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Chapter 9
Artificial Intelligence for Disease 
Identification and Diagnosis

A. Lakshmi Muddana, Krishna Keerthi Chennam, and V. Revathi

9.1  �Introduction to Medical Data Processing

Data is crucial in finding a solution to any problem. It plays a fundamental role in 
identifying diseases, finding causes of diseases, and treatment. Increased computa-
tional power, low storage costs, and availability of internet have driven the health 
center to maintain electronic health records. Advancements in medical devices and 
advances in data analytics led to the application of AI techniques in healthcare in 
detection and prognosis of diseases. Different types of cancer, heart-related dis-
eases, and epidemics like Covid-19 [1], are leading causes of patient suffering and 
death. Early diagnosis and detection are crucial to prevent deterioration of patient 
health and mortality.

AI has driven advances in many fields including finance, agriculture, computer 
vision, e-commerce, driver less cars, voice-activated personal assistants, and health-
care. Medical data are in the form of medical notes, electronic health records, data 
from medical devices, lab test results, and images [2]. Data are available in both 
structured form like images, gene expression, and unstructured form like clinical 
notes. Application of AI techniques on medical data processing can (1) Uncover clin-
ically relevant information hidden in massive amounts of data that can give health 
risk alerts and health outcome predictions, (2) Can reduce errors that are inevitable in 
human clinical practice, (3) More accurate and reliable information to doctors in 
disease identification and treatment, (4) Reduces manual work and subjectiveness, 
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(5) Can find patterns from large scale data to predict the outbreak of pandemics, and 
(6) AI can combine data from different sources like medical records, radiology 
images, genome sequence, fitness band data to create personalized treatment plans.

Challenges of medical data processing include (1) Small datasets because data are 
not stored or due to privacy reasons, (2) Unbalanced datasets in case of cancer and 
rare diseases, (3) Unavailability of labeled data as labeling is time-consuming and 
requires doctors with a specialized skill set, (4) Subjectivity in identifying the dis-
eases that hinders decision making, (5) Variability in patients environment and genes.

Medical data can use:

	1.	 Supervised learning methods for building predictive models.
	2.	 Unsupervised learning methods as preprocessing steps for feature extraction, 

dimensionality reduction, and to identify subgroups before sending to predic-
tive models.

	3.	 Deep learning methods require large amounts of labeled data [3]. But unlabeled 
data are available in abundance. Semisupervised approach uses a combination of 
supervised and unsupervised methods when labels or outcomes are missing in 
the instances of the datasets [4].

AI techniques for medical data processing can be categorized into

	1.	 Machine learning methods like Support vector machines, K-Nearest Neighbors, 
Ensemble methods that take patients disease history, gene expressions, diagnos-
tic results, clinical symptoms, medication, disease indicators in building the 
models for disease identification, and diagnosis [5].

	2.	 Deep learning methods that build neural networks to capture nonlinear relation-
ships. It can uncover nonlinear patterns in the data. Popular neural networks are 
Convolution neural networks for medical Images analysis and LSTM models for 
sequence data processing.

AI in healthcare is used to support decision making in disease prevention, con-
trol, and personalized treatment. It is critical in ensuring that doctors focus on cases 
that truly matters and leaving the routine ones to the machine. Physicians cannot be 
replaced by machines but can assist them to make better clinical decisions with 
more accuracy.

Some of the popular healthcare solutions using AI are IBM Watson Health, 
Google DeepMind that help in cancer diagnosis, predicting patient outcomes, avert-
ing blindness, etc. Ancora Medical that helps in cancer treatment, CloudMedx 
Health to extract data from electronic health records and outputs clinical insights for 
healthcare professionals [6].

9.2  �Preprocessing Techniques

The dataset needs some sort of initial processing before giving as input to the model, 
called preprocessing. It is a crucial step in model building so that meaningful 
insights are drawn from the data. Different preprocessing methods are normalizing 
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data, handling categorical features, handling missing data, handling label noise, 
elimination of outliers, etc.

