
Chapter 7
Soil Loss Estimation Using Models
and Field Database in Lateritic Badlands,
Eastern India: Evaluation and Validation

Sandipan Ghosh

Abstract The key purpose of this chapter is to determine the suitability and
applicability of index-based erosion models for the precise estimation and prediction
of annual soil erosion rates under the monsoon-dominated geo-climatic and land use
systems. The study unit is represented as the lateritic badlands of Dwarka–Brahmani
River Basin (Eastern India). The present study finds a variable range of annual
erosion rates (8.12–24.01 kg m�2 year�1 as measured data) at hillslope scale of
watershed (i.e. basins of permanent gullies) using popular models of Revised
Universal Soil Loss Equation (RUSLE) and Revised Morgan-Morgan-Finney
(RMMF), sedimentation pits and field measured data (2016–2017). The important
part of this experimental design and quantitative analysis, used to assess the effec-
tiveness of models, is to compare the forecast given by model to field measured data.
The regression analysis of experimental results show that there is a positive corre-
lation and increment between measured and predicted erosion data in RUSLE
modelling (Yc ¼ 5.90 + 0.659 X, R2 ¼ 0.521), but an inverse relation and negative
increment are observed in RMMF modelling (Yc ¼ 16.27 + 0.162 X, R2 ¼ 0.212).
The indices of model evaluation and testing statistics have confirmed the reliable
performance (best fit to observed erosion rate) of RUSLE over RMMF. The potential
erosion map of area depicts annual erosion rate beyond the tolerance limit
(1.0 kg m�2 year�1). It is estimated that the mean soil depth of 0.95 cm year�1 is
permanently lost from the surface of lateritic catchments, and the water erosion will
require typically 176 years to erode the mean soil thickness of 1500 mm.
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7.1 Introduction

Soil erosion is regarded as one of pervasive geomorphic hazards in Anthropocene
and taking immediate steps and management actions to preserve our soil resources
should need no explanation (Bell, 2002; Lal, 2012; Poesen, 2018). Soil erosion is
now referred to as the most important factor of land degradation and globally; about
30% of land areas are estimated to be degraded in this condition of environmental
change, affecting almost 3.2 billion people (mainly Brazil, China, Ethiopia, Indian
and Spain) (Wen & Deng, 2020). Erosion visibly degrades landscapes through
exposure of sub-soil, presence of rills and gullies or the occurrence of dust storms.
Land degradation can be defined as a negative trend in land potentiality, caused by
direct or indirect human-induced processes including anthropogenic climate change,
slope modification, deforestation and land use changes, expressed as long-term
reduction or loss of at least one of the follows: biological productivity, ecological
integrity or value humans and soil productivity (Nkonya et al., 2016). In the
Anthropocene, soil losses by human activities (i.e. anthropogenic soil erosion)
have also become very significant: e.g. tillage erosion, soil erosion by land leveling,
soil quarrying, crop harvesting, explosion cratering and trench digging (Bocco,
1991; Poesen, 2019). During the past 60 years, many studies and researches have
documented variable magnitude of soil erosion problems in different parts of the
world (especially in India) (Table 7.1 and Fig. 7.1), expressed as billions of tons of
eroded soil or billions dollars of erosion and sedimentation damage each year
(Narayana & Babu, 1983; Bocco (1991); Kothyari, 1996; Lal, 1990; Singh et al.,
1992; Wasson, 2003; Vente & Poesen, 2005; Pimentel, 2006; Reddy & Galab, 2006;
Thakkar & Bhattacharyya, 2006; Kumar & Pani, 2013; Pimentel & Burgess, 2013;
Sharda et al., 2013; Sharda & Dogra, 2013; Aulakh & Sidhu, (2015); Borrelli et al.,
2017; Froechlich, 2018; Sharma, 2018; Poesen, 2018; Pennock, 2019).

Soil erosion is defined as the net long-term balance of all processes that detach
soil particles and move it from its original location through sheet flow, rill and gully
channels (Eekhout & Vente, (2019); Pennock, 2019). In the Indo-Gangetic Plain, the
world’s larger alluvial plain and other agricultural regions of India, soil erosion by
water is the most serious cause of land degradation (Marzolff & Pani, 2019). It
affects 64% of the estimated area of 147 m ha of degraded wasteland in the country
(Marzolff & Pani, 2019). It estimated an annual average potential soil erosion
amounting 35 Pg year�1 for 2001 and in 2012, an overall increase of 2.5% in soil
erosion (Borrelli et al., 2017). RUSLE-based modelling approach predicts global
potential soil erosion rates of 43 Pg year�1, and due to climate change and land use
transformation, average soil erosion can be increased from 30 to 66% in between
2015 and 2070 (Borrelli et al., 2020). About 5–7 million ha (12.4–17.3 million acre)
of arable land in the world is degraded annually through various erosion processes,
and out of 2 billion ha (4.9 billion acre) of degraded area in world, water erosion
alone, being a global phenomenon, contributes about 55% (Fig. 7.1) (Sharda et al.,
2010). Among the soil groups of India, red–lateritic soils (mostly alfisol, inceptisols
and utlisols) and black soils (vertisols and vertic subgroups) acutely suffer due to
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Table 7.1 Key information and findings on soil erosion issues in India

Sl.
no. Important facts and research outcomes Source

1 Annual soil erosion is taking place at the rate of
16.35 t ha�1 year�1

Narayana and Babu
(1983)

2 Indo-Gangetic Plains of Punjab, Haryana, Uttar Pradesh,
Bihar and West Bengal are affected by erosion rate of 5 to
10 t ha�1 year�1

Singh et al. (1992)

3 About 20% of India’s existing reservoirs will have lost 50% of
their previous storage capacity due to soil loss and siltation

Kothyari (1996)

4 3.975 million ha of wastelands are severely affected by gullies
and ravines

Yadav and Bhushan
(2002)

5 Due to siltation, India is losing about 1.3 billion m3 of storage
capacity each year and to create this storage capacity India
will require Rs. 1448 crores

Thakkar and
Bhattacharyya (2006)

6 Paddy is the most affected among all crops in terms of both
productions 4.3 million tonne and monetary loss of
Rs. 24.4 billion

Sharda et al. (2010)

7 The Lower Gangetic Plain and eastern part of Chota Nagpur
Plateau has soil loss tolerance level of 2.5–12.5 t ha�1 year�1

Bhattacharyya et al.
(2007); Mondal and
Sharda (2011)

8 India suffers an annual loss of 13.3 million tonne in produc-
tion of cereals, oilseeds and pulses due to water erosion

Sharda et al. (2013)

9 About 69.5% area of India has soil loss tolerance limit of
<10 t ha�1 year�1

Sharda and Dogra (2013)

10 About 5.4 million tone of fertilizer worth US $ 245 million is
washed away by water erosion

Gulati and Rai (2014)

11 Erosion escalates the siltation rate of reservoirs in India–
Maithon (1.076 mm year�1), Panchet (0.631 mm year�1),
Tilaiya (2.792 mm year�1), Tenughat (0.716 mm year�1),
Durgapur barrage (0.042v), Kangsabati (0.752 mm year�1)
and Massanjore (0.557 mm year�1)

Central Water Commis-
sion (2015)

12 The soil pool loses 110 Mt Carbon into the atmosphere due to
soil erosion. It is projected that 1% increase in rainfall inten-
sity may increase the rainfall Erosivity by 2–6%. Annual loss
due to soil degradation ranges from Rs. 89–232 billion

Bawa (2017)

13 1 mm loss of soil from one hectare land, an additional
1642 MJ of energy is expended, which is equivalent to about
91 kg of petrol

Sharda et al. (2019)

14 It is estimated from satellite images that 9593.06 km2 land of
India (17.09 km2 land of West Bengal) is affected by gullies
and ravines

National Remote Sensing
Agency, NRSC (2019)

15 In a river basin of semi-arid region, soil erosion risk was
assessed using RUSLE and frequency ratio probability algo-
rithm to prioritize erosion susceptible areas

Gayen et al. (2020)
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water erosion (Table 7.2). It is estimated that 120.72 million ha area is affected by
various forms of land degradation and desertification in India with water erosion
being chief contributor (68.4%) (Sharda et al., 2013). About 69.5% area of India has
soil loss tolerance limit of <10 t ha�1 year�1, while about 13.3% area has a soil loss
tolerance limit of only up to 2.5 t ha�1 year�1 (Sharda & Dogra, 2013). In India

Fig. 7.1 Important research
findings of soil erosion
hazard in India—(a) with
increasing percentage of
state-wise degraded land the
production loss of cereals is
also rising, (b) there are a
positive correlation and
increasing trend in between
gross erosion rates of river
basins and sediment
deposition rates of
reservoirs and (c) total
carbon loss from land is
escalating with increasing
soil loss in India
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major rainfed crops suffer an annual production loss of 13.4 Mt due to water erosion
which amounts to a loss of Rs. 305.32 billion in monetary terms (Ghosh et al., 2020).

