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Preface

Environmental hazards such as landslide, floods and flash floods, forest or wildland
fire, and tropical cyclones are the most devastating natural disasters causing massive
damages to natural and man-made features. Natural hazards are a major threat to
human life (injury or death of human and animal life), properties (agricultural area,
yield production, building, and homes), and infrastructures (bridges, roads, railways,
urban infrastructures). The damage that can occur due to such disasters leads to huge
economic loss and brings pathogens into urban environments that cause microbial
development and diseases. The natural and social hazards are discontinuing the
development of human society and sustainability.

The book demonstrates the geospatial technology approach to data mining
techniques, data analysis, modeling, risk assessment, visualization, and management
strategies in different aspects of natural and social hazards. This book has considered
25 chapters associated with risk assessment, mapping, and management strategies of
environmental hazards. It covers major topics such as: Landslide Susceptibility,
Arsenic Contaminated Groundwater, Earthquake Risk Management, Open Cast
Mining, Soil loss, Flood Susceptibility, Forest Fire Risk, Malaria prevalence,
Flood inundation, Socio-Economic Vulnerability, River Bank Erosion, and Socio-
Economic Vulnerability. The content of this book will be of interest to researchers,
professionals, and policymakers, whose work involves environmental hazards and
related solutions.
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We are thankful to all the authors who have meticulously completed their
documents on a short announcement and paid in building this a very edifying and
beneficial publication. We do believe that this will be an opportune book for the
Geographers, Ecologists, Environmental Scientist, Hydrologist, Geospatial Scien-
tist, Remote Sensing and GIS experts, Agriculture Scientist, and other fields of
environmental hazards and management including the research scholars, environ-
mentalists, and policymakers.
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Chapter 1
Geospatial Technology for Multi-hazard
Risk Assessment

Gouri Sankar Bhunia and Pravat Kumar Shit

Abstract Many parts of the globe face numerous natural disasters, including
terrible earthquakes, terrible landslides, epidemics, drought and/or flooding. In
recent decades, disasters have impacted the world becoming more. A higher occur-
rence of intense hydro-meteorological activities, most likely due to climate change,
and the rise of susceptible populations, may be the key reasons for this progression.
Risk eradication approach, with an accent on risk evaluation, risk mapping and threat
assessment, which both have a significant spatial aspect, should be achieved further
in order to reduce disaster menace. Integration of remote sensing products and
Geographic Information Systems (GIS) has converted an automated, well-developed
and effective disaster risk management technique today. The present chapter
highlighted a critical and detailed overview of recent multi-hazard risk analysis
performed using remotely sensed data and geospatial techniques, as it permits
participants to be intricate in numerous phases of prototypical development. This
chapter also represented the methodology of machine learning and crowd sourcing,
particularly for multi-hazard modelling, as a very valuable tool for risk management
and disaster vindication.

Keywords Risk mapping · GIS · Machine learning · Crowd sourcing · Disaster
management
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1.1 Introduction

‘Multi-hazard’ is a concept used by the United Nations as a collective initiative to
encourage risk prevention and emergency management in the form of bearable
growth and Agenda 21 (Pourghasemi et al., 2019), which would lead to the sustain-
able development of the earth (Keesstra et al., 2018). A multi-hazard strategy
describes multiple threats with varying probabilities and intensities (Eshrati et al.,
2015). In terms of rescue process operations during a disaster, chaos, misguidance,
misallocation of workers and misunderstanding are creating immense costs, from the
rescue time to the casualty toll. The lack of viable contingency planning or new
evacuation plans restricts emergency management initiatives. Hazards can be
described as possible risks to individuals, infrastructure and the environment
resulting from ‘the intersections of human systems, natural processes and technology
systems’ (Cutter 2003). They are ‘risks that can or may not escalate to a disaster or
catastrophe and have been called after a disaster/emergency that could be preceded’
(Haddow et al. 2008). Such hazardous causes may emerge due to geological,
meteorological, oceanographic, hydrological or biological systems on Earth, or
technological intervention. Conversely, as pre-disaster prevention and readiness
steps often form a critical part of the current emergency response strategy, so the
scope can possibly be extended to include the word ‘planning and response’.
Furthermore, while natural and human threats cause disasters, they do not need to
be covert single instances. Many impoverished people, particularly in the develop-
ment of nations, frequently experience ‘repeated shocks to their families and their
livelihood. . .which can entrench any opportunities to stockpile resources and sav-
ings’, which are making similar and often concurrent (Wisner et al., 2004). These
continuing humanitarian crises may be exacerbated by natural and human hazards
but also are aggravated and amplified by human behaviours and social forces.

Risk may be described as ‘the combination of potentially dangerous (hazard,
identified by possibility, severity and spatial size) and vulnerable elements (peoples,
facilities, etc.) of a potentially harmful phénomene within the conceptual framework
of the study’ (Glatron and Beck 2008). Therefore, risk arises only if all hazards and
vulnerabilities are active. Vulnerability can be defined to be either the degree of
susceptibility to a bio-physical (geographical/physical) hazard or the social capacity
to predict and overcome an environmental problem (social vulnerability) (Cutter
2006). Appraisals of risk and susceptibility form an essential part of the continuum
of hazard and disaster management (HADM) of the pre-disaster process. A number
of variables, including a rapidly rising world population and highly uncertain
environment and economic factors, ensure that so many fragile societies are antic-
ipated to be at risk of natural and technical hazards in the future (IFRCRCS, 2003).

Strategies for multi-hazard risk management can be primarily divided into two
methods: (a) evaluating specific threats in a certain terrestrial setting autonomously
(Carpignano et al., 2009; Schmidt et al., 2011) and (b) appraising probable commu-
nications and/or cascade paraphernalia among the different conceivable hazardous
measures (Garcia-Aristizabal et al., 2015; Zhang & Zhang, 2017). As a consequence,
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in natural disaster prevention and planning, applied multi-hazard evaluation has been
under-emphasized. More significantly, most scientific investigations have focused
exclusively on national hazards forecasting and monitoring, disregarding the human
effects and exposure aspect (Fig. 1.1). In geographical literature and threats, risk
(R) has been understood as the amalgamation of hazard exposure (H) and societal
susceptibility (V). This association can be articulated in a ‘pseudo-equation’ of
R ¼ H � V (Wisner et al., 2004). There is, however, no chance if there is no
association of a risky population and vulnerable population in a specific area.

An increasing number of Earth observation capabilities in the low-earth near to
polar orbit have been developed in recent decades, improving our capacity to detect
solid earth hazards. Almost 40 million Landsat scenes have been accessed via the US
Geological Survey portal since late 2008, when Landsat Earth observation images
were released publicly to all subscribers free of charge, and the rate of downloads is

Fig. 1.1 Framework of multi-hazard risk analysis and management using geospatial tool
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still growing. However, the majority of satellite observations today have restricted
range and compatibility, since they are dominated by the different priorities of
national space programmes. Both active radar (synthetic aperture radar-SAR) and
passive optical imaging systems (multi-spectral) have undergone this continued
expansion of satellite capability. The Copernicus programme of the European
Space Agency (ESA) and daily Sentinel-1/2 acquisitions have been ideal for mea-
suring such data collection more regular. The user base (abetted by the growth and
facility of open software processing toolboxes) has been suggestively increased by
the free and open data policies. A geographical methodology in risk management
promotes disaster risk reduction (DRR) by vital data on risk source locations, future
impact areas and the regional spread of (vulnerable) populations and hazardous
infrastructure (Greiving et al. 2006). Spatial frameworks can also help to identify
suitable areas of facilities for disaster prevention and help in relocation, response,
distribution of resources and exculpatory policymaking. Consequently, the use of
satellite data, GIS and social, demographic and economic data open to the public has
the ability to promote modelling activities in terms of improved spatial precision,
computational power, scientific rigour of quantitative techniques and profit-making
information exchange (Bishop et al., 2012; Hoque et al., 2018). For example, at the
International Conference on Satellite EO and Geohazards, EO implementations for
threat detection, quantification and tracking for protection, resiliency, emergency
management, post-emergency and recovery activities and prevention measures were
an integral part of the discussions on community priorities. Moreover, Copernicus
EMS provides vast volumes of DRR data and is also a very useful resource for
end-users in this area. Searching at international satellite EO and DRR projects, a
host of programmes, including the Geohazards Supersites and Natural Laboratories,
the GEODARMA project, the GEO EO4SDG and the CEOS Working Group
Disasters, is sponsored by both the Group on Earth Observation (GEO) and the
Committee on Earth Observing Satellites (CEOS). In the past 60 years, an integrated
and diverse area of infectious disease modelling have been developed, and our
understanding of human and specific disease transmission processes, involving
risk factors, pathogens and spatio-temporal disease distribution patterns has been
progressed (Riley, 2007). In order to target limited preventive measures, monitoring
and control services, recognizing geographical dynamics of anthropological menace
of exposure to vector-borne disease agents is important (e.g. geographic vaccination
targeting; administering drugs or information campaigns; using vector proliferation
mitigation sentinel sites; and defining locations for pesticides to be used more
efficiently). These modelling approaches vary from biostatistical strategies to large
biophysical, ordinary differential equation (ODE)-dependent agent models to eco-
logical niche models (Corley et al., 2014).

Moreover, space observations are specifically identified as significant contribu-
tions to the policy of disaster risk mitigation. Sendai Framework has goals for
interventions, such as ‘reinsurance understanding’, ‘sustainability reduction
investing’, and ‘preparedness enhancement of disasters’, for example, both of
which can be assisted by strengthened earth observations (Fig. 1.2).
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In certain cases, however, neither space-based nor in situ and airborne measure-
ments explicitly help disaster strategic planning: instead, an indirect layer of research
is recognized, which in turn tells consumers about risk management (Salichon et al.,
2007). This review of the literature seeks to offer a detailed description of the
technological innovations developed to minimise and avoid risk caused by natural
hazards. Three academic databases which are widely used in literature reviews were
chosen by the study: Scopus, Google Scholar andWeb of Science. As search criteria,
the key terms flood, drought, landslide, water conservation, catastrophe, sustainabil-
ity, climate change and adaptation were used in accordance with other comprehen-
sive research papers in the area. The aim of this chapter is to offer a critical and
detailed overview of recent multi-hazard risk analysis performed using satellite data
and geospatial methods. It provides a description of the inventory/detection of
natural hazards, mapping and monitoring, vulnerability and risk mitigation on a
variety of scales using geospatial data. Extents from these satellites offers useful

Fig. 1.2 User decision framework for multi-hazard risk assessment using geospatial technology
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supplementary input that can be considered for a number of emergency management
applications: monitoring the intensity of tropical disturbances, including typhoons,
cyclones and hurricanes worldwide; tracking the evolving nature of volcanic domes
in the event of flare-ups; monitoring the diffusion of ash released during volcanic
eruptions; investigating, often under overcast weather, the spatial scale of flooding
regions; measuring the magnitude of forest fires and oil spills; and analysing the
impact of droughts on soils, trees, and crops.

1.2 Satellite Data and Multi-hazard Assessment

For the EO environment, satellite-based emergency mapping (SEM) or fast risk and
recovery mapping are widely implemented (Van Westen, 2013). For the first time,
data from the TIROS-1 satellite provided meteorological predictions as early as the
1960s. This massive advance in Earth Observation opened up new horizons for
catastrophe menace control, allowing improved tracking, awareness and eventually
anticipation of meteorological hazards (Manna, 1985). The scientific community
would be pleased to follow a flood-hazard mapping method focused purely on
satellite-based observation as they it is reliable, accurate and relevant throughout
the universe, predominantly in areas where ground surveys are not possible
(Giustarini et al., 2015). Multi-temporal Moderate-Resolution Imaging
Spectroradiometer (MODIS) imagery was used by Sakamoto et al. (2007) and
Islam et al. (2010) to monitor flood inundation frequencies in the Cambodia and
the Mekong Delta (Bangladesh), respectively. Thomas and Leveson (2011) used
Landsat imagery to map annual floods in Australia, while the mixture of thermal
(ASTER) and SAR (ENVISAT) data was efficiently used after the 2011 Tohoku
(Japan) Tsunami to elucidate the overall flood intensity and to track water deterio-
rating in the subsequent weeks. Due to its synoptic view and rate of measurements,
specifically in high mountain regions, remote sensing data and image processing
methods can be used for in-depth risk mapping and monitoring. For the development
of landslide susceptibility maps and landslide hazard index, Golovko et al. (2017)
used several satellite data (e.g. LANDSAT, SPOT, ASTER, IRS-1C, LISS-III, and
RapidEye) and automatic identification systems. For landslide detection and map-
ping, Lu et al. (2011) used Quickbird remotely sensed data. To establish multi-
temporal landslide susceptibility maps, Guzzetti et al. (2012) used aerial imagery,
high-resolution DEM (LiDAR) and satellite images (e.g. Landsat-7, IRS, IKONOS-
2, Quickbird-2, WorldView-2, and GeoEye-1/2). Along with current landslide
catalogue maps and the SAR and interferometric synthetic aperture radar (InSAR)
image play an important role for up-dating the landslide inventory through incorpo-
ration of auxiliary data. The creation of digital elevation models (DEMs), for
instance, those created from Indian remote sensing satellite (IRS) P5 images and
TerraSAR-X/TanDEM-X images by InSAR-X, is among the most useful applica-
tions, such as the assessment of erosion, landslide and topographic multi-temporal
differences (Du et al., 2017). For landslide change detection analysis, Hölbling et al.
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(2015) used remotely sensed SPOT-5 data, while Kang et al. (2017) used ALOS/
PALSAR imagery and InSAR techniques for landslide detection. The National
Oceanographic and Atmospheric Administration (NOAA) satellite data perceived
by the Advanced Very High-Resolution Radiometer (AVHRR) was considered to
gather the prevalence and track the periodic outbreak of cholera in order to establish
the early warning system in Bangladesh (Lobitz et al., 2000).

