
Chapter 2
GIS-Based Landslide Susceptibility
Mapping in Eastern Boundary Zone
of Northeast India in Compliance
with Indo-Burmese Subduction Tectonics

Arnab Sengupta and Sankar Kumar Nath

Abstract The Eastern Boundary Zone of Northeast India, comprising the Indian
States of Manipur, Mizoram and Nagaland, suffers immensely under the impact of
frequent devastating landslides that results in widespread damage and casualty. A
rough estimate of the decadal intensity of landslides from an inventory spanning
over half a century calls for systematic assessment of landslide hazard and risk in the
region for its effective mitigation and management. Landslide Susceptibility Zona-
tion is the most fundamental step in that direction wherein spatial distribution of
Landslide Susceptibility Index (LSI) is established through integrating nineteen
causative factors, viz. surface geology, landform, lineament density, elevation,
distance to lineament, slope angle, aspect, drainage density, distance to drainage,
terrain ruggedness index, plan and profile curvature, normalized difference vegeta-
tion index, landuse/landcover, distance to road, road density, rainfall, earthquake
epicentre proximity and peak ground acceleration rationally on GIS platform in
1:50,000 scale by following a multivariate statistics-based Logistic Regression
(LR) procedure. This classifies the terrain into None, Low, Moderate, High, Very
High and Severe susceptible zones on a raster map display, which is inevitably
validated through statistical accuracy test by drawing a comparison with the 30%
landslide inventory test dataset which exhibited 73% accuracy level. This landslide
susceptibility map will invariably help the urban planners and the decision-makers in
effective landslide risk mitigation and spatial design.
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2.1 Introduction

Landslide is a process associated with the downward movements of soil, rock,
debris, artificial fill and/or a mixture of all of these. Landslide occurs due to both
physical and man-made activities. Physical activities consist of an impending earth-
quake, volcanic eruptions, tectonic activities, torrential rainfall, storm, etc., while
man-made activities include unscientific construction, unmannered tourism and so
on. Rainfall-induced landslides are very common around the globe. Current esti-
mates of landslide impacts suggest that they cause thousands of fatalities annually
(Froude and Petley (2018); Petley (2012) and economic loss worth billions of US
dollars (Dilley et al., 2005; CRED, n.d.) as shown in Fig. 2.1(a). Global warming,
climate change and rising temperature are expected to trigger landslides, especially
in mountainous regions with snow and ice and cover. In India, a total of 0.42 mil-
lion km2 or 12.6% of the landmass is imperil due to landslides of which an

Fig. 2.1 Location map of the study region. (a) Continent-wise landslide inventory data (bar graph)
and line graph are showing the number of fatalities (source: CRED, n.d.). (b) Landslide inventory
map of the Indian subcontinent. (c) Landslide inventory (training and testing) data in the Eastern
Boundary Zone of Northeast India comprising of the Indian States of Manipur, Mizoram and
Nagaland
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approximate 0.18 million km2 falls is in the Northeast Himalayan province of India;
an approximate 0.14 million km2 lays in the Northwest Himalaya; 0.09 million km2

is in the Western Ghats and Konkan hills; and an approximate 0.01 million km2 is in
the Eastern Ghats causing an estimated damage cost of around 2–5 billion US dollars
and 25% of annual deaths as depicted in Fig. 2.1(b).

The Eastern Boundary Zone in Northeast India comprising the Indian States of
Manipur, Mizoram and Nagaland is a landslide-prone region as depicted in Fig. 2.1
(c). The study region covers around 60,025.56 km2 comprising of 12 small towns. It
is surrounded by the Tertiary hills of Mizoram, Manipur and Nagaland with a
maximum altitude of 3743 m with steep to moderate slopes. Geologically, the region
is classified into pre-Cambrian to Quaternary era. Tertiary rocks of the Disang and
Baraingroup that consists of shale and sandstone are most predominant in the
territory, which on weathering becomes platy and splintery, proving the most ideal
state for landsliding. The terrain is also seismogenic being one of the most active
regions of the world and according to BIS (2002); it falls under Seismic Zone V with
frequent moderate to large magnitude earthquakes visiting the terrain causing exten-
sive damage to both life and property.