It is now understood that soil erosion is a pertinent issue where the adage ‘think
globally, act locally’ is clearly applicable (Toy et al., 2013). The essential purpose of
quantitative assessment is that erosion control targeted toward the areas with the
highest rates can markedly reduce erosion averages. Before taking any erosion
protection measures, the estimation of annual erosion rate at plot to basin scale is
the fundamental step towards achieving soil conservation and sustainable develop-
ment (Toy et al., 2013). Models can serve a needful purpose of soil conservation
which acts to make broad-scale erosion surveys in order to realize the existing
problem over an erosion-prone lateritic region of tropical monsoon climate and to
track changes in erosion over time (Nearing, 2013). Modelling and prediction of soil
erosion by water has long legacy and preliminary popular studies published in
various international journals probably seven decades ago using North American
data sets (Bennett, 1939). The largest number of publications with the application of
Revised Universal Soil Loss Equation (RUSLE) model has been found in the USA
(274 papers), China (218 papers), Brazil (88 papers), India (67 papers), Spain
(66) papers), etc. Up to 2017, 1556 research papers have been published at various
spatial scales (1977–2017) (Alewell et al., 2019; Yanshuang et al., 2020). Many
mathematical models categorized as empirical or index-based, conceptual, physi-
cally based or process-oriented are variable to estimate soil erosion at different
spatial and temporal scales (Wischmeier & Smith, 1978; Renard et al., 1997;
Morgan et al., 1998; Flanagan et al., 2001; Morgan, 2001; Merriti et al., 2003;
Avwunudiogba & Hudson, 2014; James et al., 2017; Morgan & Duzant, 2008;
Alewell et al., 2019; Pennock, 2019; Gayen et al., 2020; Yanshuang et al., 2020).

The data availability on land degradation, soil erosion rates and permissible soil
loss limits is either qualitative or insufficient for proficient planning of conservation
and management of erosion intensity at watershed or regional scale (Sharda et al.,
2013). The criterion for judging whether the soil has potential risk of erosion or not is
essentially required for adopting appropriate erosion control measures on grazing
land, arable land, barren land and other land use systems (Sharda et al., 2013).
Realistic assessment of erosion risk or soil loss rate thus constitutes the first step for
understanding the ground reality of erosion and raising awareness among govern-
mental and other stakeholders in a given region to adopt appropriate strategies for

Table 7.2 Expected and average values of loss of soil productivity due to water erosion in different
soils of India (Sharda et al. (2010)

Erosion class Soil loss (t ha�1 year�1)

Loss in productivity (%)

Alluvial soils Black soils Red soils

Very slight <5 0.0 2.5 5.0

Slight 5–10 2.5 7.5 17.5

Moderate 10–20 7.5 17.5 37.5

Strong 20–40 17.5 37.5 60.0

Severe >40 37.5 60.0 –
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sustainable and efficient use of natural resources for the current and future genera-
tions (Sharda et al., 2013). Erosion protection measures should start from microscale
to get long-term soil productivity and long-term sustainable agriculture in the
developing counties, like India, where erosion protection technologies are limited
by economic and other cultural conditions. In addition, it is necessary to state that the
laterite terrain of West Bengal (known as Rarh Plain, i.e. the land of red soil) is
severely dissected by the dense network of rills and gullies (Ghosh & Guchhait,
2017), developing badland topography, and there are very few databases of accurate
annual erosion rates and empirical model applications. The lateritic Rarh region and
plateau fringe (districts of Purulia, Bankura, Paschim Barddhaman and Paschim
Medinipur) show lower T value ranging from 2.5 to 5.0 Mg ha�1 year�1 (Mondal &
Sharda, 2011; Lenka et al., 2014). In West Bengal as a whole, about 88% of the area
is identified as T value zone of 12.5 Mg ha�1 year�1 (Mondal & Sharda, 2011;
Lenka et al., 2014). In this regard, this study can give few insights on the aspect of
soil erosion modelling using minimal data inputs and measured plots at basin scale to
estimate annual erosion rate in the lateritic badlands. Two major objectives of the
study are set forth as follows:

(1) To estimate annual soil erosion rate using models and field experimental
database

(2) To evaluate suitability and effectiveness of model in the study area

7.2 Geographical Setting of Study Area

The geomorphic unit of study is recognized as the badlands (interfluves) in between
Brahmani (north) and Dwarka (south) rivers (encompassed by 24� 200 N to 23�

400 N, and 87� 260 E to 88� 210 E) (Fig. 7.2). This geomorphic region is recognized as
plateau proper and plateau fringe of Chota Nagpur, prevailing the patches of laterite
exposures and basaltic hills, and it is categorized as the northern part of the Rarh
Plain (Biswas, 1987). Geologically, the interfluve is associated with the contiguous
unit between Rajmahal Basalt Traps (RBT) (Early Cretaceous origin) and the Bengal
Basin which exhibits shallow Quaternary alluvium deposits. The palaeogenesis of
the deep weathering profiles under intense tropical wet–dry palaeoclimate on the
basaltic surface formed hard ferruginous crust, i.e. Ferricrete (Palaeogene–Early
Pleistocene) (Ghosh et al., 2020).

The sample study area of laterite interfluve (about 176 km2, encompassed by
24�080N to 24�140 N and 87�380 E to 87�440 E) covers Shikaripara block (Dumka,
Jharkhand) and Rampurhat I and Nalhati I blocks (Birbhum,West Bengal) (Fig. 7.3).
Field study reveals successive occurrences of fresh quartz-normative tholeiite
Rajmahal basalt, weathered coarse saprolite, kaolinite pallid zone, mottle zone and
pisolitic ferricrete in the litho-sections (Ghosh & Guchhait, 2015). Each laterite
section reflects both primary in situ-type palaeogenesis of high-level plateau laterites
(Chorley et al., 1984) and secondary ex situ evolution of piedmont slope laterites
which are prone of to water erosion, forming patches of badlands in the Rarh Plain.
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The climate of this region has been identified as sub-humid and sub-tropical
monsoon type, receiving mean annual rainfall of 1300–1437 mm. The amount of
rainfall is decreasing from western to eastern part. On the basis of 2010–2016 rainfall
data, the mean annual rainfall of Paikor, Md. Bazar, Rampurhat and Mallarpur is
720.0 mm, 1176.0 mm, 1293.5 mm and 1372.8 mm respectively. The peak monsoon
and cyclonic rainfall intensity of 21.51 mm h�1 (minimum) to 25.51 mm h�1

(maximum) are the most powerful climate factors to develop this lateritic badlands
(Table 7.3) (Ghosh & Bhattacharya, 2012). The region has experienced intense
thunderstorms during hot summer and prolonged rainfall during the tropical depres-
sion and cyclone.

In and around the study area, the soil series of Bhatina, Raspur and Jhinjharpur
(Sarkar et al., 2007) has been developed in the present geo-climatic setting. Gener-
ally, thin solum is loamy skeletal and hypothermic in nature developing on the
barren lateritic wastelands with sparse bushy vegetation and grass. The dark reddish
to brown-coloured sandy clay loam of 0–16 cm (A horizon, maximum grass root

Fig. 7.2 Spatial extent and elevation zones of Dwarka-Brahmani Interfluve (Ghosh & Guchhait,
2020)
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Fig. 7.3 Standard FCC IRS LISS IV image (Dec, 2015) of study area showing location of sample
gully catchments, SRTM DEM elevation profiles and field photographs

Table 7.3 Climate–erosion relationship in the study area

Climatic phenomena Effects on landforms and soil loss

1. Seasonal variation of temperature
(about 15�–18 �C) and ground moisture

Encourage various processes of weathering, like
block disintegration, formation of cracks and joints

2. High temperature range (max. 45
�
C

and min. 9 �C)
Lowering soil moisture and ground water table,
loosening of soil particles, drying up of surface soils,
reduction in soil cohesiveness

3. Season rainfall (from mid-June to
October)

Weathered products and loose particles are removed
from slope, favour lateritization

4. Short phase of heavy downpour within
monsoon months

Development of badland topography, maximum
erosion, tunnel erosion, mass wasting of valley sides
and head cut migration of rill and gully

Source: Ghosh and Bhattacharya (2012)
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zone) is developed over the fragmented secondary laterites. The loose secondary
laterite (16–34 cm) is developed as cementation (low cohesion and weak structure)
of derived materials over mottle and kaolinte horizon, and it is much prone to
overland flow erosion, tunnel erosion and bank failure (Ghosh & Guchhait, 2020).
The natural vegetation of the study area belongs to the tropical moist and dry
deciduous type with few evergreen types. The observed natural vegetation species
are Babul (Acacia nilotica), Bel (Aegle marmelos), Behara (Terminalia bellirica),
Sal (Shorea robusta), Mahua (Madhuca indica), Khair (Acacia catechu), Khajur
(Phoenix sylvestris), Jamun (Syzygium cumini), etc.

In this context, the land use classification and SCS-CN (Soil Conservation
Service–Curve Number) data of three sample gully catchments are derived. In
gully catchment 1 (basin area of 109,250 m2), the principal land use/land cover is
identified as natural vegetation (25.35%), grassland (37.67%) and bare laterite land
(36.98%) (Table 7.4) (Ghosh & Guchhait, 2020). In gully catchment 2 (basin area of
118,325 m2), the areal coverage of natural vegetation, grassland and bare laterite soil
are 21.88%, 30.65% and 41.47%, respectively. In gully catchment 3 (basin area of
216,050 m2), the total areal coverage of natural vegetation, grassland and bare

Table 7.4 Estimated SCS-CN values of AMC II condition in the sample gully catchment 1, 2 and
3 on the basis of existing land use/land cover

Gully catchment 1

HSG
group LULC

CN
II

Area
(m2)

Product of CN
II � area

CN II
weighted S (mm) II

C Natural
Vegetation

73 27,700 2,022,100 85.88 41.72

B Grassland 86 41,150 3,538,900

B Bare surface 91 40,400 3,680,040

Gully catchment 2
HSG
group

LULC CN
II

Area
(m2)

Product of CN II
� area

CN II
weighted

S
(mm) AMC
II

C Natural
Vegetation

73 25,900 1,890,700 85.52 42.97

B Grassland 86 36,275 3,119,650

B Bare surface 91 56,150 5,109,650

Gully catchment 3
HSG
group

LULC CN
II

Area
(m2)

Product of CN II
� area

CN II
weighted

S
(mm) AMC
II

C Natural
Vegetation

73 64,500 4,708,500 84.9644 44.92

B Grassland 86 28,600 2,459,600

B Bare surface 91 122,950 11,188,450

Note: HSG Hydrologic Soil Group, LULC land use/land cover, CN curve number, S maximum
surface storage, AMC antecedent moisture condition
Source: Ghosh and Guchhait (2020)
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laterite land are 29.85%, 13.23% and 56.94%, respectively (Ghosh & Guchhait,
2020). Applying the SCS-CN method (Chow et al., 1998; Mishra & Singh, 2003;
Mishra et al., 2006; Bhunya et al., 2014; Gajbhiye et al., 2014; Srivastava & Imtiyaz,
2016; Singh, 2016) in three sample watersheds of gullies, it is found that on the basis
of rainfall range of 42–137.2 mm, the sample watersheds can yield runoff of
40.02–118.0 mm in excess moisture condition of monsoon (Ghosh & Guchhait,
2020).