Since, topography is among the most crucial components in most hazard assess-
ment, the development of a DEM and geomorphometric evaluation is crucially
important. Current topographic maps, topographic levelling, Electronic Distance
Measurement (EDM), differential Global Positioning Systems (DGPS) measure-
ments, digital photogrammetry, Interferometric Synthetic Aperture Radar (InSAR)
and Light Detection and Ranging (LiDAR) can be used to obtain elevation data.
GTOPO30 (Hastings & Dunbar, 1998) and Shuttle Radar Topographic Mission
(SRTM) (Farr & Kobrick, 2000) are the key origins of global DEMs used in hazards
assessment and risk analysis. Global optically derived optical topography is also
applicable at 30 m with Panchromatic Remote-Sensing Instrument for Stereo Map-
ping (PRISM) Advanced World-3D Advanced (AW3D) and higher-resolution
PRISM datasets accessible for the trade. The topography is based on Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

1.3 Spatial Modelling and Multi-hazard Risk Assessment

Over the last few decades, experimental multi-hazard experiments have been more
popular (Pourghasemi & Kerle, 2016), but in the twenty-first century, they are still a
problem for scientists and researchers (UN, 2002). To prepare hazard maps using
geospatial technology, many approaches and models have been used (Adab et al.,
2013, Teodoro and Duarte 2013; Hembram et al. 2011). Multi-faceted computa-
tional approaches, like multiple adaptive regression splines, have recently been
studied for risk evaluation (Pourghasemi et al., 2018), logistic regression (Arabameri
et al., 2018) and generalized additive models (Ravindra et al., 2019). In
New Zealand, Schmidt et al. (2011) developed a multi-risk modelling methodology,
providing an adaptable version of software that enables academicians to ‘plug in’
real progressions of interest. Pourghasemi et al. (2019) conducted a multi-hazard risk
evaluation focused on artificial intelligence techniques in Fars Province, Iran. There
has also been discussion of artificial intelligence and machine learning. In addition,
the analytical hierarchy process (Youssef, 2015) unified with multi-criteria decision
analysis (MCDA) and spatial decision support system (Ghorbanzadeh et al., 2018)
has been used in evaluations of multi-hazard risk analysis. Soft-computing models,
such as artificial neural networks (Yilmaz & Ercanoglu, 2019), fuzzy logic
(Vakhshoori & Zare, 2016), decision trees (Wang et al., 2016), support vector
machine (SVM) (TienBui et al., 2016), random forest (RF) (Youssef et al., 2016),
deep learning method (Xiao et al., 2018), adaptive neuro-fuzzy inference system
(ANFS) (Chen et al., 2019), kernel logistic regression (TienBui et al., 2016) and
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ensembles of ANFIS (RazaviTermeh et al., 2018), have been used for multi-hazard
analysis and modelling. The ILWIS GIS framework assessment module allows and
directs users to carry out spatial multi-criteria assessments for multi-hazard analysis.
The input is a series of maps that depict the criteria’s spatial representation. They are
congregated, uniform and weighted in a ‘criteria tree’. The product is one or more
‘composite index map(s)’ implying the realization of the model implemented.
Several research organizations around the world have many comprehensive spatial
tools, such as HAZUS, a GIS-based natural disaster analysis method built to
determine flood risk; HEC-FDA, a computer programme to support crop engineers
by susceptibility study of flood risk mitigation strategy. The AHP is one of the most
common and effective hazard modelling techniques, such as flood forecasting,
visualization and analysis of complex issues (Chen et al., 2011). In addition to
AHP, the other suitable models for hazard analysis are MCDA (Samanta et al.,
2016), weights of evidence (WofE) (Rahmati et al., 2016a, b), logistic regression
(LR) (Tehrany et al., 2015), adaptive neuro-fuzzy interface method (Sezer et al.,
2011), artificial neural networks (ANN) (Tiwari & Chatterjee, 2010) and FR model
(Rahmati et al., 2016a, b). Gómez-Limón et al. (2003) proposed an innovative
approach for weighting the parameters used for aversion to agricultural risk in
decision-making. On a single scale, it uses numerical ratings based on multiple
choices. In this approach, by utility value functions, all divergent parameters are
converted into a single 0–1 scale to take the ultimate judgement. Models that show
evidence of the disease’s epidemiological (population-level) features were listed
together as ‘Epidemiological’. Variables directly addressing the agent or pathology
have been classified under ‘Etiology’. ‘Geospatial modelling’ included models that
used satellite data such as the ‘normalised difference vegetation index’ (NDVI), to
quantity of live green vegetation in a target area. ‘Quantifiable’ methods, such as
tillage processes, were also recognized in some models, along with ‘Temporal’ and
‘Agricultural’ factors. The associations between mechanistic disease transmission
factors can be used to explain the geographical spread of disease risk (Krefis et al.,
2011), early warning systems, or to create mechanistic vector population and disease
transmission models. In designing logical regression models based on Multi-satellite
Precipitation Analysis (TMPA) and documenting a clear correlation in those areas
between tropical rainfall and the MVEV outreach, Schuster et al. (2011) use remote
sensing (RS) data of the Project of Tropical Rainfall Measurement Mission
(TRMM). Landsat data are used to assess and compare the green leaf area index
(LAI) of rice fields to the Aedes mosquito density build-up. In 2006, Glass et al.
created a logistic regression model based on 1992–2005 Landsat Thematic Mapper
(TM) imagery to estimate the menace of Hanta virus pulmonary syndrome (HPS) in
2006 and recorded that augmented rainfall in northern New Mexico and southern
Colorado raises the risk of HPS following the previous drought years. The spreads of
VBDs, viruses, reservoirs and vectors can be modelled by using mathematical and
statistical models. Numerical models use a single reckoning or series of equations
that feign or describe a system and/or predict that system’s potential behaviour,
while statistical models use simulation approaches that include assembling, evalu-
ating and/or interpreting datasets (e.g. regressions) (Sadeghieh et al., 2020). New
mapping apps, such as Google Earth™ and MS Virtual Earth™, offer simple and
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easy-to-use capabilities to produce not only spatial data overlaid on pre-existing
satellite imagery or map simulations but also complex space-time sequence repre-
sentations that can be played as animated films.

1.4 Integration Between Data Science and Geoinformatics:
A Practical Guide to Manage Multi-hazard

The immediate need for hazard control and protection is illustrated by significant and
irreparable disruption to agriculture, transport, bridges and many other facets of
urban infrastructure (Mojaddadi et al., 2017). Moreover, it has been made apparent
by the COVID-19 pandemic that biological and environmental hazards converge and
raise the complexity of the overall impacts of disasters on communities and econo-
mies. However, in order to grab the interactions of natural and biological threats or
control the aspects of connectiveness and rippling impacts on social, economic, and
environmental environments, emergency response and risk analytics have been
sluggish. The deficiency of viable catastrophe planning or new evacuation plans
restricts alternative management initiatives. Alternatively, administrators need to be
wary of all flaws and restrictions. Inadequate utilization and deployment of money is
a big complication in emergency operations. To stop making the incorrect decisions
that could cost the lives of individuals, emergency management must provide a clear
view of the emergency circumstances reliant upon reliable data. Around the same
time, dwelling on irrelevant data and deserting the flow of information due to too
much meaningless data causes unsuccessful effects, for example, misidentifying the
actual first responder.

Around 1.8 ZB of data was generated in late 2011, according to IDC (2014).
Globally, around 1.2 ZB (1021) is generated as electronic data by various sources
each year (Hilbert & López, 2011). The data is projected to hit 40 ZB by 2020
(Sagiroglu, 2013). Artificial Intelligence (AI) uses computational, mathematical
approaches by software scripts and strategies to simplify decision-making that data
centres use without clear instructions to the algorithm to execute a given human task
effectively. Present shortcomings should be resolved in the risk assessment of roles
and silos and in datasets, studies, simulation and control. Decisions historically
reached largely ‘from the gut’ or by benchmarking would become data-driven and
systemic. The increasing use of data science and machine learning (ML) are increas-
ingly becoming one of the world’s greatest challenges for computer-driven enter-
prises, data scientists and legal staff. Today there is enormous interest in corporate
data processing, primarily due to ‘the dawn of the Big Data era’ (Ekeu-wei &
Blackburn, 2018).

Geospatial Artificial Intelligence (GeoAI) incorporates space science
(e.g. geographic information systems or GIS), AI, data processing and
high-performance computing techniques to derive useful knowledge from big spatial
data. GeoAI reflects a multi-hazard intelligence-based area that combines location to
extract actionable knowledge that can be used to enhance risk management. The
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application of novel outlets of huge volume of spatial data, for instance, social
media, automated health reports, satellite data, and personal sensors, and the
advancement of public health science (particularly in the framework of ‘smart and
safe cities’) are a prominent idea through GeoAI applications at population and
discrete level, providing new possibilities to address traditional questions more
comprehensively. Figure 1.3 shows probable application of GeoAI in multi-hazard
risk management. It is imperative to consider the timeline and context of enterprise
data management in order to make good design choices for the emerging technology
of today and tomorrow and to prevent making past mistakes. Sensitive master data is
now included in the continuing rapid increase of data volume and use across various
silos, both on-site and in the cloud, and in a number of data formats. Most impor-
tantly, IoT sensors and systems are new and effective forms of geo-tagged big data
generation implemented in urban societies (Kamel Boulos & Al-Shorbaji, 2014).

To process, interpret and make sense of such huge amount of spatial big data in
real time, it is therefore important and indispensable to implement robust GeoAI
technologies. Mojaddadi et al. (2017) proposed an ensemble approach (the fre-
quency ratio (FR) methodology combined with a radial basis function and support
vector machine (SVM)) that exhibited utility in GIS-based flood modelling to
produce flood likelihood indices for the catchment of the Damansara River in
Malaysia. An increasing number of researches have demonstrated the possibility
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Fig. 1.3 Role of GeoAI in risk management
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of using machine learning (ML)-based algorithms with spatial datasets and satellite
images to create regional-scale landslide susceptibility models, such as decision trees
(DT) (Tsai et al., 2013), entropy- and evolution-based algorithms (Kavzoglu et al.,
2015), fuzzy-theory (Zhu et al., 2014), neural-fuzzy systems (Xu et al., 2015; Bui
et al., 2012), random forest algorithms (Lai & Tsai, 2019), and the advancement of
computational resources, geospatial data and technologies. For instance, to predict
everyday particulate matter <2.5 μm in diameter (PM2.5) in the USA, a neural
network was used to employ numerous predictors, including satellite-based optical
aerosol depth (AOD) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Di et al., 2016). In another research to resolve the lack of building
maps in less developed nations for development targets associated to emergency
relief and poverty reduction, WorldView-2 satellite data and voluntary geographic
information (VGI) were implemented to deep learning (convolutions neural net-
works or CNNs) to mechanize map creation for buildings in Nigeria (Yuan et al.,
2018). Spence et al. (2016) also examined recent developments in social media
recruitment, data analysis and public desires and preferences measurement. In China,
a geographically weighted gradient boosting machine (GW-GBM) algorithm was
employed to model PM2.5 acquaintances, allowing for spatial non-stationarity using
spatial smoothing kernels in relations between predictors and PM2.5 (Zhan et al.,
2017). GeoAI has been employed in epidemiology to identify and examine the
geographical spread of viruses and to explore the consequence of location-based
influences on the outcome of diseases. For example, machine learning (K-means
clustering) was employed to evaluate spatio-temporal gestational age trends at
distribution for 145 million births in over 3000 US counties from 1971 to 2008
using the National Centre for Health Statistics Natality Files to encourage the
generation of hypotheses relevant to the aetiology of preterm births (Byrne et al.,
1992). Researchers aimed to better examine the principle of the prevalence of HIV
based on computer-based algorithm (support vector regression) in the Ivory Coast of
Africa to derive mobility and communication data from rectified cell phone data
(Brdar et al., 2016). Deep learning in genetics has been extended to fields of research
for example functional genomics (e.g. envisaging the arrangement specificity of
DNA- and RNA-binding proteins) (Zou et al., 2019).

Figure 1.4 demonstrates a risk assessment system that helps data science and
regulatory teams to build faster, more precise and more compliant ML models. For
example, data scientists could be better placed to explain key desirable effects,
whereas legal workers could describe particular undesired results that could give
rise to legal liability. Defence lines relate to the functions and responsibilities of data
scientists and those engaged in the ML development, rollout and auditing phase. The
management of this data infrastructure, from the data pipeline to the model, is one of
the most important and most neglected facets of ML governance. Understanding the
outputs of a model is essential to monitor its health and any potential threats, both
during preparation and while in deployment.
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1.5 Integration with Crowdsourcing and Geoinformatics
on Multi-hazard Risk Assessment

As social networks advance, academic projects often concentrate on the use of social
media for emergency relief. The main explanation is that social networks can
provide not only rich data but also almost real-time information. Social networks
build worlds where comments, photos and videos are exchanged within seconds,
with 1.79 billion monthly active Facebook users and 500 million daily tweets
(Sarvari et al., 2019). Panagiotopoulos et al. (2016) focused on using social media
(Twitter) to convey threats to the public in order to help raise visibility or discourage
public response from increasing. Two outlooks on risk and emergency message and
the Social Amplification of Risk Framework (SARF) (Kasperson et al., 1988) and
the Crisis and Emergency Risk Communication Model (CERC) are merged in the
theoretical portion of this analysis (Reynolds & Seeger, 2005). Further investigations
and innovative technologies have been carried out to reliably identify disaster
information, such as machine learning, big data analysis and image processing.
However, a detailed view of threatened fields is needed for data fusion. Fry and
Binner (2016) investigated compartmental analysis and straightforward evacuation
simulation. They model the actions of individuals and the influence of social media
with maximal counter-strategies. They developed a Bayesian algorithm for maximal
evacuation.

