
Chapter 8
Forest Fire Risk Zone Mapping in Tropical
Forests of Saranda, Jharkhand, Using
FAHP Technique

Sk Mujibar Rahaman, Masjuda Khatun, Sanjoy Garai, Pulakesh Das,
and Sharad Tiwari

Abstract The forest fire has severe environmental and societal consequences caus-
ing millions of monetary losses every year in the form of loss of forest resources,
animals, and man-made infrastructures globally. Mapping and monitoring of forest
fire and its severity are essential to examine the loss of forest cover resources,
environmental degradation, release of carbon, etc. The present study attempts to
demarcate the forest fire-prone zones in Saranda forests, Jharkhand state, India,
which houses Asia’s largest Sal forest area (769 km2). The Sentinel 2A multispectral
satellite data and ALOS PALSAR digital elevation model (DEM) data were used to
identify the forest-fire prone zones employing the fuzzy analytic hierarchy process
(FAHP). The adopted method indicated a high modelling accuracy (overall 88% and
kappa coefficient 84%). The study identified that about 77% area of the total forest
area is under moderate to very high risk of a forest fire. The study suggests that the
dense forest areas, which are characterized by high humidity and residing at higher
altitudes, are less prone to a forest fire risk. Alternatively, the open and moderately
dense forests at drier regimes are more prone to a forest fire. The developed maps are
essential for forest cover management and preparedness to minimize the conse-
quences of a forest fire. Various initiatives such as awareness programs,
safeguarding forests from human interventions, formulation of forest fire task forces,
and afforestation of native species in the open and disturbed forests in the moist areas
are required to mitigate the forest fire risk in the Saranda forests.
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8.1 Introduction

The forest fire is described as uncontrolled burning of vegetation in a forested
landscape. It is caused by various anthropogenic and natural factors including
drought and warm climate and in some instances due to the occurrence of lightning
(Taylor et al., 2008; Westerling et al., 2006). The climate-driven factors are the
major causes of the forest fire, where the paleoclimatic studies have indicated higher
fires accumulation during the prolonged drier period (Clark, 1988). The dry condi-
tion and heat waves have a direct influence on plant growth and humidity (Morgan
et al., 2008). The increased dryness or drought condition due to climate alteration has
significantly increased the fire events in the past few decades. Besides, the anthro-
pogenic disturbances have induced changes in the land use/land cover (LULC)
pattern, which is one of the prime reasons for increased forest fire (Running,
2006). The human interventions in the form of landscape development, land clearing
for various purposes including agriculture or shifting cultivation in hilly terrains, and
negligence during the tourism and other human activities are also regarded as causes
of a forest fire (Behera et al., 2018).

The forest fire significantly contributes to the modification of the ecosystem
structure. The fire severity determines the loss of vegetation cover and thereby the
biodiversity and ecosystem productivity (Pausas, 2004; Piñol et al., 1998). Every
year, fauna and flora in vast stretches of landscape are removed due to wildfire. It
also has societal impacts via deteriorating human health and damages infrastructure.
The forest fire releases enormous tree carbon into the atmosphere and significantly
alters the regional to the global carbon budget (Spracklen et al., 2007). In the past
few decades, several devastating forest fire instances have been reported globally
such as Australian bush fire (2002, 06, 12, 13, 19–20), Russian wildfire (2003, 15),
Northwest territories fires (2014), British Columbia wildfire (2017), Siberian wild-
fire (2019), Amazon rainforest wildfire (2019), California wildfire (2020), etc.
(Iemima, 2018; Luke & McArthur, 2020; Pierce & Meyer, 2008)). In India, forest
fire incidents are also frequent, where the recently reported incidences are
Uttarakhand forest fire (2016) and Bandipur forest fire (2019) were the most
devastating (Milton, 2019; Upadhyay, 2020).

Satellite remote sensing data provides a variety of indicators to assess the forest
fire-driven changes in forest cover, structural attributes, biochemical properties, etc.
The multitemporal analysis (i.e., pre- and post-fire images) allows to examine the
changes in forest and land cover, wherein the GIS analysis facilitates the identifica-
tion of drivers. Visual image interpretation of the satellite imagery allows the manual
identification of fire burnt areas. Moreover, the changes in vegetation indices
(spectral enhancement), e.g., Normalized Difference Vegetation Index (NDVI;
normalized difference between near-infrared and red band) and Enhanced Vegeta-
tion Index (EVI; modified NDVI with canopy background soil correction factor)
during the pre- and post-fire event, allow automatic identification. Several indices
have been developed for effective burned area mapping, such as Normalized Burn
Ratio (NBR; normalized difference between NIR and SWIR band), Normalized
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Difference Moisture Index (NDMI); the pre- and post-event NBR (dNBR) and its
relativized NBR (RdNBR) (Chuvieco et al., 2002; Key & Benson, 2005; Miller &
Thode, 2007; Kolden et al., 2015). The Moderate Resolution Imaging
Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer
(MERIS) sensor generate the global burnt area products at frequent intervals
(1–3 days intervals) at a coarser resolution of 500 m and 30 m, respectively (Giglio
et al., 2003; Alonso-Canas & Chuvieco, 2015), whereas the Landsat satellite data are
widely used for forest fire mapping at moderate resolution (30 m) for the past five
decades at various scales (Escuin et al., 2008; Long et al., 2019).