7.3 Methodology

The goal of United Nations Sustainable Development have new challenges and
policy developments which provide opportunities for researchers and scholars to
respond with more accurate assessments of erosion rates and solutions of erosion
vulnerability, targeting negative trend of land degradation (Panagos & Katsoyiannis,
2019). To understand the hydro-geomorphic processes of soil erosion and to apply
quantitative erosion models, the study demands an inter-disciplinary outlook, apply-
ing the methods of hydrology, geomorphology and statistics. The total methodology
is combination of various sequential steps, viz. development of experimental design,
data collection, model description, application and evaluation, soil loss tolerance,
statistical analysis and thematic mapping (Fig. 7.4).

Experimental Design and Erosion Measurement at Hillslope
Scale

The selection of erosion measurement sites to justify the application of erosion
model poses a problem of sampling. Since it is not only possible to take measure-
ments at each specific point in the landscape, it is important that the sample area
should be representative of the catchment as high erosion prone zone (where
maximum erosion is observed). From the field survey, it is observed that except
permanent channels, the gully head slope (average slope 7�340) is the key pathway of
sediment transport to the main gully. In this lateritic terrain, the high erosion risk
catchment of gully is firstly selected, and it has well-defined basin area (about
109,250–216,050 m2) and dense network of gullies (7.57–8.33 km km�2)
(Fig. 7.5). Firstly, 18 gully heads of 3 basins (selected randomly within 17 basins
at study area, based on high drainage density of greater than 7.5 km km�2) were
identified, and then 18 gully head slope elements (considering 2 m width of slope
strip to incorporate soil–land use parameters) were selected, denoting S1–S18,
respectively. The steepness of hillslope was measured using Leica Sprinter 150 m
digital levelling instruments (accuracy – � 0.7 mm of the 250 m distance) and other
parameters of models were estimated in the recurrent field survey (2016–2018) and
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Fig. 7.4 Methodological flowchart of erosion model used in soil erosion research
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Fig. 7.5 Experimental
design for erosion modelling
at hillslope scale in a lower
order catchment: (a)
selection of sample
catchments and (b) selection
of erosion plot and dam sites
in a catchment
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guided values of erosion models (Renard et al., 2011; Renard et al., 1997; Morgan,
2001; Morgan & Duzant, 2008). The total slope length is the overland flow part
between the gully head and water divide. The steepness of slope elements varies
from 3�450to 11�060, whereas slope length varies from 22.1 m to 106.8 m.
Maintaining a certain distance (1.5 to 2 m) from active gully head, 18 check dams
(used as sedimentation pits) were developed (denoting Dam 1 to Dam 18) at the base
(i.e. gully floor) of representative slope elements to trap eroded sediments coming
from upslope in a year (2016–2017) (Fig. 7.6).

Following the shape of gully channel, it was decided to built V-shape design
using sand, cement and laterite boulders of irregular shape, and the gap between
gully head base and dam was used as sedimentation pits to collect eroded materials.
The dams were developed in January 2016 with the help of local manpower and
resources. The constructed dams had a height range of 40–55 cm and width range of

Fig. 7.6 (a) Sample dam locations at gully headcuts in catchment 1, (b) development of temporary
dam to trap sediments, (c) final structure of small dams below gully headcuts and (d) measuring the
morphological parameters above dam
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92–190 cm. Mostly during monsoon period (June to October) of 2016, the eroded
material of these slope elements or upstream drainage areas of gullies were trapped
behind the dams. It is very needed to mention that occasional high sediment flux was
observed during few extreme thunderstorms (5 times in 2016), having very high
rainfall intensity of greater than 25.51 mm h�1 (April to June). Then after one year of
observation, the sedimentation was measured in January 2017, and the mass volume
was measured as multiplying the area of sedimentation behind dam and mean depth
of sedimentation at 18 dam sites. The bulk density of eroded materials was calcu-
lated at laboratory (mean bulk density of materials is 1.717 gm cm�3), and the mass
weight of sedimentation materials was measured by multiplying the volume of mass
(unit in kg) by bulk density. The observed rate of erosion (unit as kg m�2 year�1)
was measured by dividing the mass weight by strip area of slope element or erosion
plot for one year (2016–2017).

It was calculated that in 18 dam sites, the estimated weight of trapped sediments
(i.e. mostly ferruginous nodules and coarse sands) varies to a great extent due to
activeness of water erosion, slope angle and overland flow length, ranging from
566 to 3581 kg. The observed annual erosion rate (O) of three sample catchments
was finally measured as (a) 10.50–24.27 kg m�2 year�1 (gully catchment 1),
(b) 8.12–20.82 kgm�2 year�1 (gully catchment 2) and (c) 11.87–20.82 kgm�2 year�1

(gully catchment 3), respectively (Table 7.5). The average observed rate is near
about 16.27 kg m�2 year�1 which is much greater than the soil loss tolerance T-value
of this region (i.e. 1.0 kg m�2 year�1). Field survey and laboratory analysis suggest
that erosion occurs on two types of soil texture—(1) sandy loam and (2) sandy clay
loam (Table 7.6). Therefore, it can be said that the lateritic badlands of study area
have high erosion risk (rendering organic rich top-soil development and increasing
Fe-crusting, badlands area and degradation of biomass) and the region needs imme-
diate protective measures to check erosion and land degradation at basin scale. After
getting the measured erosion data, the analysis was carrying forward to fulfill the key
purpose of study which was to compare the predicted data of erosion models
(RUSLE and RMMF) with the observed data at field scale.

Secondary Data Collection

The key sources of main secondary data are regional soil report, geology report and
other physical environmental report published by NBSS and LUP (National Bureau
of Soil Service and Land Use Planning), Census of India, district gazetteer, official
websites of IMD (Indian Meterological Department) Pune and Kolkata, Irrigation
and Waterways Dept. of Govt. of West Bengal (IWD), Geological Survey of India
(GSI), related e-books and e-journals. The topographical sheets of Survey of India
(72 P/12/NE, R.F. 1:25,000 and 72 P/12, R.F. 1:50,000), District Resource Map of
Geological Survey of India, District Planning Map of NATMO (National Atlas
Thematic Mapping Organization) and Block map of Census of India are most
important sources of spatial information (Ghosh & Guchhait, 2020). Landsat TM
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and ETM+ (30 m resolution) images are downloaded from the website of Global
Land Cove Facility (GLCF) and SRTM (Shuttle Radar Topography Mission, 90 m
resolution), and ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer, 30 m resolution) elevation data are downloaded from the websites of
GLCF and Consortium for Spatial Information (CGIAR-CSI) (Ghosh & Guchhait,
2020). The spatial information is stored in Geographic Information System (GIS)
and the thematic maps are prepared using GIS software (ArcGIS 9.2 and Erdas
Image 9.1) (Ghosh & Guchhait, 2020).

In this case we have gathered the daily, monthly and annual rainfall data from
three IWD (Irrigation and Waterways Department, Government of Wes Bengal)
rain-gauge stations at Nalhati (24�1702500N, 87�4904400E), Rampurhat (24�1001300N,
87�4605000E) and Mollarpur (24�0403500N, 87�4203600E) which are situated at eastern
part of study area, having areal distance of 18–25 km. The calculated mean annual
rainfall for this region is 1510 mm in 2016 (maximum intensity of erosive rain is
25.21 mm h�1), and the per day rainfall amount is 17.48 mm, considering total
rainfall and rainy days in a year.

The base map is geo-referenced in UTM (Universal Transverse Mercator) pro-
jection with WGS-84 (World Geodetic Survey, 1984) datum. In the GIS framework,
we have plotted the existing drainage of study area (derived from toposheet) on the
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
elevation map to depict the regional dissection of water divides (Ghosh & Guchhait,
2016). The locations of laterite exposures are mapped on the basis of field expedi-
tions, toposheets, survey points of Garmin Montana 650 GPS receiver (with hori-
zontal accuracy of �3 m) and Google Earth Pro. Leica Geosystem Sprinter 150 m
was used to measure the angle of slope facets (Ghosh & Guchhait, 2016). Alongside
few cases (due to physical obstacles) from ASTER DEM (Digital Elevation Model),
the slope length and angle (usually from gully headcut to water divide) is measured
to judge the length of surface flow (responsible for gully erosion) (Ghosh &
Guchhait, 2016).

