratio of Algo-

rithm 3.

Theorem 2. Let O∗ be an optimal solution and O be the solution returned by
Algorithm 3, then E[R(O)] ≥ (

1 − 1
e

)
R(O∗).

Proof. For each x ∈ X, let us denote by wx the random binary variable that is
equal to 1 if element x is covered. The probability that wx = 1 is equal to the
probability that x belongs to ∪i∈BCi(O), that is,

P[wx = 1] = P[x ∈ ∪i∈BCi(O)] = 1 − P[x �∈ ∪i∈BCi(O)].

The probability that x does not belong to ∪i∈BCi(O) is equal to the probability
that each bin S that contains x is not selected by Algorithm 3. Since bins are
selected independently, this is equal to

P[x �∈ ∪i∈BCi(O)] =
∏

S:x∈S

P[S �∈
⋃

(S,i)∈D

Oi] =
∏

S:x∈S

⎛

⎝1 −
∑

(S,i)∈D

zi∗
S

⎞

⎠ .
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Since 1 − p ≤ e−p, for any p ∈ [0, 1] and
∑

(S,i)∈D zi∗
S ∈ [0, 1] by Constraint (2),

then this value is at most

∏

S:x∈S

exp

⎛

⎝−
∑

(S,i)∈D

zi∗
S

⎞

⎠ = exp

⎛

⎝−
∑

S:x∈S

∑

(S,i)∈D

zi∗
S

⎞

⎠ .

By Constraint (3),
∑

S:x∈S

∑
(S,i)∈D zi∗

S ≥ y∗
x and then P[x �∈ ∪i∈BCi(O)] ≤

exp(−y∗
x). Therefore,

P[wx = 1] ≥ 1 − e−y∗
x ≥ (

1 − e−1
)
y∗

x,

where the last inequality is due to the fact that 1 − e−p ≥ (1 − e−1)p, for any
p ∈ [0, 1],1 and y∗

x ∈ [0, 1]. The expected value of R(O), E[R(O)], is equal to

E

[
∑

x∈X

uxwx

]

=
∑

x∈X

uxP[wx = 1] ≥
∑

x∈X

ux

(
1 − e−1

)
y∗

x ≥ (
1 − e−1

)
R(O∗),

since
∑

x∈X uxy∗
x is the optimum value for the linear relaxation of (IP). 	


5 Future Work

The main open problems are that of finding a deterministic constant approxima-
tion algorithm for the general case and, in the case when cmax ≤ bmin, closing the
gap between our deterministic

(
1 − 1√

e

)
-approximation algorithm and the 1− 1

e

hardness of approximation for the maximum coverage problem [10]. One possi-
ble direction could be that of exploiting the framework of multilinear relaxation
and contention resolution schemes given in [7]. We observe that MMWC cannot
be directly reduced to any of the problems solved in [7], as the constraints of
our problem cannot be directly modeled as knapsack, matroid, or sparse packing
constraints (or their intersection). However, this does not exclude the existence
of a suitable contention resolution scheme for our problem.

Moreover, extending the definition of multi-budget coverage to more general
weight functions (e.g. general submodular functions) is worth further research.
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7. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

8. Cohen, R., Katzir, L.: The generalized maximum coverage problem. Inf. Process.
Lett. 108(1), 15–22 (2008). https://doi.org/10.1016/j.ipl.2008.03.017

9. Farbstein, B., Levin, A.: Maximum coverage problem with group budget con-
straints. J. Comb. Optim. 34(3), 725–735 (2017). https://doi.org/10.1007/s10878-
016-0102-0

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998). https://doi.org/10.1145/237814.237977
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A Tight Lower Bound for Edge-Disjoint
Paths on Planar DAGs

Rajesh Chitnis(B)

School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Given a graph G and a set T =
{
(si, ti) : 1 ≤ i ≤ k

}

of k pairs, the Vertex-Disjoint Paths (resp. Edge-Disjoint Paths)
problems asks to determine whether there exist pairwise vertex-disjoint
(resp. edge-disjoint) paths P1, P2, . . . , Pk in G such that Pi connects si

to ti for each 1 ≤ i ≤ k. Unlike their undirected counterparts which
are FPT (parameterized by k) from Graph Minor theory, both the edge-
disjoint and vertex-disjoint versions in directed graphs were shown by
Fortune et al. (TCS ’80) to be NP-hard for k = 2. This strong hard-
ness for Disjoint Paths on general directed graphs led to the study of
parameterized complexity on special graph classes, e.g., when the under-
lying undirected graph is planar. For Vertex-Disjoint Paths on planar
directed graphs, Schrijver (SICOMP ’94) designed an nO(k) time algo-
rithm which was later improved upon by Cygan et al. (FOCS ’13) who

designed an FPT algorithm running in 22O(k2) ·nO(1) time. To the best of
our knowledge, the parameterized complexity of Edge-Disjoint Paths

on planar (A directed graph is planar if its underlying undirected graph
is planar) directed graphs is unknown.

We resolve this gap by showing that Edge-Disjoint Paths is W[1]-
hard parameterized by the number k of terminal pairs, even when the
input graph is a planar directed acyclic graph (DAG). This answers a
question of Slivkins (ESA ’03, SIDMA ’10). Moreover, under the Expo-
nential Time Hypothesis (ETH), we show that there is no f(k)·no(k) algo-
rithm for Edge-Disjoint Paths on planar DAGs, where k is the number
of terminal pairs, n is the number of vertices and f is any computable
function. Our hardness holds even if both the maximum in-degree and
maximum out-degree of the graph are at most 2. We now place our
result in the context of previously known algorithms and hardness for
Edge-Disjoint Paths on special classes of directed graphs:

– Implications for Edge-Disjoint Paths on DAGs: Our result
shows that the nO(k) algorithm of Fortune et al. (TCS ’80) for Edge-
Disjoint Paths on DAGs is asymptotically tight, even if we add an
extra restriction of planarity. The previous best lower bound (also
under ETH) for Edge-Disjoint Paths on DAGs was f(k)·no(k/ log k)

by Amiri et al. (MFCS ’16, IPL ’19) which improved upon the f(k) ·
no(

√
k) lower bound implicit in Slivkins (ESA ’03, SIDMA ’10).

Full version [3] is available at https://arxiv.org/abs/2101.10742.
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– Implications for Edge-Disjoint Paths on planar directed
graphs: As a special case of our result, we obtain that Edge-

Disjoint Paths on planar directed graphs is W[1]-hard parameter-
ized by the number k of terminal pairs. This answers a question of
Cygan et al. (FOCS ’13) and Schrijver (pp. 417–444, Building Bridges
II, ’19), and completes the landscape (see Table 2) of the parameter-
ized complexity status of edge and vertex versions of the Disjoint

Paths problem on planar directed and planar undirected graphs.

1 Introduction

The Disjoint Paths problem is one of the most fundamental problems in graph
theory: given a graph and a set of k terminal pairs, the question is to determine
whether there exists a collection of k pairwise disjoint paths where each path
connects one of the given terminal pairs? There are four natural variants of this
problem depending on whether we consider undirected or directed graphs and
the edge-disjoint or vertex-disjoint requirement. In undirected graphs, the edge-
disjoint version is reducible to the vertex-disjoint version in polynomial time
by considering the line graph. In directed graphs, the edge-disjoint version and
vertex-disjoint version are known to be equivalent in terms of designing exact
algorithms. Besides its theoretical importance, the Disjoint Paths problem has
found applications in VLSI design, routing, etc. The interested reader is referred
to the surveys [16] and [26, Chapter 9] for more details.

The case when the number of terminal pairs k is bounded is of special interest:
given a graph with n vertices and k terminal pairs the goal is to try to design FPT
algorithms, i.e., algorithms whose running time is f(k)·nO(1) for some computable
function f , or XP algorithms, i.e., algorithms whose running time is ng(k) for some
computable function g. We now discuss some of the known results on exact1 algo-
rithms for different variants of the Disjoint Paths problem before stating our
result.

Prior Work on Exact Algorithms for Disjoint Paths on Undirected
Graphs: The NP-hardness for Edge-Disjoint Paths and Vertex-Disjoint

Paths on undirected graphs was shown by Even et al. [14]. Solving the Vertex-

Disjoint Paths problem on undirected graphs is an important subroutine in
checking whether a fixed graph H is a minor of a graph G. Hence, a core algo-
rithmic result of the seminal work of Robertson and Seymour was their FPT
algorithm [24] for Vertex-Disjoint Paths (and hence also Edge-Disjoint

Paths) on general undirected graphs which runs in O(g(k) · n3) time for some
function g. The cubic dependence on the input size was improved to quadratic
by Kawarabayashi et al. [19] who designed an algorithm running in O(h(k) · n2)
time for some function h. Both the functions g and h are quite large (at least
quintuple exponential as per [1]). This naturally led to the search for faster
FPT algorithms on planar graphs: Adler et al. [1] designed an algorithm for
1 This paper focuses on exact algorithms for Disjoint Paths so we do not discuss here

the many results regarding (in)approximability.
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Vertex-Disjoint Paths on planar graphs which runs in 22
O(k2) · nO(1) time.

Very recently, this was improved to an single-exponential time FPT algorithm
which runs in 2O(k2) · nO(1) time by Lokshtanov et al. [20].

Prior Work on Exact Algorithms for Disjoint Paths on Directed
Graphs: Unlike undirected graphs where both Edge-Disjoint Paths and
Vertex-Disjoint Paths are FPT parameterized by k, the Disjoint Paths

problem becomes significantly harder for directed graphs: Fortune et al. [15]
showed that both Edge-Disjoint Paths and Vertex-Disjoint Paths on
general directed graphs are NP-hard even for k = 2. The Disjoint Paths prob-
lem has also been extensively studied on special classes of digraphs:

– Disjoint Paths on DAGs: It is easy to show that Vertex-Disjoint Paths

and Edge-Disjoint Paths are equivalent on the class of directed acyclic
graphs (DAGs). Fortune et al. [15] designed an nO(k) algorithm for Edge-

Disjoint Paths on DAGs. Slivkins [28] showed W[1]-hardness for Edge-

Disjoint Paths on DAGs and a f(k) · no(
√

k) lower bound (for any com-
putable function f) under the Exponential Time Hypothesis [17,18] (ETH)
follows from that reduction. Amiri et al. [2]2 improved the lower bound to
f(k)·no(k/ log k) thus showing that the algorithm of Fortune et al. [15] is almost-
tight.

– Disjoint Paths on directed planar graphs: Schrijver [25] designed an nO(k)

algorithm for Vertex-Disjoint Paths on directed planar graphs. This was
improved upon by Cygan et al. [12] who designed an FPT algorithm running

in 22
O(k2) · nO(1) time. As pointed out by Cygan et al. [12], their FPT algo-

rithm for Vertex-Disjoint Paths on directed planar graphs does not work
for theEdge-Disjoint Paths problem. The status of parameterized complex-
ity (parameterized by k) of Edge-Disjoint Paths on directed planar graphs
remained an open question. Table 1 gives a summary of known results for exact
algorithms for Disjoint Paths on (subclasses of) directed graphs.

Our Result: We resolve this open question by showing a slightly stronger result:
the Edge-Disjoint Paths problem is W[1]-hard parameterized by k when the
input graph is a planar DAG. First we define the Edge-Disjoint Paths prob-
lem formally below, and then state our result:

Edge-Disjoint Paths

Input: A directed graph G = (V,E), and a set T ⊆ V × V of k terminal
pairs given by

{
(si, ti) : 1 ≤ i ≤ k

}
.

Question: Do there exist k pairwise edge-disjoint paths P1, P2, . . . , Pk such
that Pi is an si � ti path for each 1 ≤ i ≤ k?
Parameter: k

Theorem 1.1. The Edge-Disjoint Paths problem on planar DAGs is W[1]-
hard parameterized by the number k of terminal pairs. Moreover, under ETH, the
2 [2] considers a more general version than Disjoint Paths which allows congestion.
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Table 1. The landscape of parameterized complexity results for Disjoint Paths on
directed graphs. All lower bounds are under the Exponential Time Hypothesis (ETH).
To the best of our knowledge, the entries marked with ???? have no known non-trivial
results.

Graph class Problem type Algorithm Lower Bound

General graphs Vertex & edge-disjoint ???? NP-hard for k = 2

DAGs Vertex & edge-disjoint

f(k) · no(
√

k) [28]

f(k) · no(k/ log k) [2]nO(k) [15]

f(k) · no(k) [this paper]

Planar graphs
Vertex-disjoint

nO(k) [25]
????

22
O(k2) · nO(1) [12]

Edge-disjoint ???? f(k) · no(k) [this paper]

Planar DAGs
Vertex-disjoint 22

O(k2) · nO(1) [12] ????

Edge-disjoint nO(k) [15] f(k) · no(k) [this paper]

Edge-Disjoint Paths problem on planar DAGs cannot be solved f(k) · no(k)

time where f is any computable function, n is the number of vertices and k
is the number of terminal pairs. The hardness holds even if both the maximum
in-degree and maximum out-degree of the graph are at most 2.

Recall that the Exponential Time Hypothesis (ETH) states that n-variable m-
clause 3-SAT cannot be solved in 2o(n) · (n + m)O(1) time [17,18]. Prior to our
result, only the NP-completeness of Edge-Disjoint Paths on planar DAGs
was known [29]. The reduction used in Theorem 1.1 is heavily inspired by some
known reductions: in particular, the planar DAG structure (Fig. 1) is from [6]
and the splitting operation (Fig. 2 and Definition 2.2) is from [4,5]. We view
the simplicity of our reduction as evidence of success of the (now) established
methodology of showing W[1]-hardness (and ETH-based hardness) for planar
graph problems using Grid-Tiling and its variants.

Placing Theorem 1.1 in the Context of Prior Work: Theorem 1.1 answers
a question of Slivkins [28] regarding the parameterized complexity of Edge-

Disjoint Paths on planar DAGs. As a special case of Theorem 1.1, one obtains
that Edge-Disjoint Paths on planar directed graphs is W[1]-hard parame-
terized by the number k of terminal pairs: this answers a question of Cygan
et al. [12] and Schrijver [27]. The W[1]-hardness result of Theorem 1.1 com-
pletes the landscape (see Table 2) of parameterized complexity of edge-disjoint
and vertex-disjoint versions of the Disjoint Paths problem on planar directed
and planar undirected graphs. Theorem 1.1 also shows that the nO(k) algorithm
of Fortune et al. [15] for Edge-Disjoint Paths on DAGS is asymptotically
optimal, even if we add an extra restriction of planarity to the mix. Theorem
1.1 adds another problem (Edge-Disjoint Paths on DAGs) to the relatively
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small3 list of problems for which it is provably known that the planar version
has the same asymptotic complexity as the problem on general graphs. This is
in contrast to the fact that for several problems the planar version is easier by
a square root factor in the exponent [21] as compared to general graphs.

Table 2. The landscape of parameterized complexity results for the four different
versions (edge-disjoint vs vertex-disjoint & directed vs undirected) of Disjoint Paths

on planar graphs.

Graph class Problem type Parameterized Complexity w.r.t by k

Planar undirected
Vertex-disjoint

FPT [1,19,20,24]
Edge-disjoint

Planar directed
Vertex-disjoint FPT [12]

Edge-disjoint W[1]-hard [this paper]

Organization of the Paper: In Sect. 2.1 we describe the construction of the
instance (G2, T ) of Edge-Disjoint Paths. The two directions of the reduction
are shown in Sect. 2.2 and Sect. 2.3 respectively. Finally, Sect. 2.4 contains the
proof of Theorem 1.1. We conclude with some open questions in Sect. 3.

Notation: All graphs considered in this paper are directed and do not have self-
loops or multiple edges. We use (mostly) standard graph theory notation [13].
The set {1, 2, 3, . . . ,M} is denoted by [M ] for each M ∈ N. A directed edge
(resp. path) from s to t is denoted by s → t (resp. s � t). We use the non-
standard notation: s � s does not represent a self-loop but rather is to be
viewed as “just staying put” at the vertex s. If A,B ⊆ V (G) then we say that
there is an A � B path if and only if there exists two vertices a ∈ A, b ∈ B such
that there is an a � b path. For A ⊆ V (G) we define N+

G (A) =
{
x /∈ A : ∃ y ∈

A such that (y, x) ∈ E(G)
}

and N−
G (A) =

{
x /∈ A : ∃ y ∈ A such that (x, y) ∈

E(G)
}
. For A ⊆ V (G) we define G[A] to be the graph induced on the vertex set

A, i.e., G[A] := (A,EA) where EA := E(G) ∩ (A × A).

2 W[1]-Hardness of Edge-Disjoint Paths on Planar DAGs

To obtain W[1]-hardness for Edge-Disjoint Paths, we reduce from the Grid-

Tiling-≤ problem [23] which is defined below:

3 The only such problems we are aware of are [5,6,22].
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Grid-Tiling-≤
Input: Integers k,N , and a collection S of k2 sets given by

{
Sx,y ⊆ [N ] ×

[N ] : 1 ≤ x, y ≤ k
}
.

Question: For each 1 ≤ x, y ≤ k does there exist a pair γx,y ∈ Sx,y such
that

– if γx,y = (a, b) and γx+1,y = (a′, b′) then b ≤ b′, and
– if γx,y = (a, b) and γx,y+1 = (a′, b′) then a ≤ a′

It is known [11, Theorem 14.30] that Grid-Tiling-≤ is W[1]-hard param-
eterized by k, and under the Exponential Time Hypothesis (ETH) has no
f(k) ·No(k) algorithm for any computable function f . We will exploit this result
by reducing an instance (k,N,S) of Grid-Tiling-≤ in poly(N, k) time to an
instance (G2, T ) of Edge-Disjoint Paths such that G2 is a planar DAG, num-
ber of vertices in G2 is |V (G2)| = O(N2k2) and number of terminal pairs is
|T | = 2k.

Remark 2.1. Our definition of Grid-Tiling-≤ above is slightly different than
the one given in [11, Theorem 14.30]: there the constraints are first coordinate
of γx,y is ≤ first coordinate of γx+1,y and second coordinate of γx,y is ≤ second
coordinate of γx,y+1. By rotating the axis by 90◦, i.e., swapping the indices, our
version of Grid-Tiling-≤ is equivalent to that from [11, Theorem 14.30].

2.1 Construction of the Instance (G2,T ) of Edge-Disjoint Paths

Consider an instance (N, k,S) of Grid-Tiling-≤. We now build an instance
(G2, T ) of Edge-Disjoint Paths as follows: first in Sect. 2.1.1 we describe the
construction of an intermediate graph G1 (Fig. 1). The splitting operation is
defined in Sect. 2.1.2, and the graph G2 is obtained from G1 by splitting each
(black) grid vertex.

2.1.1 Construction of the Graph G1

Given integers k and N , we build a directed graph G1 as follows (refer to Fig. 1):

1. Origin: The origin is marked at the bottom left corner of Fig. 1. This is
defined just so we can view the naming of the vertices as per the usual X −Y
coordinate system: increasing horizontally towards the right, and vertically
towards the top.

2. Grid (black) vertices and edges: For each 1 ≤ i, j ≤ k we introduce a
(directed) N × N grid Gi,j where the column numbers increase from 1 to N
as we go from left to right, and the row numbers increase from 1 to N as we
go from bottom to top. For each 1 ≤ q, � ≤ N the unique vertex which is the
intersection of the qth column and �th row of Gi,j is denoted by wq,�

i,j . The
vertex set and edge set of Gi,j is defined formally as:

– V (Gi,j) =
{
wq,�

i,j : 1 ≤ q, � ≤ N
}
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– E(Gi,j) =
( ⋃

(q,�)∈[N ]×[N−1] w
q,�
i,j → wq,�+1

i,j

)
∪

( ⋃
(q,�)∈[N−1]×[N ] w

q,�
i,j →

wq+1,�
i,j

)

All vertices and edges of Gi,j are shown in Fig. 1 using black color. Note that
each horizontal edge of the grid Gi,j is oriented to the right, and each vertical
edge is oriented towards the top. We will later (Definition 2.2) modify the
grid Gi,j to represent the set Si,j .
For each 1 ≤ i, j ≤ k we define the set of boundary vertices of the grid Gi,j

as follows:

Left(Gi,j) :=
{
w1,�

i,j : � ∈ [N ]
}

; Right(Gi,j) :=
{
wN,�

i,j : � ∈ [N ]
}

Top(Gi,j) :=
{
w�,N

i,j : � ∈ [N ]
}

; Bottom(Gi,j) :=
{
w�,1

i,j : � ∈ [N ]
} (1)

3. Arranging the k2 different N ×N grids {Gi,j}1≤i,j≤k into a large k × k
grid: We place the grids Gi,j into a big k × k grid of grids left to right
according to growing i and from bottom to top according to growing j.

4. Blue vertices and red edges for horizontal connections: For each
(i, j) ∈ [k − 1] × [k] we add a set of vertices Hi+1,j

i,j :=
{
hi+1,j

i,j (�) : � ∈ [N ]
}

shown in Fig. 1 using blue color. We also add the following three sets of edges
(shown in Fig. 1 using red color):

– a directed path of N − 1 edges given by Path(Hi+1,j
i,j ) :=

{
hi+1,j

i,j (�) →
hi+1,j

i,j (� + 1) : � ∈ [N − 1]
}

– a directed perfect matching from Right(Gi,j) to Hi+1,j
i,j given by

Matching
(
Gi,j ,H

i+1,j
i,j

)
:=

{
wN,�

i,j → hi+1,j
i,j (�) : � ∈ [N ]

}

– a directed perfect matching from Hi+1,j
i,j to Left(Gi+1,j) given by

Matching
(
Hi+1,j

i,j , Gi+1,j

)
:=

{
hi+1,j

i,j (�) → w1,�
i+1,j : � ∈ [N ]

}

5. Blue vertices and red edges for vertical connections: For each (i, j) ∈
[k] × [k − 1] we add a set of vertices V i,j+1

i,j :=
{
vi,j+1

i,j (�) : � ∈ [N ]
}

shown
in Fig. 1 using blue color. We also add the following three sets of edges (shown
in Fig. 1 using red color):

– a directed path of N − 1 edges given by Path(V i,j+1
i,j ) :=

{
vi,j+1

i,j (�) →
vi,j+1

i,j (� + 1) : � ∈ [N − 1]
}

– a directed perfect matching from Top(Gi,j) to V i,j+1
i,j given by

Matching
(
Gi,j , V

i,j+1
i,j

)
:=

{
w�,N

i,j → vi,j+1
i,j (�) : � ∈ [N ]

}

– a directed perfect matching from V i,j+1
i,j to Bottom(Gi,j+1) given by

Matching
(
V i,j+1

i,j , Gi,j+1

)
:=

{
vi,j+1

i,j (�) → w�,1
i,j+1 : � ∈ [N ]

}

6. Green (terminal) vertices and magenta edges: For each i ∈ [k] we
add the following four sets of (terminal) vertices (shown in Fig. 1 using green
color)

A :=
{
ai : i ∈ [k]

}
; B :=

{
bi : i ∈ [k]

}

C :=
{
ci : i ∈ [k]

}
; D :=

{
di : i ∈ [k]

} (2)

For each i ∈ [k] we add the edges (shown in Fig. 1 using magenta color)

Source(A) :=
{
ai → w�,1

i,1 : � ∈ [N ]
}

; Sink(B) :=
{
w�,N

i,N → bi : � ∈ [N ]
}

(3)
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For each j ∈ [k] we add the edges (shown in Fig. 1 using magenta color)

Source(C) :=
{
cj → w1,�

1,j : � ∈ [N ]
}

; Sink(D) :=
{
wN,�

N,j → dj : � ∈ [N ]
}

(4)

This completes the construction of the graph G1 (see Fig. 1).

Claim 2.1. G1 is a planar DAG

Proof. Figure 1 gives a planar embedding of G1. It is easy to verify from the
construction of G1 described at the start of Sect. 2.1.1 (see also Fig. 1) that G1

is a DAG. 	


c1

c2

c3

d1

d2

d3

a1 a2 a3

b1 b2 b3

Or
igi
n

Fig. 1. The graph G1 constructed for the input k = 3 and N = 5 via the construction
described in Sect. 2.1.1. The final graph G2 for the Edge-Disjoint Paths instance is
obtained from G1 by the splitting operation (Definition 2.2) as described in Sect. 2.1.2.
(Color figure online)
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2.1.2 Obtaining the Graph G2 from G1 via the Splitting Operation
Observe (see Fig. 1) that every (black) grid vertex in G1 has in-degree two and
out-degree two. Moreover, the two in-neighbors and two out-neighbors do not
appear alternately. For each (black) grid vertex z ∈ G1 we set up the notation:

Definition 2.1. (four neighbors of each grid vertex in G1) For each
(black) grid vertex z ∈ G1 we define the following four vertices

– west(z) is the vertex to the left of z (as seen by the reader) which has an
edge incoming into z

– south(z) is the vertex below z (as seen by the reader) which has an edge
incoming into z

– east(z) is the vertex to the right of z (as seen by the reader) which has an
edge outgoing from z

– north(z) is the vertex above z (as seen by the reader) which has an edge
outgoing from z

We now define the splitting operation which allows us to obtain the graph
G2 from the graph G1 constructed in Sect. 2.1.1.

Definition 2.2. (splitting operation) For each i, j ∈ [k] and each q, � ∈ [N ]

– If (q, �) /∈ Si,j , then we split the vertex wq,�
i,j into two distinct vertices wq,�

i,j,LB

and wq,�
i,j,TR and add the edge wq,�

i,j,LB → wq,�
i,j,TR (denoted by the dotted edge

in Fig. 2). The 4 edges (see Definition 2.1) incident on wq,�
i,j are now changed

as follows (see Fig. 2):
• Replace the edge west(wq,�

i,j ) → wq,�
i,j by the edge west(wq,�

i,j ) → wq,�
i,j,LB

• Replace the edge south(wq,�
i,j ) → wq,�

i,j by the edge south(wq,�
i,j ) → wq,�

i,j,LB

• Replace the edge wq,�
i,j → east(wq,�

i,j ) by the edge wq,�
i,j,TR → east(wq,�

i,j )
• Replace the edge wq,�

i,j → north(wq,�
i,j ) by the edge wq,�

i,j,TR → north(wq,�
i,j )

– Otherwise, if (q, �) ∈ Si,j then the vertex wq,�
i,j is not split, and we define

wq,�
i,j,LB = wq,�

i,j = wq,�
i,j,TR. Note that the four edges (Definition 2.1) incident

on wq,�
i,j are unchanged.

Remark 2.2. To avoid case distinctions in the forthcoming proof of correctness
of the reduction, we will use the following non-standard notation: the edge s � s
does not represent a self-loop but rather is to be viewed as “just staying put”
at the vertex s. Note that this does not affect edge-disjointness.

We are now ready to define the graph G2 and the set T of terminal pairs:

Definition 2.3. The graph G2 is obtained by applying the splitting operation
(Definition 2.2) to each (black) grid vertex of G1, i.e., the set of vertices given by⋃

1≤i,j≤k V (Gi,j). The set of terminal pairs is T :=
{
(ai, bi) : i ∈ [k]

}
∪

{
(cj , dj) :

j ∈ [k]
}
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wq
i,jwest(wq

i,j )

east(wq
i,j )

south(wq
i,j )

north(wq
i,j )

Splitting Operation

wq
i,j,TR

wq
i,j,LB

west(wq
i,j )

east(wq
i,j )

south(wq
i,j )

north(wq
i,j )

Fig. 2. The splitting operation for the vertex wq,�
i,j when (q, �) /∈ Si,j . The idea behind

this splitting is if we want edge-disjoint paths then we can go either left-to-right or
bottom-to-top but not in both directions. On the other hand, if (q, �) ∈ Si,j then the
picture on the right-hand side (after the splitting operation) would look exactly like
that on the left-hand side.

The next claim shows that G2 is also both planar and acyclic (like G1).

Claim 2.2. [�]4 G2 is a planar DAG

We now set up notation for the grids in G2:

Definition 2.4. For each i, j ∈ [k], we define Gsplit
i,j to be the graph obtained

by applying the splitting operation (Definition 2.2) to each vertex of Gi,j . For
each i, j ∈ [k] and each q, � ∈ [N ] we define split(wq,�

i,j ) :=
{
wq,�

i,j,LB,wq,�
i,j,TR

}
.

2.2 Solution for Edge-Disjoint Paths ⇒ Solution for Grid-Tiling-≤

In this section, we show that if the instance (G2, T ) of Edge-Disjoint Paths

has a solution then the instance (k,N,S) of Grid-Tiling-≤ also has a solution.
Suppose that the instance (G2, T ) of Edge-Disjoint Paths has a solu-

tion, i.e., there is a collection of 2k pairwise edge-disjoint paths
{
P1, P2, . . . , Pk,

Q1, Q2, . . . , Qk

}
in G2 such that

Pi is an ai � bi path ∀i ∈ [k] and Qj is an cj � dj path ∀j ∈ [k] (5)

To streamline the arguments of this section, we define the following subsets of
vertices of G2:

Definition 2.5. (horizontal & vertical levels) For each j ∈ [k], we define

Horizontal(j) = {cj , dj} ∪
( k⋃

i=1

V (Gsplit
i,j )

)
∪

( k−1⋃

i=1

Hi+1,j
i,j

)

4 Proofs of all results labeled with [�] are deferred to the full version [3].
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For each i ∈ [k], we define

Vertical(i) = {ai, bi} ∪
( k⋃

j=1

V (Gsplit
i,j )

)
∪

( k−1⋃

j=1

V i,j+1
i,j

)

From Definition 2.5, it is easy to verify that Vertical(i) ∩ Vertical(i′) =
∅ = Horizontal(i) ∩ Horizontal(i′) for every 1 ≤ i = i′ ≤ k.

Definition 2.6. (boundary vertices in G2) For each 1 ≤ i, j ≤ k we define
the set of boundary vertices of the grid Gsplit

i,j in the graph G2 as follows:

Left(Gsplit
i,j ) :=

{
w1,�

i,j,LB : � ∈ [N ]
}

; Right(Gsplit
i,j ) :=

{
wN,�

i,j,TR : � ∈ [N ]
}

Top(Gsplit
i,j ) :=

{
w�,N

i,j,TR : � ∈ [N ]
}

; Bottom(Gsplit
i,j ) :=

{
w�,1

i,j,LB : � ∈ [N ]
} (6)

Lemma 2.1. [�] For each i ∈ [k] the path Pi satisfies the following two structural
properties:

– every edge of the path Pi has both end-points in Vertical(i)
– Pi contains an Bottom(Gsplit

i,j ) � Top(Gsplit
i,j ) path for each j ∈ [k].

For each j ∈ [k] the path Qj satisfies the following two structural properties:

– every edge of the path Qj has both end-points in Horizontal(j)
– Qj contains an Left(Gsplit

i,j ) � Right(Gsplit
i,j ) path for each i ∈ [k]

Lemma 2.2. [�] For any (i, j) ∈ [k] × [k], let P ′, Q′ be any Bottom(Gsplit
i,j ) �

Top(Gsplit
i,j ), Left(Gsplit

i,j ) � Right(Gsplit
i,j ) paths in G2 respectively. If P ′ and

Q′ are edge-disjoint then there exists (μ, δ) ∈ Si,j such that the vertex wμ,δ
i,j,LB =

wμ,δ
i,j = wμ,δ

i,j,TR = belongs to both P ′ and Q′

Lemma 2.3. [�] The instance (k,N,S) of Grid-Tiling-≤ has a solution.

2.3 Solution for Grid-Tiling-≤ ⇒ Solution for Edge-Disjoint Paths

In this section, we show that if the instance (k,N,S) of Grid-Tiling-≤ has a
solution then the instance (G2, T ) of Edge-Disjoint Paths also has a solution.

Lemma 2.4. [�] The instance (G2, T ) of Edge-Disjoint Paths has a solu-
tion.
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2.4 Proof of Theorem 1.1

Finally we are ready to prove our main theorem (Theorem 1.1).

Proof. Given an instance (k,N,S) of Grid-Tiling-≤, we use the construction
from Sect. 2.1 to build an instance (G2, T ) of Edge-Disjoint Paths such that
G2 is a planar DAG (Claim 2.2). It is easy to see that n = |V (G2)| = O(N2k2)
and G2 can be constructed in poly(N, k) time.

It is known [11, Theorem 14.30] that Grid-Tiling-≤ is W[1]-hard parame-
terized by k, and under ETH cannot be solved in f(k) · No(k) time for any com-
putable function f . Combining the two directions from Sect. 2.2 and Sect. 2.3,
we get a parameterized reduction from Grid-Tiling-≤ to an instance of Edge-
Disjoint Paths which is a planar DAG and has |T | = 2k terminal pairs. Hence,
it follows that Edge-Disjoint Paths on planar DAGs is W[1]-hard parame-
terized by number k of terminal pairs, and under ETH cannot be solved in
f(k) · no(k) time for any computable function f .

Finally we show how to edit G2, without affecting the correctness of the
reduction, so that both the out-degree and in-degree are at most 2. We present
the argument for reducing out-degree: the argument for in-degree is analogous.
Note that the only vertices in G2 with out-degree > 2 are A ∪ C. For each
cj ∈ C we replace the directed star whose edges are from cj to each vertex of
Left(G1,j) with a directed binary tree whose root is ci, leaves are the set of
vertices Left(G1,j) and each edge is directed away from the root. It is easy to
see that the edge-disjointness of paths from cj to different vertices of Left(G1,j)
is preserved, and we have only increased the number of vertices by O(k) while
maintaining planarity and (directed) acyclicity. We do a similar transformation
for each ai ∈ A. It is easy to see that this editing adds O(k2) new vertices and
takes poly(k) time, and therefore it is still true that n = |V (G2)| = O(N2k2)
and G2 can be constructed in poly(N, k) time. 	


3 Conclusion and Open Questions

In this paper we have shown that Edge-Disjoint Paths on planar DAGs is
W[1]-hard parameterized by k, and has no f(k)·no(k) algorithm under the Expo-
nential Time Hypothesis (ETH) for any computable function f . The hardness
holds even if both the maximum in-degree and maximum out-degree of the graph
are at most 2. This answers a question of Slivkins [28] regarding the parameter-
ized complexity of Edge-Disjoint Paths on planar DAGS, and a question of
Cygan et al. [12] and Schrijver [27] regarding the parameterized complexity of
Edge-Disjoint Paths on planar directed graphs.

We now propose some interesting open questions related to the complexity
of the Disjoint Paths problem:

– What is the correct parameterized complexity of Edge-Disjoint Paths on
planar graphs parameterized by k? Can we design an nO(k) algorithm, or is
it NP-hard even for k = O(1) like the general version? Note that to prove the
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latter result, one would need to have directed cycles involved in the reduction
since there is nO(k) algorithm of Fortune et al. [15] for Edge-Disjoint Paths

on DAGs.
– Is the half-integral version5 of Edge-Disjoint Paths FPT on directed pla-

nar graphs? It is easy to see that our W[1]-hardness reduction does not work
for this problem.

– Given our W[1]-hardness result, can we obtain FPT (in)approximability
results for the Edge-Disjoint Paths problem on planar DAGs? To the best
of our knowledge, there are no known (non-trivial) FPT (in)approximability
results for any variants of the Disjoint Paths problem. This question might
be worth considering even for those versions of the Disjoint Paths prob-
lem which are known to be FPT since the running times are astronomical
(except maybe [20]). Some of the recent work [7–10] on polynomial time
(in)approximability of the Disjoint Paths problem might be relevant.

Acknowledgements. We thank the anonymous reviewers of CIAC 2021 for their
helpful comments. In particular, one of the reviewers suggested the strengthening
of Theorem 1.1 for the case when the input graph has both in-degree and out-degree
at most 2.
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Abstract. An upper dominating set is a minimal dominating set in
a graph. In the Upper Dominating Set problem, the goal is to find
an upper dominating set of maximum size. We study the complexity
of parameterized algorithms for Upper Dominating Set, as well as
its sub-exponential approximation. First, we prove that, under ETH, k-
Upper Dominating Set cannot be solved in time O(no(k)) (improving

on O(no(
√
k))), and in the same time we show under the same complexity

assumption that for any constant ratio r and any ε > 0, there is no r-

approximation algorithm running in time O(nk1−ε

). Then, we settle the
problem’s complexity parameterized by pathwidth by giving an algo-
rithm running in time O∗(6pw) (improving the current best O∗(7pw)),
and a lower bound showing that our algorithm is the best we can
get under the SETH. Furthermore, we obtain a simple sub-exponential
approximation algorithm for this problem: an algorithm that produces
an r-approximation in time nO(n/r), for any desired approximation ratio
r < n. We finally show that this time-approximation trade-off is tight,
up to an arbitrarily small constant in the second exponent: under the
randomized ETH, and for any ratio r > 1 and ε > 0, no algorithm

can output an r-approximation in time n(n/r)1−ε

. Hence, we completely
characterize the approximability of the problem in sub-exponential time.

Keywords: FPT Algorithms · Sub-Exponential Approximation ·
Upper Domination

1 Introduction

In a graph G = (V,E), a set D ⊆ V is called a dominating set if all vertices of
V are dominated by D, that is for every u ∈ V either u belongs to D or u is
a neighbor of some vertex in D. The well-known Dominating Set problem is
studied with a minimization objective: given a graph, we are interested in finding
the smallest dominating set. In this paper, we consider upper dominating sets,
that is dominating sets that are minimal, where a dominating set D is minimal
if no proper subset of it is a dominating set, that is if it does not contain any
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redundant vertex. We study the problem of finding an upper dominating set of
maximum size.

This problem is called Upper Dominating Set, and is the Max-Min ver-
sion of the Dominating Set problem. We call Upper Dominating Set the
considered optimization problem and k-Upper Dominating Set the associated
decision problem.

Studying Max-Min and Min-Max versions of some famous optimization prob-
lems is not a new idea, and it has recently attracted some interest in the liter-
ature: Minimum Maximal Independent Set [6,15,19] (also known as Mini-

mum Independent Dominating Set), Maximum Minimal Vertex Cover

[5,25], Maximum Minimal Separator [16], Maximum Minimal Cut [12],
Minimum Maximal Knapsack [1,13,14] (also known as Lazy Bureaucrat

Problem), Maximum Minimal Feedback Vertex Set [11]. In fact, the
original motivation for studying these problems was to analyze the performance
of naive heuristics compared to the natural Max and Min versions, but these
Max-Min and Min-Max problems have gradually revealed some surprising com-
binatorial structures, which makes them as interesting as their natural Max and
Min versions. The Upper Dominating Set problem can be seen as a member of
this framework, and studying it within this framework is one of our motivation.

This problem is also one of the six problems of the well-known domination
chain (see [2,18]) and is somewhat one which has fewer results, compared to
the famous Dominating Set and Independent Set problems. Increasing our
understanding of the Upper Dominating Set problem compared to these two
famous problems is another motivation.

Upper Dominating Set was first considered in an algorithmic point of
view by Cheston et al. [9], where they showed that the problem is NP-hard.
In the more extensive paper considering this problem, Bazgan et al. [3] stud-
ied approximability, and classical and parameterized complexity of the Upper

Dominating Set problem. In the polynomial approximation paradigm, they
proved that the problem does not admit an n1−ε-approximation for any ε > 0,
unless P=NP, making the problem as hard as Independent Set, whereas there
exists a greedy ln n-approximation algorithm for the Min version Dominating

Set.
Considering the parameterized complexity, they proved that the problem is

as hard as the k-Independent Set problem: k-Upper Dominating Set is
W[1]-hard parameterized by the standard parameter k. Nonetheless, in their
reduction, there is an inherent quadratic blow-up in the size of the solution k, so
they essentially proved that there is no algorithm solving k-Upper Dominating

Set in time O(no(
√

k)). They also gave FPT algorithms parameterized by the
pathwidth pw and the treewidth tw of the graph, in time O∗(7pw)1 and O∗(10tw),
respectively.

Our Results: The state of the art summarized above motivates two basic
questions: first, can we close the gap between the lower and upper bounds of
1 O∗ notation suppresses polynomial factors in the input size.
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the complexity of the problem parameterized by pathwidth; second, since the
polynomial approximation is essentially settled, can we design sub-exponential
approximation algorithms which can reach any approximation ratio r < n? We
answer these questions and along the way we give stronger FPT hardness results.
In fact, we prove the following:

(i) In Sect. 3, we show the following: under ETH, there is no algorithm solving
k-Upper Dominating Set in time O(no(k)); and under the same complexity
assumption, for any ratio r and any ε > 0, there is no algorithm for this problem
that outputs an r-approximation in time O(nk1−ε

).
(ii) In Sect. 4, we give a dynamic programming algorithm parameterized by

pathwidth that solves Upper Dominating Set in time O∗(6pw). Surprisingly,
this result is obtained by slightly modifying the algorithm of Bazgan et al. [3]. We
then prove the following: under SETH, and for any ε > 0, Upper Dominating

Set cannot be solved in time O∗((6−ε)pw). This is our main result, and it shows
that our algorithm for pathwidth is optimal.

(iii) In Sect. 5, we give a simple time-approximation trade-off: for any ratio
r < n, there exists an algorithm for Upper Dominating Set that ouputs an
r-approximation in time nO(n/r). We also give a matching lower bound: under
the randomized ETH, for any ratio r > 1 and any ε > 0, there is no algorithm
that outputs an r-approximation running in time n(n/r)1−ε

.

2 Preliminaries

We use standard graph-theoretic notation and we assume familiarity with the
basics of parameterized complexity (e.g. pathwidth, the SETH and FPT algo-
rithms), as given in [10]. Let G = (V,E) be a graph with |V | = n vertices and
|E| = m edges. For a vertex u ∈ V , the set N(u) denotes the set of neighbors of
u, d(u) = |N(u)|, and N [u] the closed neighborhood of u, i.e. N [u] = N(u)∪{u}.
For a subset U ⊆ V and a vertex u ∈ V , we note NU (u) = N(u) ∩ U . Further-
more, for U ⊆ V , we note N(U) =

⋃
u∈U N(u). For an edge set E′ ⊆ E, we

use V (E′) to denote the set of its endpoints. For V ′ ⊆ V , we note G[V ′] the
subgraph of G induced by V ′.

An upper dominating set D ⊆ V of a graph G(V,E) is a set of vertices that
dominates all vertices of G, and which is minimal. Note that D is minimal if we
have the following: for every vertex u ∈ D, either u has a private neighbor, that
is a neighbor that is dominated only by u, or u is its own private vertex, that
is u is only dominated by itself. We note an upper dominating set D = S ∪ I,
where S is the set of vertices of D which have at least one private neighbor, and
I is the set of vertices of D which forms an independent set, that is the set of
vertices which are their own private vertices.

Note that a maximal independent set I (also known as an independent domi-
nating set) is an upper dominating set since it is a set of vertices which dominates
the whole graph and such that every vertex u ∈ I is its own private vertex.
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3 FPT and FPT-Approximation Hardness

In this section, we present two hardness results for the k-Upper Dominating

Set problem in the parameterized paradigm: we prove first that the considered
problem cannot be solved in time O(no(k)) under the ETH ; and we prove then
under the same complexity assumption that for any constant approximation ratio
0 < r < 1 and any ε > 0, there is no FPT algorithm giving an r-approximation
for the k-Upper Dominating Set problem running in time O(nk1−ε

).
Note that k-Upper Dominating Set being W[1]-hard was already proved

by Bazgan et al. [3]. To get this result, they made a reduction from the k-
Multicolored Clique problem. Nonetheless, in this reduction, the size of the
solution of the k-Upper Dominating Set problem was quadratic compared to
the size of the solution of the k-Multicolored Clique problem. Thus, they
proved essentially the next result: k-Upper Dominating Set problem cannot
be solved in time O(no(

√
k)).

To obtain our desired negative results, we will make a reduction from the k-
Independent Set problem to our problem. So recall that we have the following
hardness results for the k-Independent Set problem:

Lemma 1 (Theorem 5.5 from [8]). Under ETH, k-Independent Set can-
not be solved in time O(no(k)).

Lemma 2 (Corollary 2 from [4]). Under ETH, for any constant r > 0 and
any ε > 0, there is no r-approximation algorithm for k-Independent Set

running in time O(nk1−ε

).

We will obtain similar results for the k-Upper Dominating Set by doing
a reduction from k-Independent Set. This reduction will linearly increase the
size of the solutions between the two problems, so these two hardness results for
the latter problem will hold for the former problem.

Before we proceed further in the description of our reduction, note that we
will use a variant of the k-Independent Set problem. In this variant, the graph
G contains k cliques which are connected to each other, and if a solution of size
k exists, then this solution takes exactly one vertex per clique. Note that the
Lemmas 1 and 2 hold on this particular instance, since this is a case where the
problem remains hard to solve in FPT time and to approximate in FPT time.
So we will use this variant.

Let us now present our reduction. We are given a k-Independent Set

instance G with n vertices and m edges, where the n vertices are partitioned
in k distinct cliques V1, . . . , Vk connected to each other. We define the following
number: A = 5. We set our budget to be k′ = Ak.

We construct our instance G′ of k′
-Upper Dominating Set as follows:

1. For any vertex u ∈ V (G), create an independent set Zu of size A.
2. For any edge (u, v) ∈ E(G), add all edges between the vertices of Zu and the

vertices of Zv.
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3. For any i ∈ {1, . . . , n}, let Wi be the group associated to the clique Vi, which
contains all vertices of all independent sets Zu such that the vertex u belongs
to the clique Vi. For any i ∈ {1, . . . , k}, create a vertex zi connected to all
vertices of the group Wi.

Now that we have presented our reduction, we argue that it is correct. Recall
that the target size of an optimal solution in G′ is k′ as defined above. We can
prove that, given an independent set I of size at least k in G, we can construct
an upper dominating set of size at least Ak in G′ by taking the A vertices of the
independent set Zu for any vertex u ∈ I.

Lemma 3. If G has an independent set of size at least k, then G′ has an upper
dominating set of size at least k′.

The idea of the following proof is the following: if an upper dominating set
in G′ of size at least k′ has not the form described in Lemma 3, then it cannot
have size at least k′, enabling us to construct an independent set of size at least
k in G from an upper dominating set which has the desired form.

Lemma 4. If G′ has an upper dominating set of size at least k′, then G has an
independent set of size at least k.

Now that we have proved the correctness of our reduction and since the blow-
up of the reduction is linear in both the size of the instance and the size of the
solution, we can now present one of the main results of this section:

Theorem 1. Under ETH, k-Upper Dominating Set cannot be solved in time
O(no(k)).

From now one and to obtain the FPT-approximation hardness result, we now
consider our reduction above with A being sufficiently large. Note that all the
properties we have found before still hold since A remains a constant.

Let 0 < r < 1. To obtain the FPT-approximation hardness result for the
k-Independent Set problem (see Lemma 2), Bonnet et al. [4] made a gap-
amplification reduction from an instance φ of 3-SAT to an instance (G, k) of
k-Independent Set problem. Essentially, this reduction gives the following
gap:

– YES-instance: If φ is satisfiable, then α(G) = k.
– NO-instance: If φ is not satisfiable, then α(G) ≤ rk.

In this gap, α(G) is the size of a maximum independent set in G, and k
corresponds in fact to a value which depends on the reduction, but designating
it by k ease our purpose.

To obtain a similar result for the k-Upper Dominating Set problem, and
by using our reduction above, we have to prove that our reduction keep a gap
of value r. Thus, we need to prove the following:

– YES-instance: If φ is satisfiable, then α(G) = k and Γ (G ′) = Ak .
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– NO-instance: If φ is satisfiable, then α(G) ≤ rk and Γ (G ′) ≤ rAk .

where Γ(G′) is the size of a maximum upper dominating set in G′.
Note that we have proved the first condition in Lemma3, since an indepen-

dent set of size at least k in G necessarily has size exactly k.
Thus, we just need to prove the second condition. To prove it, we will in fact

prove the contraposition, to ease our proof. This is given in the following Lemma.
The proof of this Lemma uses some arguments made in the proof of Lemma 4,
and by choosing carefully which vertices we can put in the independent set we
want to construct.

Lemma 5. If there exists an upper dominating set in G′ of size > rAk, then
there exists an independent set in G of size > rk.

Now that we have proved the correctness of the gap-amplification of our
reduction, we can present the second main result of this section:

Theorem 2. Under ETH, for any constant r > 0 and any ε > 0, there is
no r-approximation algorithm for k-Upper Dominating Set running in time
O(nk1−ε

).

4 Pathwidth

4.1 FPT Algorithm Parameterized by Pathwidth

In this section, we present an algorithm for the Upper Dominating Set prob-
lem parameterized by the pathwidth pw of the given graph. We prove that, given
a graph G = (V,E) and a path decomposition (T, {Xt}t∈V (T )) of width pw, there
exists a dynamic programming algorithm that solves Upper Dominating Set

in time O(6pw ·pw). Due to space constraints, we only sketch the basic ideas and
explain, on a high level, how we manage to get the desired complexity.

Note that Bazgan et al. have designed an FPT algorithm for Upper Dom-

inating Set running in time O∗(7pw) [3]. Our algorithm essentially works as
their algorithm: we have the same set of colors to give to the vertices; and our
Initialization and Forget nodes are similar to theirs.

Nonetheless, we have modified the Introduce nodes in order to lower the
complexity to O(6pw · pw). For an Introduce node Xt = Xt′ ∪ {v} (and a vertex
v /∈ Xt′), Bazgan et al. did the following: they go through all possible colorings
of the bag Xt and consider every subset of the neighborhood of v to give the
right color to the vertices of this subset. Thus, since they consider every subset
of the neighborhood of v, they get an algorithm running in time O∗(7pw).

In our algorithm, we do the following: for an Introduce node Xt = Xt′ ∪{v},
we go through all possible colorings of the bag Xt′ and through all colorings of the
vertex v, and we update the value in the table depending on the corresponding
colorings of Xt′ and v. Doing so, and by being careful on the color given to v,
it enables us to get an algorithm running in time O(6pw · pw). We obtain the
following Theorem:
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Theorem 3. The Upper Dominating Set problem can be solved in time
O(6pw · pw), where pw is the input graph’s pathwidth.

4.2 Lower Bound

In this section, we present a lower bound on the complexity of any FPT algorithm
for the Upper Dominating Set problem parameterized by the pathwidth of
the graph matching our previous algorithm. More precisely, we prove that, under
SETH, for any ε > 0, there is no algorithm for Upper Dominating Set running
in time O∗((6 − ε)pw), where pw is the pathwidth of the input graph.

To get this result, we will do a reduction from the q-CSP-6 problem (see [23])
to the Upper Dominating Set problem. In the former problem, we are given a
Constraint Satisfaction (CSP) instance with n variables and m constraints.
The variables take values over a set of size 6. Without loss of generality, let
{0, 1, 2, 3, 4, 5} be this set. Each constraint involves at most q variables, and is
given as a list of acceptable assignments for these variables. Without loss of
generality, we force the following condition: each constraint involves exactly q
variables, because if it has fewer, we can add to it new variables and augment the
list of satisfying assignments so that the value of the new variables is irrelevant.

The following result, shown in [23], is a natural consequence of the SETH,
and will be the starting point to obtain the desired lower bound:

Lemma 6 (Lemma 2 from [23]). If the SETH is true, then, for all ε > 0, there
exists a q such that n-variables q-CSP-6 cannot be solved in time O∗((6 − ε)n).

We note that in [23], it was shown that for any constant B, q-CSP-B cannot
be solved in time O∗((B − ε)n) under the SETH. For our purpose, only the case
where B = 6 is relevant because this corresponds to the base of our target lower
bound.

We will produce a polynomial time reduction from an instance of q-CSP-6

with n variables to an equivalent instance of Upper Dominating Set whose
pathwidth is bounded by n + O(1). Thus, any algorithm for the latter problem
running faster than O∗((6 − ε)pw) would give a O∗((6 − ε)n) algorithm for the
former problem, contradicting SETH.

Before we proceed further in the description of our reduction, let us give the
basic ideas, which look like other SETH-based lower bounds from the literature
[17,20–22,24]. The constructed graph consists of a main part of n paths of length
4 m, each divided into m sections. The idea is that an optimal solution will ver-
ify, for each path, a specific pattern in the whole graph. For four consecutive
vertices, there are six ways for taking exactly two vertices among the four and
dominating the two others. These six ways for each path will represent all pos-
sible assignments for all variables. Then, we will add some verification gadgets
for each constraint and attach it to the corresponding section, in order to check
that the selected assignment satisfies the constraint or not.

A first difficulty of this reduction is to prove that an optimal solution of the
Upper Dominating Set instance has the desired form, and more precisely that
the pattern selected for a variable is constant throughout the graph. To answer
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this difficulty, and by using a technique introduced in [24], we make a polynomial
number of copies of this construction and we connect them together, enabling
us to have a sufficiently large copy where the patterns are kept constant in this
copy.

Moreover, we need to be careful in our verification gadgets in order to have the
following conditions: the vertices of the paths taken in the solution must not have
any private neighbor in the corresponding verification gadget, because otherwise
it would be impossible to keep the patterns constant in a sufficiently large copy
of the graph; and the vertices of the paths not taken in the solution must not
be dominated by the corresponding verification gadget, because otherwise there
can be some vertices of the paths taken in the solution that have no private
neighbor.

Construction. Let us now present our reduction. We are given a q-CSP-6

instance ϕ with n variables x1, . . . , xn taking values over the set {0, 1, 2, 3, 4, 5},
and m constraints c0, . . . , cm−1, each containing exactly q variables and Cj pos-
sible assignments over these q variables, for each j ∈ {0, . . . ,m − 1}. We define
the following numbers: A = 4q +2 and F = (2n+1)(4n+1). We set our budget
to be k = Fm(2n + A) + 2n.

We construct our instance of Upper Dominating Set as follows:

1. For i ∈ {1, . . . , n}, we construct a path Pi of 4Fm + 6 vertices: the vertices
are labeled ui,j for j ∈ {−3, . . . , 4Fm + 2}; and for each i, j the vertex ui,j is
connected to ui,j+1. We call these paths the main part of our graph.

2. For each section j ∈ {0, . . . , Fm − 1}, let j′ = j mod m. We construct a
verification gadget Hj as follows:
(a) A clique Kj of size ACj′ such that the ACj′ vertices are partitioned into

Cj′ cliques K1
j , . . . ,K

Cj′
j , each corresponding to a satisfying assignment

σl in the list of cj′ , for l ∈ {1, . . . , Cj′}, and each containing exactly A
vertices.

(b) A clique Lj of size ACj′ such that the ACj′ vertices are partitioned in
Cj′ cliques L1

j , . . . , L
Cj′
j , each containing exactly A vertices.

(c) For each i ∈ {1, . . . , n} such that xi is involved in cj′ , and for each satis-
fying assignment σl in the list of cj′ : if σl sets xi value 0, connect the two
vertices ui,4j+2 and ui,4j+3 to the A vertices of the clique Kl

j ; if σl sets xi

value 1, connect the two vertices ui,4j+3 and ui,4j to the A vertices of the
clique Kl

j ; if σl sets xi value 2, connect the two vertices ui,4j and ui,4j+1

to the A vertices of the clique Kl
j ; if σl sets xi value 3, connect the two

vertices ui,4j+1 and ui,4j+2 to the A vertices of the clique Kl
j ; if σl sets

xi value 4, connect the two vertices ui,4j+1 and ui,4j+3 to the A vertices
of the clique Kl

j ; if σl sets xi value 5, connect the two vertices ui,4j and
ui,4j+2 to the A vertices of the clique Kl

j .
(d) For each satisfying assignment σl in the list of cj′ , do the following: add

a matching between the vertices of Kl
j and the vertices of Ll

j ; for any
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l′ ∈ {1, . . . , Cj′} with l′ �= l, add all the edges between the vertices of Kl
j

and the vertices of Ll′
j .

(e) Add a vertex w connected to all the vertices of the clique Lj .

Now that we have presented our reduction, we argue that it is correct and
that the obtained graph G has the desired pathwidth. Recall that the target size
of an optimal solution in G is k as defined above.

Lemma 7. If ϕ is satisfiable, then there exists an upper dominating set in G of
size at least k.

Proof. Assume ϕ admits some satisfying assignment ρ : {x1, . . . , xn} → {0, 1, 2,
3, 4, 5}. We construct a solution S of the instance G of Upper Dominating

Set as follows:

1. For each i ∈ {1, . . . , n}, let α and β be the following numbers: if ρ(xi) =
0, let α = 2 and β = 3; if ρ(xi) = 1, let α = 3 and β = 0; if
ρ(xi) = 2, let α = 0 and β = 1; if ρ(xi) = 3, let α = 1 and β = 2;
if ρ(xi) = 4, let α = 1 and β = 3; if ρ(xi) = 5, let α = 0 and β = 2.
Let U =

⋃Fm−1
j=0 {ui,4j+α, ui,4j+β}. We add to the solution all vertices of

(V (Pi) \ {ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1, ui,4Fm+2}) \ U .
2. For each j ∈ {0, . . . , Fm − 1}, let j′ = j mod m. Consider the unique pos-

sible assignment σl∗ in the list of cj′ satisfied by ρ (such a unique possible
assignment must exist since ρ satisfies ϕ), and take the A vertices of the clique
Ll∗

j .
3. For each i ∈ {1, . . . , n}, do the following: if ρ(xi) = 0, then add ui,−3, ui,4Fm

and ui,4Fm+1 to S; if ρ(xi) = 1, then add ui,−2 and ui,4Fm+1 to S; if ρ(xi) = 2,
then add ui,−2, ui,−1 and ui,4Fm+2 to S; if ρ(xi) = 3, then add ui,−3 and
ui,4Fm+2 to S; if ρ(xi) = 4, then add ui,−3 and ui,4Fm+1 to S; if ρ(xi) = 5,
then add ui,−2 and ui,4Fm+2 to S.

Let us now argue why this solution has size at least k. In the first step, we have
selected 2Fmn vertices. To see this, let Qi,j be the sub-path of Pi corresponding
to the section j (j ∈ {0, . . . , Fm−1}), i.e. Qi,j = {ui,4j , ui,4j+1, ui,4j+2, ui,4j+3}.
Observe that we have put exactly two vertices of Qi,j in U , which leaves two
vertices in the solution, for all i and all j. Consider now any j ∈ {0, . . . , Fm−1}
and the corresponding verification gadget Hj . In this gadget, we have selected
all the vertices of the clique Ll∗

j , corresponding to the satisfied assignment σl∗ .
So we have selected AFm vertices for all the verification gadgets. Finally, at
least 2n vertices have been added to the solution at step 3. So the total size is
at least 2Fmn + AFm + 2n = k.

Let us now argue why the solution is a valid upper dominating set.
Consider any j ∈ {0, . . . , Fm − 1} and let j′ = j mod m. We have selected

the A vertices of the clique Ll∗
j corresponding to the unique possible assignment

σl∗ in the list of cj′ satisfied by ρ (such a unique possible assignment must exist
since ρ satisfies ϕ). Since Lj is a clique, since the vertices of Ll∗

j are connected to
all vertices of Kl′

j , for any l′ ∈ {1, . . . , Cj′} with l′ �= l∗, since there is a matching
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between the vertices of Ll∗
j and the vertices of Kl∗

j , and since the vertex w is
connected to all vertices of Lj , we have that all the vertices of Hj are dominated
by S.

Now, observe that, since σl∗ is satisfied by ρ, it means that the values given
by ρ to the variables appearing in the constraint cj′ satisfy σl∗ , so by the con-
struction it follows that the neighbors of the vertices of Kl∗

j in the paths all
belongs to U . Indeed, consider any variable xi appearing in cj′ : if σl∗ sets value
0 to xi, then ρ(xi) = 0, and then, for α = 2 and β = 3, we have that ui,4j+α and
ui,4j+β are in U and are the only vertices of Qi,j neighbors of the vertices of Kl∗

j ;
it remains true whether σl∗ sets value 1, 2, 3, 4 or 5 to xi with the convenient α
and β. So all the neighbors of Kl∗

j in the main part of the graph are not in S.
Moreover, no vertex of Kj is taken in the solution, and no vertex of Lj \ Ll∗

j is
taken in the solution. By these facts, and since the only edges between Ll∗

j and
Kl∗

j is a perfect matching between the vertices of these two sets, it follows that
each vertex of Ll∗

j has a private neighbor, namely its unique neighbor in Kl∗
j .

Consider now any i ∈ {1, . . . , n}. The set U never takes three consecutive ver-
tices in the path Pi, so (V (Pi)\{ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1, ui,4Fm+2})\
U is a dominating set in the path (V (Pi) \ {ui,−3, ui,−2, ui,−1, ui,4Fm, ui,4Fm+1,
ui,4Fm+2}). Observe now that, for any j ∈ {0, . . . , Fm − 1}, the vertices of the
clique Kj in the gadget Hj are never taken by the solution, so the vertices of
the path Pi are only dominated by the vertices of Pi, whether the variable xi

appears in cj′ or not (for j′ = j mod m). Moreover, by the same argument, the
neighbors in the verification gadgets of the vertices of the path Pi taken in the
solution are never taken in the solution.

If ρ(xi) ∈ {0, 1, 2, 3}, then U takes two consecutive vertices, leaves two con-
secutive vertices in S, takes again two consecutive vertices, and so on. In these
cases, the two vertices of S each have a private neighbor, namely their other
neighbor in the path. If ρ(xi) ∈ {4, 5}, then U takes a vertex, leaves a vertex
in S, takes a vertex, and so on. In these cases, the vertices of S are their own
private vertex. So all the vertices of the path either have a private neighbor, or
are their own private vertices.

Nonetheless, we have to be more careful for the first and last sections (for
j = 0 and j = Fm − 1). By the step 3 of our construction of the solution S,
and by some simple observations, we have that all vertices of the main part are
dominated, and that the vertices of the main part which belong to the solution
either have a private neighbor in the corresponding path, or are their own private
vertices. 	


Let us now prove the other direction of our reduction. The idea of this proof
is the following: by partitioning the graph into different parts and upper bound
the cost of these parts, we prove that if an upper dominating set in G has not
the same form as in Lemma 7 in a sufficiently large copy, then it has size strictly
less than k, enabling us to produce a satisfiable assignment for ϕ using the copy
where the upper dominating set has the desired form.



212 L. Dublois et al.

Lemma 8. If there exists an upper dominating set of size at least k in G, then
ϕ is satisfiable.

We can now show that the pathwidth of G is bounded by n + O(1).

Lemma 9. The pathwidth of G is at most n + O(1).

We are now ready to present the main result of this section:

Theorem 4. Under SETH, for all ε > 0, no algorithm solves Upper Domi-

nating Set in time O∗((6 − ε)pw), where pw is the input graph’s pathwidth.

5 Sub-exponential Approximation

5.1 Sub-exponential Approximation Algorithm

In this section, we present a sub-exponential approximation algorithm for the
Upper Dominating Set problem. We prove the following: for any r < n, there
exists an r-approximation algorithm for the Upper Dominating Set problem
running in time nO(n/r).