Landslide susceptibility mapping in the Eastern Boundary Block of Northeast
India, using various algorithms, has already been attempted by several researchers,
viz. Laldintluanga et al. (2016); Pathak (2016); Balamurugan et al. (2016);
Lallianthanga and Lalbiakmawia (2013a, 2013b, 2014); Lallianthanga et al.
(2013); Barman and Srinivasa Rao (2019); Lallianthanga and Laltanpuia (2014);
Balamurugan and Ramesh (2016); Pachuau (2019); Khatsu and Van Westen (2005);
Roy et al. (2019); Sema et al. (2017); and Singh et al. (2011). A comprehensive
literature review unfolds that earlier works have been performed at the site-specific
scale on a slope-slope basis and not in the regional scale. In this study, we, however,
considered the entire Eastern Boundary Zone of the Northeast India comprising the
Indian States of Manipur, Mizoram and Nagaland as a unit tectonic block for an
overall understanding of the probability of landslide occurrence in the terrain using
an ensemble of Remote Sensing-GIS for chocking out a pre-disaster landslide risk
mitigation strategy to be put in place and to perform precursory damage estimation
for insurance coverage purposes.

2.2 Data and Methodology

Spatial and Non-spatial Data

In order to achieve the GIS-based landslide susceptibility zonation, there is a
requirement of spatial and non-spatial data as illustrated in Table 2.1.
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Multivariate Statistics: Logistic Regression (LR)

Among a wide range of statistical methods proposed for the assessment of landslide
susceptibility distribution, Logistic Regression (LR) has proven to provide one of the
most reliable classification technique (Reichenbach et al., 2018; Guzzetti et al.,
2006; Mancini et al., 2010; Hadmoko et al., 2017; Bai et al., 2011; Mathew et al.,
2009; Lee & Pradhan, 2007; Nandi & Shakoor, 2010). LR simulates the probability
of a certain class or event. It uses a logistic function to model a binary dependent
variable even though many complex extensions exist. The aim of LR model is to
establish a relation between the existing and the absent landslides. The advantage of
this method is that the dependent variable can have only two values, i.e. occurring or
non-occurring, and those predicted values can be interpreted as the probability since
they are inhibited to lay in the interval between 0 and 1 Dai and Lee (2002). In the
Logistic Regression analysis, there are some dependent variables that correlate with
an independent variable. The predicted value ranges from 0 to 1, and it can be
defined as the landslide susceptibility index. The road map of the algorithm worked
out in the present computation has been depicted in Fig. 2.2. The index can be
defined by the following formulations:

Table 2.1 Spatial and non-spatial data used in the present study

Data Causative layers Source

Geology map Surface geology map Geological Survey of India

Lineament
map

Lineament density and distance to
lineament

Dasgupta et al. (2000), National
Mission on Geomorphological and
Lineament Mapping, http://bhuvan.
nrsc.gov.in/gis/thematic/index.php

Road
Network

Road density and distance to road Open Street Map and Google Earth

Earthquake
catalogue

Epicentre proximity Nath et al. (2017), USGS, IMD and
ISC

Rainfall data Rainfall map India Meteorological Department
and Tropical Rainfall Measuring
Mission

ALOS
PALSAR
DEM (30 m)

Slope angle, slope aspect, landform, ele-
vation, Drainage density, distance to
drainage, plan curvature, Terrain rugged-
ness index

Japan Aerospace Exploration
Agency

Landsat
8 (30 m)

Normalized difference vegetation index United States Geological Survey

GlobCover
land cover
map

Land use/land cover European Space Agency

Seismic
shaking

Surface consistent peak ground
acceleration

Nath and Thingbaijam (2012)
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Z ¼ β0 þ β1X1 þ β2X2 þ⋯þ βnXn ð2:1Þ

Here Z denotes the linear logistic regression model. β0 is a constant. β1, β2 are the
corresponding coefficients of each of the respective contributing factors that indicate
their contribution to landslide susceptibility. X1, X2 ,. . . Xn are the independent
variables.