Table 7.6 Textural data of sample soils in the study area

Sample
site Location

Sand
%

Silt
%

Clay
%

Organic matter
% Soil texture

1 24�1100600N,
87�4204000E

65.3 24.6 10.1 0.61 Sandy loam

2 24�1005700N,
87�4204900E

64.0 22.4 13.6 0.68 Sandy loam

3 24�1102300N,
87�4204000E

52.6 28.3 19.1 0.21 Sandy clay
loam

4 24�1105100N,
87�4204100E

70.2 19.1 10.7 0.57 Sandy loam
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Potential and Problem of Erosion Models

Models are of necessary simplifications of reality (Morgan, 2005). Researchers seek
models that describe how the system functions in order to enlighten understanding of
the system and how it responds to change (Morgan, 2005). It is not possible to take
measurements at every point in the landscape, and it also takes time to build up a
sufficient database and long-term measurements (Morgan, 2005). In order to over-
come these deficiencies, models can be used to predict erosion under a wide range of
conditions. Erosion models can be used as predictive tools for assessing soil loss for
conservation planning, project planning and soil erosion inventories and for regula-
tion, and it can be used a tools for understanding erosion processes and their
interactions and for setting research priorities (Nearing et al., 1994). In selecting
an erosion model, a rational decision must be made as to whether the model is to be
used for on-site concerns (degradation of thinning of the soil profile) or off-site
concerns (sediment yield or siltation of reservoirs) (Nearing, 2013).

The mathematical equations used in erosion models have five components:
(1) independent variables, (2) dependent variables, (3) parameters, (4) mathematical
operators and (5) a computation sequence and logic that link the equations within the
model (Toy et al., 2013). The three major types of erosion models based on model
structure are the regression-derived, index-based and process-based models
(Table 7.7). One was to derive an erosion model that uses statistical regression
procedures to fit an equation to a data set. The equation form and independent
variables (factors) in the equation are selected to give the best fit to the experimental
data as measured by a statistical goodness of fit (Toy et al., 2013). Every erosion
model must represent how the four factors of climate, soil, topography and land use

Table 7.7 A short description of erosion models

Model type Form Derivation method Strengths

Regression-
derived

A single or a few equa-
tions having a for that best
fits the data

Derived by fitting an
equation(s) to an empiri-
cal database representing
field conditions

Generally simple and
easy to use; input values
can be simple and easy to
obtain

Index-
based

Using indices, usually in a
multiplicative form, to
represent how climate,
soil, topography and land
use affect erosion

Values for indices deter-
mined from large empiri-
cal database representing
field conditions

Simple and easy to use;
input values can be sim-
ple and easy to obtain;
very powerful in relation
to simplicity and input
values

Process-
based

Represents individual
erosion processes using
simple steady-state
equations

Equations derived from
theory and empirical
databases for erosion
processes, validated
against database repre-
sentative of field
conditions

Can be simple; repre-
sents main fundamental
erosion processes;
improved performance
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affect soil loss and related variables (Toy et al., 2013). Toy et al. (2013) have
suggested a simple form of erosion as follows (Eq. 7.1):

SL ¼ CF:SF:TF:LUF ð7:1Þ

where SL ¼ average annual soil loss, CF ¼ climate factor, SF ¼ soil factor,
TF ¼ topographic factor and LUF ¼ land use factor.

Equation (7.1) is an index-based erosion model. Each variable in the equation is
an index that represents the effect of that variable based on the value assigned to the
index. In process-based or dynamic models, erosion occurs as a series of discrete
events with different erosion amounts for each event because of differences in storms
and land use conditions at each event (Toy et al., 2013). These models can track
temporal variables by computing values at regular points through time between
storm events. The physically based erosion models and regression models have
until now not always provided very satisfying results for prediction of soil erosion
and sediment yield (Poesen, 2018).

Problems of Using Models and Its Solution

It is found that lumped parameter models (i.e. empirical models) linked to GIS are
practicable for conservation planning than sophisticated distributed parameter
models. Lumped Parameter Models (LPMs) use averaging techniques to lump the
influence of non-uniform spatial processes of a given area, such as a basin-averaged
precipitation for run off computation (Torri & Borselli, (2012); Avwunudiogba &
Hudson, 2014). The RUSLE is an empirical equation for predicting long-term
average soil erosion from agricultural field under specific cropping and management
practice. There are few hindrances or problems to implement distributed parameter
or process-based models (like WEPP, EURSOEM etc.) in the study area. Three key
problems are stated as follows (Boardman & Favis-Mortlock, 1998; Morgan and
Nearing, (2011)):

(1) Does the amount of money and time devoted to collection of the data justify their
application for simple watershed planning in humid tropical environments?

(2) Do communities in these region possess the institutional framework, personnel
and financial commitment to undertake the long-term research necessary for
implementations of process-based models?

(3) LPMs are more attractive in the immediate future because of the ease with which
data requirements can be met and the greater suitability of these models for the
socio-economic context of this region.

The models can be implemented in situations with limited data and parameter
inputs and are particularly useful as a first step in identifying sources of sediment and
nutrient generation (Merriti et al., 2003). Empirical models or index-based models
are based primarily on the analysis of observations and seek to characterize response
from the data. The feature of this class of models is their high level of spatial and
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temporal aggregation and their incorporation of a small number of casual variables
(Merriti et al., 2003). In this study, an index-based model (Revised Universal Soil
Equation, RUSLE) and a combined index-based and process-based model (Revised
Morgan Morgan Finney model, RMMF) are applied to get predicated erosion rates,
and then two models are compared to evaluate the suitability and effectiveness of
each model in the erosion prone region of laterite terrain. The total workflow of
erosion model selection, processing, application and analysis are completed in seven
steps—(1) user requirements, (2) model selection, (3) developing core database,
(4) expanding database, (5) model verification, (6) validating the model and (7) sen-
sitivity analysis (Boardman & Favis-Mortlock, 1998; Nearing, 2013; Morgan, 2005;
Morgan and Nearing, 2011; Toy et al., 2013).

Revised Universal Soil Loss Equation (RUSLE)

One of the main reasons why RUSLE type modelling is so widely used throughout
the world is certainly its high degree of flexibility and data accessibility, a parsimo-
nious parameterization, extensive scientific literature and comparability of results
allowing to adapt the model to nearly every wind of condition and region of the
world (Alewell et al., 2019). The precise description of RUSLE is found in the
writing of Renard et al. (1997), predicting soil erosion by water for conservation
planning in the geo-climatic condition of the USA. Chandramohan et al. (2015) have
applied RUSLE, Unit Sediment Graph (USG) andWater Erosion Predication Project
(WEPP) on small watersheds of Pamba River Basin (Kerala, India) to observe
rainfall–runoff–sediment yield relationship, and they have found good applicability
of RUSLE than other models. Similarly, Smith (1999), Sovrin (2003), Babu et al.
(2004), Martin-Fernandez and Martinez-Nunez (2011), Jain and Das (2012), Sinha
et al., (2012), Sinha and Joshi (2012), Bayramov et al. (2013), Kinnell (2014),
Karydas et al. (2014), Devatha et al. (2015), Mondal et al. (2017) and Benavidez
et al. (2018) have successfully applied RUSLE to assess erosion rate in different
environmental settings, and they have found the suitability and effectiveness of
RUSLE in comparison to other models, e.g. Soil Loss Estimation Model for South-
ern Africa (SLEMSA), Morgan Morgan Finney Model (MMF), Water Erosion
Prediction Project (WEPP) and European Soil Erosion Model (EUROSEM). The
applied version of RUSLE (Eq. 7.2) is mentioned as follows (Renard et al., 1997)
(Table 7.8 and Fig. 7.7):

A ¼ R K L S C P ð7:2Þ

where

• A is the computed soil loss per unit area (tons per acre per year); it can
transformed into SI unit

7 Soil Loss Estimation Using Models and Field Database in Lateritic. . . 149



• R, the rainfall and runoff factor, is the number of rainfall erosion index units,
i.e. EI30

• K, the soil erodibility factor, is the soil loss rate per erosion index unit for a
specified soil as measured on a unit plot, which defined as a 72.6 ft length of
uniform 9% slope continuously in clean-tilled fallow

• L, the slope-length factor, is the ratio of soil loss from the field slope length to that
from a 72.6 ft length under identical conditions

• S, the slope-steepness factor, is the ratio of soil loss from the field slope gradient
to that from a 9% slope under otherwise identical conditions

• C, the cover and management factor, is the ratio of soil loss from an area with
specified cover and management to that from an identical area in tilled continuous
fallow

Table 7.8 Operating parameters and functions of the RUSLE model

Description Operating functions Parameter definitions Source

Rainfall
Erosivity
Index (R)

R ¼ (R1 + R2)/2
R1 ¼ P
(0.119 + 0.0873 log10
Im). log10 I30
R2 ¼ 79 + 0.363 P

P is the mean annual rain-
fall, Im is the average rain-
fall intensity
(i.e. 25.21 mm h�1), I30 is
the maximum 30 min rain-
fall intensity
(i.e. 75 mm h�1,
recommended by
Wischmeier & Smith, 1978)

Renard et al. (1997);
Sarkar et al. (2005); Jha
and Paudel (2010);
Ganasri and Ramesh
(2016); Benavidez et al.
(2018)

Soil Erod-
ibility
Index (K )

K ¼ 1.2917
[2.1 � 10�4 (12 –

OM)M1.14 + 3.25 (s –
2) + 2.5 ( p – 3)]/100
M ¼ % silt (100 � %
clay)

OM is the percentage of
organic matter in soil, M is
the particle size parameter,
s is the soil structure code
and p is permeability code
recommended by
(Wischmeier &and Smith,
1978)