To show this result, we use a common tool to design sub-exponential algo-
rithms: partitioning the set of vertices V (G) of the input graph into a convenient
number of subsets of the same size. On each subset, we create a number of solu-
tions: all maximal independent sets I in the subgraph induced by the considered
set of vertices; and all subsets S of the considered subset. For each maximal
independent set I, we extend it to the whole graph. For each subset S, we first
go through all subsets of neighbors of vertices of S in order to find the correct
set of private neighbors, and then we extend the solution to the whole graph.
At the end, we output the best solution encountered. By computing all maximal
independent sets I and by going through all subsets S, we prove that there exists
at least one valid upper dominating set which has the desired size. Note that,
given a subset of an upper dominating set whose vertices have private neigh-
bors, it may be impossible to extend the partial solution if we do not know their
private vertices. This is why we need to find the private vertices of the subset S
we consider, since in our proof the solution which has the desired size may come
from such a subset S. We prove the following:

Theorem 5. For any r < n, Upper Dominating Set is r-approximable in
time nO(n/r).

5.2 Sub-exponential Inapproximability

In this section, we give a lower bound on the complexity of any r-approximation
algorithm, matching our algorithm of the previous section. We get the following
result: for any r < n and any ε > 0, there is no algorithm that outputs an
r-approximation for the Upper Dominating Set problem running in time
n(n/r)1−ε

.
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To obtain this result, we will first prove the desired lower bound for the
Maximum Minimal Hitting Set problem. In this problem, we are given an
hypergraph and we want to find a set of vertices which cover all hyper-edges.
Moreover, we need that this set is minimal, i.e. every vertex in the solution covers
a private hyper-edge, and we want the solution to be of maximum size.

To obtain this lower bound for the Maximum Minimal Hitting Set prob-
lem, we will do a reduction from the Maximum Independent Set problem.
Then, we will make a reduction from the Maximum Minimal Hitting Set

problem to the Upper Dominating Set problem to transfer this lower bound
to our problem.

Recall that we have the following lower bound by Chalermsook et al. [7] for
the Maximum Independent Set problem:

Theorem 6 (Theorem 1.2 from [7]). For any ε > 0 and any sufficiently large
r > 1, if there exists an r-approximation algorithm for Maximum Independent

Set running in time 2(n/r)1−ε

, then the randomized ETH is false.

We note that making a reduction from the Maximum Minimal Hit-

ting Set problem to derive hardness result for the Upper Dominating Set

problem has already be done by Bazgan et al. [3]. Indeed, to get the n1−ε-
inapproximability result for the Upper Dominating Set problem, they first
derive this bound of the Maximum Minimal Hitting Set problem and then
they designed an approximation-preserving reduction between these two prob-
lems, enabling them to transfer this hardness result to the Upper Dominating

Set problem.
In fact, to obtain the hardness result for the Maximum Minimal Hitting

Set problem, they made a reduction from the Maximum Independent Set

problem. Our first reduction is similar to this reduction and will allows us to get
the desired hardness result for the Maximum Minimal Hitting Set problem.
Our second reduction, from Maximum Minimal Hitting Set to Upper Dom-

inating Set is the approximation-preserving reduction designed by Bazgan
et al. [3].

Note that our reduction from Maximum Independent Set to Maximum

Minimal Hitting Set create a quadratic (in n) blow-up of the size of the
instance of the latter problem. Such a blow-up does not allow us to derive the
desired running-time. To answer this difficulty, we make another step in the
reduction where we “sparsify” the instance of Maximum Minimal Hitting Set

in order to keep the blow-up under control. To prove that the inapproximability
gap stays the same, we use a probabilistic analysis with Chernoff bounds.

We will first prove the following hardness result:

Theorem 7. For any ε > 0 and any sufficiently large r > 1, if there exists an
r-approximation algorithm for Maximum Minimal Hitting Set running in
time n(n/r)1−ε

, then the randomized ETH is false.

With this hardness result for Maximum Minimal Hitting Set, and by
using the reduction of Bazgan et al. [3], we get the following hardness result for
Upper Dominating Set:
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Theorem 8. For any ε > 0 and any sufficiently large r > 1, if there exists an
r-approximation for Upper Dominating Set running in time n(n/r)1−ε

, then
the randomized ETH is false.
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15. Halldórsson, M.M.: Approximating the minimum maximal independence num-
ber. Inf. Process. Lett. 46(4), 169–172 (1993). https://doi.org/10.1016/0020-
0190(93)90022-2

16. Hanaka, T., Bodlaender, H.L., van der Zanden, T.C., Ono, H.: On the maximum
weight minimal separator. Theor. Comput. Sci. 796, 294–308 (2019). https://doi.
org/10.1016/j.tcs.2019.09.025

17. Hanaka, T., Katsikarelis, I., Lampis, M., Otachi, Y., Sikora, F.: Parameterized ori-
entable deletion. In: Eppstein, D. (ed.) 16th Scandinavian Symposium and Work-
shops on Algorithm Theory, SWAT 2018, 18–20 June 2018, Malmö, Sweden. LIPIcs,
vol. 101, pp. 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.SWAT.2018.24

18. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs, Pure and Applied Mathematics, vol. 208. Dekker, New York (1998)

19. Hurink, J.L., Nieberg, T.: Approximating minimum independent dominating sets
in wireless networks. Inf. Process. Lett. 109(2), 155–160 (2008). https://doi.org/
10.1016/j.ipl.2008.09.021

20. Jaffke, L., Jansen, B.M.P.: Fine-grained parameterized complexity analysis of
graph coloring problems. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC
2017. LNCS, vol. 10236, pp. 345–356. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57586-5 29

21. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds,
and approximation for (k, r)-center. In: Okamoto, Y., Tokuyama, T. (eds.) 28th
International Symposium on Algorithms and Computation, ISAAC 2017, 9–12
December 2017, Phuket, Thailand. LIPIcs, vol. 92, pp. 50:1–50:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.
2017.50

22. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structurally parameterized d-scattered
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Abstract. Editing a graph into a disjoint union of clusters is a standard
optimization task in graph-based data clustering. Here, complementing
classic work where the clusters shall be cliques, we focus on clusters
that shall be 2-clubs, that is, subgraphs of diameter at most two. This
naturally leads to the two NP-hard problems 2-Club Cluster Edit-

ing (the editing operations are edge insertion and edge deletion) and
2-Club Cluster Vertex Deletion (the editing operations are vertex
deletions). Answering an open question, we show that 2-Club Clus-

ter Editing is W[2]-hard with respect to the number of edge mod-
ifications, thus contrasting the fixed-parameter tractability result for
the classic Cluster Editing problem (considering cliques instead of 2-
clubs). Then, focusing on 2-Club Cluster Vertex Deletion, which
is easily seen to be fixed-parameter tractable, we show that under stan-
dard complexity-theoretic assumptions it does not have a polynomial-size
problem kernel when parameterized by the number of vertex deletions.
Nevertheless, we develop several effective data reduction and pruning
rules, resulting in a competitive solver, outperforming a standard CPLEX
solver in most instances of an established biological test data set.

1 Introduction

Graph-based data clustering is one of the most important application domains
for graph modification problems [31]. Roughly speaking, the goal herein is to
transform a given graph into (usually disjoint) clusters, thereby performing as
few modification operations (edge deletions, edge insertions, vertex deletions) as
possible. This type of problems typically is NP-hard. The perhaps most promi-
nent problem herein is Cluster Editing (also known as Correlation Clus-

tering), where the clusters are requested to be cliques and one is allowed to
perform both edge insertions and edge deletions. There has been a lot of work
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on Cluster Editing, e.g., see the surveys by Böcker and Baumbach [2] and
by Crespelle et al. [7]. However, also the variant where one modifies the input
graph by vertex deletions received significant interest [6,12,20,32].

Arguably, for many data science applications the request that the clusters
have to be cliques is too rigid. Hence, the consideration of clique relaxations for
defining clusters gained attention in graph-based data clustering [1,17,25,27]. In
this work, we focus on so-called 2-clubs as clusters [25,27]: these are diameter-at-
most-two graphs (hence, cliques are 1-clubs). Other than finding cliques, finding
2-clubs of size at least k is fixed-parameter tractable with respect to k [19,30].
Note that 2-clubs have been used in the context of biological data analysis [21,
28]. Moreover, 2-clubs have been studied in the context of covering vertices in a
graph [9–11].

Now, continuing and complementing previous work of Liu et al. [25], we study
both the edge editing variant (referred to as 2-Club Cluster Editing) and the
vertex deletion variant (referred to as 2-Club Cluster Vertex Deletion).
We contribute the following three main results:

1. Answering an open question of Liu et al. [25], in Sect. 2 we show that 2-

Club Cluster Editing is W[2]-hard with respect to the number of mod-
ified edges (deletions and insertions), hence most likely not fixed-parameter
tractable. This stands in sharp contrast to the problems Cluster Edit-

ing [16] and the more general s-Plex Cluster Editing [17]1, both known
to be fixed-parameter tractable for the parameter number of edge modifi-
cations. The W[2]-hardness seems surprising considering the fact that while
Cluster Editing is fixed-parameter tractable [2] and 2-Club Cluster

Editing is presumably not, by way of contrast finding cliques is presumably
not fixed-parameter tractable while finding 2-clubs is.

2. Complementing fixed-parameter tractability and kernelization results for
Cluster Vertex Deletion [6,20,32] and s-Plex Cluster Vertex

Deletion [1], in Sect. 2 we show that, other than these related problems
and despite being easily seen to be fixed-parameter tractable for the param-
eter solution size, 2-Club Cluster Vertex Deletion is unlikely to have
a polynomial-size problem kernel.2

3. In Sects. 3 and 4, we explore the fixed-parameter tractability of 2-Club Ver-

tex Deletion from a more practical angle and develop several efficient data
reduction rules together with effective search-tree pruning rules. Performing
an empirical evaluation with standard biological data, we show that our tuned
algorithmic approach (based on branching and data reduction) in most rel-
evant cases clearly outperforms a standard ILP formulation solved CPLEX,

1 This is the generalization of Cluster Editing where clusters are requested to be
s-plexes (and not cliques); an s-plex is a subgraph where each vertex is connected
to all other vertices of the s-plex except for at most s − 1 vertices. Notably, a clique
is a 1-plex.

2 It has been featured as an open problem whether the edge deletion variant s-Club

Cluster Edge Deletion has a polynomial-size problem kernel [7,25].
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thus providing a state-of the art software tool for the vertex deletion variant
of graph-based data clustering with 2-clubs.

Due to the lack of space, several details had to be deferred to the full version [14].

Preliminaries. All graphs considered in our work are undirected and simple. For
a graph G = (V,E) we set n := |V | and m := |E|. We denote with

(
V
2

)
the set of

all two-element subsets of V . For a vertex v ∈ V , we denote by NG(v) := {w ∈
V | {v, w} ∈ E} the open neighborhood of v and by NG[v] := NG(v) ∪ {v} the
closed neighborhood of v. The degree of v is degG(v) := |NG(v)|. For a vertex
subset V ′ ⊆ V , let NG[V ′] :=

⋃
v∈V ′ NG[v]. If it is clear from the context, then

we omit G from the subscripts. We denote by G[V ′] the subgraph of G induced
by the vertex set V ′ ⊆ V and by G[E′] the subgraph of G with edge set E′ ⊆ E,
that is, G[E′] := (V,E′). The graph G−v is obtained by deleting v ∈ V from G,
that is G − v := G[V \ {v}].

A path P in G is an ordered sequence of pairwise distinct vertices v1,
v2, . . . , vk+1 ∈ V such that {vi, vi+1} ∈ E for all i ∈ {1, . . . , k}. It is also an
induced path if these are the only edges between its vertices. The length of P
is k. We denote by Pn a path on n vertices. The distance of two vertices s, t ∈ V ,
denoted by distG(s, t), is the length of a shortest path connecting s and t if one
exists, and ∞ otherwise. The diameter of a graph is the maximum distance of
any two vertices, formally maxs,t∈V distG(s, t). A graph is said to be connected
if there exists a path between all pairs of its vertices. A (connected) component
of a graph G is a maximal vertex set S ⊆ V such that G[S] is connected.

s-Club. An s-club is a graph of diameter at most s. A clique is a 1-club.
Furthermore, an s-club cluster graph is a graph in which each component
is an s-club. In this paper, we consider the following two problems, where
E�F := (E \ F ) ∪ (F \ E) denotes the symmetric difference of two sets E
and F .

s-Club Cluster Editing

Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an edge set F ⊆ (

V
2

)
with |F | ≤ k such that G[E�F ]

is an s-club cluster graph?

s-Club Cluster Vertex Deletion

Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there a vertex subset S ⊆ V with |S| ≤ k such that G[V \ S]

is an s-club cluster graph?

An edge set F ⊆ (
V
2

)
such that G[E�F ] is an s-club cluster graph is called an

s-club editing set and a vertex set S ⊆ V such that G[V \ S] is an s-club cluster
graph is called an s-club vertex deletion set.
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2-Club. A 2-club is a graph with diameter at most two. This means that for all
pairs of vertices u, v ∈ V it holds that u and v are adjacent or have at least one
common neighbor. Note that 2-clubs are non-hereditary, that is, if G is a 2-club,
then deleting vertices from G may destroy this property. This is a significant
difference in comparison with cliques.

Using terminology of Liu et al. [25], we call a path stuv in G a restricted P4

if distG(s, v) = 3. That is, a restricted P4 is a shortest path connecting s and v
and is thus also an induced P4. The following characterization is easy to verify:

Observation 1 ([25, Lemma 3]). A graph G is a 2-club cluster graph if and
only if it contains no restricted P4.

Parameterized Algorithmics [8]. A parameterized problem Π ⊆ Σ∗ × N is a set
of pairs (I, k), where I denotes the problem instance and k is the parameter.
Problem Π is fixed-parameter tractable (FPT) if there exists an algorithm solving
any instance of Π in f(k) · |I|c time, where f is some computable function and c
is some constant. A parameterized reduction from a parameterized problem Π ⊆
Σ∗ × N to a parameterized problem Π ′ ⊆ Σ∗ × N is a function which maps
any instance (I, k) ∈ Σ∗ × N to another instance (I ′, k′) ∈ Σ∗ × N such that
(1) (I ′, k′) can be computed from (I, k) in FPT time, (2) k′ ≤ g(k) for some
computable function g, and (3) (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π ′. If Π is W[i]-hard,
i ≥ 1, then such a parameterized reduction shows that also Π ′ is W[i]-hard,
that is, presumably not fixed-parameter tractable. A reduction to a problem
kernel is a parameterized self-reduction (from Π to Π) such that (I ′, k′) can be
computed in polynomial time and |I ′| ≤ g(k). If g is a polynomial, then (I ′, k′)
is called a polynomial kernel. Problem kernels are usually achieved by applying
data reduction rules. Given an instance (I, k), a data reduction rule computes
in polynomial time a new instance (I ′, k′). We call a data reduction rule safe if
(I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π.

2 Hardness Results

It is easy to see that 2-Club Cluster Vertex Deletion is fixed-parameter
tractable with respect to solution size k [25]: By Observation 1, it is enough
to recursively search for a restricted P4 stuv and delete a vertex to separate s
and v. In contrast, we subsequently show that 2-Club Cluster Editing is
W[2]-hard with respect to solution size k answering an open question of Liu et
al. [25]. Intuitively, the hardness is due to the fact that there is a “non-local” way
of destroying a restricted P4 with edge insertions, see Fig. 1 for an illustration.

The basic idea of our parameterized reduction from Dominating Set
3 is

inspired by a parameterized reduction by Gao et al. [15, Theorem 1] who showed
hardness for the problem of reducing the diameter of a given graph to two by
inserting at most k edges. In our reduction we need to take care of the possibility

3 Given an undirected graph G = (V, E) and an integer k, the question is whether
there is a dominating set V ′ ⊆ V (that is, N [V ′] = V ) of size at most k.
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six local
modifications:

s t u v

non-local
modification:

s t u v

b

a

b

c d

e
f

g

h i

j

Fig. 1. Left (top and bottom): All possible modifications to destroy a restricted P4.
Top: The six “local” modifications; that is, any edge which is inserted (dashed edges) or
deleted (dotted edges) has both its ends in the P4. Bottom: A “non-local” modification
(the two inserted edges are dashed), where b can be any vertex other than s, t, u and v.
Right side: The dashed edge indicates the single optimal solution (inserting the edge,
the resulting Petersen graph has diameter two) which is a non-local modification. Since
the distance between c and d was four, the insertion of edge {c, d} is not part of any
local modification.

ci,0

ci,n

cj,n

cj,0

c0,0

c0,n
. . .

. . .

..
.

vi

x

vj

Fig. 2. A schematic picture of the construction of G′ in the proof of Theorem 1. The
vertices in the gray circle form a clique, but only the vertices connected to vi, vj , or x
are shown. The dashed gray edge between vi and vj exists if {vi, vj} ∈ E(G).

to delete edges, which changes many details of the construction. Dominating

Set remains W[2]-hard with respect to k for graphs with diameter two [26].
Thus we can assume that the Dominating Set instance has diameter two.

Theorem 1. 2-Club Cluster Editing is W[2]-hard with respect to k.

Proof. Let G = (V,E) be a graph with diameter two. We construct a graph G′

in such a way that G has a dominating set of size at most k if and only if G′

has a 2-club editing set of size at most k. The graph G′ = (V ′, E′) can be
broken down into the following parts: the original graph G, a clique C ⊆ V ′

of cardinality (n + 1)2, and a single vertex x. We assign two indices for the
vertices ci,j ∈ C such that i, j ∈ {0, . . . , n}. The vertices in V only have one
index: vi ∈ V , i ∈ {1, . . . , n}. In addition to the existing edges in G and C,
add the following edges: for each j ∈ {0, . . . , n} add {x, c0,j} and for each ci,j ∈
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C, i �= 0, add {vi, ci,j}. The graph G′ has O(n4) edges and O(n2) vertices and
can be constructed in polynomial time. For a schematic picture of G′ see Fig. 2.
Note that the only pairs of vertices with distance three are x and vi ∈ V , all
others have distance at most two.

We claim that there exists a dominating set of size at most k for G if and
only if there exists a 2-club editing set of size at most k for G′ (which only inserts
edges).

“⇒”: Let D be a dominating set for G with |D| ≤ k, and F := {{x, v} | v ∈
D}. Let H := G′[E′�F ]. For every vi ∈ V , either vi ∈ D and then distH(x, vi) =
1, or vi /∈ D and then vi has a neighbor in D and thus distH(x, vi) = 2. This
means that H is a 2-club cluster graph and F is a 2-club editing set for G′ with
|F | ≤ k.

“⇐”: Let F be a 2-club editing set for G′ with |F | ≤ k and H = G′[E′�F ]
be the resulting 2-club cluster graph. Assume without loss of generality that F
is minimal. Removing any edge would only be optimal if H contained more than
one 2-club cluster. Note that the size of a minimum cut of G′ is n + 1 and
that k < n. Hence, there is only one 2-club cluster in a solution and no edge is
removed.

For any inserted edge {a, b} ∈ F exactly one of the following cases applies,
since the distance between x and some vi ∈ V has to be reduced by means of
inserting {a, b} .

– {a, b} = {vi, x}: Then distH(x, vi) = 1 and for a ∈ NG(vi) distH(x, a) ≤ 2.
We interpret this as vi being a dominating vertex in G.

– {a, b} = {vi, c0,j}: This edge enables a path of length two from vi to x via c0,j .
This means that this edge is only of benefit to vi. Then F ′ = (F \{vi, c0,j})∪
{x, vi} is also a 2-club editing set with |F | = |F ′|.

– {a, b} = {vi, vj}: This means that one of the vertices has an edge to x.
Without loss of generality assume that {x, vi} ∈ F . Note that F is only
minimal if {x, vj} /∈ F , as the edge {vi, vj} is only of benefit to vj and
no other vertices since it enables a path of length two from vj to x via vi.
Then F ′ = (F \ {vi, vj}) ∪ {x, vj} is also a 2-club editing set with |F | = |F ′|.

– {a, b} = {vi, cj,k} , j �= i, j �= 0: This means that there is an edge {x, cj,k} ∈ F ,
otherwise F would not be minimal. The edge {vi, cj,k} enables a path of length
two from vi to x via cj,k. This means that the edge is of no benefit to any
other vertices. Then F ′ = (F \ {vi, cj,k}) ∪ {x, vi} is also a 2-club editing set
with |F | = |F ′|.

– {a, b} = {x, ci,j} , i �= 0: This edge enables a path of length two from vi

to x via ci,j . In the previous case, we have seen that there exists an F ′

with {x, ci,j} ∈ F ′ such that there exists no edge {v�, ci,j} ∈ F ′ with � �= i.
This means that the edge {x, ci,j} is of no benefit to any other vertices.
Then F ′′ = (F ′ \{x, ci,j})∪{x, vi} is also a 2-club editing set with |F | = |F ′′|.
Altogether, we know that there exists an F ′ with |F ′| = |F | such that F ′ is

a 2-club editing set of the form {{x, v} | v ∈ D} for some D ⊆ V . This means
that D is a dominating set for G with |D| ≤ k.
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G1 G2 G3 G4 G5 G6 G7 G8

Fig. 3. Illustration of the construction for Theorem 2 exemplified for � = 8. Star-
shaped vertices have k′ + 1 additional leaves and are connected to all vertices in the
gray-shaded area below them.

Summarizing, the reduction from (G, k) to (G′, k) is a valid parameterized
reduction from Dominating Set for graphs with diameter two to 2-Club

Cluster Editing. Since Dominating Set is W[2]-hard for graphs of diameter
two [26], this yields that 2-Club Cluster Editing is also W[2]-hard. �

Next, we use the OR-cross-composition framework of Bodlaender et al. [5] to
show that 2-Club Cluster Vertex Deletion does not admit a polynomial
kernel with respect to the solution size k.

Theorem 2. 2-Club Cluster Vertex Deletion does not admit a polyno-
mial kernel with respect to k unless NP ⊆ coNP /poly.

Proof (Sketch). Given � instances (G1 = (V1, E1), k), . . . , (G� = (V�, E�), k), we
subsequently construct in polynomial time a new instance (G′ = (V ′, E′), k′)
that is a yes-instance if and only if at least one of the � instances (Gi =
(Vi, Ei), k) is a yes-instance. The theorem then follows from applying the OR-
cross-composition framework of Bodlaender et al. [5].

Without loss of generality, assume that � is a power of two (otherwise copy
instances until � is a power of two). We set k′ := k+log �. To describe G′, we need
a simple selection-gadget consisting of two stars with k′+1 leaves each where the
two center vertices are adjacent. Observe that in the selection-gadget the leaves
of one star are at distance three to the leaves of the other star. Moreover, since
each star has more than k′ leaves, the only possibility to transform a selection-
gadget into a 2-club cluster graph is to delete one of the two center vertices.

We can now define G′: To this end, we recursively create an “instance-
selector” that forces the selection of exactly one instance Gi as shown in Fig. 3.
First, add a selection-gadget with the two center vertices cL and cR (left and
right). Second, recursively build the two graphs GL, GR composing G1, . . . , G�/2

and G�/2+1, . . . , G� respectively until GL, GR consist of only one input instance.
Make every vertex in GL (in GR) adjacent to cL (to cR). Note that this recursive
procedure has recursion depth log �. The construction of (G′, k′) can clearly be
done in polynomial time. �
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3 Algorithms for 2-Club Cluster Vertex Deletion

In this section, we first formulate 2-Club Cluster Vertex Deletion as an
Integer Linear Program (ILP) and then introduce a branch&bound-algorithm
solving a generalization of 2-Club Cluster Vertex Deletion. We use the
ILP-formulation in our experiments to evaluate our branch&bound algorithm.

ILP Formulation. By Observation 1, a graph is a 2-club cluster graph if and only
if it contains no restricted P4. Recall that a restricted P4 is an induced P4 stuv
that is also a shortest path between s and t. Thus, there exists no vertex w ∈
N(s) ∩ N(v) in the common neighborhood of s and v. The deletion of a vertex
cannot create any new induced path but it might “promote” an induced P4 to
a restricted P4. Hence, if N(s) ∩ N(v) = ∅ for any induced P4 stuv in G, then
at least one vertex from stuv must be deleted.

We introduce a variable xv for each vertex v ∈ V . This variable has a value
of 1 if and only if v is in the 2-club vertex deletion set. This leads to the following
ILP formulation:

min:
∑

v∈V

xv

s.t. xs + xt + xu + xv +
∑

b∈N(s)∩N(v)

(1 − xb) ≥ 1 for all induced P4’s stuv in G

xv ∈ {0, 1} for all v ∈ V.

Branch&Bound Algorithm. We describe an algorithm for the following gener-
alization of 2-Club Cluster Vertex Deletion as this variant allows more
flexibility in the design of data reduction rules and for deriving lower bounds.

Generalized 2-Club Cluster Vertex Deletion (Gen2CVD)

Input: An undirected graph G = (V,E), an integer k ∈ N, a set F ⊆ V
of permanent vertices, and a weight function w : V → N

+.
Question: Is there an S ⊆ V with w(S) ≤ k and S∩F = ∅ such that G[V \

S] is a 2-club cluster graph?

Note that an instance (G, k) of 2-Club Cluster Vertex Deletion is
clearly equivalent to the instance (G, k, ∅, w ≡ 1) of Gen2CVD.

Our algorithm uses a simple branching rule that takes a restricted P4 and
branches into all four cases of deleting one vertex which implies updates of the
set F of permanent vertices in each branch. If some vertex of the restricted P4

stuv is already in F , then we skip the corresponding case in the branching.
Thus, the branching itself “grows” the set F of permanent vertices that will
reduce the cases to be considered later in the branching. Moreover, if more than
one restricted P4 exists, then the algorithm chooses one with most vertices in F
and uses the weights of the vertices as tiebreaker.
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a

v

b

(a) Reduction Rule 1 can be applied on
vertex v. The gray area contains vertices
that can be marked as permanent.

v

b

a

c

(b) Reduction Rule 1 cannot be applied
on vertex v because v is a bridge for ver-
tices a and b (in fact deleting c is the
unique optimal solution).

Fig. 4. Examples of graphs with a cut vertex v (all vertex weights are one). The gray
area is a 2-club that is isolated from the rest of the graph after deleting v. Note that
in the first graph the removal of v increases the distance of a and b to four. Thus no
induced P4 exists between a and b.

We enrich the basic branching algorithm with lower bounds and data reduc-
tion rules. A simple lower bound is obtained by (heuristically) computing a set P
of vertex disjoint restricted P4’s. Then it is easy to see that any solution has to
delete at least |P| many vertices. Moreover, for each restricted P4 one has to pay
at least the weight of the lightest vertex. Thus,

∑
stuv∈P minv∈{s,t,u,v}{w(v)} is

a (better) lower bound.
We implemented several data reductions rules. We exemplify one rule below,

illustrating the issues arising from the non-hereditary nature of the problem. A
vertex b ∈ V is a cut vertex if the deletion of b increases the number of connected
components. A vertex b ∈ V is a bridge vertex if for some s, v ∈ N(b) there exists
an induced P4 stuv. (Deleting b might turn stuv into a restricted P4.) For ease
of notation, assume that all vertex weights are one. (The weighted case requires
some more case distinctions.) The rule is exemplified in Fig. 4, where the right
side (b) demonstrates the necessity of the requirement that v is not a bridge
vertex.

Reduction Rule 1. Let v ∈ V with w(v) = 1 be a non-permanent cut vertex
that is not a bridge. For each component C in G − v that is a 2-club mark the
vertices in C as permanent.

While these (and more) lower bounds and data reduction rules give a signif-
icant speedup in practice (also cf. Komusiewicz et al. [23]), we could not show
an improved theoretical worst-case bound: The branching into four cases leads
to the following result (note that a restricted P4 can be found in O(nm) time).

Proposition 3. Generalized 2-Club Cluster Vertex Deletion can be
solved in O(4k · nm) time.
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4 Experimental Evaluation

4.1 Setup

We implemented our branch&bound algorithm (see Sect. 3) for Generalized

2-Club Cluster Vertex Deletion in C++ (we use the algorithm to solve
2-Club Cluster Vertex Deletion).4 This solver (called solverALL in the
following) computes a 2-club vertex deletion set size of minimum cost and out-
puts the solution set. It uses all data reduction rules described in the full ver-
sion [14]. Note that for the implementation of some data reduction rules and
lower bounds we use heuristics.

We will compare the performance of our solver against the ILP formulation
from Sect. 3 solved using CPLEX (we will refer to this solver as CPLEX). All
experiments were run on a machine with an Intel Xeon W-2125 8-core, 4.0 GHz
CPU and 256 GB of RAM running Ubuntu 18.04. We used a recent version
of CPLEX, 12.8, for our experiments. Analogously to previous work for the
related Cluster Editing [4], we focus on implementations computing optimal
solutions. Thus, we also require CPLEX to compute optimal solutions.

For our analysis we used a real-world biological dataset5 that has been used
for the evaluation of Weighted Cluster Editing solvers [3,29]. We created
two sets of unweighted graphs (called Bio33 and Bio50; each with ≈ 430 graphs)
as described by Hartung and Hoos [18]. These instances had up to 250 vertices
and 15,000 edges.

4.2 Results

We next analyze the performance of our solver in detail. To this end, we start
with comparing the theoretical bounds with the results of our experiments. The
number of branches in our search tree is far below the theoretical worst-case
bound of 4k (even far below the 3.31k bound of the search tree of Liu et al. [25])
given in Proposition 3. This is a clear indication that the data reduction rules and
lower bounds have a strong impact on our solver. Another observation is that
the impact of the number of input graph vertices on the running time is quite
significant. The reason for this is the high polynomial running time for executing
the data reduction rules and computing lower bounds: Our best upper bound on
the running time (in terms of n) of one recursive step (including data reduction
and lower bounds) is O(n4). We show subsequently that the high running-time
cost for the data reduction rules is justified.

The Bio33 instances are in general harder for our solver than the Bio50
instances. The reason for this is that the Bio50 instances are more dense and
allow to cluster in less 2-clubs of larger size with fewer vertex removals.
4 The source code is available at https://fpt.akt.tu-berlin.de/software/two-club-

editing/two-club-vertex-deletion.zip and includes the source code for the ILP for-
mulation using CPLEX.

5 The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster
editing data.

https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip
https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip
https://bio.informatik.uni-jena.de/data/#cluster_editing_data
https://bio.informatik.uni-jena.de/data/#cluster_editing_data
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Fig. 5. Running time comparison (in seconds) of different configurations of our solver
and CPLEX on two datasets (left: Bio33, right: Bio50). Each dot represents one
instance with the x and y coordinates indicating the running time of the respective
solver (in seconds). Hence, a dot above (below) the solid diagonal indicates the solver
on the x-axis (y-axis) is faster on the corresponding instance. The diagonal lines mark
running time factors of 1 (solid), 5 (dashed) and 25 (dotted). Dots on the solid horizon-
tal and vertical red lines (at 3600 s) indicate timeouts. In each plot the running time of
our solverALL is displayed at the x-axis. The y-axis shows in each row of the plots a
different solver; these are from top to bottom: Three configurations of our solver where
certain features are disabled (first all data reduction rules, then permanent vertices
with the corresponding data reduction rules that require permanent vertices). The last
row shows the comparison against CPLEX.

Comparisons. We next compare our solver solverALL to several variants of it
where we deactivate key features and to CPLEX. The comparisons are illustrated
in Fig. 5.
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The first row of plots in Fig. 5 shows that if we deactivate the data reduc-
tion rules, then the performance becomes much worse, especially on the harder
instances that require more than 10 s to solve. On average, solverALL (with all
data reduction rules) is 6.7 times faster on the Bio33 instances and 3 times faster
on the Bio50 instances. This is in stark contrast to the kernelization lower bound
given in Theorem 2 and gives hope to find small parameters based on which one
may perform a mathematical analysis yielding polynomial kernel sizes.

The plots in the second row of Fig. 5 show the effect of turning off permanent
vertices and the corresponding data reduction rules. Note that in the Bio50
dataset the variant without permanent vertices is faster on most instances, very
likely due to respective data reduction rule being expensive. However, the results
for the Bio33 dataset show a different picture. In fact, one can see in both data
sets that turning off the feature of permanent vertices solves the easier instances
even faster and slows down the solver on the harder instances. The lack of “hard”
instances in the Bio50 dataset is the reason for the variant without permanent
vertices being faster there. On average, solverALL (with permanent vertices) is
5 times faster on the Bio33 instances but 1.6 times slower on the Bio50 instances.

The plots in the last row of Fig. 5 show that our solver is almost always faster
than CPLEX by a factor of 5–25 for Bio33 and a factor of 25–100 for Bio50. On
average, solverALL is 29.3 times faster on the Bio33 instances and 103.6 times
faster on the Bio50 instances. For Bio33 it appears that for harder instances
CPLEX is not much slower than our solver. On Bio50, CPLEX does very poorly
compared to our solver. This is likely due to the minimum 2-club vertex deletion
set size (the parameter in our FPT-algorithm) on these graphs being smaller
than for Bio33. Moreover, the process for building the ILP model for CPLEX is
usually fairly fast, but for larger instances it can take up to 60 s. For example,
in Bio50 there is a graph with 205 vertices and 10455 edges which is already
a 2-club cluster graph. It takes about 50 s to create the ILP model, and when
exported to a file it takes up to 1.6 GB (uncompressed) and includes 5.8 million
constraints, whereas the original graph only takes up 72 kB stored in an edge
list format.

Summarizing, our solver outperforms a standard ILP-formulation solved with
CPLEX. To this end, good data reduction rules are crucial to the practical
performance of our solver.

5 Conclusion

We investigated the problem of modifying graphs into 2-club cluster graphs.
We have shown that 2-Club Cluster Editing is W[2]-hard for the param-
eter solution size k. Furthermore, we developed and engineered a competitive
branch&bound algorithm for the fixed-parameter tractable 2-Club Cluster

Vertex Deletion problem.
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On the theoretical side, we left open whether our “no-poly-kernel” result for
2-Club Cluster Vertex Deletion parameterized by solution size transfers
to the closely related 2-Club Cluster Edge Deletion problem, a further
open problem from the literature [7,25]. Moreover, it would be interesting to
see whether our results also generalize to using s-clubs with s ≥ 3. For other
2-club related graph modification problems to be studied one could consider
overlapping clusters [13] or use stricter 2-club models such as well-connected 2-
clubs [24]. Limiting the number of local manipulations [22] is another restriction
worthwhile investigations. On the empirical and algorithm engineering side, note
that while our solver showed strong performance when working with biological
data, preliminary experiments showed that this is less so when attacking social
network data. The reasons for this call for an explanation.

Acknowledgment. We thank anonymous reviewers for their valuable feedback.
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4. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
evaluation and experiments. Algorithmica 60(2), 316–334 (2011). https://doi.org/
10.1007/s00453-009-9339-7

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.
org/10.1137/120880240

6. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016). https://
doi.org/10.1007/s00224-015-9631-7

7. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameter-
ized algorithms and the complexity of edge modification. CoRR, abs/2001.06867
(2020). https://arxiv.org/abs/2001.06867

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

9. Dondi, R., Lafond, M.: On the tractability of covering a graph with 2-clubs. In:
Gasieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651,
pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-
0 17

10. Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph
Algorithms Appl. 23(2), 271–292 (2019). https://doi.org/10.7155/jgaa.00491

11. Dondi, R., Mauri, G., Zoppis, I.: On the tractability of finding disjoint clubs in a
network. Theoret. Comput. Sci. 777, 243–251 (2019). https://doi.org/10.1016/j.
tcs.2019.03.045

https://doi.org/10.1007/s00453-011-9492-7
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1007/s00224-015-9631-7
https://arxiv.org/abs/2001.06867
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-25027-0_17
https://doi.org/10.1007/978-3-030-25027-0_17
https://doi.org/10.7155/jgaa.00491
https://doi.org/10.1016/j.tcs.2019.03.045
https://doi.org/10.1016/j.tcs.2019.03.045


On 2-Clubs in Graph-Based Data Clustering 229

12. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Proceedings of the 37th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2012). LNCS, vol.
7464, pp. 348–359. Springer, Heidelberg (2012). https://doi.org/10.1007/s00453-
011-9492-7

13. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

14. Figiel, A., Himmel, A., Nichterlein, A., Niedermeier, R.: On 2-clubs in graph-based
data clustering: theory and algorithm engineering. CoRR, abs/2006.14972 (2020).
https://arxiv.org/abs/2006.14972

15. Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter
augmentation. Discrete Appl. Math. 161(10–11), 1626–1631 (2013). https://doi.
org/10.1016/j.dam.2013.01.016
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Abstract. We study q-SAT in the multistage model, focusing on the
linear-time solvable 2-SAT. Herein, given a sequence of q-CNF formulas
and a non-negative integer d, the question is whether there is a sequence
of satisfying truth assignments such that for every two consecutive truth
assignments, the number of variables whose values changed is at most d.
We prove that Multistage 2-SAT is NP-hard even in quite restricted
cases. Moreover, we present parameterized algorithms (including kernel-
ization) for Multistage 2-SAT and prove them to be asymptotically
optimal.

Keywords: temporal problems · symmetric difference · parameterized
complexity · problem kernelization

1 Introduction

q-Satisfiability (q-SAT) is one of the most basic and best studied decision
problems in computer science: It asks whether a given boolean formula in con-
junctive normal form, where each clause consists of at most q literals, is sat-
isfiable. q-SAT is NP-complete for q ≥ 3, while 2-Satisfiability (2-SAT) is
linear-time solvable [1]. The recently introduced multistage model [15,22] takes
a sequence of instances of some decision problem (e.g., modeling one instance
that evolved over time), and asks whether there is a sequence of solutions to
them such that, roughly speaking, any two consecutive solutions do not differ
too much. We introduce q-SAT in the multistage model, defined as follows.1

Multistage q-SAT (MqSAT)

Input: A set X of variables, a sequence Φ = (φ1, . . . , φτ ), τ ∈ N, of q-CNF
formulas over literals over X, and an integer d ∈ N0.

Question: Are there τ truth assignments f1, . . . , fτ : X → {⊥,�} such that
(i) for each i ∈ {1, . . . , τ}, fi is a satisfying truth assignment for φi, and
(ii) for each i ∈ {1, . . . , τ − 1}, it holds that |{x ∈ X | fi(x) �= fi+1(x)}| ≤ d?

1 We identify false and true with ⊥ and �, respectively.
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Constraint (ii) of MqSAT can also be understood as that the Hamming dis-
tance of two consecutive truth assignments interpreted as n-dimensional vectors
over {⊥,�} is at most d, or when considering the sets of variables set true, then
the symmetric difference of two consecutive sets is at most d.

In this work, we focus on M2SAT yet relate most of our results to MqSAT.
We study M2SAT in terms of classic computational complexity and parameter-
ized algorithmics [12].

Motivation. In theory as well as in practice, it is common to model problems
as q-SAT- or even 2-SAT-instances. Once being modeled, established solvers spe-
cialized on q-SAT are employed. In some cases, a sequence of problem instances
(e.g., modeling a problem instance that changes over time) is to solve such that
any two consecutive solutions are similar in some way (e.g., when costs are
inferred for setup changes). Hence, when following the previously described app-
roach, each problem instance is first modeled as a q-SAT instance such that a
sequence of q-SAT-instances remains to be solved. Comparably to the single-
stage setting, understanding the multistage setting could give raise to a general
approach for solving different (multistage) problems. With MqSAT we introduce
the first problem that models the described setup. Note that, though a lot of
variants of q-SAT exist, MqSAT is one of the very few variants that deal with
a sequence of q-SAT-instances [31].

Our Contributions. Our results for Multistage 2-SAT are summarized
in Fig. 1. We prove Multistage 2-SAT to be NP-hard, even in fairly restricted
cases: (i) if d = 1 and the maximum number m of clauses in any stage is six, or
(ii) if there are only two stages. These results are tight in the sense that M2SAT

is linear-time solvable when d = 0 or τ = 1. While NP-hardness for d = 1
implies that there is no (n + m + τ)f(d)-time algorithm for any function f
unless P = NP, where n denotes the number of variables, we prove that when
parameterized by the dual parameter n−d (the minimum number of variables not
changing between any two consecutive layers), M2SAT is W[1]-hard and solv-
able in O∗(nO(n−d)) time.2 We prove this algorithm to be tight in the sense that,
unless the Exponential Time Hypothesis (ETH) breaks, there is no O∗(no(n−d))-
time algorithm. Further, we prove that M2SAT is solvable in O∗(2O(n)) time but
not in O∗(2o(n)) time unless the ETH breaks. Likewise, we prove that M2SAT

is solvable in O∗(nO(τ ·d)) time but not in O∗(no(d)·f(τ)) time for any function f
unless the ETH breaks. As to efficient and effective data reduction, we prove
M2SAT to admit problem kernelizations of size O(m·τ) and O(n2τ), but none of
size (n+m)O(1), O((n+m+τ)2−ε), or O(n2−ετ), ε > 0, unless NP ⊆ coNP /poly.

Related Work. q-SAT is one of the most famous decision problems with a cen-
tral role in NP-completeness theory [11,27], for the (Strong) Exponential Time
Hypothesis [25,26], and in the early theory on kernelization lower bounds [6,21],
for instance. In contrast to q-SAT with q ≥ 3, 2-SAT is proven to be polynomial-
[28], even linear-time [1] solvable. Several applications of 2-SAT are known (see,
2 The O∗-notation suppresses factors polynomial in the input size.
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Fig. 1. Our results for Multistage 2-SAT. Each box gives, regarding to a parame-
terization (top layer), our parameterized classification (middle layer) with additional
details on the corresponding result (bottom layer). Arrows indicate the parameter
hierarchy: An arrow from parameter p1 to p2 indicates that p1 ≤ p2. “PK” and “no
PK” stand for “polynomial problem kernel” and “no polynomial problem kernel
unless NP ⊆ coNP / poly”, respectively. †: unless the ETH breaks (Theorem 3.2).
‡: unless the ETH breaks (Theorem 3.1). ¶: unless NP ⊆ coNP / poly (Theorem 7.3)
§: unless NP ⊆ coNP / poly (Theorem 3.1).

e.g., [10,16,23,30]). In the multistage model, various problems from different
fields were studied, e.g. graph theory [2,3,9,19,20,22], facility location [15], knap-
sack [5], or committee elections [7]. Also variations to the multistage model were
studied, e.g. with a global budget [24], an online-version [4], or using different
distance measures for consecutive stages [7,20].
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2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero,
respectively. Frequently, we will tacitly make use of the fact that for every n ∈ N,
0 ≤ k ≤ n, it holds true that 1 +

∑k
i=1

(
n
i

)
=

∑k
i=0

(
n
i

) ≤ 1 + nk ≤ 2nk.

Satisfiability. Let X denote a set of variables. A literal is a variable that is
either positive or negated (we denote the negation of x by ¬x). A clause is a
disjunction over literals. A formula φ is in conjunctive normal form (CNF) if it
is of the form

∧
i Ci, where Ci is a clause. A formula φ is in q-CNF if it is in CNF

and each clause consists of at most q literals. A truth assignment f : X → {⊥,�}
is satisfying for φ (or satisfies φ) if each clause is satisfied, which is the case if
at least one literal in the clause is evaluated to true (a positive variable assigned
true, or a negated variable assigned false). For a, b ∈ {⊥,�}, let a ⊕ b := ⊥
if a = b, and a ⊕ b := � otherwise. For X ′ ⊂ X, an truth assignment f ′ : X ′ →
{⊥,�} is called partial. We say that we simplify a formula φ given a partial truth
assignment f ′ (we denote the simplified formula by φ[f ′]) if each variable x ∈ X ′

is replaced by f ′(x), and then each clause containing an evaluated-to-true literal
is deleted.

Preprocessing on Multistage 2-SAT. Due to the following data reduction, we
can safely assume each stage to admit a satisfying truth assignment.

Reduction Rule 2.1. If a stage exists with no satisfying truth assignment,
then return no.

3 From Easy to Hard: NP- and W-Hardness

Multistage 2-SAT is linear-time solvable if the input consists of only one stage,
or if all or none variables are allowed to change its truth assignment between
two consecutive stages.

Observation 3.1 (�3). Multistage 2-SAT is linear-time solvable if (i) τ =
1, (ii) d = 0, or (iii) d = n.

We will prove that the cases (i) and (ii) in Observation 3.1 are tight: Multi-

stage 2-SAT becomes NP-hard if τ ≥ 2 (Sects. 3.1 & 3.3) or d = 1 (Sect. 3.2).
For the case (iii) in Observation 3.1 the picture looks different: we prove Mul-

tistage 2-SAT to be polynomial-time solvable if n − d ∈ O(1) (Sect. 5).

3.1 From One to Two Stages

In this section, we prove that Multistage 2-SAT becomes NP-hard if τ ≥ 2.
In fact, we prove the following.

3 Details and proofs (marked with �) are deferred to the appendix.
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Theorem 3.1 (�). Multistage 2-SAT is NP-hard, even for two stages,
where the variables appear all negated in one and all positive in the other stage.
Moreover, Multistage 2-SAT

(i) is W[1]-hard when parameterized by d even if τ = 2,
(ii) admits no no(d)·f(τ)-time algorithm for any function f unless the ETH

breaks, and
(iii) admits no problem kernelization of size O(n2−ε · f(τ)) for any ε > 0 and

function f , unless NP ⊆ coNP /poly.

We will reduce from the following NP-hard problem:

Weighted 2-SAT

Input: A set of variables X, a 2-CNF φ over X, and an integer k.
Question: Is there a satisfying truth assignment for φ with at most k variables

set true?

When parameterized by the number k of set-to-true variables, Weighted 2-

SAT is W[1]-complete [14,18]. Moreover, Weighted 2-SAT admits no no(k)-
time algorithm unless the ETH breaks [8] and no problem bikernelization of
size O(n2−ε), ε > 0, unless NP ⊆ coNP /poly [13].

Construction 3.1. Let (X,φ, k) be an instance of Weighted 2-SAT, where
φ =

∧m
i=1 Ci. Construct Φ = (φ1, φ2), where φ2 := φ and φ1 :=

∧
x∈X(¬x)

consists of n size-one clauses, where each variable appears negated in one clause.
Finally, set d := k. �
Remark 3.1. Theorem 3.1(iii) can be generalized to Multistage q-SAT: Instead
fromWeighted 2-SAT, we reduce (in an analogous way) fromWeighted q-SAT
which admits no problem bikernelization of size O(nq−ε), ε > 0, unless NP ⊆
coNP /poly [13]. Thus, unless NP ⊆ coNP /poly, Multistage q-SAT admits no
problem kernel of size O(nq−ε · f(τ)) for any ε > 0 and function f .

3.2 From Zero to One Allowed Change

In this section, we prove that Multistage 2-SAT becomes NP-hard if d = 1
and the maximum number m of clauses in any stage is six. In fact, we prove the
following.

Theorem 3.2. Multistage 2-SAT is NP-hard, even if the number of clauses
in each stage is at most six and d = 1. Moreover, unless the ETH breaks, Mul-

tistage 2-SAT admits no O∗(2o(n))-time algorithm.

Construction 3.2. Let (X,φ) be an instance of 3-SAT, where φ =
∧m

i=1 Ci

and each clause consists of exactly three literals. Let �i
j , j ∈ {1, 2, 3}, denote the

literals in Ci for each i ∈ {1, . . . , m}. Construct instance (X ′, Φ, d) of M2SAT

as follows. First, construct X ′ := X ∪ B, where B := {b1, b2, b3}. Let

φB := (b1 ∨ b2) ∧ (b1 ∨ b3) ∧ (b2 ∨ b3), and
φ¬B := (¬b1 ∨ ¬b2) ∧ (¬b1 ∨ ¬b3) ∧ (¬b2 ∨ ¬b3).
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Next, construct Φ := (φi, . . . , φ2m) as follows. For each i ∈ {1, . . . , m}, construct

φ2i−1 := φ¬B, and φ2i := (�i
1 ∨ b1) ∧ (�i

2 ∨ b2) ∧ (�i
3 ∨ b3) ∧ φB

Finally, set d := 1. �
Observation 3.2 (�). In every solution to an instance obtained from Con-
struction 3.2, in each odd stage exactly two bj are set to false and in each even
stage exactly two bj are set to true.

Lemma 3.1 (�). Let I = (X,φ) be an instance of 3-SAT, and let I ′ =
(X ′, Φ, d) be an instance of Multistage 2-SAT obtained from I using Con-
struction 3.2. Then, I is a yes-instance if and only if I’ is a yes-instance.

Proof (Proof of Theorem 3.2). Construction 3.2 forms a polynomial-time many-
one reduction to an instance with d = 1, m = 6, and n = |X| + 3. Hence,
M2SAT is NP-hard, even if d = 1 and m = 6, and, unless the ETH breaks,
admits no O∗(2o(n))-time algorithm since no O∗(2o(|X|))-time algorithm exists
for 3-SAT [8]. ��

3.3 From All to All But k Allowed Changes

In this section, we prove that Multistage 2-SAT is W[1]-hard when parame-
terized by the lower bound n−d on the number of unchanged variables between
any two consecutive stages.

Theorem 3.3. Multistage 2-SAT is W[1]-hard when parameterized by n − d
even if τ = 2, and, unless the ETH breaks, admits no O∗(no(n−d)·f(τ))-time
algorithm for any function f .

We reduce from the following NP-hard problem:

Multicolored Independent Set (MIS)

Input: An undirected, k-partite graph G = (V 1, . . . , V k, E).
Question: Is there an independent set S such that |S ∩ V i| = 1 for all i ∈

{1, . . . , k}?

MIS is W[1]-hard with respect to k [17] and unless the ETH breaks, there is
no f(k) · no(k)-time algorithm [29].

Construction 3.3. Let I = (G = (V 1, . . . , V k, E)) be an instance of MIS

and let V := V 1 � · · · � V k, n := |V |, and V i = {vi
1, . . . , v

i
|Vi|} for all i ∈

{1, . . . , k}. We construct an instance I ′ = (X, (φ1, φ2), d) with d := n − k as
follows. Let X := X1 ∪ · · · ∪ Xk with Xi = {xi

j | vi
j ∈ Vi} for all i ∈ {1, . . . , k}.

Let for all i ∈ {1, . . . , k}

φ∗
i :=

∧

j,j′∈{1,...,|V i|}, j �=j′
(¬xi

j ∨ ¬xi
j′), and let φE :=

∧

{vi
j ,vi′

j′}∈E

(¬xi
j ∨ ¬xi′

j′).
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Let

φ1 :=
∧

x∈X

(x) and φ2 := φE ∧
∧

i∈{1,...,k}
φ∗

i .

This finishes the construction. �
Lemma 3.2 (�). Let I = (G = (V 1, . . . , V k, E)) be an instance of MIS,
and let I ′ = (X, (φ1, φ2), d) be an instance of Multistage 2-SAT obtained
from I using Construction 3.3. Then, I is a yes-instance if and only if I’ is a
yes-instance.

Proof (Proof of Theorem 3.3). Construction 3.3 runs in polynomial time and
outputs an equivalent instance (Lemma 3.2) with two stages and d = n − k.
As Construction 3.1 also forms a parametric transformation, M2SAT is W[1]-
hard when parameterized by n − d even if τ = 2. Moreover, unless the ETH
breaks, M2SAT admits no no(n−d)·f(τ)-time algorithm for any function f since
no no(k)-time algorithm exists for MIS. ��

4 Fixed-Parameter Tractability Regarding the Number
of Variables and m + n − d

In this section, we prove that Multistage 2-SAT is fixed-parameter tractable
regarding the number of variables (Sect. 4.1) and regarding the parameter m +
n−d, the maximum number of clauses over all input formulas and the minimum
number of variables not changing between any two consecutive stages (Sect. 4.2).

4.1 Fixed-Parameter Tractability Regarding the Number of
Variables

We prove that Multistage 2-SAT is fixed-parameter tractable regarding the
number of variables.

Theorem 4.1 (�). Multistage 2-SAT is solvable in O(min{2nnd, 4n} · τ ·
(n + m)) time.

Remark 4.1. Theorem 4.1 is asymptotically optimal regarding n unless the ETH
breaks (Theorem 3.2). Moreover, Theorem 4.1 is easily adaptable to Multi-

stage q-SAT with q ≥ 3 as, for every q ≥ 3, the number of truth assignments
is 2n and each is verifiable in linear time.

4.2 Fixed-Parameter Tractability Regarding m + n − d

We prove that Multistage 2-SAT is fixed-parameter tractable regarding the
parameter m + n − d.

Theorem 4.2. Multistage 2-SAT is solvable in O(42(m+n−d)τ(n+m)) time.
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To prove Theorem 4.2, we will show that either Theorem 4.1 applies with n ≤
2(m + n − d) or the following.

Lemma 4.1. Multistage 2-SAT solvable in O(τ(n + m)) time if 2m < d.

Proof. Let I = (X,Φ, d) be an instance of M2SAT with Φ = (φ1, . . . , φτ )
on n variables and each formula contains at most m clauses. Due to Reduc-
tion Rule 2.1, we can safely assume that each formula of Φ admits a satisfying
truth assignment. Let Xi ⊆ X be the set of variables appearing as literals in φi

for each i ∈ {1, . . . , τ}. Note that |Xi| ≤ 2m for each i ∈ {1, . . . , τ}. Compute in
linear time a satisfying truth assignment f1 : X → {⊥,�} for φ1. Compute for
each i ∈ {2, . . . , τ} in linear time a satisfying truth assignment f ′

i : Xi → {⊥,�}
for φi. Next, iteratively for i = 2, . . . , τ , set for all x ∈ X

fi(x) =

{
f ′

i(x), if x ∈ Xi,

fi−1(x), if x ∈ X \ Xi.

Clearly, truth assignment fi satisfies φi. Moreover, for all i ∈ {2, . . . , τ} it holds
that |{x ∈ X | fi−1(x) �= fi(x)}| ≤ |Xi| ≤ 2m < d, and hence (f1, . . . , fτ ) is a
solution to I. ��
Proof (Proof of Theorem 4.2). Let I = (X,Φ, d) be an instance of M2SAT

with Φ = (φ1, . . . , φτ ) on n variables and each formula contains at most m
clauses. We distinguish how 2(m + n − d) relates to 2n − d.

Case 1 : 2(m + n − d) ≥ 2n − d. Since d ≤ n, it follows that 2(m + n − d) ≥
n. Due to Theorem 4.1, we can solve I in O(min{2nnd, 4n}τ(n + m)) ⊆
O(42(m+n−d)τ(n + m)) time.

Case 2 : 2(m+n−d) < 2n−d. We have that 2(m+n−d) < 2n−d ⇐⇒ 2m < d.
Due to Lemma 4.1, we can solve I in O(τ(n + m)) time. ��

Remark 4.2. Theorem 4.2 can be adapted for Multistage q-SAT for every q ≥
3, where Lemma 4.1 is restated for qm < d and we check for a satisfying truth
assignment for each stage in O∗(2qm) time. To adapt the proof of Theorem 4.2,
we then relate q(m + n − d) with qn − (q − 1)d and either employ the adapted
Theorem 4.1 (see Remark 4.1), or the adapted Lemma 4.1.

5 XP Regarding the Number of Consecutive Non-changes

We prove that Multistage 2-SAT is in XP when parameterized by the
lower bound n − d on non-changes between consecutive stages, the parameter
“dual” to d.

Theorem 5.1. Multistage 2-SAT is solvable in O(n4(n−d)+1 · 24(n−d)τ(n +
m)) time.
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Let I = (X,Φ = (φ1, . . . , φτ ), d) be a fixed yet arbitrary instance with n vari-
ables. Two partial truth assignments fY : Y → {⊥,�} and fZ : Z → {⊥,�}
with Y,Z ⊆ X are called compatible if for all x ∈ Y ∩ Z it holds that fY (x) =
fZ(x). For two compatible assignments fY , fZ , let

fY ∪ fZ : Y ∪ Z → {⊥,�}, fY ∪ fZ(x) :=

{
fY (x), if x ∈ Y,

fZ(x), if x ∈ Z \ Y.

With a similar idea as in the proof of Theorem 4.1, we will construct a directed
graph with terminals s and t such that there is an s-t path in G if and only if I
is a yes-instance.

Construction 5.1. Given I, we construct a graph G = (V,E) with vertex set
V := V 1→3 ∪V 2→4 ∪ · · ·∪V τ−2→τ ∪{s, t}, where for each Y,Z ∈ (

X
n−d

)
, we have

that (fY , fZ) ∈ V i→i+2 if and only if fY , fZ are compatible and each of φi[fY ],
φi+1[fY ∪ fZ ], and φi+2[fZ ] is satisfiable, and the following arcs: (i) (s, v) for
all v ∈ V 1→3, (ii) (v, t) for all v ∈ V τ−2→τ , and (iii) ((fY , fZ), (fY ′ , fZ′)) ∈
V i→i+2 × V j→j+2 if j = i + 1 and fZ = fY ′ (implying that Z = Y ′). �
Lemma 5.1 (�). Construction 5.1 computes a graph of size O(n4(n−d)+1 ·
24(n−d)τ) and can be done in O(n4(n−d)+1 · 24(n−d)τ(n + m)) time.

Lemma 5.2 (�). Let I be an instance of Multistage 2-SAT and let G be the
graph obtained from applying Construction 5.1 to I. Then, I is a yes-instance
if and only if G admits an s-t paths.

Proof (Proof of Theorem 5.1). Given an instance I = (X,Φ = (φ1, . . . , φτ ), d)
of M2SAT, apply Construction 5.1 in O(n4(n−d)+1 · 24(n−d)τ(n + m)) time to
obtain graph G with terminals s and t of size O(n4(n−d)+1 · 24(n−d)τ) (Lemma
5.1). Return, in time linear in the size of G, yes if G admits an s-t path, and no
otherwise (Lemma 5.2). ��
Remark 5.1. Theorem 5.1 is asymptotically optimal regarding n − d unless the
ETH breaks (Theorem 3.3). Moreover, Theorem 5.1 does not generalize
to Multistage q-SAT for q ≥ 3, as MqSAT is already NP-hard for one stage
and hence for any number n − d.

6 XP Regarding Number of Stages and Consecutive
Changes

In this section, we prove that Multistage 2-SAT is in XP when parameterized
by τ + d.

Theorem 6.1. Multistage 2-SAT is solvable in O(n2τ ·d · 2τ ·d+1 · τ · (n + m))
time.
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Algorithm 1: XP-algorithm on input instance (X,φ, d).

1 foreach X ′ ⊆ X : |X ′| ≤ τ · d do // 1 + nτ ·d many

2 foreach f1 : X ′ → {⊥, �} do // 2|X′| many

3 φ∗
1 ← simplify(φ1, f1);

4 foreach g2, g3, . . . , gτ : gi ∈ F(X ′) ∀i ∈ {2, . . . , τ} do // 2τ |X ′|τ ·d many

5 foreach i ∈ {2, . . . , τ} do
6 fi(x) ← fi−1(x) ⊕ gi(x) ∀x ∈ X ′; φ∗

i ← simplify(φi, fi);

7 if (X \ X ′, (φ∗
1, . . . , φ

∗
τ ), 0) is a yes-instance of M2SAT then

8 return yes // decidable in linear time

(Observation 3.1)

9 return no

Let I = (X,Φ = (φ1, . . . , φτ ), d) be a fixed yet arbitrary instance with τ ·d <
n, as otherwise Theorem 4.1 applies. On a high level, our Algorithm 1 works as
follows:

(1) Guess q ≤ τ · d variables X ′ ⊆ X that will change over time.
(2) Guess an initial truth assignment of the variables in X ′.
(3) For each but the first stage, guess the at most min{q, d} possible variables

to change.
(4) Set the variables to the guessed true or false values, delete clauses which are

set to true.
(5) Return yes if the resulting instance with d = 0 is a yes-instance (linear-time

checkable).
(6) If the algorithm never (for all possible guesses) returned yes, then return no.

For any X ′ ⊆ X, define the set of all truth assignments to variables of X ′ with at
most min{|X ′|, d} true values by F(X ′) :=

{
f : X ′ → {⊥,�} ∣

∣ |{x ∈ X ′ | f(x) =
�}| ≤ min{|X ′|, d}}

. With the next two lemmas, we prove that Algorithm 1 is
correct and runs in XP-time regarding τ + d.

Lemma 6.1 (�). Algorithm 1 returns yes if and only if the input instance is
a yes-instance.

Lemma 6.2 (�). Algorithm 1 runs in O(n2τ ·d · 2τ ·d+1τ(n + m)) time.

We are set to prove the main result from this section.

Proof (Proof of Theorem 6.1). Let I = (X,Φ = (φ1, . . . , φτ ), d) be an instance
of M2SAT with n variables and at most m clauses in each stage’s formula.
If τ ·d ≥ n, then, by Theorem 4.1, we know that M2SAT is solvable in O(22τ ·d ·
τ(n + m)) time. Otherwise, if τ · d < n, then Algorithm 1 runs in O(n2τ ·d ·
2τ ·d+1τ(n + m)) time (Lemma 6.2) and correctly decides I (Lemma 6.1). ��
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Remark 6.1. Theorem 6.1 is asymptotically optimal regarding d unless the ETH
breaks (Theorem 3.1). Moreover, Theorem 6.1 is not adaptable to Multistage

q-SAT with q ≥ 3 unless P = NP since Multistage q-SAT with q ≥ 3 is
NP-hard even with τ + d ∈ O(1).

7 Efficient and Effective Data Reduction

In this section, we study efficient and provably effective data reduction for Mul-

tistage 2-SAT in terms of problem kernelization. We focus on the parameter
combinations n+m, n+τ , and m+τ . We prove that no problem kernelization of
size polynomial in n + m exists unless NP ⊆ coNP /poly (Sect. 7.1), and that a
problem kernelization of size quadratic in m+ τ and of size cubic in n+ τ exists
(Sect. 7.2). Finally, we prove that no problem kernel of size truly subquadratic
in m + τ exists unless NP ⊆ coNP /poly.

7.1 No Time-Independent Polynomial Problem Kernelization

When parameterized by n + m, efficient and effective data reduction appears
unlikely.

Theorem 7.1 (�). Unless NP ⊆ coNP /poly, Multistage 2-SAT admits no
problem kernel of size polynomial in nf(m,d), for any function f only depending
on m and d.

Remark 7.1. Due to Theorem 4.1, Multistage 2-SAT yet admits a problem
kernel of size 2O(n).

7.2 Polynomial Problem Kernelizations

We prove problem kernelizations of size polynomial in n + τ and m + τ .

Theorem 7.2. Multistage 2-SAT admits a linear-time computable problem
kernelization of size O(n2τ) and of size O(m · τ).

We employ the following two immediate reduction rules (each is clearly correct
and applicable in linear time):

Reduction Rule 7.1. In each stage, delete all but one appearances of a clause
in the formula.

Reduction Rule 7.2. Delete a variable that appears in no stage’s formula as
a literal.

Proof (Proof of Theorem 7.2). Observe that there are at most N := 2n +
(
2n
2

) ∈
O(n2) many pairwise different clauses. After exhaustively applying Reduction
Rule 7.1, we have m ≤ N ∈ O(n2). After exhaustively applying Reduction Rule
7.2, it follows that for each variable, there is at least one clause, and hence,
n ≤ 2 · m · τ . ��
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Remark 7.2. Theorem 7.2 adapts easily to Multistage q-SAT. Herein, the
problem kernel sizes are O(nq · τ) and O(q · m · τ).

Subsequently, we prove that a linear kernel appears unlikely.

Theorem 7.3. Unless NP ⊆ coNP /poly, Multistage 2-SAT admits no prob-
lem kernel of size O((m + n + τ)2−ε) for any ε > 0.

To prove Theorem 7.3, we show that there is a linear parametric transformation
from Vertex Cover parameterized by |V | to Multistage 2-SAT parameter-
ized by n + m + τ .