The probability index is calculated to predict the landslide hazard zone index; the
possibility of occurrence and its intensity as

P ¼ 1= 1þ ℓ�zð Þ ð2:2Þ

Here P is the probability of landslide hazard index and Z takes any value from
�1 to +1.

Fig. 2.2 Road Map of the algorithm worked out in the LR protocol employed here
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Accuracy Assessment

Receiver Operating Characteristic (ROC) is widely used for assessing the perfor-
mance of the classification algorithms, employed in the extreme event computations.
In geoscience, ROC is defined as a plot of test sensitivity or True Positive Rate
(TPR) as the y-coordinate versus its 1-specificity or False Positive Rate (FPR) as
x-coordinate at various threshold settings, which is a very effective method for
evaluating the performance of dichotomy problems (Park et al., 2004; Fawcett,
2006). It is widely used in the validation of landslide susceptibility maps and also
for estimating its accuracy. The area under ROC curve known as AUC is a common
metric that can be used to compare different tests and the values, ranging from 0.5 to
1 which is widely employed to estimate the accuracy of the presence or absence of
predictive models (Shahabi et al., 2014). An AUC close to 0.5 corresponds to a poor
diagnostic test, and the larger the AUC, the more accurate is the test. The relative
landslide density index (R-index) defined by Baeza and Corominas (2001) has been
used to validate the susceptibility mapping results. R-index is defined as the ratio
between the density of mass movements of a given susceptibility class and the
overall mass movement density.

2.3 Results and Discussion

Thematic Layers Preparation

Landslide Inventory

Landslide inventory map of the terrain is prepared through multispectral satellite
image interpretation, Google Earth imageries, published literature and reports from
various government agencies, viz. Geological Survey of India (GSI); Nagaland State
Disaster Management Authority; Disaster Management and Rehabilitation Depart-
ment, Manipur; Remote Sensing Application Centre; and Bhuvan Portal developed
by Indian Space Research Organization (n.d.). In the present study, multi-temporal
satellite data and Google Earth imageries have been extensively used for the
demarcation of a landslide accessible or inaccessible region in the hilly terrain. An
extensive field survey has also been conducted to enlarge the inventory database as
well as to validate the existing landslide inventory database. Through standard image
analysis and field survey, a total of 4206 landslides have been identified. The
landslide inventory database is randomly divided into subsets of 70% for training
and 30% for testing as depicted in Fig. 2.1(c).
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Morphometric Causative Factors

The topography is an essential factor for landslide susceptibility mapping that limits
the density and spatial extent of landslides. The crucial morphological factors for the
substantial causes of landslides are slope angle, elevation, aspect, plan and profile
curvature, distance to drainage, drainage density and terrain ruggedness index (TRI).
Slope failure is a very significant issue for landslide occurrence and is associated
with slope movement due to gravitational forces (Catani et al., 2005). A slope angle
is defined as an angle between the surface of the earth and a horizontal datum (Huang
et al., 2017). At local scales, it affects the concentration of moisture and the level of
pore pressure and is often used to resolve detailed patterns of instability. At larger
scales, it controls regional hydraulic continuity and is considered an essential factor
for GIS-based landslide susceptibility mapping (Guzzetti et al., 1999; Dai & Lee,
2002; Ohlmacher & Davis, 2003). The monotony of landslide occurrences can be
defined by a morphometric slope based on the Topographic Gradient which is
generated from the ALOS PALSAR digital elevation model (DEM). It is observed
from the landslide inventory and slope angle database that the steeper the slope, the
probability of mass failure increases in the region. In the present study, the slope
angle varies from 0� to 76.6342�, as depicted in Fig. 2.3(a).

Elevation is another morphometric causative factor for landslide susceptibility
mapping as several geological and geomorphological processes control it
(Pourghasemi et al., 2012; Pradhan & Kim, 2014; Youssef et al., 2015). Landslides
usually occur at intermediate elevation since slopes tend to be covered by a layer of
thin colluvium that is prone to landslides (Dai & Lee, 2002). The altitude in the
region is seen to vary from 26 to 3743 m, as shown in Fig. 2.3(b).