Feature scaling: Some of the machine learning methods use gradient descent 
algorithm as an optimization technique. This algorithm requires the feature ranges 
to be on a similar scale for fast convergence. Also distance-based methods like 
K-Nearest Neighbors, K-Means use distance between the data points to measure the 
similarity. Hence, feature values are to be brought to similar scale. Popular feature 
scaling techniques are:

Normalization: Feature values are scaled down to the range of 0–1. This is a 
preferred method if the machine learning algorithm makes no assumption about the 
data distribution.

Standardization: Feature values are scaled such that the mean is 0 and standard 
deviation is 1. This method is helpful when the underlying data is normally distrib-
uted and also not affected by outliers.

Feature clipping: Sometimes dataset may have outliers. Specify, minimum and 
maximum values for the features so that values outside minimum and maximum 
specified are clipped to specified minimum and maximum. Another preprocessing 
step required in neural networks is to convert categorical data into numerical data 
since strings will not be converted to float by neural network and may generate error 
during model fitting.

Batch normalization normalizes inputs to each layer of the neural network.
This results in faster convergence and also provides a bit of regularization.

9.2.1  �Handling Missing Data

Some values of the features may not be available in the dataset called missing data 
or null values. Missing data arise due to data corruption, communication errors, 
malfunctioning of devices, accidental clicks, and in some cases, data may not be 
specified deliberately like religion or age of a person [7].

Missing data can be categorized into [8, 9].

	1.	 Missing Completely At Random (MCAR): Where missingness is not related to 
any characteristics of the dataset like material loss.

	2.	 Missing At Random (MAR): The data are dependent on another feature, which 
is missing, e.g., Creatine value is dependent on a urine sample, which was 
missing.

	3.	 Missing Not At Random (MNAR): Data value is missing and is related to the 
reason for its missing intentionally, e.g., age of female, income of person delib-
erately not specified.

Missing values will weaken the model by introducing bias. Handling missing data 
plays an important role in medical datasets since complete datasets produce 
robust models. Hence, missing values are handled as a preprocessing step before 
giving the dataset as input to the model.
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Methods for handling missing data are [10].

	1.	 Deletion: Remove the data based on the proportion of missing values. Deletion 
can be applied on a row or column, or both. Applying on row deletes the entire 
observation that has one or more missing values. This may be done when miss-
ing data is limited to a small number of observations but may result in producing 
biased estimates. Dropping the variable or attribute is preferred when more than 
60% of values are missing, and the variable is insignificant.

	2.	 Imputation:Imputation is estimating the missing value. This can be done by

	(a)	 Using a measure of central tendency like mean, median for continuous data, 
and mode for categorical data.

	(b)	 Use machine learning algorithms like KNN, XGBoost, Random forests to 
impute the missing values. KNN is widely used which can predict both dis-
crete and continuous values.

9.2.2  �Handling Noisy Labels

Data labeling is expensive and time-consuming as knowledge experts are required 
for labeling. In real-world scenarios, labels may also go wrong sometimes and the 
reasons may be.

	1.	 The available information is insufficient due to poor quality data.
	2.	 Experts often make mistakes during labeling.
	3.	 Incorrect labels may come from communication or encoding problems. Real-

world databases are estimated to contain around 5% of encoding errors.
	4.	 Mistakes made during data entry.
	5.	 Annotators may give incorrect labels when part of disease symptoms are given.
	6.	 Variability in interpretation by experts.

Label noise is different from outliers and feature noise. Label noise in training 
data decreases performance and increases complexity in learning.

Methods to handle label noise are:
	1.	 Use label noise-robust models like AdaBoost, naive Bayes, and random forest 

rather than decision tress and support vector machine.
	2.	 Use data cleansing methods to remove mislabeled samples by outlier detection, 

anomaly detection, and voting filtering.
	3.	 Use Label noise-tolerant learning algorithms that use prior information to detect 

like Bayesian prior, beta priors, Hidden Markov, Graphical methods, and proba-
bilistic models.