Construction 7.1. Let I = (G, k) with G = (V,E) be an instance of Vertex

Cover. Denote the vertices V = {v1, . . . , vn}. We construct the instance I ′ =
(X,Φ, d) of M2SAT with d = k and Φ = (φ0, φ1, . . . , φn) as follows. Let X =
XV ∪ B with XV = {xi | vi ∈ V } and B = {b1, . . . , bk}. Let

φ0 :=
n∧

i=1

(¬xi) ∧
k∧

j=1

(¬bj) and

φi :=
∧

{vi,vj}∈E

(xi ∨ xj) ∧
{∧k

j=1(bj) if i mod 2 = 0,
∧k

j=1(¬bj) if i mod 2 = 1,
∀i ∈ {1, . . . , n}.

Note that τ + m + |X| ∈ O(n), since each vertex degree is at most n − 1. �
Lemma 7.1 (�). Let I = (G, k) be an instance of Vertex Cover, and
let I ′ = (X ′, Φ′, d) be the instance of Multistage 2-SAT obtained from I
using Construction 7.1. Then, I is a yes-instance if and only if I ′ is a yes-
instance.

Proof (Proof of Theorem 7.3). Construction 7.1 is a linear parametric transfor-
mation (Lemma 7.1) such that τ + m + |X| ∈ O(|V |). Since Vertex Cover

admits no problem bikernelization of size O(|V |2−ε), ε > 0 [13], the statement
follows. ��
Remark 7.3. Theorem 7.3 can be easily adapted to Multistage q-SAT when
taking q-Hitting Set as source problem [13], ruling out problem kernelizations
of size O((n + m + τ)q−ε), ε > 0 (unless NP ⊆ coNP /poly).

8 Conclusion

While 2-SAT is linear-time solvable, its multistage model Multistage 2-SAT

is intractable in even surprisingly restricted cases. This is also reflected by the
fact that several of our direct upper bounds are already asymptotically optimal.
By our results, the most interesting difference between Multistage 2-SAT

and Multistage q-SAT, with q ≥ 3, is that the former is efficiently solvable
if the numbers of stages and allowed consecutive changes are constant, which is
not the case for the latter (unless P = NP). Finally, our results show that exact
solutions are far from practical, waving the path for randomized or heuristic
approaches.
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Abstract. The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a
very useful combinatorial tool in graph isomorphism testing. We address
the applicability of k-WL to recognition of graph properties. Let G be
an input graph with n vertices. We show that, if n is prime, then vertex-
transitivity of G can be seen in a straightforward way from the output of
2-WL on G and on the vertex-individualized copies of G. This is perhaps
the first non-trivial example of using the Weisfeiler-Leman algorithm
for recognition of a natural graph property rather than for isomorphism
testing. On the other hand, we show that, if n is divisible by 16, then
k-WL is unable to distinguish between vertex-transitive and non-vertex-
transitive graphs with n vertices unless k = Ω(

√
n).

1 Introduction

The k-dimensional Weisfeiler-Leman algorithm (k-WL), whose original, 2-dimen-
sional version [20] appeared in 1968, has played a prominent role in isomorphism
testing already for a half century. Given a graph G with vertex set V , k-WL
computes a canonical coloring WLk(G) of the Cartesian power V k. Let ̂WLk(G)
denote the multiset of colors appearing in WLk(G). The algorithm decides that
two graphs G and H are isomorphic if ̂WLk(G) = ̂WLk(H), and that they
are non-isomorphic otherwise. While a negative decision is always correct, Cai,
Fürer, and Immerman [5] constructed examples of non-isomorphic graphs G and
H with n vertices such that ̂WLk(G) = ̂WLk(H) unless k = Ω(n). Nevertheless,
a constant dimension k suffices to correctly decide isomorphism for many special
classes of graphs (when G is in the class under consideration and H is arbitrary).
For example, k = 2 is enough if G is an interval graph [10], k = 3 is enough for
planar graphs [15], and there is a constant k = k(M) sufficient for all graphs
not containing a given graph M as a minor [13]. Last but not least, k-WL is an
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important component in Babai’s quasipolynomial-time algorithm [3] for general
graph isomorphism.

In the present paper, we initiate a discussion of the applicability of k-WL to
recognition of graph properties rather than to testing isomorphism. That is, given
a single graph G as input, we are interested in knowing which properties of G can
be easily detected by looking at WLk(G) or, in other words, for which decision
problems the execution of k-WL on an input graph is a reasonable preprocessing
step. Of course, some regularity properties are recognized in a trivial way. For
example, G is strongly regular if and only if 2-WL splits V 2 just in the diagonal
{(u, u) : u ∈ V }, the adjacency relation of G, and the complement.

For a graph property P, we use the same character P to denote also the class
of all graphs possessing this property. While the multiset of canonical colors
̂WLk(G) retains the isomorphism type of the original graph G only if k is suffi-
ciently large, the coloring WLk(G) of V k does this for every k. This means that,
at least implicitly, WLk(G) contains the information about all properties P of
G. It is, however, a subtle question whether any certificate of the membership of
G in P can be extracted from WLk(G) efficiently. Even when the isomorphism
type of every graph in P is known to be identifiable by k-WL for some k, we can
only be sure that k-WL distinguishes P from its complement, in the following
sense: If G ∈ P and H /∈ P, then ̂WLk(G) �= ̂WLk(H). However, given the last
inequality, we might never know whether G ∈ P and H /∈ P or whether H ∈ P
and G /∈ P. As a particular example, the fact that 2-WL decides isomorphism
of interval graphs or that 3-WL decides isomorphism of planar graphs does not
seem to imply, on its own, any efficient recognition algorithm for these classes.

We address the applicability of k-WL to recognition of properties saying that
a graph is highly symmetric.

Deciding Vertex-Transitivity. A graph G is vertex-transitive if every ver-
tex can be taken to any other vertex by an automorphism of G. It is unknown
whether the class of vertex-transitive graphs is recognizable in polynomial time.
The isomorphism problem for vertex-transitive graphs reduces to their recogni-
tion problem, and its complexity status is also open. In the case of graphs with
a prime number p of vertices, a polynomial-time recognition algorithm is known
due to Muzychuk and Tinhofer [18]. Their algorithm uses 2-WL as preprocessing
and then involves a series of algebraic-combinatorial operations to find a Cayley
presentation of the input graph. It is known [19] that, if p is prime, then every
vertex-transitive graph with p vertices is circulant, i.e., a Cayley graph of the
cyclic group of order p. Our first result, Theorem 1, shows a very simple, purely
combinatorial way to recognize vertex-transitivity of a graph G with p vertices.
Indeed, vertex-transitivity can immediately be detected by looking at the outde-
grees of the monochromatic digraphs in WL2(G) and WL2(Gu) for all copies of
G with an individualized vertex u. Our algorithm takes time O(p4 log p), which is
somewhat better than the running time O(p5 log2 p) of the algorithm presented
in [18]. However, we believe that the main beneficial factor of our approach is
its conceptual and technical simplicity.
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Note that the research on circulant graphs has a long history; see, e.g., [2,17].
This class of graphs can be recognized in polynomial time [7], but whether or
not this can be done by means of k-WL is widely open. The dimension k = 2
would clearly suffice if the algorithm could identify a cyclic order of the vertices
in an input graph corresponding to its cyclic automorphism. However, it would
be too naive to hope for this because such an order is, in general, not unique, not
preserved by automorphisms and, hence, not canonical, even when the number
of vertices is prime.

The analysis of our algorithm is based on the theory of coherent configura-
tions (we provide a digest of main concepts in Sect. 3.1). In fact, our exposition,
apart from the well-known facts on circulants of prime order, uses only several
results about the schurity property of certain coherent configurations.

Lower Bounds for the WL Dimension. Since the work of Muzychuk and
Tinhofer [18] the polynomial-time recognizability of vertex-transitive graphs
with a prime number of vertices remains state-of-the-art in the sense that, to the
best of our knowledge, no polynomial-time algorithm is currently known that
recognizes vertex-transitivity on all n-vertex input graphs for infinitely many
composite numbers n. Motivated by this fact, we complement our algorithmic
result by exploring the limitations of the k-WL-based combinatorial approach
to vertex-transitivity. We prove that, if n is divisible by 16, then k-WL is unable
to distinguish between vertex-transitive and non-vertex-transitive graphs with
n vertices unless k = Ω(

√
n); see Theorem 7. This excludes extension of our

positive result to graphs with an arbitrary number of vertices. Indeed, since
the combination of 2-WL with vertex individualization is subsumed by 3-WL,
such an extension would readily imply that 3-WL distinguishes any vertex-
transitive graph from any non-vertex-transitive graph, contradicting our lower
bound k = Ω(

√
n). This bound as well excludes any other combinatorial app-

roach to recognizing vertex-transitivity as long as it is based solely on k-WL for
a fixed dimension k. It shows that, if such an algorithm succeeds on the n-vertex
input graphs for n in a set S, then S can contain only finitely many multiples
of 16.

Our lower bound is based on the Cai-Fürer-Immerman construction [5], which
converts a template graph F into a pair of non-isomorphic graphs G and H indis-
tinguishable by k-WL. To prove our lower bound for the WL dimension, we have
to ensure that G is vertex-transitive and H is not. This is faced with two tech-
nical complications. First, the original CFI gadget [5, Fig. 3] involves vertices of
different degrees and, hence, destroys vertex-transitivity even when the template
graph F is vertex-transitive. This can be overcome by using a modified version
of the CFI gadget with all vertex degrees equal, which apparently first appeared
in [9]; see also the survey in [12]. Note that this approach has already been
used to analyze vertex-transitivity of coherent configurations; see Evdokimov’s
thesis [8].

The second point is more subtle. The CFI construction replaces each vertex
of the template graph F with a cell of new vertices, and vertices in different cells
receive different colors. In many contexts the vertex coloring can be removed by
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using additional gadgets, but this is hardly possible without losing the vertex-
transitivity. The vertex colors constrain the automorphisms of the CFI graphs
G and H and ensure that these graphs are non-isomorphic. We establish rather
general conditions on a template graph F under which the CFI graphs retain
their functionality even without colors. This result of independent interest pro-
vides a very straight way of making the CFI graphs colorless, which can be used
in any of their numerous applications.

The analysis of the regularized and discolored version of the CFI construction
and the proof of our lower bound (Theorem 7) can be found in a long version of
this paper [11].

2 Notation and Definitions

We denote the vertex set of a graph G by V (G). The notation Aut(G) stands
for the automorphism group of G.

Cayley Graphs. Let Γ be a group and Z be a set of non-identity elements of
Γ such that Z−1 = Z, that is, any element belongs to Z only together with its
inverse. The Cayley graph Cay(Γ,Z) has the elements of Γ as vertices, where
x and y are adjacent if x−1y ∈ Z. This graph is connected if and only if the
connection set Z is a generating set of Γ . Every Cayley graph is obviously
vertex-transitive.

The Weisfeiler-Leman Algorithm. The original version of the Weisfeiler-
Leman algorithm, 2-WL, operates on the Cartesian square V 2 of the vertex set
of an input graph G. Below it is supposed that G is undirected. We also suppose
that G is endowed with a vertex coloring c, that is, each vertex u ∈ V is assigned
a color denoted by c(u). The case of uncolored graphs is covered by assuming
that c(u) is the same for all u. 2-WL starts by assigning each pair (u, v) ∈ V 2

the initial color WL0
2(u, v) = (type, c(u), c(v)), where type takes on one of three

values, namely edge if u and v are adjacent, nonedge if distinct u and v are
non-adjacent, and loop if u = v. The coloring of V 2 is then modified step by
step. The (r + 1)-th coloring is computed as

WLr+1
2 (u, v) = {{(WLr

2(u,w), WLr
2(w, v))}}w∈V , (1)

where {{}} denotes the multiset. In words, the new color of a pair uv is a
“superposition” of all old color pairs observable along the extensions of uv to
a triangle uwv. Let Sr denote the partition of V 2 determined by the color-
ing WLr

2(·, ·). It is easy to notice that WLr+1
2 (u, v) = WLr+1

2 (u′, v′) implies
WLr

2(u, v) = WLr
2(u

′, v′), which means that Sr+1 is finer than or equal to Sr.
It follows that the partition stabilizes starting from some step t ≤ n2, where
n = |V |, that is, St+1 = St, which implies that Sr = St for all r ≥ t. As the
stabilization is reached, 2-WL terminates and outputs the coloring WLt

2(·, ·),
which will be denoted by WL2(·, ·).

Note that the length of WLr
2(u, v) grows exponentially as r increases. The

exponential blow-up is remedied by renaming the colors after each step.
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Let φ be an automorphism of G. A simple induction on r shows that
WLr

2(φ(u), φ(v)) = WLr
2(u, v) for all r and, hence

WL2(φ(u), φ(v)) = WL2(u, v). (2)

In particular, if G is vertex-transitive, then the color WL2(u, u) is the same for
all u ∈ V . If the last condition is fulfilled, we say that 2-WL does not split the
diagonal on G, where by the diagonal we mean the set of all loops (u, u).

In general, the automorphism group Aut(G) of the graph G acts on the
Cartesian square V (G)2, and the orbits of this action are called 2-orbits of
Aut(G). Thus, the partition of V (G)2 into 2-orbits is finer than or equal to the
stable partition S = St produced by 2-WL.

3 Vertex-Transitivity on a Prime Number of Vertices

We begin with a few simple observations about the output produced by 2-WL on
an input graph G. Recall that in this paper we restrict our attention to undirected
graphs. Even though G is undirected, the equality WL2(u, v) = WL2(v, u) need
not be true in general. Thus, the output of 2-WL on G can naturally be seen as
a complete colored directed graph on the vertex set V (G), which we denote by
WL2(G). That is, WL2(G) contains every pair (u, v) ∈ V (G)2 as an arc, i.e., a
directed edge, and this arc has the color WL2(u, v) returned by 2-WL. We will
see WL2(G) as containing no loops, but instead we assign each vertex u the color
WL2(u, u). Any directed subgraph of WL2(G) formed by all arcs of the same
color is called a constituent digraph.

Let (u, v) and (u′, v′) be arcs of a constituent digraph C of WL2(G).
Note that the vertices u and u′ must be equally colored in WL2(G). Indeed,
since the color partition of WL2(G) is stable, there must exist w such that
(WL2(u′, w),WL2(w, v′)) = (WL2(u, u),WL2(u, v)). The equality WL2(u′, w) =
WL2(u, u) can be fulfilled only by w = u′ because any non-loop (u′, w) is initially
colored differently from the loop (u, u) and, hence, they are colored differently
after all refinements.

Note also that, if u and v are equally colored in WL2(G), then they have the
same outdegree in every constituent digraph C; in particular, they simultane-
ously belong or do not belong to V (C). Otherwise, contrary to the assumption
that the color partition of WL2(G) is stable, the loops (u, u) and (v, v) would
receive different colors in another refinement round of 2-WL. It follows that for
each constituent digraph C there is an integer d ≥ 1 such that all vertices in C
with non-zero outdegree have outdegree d. We call d the outdegree of C.

Let u ∈ V (G). A vertex-individualized graph Gu is obtained from G by assign-
ing the vertex u a special color, which does not occur in G. If G is vertex-
transitive, then all vertex-individualized copies of G are obviously isomorphic.

Consider now a simple and still instructive example. Let G = C7 be the com-
plement of the cycle graph on seven vertices 0, 1, . . . , 6 passed in this order. It is
not hard to see that 2-WL splits V (G)2 into the four 2-orbits of Aut(G); the diag-
onal {(u, u) : u ∈ V (G)} is one of them. Note that the three constituent digraphs
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WL2(G) G0 WL2(G0)

Fig. 1. The output of 2-WL on input G = C7 and on its vertex-individualized copy
G0. In this example, the arcs between two equally colored vertices u and v (those with
WL2(u, u) = WL2(v, v)) have equal colors in both directions, that is, WL2(u, v) =
WL2(v, u). If u and v are colored distinctly, then clearly WL2(u, v) �= WL2(v, u). As
a general fact, WL2(u, v) = WL2(u

′, v′) exactly when WL2(v, u) = WL2(v
′, u′). This

allows us to improve the visualization by showing only one of the two mutually reversed
colors. (Color figure online)

of WL2(G) are of the same degree 2; see Fig. 1. Applying 2-WL to the vertex-
individualized graph G0, it can easily be seen that 2-WL again splits V (G)2 into
the 2-orbits of Aut(G0). Note that WL2(G0) also has exactly three constituent
digraphs of outdegree 2, while all other constituent digraphs of WL2(G0) have
outdegree 1. We see that the outdegrees of the constituent digraphs for G and
its vertex-individualized copies are distributed similarly. This similarity proves
to be a characterizing property of vertex-transitive graphs on a prime number
of vertices.

Theorem 1. Let p be a prime, and G be a graph with p vertices. Suppose that
G is neither complete nor empty. Then G is vertex-transitive if and only if the
following conditions are true:

1. If run on G, 2-WL does not split the diagonal, that is, all vertices in WL2(G)
are equally colored.

2. All constituent digraphs of WL2(G) have the same outdegree d > 1 and, hence,
there are p−1

d constituent digraphs.
3. For every u ∈ V (G), exactly p−1

d constituent digraphs in WL2(Gu) have
outdegree d, and all others have outdegree 1.

Since the color partition of WL2(G) for a p-vertex graph G can be computed
in time O(p3 log p) [14], Conditions 1–3 can be verified in time O(p4 log p), which
yields an algorithm of this time complexity for recognition of vertex-transitivity
of graphs with a prime number of vertices.

As it will be discussed in Remark 6 below, there are graphs G and H with a
prime number of vertices such that G is vertex-transitive, H is not, and still they
are indistinguishable by 2-WL. This implies that Theorem 1 is optimal in that
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it uses as small WL dimension as possible and, also, that the condition involving
the vertex individualization cannot be dropped. Note that 1-WL, which stands
for the classical degree refinement, does not suffice even when run on G and all
Gu because the output of 1-WL on these inputs is subsumed by the output of
2-WL on G alone.

Theorem 1 is proved in Subsect. 3.2. The next subsection provides the nec-
essary preliminaries.

3.1 Coherent Configurations

A detailed treatment of the material presented below can be found in [6]. The
stable partition SG of V (G)2 produced by 2-WL on an input graph G has certain
regularity properties, which are equivalent to saying that the pair (V,S) forms
a coherent configuration. This concept is defined as follows.

A coherent configuration X = (V,S) is formed by a set V , whose elements
are called points, and a partition S = {S1, . . . , Sm} of the Cartesian square V 2,
that is,

⋃m
i=1 Si = V 2 and any two Si and Sj are disjoint. An element Si of S is

referred to as a basis relation of X . The partition S has to satisfy the following
three conditions:

(A) If a basis relation S ∈ S contains a loop (u, u), then all pairs in S are loops.
(B) For every S ∈ S, the transpose relation S∗ = {(v, u) : (u, v) ∈ S} is also

in S.
(C) For each triple R,S, T ∈ S, the number

p(u, v) = |{w : (u,w) ∈ R, (w, v) ∈ S}|

for a pair (u, v) ∈ T does not depend on the choice of this pair in T .

In other words, if S is seen as a color partition of V 2, then such a coloring is
stable under 2-WL refinement.

We describe two important sources of coherent configurations. Let T be an
arbitrary family of subsets of the Cartesian square V 2. There exists a unique
coarsest partition S of V 2 such that every T ∈ T is a union of elements of S and
X = (V,S) is a coherent configuration; see [6, Section 2.6.1]. We call X = (V,S)
the coherent closure of T and denote it by Cl(T ).

Given a vertex-colored undirected graph G on the vertex set V , let T consist
of the set of the pairs (u, v) ∈ V 2 such that {u, v} is an edge of G and the sets
of loops (u, u) for all vertices u of the same color in G. Then Cl(T ) is exactly
the stable partition produced by 2-WL on input G. We denote this coherent
configuration by Cl(G).

Given a coherent configuration X = (V,S) and a point u ∈ V , the coherent
configuration Xu = Cl(S ∪{{(u, u)}}) is called a one-point extension of X . This
concept is naturally related to the notion of a vertex-individualized graph, in
that

Cl(Gu) = Cl(G)u. (3)
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Another source of coherent configurations is as follows. Let K be a permuta-
tion group on a set V . Denote the set of 2-orbits of K by S. Then X = (V,S) is
a coherent configuration, which we denote by Inv(K). Coherent configurations
obtained in this way are said to be schurian.

We define an automorphism of a coherent configuration X = (V,S) as a
bijection α from V onto itself such that, for every S ∈ S and every (u, v) ∈ S,
the pair (α(u), α(v)) also belongs to S. The group of all automorphisms of X is
denoted by Aut(X ). A coherent configuration X is schurian if and only if

X = Inv(Aut(X )). (4)

Note also that the connection between the coherent closure of a graph and 2-WL
implies that

Aut(Cl(G)) = Aut(G). (5)

A set of points X ⊆ V is called a fiber of X if the set of loops {(x, x) : x ∈ X}
is a basis relation of X . Denote the set of all fibers of X by F (X ). By Property
A, F (X ) is a partition of V . Property C implies that for every basis relation S
of X there are, not necessarily distinct, fibers X and Y such that S ⊆ X × Y .
We use the notation NS(x) = {y : (x, y) ∈ S} for the set of all points in Y that
are in relation S with x. Note that |NS(x)| = |NS(x′)| for any x, x′ ∈ X. We
call this number the valency of S. If every basis relation S of X has valency 1,
then X is called semiregular.

Proposition 2 (see [6, Exercise 2.7.35]). A semiregular coherent configura-
tion is schurian.

Given a set of points U ⊆ V that is a union of fibers, let SU denote the
set of all basis relations S ∈ S such that S ⊆ X × Y for some, not necessarily
distinct, fibers X ⊆ U and Y ⊆ U . As easily seen, XU = (U,SU ) is a coherent
configuration.

If a coherent configuration has a single fiber, it is called association scheme.

3.2 Proof of Theorem 1

Necessity. Given a vertex-transitive graph G with p vertices, where p is prime,
we have to check Conditions 1–3. Condition 1 follows immediately from vertex-
transitivity; see the discussion in the end of Sect. 2. For Condition 2, we use two
basic results on vertex-transitive graphs with a prime number of vertices. First,
every such graph is isomorphic to a circulant graph, i.e., a Cayley graph of a
cyclic group, because every transitive group of permutations of a set of prime
cardinality p contains a p-cycle (Turner [19]). Let Fp denote the p-element field,
F
+
p its additive group, i.e., the cyclic group of order p, and F

×
p its multiplicative

group, which is isomorphic to the cyclic group of order p−1. Another useful fact
(Alspach [1]) is that, if a set Z ⊂ Fp is non-empty and Z �= F

×
p , then the auto-

morphism group of the circulant graph Cay(F+
p , Z) consists of the permutations

x 
→ ax + b, x ∈ Fp, for all a ∈ M, b ∈ F
+
p , (6)
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where M = M(Z) is the largest subgroup of F×
p of even order such that Z is

a union of cosets of M . This subgroup is well defined because the condition
Z = −Z implies that Z is split into pairs {z,−z} and, hence, is a union of cosets
of the multiplicative subgroup {1,−1}. For example, C7 = Cay(F+

7 , {2, 3, 4, 5})
and M({2, 3, 4, 5}) = {1,−1}. Without loss of generality we assume that G =
Cay(F+

p , Z) and denote K = Aut(G).
Let X = (F+

p ,S) be the coherent closure of G. Recall that S is exactly the
stable partition of V (G)2 produced by 2-WL on input G. The irreflexive basis
relations of X are exactly the constituent digraphs of WL2(G), and we have to
prove that all of them have the same valency.

Condition 1 says that X is an association scheme. In general, not all asso-
ciation schemes with a prime number of points are schurian (see, e.g., [6,
Section 4.5]). Nevertheless, the theorem by Leung and Man on the structure
of Schur rings over cyclic groups implies the following fact.

Proposition 3 (see [6, Theorem 4.5.1]). Let X = (V,S) be an association
scheme with a prime number of points. If Aut(X ) acts transitively on V , then
X is schurian.

By Equality (5), Aut(X ) = K. Since the group K is transitive, Proposition 3
implies that X is schurian, and we have X = Inv(K) by Equality (4). This
yields Condition 2 for d = |M |. Indeed, every irreflexive basis relation S ∈ S has
valency |M |. To see this, it is enough to count the number of pairs (0, y) in S.
Fix an arbitrary pair (0, y) ∈ S. A pair (0, y′) is in the 2-orbit containing (0, y)
if and only if y′ = ay for a ∈ M , for which we have |M | possibilities.

It remains to prove Condition 3. By vertex-transitivity, all vertex-
individualized copies of G are isomorphic and, therefore, it is enough to consider
G0. We have to count the frequencies of valencies in X0. Note that X0 = Cl(G0)
by Equality (3).

It is generally not true that a one-point extension of a schurian coherent
configuration is schurian; see [6, Section 3.3.1]. Luckily, this is the case in our
setting.

Proposition 4 (see [6, Theorem 4.4.14]). If X = Inv(K), where K is the
group of permutations of the form (6) for a subgroup M of F×

p , then the one-point
extension X0 is schurian.

Taking into account Equality (5), we have

Aut(X0) = Aut(Cl(G0)) = Aut(G0) = Aut(G)0 = K0,

where K0 is the one-point stabilizer of 0 in K, that is, the subgroup of K
consisting of all permutations α ∈ K such that α(0) = 0. Obviously, K0 = {x 
→
ax, x ∈ Fp}a∈M .

Let S be a 2-orbit of K0. If S contains a pair (0, y), then it consists of all pairs
(0, y′) for y′ ∈ My and, hence, has valency |M |. If S contains a pair (z, y) with
z �= 0 and y �= z, then (z, y) is the only element of S with the first coordinate z,
and S has valency 1. The proof of Condition 3 is complete.
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Sufficiency. Let G be a graph satisfying Conditions 1–3 stated in the theorem.
Let X = Cl(G). Condition 1 says that X is an association scheme. By Equality
(5), it suffices to prove that the group Aut(X ) is transitive. The proof is based
on the following lemma.

Lemma 5 (see [16, Theorem 7.1]). Let X = (V,S) be an association scheme.
Suppose that the following two conditions are true for every point u ∈ V :

(I) the coherent configuration (Xu)V \{u} is semiregular, and
(II) F (Xu) = {NS(u) : S ∈ S}.

Then the group Aut(X ) acts transitively on V .

Let u be an arbitrary vertex of G. By Equality (3), Xu = Cl(Gu). Now,
it suffices to derive Conditions I–II in the lemma from Conditions 1–3 in the
theorem.

For a fiber X ∈ F (Xu), note that {u} × X must be a basis relation of Xu.
Since this relation has valency |X|, Condition 3 implies that every fiber in F (Xu)
is either a singleton or consists of d ≥ 2 points. Denote the number of singletons
in F (Xu) by a. Besides of them, F (Xu) contains (p − a)/d fibers of size d.

For every X,Y ∈ F (Xu) with |X| = 1 and |Y | = d, X × Y is a basis relation
of Xu of valency d. It follows from Condition 3 that

p − 1
d

≥ a(p − a)
d

.

Therefore, p − 1 ≥ a(p − a) or, equivalently, p(a − 1) ≤ (a − 1)(a + 1). Assume
for a while that a > 1. It immediately follows that a ≥ p − 1. Since the equality
a = p − 1 is impossible, we conclude that a = p. However, this implies that
d = 1, a contradiction. Thus, a = 1. Consequently, every fiber of the coherent
configuration X ′ = (Xu)V \{u} is of cardinality d, and |F (X ′)| = (p − 1)/d.

Let S be a basis relation of X . If S is reflexive, then NS(u) = {u}. If S
is irreflexive, then NS(u) must be a union of fibers in F (X ′). By Condition 2,
the number of irreflexive basis relations in S is (p − 1)/d. It follows that NS(u)
actually coincides with one of the fibers of X ′. This proves Condition II.

Since Xu contains (p−1)/d basis relations of the kind {u}×X for X ∈ F (X ′),
Condition 3 implies that every basis relation of X ′ is of valency 1, yielding
Condition I.

The proof of Theorem 1 is complete.

Remark 6. We now argue that there is a vertex transitive graph G and a non-
vertex-transitive graph H such that G and H are indistinguishable by 2-WL.
Recall that a strongly regular graph with parameters (n, d, λ, μ) is an n-vertex
d-regular graph where every two adjacent vertices have λ common neighbors,
and every two non-adjacent vertices have μ common neighbors. As easily seen,
two strongly regular graphs with the same parameters are indistinguishable by
2-WL, and our example will be given by G and H of this kind. Let p be a prime
(or a prime power) such that p ≡ 1 (mod 4). The Paley graph on p vertices is
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the Cayley graph Cay(F+
p , Yp) where Yp is the subgroup of F

×
p formed by all

quadratic residues modulo p. The assumption p ≡ 1 (mod 4) ensures that −1
is a quadratic residue modulo p and, hence, Yp = −Yp. The Paley graph on p
vertices is strongly regular with parameters (p, p−1

2 , p−5
4 , p−1

4 ).
Let G be the Paley graph on 29 vertices. It is known (Bussemaker and Spence;

see, e.g., [4, Section 9.9]) that there are 40 other strongly regular graphs with
parameters (29, 14, 6, 7). Let H be one of them. We have only to show that H
is not vertex-transitive. Otherwise, by Turner’s theorem [19] this would be a
circulant graph, that is, we would have H = Cay(F+

p , Z) for some connection
set Z. In this case, the coherent closure Cl(H) must be schurian by Proposi-
tion 3. Since H is strongly regular, 2-WL colors all pairs of adjacent vertices
uniformly and, therefore, they form a 2-orbit of Aut(H). It follows that the
stabilizer Aut(H)0 acts transitively on N(0), the neighborhood of 0 in H. The
aforementioned result of Alspach [1], implies that Z is the subgroup of F

×
p of

order (p − 1)/2, i.e., M = Z in (6). This means that Z = Yp and H = G, a
contradiction.

4 A Lower Bound for the WL Dimension

We now state a negative result on the recognizability of vertex-transitivity by
k-WL. We begin with a formal definition of the k-dimensional algorithm. Let
k ≥ 2. Given a graph G with vertex set V as input, k-WL operates on V k.
The initial coloring of ū = (u1, . . . , uk) encodes the equality type of this k-tuple
and the ordered isomorphism type of the subgraph of G induced by the vertices
u1, . . . , uk. The color refinement is performed similarly to (1). Specifically, k-WL
iteratively colors V k by WLr+1

k (ū) = {{(WLr
k(ū

w
1 ), . . . ,WLr

k(ū
w
k ))}}w ∈ V (G),

where ūw
i = (u1, . . . , ui−1, w, ui+1, . . . , uk). If G has n vertices, the color partition

stabilizes in t ≤ nk rounds, and k-WL outputs the coloring WLk(·) = WLt
k(·).

We say that k-WL distinguishes graphs G and H if the final color palettes are
different for G and H, that is, {{WLk(ū)}}ū ∈ V (G)k �= {{WLk(ū)}}ū ∈ V (H)k

(note that color renaming in each refinement round must be performed on G
and H synchronously).

Theorem 7.

1. For every n divisible by 16 there are n-vertex graphs G and H such that G is
vertex-transitive, H is not, and G and H are indistinguishable by k-WL as
long as k ≤ 0.01

√
n.

2. For infinitely many n there are n-vertex graphs G and H such that G is
vertex-transitive, H is not, and G and H are indistinguishable by k-WL as
long as k ≤ 0.001n.

5 Concluding Discussion

We have suggested a new, very simple combinatorial algorithm recognizing, in
polynomial time, vertex-transitivity of graphs with a prime number of vertices.
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The algorithm consists, in substance, in running 2-WL on an input graph and all
its vertex-individualized copies. This is perhaps the first non-trivial example of
using the Weisfeiler-Leman algorithm for recognition of a natural graph property
rather than for isomorphism testing.

One can consider another, conceptually even simpler approach. If an input
graph G is vertex-transitive, then k-WL colors all diagonal k-tuples (u, . . . , u),
u ∈ V (G), in the same color. Is this condition for a possibly large, but fixed
k sufficient to claim vertex-transitivity? In general, a negative answer immedi-
ately follows from Theorem 7. Does there exist a fixed dimension k such that
the answer is affirmative for graphs with a prime number of vertices? This is
apparently a hard question; it seems that we cannot even exclude that k = 3
suffices.

Another interesting question is whether k-WL is able to efficiently recognize
vertex-transitivity on n-vertex input graphs for n in a larger range than the set
of primes. The lower bound of Theorem 7 excludes this only for n divisible by
16, in particular, for the range of n of the form 16p for a prime p. Can k-WL be
successful on the inputs with 2p vertices? Conversely, can the negative result of
Theorem 7 be extended to a larger range of n?1

Finally, we remark that the results similar to Theorems 1 and 7 can be
obtained for recognition of arc-transitivity. We refer an interested reader to a
long version of this paper [11].
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5. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identifications. Combinatorica 12(4), 389–410 (1992). https://
doi.org/10.1007/BF01305232

6. Chen, G., Ponomarenko, I.: Coherent Configurations. Central China Normal Uni-
versity Press, Wuhan (2019), a draft version is available at http://www.pdmi.ras.
ru/∼inp/ccNOTES.pdf

7. Evdokimov, S., Ponomarenko, I.: Circulant graphs: recognizing and isomorphism
testing in polynomial time. St. Petersbg. Math. J. 15(6), 813–835 (2004)

8. Evdokimov, S.: Schurity and separability of association schemes. Ph.D. thesis, St.
Petersburg University, St. Petersburg (2004)

1 A simple inspection of the proof shows that Theorem 7 can be extended to the range
of n divisible by 8p for each prime p.

https://doi.org/10.1007/BF01895854
https://doi.org/10.1007/BF01895854
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/978-1-4614-1939-6
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf


The Weisfeiler-Leman Algorithm and Recognition of Graph Properties 257

9. Evdokimov, S., Ponomarenko, I.: On highly closed cellular algebras and highly
closed isomorphisms. Electr. J. Comb. 6 (1999). http://www.combinatorics.org/
Volume 6/Abstracts/v6i1r18.html

10. Evdokimov, S., Ponomarenko, I., Tinhofer, G.: Forestal algebras and algebraic
forests (on a new class of weakly compact graphs). Discrete Math. 225(1–3), 149–
172 (2000). https://doi.org/10.1016/S0012-365X(00)00152-7
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Abstract. Let Σ and Π be disjoint alphabets, respectively called the
static alphabet and the parameterized alphabet. Two strings x and y over
Σ ∪Π of equal length are said to parameterized match (p-match) if there
exists a renaming bijection f on Σ and Π which is identity on Σ and
maps the characters of x to those of y so that the two strings become
identical. The indexing version of the problem of finding p-matching
occurrences of a given pattern in the text is a well-studied topic in string
matching. In this paper, we present a state-of-the-art indexing structure
for p-matching called the parameterized suffix tray of an input text T ,
denoted by PSTray(T ). We show that PSTray(T ) occupies O(n) space
and supports pattern matching queries in O(m + log(σ + π) + occ) time,
where n is the length of t, m is the length of a query pattern P , π is
the number of distinct symbols of |Π| in T , σ is the number of distinct
symbols of |Σ| in T and occ is the number of p-matching occurrences of
P in T . We also present how to build PSTray(T ) in O(n) time from the
parameterized suffix tree of T .

1 Introduction

Parameterized Pattern Matching (PPM), first introduced by Baker [3] in 1990s,
is a well-studied class of pattern matching motivated by plagiarism detection,
software maintenance, and RNA structural matching [3,20,24].

PPM is defined as follows: Let Σ and Π be disjoint alphabets. Two equal-
length strings x and y from Σ ∪Π are said to parameterized match (p-match) if
x can be transformed to y by applying a bijection which renames the elements
of Π in x (the elements of Σ in x must remain unchanged). PPM is to report
every substring in a text T that p-matches a pattern P .

In particular, the indexing version of PPM, where the task is to preprocess
an input text string T so that parameterized occurrences of P in T can be
reported quickly, has attracted much attention for more than two decades since
the seminal paper by Baker [3].
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Basically, the existing indexing structures for p-matching are designed upon
indexing structure for exact pattern matching. Namely, parameterized suffix
trees [3], parameterized suffix arrays [8], parameterized DAWGs [21], parame-
terized CDAWGs [21], parameterized position heaps [11,18], and parameterized
BWTs [14] are based on their exact matching counterparts: suffix trees [25], suf-
fix arrays [19], DAWGs [5], CDAWGs [4], position heaps [9,18], and BWTs [6],
respectively. It should be emphasized that extending exact-matching indexing
structures to parameterized matching is not straightforward and poses algorith-
mic challenges. Let n, m, π and σ be the lengths of a text T , a pattern P , the
number of distinct symbols of |Π| that appear in T and the number of distinct
symbols of |Σ| that appear in T , respectively. While there exist a number of algo-
rithms which construct the suffix array for T in O(n) time in the case of integer
alphabets of polynomial size in n [1,10,15–17,22], the best known algorithms
build the parameterized suffix array for T (denoted PSA(T )) in O(n log(σ + π))
time via the suffix tree [3,24], or directly in O(nπ) time [12]. The existence of
a pure linear-time algorithm for building PSA(T ) and the parameterized suffix
tree (denoted PSTree(T )) in the case of integer alphabets remains open.

PPM queries can be supported in O(m+log n+occ) time by PSA(T ) coupled
with the parameterized LCP array (denoted PLCP(T )) [8], or in O(m log(σ+π)+
occ) time by PSTree(T ) [3], where occ is the number of occurrences to report.

In this paper, we propose a new indexing structure for p-matching, the param-
eterized suffix tray for T (denoted PSTray(T )). PSTray(T ) is a combination of
PSTree(T ) and PSA(T ) and is an analogue to the suffix tray indexing structure
for exact matching [7]. We show that our PSTray(T )

(1) occupies O(n) space,
(2) supports PPM queries in O(m + log(σ + π) + occ), and
(3) can be constructed in O(n) time from PSTree(T ) and PSA(T ).

Result (3) implies that PSTray(T ) can be constructed in O(nmin{log(σ+π), π})
time using O(n) working space [3,12,24]. Results (1) and (2) together with this
imply that our PSTray(T ) is the fastest linear-space indexing structure for PPM
which can be built in time linear in n.

We emphasize that extending suffix trays for exact matching [7] to parame-
terized matching is also not straightforward. The suffix tray of a string T ∈ Σ∗

is a hybrid data structure of the suffix tree and suffix array of T , designed as fol-
lows: Each of the O(n

σ ) carefully-selected nodes of the suffix tree stores an array
of fixed size σ, so that pattern traversals within these selected nodes take O(m)
time (this also ensures a total space to be O(n

σ × σ) = O(n)). Once the pattern
traversal reaches an unselected node, then the search switches to the sub-array
of the suffix array of size O(σ). This ensures a worst-case O(m+log σ+occ)-time
pattern matching with the suffix tray.

Now, recall that the previous-encoded suffixes of T are sequences over an
alphabet Σ ∪ {0, . . . , n − 1} of size Θ(σ + n) ⊆ O(n), while the alphabet size
of T is σ + π. This means that näıve extensions of suffix trays to PPM would
only result in either super-linear O( n2

σ+π ) space, or O(m + log n + occ) query
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time which can be achieved already with the parameterized suffix array. We
overcome this difficulty by using the smallest parameterized encoding (spe) of
strings which was previously proposed by the authors in the context of PPM on
labeled trees [13], and this leads to our O(n)-space parameterized suffix trays
with desired O(m + log(σ + π) + occ) query time.

2 Preliminaries

Let Σ and Π be disjoint ordered sets of characters, respectively called the static
alphabet and the parameterized alphabet. We assume that any character in Π
is lexicographically smaller than any character in Σ. An element of (Σ ∪ Π)∗

is called a p-string. For a (p-)string w = xyz, x, y and z are called a prefix,
substring, and suffix of w. The i-th character of a (p-)string w is denoted by w[i]
for 1 ≤ i ≤ |w|, and the substring of a (p-)string w that begins at position i and
ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i : j] = ε if j < i. Also, let w[i :] = w[i : |w|] for any 1 ≤ i ≤ |w|, and
w[: j] = w[1 : j] for any 1 ≤ j ≤ |w|. For any (p-)string w, let wR denote the
reversed string of w. If a p-string x is lexicographically smaller than a p-string
y, then we write x < y.

Definition 1 (Parameterized match [2]). Two p-strings x and y of the same
length are said to parameterized match (p-match) iff there is a bijection f on
Σ ∪ Π such that f(c) = c for any c ∈ Σ and x[i] = f(y[i]) for any 1 ≤ i ≤ |x|.

We write x ≈ y iff two p-strings x, y p-match. For instance, if Σ = {A, B}, Π =
{x, y, z}, then X = xyzAxxxByzz and Y = zxyAzzzBxyy p-match since there is
a bijection f such that f(A) = A, f(B) = B and f(x) = z, f(y) = x, f(z) = y and
f(x)f(y)f(z)f(A)f(x)f(x)f(x)f(B)f(y)f(z)f(z) = zxyAzzzBxyy = Y

Definition 2 (Parameterized Pattern Matching problem (PPM) [2]).
Given a text p-string T and a pattern p-string P , find all positions i in T such
that T [i : i + |P | − 1] ≈ p.

For instance, if Σ = {A}, Π = {x, y, z}, T = xyzAxxxAyyzAzx, and P = yAzz,
then the out put for PPM is {3, 7}. We call the positions in the output of PPM
the p-beginning positions for given text T and pattern P . We say that the pattern
p-appears in the text T iff the pattern and a substring of the text p-match. In
this paper, we suppose that a given text T terminates with a special end-marker
$ which occurs nowhere else in T . We assume that $ is an element of Σ and $ is
lexicographically larger than any elements from Σ and Π.

Definition 3 (Previous encoding [2]). For a p-string w, the previous encod-
ing prev(w) is a string of length |w| such that for each 1 ≤ i ≤ |w|,

prev(w)[i] =

⎧
⎪⎨

⎪⎩

w[i] if w[i] ∈ Σ,

0 if w[i] ∈ Π and w[j] �= w[i] for any 1 ≤ j < i,

i − j otherwise, w[i] = w[j] and w[i] �= w[k] for any j < k < i.
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Intuitively, when we transform w to prev(w), the first occurrence of each element
of Π is replaced with 0 and any other occurrence of the element of Π is replaced
by the distance to the previous occurrence of the same character, and each
element of Σ remains the same.

Definition 4 (Smallest Parameterized Encoding (SPE) [13]). For a p-
string w, the smallest parameterized encoding spe(w) is the lexicographically
smallest p-string such that w ≈ spe(w).

Namely, spe(w) maps a given string w to the representative of the equivalence
class of p-strings under p-matching ≈.

For any two p-strings w1, w2, prev(w1) = prev(w2) ⇔ spe(w1) = spe(w2) ⇔
w1 ≈ w2. For instance, let Σ = {A, B}, Π = {x, y, z}, X = yxzAyyyBxzz, and
Y = zxyAzzzBxyy. Then prev(X) = 000A411B771 = prev(Y ) and spe(X) =
xyzAxxxByzz = spe(Y ).

3 Parameterized Suffix Trays

In this section, we propose a new indexing structure called the parameterized
suffix tray for PPM, and we discuss its space requirements.

Our parameterized suffix trays are a “hybrid” data structure of parameterized
suffix trees and parameterized suffix arrays, which are defined as follows:

Definition 5 (Parameterized suffix trees [3]). The parameterized suffix
tree for a p-string T , denoted PSTree(T ), is a compact trie that stores the set
{prev(T [i :]) | 1 ≤ i ≤ |T |} of the previous encodings of all suffixes of T .

See Fig. 1 for examples of PSTree(T ). We assume that the leaves of PSTree(T )
are sorted in lexicographical order, so that the sequence of the leaves corresponds
to the parameterized suffix array for T , which is defined below.

Definition 6 (Parameterized suffix arrays [8]). The parameterized suf-
fix array of a p-string T , denoted PSA(T ), is an array of integers such that
PSA(T )[i] = j if and only if prev(T [j :]) is the ith lexicographically smallest
string in {prev(T [i :]) | 1 ≤ i ≤ |T |}.
Definition 7 (Parameterized longest common prefix arrays [8]). The
parameterized longest common prefix array of a p-string T , denoted PLCP(T ),
is an array of integers such that PLCP(T )[1] = 0 and 2 ≤ i ≤ |T | PLCP(T )[i]
stores the length of the longest common prefix between prev(T [PSA(T )[i − 1] :])
and prev(T [PSA(T )[i] :]).

See Fig. 2 for examples of PSA(T ) and PLCP(T ).
In addition to the above data structures from the literature, we introduce

the following new notions and data structures. For convenience, we will some-
times identify each node of the parameterized suffix tree with the string which
is represented by that node.



262 N. Fujisato et al.

Fig. 1. PSTree(T ) for a p-string T = zAxAyyxyAxxy, where Σ = {A, $}, Π = {x, y, z}.

Fig. 2. PSA(T ) and PLCP(T ) for a p-string T = zAxAyyxyAxxy, where Σ = {A, $}, Π =
{x, y, z}.

In what follows, let ΠT = {T [i] ∈ Π | 1 ≤ i ≤ |T |} and ΣT = {T [i] ∈ Σ |
1 ≤ i ≤ |T |}, namely, ΠT (resp. ΣT ) is the set of distinct characters of Π (resp.
Σ) that occur in T . Let π = |ΠT | and σ = |ΣT |.
Definition 8 (P-nodes, branching p-nodes). Let T be a p-string over Σ ∪
Π. A node v in PSTree(T ) is called a p-node if the number of leaves in the
subtree of PSTree(T ) rooted at v is at least max{σ, π}. A p-node v is called a
branching p-node if at least two children of v in PSTree(T ) are p-nodes.
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See Fig. 3 for examples of p-nodes and branching p-nodes.

Fig. 3. PSTree(T ) for a p-string T = zAxAyyxyAxxy, where Σ = {A, $}, Π = {x, y, z}.
Then black nodes are p-nodes because the number of leaves in the subtree of PSTree(T )
rooted at them are at least max{σ, π} = 3. Checked nodes are branching p-nodes
because at least two children of them in PSTree(T ) are p-nodes.

For any x ∈ ΠT , let rankT (x) denote the lexicographical rank of x in ΠT ∪
ΣT . Assuming that Π and Σ are integer alphabets of polynomial size in n, we
can compute rankT (x) for every x ∈ ΠT in O(n) time by bucket sort. We will
abbreviate rankT (x) as rank(x) when it is not confusing.

Definition 9 (P-array). Let prev(v) be any branching p-node of PSTree(T ),
where v is some substring of T . The p-array A(prev(v)) for prev(v) is an array
of length σ+π such that for each x ∈ Σ∪Π, A(prev(v))[rank(x)] stores a pointer
to the child u of prev(v) such that prev(spe(v)x) is a prefix of u if such a child
exists, and A(prev(v))[rank(x)] stores nil otherwise.

See Fig. 4 for an example of a p-array.
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Fig. 4. PSTree(T ) for a p-string T = zAxAyyxyAxxy, where ΣT = {A, $}, ΠT = {x, y, z}.
Consider a branching p-node prev(v) = 0A0 where v is e.g. zAx. Then, A(0A0)[rank(y)] =
A(0A0)[2] stores a pointer to node 0A014 because spe(v) = xAy and prev(spe(v)y =
xAyy) = 0A01 is a prefix of node 0A014.

Definition 10 (Parameterized suffix tray). The parameterized suffix tray
of a p-string T , denoted PSTray(T ), is a hybrid data structure consisting of
PSA(T ), PLCP(T ), and PSTree(T ) where each branching p-node is augmented
with the p-array.

We can show the following lemmas regarding the space requirements of
PSTray(T ), by similar arguments to [7] for suffix trays on standard strings.

Lemma 1. For any p-string T of length n over Σ ∪Π, the number of branching
p-nodes in PSTree(T ) is O( n

π+σ ).

Lemma 2. For any p-string T of length n, PSTray(T ) occupies O(n) space.

4 PPM Using Parameterized Suffix Trays

In this section, we present our algorithm for parameterized pattern matching
(PPM) on PSTray(T ). For any node v in PSTray(T ), let lv = (i, j) denote the
range of PSA(T ) that v corresponds, namely, lv = (i, j) iff the leftmost and
rightmost leaves in the subtree rooted at v correspond to the ith and jth entries
of PSA(T ), respectively. For any p-node v, we store lv in v. Also, for any non-
branching p-node u, we store a pointer to the unique child of u that is a p-node.
These can be easily computed in a total of O(n) time by a standard traversal
on PSTree(T ).

The basic strategy for PPM with PSTray(T ) follows the (exact) pattern
matching algorithm with suffix trays on standard strings [7]. Namely, we traverse
PSTree(T ) with a given pattern P from the root, and as soon as we encounter a
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node that is not a p-node, then we switch to the corresponding range of PSA(T )
and perform a binary search to locate the pattern occurrences. The details follow.

Let P be a pattern p-string of length m. We assume that Π and Σ are disjoint
integer alphabets, where Π = {0, . . . , c1n} and Σ = {c1n + 1, . . . , nc2} for some
positive constants c1 and c2. Using an array (bucket) B of size |Π| = c1n ∈ O(n),
we can compute prev(P ) in O(m) time by scanning P from left to right and
keeping the last occurrence of each character x ∈ Π in P in B[x]. We can
compute spe(P ) in O(m) time in a similar manner with a bucket. These buckets
are a part of our indexing structure that occupies O(n) total space.

After computing prev(P ) and spe(P ), we traverse prev(P ) on PSTray(T ). If
prev(P [: i]) for prefix P [: i] (1 ≤ i ≤ m) is represented by a p-node, we can find
the out-going edge whose label begins with prev(P )[i + 1] in constant time by
accessing the p-array entry A(prev(P [: i]))[spe(P )[i+1]]. Therefore, we can solve
PPM in O(m + occ) time if prev(P ) is a prefix of some p-node in PSTray(T ).
Otherwise (if prev(P ) is not a prefix of any p-node), there exists integer i such
that prev(P [: i]) is not a p-node but the parent of prev(P [: i]) is a p-node. In this
case, we will use the next lemma.

Lemma 3 (PPM in PSA range (adapted from [8])). Given a pattern p-
string P of length m and a range [j, k] in PSA(T ) such that the occ occurrences of
P in T lie in the range [j, k] of PSA(T ), we can find them in O(m+log(k−j)+occ)
time by using PSA(T ) and PLCP(T ).

Let Iprev(P [:i]) = (j, k) denote the range in PSA(T ) where prev(P ) is a prefix
of the suffixes in the range. We apply Lemma 3 to this range so we can find
the parameterized occurrences of P in T in O(m + log(k − j) + occ) time. By
Definition 8 we have k − j ≤ π + σ (recall that prev(P [: i]) is not a p-node).
Thus, O(m + log(k − j) + occ) ⊆ O(m + log(π + σ) + occ), implying the next
theorem.

Theorem 1. Suppose |Π| = O(n). Then, PSTray(T ) supports PPM queries in
O(m + log(π + σ) + occ) time each, where m is the length of a query pattern P
and occ is the number of occurrences to report.

5 Construction of Parameterized Suffix Trays

Let T be a p-string of length n. In this section, we show how to construct
PSTray(T ) provided that PSTree(T ) has already been built. Throughout this
section we assume that Π and Σ are disjoint integer alphabets, both being of
polynomial size in n, namely, Π = {0, ..., nc1} and Σ = {nc1 + 1, ..., nc2} for
some positive constants c1 and c2. For convenience, we define the following two
notions.

Definition 11 (P-function). Let q, r be p-strings such that q ≈ r. The p-
function fq,r : Σ ∪ Π → Σ ∪ Π transforms q to r, namely, for every 1 ≤ i ≤ h

fq,r(q[i]) = r[i].
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For instance, if Π = {x, y, z}, q = xyxzyyxz, r = zxzyxxzy and q ≈ r, then
fq,r(x) = z, fq,r(y) = x, fq,r(z) = y since q can be transformed r by this function.

Definition 12 (F-array). Let q be a p-string and x ∈ ΠT . The first (left-most)
occurrence of x in q is denoted by iq,x. The f-array of q, denoted fpos(q), is an
array of length π such that fpos(q)[rank(x)] = iq,x.

For instance, if ΠT = {x, y, z} and q = xyxzyyxz, then fpos(q)[rank(x)] =
fpos(q)[1] = 1, fpos(q)[rank(y)] = fpos(q)[2] = 2, and fpos(q)[rank(z)] =
fpos(q)[3] = 4.

Given PSTree(T ), we show how to construct PSTray(T ). It is well known that
PSA(T ) and PLCP(T ) can be constructed from PSTree(T ) in O(n) time. In the
following, we consider how to compute A(prev(v)) for every p-node prev(v) in
PSTree(T ).

First, we consider how to compute (branching) p-nodes in PSTree(T ). This
can be done by a similar method to the suffix tray for exact matching [7], namely:

Lemma 4 (Computing p-node). We can compute all p-nodes and branching
p-nodes in PSTree(T ) in O(n) total time.

Our algorithm performs a bottom-up traversal on PSTree(T ) and propagates
pairs (fpos(T [i :]), i) from leaves to their ancestors. Each internal p-node prev(v)
will store only a single pair (fpos(T [i :]), i), where i is the largest position in T
such that prev(T [i :]) is a leaf in the subtree rooted at prev(v)1. See also Fig. 5.
One can easily compute the pairs for all p-nodes in a total of O(n) time. Then,
we compute fv,spe(v) for every p-node prev(v) from the pair (fpos(T [i :]), i) that
is stored in the p-node prev(v). Finally, for every p-node prev(v) we compute
Aprev(v) from fv,spe(v) and i.

In what follows, we first show how to compute Aprev(v) from fv,spe(v) and i in
Lemmas 5 and 6. We then present how to compute fv,spe(v) and i from fpos(T [i :])
in Lemma 7, and how to compute fpos(T [i :]) in Lemma 8. These lemmas will
ensure the correctness and time complexity of our algorithm.

We consider how to compute A(prev(v)) for a given p-node prev(v).

Lemma 5. Let s be a p-string. If prev(s)[|s|] = k ∈ {0, . . . , |T | − 1}, then
spe(s)[|s|] = spe(s)[|s| − k].

Proof. Clear from the definitions of prev(·) and spe(·). 
�

1 Indeed, our PSTray(T ) construction algorithm works with any position i in the sub-
tree rooted at prev(v), and we propagate the largest leaf position i to each internal
p-node for simplicity.
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Fig. 5. PSTree(T ) for a p-string T = zAxAyyxyAxxy, where Σ = {A, $} and Π =
{x, y, z}. For instance, we propagate fpos(T [12 :]) (coupled with the corresponding
position 12) to the p-node 0.

In the sequel, let prev(T [i :]) be any leaf in the subtree rooted at prev(v),
where 1 ≤ i ≤ |T |. By Lemma 5, we can compute A(prev(v)) if we know
spe(v)[|v| − k + 1], where k = prev(T [i :])[|v| + 1].

Lemma 6. spe(v)[|v| − k + 1] = fT [i:i+|v|−1],spe(T [i:i+|v|−1])T [i+|v|+k−2].

Proof. Clear from the definitions of f·,· and spe(·). 
�
We can compute spe(v)[|v| − k + 1] if we know fT [i:i+|v|−1],spe(v). In the next

lemma, we show how to compute fT [i:i+|v|−1],spe(v) for all p-nodes prev(v).

Lemma 7. For every p-node prev(v), we can compute fT [i:i+|v|−1],spe(T [i:i+|v|−1])

with prev(v) = prev(T [i : i + |v| − 1])) in amortized O(π) time if we know pair
fpos(T [i :], i).

Proof. Let xj be the jth smallest element of Π in lexicographically order. Let
yl denote the parameterized character in S = T [i : i + |v| − 1] such that if
j is the left-most occurrence of yl in S (i.e. j = min{h | S[h] = yl}), then
|ΠS[1..j]| = l. For instance, for S = xAzAyA, then y1 = x, y2 = z, and y3 = y.
Let (iprev(v), fpos(T [iprev(v) :]) denote the pair stored in p-node prev(v). Consider
a set I = {(iprev(v), fpos(T [iprev(v) :])[k]) | prev(v) is a p-node, 1 ≤ k ≤ π} of
integer pairs. We sort the elements of I so that we can compute in O(1) time
fT [i:i+|v|−1],spe(v)(yl) = xl for all p-nodes prev(v), where xl is the lth smallest
parameterized character that occurs in spe(v). We can sort the elements of I in
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a total of O(n) time by radix sort, since there are O( n
σ+π ) p-nodes and each

f-array fpos(T [i :]) is of length π. This completes the proof. 
�
We can easily compute fpos(T [i :]) by the following lemma:

Lemma 8. Let q be a p-string. Let x ∈ Π, y ∈ Π ∪ Σ and x �= y. Then the
following equations hold:

fpos(xq)[rank(x)] = 1,
fpos(xq)[rank(y)] = fpos(q)[rank(y)] + 1.

Thus we can compute f-arrays fpos(T [i :]) for all 1 ≤ i ≤ n in a total of O(n)
time.

Since all the afore-mentioned procedures take O(n) time each, we obtain the
main theorem of this section.

Theorem 2. Given a p-string T of length n over alphabet Σ ∪ Π with Π =
{0, ..., nc1} and Σ = {nc1 + 1, ..., nc2} for some positive constants c1 and c2, we
can construct PSTray(T ) in O(n) time from PSTree(T ).

6 Conclusions and Open Questions

In this paper, we proposed an indexing structure for parameterized pattern
matching (PPM) called the parameterized suffix tray PSTray(T ), where T is a
given text string. Our PSTray(T ) uses O(n) space and supports pattern matching
queries in O(m + log(σ + π) + occ) time, where n = |T |, m is the query pattern
length, σ and π are respectively the numbers of distinct static characters and dis-
tinct parameterized characters occurring in T , and occ is the number of pattern
occurrences to report. We also showed how to construct PSTray(T ) in O(n+s(n))
time, where s(n) denotes the time complexity to build the parameterized suffix
tree PSTree(T ) for T . It is known that s(n) = min{nπ, n(log(π + σ)} [3,12,24].

On the other hand, if we use hashing for implementing the branches of the
parameterized suffix tree PSTree(T ), one can trivially answer PPM queries in
O(m + occ) time with O(n) space. The best linear-space deterministic hashing
we are aware of is the one by Ružić [23], which can be built in O(n(log log n)2)
time for a set of n keys in the word RAM model with machine word size Ω(log n).
By associating each node of PSTree(T ) with a unique integer (e.g. the pre-order
rank), one can regard each branch in PSTree(T ) as an integer from the universe
of polynomial size in n, each fitting in a constant number of machine words.
This gives us a deterministic O(n(log log n)2 + s(n))-time algorithm for building
PSTree(T ) with O(m + occ)-time PPM queries. Still, it is not known whether a
similar data structure can be build in O(n + s(n)) time. We conjecture that our
O(m + log(σ + π) + occ) PPM query time would be the best possible for any
indexing structure that can be build in O(n + s(n)) time. Proving or disproving
such a lower bound is an intriguing open problem.
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Abstract. For intractable problems on graphs of bounded treewidth,
two graph parameters treedepth and vertex cover number have been
used to obtain fine-grained complexity results. Although the studies in
this direction are successful, we still need a systematic way for further
investigations because the graphs of bounded vertex cover number form
a rather small subclass of the graphs of bounded treedepth. To fill this
gap, we use vertex integrity, which is placed between the two parame-
ters mentioned above. For several graph problems, we generalize fixed-
parameter tractability results parameterized by vertex cover number to
the ones parameterized by vertex integrity. We also show some finer com-
plexity contrasts by showing hardness with respect to vertex integrity or
treedepth.

Keywords: vertex integrity · vertex cover number · treedepth

1 Introduction

Treewidth, which measures how close a graph is to a tree, is arguably one of the
most powerful tools for designing efficient algorithms for graph problems. The
application of treewidth is quite wide and the general theory built there often
gives a very efficient algorithm (e.g., [2,10,15]). However, still many problems are
found to be intractable on graphs of bounded treewidth (e.g., [40]). To cope with
such problems, one may use pathwidth, which is always larger than or equal to
treewidth. Unfortunately, this approach did not quite work as no natural prob-
lem was known to change its complexity with respect to treewidth and pathwidth,
until very recently [8]. Treedepth is a further restriction of pathwidth. However,
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still most of the problems do not change their complexity, except for some prob-
lems with hardness depending on the existence of long paths (e.g., [21,31]). One
successful approach in this direction is parameterization by the vertex cover num-
ber, which is a strong restriction of treedepth. Many problems that are intractable
parameterized by treewidth have been shown to become tractable when parame-
terized by vertex cover number [1,14,22,24,25,33].

One drawback of the vertex-cover parameterization is its limitation to a very
small class of graphs. To overcome the drawback, we propose a new approach for
parameterizing graph problems by vertex integrity [5]. The vertex integrity of a
graph G, denoted vi(G), is the minimum integer k satisfying that there is S ⊆
V (G) such that |S|+|V (C)| ≤ k for each component C of G−S. We call such S a
vi(k)-set of G. This parameter is bounded from above by vertex cover number+
1 and from below by treedepth. As a structural parameter in parameterized
algorithms, vertex integrity (and its close variants) was used only in a couple
of previous studies [12,20,26]. Our goal is to fill some gaps between treedepth
and vertex cover number by presenting finer algorithmic and complexity results
parameterized by vertex integrity. Note that the parameterization by vertex
integrity is equivalent to the one by �-component order connectivity + � [19].

Short Preliminaries. For the basic terms and concepts in the parameterized
complexity theory, we refer the readers to standard textbooks, e.g. [16,18].

For a graph G, we denote its treewidth by tw(G), pathwidth by pw(G),
treedepth by td(G), and vertex cover number by vc(G). It is known that tw(G) ≤
pw(G) ≤ td(G) − 1 ≤ vi(G) − 1 ≤ vc(G) for every graph G. We say informally
that a problem is fixed-parameter tractable “parameterized by vi”, which means
“parameterized by the vertex integrity of the input graphs.” We also say “graphs
of vi = c (or vi ≤ c)”.

Our Results. The main contribution of this paper is to generalize several known
FPT algorithms parameterized by vc to the ones by vi. We also show some
results considering parameterizations by vc, vi, or td to tighten the complexity
gaps between parameterizations by vc and by td. See Table 1 for the summary
of results. Due to the space limitation, we included only selected results in this
version. For the omitted results and proofs, see the full version [29].

Extending FPT Results Parameterized by vc. We show that Imbalance,
Maximum Common (Induced) Subgraph, Capacitated Vertex Cover,
Capacitated Dominating Set, Precoloring Extension, Equitable

Coloring, and Equitable Connected Partition are fixed-parameter
tractable parameterized by vertex integrity. We present the algorithms for
Imbalance as a simple but still powerful example that generalizes known results
(Sect. 2) and for Maximum Common Subgraph as one of the most involved
examples (Sect. 3). See the full version for the other problems. A commonly used
trick is to reduce the problem instance to a number of instances of integer lin-
ear programming, while each problem requires a nontrivially tailored reduction
depending on its structure. It was the same for parameterizations by vc, but
the reductions here are more involved because of the generality of vi. Finding
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the similarity among the reductions and algorithms would be a good starting
point to develop a general way for handling problems parameterized by vi (or
vc). Additionally, we show that Bandwidth is W[1]-hard parameterized by td,
while we were not able to extend the algorithm parameterized by vc to the one
by vi.