On the other hand, aspect is also pondered to have an augmented role in the mass
movement, and it identifies the steepest downslope across a surface. The constraints
associated with the Slope Aspect, such as the degree of saturation, discontinuities,
drying winds and exposure to sunlight, may regulate the manifestation of a landslide.
The slope aspect map is also obtained from ALOS PALSAR DEM and classified
into nine standard directions, viz. flat, north, northeast, east, southeast, south,
southwest, west and northwest, respectively, as depicted in Fig. 2.3(c).

The plan and profile curvature is defined as the rate of change of slope gradient or
aspect, usually in a particular direction (Dikau, 1988; Wilson & Gallant, 2000;
Nefeslioglu et al., 2008). The curvature value is evaluated by calculating the
reciprocal value of the radius of curvature. Curvature is described as a contour
formed by intersecting a horizontal plane with the surface. The impact of curvature
on the slope erosion process is the convergence or divergence of water during
downhill flow. Curvature has been used for landslide susceptibility mapping by
Ayalew et al. (2004); Dikau (1988); Wilson and Gallant (2000); Nefeslioglu et al.
(2008); Chen et al. (2017) and Ding et al. (2017). This parameter constitutes one of
the causative factors in the present investigation as a vital factor, controlling
landslide occurrences. The plan and profile curvatures have been prepared by
using high-resolution DEM data, as depicted in Fig. 2.3(d and e).
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The terrain ruggedness index is defined by the altitude variation between the
adjacent cells of a digital elevation model (Alkhasawneh et al., 2013). The process
determines the difference in altitude values between a centre cell and the surrounding
cells. Then it squares each of the eight elevation difference values to make them all
positive and then averages the squares. The terrain ruggedness index is then derived
by taking the square root of this average, as shown in Fig. 2.3(f).

Drainage network is another causative factor for landslide occurrence and has
been renowned as a topographic characteristic of fundamental importance. As the
density of stream linkage reveals the geological, topographical, soil and the vegeta-
tion control, drainage network is chosen to simultaneously contemplate the under-
cutting of a hydrographic system for the role of inappropriate drainage (Shahabi
et al., 2014). The proximity of the steep slope to the drainage network is an
additional essential element controlling the slope stability because the streams
adversely erode the material of the lower portion and make the proliferation of
water level (Shahabi et al., 2014). The total length of the stream in a given section
throughout its area provides drainage density, which has been calculated from the

Fig. 2.3 GIS raster maps exhibit the morphometric causative factors of the terrain, viz. (a) Slope
angle, (b) Elevation, (c) Slope Aspect, (d) Profile Curvature, (e) Plan Curvature and (f) Terrain
Ruggedness Index (TRI)
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drainage network and is seen to vary from 0.0413105 to 2.00818 km2 as depicted in
Fig. 2.4(a). The drainage proximity varies between 0 and 4861.33 m as depicted in
Fig. 2.4(b).

Geological Causative Factors

The surface geological attribution is considered as an independent variable in the
present study. Various geological formations have different compositions and struc-
tures, which contribute to the strength and permeability of rocks and soils. The
stronger rocks give more resistance to the driving forces as compared to the weaker
rocks and hence are less prone to landslides. The major geological formation of the
terrain belongs to Belt of Schuppen designated as (1) accretionary prism;
(2) ophiolite/melange, (3) accetionary complex; (4) alluvial fill along foredeep;
(5) alluvial fill along superposed basin; (6) crystalline complex overprinted by
Himalayan fold-thrust movement; (7) and cover rocks of frontal belt affected by
fold-thrust movement during the terminal phase of Himalayan geology (8) as shown
in Fig. 2.5(a).