	4.	 Reduce the label noise in training data. Instead of giving large data with label 
noise for training, select small data with correct labels, and then apply predic-
tions on it. Then voting of ensemble classifiers can be applied.
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Carla E. Brodley [11] used filtering of data for wrong label identification before 
training the model. Aritra Ghosh [12] introduced noise tolerance risk minimiza-
tion procedures with different loss functions like sigmoid loss, ramp loss, etc. to 
deal with label noise. Identification of mislabeled samples is done by Jeremy 
Speth [13], introducing multilabel identification. Wang et al [14] introduced an 
iterative learning framework for addressing the label noise issue by three steps 
including iterative label noise detection, discriminative feature learning and 
reweighting. Nithika Nigam [15] conducted a survey on different methods to 
deal with label noise in deep learning algorithms and statistical methods used in 
nondeep learning methods like bagging and voting mechanism.

Perona et al. [16] discussed Image denoising methods related to partial differential 
equations (PDEs), Rudin et al. [17] proposed variation-based image restoration 
with free local constraints, Domain transformations such as wavelets by Coifman 
[18], DCT method by Yaroslavsky [19], BLS-GSM by Portilla [20]. L Gondara 
[21] discussed nonlocal techniques including NL-means [22] reviewed different 
denoising algorithms. Dabov [23] proposed different domain transformations 
like BM3D. Models exploiting sparse coding techniques are mentioned in [24–
26]. Vincent [27] discussed different ways for Extracting and composing robust 
features with denoising autoencoders.

9.3  �Methods to Handle Unbalanced Datasets

The majority of medical datasets are unbalanced. Most of the Machine learning 
algorithms are designed to perform well when the number of samples in each class 
are nearly equal. Popular algorithms for balancing numerical datasets are 
SMOTE, MSMOTE.

SMOTE algorithm is applied on two cancer datasets [28] having features charac-
terizing cell nuclei of the tumor. Dataset1 (Wisconsin) has 30 features computed 
from digitized image of fine needle aspirate of a breast mass, Dataset2 with 9 fea-
tures describing the breast tumor characteristics and labels that indicate benign or 
malignancy of the tumor. Both the datasets have imbalanced classes. Datasets con-
tained 16 null values in bare. Nuclei feature and was replaced by mean value of that 
feature. As the range of values of the features varies, the features were normalized 
in both the datasets. Datasets also exhibit class imbalance as shown in Table 9.1. 
Different methods are available for balancing the imbalanced datasets like 
Up-sampling and Down-sampling. As the dataset size is small, up-sampling is 
applied using the SMOTE algorithm. The algorithm synthesizes the samples by tak-
ing k-nearest neighbors of the randomly picked minority samples. The resultant 
datasets after applying SMOTE algorithm are shown in Table 9.2.
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9.4  �Handling Small Datasets

Typically, real-world medical datasets are small in size and may have a large num-
ber of features. This could be due to the nonrecording of patient information, few 
instances in rare diseases, privacy issues, etc [29, 30]. This challenge needs to be 
addressed for the model to be accurate and robust. This challenge can be handled 
using different machine learning techniques like regularization, data augmentation, 
transfer learning, etc.

9.4.1  �Regularization Techniques

One of the factors for poor model performance overfitting. It occurs when the model 
performs well on training data but performs poorly on the unseen test data.

Methods to combat the overfitting problem are

[font = red!50!black] Reduce the features of the dataset. But it may not be the right 
choice as it may result in the loss of useful information. Collect more data to 
increase the dataset size to train the model. But it may not always be possible to 
collect more data. Perform Data Augmentation to create new examples from 
existing examples of the dataset so as to in increasing dataset size. During the 
training process, as the number of iterations in training increase, train loss and 
validation loss decrease. But after some point, validation performance decreases. 
Stop training the model at this point called Early stopping.

Regularization penalizes the parameters taking large values and avoids overfitting.
Different regularization techniques are

[font = red!50!black] L1 regularization is also called Lasso regression, where the 
sum of absolute values of a coefficient is added as a penalty term to the loss func-
tion. It shrinks the coefficient towards zero and discourages learning complex 
models to avoid overfitting. L2 regularization is also called ridge regression, 
where sum of squares of the coefficient is added to the loss function. Dropout 

Table 9.1  Breast cancer datasets

DataSets
No of 
features

No. of samples with 
malignancy

No. of normal 
samples

Total number of 
samples

DataSet1 30 212 357 569
DataSet2 9 241 458 699

Table 9.2  Dataset after up-sampling

DataSets No. of samples with malignancy No. of normal samples Total number of samples

DataSet1 357 357 714
DataSet2 458 458 916
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regularization is used in deep learning. In each iteration of training, some nodes 
of the neural network are randomly made inactive. This results in having a differ-
ent set of nodes in each iteration giving different outputs. It penalizes the weight 
matrices of nodes. Smaller weight matrices lead to simpler models and reduce 
overfitting.