Table 1. Summary. The results stated without references are shown in this paper.

Problem Lower bounds Upper bounds

Imbalance NP-h [9] FPT by tw + Δ [34]

FPT by vi

Max Common Subgraph NP-h for vi(G2) = 3 FPT by vi(G1) + vi(G2)

Max Common Ind. Subgraph NP-h for vc(G2) = 0

Capacitated Vertex Cover W[1]-h by td [17] FPT by vi

Capacitated Dominating Set W[1]-h by td+ k [17] FPT by vi

Precoloring Extension W[1]-h by td [23] FPT by vi

Equitable Coloring W[1]-h by td [23] FPT by vi

Equitable Connected Part. W[1]-h by pw [22] FPT by vi

Bandwidth W[1]-h by td FPT by vc [24]

NP-h for pw = 2 [38] P for pw ≤ 1 [4]

Graph Motif NP-h for vi = 4 FPT by vc [14]

P for vi ≤ 3

Steiner Forest NP-h for vi = 5 [28] XP by vc

Unweighted Steiner Forest NP-h for tw = 3 [28] FPT by vc

Unary Min Max Outdeg. Ori. W[1]-h by vc XP by tw [41]

Binary Min Max Outdeg. Ori. NP-h for vc = 3 P for vc ≤ 2

Metric Dimension W[1]-h by pw [13] FPT by tw + Δ [6]

FPT by td

Directed (p, q)-Edge Dom. Set W[1]-h by pw [7] FPT by tw + p + q [7]

FPT by td

List Hamiltonian Path W[1]-h by pw [35] FPT by td

Filling Some Complexity Gaps. Min Max Outdegree Orientation gives
an example that a known hardness for td can be strengthened to the one for vc
(Sect. 4). In the full version, we show that Graph Motif and Steiner Forest

have different complexity with respect to vc and vi . This implies that not all FPT
algorithms parameterized by vc can be generalized to the ones by vi. We also
observe that some W[1]-hard problems parameterized by tw become tractable
parameterized by td. Such problems include Metric Dimension, Directed

(p, q)-Edge Dominating Set, and List Hamiltonian Path.
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2 Imbalance

In this section, we show that Imbalance is fixed-parameter tractable parame-
terized by vi. Let G = (V,E) be a graph. Given a linear ordering σ on V , the
imbalance imσ(v) of v ∈ V is the absolute difference of the numbers of the neigh-
bors of v that appear before v and after v in σ. The imbalance of G, denoted
im(G), is defined as minσ

∑
v∈V im(v), where the minimum is taken over all lin-

ear orderings on V . Given a graph G and an integer b, Imbalance asks whether
im(G) ≤ b.

Fellows et al. [24] showed that Imbalance is fixed-parameter tractable
parameterized by vc. Recently, Misra and Mittal [36] have extended the result by
showing that Imbalance is fixed-parameter tractable parameterized by the sum
of the twin-cover number and the maximum twin-class size. Although twin-cover
number is incomparable with vertex integrity, the combined parameter in [36]
is always larger than or equal to the vertex integrity of the same graph. On the
other hand, the combined parameter can be arbitrarily large for some graphs of
constant vertex integrity (e.g., disjoint unions of P3’s). Hence, our result here
properly extends the result in [36] as well.

Key Concepts. Before proceeding to the algorithm, we need to introduce two
important concepts that are common in our algorithms parameterized by vi.

1. ILP parameterized by the number of variables. It is known that the fea-
sibility of an instance of integer linear programming (ILP) parameterized by
the number of variables is fixed-parameter tractable [32]. Using the algorithm
for the feasibility problem as a black box, one can show the same fact for the
optimization version as well. This fact has been used heavily for designing FPT
algorithms parameterized by vc (see e.g. [24]). We are going to see that some of
these algorithms can be generalized for the parameterization by vi, and Imbal-

ance is the first such example.
2. Equivalence relation among components. For a vertex set S of G, we define

an equivalence relation ∼G,S among components of G−S by setting C1 ∼G,S C2

if and only if there is an isomorphism g from G[S ∪V (C1)] to G[S ∪V (C2)] that
fixes S; that is, g|S is the identity function. When C1 ∼G,S C2, we say that
C1 and C2 have the same (G,S)-type (or just the same type if G and S are
clear from the context). See Fig. 1. We say that a component C of G − S is of
(G,S)-type t (or just type t) by using a canonical form t of the members of the
(G,S)-type equivalence class of C. We can set the canonical form t in such a way
that it can be computed from S and C in time depending only on |S ∪ V (C)|.1
Observe that if S is a vi(k)-set of G, then the number of ∼G,S classes depends
only on k since |S ∪ V (C)| ≤ k for each component C of G − S. Hence, we can
compute for all types t the number of type-t components of G−S in O(f(k) ·n)
total running time, where n = |V | and f(k) is a computable function depending

1 For example, by fixing the ordering of vertices in S as v1, . . . , v|S|, we can set
t to be the adjacency matrix of G[S ∪ V (C)] such that the ith row and col-
umn correspond to vi for 1 ≤ i ≤ |S| and under this condition the string
t[1, 1], . . . , t[1, s], t[2, 1], . . . , t[s, s] is lexicographically minimal, where s = |S∪V (C)|.
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only on k. Note that this information (the numbers of type-t components for all
t) completely characterizes the graph G up to isomorphism.

Theorem 2.1. Imbalance is fixed-parameter tractable parameterized by vi.

Proof. Let S be a vi(k)-set of G. Such a set can be found in O(kk+1n) time [19].
We first guess and fix the relative ordering of S in an optimal ordering. There
are only k! candidates for this guess. For each v ∈ S, let �(v) and r(v) be the
numbers of vertices in N(v) ∩ S that appear before v and after v, respectively,
in the guessed relative ordering of S.

Fig. 1. The components C2 and C3 of G − S have the same (G,S)-type.

Observe that the imbalance of a vertex v in a component C of G−S depends
only on the relative ordering of S ∪ V (C) since N(v) ⊆ S ∪ V (C). For each type
t and for each relative ordering p of S ∪V (C), where C is a type-t component of
G−S, we denote by im(t, p) the sum of imbalance of the vertices in C. Similarly,
the numbers of vertices in a type-t component C that appear before v ∈ S and
after v depend only on the relative ordering p of S ∪ V (C); we denote these
numbers by �(v, t, p) and r(v, t, p), respectively. The numbers im(t, p), �(v, t, p),
and r(v, t, p) can be computed from their arguments in time depending only on
k, and thus they are treated as constants in the following ILP.

We represent by a nonnegative variable xt,p the number of type-t components
that have relative ordering p with S. Note that the number of combinations of t
and p depends only on k. For each v ∈ S, we represent (an upper bound of) the
imbalance of v by an auxiliary variable yv. This can be done by the following
constraints:

yv ≥ (�(v) +
∑

t,p �(v, t, p) · xt,p) − (r(v) +
∑

t,p r(v, t, p) · xt,p),

yv ≥ (r(v) +
∑

t,p r(v, t, p) · xt,p) − (�(v) +
∑

t,p �(v, t, p) · xt,p).

Then the imbalance of the whole ordering, which is our objective function to
minimize, can be expressed as

∑
v∈S yv +

∑
t,p im(t, p) · xt,p.

Now we need the following constraints to keep the total number of type-t com-
ponents right: ∑

p xt,p = ct for each type t,

where ct is the number of components of type t in G − S.
By finding an optimal solution to the ILP above for each guess of the relative

ordering of S, we can find an optimal ordering. Since the number of guesses and
the number of variables depend only on k, the theorem follows. 	
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3 Maximum Common (Induced) Subgraph

In this section, we show that Maximum Common Subgraph (MCS) and Max-

imum Common Induced Subgraph (MCIS) are fixed-parameter tractable
parameterized by vi of both graphs. (See the full version for the proof for MCIS.)
The results extend known results and fill some complexity gaps as described
below.

A graph Q is subgraph-isomorphic to G, denoted Q � G, if there is an
injection η from V (Q) to V (G) such that {η(u), η(v)} ∈ E(G) for every {u, v} ∈
E(Q). A graph Q is induced subgraph-isomorphic to G, denoted Q �I G, if
there is an injection η from V (Q) to V (G) such that {η(u), η(v)} ∈ E(G) if and
only if {u, v} ∈ E(Q). Given two graphs G and Q, Subgraph Isomorphism

(SI) asks whether Q � G, and Induced Subgraph Isomorphism (ISI) asks
whether Q �I G. The results of this section are on their generalizations. Given
two graphs G1 and G2, MCS asks to find a graph H with maximum |E(H)|
such that H � G1 and H � G2. Similarly, MCIS asks to find a graph H with
maximum |V (H)| such that H �I G1 and H �I G2.

If we restrict the structure of only one of the input graphs, then both problems
remain quite hard. Since Partition Into Triangles [27] is a special case of SI
where the graph Q is a disjoint union of triangles, MCS is NP-hard even if one of
the input graphs has vi = 3. Also, since Independent Set [27] is a special case
of ISI where Q is an edge-less graph, MCIS is NP-hard even if one of the input
graphs has vc = 0. Furthermore, since SI and ISI generalize Clique [18], MCS
and MCIS are W[1]-hard parameterized by the order of one of the input graphs.
When parameterized by vc of one graph, an XP algorithm for (a generalization
of) MCS is known [11].

For parameters restricting both input graphs, some partial results were
known. It is known that SI is fixed-parameter tractable parameterized by vi
of both graphs, while it is NP-complete when both graphs have td ≤ 3 [12].
The hardness proof in [12] can be easily adapted to ISI without increasing td.
It is known that MCIS is fixed-parameter tractable parameterized by vc of both
graphs [1].

Theorem 3.1. Maximum Common Subgraph is fixed-parameter tractable
parameterized by vi of both input graphs.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be the input graphs of vertex
integrity at most k. We will find isomorphic subgraphs Γ1 = (U1, F1) of G1

and Γ2 = (U2, F2) of G2 with maximum number of edges, and an isomorphism
η : U1 → U2 from Γ1 to Γ2.
Step 1. Guessing matched vi(2k)-sets R1 and R2. Let S1 and S2 be vi(k)-sets
of G1 and G2, respectively. At this point, there is no guarantee that Si ⊆ Ui or
η(S1) = S2. To have such assumptions, we make some guesses about η and find
vi(2k)-sets R1 and R2 of the graphs such that η(R1) = R2.

Step 1-1. Guessing subsets Xi, Yi ⊆ Si for i ∈ {1, 2}.We guess disjoint subsets
X1 and Y1 of S1 such that X1 = S1 ∩ η−1(U2 ∩ S2) and Y1 = S1 ∩ η−1(U2 \ S2).
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We also guess disjoint subsets X2 and Y2 of S2 defined similarly as X2 = S2 ∩
η(U1 ∩ S1) and Y2 = S2 ∩ η(U1 \ S1). Note that η(X1) = X2. There are 3|S1| ·
3|S2| ≤ 32k candidates for the combinations of X1, Y1, X2, and Y2.

Observe that the vertices in Si \(Xi ∪Yi) do not contribute to the isomorphic
subgraphs and can be safely removed. We denote the resultant graphs by Hi.

Step 1–2. Guessing η on X1 ∪ Y1 and η−1 on X2 ∪ Y2. Given the guessed
subsets X1, Y1, X2, and Y2, we further guess how η maps these subsets. There are
|X1|! ≤ k! candidates for the bijection η|X1 (equivalently for η−1|X2 = (η|X1)

−1).
Now we guess η|Y1 from at most 2k3

non-isomorphic candidates as follows.
Recall that η(Y1) ⊆ V2 \ S2. Observe that each subset A ⊆ V2 \ S2 is completely
characterized up to isomorphism by the numbers of ways A intersects type-t
components for all (H2, S2)-types t. Since there are at most 2(k2) types and each
component has order at most k, the total number of non-equivalent subsets of
components is at most 2(k2) · 2k ≤ 2k2

. Since η(Y1) is the union of at most
|Y1| such subsets, the number of non-isomorphic candidates of η(Y1) is at most
(2k2

)|Y1| ≤ 2k3
. In the analogous way, we can guess η−1|Y2 from at most 2k3

non-isomorphic candidates.
Now we set Z1 = η−1(Y2) and Z2 = η(Y1). Let R1 = X1 ∪ Y1 ∪ Z1 and

R2 = X2 ∪ Y2 ∪ Z2. Observe that each component C of H1 − R1 satisfies that
|C| ≤ k − |S1| ≤ k and |C| + |R1| ≤ (k − |S1|) + (|S1| + |η−1(Y2)|) ≤ 2k. Hence,
R1 is a vi(2k)-set of H1. Similarly, we can see that R2 is a vi(2k)-set of H2.
Furthermore, we know that η(R1) = R2.

Step 2. Extending the guessed parts of η. Assuming that the guesses we made so
far are correct, we now find the entire η. Recall that we are seeking for isomorphic
subgraphs Γ1 = (U1, F1) of G1 and Γ2 = (U2, F2) of G2 with maximum number
of edges, and the isomorphism η : U1 → U2 from Γ1 to Γ2. Since we already know
the part η|R1 : R1 → R2, it suffices to find a bijective mapping from a subset of
V (H1 − R1) to a subset of V (H2 − R1) that maximizes the number of matched
edges where the connections to Ri are also taken into account.

As we describe below, the subproblem we consider here can be solved by
formulating it as an ILP instance with 2O(k3) variables. The trick here is that
instead of directly finding the mapping, we find which vertices and edges in
Hi − Ri are used in the common subgraph.

In the following, we are going to use a generalized version of types since the
vertex set of a component of Hi − Ri does not necessarily induce a connected
subgraph of Γi. It is defined in a similar way as (Hi, Ri)-types except that it is
defined for each pair (A,B) of a connected subgraph A of Hi − Ri and a subset
B of the edges between A and Ri. Let (A1, B1) and (A2, B2) be such pairs in
Hi − Ri. We say that (A1, B1) and (A2, B2) have the same g-(Hi, Ri)-type (or
just g-type) if there is an isomorphism from Hi(A1, B1) to Hi(A2, B2) that fixes
Ri, where Hi(Aj , Bj) is the subgraph of Hi formed by Bj and the edges in Aj .
See Fig. 2. We say that a pair (A,B) is of g-(Hi, Ri)-type t (or just g-type t)
by using a canonical form t of the g-(Hi, Ri)-type equivalence class of (A,B).
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Observe that all possible canonical forms of g-types can be computed in time
depending only on k.

Fig. 2. The pairs (A1, B1) and (A2, B2) have the same g-(Hi, Ri)-type.

Step 2-1. Decomposing components of Hi − Ri into smaller pieces. We say
that an edge {u, v} in H1 is used by η if u, v ∈ U1 and H2 has the edge
{η(u), η(v)}. Similarly, an edge {u, v} in H2 is used by η if u, v ∈ U2 and H1 has
the edge {η−1(u), η−1(v)}.

Let i ∈ {1, 2}, t be an (Hi, Ri)-type, and T be a multiset of g-(Hi, Ri)-types.
Let C be a type t component of Hi − Ri, C ′ the subgraph of C formed by the
edges used by η, and E′ the subset of the edges between C ′ and Ri used by η.
If T coincides with the multiset of g-types of the pairs (A,B) such that A is a
component of C ′ and B is the subset of E′ connecting A and Ri, then we say
that η decomposes the type-t component C into T .

We represent by a nonnegative variable x
(i)
t,T the number of type-t components

of Hi − Ri that are decomposed into T by η. We have the following constraint:

∑
T x

(i)
t,T = c

(i)
t for each (Hi, Ri)-type t and i ∈ {1, 2},

where the sum is taken over all possible multisets T of g-(Hi, Ri)-types, and c
(i)
t

is the number of components of type t in Hi − Ri. Additionally, if there is no
way to decompose a type-t component into T , we add a constraint x

(i)
t,T = 0.

As each component of Hi − Ri has order at most k, T contains at most k

elements. Since there are at most 2(2k2 ) g-types, there are at most (2(2k2 ))k options
for choosing T . Thus the number of variables x

(i)
t,T is at most 2 ·2(2k2 ) · (2(2k2 ))k+1.

Now we introduce a nonnegative variable y
(i)
t that represents the number of

pairs (A,B) of g-type t obtained from the components of Hi−Ri by decomposing
them by η. The definition of y

(i)
t gives the following constraint:

y
(i)
t =

∑
t′, T μ(T, t) · x

(i)
t′,T for each g-(Hi, Ri)-type t and i ∈ {1, 2},

where μ(T, t) is the multiplicity of g-type t in T and the sum is taken over all
possible (Hi, Ri)-types t′ and multisets T of g-(Hi, Ri)-types. As in the previous
case, we can see that the number of variables yt depends only on k.

Step 2-2. Matching decomposed pieces. Observe that for each g-(H1, R1)-type
t1, there exists a unique g-(H2, R2)-type t2 such that there is an isomorphism
g from H1(A1, B1) to H2(A2, B2) with g|R1 = η|R1 , where (Ai, Bi) is a pair of
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g-(Hi, Ri)-type ti for i ∈ {1, 2}. We say that such g-types t1 and t2 match. Since
η is an isomorphism from Γ1 to Γ2, η maps each g-(H1, R1)-type t1 pair to a
g-(H2, R2)-type t2 pair, where t1 and t2 match. This implies that y

(1)
t1 = y

(2)
t2 ,

which we add as a constraint. Now the total number of edges used by η can be
computed from y

(1)
t . Let mt be the number of edges in H1(A,B), where (A,B)

is a pair of g-(H1, R1)-type t. Let r be the number of matched edges in R1; that
is, r = |{{u, v} ∈ E(H1[R1]) | {η(u), η(v)} ∈ E(G2[R2])}|. Then, the number of
matched edges is r+

∑
t mt ·y(1)

t . On the other hand, given an assignment to the
variables, it is easy to find isomorphic subgraphs with that many edges. Since r

is a constant here, we set
∑

t mt ·y(1)
t to the objective function to be maximized.

Since the number of candidates in the guesses we made and the number of
variables in the ILP instances depend only on k, the theorem follows. 	


4 Min Max Outdegree Orientation

Given an undirected graph G = (V,E), an edge weight function w : E → Z
+,

and a positive integer r, Min Max Outdegree Orientation (MMOO) asks
whether there exists an orientation Λ of G such that each vertex has outdegree at
most r under Λ, where the outdegree of a vertex is the sum of the weights of out-
going edges. If each edge weight is given in binary, we call the problem Binary

MMOO, and if it is given in unary, we call the problem Unary MMOO. Note
that in the binary version, the weight of an edge can be exponential in the input
size, whereas the unary version does not allow such weights.

Unary MMOO admits an nO(tw)-time algorithm [41], but it is W[1]-hard
parameterized by td [40].2 In this section, we show a stronger hardness param-
eterized by vc. Binary MMOO is known to be NP-complete for graphs of
vi = 4 [3]. In the full version, we show a stronger hardness result that the binary
version is NP-complete for graphs of vc = 3. This result is tight as we can show
that the binary version is polynomial-time solvable for graphs of vc ≤ 2.

Theorem 4.1. Unary MMOO is W[1]-hard parameterized by vc.

Proof. We give a parameterized reduction from Unary Bin Packing. Given
a positive integer t and n positive integers a1, a2, . . . , an in unary, Unary Bin

Packing asks the existence of a partition S1, . . . , St of {1, 2, . . . , n} such that∑
i∈Sj

ai = 1
t

∑
1≤i≤n ai for 1 ≤ j ≤ t. Unary Bin Packing is W[1]-hard

parameterized by t [30].
We assume that t ≥ 3 since otherwise the problem can be solved in poly-

nomial time as the integers ai are given in unary. Let B = 1
t

∑
1≤i≤n ai and

W = (t − 1)B =
∑

1≤i≤n ai − B. The assumption t ≥ 3 implies that B ≤ W/2.
Observe that if ai ≥ B for some i, then the instance is a trivial no instance
(when ai > B) or the element ai is irrelevant (when ai = B). Hence, we assume
that ai < B (and thus ai < W/2) for every i.

2 In [40], W[1]-hardness was stated for tw but the proof shows it for td as well.
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Fig. 3. Reduction from Unary Bin Packing to Unary MMOO.

The reduction to Unary MMOO is depicted in Fig. 3. From the integers
a1, a2, . . . , an, we construct the graph obtained from a complete bipartite graph
on the vertex set {u, s1, s2, . . . , st} ∪ {v1, . . . , vn} by adding the edge {u, s1}. We
set w({vi, sj}) = ai for all i, j, w({vi, u}) = W −ai for all i, and w({u, s1}) = W .
The vertices s1, s2, . . . , st, u form a vertex cover of size t+1. We set the target max-
imum outdegree r to W . We show that this instance of Unary MMOO is a yes
instance if and only if there exists a partition S1, . . . , St of {1, 2, . . . , n} such that∑

i∈Sj
ai = B for all j. Intuitively, we can translate the solutions of the problems

by picking ai into Sj if {vi, sj} is oriented from vi to sj , and vice versa.
Assume that there exists a partition S1, . . . , St of {1, 2, . . . , n} such that∑

i∈Sj
ai = B for all j. We first orient the edge {u, s1} from u to s1 and each

edge {vi, u} from vi to u. (See the thick edges in Fig. 3.) Then, we orient {vi, sj}
from vi to sj if and only if i ∈ Sj . Under this orientation, all vertices have
outdegree exactly W : ai + (W − ai) for each vi and

∑
i/∈Sj

ai =
∑

1≤i≤n ai − B
for each sj .

Conversely, assume that there is an orientation such that each vertex has
outdegree at most W . Since the sum of the edge weights is (n + t + 1)W and
the graph has n + t + 1 vertices, the outdegree of each vertex has to be exactly
W . Since ai < W/2 for all i, each edge {vi, u} has weight larger than W/2.
Hence, for u, the only way to obtain outdegree exactly W is to orient {u, s1}
from u to s1 and {vi, u} from vi to u for all i. Furthermore, for each i, there
exists exactly one vertex sj such that {vi, sj} is oriented from vi to sj . Let
Sj ⊆ {1, 2, . . . , n} be the set of indices i such that {vi, sj} is oriented from vi

to sj . The discussion above implies that S1, . . . , St is a partition of {1, . . . , n}.
The outdegree of sj is

∑
i/∈Sj

ai, which is equal to W =
∑

1≤i≤n ai − B. Thus,
∑

i∈Sj
ai =

∑
1≤i≤n ai − W = B. 	


5 Bandwidth

Let G = (V,E) be a graph. Given a linear ordering σ on V , the stretch of
{u, v} ∈ E, denoted strσ({u, v}), is |σ(u) − σ(v)|. The bandwidth of G, denoted
bw(G), is defined as minσ maxe∈E strσ(e), where the minimum is taken over all
linear orderings on V . Given a graph G and an integer w, Bandwidth asks
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whether bw(G) ≤ w. Bandwidth is NP-complete on trees of pw = 3 [37] and
on graphs of pw = 2 [38]. Fellows et al. [24] presented an FPT algorithm for
Bandwidth parameterized by vc . Here we show that Bandwidth is W[1]-hard
parameterized by td on trees. The proof is inspired by the one by Muradian [38].

Theorem 5.1. Bandwidth is W[1]-hard parameterized by td on trees.

Proof. Let (a1, . . . , an; t) be an instance of Unary Bin Packing with t ≥ 2.
Let B = 1

t

∑
1≤i≤n ai be the target weight. We construct an equivalent instance

(T = (V,E), w) of Bandwidth as follows (see Fig. 4). We start with a path
(z0, x1, y1, z1, . . . , xt, yt, zt) of length 3t. For 1 ≤ i ≤ t − 1, we attach 12tnB
leaves to zi. To z0 and zt, we attach 12tnB + 4n + 1 leaves. For 1 ≤ i ≤ n,
we take a star with 6tn · ai − 1 leaves centered at vi. Finally, we connect each
vi to x1 with a path with 6t − 4 inner vertices. We set the target width w to
6tnB + 2n + 1. Note that |V | = (3t + 2)w + 1.

We can see an upper bound of td(T ) as follows. We remove x1 and all the
leaves from T . This decreases treedepth by at most 2. The remaining graph is
a disjoint union of paths and a longest path has order 6t − 3. Since td(Pn) =
log2(n + 1)� [39], we have td(T ) ≤ 2 + log2(6t − 2)� ≤ log2 t + 6.

Now we show that (T,w) is a yes instance of of Bandwidth if and only if
(a1, . . . , an; t) is a yes instance of Unary Bin Packing.

( =⇒ ) First assume that bw(T ) ≤ w and that σ is a linear ordering on V
such that maxe∈E strσ(e) ≤ w. Since deg(z0) = 12tnB + 4n + 2 = 2w, its closed
neighborhood N [z0] has to appear in σ consecutively, where z0 appears at the
middle of this subordering. Furthermore, no edge can connect a vertex appearing
before z0 in σ and a vertex appearing after z0 as such an edge has stretch
larger than w. Since the edges not incident to z0 form a connected subgraph,
we can conclude that the vertices in V − N [z0] appear either all before N [z0]
or all after N [z0] in σ. By symmetry, we can assume that those vertices appear
after N [z0] in σ. This implies that σ(z0) = w + 1. By the same argument,
we can show that all vertices in N [zt] appear consecutively in the end of σ
and σ(zt) = |V | − w = (3t + 1)w + 1. Since σ(zt) − σ(z0) = 3tw and the
path (z0, x1, y1, z1, . . . , xt, yt, zt) has length 3t, each edge in this path has stretch
exactly w in σ. Namely, σ(xi) = (3i − 1)w + 1, σ(yi) = 3iw + 1, and σ(zi) =
(3i + 1)w + 1.

For each leaf � attached to zi (1 ≤ i ≤ t − 1), σ(yi) < σ(�) < σ(xi+1) holds.
Other than these leaves, there are 2(w−1)−12tnB = 4n vertices placed between
yi and xi+1. Let Vi be the set consisting of vi and the leaves attached to it. For
j ∈ {1, . . . , t}, let Ij be the set of indices i such that vi is put between zj−1 and
zj . If i ∈ Ij , then all 6tn · ai vertices in Vi are put between yj−1 and xj+1. (We
set y0 := z0.)
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Fig. 4. Reductions from Unary Bin Packing to Bandwidth.

Fig. 5. Embedding the path from x1 to vi. The gray boxes are the occupied position
and the white points are the vacant positions. (n = 2, j = 2, t = 3.)

If
∑

i∈Ij
ai ≥ B + 1, then |⋃i∈Ij

Vi| ≥ 6tn(B + 1) > w + 8n − 1 as t ≥ 2.
This number of vertices cannot be put between yj−1 and xj+1 after putting the
leaves attached to zj−1 and zj : we can put at most 4n vertices between yj−1 and
xj , at most 4n vertices between yj and xj+1, and at most w−1 vertices between
xj and yj . Since I1, . . . , It form a partition of {1, . . . , n} and

∑
1≤i≤n ai = tB,

we can conclude that
∑

i∈Ij
ai = B for 1 ≤ j ≤ t.

( ⇐= ) Next assume that there exists a partition S1, . . . , St of {1, 2, . . . , n}
such that

∑
i∈Sj

ai = B for all 1 ≤ j ≤ t.
We put N [z0] at the beginning of σ and N [zt] at the end. We set σ(xi) =

(3i − 1)w + 1, σ(yi) = 3iw + 1, and σ(zi) = (3i + 1)w + 1. For 1 ≤ i ≤ t − 1, we
put the leaves attached to zi so that a half of them have the first 6tnB positions
between yi and zi and the other half have the first 6tnB positions between zi

and xi+1. For each Sj , we put the vertices in
⋃

i∈Sj
Vi so that they take the first

6tnB positions between xj and yj .
Now we have 2n vacant positions at the end of each interval between xi and

yi for 1 ≤ i ≤ t, between yi and zi for 1 ≤ i ≤ t− 1, and between zi and xi+1 for
1 ≤ i ≤ t − 1. To these positions, we need to put the inner vertices of the paths
connecting x1 and v1, . . . , vn. Let Pi be the inner part of x1–vi path. The path
Pi uses the (2i − 1)st and (2i)th vacant positions in each interval as follows (see
Fig. 5).

Let i ∈ Sj . Starting from x1, Pi proceeds from left to right and visits the
two positions in each interval consecutively until it arrives the interval between
xj and yj . At the interval between xj and yj , Pi switches to the phase where
it only visits the (2i)th vacant position in each interval and still proceeds from
left to right until it reaches the interval between xt and yt. Then Pi changes the
direction and switches to the phase where it visits the (2i − 1)st vacant position
only in each interval until it reaches the interval between xj and yj .
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Now all the vertices are put at distinct positions and it is easy to see that no
edge has stretch more than w. This completes the proof. 	


6 Conclusion

Using vertex integrity as a structural graph parameter, we presented finer anal-
yses of the parameterized complexity of well-studied problems. Although we
needed a case-by-case analysis depending on individual problems, the results in
this paper would be useful for obtaining a general method to deal with vertex
integrity.

We succeeded to extend many fixed-parameter algorithms parameterized by
vc to the ones parameterized by vi, but we were not so successful on graph layout
problems. Fellows et al. [24] showed that Imbalance, Bandwidth, Cutwidth,
and Distortion are fixed-parameter tractable parameterized by vc. Loksh-
tanov [33] showed that Optimal Linear Arrangement is fixed-parameter
tractable parameterized by vc. Are these problems fixed-parameter tractable
parameterized by vi? We answered only for Imbalance in this paper.

References

1. Abu-Khzam, F.N.: Maximum common induced subgraph parameterized by vertex
cover. Inf. Process. Lett. 114(3), 99–103 (2014). https://doi.org/10.1016/j.ipl.2013.
11.007

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-
6774(91)90006-K

3. Asahiro, Y., Miyano, E., Ono, H.: Graph classes and the complexity of the graph
orientation minimizing the maximum weighted outdegree. Discret. Appl. Math.
159(7), 498–508 (2011). https://doi.org/10.1016/j.dam.2010.11.003

4. Assmann, S.F., Peck, G.W., Sys�lo, M.M., Zak, J.: The bandwidth of caterpillars
with hairs of length 1 and 2. SIAM J. Algebraic Discrete Methods 2(4), 387–393
(1981). https://doi.org/10.1137/0602041

5. Barefoot, C.A., Entringer, R.C., Swart, H.C.: Vulnerability in graphs – a compar-
ative survey. J. Combin. Math. Combin. Comput. 1, 13–22 (1987)

6. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017).
https://doi.org/10.1137/16M1057383
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Abstract. We study three covering problems in the plane. Our original
motivation for these problems come from trajectory analysis. The first is
to decide whether a given set of line segments can be covered by up to four
unit-sized, axis-parallel squares. The second is to build a data structure
on a trajectory to efficiently answer whether any query subtrajectory
is coverable by up to three unit-sized axis-parallel squares. The third
problem is to compute a longest subtrajectory of a given trajectory that
can be covered by up to two unit-sized axis-parallel squares.

Keywords: Computational geometry · Geometric coverings ·
Trajectory analysis

1 Introduction

Geometric covering problems are a classic area of research in computational
geometry. The traditional geometric set cover problem is to decide whether one
can place k axis-parallel unit-sized squares (or disks) to cover n given points in
the plane. If k is part of the input, the problem is known to be NP-hard [5,11].
Thus, efficient algorithms are known only for small values of k. For k = 2 or 3,
there are linear time algorithms [4,17], and for k = 4 or 5, there are O(n log n)
time algorithms [12,15]. For general k, the O(n

√
k) time algorithm for unit-sized

disks [10] most likely generalises to unit-sized axis-parallel squares [1].
Motivated by trajectory analysis, we study a line segment variant of the

geometric set cover problem where the input is a set of n line segments. Given
a set of line segments, we say it is k-coverable if there exist k unit-sized axis-
parallel squares in the plane so that every line segment is in the union of the k
squares (we may write coverable to mean k-coverable when k is clear from the
context). The first problem we study in this paper is:

The full version of this paper can be found at [7].
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Problem 1. Decide if a set of line segments is k-coverable, for k ∈ O(1).

Fig. 1. A set of 3-coverable segments. Fig. 2. A 2-coverable subtrajectory.

A key difference in the line segment variant and the point variant is that
each segment need not be covered by a single square, as long as each segment is
covered by the union of the k squares. See Fig. 1.

Hoffmann [9] provides a linear time algorithm for k = 2 and 3, however, a
proof was not included in his extended abstract. Sadhu et al. [14] provide a linear
time algorithm for k = 2 using constant space. In Sect. 2, we provide a proof for
a k = 3 algorithm and a new O(n log n) time algorithm for k = 4.

Next, we study trajectory coverings. A trajectory T is a polygonal curve
in the plane parametrised by time. A subtrajectory T [s, t] is the trajectory T
restricted to a contiguous time interval [s, t] ⊆ [0, 1], see Fig. 2 for an example.
Trajectories are commonly used to model the movement of an object (e.g. a
bird, a vehicle, etc.) through time and space. The analysis of trajectories have
applications in animal ecology [3], meteorology [18], and sports analytics [6].

To the best of our knowledge, this paper is the first to study k-coverable
trajectories for k ≥ 2. A k-coverable trajectory may, for example, model a com-
monly travelled route, and the squares could model a method of displaying the
route (i.e. over multiple pages, or multiple screens), or alternatively, the location
of several facilities. We build a data structure that can efficiently decide whether
a subtrajectory is k-coverable.

Problem 2. Construct a data structure on a trajectory, so that given any query
subtrajectory, it can efficiently answer whether the subtrajectory is k-coverable,
for k ∈ O(1).

For k = 2 and k = 3 we preprocess a trajectory T with n vertices in O(n log n)
time, and store it in a data structure of size O(n log n), so that we can test if
an arbitrary subtrajectory (not necessarily restricted to vertices) T [s, t] can be
k-covered.

Finally, we consider a natural extension of Problem 2, that is, to calculate
the longest k-coverable subtrajectory of any given trajectory. This problem is
similar in spirit to the problem of covering the maximum number of points by k
unit-sized axis-parallel squares [2,13].
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Problem 3. Given a trajectory, compute its longest k-coverable subtrajectory,
for k ∈ O(1).

Problem 3 is closely related to computing a trajectory hotspot, which is a
small region where a moving object spends a large amount of time. For k = 1
squares, the existing algorithm by Gudmundsson et al. [8] computes longest
1-coverable subtrajectory of any given trajectory. We notice a missing case in
their algorithm, and show how to resolve this issue in the same running time
of O(n log n). Finally, we show how to compute the longest 2-coverable subtra-
jectory of any given trajectory in O(nβ4(n) log2 n) time. Here, β4(n) = λ4(n)/n,
and λs(n) is the length of a Davenport-Schinzel sequence of order s on n symbols.
Omitted proofs can be found in the full version [7].

2 Problem 1: The Decision Problem

2.1 Is a Set of Line Segments 2-Coverable?

This section restates known results that will be useful for the recursive step
in Sect. 2.2 and for the data structure in Sect. 3.1. The first result relates the
bounding box, which is the smallest axis-aligned rectangle that contains all the
segments, to a covering, which is a set of squares that covers all line segments.

Observation 1. Every covering must touch all four sides of the bounding box.

The reasoning behind Observation 1 is simple: if the covering does not touch
one of the four sides, say the left side, then the covering could not have covered
the leftmost vertex of the set of segments. An intuitive way for two squares
to satisfy Observation 1 is to place the two squares in opposite corners of the
bounding box. This intuition is formalised in Observation 1.

Lemma 1 (Sadhu et al. [14]). A set of segments is 2-coverable if and only
if there is a covering with squares in opposite corners of the bounding box of the
set of segments.

Lemma 1 is useful in that it narrows down our search for a 2-covering. It
suffices to check the two configurations where squares are in opposite corners
of the bounding box. For each of these two configurations, we simply check if
each segment is in the union of the two squares, which takes linear time in total,
leading to the following theorem:

Theorem 1. One can decide if a set of n segments is 2-coverable in O(n) time.

2.2 Is a Set of Line Segments 3-Coverable?

We notice that for a covering consisting of three squares, Lemma 1 and the
pigeon-hole principle imply that there must be one square that touches at least
two sides of the bounding box. An intuitive way to achieve this is if one of the
squares in the 3-covering is in a corner of the bounding box. We formalise this
intuition in Lemma 2.
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Lemma 2. A set of segments is 3-coverable if and only if there is a covering
with a square in a corner of the bounding box of the set of segments.

Again, this lemma allows us to narrow down our search for a 3-covering.
We consider four cases, one for each corner of the bounding box. After placing
the first square in one of the four corners, we would like to check whether two
additional squares can be placed to cover the remaining segments. We start by
computing the remaining segments that are not yet covered. We subdivide each
segment into at most one subsegment that is covered by the corner square, and
up to two subsegments that are not yet covered. Then we can use Theorem 1
to (recursively) check whether two additional squares can be placed to cover all
the uncovered subsegments.

The running time for subdividing each segment takes linear time in total.
There are at most a linear number of remaining segments. Checking if the remain-
ing segments are 2-coverable takes linear time by Theorem 1. Hence, we have
the following theorem:

Theorem 2. One can decide if a set of n segments is 3-coverable in O(n) time.

2.3 Is a Set of Line Segments 4-Coverable?

For a 4-covering, it remains true that any covering must touch all four sides of
the bounding box. Unlike the three squares case, we cannot use the pigeon-hole
principle to deduce that there is a square touching at least two sides of the
bounding box. Fortunately, we have only two cases: either there exists a square
which touches at least two sides of the bounding box, or each square touches
exactly one side of the bounding box. This implies:

Lemma 3. A set of segments is 4-coverable if and only if: (i) there is a covering
with a square in a corner of the bounding box, or (ii) there is a covering with
each square touching exactly one side of the bounding box.

In the first case we can use the same strategy as in the three squares case
by placing the first square in a corner and then (recursively) checking if three
additional squares can cover the remaining subsegments. This gives a linear time
algorithm for the first case.

For the remainder of this section, we focus on solving the second case.

Definition 1. Define L, B, T and R to be the square that touches the left,
bottom, top and right sides of the bounding box respectively. See Fig. 3.

Without loss of generality, suppose that T is to the left of B. This implies
that the left to right order of the squares is L, T , B, R. Suppose for now there
were a way to compute the initial placement of L. Then we can deduce the
position of T in the following way.

Lemma 4. Given the position of L, if three additional squares can be placed
to cover the remaining subsegments, then it can be done with T in the top-left
corner of the bounding box of the remaining subsegments.
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Fig. 3. The squares L, T , B and R. Fig. 4. The variables yL, xT and xB .

The intuition behind this lemma is that after placing the first square, T is
the topmost and leftmost of the remaining squares. A formal proof for Lemma 4
is given in the full version [7]. For an analogous reason, after placing the first
two squares, we can place B in the bottom-left corner of the bounding box of
the remaining segments. Finally, we cover the remaining segments with R, if
possible.

We have therefore shown that the position of L along the left boundary
uniquely determines the positions of the squares T , B and R along their respec-
tive boundaries. Unfortunately, we do not know the position of L in advance,
so instead we consider all possible initial positions of L via parametrisation. Let
yL be the y-coordinate of the top side of L, and similarly let xT , xB be the
x-coordinates of the left side of T and B respectively. See Fig. 4.

Finally, we will try to cover all remaining subsegments with the square R.
Define xR1 and xR2 to be the x-coordinates of the leftmost and rightmost uncov-
ered points after the first three squares have been placed. Similarly, define yR1

and yR2 to be the y-coordinates of the topmost and bottommost uncovered
points. Then it is possible to cover the remaining segments with R if and only
if xR1 − xR2 ≤ 1 and yR1 − yR2 ≤ 1.

Since the position of L uniquely determines T , B and R, we can deduce that
the variables xT , xB, xR1 , xR2 , yR1 and yR2 are all functions of yL. We will
show that each of these functions is piecewise linear and can be computed in
O(n log n) time. We begin by computing xT as a function of variable yL.

Lemma 5. The variable xT as a function of variable yL is a piecewise linear
function and can be computed in O(n log n) time.

Next, we show that xB is a piecewise linear function of yL, with complexity
O(n), and can be computed in O(n log n) time.

Lemma 6. The variable xB as a function of variable yL is a piecewise linear
function and can be computed in O(n log n) time.

Then we compute xR1 , xR2 , yR1 and yR2 in a similar fashion.
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Lemma 7. The variables xR1 , xR2 , yR1 , yR2 as functions of variable yL are
piecewise linear functions and can be computed in O(n log n) time.

Finally, we check if there exists a value of yL so that xR1 − xR2 ≤ 1 and
yR1 − yR2 ≤ 1. If so, there exist positions for L, B, T and R that covers all the
segments, otherwise, there is no such position for L, T , B and R. This yields the
following result:

Theorem 3. One can decide if a set of n segments is 4-coverable in O(n log n)
time.

3 Problem 2: The Subtrajectory Data Structure Problem

In this section, we briefly describe some of the main ideas for building the data
structures that can answer whether a subtrajectory is either 2-coverable or 3-
coverable. Details of the data structures can be found in the full version of this
paper [7].

We begin by building three preliminary data structures. Given a piecewise
linear trajectory of complexity n, our preliminary data structures are:

Tool 1. A bounding box data structure that preprocesses a trajectory in O(n)
time, so that given a query subtrajectory, it returns the subtrajectory’s bounding
box in O(log n) time.

Tool 2. An upper envelope data structure that preprocesses a trajectory in
O(n log n) time, so that given a query subtrajectory and a query vertical line,
it returns the highest intersection between the subtrajectory and the vertical line
(if one exists) in O(log n) time. See Fig. 5.

Tool 3. A highest vertex data structure that preprocesses a trajectory in
O(n log n) time, so that given a query subtrajectory and a query axis-parallel
rectangle, it returns the highest vertex of the subtrajectory inside the rectangle
(if one exists) in O(log2 n) time. See Fig. 6.

3.1 Query If a Subtrajectory Is 2-Coverable

Our construction procedure is to build Tool 1 and Tool 2. Our query procedure
consists of two steps. The first step is to narrow down the covering to one of two
configurations using Lemma 1 and Tool 1. The second step is to check whether
one of these configurations indeed covers the subtrajectory. The key idea in the
second step is to use Tool 2 along the boundary of the configuration to see if the
subtrajectory passes through the boundary. Putting this together yields:

Theorem 4. Let T be a trajectory with n vertices. After O(n log n) preprocess-
ing time, T can be stored using O(n log n) space, so that deciding if a query
subtrajectory T [a, b] is 2-coverable takes O(log n) time.
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Fig. 5. Tool 2 returns the highest inter-
section of a subtraj. and a vertical line.

Fig. 6. Tool 3 returns the highest sub-
trajectory vertex in a query rectangle.

3.2 Query If a Subtrajectory Is 3-Coverable

Our construction procedure is to build Tools 1, 2, and 3. Our query procedure
consists of three steps. The first step is to place the first square in a constant
number of configurations using Lemma 2 and Tool 1. For each placement of the
first square, the second step generates two configurations by placing the remain-
ing two squares. The key idea in the second step is to compute the bounding
box of the uncovered subsegments by using a combination of Tools 2 and 3. The
third step is to check if a configuration indeed covers the subtrajectory. The key
idea in the third step is to use Tool 2 along the boundary of the configuration to
see if the subtrajectory passes through the boundary. We require an additional
check using Tool 3 in one of the configurations. Putting this together yields:

Theorem 5. Let T be a trajectory with n vertices. After O(n log n) preprocess-
ing time, T can be stored using O(n log n) space, so that deciding if a query
subtrajectory T [a, b] is 3-coverable takes O(log2 n) time.

4 Problem 3: The Longest Coverable Subtrajectory

In this section we compute a longest k-coverable subtrajectory T [p∗, q∗] of a
given trajectory T . Note that the start and end points p∗ and q∗ of such a
subtrajectory need not be vertices of the original trajectory. Gudmundsson, van
Kreveld, and Staals [8] presented an O(n log n) time algorithm for the case k = 1.
However, we note that there is a mistake in one of their proofs, and hence their
algorithm misses one of the possible scenarios. We correct this mistake, and using
the insight gained, also solve the problem for k = 2.
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4.1 A Longest 1-Coverable Subtrajectory

Fig. 7. An optimal place-
ment that has no vertex on
the boundary of the square.

Gudmundsson, van Kreveld, and Staals state that
there exists an optimal placement of a unit square,
i.e. one such that the square covers a longest 1-
coverable subtrajectory of T , and has a vertex of
T on its boundary [8, Lemma 7]. However, that
is incorrect, as illustrated in Fig. 7. Let p(t) be a
parametrisation of the trajectory. Fix a corner c of
the square and shift the square so that c follows
p(t). Let q(t) be the point so that T [p(t), q(t)] is
the maximal subtrajectory contained in the square,
and let φ(t) be the length of this subtrajectory. This
function φ is piecewise linear, with inflection points
not only when a vertex of T lies on the boundary of the square, but also when
p(t) or q(t) hits a corner of the square. The argument in [8] misses this last case.
Instead, the correct characterization is:

Lemma 8. Given a trajectory T with vertices v1, .., vn, there exists a square H
covering a longest 1-coverable subtrajectory so that either:

– there is a vertex vi of T on the boundary of H, or
– there are two trajectory edges passing through opposite corners of H.

We give the full proof of this lemma in the full version of this paper [7].
To compute a longest 1-coverable subtrajectory we also have to consider this
scenario. We use the existing algorithm to test all placements of the first type
from Lemma 8 in O(n log n) time. Next, we briefly describe how we can also test
all placements of the second type in O(n log n) time.

Lemma 9. Given a pair of non-parallel edges ei and ej of T , there is at most
one unit square H such that the top left corner of H lies on ei, and the bottom
right corner of H lies on ej.

It follows that any pair of edges ei, ej of T generates at most a constant
number of additional candidate placements that we have to consider. Let Hij

denote this set. Next, we argue that there are only O(n) relevant pairs of edges
that we have to consider.

We define the reach of a vertex vi, denoted r(vi), as the vertex vj such that
T [vi, vj ] can be 1-covered, but T [vi, vj+1] cannot. Let Hi = H(i−1)j denote the
set of candidate placements corresponding to vi and vj = r(vi). Analogously,
we define the reverse reach rr(vj) of vj as the vertex vi such that T [vi, vj ] can
be 1-covered, but T [vi−1, vj ] cannot, and the set H′

j = H(i−1)j . Finally, let
H =

⋃n
i=1 Hi ∪ H′

i be the set of placements contributed by all reach and reverse
reach pairs. Observe that this set consists of O(n) placements, as all individual
sets Hi and H′

i have at most one element.

Lemma 10. Let p∗ ∈ ei and q∗ ∈ ej lie on edges of T , and let H be a unit square
with p∗ in one corner, and q∗ in the opposite corner. We have that H ∈ H.



294 J. Gudmundsson et al.

Once we have the reach r(vi) and the reverse reach rr(vi) for every vertex
vi we can easily construct H in linear time (given a pair of edges ei, ej we can
construct the unit squares for which one corner lies on ei and the opposite corner
lies on ej in constant time). We can use Tool 1 to test each candidate in O(log n)
time. So all that remains is to compute the reach of every vertex of T ; computing
the reverse reach is analogous.

Lemma 11. We can compute r(vi), for each vertex vi ∈ T , in O(n log n) time
in total.

Theorem 6. Given a trajectory T with n vertices, there is an O(n log n) time
algorithm to compute a longest 1-coverable subtrajectory of T .

4.2 A Longest 2-Coverable Subtrajectory

In this section we reuse some of the observations from Sect. 4.1 to develop an
O(nβ4(n) log2 n) time algorithm for the k = 2 case. Here, β4(n) = λ4(n)/n, and
λs(n) is the length of a Davenport-Schinzel sequence of order s on n symbols.

Our algorithm to compute a longest 2-coverable subtrajectory T [p∗, q∗] of T
consists of two steps. In the first step we compute a set S of candidate starting
points on T , so that p∗ ∈ S. In the second step, we compute the longest 2-
coverable subtrajectory T [p, q] for each starting point p ∈ S, and report a longest
such subtrajectory. With slight abuse/reuse of notation, for any point p ∈ S, we
denote the endpoint q of this longest 2-coverable subtrajectory T [p, q] by r(p).
This generalizes our notion of reach from Sect. 4.1 to arbitrary points on T .

Computing the Reach of a Point. We modify the data structure in
Theorem 4, i.e. the data structure for answering whether a given subtrajectory
is 2-coverable, to answer the reach queries. We do so by applying parametric
search to the query procedure. Note that applying a simple binary search will
give us only the edge containing r(p). Furthermore, even given this edge it is
unclear how to find r(p) itself, as the squares may still shift, depending on the
exact position of r(p).

Lemma 12. Let T be a trajectory with n vertices. After O(n log n) preprocessing
time, T can be stored using O(n log n) space, so that given a query point p on T
it can compute the reach r(p) of p in O(log2 n) time.

Corollary 1. Given a trajectory T , and a set of m candidate starting points
on T , we can compute the longest 2-coverable subtrajectory that starts at one of
those points in O(n log n + m log2 n) time.

Computing the Set of Starting Points. It remains only to construct a set S
of candidate starting points with the property that the starting point of a longest
2-coverable subtrajectory is guaranteed to be in the set. Our construction con-
sists of six types of starting points, which when grouped up into their respective
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types, we will call events. The six types of events are vertex events, reach events,
bounding box events, bridge events, upper envelope events, and special configu-
ration events. Figures 8, 9, and 10 illustrate these events, and show how a longest
2-coverable subtrajectory may start at such an event. We then prove that it suf-
fices to consider only these six types of candidate starting points. Finally, we
bound the number of events, and thus candidate starting points, and describe
how to compute them. Combining this with our result from Corollary 1 gives
us an efficient algorithm to compute a longest 2-coverable subtrajectory. Note
that in Definitions 2–7, for simplicity we define the events only in one of the four
cardinal directions. However, in our construction in Definition 8 we require all
six events for all four cardinal directions.

Definition 2. Given a trajectory T , p is a vertex event if p is a vertex of T .

Definition 3. Given a trajectory T , p is a reach event if r(p) is a vertex of T ,
and no point q < p satisfies r(q) = r(p).

Definition 4. Given a trajectory T , p is a bounding box event if the topmost
vertex of T within the subtrajectory T [p, r(p)] has the same y-coordinate as p.

Fig. 8. A vertex event (left), a reach event (middle), and a bounding box event (right).

Definition 5. Given a trajectory T , p is a bridge event if:

– the point p is the leftmost point on T [p, r(p)], and
– the point p is one unit to the left of a point u ∈ T [p, r(p)], and
– the point u is one unit above the lowest vertex of T [p, r(p)].

Definition 6. Given a trajectory T , p is an upper envelope event if:

– the point p is the leftmost point on T [p, r(p)], and
– the point p is one unit to the left of a point u ∈ T [p, r(p)], and
– the point u is an intersection or vertex on the upper envelope of T [p, r(p)].

Definition 7. Given a trajectory T , p is a special configuration event if there
is a covering of squares H1 and H2 so that H1 contains the top-left corner of
H2, and either:
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Fig. 9. Examples of a bridge event (left), and an upper envelope event box (right).

1. point p is in the top-right corner of H1 and r(p) is in the bottom-left corner
of H1, or

2. point p is in the top-left corner of H1 and the trajectory T passes through the
bottom-right corner of H1, or

3. point p is in the top-left corner of H1, r(p) is in the bottom-right corner of
H2, and the trajectory T passes through the two intersections of H1 and H2.

Fig. 10. Examples of the three types of special configuration events.

Using these definitions and their analogous versions in all four cardinal direc-
tions, we subdivide the trajectory T to obtain a trajectory T3 that forms our set
of candidate starting points.

Definition 8. Given a trajectory T , let T1 be a copy of T with these additional
points added to the set of vertices of T1:

– all the vertex, reach, bounding box, and bridge events of T for all four cardinal
directions.

Next, let T2 be a copy of T1 with these additional points added to the set of
vertices of T2:
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– all the upper envelope events of T1 for all four cardinal directions.

Finally, let T3 be a copy of T2 with these additional points added to the set of
vertices of T3:

– all the special configuration events of T2 for all configurations of H1 and H2.

Next, we argue that the set of vertices of this trajectory T3 is a suitable set
of candidate starting points.

Lemma 13. The set T3 is guaranteed to contain the starting point of a longest
coverable subtrajectory of T .

We now bound the number of candidate starting points.

Lemma 14. Trajectory T3 has O(nβ4(n)) vertices, and can be constructed in
time O(nβ4(n) log2 n). More specifically, for each type of event, the number of
such events and the time in which we can compute them is

#events computation time

Vertex events O(n) O(n)

Reach events O(n) O(n log2 n)

Bounding box events O(n) O(n log2 n)

Bridge events O(n) O(n log2 n)

Upper envelope events O(nβ4(n)) O(nβ3(n) log2 n)

Special configuration events O(nβ4(n)) O(nβ4(n) log2 n)

Proof. We briefly sketch the idea for only the upper envelope events. Refer to
full version for the details, the proofs for the other events, and the description
of the algorithms that compute these events [7].

Consider the set V of vertices of T and intersections of T with itself, and
observe that every point u ∈ V generates at most O(1) candidate starting points
p that are upper-envelope events. However, there may be Θ(n2) such intersection
points. We argue that not all of these intersection points generate valid starting
points.

Let p1, .., pk be the upper envelope events of the trajectory, and let U =
u1, .., uk be the edge of T that contains the point u on T [p, r(p)] one unit to the
right of p. We argue that U is a Davenport-Schinzel sequence of order 4 on n−1
symbols [16], and thus has complexity k = O(nβ4(n)). It follows that there are
O(nβ4(n)) upper envelope events.

Since U is a Davenport-Schinzel sequence of order s = 4, it has no alternating
(not necessarily contiguous) subsequences of length s+2 = 6. Our first step is to
show that if the sequence of edges a, b, a occurs (not necessarily consecutively)
then the starting points corresponding to the first two segments of the sequence
must be x-monotone. Hence, an alternating sequence of edges of length six yields
alternating, x-monotone sequence of starting points of length five. We then argue
that this leads to a contradiction. ��
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By Lemma 14 we can compute m = O(nβ4(n)) candidate starting times
for a longest 2-coverable subtrajectory of T in O(nβ4(n) log2 n) time. Using
Corollary 1 we can thus compute this subtrajectory in O(n log n + m log2 n) =
O(nβ4(n) log2 n) time.

Theorem 7. Given a trajectory T with n vertices, there is an O(nβ4(n) log2 n)
time algorithm to compute a longest 2-coverable subtrajectory of T .
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Abstract. Classical vertex subset problems demanding connectivity are
of the following form: given an input graph G on n vertices and an integer
k, find a set S of at most k vertices that satisfies a property and G[S] is
connected. In this paper, we initiate a systematic study of such problems
under a specific connectivity constraint, from the viewpoint of Kerneliza-
tion (Parameterized) Complexity. The specific form that we study does
not demand that G[S] is connected but rather G[S] has a closed walk
containing all the vertices in S. In particular, we study Closed Walk-

Subgraph Vertex Cover (CW-SVC, in short), where given a graph
G, a set X ⊆ E(G), and an integer k; the goal is to find a set of vertices
S that hits all the edges in X and can be traversed by a closed walk of
length at most k in G. When X is E(G), this corresponds to Closed

Walk-Vertex Cover (CW-VC, in short). One can similarly define
these variants for Feedback Vertex Set, namely Closed Walk-

Subgraph Feedback Vertex Set (CW-SFVS, in short) and Closed

Walk-Feedback Vertex Set (CW-FVS, in short). Our results are as
follows:

– CW-VC and CW-SVC both admit a polynomial kernel, in contrast
to Connected Vertex Cover that does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

– CW-FVS admits a polynomial kernel. On the other hand CW-

SFVS does not admit even a polynomial Turing kernel unless the
polynomial-time hierarchy collapses.

We complement our kernelization algorithms by designing single-
exponential FPT algorithms – 2O(k)nO(1) – for all the problems mentioned
above.
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1 Introduction

In last few years, classical vertex subset problems demanding connectivity - given
an input graph G and an integer k, find a set S of size at most k that satisfies a
property and G[S] is connected - has gained a lot of attention in the paradigm of
parameterized complexity [7,13,15,17,19,20,22]. Two of the well-studied prob-
lems in this stream are Connected Vertex Cover (CVC, in short) and
Connected Feedback Vertex Set (CFVS, in short), in which apart from
G[S] being connected, we demand that G−S is edgeless and acyclic, respectively.
Both the problems are fixed-parameter tractable (FPT) [7,15], however, they are
“hard” from the kernelization point-of-view, that is, both the problems do not
admit a polynomial kernel unless PH= Σ3

p [11,19]. Here, a natural question that
arises is the following. Is there a “specific” connectivity constraint that brings us
back to the world of polynomial kernels? We answer this question affirmatively.
In this paper, instead of demanding that G[S] is connected, we demand that G[S]
has a closed walk that visits every vertex of the graph. In [2], authors have stud-
ied such a constraint for the Vertex Cover problem, under the name of Tour

Cover, and proposed a constant factor approximation algorithm. However, it
remains unstudied from the viewpoint of parameterized complexity.

This constraint is also motivated from a routing problem, apparently posed
by a real newspaper company in Buenos Aires. The problem is described as
follows. Consider the job of delivering newspapers to the subscribers by a truck
that stops at street crossings and the driver of the truck manually delivers the
newspapers to all the customers in the lanes of the street crossings. The goal
now is to minimize the number of streets (counted as the path between two
crossings) covered by the truck. The decision version of the problem can be
formally described as being given a graph G (representing the topology of the
city), a set of edges X ⊆ E(G) (representing the lanes where the subscribers
live), and an integer k; the goal is to find a closed walk (an alternating sequence
of vertices and edges which starts and ends at the same vertex such that an
edge is incident on the vertices immediately before and after this edge in the
sequence ) of length at most k in G whose vertices hit all the edges of X, that is,
the vertex set of the closed walk is a vertex cover of GX , where GX is a graph
on the vertex set V (G) and the edge set X. We call this problem as Closed

Walk-Subgraph Vertex Cover (CW-SVC, in short)1, which is known to be
NP-hard [9]. Note that a variant of the Vertex Cover problem that demands a
closed walk whose vertex set is a vertex cover of the given graph is a special case
of CW-SVC when X = E(G). We call this problem as Closed Walk-Vertex

Cover (CW-VC, in short).
We next generalize the definition of CW-SVC to Q-Vertex Deletion

problem, where Q is a graph property (a class of graphs), as follows. Let V (W )

1 This problem was studied in [9] under the name of Star Routing. We changed the
name of this problem here to fit the theme of names of problems that we describe
ahead in this article.
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denote the vertex set of the walk W . We define Closed Walk Q-Subgraph

Vertex Deletion as follows.

Closed Walk Q-Subgraph Vertex Deletion

(CW-Q-SVD)
Parameter: k

Input: A graph G, a set X ⊆ E(G), and an integer k
Question: Does there exist a closed walk W in G of length at most k such
that GX − V (W ) is in Q?

When X = E(G), we call this problem as Closed Walk Q-Vertex Dele-

tion (CW-Q-VD, in short). Note that when Q is the family of all graphs with
no edges, the problems CW-Q-SVD and CW-Q-VD are the same as the prob-
lems CW-SVC and CW-VC, respectively. When Q is the family of all acyclic
graphs (that is, the family of all forests), we call these problems as Closed

Walk-Subgraph Feedback Vertex Set (CW-SFVS, in short) and Closed

Walk-Feedback Vertex Set (CW-FVS, in short), respectively.

Our Results and Methods: For our study, we consider a natural parameter,
the solution size, in the parameterized complexity. Our contribution to this arti-
cle begins with the study of kernelization complexity of CW-SVC, CW-VC,
CW-SFVS, and CW-FVS. We show that unlike CVC and CFVS, CW-SVC,
CW-VC, and CW-FVS admit a polynomial kernel, while CW-SFVS is WK[1]-
hard , that is, CW-SFVS does not admit a polynomial Turing kernel unless
the polynomial-time hierarchy collapses. In particular, we prove the following
results.

Theorem 1. (♣)2 CW-SVC admits an O(k5) vertex kernel.

Theorem 2. (♣) CW-VC admits an O(k2) vertex kernel.

Theorem 3. CW-SFVS is WK[1]-hard.

Theorem 4. CW-FVS admits an O(k17) vertex kernel.

At the first sight, it might seem a little weird as to what gives rise to such a
contrast in the kernelization complexity of the problems with a closed walk con-
straint versus a general connectivity constraint. For instance, it is easy to see that
if there is a solution to CVC/CFVS of size k, then there is a solution to CW-

VC/CW-FVS of size at most 2k; and if there is solution to CW-VC/CW-FVS

of size k, then there is a solution to CVC/CFVS of size at most k. Regardless
of this, the problems behave differently primarily because for the CVC/CFVS

problems a minimal solution to the VC/FVS problems has to be connected via a
steiner tree (which is a hard task), whereas in the CW-VC/CW-FVS problems,
a solution can be obtained from a minimal solution of VC/FVS by connecting
a pair of vertices greedily by any available shortest path. We exploit this greedy
choice of shortest paths to construct a closed walk containing the vertices of a
2 Proofs of results marked with ♣ have been removed from this short version due to

space constraints.
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vertex cover/ feedback vertex set to get the desired kernels. More precisely, our
main strategy to give polynomial kernels for CW-VC, CW-SVC (CW-FVS) is
to first find a set that preserves minimal solutions of VC (FVS) problem. Then,
to ensure the closed walk property, it is enough for us to preserve the shortest
path between every pair of vertices in this set. We use this observation and the
constructed set to design reduction rules to reduce the instance. To show that
CW-SFVS is WK[1]-hard, we give a parameter preserving reduction from Mul-

ticolored Cycle which is known to be WK[1]-complete [16]. The construction
of this reduction is the same as the one used to show WK[1]-hardness of Rural

Postman Problem in [5].
We next move towards designing FPT algorithms for CW-SVC and CW-

SFVS. In particular, we prove the following results.

Theorem 5. (♣) CW-SVC admits an FPT algorithm that runs in time
O(3.2362knO(1)), where n is the number of vertices in the input graph.

Theorem 6. (♣) CW-SFVS admits an FPT algorithm that runs in time
O(34knO(1)), where n is the number of vertices in the input graph.

We next give an informal description of our algorithms. Full details have been
removed due to space constraints. We first need to define the Group Closed

Walk problem and the notion of the compact representations.

Group Closed Walk (GCW) Parameter: k
Input: A simple graph G, a family C of pairwise vertex disjoint subsets of
V (G), and a positive integer k
Question: Does there exist a closed walk W in G of length at most k such
that |V (W ) ∩ C| ≥ 1 for each C ∈ C?

Observe that GCW is NP-hard as it generalizes the classical Hamiltonian

Cycle problem.

Theorem 7. (♣) GCW admits an FPT algorithm that runs in time
O(2knO(1)), where n is the number of vertices in the input graph.

To design an FPT algorithm for GCW, we use dynamic programming over sub-
sets of C. Next, we define a compact representation for an instance of a Q-

Vertex Deletion problem, in which given a graph G and an integer k, we
shall decide the existence of a set, S ⊆ V (G), of size at most k such that
G − S ∈ Q. Recall that Q is a graph class.