Unlike crowdsourced social media information discussed in the earlier segment,
the word ‘crowdsensing’ is employed here to pronounce methods that rely on
dedicated software systems to capture precise and organised information, as well

Fig. 1.4 Role of Artificial Intelligence in risk assessment strategy
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as to leverage citizens’ interpretive and analytical skills and local awareness
(Gebremedhin et al., 2020). Several ‘crowdsensing’ schemes were developed,
including devoted mobile disaster control and earth observation apps (Ferster &
Coops, 2013). One example of the Ushahidi framework technology is the Flood
Citizen Observatory prototype deployed in Brazil to permit people to report on the
local status of river levels, flooded areas and the effects of flooding (Horita et al.,
2015). Some programs, like Did You Feel It?, are explicitly constructed for disaster
situations. U.S. Geological Survey (USGS) is used DYFI report to measure earth-
quake shaking intensity. The meteorological Phenomenon Identification Near the
Ground (mPING), which tracks meteorological measurements and permits operators
to display observations, was set up by the US National Oceanic and Atmospheric
Administration (NOAA).NOAA uses mPING data to increase its dual-polarization
radar and improve winter weather models, while ground-based meteorological
measurements are necessary to verify that the radar has correctly calculated the
amount of precipitation (Hultquist & Cervone, 2020). A particular category of
knowledge and sharing portal is another crowdsourced geoinformation: the collab-
orative version of geographic features to conform with internet-based digital maps.
This category includes the well-established Wikimapia and OpenStreetMap (OSM)
platforms, in addition to the ‘crowdsourcing’ portion of the widespreadGoogleMaps
framework, known as GoogleMapMaker (de Albuquerque et al., 2016). Such imag-
ery is a very useful source of knowledge to be used by mappers, and it also helps
volunteers from all around the world to participate, not just those who are specifi-
cally in the impacted regions.

1.6 Conclusion

Crowdsourced geographic information (CGI) has tremendous capacity not just to
deal with the impacts of earthquakes but also to take proactive steps to boost
metropolitan areas’ exposure to natural hazards and extreme events. When vast
volumes of data remain to be apprehended and gathered, data protection issues
remain paramount. A range of approaches for GeoAI implementations are currently
being used to assist risk management phases, such as risk recognition, risk estima-
tion and risk assessment. In order to create machine learning models capable of
supplying inputs to conventional risk management strategies, historical and real-time
data are also used. Ethical mechanisms are therefore important to adequately warn
research participants about risks and to protect individual privacy. In addition, in
future research, the use of CGI in extenuation and planning phases should be
stressed. For example, this could be achieved by exploiting initial instances of
using CGI from concerted maps to sustenance catastrophe risk management prac-
tises, such as defining essential infrastructures to facilitate emergency planning. For
the future work, we should follow the existing decision support system with suitable
deep learning algorithms and IoT architectures. Future studies should build on
existing GeoAI technologies, including location-based modelling geographies that
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have not previously been collected at a high spatio-temporal tenacity, or recently
evolving spatial volume of data source engineering, to open novel study opportuni-
ties and accelerate our knowledge of multi-hazard risk.
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Chapter 2
GIS-Based Landslide Susceptibility
Mapping in Eastern Boundary Zone
of Northeast India in Compliance
with Indo-Burmese Subduction Tectonics

Arnab Sengupta and Sankar Kumar Nath

Abstract The Eastern Boundary Zone of Northeast India, comprising the Indian
States of Manipur, Mizoram and Nagaland, suffers immensely under the impact of
frequent devastating landslides that results in widespread damage and casualty. A
rough estimate of the decadal intensity of landslides from an inventory spanning
over half a century calls for systematic assessment of landslide hazard and risk in the
region for its effective mitigation and management. Landslide Susceptibility Zona-
tion is the most fundamental step in that direction wherein spatial distribution of
Landslide Susceptibility Index (LSI) is established through integrating nineteen
causative factors, viz. surface geology, landform, lineament density, elevation,
distance to lineament, slope angle, aspect, drainage density, distance to drainage,
terrain ruggedness index, plan and profile curvature, normalized difference vegeta-
tion index, landuse/landcover, distance to road, road density, rainfall, earthquake
epicentre proximity and peak ground acceleration rationally on GIS platform in
1:50,000 scale by following a multivariate statistics-based Logistic Regression
(LR) procedure. This classifies the terrain into None, Low, Moderate, High, Very
High and Severe susceptible zones on a raster map display, which is inevitably
validated through statistical accuracy test by drawing a comparison with the 30%
landslide inventory test dataset which exhibited 73% accuracy level. This landslide
susceptibility map will invariably help the urban planners and the decision-makers in
effective landslide risk mitigation and spatial design.
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2.1 Introduction

Landslide is a process associated with the downward movements of soil, rock,
debris, artificial fill and/or a mixture of all of these. Landslide occurs due to both
physical and man-made activities. Physical activities consist of an impending earth-
quake, volcanic eruptions, tectonic activities, torrential rainfall, storm, etc., while
man-made activities include unscientific construction, unmannered tourism and so
on. Rainfall-induced landslides are very common around the globe. Current esti-
mates of landslide impacts suggest that they cause thousands of fatalities annually
(Froude and Petley (2018); Petley (2012) and economic loss worth billions of US
dollars (Dilley et al., 2005; CRED, n.d.) as shown in Fig. 2.1(a). Global warming,
climate change and rising temperature are expected to trigger landslides, especially
in mountainous regions with snow and ice and cover. In India, a total of 0.42 mil-
lion km2 or 12.6% of the landmass is imperil due to landslides of which an

Fig. 2.1 Location map of the study region. (a) Continent-wise landslide inventory data (bar graph)
and line graph are showing the number of fatalities (source: CRED, n.d.). (b) Landslide inventory
map of the Indian subcontinent. (c) Landslide inventory (training and testing) data in the Eastern
Boundary Zone of Northeast India comprising of the Indian States of Manipur, Mizoram and
Nagaland

20 A. Sengupta and S. K. Nath



approximate 0.18 million km2 falls is in the Northeast Himalayan province of India;
an approximate 0.14 million km2 lays in the Northwest Himalaya; 0.09 million km2

is in the Western Ghats and Konkan hills; and an approximate 0.01 million km2 is in
the Eastern Ghats causing an estimated damage cost of around 2–5 billion US dollars
and 25% of annual deaths as depicted in Fig. 2.1(b).

The Eastern Boundary Zone in Northeast India comprising the Indian States of
Manipur, Mizoram and Nagaland is a landslide-prone region as depicted in Fig. 2.1
(c). The study region covers around 60,025.56 km2 comprising of 12 small towns. It
is surrounded by the Tertiary hills of Mizoram, Manipur and Nagaland with a
maximum altitude of 3743 m with steep to moderate slopes. Geologically, the region
is classified into pre-Cambrian to Quaternary era. Tertiary rocks of the Disang and
Baraingroup that consists of shale and sandstone are most predominant in the
territory, which on weathering becomes platy and splintery, proving the most ideal
state for landsliding. The terrain is also seismogenic being one of the most active
regions of the world and according to BIS (2002); it falls under Seismic Zone V with
frequent moderate to large magnitude earthquakes visiting the terrain causing exten-
sive damage to both life and property.

Landslide susceptibility mapping in the Eastern Boundary Block of Northeast
India, using various algorithms, has already been attempted by several researchers,
viz. Laldintluanga et al. (2016); Pathak (2016); Balamurugan et al. (2016);
Lallianthanga and Lalbiakmawia (2013a, 2013b, 2014); Lallianthanga et al.
(2013); Barman and Srinivasa Rao (2019); Lallianthanga and Laltanpuia (2014);
Balamurugan and Ramesh (2016); Pachuau (2019); Khatsu and Van Westen (2005);
Roy et al. (2019); Sema et al. (2017); and Singh et al. (2011). A comprehensive
literature review unfolds that earlier works have been performed at the site-specific
scale on a slope-slope basis and not in the regional scale. In this study, we, however,
considered the entire Eastern Boundary Zone of the Northeast India comprising the
Indian States of Manipur, Mizoram and Nagaland as a unit tectonic block for an
overall understanding of the probability of landslide occurrence in the terrain using
an ensemble of Remote Sensing-GIS for chocking out a pre-disaster landslide risk
mitigation strategy to be put in place and to perform precursory damage estimation
for insurance coverage purposes.

2.2 Data and Methodology

Spatial and Non-spatial Data

In order to achieve the GIS-based landslide susceptibility zonation, there is a
requirement of spatial and non-spatial data as illustrated in Table 2.1.
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Multivariate Statistics: Logistic Regression (LR)

Among a wide range of statistical methods proposed for the assessment of landslide
susceptibility distribution, Logistic Regression (LR) has proven to provide one of the
most reliable classification technique (Reichenbach et al., 2018; Guzzetti et al.,
2006; Mancini et al., 2010; Hadmoko et al., 2017; Bai et al., 2011; Mathew et al.,
2009; Lee & Pradhan, 2007; Nandi & Shakoor, 2010). LR simulates the probability
of a certain class or event. It uses a logistic function to model a binary dependent
variable even though many complex extensions exist. The aim of LR model is to
establish a relation between the existing and the absent landslides. The advantage of
this method is that the dependent variable can have only two values, i.e. occurring or
non-occurring, and those predicted values can be interpreted as the probability since
they are inhibited to lay in the interval between 0 and 1 Dai and Lee (2002). In the
Logistic Regression analysis, there are some dependent variables that correlate with
an independent variable. The predicted value ranges from 0 to 1, and it can be
defined as the landslide susceptibility index. The road map of the algorithm worked
out in the present computation has been depicted in Fig. 2.2. The index can be
defined by the following formulations:

Table 2.1 Spatial and non-spatial data used in the present study

Data Causative layers Source

Geology map Surface geology map Geological Survey of India

Lineament
map

Lineament density and distance to
lineament

Dasgupta et al. (2000), National
Mission on Geomorphological and
Lineament Mapping, http://bhuvan.
nrsc.gov.in/gis/thematic/index.php

Road
Network

Road density and distance to road Open Street Map and Google Earth

Earthquake
catalogue

Epicentre proximity Nath et al. (2017), USGS, IMD and
ISC

Rainfall data Rainfall map India Meteorological Department
and Tropical Rainfall Measuring
Mission

ALOS
PALSAR
DEM (30 m)

Slope angle, slope aspect, landform, ele-
vation, Drainage density, distance to
drainage, plan curvature, Terrain rugged-
ness index

Japan Aerospace Exploration
Agency

Landsat
8 (30 m)

Normalized difference vegetation index United States Geological Survey

GlobCover
land cover
map

Land use/land cover European Space Agency

Seismic
shaking

Surface consistent peak ground
acceleration

Nath and Thingbaijam (2012)
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Z ¼ β0 þ β1X1 þ β2X2 þ⋯þ βnXn ð2:1Þ

Here Z denotes the linear logistic regression model. β0 is a constant. β1, β2 are the
corresponding coefficients of each of the respective contributing factors that indicate
their contribution to landslide susceptibility. X1, X2 ,. . . Xn are the independent
variables.

The probability index is calculated to predict the landslide hazard zone index; the
possibility of occurrence and its intensity as

P ¼ 1= 1þ ℓ�zð Þ ð2:2Þ

Here P is the probability of landslide hazard index and Z takes any value from
�1 to +1.

Fig. 2.2 Road Map of the algorithm worked out in the LR protocol employed here
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Accuracy Assessment

Receiver Operating Characteristic (ROC) is widely used for assessing the perfor-
mance of the classification algorithms, employed in the extreme event computations.
In geoscience, ROC is defined as a plot of test sensitivity or True Positive Rate
(TPR) as the y-coordinate versus its 1-specificity or False Positive Rate (FPR) as
x-coordinate at various threshold settings, which is a very effective method for
evaluating the performance of dichotomy problems (Park et al., 2004; Fawcett,
2006). It is widely used in the validation of landslide susceptibility maps and also
for estimating its accuracy. The area under ROC curve known as AUC is a common
metric that can be used to compare different tests and the values, ranging from 0.5 to
1 which is widely employed to estimate the accuracy of the presence or absence of
predictive models (Shahabi et al., 2014). An AUC close to 0.5 corresponds to a poor
diagnostic test, and the larger the AUC, the more accurate is the test. The relative
landslide density index (R-index) defined by Baeza and Corominas (2001) has been
used to validate the susceptibility mapping results. R-index is defined as the ratio
between the density of mass movements of a given susceptibility class and the
overall mass movement density.

2.3 Results and Discussion

Thematic Layers Preparation

Landslide Inventory

Landslide inventory map of the terrain is prepared through multispectral satellite
image interpretation, Google Earth imageries, published literature and reports from
various government agencies, viz. Geological Survey of India (GSI); Nagaland State
Disaster Management Authority; Disaster Management and Rehabilitation Depart-
ment, Manipur; Remote Sensing Application Centre; and Bhuvan Portal developed
by Indian Space Research Organization (n.d.). In the present study, multi-temporal
satellite data and Google Earth imageries have been extensively used for the
demarcation of a landslide accessible or inaccessible region in the hilly terrain. An
extensive field survey has also been conducted to enlarge the inventory database as
well as to validate the existing landslide inventory database. Through standard image
analysis and field survey, a total of 4206 landslides have been identified. The
landslide inventory database is randomly divided into subsets of 70% for training
and 30% for testing as depicted in Fig. 2.1(c).
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Morphometric Causative Factors

The topography is an essential factor for landslide susceptibility mapping that limits
the density and spatial extent of landslides. The crucial morphological factors for the
substantial causes of landslides are slope angle, elevation, aspect, plan and profile
curvature, distance to drainage, drainage density and terrain ruggedness index (TRI).
Slope failure is a very significant issue for landslide occurrence and is associated
with slope movement due to gravitational forces (Catani et al., 2005). A slope angle
is defined as an angle between the surface of the earth and a horizontal datum (Huang
et al., 2017). At local scales, it affects the concentration of moisture and the level of
pore pressure and is often used to resolve detailed patterns of instability. At larger
scales, it controls regional hydraulic continuity and is considered an essential factor
for GIS-based landslide susceptibility mapping (Guzzetti et al., 1999; Dai & Lee,
2002; Ohlmacher & Davis, 2003). The monotony of landslide occurrences can be
defined by a morphometric slope based on the Topographic Gradient which is
generated from the ALOS PALSAR digital elevation model (DEM). It is observed
from the landslide inventory and slope angle database that the steeper the slope, the
probability of mass failure increases in the region. In the present study, the slope
angle varies from 0� to 76.6342�, as depicted in Fig. 2.3(a).