The forest fire occurrence maps created with the satellite data allows analyzing
the causes of fire events integrating several response variables and proxies in the
Geographical Information System (GIS) environment. The geospatial approach is
recognized as a reliable method in developing fire susceptibility map in India, where
a large portion of forest land is being occupied and managed by the forest dwellers
(Jain et al., 1996; Roy et al., 1991). The statistical analysis of the past events and
drivers enables examining the relative influence of the causative factors and allows
to create a fire risk zone map (Chuvieco et al., 2010; Núñez-Regueira et al., 2000).
Previous studies have identified several factors as biologic, physiographic, and
anthropogenic. The biologic factors have significant impacts on forest fire incidence,
where the forest fires have differential interactions depending on the species diver-
sity and forest type (Kodandapani et al., 2008). Land use/land cover (LULC),
vegetation density, and moisture content of vegetation determine the burnable fuel
for forest fire expansion and severity (Biranvand et al., 2011; Adab et al., 2013;
Siachalou et al., 2009). The moisture condition of vegetation plays a very influential
factor in the spread of forest fire, where high moisturized areas are less prone to
burning and vice-versa (Siachalou et al., 2009). The indices on vegetation greenness
and moisture content as NDVI and NDMI, respectively, are widely used as the
satellite data derived proxies (Serrano et al., 2000). Thin layers of a canopy with a
higher reflectance in a short-wave infrared (SWIR) band signifies high moisture
content, whereas the higher reflectance in NIR band indicates lower moisture content
(Siachalou et al., 2009).

The physiographic variables as elevation and slope are linked with the wind and
direction that act as stimulating factors and regulates the fire spread (Gao et al., 2011;
Jaiswal et al., 2002; Weise & Biging, 1997). The downward spread of forest fire is
slow as compared to the spread of intensity toward a higher slope (Kushla & Ripple,
1997). The moisture content determined by the amount of incident solar energy in an
area is correlated with the aspect. The sun-facing aspects create favorable condition
for the higher rate of fire spread owing to higher sunlight, heat, low clamminess, low
fuel vapors, and heavy winds (Anderson, 1982; Prasad et al., 2008). The anthropo-
genic influences encourage the fire spread rate due to closeness to settlements and
roads (Avila-Flores et al., 2010). Fire risk is higher as it offers more chance for
unpredicted human-made explosions, due to the more forceful human actions
(Alencar et al., 2004).

Jaiswal et al. (2002) employed the LISS-III data derived from forest type, slope,
settlement, and road network map to map the forest fire risk zone in Gorna
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Subwatershed, Madhya Pradesh, India. They have observed the high and very high
risk in around 30% area of the total forest area. Kumari and Pandey (2020) integrated
several factors such as fuel type, bare soil index, slope, aspect, elevation, distance
from road, and settlement using the AHP technique for forest fire risk analysis in
Palamau Tiger Reserve Forest, Jharkhand. They have observed a good agreement
comparing with the MODIS and SNPP-VIRRS product and identified the high and
very high-risk zone in about 43% of the area. Sharma et al. (2012) applied the Crisp
AHP (CAHP) and Fuzzy AHP (FAHP) techniques for forest fire risk mapping in the
Taradevi forest range of the Shimla Forest Division, India. The resultant map
showed high accuracy with the forest fire observed data points and identified
about 6.89 and 9% area as the very high-risk zone for the CAHP and FAHP
technique, respectively. Kayet et al. (2020) compared the Frequency Ratio (FR)
model and AHP technique for the forest fire risk mapping in Melghat Tiger Reserve
forest, India. The validation with the Forest Survey of India (FSI) fire occurrence
point data indicated an overall accuracy of 81% and 79% for the FR and AHP
technique, respectively. Adab et al. (2013) employed the MODIS data product to
compare the accuracies observed for various methods as Hybrid Fire Index, Struc-
tural Fire Index, and Fire Risk Index for northeast Iran. The receiver operating
characteristic (ROC) curve indicated high accuracy of 76.7% for the hybrid fire
index. Ahmad and Goparaju (2017) analyzed the forest fire hotspot districts in
Jharkhand state, India, from 2005 to 2016 and reported the Paschim Singhbhum
district as the most forest fire affected district.

In the present study, we have attempted to assess the forest fire risk in the Saranda
Forest Division of Jharkhand using Fuzzy Analytic Hierarchy Process (FAHP)
model and GIS. The objective of the study was to study the factors responsible for
a forest fire in the Saranda Forest Division and to create a knowledge base that would
enable better planning and management strategies to combat the future forest
fire risk.

8.2 Study Area

The present study was conducted in the Saranda Forest Division (SFD) of West
Singhbhum district, Jharkhand, India (Fig. 8.1). Saranda means “Land of Seven
hundred Hills.” It is Asia’s largest dense Sal (Shorea robusta) forest and lies
between 22� 220 58.8300 N to 22� 00 36.6200 N and 84� 580 47.3500 E to 85� 250

38.2200 E geographic extent and spread over about 1003 km2 of geographical area.
Jharkhand has about 29% of its geographical area under forest cover. Both protected
forests (61%) and reserved forests (19%) are common to forest fires (Mishra, 2013).
Previous studies have identified significant changes in forest cover in the Saranda
Forest Division from 1992 to 2014 and built-up and mining area expansion replacing
the dense and open forests. About 9% forest reduction with equivalent mining and
built-up area expansion was reported by Kayet and Pathak (2015). The analysis
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carried out by the FSI (Forest Survey of India, 2019) estimated about 0.21%, 2.18%,
and 9.16% area of Jharkhand falls under the extreme, very high, and highly fire-
prone zones of the total forest cover in Jharkhand state.

Fig. 8.1 Location map of the study area
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8.3 Material and Methodology

Biologic Data

The biologic factors were introduced employing the NDVI and NDMI maps. These
maps were prepared using the cloud-free Sentinel-2B level 2 high-resolution (10 m
spatial resolution) satellite imagery dated March 28, 2020. The image tiles were
accessed from the open-source archive of Copernicus Open Access Hub (https://
scihub.copernicus.eu/).

Physiographic Data

The physiographic factors, i.e., elevation, slope, and aspect, were extracted from
high resolution (12.5 mspatial resolution) ALOS PALSAR Digital Elevation Model
(DEM) datasets acquired from National Aeronautics and Space Administration
(NASA) Earth Observing Systems Data and Information Systems (EOSDIS) portal
(https://search.asf.alaska.edu/#/?dataset¼ALOS).