Let (G, k) be an instance of Q-VD. Let C∗ be a k-sized family of vertex
disjoint subsets of V (G). We say that C∗ respects a set S∗, if the set S∗ can be
obtained by selecting exactly one vertex from each set in C∗, that is, |S∗| = |C∗|
and |S∗ ∩ C| = 1 for each C ∈ C∗. If every set that C∗ respects is a minimal
solution to (G, k) of Q-VD, then we say that C∗ is a valid family of (G, k) for
Q-VD.
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Definition 1 (Q-VD-compact representation(Q-VD-cr)). Given an
instance (G, k) of Q-VD, a family F is a Q-VD-compact representation (Q-
VD-cr, in short) of (G, k), if F is a collection of at most k-sized families of
vertex disjoint subsets of V (G) such that each family in F is valid and for every
minimal solution S to (G, k) of Q-VD, there exists at least one family C in F
such that C respects S.

Assuming an algorithm for computing a Q-VD family (if it exists), we state the
following result about CW-Q-SVD.

Theorem 8. (♣) Given an instance (G, k) of Q-VD, suppose that there is an
algorithm, which runs in time τ(k)nO(1), that either outputs a Q-VD-cr F of
(G, k), or outputs that (G, k) is a No-instance of Q-VD. Then, CW-Q-SVD

admits an algorithm that runs in time τ(k)nO(1) + |F| · 2knO(1), where n is the
number of vertices in the input graph.

The main idea to prove the above theorem is to run the algorithm in Theorem 7
for GCW on each family in Q-VD-cr. When Q is the family of all graphs with
no edges (resp. all acyclic graphs), we denote Q-VD-cr by VC-cr (resp. FVS-cr).
The following theorem gives an FPT algorithm to compute VC-cr, if it exists.

Theorem 9. (♣) Given a graph G and a positive integer k, there is an algorithm
that either correctly outputs that (G, k) is a No-instance of VC or outputs a VC-
cr F of (G, k). Moreover, |F| is bounded by O(1.6181k) and the algorithm runs
in time O(1.6181knO(1)), where n is the number of vertices in the graph G.

Theorem 10 improves the bound given by Guo et al. [14] for FVS-cr.

Theorem 10. (♣) Given a graph G and a positive integer k, there is an algo-
rithm that either correctly outputs that (G, k) is a No-instance of FVS or outputs
an FVS-cr F of (G, k). Moreover, |F| is bounded by O(17k) and the algorithm
runs in time O(17knO(1)), where n is the number of vertices in the graph G.

To design FPT algorithms to compute VC-cr and FVS-cr, we use branching
technique. Using Theorem 8 and 9, we obtain Theorem 5 and using Theorem 8
and 10, we obtain Theorem 6.

Before moving to the technical details, we give some formal definitions. A
walk in a graph G is a sequence W = v0e1v1 . . . vk−1ekvk whose terms alternate
between vertices and edges (not necessary distinct) such that ei = vi−1vi for
1 ≤ i ≤ k. Here, k denotes the length of the walk. If v0 = vk, then W is said to
be a closed walk. By V (W ), we denote the set {v0, . . . , vk}. We say that a path P
is a degree two induced path in G if each internal vertex in P has degree exactly
two in G (there is no restriction on degree of endpoints). For standard graph
theoretic notations, we refer the reader to [10]. For more introduction to FPT
algorithms and kernelization, we refer the reader to [6,12]. For WK[1]-hardness,
we refer the reader to [16].
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2 Kernel Lower Bound for Subset Closed Walk FVS

In this section, we will prove Theorem 3, that is, we will show that CW-

SFVS does not admit even a polynomial Turing kernel. Towards this, we give
a polynomial-time parameter preserving reduction from the Multicolored

Cycle (MCC) problem, which is defined as follows. Given a graph G, and
a partition of V (G) into k sets {V1, . . . , Vk}, the question is does there exist a
cycle C in G such that |V (C) ∩ Vi| = 1, for all i ∈ [k]? It is known that MCC

is WK[1]-hard [16], when parameterized by the solution size. In the following,
we present a polynomial-time parameter preserving reduction from MCC to
CW-SFVS.

Given an instance (G,V1, . . . , Vk) of MCC, we construct an instance
(G′,X, k) of CW-SFVS as follows. Initially, we set V (G′) = V (G) and
E(G′) = E(G). Let Vj = u1

j , . . . , u
�
j , j ∈ [k]. For every j ∈ [k], we add

a cycle on the vertices of Vj . Formally, for every j ∈ [k], we add edges
Ej = ∪i∈[�−1]{ui

ju
i+1
j } ∪ {u1

ju
�
j} in G′. This completes the construction of the

graph G′. Let X = ∪j∈[k]Ej . We claim that (G,V1, . . . , Vk) is a Yes-instances of
MCC if and only if (G′,X, k) is a Yes-instance of CW-SFVS, which together
with the fact that MCC is WK[1]-hard gives Theorem 3.

3 A Kernelization Algorithm for Closed Walk-Feedback

Vertex Set

In this section, we will prove Theorem 4. Note that we allow instances with
self-loops and parallel edges. Given an instance (G, k) of CW-FVS, intuitively
the algorithm works as follows. The algorithm first computes an approximate
solution, R, of FVS for the graph G and either concludes that (G, k) is a No-
instance of CW-FVS or proceeds to construct a set F ⊆ V (G) such that for
every vertex v ∈ F , v is contained in every solution to (G, k) of FVS. Using set
F , the algorithm either concludes that (G, k) is a No-instance of CW-FVS or
constructs a subgraph G� of G, which has the following properties: (i) the graph
G� together with the set F preserves all minimal solution to (G, k) of FVS; (ii)
the minimum degree of G� is at least two; (iii) the number of vertices of degree
at least three is bounded by O(k3); and (iv) the number of maximal degree two
paths in G� is bounded by O(k3). Observe that the following reduction rules
which are a common practice in FVS and its variants: Deleting vertices in F
and reducing the budget, deleting an edge which is redundant with respect to
FVS, short-circuiting degree two vertices, cannot be applied here; as a vertex
can be useful for the purpose of hitting cycles as well as to provide connectivity
and by deleting a vertex or an edge we might lose a closed walk. Considering
this observation, the algorithm constructs a set M , using the sets F,R and the
graph G�, which in some sense preserves a solution to (G, k) of CW-FVS, if
exists. Then, by using the set M , the algorithm applies few reduction rules
exhaustively in the order in which they are stated to get the desired kernel. Due
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to space constraints we have removed some proofs from the short version of the
paper.

Tools and Notations: For a graph H, we refer vertices of degree at least
3 in H as high degree vertices and denote this set of vertices by V≥3(H). Let
W = v1e1 . . . e�−1v�, be a closed walk. By vi to vj subwalk of W , we mean a walk
viei . . . ej−1vj which is contained in W . We define a Wij subwalk of W as follows.
If j > i, then Wij represents vi to vj subwalk of W ; otherwise, Wij = Wi� · W1j .
By V (Wij), we denote the set of vertices in the walk Wij . By replace subwalk
Wij by a vi to vj path P in walk W operation, we mean the following. If j > i,
then replace vi to vj subwalk in W by the path P . If j ≤ i, then replace vi to
v� subwalk in W by path P and v1 to vj subwalk in W by vj . Note that if the
length of P is at most the length of Wij , then replace operation does not increase
the length of the walk W . Let H be a graph and v be a vertex in H. Then, for
a positive integer t, we define a t-flower at v as a set of t distinct cycles in H,
such that their pairwise intersection is exactly at {v}. The following results will
help us streamline later arguments.

Proposition 1 [8,18,21]. For a graph H, a vertex v ∈ V (H) without a self-loop,
and an integer k, there is a polynomial-time algorithm, which either outputs a
(k + 1)-flower at v, or correctly concludes that no such (k + 1)-flower exists.
Moreover, if there is no (k + 1)-flower at v, it outputs a set Zv ⊆ V (H) \ {v} of
size at most 2k, such that Zv intersects every cycle containing v in G.

Next, we state a lemma which will be used in designing kernelization algo-
rithm. The following lemma basically reduces the number of high degree vertices
and the number of maximal degree two paths in the given graph, and preserves
all minimal feedback vertex sets of size at most k in the given graph. Thus, it can
be used as a tool to design kernel of several other variants of FVS, for example,
Conflict Free Feedback Vertex Set for specific classes of graphs (as in
general, this problem is W[1]-hard) [1], and many other, as after this step, main
effort is in bounding the degree two vertices and preserving “other” required
properties of the solution.

Lemma 1. Let (H, k) be an instance of FVS such that there is no vertex in
H with a (k + 1)-flower. Then, there is a polynomial-time algorithm that either
correctly outputs that (H, k) is a No-instance of FVS or outputs a subgraph H�

of H, which satisfies the following properties.

1. A set S is a minimal solution to (H, k) of FVS if and only if S is a minimal
solution to (H�, k) of FVS.

2. The minimum degree of H� is at least 2.
3. |V≥3(H�)| is bounded by O(k3).
4. The number of maximal degree two paths in H� is bounded by O(k3).

Kernelization Algorithm: Let (G, k) be an instance of CW-FVS. We assume
that the size of a minimum feedback vertex set of G is at least four, otherwise
we can solve the problem in polynomial time using the brute-force algorithm,
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and accordingly return a trivial instance of CW-FVS of constant size. We will
define a sequence of reduction rules, which are applied exhaustively in the order
in which they are stated. For the ease of notation, throughout the section, we
will use (G, k) for the reduced instance after an application of a reduction rule.

We begin with some simple reduction rules, that is, if the size of feedback
vertex set for G is large, then (G, k) is a No-instance of CW-FVS. Towards this,
we will use a well-known result that there is a factor 2-approximation algorithm
for FVS [3,4].

Reduction Rule 1. Given an instance (G, k) of CW-FVS, let R be a factor
2-approximate feedback vertex set for the graph G. If |R| > 2k, then return a
trivial No-instance of CW-FVS of constant size.

Reduction Rule 2. Given an instance (G, k) of CW-FVS, let C be an isolated
cycle in G. Then, if G − C is not a forest, then return a trivial No-instance of
CW-FVS of constant size, otherwise return a trivial Yes-instance of CW-FVS

of constant size.

From now onwards, we will assume that the graph G does not have an isolated
cycle. Next, we use the algorithm in Proposition 1 and construct a set F ⊆ V (G)
such that for every vertex v ∈ F , there is a (k+1)-flower at v in G. Observe that
a vertex with (k+1)-flower belongs to every solution to (G, k) of FVS, and hence
to every solution of CW-FVS. Therefore, we apply the following reduction rule.

Reduction Rule 3. Given an instance (G, k) of CW-FVS, let F ⊆ V (G) be a
set of all vertices with (k+1)-flower. If |F | > k, then return a trivial No-instance
of CW-FVS of constant size.

When Reduction Rule 3 is not applicable, then in polynomial time, we can
find the set of vertices with (k + 1)-flower, F , in G of size at most k.

Reduction Rule 4. Given an instance (G, k) of CW-FVS, let F ⊆ V (G) be
a set of all vertices with (k + 1)-flower. If there exists a vertex v ∈ F in G such
that there is no self-loop at v, then add a self-loop vv in G and return (G′, k),
where G′ = G + vv.

Next, we run the algorithm in Lemma 1 on the instance (G−F, k−|F |) of FVS,
and apply the following reduction rule.

Reduction Rule 5. Given an instance (G, k) of CW-FVS, let F ⊆ V (G) be a
set of all vertices with (k + 1)-flower. If the algorithm in Lemma 1 outputs that
(G − F, k − |F |) is a No-instance of FVS, then return a trivial No-instance of
CW-FVS of constant size.

Suppose that (G, k) is such an instance of CW-FVS for which Reduction
Rule 5 does not return a trivial No-instance. This implies that Lemma 1 returned
a graph, say G�. Observe that every minimal solution to (G�, k) of FVS contains
at most one vertex of degree two from a degree two path, P , in G�, and this
could be any vertex of P , as any cycle that contains a vertex from P contains all
the vertices in P , consecutively. Using this observation and by item 1 of Lemma
1, we have the following properties about a minimal solution to (G, k) of FVS.
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Lemma 2 (1). If a set S is a minimal solution to (G, k) of FVS, then S \ F
is a minimal solution to (G�, k) of FVS. Furthermore, if a set S is a minimal
solution to (G�, k) of FVS, then S ∪ F is a minimal solution to (G, k) of FVS.
(2) Every minimal solution to (G, k) of FVS contains at most one vertex of
degree two from a degree two path, P , in G�, and this could be any degree two
vertex of P .

Now, before moving further in the algorithm, we need to define some nota-
tions. Let Z = F ∪R∪V≥3(G�). Let P and P ′ be two maximal degree two paths
in G�, and u, v be degree two vertices in P and P ′, respectively. Suppose that
Q is a u to v path in G − Z and the internal vertices of Q are not contained
in paths P and P ′. Then, we say that Q is a {P, P ′}-connecting path in G − Z.
Since G − Z is a forest, as R is an approximate solution of FVS for the graph
G, we have that such connecting paths are unique for a pair of maximal degree
two paths in G�. Let B be the set of {P, P ′}-connecting paths, for all maximal
degree two paths P, P ′ in G�, of length at most k in G − Z and Y be the set
of endpoints of paths in B. Next, we construct a set M ⊆ V (G). Eventually, we
will show that we can delete all the vertices in G which are neither in M nor
in G�.

Construction 1 (Construction of M)

Step 1. M = Z ∪ Y .
Step 2. For every connecting path P ∈ B, add vertices of P to M .
Step 3. For every pair of vertices u, v ∈ Y ∪Z, if length of a shortest u to v path

in G is at most k, then add vertices of an arbitrary shortest u to v path
in G to M .

Step 4. For every pair of vertices u, v ∈ Z, and for every maximal degree two
path P in G�, if there exists a vertex w in P such that the sum of the
length of a shortest u to w path and the length of a shortest v to w path
in G is smallest among all vertices in P and at most k, then add vertices
of an arbitrary shortest u to w path and vertices of an arbitrary shortest
v to w path in G to M .

Lemma 3. Let M be the set constructed in Construction 1. Then, |M | =
O(k13).

Reduction Rule 6. Let (G, k) be an instance of CW-FVS, G� be the graph
returned by the algorithm in Lemma 1, and M be the set constructed by Con-
struction 1. If there exists a vertex v in G, such that v /∈ M ∪V (G�), then delete
v from G and return (G′, k), where G′ = G − v.

Lemma 4. Reduction Rule 6 is safe.

Proof. In the forward direction, let W = v1e1 . . . e�−1v� be a solution to (G, k)
of CW-FVS. Let S ⊆ V (W ) be a minimal solution to (G, k) of FVS. Since
S ⊆ F ∪ V (G�) (by Lemma 2), we have that v /∈ S. Thus, due to the subgraph
property, S is also a solution to (G′, k) of FVS. If W does not contain vertex v,
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then observe that W is also a closed walk in G′, and hence a solution to (G′, k) of
CW-FVS. Next, we consider the case when W contains v. Let i, j ∈ [�] such that
vi, vj ∈ S (vi and vj are in the walk W as S ⊆ V (W )) such that v is contained
in Wij subwalk in W and no vertex from V (Wij) \ {vi, vj} is contained in S.
Note that vi, vj exist as the size of a minimum feedback vertex set of G is at
least four, due to our assumption. We consider the following cases:
1. Both the vertices vi and vj are in Z. In Step 3 of Construction 1, vertices of
an arbitrary vi to vj shortest path, Q, in G are added to M . Then, by replacing
Wij subwalk in W by path Q, we obtain another walk W � in G as well as in G′.
Since Q is a shortest vi to vj path in G, the length of W � is at most the length
of W . Since S does not contain any vertex from V (Wij) \ {vi, vj}, we can infer
that S ⊆ V (W �). Thus, W � is a solution to (G′, k) of CW-FVS.
2. Only one of vi and vj is in Z. Suppose that vi ∈ Z and vj /∈ Z (vj ∈ Z
and vi /∈ Z can be argued similarly). Recall that Z = F ∪ R ∪ V≥3(G�) and
S ⊆ F ∪ V (G�). Since vj ∈ S \ Z and minimum degree of G� is at least two (by
Property 1 of Lemma 1), we have that vj is a vertex of degree exactly two in
G�. Clearly, vj is contained in a maximal degree two path in G�. Let P be such
a path. Recall that the size of a minimum feedback vertex set of G is at least
four. Therefore, there exists i′ ∈ [�] such that i′ /∈ {i, j}, vi′ ∈ S and no vertex
from the subwalk Wji′ in W is contained in S except vj and vi′ . In particular,
V (Wji′) ∩ S = {vj , vi′}. We further consider the following cases.
2(i). A vertex from V (Wji′), say vj′ , is in Z. Note that vj′ 	= vj as vj /∈ Z. In
Step 4 of Construction 1, for the vertices vi, vj′ ∈ Z and the path P , let w be the
vertex of degree two in P such that the vertices of a shortest vi to w path, say
Q1, in G and the vertices of a shortest w to vj′ path, say Q2, in G are added to
M . Since vj and w both are degree two vertices in the path P which is a degree
two path in G�, due to Lemma 2, we have that S′ = (S \ {vj}) ∪ {w} is also
a minimal solution to (G, k) of FVS. By replacing Wij′ subwalk in W by path
Q1 · Q2, we obtain another walk W �. Observe that the length of W � is at most
the length of W , since sum of the length of paths Q1 and Q2 is smallest among
all vi to w′ and w′ to vj′ paths in G for each vertex w′ in P . Next, we argue
that v /∈ V (W �). Recall that v is in the subwalk Wij in W . Further, due to the
choice of vj′ , Wij is also a subwalk of Wij′ . Since we replaced Wij′ subwalk by
path Q1 · Q2 to create a new walk W �, it follows that v is not in V (W �). Since
(V (Wij)∪V (Wji′))∩S = {vi, vj , vi′}, we can infer that S′ ⊆ V (W �), and hence
a solution to (G′, k) of FVS (by subgraph property). Hence, W � is a solution to
(G′, k) of CW-FVS.
2(ii). No vertex from V (Wji′) is in Z. Since vi′ ∈ S \ Z, we have that vi′ is
a vertex of degree exactly two in G�. Therefore, vi′ is contained in a maximal
degree two path, say P ′, in G�. Since vj and vi′ both are in a minimal solution
S and are degree two vertices in maximal degree two path in G�, due to Lemma
2, we have that P and P ′ are distinct. Since no vertex of V (Wji′) is in Z, the
subwalk Wji′ in W is a walk in G−Z. Note that the {P, P ′}−connecting path is
contained in the subwalk Wji′ in W , otherwise we will obtain a cycle in G − Z.
Let vj′ , vj′′ ∈ Y be the endpoints of {P, P ′}-connecting path. Without loss of
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generality, let us assume that the vertex vj′ is in P . Since both vj and vj′ are
degree two vertices in P , which is a degree two path in G�, due to Lemma 2, we
have that S′ = (S \ {vj}) ∪ {vj′} is also a minimal solution to (G, k) of FVS. In
Step 3 of Construction 1, for vi ∈ Z and vj′ ∈ Y , vertices of an arbitrary vi to
vj′ shortest path, say Q, of length at most k in G are added to M . Note that
such a path exist as vi, vj′ ∈ V (W ) and W is a walk of length at most k. Then,
by replacing Wij′ subwalk in W by path Q, we obtain another walk W �. Since
Q is a shortest vi to vj′ path in G, the length of W � is at most the length of W .
Next, we argue that W � is also a walk in G′. Towards this, clearly, it is sufficient
to prove that v /∈ V (W �). Recall that v is in Wij subwalk in W . Further, due to
the choice of j′, Wij is also a subwalk in Wij′ . Since the vertices of Q are in M , v
is not in Q. Therefore, v /∈ V (W �). Next, we argue that S′ is a solution to (G′, k)
of FVS. Since (V (Wij) ∪ V (Wji′)) ∩ S = {vi, vj , vi′}, due to the construction of
S′, we can infer that S′ ⊆ V (W �), and hence a solution to (G′, k) of FVS (by
subgraph property). Hence, W � is a solution to (G′, k) of CW-FVS.
3. Neither vi nor vj is in Z. As argued in previous cases, let vi, vj be contained in
two distinct maximal degree two paths, say P and P ′, respectively in G�. 3(i). A
vertex vt ∈ V (Wij) is in Z. Note that vi and vj are not in Z. Let v ∈ W(t+1)(j−1)

(v ∈ W(i+1)(t−1) can be argued similarly). This case can be handled similar to
the case 2. In the proof, vt plays the role of vi and vj is same as in case 2. 3(ii).
No vertex from V (Wij) is in Z. Before dwelling to the proof, we wish to mention
here that this case is not same as case 2(ii) because in case 2(ii), v is not in Wji′

subwalk in W . Now, we return to our proof. As argued in case 2(ii), since vertices
in V (Wij) are not in Z, the subwalk Wij in W is a walk in G−Z, which implies
that the {P, P ′}-connecting path is contained in the subwalk Wij in W . Let
vt, vt′ ∈ Y be endpoints of {P, P ′}-connecting path. Without loss of generality,
let us assume that the vertex vt and vt′ are in P and P ′, respectively. We first
note that {vi, vj} 	= {vt, vt′} as in 2, we have added vertices of all connecting
paths to M , and v ∈ V (Wij) but v /∈ M . Suppose that vj 	= vt′ (vi 	= vt case
can be argued similarly). If vi = vt, then v ∈ W(t′+1)(j−1) as v /∈ M , otherwise
either v ∈ W(i+1)(t−1) or v ∈ W(t′+1)(j−1). Let v ∈ W(t′+1)(j−1) (v ∈ W(i+1)(t−1)

can be argued similarly). Recall that the size of minimum feedback vertex set
of G is at least 4 and no vertex from V (Wij \ {vi, vj}) is in S. Therefore, there
exists i′ ∈ [�] such that vi′ ∈ S and no vertex from the subwalk Wji′ in W is
contained in S except vj and vi′ . In particular, V (Wji′) ∩ S = {vj , vi′}. Since
both vj and vt′ are degree two vertices in P ′, which is a degree two path in G�,
due to Lemma 2, we have that S′ = (S\{vj})∪{vt′} is also a minimal solution to
(G, k) of FVS, and hence a solution to (G′, k) of FVS (by subgraph property).
Next, we consider the following cases. (a) A vertex vr ∈ V (Wji′) is in Z. Recall
that the vertex vj is not in Z. In Step 3 of Construction 1, for vt′ ∈ Y and
vr ∈ Z, vertices of an arbitrary vt′ to vr shortest path, say Q, in G are added to
M . Then, by replacing the subwalk Wt′r in W by the path Q, we obtain another
walk, say W �. Note that Wt′r contains v and Q does not contain v as v /∈ M .
Thus, v /∈ V (W �). Since Q is a shortest vt to vr path in G, the length of W �

is at most the length of W . Since (V (Wij) ∪ V (Wji′)) ∩ S = {vi, vj , vi′}, due to
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the construction of S′, we can infer that S′ ⊆ V (W �), and hence a solution to
(G′, k) of FVS (by subgraph property). Therefore, W � is a solution to (G′, k) of
CW-FVS. (b) No vertex from V (Wji′) is in Z. This case is same as case 2(ii),
where v′

t plays the role of vi.
This completes the proof in the forward direction.
In the backward direction, let W � be a solution to (G′, k) of CW-FVS. Let

S∗ ⊆ V (W ∗) be a minimal solution to (G′, k) of FVS. Since Reduction Rule 4
is no longer applicable, there exists a self-loop at every vertex of the set F in
G′. Hence, F ⊆ S∗. Note that G� is a subgraph of G′, and V (G�) ∩ F = ∅ as
we called Lemma 1 on the graph G − F . Therefore, S′ = S∗ \ F is a solution
to (G�, k − |F |) of FVS. Let S′′ ⊆ S′ be a minimal solution to (G�, k − |F |) of
FVS. Then, by Lemma 2, S′′ ∪ F is a minimal solution to (G, k) of FVS. By
subgraph property W � is also a closed walk in G, and hence a solution to (G, k)
of CW-FVS. ��

Observe that, when Reduction Rule 6 is no longer applicable, then vertices
in G are either contained in M or are of degree exactly two in G�, i.e. V (G) =
V=2(G�) ∪ M . By Lemma 3, M is bounded. Now, we are only remaining to
bound the vertices in G which are of degree exactly two in G� and are not in
M . Towards that, we first apply the following reduction rule that ensures that
if a vertex in G, which is not in M , is a degree two vertex in G�, then it is also
a degree two vertex in G.

Reduction Rule 7. Let (G, k) be an instance of CW-FVS, G� be the graph
returned by the algorithm in Lemma 1, and M be the set constructed by Con-
struction 1. If there exists a vertex v ∈ G such that v ∈ V (G�) \ M and there
exists a vertex u ∈ G such that uv is an edge in G but uv is not an edge in G�,
then delete edge uv from G and return (G′, k), where G′ = G − uv.

When Reduction Rules 4-7 are no longer applicable, then a degree two vertex
in G� (vertex in a maximal degree two path in G�), which is not contained in M ,
is also a degree two vertex in G. Then, observe that if P is a degree two path in
G� such that the internal vertices of P are not in M , then each internal vertex
in P is of degree exactly two in G. Next, we apply the following reduction rule
to bound the degree two vertices in G.

Reduction Rule 8. Let (G, k) be an instance of CW-FVS. Suppose that P =
v1, . . . , v� is a degree two path in G such that v2, . . . , v�−1 /∈ M . If � ≥ k + 4,
then delete v�−1 and add edge v�−2v� to the graph G. Return (G′, k), where
G′ = G − v�−1 + v�−2v�.

Lemma 5. The number of vertices in G − M is bounded by O(k17).

The bound in Theorem 4 follows from Lemmas 3 and 5. This completes the
proof of Theorem 4.
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4 Conclusion

In this article, we studied variants of two classical NP-complete problems, viz.
Vertex Cover (VC) and Feedback Vertex Set (FVS), in the realm of
parameterized complexity. The studied variants can be more closely contrasted to
the popular versions Connected Vertex Cover and Connected Feedback

Vertex Set. On one end, where adding the connectivity constraint on the
solutions to the VC and FVS problems, deprives them from the existence of a
polynomial kernel, we show that adding a specific connectivity constraint, the
“closed walk constraint”, brings them back into the world that allows them to
exhibit polynomial kernels.

The study leads to interesting open problems on various fronts. First, what
happens to the kernelization complexity of these classical vertex deletion prob-
lems, when other “specific connectivity” constraints are demanded from the solu-
tion. For example, one generic question in this setting would be when additionally
a connected graph H on k vertices is given and the input graph induced on the
solution vertices is required to have the graph H as a spanning subgraph. For
which graphs H, the classical vertex deletion problems admit polynomial kernel
and for which they do not? Can we hope to get such kind of a dichotomy result
for some classical problems? Another interesting question would be to give a
dichotomy of the vertex deletion problems that admit polynomial kernels with
the closed walk constraint.
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Abstract. The Network Construction problem, studied by Angluin
et al., Hodosa et al., and others, asks for a minimum-cost network satisfy-
ing a set of connectivity constraints which specify subsets of the vertices
in the network that have to form connected subgraphs. More formally,
given a set V of vertices, construction costs for all possible edges between
pairs of vertices from V , and a sequence S1, S2, . . . ⊆ V of connectivity
constraints, the objective is to find a set E of edges such that each Si

induces a connected subgraph of the graph (V, E) and the total cost of E
is minimized. First, we study the online version where every constraint
must be satisfied immediately after its arrival and edges that have already
been added can never be removed. We give an O(B2 log n)-competitive
and O((B + log r) log n)-competitive polynomial-time algorithms along
with an Ω(B)-competitive lower bound, where B is an upper bound on
the size of constraints, while r, n denote the number of constraints and
the number of vertices, respectively. In the cost-uniform case, we pro-
vide an Ω(

√
B)-competitive lower bound and an O(

√
n(log n + log r))-

competitive upper bound with high probability, when constraints are
unbounded. All our randomized competitive bounds are against an adap-
tive adversary, except for the last one which is against an oblivious adver-
sary. Next, we discuss a hybrid approximation method for the (offline)
Network Construction problem combining an approximation algorithm of
Hosoda et al. with one of Angluin et al. and an application of the hybrid
method to bioinformatics. Finally, we consider a natural strengthening
of the connectivity requirements in the Network Construction problem,
where each constraint is supposed to induce a subgraph (of the con-
structed graph) of diameter at most d. Among other things, we provide
a polynomial-time (

(
B
2

) − B + 2)
(
B
2

)
-approximation algorithm for the

Network Construction problem with the d-diameter requirements.
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1 Introduction

Korach and Stern introduced the problem of interconnecting possibly overlap-
ping groups of users by a network such that the users in the same group do not
need to use connections outside the group [9]. The optimization objective is to
minimize the total cost of the pairwise connections. Angluin et al. and Chockler
et al. studied this problem in [2] and [5], respectively.

Angluin et al. showed in [2] that if P �= NP and n is the number of vertices
in the network then the problem cannot be approximated within a factor that
is sublogarithmic in n, even in the uniform edge cost case. On the other hand,
they proved that a greedy heuristic can approximate the optimal solution within
a factor of O(log r), where r is the number of constraints. As observed in [2], the
lower bound matches the upper bound in case r is polynomial in n.

Angluin et al. also studied the online version of this problem where each con-
straint has to be satisfied directly after its arrival [2]. Their motivation for this
problem variant was to help infer the structure of a social network describing
the spread of diseases in a community and to decide where to allocate resources
to fight an epidemic efficiently. They assumed that the individuals affected by
each outbreak of a disease are specified by a connectivity constraint, that the
outbreaks occur over time, and that resources that have been committed cannot
be released. They provided an O(n log n)-competitive online algorithm for the
online version along with an Ω(n)-competitive lower bound. They also consid-
ered the uniform cost case of this online version, providing an O(n2/3 log2/3 n)-
competitive algorithm against an oblivious adversary and an Ω(

√
n)-competitive

lower bound against an adaptive adversary.
Hosoda et al. studied a B-constraint-bounded variant of the Network Con-

struction problem, where the cardinality of each connectivity constraint Si does
not exceed B [8]. This corresponds to constructing a minimum overlay network
for a topic-based peer-to-peer pub/sub system where users (represented by ver-
tices) who are interested in a common topic (represented by connectivity con-
straints) form connected subgraphs, and moreover, the number of users following
each topic is bounded by a constant due to the publisher of that topic having a
limited number of available slots for users. Hosoda et al. provided a polynomial-
time approximation algorithm for this variant and proved its APX-completeness
in [8].

A natural generalization of the Network Construction problem, where some
pairwise connections are given a priori has applications in bioinformatics [11].
The purpose is to infer protein-protein interactions that are missing from a
database based on a collection of known, overlapping protein complexes (see
Sect. 4.1 for details).

1.1 The Structure of the Paper and Our New Results

The next section defines the Network Construction problem and its B-constraint-
bounded variant, where each constraint includes at most B vertices. We also
recall the Minimum Weight Set Cover problem and some facts about its
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approximability. In Sect. 3, we study the online version of the B-constraint-
bounded Network Construction problem. We present O(B2 log n)-competitive
and O((B + log r) log n)-competitive polynomial-time algorithms for the online
B-constraint-bounded Network Construction problem, where r, n stand for
the number of constraints and the number of vertices in the network, respec-
tively. In the cost-uniform case when constraints are unbounded, we provide an
O(

√
n(log n+log r))-competitive upper bound with high probability. All our ran-

domized competitive bounds are against an adaptive adversary but for the last
one which is against an oblivious adversary. We also provide a (B−1)-competitive
lower bound in case of arbitrary edge costs and a

√
B-competitive lower bound

in case of uniform edge costs. In Sect. 4, we study approximation algorithms for
the offline Network Construction problem and its extensions. First, we discuss a
hybrid approximation method combining the approximation algorithm of Hosoda
et al. from [8] with that of Angluin et al. from [2] in the context of the application
to bioinformatics. Next, we consider a natural strengthening of the connectivity
requirements in the Network Construction problem. Each constraint is supposed
to induce a subgraph (of the constructed graph) of diameter at most d, where d
is given a priori. We provide a polynomial-time (

(
B
2

)−B +2)
(
B
2

)
-approximation

algorithm for the aforementioned problems with the d-diameter requirements,
when each constraint has at most B vertices. Also, we present a polynomial-
time algorithm achieving a non-trivial approximation ratio in the general case of
the d-diameter variant, where the size of constraints is unbounded. We conclude
with final remarks.

Our approximate or online solutions to the aforementioned variants with
bounded constraints can be used to solve approximately or online the corre-
sponding variants with unbounded constraints by splitting the constraints into
small and large ones (Sects. 3, 4).

2 Preliminaries

For a positive integer r, the term [r] will denote {1, ..., r}, and for sets S, V , |S|
will stand for the cardinality of S while V 2 for {{v, u}|v, u ∈ V }.

A subgraph of a graph (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. The subgraph of a graph (V,E) induced by a subset S of V is the graph
(S,E∩S2). A perfect cut of a graph (V,E) is a partition of V into subsets V ′ and
V ′′ such that E ∩{{v, u}|v ∈ V ′ & u ∈ V ′′} = ∅. The diameter of a graph (V,E)
is the minimum number � such that any pair of vertices in V can be connected
by a path composed of at most � edges in E. If the graph is disconnected, its
diameter is undefined.

The Network Construction problem is as follows [2]. We are given a set V of
vertices and for each possible edge e = {vi, vj}, the cost c(e) of its construction.
We are also given a collection of connectivity constraints S = {S1, ..., Sr}, where
each Si is a subset of V. The objective is to construct a set E of edges in V 2 such
that for i = 1, ..., r, the subgraph of the graph (V,E) induced by Si is connected
and the total cost of the edges in E is minimal. In the uniform-cost case of the
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problem, we have c(e) = 1 for all edges in V 2. We can naturally generalize the
problem to include the Network Extension problem, where some subset E′ of
edges is already given (constructed) a priori. Note that when zero construction
costs of edges are allowed the Network Construction problem is equivalent to
that of Network Extension. Simply it is sufficient to set the construction costs
of the edges given a priori to zero in order to obtain an equivalent version of the
Network Construction problem. In order to avoid duplications in our statements,
in the aforementioned situation we shall mention only the Network Construction
problem.

Among other things, the following fact was established by Angluin et al.
in [2].

Fact 1 (Theorem 2 in [2]). There is a polynomial-time O(log r)-approximation
algorithm for the Network Construction problem on r constraints.

We shall also consider a B-constraint-bounded variant of the Network Con-
struction problem, where the cardinality of each connectivity constraint Si does
not exceed B. It was studied by Hosoda et al. in [8]. They provided a polynomial-
time approximation algorithm for this variant and showed its APX-completeness.

Fact 2 (Theorem 4 in [8]). There is a polynomial-time �B/2	
B/2�-
approximation (i.e., ≈ B2/4-approximation) algorithm for the B-constraint-
bounded Network Construction problem.

In the context of the Network Construction and Extension problems, we refer
to two types of edges: those already constructed and the remaining ones that
potentially could be constructed. For instance, when referring to a perfect cut,
we consider the edges of the first type while when we refer to edges crossing a
perfect cut we mean the edges of the second type.

Recall the definition of Minimum Weight Set Cover problem. The input to
this problem is a universal set U on n elements and a family F of m subsets of U.
Each subset in F is assigned a non-negative weight. A set cover is a sub-family
of F whose union is equal to U. The objective is to find a set cover of minimum
total weight. The decision version of this optimization problem is already NP-
hard in the uniform-weight case [6]. The so-called Minimum Weight Hitting Set
problem is an equivalent formulation of the Minimum Weight Set Cover problem
with the roles of elements and subsets exchanged. Here, the input is a finite set
S of weighted elements and a family C of subsets of S. The objective is to find
a minimum weight subset of S that hits all the subsets in C, i.e., that has a
non-empty intersection with each of the subsets in C. This problem is known to
be equivalent to Minimum Weight Set Cover [3]. Consequently, approximation
algorithms and inapproximability results for each of them carry over to the other
one.

Hochbaum [7] used a relaxation of an integer linear programming formulation
to obtain an approximation of the Minimum Weight Set Cover in cubic time.
The same approximation ratio was obtained by Bar-Yehuda and Even [4] with
a more direct, linear-time method. We summarize their results as follows.
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Fact 3. The Minimum Weight Set Cover problem (U,F ), where each element of
the universal set U occurs in at most B subsets of U in F , can be approximated
within multiplicative factor B in linear time. Consequently, the Minimum Weight
Hitting set problem, where each subset in the given family has cardinality at most
B, can be approximated within B in linear time.

3 Online B-Constraint-Bounded Network Construction

In this section, we consider the online version of the Network Construction prob-
lem studied in [2]. It arises naturally in the situation when the knowledge about
the relationships between the entities represented by vertices changes over time.
In the online version, the collection of connectivity constraints is given one at
a time. When a constraint Si is presented, the online algorithm is in round i.
The algorithm is now supposed to satisfy this constraint during this round by
constructing, if necessary, additional edges before the start of the next round
(no previously constructed edges may be removed). The next constraint is then
presented in round i+1. To study the worst-case performance of our online algo-
rithms, we shall use an adaptive adversary that can wait with setting the next
constraint until the online algorithm satisfied the previous one. We shall use com-
petitive analysis of our online algorithms. An online algorithm is c-competitive
if the cost of its solution does not exceed c times the cost of an optimal offline
solution.

3.1 Upper Bounds

First consider the following online Fractional Network Construction problem: For
a set V of vertices and edge costs c(e) for e ∈ V 2, and sequence of connectivity
constraints S1, ..., Sr, assign fractional capacities w(e) to the edges e such that
for each i ∈ [r], for each pair of vertices in Si, the maximum flow between them
is at least 1. The optimization objective is to minimize

∑
e w(e)c(e).

Fact 4 (Lemma 2 in [2]). There is an O(log n)-competitive polynomial-time
algorithm for the online Fractional Network Construction problem on n vertices.

By using this fact, we obtain the following theorem.

Theorem 1. There is an O(B2 log n)-competitive polynomial-time algorithm for
the online B-constraint-bounded Network Construction problem on n vertices.

Proof. Run the online O(log n)-competitive algorithm for the online Fractional
Network Construction problem from Fact 4. Disregard all edges that are assigned
capacity smaller than B−2 by the online solution to the fractional problem and
construct all the remaining edges. Note that after the edges of capacity smaller
than B−2 are removed, for any pair of vertices in any B bounded constraint the
maximum flow is still at least 1− (

B
2

)
B−2 ≥ 1

2 . Hence, there is a path composed
of the constructed edges between such a pair. The cost of the constructed edges
is at most B2 times larger than the cost of the fractional solution, i.e., the sum
of products of edge cost and edge capacity over all edges. ��



Network Construction from Bounded Connectivity Constraints 319

To derive another competitive upper bound for the online B-constraint-
bounded Network Construction problem, we shall consider the online version
of the Minimum Weight Set Cover problem. In this version, a family of subsets
of the universal set is given a priori while the elements of a subset of the universal
are presented online one at a time [1]. A new element has to be covered before
the arrival of the next one. Analogously, in the online version of the equivalent
Minimum Weight Hitting set problem, the set of hitting elements is given a pri-
ori, and the sets to be hit arrive online one at a time. A new set has to be hit
before the arrival of the next one. Alon et al. established the following fact in
[1].

Fact 5. There is an O(log n log r)-competitive polynomial-time algorithm for the
online Minimum Weight Set Cover problem, where n is the cardinality of the uni-
versal set and r is the cardinality of the given family of subsets of the universal
set. Consequently, there is an O(log n log r)-competitive polynomial-time algo-
rithm for the online Minimum Weight Hitting set, where n is the cardinality of
the family of sets to hit and r is the cardinality of the set of all possible hitting
elements.

By combining Fact 5 with the reduction of the Network Construction problem
to the Minimum Weight Set Cover problem given by Angluin et al. in [2], we
obtain another competitive upper bound for the online B-constraint-bounded
Network Construction problem.

Theorem 2. There is an O((B+log r) log n)-competitive polynomial-time algo-
rithms for the online B-constraint-bounded Network Construction problem with
n vertices and r constraints.

Proof. We shall reduce the online Network Construction problem to the online
Minimum Weight Hitting Set problem, following the reduction of the former
problem to the online Minimum Weight Set Cover problem from [2]. The set of
the possible hitting elements given a priori is just the set of all possible edges.
Each edge has weight equal to the cost of its construction. Next, each constraint
upon its arrival online, for each perfect cut of the subgraph induced by the
constraint, yields the set of all (additional potential) edges crossing the perfect
cut, i.e., having endpoints in the two different parts of the bipartition. Note that
the constraint is satisfied if and only if each perfect cut in the subgraph induced
by it is crossed by some edge accounted to the online formed hitting set. It follows
that the cost of an optimal solution to the resulting online Minimum Hitting Set
problem is the same as that to the original Network Construction problem. Now
it is sufficient to observe that the former problem has O(n2) possible hitting
elements and at most r2B sets to hit, and then to apply Fact 5. ��

We can use Theorem 2 to derive a competitive upper bound for the uniform-
cost variant of the Network Construction problem with unbounded constraints.
Angluin et al. considered also the uniform cost variant of the Network Construc-
tion problem in [2], providing an O(n2/3 log2/3 n)-competitive algorithm against
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an oblivious adversary and an Ω(
√

n)-competitive lower bound against an adap-
tive adversary. Our upper bound in the uniform case is as that of Angluin et al.
against an oblivious adversary, i.e., an adversary not knowing the randomized
results of the algorithm. The key idea is to split the constraints into small and
large ones, and use Theorem 2 to process the former ones.

Theorem 3. The uniform cost online Network Construction problem on n ver-
tices and r constraints admit an O(kn0.5(log n + log r))-competitive polynomial-
time solution, for every positive k, with probability at least 1 − O((nr)−1) − 1

k
provided that r is known in advance and the adversary is oblivious.

Proof. Split the set of constraints into two sets, one consisting of all constraints of
size ≤ n0.5 and one consisting of the rest. We can apply the O((B + log r) log n)
competitive algorithm from Theorem2 to the small constraints obtaining an
O((n0.5 + log r) log n) competitive solution. To satisfy the large constraints with
more than n0.5 vertices we proceed as follows.

Let Q be the set of vertices involved in the large constraints, and let q stand
for the cardinality of Q. We initialize an empty vertex set S. Upon an arrival
of a new large constraint, each vertex v in the constraint that is outside of S
is added to S with probability q−0.5(ln n + 2 ln r). We may assume w.l.o.g. that
ln n+2 ln r < q0.5. Furthermore, if v is added to S then all missing edges incident
to v are constructed. It follows that the expected total number, and hence, the
expected total cost of the so constructed edges amounts to q0.5(q−1)(ln n+2 ln r).
Thus, the total cost is at most kq0.5(q −1)(ln n+2 ln r) with probability at least
1 − 1

k by Markov’s inequality. For each large constraint, the probability that it
does not contain any vertex from S is at most

(1 − q0.5(ln n + 2 ln r)
q

)n
0.5 ≤ (1 − 1

n0.5
)n

0.5(lnn+2 ln r) ≤ O(
1

nr2
)

Since there are at most r large constraints, the cost of an optimal solution is at
least q − 1 and q ≤ n, we obtain an kn0.5(ln n + 2 ln r) competitive upper bound
for the large constraints with probability at least 1 − O((nr)−1) − 1

k . ��

3.2 Lower Bounds

We present two lower bounds on the competitiveness of algorithms for the online
B-constraint-bounded Network Construction problem.

When the edge costs can be arbitrary, it is not possible to achieve a compet-
itive ratio smaller than B − 1.

Theorem 4. For any c < 1, there is no c(B− 1)-competitive algorithm for the
online B constraint-bounded Network Construction problem.

Proof. We modify the proof of Theorem 6 in [2] for the competitive ratio in
the general case of online Network Construction, in our case the optimal offline
solution is not necessarily a path. Following [2], we set the cost of edges among
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the first n−1 vertices to zero, and the cost of all edges incident to the last vertex
to 1. The adversary divides the first n − 1 vertices into blocks of B − 1 vertices.
Assume first that n − 1 is divisible by B − 1. Then for i = 1, ..., (n − 1)/(B − 1),
the adversary repetitively picks an l-tuple of vertices, l ∈ [2, B], that includes
the last vertex and all vertices from the i-th block that are not endpoints of
already constructed edges incident to the last vertex. In this way, the algorithm
is forced to construct all B − 1 edges connecting the vertices in the i-th block
with the last vertex while in the optimal offline solution only such a last edge
is needed while the vertices in the i-th block are connected in the order of their
removal by a constructed path. Thus, the algorithm constructs (B − 1) × n−1

B−1

edges of cost 1 while the optimal offline solution uses only n−1
B−1 edges of cost 1.

It follows that the algorithm cannot be c(B − 1) competitive.
If n − 1 is not divisible by B − 1 then the algorithm constructs at least

(B − 1) × � n−1
B−1	 + 1 edges of cost 1 while the optimal offline solution uses

only 
 n−1
B−1� edges of cost 1. Hence, for enough large n, the algorithm cannot be

c(B − 1)-competitive. ��
For the uniform cost case, we can present a weaker lower bound. The proof

of the following theorem can be found in the full version of this paper.

Theorem 5. The online uniform cost B constraint-bounded Network Construc-
tion problem has an Ω(

√
B) competitive lower bound.

4 Offline Approximation Algorithms

In this section, we discuss first a hybrid approximation method for the offline
Network Construction problem and its application to bioinformatics. It combines
the approximation algorithm of Hosoda et al. from [8] with that of Angluin et al.
from [2]. Next, we present approximation algorithms for a strengthened version of
the Network Construction problem, where each constraint is supposed to induce
a subgraph (of the constructed graph) of diameter at most d for a d given a
priori.

4.1 A Hybrid Method with Biological Applications

An application of the Network Extension problem to bioinformatics was given
in [11]. There, the goal was to infer protein-protein interactions (PPIs) that
were missing from a database based on a collection of known, overlapping pro-
tein complexes. More precisely, the vertices V in the input graph were used to
represent proteins, the set E′ of a priori given edges represented PPIs already in
the database, and each input connectivity constraint Si consisted of the proteins
belonging to a single protein complex. Using the assumption that each protein
complex must induce a connected subgraph, solving instances of the Network
Extension problem gave lower bounds on the number of missing PPIs in vari-
ous widely used PPI databases. The overwhelming majority of complexes in the
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existing PPI databases seem to be of small size, containing at most 10 proteins
each, but a few larger ones with up to 100 proteins also occur (for details, see
Table A3 in the Supporting Information file for [11]).

The aforementioned statistics suggest a hybrid method consisting of applying
the approximation algorithm of Hosoda et al. from [8] to the constraints corre-
sponding to small complexes and that of Angluin et al. from [2] to the constraints
corresponding to larger complexes. We can express it in terms of the Network
Construction problem by the equivalence observed in Sect. 2. The output is the
union of the output of each of the two algorithms applied separately. Hence, by
combining Fact 1 with Fact 2, we obtain the following theorem.

Theorem 6. Consider an instance of the Network Construction problem. For
B ∈ [n]\{1}, let rB be the number of constraints with more than B vertices in
the instance. A solution to the instance (for the respective problem) of total cost
not exceeding minB∈[n]\{1}�B/2	
B/2� + O(log rB) times the minimum can be
found in polynomial time.

The hybrid method will be useful when there is a relatively small B ∈ [n]\{1}
such that the number rB of large constraints including more than B vertices,
i.e., the number of large complexes in the biological application, is small. More
details about the hybrid method can be found in the full version of this paper.

4.2 Bounded Diameter Requirements

One can naturally strengthen the connectivity requirements in the Network
Construction or Extension problems by demanding that each constraint should
induce a subgraph of the constructed network of diameter at most d, where
d ∈ [n − 1] is given a priori (cf. [5]).

For instance, Chockler et al. studied the Network Construction problem in
[5] using a different terminology. They considered the problem of constructing
an optimal overlay (network) that for each topic (constraint) includes a dissem-
ination tree composed of nodes interested in the topic (i.e., belonging to the
constraint). One of the measures of the quality of such an overlay suggested on
p. 116 of [5] is the diameter. Intuitively, having a low diameter is good because
it means that two users interested in the same topic do not need to rely on many
intermediate parties, which leads to more efficient communication and better
performance.

We shall term the strengthened version of the Network Construction problem
as the d-diameter Network Construction problem. In fact, the latter problem
restricted to instances with a single constraint is already hard. The restriction
can be simply rephrased as follows: given a vertex set V , edge costs c(e) for
potential edges in V 2, find a cheapest graph spanning V with diameter not
exceeding d.

The d-diameter Network Construction problem restricted to single constraint
instances is known to be NP-hard already for d = 2 [10]. In contrast, when
restricted to instances with uniform edge costs, this problem variant becomes
trivial as any spanning star graph provides an optimal solution.
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Analogously to the preceding sections, we can consider the d-diameter Net-
work Construction problem with constraints of cardinality not exceeding B. By
using an auxiliary problem, we can obtain a (

(
B
2

) − B + 2)
(
B
2

)
approximation in

polynomial time for the B-constraint-bounded d-diameter Network Construction
problem. The auxiliary problem is as follows.

For an instance of the B-constraint-bounded d-diameter Network Construc-
tion problem with a vertex set V, edge construction costs c(e), a set E′ of edges
e with c(e) = 0, and connectivity constraints S1, ...., Sr find a minimum cost
edge set E′′ ⊆ V 2\E′ such that for i = 1, ..., r, if the diameter of the subgraph
of G′ = (V,E) induced by Si is larger than d then E′′ ∩ S2

i �= ∅.
The following lemma provides an approximation algorithm for the auxiliary

problem.

Lemma 1. The auxiliary problem can be approximated within
(
B
2

)
in polynomial

time.

Proof. Consider an instance of the auxiliary problem with a vertex set V, edge
construction costs c(e), a set E′ of edges with zero construction cost, and con-
nectivity constraints S1, ..., Sr. We may assume w.l.o.g. that for i = 1, ..., r, the
diameter of the subgraph of the graph G′ = (V,E′) induced by Si is larger than
d since otherwise the constraint Si can be disregarded. To solve the auxiliary
problem, for i = 1, ..., r, form the set Ei of all edges in S2

i \E′. The auxiliary prob-
lem is equivalent to finding a minimum weight subset of the set of all potential
edges that hits all the sets E1, ..., Er, where the weights of the edges are equal
to their construction costs. By our assumptions, for i = 1, ..., r, |Ei| ≤ (

B
2

)
hold.

Now it is sufficient to apply Fact 3 in order to obtain a
(
B
2

)
approximation for

the auxiliary problem in time linear in the total size of the family {E1, ..., Er}
and |V |2. The latter size is in turn polynomial in the size of the input instance
of the auxiliary problem. ��

Now, in order to provide an approximate solution to an instance of the B-
constraint-bounded d-diameter Network Construction problem, we iterate the
method of Lemma 1 as shown in Fig. 1.

Theorem 7. The B-constraint-bounded d-diameter Network Construction prob-
lem can be approximated within (

(
B
2

) − B + 2)
(
B
2

)
in polynomial time.

Proof. We shall analyze the iterative method based on Lemma 1. Since for i =
1, ..., r, |Si| ≤ B, the subgraph of the original graph G′ = (V,E′) induced by Si

can be completed by at most
(
B
2

)
edges. Hence, at most

(
B
2

)
iterations of the while

block are sufficient. In fact, already
(
B
2

)−B+2 iterations are sufficient since in a
graph with B vertices and at least

(
B
2

)− (B −2) edges each pair of non-adjacent
vertices has a common neighbor. Note that the cost of an optimal solution to any
of the at most

(
B
2

)−B+2 auxiliary problems approximately solved in consecutive
iterations of the while block cannot be greater than that of an optimal solution
to the original B-constraint-bounded d-diameter Network Construction problem.
Hence, the upper bound (

(
B
2

) − B + 2)
(
B
2

)
on the approximation factor of the

iterative method follows from Lemma1. ��
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Fig. 1. The (
(
B
2

) − B + 2)
(
B
2

)
approximation algorithm for the B-constraint-bounded-

diameter Network Construction problem.

In the general case with unbounded constraints, straightforward greedy
approaches do not seem to work. However, if the edge costs are uniform, we can
obtain a large but still a nontrivial approximation factor in polynomial time by
splitting the constraints into small and large ones, and using Lemma1 to obtain
an approximation for the former. The proof is analogous to that of Theorem3.
It can be found in the full version of this paper.

Theorem 8. The uniform cost d-diameter Network Construction problem with
n vertices and r constraints admits an O(n0.8(ln n + ln r)) approximation with
probability at least 1 − (nr)−1 in polynomial time.

5 Final Remarks

It would be useful to tighten the upper and lower competitiveness bounds on
the online version of the B-constraint-bounded Network Construction problem.
It would be especially interesting to know if the factor that is logarithmic in n
can be removed from the upper bounds.

As mentioned in Sect. 4.2, straightforward greedy approaches do not seem to
work for the d-diameter Network Construction problem with unbounded con-
straints. One reason for this is that natural candidates for potential functions
in greedy methods seem to lack the submodularity property. It is an interesting
question if it is possible to achieve a reasonable approximation factor for this
problem in the general case, at least when edge costs are uniform.

Acknowledgments. We would like to thank Tatsuya Akutsu and Natsu Nakajima
for introducing us to the problem studied in this paper.
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Abstract. The two main concepts of Rigidity Theory are rigidity, where
the framework has no continuous deformation, and global rigidity, where
the given distance set determines the locations of the points up to isome-
try. We consider the following augmentation problem. Given a minimally
rigid graph G = (V,E) in R2, find a minimum cardinality edge set F
such that the graph G′ = (V,E + F ) is globally rigid in R2. We provide
a min-max theorem and an O(|V |2) time algorithm for this problem.

Keywords: Global Rigidity · Augmentation · Rigidity ·
Combinatorial Algorithm

1 Introduction

Let us consider the following motivating question: Given some sensors in the
plane and the distances between some pairs of them, at least how many of them
need to be localized so that we could reconstruct the exact sensor-locations?
This is the so-called global rigidity pinning (or anchoring) problem. Sometimes
measuring the exact locations is too expensive or even impossible. Instead, one
may ask at least how many new distances need to be measured so that the
distances uniquely determine the positions of the sensors (up to isometry). This
problem is called the global rigidity augmentation problem. The concept of global
rigidity, which appears in the previous network localization problems, plays an
important role in rigidity theory [3,5,12].

Let us consider the aforementioned problems by the means of Rigidity The-
ory. A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph
and p : V → Rd is a map of the vertices to the d-dimensional space. We call p
a realization of G in Rd. Two frameworks (G, p) and (G, q) are equivalent if
||p(u)−p(v)|| = ||q(u)−q(v)|| for every uv ∈ E. (G, p) and (G, q) are congruent
if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for every vertex pair u, v ∈ V , or in other
words, when (G, q) can be obtained from (G, p) by an isometry of Rd. We say
that the framework (G, p) is globally rigid if each framework (G, q) which is
equivalent to (G, p) is also congruent to (G, p), that is, the length of the edges in
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(G, p) uniquely determines the realization up to isometry of Rd. (For example,
Fig. 1(c) is a globally rigid framework in R2.) A framework (G, p) is called rigid
if there exists an ε > 0 such that each framework (G, q), which is equivalent to
(G, p) and for which ||p(v)− q(v)|| < ε holds for each v ∈ V , is also congruent to
(G, p), that is, if every edge-length preserving continuous motion of the frame-
work results in a framework which is congruent to (G, p). (See Fig. 1(a) for an
example of a non-rigid and Fig. 1(b) for a rigid framework in R2.)

Fig. 1. Frameworks of various rigidity in R2. (a) A non-rigid framework. (b) A rigid
framework which is not globally rigid. (c) A globally rigid framework.

Deciding whether a given framework is rigid (globally rigid, respectively) in
Rd is NP-hard for d ≥ 2 (d ≥ 1, respectively) [1,21]. The analysis gets more
tractable if we consider generic frameworks where the set of coordinates of the
points is algebraically independent over the rationals. In this case, the rigidity
and the global rigidity of the framework depends only on the underlying graph G
[5,8,23]. (We note that reconstructing the position of the points is a challenging
task, even if they are uniquely determined by the framework, see [2,16,22]. In
this paper we do not address this problem.)

A graph G is called rigid (or globally rigid) in Rd if each (or equivalently
some) of its generic realizations as a framework is rigid (or globally rigid, respec-
tively). The combinatorial characterization of rigid and globally rigid graphs is
known for d = 1, 2 [11,20] while it is a major open problem of rigidity theory for
d ≥ 3. We shall use these combinatorial characterizations in our work.

For generic frameworks, the global rigidity augmentation problem can be
modelled as follows:

Problem 1. Given a graph G = (V,E), find an edge set F of minimum cardi-
nality on the same vertex set, such that G + F = (V,E ∪ F ) is globally rigid in
R2.

The complexity of Problem 1 is open. There are some partial results in con-
nection with it, for example, Fekete and Jordán [6] gave a constant factor approx-
imation for the global rigidity pinning problem in R2 for generic frameworks,
however, the complexity of that problem is also open. In Sect. 5 we show how
the result of [6] can be applied to give a constant factor approximation for
Problem 1.
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In this paper we shall solve Problem 1 optimally for a special case. A graph
G = (V,E) is called minimally rigid, if G is rigid but G− e is not rigid for any
e ∈ E. We show that, if G is minimally rigid in Problem1, then we can give a
min-max theorem and also an O(|V |2) time algorithm that solves the problem
optimally. Moreover, it follows from this result that the globally rigid pinning
problem also can be solved optimally for minimally rigid graphs (see Sect. 5).
The most of the proofs are left for the full version of this extended abstract [17].

2 Preliminaries and Definitions

2.1 Rigidity in R2

In this subsection we collect the basic definitions and results from rigidity theory
that we shall use. There are several equivalent approaches to graph rigidity, for
our purpose, a combinatorial one is the most practical. For a detailed introduc-
tion to rigidity theory including the equivalence of our approach, the reader is
referred to [14].

A graph G = (V,E) is called sparse if i(X) ≤ 2|X| − 3 for all X ⊆
V with |X| ≥ 2, where i(X) denotes the number of edges induced by X. A
graph G = (V,E) is called tight (or sometimes Laman) if it is sparse and
|E| = 2|V | − 3. This definition can be used for the characterization of the rigid
graphs in R2 by the fundamental results of Pollaczek-Geiringer and Laman.

Theorem 1 ([19,20]). A graph G is minimally rigid in R2 if and only if G is
tight. Thus, a graph G is rigid in R2 if it contains a spanning tight subgraph.

As we work in R2 we omit this indication from the rest of this paper. A
graph G = (V,E) is called k-connected if |V | > k and G − X is connected
for any vertex set X ⊂ V of cardinality at most k − 1. Connectivity has several
connections to rigidity. An often used folklore result is the following (see [14]).

Lemma 1. If G = (V,E) is a tight graph for which |V | ≥ 3, then G is 2-
connected.

The most important result related to our problem is the following characteriza-
tion of global rigidity in R2 due to Jackson and Jordán. An edge e of a rigid
graph G is called redundant if G − e is rigid. A graph is redundantly rigid
if all of its edges are redundant.

Theorem 2 ([11]). A graph G = (V,E) with |V | > 3 is globally rigid in R2 if
and only if it is redundantly rigid and 3-connected.

Based on the above results, the problem we shall solve in this paper is equiv-
alent to the following.

Problem 2. Given a tight graph G = (V,E), find a graph H = (V, F ) with
a minimum cardinality edge set F , such that G ∪ H is redundantly rigid and
3-connected.

If G has at most 3 vertices then G is tight if and only if it is globally rigid
[11], hence the solution of Problem2 is obvious. Thus we may suppose in what
follows that G contains at least 4 vertices.
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2.2 The Redundant Rigidity Augmentation Problem and Co-tight
Sets

Let us first investigate the problem of augmenting a tight graph G = (V,E) to
a redundantly rigid graph by a minimum number of edges. This problem was
considered and solved before by Garćıa and Tejel [7]. A generalization of this
augmentation problem to (k, �)-tight graphs appears in a work by the authors
of this paper [18]. We use some ideas from both of these works.

Tight graphs have some well known properties. By definition, any subgraph
of a sparse graph is also sparse and any tight subgraph of a sparse graph is
an induced subgraph. With standard submodular techniques one can prove the
well-known fact that the intersection and the union of two tight subgraphs of a
sparse graph is also tight if they have at least two common vertices (see [14]).
Given two vertices u, v ∈ V of a tight graph G = (V,E), this fact implies that the
intersection of all the tight subgraphs of G which contain both of u and v is also
tight, and hence it is the unique minimal tight subgraph of G containing both
of u and v. Let us denote this unique minimal tight subgraph of G containing
both of u and v by T (uv) (or simply by T (e) when e is an edge between u and
v). It is easy to see that the edge set of T (e) is exactly the set of those edges of
G which become redundant if we add the edge e to G (see [7]). Similarly, if we
add the edges e1, . . . , ek to G, (the edges of) some subgraph of G will become
redundant, which we denote by R(e1, . . . , ek). For the sake of convenience, we
will not distinguish a graph from its edge set, that is, we denote the edge set
of T (e) and R(e1, . . . , ek) by T (e) and R(e1, . . . , ek), respectively. The following
statement generalizes the fact that R(e1) = T (e1).

Lemma 2 ([7, Lemma 4]). Let G = (V,E) be a tight graph. Then R(e1, . . . ,
ek) = T (e1) ∪ · · · ∪ T (ek) for arbitrary edges e1, . . . , ek.

Lemma 2 is the base of our method hence we will use it throughout the paper
without explicitly referring to it.

Given a tight graph G = (V,E), a non-empty set C � V is called co-tight if
V − C induces a tight subgraph. This is equivalent to the following: C is co-tight
in G if 0 < |C| ≤ |V | − 2 and 2|C| = i(C) + d(C, V − C), where d(X,Y ) denotes
the number of edges between two disjoint sets X,Y � V . For the sake of brevity,
let us abbreviate the name of minimal co-tight sets by MCT sets. See Fig. 2 for
an example. Observe that every tight graph G on at least 4 vertices contains at
least two co-tight sets that do not contain each other, as any edge forms a tight
subgraph of G.

Let C be a co-tight set of a tight graph G. If {u, v} ∩ C = ∅, then V (T (uv)) ∩
C = ∅ by the definition of T (uv). Thus the next lemma follows easily by Lemma 2.

Lemma 3 ([18, Observation 5.3]). The vertex set of any edge set that aug-
ments a tight graph G to a redundantly rigid graph must intersect every co-tight
set.

Let C∗ denote the family of all MCT sets of G. We shall use the following
key result on MCT sets (which are called minimal co-rigid sets in [14]).
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Fig. 2. A tight graph with two MCT sets, the set formed by the big (blue) circles and
the set formed by the (gray) square. Adding an edge between any (blue) circle vertex
and the (gray) square vertex augments G to a redundantly rigid graph, which is not
globally rigid, as it is not 3-connected. Adding an edge between a (red) triangle vertex
and the (gray) square vertex augments G to a 3-connected but not redundantly rigid
graph. (Color figure online)

Lemma 4 ([14, Theorem 3.9.13]). Let G be a tight graph. Then the members
of C∗ are pairwise disjoint or there are two vertices v, w ∈ V such that {v, w} ∩
C �= ∅ for all C ∈ C∗.