Landform defines the spatial topological interactions of landforms which involve
segregating the terrain into intangible spatial objects such as chronology, composi-
tion and features. The numerous geomorphological features of the landscape have
been derived from ALOS PALSAR DEM wherein various types of landforms, viz.
plains, valleys, open slopes, upper slopes mesas, mountaintops high ridges, upland

Fig. 2.4 GIS maps exhibit the morphometric causative factors of the terrain, viz. (a) Drainage
Density and (b) Distance to Drainage
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drainages headwaters, midslope ridges small hills in plains, local ridges hills in
valleys and canyons deeply incised streams and midslope drainages shallow valleys
respectively following Jenness (2006) as depicted in Fig. 2.5(b).

Fig. 2.5 GIS raster maps exhibit the geological causative factors of the terrain, viz. (a) Surface
Geology, (b) Landform, (c) Distance to Lineament and (d) Lineament Density
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The lineament is also an important contributing factor for the occurrence of a
landslide as the degree of intense deformation, fracturing, fissures and weathering
play crucial roles in causing slope failure (Bui et al., 2012). The disposition of
structural discontinuities about slope inclination and direction has a great influence
on the stability of slopes, which includes the extent of parallelism between the
steepness and direction in the dip of discontinuity of the slope. Distance to lineament
varies between 0 and 25,705.5 m, as shown in Fig. 2.5(c). The intensity of rock
fracturing can be epitomized by lineament density, which is inevitable for the
development of muffled passages over an area; therefore, the lineaments in the
study region are mapped and analysed by lineament density and is seen to vary
from 0 to 0.468 km2 as depicted in Fig. 2.5(d).

Environmental Causative Factors

Normalized Differences Vegetation Index (NDVI) is an important causative factor
for the movement of rainfall-induced landslides. Changes in vegetation cover often
result in modified landslide behaviour (Van Beek, 2002; Wilkinson et al., 2002;
Glade, 2003; Peduzzi, 2010). It is also a virtuous gage for the probability of mass
movement. Vegetation roots penetrate the soil and increase their shear strength. The
combination of recorded electromagnetic reflectance in near-infrared and red wave-
length is highly correlated with the photosynthetic activity and the density of
vegetation cover (Peduzzi, 2010). The NDVI map is prepared from Landsat
8 image through band ratio technique, i.e. near-infrared - Red/near-infrared + red,
in which the index value ranges from �0.255 to 0.731. It is observed that the value
of NDVI is comparatively higher in landslide-prone areas where there is a dense
vegetation cover, such as the areas with heavy rainfall and the soil with the wet
condition (Vakhshoori & Zare, 2016; Sonawane & Bhagat, 2017) as depicted in
Fig. 2.6(a).

Landuse/landcover (LULC) plays a crucial role in the stability of the topographic
gradient. Forest controls continuous water flow and regular infiltration; on the other
hand, cropland and agricultural land affect slope stability owing to saturation of
covered soil (Devkota et al., 2013; Regmi et al., 2014). In the present study, LULC
map has been modified from GlobCover (2009) land cover map and classified into
eight major LULC classes such as irrigated croplands, rainfed croplands, croplands/
vegetation, vegetation/croplands, closed to open broadleaved evergreen or semi-
deciduous forest, closed broadleaved deciduous forest, open broadleaved deciduous
forest, closed needleleaved evergreen forest, closed to open mixed broadleaved and
needleleaved forest, mosaic forest-shrubland/grassland, mosaic grassland/forest-
shrubland, closed to open shrubland, closed to open grassland, artificial areas and
water bodies as depicted in Fig. 2.6(b).

The road segmentation is a significant spot of anthropogenic instability and
numerous road construction activities such as quarrying of soil, striking of additional
load, vertical segmentation of slopes, dam construction and vegetation removal may
lead to some tensional cracks due to an increase in stress on the back of the slope
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which frequently serves as a cradle for the occurrence of landslides (Saadatkhah
et al., 2014). In order to determine the effect of the road on the stability of slopes,
various buffer zones are created on the path of the road from which the road density
varies from 0 to 0.510 km2 as shown in Fig. 2.6(c) and distance to road map has been

Fig. 2.6 GIS maps exhibit environmental causative factors of the terrain, viz. (a) Normalized
Differences Vegetation Index (NDVI), (b) Landuse/landcover (LULC), (c) Road Density and (d)
Distance to Road
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prepared on GIS platform and classified between 0 to 30216.7 m as depicted in
Fig. 2.6(d). It is also observed that there is a significant correlation between the
extent of landslides and the distance to the regional road system.