9.4.2  �Data Augmentation

In deep learning models, the neural network contains many layers to model complex 
relations in the data. Deep networks have more neurons in hidden layers creating a 
large number of trainable parameters, which require large datasets. Medical datasets 
are small in size due to the unavailability of recorded information. To handle the 
small size datasets, apply transformations on the available data to synthesize new 
data points, called data augmentation.

For the model to generalize well, the dataset size should be big enough and have 
variations in the data. Train the model with synthetically modified data to get better 
performance. Data augmentation can address the issues of diversity of data, amount 
of data, and also solve class imbalance issues. It is applied as a preprocessing step 
before applying the learning algorithm called off-line data augmentation, which is 
preferred for small datasets. Online data augmentation performs translation on a 
mini-batch, which is preferred for large datasets.

Data augmentation can be applied to different data forms like numerical, image, 
and text. Popular numerical data augmentation techniques are SMOTE and 
MSMOTE, which are already discussed in Sect. 9.3.

Image data augmentation: In real-world scenarios, images might have been 
taken under different conditions like different locations, orientations, scale, and 
brightness. Image data augmentation can be done by applying transformations on 
images like geometric transformations, color space transformations. Geometric 
transformations include rotation, flipping, scaling, and cropping. Flipping should be 
done carefully on medical data sets. For example, in chest X-ray if we perform a 
flip, then heart position will change from left to right which can yield to the case of 
dextrocardia. Rotation of image may result in a change of dimensions and need to 
be resized. Color space transformations like color casting, varying brightness, noise 
injection, etc. used when challenges are connected to the lighting of images [31, 
32]. Image data augmentation is useful in computer vision tasks like object detec-
tion, image classification, image segmentation, etc. (Figs. 9.1, 9.2, 9.3, and 9.4).

These transformations may lead to changes in the image geometry and the image 
may lose its original features. This can be overcome with modern techniques like 
Generative Adversarial networks (GAN), neural style transfer that perform more 
realistic transformations.

GAN is a deep learning-based generative modeling approach to generate new 
images from available images. The model consists of two submodels. Generators 
submodel learns patterns in input and generate new images. A random vector is 
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drawn from Gaussian distribution and is used as a seed in the generative process. 
The generated images look very similar to real images from the domain. The dis-
criminative submodel classifies whether a given image is a real or generated one 
[33–35]. Popular use cases of GAN are filling images from the outline, converting 

Fig. 9.1  BrainTumor 
sample image

Fig. 9.2  After horizontal shift

Fig. 9.3  After vertical shift
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black and white images to color, and photo realistic depictions of product proto-
types. In medical images, discriminator is used as regularizer or discriminator for 
abnormal images.

Neural Style Transfer (NST): New image is generated by taking the content of 
one image (content image) and style of another image (style image). The generated 
image looks like a new image. The image looks more artistic than realistic (Figs. 9.5, 
9.6, 9.7, and 9.8).

Fig. 9.4  After height shift

Fig. 9.5  After width shift

Fig. 9.6  After rotation
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9.4.3  �Transfer Learning

CNN can learn complex mappings when trained on enough data. Medical datasets 
are typically small in size. Training deep neural networks on small datasets results 
in overfitting. When we train deep neural networks on an image dataset, the first few 
layers of convnet recognize horizontal and vertical lines and colors. The next few 
layers learn simple shapes and colors using the features learned in previous layers. 
Subsequent layers try to learn parts of an object. The last layers recognize whole 
objects and perform classification. In any convolutional neural networks, other than 
the last few layers, the layers learn basic features. Using the pretrained model and 
replacing only the last few layers result in saving training time and computational 
power required. Deep learning networks take long training time on large datasets. 
Models like VGG, ResNet, InceptionNet are trained on benchmark datasets with 
millions of examples and thousands of classes. These top-performing models are 
made available and platforms like Keras provide libraries to reuse them [36]. Goal 
of Transfer Learning is to learn from related classification tasks for relevant data by 
identifying various types of abnormalities [37]. Transfer learning in Medical 
Imaging can be done by using two types (1) Same domain different task: The easiest 
method is to use learning from various tasks in similar domains. (2) Different 