If there are at least two intersecting MCT sets, then it is easy to deduce from
Lemma 4 that the edge e = vw (for the pair v, w ∈ V provided by the lemma)
is an optimal solution of the redundant augmentation problem, that is, R(e) =
T (e) = G. In the general case, the following theorem determines the cardinality
of the optimal augmentation.

Theorem 3 ([18, Theorem 1.1]). Let G be a tight graph on at least 4 vertices.
Then min{|F | : F is an edge set on V for which G + F is a redundantly rigid
graph} = max

{⌈
|C|
2

⌉
: C is a family of disjoint co-tight sets in G

}
.

2.3 The 3-Connectivity Augmentation Problem

By Lemma 1, every tight graph is 2-connected and thus we need to augment a
2-connected graph to a 3-connected graph. There exists several methods to deal
with this particular problem, even linear time algorithms [10]. However, we also
need to augment G to a redundantly rigid graph hence we stick to a simpler
approach following the ideas of [13].

Let us call u, v ∈ V a cut-pair of G, if G−{u, v} is not connected. If u, v is a
cut-pair in G, then let b(u,v)(G) denote the number of components of G−{u, v}.
Let b(G) denote the maximum value of b(u,v)(G) over all cut-pairs u, v of G. If
there are no cut-pairs in G, let b(G) := 1. Let N(X) denote the neighbor set
of X ⊆ V , that is, N(X) := {v ∈ V − X : there exists an edge uv such that
u ∈ X}. A set P ⊂ V is called a 3-fragment if |N(P )| = 2 and P ∪ N(P ) �= V .
The maximum number of pairwise disjoint 3-fragments is denoted by t(G).
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To augment a 2-connected graph G to a 3-connected graph, we need to
increase the number of neighbors of each 3-fragment of G, and hence the vertex
set of any edge set that augments G to a 3-connected graph must intersect all
3-ends. Moreover, any edge set F that augments G to a 3-connected graph needs
to span a connected graph on the components of G − {u, v} for every cut-pair
u, v. Thus |F | ≥ b(G) − 1. These imply the following well-known statement.

Lemma 5. Given a 2-connected graph G, the minimum number of edges that
augments G to a 3-connected graph is at least max

{
b(G) − 1,

⌈
t(G)
2

⌉}
.

In fact, any 2-connected graph can be augmented to a 3-connected graph by a
set of max

{
b(G) − 1,

⌈
t(G)
2

⌉}
edges (see [10,13]).

Let us call an inclusion-wise minimal 3-fragment a 3-end. As every
3-fragment contains at least one 3-end, t(G) is equal to the number of pair-
wise disjoint 3-ends. In a rigid graph, this latter value is equal to the number
of 3-ends since their disjointness follows by the following result of Jackson and
Jordán [11].

Lemma 6 ([11]). Let G be a rigid graph in R2. Then, for any two disjoint cut-
pairs v1, v2 and u1, u2 of G, u1 and u2 are in the same component of G−{v1, v2}.

3 Min-Max Theorem

In this section we shall merge the results on the redundant rigidity and 3-
connectivity augmentation problems to a new min-max theorem for the global
rigidity augmentation problem by mixing the statements of Theorem3 and
Lemma 5, as follows.

Theorem 4. Let G = (V,E) be a tight graph on at least 4 vertices. Then

min{|F | : F is an edge set on V for which G+F is globally rigid} = max
{

b(G)−

1,max
{⌈

|A|
2

⌉
: A is a family of disjoint co-tight sets and 3-fragments

}}
.

Proof (Sketch). Recall that a graph on at least 4 vertices is globally rigid if and
only if it is 3-connected and redundantly rigid by Theorem2. The min ≥ max
implication in Theorem 4 is obvious since the set of endvertices of the optimal
augmenting edge set must intersect all co-tight sets and 3-fragments by Lem-
mas 3 and 5. Notice that, if G is 3-connected, then Theorem 4 follows directly by
Theorem 3. Hence from now on, we may assume that G is not 3-connected. In
this case we shall extend the proof of Theorem 3 given in [18] with the ideas of
the 3-connectivity augmentation method given by Jordán [13]. Hence to prove
the min ≤ max part, let us consider the family of all MCT sets and 3-ends of
a tight graph G. Let us call the inclusion-wise minimal elements of this family
the atoms of G. (In Fig. 2 these are the three sets formed by the highlighted
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vertices: the big (blue) circles form an MCT set, the (gray) square vertex form an
MCT set which is also a 3-end, and the (red) triangle vertices form a 3-end.) Let
us denote the family of atoms by A∗. We shall show that the atoms are pairwise
disjoint and there exists a set of max

{
b(G) − 1,

⌈
|A∗|
2

⌉}
edges that augments

G to a globally rigid graph. Hence we first need the following counterpart of
Lemma 4 for atoms.

Lemma 7. Let G = (V,E) be a tight graph which is not 3-connected. Then the
atoms of G are pairwise disjoint.

Note that if G is 3-connected, Lemma 7 does not always hold (see Lemma 4).
As we have seen before in Sect. 2.3, the 3-ends of G are pairwise disjoint and
Lemma 4 implies that two MCT sets can only intersect each other in special
circumstances. Beside these facts, the proof of Lemma 7 uses the following inter-
mediate result. The proofs of both lemmas can be found in the full version [17]
of this extended abstract.

Lemma 8. Suppose that G = (V,E) is a tight graph. Let a ∈ A be a vertex from
an atom A ∈ A∗ of G. Then there is no v ∈ V such that a, v forms a cut-pair.

Now, we turn to prove that there exists a set of max
{

b(G) − 1,
⌈

|A∗|
2

⌉}
edges

that augments G to a globally rigid graph. A set X is called a transversal of
a family S if |X ∩ S| = 1 for each S ∈ S and |X| = |S|. As the members of A∗

are pairwise disjoint if G is not 3-connected by Lemma 7, choosing one arbitrary
vertex from every member of A∗ leads to a transversal of A∗.

Let P be a transversal of A∗. Observe that P is a minimum cardinality vertex
set that intersects all MCT sets and 3-ends, and consequently all co-tight sets
and 3-fragments. Hence |A| ≤ |P | holds for an arbitrary family A of disjoint co-
tight sets and 3-fragments. We shall show now that a connected graph on P of
A∗ augments G to a globally rigid graph, that is, 3-connected and redundantly
rigid. Later, we will reduce the number of edges needed for this augmentation
to the optimum value. First it is easy to observe that any connected graph on P
augments G to a 3-connected graph since P covers all 3-ends (by the definition of
the atoms and Lemma 7) and contains no vertex from any cut-pair by Lemma8.

Lemma 9. Suppose that G is a tight graph which is not 3-connected. Let P be
a transversal of A∗. Then, for any connected graph H = (P, F ) on P , G ∪ H is
3-connected.

To show that the above augmentation gives a redundantly rigid graph, one
can extend the ideas of the proof of Theorem3 from [18] for atoms by using
Lemma 7 instead of Lemma 4. (Again, see [17] for the full proofs.) Recall that
R(F ) denotes the set of redundant edges of G in G + F .

Lemma 10 (Extension of [18, Lemma 5.8]). Suppose that G is a tight graph
which is not 3-connected. Let P be a transversal of A∗ and let F be the edge
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set of a connected graph on P ′ ⊆ P . Then R(F ) is the minimal tight subgraph
containing all elements of P ′. In particular, if F is the edge set of a star K1,|P |−1

on the vertex set P , then G + F is redundantly rigid.

Observation 1. Lemmas 9 and 10 imply that G + F is globally rigid if F is an
edge set of an arbitrary connected graph (in particular, a tree) on a transversal
P of A∗.

The idea of Observation 1 can be found in [15], where the authors got to
this fact from a different approach, with the so-called extreme vertices. The
connection between these two approaches is presented in [18, Lemma 5.10].

By the min ≥ max part of Theorem4,
⌈

|A∗|
2

⌉
edges are always needed to

augment G to a globally rigid graph. However, if |A∗| ≤ 3 then it is indeed enough
to do so by Observation 1. On the other hand, if |A∗| > 3, then we need to reduce
the number of edges used by the augmentation provided by Observation 1. To
this end, we shall use the following straightforward adaptation of [18, Lemma
5.9] (see [17] for the proof).

Lemma 11. Let G = (V,E) be a tight graph which is not 3-connected and let
P be a transversal of A∗. Suppose that x1, x2, x3, y ∈ P are distinct vertices.
Let T ∗ = T (x1y) ∪ T (x2y) ∪ T (x3y). Then T ∗ = T (x1y) ∪ T (x2x3) or T ∗ =
T (x2y) ∪ T (x1x3) holds.

Observe that the operation in Lemma 11 allows us to reduce the cardinality
of the edge set used for the augmentation by maintaining the property that it
augments G to a redundantly rigid graph. However, we also need to maintain
the 3-connectivity of the augmentation to complete the proof of Theorem4.

To reduce the number of edges needed for the augmentation in such a way
that the global rigidity of the augmented graph is maintained, we do the following
procedure. Initially, let F := ∅ and N := P . During the procedure, the set N ⊆ P
stands for “not fixed” vertices while vertices in P − N are the “fixed” vertices.
We can fix an edge f1f2 by removing f1 and f2 from N and adding f1f2 to
F . In each step of the procedure we carefully choose two vertices from N and
fix the edges between them (decreasing the number of vertices in N by two
and increasing the number of edges in F ). Hence the edge set F always covers
the vertices of P − N . We shall keep the following properties during the whole
procedure:

1. For an arbitrary star SN on the vertex set N , G + F + SN is a redundantly
rigid graph.

2. In every 3-end of G + F , there is at least one vertex from N

3. max
{

b(G + F ) − 1,
⌈

|N |
2

⌉}
+ |F | = max

{
b(G) − 1,

⌈
|P |
2

⌉}
.

Notice that Properties 1–3 hold for N = P and F = ∅ by Lemmas 9 and 10.

Remark 1. Properties 1 and 2 ensure that G + F + SN is redundantly rigid
and 3-connected, and thus globally rigid by Theorem2. Property 3 ensures the
optimality.
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Remark 2. If |N | ≥ 4, then from any two edges chosen on x1, x2, x3 ∈ N fixing
one of them maintains Property 1 by Lemma11.

By Remark 2 we always aim to find at least two possibilities to fix such that
Property 2 holds. Also, if it can be done so that max

{
b(G + F ) − 1,

⌈
|N |
2

⌉}

decreases by one, then we can maintain Properties 1–3. Roughly, we distinguish
4 different possibilities in each of which we find 3 vertices from N such that we
can apply Remark 2 and hence we can fix one edge while maintaining Properties
1–3.

Lemma 12. Let G be a tight graph which is not 3-connected such that |A∗| ≥ 4.
Let P be a transversal on A∗. Let N ⊆ P be a vertex set and F be an edge set
on P such that they satisfy Properties 1–3. If |N | ≥ max{4, b(G + F ) + 1}, then
we can choose f1, f2 ∈ N , such that for N − {f1, f2} and F + {f1f2} (that is,
for fixing f1f2) Properties 1–3 also hold.

Proof. We use the following method for the proof. This is the core of our algo-
rithm which we will describe in Sect. 4.

1 If b(G + F ) − 1 ≥
⌈

|N |
2

⌉
, then

2 If there is only one cut-pair (u, v) such that b(u,v)(G + F ) = b(G + F ),
then

Choose x1, x2 from a component of G + F − {u, v} that contains
at least two vertices from N . Let x3 ∈ N be a vertex from a
component of G + F − {u, v} that does not contain x1 and x2.

3 else
Let (u1, v1) and (u2, v2) be two cut-pairs for which b(u1,v1)(G +
F ) = b(G+F ) = b(u2,v2)(G+F ). Choose x1, x2 ∈ N from two dif-
ferent components of G+F −{u1, v1} that do not contain {u2, v2}.
Choose x3 ∈ N from a component of G + F − {u2, v2} that does
not contain {u1, v1}.

4 else
5 If there is a cut-pair {u, v} such that for one component of G + F −

{u, v}, say K, |N ∩ K| ≥ 2 and |(V − K) ∩ N | ≥ 2, then
Choose x1, x2 from N ∩ K and choose x3 ∈ N from (V − K) ∩ N .

6 else (Notice that if b(G + F ) = 1, then this is the only possible case.)
Choose x1, x2, x3 ∈ N arbitrarily.

7 If G + F + S(N − {x1, x3}) + x1x3 is redundantly rigid, then
f1 := x1, f2 := x3.

else
f1 := x2, f2 := x3.



Globally Rigid Augmentation of Minimally Rigid Graphs in R2 335

First we prove that the above method is consistent, that is, we can execute
each of its steps. As |N | ≥ b(G+F )+1 and P contains no vertex from a cut-pair
of G by Lemma 8, |N | > b(u,v)(G + F ) for an arbitrary cut-pair {u, v}. Hence,
there exists a component of G + F − {u, v} that contains at least two vertices
from N . This shows that we can choose vertices in Steps 2 and 5 consistently.
Meanwhile, in Step 3 there are at least two components of G + F − {u1, v1}
that do not contain {u2, v2} since |N | ≥ 4 and thus b(u1,v1)(G + F ) ≥ 3.

Now let us turn to show that the choice of f1 and f2 maintains Property 2.

Claim. Suppose that there is a cut-pair {u, v} such that for one component of
G + F − {u, v}, say K, x1, x2 ∈ N ∩ K and x3, y ∈ (V − K) ∩ N . Then fixing
either x1x3 or x2x3 maintains Property 2.

Proof. Notice that the role of x1 and x2 is symmetric thus we might suppose
that we fixed the edge x1x3. Suppose that we form a new 3-end L in G + F
with it. Then necessarily x1, x3 ∈ L. If x2 ∈ L or y ∈ L, then Property 2 holds
automatically. On the other hand, if none of them is in L, then there is a cut-pair
in K ∪{u} or in K ∪{v} which separates x1 from x2. There is another cut-pair in
V − K (other than {u, v}, say {u′, v′}) which separates x3 from y. Both remain
cut-pairs after fixing the edge x1x3. However, this contradicts the assumption
that L is 3-end in G + F , as |N(L)| = 2 must hold for a 3-end. �

Notice that the conditions of the above Claim hold in Steps 2, 3 and 5 thus
with our choice of x1, x2, and x3 Property 2 is maintained. If G+F is already 3-
connected, then Property 2 is obvious. Otherwise, in Step 6, every cut-pair cuts
G+F into two component, one of which contains exactly one element from N by
the condition of Step 5. For the sake of a contradiction, assume that G+F +f1f2
contains a 3-end L which contains no element of N −{f1, f2}. Let N(L) = {u, v}.
Then N ∩ L = {f1.f2}, V − L − {u, v} �= ∅, and u, v is a cut pair of G + F . By
our above condition, (u, v) cuts G+F into two component one of which contains
exactly one element from N . Hence exactly L and V − L − {u, v} are these two
components. Moreover, as |L ∩ N | = 2, this implies |N ∩ (V − L − {u, v})| = 1,
contradicting |N | ≥ 4.

Now we show that our method maintains Property 3. Fixing any edge
decreases

⌈
|N |
2

⌉
by one while increases F by one. By Steps 5 and 6 it is enough

to keep Property 3 true as in this case max
{

b(G+F )−1,
⌈

|N |
2

⌉}
> b(G+F )−1.

We need to show that if the condition in Step 1 is true, then we also decrease
b(G + F ). If b(G + F ) − 1 ≥

⌈
|N |
2

⌉
, then there can be at most two cut-pairs

of G + F satisfying b(u,v)(G + F ) = b(G + F ) by a simple calculation on the
number of 3-ends (see [13]). If there is only one, the pair (u, v) chosen in Step 2,
then we only need to decrease b(u,v)(G + F ). Since x1x3 and x2x3 both connect
two different components of G+F −{u, v}, b(u,v)(G+F ) decreases by one after
fixing any of them. If there are exactly two such cut-pairs, (u1, v1) and (u2, v2)
chosen in Step 3, then we need to decrease b(u1,v1)(G + F ) and b(u2,v2)(G + F )
simultaneously. Again our choice of x1x3 and x2x3 guarantees this.
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Therefore, by Remark 2 applied to Step 7, fixing f1f2 maintains Properties
1–3. This completes the proof of Lemma 12. �

We apply Lemma 12 recursively until |N | < max{4, b(G+F )+1}. To complete
the proof of Theorem4, we need to show the following.

Claim. If |N | ≤ max{3, b(G+F )}, then, for an arbitrary star SN on N , G+F +
SN forms a globally rigid graph for which |F | + |SN | = max

{
b(G) − 1,

⌈
|P |
2

⌉}
.

Proof. G + F + SN is globally rigid by Remark 1. By Property 3 it is enough to
show that max

{
b(G + F ) − 1,

⌈
|N |
2

⌉}
= |SN | = |N | − 1. If |N | = b(G + F ), then

max
{

b(G + F ) − 1,
⌈

|N |
2

⌉}
= |N | − 1 as

⌈
|N |
2

⌉
≤ |N | − 1. On the other hand, if

|N | < b(G + F ), then 2 ≤ |N | ≤ 3 thus
⌈

|N |
2

⌉
= |N | − 1. �

Recall that A∗ consists of pairwise disjoint MCT sets and 3-ends of G and
hence the maximum in Theorem 4 is at least max

{
b(G) − 1,

⌈
|A∗|
2

⌉}
. On the

other hand, the above claim implies that G can be augmented to a globally
rigid graph by an addition of an edge set of cardinality max

{
b(G)− 1,

⌈
|P |
2

⌉}
=

max
{

b(G) − 1,
⌈

|A∗|
2

⌉}
. This completes the proof of Theorem 4. �

4 Algorithmic Aspects

It is easy to see that the proof of Theorem 4 provides an algorithm for Problem2
when the input tight graph G = (V,E) is not 3-connected. On the other hand,
the algorithm of Garćıa and Tejel [7] or that by the authors of this paper in [18]
provides an algorithm for the case where G is 3-connected since in this case we
only need a redundantly rigid augmentation of G. In this section we sketch how
one can provide an O(|V |2) time algorithm for Theorem 4.

Theorem 5. Let G = (V,E) be a tight graph. There exists an O(|V |2) time
algorithm that finds a graph H = (V, F ) with a minimum cardinality edge set F
for which G + H is a globally rigid graph.

Proof (sketch). Note that the tightness of G implies that |E| = 2|V | − 3. Hence
the 3-connectivity of G and all cut-pairs and 3-ends of G can be found in O(|V |)
time by the algorithm of Hopcroft and Tarjan [9].

The algorithm of Berg and Jordán [4] checks the tightness of G in O(|V |2)
time, moreover, after this it can be used to calculate T (ij) for each pair of
vertices i, j ∈ V in linear time. This fact was used to show that the algorithms
in [7] and [18] both provide an optimal redundantly rigid augmentation of G in
O(|V |2) time which completes the proof when the input is 3-connected.

To start the algorithm of Lemma 12, we first need a transversal of A∗. (And
this is also needed to solve the case where |A∗| ≤ 3.) This can be calculated



Globally Rigid Augmentation of Minimally Rigid Graphs in R2 337

in O(|V |2) time by using [18, Algorithm 6.1] and [18, Algorithm 6.9] with some
slight modifications. We leave the details to the full version of this paper [17].

Since F is a matching throughout the algorithm of Lemma12, we need to
run the algorithm recursively O(|V |) times, and G + F has O(|V |) edges in
each recursive call of the algorithm. To execute the steps of the algorithm, we
need to know every cut-pair (u, v) of the graph G + F along with the value of
b(u,v)(G + F ), and we need to check whether the condition of Step 5 holds.
These all can be checked in O(|V |) time based on the structure provided by
the algorithm of Hopcropft and Tarjan [9], see again the full version [17] for
more details. Finally, Step 7 of the algorithm of Lemma 12 can also be executed
in O(|V |) time since we only need to calculate the subgraphs T (xx1), T (xx2),
T (xx3), and T (x1x3) (which needs O(|V |) running time by [4]) for an arbitrarily
chosen x ∈ N − {x1, x2, x3} and check whether T (xx1) ∪ T (xx2) ∪ T (xx3) =
T (xx2) ∪ T (x1x3). �

5 Concluding Remarks

In this paper, we solved Problem1 in the case where the input is a tight graph.
For general inputs, a constant factor approximation can be given, as follows.

Let us recall the global rigidity pinning problem. In this problem, the goal is
to anchor a minimum set of points of a framework such that the resulting frame-
work is globally rigid. In the generic case, pinning can be modelled by adding a
complete graph on the anchored vertices to the graph (see [6]). Moreover, instead
of a complete graph we can add any globally rigid graph on the anchored ver-
tex set, for example the square graph of a cycle. (A square of a graph arises
by connecting all pairs of vertices which has distance at most 2 in the original
graph). Notice that the square graph of the cycle on the vertex set V consists
of 2|V | edges. This way one can see that a constant approximation to the global
rigidity pinning problem gives a constant approximation to the global rigidity
augmentation problem and vice versa. Fekete and Jordán [6] investigated the
global rigidity pinning problem and gave a constant approximation algorithm
to it. This implies that there exists a polynomial time constant approximation
algorithm to Problem1 (and it has an approximation ratio at most 4 times more
than that of the pinning problem).

For tight input graphs, we can solve the global rigidity pinning problem
optimally as follows. It can be shown easily that we must pin at least one vertex
from each atom. On the other hand, a complete graph on a transversal of A∗

indeed augments G to a globally rigid graph as it contains also the optimal
edge set given by Theorem 4. Thus one vertex from each atom pins the graph
optimally. (When G is 3-connected, we may apply the method of [18, Sect. 8]
directly.)
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Abstract. A rectangular dual of a graph G is a contact representation
of G by axis-aligned rectangles such that (i) no four rectangles share
a point and (ii) the union of all rectangles is a rectangle. The partial
representation extension problem for rectangular duals asks whether a
given partial rectangular dual can be extended to a rectangular dual,
that is, whether there exists a rectangular dual where some vertices are
represented by prescribed rectangles. Combinatorially, a rectangular dual
can be described by a regular edge labeling (REL), which determines the
orientations of the rectangle contacts. We characterize the RELs that
admit an extension, which leads to a linear-time testing algorithm. In
the affirmative, we can construct an extension in linear time.

Keywords: rectangular dual · partial representation extension

1 Introduction

A geometric intersection representation of a graph G is a mapping R that assigns
to each vertex w of G a geometric object R(w) such that two vertices u and v
are adjacent in G if and only if R(u) and R(v) intersect. In a contact represen-
tation we further require that, for any two vertices u and v, the objects R(u)
and R(v) have disjoint interiors. The recognition problem asks whether a given
graph admits an intersection or contact representation whose sets have a specific
geometric shape. Classic examples are interval graphs [1], where the objects are
intervals of R, or coin graphs [18], where the objects are interior-disjoint disks in
the plane. The partial representation extension problem is a natural generaliza-
tion of this question where, for each vertex u of a given subset of the vertex set,
the geometric object is already prescribed, and the question is whether this par-
tial representation can be extended to a full representation of the input graph. In
the last decade the partial representation extension problem has been intensely
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T. Calamoneri and F. Corò (Eds.): CIAC 2021, LNCS 12701, pp. 340–353, 2021.
https://doi.org/10.1007/978-3-030-75242-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75242-2_24&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0001-8917-5269
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-75242-2_24


Extending Partial Representations of Rectangular Duals 341

studied for various classes of intersection graphs, such as (unit or proper)
interval graphs [15,16], circle graphs [6], trapezoid graphs [20], as well as for
contact representations [5] and bar-visibility representations [7].

Fig. 1. A rectangular dual R for the graph G; the REL (L1, L2) induced by R.

Rectangular Duals. In this paper we consider the partial representation exten-
sion problem for the following type of representation. A rectangular dual of a
graph G is a contact representation R of G by axis-aligned rectangles such that
(i) no four rectangles share a point and (ii) the union of all rectangles is a rect-
angle; see Fig. 1. We observe that G may admit a rectangular dual only if it is
planar and internally triangulated. Furthermore, a rectangular dual can always
be augmented with four additional vertices (one on each side) so that only four
rectangles touch the outer face of the representation. It is customary that the
four vertices on the outer face are denoted by vS, vW, vN, and vE corresponding
to the geographic directions, and to require that R(vW) is the leftmost rectan-
gle, R(vE) is rightmost, R(vS) is bottommost, and R(vN) is topmost; see Fig. 1.
We call these vertices the outer vertices and the remaining ones the inner ver-
tices. It is known that a plane internally-triangulated graph has a representation
with only four rectangles touching the outer face if and only if its outer face is
a 4-cycle and it has no separating triangles, that is, a triangle whose removal
disconnects the graph [19]. Such a graph is called a properly-triangulated planar
(PTP) graph. Kant and He [14] have shown that a rectangular dual of a given
PTP graph G can be computed in linear time.

Historically, rectangular duals have been studied due to their applications
in architecture [26], VLSI floor-planning [23,27], and cartography [12]. Besides
the question of an efficient construction algorithm [14], other problems con-
cerning rectangular duals are area minimization [4], sliceability [22], and area-
universality, that is, rectangular duals where the rectangles can have any given
areas [9]. The latter question highlights the close relation between rectangular
duals and rectangular cartograms. Rectangular cartograms were introduced in
1934 by Raisz [25] and combine statistical and geographical information in the-
matic maps, where geographic regions are represented as rectangles and scaled in
proportion to some statistic. There has been lots of work on efficiently computing
rectangular cartograms [3,13,21]; Nusrat and Kobourov [24] recently surveyed
this topic. As a dissection of a rectangle into smaller rectangles, a rectangular
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dual is also related to other types of dissections, for example with squares [2] or
hexagons [8]; see also Felsner’s survey [10].

Regular Edge Labelings. The combinatorial aspects of a contact representation
of a graph G can often be described with a coloring and orientation of the edges
of G. For example, Schnyder woods describe contact representations of planar
graphs by triangles [11]. Such a description also exists for contact representations
by rectangles, for example for triangle-free rectangle arrangements [17] or rect-
angular duals [14]. More precisely, a rectangular dual R gives rise to a 2-coloring
and an orientation of the inner edges of G as follows. We color an edge {u, v}
blue if the contact between R(u) and R(v) is a horizontal line segment, and we
color it red otherwise. We orient a blue edge {u, v} as (u, v) if R(u) lies below
R(v), and we orient a red edge {u, v} as (u, v) if R(u) lies to the left of R(v);
see Fig. 1. The resulting coloring and orientation has the following properties:

Fig. 2. Edge order at the four outer
vertices and an inner vertex. (Color
figure online)

1. All inner edges incident to vW, vS, vE, and
vN are red outgoing, blue outgoing, red
incoming, and blue incoming, respectively.

2. The edges incident to each inner ver-
tex form four counterclockwise ordered
non-empty blocks of red incoming, blue
incoming, red outgoing, and blue outgo-
ing, respectively.

A coloring and orientation with these properties is called a regular edge labeling
(REL) or transversal structure. We let (L1, L2) denote a REL, where L1 is the
set of blue edges and L2 is the set of red edges. Let L1(G) and L2(G) denote the
two subgraphs of G induced by L1 and L2, respectively. Note that both L1(G)
and L2(G) are st-graphs, that is, directed acyclic graphs with exactly one source
and exactly one sink. It is well known that a PTP graph has a rectangular dual
if and only if it admits a REL [14]. A rectangular dual R realizes a REL (L1, L2)
if the REL induced by R is (L1, L2). Note that while a rectangular dual uniquely
defines a REL, there exist different rectangular duals that realize any given REL.

Partial Rectangular Duals. For a graph G, let E(G) denote the set of edges
and V (G) the set of vertices of G. Let U be a subset of V (G). Let G[U ] be the
subgraph of G induced by U . A partial rectangular dual of G[U ] is a contact
representation P that maps each u ∈ U to an axis-aligned rectangle P(u). For
each u ∈ U , we call P(u) a fixed rectangle. For a given graph G, a subset U
of V (G), and a partial rectangular dual P of G[U ], the partial rectangular dual
extension problem asks whether P can be extended to a rectangular dual R
of G. In particular, for such an extension R and each u ∈ U , we require that
P(u) = R(u). In this paper, we study the variant of this problem where we are
not only given G, U , and P, but also a REL (L1, L2) of G and ask whether there
is an extension R of P that realizes (L1, L2).
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Closely related work includes partial representation extension of segment
contact graphs [5] and bar-visibility representations [7]. Both problems are NP-
complete. However, the hardness reductions crucially rely on low connectivity for
choices in the planar embedding. Since PTP graphs are triconnected, they have
a unique planar embedding and hence these results cannot be easily transferred.

Contribution and Outline. Our first contribution is a characterization of RELs
that admit an extension of a given partial rectangular dual via the existence of
what we will call a boundary path set ; see Sect. 2. Next, we provide an algorithm
that constructs a boundary path set (if possible) as well as an algorithm that com-
putes a representation extension from a boundary path set. Both algorithms run
in O(nh) time, where n = |V (G)| and h = |U |, and are detailed in Sect. 3. Finally,
we show that by checking only for the existence of a boundary path set, but not
explicitly constructing one, we can solve the partial representation extension prob-
lem in linear time; see Sect. 4. We summarize our contribution as follows.

Theorem 1. The partial representation extension problem for rectangular duals
with a fixed regular edge labeling can be solved in linear time. For yes-instances,
an explicit rectangular dual can be constructed within the same time bound.

2 Characterization

In this section, we characterize when a given PTP graph G with REL (L1, L2),
U ⊂ V (G), and partial representation P of G[U ] admits an extension R that
realizes (L1, L2). Before we can explain our main idea, we require an observation
and a few definitions.

We may assume that vW, vS, vE, and vN are in U . (Otherwise, we simply place
the outer rectangles appropriately around P such that they touch potential neigh-
bours in P.) The rectangles P(vW), P(vS), P(vE), and P(vN) thus form a frame
with the area inside partially covered and partially uncovered. To make the ques-
tion of whether this uncovered area can be filled with the rectangles for V (G) \ U
more accessible, we subdivide the uncovered area into smaller parts and then try to
fill them one by one. More precisely and as illustrated in Fig. 3, we draw a vertical

Fig. 3. Dissection of the interior of the frame into (a) vertical and (b) horizontal strips.
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Fig. 4. (a) A boundary path pair for the strip with start rectangle R(u) and end
rectangle R(v). (b) Neighboring strips can have overlapping boundary paths.

segment through the vertical sides of each fixed rectangle of an inner vertex until
another fixed rectangle is hit. This divides the uncovered area inside the frame
into vertical strips. We call the fixed rectangles bounding a vertical strip S from
below and above the start and end rectangles of S, respectively. We define hori-
zontal strips symmetrically. The start and end rectangle of a horizontal strip are
to its left and right, respectively.

The idea for our characterization is as follows. Consider an extension R of P,
where the strips are now filled with rectangles. The vertical strips thus naturally
induce subgraphs in L1(G) containing the vertices that lie inside them plus their
start and end rectangle. Together, these subgraphs cover the whole of L1(G). In
particular, for a vertical strip S with start rectangle P(u) and end rectangle P(v),
the outer face of its induced subgraph consists of a path containing the rectangles
along the left side of S and a path along the right side of S. The idea is that,
even with R not known, we have to be able to cover L1(G) (and L2(G)) with
subgraphs defined by pairs of boundary paths. We now make this precise.

For two paths P and P ′ in L1(G), we write P � P ′ if no vertex of P lies to
the right of P ′, i.e., there is no path from a vertex in P ′ to a vertex in P \ P ′ in
L2(G). Let S be a vertical strip with start rectangle P(u) and end rectangle P(v).
A boundary path pair of S is a pair of paths 〈Pl(S), Pr(S)〉 from u to v in L1(G)
such that Pl(S) � Pr(S) and V (Pl(S)∪Pr(S))∩U = {u, v}; see Fig. 4(a). Based
on the boundary path pair of S, we define S(L1(G)) as the maximal subgraph
of L1(G) that has precisely Pl(S) and Pr(S) as the boundary of the outer face.
The definitions for horizontal strips, where we order paths Pb(S) and Pt(S) from
bottom to top, are analogous.

Let S1 and S2 be the sets of vertical and horizontal strips, respectively. We
define a boundary path set of a REL (L1, L2) as a set of boundary path pairs, one
for each strip in S1 and S2, that satisfy the following properties (see Fig. 4(b)):



Extending Partial Representations of Rectangular Duals 345

Fig. 5. (a) Graph GB for a box B; (b) representation RB for GB ; (c) adjusting the
left boundary of RB to RB′ ; and (d) adjusting the bottom boundary to R(u).

(B1) For strips S and S′ in S1 with S left of S′, it holds that Pr(S) � Pl(S′).
(B2) For strips S and S′ in S2 with S below S′, it holds that Pt(S) � Pb(S′).
(B3) The vertical strips cover L1(G), and the horizontal strips cover L2(G), that

is,
⋃

S∈S1
S(L1(G)) = L1(G) and

⋃
S∈S2

S(L2(G)) = L2(G).

An extension R of P directly induces a boundary path set. In the following,
we show that the converse is also true.

Theorem 2. Let G be a PTP graph, let U ⊂ V (G), and let P be a partial
rectangular dual of G[U ]. A REL (L1, L2) of G admits an extension of P if and
only if (L1, L2) admits a boundary path set.

Proof. Suppose that (L1, L2) admits a boundary path set. We show how to use
this set to construct an extension of P.

Let S be a vertical strip, let S′ be a horizontal strip, and assume that B =
S ∩ S′ is nonempty. We call B a box. All such boxes together with P(U) form a
rectangle. We now fill the boxes from the bottom-left to the top-right.

The paths in the pairs 〈Pl(S), Pr(S)〉 and 〈Pb(S′), Pt(S′)〉 pairwise intersect
in single vertices vlb, vlt, vrb, vrt. Note that some or even all of these four vertices
may coincide. Let GB be the subgraph of G whose outer cycle is formed by
the boundary path pairs between these vertices; see Fig. 5(a). If we enclose GB

appropriately with a 4-cycle, we can apply the algorithm of Kant and He [14] to
compute a rectangular dual RB of GB .

By the order in which we fill boxes, we have already treated those immediately
to the left and below B; either of them may also be a fixed rectangle. Without
loss of generality, we assume that there is a box B′ that touches B from the left
and a fixed rectangle that touches B from below.

First, we modify RB such that it fits to the rectangular dual RB′ that is drawn
inside of B′. Property (B1) of a boundary path set ensures that the rectangles
in RB′ that are adjacent to the right side of RB′ are “compatible” to the rectangles
in RB that are adjacent to the left side of RB . Hence, starting with a tiny version
of RB placed in the lower left corner of B, we can stretch RB vertically along
suitable horizontal cuts such that, for every vertex u in V (GB′)∩V (GB), the left
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piece of R(u) (in B′) and the right piece of R(u) (in B) fit together; see the green
rectangle g in Fig. 5(b)–(c).

Now suppose that, for some vertex u ∈ U , the fixed rectangle P(u) bounds B
from below. Property (B3) of a boundary path set ensures that if we stretch RB

horizontally along some vertical cut, then we have the correct horizontal contacts
with P(u); see the yellow rectangle y in Fig. 5(c)–(d).

Finally, note that property (B3) ensures that, at the end of this construction,
every vertex of G is represented by a rectangle in R. 	


Fig. 6. A rectangular dual with a
boundary path set of size O(nh).

We close this section with an observation
about the potential size of boundary path
sets. As we have noted above, a vertex may
lie on multiple boundary paths; in fact, it
may even lie on all of them as the example in
Fig. 6 shows. Hence, the size of a boundary
path set can be in Ω(nh), where n = |V (G)|
and h = |U |.

3 Finding a Boundary Path Set

We now show how to compute a boundary path set for a given REL (L1, L2) and
a partial representation P. The idea is as follows. As we did for the boxes in the
proof of Theorem 2, we handle the vertical strips in S1 from bottom-left to top-
right. When computing the boundary path pair for a vertical strip S ∈ S1, we
want the resulting graph S(L1(G)) to include all necessary vertices but otherwise
as few vertices as possible. In particular, there may be rectangles that by (L1, L2)
need to have their left boundary align with the left boundary of S and thus need
to be in Pl(S). To make this more precise, let P(v1),P(v2), . . . ,P(vk) be the
fixed rectangles whose right sides touch the left side of S. Let x be a vertex that
lies on a path from u to v in L1(G). Then we say x is left-bounded in S if and
only if one of the following conditions applies (see Fig. 7(a)):

(L1) x = u or x = v and the left side of P(x) aligns with the left side of S;
(L2) (vi, x), for some i ∈ {1, . . . , k}, is an edge in L2(G);
(L3) (y, x) is the leftmost outgoing edge of y and the leftmost incoming edge of

x in L1(G), and y is left-bounded;
(L4) (x, y) is the leftmost outgoing edge of x and the leftmost incoming edge of

y in L1(G), and y is left-bounded.

Condition (L2) applies if R(x) has to be directly to the right of a fixed rectangle
left of S. Condition (L3) and (L4) apply if the left side of R(x) has to align
with the left side of a left-bounded rectangle R(y) directly above or below,
respectively. Note that in this case there exists also a vertex y′ that is right-
bounded in a strip S′ left of S and (y′, x) ∈ E(L2(G)).

Next, let P(v′
1),P(v′

2), . . . ,P(v′
k) be the fixed rectangles whose left sides

touch the right side of S. Then x is right-bounded in S if and only if one of
the following conditions applies (see Fig. 7(b)):
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Fig. 7. (a) Vertex u is left-bounded in S on Condition (L1), c on Condition (L2), a
on Condition (L3), and b is not left-bounded; (b) vertex c is right-bounded in S′ on
Condition (R2), and a and b on Condition (R3); (c) S′′ has neither left- nor right-
bounded vertices except for u and v.

(R1) x = u or x = v and the right side of P(x) aligns with the right side of S;
(R2) (x, v′

i), for some i ∈ {1, . . . , k}, is an edge in G2;
(R3) (y, x) is the rightmost outgoing edge of y and the rightmost incoming edge

of x in L1(G), and y is right-bounded;
(R4) (x, y) is the rightmost outgoing edge of x and the rightmost incoming edge

of y in L1(G), and y is right-bounded.

Note that x can be both left- and right-bounded. Furthermore, starting from
u, v′

1, . . . , v
′
k, v, these conditions can easily be checked for each strip. Overall, we

can thus find all left- and right-bounded vertices of all strips in O(n) time.

Theorem 3. Let G be a PTP graph with n vertices and REL (L1, L2), let U ⊂
V (G), let h = |U |, and let P be a partial rectangular dual of G[U ].
In O(nh) time, we can decide whether (L1, L2) admits a boundary path set with
respect to P and, in the affirmative, compute it.

Proof. We show how to compute the boundary path pairs for vertical strips;
horizontal strips can be treated analogously. Let S�

1 be the strips in S1 that
have already been processed. Let S be a strip with start rectangle P(u) and end
rectangle P(v) such that every strip left of S is in S�

1 .
An edge (x, y) of L1(G) is suitable if one of the following conditions applies:

(E1) y = v;
(E2) y ∈ Pr(S′)\U , where S′ ∈ S�

1 is directly left of S and y is not right-bounded
in S′;

(E3) y �∈ U and (x, y) is not an edge of S�
1 (L1(G)).

Condition (E2) means that R(y) can span from S′ into S since it is not right-
bounded in S′. Thus, in Fig. 7(a) (w, x) is suitable but (x, y′) is not. Furthermore,
(z, v) is suitable by Condition (E1), and (u,w), (w, x), and (y, z) are suitable by
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Fig. 8. Computation of Pr(S) (a) starting with subpaths induced by u, right-bounded
vertices and v, (b) extending these subpaths with their rightmost predecessor and
successor, and (c) leftwards until they meet. (Extensions downwards are shown green.)
(Color figure online)

Condition (E3). Note that Pl(S) may only use suitable edges. Hence, to compute
Pl(S), we can start at u and always add the leftmost suitable outgoing edge until
we reach v. It follows that if, at some point, there is no suitable edge available,
then (L1, L2) does not admit a boundary path set. Taking the leftmost suitable
outgoing edge ensures that Pl(S) passes through all left-bounded vertices in S.

We now show how to construct Pr(S), enforcing that all right-bounded ver-
tices lie on Pr(S). We thus start with the set of disjoint subpaths P1, P2, . . . , Pk

induced by u, the right-bounded vertices, and v ordered from bottom to top; see
Fig. 8(a). Note that for a right-bounded vertex x its rightmost outgoing edge also
has to be in Pr(S), unless x = v, and its rightmost incoming edge also has to be
in Pr(S), unless x = u. Therefore, we extend each subpath with these rightmost
outgoing and incoming edges; see Fig. 8(b). For i ∈ {1, . . . , k−1}, we then simul-
taneously extend Pi and Pi+1 by always taking the leftmost suitable outgoing
and incoming edge, respectively, but without crossing Pl(S). If the extensions
of Pi and Pi+1 meet, we join them; see Fig. 8(c). Otherwise, both extensions will
stop (due to a lack of suitable edges). In this case there is no path Pr(S), and
then the REL (L1, L2) does not admit a boundary path set.

Once Pl(S) and Pr(S) have been computed successfully, we update the edge
set of S�

1 (L1(G)) before processing the next strip.
The runtime is linear in the size of the boundary path set, that is, O(nh). 	


Next, we show how to obtain an extension of P from a boundary path set.

Theorem 4. Let G be a PTP graph with n vertices and REL (L1, L2), let U ⊂
V (G), let h = |U |, and let P be a partial rectangular dual of G[U ]. Given a
boundary path set of (L1, L2), we can find an extension of P in O(nh) time.

Proof. In the proof of Theorem 2, we gave an algorithm that finds for every
box B the graph GB of vertices whose rectangles (partially) lie inside or on
the boundary of B. The algorithm computes a rectangular dual of GB , which
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requires O(|V (GB)|) time per box [14], and then fits each dual into the extension
built so far, which can also be done in O(|V (GB)|) time per box.

We now argue that
∑

B |V (GB)| = O(nh). Namely, a box B either lies com-
pletely inside a rectangle, in which case |V (GB)| = 1, or it contains part of
the boundary of every rectangle that corresponds to a vertex in V (GB). For
any vertex v ∈ V (G) \ U , each of the four boundary sides of R(v) lies either
inside a single strip or on the boundary between two strips, so the boundary
of R(v) can lie in only O(h) boxes in total. As there are O(h2) boxes, we have∑

B |V (GB)| ∈ O(h2 + nh) = O(nh). 	


4 Linear-Time Algorithm

Explicitly constructing a boundary path set, as in Theorem 3, requires time
proportional in the size of the set, which can however be in Ω(nh). In this
section, we show that even without an explicit construction, we can decide if
a boundary path set exists, and if so, compute an extension. Both the decision
and the computation can be done in linear time.

Our approach relies on the following observations. Suppose a boundary path
set exists. Let v be a vertex in V (G) \U that lies on a boundary path of vertical
strips S1, . . . , Sk, ordered from left to right. Then the left boundary of R(v)
lies in S1 and the right boundary in Sk. Thus, to compute the x-coordinates
of R(v), it suffices to know the leftmost and the rightmost boundary path on
which v lies. Instead of constructing all boundary path pairs of vertical strips,
we only construct the subgraph H1 of L1(G) induced by U and the vertices
on the boundary path pairs. We call H1 the vertical boundary graph of (L1, L2).
Furthermore, for each edge e in H1, we store the leftmost and the rightmost strip
for which e lies on a boundary path. Note that as H1 is a subgraph of L1(G),
the size of H1 is in O(n). Analogously, we define H2 for the horizontal strips.

Before we show how to construct the boundary graphs H1 and H2, we prove
that they suffice to compute an extension of P.

Lemma 5. Let G be a PTP graph with n vertices, let U ⊂ V (G), let P be a
partial representation of G[U ] and (L1, L2) a REL of G. If boundary graphs H1

and H2 of (L1, L2) are given, then an extension of P that realizes (L1, L2) can
be computed in O(n) time.

Proof. We show how to compute the x-coordinates of rectangles using H1; the
y-coordinates can be computed analogously with H2. The idea is to compute
a rectangular dual for each inner face of H1, which in total will yield a full
rectangular dual. Note that the boundary of each face of H1 consists of two
directed paths between a start and an end vertex. Therefore, each face has a
single source, a single sink, a left path, and a right path.

We distinguish two types of inner faces of H1, namely, whether they describe
a region inside a strip or a part of the boundary of a strip. A face f of the latter
type can be identified by the occurrence of a right-bounded vertex v on the left
path of f where v is not the source or sink of f ; see Fig. 9(a). Note that in this
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Fig. 9. Correspondence between a face of H1 and (a) a part of the boundary of a strip
or (b) a region inside a strip; extending H1 with (c) Pl(S) and (d) Pr(S).

case all inner vertices of the left path of f are right-bounded and all inner vertices
of the right path of f are left-bounded. We then set the right x-coordinate of
every inner vertex on the left path and the left x-coordinate of every inner vertex
on the right path to the x-coordinate of the respective boundary of the strip.

Otherwise, an inner face f of H1 describes a region inside a strip of S; see
Fig. 9(b). We define the graph Gf as the subgraph of G with all vertices that
lie on or inside the cycle that is defined by f . By adding an outer four-cycle
appropriately, we obtain a rectangular dual Rf of Gf with the algorithm by
Kant and He [14]. We then scale Rf to the width of S and set the x-coordinates
for the vertices in Gf inside S accordingly, that is, the right x-coordinate for the
vertices on the left path of f , the left x-coordinate for vertices on the right path
of f , and both x-coordinates for interior vertices of Gf .

After we have processed all faces, both x-coordinates of all vertices are set
since each vertex is either fixed, has a face to the left and a face to the right, or
lies inside a face. Since the faces are ordered from left to right in accordance with
their respective strips, the computed x-coordinates of the rectangles also form
the correct horizontal adjacencies. We repeat this process with H2 to compute
the y-coordinates and thus to obtain also the correct vertical adjacencies.

Processing a face f takes time linear in the size of Gf . Hence, the total
running time is linear in the size of L1(G) and L2(G), and thus in O(n). 	


Lemma 6. Let G be a PTP graph with n vertices, let U ⊂ V (G), let P be a
partial representation of G[U ] and (L1, L2) a REL of G. In O(n) time, we can
decide whether (L1, L2) admits a boundary path set with respect to P and, in the
affirmative, compute boundary graphs H1 and H2.

Proof. As in the proof of Theorem 3, we focus again on vertical strips and process
them from bottom-left to top-right. Let S�

1 be the strips in S1 that have already
been processed. Let S be a strip with start rectangle P(u) and end rectangle P(v)
such that every strip left of S is in S�

1 . The idea is to only compute the parts
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of Pl(S) that do not coincide with a boundary path of a strip S′ ∈ S�
1 and the

parts of Pr(S) that do not coincide with Pl(S). Initially, set H1 as L1(G)[U ].
We start with Pl(S); see Fig. 9(c). Observe that Pl(S) should only consist

of u, vertices left-bounded in S, v, and vertices on paths Pr(S′) for S′ ∈ S�
1 .

Let P1, . . . , Pk be the subpaths induced by u, vertices left-bounded in S, and v.
Let xi be the first vertex of Pi and yi the last. Further let (wi, xi) be the leftmost
incoming edge of xi and let (yi, zi) be the leftmost outgoing edge of yi. For
i ∈ {2, . . . , n}, wi already has to be in H1 but not in U ; otherwise Pl(S) does
not exist. The analogous condition needs to hold for (yi, zi). If this holds for
each i ∈ {1, . . . , k}, we add the vertices and edges in each Pi as well as the edges
(wi, xi) and (yi, zi) to H1. Finally, we can test that the Pi’s are in the correct
order in H1 with an st-ordering of L1(G).

Checking the existence of Pr(S) works like the construction in Theorem 3;
see Fig. 9(d). Recall that we extended subpaths induced by u, right-bounded
vertices, and v, first with right-most incoming and outgoing edges appropriately,
and then tried to join subsequent subpaths by taking the left-most outgoing
and incoming edges, respectively. Observe that reaching Pl(S) during such an
extension, now means that we encounter a vertex in H1 \ U ; see Fig. 9. Hence,
here we stop extensions when encounter a vertex v that is already in H1 but not
in U . If connecting the subpaths to each other or H1 is successful, we test their
order again with an st-ordering of L1(G) and finally add them to H1.

During the construction of H1 we also need to label the faces with the strips
they belong to. Therefore when a subpath Pi, for i ∈ {1, . . . , k − 1}, is added
to H1 as part of a left boundary path Pl(S), we tell its left face that is lies on the
left boundary of S. For any subpath added to H1 as part of a right boundary
path Pr(S), we tell its left face that it lies inside S.

Lastly, note that the running time is linear in the size of H1, H2 and G. 	

As a result of Lemmas 5 and 6 we get our main result, Theorem 1.

Theorem 1. The partial representation extension problem for rectangular duals
with a fixed regular edge labeling can be solved in linear time. For yes-instances,
an explicit rectangular dual can be constructed within the same time bound.

5 Concluding Remarks

We have characterized the partial rectangular duals that admit an extension real-
izing a given REL in terms of boundary path sets. Based on this, we have given
an algorithm that computes an extension, if it exists, in time proportional to the
size of the boundary path set. We have sped up this algorithm by considering only
the underlying simple graph of a boundary path set – the boundary graph.

The partial rectangular dual extension problem remains open when no REL
is specified. Eppstein et al. [9] gave algorithms that compute constrained area-
universal rectangular duals and solved the extension problem for RELs. A partial
rectangular dual induces a partial REL. Hence an extension of a partial rectangu-
lar dual P can be found by computing every extension of this partial REL and by
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testing for each whether it admits an extension of P, using our linear-time algo-
rithm. There can, however, be exponentially many extensions of a partial REL.
We are interested in a faster approach.
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Abstract. An independent set S in a graph G is k-swap optimal if there
is no independent set S′ such that |S′| > |S| and |(S′ \S)∪ (S \S′)| ≤ k.
Motivated by applications in data reduction, we study whether we can
determine efficiently if a given vertex v is contained in some k-swap opti-
mal independent set or in all k-swap optimal independent sets. We show
that these problems are NP-hard for constant values of k even on graphs
with constant maximum degree. Moreover, we show that the problems
are ΣP

2 -hard when k is not constant, even on graphs of constant maxi-
mum degree. We obtain similar hardness results for determining whether
an edge is contained in a k-swap optimal max cut. Finally, we consider a
certain type of edge-swap neighborhood for the Longest Path problem.
We show that for a given edge we can decide in f(Δ + k) · nO(1) time
whether it is in some k-optimal path.

Keywords: local search · independent set · max-cut · longest path ·
NP-hardness

1 Introduction

Local search and data reduction are two widely successful strategies for coping
with hard computational problems. Local search, which applies most naturally
to optimization problems, aims at computing good heuristic solutions by using
the following generic approach: Define a local neighborhood relation on the set of
feasible solutions. Then, compute some feasible solution S. Now check whether
there is a better solution S′ in the local neighborhood of S. If this is the case,
then replace S by S′. Otherwise, output the locally optimal solution S and stop.

Local search algorithms have been explored thoroughly from a practical and
theoretical point of view [2,8–10,14]. The theoretical framework most closely
related to our investigations is parameterized local search. Here, the local search
neighborhood comes equipped with an operational parameter k that bounds
the radius of the local search neighborhood. The size of the neighborhood is
assumed to be polynomial in the input size for every fixed value of k. For example,
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in Independent Set one is given a graph G and asks for a largest vertex
set S such that no two vertices in S are adjacent. The feasible solutions are
the independent sets of G. A natural neighborhood with a radius k is the k-
swap neighborhood: Two vertex sets S and S′ are in their respective k-swap
neighborhoods if |S ⊕ S′| ≤ k, where ⊕ denotes the symmetric difference of two
sets. In LS-Independent Set, one is then given a graph G, an independent
set S, and an integer k and asks whether the k-swap neighborhood of S contains
a larger independent set S′. LS-Independent Set can be solved in ΔO(k) · n
time [6,10]; the currently best fixed-parameter algorithm for LS-Independent

Set is efficient in practice, solving the parameterized local search problem for k ≈
20 even on large real-world graphs [10]. Summarizing, for moderate values of k,
a k-swap optimal independent set can be computed faster than an optimal one.

In data reduction, the idea is to preprocess any instance of a hard problem
by identifying those parts of the instance that are easy to solve. Usually, data
reduction algorithms are stated as a collection of data reduction rules which
can be applied if a certain precondition is fulfilled and reduce the instance size
whenever they apply. Two classic trivial reduction rules for Independent Set

are as follows: First, remove any vertex v that has no neighbors in G and add v
to the independent set that is computed for the remaining instance. Second,
remove any vertex v that has two degree-one neighbors.

In this work, we aim to explore the usefulness of local search or, more pre-
cisely, of local optimality, in the context of data reduction for hard problems.
The correctness of the first reduction rule above is rooted in the observation
that v is contained in every maximum independent set. Similarly, the correct-
ness of the second rule is rooted in the fact that v is contained in no maximum
independent set. Most of the known data reduction rules employ this principle
and the crux of proving the correctness of a data reduction rule lies in proving
that v is contained in all or no optimal solution. In general, given a vertex v and
computing whether v is contained in a largest independent set is just as hard
as computing an optimal solution in the first place. This is why data reduction
rules use specific preconditions that allow proving optimality of including or
excluding v without computing an optimal solution.

One may avoid such specific preconditions by relying on locally optimal solu-
tions instead of optimal solutions: If we could compute efficiently that a vertex v
is not contained in a locally optimal solution for some local search neighbor-
hood, then we could remove v from the graph. Conversely, if we could compute
efficiently that some vertex v is contained in every locally optimal solution, then
we could remove v and its neighborhood from the graph as described above. The
hope is that, since computing locally optimal solutions is easier for suitable local
search neighborhoods, this approach could help in circumventing the previous
dilemma: to say something about the optimal solution, one more or less needs
to compute it. Going back to the Independent Set problem, we would like to
determine whether a given vertex is in some k-swap optimal independent set.

Some Locally Optimal Independent Set (∃-LO-IS)

Input: An undirected graph G = (V,E), a vertex v ∈ V , and k ∈ N.
Question: Is v contained in some k-swap optimal independent set in G?
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If the answer is no, then v can be removed from G without destroying any
optimal solution. We may also ask whether v is in every locally optimal inde-
pendent set.

Every Locally Optimal Independent Set (∀-LO-IS)

Input: An undirected graph G = (V,E), a vertex v ∈ V , and k ∈ N.
Question: Is v contained in every k-swap optimal independent set in G?

If the answer is yes, then v belongs to every optimal independent set and we
can apply a data reduction rule that removes v and its neighbors and adds v to
the independent set that is computed for the remaining graph. Motivated by the
usefulness of efficient algorithms for these two problems in data reduction for
Independent Set, we study their complexity. We consider related problems
for two further classic NP-hard problems: Max Cut and Longest Path.

Our Results. For Independent Set our results are decidedly negative. ∃-LO-IS

and ∀-LO-IS are NP-complete and coNP-complete, respectively, even if k = 3
and Δ = 4 and also if k = 5 and Δ = 3. These results are tight1 in the
following sense: when k = 1 or when Δ = 2, then both problems can be solved
in polynomial time. Moreover, when k is not constant, we show that the problems
are even ΣP

2 -complete and ΠP
2 -complete, respectively. Thus, both problems are

substantially harder than LS-Independent Set. For Max Cut the situation
is similar: Deciding whether some edge is contained in a k-swap optimal cut or
in every k-swap optimal cut is NP-complete and coNP-complete even if k = 1
and Δ = 5. Moreover, if k is not constant then the problems are, again, ΣP

2 -
complete and ΠP

2 -complete, respectively.
Finally, we consider Longest Path with a certain edge-swap neighborhood.

We show that for this neighborhood we can determine in f(Δ + k) · nO(1) time
whether some edge is contained in a k-optimal path. If the answer is no, then
this edge can be safely removed from the input graph. Since Longest Path

is NP-hard on cubic graphs, our results indicate that there are scenarios in
which testing for the containment of edges in locally optimal solutions is a viable
approach to obtain data reduction rules for NP-hard problems.

Related Work. A related problem is to determine if there is a maximal (and,
thus, 1-swap optimal) independent set S containing only vertices of a specific
subset of vertices U ⊆ V [3,12]. In other words, this problem asks for a 1-swap
optimal independent set containing no vertex of V \ U , a generalization of the
complement problem of ∃-LO-IS for k = 1. This problem is NP-hard even on
graphs where Independent Set can be solved in polynomial time, like bipartite
graphs [3]. In the scope of 1-swaps, the Independent Set Reconfiguration

problem was analyzed extensively [1,4,5,13]. Here, we are given two independent
sets X and Y of a graph G and an integer k and we want to determine if there is a
sequence S1, . . . , Sr of independent sets such that S1 = X, Sr = Y , |Sj | ≥ k for

1 For even k, an independent set is k-swap optimal if and only if it is (k − 1)-swap
optimal [10]. Thus, only odd values of k are interesting.
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all j ∈ [1, r], and |Sj ⊕Sj+1| = 1 for all j ∈ [1, r −1]. Hence, one wants to add or
remove a single vertex at a time and transform X into Y without decreasing the
size of the current independent set below k. This problem is PSPACE-complete
even on bipartite graphs [13].

The proofs of statements marked with a (*) are deferred to a full version.

2 Preliminaries

Sets and Graphs. For a set A, we denote with
(
A
2

)
:= {{a, b} | a ∈ A, b ∈ A}

the collection of all size-two subsets of A. For two sets A and B, we denote
with A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference of A and B.

An (undirected) graph G = (V,E) consists of a set of vertices V and
a set of edges E ⊆ (

V
2

)
. For vertex sets S ⊆ V and T ⊆ V we denote

with EG(S, T ) := {{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T .
Moreover, we define EG(S) := EG(S, S). For a vertex v ∈ V , we denote
with NG(v) := {w ∈ V | {v, w} ∈ E} the open neighborhood of v in G and
with NG[v] := NG(v) ∪ {v} the closed neighborhood of v in G. Analogously, for
a vertex set S ⊆ V , we define NG[S] :=

⋃
v∈S NG[v] and NG(S) := NG[S] \ S.

If G is clear from the context, we may omit the subscript. Moreover, we denote
with Δ(G) := max{|NG(v)| | v ∈ V } the maximum degree of G.

A sequence of distinct vertices P = (v0, . . . , vk) is a path or (v0, vk)-path of
length k in G if {vi−1, vi} ∈ E(G) for all i ∈ [1, k]. We denote with V (P ) the
vertices of P and with E(P ) the edges of P .

Satisfiability. For variable set Z, we define the set of literals L(Z) := Z ∪ {¬z |
z ∈ Z}. A literal set Z̃ ⊆ L(Z) is an assignment of Z if |{z,¬z} ∩ Z̃| = 1
for all z ∈ Z. For a subset X ⊆ Z of the variables we denote with τZ(X) :=
X ∪ {¬z | z ∈ Z \ X}, the assignment of Z where all variables of X occur
positively and all variables of Z \ X occur negatively. A clause φ ⊆ L(Z) is
satisfied by an assignment τ of Z if φ∩ τ �= ∅, and we write τ |= φ. Analogously,
a set Φ ⊆ P(L(Z)) of clauses is satisfied by τ if τ |= φ for all φ ∈ Φ, and we
write τ |= Φ.

3 Independent Set

In this section, we analyze the complexity of ∃-LO-IS and ∀-LO-IS. First, let us
set the following notation. Let G = (V,E) be a graph and let k be an integer. We
call a subset W ⊆ V a k-swap in G if |W | ≤ k. A set S ⊆ V is an independent
set if {v, w} �∈ E for all v, w ∈ S. Further, an independent set S is k-swap
optimal in G if there is no k-swap W in G such that S⊕W is an independent set
and |S| < |S⊕W |. We will make use of the following observation on improving k-
swaps.

Observation 1 ([10, Lemma 2]). Let S be an independent set for a graph G =
(V,E) and let k be an integer. Then, S is k-swap optimal if and only if there is no
swap C ⊆ V of size at most k such that G[C] is connected and |S ⊕C| = |S|+1.



358 C. Komusiewicz and N. Morawietz

Observation 2. An instance (G, v, k) of ∀-LO-IS is a yes-instance if and only
if (G,w, k) is a no-instance of ∃-LO-IS for every w ∈ N(v).

First, we observe that we can solve ∃-LO-IS in polynomial time for the
following almost trivial cases. Note that for k = 1, we ask whether a vertex is
contained in some maximal independent set.

Proposition 1 (*). ∃-LO-IS and ∀-LO-IS can be solved in polynomial time
if k = 1 or Δ ≤ 2.

We now show that we cannot improve upon Proposition 1, neither in terms of k
nor in terms of Δ.

Theorem 3 (*). ∃-LO-IS is NP-complete and ∀-LO-IS is coNP-complete even
if k = 3 and Δ = 4.

Theorem 4. ∃-LO-IS is NP-complete and ∀-LO-IS is coNP-complete even
if k = 5 and Δ = 3.

Proof. First, we show the statement for ∃-LO-IS via reducing from SAT. Given
an instance I = (Z,Φ) of SAT, we construct in polynomial time an equivalent
instance I ′ = (G = (V,E), v∃, k) of ∃-LO-IS where k = 5 and where G has
maximum degree three. We may assume that every clause has size three, every
variable of Z occurs twice positively and twice negatively in Φ, and every variable
occurs at most once per clause since SAT remains NP-hard in this case [15].

Let ψ denote the number of clauses and let Φ = {φ1, . . . , φψ}. We start with
an empty graph G and add for every variable z ∈ Z a cycle (z1,¬z1, z2,¬z2, z1).
We add for every clause φi = {�1, �2, �3} ∈ Φ the subgraph Gφi

= (Vφi
, Eφi

)
shown in Fig. 1a. The graph Gφi

contains the vertex ui, for each j ∈ {1, 2, 3,∨},
the path (ai

j , b
i
j , c

i
j , d

i
j , e

i
j), and the edges {bi

1, a
i
∨}, {bi

2, a
i
∨},{bi

∨, ui}, and {bi
3, ui}.

We connect a gadget Gφ with the cycles of the variables of φ as follows: for
every j ∈ [1, 3] we add the edge {�1j , a

i
j} if �1j is not connected to any clause gadget

already. Otherwise, we add the edge {�2j , a
i
j}. Since every variable occurs twice

positively and twice negatively in Φ, the vertices �1j and �2j are each connected to
exactly one subgraph Gφi

at the end of the construction. The idea behind Gφi
is

that every 5-swap optimal independent set S for G containing the vertices ai
1, a

i
2,

and ai
3, also contains the vertex ui. Hence, if no vertex representing any literal

of φi is contained in S (that is, if φi is not satisfied), then ui is contained in S
which will imply that v∃ is not contained in S by the remaining gadgets.

Next, we add a binary tree with leaf vertices {ui | φi ∈ Φ}, the set of
inner vertices T , and root r to G. Afterwards, we remove all edges of this
tree and connect every parent vertex p with his two child vertices c1 and c2
by adding the subgraph Gp = (Vp, Ep) shown in Fig. 1b. This subgraph con-
tains the vertices of the binary tree p, c1 and c2, the vertices p′, q, q13 , q

2
3 , and

a cycle (p0, p11, p
1
2, p

1
3, p

1
4, p5, p

2
4, p

2
3, p

2
2, p

2
1, p0). Further, the set Ep contains the

edges {p13, q
1
3}, {p23, q

2
3}, {p11, c1}, {p21, c2}, {p, p′}, {p′, q}, and {p′, p0}.
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Fig. 1. The gadgets of the reduction of Theorem 4.

