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Abstract Many parts of the globe face numerous natural disasters, including
terrible earthquakes, terrible landslides, epidemics, drought and/or flooding. In
recent decades, disasters have impacted the world becoming more. A higher occur-
rence of intense hydro-meteorological activities, most likely due to climate change,
and the rise of susceptible populations, may be the key reasons for this progression.
Risk eradication approach, with an accent on risk evaluation, risk mapping and threat
assessment, which both have a significant spatial aspect, should be achieved further
in order to reduce disaster menace. Integration of remote sensing products and
Geographic Information Systems (GIS) has converted an automated, well-developed
and effective disaster risk management technique today. The present chapter
highlighted a critical and detailed overview of recent multi-hazard risk analysis
performed using remotely sensed data and geospatial techniques, as it permits
participants to be intricate in numerous phases of prototypical development. This
chapter also represented the methodology of machine learning and crowd sourcing,
particularly for multi-hazard modelling, as a very valuable tool for risk management
and disaster vindication.
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1.1 Introduction

‘Multi-hazard’ is a concept used by the United Nations as a collective initiative to
encourage risk prevention and emergency management in the form of bearable
growth and Agenda 21 (Pourghasemi et al., 2019), which would lead to the sustain-
able development of the earth (Keesstra et al., 2018). A multi-hazard strategy
describes multiple threats with varying probabilities and intensities (Eshrati et al.,
2015). In terms of rescue process operations during a disaster, chaos, misguidance,
misallocation of workers and misunderstanding are creating immense costs, from the
rescue time to the casualty toll. The lack of viable contingency planning or new
evacuation plans restricts emergency management initiatives. Hazards can be
described as possible risks to individuals, infrastructure and the environment
resulting from ‘the intersections of human systems, natural processes and technology
systems’ (Cutter 2003). They are ‘risks that can or may not escalate to a disaster or
catastrophe and have been called after a disaster/emergency that could be preceded’
(Haddow et al. 2008). Such hazardous causes may emerge due to geological,
meteorological, oceanographic, hydrological or biological systems on Earth, or
technological intervention. Conversely, as pre-disaster prevention and readiness
steps often form a critical part of the current emergency response strategy, so the
scope can possibly be extended to include the word ‘planning and response’.
Furthermore, while natural and human threats cause disasters, they do not need to
be covert single instances. Many impoverished people, particularly in the develop-
ment of nations, frequently experience ‘repeated shocks to their families and their
livelihood. . .which can entrench any opportunities to stockpile resources and sav-
ings’, which are making similar and often concurrent (Wisner et al., 2004). These
continuing humanitarian crises may be exacerbated by natural and human hazards
but also are aggravated and amplified by human behaviours and social forces.

Risk may be described as ‘the combination of potentially dangerous (hazard,
identified by possibility, severity and spatial size) and vulnerable elements (peoples,
facilities, etc.) of a potentially harmful phénomene within the conceptual framework
of the study’ (Glatron and Beck 2008). Therefore, risk arises only if all hazards and
vulnerabilities are active. Vulnerability can be defined to be either the degree of
susceptibility to a bio-physical (geographical/physical) hazard or the social capacity
to predict and overcome an environmental problem (social vulnerability) (Cutter
2006). Appraisals of risk and susceptibility form an essential part of the continuum
of hazard and disaster management (HADM) of the pre-disaster process. A number
of variables, including a rapidly rising world population and highly uncertain
environment and economic factors, ensure that so many fragile societies are antic-
ipated to be at risk of natural and technical hazards in the future (IFRCRCS, 2003).

Strategies for multi-hazard risk management can be primarily divided into two
methods: (a) evaluating specific threats in a certain terrestrial setting autonomously
(Carpignano et al., 2009; Schmidt et al., 2011) and (b) appraising probable commu-
nications and/or cascade paraphernalia among the different conceivable hazardous
measures (Garcia-Aristizabal et al., 2015; Zhang & Zhang, 2017). As a consequence,
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in natural disaster prevention and planning, applied multi-hazard evaluation has been
under-emphasized. More significantly, most scientific investigations have focused
exclusively on national hazards forecasting and monitoring, disregarding the human
effects and exposure aspect (Fig. 1.1). In geographical literature and threats, risk
(R) has been understood as the amalgamation of hazard exposure (H) and societal
susceptibility (V). This association can be articulated in a ‘pseudo-equation’ of
R ¼ H � V (Wisner et al., 2004). There is, however, no chance if there is no
association of a risky population and vulnerable population in a specific area.