Sarkar et al. (2005);
Bayramov et al. (2013)

Slope-
Length
Index (LS)

LS ¼ (L/22.13)0.5.
(0.065 + 0.045
θ + 0.0065 θ2)

L is the slope length (m) and
θ is slope steepness in
percent

Sarkar et al. (2005);
Rahaman et al. (2015)

Fig. 7.7 Flowchart of data input and methods for RUSLE-based soil erosion modelling
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• P, the support practice factor, is the ratio of soil loss with a support practice like
contouring, strip cropping or terracing to that with straight-row farming up and
down the slope

Revised Morgan–Morgan–Finney (RMMF) Model

Another popular model is the revised Morgan–Morgan–Finney (RMMF) model
which was documented in the article of Morgan (2001), and its modifications were
done by Morgan and Duzant (2008) to enable the effects of vegetation cover to be
expressed through plant parameters. This model is also effectively applied in a
variety of geo-climatic conditions (Sovrin, 2003; Mondal et al., 2011; Bayramov
et al., 2013; Avwunudiogba & Hudson, 2014; Tesfahunegn et al., 2014; Efthimiou,
2019), and many workers (Jetten et al., 1994; Vente & Poesen, 2005; James et al.,
2017; Choi et al., 2017) have given the results of model evaluation and additional
modifications for the development and further applicability of RMMF model. The
model validation was carried out by comparing predicted and observed values of
annual runoff and erosion for 67 sites in 12 countries (Morgan et al., 1984). The
model comprises a water phase and a sediment phase. Rainfall energy and runoff
volume are estimated from annual rainfall amount in the water phase (Morgan et al.,
1984; Morgan, 1986). In the sediment phase, erosion is taken to result from the
detachment of soil particles by rainsplash and their transport by runoff (Morgan
et al., 1984; Morgan, 1986). The revised version of the model is depicted as follows
(Morgan, 2005) (Table 7.9 and Fig. 7.8).

Sensitivity Analysis

Two types of sensitivity indices are used in this study (Eq. 7.3): (a) Absolute
Sensitivity (AS) and (b) Average Linear Sensitivity (ALS) (Nearing et al., 1989).
The absolute sensitivity describes the rate of change in output with respect to a
change in the value of input. The relative sensitivity describes the normalization of
input and output in relation to their mean values, to produce an average linear
sensitivity index. Now, ALS is widely popular in erosion prediction technology,
and it can be described as follows (Morgan, 2005):

ALS ¼ O2 � O1ð Þ=Om½ �= I2 � I1ð Þ=Im½ � ð7:3Þ

where O1 and O2 are values of model output obtained with values of I1 and I2 of
input and Om and Im represent the respective average values of the two input and
output values. If ALS is greater than 1.0, then the input parameter is highly sensitive
to change in output. Alongside the estimated error between (Eq. 7.4) measured and
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predicted values, it can be calculated by root mean square relative error (RMS-error)
using the following equation (Morgan, 2005).

Table 7.9 Operating parameters and functions of the RMMF model

Description Operating functions Parameter definitions Source

Effective Rainfall
(ER, mm)

ER ¼ Ra (1 � Ac) Ra ¼ mean annual rainfall
(mm); Ac ¼ proportion of
rainfall reaching soil surface
considering canopy cover
(0 to 1) in the basin

Morgan (2005);
Morgan and
Duzant (2008);
Efthimiou (2019)

Leaf Drainage (LD,
mm) and Direct
throughfall (DT,
mm)

LD ¼ (ER � CC),
DT ¼ (ER � LD)

CC ¼ proportion of canopy
cover (0 to 1)

Kinetic energy of
LD (KE LD, J m

�2)
KELD ¼ LD [(15.8
� PH

0.5) � 5.87]
PH ¼ plant height (m)

Kinetic energy of
DT (KE DT, J m

�2)
KE DT ¼ DT
(11.9 + 8.7 log I )

I ¼ erosive rainfall intensity
(mm h�1)

Total kinetic
energy (KET,
J m�2)

KET ¼ KELD + KE
DT

–

Soil moisture stor-
age capacity (RC)

RC ¼ 1000.MS.BD.
EHD.(Et/Eo)

MS ¼ soil moisture content
at field capacity (% w/w);
BD ¼ bulk density of soil
(Mg m�3); effective hydro-
logical EHD ¼ effective
hydrological depth (m); Et/
Eo ¼ the ratio of actual to
potential evapotranspiration

Annual Runoff (Ir,
mm)

Qr ¼ ER. exp (�Rc/
Ro)

Io ¼ mean daily rainfall
(mm)

Annual soil particle
detachment by
raindrop impact (F,
kg m�2)

F ¼ K. KE .10�3 K ¼ soil erodibility (g J�1)

Annual soil particle
detachment by run-
off (H, kg m�2)

H ¼ ZQ1.5 sin
S (1-GC) 10�3

Z ¼ 1/0.5 COH

S ¼ slope steepness;
GC ¼ proportion of ground
cover (0–1); Z ¼ resistance
of soil; COH ¼ soil cohesion
(kPa)

Total detachment
(J, kg m�2)

J ¼ H + Z –

Annual transport
capacity of runoff
(G, kg m�2)

G¼ C Q2 sin S.10�3 I ¼ the product of the C and
P factors of RUSLE
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RMS� error ¼ √ i¼1Σ Xobs � Xpred
� �2

100=m
h i

ð7:4Þ

where m is the number of observations.

Model Validation

Validation is the process of ensuring that the model serves its intended purpose as
described in the user requirements (Morgan, 2005; Toy et al., 2013), although an
important part of validation is to determine how well the model fits measured data.
Erosion models typically fit measured average annual soil loss with an uncertainty of
about �25% for moderate erosion rates of about 6–60 metric tons per hectare per
year (Toy et al., 2013). The model efficiency coefficient (MEC), firstly proposed by
Nash and Sutcliffe (1970), is now increasingly used an alternative to the correlation
coefficient to express the performance of model (Morgan, 2011). Generally, a MEC
value (Eq. 7.5) of greater than 0.5 is considered that the model performs satisfacto-
rily in the region, and one should not expect values to exceed 0.7 (Quinton &
Morgan, 1998; Morgan, 2005, 2011).

MEC ¼ 1� Σ Xobs � Xpred
� �2

=Σ Xobs � X’
obs

� �2 ð7:5Þ

where Xobs is the observed value, Xpred is the value predicted by the model and X’obs
is the mean of a set of observed values.

One of the important methods used to evaluate the effectiveness of soil erosion
model is to compare the predictions given by the model to measured data from soil
loss collected on plots taken under natural rainfall conditions (Nearing, 2013). A
model ‘effectiveness coefficient’ was defined by Nearing (2013) for studies under-
taken on large numbers of prediction versus measured data comparisons. This
method provides a quantitative criterion for taking into account natural variability
and uncertainty in measured erosion plot data when those data are used to evaluate

Fig. 7.8 Flowchart of data input and methods for RMMF-based soil erosion modelling
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erosion models (Nearing, 2013). Null hypothesis is that RUSLE or RMMF predic-
tion (Ps) is equal to the measured value (M ) for that case.

Null hypothesis—H0 : Ps �M ¼ 0

Alternative hypothesis—H1 : Ps �M 6¼ 0

The relative difference (Rdiff) between predicated and measured values (Eqs. 7.6
and 7.7) are calculated and then a particular set of conditions that 95% of the values
for differences in erosion (fall within a certain range) is calculated.

Rdiff ¼ Ps �Mð Þ= Ps þMð Þ ð7:6Þ

Relative difference values (Y-axis) are plotted against measured values (X-axis) to
get a trend in the scatters.

Rdiff ¼ m log 10 Mð Þ þ b ð7:7Þ

The method of evaluation of a single data point may be extended to the larger data
set and, from the analysis a model effectiveness coefficient (Ec), may be calculated.
It is defined Ec as the fraction of simulation model predictions for which a model is
effective in predicting the measured erosion, using the acceptance criteria. Using the
95% occurrence intervals from the replicated erosion data, it would result in a value,
Ec(a¼0.05). The value of Ec(a¼0.05) signifies that the percentage of the difference
between measured and predicted soil loss fell within the expected range of difference
for two measured data points within the same population (Nearing, 2013). The
procedure was as follows:

(1) List the measured and predicted data pairs.
(2) Calculate the relative difference between measured and predicted soil loss (Rdiff).
(3) Compute the 95% occurrence interval as given by equation for each data point.
(4) Determine the number of predictions for which the Rdiff value fell within the

interval.
(5) Calculate Ec(a¼0.05) as the fraction of ‘acceptable’ predictions for the data set.

Statistical Analysis

For the statistical judgement and significant interrelationship of observed and
predicted values, Chi-square test, linear regression, Pearson’s product moment
correlation, t-test of correlation and regression slope are applied (Table 7.10). ϗ2

goodness of fit is used to determine where there is a statistically significant difference
between expected frequencies and observed frequencies in sample population. The
p-value of ϗ2 test is also used to help us on the decision of rejection or acceptance of
null hypothesis. The simple linear regression (Yc ¼ a + bX) and scatter plot gives an
actual picture and trend of X-Y relationship which reflects the resemblance or
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association between observed and predicted erosion rates. The b-value (slope of
trend line) reflects the amplitude of trend line to understand the interdependence of
predicted values on the observed values. In addition correlation coefficient value (r)
also confirms the degree of resemblance in the X-Y relationship. Then the estimated
values of b and r are tested using t-test statistics at 0.05 significance level.