Elevation is another morphometric causative factor for landslide susceptibility
mapping as several geological and geomorphological processes control it
(Pourghasemi et al., 2012; Pradhan & Kim, 2014; Youssef et al., 2015). Landslides
usually occur at intermediate elevation since slopes tend to be covered by a layer of
thin colluvium that is prone to landslides (Dai & Lee, 2002). The altitude in the
region is seen to vary from 26 to 3743 m, as shown in Fig. 2.3(b).

On the other hand, aspect is also pondered to have an augmented role in the mass
movement, and it identifies the steepest downslope across a surface. The constraints
associated with the Slope Aspect, such as the degree of saturation, discontinuities,
drying winds and exposure to sunlight, may regulate the manifestation of a landslide.
The slope aspect map is also obtained from ALOS PALSAR DEM and classified
into nine standard directions, viz. flat, north, northeast, east, southeast, south,
southwest, west and northwest, respectively, as depicted in Fig. 2.3(c).

The plan and profile curvature is defined as the rate of change of slope gradient or
aspect, usually in a particular direction (Dikau, 1988; Wilson & Gallant, 2000;
Nefeslioglu et al., 2008). The curvature value is evaluated by calculating the
reciprocal value of the radius of curvature. Curvature is described as a contour
formed by intersecting a horizontal plane with the surface. The impact of curvature
on the slope erosion process is the convergence or divergence of water during
downhill flow. Curvature has been used for landslide susceptibility mapping by
Ayalew et al. (2004); Dikau (1988); Wilson and Gallant (2000); Nefeslioglu et al.
(2008); Chen et al. (2017) and Ding et al. (2017). This parameter constitutes one of
the causative factors in the present investigation as a vital factor, controlling
landslide occurrences. The plan and profile curvatures have been prepared by
using high-resolution DEM data, as depicted in Fig. 2.3(d and e).
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The terrain ruggedness index is defined by the altitude variation between the
adjacent cells of a digital elevation model (Alkhasawneh et al., 2013). The process
determines the difference in altitude values between a centre cell and the surrounding
cells. Then it squares each of the eight elevation difference values to make them all
positive and then averages the squares. The terrain ruggedness index is then derived
by taking the square root of this average, as shown in Fig. 2.3(f).

Drainage network is another causative factor for landslide occurrence and has
been renowned as a topographic characteristic of fundamental importance. As the
density of stream linkage reveals the geological, topographical, soil and the vegeta-
tion control, drainage network is chosen to simultaneously contemplate the under-
cutting of a hydrographic system for the role of inappropriate drainage (Shahabi
et al., 2014). The proximity of the steep slope to the drainage network is an
additional essential element controlling the slope stability because the streams
adversely erode the material of the lower portion and make the proliferation of
water level (Shahabi et al., 2014). The total length of the stream in a given section
throughout its area provides drainage density, which has been calculated from the

Fig. 2.3 GIS raster maps exhibit the morphometric causative factors of the terrain, viz. (a) Slope
angle, (b) Elevation, (c) Slope Aspect, (d) Profile Curvature, (e) Plan Curvature and (f) Terrain
Ruggedness Index (TRI)
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drainage network and is seen to vary from 0.0413105 to 2.00818 km2 as depicted in
Fig. 2.4(a). The drainage proximity varies between 0 and 4861.33 m as depicted in
Fig. 2.4(b).

Geological Causative Factors

The surface geological attribution is considered as an independent variable in the
present study. Various geological formations have different compositions and struc-
tures, which contribute to the strength and permeability of rocks and soils. The
stronger rocks give more resistance to the driving forces as compared to the weaker
rocks and hence are less prone to landslides. The major geological formation of the
terrain belongs to Belt of Schuppen designated as (1) accretionary prism;
(2) ophiolite/melange, (3) accetionary complex; (4) alluvial fill along foredeep;
(5) alluvial fill along superposed basin; (6) crystalline complex overprinted by
Himalayan fold-thrust movement; (7) and cover rocks of frontal belt affected by
fold-thrust movement during the terminal phase of Himalayan geology (8) as shown
in Fig. 2.5(a).

Landform defines the spatial topological interactions of landforms which involve
segregating the terrain into intangible spatial objects such as chronology, composi-
tion and features. The numerous geomorphological features of the landscape have
been derived from ALOS PALSAR DEM wherein various types of landforms, viz.
plains, valleys, open slopes, upper slopes mesas, mountaintops high ridges, upland

Fig. 2.4 GIS maps exhibit the morphometric causative factors of the terrain, viz. (a) Drainage
Density and (b) Distance to Drainage
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drainages headwaters, midslope ridges small hills in plains, local ridges hills in
valleys and canyons deeply incised streams and midslope drainages shallow valleys
respectively following Jenness (2006) as depicted in Fig. 2.5(b).

Fig. 2.5 GIS raster maps exhibit the geological causative factors of the terrain, viz. (a) Surface
Geology, (b) Landform, (c) Distance to Lineament and (d) Lineament Density
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The lineament is also an important contributing factor for the occurrence of a
landslide as the degree of intense deformation, fracturing, fissures and weathering
play crucial roles in causing slope failure (Bui et al., 2012). The disposition of
structural discontinuities about slope inclination and direction has a great influence
on the stability of slopes, which includes the extent of parallelism between the
steepness and direction in the dip of discontinuity of the slope. Distance to lineament
varies between 0 and 25,705.5 m, as shown in Fig. 2.5(c). The intensity of rock
fracturing can be epitomized by lineament density, which is inevitable for the
development of muffled passages over an area; therefore, the lineaments in the
study region are mapped and analysed by lineament density and is seen to vary
from 0 to 0.468 km2 as depicted in Fig. 2.5(d).

Environmental Causative Factors

Normalized Differences Vegetation Index (NDVI) is an important causative factor
for the movement of rainfall-induced landslides. Changes in vegetation cover often
result in modified landslide behaviour (Van Beek, 2002; Wilkinson et al., 2002;
Glade, 2003; Peduzzi, 2010). It is also a virtuous gage for the probability of mass
movement. Vegetation roots penetrate the soil and increase their shear strength. The
combination of recorded electromagnetic reflectance in near-infrared and red wave-
length is highly correlated with the photosynthetic activity and the density of
vegetation cover (Peduzzi, 2010). The NDVI map is prepared from Landsat
8 image through band ratio technique, i.e. near-infrared - Red/near-infrared + red,
in which the index value ranges from �0.255 to 0.731. It is observed that the value
of NDVI is comparatively higher in landslide-prone areas where there is a dense
vegetation cover, such as the areas with heavy rainfall and the soil with the wet
condition (Vakhshoori & Zare, 2016; Sonawane & Bhagat, 2017) as depicted in
Fig. 2.6(a).

Landuse/landcover (LULC) plays a crucial role in the stability of the topographic
gradient. Forest controls continuous water flow and regular infiltration; on the other
hand, cropland and agricultural land affect slope stability owing to saturation of
covered soil (Devkota et al., 2013; Regmi et al., 2014). In the present study, LULC
map has been modified from GlobCover (2009) land cover map and classified into
eight major LULC classes such as irrigated croplands, rainfed croplands, croplands/
vegetation, vegetation/croplands, closed to open broadleaved evergreen or semi-
deciduous forest, closed broadleaved deciduous forest, open broadleaved deciduous
forest, closed needleleaved evergreen forest, closed to open mixed broadleaved and
needleleaved forest, mosaic forest-shrubland/grassland, mosaic grassland/forest-
shrubland, closed to open shrubland, closed to open grassland, artificial areas and
water bodies as depicted in Fig. 2.6(b).

The road segmentation is a significant spot of anthropogenic instability and
numerous road construction activities such as quarrying of soil, striking of additional
load, vertical segmentation of slopes, dam construction and vegetation removal may
lead to some tensional cracks due to an increase in stress on the back of the slope
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which frequently serves as a cradle for the occurrence of landslides (Saadatkhah
et al., 2014). In order to determine the effect of the road on the stability of slopes,
various buffer zones are created on the path of the road from which the road density
varies from 0 to 0.510 km2 as shown in Fig. 2.6(c) and distance to road map has been

Fig. 2.6 GIS maps exhibit environmental causative factors of the terrain, viz. (a) Normalized
Differences Vegetation Index (NDVI), (b) Landuse/landcover (LULC), (c) Road Density and (d)
Distance to Road
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prepared on GIS platform and classified between 0 to 30216.7 m as depicted in
Fig. 2.6(d). It is also observed that there is a significant correlation between the
extent of landslides and the distance to the regional road system.

Triggering Causative Factors

In the Eastern Boundary Block of Northeast India, both the earthquake and rainfall
are the major triggering factors responsible for landslide. The entire terrain falls
under the active Himalayan seismogenic zone. The terrain has been affected by more
than 800 μ to large-magnitude earthquakes (Nath et al., 2017). It is observed that the
epicentre proximity plays a major role in the occurrence of a co-seismic landslide in
this region. An epicenter proximity map has been generated using the Euclidean
distance tool in the GIS platform, as shown in Fig. 2.7(a) that exhibits a variation
from 0 to 34,096.1 m.

Surface consistent peak ground acceleration (PGA) is another important factor
responsible for triggering co-seismic landslides in the region. The intensity of
ground-shaking calculated from the maximum acceleration representing the seismic
hazard level in the region is a severe factor in the co-seismic landslide. The PGA
with a 10% probability of exceedance in 50 years with a return period of 475 years
has been adopted from Nath and Thingbaijam (2012), which shows a variation of
PGA 0.558–0.944 g as depicted in Fig. 2.7(b). In general, there is greater vibration
near the epicentre, where many of the co-seismic landslides generally occur.

Rainfall is another triggering factor for the occurrence of a landslide because it
controls the water content in the soil. The amount of precipitation and the number of
landslides is directly proportional to the altitude of the terrain (Sabatakakis et al.,
2013). The average annual rainfall distribution map has been prepared using inverse
distance weighted (IDW) interpolation technique by considering the rainfall data of

Fig. 2.7 GIS raster maps exhibit the triggering causative factors of the terrain: (a) Epicentre
Proximity, (b) Surface Consistent Peak Ground Acceleration (PGA) with 10% probability of
exceedance in 50 years with a return period of 475 years and (c) Average Annual Rainfall
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the last 60 years (1950–2010), with a variation up to 233.58–742.27 mm/year as
shown in Fig. 2.7(c). As per the data, it is observed that in the southern part of the
region, the intensity of rainfall is high, while in the northern part, there is a low
intensity of the precipitation.

Landslide Susceptibility Zonation Mapping by Using
Multivariate Regression

In the present study, processing of data and factors has been carried out on the GIS
Platform, while the statistical analysis by Logistic Regression has been performed
using the Statistical Package for Social Sciences (SPSS). In the first step, 19 causative
factors have been used for the independent variables dataset. All the causative
factors have been exported to comma-separated values (CSV) format and imported
into the statistical platform to achieve the regression coefficients, as shown in
Table 2.2. The landslide inventory training dataset which is represented as a

Table 2.2 Causative factors and their coefficients derived through multivariate statistics-based
logistic regression

Causative factors β S.E. Wald df Sig.
Exp
(β)

Landuse/landcover (LULC) 0.211 0.228 0.853 1 0.356 1.234

Surface geology 4.420 0.443 99.708 1 0.000 83.076

Rainfall (mm/year) �0.004 0.000 105.028 1 0.000 0.996

PGA (g) �6.029 0.518 135.398 1 0.000 0.002

Slope angle (degree) 0.052 0.007 58.140 1 0.000 1.053

Distance to drainage (m) 0.000 0.000 5.530 1 0.019 1.000

Terrain ruggedness index (TRI) �0.006 0.012 0.246 1 0.620 0.994

Road density (km2) 1.445 0.460 9.864 1 0.002 4.240

Profile curvature 0.029 0.031 0.872 1 0.350 1.029

Plan curvature �0.031 0.031 0.943 1 0.332 0.970

Normalized difference vegetation Index
(NDVI)

�3.007 0.432 48.456 1 0.000 0.049

Lineament density (km2) 1.601 0.623 6.602 1 0.010 4.959

Elevation (m) 0.000 0.000 6.070 1 0.014 1.000

Epicentre proximity (m) 0.000 0.000 2.464 1 0.117 1.000

Distance to road (m) 0.000 0.000 137.183 1 0.000 1.000

Distance to lineament (m) 0.000 0.000 3.238 1 0.072 1.000

Drainage density (km2) �0.902 0.326 7.644 1 0.006 0.406

Aspect �0.001 0.000 8.321 1 0.004 0.999

Landform �0.005 0.115 0.002 1 0.964 0.995

Constant 2.309 0.650 12.613 1 0.000 10.061

S.E. standard error, Wald Wald chi-square values, df degree of freedom, Sig. significance, Exp(β)
exponentiated coefficient
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dependent variable has been extracted after rasterizing polygons and then coding the
cells falling in the landslide areas. In the LR analysis, cells could get attributes
providing information on the presence or absence of the landslide phenomena within
30 � 30 m pixels. After integrating the coefficients, using both Eqs. (2.1) and (2.2),
the proneness to landslide has been spatially distributed in the region. The logistic
regression method is used to develop a landslide susceptibility zonation map for
indicating locations where the probabilities of landslide occurrence varies from 0.0
to 1.0. Numbers closer to 1 indicate the probability of landslide occurrences. The
susceptibility index map has been classified as none susceptible covering around
4622 km2, low susceptibility covering around 8000 km2, moderate susceptibility
covering around 10,422 km2, high susceptibility covering around 12,708 km2, very
high susceptibility covering around 13,702 km2 and severe susceptibility covering
around 10,415 km2 as shown in Fig. 2.8(a). The urban, semi-urban centres and other

Fig. 2.8 (a) Landslide susceptibility map of the Eastern Boundary Block comprising of the States
of Nagaland, Manipur and Mizoram of Northeast India classified into six susceptible zones; (b)
ROC curve for the susceptibility map; graphs show the cumulative landslide occurrences versus
landslide susceptibility index with AUC ¼ 0.735, (c) relative landslide density index (R-index) of
the LR-derived landslide map and (d) graph exhibiting the number of landslides (line graph) and
landslide susceptibility zones area (bar graph)
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lifeline facilities, including major transportation facilities like national highways,
state highways, have been severely affected due to frequent landslide in the terrain.