Finally, we add a path (v0, v1, v2, v3, r) to G and set v∃ := v1. This completes
the construction of I ′. Note that the constructed graph has a maximum degree of
three. We show that I is a yes-instance of SAT if and only if I ′ is a yes-instance
of ∃-LO-IS.

(⇒) Suppose that I is a yes-instance of SAT. Thus, there is an assignment τ
for Z such that τ |= Φ. Let φi = {�1, �2, �3} be a clause of Φ and let τ be an
assignment of Z. We set

Vφi
(τ) := {bi

j , d
i
j | �j ∈ τ} ∪ {ai

j , c
i
j , e

i
j | �j �∈ τ} ∪

{{bi
∨, di

∨} τ |= {�1, �2}
{ai

∨, ci
∨, ei

∨} otherwise .

Note that Vφi
(τ) is an independent set. We set S := {�1, �2 | � ∈ τ} ∪⋃

φ∈Φ Vφ(τ) ∪ {p′, p11, p
1
3, p5, p

2
3, p

2
1 | p ∈ T} ∪ {v1, v3}. That is, S contains the

vertices representing the literals of τ , the vertices of the clause gadgets accord-
ing to τ , the black vertices of Vp shown in Fig. 1b for every p ∈ T , and the
vertices v3 and v1 = v∃. By construction, S is an independent set. It remains to
show that S is 5-swap optimal. To this end, we observe the following.

Claim 1 (*). For each vertex w ∈ V \ S with |N(w) ∩ S| ≤ 1, we have
|N(w)| = 1.

Since a 5-swap W for S with |S ⊕ W | > |S| has to contain two distinct
vertices w1, w2 ∈ V \ S with |N(w1) ∩ S| = |N(w2) ∩ S| = 1 we obtain by
Claim 1 and the fact that degree-one vertices in G have pairwise distance at least
six, that there is no such W . Consequently, S is a 5-swap optimal independent
set in G with v∃ = v1 ∈ S.

(⇐) Suppose that I ′ is a yes-instance of ∃-LO-IS. Thus, there is a 5-swap
optimal independent set S in G with v∃ = v1 ∈ S. We first observe the following.
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Claim 2 (*). Let p ∈ T with the child vertices c1 and c2. If p �∈ S and p′ ∈ S,
then |N(c1) ∩ S| ≥ 2 and |N(c2) ∩ S| ≥ 2.

Note that this also implies, that c1 �∈ S and c2 �∈ S.
Recall that r is the root of the binary tree and that r′ is the unique neighbor

of r in Gr. Now, observe that {v1, v3, r
′} = {v∃, v3, r

′} ⊆ S and {v0, v2, r} ⊆ V \S
as, otherwise, S would not be a 5-swap optimal independent set in G. Thus, by
Claim 2 one can show inductively, that for all vertices c of the binary tree it
holds that |N(c)∩S| ≥ 2. Consequently, this also holds for the leaves of the tree,
namely the vertices {ui | i ∈ [1, ψ]}. Hence, for every φi ∈ Φ it holds that ui �∈ S
and that bi

∨ ∈ S or bi
3 ∈ S.

We set τ = {� ∈ L(Z) | {�1, �2} ∩ S �= ∅} and show that τ |= Φ. Note
that τ contains at most one of z and ¬z since S is an independent set. Let φi =
{�1, �2, �3} be a clause of Φ, we show that τ |= φi. First, we show that if there
is some j ∈ {1, 2, 3,∨} with N(ai

j) ∩ S = {bi
j}, then S is not 5-swap optimal.

Since S is an independent set, it holds that ci
j �∈ S. If di

j �∈ S, then S⊕{ai
j , b

i
j , c

i
j}

is an independent set and, thus, S is not 5-swap optimal. Otherwise, di
j ∈ S and,

thus, ei
j �∈ S. Hence, S ⊕ {ai

j , b
i
j , c

i
j , d

i
j , e

i
j} is an independent set and, thus, S is

not 5-swap optimal.
We may thus assume that if ai

j �∈ S, then N(ai
j) is a subset of S containing �1

or �2. We now use this fact to argue that at least one literal vertex adjacent to
any vertex ai

j is contained in S and, thus, φi is satisfied by τ . Recall that bi
∨ ∈ S

or bi
3 ∈ S. Consequently, if bi

∨ ∈ S, then |N(ai
∨)∩S| ≥ 2 and, therefore, {bi

1, b
i
2}∩

S �= ∅. Hence, there is some j ∈ {1, 2, 3} such that bi
j ∈ S and, thus, N(ai

j) ⊆ S.
As a consequence, {�1j , �

2
j} ∩ S �= ∅ and, therefore, �j ∈ τ . Hence, φi is satisfied

by τ and I is a yes-instance of SAT.
Due to Observation 2 and the fact that N(v0) = {v∃} it follows that (G, v0, k)

is a yes-instance of ∀-LO-IS if and only if I ′ is a no-instance of ∃-LO-IS. Con-
sequently, ∀-LO-IS is coNP-hard even if k = 5 and where the input graph has a
maximum degree of three. ��
Corollary 1. For every fixed odd k ≥ 5, ∀-LO-IS is coNP-complete and ∃-LO-

IS is NP-complete even if Δ = 3.

Proof. Let k ≥ 7 and let I = (G = (V,E), v∃, 5) be an instance of ∃-LO-

IS constructed as in the proof of Theorem 4. By adding for every degree-one
vertex w in G a path Pw with k − 5 vertices to G and connecting w with one
endpoint of Pw, we obtain an equivalent instance I ′ = (G′, v∃, k) of ∃-LO-IS. ��

Next, we analyze the case where the swap distance k is unbounded.

Theorem 5 (*). ∀-LO-IS is ΠP
2 -complete (∃-LO-IS is ΣP

2 -complete) if Δ = 3.

4 Max Cut

We now analyze the complexity of deciding whether an edge is a cut edge of
some locally optimal cut for the Max Cut problem. We formally define cuts
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Fig. 2. A (2, 3)-enforcer F = (B1 ∪ B2 ∪ M1 ∪ M2, FE).

and their local neighborhoods as follows. Let S, T ⊆ V . The pair (S, T ) is a cut
in G if S ∪ T = V and S ∩ T = ∅. A cut (S, T ) is a k-swap optimal cut in G if
there is no k-swap W in G such that |E(S′, T ′)| > |E(S, T )| where S′ = S ⊕ W
and T ′ = T ⊕ W = V \ S′. Let A,B ⊆ V . We say that A and B are in the same
part of the cut if A ∪ B ⊆ S or A ∪ B ⊆ T . Moreover, A and B are in opposite
parts of the cut if A ⊆ S and B ⊆ T or vice versa.

Every Locally Optimal Max-Cut (∀-LO-MC)

Input: An undirected graph G = (V,E), an edge e ∈ E, and k ∈ N.
Question: Is e contained in every k-swap optimal cut in G?

Analogously, we ask in Some Locally Optimal Max-Cut (∃-LO-MC) if e
is contained in some k-swap optimal cut in G.

For every fixed value of k, we can check in polynomial time if a given
cut (S, T ) is k-swap optimal in G. Consequently, we obtain the following.

Lemma 1. For every fixed value of k, ∀-LO-MC is contained in coNP and
∃-LO-MC is contained in NP.

We now show that both problems are hard, even for constant k and Δ. In
the reduction, we use a graph called (2, 3)-enforcer which is shown in Fig. 2. For
a (2, 3)-enforcer F , we denote F (i) := Bi ∪ Mi for i ∈ {1, 2}.

Proposition 2 (*). Let G be a graph with Δ(G) = 5. If G contains a (2, 3)-
enforcer F = (B1 ∪ B2 ∪ M1 ∪ M2, E

′) as an induced subgraph, then for every 1-
swap optimal cut (S, T ) in G it holds that F (1) and F (2) are in opposite parts
of the cut.

Theorem 6. ∃-LO-MC is NP-complete and ∀-LO-MC is coNP-complete even
if k = 1 and Δ = 5.

Proof. We reduce SAT to ∃-LO-MC. Given an instance I = (Z,Φ) of SAT, we
construct in polynomial time an equivalent instance I ′ = (G = (V,E), e∃, k)
of ∃-LO-MC where k = 1 and where G has a maximum degree of five. We can
assume without loss of generality that every clause has size three, every variable
of Z occurs twice positively and twice negatively in Φ, and every variable occurs
at most once per clause since SAT remains NP-hard in this case [15]. Further, we
let ψ denote the number of clauses and we assume that ψ = 2r for some even r.

Let Φ = {φ1, . . . , φψ}. We start with a balanced binary tree with r+1 levels.
We denote with Lp := {up

q | q ∈ [1, 2p]} the vertices of the pth level of the tree
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for all p ∈ [0, r]. The leaf ur
q represents the clause φq for all q ∈ [1, ψ]. Further,

we add a (2, 3)-enforcer F∃ with B1 = {w1
∃, w2

∃} and B2 = {w1
∀, w2

∀} and, for
each variable v ∈ Z, a (2, 3)-enforcer Fv with B1 = {v, v′} and B2 = {¬v,¬v′}.

The idea is that Fv(1) corresponds to the true-assignment of v and that Fv(2)
corresponds to the false-assignment of v since v ∈ Fv(1) and ¬v ∈ Fv(2). By
Proposition 2, Fv(1) and Fv(2) are in opposite parts of every 1-swap optimal
cut for G. Thus, for every 1-swap optimal cut (S, T ) for G, both S ∩ L(Z)
and T ∩ L(Z) are assignments for the variables of Z.

For each clause φq ∈ Φ and each literal � ∈ φq we add the edge {�, ur
q}.

Furthermore, we connect the vertices of L1 ∪ {w2
∃} to a cycle of length three

and for p ∈ [2, r − 1] we connect the vertices of Lp to a cycle of length 2p.
Finally, we add the edges between u0

1 and each of the vertices w1
∀, w2

∀, and w1
∃

and set e∃ = {w1
∃, u0

1}. This completes the construction of I ′. We now show
that I is a yes-instance of SAT if and only if I ′ is a yes-instance of ∃-LO-MC.

(⇒) Suppose that I is a yes-instance of SAT. Thus, there is Z̃ ⊆ Z such
that τZ(Z̃) satisfies Φ. We set

S := F∃(1) ∪
⋃

odd p∈[1,r−1]

Lp ∪
⋃

v∈Z̃

Fv(1) ∪
⋃

v∈Z\Z̃

Fv(2)

and T = V \S and show that (S, T ) is a 1-swap optimal cut in G and contains e∃.
Note that for every � ∈ L(Z) it holds that � ∈ S if and only if � ∈ τZ(Z̃).

By construction, G has a maximum degree of five. Thus, for every vertex v in
any enforcer it follows directly that at least half of the neighbors of v are in the
opposite part of the cut of v. Further, since for every v ∈ Lp, p ∈ [1, r−1], it holds
that |NG(v)∩(Lp−1∪Lp+1)| = 3 and, thus, by construction of (S, T ) that at least
half of the neighbors of v are in the opposite part of the cut of v. The same also
holds for the root u0

1 since u0
1 ∈ T and NG(u0

1) ∩ S = L1 ∪ {w1
∃}. Since Lr ⊆ T ,

it remains to show that for every q ∈ [1, ψ], |NG(ur
q) ∩ S| ≥ 2. By definition

of (S, T ) it follows that |NG(ur
q) ∩ Lr−1 ∩ S| = 1. The fact that τZ(Z̃) |= Φ

implies that φq ∩ S �= ∅. Consequently, for every v ∈ V , at least half of the
neighbors of v are in the opposite part of the cut of v. Therefore, (S, T ) is
a 1-swap optimal cut in G and contains e∃.

(⇐) Let (S, T ) be a 1-swap optimal cut in G which contains e∃. By Proposi-
tion 2, we may assume without loss of generality that F∃(1) ⊆ S and F∃(2) ⊆ T .
Further, for every v ∈ Z, either Fv(1) ⊆ S or Fv(2) ⊆ S. We set Z̃ := {v ∈ Z |
Fv(1) ⊆ S} and show that τZ(Z̃) |= Φ. Note that for every literal � ∈ L(Z) it
holds that � ∈ τZ(Z̃) if and only if � ∈ S.

Claim 3 (*). For every p ∈ [0, r], it holds that Lp ⊆ S if p is odd and Lp ⊆ T
if p is even.

As a consequence, ur
q ∈ T for all q ∈ [1, ψ]. Since (S, T ) is 1-swap opti-

mal in G, it holds that ur
q has at least two neighbors in S: the single neighbor

in Lq−1 and at least one neighbor in NG(ur
q) \ Lq−1 = φq and, thus, S ∩ φq �= ∅.

Consequently, τZ(Z̃) |= Φ.
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Fig. 3. The three possible kinds of minimal improving (1, k)-swaps: a) appending an
edge to one of the endpoints, b) replacing an edge {u, v} with a (u, v)-path of length
at most k, and c) removing one endpoint and appending a path of length two to its
neighbor in the path.

Thus, ∃-LO-MC is NP-complete if k = 1 and Δ = 5. Due to Proposition 2
and the fact that the (2, 3)-enforcer F∃ contains both w1

∃ and w1
∀, we know

that for every 1-swap optimal cut (S, T ) in G it holds that w1
∃ ∈ S if and

only if w1
∀ ∈ T . Hence, I ′ = (G, e∃, 1) is a no-instance of ∃-LO-MC if and

only if I ′′ = (G, e∀, 1) is a yes-instance of ∀-LO-MC, where e∀ := {w1
∀, u0

1}.
Consequently, ∀-LO-MC is coNP-complete if k = 1 and Δ = 5. ��
Theorem 7 (*). ∀-LO-MC is ΠP

2 -complete and ∃-LO-MC is ΣP
2 -complete

even if Δ = 3.

5 Longest Path

Finally, we consider Longest Path which is NP-hard even on cubic graphs [7].
Again, we want to find out whether some small part of the graph is contained
in a locally optimal solution. We consider the following neighborhood.

Definition 1. Let k be an integer. Two paths P1 and P2 are (1, k)-swap neigh-
bors, if 1) the relative ordering of the common vertices of P1 and P2 is
equal in both paths and 2) |E(P1) \ E(P2)| ≤ k and |E(P2) \ E(P1)| ≤ 1
or |E(P1) \ E(P2)| ≤ 1 and |E(P2) \ E(P1)| ≤ k.

All three kinds of minimal improving (1, k)-swaps are shown in Fig. 3.

Some Locally Optimal Path (∃-LO-Path)

Input: An undirected graph G = (V,E), an edge e∗ ∈ E, and k ∈ N.
Question: Is e∗ contained in some (1, k)-swap optimal path P ∗ in G?

First, we observe that, unfortunately, the problem is hard already for fixed k.

Theorem 8 (*). ∃-LO-Path is contained in NP for every fixed value of k and
NP-hard for every k ≥ 2.

We now show that on bounded-degree graphs, we can obtain an efficient algo-
rithm for small k. Our algorithm is based on a sufficient and necessary condition
for the existence of a (1, k)-swap optimal path in G containing a specific edge.
To formulate the condition, we define two collections of vertex sets. We denote
for every integer k and every pair of distinct vertices v, w ∈ V with Vk(v, w) :=
{V (P ) \ {v, w} | P is an (v, w)-path with 2 < |V (P )| ≤ k + 1} the collection of
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sets of inner vertices of (v, w)-path with length at most k. Moreover, for every
vertex v ∈ V we denote by V2(v) := {{x, y} | x, y ∈ V, (v, x, y) is a path in G}
the collection of subsets of Ṽ ⊆ V \{v}, such that G contains a path P of length
two starting in v with V (P ) = Ṽ ∪ {v}.

Lemma 2. Let e∗ = {v∗, w∗} be an edge which is not isolated and let k ≥ 2.
There is a (1, k)-swap optimal path P ∗ containing e∗ if and only if there are (not
necessarily distinct) vertices s, s′, t′ and t such that there is an (s, t)-path P in G
containing the edges e∗, {s, s′}, {t′, t}, the vertices N(s)∪N(t), and where V (P )
is a hitting set for Vk(s, s′) ∪ V2(s′) ∪ Vk(v∗, w∗) ∪ V2(t′) ∪ Vk(t′, t).

Proof. (⇒) Let P ∗ be a (1, k)-swap optimal path containing e∗. Then, V (P ∗)
contains at least two vertices and, thus, there are vertices s, s′, t′, t ∈ V such
that P ∗ contains the edges e∗, {s, s′}, and {t′, t}. Moreover, the set V (P ∗) con-
tains N(s)∪N(t) as, otherwise, P ∗ is not (1, k)-swap optimal. Assume towards a
contradiction, that V (P ∗) is not a hitting set for Vk(s, s′)∪V2(s′)∪Vk(v∗, w∗)∪
Vr(t′, t) ∪ V2(t′).

Case 1: V (P ∗) is not a hitting set for Vk(x, y) for some {x, y} ∈
{{s, s′}, {v∗, w∗}, {t′, t}}. Then, there is some Ṽ ∈ Vk(x, y) such that there is
some (x, y)-path P ′ in G of length at most k and V (P ′) = Ṽ ∪ {x, y}, such
that V (P ′) ∩ V (P ∗) = {x, y}. Replacing the edge {x, y} by the (x, y)-path P ′

is an improving (1, k)-swap, since Ṽ �= ∅. This contradicts the fact that P ∗

is (1, k)-swap optimal in G.
Case 2: V (P ∗) is not a hitting set for V2(x) for some x ∈ {s′, t′}. Then,

there is some Ṽ ∈ V2(x) such that there is some path P ′ of length two in G
starting in x with V (P ′) = Ṽ ∪ {x} and V (P ′) ∩ V (P ∗) = {x}. Hence, replacing
the edge {x, x′} by the path P ′ is an improving (1, k)-swap, since P ′ contains
two edges. This contradicts the fact that P ∗ is (1, k)-swap optimal in G.

(⇐) Suppose that there are vertices s, s′, t′, t ∈ V such that there is an (s, t)-
path P in G containing the edges e∗, {s, s′}, {t′, t}, the vertices N(s)∪N(t), and
where V (P ) is a hitting set for Vk(s, s′) ∪ V2(s′) ∪ Vk(v∗, w∗) ∪ Vk(t′, t) ∪ V2(t′).

Since P contains 1) at least one inner vertex of every (s, s′)-path in G of
length at least two and at most k, and 2) at least one inner vertex besides s′ of
every path of length two starting in s′, there is no improving (1, k)-swap that
removes {s, s′} from P . This also holds for the edge {t′, t}. Since V (P ) is a hitting
set for Vk(v∗, w∗), P contains at least one inner vertex of every (v∗, w∗)-path
in G of length at least two and at most k.

In the following, we will show, that every path P ∗ which can be reached by an
arbitrary number of improving (1, k)-swaps, also fulfills all properties of P . Note
that this implies that there is a (1, k)-swap optimal path P ∗ in G containing e∗.

Since e∗ is not an isolated edge and P contains the vertices N(s) ∪ N(t),
and the edges e∗, {s, s′}, {t′, t}, we obtain that P contains at least three vertices.
Hence, not all edges of P can be removed by a single improving (1, k)-swap.
Note that an improving (1, k)-swap can only remove a vertex from the path if
this vertex is one of the endpoints.

By the above, none of the edges e∗, {s, s′}, or {t′, t} can be removed by an
improving (1, k)-swap. Hence, for every improving (1, k)-swap neighbor P ′ of P
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it holds that V (P ) ⊆ V (P ′), P ′ contains the edges e∗, {s, s′}, and {t′, t}. More-
over, since N(s) ∪ N(t) ⊆ V (P ), we obtain that P ′ is also an (s, t)-path. Conse-
quently, one can show via induction, that for every path P ∗ which can be reached
by an arbitrary number of improving (1, k)-swap starting from P , that P ∗ is
an (s, t)-path containing the edges e∗, {s, s′}, and {t′, t}, the vertices N(s)∪N(t),
and V (P ∗) is a hitting set for Vk(s, s′)∪V2(s′)∪Vk(v∗, w∗)∪V2(t′)∪Vk(t′, t). ��
Theorem 9. ∃-LO-Path can be solved in time O(f(Δ+k) ·n4) for some com-
putable function f .

Proof. Let I = (G = (V,E), e∗ = {v∗, w∗}, k) be an instance of Some Locally

Optimal Path. First, if e∗ is an isolated edge, then, there is exactly one
path P ∗ = (v∗, w∗) in G that contains the edge e∗. This path is (1, k)-swap
optimal in G if and only if G does not contain a path with two edges. Hence,
to determine if I is a yes-instance of Some Locally Optimal Path, we only
have to check if G contains a path with two edges, which can be done in O(n2)
time. Second, if e∗ is not an isolated edge, then, due to Lemma 2, it is sufficient
to check if there are vertices s, s′, t′, t ∈ V such that there is an (s, t)-path P
in G containing the edges e∗, {s, s′}, and {t′, t}, the vertices N(s) ∪ N(t), and
where V (P ) is a hitting set for Vk(s, s′) ∪ V2(s′) ∪ Vk(v∗, w∗) ∪ Vk(t′, t) ∪ V2(t′).
In the following, we describe how we can check in O(f(Δ + r) · n4) time, if such
a path exists.

For every combination of vertices s ∈ V, s′ ∈ N(s), t ∈ V, and t′ ∈ N(t), we
compute the collections Vk(s, s′),V2(s′),Vk(v∗, w∗),Vk(t′, t), and V2(t′). Let V :=
Vk(s, s′)∪V2(s′)∪Vk(v∗, w∗)∪Vk(t′, t)∪V2(t′). Each of these collections contains
at most Δk−1 sets of size at most k − 1 and each can be computed in O(Δk)
time. Moreover, for each set V ′ ∈ Vk(x, y) it holds that V ′ ⊆ Nk/2[x] ∪ Nk/2[y],
where Nk/2[u] denotes the set of vertices having distance at most k/2 to u.
Hence, V ∗ :=

⋃
V ′∈V V ′ is a subset of

⋃
x∈{s,s′,v∗,w∗,t′,t} Nk/2[x]∪N2[s′]∪N2[t′].

Consequently, there is some λ ∈ O(Δmax(k/2,2)) such that |V ∗| ≤ λ.
Next, we check for each V ′ ⊆ V ∗ if V ′ is a hitting set for V. If this is the

case, then we check if there is an (s, t)-path P in G containing the edges e∗, {s, s′},
and {t′, t} such that V ′ ∪ N(s) ∪ N(t) ⊆ V (P ). This can be done by checking if
there is an ordering π = (x1, . . . , x�) of the vertices of Ṽ := V ′ ∪ N(s) ∪ N(t) ∪
{s, t, v∗, w∗} such that there are pairwise vertex-disjoint (xi, xi+1)-paths for all i ∈
[1, � − 1] where x1 = s, x2 = s′, x�−1 = t′, x� = t, and v∗ and w∗ are consecutive
in π. This can be done in g(|Ṽ |) · n2 time [11] for some computable function g.
Since we check all combinations of s, s′, t′, and t as well as every possible hitting
set for V, the algorithm is correct and has overall running time O(n2 · Δ2 · λ · 2λ ·
(λ + 4 + 2Δ)! · g(λ + 4 + 2Δ) · n2) ⊆ O(f(Δ + k) · n4). ��

6 Conclusion

We proposed a generic approach to the design of data reduction rules via local
optimality and examined its viability for well-known NP-hard problems. It seems
interesting to find further positive applications of this approach along the lines
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of the Longest Path problem. One might, for example, consider extensions of
the (1, k)-swap neighborhood for paths. Finally, regardless of the connection to
data reduction, it seems interesting in its own right to study which properties of
locally optimal solutions can be computed efficiently.
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Abstract. For k ≥ 1, a k-colouring c of G is a mapping from V (G) to
{1, 2, . . . , k} such that c(u) �= c(v) for any two non-adjacent vertices u
and v. The k-Colouring problem is to decide if a graph G has a k-
colouring. For a family of graphs H, a graph G is H-free if G does not
contain any graph from H as an induced subgraph. Let Cs be the s-vertex
cycle. In previous work (MFCS 2019) we examined the effect of bounding
the diameter on the complexity of 3-Colouring for (C3, . . . , Cs)-free
graphs and H-free graphs where H is some polyad. Here, we prove for
certain small values of s that 3-Colouring is polynomial-time solvable
for Cs-free graphs of diameter 2 and (C4, Cs)-free graphs of diameter 2.
In fact, our results hold for the more general problem List 3-Colouring.
We complement these results with some hardness result for diameter 4.

1 Introduction

Graph colouring is a well-studied topic in Computer Science due to its wide range
of applications. A k-colouring of a graph G is a mapping c : V (G) → {1, . . . , k}
that assigns each vertex u a colour c(u) in such a way that c(u) �= c(v) for any
two adjacent vertices u and v of G. The aim is to find the smallest value of k (also
called the chromatic number) such that G has a k-colouring. The corresponding
decision problem is called Colouring, or k-Colouring if k is fixed, that is,
not part of the input. As even 3-Colouring is NP-complete [16], k-Colouring

and Colouring have been studied for many special graph classes, as surveyed
in, for example, [1,5,9,13,15,21,23,26]. This holds in particular for hereditary
classes of graphs, which are the classes of graphs closed under vertex deletion.

It is well known and not difficult to see that a class of graphs is hereditary
if and only if it can be characterized by a unique set FG of minimal forbidden
induced subgraphs. In particular, a graph G is H-free for some graph H if G does
not contain H as an induced subgraph. The latter means that we cannot modify
G into H by a sequence of vertex deletions. For a set of graphs {H1, . . . , Hp}, a
graph G is (H1, . . . , Hp)-free if G is Hi-free for every i ∈ {1, . . . , p}.

We continue a long-term study on the complexity of 3-Colouring for special
graph classes. Let Ct and Pt be the cycle and path, respectively, on t vertices.
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The complexity of 3-Colouring for H-free graphs has not yet been classified; in
particular this is still is open for Pt-free graphs for every t ≥ 8, whereas the case
t = 7 is polynomial [3]. For t ≥ 3, let C>t = {Ct+1, Ct+2, . . .}. Note that for t ≥ 2,
the class of Pt-free graphs is a subclass of C>t-free graphs. Recently, Pilipczuk,
Pilipczuk and Rz ↪ażewski [22] gave for every t ≥ 3, a quasi-polynomial-time
algorithm for 3-Colouring on C>t-free graphs. Rojas and Stein [24] proved
in another recent paper that for every odd integer t ≥ 9, 3-Colouring is
polynomial-time solvable for (Codd

<t−3, Pt)-free graphs, where Codd
<t is the set of

all odd cycles on less than t vertices. This complements a result from [10], which
implies that for every t ≥ 1, 3-Colouring, or more general List 3-Colouring

(defined later), is polynomial-time solvable for (C4, Pt)-free graphs (see also [18]).
The graph classes in this paper are only partially characterized by forbidden

induced subgraphs: we also restrict the diameter. The distance dist(u, v) between
two vertices u and v in a graph G is the length (number of edges) of a shortest
path between them. The diameter of a graph G is the maximum distance over
all pairs of vertices in G. Note that the n-vertex path Pn has diameter n−1, but
by removing an internal vertex the diameter becomes infinite. Hence, for every
integer d ≥ 2, the class of graphs of diameter at most d is not hereditary.

For every d ≥ 3, the 3-Colouring problem for graphs of diameter at most d
is NP-complete, as shown by Mertzios and Spirakis [20] who gave a highly non-
trivial NP-hardness construction for the case where d = 3. In fact they proved
that 3-Colouring is NP-complete even for C3-free graphs of diameter 3 and
radius 2. The complexity of 3-Colouring for the class of all graphs of diameter 2
has been posed as an open problem in several papers [2,4,19–21].

On the positive side, Mertzios and Spirakis [20] gave a subexponential-time
algorithm for 3-Colouring on graphs of diameter 2. Moreover, as we discuss
below, 3-Colouring is polynomial-time solvable for several subclasses of diam-
eter 2. A graph G has an articulation neighbourhood if G − (N(v) ∪ {v}) is
disconnected for some v ∈ V (G). The neighbourhoods N(u) and N(v) of two
distinct (and non-adjacent) vertices u and v are nested if N(u) ⊆ N(v). We let
K1,r be the star on r + 1 vertices. The subdivision of an edge uw in a graph
removes uw and replaces it with a new vertex v and edges uv, vw. We let K�

1,r

be the �-subdivided star, which is obtained from K1,r by subdividing one edge
exactly � times. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, is the tree with one ver-
tex x of degree 3 and exactly three leaves, which are of distance h, i and j
from x, respectively. Note that S1,1,1 = K1,3. The diamond is obtained from
the 4-vertex complete graph by deleting an edge. The 3-Colouring problem is
polynomial-time solvable for:

• diamond-free graphs of diameter 2 with an articulation neighbourhood but
without nested neighbourhoods [20];

• (C3, C4)-free graphs of diameter 2 [19];
• K2

1,r-free graphs of diameter 2, for every r ≥ 1 [19]; and
• S1,2,2-free graphs of diameter 2 [19].



Colouring Graphs of Bounded Diameter in the Absence of Small Cycles 369

It follows from results in [8,12,17] that without the diameter-2 condition, 3-
Colouring is NP-complete again in each of the above cases; in particular 3-
Colouring is NP-complete for C-free graphs for any finite set C of cycles.

Our Results. We aim to increase our understanding of the complexity of 3-
Colouring for graphs of diameter 2. In [19] we mainly considered 3-Colouring

for graphs of diameter 2 with some forbidden induced subdivided star. In
this paper, we continue this study by focusing on 3-Colouring for Cs-free
or (Cs, Ct)-free graphs of diameter 2 for small values of s and t; in particu-
lar for the case where s = 4 (cf. the aforementioned result for (C4, Pt)-free
graphs). In fact we prove our results for a more general problem, namely List

3-Colouring, whose complexity for diameter 2 is also still open. A list assign-
ment of a graph G = (V,E) is a function L that prescribes a list of admissible
colours L(u) ⊆ {1, 2, . . .} to each u ∈ V . A colouring c respects L if c(u) ∈ L(u)
for every u ∈ V. For an integer k ≥ 1, if L(u) ⊆ {1, . . . , k} for each u ∈ V , then
L is a list k-assignment. The List k-Colouring problem is to decide if a graph
G with an list k-assignment L has a colouring that respects L. If every list is
{1, . . . , k}, we obtain k-Colouring.

The following two theorems summarize our main results.

Theorem 1. For s ∈ {5, 6}, List 3-Colouring is polynomial-time solvable
for Cs-free graphs of diameter 2.

Theorem 2. For t ∈ {3, 5, 6, 7, 8, 9}, List 3-Colouring is polynomial-time
solvable for (C4, Ct)-free graphs of diameter 2.

The case t = 3 in Theorem 2 directly follows from the Hoffman-Singleton Theo-
rem [11], which states that there are only four (C3, C4)-free graphs of diameter 2.
The cases t ∈ {5, 6} immediately follows from Theorem 1. Hence, apart from
proving Theorem 1, we only need to prove Theorem 2 for t ∈ {7, 8, 9}.

We prove Theorem 1 and the case t = 7 of Theorem 2 in Sect. 3. As we explain
in the same section, all these results follow from the same technique, which is
based on a number of (known) propagation rules. We first colour a small number
of vertices and then start to apply the propagation rules exhaustively. This will
reduce the sizes of the lists of the vertices. The novelty of our approach is the
following: we can prove that the diameter-2 property ensures such a widespread
reduction that each precolouring changes our instance into an instance of 2-

List Colouring: the polynomial-solvable variant of List Colouring where
each list has size at most 2 [7] (see also Sect. 2).

We prove the cases t = 8 and t = 9 of Theorem 2 in Sect. 4 using a refinement
of the technique from Sect. 3. We explain this refinement in detail at the start of
Sect. 4. In short, in our branching, we exploit information from earlier obtained
no-answers to reduced instances of our original instance (G,L).

We complement Theorems 1 and 2 by the following result for diameter 4,
whose proof we omit.

Theorem 3. For every even integer t ≥ 6, 3-Colouring is NP-complete on
the class of (C4, C6, . . . , Ct)-free graphs of diameter 4.
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Results of Damerell [6] imply that 3-Colouring is polynomial-time solvable
for (C3, C4, C5, C6)-free graphs of diameter 3 and for (C3, . . . , C8)-free graphs of
diameter 4 [19]. We were not able to reduce the diameter in Theorem 3 from 4
to 3; see Sect. 5 for a further discussion, including other open problems.

2 Preliminaries

Let G = (V,E) be a graph. A vertex u ∈ V is dominating if u is adjacent to every
other vertex of G. For S ⊆ V , the graph G[S] = (S, {uv | u, v ∈ S and uv ∈ E})
denotes the subgraph of G induced by S. The neighbourhood of a vertex u ∈ V
is the set N(u) = {v | uv ∈ E} and the degree of u is the size of N(u). For a set
U ⊆ V , we write N(U) =

⋃
u∈U N(u)\U .

The bull is the graph obtained from a triangle on vertices x, y, z after adding
two new vertices u and v and edges xu and yv. A clique is a set of pairwise adja-
cent vertices, and an independent set is a set of pairwise non-adjacent vertices.

Let G be a graph with a list assignment L. If |L(u)| ≤ � for each u ∈ V ,
then L is a �-list assignment. A list k-assignment is a k-list assignment, but the
reverse is not necessarily true. The �-List Colouring problem is to decide if
a graph G with an �-list assignment L has a colouring that respects L. We use
a known general strategy for obtaining a polynomial-time algorithm for List 3-
Colouring on some class G. That is, we will reduce the input to a polynomial
number of instances of 2-List Colouring and use a well-known result:

Theorem 4 ([7]). The 2-List Colouring problem is linear-time solvable.

We also need an observation (proof omitted).

Lemma 1. Let G be a non-bipartite graph of diameter 2. Then G contains a
C3 or induced C5.

3 The Propagation Algorithm and Three Results

We present our initial propagation algorithm, which is based on a number of
(well-known) propagation rules; we illustrate Rules 4 and 5 in Figs. 1 and 2.

Rule 1 (no empty lists). If L(u) = ∅ for some u ∈ V , then return no.
Rule 2 (not only lists of size 2). If |L(u)| ≤ 2 for every u ∈ V , then apply

Theorem 4.
Rule 3 (single colour propagation). If u and v are adjacent, |L(u)| = 1,

and L(u) ⊆ L(v), then set L(v) := L(v)\L(u).
Rule 4 (diamond colour propagation). If u and v are adjacent and share

two common non-adjacent neighbours x and y with |L(x)| = |L(y)| = 2
and L(x) �= L(y), then set L(x) := L(x)∩L(y) and L(y) := L(x)∩L(y)
(so L(x) and L(y) get size 1).
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Fig. 1. Left: A diamond graph before applying Rule 4. Right: After applying Rule 4.

Fig. 2. Left: A bull graph before applying Rule 5. Right: After applying Rule 5.

Rule 5 (bull colour propagation). If u and v are the two degree-1 vertices
of an induced bull B of G and L(u) = L(v) = {i} for some i ∈ {1, 2, 3}
and moreover L(w) �= {i} for the degree-2 vertex w of B, then set
L(w) := L(w) ∩ {i}.

We say that a propagation rule is safe if the new instance is a yes-instance of List
3-Colouring if and only if the original instance is so. We make the following
observation, which is straightforward (see also [14]).

Lemma 2. Each of the Rules 1–5 is safe and can be applied in polynomial time.

Consider again an instance (G,L). Let N0 be a subset of V (G) that has size
at most some constant. Assume that G[N0] has a colouring c that respects the
restriction of L to N0. We say that c is an L-promising N0-precolouring of G.

In our algorithms we first determine a set N0 of constant size and consider
every L-promising N0-precolouring of G. That is, we modify L into a list assign-
ment Lc with Lc(u) = {c(u)} (where c(u) ∈ L(u)) for every u ∈ N0 and
Lc(u) = L(u) for every u ∈ V (G)\N0). We then apply Rules 1–5 on (G,Lc)
exhaustively, that is, until none of the rules can be applied anymore. This is the
propagation algorithm and we say that it did a full c-propagation. The propaga-
tion algorithm may output yes and no (when applying Rules 1 or 2); else it will
output unknown.

If the algorithm returns yes, then (G,L) is a yes-instance of List 3-
Colouring by Lemma 2. If it returns no, then (G,L) has no L-respecting
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colouring coinciding with c on N0, again by Lemma 2. If the algorithm returns
unknown, then (G,L) may still have an L-respecting colouring that coincides
with c on N0. In that case the propagation algorithm did not apply Rule 1 or 2.
Hence, it modified Lc into a list assignment L′

c of G such that L′
c(u) �= ∅ for

every u ∈ V (G) and at least one vertex v of G still has a list L′
c(v) of size 3,

that is, L′
c(v) = {1, 2, 3}. We say that L′

c (if it exists) is the c-propagated list
assignment of G.

After performing a full c-propagation for every L-promising N0-precolouring c
of G we say that we performed a full N0-propagation. We say that (G,L) is N0-
terminal if after the full N0-propagation one of the following cases hold:

1. for some L-promising N0-precolouring, the propagation algorithm returned
yes;

2. for every L-promising N0-precolouring, the propagation algorithm returned
no.

Note that if (G,L) is N0-terminal for some set N0, then we have solved List 3-
Colouring on instance (G,L). The next lemma formalizes our approach (proof
omitted).

Lemma 3. Let (G,L) be an instance of List 3-Colouring. Let N0 be a sub-
set of V (G) of constant size. Performing a full N0-propagation takes polyno-
mial time. Moreover, if (G,L) is N0-terminal, then we have solved List 3-
Colouring on instance (G,L).

We now prove our first three results on List 3-Colouring for diameter-2
graphs. The first result, whose proof we omit, generalizes a corresponding result
for 3-Colouring in [19].

Theorem 5. List 3-Colouring can be solved in polynomial time for C5-free
graphs of diameter at most 2.

Fig. 3. The situation in the proof of Theorem 6, which is similar to the situation in
the proof of Theorem 7.



Colouring Graphs of Bounded Diameter in the Absence of Small Cycles 373

Theorem 6. List 3-Colouring can be solved in polynomial time for C6-free
graphs of diameter at most 2.

Proof. Let G = (V,E) be a C6-free graph of diameter 2 with a list 3-
assignment L. If G is C5-free, then we apply Theorem 5. If G contains a K4, then
G is not 3-colourable and hence, (G,L) is a no-instance of List 3-Colouring.
We check these properties in polynomial time. So, from now on, we assume that G
is a K4-free graph that contains an induced 5-vertex cycle C, say with vertex set
N0 = {x1, . . . , x5} in this order. Let N1 be the set of vertices that do not belong
to C but that are adjacent to at least one vertex of C. Let N2 = V \(N0 ∪ N1)
be the set of remaining vertices.

As N0 has size 5, we can apply a full N0-propagation in polynomial time
by Lemma 3. By the same lemma we are done if we can prove that (G,L) is
N0-terminal. We prove this claim below.

For contradiction, assume that (G,L) is not N0-terminal. Then there must
exist an L-promising N0-precolouring c for which we obtain the c-propagated
list assignment L′

c. By definition of L′
c we find that G contains a vertex v with

L′
c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has L′

c(u) = {c(u)}. Moreover,
v /∈ N1, as vertices in N1 have a list of size at most 2 after applying Rule 3.
Hence, we find that v ∈ N2.

We first note that some colour of {1, 2, 3} appears exactly once on N0, as
|N0| = 5. Hence, we may assume without loss of generality that c(x1) = 1 and
that c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1

and v. As L′
c(v) = {1, 2, 3} and c(x1) = 1, we find that L′

c(y) = {2, 3}. As
c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}, the latter means that y is not adjacent
to any xi with i ∈ {2, 3, 4, 5}. Hence, as G has diameter 2, there exists a vertex
z ∈ N1 with z �= y, such that z is adjacent to x3 and v. We assume without loss
of generality that c(x3) = 3 and thus c(x2) = c(x4) = 2 and thus c(x5) = 3.
As L′

c(v) = {1, 2, 3} and c(x3) = 3, we find that L′
c(z) = {1, 2}. Hence, z is not

adjacent to any vertex of {x1, x2, x4}. Now the set {x1, x2, x3, z, v, y} forms a
cycle on six vertices. As G is C6-free, this cycle cannot be induced. Hence, the
above implies that y and z must be adjacent; see also Fig. 3.

As G has diameter 2, there exists a vertex w ∈ N1 that is adjacent to x4

and v. As both y and z are not adjacent to x4, we find that w /∈ {y, z}. As
L′

c(v) = {1, 2, 3} and c(x4) = 2, we find that L′
c(w) = {1, 3}. As c(x1) = 1 and

c(x3) = c(x5) = 3, the latter implies that w is not adjacent to any vertex of
{x1, x3, x5}. Consequently, w must be adjacent to y, as otherwise the 6-vertex
cycle with vertex set {x1, x5, x4, w, v, y} would be induced, contradicting the
C6-freeness of G. We refer again to Fig. 3 for a display of the situation.

If w and z are adjacent, then {v, w, y, z} induces a K4, contradicting the K4-
freeness of G. Hence, w and z are not adjacent. Then {v, w, y, z} induces a dia-
mond, in which w and z are the two non-adjacent vertices. However, as L′

c(w) =
{1, 3} and L′

c(z) = {1, 2}, our algorithm would have applied Rule 4. This would
have resulted in lists of w and z that are both equal to {1, 3} ∩ {1, 2} = {1}.
Hence, we obtained a contradiction and conclude that (G,L) is N0-terminal. ��
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Theorem 7 is proven in a similar way as Theorem 6 and we omit its proof.

Theorem 7. List 3-Colouring can be solved in polynomial time for (C4, C7)-
free graphs of diameter 2.

4 The Extended Propagation Algorithm and Two Results

For our next two results, we need a more sophisticated method. Let (G,L)
be an instance of List 3-Colouring. Let p be some positive constant. We
consider each set N0 ⊆ V (G) of size at most p and perform a full N0-propagation.
Afterwards we say that we performed a full p-propagation. We say that (G,L)
is p-terminal if after the full p-propagation one of the following cases hold:

1. for some N0 ⊆ V (G) with |N0| ≤ c, there is an L-promising N0-precolouring
c, such that the propagation algorithm returns yes; or

2. for every set N0 ⊆ V (G) with |N0| ≤ c and every L-promising N0-
precolouring c, the propagation algorithm returns no.

We can now prove the following lemma.

Lemma 4. Let (G,L) be an instance of List 3-Colouring and p ≥ 1 be some
constant. Performing a full p-propagation takes polynomial time. Moreover, if
(G,L) is p-terminal, then we have solved List 3-Colouring on instance (G,L).

Proof. For every set N0 ⊆ V (G), a full N0-propagation takes polynomial time by
Lemma 3. Then the first statement of the lemma follows from this observation
and the fact that we need to perform O(np) full N0-propagations, which is a
polynomial number, as p is a constant.

Now suppose that (G,L) is p-terminal. First assume that for some N0 ⊆
V (G) with |N0| ≤ c, there exists an L-promising N0-precolouring c, such that
the propagation algorithm returns yes. Then (G,L) is a yes-instance due to
Lemma 2. Now assume that for every set N0 ⊆ V (G) with |N0| ≤ c and every L-
promising N0-precolouring c, the propagation algorithm returns no. Then (G,L)
is a no-instance. This follows from Lemma 2 combined with the observation that
if (G,L) was a yes-instance, the restriction of a colouring c that respects L to
any set N0 of size at most p would be an L-promising N0-precolouring of G. ��
In our next two algorithms, we perform a full p-propagation for some appropriate
constant p. If we find that an instance (G,L) is p-terminal, then we are done
by Lemma 4. In the other case, we exploit the new information on the structure
of G that we obtain from the fact that (G,L) is not p-terminal. We omit the
proof of the first theorem.

Theorem 8. List 3-Colouring can be solved in polynomial time for (C4, C8)-
free graphs of diameter 2.
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Theorem 9. List 3-Colouring can be solved in polynomial time for (C4, C9)-
free graphs of diameter 2.

Proof. Let G = (V,E) be a (C4, C9)-free graph of diameter 2 with a list 3-
assignment L. If G is C7-free, then we apply Theorem 7. If G contains a K4, then
G is not 3-colourable and hence, (G,L) is a no-instance of List 3-Colouring.
We check these properties in polynomial time. So, from now on, we assume that
G is a K4-free graph that contains at least one induced cycle on seven vertices.

We set p = 7 and perform a full p-propagation. This takes polynomial time
by Lemma 2. By the same lemma, we have solved List 3-Colouring on (G,L)
if (G,L) is p-terminal. Suppose we find that (G,L) is not p-terminal.

We first prove the following claim.

Claim 1. For each induced 7-vertex cycle C, the propagation algorithm returned
no for every L-promising V (C)-colouring c that assigns the same colour i on
two vertices of C that have a common neighbour on C and that gives every other
vertex of C a colour different from i.

We prove Claim 1 as follows. Consider an induced 7-vertex cycle C, say with
vertex set N0 = {x1, . . . , x7} in this order. Let N1 be the set of vertices that
do not belong to C but that are adjacent to at least one vertex of C. Let N2 =
V \(N0 ∪ N1) be the set of remaining vertices. Let c be an L-promising V (C)-
colouring that assigns two vertices of C with a common neighbour on C the same
colour, say c(x1) = 1 and c(x3) = 1, and moreover, that assigns every vertex xi

with i ∈ {2, 4, 5, 6, 7} colour c(xi) �= 1.
For contradiction, suppose that a full c-propagation does not yield a no out-

put. As (G,L) is not p-terminal, this means that we obtained the c-propagated
list assignment L′

c. By definition of L′
c we find that G contains a vertex v with

L′
c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has L′

c(u) = {c(u)}. Moreover,
v /∈ N1, as vertices in N1 have a list of size at most 2 after applying Rule 3.
Hence, we find that v ∈ N2.

As G has diameter 2, there exist a vertex y ∈ N1 that is adjacent to both v
and x1. Then y is not adjacent to any xi with i ∈ {2, 4, 5, 6, 7}; in that case y
would have a list of size 1 (as each xi other than x1 and x3 is coloured 2 or 3)
meaning that L′

c(v) would have size at most 2. Hence, y is not adjacent to x3

either, as otherwise {y, x1, x2, x3} would induce a C4. As G has diameter 2, this
means that there exists a vertex y′ ∈ N1 with y′ �= y such that y′ is adjacent
to both v and x3. By the same arguments we used for y′, we find that x3 is the
only neighbour of y′ on C.

If yy′ is an edge then, by Rule 5, v would have had list {1} instead of {1, 2, 3}.
Hence, y and y′ are not adjacent. However, now {y, v, y′, x3, x4, x5, x6, x7, x1}
induces a C9, a contradiction; see also Fig. 4. This proves Claim 1.

Claim 1 tells us that if G has a colouring c respecting L, then c only gives the
same colour to two vertices x and x′ that are of distance 2 on some induced
7-vertex cycle C if there is a third vertex x′′ that is of distance 2 from either x
or x′ on C with c(x′′) = c(x′) = c(x). Hence, we can safely use the following new
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Fig. 4. The situation that is described in Claim 1 in the proof of Theorem 9. The set
{x1, y, v, y

′, x3, x4, x5, x6, x7} induces C9, which is not possible.

rule, whose execution takes polynomial time (in this rule, c(x1) = c(x6) is not
possible: view x1 as x and x6 as x′ and note that x′′ can neither be x3 or x4).

Rule-C7 (C7 colour propagation). Let C be an induced cycle on seven
vertices x1, x2, . . . , x7 in that order. If |L(xi)| = 1 for i ∈ {1, 2, 3, 4},
L({x1, x2, x3}) = {1, 2, 3}, L(x4) = L(x2), and L(x1) ⊆ L(x6), then
set L(x6) := {1, 2, 3}\L(x1) (so L(x6) gets size at most 2).

We now consider an induced 7-vertex cycle C in G, say on vertices x1, . . . , x7

in that order. Then either one colour appear once on C, or two colours appear
exactly twice on C, with distance 3 from each other on C. Hence, we may assume
without loss of generality that if G has a colouring c that respects L, then one
of the following holds for such a colouring c (see also Figs. 5 and 6):

(1) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2, c(x7) = 3;
or
(2) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) = 2, c(x7) = 3.

We let again N0 = {x1, . . . , x7}, N1 be the set of vertices that do not belong to C
but that are adjacent to at least one vertex of C, and N2 = V \(N0 ∪ N1) be
the set of remaining vertices. We do a full c-propagation but now we also include
the exhaustive use of Rule-C7. By combining Lemma 2 with the observation that
Rule-C7 runs in polynomial time and reduces the list size of at least one vertex,
this takes polynomial time. By combining the same lemma with the fact that Rule-
C7 is safe (due to Claim 1) and the above observation that every L-respecting
colouring of G coincides with c on N0 (subject to colour permutation), we are
done if we can prove that the propagation algorithm either outputs yes or no. We
show that this is the case for each of the two possibilities (1) and (2) of c.

For contradiction, assume that the propagation algorithm returns unknown.
Then we obtained the c-propagated list assignment L′

c. By definition of L′
c we

find that G contains a vertex v with L′
c(v) = {1, 2, 3}. Then v /∈ N0, as every
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u ∈ N0 has L′
c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have a list of

size at most 2 after applying Rule 3. Hence, we find that v ∈ N2. We now need
to distinguish between the two possibilities of c.

Case 1 c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2, c(x7) =
3. As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1 and v.
Hence, y is not adjacent to any vertex in {x2, . . . , x7}; otherwise y would have a
list of size 1 due to Rule 3, and by the same rule, v would have a list of size 2. As
G has diameter 2, there exists a vertex y′ ∈ N1 that is adjacent to x4 and v. By
the same arguments as above, y′ is not adjacent to any vertex of {x1, x3, x5, x7}.
The latter, together with the C4-freeness of G, implies that y′ is not adjacent to
x2 and x6 either.

First suppose that yy′ ∈ E. Then {x1, x7, x6, x5, x4, y
′, y} induces a C7; see

also Fig. 5. As c(x1) = 1, c(x7) = 3, c(x6) = 2 and c(x5) = 3, we find that
Lc({x1, x7, x6}) = {1, 2, 3} and Lc(x5) = Lc(x7). Then 1 /∈ Lc(y′), as otherwise
the propagation algorithm would have applied Rule-C7. Moreover, 2 /∈ Lc(y′), as
otherwise the propagation algorithm would have applied Rule 3. Hence, Lc(y′) =
{3}. However, then |Lc(v)| ≤ 2, again due to Rule 3, a contradiction.

Now suppose that yy′ /∈ E. Then {x1, x2, x3, x4, y
′, v, y} induces a C7. As

c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, we find that Lc({x1, x2, x3}) =
{1, 2, 3} and Lc(x4) = Lc(x2). Then 1 /∈ Lc(v) due to Rule-C7. This is a con-
tradiction, as we assumed Lc(v) = {1, 2, 3}. We conclude that the propagation
algorithm returned either yes or no.

Fig. 5. The situation that is described in Case 1 in the proof of Theorem 9. If the
edge yy′ exists, then {x1, x7, x6, x5, x4, y

′, y} induces a C7 to which Rule-C7 should
have been applied. Otherwise the vertices {x1, x2, x3, x4, y

′, v, y} induce such a C7.

Case 2 c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) = 2, c(x7) =
3. As G has diameter 2, there is a vertex y ∈ N1 adjacent to x3 and v. Hence,
y is not adjacent to any vertex in {x1, x2, x4, x6}; otherwise y would have a list
of size 1 due to Rule 3, and by the same rule, v would have a list of size 2.
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As yx4 /∈ E, we find that yx5 /∈ E either; otherwise {y, x3, x4, x5} induces a
C4. As G has diameter 2, this means there is a vertex y′ ∈ N1\{y} adjacent to
x5 and v. By the same arguments as above, y′ is not adjacent to any vertex of
{x1, x2, x4, x6}. As G is C4-free, the latter implies that y′x3 /∈ E and y′x7 /∈ E.

Fig. 6. The situation that is described in Case 2 in the proof of Theorem 9. The set
{x6, x5, x4, x3, y, v, z} induces a C7 to which Rule-C7 should have been applied.

If yy′ ∈ E, then v would have a list of size at most 2 due to Rule 5. Hence
yy′ /∈ E. If yx7 /∈ E, this means that {x1, x2, x3, y, v, y′, x5, x6, x7} induces a C9,
which is not possible. Hence, yx7 ∈ E.

To summarize, we found that v has two distinct neighbours y and y′, where
y has exactly two neighbours on C, namely x3 and x7, and y′ has exactly one
neighbour on C, namely x5. As G has diameter 2, this means that there exists
a vertex z ∈ N1 with z /∈ {y, y′} that is adjacent to x6 and v. Then z is not
adjacent to any vertex of {x1, x3, x4, x5, x7}, as otherwise z would have a list
of size 1 due to Rule 3, and by the same rule, v would have a list of size 2. If
zy ∈ E, then {y, z, x6, x7} induces a C4, which is not possible. Hence zy /∈ E.

From the above, we find that {x6, x5, x4, x3, y, v, z} induces a C7; see also
Fig. 6. As c(x6) = 2, c(x5) = 3, c(x4) = 1 and c(x3) = 3, we find that
Lc({x6, x5, x4}) = {1, 2, 3} and Lc(x3) = Lc(x5). Then 2 /∈ Lc(v), due to Rule-
C7. Hence, |Lc(v)| ≤ 2, a contradiction. We conclude that the propagation algo-
rithm returned either yes or no in Case 2 as well. ��

5 Conclusions

We proved that 3-Colourability is polynomial-time solvable for several sub-
classes of diameter 2 that are characterized by forbidding one or two small
induced cycles. In order to do this we used a unified framework of propagation
rules, which allowed us to exploit the diameter-2 property of the input graph.
Our current techniques need to be extended to obtain further results (in partic-
ular, we cannot currently handle the increasing number of different 3-colourings
of induced cycles of length larger than 9).
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As open problems we pose: determine the complexity of 3-Colouring and
List 3-Colouring for graphs of diameter 2; Ct-free graphs of diameter 2 for
s ∈ {3, 4, 7, 8, . . .}; and (C4, Ct)-free graphs of diameter 2 for t ≥ 10. We also
note that the complexity of k-Colouring for k ≥ 4 and Colouring is still
open for C3-free graphs of diameter 2 (see also [19]).

Finally, we turn to the class of graphs of diameter 3. The construction of
Mertzios and Spirakis [20] for proving that 3-Colouring is NP-complete for
C3-free graphs of diameter 3 appears to contain not only induced subdivided
stars of arbitrary diameter and with an arbitrary number of leaves but also
induced cycles of arbitrarily length s ≥ 4. Hence, we pose as open problems:
determine the complexity of 3-Colouring and List 3-Colouring for Ct-free
graphs of diameter 3 for t ≥ 4 and (C4, Ct)-free graphs for t ∈ {3, 5, 6, . . .}.
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Abstract. We consider the online two-dimensional vector packing prob-
lem, showing a lower bound of 11/5 on the competitive ratio of any
AnyFit strategy for the problem. We provide a strategy with competi-
tive ratio max

{
2, 6

/(
1 + 3 tan(π/4 − γ/2)

)
+ ε

}
and logarithmic advice,

for any instance where all the input vectors are restricted to have angles
in the range [π/4−γ/2, π/4+γ/2], for 0 ≤ γ < π/3. In addition, we give
a 5/2-competitive strategy also using logarithmic advice for the unre-
stricted vectors case. These results should be contrasted to the currently
best competitive strategy, FirstFit, having competitive ratio 27/10.

Keywords: Bin Packing · Vector Packing · Online Computation ·
Competitive Analysis · Advice Complexity

1 Introduction

Arguably, the problem of packing items into bins is among the most well-studied
in computer science. It asks for the “minimum number of unit sized bins required
to pack a set of items, each of at most unit size,” and has been shown to be
NP-hard [15] but admits a PTAS [12]. It is common to view the bin packing
problem through the lens of online computation, where the items are delivered
one by one and each item has to be packed, either in an existing bin or a new
bin, before the next item arrives. The quality of online strategies is measured by
their competitive ratio, the worst case asymptotic or absolute ratio between the
quality of the strategy’s solution and that of an optimal one. Currently, the best
strategy for online bin packing has asymptotic competitive ratio 1.5815. . . [16]
and it has been shown that no strategy can have asymptotic competitive ratio
better than 248/161 = 1.54037. . . [5]. For the absolute competitive ratio the
tight bound of 5/3 has been proved [4].

The vector packing problem is a natural generalization of bin packing, where
each item is a vector from [0, 1]D and items are to be packed in D-dimensional
unit cubes. Approximation algorithms with linear dependency on D exist [10,12].
The online version of vector packing is not as well understood, the FirstFit
strategy has been shown to have competitive ratio D + 7/10 even for the more
general resource constrained scheduling problem [14]. Azar et al. [2] claim that
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no online strategy for D-dimensional vector packing can have competitive ratio
better than D but offer no proof of this. They show however, that if all the
vectors have L∞-norm at most ε2, there is a (4/3 + ε)-competitive algorithm
for online two-dimensional vector packing. They also provide a 4/3 lower bound
for arbitrarily small vectors. In general, Galambos et al. [13] provide a suc-
cinct lower bound for online D-dimensional vector packing that increases with
D but remains below 2 for all D. Their result implicitly gives a lower bound of
1.80288. . ., for D = 2 which is currently the best known. Recently, almost Ω(D)
asymptotic lower bounds have been established for online D-dimensional vector
packing for sufficiently large D [3,6,7].

In many cases, the online framework is too restrictive in that it allows an all-
powerful adversary to construct the input sequence in the worst possible way for
the strategy. To alleviate this, the advice complexity model was introduced and
has successfully yielded improved competitive ratios for bin packing and similar
problems; see [1,8,9,19] for a selection of results. In this model, an oracle that
knows both the online strategy and the input sequence provides the strategy
with some prearranged information, the advice, about the input sequence, thus
enabling the strategy to achieve improved competitive ratio.

1.1 Our Results

We consider the general online two-dimensional vector packing problem. We
begin by showing a lower bound of 11/5 for the competitive ratio of any Any-
Fit strategy [17] for the problem. In Sect. 4, we provide a strategy with compet-
itive ratio max

{
2, 6/

(
1 + 3 tan(π/4 − γ/2)

)
+ ε

}
and logarithmic advice, for any

instance where all the input vectors are restricted to have angles in the range
[π/4 − γ/2, π/4 + γ/2], for 0 ≤ γ < π/3. In Sect. 5, we give a 5/2-competitive
strategy also using logarithmic advice for the unrestricted vectors case. These
results should be contrasted to the currently best competitive strategy, First-
Fit, where an item is placed in the first bin where it fits, having competitive
ratio 27/10 [14].

2 Preliminaries

We will use two norms in the sequel. For a two-dimensional vector v, the L1-
norm of v is ‖v‖1 def= |vx|+ |vy| and the L∞-norm (or max-norm) of v is ‖v‖∞

def=
max{|vx|, |vy|}, where vx and vy are the x- and y-coordinates of v, respectively.

The online vector packing problem we consider is, given an input sequence
σ = (v1, v2, . . .), of two-dimensional vectors vi ∈ [0, 1]2, find the minimum num-
ber of unit sized square bins that can be packed online with vectors from the
input sequence σ. From this problem definition we have that 0 ≤ vx ≤ 1 and
0 ≤ vy ≤ 1, i.e., all coordinates are non-negative.
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A packing is simply a partitioning of the vectors into bins B1, B2, . . . such
that for each bin Bj

∥
∥
∥

∑

v∈Bj

v
∥
∥
∥

∞
≤ 1. (1)

In the online packing variant, the vectors are released from the sequence one
by one and a strategy that solves the packing problem must irrevocably assign
a vector to a bin before the next vector arrives. The assignment is either to an
already open bin, maintaining the feasibility requirement in Inequality (1), or
the strategy must open a new bin and assign the vector to this bin.

We measure the quality of an online strategy by its competitive ratio, the
worst case bound R such that |A(σ)| ≤ R · |OPT(σ)| + C, for every possible
input sequence σ, where A(σ) is the solution produced by the strategy A on
σ, OPT(σ) is a solution on σ for which |OPT(σ)| is minimal, and C is some
constant.

In certain situations, the complete lack of information about future input
is too restrictive. In a sense, the online strategy plays a game against an all-
powerful adversary who can construct the input sequence in the worst possible
manner. To alleviate the adversary’s advantage, we consider the following advice-
on-tape model [9]. An oracle has knowledge about both the strategy and the full
input sequence from the adversary, it writes information on an advice tape of
unbounded length. The strategy can read bits from the advice tape at any time,
before or while the requests are released by the adversary. The advice complexity
is the number of bits read from the advice tape by the strategy.

We define the load of a bin B to be the sum of the L1-norms of the included
vectors, i.e.,

ld(B) def=
∑

v∈B

‖v‖1 =
∑

v∈B

|vx| + |vy| =
∑

v∈B

vx + vy, (2)

since all coordinates are non-negative. The load for the whole request sequence
σ is ld(σ) def=

∑
v∈σ ‖v‖1 =

∑
v∈σ vx + vy. Since the maximum load in a bin is 2,

we immediately have that

|OPT(σ)| ≥ �ld(σ)/2�. (3)

3 A Lower Bound for Two-Dimensional ANYFIT

Strategies

Currently, the best lower bound on the competitive ratio for two-dimensional
vector packing is R ≥ 1.80288. . ., implicit from the construction by Galambos
et al. [13]. We show here a lower bound for two-dimensional vector packing valid
for the class of AnyFit strategies. An online strategy A is an AnyFit strategy,
if A does not open a new bin unless the current item released from the input
sequence does not fit in any already opened bin [17].
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Let σ1 = (pi)n
i=1, 0 < pi ≤ 1, be an instance of the one-dimensional online

bin packing problem for which AnyFit strategy A has competitive ratio at
least |A(σ1)| ≥ �17|OPT(σ1)|/10	, where OPT(σ1) is an optimal solution. Such
sequences σ1 exist of arbitrary length; see Dósa and Sgall [11] and Johnson [17],
and we chose σ1 so that |OPT(σ1)| is a multiple of 10.

To construct our lower bound for the two-dimensional case, let pmin =
min{p1, . . . , pn}, choose 0 < δ < pmin/2, and construct a two-dimensional
instance σ2 as follows. The sequence σ2 has a prefix consisting of |OPT(σ1)|
copies of the vector (0, 1/2), followed by a suffix, the sequence (p1, δ), (p2, δ),
. . . , (pn, δ). An optimal packing OPT(σ2) has the same size as OPT(σ1), since
each bin in the optimal solution packs the vectors in the suffix optimally accord-
ing to the x-coordinate and since we chose δ < pmin/2, the space used on the
y-coordinate in each bin is < 1/2, so one of the (0, 1/2) vectors can be placed in
each bin. Thus, |OPT(σ2)| = |OPT(σ1)|.

The AnyFit strategy A, given the vectors in σ2, will pack the prefix vec-
tors (0, 1/2) pairwise into �|OPT(σ1)|/2	 bins that are full with respect to the
y-coordinate. No vector in the suffix can be packed in any of these bins as
they all have positive y-coordinate. The suffix is therefore packed by A into
at least �17|OPT(σ1)|/10	 bins, giving us a total of at least �|OPT(σ1)|/2	 +
�17|OPT(σ1)|/10	 = |OPT(σ1)|/2 + 17|OPT(σ1)|/10 = 11|OPT(σ1)|/5 bins,
since |OPT(σ1)| is a multiple of 10. We state this as a theorem.