Soil Loss Tolerance

The term ‘soil loss tolerance’ (T value) denotes the maximum level of soil erosion
that will permit a high level of crop productivity to be sustained economically and
indefinitely (Wischmeier & Smith, 1978). The soil loss tolerance value (i.e. T value)

Table 7.10 Statistical parameter used in the study

Statistical
parameter Description and operating functions

Statements of null (H0)/alternate (H1)
hypothesis

Chi-square test
(ϗ2 goodness of
fit)

ϗ2 = Σ (Oi 2 Ei)/Ei,
n 2 1 degree of freedom
Oi ¼ observed erosion rate,
Ei ¼ predicted erosion rate of RUSLE
or RMMF

H0 (Oi � Ei ¼ 0)—no difference
between observed and predicted ero-
sion rate
H1 (Oi � Ei 6¼ 0)—significant differ-
ence between observed and predicted
erosion rate

Linear
regression

Yc = a + b X
Yc ¼ predicted erosion rate of RUSLE
or RMMF
X ¼ observed erosion rate
a ¼ intercept
b ¼ slope
R2 ¼ coefficient of determination

–

Pearson’s prod-
uct moment
correlation (r)

r = Cov(X, Y)/σX σY
Cov (X, Y ) ¼ Covariance of X and Y
σX ¼ standard deviation of X
σY ¼ standard deviation of Y
Range ¼ +1 < r < 21

–

t-test of b-value tb = b/SEb

SEb ¼ standard error of b
SEb ¼ σX/σY √ (1 � rn)/(n � 2)
n ¼ number of sample
degree of freedom (n � 2)

H0—regression slope (based on
observed and predicted erosion rate)
is significant, having close resem-
blance of X–Y relationship
H1—slope is insignificant

t-test of r-value tr = r √ (n 2 2)/(1 2 r)
degree of freedom (n � 2)

H0—there is a zero correlation
H1—there is a significant correlation,
i.e. no zero

Confidence
interval

Ci = Xm � (Z. σX/√n)
Xm ¼ mean of observed erosion rates
Z ¼ the Z value (1.96) for desired
confidence level α (α0.05–95% confi-
dence level) (obtained from normal
curve)

–
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has been defined as indication of how much erosion should be tolerated (Osman,
2014). For example, shallow soils over hard rock terrain have small T values. The
concept of T value mainly described the maximum acceptable soil loss allowing a
high level of productivity to be maintained for a long period, based on consideration
of soil fertility and productivity (Li et al., 2009). A value for the rate of erosion alone
is, however, of limited use without a corresponding value for an ‘acceptable’ or
‘tolerable’ rate (T-value) of erosion. Rates of tolerable soil loss calculated using soil
production rates range from 0.2 to 2.2 t ha�1 year�1 and tolerable rates based on
maintenance of crop production range from approximately 1 to 11 t ha�1 year�1

(Pennock, 2019). The low T value reflects likelihood of rill and gully formation and
loss of plant nutrients by erosion. Here, the T-value is compared with the results of
experiment to understand the erosion risk.

7.4 Results

Analysis of RUSLE Results

The input parameters of RUSLE are mean annual rainfall (P); average rainfall
intensity (Im); soil erodibility (K) based on soil organic matter content and percent-
age of sand, silt and clay particles; crop cover and management factor (C); and
protective erosion control factor (P). Based on average rainfall data of three rain-
gauge stations (collected from Irrigation and Waterways Department, Government
of West Bengal), the mean P is estimated as 1510 mm in 2016–2017, and Im is
calculated as 25.52 mm h�1 for this climatic region. The analysis has assigned the
Rainfall erosivity factor (R) of RUSLE modelling, i.e. 654 for this region. The mean
K-factor of laterite terrain is estimated by soil texture and organic matter content of
sample soils and the average K values of the catchments varies from 0.23 to 0.28
(Table 7.11). In general, coarse granular soil structure (b ¼ 7) and moderate soil
permeability (c ¼ 3) are observed on the ferruginous soils. The length of slope
elements or erosion plots varies from 22.1 to 106.8 m (length in between gully head
and water divide), having 55–75% of bare lateritic stony surface with development
of rills. The steepness of hillslope varies from 3� 450 to 11� 060, having average slope
of 7� 140 3000 in the sample sites. It is observed that the land use/land cover of the
catchments do not change too much throughout the year, and the region has
minimum human disturbance. The C-factor is estimated as weighted value in respect
of land use condition in three gully catchments, and it varies in each slope ele-
ments—(1) 0.61–0.91 (gully catchment 1), (2) 0.65–0.83 (gully catchment 2) and
(3) 0.68–0.82 (gully catchment 3). The most important phenomenon is that the study
area is not protected under any erosive control measures, except few patches of
Acacia plantation. Therefore, in each slope element, the P-factor is regarded as 0.1
for RUSLE modelling.

Based on the above estimation of inputs, multiplied R, K, LS, C and P factors are
taken to get potential or predicated values of annual soil erosion rate (AP). AP of
three gully catchments are estimated as (1) 13.22–20.87 kg m�2 year�1 (gully
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catchment 1), (2) 7.86–19.71 kg m�2 year�1 (gully catchment 2) and (3) 16.06–-
24.47 kg m�2 year�1 (gully catchment 3). It is obtained from database that AP of
hillslope yields maximum erosion value due to high LS-factor (>1.50). It is found
that if the slope is recognized as short length and high steepness, it has high potential
for erosion (at dam sites 1, 2, 6, 11 and 14). Based on 18 dam sites, the average AP is
16.63 kg m�2 year�1 which is beyond the soil tolerance T-value limit
(1.0 kg m�2 year�1), showing high risk of erosion.

Analysis of RMMF Results

The climatic input parameters, i.e. mean annual rainfall 2016–2017 (R), number of
rainy day (Rn) and mean rainfall (RO), are based on the meteorological records of
permanent stations. The effective rainfall (ER) (i.e. the remaining part of rainfall is
stored and added in soil after leaf drainage and it has main role in water erosion) of
the sample sites varies from 936 to 1057 mm, having leaf drainage (LD) of
88.34–290.16 mm and direct throughfall (DT) of 645.84–961.87 mm (Table 7.12).
The parameters of topographic conditions (viz. slope angle, slope length and width)
and soil–plant factors (i.e. soil surface roughness, canopy cover, ground cover, soil
depth and plant height, etc.) are measured at field. Soil moisture content (MS), bulk
density (BD), effective hydrological depth (EHD), soil erodibility index (K) and soil
cohesion (COH) are measured by guide values of RMMF model (Morgan, 2001;
Morgan & Duzant, 2008). The soil moisture at field capacity (Rc, % w/w) varies from

Table 7.12 Primary input parameters for RMMF model

Input data RMMF ER CC LD DT Rc GC C

Catchment 1 936 0.13 121.68 814.32 9.96 0.12–0.44 0.41–0.78

0.27 252.72 683.28 7.67

0.11 102.96 833.04 7.54

0.17 159.12 776.88 8.78

0.31 290.16 645.84 9.91

0.15 140.4 795.6 10.62

Catchment 2 981 0.11 107.96 873.53 13.44 0.1–0.66 0.55–0.79

0.09 88.34 893.16 12.67

0.14 137.41 844.09 14.72

0.15 147.22 834.27 11.64

0.09 88.34 893.16 15.9

0.17 166.85 814.64 14.48

Catchment 3 1057 0.17 179.69 877.31 11.46 0.11–0.68 0.59–0.79

0.11 116.27 940.73 10.72

0.15 158.55 898.45 10.25

0.12 126.84 930.16 12.67

0.09 95.13 961.87 11.55

0.19 200.83 856.17 10.72
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0.28 to 0.31 and other parameter is estimated as (1) actual to potential evapotrans-
piration (Et/Eo, 0.05–0.38), bulk density (1.2–1.3 Mg m�3), soil erobibility index
(0.7–0.8), ground cover proportion (0.1–0.68), canopy cover proportion (0.41–0.79)
and crop cover proportion (0.09–0.31) (Table 7.13).

Based on the above estimates of inputs, firstly we have estimated the potential
detachment rate of soil particle by raindrop (F) which does not vary to great extent in
the catchments, i.e. 14.73–17.24 kg m�2. Then, potential detachment by runoff
(H) is estimated in 18 sites, and it varies from 0.88 to 5.07 kg m�2, and the runoff
amount (Q) fluctuates from 721.63 to 973.08 mm. The addition of F and H gives the
total water erosion rate of catchments (as sediment phase of RMMF model). So, the
total detachment rate (J) varies from 16.67 to 21.28 kg m�2. The J values is
compared with the potential transport capacity by runoff (G) which are very high
in this region and G varies from 30.29 to 84.21 kg m�2 in 18 dam sites. In this case, J
value is much less than G value (i.e. transport capacity is much higher than the
sediment supply rate), so the erosion process is transport limited (here J < G, J value
recognizes annual soil erosion rate). Ultimately, the predicted value of annual soil
erosion rate (SP) varies from 16.67 to 21.28 kg m�2 year�1 which exceeds the soil
tolerance T-value limit of laterites (1.0 kg m�2 year�1), showing high risk of erosion
(Table 7.14).