The accuracy statistics of logistic regression-based landslide susceptibility map in
the terrain has been evaluated by receiver operating characteristics (ROC) and
relative landslide density index (r-index) in the area versus the number of landslides
plot as shown in Fig. 2.8(c and d). The accuracy of the model is developed in the area
under the roc curve (AUC) values vary from 0.5 to 1.0 in the ROC statistics. Its
ability to reliability predicts the occurrence and non-occurrence of an event, which is
defined by the probabilistic model of AUC to apply the ROC statistics in the study
region for testing landslide inventory dataset which has been prepared to use
randomly selected landslide events from landslide and non-landslide locations.
The AUC value of the ROC curve for LR is estimated to be 0.735, as depicted in
Fig. 2.8(b).

2.4 Conclusion

Landslide susceptibility mapping is considered the most important step onward in
landslide hazard mitigation and management in the terrain. Logistic regression
method has been used to describe the spatial distribution of landslide susceptibility
zonation on a medium scale of 1:50,000 with a spatial resolution of 30 m � 30 m.
The accuracy assessment of multivariate statistics-based Logistic Regression
(LR) technique is established by using receiver operating characteristics, relative
landslide density index and landslide area versus number of landslide graph and by
matching the susceptibility map with testing inventory dataset. Logistic regression
method indicates that land use/land cover, surface geology, slope angle, road density
and lineament density establish the most important conditioning factors in causing
mass movement in the terrain. The susceptibility zonation map provides information
that led to a major improvement in the understanding of the causes for densely
scattering of landslides in the terrain. The landslide susceptibility zonation map
prepare in the present study can help as a reference for city planners, architects
and geotechnical engineers in land use planning and slope management.
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Chapter 3
Social Vulnerability of Arsenic
Contaminated Groundwater in the Context
of Ganga-Brahmaputra-Meghna Basin:
A Critical Review

Satabdi Biswas, Satiprasad Sahoo, and Anupam Debsarkar

Abstract The most alarming part of inorganic arsenic contamination is its silent
killing ability which has an adverse impact on human society. Anthropogenic
activities trigger threat from bio-physical to social vulnerability. The Ganga-
Meghna-Brahmaputra (GMB) basin has been the worst sufferer for the last four
decades. This review paper tries to focus on the impacts and consequences of arsenic
calamity, assessment of the risk through Geographical Information System (GIS)
and a feasible way-out involving rain water harvesting (RWH) with special reference
to India. Arsenic poisoning creates a huge burden for rural people. Identification of
various dimensions of arsenic coverage has been a difficult task which made GIS an
important tool for the assessment of social vulnerability. However, the rural Indian
mass is yet to become fully aware of the severity of the arsenic-related risk. They are
still consuming the poison through drinking water for the last four decades without
even knowing the treatment protocols. RWH is one of the easy way-outs to combat
the situation of the arsenic risk, especially for the poor socio-economic rural
households. Thus, to prevent further damages, awareness creation, proper medical
care with due endeavours from national and international levels are required.
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3.1 Introduction

The most significant and alarming aspect of inorganic arsenic (As) toxicity is its
silent but for the extensive impact on society. As per WHO (2001), 140 million
people in 50 countries have been consuming arsenic-contaminated water above the
WHO safe limit of 0.01 ppm. As, the ‘king of poison’, is a highly toxic element and
is naturally found in air, weathering of rocks, soil and groundwater of shallow
aquifers (Aurora, 2005; Brinkel et al., 2009). More than 2.5 billion global
populations rely on groundwater for drinking purposes. Nearly 108 countries with
more than 230 million people have been suffering from As disaster (Shaji et al.,
2020). The arsenic-contaminated aquifers are generally found in parts of younger
orogenic belts and deltaic plains of the world, such as the western USA, central
Mexico, Argentina, the Pannonian Basin, Inner Mongolia, the Indus Valley, the
Ganges-Brahmaputra delta and the Mekong River and Red River deltas (Podgorski
& Berg, 2020; Ghosh et al., 2020). There is a wide difference between developed
and developing countries in terms of the impact of arsenic toxicity. For instance,
developed countries like the USA have the same problem in alluvial areas, but the
impact of it is not the same compared to the developing countries (Acharyya, 2002).
In developing countries like India, Pakistan, Nepal and Bangladesh, unrestrained
irrigation with shallow tube-well has been responsible for lowering the water table
with arsenic contamination (Alcamo et al., 2000; CGWB, 2013). Under such a
complex bio-physical arsenic-contaminated situation, the most vulnerable section,
i.e. poor people of Southeast Asia are exposed to high-level risk (Hoque et al., 2019).
However, the Ganga-Meghna-Brahmaputra (GBM) basin, i.e. in Bangladesh and
India, are the worst cases of recent times (Levien, 2011; Chakraborty et al., 2020).
For instance, more than 70 million people in Bangladesh are exposed to the toxicity
of arsenic through drinking water (Ghosh et al., 2020). Simultaneously, in India,
20 states (West Bengal, Jharkhand, Bihar, Uttar Pradesh, Assam, Gujarat, Haryana,
Madhya Pradesh, Punjab, Arunachal Pradesh, Karnataka, Tamil Nadu, Himachal
Pradesh, Telangana, Andhra Pradesh, Orissa, Nagaland, Tripura, Manipur, Chhat-
tisgarh) and 4 union territories (Delhi, Daman and Diu, Puducherry and Jammu and
Kashmir) have the largest mass poisoning happened due to arsenic contamination in
shallow groundwater (Sharma et al., 2014; CGWB, 2013; Shaji et al., 2020). West
Bengal, Jharkhand, Chhattisgarh, Bihar, Uttar Pradesh, Assam, Arunachal Pradesh
and Manipur are the major states in India having As contamination at a higher level
(>10 μg/L) (Puri et al., 2014). As per BIS (2012), half of the Indian people have been
affected by excessive iron and As contamination. However, West Bengal is the worst
affected state, which has recently turned into an issue of global concern as a high
concentration of arsenic patches are found in 79 blocks of eight districts (CGWB,
2013). It has been estimated that nearly 16.26 million people out of 91.28 million are
at high risk inWest Bengal (Chatterjee et al., 2009). However, to date, 85% of Indian
rural domestic water requirements are fulfilled by groundwater (Suhag, 2016).
Arsenic is not a new thing; rather hydro-geochemical evolution revealed that it
occurred in the entire Ganga Basin with a spatial variation since the historical past.
Unfortunately, the severity increased in such a way that it gradually became a global
concern in the last four decades.
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Most of the recent studies on As contamination were based on the assessment of
groundwater quality or character of the sediment. For example, a study by Shaji et al.
(2020) established a correlation between aquifer types with arsenic intoxication based
on geological analysis of peninsular India. The result revealed that 90% and 10% of
As contamination was found in the unconsolidated alluvial terrain and hard rock
terrain, respectively. In the hard rock aquifer states (e.g. Karnataka and Chhattisgarh),
As contamination happened due to sulphide mineralization and acid volcanic asso-
ciation. Singh et al. (2020) tried to assess the anthropogenic effect of arsenic and its
probable vulnerability based on 171 seasonal groundwater samples collected for
2015–2016 in Darbhanga district, Bihar in the Ganga Flood plain. The result showed
that agrochemicals, viz. calcium nitrate, calcium phosphate, As-bearing compounds
and bleaching powder, applied over the surface get diluted and mobilized into
groundwater by potential monsoon recharge. The pre-monsoon drafting should be
regulated to restrict the high As concentration in the groundwater. Another
hydrochemical study on STW water in Bangladesh conducted by Edmunds et al.
(2015) established that the excessive tapping of groundwater for potable and irriga-
tion purposes is a matter of serious concern and is yet to be understood well by the
stakeholders. Richards et al. (2020) collected 273 samples of pre- and post-
monsoonal groundwater from 5 to 180 m depth in38 districts of Bihar, India, to
assess the harmful effect of geogenic contamination of As, uranium (U), and other
elements on human health. The result showed that As, iron (Fe) and manganese
(Mn) were positively correlated with each other, and As was inversely correlated with
the depth of the aquifer. Saha and Sahu (2016) studied the similarities and differences
between the Middle Ganga Plain (MGP) and the Bengal Basin based on the
hydrogeological and geochemical assessment of shallow aquifers (8.0 m below the
ground). The As contamination was noticed along the River Ganga and other
Himalayan tributaries and sub-tributaries, i.e. the Ghaghra, the Gandak, the Kosi
and the Mahananda. The rainwater carried organic carbon in the form of clay plugs,
increased microbial processes, spread the anoxic front and released As in groundwa-
ter through infiltration and percolation by natural recharge in monsoon. They found
that the newer alluvium areas of MBP having Pleistocene brownish yellow sediment
had low concentration of As in groundwater after assessing the transmissivity of the
aquifer. They recommended cement sealing for the wells of middle clay layers to stop
downward leakage of As from the top aquifer. Patel et al. (2019) studied sediment
samples of monsoon and post-monsoon seasons of the Subarnsiri-Dikrong-
Ranganadi River system, Upper Brahmaputra floodplain, India, to assess the effect
of leaching of As and fluoride (F�) by annual flooding events. The results showed that
the highest As and Fe were found in the raw sediments of the Ranganadi river that fell
sharply in the post-monsoon season. They concluded that the total level of As is not
only the prime determiner of groundwater contamination but the local anthropogenic
influence also disturbed the fluvial environment. Almost similar observations were
made by Das et al. (2018), who assessed the hydrochemical quality of groundwater
and sediment samples in the Brahmaputra floodplains (BFP), India. The result found
the strongest relationship between As and Fe in the upper BFP followed by the lower
and middle BFP. They observed a definite trend of gradual increase in As and Fe due
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to easier access to shallow aquifer. This is responsible for the increase in non-cancer
health risks among the 835 children in the BFP. Chen et al. (2020) also establish a
geochemical analysis based on 23 soil samples in SuzhouUniversity, China. After the
spatial analysis of the samples, the results found that the Cu and As were slightly
contaminated due to the use of chemical fertilizer in agricultural activities.
Janardhana Raju (2012) assessed 68 borehole sediment and groundwater samples
of the Ganga in Varanasi, India. However, borehole samples of the eastern side of
Ganga showed high As and Fe concentration in newer alluvium sediments of the
Holocene period. Thus, without knowing the quality of the shallow tube wells
(40–70 m) water, the rural people had been using arsenic-contaminated water for
drinking and irrigation purposes in the affected nine villages. Though no arsenical
skin lesions were noticed in their survey, they concluded that continuous consump-
tion of arsenic contaminated water without necessary precaution would increase the
cases of arsenic victims in these villages in the near future.

Majorities of the recent approaches involved an assessment of groundwater
quality or lithology-based analysis for assessment of the severity of As. Most of
the researchers recommended structural management or government initiatives,
alternative water sources, i.e. RWH for restricting As position but yet to emphasize
generating awareness of potable water quality, the role of the governance, sharing
the threat of As and its probable impact over the poor rural households. In this
perspective, a critical review has been presented in this paper on arsenic-related
social hazards to clarify a few important key aspects. The aspects of the paper are
organized as (1) impact and consequence of arsenic as a bio-physical social hazard,
(2) application of GIS techniques for arsenic assessment and (3) significance of
water governance with RWH as a mitigation measure for arsenic. This paper also
helps to address one of the most widely asked questions, i.e. whether RWH could be
a feasible solution to arsenic contamination, especially for Asian countries.