Anthropogenic Data

Proximity to road and settlement is sensitive factor for mapping forest fire risk zones.
In the present study, road and settlement maps were prepared using Survey of India
(SOI) 1:50k topographical map (73F3, 73F4, 73F7, 73F8, and 73B16) acquired from
the data portal (https://soinakshe.uk.gov.in/).

Methodology

The various input layers were integrated, employing the AHP technique based on
their relative importance.

The NDVI and NDMI maps were prepared using the QGIS 3.14 software
employing the following formulae (Eqs. 8.1 and 8.2, respectively).

NDVI ¼ NIR� RED
NIRþ RED

ð8:1Þ

NDMI ¼ NIR� SWIR
NIRþ SWIR

ð8:2Þ
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The NDVI layer was used to create the map vegetation and non-vegetation cover,
where the NDVI threshold of 0.2 was considered for segregation (Al-doski, 2013).
The leaf water content of the vegetation was assessed by the NDMI. Lower NDMI
value indicates dry vegetation which is more flammable than fresh vegetation that
has high NDMI value. Thus, alternative lower and higher weights were assigned to
higher and lower moisture conditions areas.

The physiographic factors as elevation, slope, and aspect were derived from the
ALOS DEM datasets using QGIS 3.14 software “raster terrain analysis” tool. Forest
fire influences are higher in the lower altitude due to favorable climatic conditions;
therefore, higher weightage was assigned to lower elevation (Jaiswal et al., 2002).
The higher vertical slope increases the likelihood of increasing the spread of forest
fires due to water loss and more efficient convection prewarming (Kushla & Ripple,
1997). Consequently, high and low slopes were assigned high and low weights,
respectively. In the northern hemisphere, the south and the north-facing slope is
exposed to highest and least sunlight, respectively, thus assigned contrasting higher
and lower weightage (Kumari & Pandey, 2020).

Anthropogenic factors like distance from road and settlement were digitized from
SOI topographical map on 1:50k scale. In the forest fire risk index, roads play both
positive and negative roles. Roads offer more human access to forested areas
enabling more human interference and increased chances of a spark of fire; alterna-
tively, the roads create a barrier that prevents fire spreading. Areas close to the
settlements and roads were assigned with higher weightage values. All the input
variables were converted into raster format with uniform cell size and were projected
for further processing.

Fuzzy Analytical Hierarchy Process (FAHP) Model

The FAHP is the combination of Analytic Hierarchy Process (AHP) and fuzzy logic.
It follows a similar process to the AHP method. In FAHP, the arrays of the AHP are
scaled into the fuzzy triangle scale to retrieve the importance of the input variables
(Putra et al., 2018). Using a fuzzy triangle scale, fuzzified pairwise comparison
matrix was prepared, as shown in Table 8.2.

Estimation of Geometric Mean

For each criterion, the geometric mean (eriÞ fuzzy comparison values are calculated as
shown in the Eq. (8.3) (Buckley, 1985).

eri ¼ Yn

j¼1
edij� �1

n
, i ¼ 1, 2, 3, . . . , n ð8:3Þ

Estimate Weight ( ewi):
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ewi ¼ eri O er1 O er2 O⋯
O ern� ��1

ð8:4Þ

Defuzzified (Mi):

Mi ¼ lwi þ mwi þ uwi

3

� �
ð8:5Þ

Normalized Fuzzy Weight(Ni):

Ni ¼ MiPn
i�1Mi

ð8:6Þ

Forest Fire Risk Index

The input parameters as NDVI, NDMI, elevation, slope, aspect, distance to road, and
distance to settlement were assigned different weights ranging from 2 to 10 based on
their comparative importance to fire risk (Table 8.1). Lower and higher weightage
value indicates the relative lower and higher hazard induced by the drivers. The
mathematical equation used for calculating the forest fire risk index is shown below:

FFRI ¼ Vm � 38ð Þ þ Vi � 20ð Þ þ e � 3ð Þ þ S � 14ð Þ þ a � 4ð Þ þ R � 12ð Þ
þ s � 10ð Þ ð8:7Þ

Where Vm is Normalised Difference Moisture Index, Vi is Normalised Difference
Vegetation Index, e is elevation, S is slope, a is aspect, R is distance from road, s is
distance to settlement, and 38, 20, 3, 14, 4, 12, 10 is the weight of the factor
estimated by using the FAHP model (Tables 8.2, 8.3, and 8.4 and Eqs. 8.3–8.6).

For validation, the Suomi NPP and Visible Infrared Imaging Radiometer (SNPP-
VIRS) forest fire dataset were used. The data were acquired from the Level-1 and
Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive

Table 8.1 Weights assigned to each variable and classes for forest fire risk modelling

Variables Classes Rating of risk

NDMI (�1 to +1) <0, 0–0.16, 0.16–0.26, 0.26–0.36, >0.36 10, 8, 6, 4, 2

NDVI (�1 to +1) <0.2, >0.2 4, 10

Elevation (m) <350, 350–550, >550 10, 6, 2

Slope (�) <5, 5–10, 10–15, 15–20, >20 2, 4, 6, 8, 10

Aspect(�) North, East, West, South 4, 6, 8, 10

Proximity to Road(m) <500, 500–1000, 1000–1500, 1500–2000, >2000 10, 8, 6, 4, 2

Proximity to Settlement(m) <500, 500–1000, 1000–1500, 1500–2000, >2000 10, 8, 6, 4, 2
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Center (DAAC) website (https://ladsweb.modaps.eosdis.nasa.gov/). For validation,
222 points were created randomly, where the respective values were extracted from
the forest fire risk map and SNPP-VIRS to compute the frequency and confusion
matrix.