Fig. 9.7  After brightness effect

Fig. 9.8  After applying zoom effect
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domains same task: Initial start point is identified and then network tuned for the 
final task [38, 39]. Using pretrained models brings the benefit of decreased training 
time and results in lower generalization error.

Transfer learning can be used as:

	(a)	 Classifier where pretrained model is downloaded and new image is input to 
predict the class.

	(b)	 Can be used as a feature extractor. Layers prior to the output layer can be used 
as input to the layers of the new model. Take layers of pretrained models, freeze 
them and add new layers on top of these to train on the new small dataset. 
Pretrained weights are used as initial weights to the new model and continue 
learning on the new dataset.

Table 9.3 shows the model performance after applying transfer learning (a) as a 
classifier, (b) freezing 10 layers of VGG16 model, on two datasets Covid-19 
chest X-ray images and Brain tumor images. Figures 9.9 and 9.10 show Loss and 
Accuracy curves, on Covid-19 Chest X-ray dataset, before and after transfer 
learning.

Table 9.3  Model performance using transfer learning

DataSet Model
Train 
accuracy

Validation 
accuracy

Train 
loss

Validation 
loss

Covid-19
Chest X-ray with 
transfer learning

VGG16 
(classifier)

1 1 0.0042 0.0013

Covid-19
Chest X-ray with 
transfer learning

VGG16 (freez 10 
layers)

0.9889 1 0.022 0.0018

Brain tumor with 
transfer learning

VGG16 
(classifier)

0.9802 0.9841 0.1003 0.0924

Brain tumor with 
transfer learning

VGG16 (freez 10 
layers)

0.8063 0.8181 0.4213 0.4047
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Fig. 9.9  Loss and accuracy curves for Covid−19 chest x-ray
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Fig. 9.10  Loss and accuracy curves for Covid−19 chest X-ray after transfer learning
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Fig. 9.11  Performance of 
machine learning and deep 
learning algorithms

9.5  �Deep Learning Techniques

Traditional machine learning algorithms like Logistic Regression, Decision Trees, 
K-NN, and SVM can make use of the volume of data to some extent. Their perfor-
mance will not improve further even if more data are available, as depicted in 
Fig. 9.11.

Deep learning techniques can make use of voluminous data by building complex 
model to learn nonlinear relationship among data. With lot of activities being digi-
tized, like electronic health records, data are recorded and made available. This 
large amount of data can be utilized using deep learning methods to give more 
accuracy compared to machine learning methods. Deep learning algorithms are 
inspired by the structure and functioning of the human brain called artificial neural 
networks. Different Deep learning applications in healthcare are, detecting and 
diagnosing cancer cells, disease prediction and treatment, drug discovery, precision 
medicine, identifying health insurance fraud, etc [40].
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Different neural network architectures are

[font =  red!50!black]Feed forward neural networks (FNN), Convolutional neural 
networks (CNN), for image input like MRI images, X-rays, CT-scans. Recurrent 
neural networks (RNN), for sequence data like text, audio, time series data.

9.5.1  �Autoencoders

Autoencoder is a type of neural network used for unsupervised learning where the 
dataset contains few labels or no labels. It encodes input data to some hidden repre-
sentation and then decodes backward to original form. Autoencoder consists of 
three parts:

[font = red!50!black]Encoder that maps input data to hidden or compressed repre-
sentation. Bottleneck layer represents compressed representation of input. 
Decoder that maps hidden representation back to original data as losslessly as 
possible by minimizing Reconstruction loss function.

Autoencoder performs nonlinear transformation to learn abstract features using 
neural networks. Classification or regression can then be applied on latent 
features.