3.2 Materials and Methods

Generally, mixed methods were adopted for the representation of the arsenic risk in
the GIS environment. The ultimate goal was to detect the vulnerability of its effects
on the population. In some cases, researchers combined quantitative data (spatial and
attribute data) with qualitative data (questionnaire survey) for designing the problem
formulation, data manipulation, analysis and interpretation (Hassan et al., 2003;
Bhatia et al., 2014; Singh & Vedwan, 2015). The quantitative data (primary or
published tube-well water data) were combined with another set of quantitative
medical data (data about arsenicosis-affected persons). Then other sets of local or
regional geostatistics data were transferred into the GIS platform to generate arsenic
hazard-related thematic maps for spatial analysis (Hassan et al., 2003). The
geostatistical method helped to detect the accuracy of the present status of the
calamity and also predicted future needs. This further helped to take certain measures
by the local authorities to manage the present groundwater scenario. Numerous
researches used field variables (hydro-geochemical analysis of laboratory tested
tube-well water samples, sediments samples, soil samples, lithology characters
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data) and secondary data (climate data, published groundwater data) to develop
models by assigning weightage and ratings to correlate and assess the arsenic
vulnerability by GIS overlay analysis (Hassan et al., 2003; Puri et al., 2014;
Ghosh et al., 2020; Podgorski & Berg, 2020). Qualitative analysis was done based
on hydrochemical properties of groundwater, and the results obtained were used to
develop statistical model, viz. kriging, Thiessen polygon, DRASTIC Model, Ran-
dom Forest model, Logistic Regression model and Hydrostratigraphic model for
prediction of the sensitivity of the coverage (Puri et al., 2014; Mehrotra et al., 2016;
Ghosh et al., 2020). Statistical modeling was carried out based on satellite data along
with climate and arsenic data to highlight the As risk (Podgorski & Berg, 2020;
Chakraborty et al., 2020).

3.3 Results and Discussion

Impact and Consequences of Arsenic as Bio-physical Social
Hazard

More than 90% of arsenic pollution is geogenic (Ghosh et al., 2020). In the GMB
plain, the alluvial soil has high agricultural potentiality. The uncontrolled increase in
population and associated demands, i.e. food grains, irrigation, industrial and drink-
ing purpose implied heavy drafting which worsens the condition. Easy drafting of
groundwater, subsidized electricity, less expense of boring of tube wells (TWs),
availability of loans from a bank and dependency of ‘Boro paddy’ (winter rice) along
with other crops are responsible for unethical major share drafting of groundwater
common in West Bengal and Bangladesh (Banerjee & Jatav, 2017; Hoque et al.,
2019). Being agrarian-based countries, most of the poor farmers are forced to
cultivate throughout the year. Hence, intensive use of groundwater is required for
cultivation. Wealthy farmers are drafting groundwater 24 h a day (UNDP, 2006).
However, the farmers are engaged in a race of drilling deeper and deeper with bore
wells and fall into money owing traps (Banerjee & Jatav, 2017). In this way, the
atmospheric oxygen enters into groundwater while drafting the same. As a result, the
groundwater level declines continuously with increasing As contamination
(Acharyya, 2002). Further, the application of chemical fertilizers and insecticides
throughout the year especially the increase of winter rice cultivation is causing
qualitative and quantitative degradation of water. Glendenning (2009) mentioned
that in India, water extraction by shallow tube-wells benefited farmers in the short
term, but this practice makes their land barren in the long run. The unplanned
urbanization influenced the significant changes in land use/land cover (LULC).
These LULC changes decreased the natural phenomena, i.e. water bodies, vegetation
and wetland largely with a consequent increase of impervious area. On the other
side, it is responsible for less infiltration capacity of water (Patra et al., 2018). Thus
faster urbanization deteriorates groundwater recharge (DDWS, 2011). However, the
groundwater has been still treated as an individual property. Thus, over-exploitation
with contamination has taken place in several areas (DDWS, 2011). About 85% of
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the supply of drinking water in India is based on groundwater (DDWS, 2011). The
unethical easy electrified pumps in shallow tube-well (STW) tap the groundwater for
drinking purposes (Puri et al., 2014). A huge number of private shallow hand pump
tube-wells were installed by individual households on their premises recently, the
main source of rural drinking water with an excess of As and iron. Rural households
tap this contaminated drinking water, and millions of people have been suffering
from qualitative water stress varying from health to social (Chatterjee et al., 2009;
Bhatia et al., 2014; Hoque et al., 2019). Since 2004, villages of West Bengal had
experienced the huge growth of STW with the coming up of the National Policy of
As Mitigation (NPAM) (Banerjee & Jatav, 2017). This further increased the gravity
of the arsenic problem (CGWB, 2007). However, various Government Departments
monitor observatory wells and do acknowledge these issues. In this monitoring
process, they often identify and put a red cross on those contaminated tube-wells.
Despite knowing the fact, local people are compelled to consume this contaminated
water as they do not have any other alternative. Thus the situation was turned into a
major socio-ecological risk (Hoque et al., 2019; Biswas et al., 2020). For instance, in
coastal Bangladesh, the privately funded tube wells increased four times, compared
to 78% in 2018, whereas the population grew by 4% during the past decade (Hoque
et al., 2019). The groundwater is safe in terms of waterborne diseases, but at the same
time, it gradually lifted the As to the top layer of the surface (Hassan et al., 2003).
These hand-pumps covered millions of rural people at risk of arsenic contamination,
which was one of the key health problems of the twenty-first century (Bhatia et al.,
2014). Two major additional risks were there. One of which was the dietary habit of
dependence on rice, both in India and Bangladesh. Gilbert-Diamond et al. (2011)
indicated that rice consumption had been one of the main reasons for harmful arsenic
exposures to the human body, based on a study of 229 pregnant women. Women in
this sample survey had exposures to arsenic via their home tap water concentration
ranging from �0.07 μg/L to nearly 100 μg/L and rice-based food habit (Gilbert-
Diamond et al., 2011). They documented a positive relationship between rice
consumption and urinary arsenic excretion. Secondly, the mushrooming of private
bottled mineral water industries resulted in significant investment and exposure in
shallow tube wells in countries like India and Bangladesh. The market entrepreneur-
ship of bottled water industries packaged water over the last few decades without
maintaining the WHO standard. Rural innocent people trust private bottled water
without any concern and consume the same blindly. This is the recent hazards for an
increase in arsenic vulnerability (Dave, 2016). This made a tremendous impact on
groundwater particularly in peri-urban villages (Banerjee & Jatav, 2017). Thus, the
quality of drinking water did matter a lot for several serious public health problems.
The arsenic from underground shallow aquifer silently enters into an ecosystem and
responsible for the increase of various diseases (Dave, 2016; Sharma et al., 2014;
Bhattacharya et al., 2019; Sinha & Prasad, 2020). The high level of As exposure for a
prolonged time has been associated with serious public health hazards, e.g. skin
disorders; cardiovascular diseases; respiratory problems; complications of gastroin-
testinal tract; liver, kidney and bladder disorders reproductive failure neurotoxicity;
and even cancer. Thus arsenic contaminated groundwater is grabbing our society
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slowly. WHO (2018) also noted that 1 in every 100 additional cancer deaths could be
caused when people are exposed to contaminated drinking water. However, the rural
households are the worst sufferers for the geogenicarsenic poisoning due to lack of
proper diet (Mukherjee et al., 2009; Bartram et al., 2015). Arsenicosis cases are
worsened by malnutrition, poor socio-economic status, illiteracy, food habit and
prolong consumption of arsenic-contaminated water (PCI, 2007). Having no other
option, poor people became silent victim of this hardship, and they were forced to
enter into a vicious circle,where people further dip into acute poverty generation
after generation. However, As contamination in groundwater was first reported in
Chandigarh, India (Datta, 2015), and the second case was reported in West Bengal
(Garat et al., 1984). Arsenic contamination of drinking water has also several
indirect effects apart from the clinical symptom such as economic and social
impacts, i.e. human productivity loss, treatment cost, human capital loss and many
more (Bhattacharya et al., 2019). Another study by Brinkel et al. (2009) stated that
arsenicosis patients face dual problems. Firstly, they face serious social impact such
as marriage-related problems, problems of unemployment, social instability, social
discrimination and rejection by community and sometimes from own families.
Secondly, the patients suffer from mental retardation and disabilities like physical,
cognitive, psychological and speech impairments. An arsenic-affected person is still
being treated as a social stigma. It had a cascading effect that involved the entire
family of the victims (Bhattacharya et al., 2019). Unaffected people were generally
scared about arsenic victims. They usually avoided and isolate arsenic patients from
the society (Hassan et al., 2003). Thus the mental health condition of arsenicosis
sufferers resulted in deep depression where consequences might end up with social
loss (Ghosh et al., 2020) (Fig. 3.1).

Application of GIS Techniques for Arsenic Assessment

In absence of any immediate mitigation action or awareness campaign, the people of
the study area will be affected by mass poisoning and exposure to fatal diseases
(Hassan et al., 2003). Thus, the assessment of arsenic vulnerability is necessary for
understanding the risk. The extension of risks may be multidimensional such as
economic loss, health loss, loss of opportunities or decline in the socio-economic
status of their livelihood (Singh & Vedwan, 2015). Assessment of these risks along
with the toxicity of human is a complicated task, not possible to measure directly.
Thus various proxy data were used to capture the magnitude of this harm (Hassan
et al., 2003). The general trend is to develop various thematic layers of maps of local
aquifers to know the severity (DDWS, 2011). The groundwater is available, but it is
often the case that it is contaminated by As and Fe pollutants. To make mass
awareness about this social risk, need to depend on low-cost and timeless technol-
ogy. Normally, the spatial study of arsenic-related groundwater needs thousands of
water samples with time-series data, and that is also a time-consuming and expensive
process. Due to the lack of adequate testing facilities, it is nearly impossible to
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collect huge data from vast rural regions. Here comes the importance of GIS for
spatial mapping (Ghosh et al., 2020). GIS can be done by the limited sample points,
thus easy to develop an As concentration zoning map, which ultimately helps to
identify the risk zones exposed to As contamination and then quantify the magnitude
of contamination (Ghosh et al., 2020). Thus, GIS is used to identify arsenic risk, an
extension of exposures, and spatial zoning of risk, and it further helps to assess the
vulnerability, find out the weakness of adaptive capacities and, overall, helps to
resolve the issues. The GIS as a tool helps to clarify the situations and plan
accordingly to the benefit of the common people (Mehrotra et al., 2016). Thus,
like the absence of the As detection sensors, GIS-based techniques can be used for
assessment at the block or ward level (Puri et al., 2014). Such GIS techniques help
mark out the magnitude of vulnerability based on various proxies,
i.e. environmental, bio-physical, natural, lithologies, aquifer characters, hydrology,
water samples and other samples (rice, urine, water, soil, diseases even anthropo-
logical factors, etc.) (Chakraborty et al., 2020). Ultimately the GIS could easily
enable to estimate the visual representation of the population at risk over any
specified area. GIS is also helpful to give an alert of groundwater by producing the
groundwater vulnerability mapping. Thus it helps to frame out planning by the
government or authorities to take decisions to manage safe drinking water supply
(Puri et al., 2014). Prediction-based vulnerability maps could be developed in a
faster way by GIS tool which is invaluable for the planning of the highly arsenic
severity areas (Singh & Vedwan, 2015). The recent trend of using GIS mapping in

Fig. 3.1 Risks associated with arsenic-contaminated groundwater
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arsenic contamination usually adopted a regional scale-based assessment and
highlighted the spatial heterogeneity. Charlet et al. (2007) found a high level of As
presence in wells and that caused the widespread poisoning through drinking water
in Chakdaha, West Bengal. They developed a spatial distribution map of arsenic
with a depth of the aquifer. Results showed vertical transfer of (As) arsenic happened
from shallow to deep wells (150 m) during the dry season. However, those deep
wells were marked as high quality of drinking water free from arsenic previously.
That was a real threat to the local population. Different methods have been used to
evaluate the arsenic-related groundwater mishap. Such the random forest machine-
learning model was analysed based on geospatial environmental parameters includ-
ing 50,000 global data points of groundwater arsenic concentration and household
groundwater usages data. The arsenic prediction model estimated that 94–220
million people were exposed to high concentrations. Among them, the majority
(94%) of the people were residents in Asian countries (Podgorski & Berg, 2020),
whereas Puri et al. (2014) used the DRASTIC model to access the groundwater
vulnerability in Bardhaman district, West Bengal, India. The results showed that the
study area was severely affected by As. A mixed approach was taken by Chakraborti
et al. (2018). They include people’s perceptional data on the risk of As, i.e. the
opinion of the presence and functionality of government, interpersonal trust, and
trust in institutional working along with As water data. Based on the above-
mentioned data, they developed a GIS thematic map to capture the underlining
adaptive capacity of the exposed communities. Another block-level mixed study
was done by Chakraborty et al. (2020), who adopted a ‘hybrid multi-modeling
approach’ based on both hydro-stratigraphic parameters (aquifer characters, geol-
ogy, geomorphology) and anthropogenic parameters in 25 districts of the
transboundary area of the Ganges River delta shared between India and
Bangladesh. A high-resolution regional-scale hydro-stratigraphic model of the aqui-
fer system was developed with the help of 2883 geo-referenced borehole lithologies.
The result showed that 19 districts were fallen under the category of more than 25%
of high As-hazard zones, while 7 districts (28%) were exposed to more than 75%
extent of severity. Total 30.3 million people of the Ganges River delta were exposed
to a high level of As-concentration (>10 μg/L) through drinking water. Another
study by Bhatia et al. (2014) was conducted on 21children having age group of
5–10 years in a marginalized village community of Khaptolain Bihar, India. They
assessed the geo-chemical analysis with health impacts using GIS over lay thematic
maps. A contour map for arsenic was developed on the basis of drinking water
samples from 20 private shallow (15–35 m) hand pump. The result showed that 57%
and 25% of the tapping aquifers were responsible for more than 200 and 397 ppb
arsenic concentrations, respectively. The children of the study village were under
high risk of getting cancer with continued exposure. A study by Ghosh et al. (2020)
was based on empirical methodology with interpolation approach (‘Thiessen poly-
gon and Kriging’). They also developed blockwise arsenic contamination map based
on seasonal well data from the period 2006–2008 through GIS platform in North
24 Parganas, West Bengal, India. The result revealed that the unaffected blocks of
2006 gradually became significantly affected in the year of 2008. As testing was
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performed by field test kit (FTK) from 522 villages in Bahraich, India. They
developed GIS-based arsenic-contaminated zoning map based on the tested drinking
water samples. The zoning map showed 45.71% of high probability of arsenic
concentration in Kaisarganj and Jarwal blocks and few newer villages and Gram
Panchayats. It also identified to the coverage of the problem (Mehrotra et al., 2016).
Another mixed approached was adopted by Singh and Vedwan (2015) in Bihar,
India. They used biophysical, socio-economic and demographic factors for identi-
fying the community’s arsenic coverage by ‘composite vulnerability index’ and
statistical analysis by PCA. They generated unique set of visual maps like social,
bio-physical and environmental vulnerability map based on more than 30,000
published tested results of As concentrations in drinking water of Bihar, India.
This helped to mark community vulnerability profiles for drawing of arsenic-
contaminated groundwater. This study revealed that nine million population was
found to be at risk in five districts of the state including Vaishali, Samastipur,
Darbhanga, Purnia and Katihar. The highest As-affected population (63%) was
found in Khagaria district, covering a total number of three blocks. The results
implied that demographically and socio-economically, poor people were highly
vulnerable as poor health would be more sensitive to arsenicosis-related health
problems. The literacy rate was found to be a very important component to reduce
total vulnerability. The expensive As mitigation plan would network in any of these
districts. The literacy rate, female literacy rate, rural population, population growth,
population below the poverty line, scheduled caste population, infant mortality rate,
incidence of flood and drought, concentration of arsenic, fluoride and nitrate,
lithology and the lithology-related geological formation were found to be most
important variables by PCA for composite vulnerability of the communities. A
geostatistical approach was used by Hassan et al. (2003) for detection of arsenic
magnitude in a covering area of 17.26 km2 in Bangladesh and West Bengal, India. A
mixed data of spatial and questionnaire survey was used for development of arsenic
spatial distribution maps through Kriging method. They collected data related to the
arsenicosis patients, their water-consuming habits and period of exposure to the
arsenic-contaminated drinking water. The result showed that about 95.50% (358) of
tube wells were contaminated with <0.003 to 0.600 mg/L arsenic concentration out
of 375 tube wells after analysis by spatial interpolation method. The west and
northeast of the study area were more contaminated than southwest part.