Model Sensitivity Analysis

To measure the sensitivity of RUSLE, the maximum, minimum and average input
parameters of rainfall (P), slope-length (LS), soil erodibility index (K) and crop
cover (C) are used to estimate maximum, minimum and average output values of
SEP. On the slope element of gullies, all these input and output parameters are
performed within the frame of RSULE (Table 7.15). The prime objective of sensi-
tivity analysis is to measure the effects of variable input parameters on the output soil
loss rate and to calculate the degree of sensitivity. Firstly, Average Linear Sensitivity
(ALS) of P (R-factor) on the estimation of potential soil loss (SEP) is 0.879. Then,
ALS of LS-factor, K-factor and C-factor are 1.001, 0.999 and 1.001, respectively.
So, it can be said that the LS-factor and C-factor (>1.0) are more sensitive in RSULE
model to produce high deviation in SEP values. K-factor is also highly sensitive, but
the R-factor is not sensitive in RUSLE model. Therefore, to apply this model, we
have to caution in measuring accurate slope angle, slope length, soil textural data and
land use data.

Table 7.13 Secondary input parameters for RMMF model

Input database RMMF MS Et/Eo EHD BD K COH

Catchment 1 0.28 0.05–0.23 0.11–0.19 1.2 0.7 2

Catchment 2 0.28 0.25–0.32 0.08–0.12 1.2 0.7 2

Catchment 3 0.31 0.22–0.38 0.08–0.15 1.3 0.8 3
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To measure the sensitivity of RMMF the maximum, minimum and average input
parameters of rainfall (P), slope steepness (S), soil detachability index (K) and
ground cover (GC) are used to estimate maximum, minimum and average output
values of J. All the sensitivity analyses are done on the sample slope element of S1
(Table 7.15). The prime objective of sensitivity analysis is to measure the effects of
sensible input parameters on the predicted values of soil loss, i.e. J, and to calculate
the degree of sensitivity. It is found that the mentioned factors of S and CC are highly
sensitive to erosion prediction accurately, because the both ALS value of K and CC
is 1.001 which is greater than 1.0, i.e. highly sensitive index. The R-factor is
moderately sensitive, as it values about 0.79, but GC factor is less sensitive. This
analysis reflects that during the application and prediction of RMMF model, we
should care about these input parameters.

Model Evaluation and Validation

In this part of model evaluation and validation, we have applied firstly absolute error,
root mean square (RMS) error estimation, Chi-square test, model efficiency coeffi-
cient (MEC) and lastly scatter plot and linear regression (Yc ¼ a + bx), t-test of
b value and product moment correlation (r) and coefficient of effectiveness (EC) at
0.05 level of significance. The total statistical analysis is based on the measured
erosion rate (O) and predicated erosion rate (AP and SP) with 18 sample size (n¼ 18).

Error Analysis

The absolute error between observed and predicted data is measured, showing
positive anomaly (over estimation of erosion in response to observed rate) and
negative anomaly (under estimation of erosion in response to observed rate)
(Table 7.16). It is learned that 55.55% of predicated sample (i.e. ten dam sites)

Table 7.15 Average linear sensitivity analysis of RUSLE and RMMF

Input parameter Maximum Average Minimum ALS

RUSLE
Rainfall (P) 1697 1523 1350 0.871

Slope-length factor (LS) 1.53 1.345 1.16 1.001

K-factor 0.31 0.25 0.19 0.999

C-factor 0.93 0.88 0.83 1.001

RMMF
Rainfall (R) 1697 1523 1350 0.79

Slope steepness (S) 1106 832 558 1.001

K-factor 0.8 0.55 0.3 1.001

GC-factor 0.17 0.12 0.07 0.027
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provide under estimation of erosion phenomena and 44.45% of data gives over
estimation of erosion phenomena in RUSLE modelling. The value of absolute error
varies from �5.81 to +5.57 from the observed data, and the estimated RMS-error is
assigned as 3.22. In RMMFmodelling, it is found that 77.17% of data sample (i.e. 14
dam sites) shows under estimation of erosion phenomena and 22.23% of data sample
shows over estimation of erosion phenomena in respect to observed erosion rate. The
absolute error value varies form �8.55 to +5.0 from the observed data, and the
estimated RMS-error is assigned as 4.45. Therefore, it can be said that the RUSLE
model gives less error than RMMF model.

Chi-Square (ϗ2) Test Statistic

At 0.05 level of significance and 17 (n � 1) degree of freedom, the Chi-square (ϗ2)
test statistic sets forth the null hypothesis (H0, O – AP or SP ¼ 0) which states that
there is no difference between certain characteristics of a population, i.e. difference
between predicted and observed value is zero and good correlation. The alternate
hypothesis (H1, O – AP or SP 6¼ 0) reflects significant difference between predicted
and observed value. The value of ϗ2 statistic is assigned as 27.59 at 0.05 significance
level with 17 degree of freedom (Table 7.17). The ϗ2 statistic values of RUSLE and
RMMF modelling are estimated, respectively, as 10.43 and 20.10 which are much
lower than the tabulated ϗ2 value at 0.05 level. Therefore, it is concluded that H0 is
accepted and H1 is rejected. So, there is no significant difference between observed
and predicted values in the study. Another statistic p-value of this test is used to

Table 7.17 Results of testing statistics

Statistical
parameter

Tabulated testing
statistical value

Calculated value

Remarks on hypothesisRUSLE RMMF

Chi-square
(ϗ2)

ϗ2 statistic is assigned as
27.59 at 0.05 signifi-
cance level with
17 degree of freedom

10.43 20.10 H0 is accepted and H1 is
rejected (both models are
accepted and predicted
values resemblance with
measured values)

t-test statis-
tic of
r value

t statistic is assigned as
2.120 at 0.05 signifi-
cance level with
16 degree of freedom

5.44 3.37 H0 is rejected and H1 is
accepted (both models are
accepted and there is god
correlation)

t-test statis-
tic of
b value

t statistic is assigned as
2.120 at 0.05 signifi-
cance level with
16 degree of freedom

2.99 1.71 H0 is rejected and H1 is
accepted (regression value
of RUSLE give desired
result than RMMF)

Confidence
interval,
α0.05

14.15 to
18.29 kg m�2 year�1 at
0.05 significance level

61% of
sample
fallen
within
interval

38% of
sample
fallen
within
interval

RUSLE model can provide
more satisfactory results
than RMMF
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know the quantitative level of acceptance and large p-value means weakness of
alternative hypothesis. The estimated p-value of RUSLE modelling is 0.8844 which
reflects that H0 is accepted, having 88.44% chance of getting desired results, but in
case of RMMF modelling, there is only 26.90% chance ( p-value –0.2690) of getting
desired results at 0.05 significance level. Now, it can be said that according to ϗ2 test
statistic, RUSLE model gives significant good results than RMMF model in this
analysis.

Model Efficiency Coefficient

Now, applying model efficiency coefficient (MEC) (Nash & Sutcliffe, 1970; Morgan
& Duzant, 2008) into the relation between observed and predicted data, we have
found two MEC values for two erosion models: (1) 0.48 (RUSLE) and (2) 0.22
(RMMF), respectively. The MEC >0.50–0.70 signifies good and satisfactory per-
formance of model in reference to observed erosion results (Quinton, 1997; Morgan,
2011). The result shows that MEC value of RMMF is much lower than 0.50, but
MEC value of RUSLE is much closer to 0.50. So, it can be decided that RUSLE
model can be applied in this geo-climatic setting in place of RMMF model.

Linear Regression and t-Test Statistics

To get the trend of inter-relation between observed and predicted database, now the
scatter plot and linear regression trend line (Yc ¼ a + bX) are prepared, taking
observed data as X and predicted data of RUSLE and RMMF models as Y. It is
finally estimated that the predicted values of RUSLE is statistically interrelated with
the observed values (AP ¼ 5.90 + 0.659 OE), having good coefficient of determina-
tion (R2) of 0.521 (i.e. inter-relation explained 52.10% in population) and notable
slope (b) value of trend line, i.e. 0.659 (Fig. 7.9). The b-value of regression line
(i.e. slope) reflects the quantitative judgment (indicating a change on response
variable caused by a unit change of respective explanatory variable) of
Y dependence on X. The t-test statistic of b value is 2.120 at 0.05 significance
level with 16 (n – 2) degree of freedom (H0: b ¼ 0, Y does not depend on X; H1

� Y depends on X). The estimated values of t-test statistic are 2.99 (RUSLE) and
1.71 (RMMF). This analysis reflects that test statistic of RUSLE b-value is greater
than the tabulated t-value, and it means high dependence of predicted values on the
observed values (i.e. RUSLE predicted values resemblance with observed erosion
rates). In other case, another analysis reflects that test statistic of RMMF b-value is
lower than the tabulated t-value, and it means low dependence of predicted values on
the observed values (i.e. RMMF predicted values do not resemblance with the
observed erosion rates). The Pearson’s product moment correlation (r) of this
analysis is estimated as 0.72 for RUSLE and 0.56 for MMF which reflect good
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Fig. 7.9 Comparing the
final results between
observed and predicted
erosion rates—(a)
composite bar diagram
showing dam site-wise
result deviations in observed
(OE) and predicted erosion
rates (RUSLE and RMMF),
(b) predicted erosion rate
(AP) of RUSLE has close
resemblance with OE,
having 52.1% of
explanation in relationship
and (c) predicted erosion
rate (SP) of RMMF has very
weak resemblance with OE,
having only 21.2% of
explanation in relationship
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correlation between predicted and observed values. Here, again the t-test statistic of
r value is 2.120 at 0.05 significance level with 16 (n – 2) degree of freedom (H0:
b¼ 0, Y does not correlate with X;H1—there is a good correlation between Y and X).
The estimated values of t-test statistics are, respectively, 5.44 (RUSLE) and 3.37
(RMMF) which are much greater than the tabulated t-value at 0.05 significance
level. Here, it can be concluded that r value or correlation between observed and
predicted value is statistically significant in this study, but the results of RUSLE
modelling correlate highly with the observed erosion rates than RMMF modelling.