An increasing number of Earth observation capabilities in the low-earth near to
polar orbit have been developed in recent decades, improving our capacity to detect
solid earth hazards. Almost 40 million Landsat scenes have been accessed via the US
Geological Survey portal since late 2008, when Landsat Earth observation images
were released publicly to all subscribers free of charge, and the rate of downloads is

Fig. 1.1 Framework of multi-hazard risk analysis and management using geospatial tool
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still growing. However, the majority of satellite observations today have restricted
range and compatibility, since they are dominated by the different priorities of
national space programmes. Both active radar (synthetic aperture radar-SAR) and
passive optical imaging systems (multi-spectral) have undergone this continued
expansion of satellite capability. The Copernicus programme of the European
Space Agency (ESA) and daily Sentinel-1/2 acquisitions have been ideal for mea-
suring such data collection more regular. The user base (abetted by the growth and
facility of open software processing toolboxes) has been suggestively increased by
the free and open data policies. A geographical methodology in risk management
promotes disaster risk reduction (DRR) by vital data on risk source locations, future
impact areas and the regional spread of (vulnerable) populations and hazardous
infrastructure (Greiving et al. 2006). Spatial frameworks can also help to identify
suitable areas of facilities for disaster prevention and help in relocation, response,
distribution of resources and exculpatory policymaking. Consequently, the use of
satellite data, GIS and social, demographic and economic data open to the public has
the ability to promote modelling activities in terms of improved spatial precision,
computational power, scientific rigour of quantitative techniques and profit-making
information exchange (Bishop et al., 2012; Hoque et al., 2018). For example, at the
International Conference on Satellite EO and Geohazards, EO implementations for
threat detection, quantification and tracking for protection, resiliency, emergency
management, post-emergency and recovery activities and prevention measures were
an integral part of the discussions on community priorities. Moreover, Copernicus
EMS provides vast volumes of DRR data and is also a very useful resource for
end-users in this area. Searching at international satellite EO and DRR projects, a
host of programmes, including the Geohazards Supersites and Natural Laboratories,
the GEODARMA project, the GEO EO4SDG and the CEOS Working Group
Disasters, is sponsored by both the Group on Earth Observation (GEO) and the
Committee on Earth Observing Satellites (CEOS). In the past 60 years, an integrated
and diverse area of infectious disease modelling have been developed, and our
understanding of human and specific disease transmission processes, involving
risk factors, pathogens and spatio-temporal disease distribution patterns has been
progressed (Riley, 2007). In order to target limited preventive measures, monitoring
and control services, recognizing geographical dynamics of anthropological menace
of exposure to vector-borne disease agents is important (e.g. geographic vaccination
targeting; administering drugs or information campaigns; using vector proliferation
mitigation sentinel sites; and defining locations for pesticides to be used more
efficiently). These modelling approaches vary from biostatistical strategies to large
biophysical, ordinary differential equation (ODE)-dependent agent models to eco-
logical niche models (Corley et al., 2014).

Moreover, space observations are specifically identified as significant contribu-
tions to the policy of disaster risk mitigation. Sendai Framework has goals for
interventions, such as ‘reinsurance understanding’, ‘sustainability reduction
investing’, and ‘preparedness enhancement of disasters’, for example, both of
which can be assisted by strengthened earth observations (Fig. 1.2).
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In certain cases, however, neither space-based nor in situ and airborne measure-
ments explicitly help disaster strategic planning: instead, an indirect layer of research
is recognized, which in turn tells consumers about risk management (Salichon et al.,
2007). This review of the literature seeks to offer a detailed description of the
technological innovations developed to minimise and avoid risk caused by natural
hazards. Three academic databases which are widely used in literature reviews were
chosen by the study: Scopus, Google Scholar andWeb of Science. As search criteria,
the key terms flood, drought, landslide, water conservation, catastrophe, sustainabil-
ity, climate change and adaptation were used in accordance with other comprehen-
sive research papers in the area. The aim of this chapter is to offer a critical and
detailed overview of recent multi-hazard risk analysis performed using satellite data
and geospatial methods. It provides a description of the inventory/detection of
natural hazards, mapping and monitoring, vulnerability and risk mitigation on a
variety of scales using geospatial data. Extents from these satellites offers useful