Theorem 1. Every AnyFit strategy A has a lower bound for two-dimensional
vector packing of

∣
∣A(σ)

∣
∣ ≥ 11

5

∣
∣OPT(σ)

∣
∣,

for some input sequence σ.

4 A Strategy with Logarithmic Advice for Angle
Restricted Vectors

We assume in this case that each vector v in the input sequence σ has angle

arg v ∈ [π/4 − γ/2, π/4 + γ/2], (4)

for a given extremal angle γ; see Fig. 1. This set of angles forms a cone issuing
from the origin towards the point (1, 1). Let d = 1 + tan(π/4 − γ/2), i.e., the
abscissa of the line passing through the intersection points of the horizontal and
vertical lines through (1, 1).
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Fig. 1. The partitioning of vectors into five groups.

We follow the exposition in the proof of Theorem 4 in [8] for the one-
dimensional case and partition the vectors into five groups. A vector v is

Tiny: if ‖v‖1 ≤ a, (a < 1 is some constant to be established later)
Small: if a < ‖v‖1 ≤ d/2,
Medium: if d/2 < ‖v‖1 ≤ 1,
Large: if 1 < ‖v‖1 ≤ b, and (1 < b < 2 is some constant to be established later)
Huge: if b < ‖v‖1 ≤ 2;

see Fig. 1. To ensure that no small or medium vector can be packed together
with a huge vector in a bin and no three small or medium vectors can be packed
together in a bin, we enforce that a + b ≥ 2 and 3a ≥ 2, giving us a ≥ 2/3 and
b ≥ 4/3. Furthermore, a < d/2 implies that d > 4/3, whereby γ < π/3.

To bound the number of advice bits used, we fix a positive integer parame-
ter k. Each region of large, medium, and small vectors, respectively, is partitioned
into k diagonal strips as a+(i−1)(d/2−a)/k < ‖v‖1 ≤ a+ i(d/2−a)/k, for 1 ≤
i ≤ k of the small vectors, d/2+(i−1)(1−d/2)/k < ‖v‖1 ≤ d/2+i(1−d/2)/k, for
1 ≤ i ≤ k of the medium vectors, and 1+(i−1)(b−1)/k < ‖v‖1 ≤ 1+ i(b−1)/k,
for 1 ≤ i ≤ k of the large vectors.

The advice that the strategy obtains is the number of large, medium, and
small vectors, respectively in each of the k strips, thus O(k log n) bits of advice
in total.

Our strategy Aγ reads the 3k values L1, . . . , Lk, M1, . . . ,Mk, and S1, . . . , Sk

corresponding to the number of vectors in each strip, lets L =
∑k

i=1 Li, M =
∑k

i=1 Mi, S =
∑k

i=1 Si, and opens L + M + �S/2� bins, henceforth denoted
large, medium and small critical bins. It reserves space 1 + i(b − 1)/k for each
of Li large critical bins and d/2 + i(1 − d/2)/k for each of Mi medium critical
bins, 1 ≤ i ≤ k. We say that a bin has a virtual load of 1 + i(b − 1)/k and
d/2 + i(1 − d/2)/k, respectively. For the small critical bins, we reserve space
matching the sum of the upper limit from the lowest non-empty small strip with
the upper limit from the highest non-empty small strip, for a pair of vectors that
can be matched together, thus reducing the number of vectors in those strips by
one each. If the two strips are a + (i − 1)(d/2 − a)/k < x + y ≤ a + i(d/2 − a)/k
and a + (j − 1)(d/2 − a)/k < x + y ≤ a + j(d/2 − a)/k for i ≤ j, we reserve the
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virtual load of 2a + (i + j)(d/2 − a)/k to the bin. We repeat the process until
at most a single small vector remains for which we reserve the virtual load of
a + i(d/2 − a)/k, if the vector is in the ith strip. The reserved space in a bin is
used to pack one large, one medium or two small vectors in the bin when the
vector arrives. Aγ then serves each vector v in the sequence σ in order as follows:

if v is huge, open a new bin and place v in this bin,
if v is large and lies in strip i, place v in the reserved space of the first unused

large critical bin with reserved space 1 + i(b − 1)/k, reduce the virtual load
of the bin to the actual load (by the amount 1 + i(b − 1)/k − ‖v‖1),

if v is medium and lies in strip i, place v in the reserved space of the first unused
medium critical bin with reserved space d/2+ i(1−d/2)/k, reduce the virtual
load of the bin to the actual load (by the amount d/2 + i(1 − d/2)/k − ‖v‖1),

if v is small and lies in strip i, place v in the reserved space of the first small
critical bin that contains at most one small vector and has unused reserved
space a + i(d/2 − a)/k, reduce the virtual load by a + i(d/2 − a)/k − ‖v‖1
and, if the bin now contains two small vectors, update the actual load.

if v is tiny, use the FirstFit strategy and place the vector in the first open bin
where it fits based on virtual load (add the current vector to the virtual load,
obtaining ‖v‖1 + x + y) and if this is not possible, open a new bin and place
v in this bin.

Theorem 2. For any angle 0 ≤ γ < π/3 and ε > 0, the strategy Aγ receives
O(1ε log n) bits of advice and has cost c(γ, ε)|OPT(σ)|+1 for serving any sequence
σ of size n, where

c(γ, ε) = max
{

2,
6

1 + 3 tan(π/4 − γ/2)
+ ε

}
.

Proof. Assume first that our strategy uses |Aγ(σ)| = H + L + M + �S/2� ≤
H + L + M + S/2 + 1 bins, i.e., there is no bin that only contains tiny vectors.
The optimal strategy must use at least |OPT(σ)| ≥ H + L bins since no two
huge or large vectors can be placed in the same bin. If L ≥ M + S, then the
number of bins that our strategy uses is

|Aγ(σ)| ≤ H + L + M + S/2 + 1 ≤ H + L + M + S + 1 ≤ H + 2L + 1
≤ 2H + 2L + 1 ≤ 2|OPT(σ)| + 1. (5)

On the other hand, if L < M+S, then the optimal strategy can only place one
medium or small vector together with a large one in a bin and the remaining
medium and small vectors can at best be packed together two and two, the
optimal strategy must therefore use at least |OPT(σ)| ≥ H+L+(M+S−L)/2 =
H + L/2 + M/2 + S/2 bins. The number of bins that our strategy then uses is

|Aγ(σ)| ≤ H + L + M + S/2 + 1 ≤ 2H + L + M + S + 1
= 2(H + L/2 + M/2 + S/2) + 1 ≤ 2|OPT(σ)| + 1. (6)
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Assume now that our strategy constructs at least one bin with only tiny
vectors in it. Any of these vectors did not fit in any of the critical bins initially
opened, thus the virtual load of each critical bin is at least d − a. Since the
difference between virtual load and actual load is at most 1/k (we know the
number of vectors in each strip), the actual load is at least d−a−1/k. Since the
bins with huge vectors also have a load of this magnitude and we can have at
most one bin with tiny vectors having less than this load, all but one bin have
load at least d − a − 1/k. We have, if our strategy uses |Aγ(σ)| bins, that

ld(σ) =
|Aγ(σ)|∑

i=1

ld(Bi) ≥ (|Aγ(σ)| − 1)(d − a − 1/k), (7)

so our strategy uses

|Aγ(σ)| ≤ ld(σ)
d − a − 1/k

+ 1 ≤ 2|OPT(σ)|
d − a − 1/k

+ 1

≤ 2|OPT(σ)|
tan(π/4 − γ/2) + 1/3 − 1/k

+ 1. (8)

bins, by Inequality (3) and since d = 1 + tan(π/4 − γ/2) and a = 2/3.
Choosing ε = 8/k, for k ≥ 8, we have the competitive ratio as claimed, since

tan(π/4 − γ/2) > 1/4 for every γ ∈ [0, π/3[.
The strategy receives 3k values as advice, the number of vectors in each strip.

Each value is encoded with at most �log(n + 1)� bits, where n = |σ|. Hence, the
number of advice bits is at most 3k

(
�log(n + 1)�

)
∈ O

(
1
ε log n

)
. 
�

5 A Strategy with Logarithmic Advice for General
2D-Vectors

We generalize the approach by Fernandez de la Vega and Lueker [12] for the
one-dimensional case and let k be a positive integer. Subdivide the unit square
(representing the bins) by a (k + 1) × (k + 1) grid with intersection points at
(i/k, j/k), for 0 ≤ i, j ≤ k. The region ](i − 1)/k, i/k]×](j − 1)/k, j/k], for
1 ≤ i, j ≤ k, is called the (i, j)-box. (Except for the special case when i = 1 or
j = 1, then the (1, 1)-box is the region [0, 1/k] × [0, 1/k], the (1, j)-box is the
region [0, 1/k]×](j − 1)/k, j/k], and the (i, 1)-box is the region ](i − 1)/k, i/k] ×
[0, 1/k].) When the specific coordinates of an (i, j)-box are unimportant, we will
simply refer to it as a box. A vector v such that (i − 1)/k < vx ≤ i/k and
(j − 1)/k < vy ≤ j/k is said to lie in or be contained in the (i, j)-box. (Again,
the special case when vx = 0 or vy = 0, the vector lies in the (1, j)-box or the
(i, 1)-box respectively.) We say that a vector v with vx ≤ 40/k and vy ≤ 40/k is
short. All other vectors are long ; see Fig. 2(a).
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Fig. 2. (a) The partitioning of vectors into boxes (k = 10 for illustration). Vectors in
green region are short (not to scale for purpose of illustration), a long vector v (blue)
and v k-scaled to sck(v) (red). (b) Illustrating the proof of Lemma 1. (Color figure
online)

Let sck(v) denote the k-scaled vector v, where sck(v) = (i/k, j/k), if v lies
in the (i, j)-box. k-Scaling the vectors in σ reduces the types of vectors from
possibly |σ| to k2. Disregarding the short vectors, the number of long vectors
that can appear in a bin is at most 2�k/40	 ≤ k/20, since we can fit at most
�k/40	 long horizontal vectors and at most �k/40	 long vertical vectors in a bin.

Let σL be the subsequence of long vectors in σ and let σS be the subsequence
of short vectors in σ, both dependent on the parameter k. Let sck(σL) denote
the k-scaled vectors in σL and let OPT

(
sck(σL)

)
be an optimal solution of the

k-scaled long vectors in sck(σL).
We let the advice given by the oracle be the number of long vectors in each

box. (Note that information about short vectors is not provided.) Given the
number of long vectors, ni,j , in each box, 1 ≤ i, j ≤ k, a brute force algorithm can
compute an optimal solution OPT

(
sck(σL)

)
in time polynomial in |σL| ≤ |σ| =

n; see the proof of Theorem 3. We let our strategy Ak perform this computation
and open a critical bin corresponding to each bin in the solution OPT

(
sck(σL)

)
.

To each critical bin we reserve space corresponding to the sum of the L1-norms of
the assumed k-scaled vectors placed in it and set the virtual load of the bin to be
this value. As the strategy serves requests from the sequence σ, each long vector
v contained in an (i, j)-box is placed in the first bin that has remaining space for
a k-scaled vector in an (i, j)-box. The virtual load of the bin is reduced by the
difference i/k + j/k −‖v‖1. Each short vector that arrives is placed according to
the FirstFit rule in the first bin where it fits according to the current virtual
load and the virtual load is increased accordingly. If no such bin exists, the
strategy opens a new bin and places the short vector there.

We first show a lower bound for our strategy Ak. Assume that k is odd and
consider 2s copies of the vector (1/2− ε, ε) and s copies of the vector (2ε, 1−2ε),
for sufficiently small ε < 1/3k. An optimal packing of these vectors uses s bins
but the k-scaled vectors become 2s copies of (1/2 + 1/2k, 1/k) and s copies of
(1/k, 1). No two scaled vectors fit together in a bin, hence an optimal packing
of scaled vectors requires 3s bins, giving us a competitive ratio of at least 3.
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However, when k is even, we can show that the competitive ratio of Ak is
5|OPT(σ)|/2 + 1 by first proving the following lemma.

Lemma 1. For k ≥ 100 and even,
∣
∣OPT

(
sck(σL)

)∣∣ ≤ 5
2

∣
∣OPT(σL)

∣
∣ + 1.

Proof. We prove that for any bin B packed with long vectors, the corresponding
k-scaled vectors can be packed into at most two bins and one half bin. A half
bin is a 2-dimensional bin of size [0, 1/2] × [0, 1/2]. Let Q

(
sck(σL)

)
be such a

repacking of the bins in OPT(σL). This means that Q
(
sck(σL)

)
consists of at

most 2|OPT(σL)| bins and |OPT(σL)| half bins. Of course, the vectors in any
two half bins can be packed together into one bin, giving us a new repacking
R

(
sck(σL)

)
of size.

∣
∣R

(
sck(σL)

)∣∣ ≤ 2|OPT(σL)| +
⌈
|OPT(σL)|/2

⌉
≤ 5|OPT(σL)|/2 + 1 (9)

bins. Since R
(
sck(σL)

)
is a feasible packing of the long vectors, we have that∣

∣OPT
(
sck(σL)

)∣∣ ≤
∣
∣R

(
sck(σL)

)∣∣ and the result as claimed.
Let B be an arbitrary bin and assume that B contains m ≥ 1 long vectors.

Assume the vectors are ordered v1, . . . , vm by decreasing L1-norms of their k-
scaled corresponding vectors, i.e., ‖sck(v1)‖1 ≥ ‖sck(v2)‖1 ≥ · · · ≥ ‖sck(vm)‖1.
For ease of notation we use v′

i
def= sck(vi), for 1 ≤ i ≤ m. Let xi,j and yi,j denote

the sum of the x-coordinates and y-coordinates, respectively of v′
i, . . . , v

′
j , for

i ≤ j, according to our ordering. It is clear that xi,j ≤ 1 + (j − i + 1)/k and
yi,j ≤ 1 + (j − i + 1)/k, for any 1 ≤ i ≤ j ≤ m.

By construction, any single vector v′
i fits in one bin so we can assume that

m ≥ 2. Also, if m = 2, then the two vectors can be packed in two separate bins,
immediately proving our result, hence we assume m ≥ 3. Consider the sequence
v′
1 + v′

2 + · · · + v′
m, starting at the origin in the bin; see Fig. 2(b). Fix v′

a to be
the first vector that intersects the exterior of the bin (v′

a must exist, otherwise
the whole sequence fits in the bin, immediately proving our claim) and assume
without loss of generality that it intersects the vertical boundary of the bin. (The
other case, where the sequence intersects the horizontal boundary is completely
symmetric.) Obviously, a ≥ 2.

Since the bin B has m long vectors and m ≤ k/20, we have that x1,m ≤
1 + m/k ≤ 21/20 and symmetrically y1,m ≤ 1 + m/k ≤ 21/20. Also, by our
assumption that v′

a is the first vector intersecting the exterior of the bin, we
have xa+1,m ≤ 1/20; see Fig. 2(b). We make the following case analysis:

if xa,m ≤ 1 and ya,m ≤ 1, then we can pack the vectors v′
1, . . . , v

′
a−1 in one bin

and the vectors v′
a, . . . , v′

m in a second bin, satisfying our requirement.
if xa,m ≤ 1 and ya,m > 1, we have two further cases:

if there is a vector v′
b, a < b ≤ m, such that ya,b−1 ≤ 1 and yb,m ≤ 1/2,

then we can pack v′
1, . . . , v

′
a−1 in one bin, v′

a, . . . , v′
b−1 in a second bin,

and v′
b, . . . , v

′
m in a half bin.

if there is a vector v′
b, a < b ≤ m, such that ya,b−1 ≤ 1, ya,b > 1, and

yb,m > 1/2, then since ya,m ≤ y1,m ≤ 21/20, we have that yb+1,m =
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ya,m − ya,b < 21/20− 1 = 1/20, if the sequence v′
b+1, . . . , v

′
m exists. Thus,

yb,b = yb,m − yb+1,m > 1/2 − 1/20 = 9/20, whether or not the sequence
v′

b+1, . . . , v
′
m exists. Since the L1-norm ‖v′

b‖1 ≥ yb,b > 9/20, each vector
v′
1, . . . , v

′
b−1 must also have L1-norm greater than 9/20, thus b ≤ 4 in this

case. Since a ≥ 2, it follows that b ∈ {3, 4}. Reorder v′
1, . . . , v

′
b−1 so that

x1,1 ≥ · · · ≥ xb−1,b−1.

If b = 3, we have three cases.
If 9/20 < y3,3 ≤ 1/2, then both y1,1 < 1 + 3/k − 9/20 = 11/20 + 3/k <

12/20 = 3/5 and y2,2 < 1+3/k −9/20 = 11/20+3/k < 12/20 = 3/5.
Since x1,1 > 1/2 and x2,2 > 1/2 is not possible, otherwise v1 and v2
would not fit together in one bin as they would both have x-coordinate
greater than 1. We can pack v′

1 in a bin, v′
2 and v′

4, . . . , v
′
m (if they

exist) in a second bin, and v′
3 in a half bin.

If 1/2 < y3,3 ≤ 19/20, and again x2,2 ≤ 1/2 so we can pack v′
1 in a bin,

v′
2 in a half bin, and v′

3 and v′
4, . . . , v

′
m (if they exist) in a second bin.

If 19/20 < y3,3 ≤ 1, and again x2,2 ≤ 1/2. If x1,1 > 19/20, then ‖v′
2‖1 <

2+6/k−19/20−19/20 = 1/10+6/k < 3/20, a contradiction. Hence,
x1,1 ≤ 19/20 and we can pack v′

1 and v′
4, . . . , v

′
m (if they exist) in a

bin, v′
2 in a half bin, and v′

3 in a second bin.

If b = 4, then since each vector v′
1, v′

2, v′
3, and v′

4 has L1-norm greater
than 9/20, each of them also has L1-norm smaller than 2 + 8/k − 3 ·
9/20 = 13/20 + 8/k. Hence, we have x1,1 < 13/20 + 8/k < 14/20 = 7/10,
x2,2 < 7/10, and x3,3 < 7/10. We have two cases.

If 9/20 < y4,4 ≤ 1/2, then if x1,1 ≤ 1/2, then we can pack v′
1 and v′

2 in
a bin, v′

3 and v′
5, . . . , v

′
m (if they exist) in a second bin, and v′

4 in a
half bin. If x1,1 > 1/2 then, since x2,3 = x1,3 −x1,1 < 1+3/k −1/2 =
1/2 + 3/k < 11/20, we can pack v′

1 in a bin, v′
2, v′

3, and v′
5, . . . , v

′
m (if

they exist) in a second bin, and v′
4 in a half bin.

If 1/2 < y4,4 < 13/20 + 8/k, then each of y1,1 ≤ 1/2, y2,2 ≤ 1/2, and
y3,3 ≤ 1/2. If x1,1 ≤ 1/2 then we can pack v′

1 and in a half bin, v′
2

and v′
3 in a bin, and v′

4 and v′
5, . . . , v

′
m (if they exist) in a second bin.

If x1,1 > 1/2 then, both x2,2 ≤ 1/2 and x3,3 ≤ 1/2, so we can pack v′
1

and v′
3 in a bin, v′

2 in a half bin, and v′
4 and v′

5, . . . , v
′
m (if they exist)

in a second bin.
finally, if xa,m > 1, then since xa+1,m ≤ 1/20, the L1-norm ‖v′

a‖1 ≥ xa,a >
19/20, so each vector v′

1, . . . , v
′
a−1 must also have L1-norm greater than 19/20,

thus a = 2 in this case, as the maximum sum of L1-norms of vectors in a bin
is 2. Since x2,2 > 19/20, the value of x1,1 = x1,2 − x2,2 < 1 + 2/k − 19/20 =
1/20 + 2/k, whereby y1,1 = ‖v′

1‖1 − x1,1 > 19/20 − 1/20 − 2/k = 9/10 − 2/k.
Hence, y3,m = y1,m −y2,2−y1,1 < 21/20−0−9/10+2/k = 3/20+2/k < 1/2.
We can therefore pack v′

1 in one bin, v′
2 in a second bin and v′

3, . . . , v
′
m in a

half bin.

This completes the case analysis and proves our lemma. 
�

We can now prove the main theorem of this section.
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Theorem 3. The strategy Ak receives O(log n) bits of advice, works in polyno-
mial time, and has cost

5
2

∣
∣OPT(σ)

∣
∣ + 1,

for serving any sequence σ of size n, if k ≥ 640 is an even constant.

Proof. As in the proof of Theorem 2, assume first that Ak uses |Ak(σ)| =
|OPT(sck(σL))| bins, i.e., there is no bin that only contains short vectors. Con-
sider an optimal solution OPT(σ) and remove all the short vectors from the bins
in this solution. This is still a feasible solution for the remaining long vectors,
thus |OPT(σL)| ≤ |OPT(σ)|. By Lemma 1, we therefore get

∣
∣Ak(σ)

∣
∣ =

∣
∣OPT

(
sck(σL)

)∣∣ ≤ 5
2

∣
∣OPT(σL)

∣
∣ + 1 ≤ 5

2

∣
∣OPT(σ)

∣
∣ + 1. (10)

Assume now that Ak constructs a solution Ak(σ) having at least one bin
with only short vectors in it. Each of these short vectors did not fit in any of
the critical bins originally opened, thus the virtual load of each critical bin is
greater than 1 − 80/k, (80/k is the maximum L1-norm of a short vector). Since
a bin can contain at most k/20 long vectors, and each long vector is scaled at
most 1/k in the x-direction and at most 1/k in the y-direction, the actual load
is greater than 1− k/20 · (1/k +1/k)− 80/k = 9/10− 80/k. Since the maximum
load of a bin is 2, we have in this case, c.f. Inequalities (3) and (7),

∣
∣Ak(σ)

∣
∣ ≤

⌈
2
∣
∣OPT(σL)

∣
∣

9/10 − 80/k

⌉

≤
(

20
9

+
1600
9k

) ∣
∣OPT(σL)

∣
∣ + 1

≤ 5
2

∣
∣OPT(σL)

∣
∣ + 1 ≤ 5

2

∣
∣OPT(σ)

∣
∣ + 1, (11)

by choosing k ≥ 640 and even. The strategy reads at most k2�log(n + 1)� ∈
O(log n) bits of advice, since k is constant.

It remains to prove that the solution OPT
(
sck(σL)

)
can be computed in

polynomial time in |σL|. Let T be the set of different possible bin types using
k-scaled long vectors. Since at most k/20 long vectors of k2 different types can
be packed in a bin, we can bound the number of different packing types by

|T | ≤
k/20∑

l=1

(
k2 + l − 1

l

)
∈ O

(
k · (k2)k/20

)
= O

(
k1+k/10

)
, (12)

which is constant. We let ti,j be the number of k-scaled long vectors in the (i, j)-
box for the bin type t ∈ T . Given the advice information n1,1, n1,2, . . . , nk,k,
the number of long vectors in each box, we can formulate a recurrence for the
optimal packing solution as

P
(
n1,1, n1,2, . . . , nk,k

)
=

min
t∈T

{
P

(
n1,1 − t1,1, n1,2 − t1,2, . . . , nk,k − tk,k

)}
+ 1, (13)

that we can solve in polynomial time with dynamic programming, since both k
and |T | are constants. 
�
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When k is even, our analysis is asymptotically tight. Consider the following
instance of vectors: s copies of the vector (1/2 − 2ε, ε), s copies of the vector
(1/2 + ε, ε), and s copies of the vector (ε, 1 − 2ε), for sufficiently small ε < 1/3k.
An optimal packing of these vectors uses s bins. The k-scaled vectors become
s copies of (1/2, 1/k), (1/2 + 1/k, 1/k) and (1/k, 1), respectively. Only pairs of
the first type of vectors fit together in a bin, hence the minimum number of bins
required after k-scaling is �5s/2� ≥ 5s/2, giving a lower bound of 5/2.

6 Combining the Results

Combining our two presented strategies with the result by Angelopoulos et al.
[1] that achieves a competitive ratio of 1.47012 + ε with constant advice(
actually O(log ε−1) bits

)
for the one dimensional case, so that we use this strat-

egy when γ = 0, strategy Aγ when 0 < γ ≤ π/2 − 2 arctan(7/15) and strategy
Ak, for k ≥ 640 and even, when γ > π/2− 2 arctan(7/15), we have the following
corollary.

Fig. 3. Plots for worst case competitive ratios for γ ∈ [0, π/2] for our combined strategy
(red), FirstFit (green), and AnyFit lower bound (brown). (Color figure online)

Corollary 1. For any angle 0 ≤ γ ≤ π/2 and ε > 0, the combined strategy
described receives O(ε−1 log n) bits of advice and has cost c(γ, ε)|OPT(σ)|+1 for
serving any sequence σ of size n, where

c(γ, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

1.47012 + ε for γ = 0,

max

{
2,

6

1 + 3 tan(π/4 − γ/2)
+ ε

}
for 0 < γ ≤ π/2 − 2 arctan(7/15),

5/2 for π/2 − 2 arctan(7/15) < γ ≤ π/2.

Figure 3 illustrates the worst case competitive ratio for different values of γ.

7 Conclusions

We consider the online two-dimensional vector packing problem and show a
lower bound of 11/5 for the competitive ratio of any AnyFit strategy. We also
show upper bounds spanning between 2 and 5/2 depending on the angle restric-
tions placed on the vectors given logarithmic advice, where the currently best
competitive strategy has competitive ratio 27/10, albeit without using advice.

Interesting open problems include generalizing the lower bound on the com-
petitive ratio to hold for any strategy (without advice) and relating the advice
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complexity to the competitive ratio, either by giving specific lower bounds on
the advice complexity for a given competitive ratio or through some function
that relates one with the other.
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11. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: Proceedings 30th

STACS, pp. 538–549 (2013)
12. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear

time. Combinatorica 1(4), 349–355 (1981). https://doi.org/10.1007/BF02579456
13. Galambos, G., Kellerer, H., Woeginger, G.J.: A lower bound for online vector-

packing algorithms. Acta Cybernetica 11(1–2), 23–34 (1993)
14. Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.-C.: Resource constrained

scheduling as generalized bin packing. J. Comb. Theory Ser. A. 21(3), 257–298
(1976)

15. Garey, M.R., Freeman, R.L., Johnson, D.S.: Computers and Intractability (1979)
16. Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin pack-

ing. In: Proceedings 43rd ICALP, LIPIcs, vol. 41, pp. 1–14 (2016)
17. Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314

(1974)
18. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case

performance bounds for simple one-dimensional packing algorithms. SIAM J. on
Comp. 3(4), 299–325 (1974)

19. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin
packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)

https://doi.org/10.1007/s00224-018-9862-5
http://arxiv.org/abs/2008.00811
http://arxiv.org/abs/2007.15709
https://doi.org/10.1007/s00453-014-9955-8
https://doi.org/10.1007/s00453-014-9955-8
https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1007/BF02579456


Temporal Matching on Geometric
Graph Data

Timothe Picavet1(B), Ngoc-Trung Nguyen2, and Binh-Minh Bui-Xuan3

1 ENS Lyon, Lyon, France
timothe.picavet@ens-lyon.fr

2 HCM University of Education, Ho Chi Minh City, Vietnam
trungnn@hcmue.edu.vn

3 LIP6 (CNRS – Sorbonne Université), Paris, France
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Abstract. Temporal graphs are the modeling of pairwise and histor-
ical interaction in recordings of a dataset. A temporal matching for-
malizes the planning of pair working sessions of a required duration.
We depict algorithms finding temporal matchings maximizing the total
workload, by an exact algorithm and an approximation. The exact algo-
rithm is a dynamic programming solving the general case in O∗((γ+1)n)
time, where n is the number of vertices, γ represents the desired
duration of each pair working session, and O∗ only focuses on expo-
nential factors. When the input data is embedded in an Euclidean
space, called geometric data, our approximation is based on a new
notion of temporal velocity. We revise a known notion of static den-
sity [van Leeuwen, 2009] and result in a polynomial time approximation
scheme for temporal geometric graphs of bounded density. We confront
our implementations to known opensource implementation (Our source
code is available at https://github.com/Talessseed/Temporal-matching-
of-historical-and-geometric-graphs).

Keywords: temporal matching · geometric graph · PTAS

1 Introduction

Data collected from automated processes come ordered by the time instants
when they are recorded. Graphs in this context appear in several variants: link
streams [18], time varying [7], temporal [14] or evolving graphs [6]. These struc-
tures occur in the study of transportation timetables [9,15,16], navigation pro-
grams [26], email exchanges [17], proximity interactions [27], and many other
types of dataset [28]. Therein, a pair working session is a repeated interac-
tion of two vertices over a certain amount of time. Pair working helps in opti-
mizing global parameters such as total fuel consumption when co-sailing with
Fello’fly [2], or code reliability when running XP agile projects [1].
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The total workload of pair working is captured in the notion of a temporal
matching [4]. Given an integer γ, we define formally problem γ-Matching in the
subsequent section; informally, it consists in finding a maximum cardinality set
of compatible pair working sessions, each to be recorded in at least γ consecutive
timestamps in a historical dataset of graphs.

When γ = 1, the problem can be reduced to (classical) static Matching,
which consists in computing a maximum independent edge set of a static graph.
It can be solved in polynomial time by many well known algorithms [8,13,23],
heuristics [11], greedy approximations for large input [31]; as well as in an online
algorithmic context [12,22,30]. It is very intriguing to know whether these enthu-
siastic results extend to the non-static case of γ-Matching.

Unfortunately, very little positive results are known for the temporal case.
Even when restricting the input to be a path at each instant, one can very
naturally obtain a grid-like structure by folding out a temporal graph instance
over the time dimension. On these structures, careful polynomial and parame-
terized reductions allow to obtain very good hardness results, see e.g. [3,21] and
the extensive bibliography therein. Likewise, γ-Matching is NP -hard as soon
as γ > 1 [4], even on very restricted input instances [20]. To the best of our
knowledge, most notable positive results for γ-Matching are: a fixed param-
eter tractable (FPT [10]) algorithm parameterized by the matching number of
the union graph1 [20], an implemented kernelization producing quadratic ker-
nels [4,5] (in the sense of FPT algorithms), and an implemented 2-approximation
from a greedy approach [5].

Our paper addresses the following question: Would there be Fast Algorithms
Computing γ-Matching on Data Recorded from Human Activities? Can they
be Implemented? Human data are not artificial, yet very naturally captured by a
geometric graph: an embedding of a vertex set into a Euclidean space, along with
a real number representing the threshold below which an edge exists between two
vertex-points, see e.g. [19]. The formalism is especially useful in transportation
and social networks where geometric proximity implies higher probability of
successful routing, resp. social relationship [24].

Theoretical Contribution. In order to obtain good runtime, we consider natural
behaviour of embedded vertex-points. The main crux is to carefully examine
a notion of partial derivative, called velocity. This parameter helps ruling out
unrealistic leaps of a vertex-point from one recorded instant to another. We
revisit, ubiquitously, the parameter control used in [29] which is related to the
(static) density of vertex-points. Then, we present and implement a PTAS for
temporal geometric graphs of bounded velocity and density.

Numerical Comparison to Previous Works. We compare our result to previously
known works. The FPT algorithm given in [20] has not been implemented. In
particular, part of this algorithm relies on complex algorithmic results in matroid

1 If a temporal graph is considered to be a sequence (Gt)t∈T of graphs over the same
vertex set, then the edge set of the union graph is the union of all edge sets of Gt

for all t.
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theory. We skip the corresponding analysis. The kernelization implementation
[4,5] helps in reducing the input data, but not in solving the reduced instance. On
instances where we can afford the runtime, we use it as preprocessing step for the
PTAS, exactly the same way done for the greedy implementation [5]. Essentially,
the PTAS is compared to the greedy implementation. Our numerical results are
in favour of the latter, which finds temporal matching of size ≈10% bigger than
the PTAS on generated geometric datasets. Since the theoretical approximation
factor of the greedy algorithm is 2 [4], which is much worse than the theoretical
ratio of the PTAS on our datasets, these experiments raise the question whether
both implementations perform badly, or the greedy approximation factor is near
optimal on geometric data.

We devise and implement an optimal solution for the general case of γ-
Matching terminating in reasonable time on parts of our datasets, that is,
in O∗((γ + 1)n) time where n is the number of vertices and O∗ only focuses
on exponential factors. The PTAS and the greedy experimental approximation
ratios are then determined, which average at 1.02-approximation from optimal.

We present in Sect. 2 the formal framework of problem γ-Matching.
Section 3 presents a PTAS solution for the case of temporal geometric graphs
of bounded velocity and density. Section 4 presents a FPT solution for the gen-
eral case. Due to space restriction, properties marked with (�) are given without
proof, and only the essential numerical experiments are summarised in Sect. 5.

2 Pair Working Sessions in Historical Graph Data

Every graph G = (V,E) in this paper is simple, loopless and undirected. We also
note V (G) = V and E(G) = E. When, and only when, u �= v ∈ V , we abusively
note uv = vu = {u, v} ∈

(
V
2

)
the edge between u and v.

Graph data collected over a duration of time are formalized as a triple L =
(T, V,E), called link stream, such that T ⊆ N is an interval, V a finite set of
vertices, and E a lexicographically ordered subset of T ×

(
V
2

)
called recorded

edges. We also note T (L) = T , V (L) = V and E(L) = E.
Pairwise collaborations over a duration are defined as γ-edges, with γ an

integer. A γ-edge Γ ⊆ E(L) is a subset of γ consecutive edges recorded in E(L),
namely Γ = {(i, uv) ∈ E(L) : t ≤ i < t + γ} for t ∈ T (L) and u �= v ∈ V (L). We
also note such γ-edge Eγ(t, uv).

We note Eγ(L) the set of all γ-edges of L. Two γ-edges Γ, Γ ′ ∈ Eγ(L) are
dependent if there exist instant i and vertices u �= v, u �= w, such that (i, uv) ∈ Γ
and (i, uw) ∈ Γ ′; the two γ-edges are independent otherwise. In planning pair
working sessions, a conflict-free planning is called a γ-matching, and defined as
a set of pairwise independent γ-edges. The following problem is NP -hard for
γ > 1 [4], even on very restricted classes of link streams [20].
Problem γ-Matching:
Input: a link stream L
Output: a γ-matching of maximum cardinality in L.
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Geometric Model: Let L be a link stream. The subgraph Gt of L induced at time
t ∈ T (L) is defined as V (Gt) = V (L) and E(Gt) = {uv : (t, uv) ∈ E(L)}. For
d ∈ N, graph G is a unit ball graph if there exists a point set {cv : v ∈ V (G)} ⊆
Rd, called set of centers, such that E(G) = {uv : u �= v ∧ ‖cu − cv‖ ≤ 1}. Link
stream L is a unit ball stream if the subgraph of L induced at any time t ∈ T (L)
is a unit ball graph. In this case, we denote the center of vertex v at time t in L
as cv(t). L has velocity ν if ‖cv(t + 1) − cv(t)‖ ≤ ν for every t ∈ T \ {max(T )}
and v ∈ V (L). We also refer to balls as intervals when d = 1 and disks when
d = 2.

Line Graph Extrapolation: γ-Matching links itself to MaximumIndepen-
dentSet on the following input. The γ-line graph Lγ of a link stream L is defined
as V (Lγ) = Eγ(L) and E(Lγ) = {{Γ, Γ ′} : Γ and Γ ′ are dependent γ-edges}.
By definition, solving γ-Matching on a link stream is equivalent to solving
MaximumIndependentSet on its γ-line graph.

3 Approximation for Unit Ball Streams

In this section, we use velocity and extend van Leeuwen approximation [29,
Theorem 6.3.8, page 74] for MaximumIndependentSet on unit disk graphs to
the γ-line graph of a unit ball stream L. Since the γ-line graph is not necessarily
a unit ball graph, our main idea is to examine the middle of the two vertex-
points of every γ-edge Γ ∈ Eγ(L): the middle point can not vary much because
of velocity. Corollary 1 below is crucial to our approach.

For a γ-edge Γ = Eγ(t, uv) ∈ Eγ(L) between u �= v ∈ V (L) starting at time
t ∈ T (L), the (middle) center cΓ is defined as the middle point of the centers of
u and v recorded at the starting time t of the γ-edge, cΓ = 1

2 · (cu(t) + cv(t)).
Using velocity of the centers, which can only move γ −1 times while maintaining
the existence of Γ , we refer to the normalized center of Γ as cΓ = 1

1+(γ−1)ν · cΓ .

Proposition 1. In a unit ball stream, if Γ and Γ ′ are dependent γ-edges, then
‖cΓ − cΓ ′‖ ≤ 1.

Proof. Let Γ = Eγ(t, uv) and Γ ′ = Eγ(t′, u′v′). Because of dependency, we
suppose w.l.o.g. that u = u′, and t ≤ t′ ≤ t + γ − 1. We note from Euclidean
triangular inequality that ‖cΓ −cΓ ′‖ ≤ ‖cΓ −cu(t)‖+‖cu(t)−cu(t′)‖+‖cu(t′)−
cΓ ′‖. Now, ‖cΓ −cu(t)‖ ≤ 1

2 because ‖cu(t)−cv(t)‖ ≤ 1. Since u = u′, we deduce

likewise that ‖cu(t′) − cΓ ′‖ ≤ 1
2 . Finally, ‖cu(t) − cu(t′)‖ =

∥
∥
∥
∥

t′−1∑

i=t

(
cu(i + 1) −

cu(i)
)
∥
∥
∥
∥ ≤

t′−1∑

i=t

‖cu(i + 1) − cu(i)‖ ≤ (t′ − t)ν ≤ (γ − 1)ν. 	


Since the normalized centers are uniquely computed from their starting
instant, this is also a fast checking method for independent γ-edges. We refer to
the unit ball graph having as geometric model the set of normalized centers of
all γ-edges of L the normalized γ-line graph of L.
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Corollary 1. The normalized γ-line graph of a unit ball stream is a unit ball
graph having the γ-line graph as partial subgraph. Any independent set of the
γ-line graph is also an independent set of its normalized graph

We now adapt the notion of density [29] to the normalized γ-line graph of
a unit ball stream L of dimension d. Let A ⊆ Eγ(L). We refer to the set of all
γ-edges of A starting at time t ∈ T (L) as At = {Eγ(t, uv) ∈ A : u �= v ∈ V (L)}}.
The thickness of A is the maximum cardinality of such a set, taken over every
possible starting time, that is, θ(A) = max{|At| : t ∈ T (L)}.

In the sequel, all cubes are axis-aligned cubes. For a unit d-cube U ⊆ Rd, we
denote AU = {Γ ∈ A : cΓ ∈ U}. The density of A is the maximum thickness of
such a set, taken over every possible unit d-cube, that is, ρ(A) = max{θ(AU) :
U ⊆ Rd a unit d-cube}. The density of L is ρ(L) = ρ(Eγ(L)).

We will describe in Lemma 1 a decrementing process for the Euclidean space
dimension. Informally, this is a partial density relaxing the first dimension of
the unit d-cubes to infinite unit cuboids. For a unit (d − 1)-cube H ⊆ R(d−1),
we denote AH = {Γ ∈ A : cΓ ∈ R × H} (we replace the unit d-cube U in the
definition of density by the infinite unit cuboid R × H). The partial density of
A (w.r.t. the first dimension) is the maximum thickness of such a set, taken
over every possible infinite unit cuboids, that is, ∂ρ(A) = max{θ(AH) : H ⊆
R(d−1) a unit (d − 1)-cube}. We observe when d = 1 that the partial density is
the thickness.

For a γ-edge Γ ∈ Eγ(L), let xΓ denote the projection of cΓ on the first dimen-
sion, that is, cΓ = (xΓ , . . . ). A decomposition path X is a set of scalars ordered
increasingly, X = {x1, x2, . . . , x|X|}. We define the incomplete partition of A by
X (w.r.t. the first dimension), noted PX(A) = (P0(A), P1(A), . . . , P|X|(A)), as
follows. Firstly, P0(A) = {Γ ∈ A : xΓ < x1 − 1

2}. For 0 < i < |X|, Pi(A) = {Γ ∈
A : xi + 1

2 ≤ xΓ < xi+1 − 1
2}. Finally, P|X|(A) = {Γ ∈ A : x|X| + 1

2 ≤ xΓ }.
Basically, this is a partition of the Euclidean space into |X| + 1 parts called

slab decomposition [29]. PX(A) corresponds to the γ-edges inside each part,
while those incident to the boundaries are removed. From Proposition 1, two
γ-edges of different parts are independent. Hence, PX(A) can also be seen as
a partial decomposition tree for the pathwidth [25] of the (normalized) γ-line
graph of L. In the rest of this section, we describe a way to compute such a
set X.

Lemma 1. Let L be a link stream with density ρ. Let Eγ = Eγ(L) and mγ =
|Eγ |. Let fL be a big enough integer, fL ≥ ρ. Then, we can compute in time
polynomial in mγ a decomposition path X = {x1, x2, . . . , x|X|}, in such a way
that the incomplete partition PX(Eγ) satisfies:

– P0(Eγ) = P|X|(Eγ) = ∅,
– ∀0 < i < |X| − 1, fL ≤ ∂ρ(Pi(Eγ)) < fL + ρ,
– 0 ≤ ∂ρ(P|X|−1(Eγ)) < fL + ρ,
– x|X| − x|X|−1 ≥ fL

ρ .
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Proof. We would like to scan the γ-edges of Eγ in such a way to only increase
the partial density. The main crux is to process greedily along the same x-axis
w.r.t. which the partial density is defined: informally, the infinite unit cuboids
R × H with H a unit (d − 1)-cube can be seen as FIFO strips along this x-axis.

Formally, sort Eγ = {Γ1, Γ2, . . . , Γmγ
} so that xΓ1 ≤ xΓ2 ≤ · · · ≤ xΓmγ

. In
the following, i and P are auxiliary variables containing an index and a set of
centers, respectively. Initialize i ← 1, P ← ∅, define xi = xΓ1 minus one unit,
and increment i. For all Γ ∈ Eγ in increasing order, if the partial density ∂ρ(P )
is strictly less than fL, add Γ to P along with all other Γ ′ with xΓ = xΓ ′ ,
skipping the partial density check for these Γ ′. We call this step (Add). Else,
create a new boundary by defining xi = xΓ , emptying P , and incrementing i.
At the end of the iteration process, define xi to be the last seen xΓ plus one unit
(in order to avoid coinciding with the previous xi). Finally, increment i again
and define xi to be an arbitrarily big number so that it satisfies the last item of
Lemma 1. Partial density checks can be done in polynomial time in mγ because
of Procedure 1 described below. Hence, the overall process is polynomial in mγ .

All parts Pi(Eγ) defined by the computed xi’s have a partial density of at
least fL, except for the first and the last two parts. The only thing left to prove is
∂ρ(Pi(Eγ)) < fL + ρ. By contradiction suppose that the partial density exceeds
that number on some part Pi. This could only happen after adding a set A of
γ-edges in some step (Add). Then, we must have ∂ρ(A) > ρ because adding
γ-edges along the x-axis can only increase the partial density w.r.t. that axis.
Let H be the unit (d−1)-cube such that ∂ρ(A) = θ(AH). Consider then the unit
cube U defined by U =

[
xΓ − 1

2 , xΓ + 1
2

]
×H, with Γ ∈ A. It holds EγU ⊇ AH.

Hence, ρ = ρ(Eγ) ≥ θ(EγU) ≥ θ(AH) = ∂ρ(A) > ρ. Contradiction. 	


Procedure 1: Procedure to calculate the density of a set A of γ-edges
1 ρ ← 0

// Each Ci is a normalized center of a γ-edge of A

2 for (C1, C2, ..., Cd) ∈ {cΓ : Γ ∈ A}d do
// We consider the unit hypercube H with Ci

i as its i-th lowest

coordinate

3 H ← [C1
1 , C1

1 + 1] × · · · × [Cd
d , Cd

d + 1]
4 ρ ← max{ρ, θ(AH)}
5 return ρ

Due to space restriction, the proof of properties marked with (�) is omitted.

Lemma 2 (�). Keeping the same notations as in the hypothesis of Lemma 1,
we have xi+1 − xi ≥ fL

ρ for any 1 ≤ i < |X|.

Lemma 3 (�). Keeping the same notations as in the hypothesis of Lemma 1,
let k ∈ N be such that k ≤

⌊
fL

ρ

⌋
. Let l = |X|. For s ∈ �0, k − 1�, we define



400 T. Picavet et al.

(P0(s), P1(s), . . . , Pl(s)) = P{x+s:x∈X}(A). Then, we have ∂ρ(Pi(s)) < 2fL for
i ∈ �0, l� and s ∈ �0, k − 1�.

Lemma 4 (�). Keeping the same notations as in the hypothesis of previous
Lemma 3, suppose that for every s ∈ �0, k − 1� and i ∈ �0, l�, Mi(s) is a
r-approximation of γ-Matching on Pi(s). Let M(s) = ∪i∈�0,l�Mi(s). Then,
γMM∼ = max

s∈�0,k−1�
{M(s)} is a r

(
1 − 1

k

)
-approximation of γ-Matching on L.

We will now show an exact algorithm to compute the base case (d = 1) of
the approximation. It is also a correct algorithm for arbitrary link streams.

Algorithm 1 (Exact algorithm for the base case of the PTAS, on input an
arbitrary link stream).
On input any link stream L, we note Eγ(t) the set of all γ-edges starting at
time t ∈ T (L), Eγ(t) = {Eγ(t, uv) ∈ Eγ(L) : u �= v ∈ V (L)}. By convention,
we note Eγ(t) = ∅ for t /∈ T (L). We proceed by dynamic programming and
store in M(t, S1, S2, . . . , Sγ−1) a γ-matching M of maximum cardinality of the
restriction of L to time instants between 0 and t + γ − 2 where we have for
1 ≤ i ≤ γ − 1 that M ∩ Eγ(t − 1 + i) = Si.
If T = S1 ∪ S2 ∪ · · · ∪ Sγ−1 is a γ-matching, we have the following formulae:

– M(0, S1, S2, . . . , Sγ−1) = T
– M(t + 1, S1, S2, . . . , Sγ−1) = Sγ−1∪max S0⊆Eγ(t),

S0∪T is a
γ−matching

{M(t, S0, S1, S2, . . . ,

Sγ−2)}
If T = S1∪S2∪· · ·∪Sγ−1 is not a γ-matching, we let M(t, S1, S2, . . . , Sγ−1) = ∅.
After sequentially filling table M by increasing t, we output the value stored in
M(max(T (L)), ∅, . . . , ∅). A python implementation is available2.

Lemma 5. On input any link stream L = (T, V,E) with γ-edge set Eγ = Eγ(L),
Algorithm 1 computes an optimal solution for γ-Matching on L in time
O(tmaxγ2θ(Eγ)2γθ(Eγ)), where tmax = max(T (L)).

Proof. We proceed by induction on t. Let P (M, t, S1, S2, . . . , Sγ−1) denote the
fact that M is a γ-matching of maximum cardinality of the restriction of L to
time instants between 0 and t+γ − 2 such that M∩Eγ(t− 1+ i) = Si for every
1 ≤ i ≤ γ − 1.

Firstly, M(0, S1, S2, . . . , Sγ−1) = S1 ∪S2 ∪ · · · ∪Sγ−1 because ∀i ∈ �1, γ − 1�,
M ∩ Eγ(i − 1) = Si.

Secondly, let t ∈ T (L), Si ⊆ Eγ(t + i) for each 1 ≤ i ≤ γ − 1, and
suppose that the formula is correct for t − 1. For convenience, let T =
S1 ∪ S2 ∪ · · · ∪ Sγ−1. We suppose that T is a γ-matching. Otherwise, it’s triv-
ial. Moreover, let M be such that P (M, t, S1, S2, . . . , Sγ−1) is satisfied and
S = {M(t − 1, S0, S1, S2, . . . , Sγ−2) : S0 ⊆ Eγ(t − 1) ∧ S0 ∪ T is a γ − matching}.
We will show that |M| = |M(t, S1, S2, . . . , Sγ−1)|.
2 It is implemented in function base case in https://github.com/Talessseed/

Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py.

https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py
https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py
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≥ We claim that S only contains γ-matchings of the restriction of L to
time instants between 0 and t + γ − 3, where every M′ = M(t −
1, S0, S1, S2, . . . , Sγ−2) ∈ S is a γ-matching such that M′ ∩ Eγ(t + i) = Si

for every 0 ≤ i ≤ γ − 2. This is entirely deduced from the induction hypoth-
esis. Thus, because every M′ ∈ S has only edges living in times between
0 and t + γ − 3, M(t, S1, S2, . . . , Sγ−1) ∩ Eγ(t + γ − 2) = Sγ−1. Moreover,
M(t, S1, S2, . . . , Sγ−1) is a γ-matching with only edges living in times between
0 and t+γ −2. Therefore by definition of M, |M| ≥ |M(t, S1, S2, . . . , Sγ−1)|.

≤ Let S0 = M ∩ Eγ(t − 1). We can write M = Sγ−1 ∪ M′ such that
P (M′, t − 1, S0, S1, . . . , Sγ−2) is satisfied. Note by induction hypothesis that
we have |M′| = |M(t−1, S0, S1, . . . , Sγ−2)|. Hence, it follows from the defini-
tion of M(t, S1, S2, . . . , Sγ−1) that |M| = |Sγ−1∪M(t−1, S0, S1, . . . , Sγ−2)| ≤
|M(t, S1, S2, . . . , Sγ−1)|.

We now address complexity issues. Checking if a set is a γ-matching can be
done by Procedure 2. Note that |M| ≤ γ θ(Eγ). Hence, Procedure 2 terminates
in time O(γ2θ(Eγ)). Algorithm 1 iterates over t and the Si’s. Their number is
exactly tmax2γθ(Eγ).

Procedure 2: Procedure to check if M is a γ-matching
1 seen ← ∅
2 for Γ = Eγ(t, uv) ∈ M do
3 for t′ ∈ �t, t + γ − 1� do
4 if (t′, u) ∈ seen ∨ (t′, v) ∈ seen then
5 return false

6 seen ← seen ∪ {(t′, u), (t′, v)}
7 return true

Algorithm 2 (Approximation for γ-matching on unit ball streams).
We keep the same notations as in the hypothesis of Lemma 4. If d = 1, we
return the output of Algorithm 1. Otherwise, we compute the sets Mi(s) with
recursive calls on L but with positions in Rd−1: we remove the x dimension by
projecting every cΓ on the hyperplane with equation (x = 0): the input cΓ =
(xΓ , yΓ , zΓ , . . . ) is replaced with cΓ ← (yΓ , zΓ , . . . ). We return set γMM∼ as
defined in Lemma 4.

We stress on the use of variable fL ≥ ρ. Basically, if we call the approximation
algorithm on a link stream with positions in Rp, our algorithm will also use a
similar value fL ← fp,L with fp,L ≥ ρ. We define fp,L = qd−p+12d−p−1 log(mγ)

γ in
order to obtain the following result.

Theorem 1. Algorithm 2 is polynomial in mγ and is a PTAS for γ-Matching
on unit ball streams of bounded velocity and density ρ embedded in an d-
dimension space. More precisely, for any q ≥ 2ργ, a γ-matching with
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approximation ratio
(

1 − 1⌊
q log(mγ )

2ργ

⌋
)(

1 − 1
	q


)d−1

can be computed in time

O∗(qd2d−1mγ
qd2d−1

), where O∗ only retains exponential factors.

Procedure 3: Exact algorithm for the base case of the PTAS (d = 1)
1 Compute Eγ(1), Eγ(2), . . . , Eγ(max(T (L)))
2 Initialize M as ∅ for all elements
3 for Si ⊆ Eγ(i) with 1 ≤ i ≤ γ − 1 do
4 if S1 ∪ S2 ∪ · · · ∪ Sγ−1 is a γ-matching then
5 M(0, S1, S2, . . . , Sγ−1) ← S1 ∪ S2 ∪ · · · ∪ Sγ−1

6 for 1 ≤ t ≤ max(T (L)) − γ + 1 do
7 for Si ⊆ Eγ(t + i) with 1 ≤ i ≤ γ − 1 do
8 T ← S1 ∪ S2 ∪ · · · ∪ Sγ−1

9 for S′ ⊆ Eγ(t) do
10 if S′ ∪ T is a γ-matching then
11 N ← Sγ−1 ∪ M(t, S′, S1, ..., Sγ−2)
12 M(t + 1, S1, ..., Sγ−1) ← max{M(t + 1, S1, ..., Sγ−1), N}
13 t ← max{−1, max(T (L)) − γ + 1}
14 M ← ∅
15 for Si ⊆ Eγ(t + i) with 1 ≤ i ≤ γ − 1 do
16 M ← max{M, M(t + 1, S1, S2, . . . , Sγ−1)}
17 return M

Proof. First, we must verify our assumptions on the new transformed vertices
each time we do the reduction of dimension. To do so, we need to show that if two
γ-edges have their transformed normalized centers at distance strictly greater
than 1, they must be independent. We prove this by induction on the dimension
p. In dimension d, this is proven following the bounded velocity of the unit ball
stream, cf. Proposition 1. If the dimension p is strictly smaller than d, we suppose
we have proven what we want in dimension p + 1. Let Γ and Γ ′ be two inde-
pendent γ-edges with normalized centers in dimension p + 1 (xΓ , yΓ , zΓ , ...) and
(xΓ ′ , yΓ ′ , zΓ ′ , ...) respectively. We suppose that ‖(yΓ , zΓ , ...) − (yΓ ′ , zΓ ′ , ...)‖ > 1
in Rp. But then, it also holds that ‖(xΓ , yΓ , zΓ , ...) − (xΓ ′ , yΓ ′ , zΓ , ...)‖ > 1 in
Rp+1. This contradicts the induction hypothesis.

We call the algorithm on a link stream L with positions in Rd initially. L has
mγ γ-edges. Let ρp (p ≤ d) be the maximum density of link stream the algorithm
processes with positions in Rp. We claim that ρp ≤ 2fp+1,L = qd−p2d−p−1 log(mγ)

γ
for p < d. Indeed, if the algorithm processes a link stream with positions in
Rp, then for each Mi(s) considered, we have that ∂ρ(Mi(s)) ≤ ρp−1, because
the partial density is actually a density where one dimension is forgotten. We
conclude with Lemma 3. The conditions on fp,L are also satisfied for p < d.
Indeed, fp,L = 2qfp+1,L ≥ qρp ≥ ρp.

We first address the approximation ratio. We suppose w.l.o.g. that log mγ ≥
1. Recall in Lemma 3 that k was chosen to satisfy k ≤

⌊
fL

ρ

⌋
. For a link stream
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L′ with positions in Rp, we choose for the algorithm k =
⌊

fp,L

ρ′

⌋
where ρ′ is

the density of L′. Therefore, when the algorithm is called on a link stream with
positions in Rp, we have for p < d that k =

⌊
fp,L

ρ′

⌋
≥

⌊
fp,L

ρp

⌋
≥

⌊
fp,L

2fp+1,L

⌋
≥ �q�.

Hence, 1 − 1
k ≥ 1 − 1

	q
 −−−−−→
q→+∞

1. Combining this with Lemma 4 implies:

⎛

⎝1 − 1
⌊

fd,L

ρ

⌋

⎞

⎠
d−1∏

p=1

⎛

⎝1 − 1
⌊

fp,L

ρp

⌋

⎞

⎠

≥

⎛

⎝1 − 1
⌊

q log(mγ)
2ργ

⌋

⎞

⎠
d−1∏

p=1

(
1 − 1

�q�

)

=

⎛

⎝1 − 1
⌊

q log(mγ)
2ργ

⌋

⎞

⎠
(

1 − 1
�q�

)d−1

−−−−−→
q→+∞

1 if q ≥ 2ργ and log mγ ≥ 1.

Finally, we show that Algorithm 2 is polynomial when q is fixed. Since the
computations when removing a dimension are polynomial in mγ , it is left to
prove that Algorithm 1 also solves the base case in time polynomial in mγ . We
note that θ(Eγ) ≤ ρ0 ≤ qd2d−1 log(mγ)

γ , and combine it with Lemma 5 to obtain:

O
(
tmaxγ2θ(Eγ)2γθ(Eγ)

)

= O

(
tmaxγ2qd2d−1 log(mγ)

γ
2γqd2d−1 log(mγ )

γ

)

= O
(
tmaxγqd2d−1 log(mγ)2qd2d−1 log(mγ)

)

= O
(
tmaxγqd2d−1 log(mγ)mγ

qd2d−1
)

Notice that we can suppose w.l.o.g that each frame of γ consecutive time instants
contains a time-vertex itself contained in a γ-edge. Indeed, if that is not the
case, we can delete time instants where no γ-edges exist, without making two
γ-edges that were independent dependent. Hence, tmax = O(γmγ), implying the
algorithm is polynomial in mγ when q is fixed. Whence, the algorithm is a PTAS
of bounded ρ for all q such that q ≥ 2ργ. 	


4 Exact Algorithm for Arbitrary Link Streams

For later use in the numerical analysis, we need to find an optimal solution for
γ-Matching. This section presents an FPT solution for γ-Matching parame-
terized by the vertex number. Without being pushy about the time complexity
“in the big O”, we are demanding on good runtime performance. Our implemen-
tation performs well because with temporal graphs, the vertex number is a very
small FPT parameter compared to the more popularly used size of the output.
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We shall store in M(t, A1, A2, . . . , Aγ), for every t ∈ �1, tmax − γ + 1�, a
maximum γ-matching of the restriction of link stream L to time instants between
0 and t + γ − 1, where we remove all timed edges adjacent to the time-vertices
(t + i − 1, u) for all u ∈ Ai. Intuitively, Ai is the set of time vertices at time
t + i − 1 that are endpoints of already used γ-edges beginning at t + i − 1. The
recursion for M is:

– M(−1, A1, A2, . . . , Aγ) = ∅

– M(t, A1, A2, . . . , Aγ) = max
({

M(t − 1, ∅, A1, A2, . . . , Aγ−1)
}

∪
{

{Γ} ∪ M(t, A1 ∪ {u, v}, A2, . . . , Aγ) : Γ = Eγ(t, u, v) ⊆ L ∧ u, v /∈
γ⋃

i=1

Ai

})
.

Lemma 6 (�). Keeping the same notations introduced before, M(tmax − γ +
1, ∅, . . . , ∅) is a maximum γ-matching of L.

Theorem 2 (�). On any n-vertex, m-recorded-edge link stream L with γ-edge
number mγ = |Eγ(L)|, γ-matching can be solved in time O(m+n2+mγ(γ+1)n)
by a dynamic programming filling the above described table M . At the end of the
process, M(tmax − γ + 1, ∅, ..., ∅) stores a maximum γ-matching of L, where
tmax = max(T (L)).

5 Numerical Analysis

We implement3 in Python 3 both the PTAS described in Sect. 3 and the DP
described in Sect. 4. We compare their numerical results with the JavaScript
implementation of the greedy approximation4 given in [5]. In the latter reference,
the authors use an arbitrary total ordering to sort the γ-edge set, then step by
step try to add each γ-edge to the matching if it does not conflict with the others
that are already present in the matching.

Our experiments are run on a standard laptop with i5 6300HQ 4 cores
@2.3 GHz and 8GB memory @2133 MHz. We place automatic timeouts so that
the computation stops after spending 100 (one hundred) seconds on an instance.
In general, the greedy implementation returns instantaneously, while the PTAS
and the DP take much more time. All our computations add up to ≈400 h
CPU time over the 4 cores. In what follows, we totally skip the discussion about
computing time, and solely focus on approximation ratio.

3 Our source code is available at https://github.com/Talessseed/Temporal-matching-
of-historical-and-geometric-graphs.

4 The source code of [5] is available at https://github.com/antoinedimitriroux/
Temporal-Matching-in-Link-Streams.

https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs
https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams
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Fig. 1. (Left) Mean of the outputted values of PTAS vs. greedy on 4 generated datasets
of unit ball streams; (Right) Mean and standard deviation of the approximation ratio
of PTAS vs. greedy, when compared to the optimal values, on ≈90% of the datasets
in the left figure. In one of the 4 datasets, we do not have any reliable approximation
ratio because the optimal computation runs out of time on most instances.

5.1 PTAS vs. Greedy

Theoretically, the greedy implementation is a 2-approximation [4]. The theoret-
ical approximation ratio of the PTAS is as follows: it is 1.27 for unit interval
streams of velocity 5 and density 5; and is 1.38 for unit disk streams of veloc-
ity 2 and density 4. Both values are very far from the theoretical ratio of the
greedy implementation. Accordingly, we would like to confirm that information
on artificially generated data. In the following, we choose the value of q to be
the biggest integer from

⌈
2γρ

log(mγ)

⌉
to

⌈
2γρ

log(mγ)

⌉
+ 10 that does not result in a

timeout.

Hypothesis 1: PTAS Finds Better Solution than Greedy on Unit Ball Streams
of Well Chosen Velocity and Density. Our methodology is to generate four differ-
ent datasets, cf. Fig. 1 (left). We run both implementations on these, and record
the outputted γ-matching size.

Discussion: Hypothesis 1 is not Confirmed in our Setting. Our experimen-
tal results are in favour of the greedy implementation, which performs ≈10%
better than the PTAS, especially when the density is high. This is surprising
in the sense that very good conditions for PTAS are met: low dimension of the
Euclidean space (good runtime), controlled velocity and density (good approxi-
mation ratio), and varying number of vertices (to rule out the help of kerneliza-
tion [4,5], at least on parts of the dataset). While it does not completely refute
Hypothesis 1 in other settings, our numerical analysis implies at least two pos-
sibilities: either both implementations find solutions half the size of the optimal
values, or their solutions are near optimal (or they are somewhere in between).

Hypothesis 2: Both Approximation Factors in Previous Experiment are Close
to Optimal. We address the dynamic programming explained in Sect. 4. Since
the runtime of its implementation is very long, we can only obtain the answer
for ≈90% of the datasets described in the above experiment. Our results are
presented in Fig. 1 (right).
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Discussion: Likely Validation of Hypothesis 2. Our experimental results show
that PTAS and greedy find solutions that are more than ≈95% of the optimal
values, with a deviation less than ≈5% of the mean, on ≈90% of the unit ball
streams presented in the previous experiment. We conclude that Hypothesis 2
seems to be valid on our generated input.

6 Conclusion and Perspectives

We introduce the notion of velocity in a temporal geometric graph. Revisiting van
Leeuwen theorem on static geometric graphs of bounded density [29, Theorem
6.3.8, page 74], we extend their PTAS to temporal geometric graphs of bounded
density and bounded temporal velocity. Our study case is γ-Matching [4], a
temporal version of (static) graph matching [13]. Implementation works show
that a known greedy implementation [5] finds better approximated solutions by
a factor of ≈10%, when compared to the PTAS. Theoretically, the approximation
factor is 2 for the greedy algorithm and between 1.27 and 1.38 for the PTAS
on our datasets. This raises the question whether the greedy factor 2 is tight
on temporal geometric graphs. As a byproduct for obtaining parts of the above
numerical analysis, we devise a simple dynamic programming formula solving
optimally the general case in FPT time parameterized by the number of vertices.
Since vertices are in small number compared to recordings of edges in a temporal
graph, our dynamic programming could be of independent practical interest.

Acknowledgements. We are grateful to Hai Bui Xuan for helpful discussion and
pointers. We are grateful to the anonymous reviewers for their helpful comments which
greatly improved the paper.
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