Effectiveness Coefficient

At last, the effectiveness coefficient (EC) of erosion model is applied on the basis of
linear regression database, 0.05 confidence interval of observed erosion rate (OE)
and Z-value of 1.96. The calculated Rdiff value (relative difference) varies from
+0.196 to�0.139 in RUSLE and + 0.34 to�0.09 in RMMF, respectively. It is found
from the regression analysis (Rdiff ¼ m log10 OE + b) that 55.55% of RUSLE results
is placed in over-predicted zone, whereas 77.7% results of RMMF is located in over-
predicted zone (Fig. 7.10). It generally reflects, from the logarithmic relation
between Rdiff and OE, that RMMF model generates an over-predicted result of the
reality, i.e. always providing high erosion rate than observed rate. The confidence
interval of observed erosion rate is 14.15–18.39 kg m�2 year�1. If the large number
of predicted values is fallen within this confidence interval, then EC yields high
value, signifying the good performance of the model. In general, EC is the ratio
between number of sample fallen within confidence interval and total number of
sample. EC of RUSLE modelling is 0.61 and the value is 0.38 in case of RMMF
modelling. Therefore, it can be concluded that at 0.05 significance of confidence
interval RUSLE model can provide satisfactory results in this region.

7.5 Discussion

Erosion Intensity

In spite of above quantitative analysis, one key question is always raised by soil
scientists, agriculturists and land developers is that ‘how serious is erosion in this
study area’? The first part of the answer to this question involves establishing typical
value of soil erosion by measured data and models: (1) field measured data �8.12 to
24.01 kg m�2 year�1 (mean 16.27 kg m�2 year�1), (2) RUSLE data �7.86 to
24.47 kg m�2 year�1 (mean 16.68 kg m�2 year�1) and (3) RMMF data �16.01 to
21.28 kg m�2 year�1 (mean 18.63 kg m�2 year�1). It is needed to compare the
research results with the T-value to understand the critical level of erosion which can
be reduced to an acceptable limit using crop management and land management
techniques. Erosion is natural geological process, and it is impossible to stop; instead
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the goal is to manage environmental and human impacts on the soils so that the rate
of erosion is within an acceptable range. It is found that T-value of 1 kg m�2 year�1

(i.e. 10 t ha�1 year�1) is experimentally proved in the red and lateritic soils of West
Bengal (Mandal & Sharda, 2013; Lenka et al., 2014). The T-value signifies the
permissible limit to a level of crop and biomass productivity to be sustained
economically in the study area.

The observed and predicted erosion rates show very higher value than the
T-value, reflecting rugged—dissected terrain, low productivity of crops and high
expansion of badlands. The results of erosion rate justify the escalating vertical
erosion of gullies (i.e. up to 1.5–3.5 m depth) which unearths the underlying pallid
kaolinte zone and occasionally weathered bedrock. Now, unit of mass per area per
time can be converted into equivalent depth of soil thickness which is eroded
permanently. Montgomery (2007) used a standard bulk density of 1200 kg m�3 in
the paper to get the loss of soil thickness per year (i.e. dividing the annual erosion
rate by bulk density of eroded materials). Applying the bulk density of eroded
materials (i.e. 1.717 kg m�3 in study area) and observed erosion rates, it is found
that soil thickness of 0.47–1.41 cm year�1 (mean 0.95 cm year�1) is permanently
lost from the lateritic surface of the catchments. In addition Montgomery (2007)
developed an empirical equation to estimate the average time period (Tc, in years)
taken to erode that soil thickness, viz. Tc ¼ S/E – P (where S is initial thickness or
depth of soil profile, E is rate of soil thickness loss and P is the average soil
production rate, 0.2 mm year�1). Using this equation to this study, it is learnt that
the water erosion will require 127–223 years (average 176 years) to erode the mean
soil thickness of 1500 mm in this region.

Factors of Erosion

The observed erosion rates and predicted erosion rates show that the mean annual
erosion rates vary from 16.27 to 18.63 kg m�2 year�1. The high value of erosion rate
reflects the ultimate development of dense network of gullies in the laterite terrain. In
the saturation condition of peak monsoon and cyclonic rainfall period, the surface
crusting (i.e. Fe-Al clay closes the pore spaces of top soils) and less canopy cover on
bare soil promotes high overland flow on the slope elements. Here, the gully erosion
signifies instability in the landscape, and it is regarded as a threshold condition under
certain topographic parameters in the landscape, relating with overland flow erosiv-
ity and surface resistance of laterite terrain (Ghosh & Guchhait, 2020). High runoff,
due to intense rainfall, is the primary trigger, but the local conditions such as slope
morphometry (i.e. high concavity at the base of slope), land use (i.e. high proportion
of bare soil cover and low proportion of canopy cover) and soil characteristics (high
erodibility and surface crusting) control the triggering of gully erosion (Ghosh &
Guchhait, 2020). It is found that 52.51% of gullies are affected by overland flow
erosion (slope steepness, S, 1.2–5.2� and drainage area, A, 2129.1–10513.9 m2),
while 27.96% belongs to landslide erosion (S 5.2–9.5� and A 457.1–5702.5 m2)
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(Ghosh & Guchhait, 2020). This experimental study and model evaluation is
suggested that instead of using RMMF model, the RUSLE model can be applied
for this lateritic region to estimate potential rate of annual soil loss. Therefore, based
on the 17 sub-catchments of gullies (a part of study area) and RUSLE modelling
(considering 118 gully head slope), an erosion map is developed to depict the
potential annual rate of soil loss due to rill and inter-rill erosion in the lateritic
region. The erosion map (Fig. 7.11) shows that the western and eastern part is very
much susceptible to soil erosion (greater than 9.4 kg m�2 year�1) due to high LS
factor and bare soil cover, but the erosion rate (less than 9.4 kg m�2 year�1) is much
lower in the central part, because this part is covered with Acacia plantation, Sal
forest, aerodrome pavement and relatively low LS factor. Also it is understood that
the whole region is under very high erosion risk, because the erosion rate is beyond
the acceptable T value limit (i.e. 1 kg m�2 year�1).

The most vulnerable sites of water erosion (need to be protected) are identified as
(Ghosh et al., 2020): (1) the region above the gully heads where the rills have
tendency to converge; (2) high steepness (>5�) and long stretch of convex slope
(>70 m); (3) the region having high bareness of slope and surface crusting promotes
more runoff; and (4) bank failure due to mass wasting, pipe flow, flow convergence
at heads and undercutting by channel flow. The fundamental problem to control soil
erosion is centred on the on-site management of too much runoff water in short span
of torrential rains or thunderstorms. To check channel erosion, the prime focus of
erosion control strategies should be placed on five aspects: (1) reducing discharge
rate through good growth of vegetation at catchment and water retention basins;
(2) minimizing channel grade through construction of check dams and rock chutes

Fig. 7.11 RUSLE erosion map depicting (rill and inter-rill erosion) spatial coverage of different
zones of annual soil erosion rate (kg m�2 year�1), considering 17 catchments of gullies
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for enhancing deposition; (3) controlling headcut erosion through drop structures at
catchment to recue concentrated flow areas; (4) constructing flow barriers (as gravel
or sand bags or loose rock piles) to control downstream sediment movement; and
(5) promoting vegetative measures (plantation of trees and grasses on bare surface)
to control splash, rill and gully erosion throughout the basin.

7.6 Conclusion

Now it can be said at last that the present research work has fulfilled the objectives
with mentioning the region as a high potential erosion risk at basin scale using
measured data and models (16.27–18.63 kg m�2 year�1). Using limited database and
resources, the research has successfully applied the erosion models and compared
the results against field measured erosion data to get the real picture of laterite
badlands. The experimental design and plan of work reaffirm that RUSLE model
gives desire results in comparison to RMMF model with very high model efficiency
coefficient (0.48) and effectiveness coefficient (0.61). The predicted values of
RUSLE (AP) follow the field measured data (OE), with a positive correlation
(r ¼ 0.72) and trend line (Yc ¼ 5.9 + 0.659 OE) which is not very resemblance in
case of RMMF model. It is learned from the analysis that the logarithmic relation,
between Rdiff (relative difference) and observed erosion rate (OE), reflects more over-
prediction of erosion results (i.e. yielding high predicted erosion rate thanOE) in case
of RMMF modelling than RUSLE. The measured data of erosion rate confirms the
vulnerability and high erosion risk of the region against T-value (1.0 kg m�2 year�1)
of laterite soils. It is found that the mean soil thickness of 0.95 cm per year is
permanently lost from the surface of gully catchments. Applying RUSLE model in
the whole study area, it is estimated that the region is dissected by annual erosion
rates of 5.25–18.12 kg m�2 year�1.

The most challenging task is to apply rightly an erosion model understanding the
geo-environmental conditions which can be measured accurately through input
variable functions of that model. The more inputs in field-based data collection,
innovative techniques, flexibility of model application and better understanding of
hydro-geomorphic processes will help to get good prediction in the soil erosion
research. No model can give exact results in comparison to observed data at plot
scale or basin scale, but high expertise and fine tuning of advanced model can
provide sufficient inference on the erosion rates. It is understood that there is a
need of further research to apply RUSLE or RMMFmodels in different parts of India
for the applicability and validity of model. Validation of any erosion model can only
be done or justified scientifically if the GIS-based model data will evaluate with the
observed data taken at field plots. At last, the present study reveals that anyone
cannot blindly exercise any erosion model and prepare any thematic map of soil
erosion spatially in any particular region without evaluating the scale effect and error
statistics of predicted values in comparison to field measured data.
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