Triggering Causative Factors

In the Eastern Boundary Block of Northeast India, both the earthquake and rainfall
are the major triggering factors responsible for landslide. The entire terrain falls
under the active Himalayan seismogenic zone. The terrain has been affected by more
than 800 μ to large-magnitude earthquakes (Nath et al., 2017). It is observed that the
epicentre proximity plays a major role in the occurrence of a co-seismic landslide in
this region. An epicenter proximity map has been generated using the Euclidean
distance tool in the GIS platform, as shown in Fig. 2.7(a) that exhibits a variation
from 0 to 34,096.1 m.

Surface consistent peak ground acceleration (PGA) is another important factor
responsible for triggering co-seismic landslides in the region. The intensity of
ground-shaking calculated from the maximum acceleration representing the seismic
hazard level in the region is a severe factor in the co-seismic landslide. The PGA
with a 10% probability of exceedance in 50 years with a return period of 475 years
has been adopted from Nath and Thingbaijam (2012), which shows a variation of
PGA 0.558–0.944 g as depicted in Fig. 2.7(b). In general, there is greater vibration
near the epicentre, where many of the co-seismic landslides generally occur.

Rainfall is another triggering factor for the occurrence of a landslide because it
controls the water content in the soil. The amount of precipitation and the number of
landslides is directly proportional to the altitude of the terrain (Sabatakakis et al.,
2013). The average annual rainfall distribution map has been prepared using inverse
distance weighted (IDW) interpolation technique by considering the rainfall data of

Fig. 2.7 GIS raster maps exhibit the triggering causative factors of the terrain: (a) Epicentre
Proximity, (b) Surface Consistent Peak Ground Acceleration (PGA) with 10% probability of
exceedance in 50 years with a return period of 475 years and (c) Average Annual Rainfall
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the last 60 years (1950–2010), with a variation up to 233.58–742.27 mm/year as
shown in Fig. 2.7(c). As per the data, it is observed that in the southern part of the
region, the intensity of rainfall is high, while in the northern part, there is a low
intensity of the precipitation.

Landslide Susceptibility Zonation Mapping by Using
Multivariate Regression

In the present study, processing of data and factors has been carried out on the GIS
Platform, while the statistical analysis by Logistic Regression has been performed
using the Statistical Package for Social Sciences (SPSS). In the first step, 19 causative
factors have been used for the independent variables dataset. All the causative
factors have been exported to comma-separated values (CSV) format and imported
into the statistical platform to achieve the regression coefficients, as shown in
Table 2.2. The landslide inventory training dataset which is represented as a

Table 2.2 Causative factors and their coefficients derived through multivariate statistics-based
logistic regression

Causative factors β S.E. Wald df Sig.
Exp
(β)

Landuse/landcover (LULC) 0.211 0.228 0.853 1 0.356 1.234

Surface geology 4.420 0.443 99.708 1 0.000 83.076

Rainfall (mm/year) �0.004 0.000 105.028 1 0.000 0.996

PGA (g) �6.029 0.518 135.398 1 0.000 0.002

Slope angle (degree) 0.052 0.007 58.140 1 0.000 1.053

Distance to drainage (m) 0.000 0.000 5.530 1 0.019 1.000

Terrain ruggedness index (TRI) �0.006 0.012 0.246 1 0.620 0.994

Road density (km2) 1.445 0.460 9.864 1 0.002 4.240

Profile curvature 0.029 0.031 0.872 1 0.350 1.029

Plan curvature �0.031 0.031 0.943 1 0.332 0.970

Normalized difference vegetation Index
(NDVI)