Fig. 1.2 User decision framework for multi-hazard risk assessment using geospatial technology
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supplementary input that can be considered for a number of emergency management
applications: monitoring the intensity of tropical disturbances, including typhoons,
cyclones and hurricanes worldwide; tracking the evolving nature of volcanic domes
in the event of flare-ups; monitoring the diffusion of ash released during volcanic
eruptions; investigating, often under overcast weather, the spatial scale of flooding
regions; measuring the magnitude of forest fires and oil spills; and analysing the
impact of droughts on soils, trees, and crops.

1.2 Satellite Data and Multi-hazard Assessment

For the EO environment, satellite-based emergency mapping (SEM) or fast risk and
recovery mapping are widely implemented (Van Westen, 2013). For the first time,
data from the TIROS-1 satellite provided meteorological predictions as early as the
1960s. This massive advance in Earth Observation opened up new horizons for
catastrophe menace control, allowing improved tracking, awareness and eventually
anticipation of meteorological hazards (Manna, 1985). The scientific community
would be pleased to follow a flood-hazard mapping method focused purely on
satellite-based observation as they it is reliable, accurate and relevant throughout
the universe, predominantly in areas where ground surveys are not possible
(Giustarini et al., 2015). Multi-temporal Moderate-Resolution Imaging
Spectroradiometer (MODIS) imagery was used by Sakamoto et al. (2007) and
Islam et al. (2010) to monitor flood inundation frequencies in the Cambodia and
the Mekong Delta (Bangladesh), respectively. Thomas and Leveson (2011) used
Landsat imagery to map annual floods in Australia, while the mixture of thermal
(ASTER) and SAR (ENVISAT) data was efficiently used after the 2011 Tohoku
(Japan) Tsunami to elucidate the overall flood intensity and to track water deterio-
rating in the subsequent weeks. Due to its synoptic view and rate of measurements,
specifically in high mountain regions, remote sensing data and image processing
methods can be used for in-depth risk mapping and monitoring. For the development
of landslide susceptibility maps and landslide hazard index, Golovko et al. (2017)
used several satellite data (e.g. LANDSAT, SPOT, ASTER, IRS-1C, LISS-III, and
RapidEye) and automatic identification systems. For landslide detection and map-
ping, Lu et al. (2011) used Quickbird remotely sensed data. To establish multi-
temporal landslide susceptibility maps, Guzzetti et al. (2012) used aerial imagery,
high-resolution DEM (LiDAR) and satellite images (e.g. Landsat-7, IRS, IKONOS-
2, Quickbird-2, WorldView-2, and GeoEye-1/2). Along with current landslide
catalogue maps and the SAR and interferometric synthetic aperture radar (InSAR)
image play an important role for up-dating the landslide inventory through incorpo-
ration of auxiliary data. The creation of digital elevation models (DEMs), for
instance, those created from Indian remote sensing satellite (IRS) P5 images and
TerraSAR-X/TanDEM-X images by InSAR-X, is among the most useful applica-
tions, such as the assessment of erosion, landslide and topographic multi-temporal
differences (Du et al., 2017). For landslide change detection analysis, Hölbling et al.
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(2015) used remotely sensed SPOT-5 data, while Kang et al. (2017) used ALOS/
PALSAR imagery and InSAR techniques for landslide detection. The National
Oceanographic and Atmospheric Administration (NOAA) satellite data perceived
by the Advanced Very High-Resolution Radiometer (AVHRR) was considered to
gather the prevalence and track the periodic outbreak of cholera in order to establish
the early warning system in Bangladesh (Lobitz et al., 2000).