Table 8.3 Estimated
geometric mean

Criteria Geometric mean erið Þ
NDMI 3.95, 4.63, 5.29

NDVI 1.96, 2.40, 2.85

Elevation 0.28, 0.36, 0.47

Slope 1.42, 1.67, 2.10

Aspect 0.34, 0.45, 0.57

Proximity to road 1.13, 1.43, 1.75

Proximity to settlement 0.96, 1.18, 1.50

Total (T) 10.04, 12.12, 14.52

Reverse (T�1) 0.10, 0.08, 0.07

Table 8.2 Fuzzified pair-wise comparison matrix

Criteria NDMI NDVI Elevation Slope Aspect
Proximity
to road

Proximity to
settlement

NDMI 1, 1, 1 4, 5, 6 5, 6, 7 5,
6, 7

6, 7, 8 5, 6, 7 5, 6, 7

NDVI 1
6 ,

1
5 ,

1
4

1, 1, 1 5, 6, 7 3,
4, 5

5, 6, 7 3, 4, 5 3, 4, 5

Elevation 1
7 ,

1
6 ,

1
5

1
7 ,

1
6 ,

1
5

1, 1, 1 1,
2, 3

1
3 ,

1
2 ,

1
1

1
7 ,

1
6 ,

1
5

1
7 ,

1
6 ,

1
5

Slope 1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

1
3 ,

1
2 ,

1
1

1,
1, 1

1
3 ,

1
2 ,

1
1

1
6 ,

1
5 ,

1
4

1
6 ,

1
5 ,

1
4

Aspect 1
8 ,

1
7 ,

1
6

1
7 ,

1
6 ,

1
5

1, 2, 3 1,
2, 3

1, 1, 1 1
6 ,

1
5 ,

1
4

1
6 ,

1
5 ,

1
4

Proximity to
road

1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

5, 6, 7 4,
5, 6

4, 5, 6 1, 1, 1 1, 2, 3

Proximity to
settlement

1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

5, 6, 7 4,
5, 6

4, 5, 6 1
3 ,

1
2 ,

1
1

1, 1, 1

Table 8.4 Estimated fuzzy weight

Criteria Fuzzy weight ( ewiÞ Defuzzified (Mi) Normalized fuzzy weight (Ni)

NDMI 0.27, 0.38, 0.53 0.39 0.38

NDVI 0.14, 0.20, 0.28 0.21 0.20

Elevation 0.02, 0.03, 0.05 0.03 0.03

Slope 0.10, 0.14, 0.21 0.15 0.14

Aspect 0.02, 0.04, 0.06 0.04 0.04

Proximity to road 0.08, 0.12, 0.17 0.12 0.12

Proximity to settlement 0.07, 0.10, 0.15 0.10 0.10
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8.4 Result

The forest density map is shown in Fig. 8.2, which indicates the dominant occur-
rence of moderately dense forest (519 km2) followed by open forest (281 km2),
grassland (83.65%), and dense forest (35.92%), whereas non-forest areas are esti-
mated in 17.13 km2 area. The factor maps are shown in Fig. 8.2. The NDMI map
indicated higher moisture content for the grassland-dominated regions, as observed
in the eastern and western part of the study area (Fig. 8.3a). The NDVI index map
indicates the dominance of densely vegetated areas except for the eastern and
northwestern part mostly occupied by grassland, settlement, and mining areas
(Fig. 8.3b), which are also mostly in the lower altitudes (Fig. 8.3c). The
corresponding slope map indicates lower slope in these regions and a higher slope
in the rest of the study area (Fig. 8.3d). The aspect map indicates the face of the slope
(Fig. 8.3e), which is categorized in four types as east, west, north, and south. The
south-facing slope is given a higher value, and the north-facing slope is given a

Legend
Non-Forest
Grass land
Open Forest
Moderate Forest
Dense Forest

Map Scale
0 3 6 12 KM

N

Fig. 8.2 Forest cover map
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Fig. 8.3 Maps depicting: (a) Moisture Index, (b) Vegetation Index, (c) Elevation, (d) Slope, (e)
Aspect, (f) Proximity to Road, and (g) Proximity to Settlement
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lower value. The distance to road and settlement map are categorized into five
groups, where the nearby places are given higher weightage and vice-versa.

The modelling accuracy is estimated comparing with the SNPP-VIRS forest fire
data. The satellite data-derived forest fire points are overlaid on the derived forest fire
risk zone map shown in Fig. 8.4. An error matrix is developed employing 222 ran-
dom data points (Table 8.5). The lowest agreement is estimated for the very low-risk
zone category, whereas high accuracy is observed for the rest of the categories. An
overall accuracy of 88% is obtained with a kappa coefficient value of 0.84
(Table 8.6). The maximum producer’s accuracy is observed the moderate- (98%)
and high-risk (97%) zones categories followed by the low- (88%) and very high-risk
(82%) zone.

The entire study area is classified into five risk zones, i.e., very high risk, high
risk, moderate risk, low risk and very low risk. The area falling under different risk
zones is calculated and is depicted in Table 8.7. Dominant forest covers in the
eastern, northern, and western regions are estimated under moderate to high fire risk.

Legend
Validation Point
Very Low Risk Zone
Low Risk Zone
Moderate Risk Zone
High Risk Zone
Very High Risk Zone

Map Scale
0 3 6 12 KM

N

Fig. 8.4 Forest Fire Risk Index map with validated points
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Alternatively, the forest covers in the low to very low-risk zones are mostly observed
in the central and southern parts of the study area. The very high risk is estimated
only 6.52% of the study area, whereas high- and moderate-risk zones are estimated
in 29.64% and 40.58% area. The low-risk zone is estimated in 20.07%, whereas
3.9% area is estimated under the very low risk. The outcome of the study suggested
that higher risk are mostly found in low-lying plain areas characterized by very low
humidity, high slopes, ascending south, close to roads, and settlements. In contrast,
areas characterized by high humidity, lesser land slope, and undisturbed forests are
comparatively less prone to the occurrence and spread of forest fire.