�3.007 0.432 48.456 1 0.000 0.049

Lineament density (km2) 1.601 0.623 6.602 1 0.010 4.959

Elevation (m) 0.000 0.000 6.070 1 0.014 1.000

Epicentre proximity (m) 0.000 0.000 2.464 1 0.117 1.000

Distance to road (m) 0.000 0.000 137.183 1 0.000 1.000

Distance to lineament (m) 0.000 0.000 3.238 1 0.072 1.000

Drainage density (km2) �0.902 0.326 7.644 1 0.006 0.406

Aspect �0.001 0.000 8.321 1 0.004 0.999

Landform �0.005 0.115 0.002 1 0.964 0.995

Constant 2.309 0.650 12.613 1 0.000 10.061

S.E. standard error, Wald Wald chi-square values, df degree of freedom, Sig. significance, Exp(β)
exponentiated coefficient
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dependent variable has been extracted after rasterizing polygons and then coding the
cells falling in the landslide areas. In the LR analysis, cells could get attributes
providing information on the presence or absence of the landslide phenomena within
30 � 30 m pixels. After integrating the coefficients, using both Eqs. (2.1) and (2.2),
the proneness to landslide has been spatially distributed in the region. The logistic
regression method is used to develop a landslide susceptibility zonation map for
indicating locations where the probabilities of landslide occurrence varies from 0.0
to 1.0. Numbers closer to 1 indicate the probability of landslide occurrences. The
susceptibility index map has been classified as none susceptible covering around
4622 km2, low susceptibility covering around 8000 km2, moderate susceptibility
covering around 10,422 km2, high susceptibility covering around 12,708 km2, very
high susceptibility covering around 13,702 km2 and severe susceptibility covering
around 10,415 km2 as shown in Fig. 2.8(a). The urban, semi-urban centres and other

Fig. 2.8 (a) Landslide susceptibility map of the Eastern Boundary Block comprising of the States
of Nagaland, Manipur and Mizoram of Northeast India classified into six susceptible zones; (b)
ROC curve for the susceptibility map; graphs show the cumulative landslide occurrences versus
landslide susceptibility index with AUC ¼ 0.735, (c) relative landslide density index (R-index) of
the LR-derived landslide map and (d) graph exhibiting the number of landslides (line graph) and
landslide susceptibility zones area (bar graph)

2 GIS-Based Landslide Susceptibility Mapping in Eastern Boundary Zone. . . 33



lifeline facilities, including major transportation facilities like national highways,
state highways, have been severely affected due to frequent landslide in the terrain.

The accuracy statistics of logistic regression-based landslide susceptibility map in
the terrain has been evaluated by receiver operating characteristics (ROC) and
relative landslide density index (r-index) in the area versus the number of landslides
plot as shown in Fig. 2.8(c and d). The accuracy of the model is developed in the area
under the roc curve (AUC) values vary from 0.5 to 1.0 in the ROC statistics. Its
ability to reliability predicts the occurrence and non-occurrence of an event, which is
defined by the probabilistic model of AUC to apply the ROC statistics in the study
region for testing landslide inventory dataset which has been prepared to use
randomly selected landslide events from landslide and non-landslide locations.
The AUC value of the ROC curve for LR is estimated to be 0.735, as depicted in
Fig. 2.8(b).

2.4 Conclusion

Landslide susceptibility mapping is considered the most important step onward in
landslide hazard mitigation and management in the terrain. Logistic regression
method has been used to describe the spatial distribution of landslide susceptibility
zonation on a medium scale of 1:50,000 with a spatial resolution of 30 m � 30 m.
The accuracy assessment of multivariate statistics-based Logistic Regression
(LR) technique is established by using receiver operating characteristics, relative
landslide density index and landslide area versus number of landslide graph and by
matching the susceptibility map with testing inventory dataset. Logistic regression
method indicates that land use/land cover, surface geology, slope angle, road density
and lineament density establish the most important conditioning factors in causing
mass movement in the terrain. The susceptibility zonation map provides information
that led to a major improvement in the understanding of the causes for densely
scattering of landslides in the terrain. The landslide susceptibility zonation map
prepare in the present study can help as a reference for city planners, architects
and geotechnical engineers in land use planning and slope management.
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