Since, topography is among the most crucial components in most hazard assess-
ment, the development of a DEM and geomorphometric evaluation is crucially
important. Current topographic maps, topographic levelling, Electronic Distance
Measurement (EDM), differential Global Positioning Systems (DGPS) measure-
ments, digital photogrammetry, Interferometric Synthetic Aperture Radar (InSAR)
and Light Detection and Ranging (LiDAR) can be used to obtain elevation data.
GTOPO30 (Hastings & Dunbar, 1998) and Shuttle Radar Topographic Mission
(SRTM) (Farr & Kobrick, 2000) are the key origins of global DEMs used in hazards
assessment and risk analysis. Global optically derived optical topography is also
applicable at 30 m with Panchromatic Remote-Sensing Instrument for Stereo Map-
ping (PRISM) Advanced World-3D Advanced (AW3D) and higher-resolution
PRISM datasets accessible for the trade. The topography is based on Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

1.3 Spatial Modelling and Multi-hazard Risk Assessment

Over the last few decades, experimental multi-hazard experiments have been more
popular (Pourghasemi & Kerle, 2016), but in the twenty-first century, they are still a
problem for scientists and researchers (UN, 2002). To prepare hazard maps using
geospatial technology, many approaches and models have been used (Adab et al.,
2013, Teodoro and Duarte 2013; Hembram et al. 2011). Multi-faceted computa-
tional approaches, like multiple adaptive regression splines, have recently been
studied for risk evaluation (Pourghasemi et al., 2018), logistic regression (Arabameri
et al., 2018) and generalized additive models (Ravindra et al., 2019). In
New Zealand, Schmidt et al. (2011) developed a multi-risk modelling methodology,
providing an adaptable version of software that enables academicians to ‘plug in’
real progressions of interest. Pourghasemi et al. (2019) conducted a multi-hazard risk
evaluation focused on artificial intelligence techniques in Fars Province, Iran. There
has also been discussion of artificial intelligence and machine learning. In addition,
the analytical hierarchy process (Youssef, 2015) unified with multi-criteria decision
analysis (MCDA) and spatial decision support system (Ghorbanzadeh et al., 2018)
has been used in evaluations of multi-hazard risk analysis. Soft-computing models,
such as artificial neural networks (Yilmaz & Ercanoglu, 2019), fuzzy logic
(Vakhshoori & Zare, 2016), decision trees (Wang et al., 2016), support vector
machine (SVM) (TienBui et al., 2016), random forest (RF) (Youssef et al., 2016),
deep learning method (Xiao et al., 2018), adaptive neuro-fuzzy inference system
(ANFS) (Chen et al., 2019), kernel logistic regression (TienBui et al., 2016) and
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ensembles of ANFIS (RazaviTermeh et al., 2018), have been used for multi-hazard
analysis and modelling. The ILWIS GIS framework assessment module allows and
directs users to carry out spatial multi-criteria assessments for multi-hazard analysis.
The input is a series of maps that depict the criteria’s spatial representation. They are
congregated, uniform and weighted in a ‘criteria tree’. The product is one or more
‘composite index map(s)’ implying the realization of the model implemented.
Several research organizations around the world have many comprehensive spatial
tools, such as HAZUS, a GIS-based natural disaster analysis method built to
determine flood risk; HEC-FDA, a computer programme to support crop engineers
by susceptibility study of flood risk mitigation strategy. The AHP is one of the most
common and effective hazard modelling techniques, such as flood forecasting,
visualization and analysis of complex issues (Chen et al., 2011). In addition to
AHP, the other suitable models for hazard analysis are MCDA (Samanta et al.,
2016), weights of evidence (WofE) (Rahmati et al., 2016a, b), logistic regression
(LR) (Tehrany et al., 2015), adaptive neuro-fuzzy interface method (Sezer et al.,
2011), artificial neural networks (ANN) (Tiwari & Chatterjee, 2010) and FR model
(Rahmati et al., 2016a, b). Gómez-Limón et al. (2003) proposed an innovative
approach for weighting the parameters used for aversion to agricultural risk in
decision-making. On a single scale, it uses numerical ratings based on multiple
choices. In this approach, by utility value functions, all divergent parameters are
converted into a single 0–1 scale to take the ultimate judgement. Models that show
evidence of the disease’s epidemiological (population-level) features were listed
together as ‘Epidemiological’. Variables directly addressing the agent or pathology
have been classified under ‘Etiology’. ‘Geospatial modelling’ included models that
used satellite data such as the ‘normalised difference vegetation index’ (NDVI), to
quantity of live green vegetation in a target area. ‘Quantifiable’ methods, such as
tillage processes, were also recognized in some models, along with ‘Temporal’ and
‘Agricultural’ factors. The associations between mechanistic disease transmission
factors can be used to explain the geographical spread of disease risk (Krefis et al.,
2011), early warning systems, or to create mechanistic vector population and disease
transmission models. In designing logical regression models based on Multi-satellite
Precipitation Analysis (TMPA) and documenting a clear correlation in those areas
between tropical rainfall and the MVEV outreach, Schuster et al. (2011) use remote
sensing (RS) data of the Project of Tropical Rainfall Measurement Mission
(TRMM). Landsat data are used to assess and compare the green leaf area index
(LAI) of rice fields to the Aedes mosquito density build-up. In 2006, Glass et al.
created a logistic regression model based on 1992–2005 Landsat Thematic Mapper
(TM) imagery to estimate the menace of Hanta virus pulmonary syndrome (HPS) in
2006 and recorded that augmented rainfall in northern New Mexico and southern
Colorado raises the risk of HPS following the previous drought years. The spreads of
VBDs, viruses, reservoirs and vectors can be modelled by using mathematical and
statistical models. Numerical models use a single reckoning or series of equations
that feign or describe a system and/or predict that system’s potential behaviour,
while statistical models use simulation approaches that include assembling, evalu-
ating and/or interpreting datasets (e.g. regressions) (Sadeghieh et al., 2020). New
mapping apps, such as Google Earth™ and MS Virtual Earth™, offer simple and
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easy-to-use capabilities to produce not only spatial data overlaid on pre-existing
satellite imagery or map simulations but also complex space-time sequence repre-
sentations that can be played as animated films.