Very-high fire risk is observed for open and moderately dense forests due to
suitable biological, anthropogenic, and topographical conditions like less soil and
vegetation moisture condition, gentle slope condition, low elevation, proximity to
roads and settlements, and south-facing slope. In contrast, dense forests due to less
human interference and its distribution along high altitudes fall under the low-risk
zone. The moderately and open forest occupied the majority of the study area
followed grassland, dense forest, and non-forest areas. In the dense forest, the

Table 8.5 Error matrix between the observed and predicted category

Fire risk

Observed

Very low Low Moderate High Very high Total

Predicted Very low 8 1 0 0 0 9

Low 2 37 1 0 0 40

Moderate 4 1 88 0 1 94

High 5 2 0 51 2 60

Very high 2 2 0 2 13 19

Total 21 43 89 53 16 222

Table 8.6 Error and accuracy estimate

Fire risk
Commission
error

User
accuracy

Omission
error

Producer
accuracy

Overall
accuracy

Kappa
value

Very low 11 89 24 76 88 84

Low 7 93 12 88

Moderate 7 93 2 98

High 15 85 3 97

Very
high

31 69 18 82

Table 8.7 Area of forest fire
risk zone

Risk zone Area (km2) Percentage (%)

Very low 31.98 3.19

Low 201.38 20.07

Moderate 406.99 40.58

High 297.24 29.64

Very high 65.41 6.52
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majority of the area is estimated in lower-risk zone followed by moderate risk. Out of
the total moderately dense forest of 519.6 km2, the moderate risk zone is estimated in
226.38 km2area followed by the low- (156.34 km2) and high-risk zone (111.67 km2)
(Fig. 8.5). In the open forest, more than 60% of the area is estimated in the high-risk
zone, whereas 32% area is estimated in the moderate risk-zone. The majority of areas
under grassland are estimated in the moderate-risk zone (56.31 km2) followed by
nearly 5 km2 and 4.5 km2 under the high- and low-risk zones.

8.5 Discussion

Understanding the factors leading to an ecosystem vulnerable is important to assess
ecosystem susceptibility (Chuvieco & Congalton, 1989). Almost 89% of the forest
fires in tropical regions took place during the drier periods, e.g., March and April
(Ahmad et al., 2018). West Singhbhum is the highest forest fire-prone district of
Jharkhand state and experiences more than 30% of total forest fire of the state in
about 17% of the state forest cover (Ahmad & Goparaju, 2017). The present study
revealed that the open forests and moderate forest cover area form the majority forest
cover, which is highly vulnerable to forest fire occurrence. Consequently, these parts
are more dominated by human activities and experiencing an increase in surface
temperature (Kayet et al., 2020). Human interventions could be one of the major
drivers that ignite the forest fire (Dong et al., 2005). The study revealed that
landscapes falling under the grassland category are prone to forest fire occurrence.
The forest and grassland areas near the roads and settlements are more prone to fire

250

200

150

100

50

0

A
re

a 
(K

M
2)

Dense Forest Moderate Forest Open Forest Grass Land Non-Forest

Very High Risk Zone High Risk Zone Moderate Risk Zone Low Risk Zone Very Low Risk Zone

Fig. 8.5 Graph showing forest cover wise forest fire risk zone
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detonation because accidental fires can be caused by forest dweller and the tourists
(Jaiswal et al., 2002). In comparison, the dense forests are estimated less prone to
forest fire; which could be due to less human intervention and being distributed at a
higher altitude. At higher altitudes, fire intensity remains less acute due to higher
precipitation (Chuvieco & Congalton, 1989). Further, being densely distributed, the
area is characterized by compactness, comparatively low temperature, and high
moisture content, leading to a reduced risk of fire. Another major factor that
contributes significantly to the spread of forest fire is wind. The densely distributed
compact undisturbed forests act as a barrier to wind flow and thus reduce the forest
fire intensity or spread. In contrast, moderately dense and open forest areas due to
suitable biological, anthropogenic, and topographical conditions like low moisture,
gentle slope, low elevation, open spaces, and proximity to roads and settlements
provide an ideal environment for the occurrence of a forest fire. The Fuzzy AHP
technique is successfully applied for the present study as indicated by the compar-
ison (overall accuracy 88%) with the satellite-based observations. In comparison to
FAHP, CAHP, and Dong model, FAHP and CAHP performed better (Sharma et al.,
2012) than Dong model (Eskandari & Miesel, 2017). The study revealed that about
~23% area of Saranda forest falls under low- to very low-risk zone class and the
remaining area ~77% that forms the majority of the Saranda forest division falls
under moderate to very high risk prone zone and is vulnerable to forest fire incidents.

8.6 Control Measures

As the majority of the forest fire incidents are mostly caused by human activities, the
prevention or control of forest fire can be achieved through people’s participation.
Identification and prioritization of the fire prone areas and region specific causes are
more important. Creating awareness among local inhibitors living in the proximity
of forests is very important. Various studies have suggested that the open and
disturbed forest that are more prone to forest fire occurrence. These spaces shall be
filled through afforestation programs based on the selection of native tree species
supporting a high moisture environment. Formation of trained task forces equipped
to deal with any situation of forest fire needs to be conformed and well-deployed in
fields. Forest departments need to be equipped with modern firefighting equipment.
Creation of small water resources like ponds and similar structures can be developed
in the proximity of high-risk areas. Regular field monitoring, trained staff, and
awareness among locals are some of the initiatives that can help to combat the
forest fire.
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8.7 Conclusion

The present study attempted to study the forest fire proneness in Saranda forests. The
adopted methodology provided a reliable output well verified with the satellite-based
observations. The study suggested that about 769 km2 area of the study area, which
is close to approximately ~77% of the total geographical area of Saranda forest
division is vulnerable to moderate to very high risk of forest fire incidence. The
various input maps and final forest risk zone map could be highly useful for the
forest and biodiversity managers. The study exhibited that areas falling under
vegetation class, i.e., grassland, open and moderately dense forests, are more
prone to forest fire occurrence and dense forest areas are comparatively less prone
to forest fire risk. The Saranda forest is one of the major Sal forests of Asia and is a
hub to diverse species of economic and medicinal importance. Thus, the area needs
special attention to safeguard it from increasing human interventions. Additionally,
future studies may include assessment of the invasive species spread in the Saranda
forests, as the presence of the bushy type of invasive weeds not only alter the native
resources but also act as fire stimulation agents. An integrated approach in the form
of research, awareness, and prioritization of area needs to be carried out to strengthen
the management strategies to mitigate the increased risk of a forest fire.