Autoencoder architectures may include:

[font = red!50!black]Simple Feed Forward Networks Convolutional autoencoders 
that contain convolutional encoding and decoding layers to process image input. 
It is better suited for image processing for Image reconstruction, Image coloriza-
tion, Latent space clustering, and Generating high resolution images. LSTM net-
works for sequence data.

Use cases of autoencoders are data compression, image denoising, dimensional-
ity reduction and feature selection, and extraction ignoring noise. So it works well 
for correlated input features.

Autoencoders are built, with the following architecture, on Covid-19 chest X-ray 
dataset having 181 train images and 56 test images as shown in Table 9.4.

Table 9.4  Covid-19 chest X-ray dataset having 181 train images and 56 test images

Layer (type) Outshape Param

input5(InputLayer) [(None, 240, 240, 3)] 0
conv2d18(Conv2D) (None, 240, 240, 32) 896
maxpooling2d8(MaxPooling2) (None, 120, 120, 32) 0
(Conv2D)19 (None, 120, 120, 32) 9248
upsampling2d8(UpSampling2) (None, 120, 120, 32) 0
conv2d21(Conv2D) (None, 120, 120, 32) 9248
upsampling2d9(UpSampling2) (None, 240, 240, 32) 0
conv2d22(Conv2D) (None, 240, 240, 3) 867
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Total params: 29,507
Trainable params: 29,507
Nontrainable params: 0

Following is the output when autoencoder is used for denoising in Fig. 9.12 and 
latent feature learning using autoencoder as shown in Fig. 9.13

9.5.2  �Neural Networks for Medical Datasets

Logistic regression and SVM models are rebuilt on the two up-sampled Breast can-
cer datasets described in Sect. 9.3, which shows the performance of the machine 
learning algorithms as shown in Table 9.5.

To improve the performance, a semisupervised learning technique can be 
adopted. Feature learning was applied using autoencoders to determine latent fea-
tures. Autoencoder was tuned with different optimizers and mini batch sizes. Low 
loss was obtained with RMSPROP optimizer with batch size of 16 and trained for 
100 epochs.

Fig. 9.12  Eliminated denoised output image of autoencoder

Fig. 9.13  Latent feature learning using autoencoder

Table 9.5  Model performance on breast cancer datasets using Machine learning algorithms

DataSets Logistic regression Logistic regression SVM SVM
Train accuracy Test accuracy Train accuracy Test accuracy

DataSet1 97.51 98.39 97.89 98.39
DataSet2 96.96 97.29 98.15 97.34

A. L. Muddana et al.
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Loss curves as depicted in Fig. 9.14, show good performance of the autoencoder. 
On the learned features of up-sampled data, the Feed forward Neural network clas-
sifier model was built. Neural network was tuned with different optimizers, batch 
sizes and number of hidden layers. Good train accuracy, test accuracy, and low vari-
ance were achieved with ADAM optimizer, nine hidden layers, and mini batch size 
of 16. The accuracy measures on train and test data are shown in Table 9.6.

Semisupervised learning using autoencoders for latent feature learning on 
Up-sampled data and neural network model for binary classifier has shown good 
performance. This gives good train, test accuracy, and could reduce the variance to 
less than 1% in both the datasets.

9.5.3  �Convolutional Neural Networks (CNN)

Deep learning architectures are popular for image tasks. CNN is a type of deep 
neural network used for image input to perform feature extraction, classification, 
finding patterns, and in other computer vision tasks [37]. Applications include 
object detection, object classification, driverless vehicles, etc. Convolutional net-
works eliminate manual feature extraction and automatically detect important fea-
tures of an image. CNN has a sequence of layers where each layer of the network 
detects different features of the image. The output of each layer is input to the next 
layer. It performs a series of convolution and pooling operations followed by fully 
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Fig. 9.14  Loss curves of autoencoder on breast cancer datasets

Table 9.6  Model performance on breast cancer using neural networks

DataSets Feed forward neural network Feed forward neural network
DataSets Train accuracy Test accuracy

DataSet1 99.81 98.88
DataSet2 98.98 99.12
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connected layers. Convolution layer performs convolution operation that merges 
two sets of information like image and convolution filter, which produces a feature 
map. The input image is put through filters that activate certain features of images. 
The convolution operation is followed by pooling to reduce the dimension and num-
ber of parameters. This reduces training time and avoids overfitting. Commonly 
used pooling methods are maximum or average pooling.