1.4 Integration Between Data Science and Geoinformatics:
A Practical Guide to Manage Multi-hazard

The immediate need for hazard control and protection is illustrated by significant and
irreparable disruption to agriculture, transport, bridges and many other facets of
urban infrastructure (Mojaddadi et al., 2017). Moreover, it has been made apparent
by the COVID-19 pandemic that biological and environmental hazards converge and
raise the complexity of the overall impacts of disasters on communities and econo-
mies. However, in order to grab the interactions of natural and biological threats or
control the aspects of connectiveness and rippling impacts on social, economic, and
environmental environments, emergency response and risk analytics have been
sluggish. The deficiency of viable catastrophe planning or new evacuation plans
restricts alternative management initiatives. Alternatively, administrators need to be
wary of all flaws and restrictions. Inadequate utilization and deployment of money is
a big complication in emergency operations. To stop making the incorrect decisions
that could cost the lives of individuals, emergency management must provide a clear
view of the emergency circumstances reliant upon reliable data. Around the same
time, dwelling on irrelevant data and deserting the flow of information due to too
much meaningless data causes unsuccessful effects, for example, misidentifying the
actual first responder.

Around 1.8 ZB of data was generated in late 2011, according to IDC (2014).
Globally, around 1.2 ZB (1021) is generated as electronic data by various sources
each year (Hilbert & López, 2011). The data is projected to hit 40 ZB by 2020
(Sagiroglu, 2013). Artificial Intelligence (AI) uses computational, mathematical
approaches by software scripts and strategies to simplify decision-making that data
centres use without clear instructions to the algorithm to execute a given human task
effectively. Present shortcomings should be resolved in the risk assessment of roles
and silos and in datasets, studies, simulation and control. Decisions historically
reached largely ‘from the gut’ or by benchmarking would become data-driven and
systemic. The increasing use of data science and machine learning (ML) are increas-
ingly becoming one of the world’s greatest challenges for computer-driven enter-
prises, data scientists and legal staff. Today there is enormous interest in corporate
data processing, primarily due to ‘the dawn of the Big Data era’ (Ekeu-wei &
Blackburn, 2018).

Geospatial Artificial Intelligence (GeoAI) incorporates space science
(e.g. geographic information systems or GIS), AI, data processing and
high-performance computing techniques to derive useful knowledge from big spatial
data. GeoAI reflects a multi-hazard intelligence-based area that combines location to
extract actionable knowledge that can be used to enhance risk management. The
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application of novel outlets of huge volume of spatial data, for instance, social
media, automated health reports, satellite data, and personal sensors, and the
advancement of public health science (particularly in the framework of ‘smart and
safe cities’) are a prominent idea through GeoAI applications at population and
discrete level, providing new possibilities to address traditional questions more
comprehensively. Figure 1.3 shows probable application of GeoAI in multi-hazard
risk management. It is imperative to consider the timeline and context of enterprise
data management in order to make good design choices for the emerging technology
of today and tomorrow and to prevent making past mistakes. Sensitive master data is
now included in the continuing rapid increase of data volume and use across various
silos, both on-site and in the cloud, and in a number of data formats. Most impor-
tantly, IoT sensors and systems are new and effective forms of geo-tagged big data
generation implemented in urban societies (Kamel Boulos & Al-Shorbaji, 2014).