References

Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran
using remote sensing and GIS techniques. Natural Hazards, 65(3), 1723–1743. https://doi.org/
10.1007/s11069-012-0450-8

Ahmad, F., & Goparaju, L. (2017). Geospatial Assessment of Forest Fires in Jharkhand (India).
Indian Journal of Science and Technology, 10(21), 1–7. https://doi.org/10.17485/ijst/2017/
v10i21/113215

Ahmad, F., Uddin, M. M., & Goparaju, L. (2018). An evaluation of vegetation health and the
socioeconomic dimension of the vulnerability of Jharkhand state of India in climate change
scenarios and their likely impact: A geospatial approach. Environmental and Socio-Economic
Studies, 6(4), 39–47. https://doi.org/10.2478/environ-2018-0026

Al-doski, J. (2013). NDVI differencing and post-classification to detect vegetation changes in
Halabja City, Iraq. IOSR Journal of Applied Geology and Geophysics, 1(2), 01–10. https://
doi.org/10.9790/0990-0120110

Alencar, A. A. C., Solórzano, L. A., & Nepstad, D. C. (2004). Modeling forest understory fires in an
eastern amazonian landscape. Ecological Applications, 14(4 Suppl), 139–149. https://doi.org/
10.1890/01-6029

Alonso-Canas, I., & Chuvieco, E. (2015). Global burned area mapping from ENVISAT-MERIS
and MODIS active fire data. Remote Sensing of Environment, 163, 140–152. https://doi.org/10.
1016/j.rse.2015.03.011

Anderson, H. E. (1982). Aids to determining fuel models for estimating fire behavior [Grass, shrub,
timber, and slash, photographic examples, danger ratings]. In USDA Forest Service general
technical report INT—Intermountain Forest and Range Experiment Station (USA).

Avila-Flores, D., Pompa-Garcia, M., Antonio-Nemiga, X., Rodriguez-Trejo, D. A., Vargas-Perez,
E., & Santillan-Perez, J. (2010). Driving factors for forest fire occurrence in Durango State of

192 S. M. Rahaman et al.

https://doi.org/10.1007/s11069-012-0450-8
https://doi.org/10.1007/s11069-012-0450-8
https://doi.org/10.17485/ijst/2017/v10i21/113215
https://doi.org/10.17485/ijst/2017/v10i21/113215
https://doi.org/10.2478/environ-2018-0026
https://doi.org/10.9790/0990-0120110
https://doi.org/10.9790/0990-0120110
https://doi.org/10.1890/01-6029
https://doi.org/10.1890/01-6029
https://doi.org/10.1016/j.rse.2015.03.011
https://doi.org/10.1016/j.rse.2015.03.011


Mexico: A geospatial perspective. Chinese Geographical Science, 20(6), 491–497. https://doi.
org/10.1007/s11769-010-0437-x

Behera, M. D., Gupta, A. K., Barik, S. K., Das, P., & Panda, R. M. (2018). Use of satellite remote
sensing as a monitoring tool for land and water resources development activities in an Indian
tropical site. Environmental Monitoring and Assessment, 190(7), 401.

Biranvand, A., Babaei, K. S., & Kiadaliri, H. (2011). Investigation the ecological factors affecting
fire spread in forest ecosystems (case study: Kakareza-Lorestan). USDA Forest Service General
Technical Report INT-Intermountain Forest and Range Experiment Station (USA).

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. https://
doi.org/10.1016/0165-0114(85)90090-9

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J.,
Martín, S., Ibarra, P., de la Riva, J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera, M. A., &
Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing
and geographic information system technologies. Ecological Modelling, 221(1), 46–58. https://
doi.org/10.1016/j.ecolmodel.2008.11.017

Chuvieco, E., Martin, M. P., & Palacios, A. (2002). Assessment of different spectral indices in the
red-near-infrared spectral domain for burned land discrimination. International Journal of
Remote Sensing, 23(23), 5103–5110.

Chuvieco, E., & Congalton, R. G. (1989). 0034-4257-2889-2990023-0.Pdf. Remote Sensing of
Environment, 159(29), 147–159.

Clark, J. S. (1988). Effect of climate change on fire regimes in northwestern Minnesota. Nature, 334
(6179), 233–235.

Dong, X., Li-min, D., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from
satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research,
16(3), 169–174. https://doi.org/10.1007/bf02856809

Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normal-
ized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from
LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073.
https://doi.org/10.1080/01431160701281072

Eskandari, S., & Miesel, J. R. (2017). Comparison of the fuzzy AHP method, the spatial correlation
method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran.
Geomatics, Natural Hazards and Risk, 8(2), 933–949.

Forest Survey of India. (2019). India State of Forest Report (ISFR) 2019 (Issue 11.12 Jharkhand
11.12). Retrieved from https://fsi.nic.in/isfr19/vol2/isfr-2019-vol-ii-jharkhand.pdf

Gao, X., Fei, X., & Xie, H. (2011). Forest fire risk zone evaluation based on high spatial resolution
RS image in Liangyungang Huaguo Mountain Scenic Spot. In ICSDM 2011—Proceedings
2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge
Services, pp. 593–596. https://doi.org/10.1109/ICSDM.2011.5969116.

Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire
detection algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282.

Iemima, P. (2018). Largest brush and forest fires in recorded history. Worldatlas. Retrieved from
https://www.worldatlas.com/articles/largest-brush-and-forest-fires-in-recorded-history.html

Jain, A., Ravan, S. A., Singh, R. K., Das, K. K., & Roy, P. S. (1996). Forest fire risk modelling
using remote sensing and geographic information system. Current Science, 928–933.

Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from
satellite imagery and GIS. International Journal of Applied Earth Observation and
Geoinformation, 4(1), 1–10. https://doi.org/10.1016/S0303-2434(02)00006-5

Kayet, N., Chakrabarty, A., Pathak, K., Sahoo, S., Dutta, T., & Hatai, B. K. (2020). Comparative
analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in
Melghat Tiger Reserve (MTR) forest. Journal of Forestry Research, 31(2), 565–579.

Kayet, N., & Pathak, K. (2015). Remote sensing and GIS based land use/land cover change
detection mapping in Saranda Forest, Jharkhand, India. International Journal of Earth Sciences,
3(10), 1–6.

8 Forest Fire Risk Zone Mapping in Tropical Forests of Saranda, Jharkhand,. . . 193

https://doi.org/10.1007/s11769-010-0437-x
https://doi.org/10.1007/s11769-010-0437-x
https://doi.org/10.1016/0165-0114(85)90090-9
https://doi.org/10.1016/0165-0114(85)90090-9
https://doi.org/10.1016/j.ecolmodel.2008.11.017
https://doi.org/10.1016/j.ecolmodel.2008.11.017
https://doi.org/10.1007/bf02856809
https://doi.org/10.1080/01431160701281072
https://fsi.nic.in/isfr19/vol2/isfr-2019-vol-ii-jharkhand.pdf
https://doi.org/10.1109/ICSDM.2011.5969116
https://www.worldatlas.com/articles/largest-brush-and-forest-fires-in-recorded-history.html
https://doi.org/10.1016/S0303-2434(02)00006-5


Key, C., & Benson, N. (2005). Landscape assessment: Ground measure of severity, the Composite
Burn Index; and remote sensing of severity, the Normalized Burn Ratio. In FIREMON: Fire
effects monitoring and inventory system 2004.

Kodandapani, N., Cochrane, M. A., & Sukumar, R. (2008). A comparative analysis of spatial,
temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in
the Western Ghats, India. Forest Ecology and Management, 256(4), 607–617. https://doi.org/
10.1016/j.foreco.2008.05.006

Kolden, C. A., et al. (2015). Limitations and utilisation of Monitoring Trends in Burn Severity
products for assessing wildfire severity in the USA. International Journal of Wildland Fire, 24
(7), 1023–1028.

Kumari, B., & Pandey, A. C. (2020). Geo-informatics based multi-criteria decision analysis
(MCDA) through analytic hierarchy process (AHP) for forest fire risk mapping in Palamau
Tiger Reserve, Jharkhand state, India. Journal of Earth System Science, 129(1). https://doi.org/
10.1007/s12040-020-01461-6

Kushla, J. D., & Ripple, W. J. (1997). The role of terrain in a fire mosaic of a temperate coniferous
forest. Forest Ecology and Management, 95(2), 97–107. https://doi.org/10.1016/S0378-1127
(97)82929-5

Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., et al. (2019). 30 m resolution global annual
burned area mapping based on Landsat Images and Google Earth Engine. Remote Sensing, 11
(5), 489.

Luke, & McArthur (2020). Bushfire History, South Australian Country Fire Service. South
Australian Country Fire Service. Retrieved from https://www.cfs.sa.gov.au/about-cfs/history-
of-the-cfs/bushfire-history/

Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a
relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment,
109(1), 66–80.

Milton, L. (2019). Karnataka: Bandipur fire doused, forest official confirms act of sabotage. Times
of India. Retrieved from https://timesofindia.indiatimes.com/city/mysuru/karnataka-bandipur-
fire-doused-forest-official-confirms-act-of-sabotage/articleshow/68145439.cms

Mishra, A. K. N. (2013). More forests burning in Jharkhand. Times of India. Retrieved from https://
timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/
19504839.cms?utm_source¼contentofinterest&utm_medium¼text&utm_campaign¼cppst&
pcode¼461

Morgan, P., Heyerdahl, E. K., & Gibson, C. E. (2008). Multi-season climate synchronized forest
fires throughout the 20th century, northern Rockies, USA. Ecology, 89(3), 717–728. https://doi.
org/10.1890/06-2049.1

Núñez-Regueira, L., Proupín-Castiñeiras, J., & Rodríguez-Añón, J. A. (2000). Design of risk index
maps as a tool to prevent forest fires in the hill-side zone of Galicia (NW Spain). Bioresource
Technology, 73, 123–131.

Pausas, J. G. (2004). Peninsula (Mediterranean Basin). Climatic Change, 63, 337–350.
Pierce, J., & Meyer, G. (2008). Long-term fire history from alluvial fan sediments: The role of

drought and climate variability, and implications for management of Rocky Mountain forests.
International Journal of Wildland Fire, 17(1), 84–95.