The magnitude of arsenic assessment becomes more visual with GIS whatever the
initially adopted methods were showing Table 3.1.

Significance of Water Governance with RWH as a Mitigation
Measure for Arsenic

After detecting the arsenic contamination in the 1980s, the West Bengal Government
had taken three types of mitigation measures, i.e.:
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Table 3.1 Arsenic-contaminated groundwater-related studies using GIS

Author
Study area and
sample size Methods Remarks

Hassan et al.
(2003)

West Bengal
(India) and
Bangladesh,
11,000 inhabitant

Quantitative mixed
approach, i.e. special infor-
mation, 375 TW water data,
households questionnaire
survey (HHS), health-
related data

GIS-based data processing
for identifying the magni-
tude of As problem regions
such as arsenic isoline map,
three-dimensional arsenic
concentration map, special
As magnitude map
Found 200 TWs (53.33%)
highly affected
(<0.003 mg/L), overall,
95.50% TWs were con-
taminated by As

Puri et al.
(2014)

Bardhaman dis-
trict, West Bengal,
India, sample size
not mentioned

Qualitative method i.e.,
DRASTIC model based on
giving weightage to hydro-
geological parameters
(depth of the aquifer,
recharge, aquifer media,
soil, topography, etc.)

Developed thematic maps,
i.e. groundwater vulnera-
bility assessment, results
revealed study area
severely affected by high
As concentration

Bhatia et al.
(2014)

Bihar, India,
916 population

A mixed approach, 20 TW
water samples, question-
naire survey done with the
mothers of affected children

GIS overlay map focused
on calculating cancer risk,
hazard index
Found 1.6 ha of area (57%)
under extremely high
(<200 ppb) As toxicity,
predicted 5–10 years of
children would be under
highly vulnerable of getting
affected with cancer

Singh and
Vedwan
(2015)

15 districts of
Bihar, India. Nine
million population

The quantitative approach
developed a composite vul-
nerability index based on
biophysical, socio-
economic, demographic and
perception-based informa-
tion, also used PCA

Overlay maps for quantify-
ing the arsenic vulnerability
maps (i.e. As risk zoning,
As a vulnerable population,
environmental vulnerabil-
ity, socio-economic demo-
graphic map, health,
geological, composite vul-
nerability maps), the first
component of PCA was the
adaptive capacity of HHS
Found 4.4 million of the
population in 5 districts
with <1000 μg/L As
concentration

(continued)
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Table 3.1 (continued)

Author
Study area and
sample size Methods Remarks

Mehrotra
et al. (2016)

Uttar Pradesh,
India. Sample size
not mentioned

The qualitative approach
30,216 hand pumps water
samples were tested by field
kits applying a blanket
approach

Village-level thematic
mapping by GIS arsenic
affected villages, As zoning
map
Found 52.06% and 10.86%
samples had 10–40 μg/L
and >50 μg/L As contami-
nation respectively in two
blocks

Hoque et al.
(2019)

Coastal
Bangladesh, popu-
lation 58,000.

Mixed method qualitative,
i.e. TW water sample, depth
of TW, log data and quanti-
tative, i.e. HHS interview
data, used PCA

Various thematic mapping
for risk assessment applied,
i.e. (aquifer quality, water
supply infrastructure,
sources of drinking water)
Found water risk increased
as of salinity, flooding and
uncontrolled growth of pri-
vate shallow TWs

Ghosh et al.
(2020)

North 24 Parganas,
India, sample size
not mentioned

The empirical methodology
used was based on water
samples of TWs, Thiessen
polygon and Kriging; a
future trend was assessed by
statistical analysis

Developed spatial distribu-
tion of As concentration
map with the help of
Thiessen polygon and
Kriging, As zoning map of
different seasons, predicted
future trend through a
regression model
Found previously unaf-
fected block significantly
affected within 2 years. The
regression model predicted
after 10 years another 2 or
3 blocks were affected if
the same trend would be
followed

Podgorski
and Berg
(2020)

Global scale The mixed approach used,
random forest machine-
learning model based on
geospatial environmental
parameters (including
50,000 groundwater sam-
ples, arsenic data, depth
data) and country based
domestic groundwater users
HHS data

Developed a global predic-
tion map of arsenic
exceeding 10 μg/L having
less than 100 m depth
Found 220 million global
people were affected,
among them 94% were
Asian
Found high probability of
affected zones were in cen-
tral, south and Southeast
Asia including Indus and
GMB plains

(continued)
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1. As a short-term measure, the installation of numerous hand pump tube wells and
ring wells were made into deeper aquifers.

2. Arsenic treatment units were attached with existing tube wells. Introduction of
arsenic removal plants in existing groundwater-based piped water supply
schemes were made for the medium-term measures. The large diameter deeper
aquifer tube wells were fixed for existing or new groundwater based piped water
supply.

3. There was12 mega piped-surface-water-supply schemes (PWSS) from the Ganga
and another 338-groundwater based piped water supply schemes (PWSS) for
arsenic affected areas were still running.

Modified Sujapur-Sadipur model, Gobordanga Model, community-based arsenic
removal plant for multi-village water supply schemes in North 24 Parganas, West
Bengal were also functional (DDWS, 2011; Rana, 2013; Bhattacharya et al., 2019).
Total 28394.56 km2 alluvial zone in the Ganga-Brahmaputra-Meghna plain of
Indian part was recommended for artificial recharge (CGWB, 2013). People did
not understand the ‘safe water’ issues; thus they did not argue for having safe water
as their right (Dave, 2016). Another important reason was that mass awareness
regarding arsenic-related health effects was very low (Sinha & Prasad, 2020). As
an example in the technological park at Baruipur, West Bengal, most of the arsenic
removal plants were found abandoned because of a poor sense of belonging,
willingness, awareness, etc. (PCI, 2007). However, the public standpoint on deep
tube well schemes did not yield the desired health impacts as households continued
drinking contaminated groundwater by private hand pumps or wells situated at their
premises (PHED, 2018). In recent past, several studies were dealt with groundwater
contamination issues with various arsenic corrective technologies mainly removal of
arsenic from groundwater using filters, exploration deeper or alternative aquifers,
treatment of the aquifer itself, installation of nano-filter, dilution method by artificial
recharge to groundwater and conjunctive use of RWH and groundwater, etc. (CPCB,

Table 3.1 (continued)

Author
Study area and
sample size Methods Remarks

Chakraborty
et al. (2020)

Shared India and
Bangladesh with
110 million people

Used ‘hybrid multi-model-
ing’ approach based on
hydro-stratigraphic, geo-
morphology, anthropology,
bio-geo-chemical factors,
statistical methods and arti-
ficial intelligence, Random
Forest, Boosted regression
tree and Logistic Regression

The transboundary model
was developed for the pre-
diction of As hazard map,
aquifer connectivity map,
aquifer permeability map,
silt, and clay thickness
map. Found 30.3 million
people were exposed to As,
predicted probability of As
by population (in high haz-
ard zone 76% districts)
predicted in high As hazard
zones
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2008; Singh et al., 2014; Abhinav et al., 2017; Zakhar et al., 2018; Shaji et al., 2020).
However, the quality of the water remained a matter of concern. Sarkar et al. (2010)
pointed out that in 1997, Bengal Engineering Science and Technology and Lehigh
University in the USA introduced community-level arsenic removal units and
fortunately that decreased arsenic contamination in affected villages of south Bengal.
The high cost of maintenance and installation were the main reasons for failure after
the detection of the calamity of near about 32 years. To date, the government is yet to
provide a simple low-cost technology to encounter arsenic, while presently available
and widely used arsenic mitigation filter system further damages soil, surface water
and the local ecosystem due to unplanned open disposal (Dey et al., 2014). The
above-mentioned reasons further indicated a weak policy implementation system of
arsenic contamination, and it certainly did not trickle down to the marginalized poor
rural people (Bhowmick et al., 2018). The water-related governance issues yet to be
addressed adequately (MWR, 2012). Thus it was necessary to reform strict water
policy and simplistic user-friendly technology, involving mass in the arsenic miti-
gation plan, giving the incentive to encourage the community to manage their local
aquifers were some effective measures (Ghosh et al., 2020). Effective regulations
were required at national and international levels to prevent future arsenic-based
health hazards (Sinha & Prasad, 2020). Even with the mapping of local aquifer,
water quality information was not shared with the communities which was another
big issue (Dave, 2016). It was necessary to change the present habit from tapping
groundwater to switching to new sources like RWH to avoid deadly diseases and
arrest the declining of ground water levels in over-exploited areas (Dey et al., 2014).
RWH also helped to dilute the aquifers (DDWS, 2011). The needs of safe drinking
water should be the first priority for any water supply scheme. The main goals of the
government were to ensure water security to reduce arsenic related diseases. Thus,
the Government of West Bengal fixed a target to supply surface water of 70 liters per
capita per day (lpcd) in rural areas through Vision 2020 for giving the priority on the
arsenic contaminated areas (PHED, 2018). Conjunctive use of RWH and safe
groundwater was recommended to provide safe drinking water. However, the main
focus was to move away from high cost arsenic treatment plan towards RWH
(DDWS, 2011). The RWH was not so popular even in India and Bangladesh, and
a wide gap existed between legislation of the rule/policies and its implementation.
Bhattacharya et al. (2019) stated that the government needed to immediately take
few measures under different programs of Government of India, viz. MSDP/BaDP,
Panchayat Raj, etc., as a part of arsenic mitigation plan. For instance, the Govern-
ment of West Bengal formed Task Force (2005–2006) as long-term measures.
However, the Kolkata and Haldia industrial areas already depleted the piezometric
surface. Under such circumstances, arsenic pollution had put a huge burden on rural
households. It happened in many ways. First, the unpopular Government
programme, lack of proper institutional efforts, ignorance of socio-economic and
cultural background of affected communities, lack of integrated approach in water
planning and lack of funds were some loopholes. These all posed fundamental
questions on the failure of governmental policy about RWH (Banerjee & Jatav,
2017; Patra et al., 2018; PHED, 2018; Ghosh et al., 2020). But the supply of safe
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water entirely depended on governance, political will, investment, international
cooperation awareness and acceptance (Asare, 2004; Fakult, 2013; Wutich &
Brewis, 2014).