To process, interpret and make sense of such huge amount of spatial big data in
real time, it is therefore important and indispensable to implement robust GeoAI
technologies. Mojaddadi et al. (2017) proposed an ensemble approach (the fre-
quency ratio (FR) methodology combined with a radial basis function and support
vector machine (SVM)) that exhibited utility in GIS-based flood modelling to
produce flood likelihood indices for the catchment of the Damansara River in
Malaysia. An increasing number of researches have demonstrated the possibility

• Comprehensive Warehousing
  -Excel, PostgreSQL,
  MongoDB
• Data quality and abundance

• Predictive Modelling
• Loss distribution
• Discriptive Analytics
• Predictive Analytics
• Prescriptive Analytics

• Real-time visualization
• Dashboard - Anomly
  detection, credit scoring,
  scenario analysis
• Regulatory requirement -
  Operational, Financial,
  Strategic

Risk
Analytics

Reporting

Enterprise
Data

Management

Fig. 1.3 Role of GeoAI in risk management
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of using machine learning (ML)-based algorithms with spatial datasets and satellite
images to create regional-scale landslide susceptibility models, such as decision trees
(DT) (Tsai et al., 2013), entropy- and evolution-based algorithms (Kavzoglu et al.,
2015), fuzzy-theory (Zhu et al., 2014), neural-fuzzy systems (Xu et al., 2015; Bui
et al., 2012), random forest algorithms (Lai & Tsai, 2019), and the advancement of
computational resources, geospatial data and technologies. For instance, to predict
everyday particulate matter <2.5 μm in diameter (PM2.5) in the USA, a neural
network was used to employ numerous predictors, including satellite-based optical
aerosol depth (AOD) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Di et al., 2016). In another research to resolve the lack of building
maps in less developed nations for development targets associated to emergency
relief and poverty reduction, WorldView-2 satellite data and voluntary geographic
information (VGI) were implemented to deep learning (convolutions neural net-
works or CNNs) to mechanize map creation for buildings in Nigeria (Yuan et al.,
2018). Spence et al. (2016) also examined recent developments in social media
recruitment, data analysis and public desires and preferences measurement. In China,
a geographically weighted gradient boosting machine (GW-GBM) algorithm was
employed to model PM2.5 acquaintances, allowing for spatial non-stationarity using
spatial smoothing kernels in relations between predictors and PM2.5 (Zhan et al.,
2017). GeoAI has been employed in epidemiology to identify and examine the
geographical spread of viruses and to explore the consequence of location-based
influences on the outcome of diseases. For example, machine learning (K-means
clustering) was employed to evaluate spatio-temporal gestational age trends at
distribution for 145 million births in over 3000 US counties from 1971 to 2008
using the National Centre for Health Statistics Natality Files to encourage the
generation of hypotheses relevant to the aetiology of preterm births (Byrne et al.,
1992). Researchers aimed to better examine the principle of the prevalence of HIV
based on computer-based algorithm (support vector regression) in the Ivory Coast of
Africa to derive mobility and communication data from rectified cell phone data
(Brdar et al., 2016). Deep learning in genetics has been extended to fields of research
for example functional genomics (e.g. envisaging the arrangement specificity of
DNA- and RNA-binding proteins) (Zou et al., 2019).