Piñol, J., Terradas, J., & Lloret, F. (1998). Climate warming, wildfire hazard, and wildfire occur-
rence in coastal eastern Spain. Climatic Change, 38(3), 345–357. https://doi.org/10.1023/
A:1005316632105

Prasad, V. K., Badarinath, K. V. S., & Eaturu, A. (2008). Biophysical and anthropogenic controls of
forest fires in the Deccan plateau, India. Journal of Environmental Management, 86(1), 1–13.
https://doi.org/10.1016/j.jenvman.2006.11.017

Putra, M. S. D., Andryana, S., & Fauziah, & Gunaryati, A. (2018). Fuzzy analytical hierarchy
process method to determine the quality of gemstones. Adv. Fuzzy Syst., 2018. https://doi.org/
10.1155/2018/9094380

194 S. M. Rahaman et al.

https://doi.org/10.1016/j.foreco.2008.05.006
https://doi.org/10.1016/j.foreco.2008.05.006
https://doi.org/10.1007/s12040-020-01461-6
https://doi.org/10.1007/s12040-020-01461-6
https://doi.org/10.1016/S0378-1127(97)82929-5
https://doi.org/10.1016/S0378-1127(97)82929-5
https://www.cfs.sa.gov.au/about-cfs/history-of-the-cfs/bushfire-history/
https://www.cfs.sa.gov.au/about-cfs/history-of-the-cfs/bushfire-history/
https://timesofindia.indiatimes.com/city/mysuru/karnataka-bandipur-fire-doused-forest-official-confirms-act-of-sabotage/articleshow/68145439.cms
https://timesofindia.indiatimes.com/city/mysuru/karnataka-bandipur-fire-doused-forest-official-confirms-act-of-sabotage/articleshow/68145439.cms
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://timesofindia.indiatimes.com/city/ranchi/More-forests-burning-in-Jharkhand/articleshow/19504839.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst&pcode=461
https://doi.org/10.1890/06-2049.1
https://doi.org/10.1890/06-2049.1
https://doi.org/10.1023/A:1005316632105
https://doi.org/10.1023/A:1005316632105
https://doi.org/10.1016/j.jenvman.2006.11.017
https://doi.org/10.1155/2018/9094380
https://doi.org/10.1155/2018/9094380


Roy, P. S., Ranganath, B. K., Diwakar, P. G., Vohra, T. P. S., Bhan, S. K., Singh, I. J., & Pandian,
V. C. (1991). Tropical forest typo mapping and monitoring using remote sensing. International
Journal of Remote Sensing, 12(11), 2205–2225. https://doi.org/10.1080/01431169108955253

Running, S. W. (2006). Is global warming causing more, larger wildfires? Science, 313(5789),
927–928. https://doi.org/10.1126/science.1130370

Serrano, L., Ustin, S. L., Roberts, D. A., Gamon, J. A., & Peñuelas, J. (2000). Deriving water
content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment, 74(3),
570–581. https://doi.org/10.1016/S0034-4257(00)00147-4

Sharma, L. K., Kanga, S., Nathawat, M. S., Sinha, S., & Pandey, P. C. (2012). Fuzzy AHP for forest
fire risk modeling. Disaster Prevention and Management: An International Journal.

Siachalou, S., Doxani, G., & Tsakiri-Strati, M. (2009). Integrating remote sensing processing and
GIS to fire risk zone mapping: A case study for the Seih-Sou Forest of Thessaloniki. In
Proceedings of the 24th International Cartographic Conference (ICC), January 2016,
pp. 1–10. Retrieved from http://icaci.org/documents/ICC_proceedings/ICC2009/html/nonref/
6_10.pdf

Spracklen, D. V., Logan, J. A., Mickley, L. J., Park, R. J., Yevich, R., Westerling, A. L., & Jaffe,
D. A. (2007). Wildfires drive interannual variability of organic carbon aerosol in the western
U.S. in summer. Geophysical Research Letters, 34(16), 2–5. https://doi.org/10.1029/
2007GL030037

Taylor, A. H., Trouet, V., & Skinner, C. N. (2008). Climatic influences on fire regimes in montane
forests of the southern Cascades, California, USA. International Journal of Wildland Fire, 17
(1), 60–71. https://doi.org/10.1071/WF07033

Upadhyay, V. (2020). Second-worst in 16 yrs, fires destroy 2521 ha forest cover in Uttarakhand.
Times of India. Retrieved from http://timesofindia.indiatimes.com/articleshow/69660263.cms?
utm_source¼contentofinterest&utm_medium¼text&utm_campaign¼cppst_prime

Weise, D. R., & Biging, G. S. (1997). A qualitative comparison of fire spread models incorporating
wind and slope effects. Forest Science, 43(2), 170–180.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier
spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–943. https://doi.
org/10.1126/science.1128834

8 Forest Fire Risk Zone Mapping in Tropical Forests of Saranda, Jharkhand,. . . 195

https://doi.org/10.1080/01431169108955253
https://doi.org/10.1126/science.1130370
https://doi.org/10.1016/S0034-4257(00)00147-4
http://icaci.org/documents/ICC_proceedings/ICC2009/html/nonref/6_10.pdf
http://icaci.org/documents/ICC_proceedings/ICC2009/html/nonref/6_10.pdf
https://doi.org/10.1029/2007GL030037
https://doi.org/10.1029/2007GL030037
https://doi.org/10.1071/WF07033
http://timesofindia.indiatimes.com/articleshow/69660263.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst_prime
http://timesofindia.indiatimes.com/articleshow/69660263.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst_prime
http://timesofindia.indiatimes.com/articleshow/69660263.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst_prime
http://timesofindia.indiatimes.com/articleshow/69660263.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst_prime
http://timesofindia.indiatimes.com/articleshow/69660263.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst_prime
https://doi.org/10.1126/science.1128834
https://doi.org/10.1126/science.1128834

	Chapter 8: Forest Fire Risk Zone Mapping in Tropical Forests of Saranda, Jharkhand, Using FAHP Technique
	8.1 Introduction
	8.2 Study Area
	8.3 Material and Methodology
	Biologic Data
	Physiographic Data
	Anthropogenic Data
	Methodology
	Fuzzy Analytical Hierarchy Process (FAHP) Model
	Estimation of Geometric Mean

	Forest Fire Risk Index

	8.4 Result
	8.5 Discussion
	8.6 Control Measures
	8.7 Conclusion
	References