Each neuron in the network takes inputs from previous layer neurons, applies 
activation function to produce output, which then becomes an input to next layer 
neurons. The activation function introduces nonlinearity into the output of neurons. 
Nonlinear activations perform transformations on an input to learn complex rela-
tionships. Popular Activation functions are Relu, Sigmoid, Tanh. Visualizing inter-
mediate layers output on Covid-19 Chest X-Ray dataset is shown in Fig. 9.15.

Two Convolutional networks were built to classify Covid-19 Chest X-Ray data-
set. Model 1 is a simple network with one convolution and max pooling layer. 
Model 2 is a deep network with three blocks of convolution and pooling layers. The 
model was fine-tuned on different optimizers. SGD / RMSProp found to be per-
forming well with less variance is shown in Table 9.7. Loss and accuracy curves are 
shown in Figs. 9.16 and 9.17.

9.6  �Open Research Problems

Methods to integrate complete data of patients like clinical notes, test values, dis-
ease indicators of patients, gene expression data, and medical images are required, 
to develop a comprehensive model. Such models can accurately predict diseases 
and help in personalized treatment.

Not many datasets are available on various diseases. There is a need for develop-
ing datasets on different diseases and make them available for research. Researchers 
need to build Generative models to perform more realistic transformations on medi-
cal images to increase the dataset size than simple data augmentation methods. This 
helps in developing complex models on small datasets and to avoid overfitting.

Many medical datasets are small in size. Use of pretrained models helps when 
the dataset size is small and new models can be built on these for faster training on 
new problems. Open source high-performing models like VGG, InceptionNet, 
ResNet on medical image datasets are needed which can be used for transfer 
learning.

Label noise in medical datasets significantly impacts the predictions and in sup-
porting decision making. Focus is required in developing the methods to identify 
and handle label noise in medical datasets.

A. L. Muddana et al.
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Fig. 9.15  Visualization of 
intermediate layers of 
covid-19 chest X-ray
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Table 9.7  Model performance on covid-19 chest X-ray using CNN

DataSet Model Optimizer
Train 
accuracy

Validation 
accuracy

Train 
loss

Validation 
loss

Covid-19
Chest X-ray

Model 1 (one layer) adam 0.9944 0.8913 0.0357 0.3068

Model 2 (multiple 
blocks of conv and 
pooling layers)

adam 0.9723 0.913 0.1121 0.245

sgd 0.9889 0.9782 0.0629 0.1791
sgd 0.9889 0.9782 0.0629 0.1791
adagrad 0.9944 0.8478 0.032 0.30144

Loss
train loss
val loss

train acc
val acc

Accuracy
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Fig. 9.16  Loss and accuracy curves of model 1
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Fig. 9.17  Model 2 loss and accuracy curves with “SGD” optimizer
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9.7  �Future Scope

Deep learning models results in more accuracy when trained on large datasets. As 
real-world medical datasets are typically small, datasets can be augmented with 
more realistic images using generative models. GAN architecture and its perfor-
mance on medical datasets can be discussed in the future work. Reinforcement 
learning techniques can be explored on medical datasets, in progressive decision 
making of disease diagnosis.

9.8  �Conclusion

The chapter discusses the challenges in medical data processing for detecting and 
diagnosing diseases. The challenges include small datasets, missing data, and unbal-
anced datasets. Various methods to deal with the challenges like imputing missing 
data, increasing the dataset size using data augmentation techniques, Transfer learn-
ing using predefined models like VGG, ResNet, InceptioNet, and regularization 
methods are discussed. These methods are applied on medical datasets and the 
results are presented. Neural network models on two cancer datasets are built and 
the results are presented. Convolution network architectures for classifying medical 
image datasets to predict diseases like Covid-19 and Brain Tumor are presented. 
Autoencoders are built for image denoising, dimensionality reduction, and feature 
extractions to improve the model performance are presented on cancer datasets. The 
chapter concludes with open research problems and future scope to be explored in 
utilizing AI to provide robust healthcare solutions.
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