Figure 1.4 demonstrates a risk assessment system that helps data science and
regulatory teams to build faster, more precise and more compliant ML models. For
example, data scientists could be better placed to explain key desirable effects,
whereas legal workers could describe particular undesired results that could give
rise to legal liability. Defence lines relate to the functions and responsibilities of data
scientists and those engaged in the ML development, rollout and auditing phase. The
management of this data infrastructure, from the data pipeline to the model, is one of
the most important and most neglected facets of ML governance. Understanding the
outputs of a model is essential to monitor its health and any potential threats, both
during preparation and while in deployment.
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1.5 Integration with Crowdsourcing and Geoinformatics
on Multi-hazard Risk Assessment

As social networks advance, academic projects often concentrate on the use of social
media for emergency relief. The main explanation is that social networks can
provide not only rich data but also almost real-time information. Social networks
build worlds where comments, photos and videos are exchanged within seconds,
with 1.79 billion monthly active Facebook users and 500 million daily tweets
(Sarvari et al., 2019). Panagiotopoulos et al. (2016) focused on using social media
(Twitter) to convey threats to the public in order to help raise visibility or discourage
public response from increasing. Two outlooks on risk and emergency message and
the Social Amplification of Risk Framework (SARF) (Kasperson et al., 1988) and
the Crisis and Emergency Risk Communication Model (CERC) are merged in the
theoretical portion of this analysis (Reynolds & Seeger, 2005). Further investigations
and innovative technologies have been carried out to reliably identify disaster
information, such as machine learning, big data analysis and image processing.
However, a detailed view of threatened fields is needed for data fusion. Fry and
Binner (2016) investigated compartmental analysis and straightforward evacuation
simulation. They model the actions of individuals and the influence of social media
with maximal counter-strategies. They developed a Bayesian algorithm for maximal
evacuation.

Unlike crowdsourced social media information discussed in the earlier segment,
the word ‘crowdsensing’ is employed here to pronounce methods that rely on
dedicated software systems to capture precise and organised information, as well

Fig. 1.4 Role of Artificial Intelligence in risk assessment strategy
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as to leverage citizens’ interpretive and analytical skills and local awareness
(Gebremedhin et al., 2020). Several ‘crowdsensing’ schemes were developed,
including devoted mobile disaster control and earth observation apps (Ferster &
Coops, 2013). One example of the Ushahidi framework technology is the Flood
Citizen Observatory prototype deployed in Brazil to permit people to report on the
local status of river levels, flooded areas and the effects of flooding (Horita et al.,
2015). Some programs, like Did You Feel It?, are explicitly constructed for disaster
situations. U.S. Geological Survey (USGS) is used DYFI report to measure earth-
quake shaking intensity. The meteorological Phenomenon Identification Near the
Ground (mPING), which tracks meteorological measurements and permits operators
to display observations, was set up by the US National Oceanic and Atmospheric
Administration (NOAA).NOAA uses mPING data to increase its dual-polarization
radar and improve winter weather models, while ground-based meteorological
measurements are necessary to verify that the radar has correctly calculated the
amount of precipitation (Hultquist & Cervone, 2020). A particular category of
knowledge and sharing portal is another crowdsourced geoinformation: the collab-
orative version of geographic features to conform with internet-based digital maps.
This category includes the well-established Wikimapia and OpenStreetMap (OSM)
platforms, in addition to the ‘crowdsourcing’ portion of the widespreadGoogleMaps
framework, known as GoogleMapMaker (de Albuquerque et al., 2016). Such imag-
ery is a very useful source of knowledge to be used by mappers, and it also helps
volunteers from all around the world to participate, not just those who are specifi-
cally in the impacted regions.

1.6 Conclusion

Crowdsourced geographic information (CGI) has tremendous capacity not just to
deal with the impacts of earthquakes but also to take proactive steps to boost
metropolitan areas’ exposure to natural hazards and extreme events. When vast
volumes of data remain to be apprehended and gathered, data protection issues
remain paramount. A range of approaches for GeoAI implementations are currently
being used to assist risk management phases, such as risk recognition, risk estima-
tion and risk assessment. In order to create machine learning models capable of
supplying inputs to conventional risk management strategies, historical and real-time
data are also used. Ethical mechanisms are therefore important to adequately warn
research participants about risks and to protect individual privacy. In addition, in
future research, the use of CGI in extenuation and planning phases should be
stressed. For example, this could be achieved by exploiting initial instances of
using CGI from concerted maps to sustenance catastrophe risk management prac-
tises, such as defining essential infrastructures to facilitate emergency planning. For
the future work, we should follow the existing decision support system with suitable
deep learning algorithms and IoT architectures. Future studies should build on
existing GeoAI technologies, including location-based modelling geographies that
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have not previously been collected at a high spatio-temporal tenacity, or recently
evolving spatial volume of data source engineering, to open novel study opportuni-
ties and accelerate our knowledge of multi-hazard risk.
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