The concept of RS and GIS had been an effective recent tool for selecting sites
and planning suitable artificial recharging structures to get the best result (Sharma
et al., 2014; Jha et al., 2014; Mahmood & Hossain, 2017). For instance, Jha et al.
(2014) identified 83 sites for artificial recharge by farm pond and percolation tanks
after the development of land use/land cover (LULC) map. They used the IRS-P6
LISS-IV image and DEM to assess the potential recharge sites for domestic,
livestock, irrigation and groundwater recharge purposes. Verma (2016) also identi-
fied artificial recharge sites based on GIS and GPS mapping in the different water-
shed areas of Chhattisgarh, India. The artificial recharge structures, i.e. percolation
tank and check dams, were recommended, and these ultimately helped to reduce the
demand for the main water supply (groundwater) and also helped to save water,
energy and money. Gomez and Teixeira (2017) found 40% of drinking water
demand could be saved by RWH. Mahmood and Hossain (2017) developed
model-based GIS maps to determine the feasibility of domestic rainwater harvesting
(DRH) in the South Asian region. They recommended DRH for Bangladesh, Sri
Lanka, from the Himalayan range to North-Eastern, Central, Eastern and coastal
parts of Southern India. It could satisfy yearly 7.5 lpcd for drinking and cooking
purposes. A study by Mukherjee et al. (2015) investigated the in-situ groundwater
storage for Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal, India, after
using RS and GIS from the year 2005–2013. They developed potential groundwater
recharge zones using GIS-based hydro-geological databases (trends of precipitation,
usable groundwater, groundwater storage with analysis of satellite imagery) with a
mathematical model for artificial recharge, whereas CPWD (2002) set up an SPG
project at Dwarka, New Delhi, India, having a total area of 47.5 ha mainly to
augment groundwater in urban areas. Another scheme for the artificial recharge of
groundwater was set up at Faridabad in Hariyana to restrict the decline of ground-
water along with awareness generation among the common people for proper
management of RWH. A study was performed on the LULC changes with multi-
criteria analysis (MCA) to identify a potential zone for the construction of water
reservoirs for RWH with recharge (Kar et al., 2020). However, UN-Habitat (2015)
mentioned that in India, RWH was a part of state policy. In Chennai, Delhi and
Bangalore, RWHwas made mandatory. In the state of West Bengal, RWHwas made
mandatory for the construction of new buildings in urban areas under West Bengal
Municipal (Building) Rules (GWB, 2007) but not in rural areas. Meanwhile, CGWB
(2011) started that the identification of artificial recharge areas with suitable struc-
tures in different states including West Bengal in its VIII plan (1992–1997) to handle
the contaminated groundwater situation. Further, the central groundwater board
started the experiment of artificial recharge of the aquifer in 1970. From the eighth
plan, rooftop RWH was introduced in West Bengal and during the tenth plan; a
demonstration was implemented through NGOs in 100 rural schools. Various
techniques of RWH such as injection well with rooftop RWH was proposed for
potential recharge of the confined aquifer areas which indirectly enhanced the
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quality of groundwater (Sekar & Randhir, 2007; CGWB, 2013). For instance,
installation of an arsenic removal plant (ARP) with RWH at the Sujapur, West
Bengal, found that the concentration of arsenic and iron was reduced from 0.2 mg/L
to 0.03 mg/L and 1.7 mg/L to 0.25 mg/L, respectively (Studer & Liniger, 2013). The
central groundwater board (CGWB, 2007) of India already started the RWH with
artificial recharge schemes into permeable strata of shallow depth. On average
yearly, 5500 to 34.50 lakh cubic meter of runoff was successfully recharged in
selected areas of Arunachal Pradesh, Assam, Bihar, Chandigarh, Gujrat, Hariyana,
Jharkhand and Uttar Pradesh by RWH. Similarly, in Himachal Pradesh, Karnataka,
Punjab, Tamilnadu, Madhya Pradesh, Orissa and Maharashtra, a substantial amount
of water was recharged through a combination of percolation tanks, watershed
structures along with recharge wells and rooftop rainwater harvesting (RRH).
RWH with artificial recharge by a combination of farm pond, Nala bunds, and
sub-surface dykes were capable to rise by 0.15 m of water table successfully in the
districts of Purulia, Bankura and Birbhum, in the western part of West Bengal,
though Rajasthan had a prestigious historical background to practice RWH. Conse-
quently, RWH was predominant in India, Jordan and other parts of Asia, Italy and
South Africa since the late 1900s (Debusk & Hunt, 2012). Providing arsenic-free
safe drinking water to huge rural masses had been a major challenge to the govern-
ment, planners and executors (Ghosh et al., 2020). Md Rana (2013) mentioned that
the modified Sujapur-Sadipur model, Gobordanga model and community-based
arsenic removal plant for multi-village water supply schemes for North 24 Parganas
of West Bengal Government were very much time taking and high-cost projects.
CGWB (2013) suggested that RRH could supply domestic water requirements, not
for water-scarce areas but water excess areas. The RWH had been user-friendly, low
cost and an alternative technology for arsenic mitigation. The CGWB estimated up
to 70% of groundwater recharge would be possible with 100 m2 roof in the regions
having 780 mm of average monsoon rainfall. Another 55–275m3 harvested water
could be managed to meet the demand of a five-member family for 100 to 500 days.
Except for Darjeeling, other districts did not implement RWH successfully in West
Bengal (PHED, 2018). However, before the use of harvested water in domestic
sector solar technology, rapid sand filters, Filtration Absorption Disinfection (FAD)
purification system for turbidity, COD, DOC, E. coli and total coliforms were the
best options for maintaining the microbiological free harvested water supply
(Helmreich & Horn, 2009; Naddeo et al., 2013). RWH was a local solution for
proving safe drinking water by a pond and supplying it with piped water after
purification. Ponds had been a good source of drinking water provided proper
planning and motivation of local people (Adham et al., 2018). One of the main
objectives of the National Water Mission of India (Government of India, 2013) was
to publish comprehensive water quality-quantity data in the public domain. Other
objectives were to publish the area-wise impact assessment of vulnerability and
promote the concern of the state’s water conservation, augmentation, and preserva-
tion policies among citizens. It also highlighted traditional water conservation
systems (i.e. RWH), mandatory water audits, incentivizing by giving awards for
water conservation, efficient use and efficient irrigation practice (MWR, 2012).
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Again Ministry of DrinkingWater and Sanitation of India (MDWS, 2013) decided to
cover at least 55% of rural households under piped water schemes by 2017. Among
them, 35% would have water connections within households thereby decreasing
public tap water use by less than 20% and hand pump used by less than 45% to
mitigate arsenic calamity. Thus, PHED (2013) suggested RWH and prepared a
document namely ‘Master Plan for Artificial Recharge to Ground Water-2013’ to
provide information about area-specific artificial recharge techniques. This plan
would construct a 1.11 crore artificial recharge structure including rooftop RWH
in urban and rural areas. It was estimated that 85.565 MCM of surplus runoff would
be harnessed to augment groundwater. Water security was determined by the
complex interactions among water resources, governance systems, infrastructure
development and user needs (Hoque et al., 2019). Bhowmick et al. (2018) described
that there had been still a lack of well-planned effort for the mitigation of arsenic
risk. Thus, good governance should introduce transparent information about water
resources (quality and quantity), careful water management with RWH, include law
enforcement to prevent social isolation, maintain equity and social justice for
affected people. Existing Acts might have to be modified accordingly to get a
mass response from the affected community to build good institutional coordination
for the underprivileged people (Brinkel et al., 2009; DDWS, 2011; Hoque et al.,
2019). By sensitizing the local, arranging rehabilitation programs to generate
employment opportunities and providing accurate health information and supportive
counseling process, it could be possible to overcome the bio-physical socio crisis of
arsenic.

3.4 Recommendation for Sustainable Groundwater
Management

It is indeed a great challenge ahead of the policymakers and engineers to ensure the
supply of arsenic safe water understanding the magnitude of the arsenic poisoning.
Many alternatives are safer, but none of them is suitable or affordable compared to
shallow tube wells. At the same time, the traditional water sources, i.e. large-
diameter dug wells, ponds and lakes, are also getting polluted. Considering the
magnitude and extent of the problem, following recommendations are suggested.

• To make people aware of the calamity, the extent of arsenic poisoning is required
to be estimated through vulnerability mapping based on GIS technology. This
may include the present scenario of the quality as well as quantity wise status of
the groundwater. Sharing of these thematic maps and models with the affected
community would be the simplest but effective form of regular public awareness
campaign.

• The land use/land cover (LULC) maps should be published on the local level to
restrict any drastic change of the same and augment the natural recharge.
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• The launch of the proper treatment protocols involving locals and ensuring the
availability of adequate medical personnel are essential to support the mental and
physical health of the affected population. Alternate job opportunities are to be
ensured to restrict any excessive drafting of groundwater.

• RRH should be made mandatory even for small rooftops in rural areas with
low-cost water treatment technology (slow sand filter). Poor people should be
given incentives to install the RRH. Social acceptance of the scheme is essential
to make it a success.

• As a long-term resolution, a global strategy is to be formulated to eradicate the
hazard of arsenic.

3.5 Conclusions

The outcome of the review emphasizes the careful analysis of arsenic risk identifi-
cation, causes and consequences. There is still a gap in the awareness of the impact
of biophysical aspects of arsenic contamination as affected people have not been
taking RWH seriously. It is not even popular among educated people. The project of
real investment for RWH depends on the acceptance of common people. RRH may
be of much help as an alternative solution to the arsenic calamity in rural areas. To
overcome the arsenic-iron risk, the responsible authorities should arrange a water
safety plan including an awareness programme. Also, periodical updating of map-
ping with qualitative data on local aquifers and providing proper know-how of the
RWH scheme to the people remains a great challenge. The present study, in that
sense, would help the policymakers and concerned authorities to delineate a proper
guideline for remediation of the arsenic-related problem.
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Chapter 4
Impact Assessment of Open Cast Mining
Activity in ADDA Region, Paschim
Barddhaman on Land Surface
Temperature

Debduti Dey, Chalantika Laha Salui , and Biplab Biswas

Abstract Open cast mining affects much on the physical environment adjoining to
it. This study has been carried out in Asansol Durgapur Development Authority
(ADDA) in West Bengal, analyzing such impact of open cast mines on the environ-
mental issues especially the increasing land surface temperature along some elon-
gated tracts by either excavation or dumping. Monitoring of the spatial extension of
open cast mines (1999–2019) and analyzing its relationship, the spatial distribution
of the land surface temperature in the ADDA region is the core objective of this
work. Land surface temperature was examined by using Landsat 4–5 TM and
Landsat 8 OLI and TIRS temporal satellite data by single channel algorithm. The
outcome of surface temperature is validated with the field information. Supervised
image classification technique with maximum likelihood method which was used to
show the changes in land use/land cover along with the temporal expansion of
opencast mining areas over time. The temporal changes in the distribution of mining
sites undergone a detailed correlation study with the spatial variability of these two
environmental quality parameters which came out with a strong correlation among
them. The result indicates a significant positive correlation between the open cast
mines and the spatial distribution of LST (R2¼ 0.9578), respectively. This considers
the opencast mining activity as a major contributor to the environmental quality
status of the adjacent area.
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4.1 Introduction

The area under opencast mining has been increasing at a high rate since the last few
decades in Asansol Durgapur Development Authority (ADDA), a major mining belt
of eastern India, mainly dominated by companies like Eastern coalfields limited
(ECL), Bharat Coking Coal Limited (BCCL), and the Indian Iron & Steel Company
(IISCO) in both the forms: Opencast as well as underground mining. It is mainly due
to changing land use from agro-forestry to mining and its ancillaries such as
warehouses, subsidence-prone areas, dumping areas, ash ponds, etc. As a conse-
quence of prolonged mining, the area mostly turned into non-usable with infertile
eroded soil.

This study mainly aimed at monitoring the continuous expansion of open cast
mines and its correlation with the changing spatial distribution of surface tempera-
ture in this area. The analysis was executed on temporal geospatial secondary
datasets of 1999, 2011, and 2019. For monitoring the expansion of opencast areas,
land use/land cover spatial data is generated from the temporal satellite images of
these three phases with proper field checks in 2019. The change detection highlights
a prominent cluster wise conversion of vegetative to non-vegetative surface cover,
which can be considered as a background behind the increase of surface temperature
(Choudhury et al., 2018). The burning of coal and digging up the surface releases
increase the land surface temperature as well as air temperature in the surrounding
area. Several works were executed on such environmental issues related to mining
activities. Choudhury et al. (2018) and Dutta et al. (2018) worked on the land-use
dynamics as well as the trend of LST in mining regions. Such environmental
depletion leads to the depletion of biodiversity of such areas. These effects are
prominent in the eastern coal belt of India (Guha et al., 2012; Gangopadhyay
et al., 2005; Kamila & Pal, 2015; Manna & Maiti, 2014). Remote sensing data can
provide us with the output for a large coverage area at a time with equally distributed
averaging cells; researchers like Karfa and Tah (2019) and Kamila and Pal (2015)
used this technology extensively for land-use change monitoring and associated LST
change analysis in their study. Mainly thermal band data were used for deriving LST
pixels (Choudhury et al., 2018; Fawzi & Jatmiko, 2015).

After all the previous discussions, it is clear that the rising land surface temper-
ature and air temperature caused by changing land use is a serious health issue for
living bodies as well as a threat to the ecosystem. While going toward sustainability,
it is important to nullify or decrease the level of threat, for which taking a proper plan
is an immediate necessity. Now, to configure a proper plan, it is a primary need to
understand the scenario of the problem area first; is there any threat or not, if yes,
then how much.

As the objective of this research concentrates on the coal mining scenario, the
coalfields of Paschim Bardhaman area of West Bengal is selected. This area has an
age-long history of coal reserve and is under continuous mining of coal since 1774.
In recent time, it covers a total of 6182.37 ha area and is extending in a very fast rate.
With this extension, it is very likely to increase the LST.
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Accounting those observations, coalfield areas of Paschim Bardhaman, along
with the ADDA region, are selected as the study area of this research (Fig. 4.1).

4.2 Materials and Methods

Temporal satellite images (Landsat TM 4–5 for January 1999 and February 2011 and
Landsat 8–OLI for January 2019) were used to generate the temporal land use/land
cover thematic layers. Supervised classification method was applied with maximum
likelihood algorithm for these three temporal images and field validation of the
classification was made on 2019 image with an accuracy of 82%. These temporal
land use/land cover datasets facilitate in monitoring the changes in land use and

Fig. 4.1 Study area (ADDA region). Source: Choudhury et.al (2018), Eastern Coalfield Limited
(ECL) Providing data and author map composition
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finally the changes in opencast mining activity regions. To assess the effect of such
activity, few environmental quality were assessed in which the land surface temper-
ature was one, which was calculated for the study area from the satellite image of the
contemporary time scale.

The Land surface temperature (LST) is the radiative temperature which was
calculated using top of atmosphere brightness temperature, wavelength of emitted
radiance, land surface emissivity by single channel algorithms proposed by
Jeevalakshmi et al. (2017) and Anaandababu et al. (2018) (Fig. 4.2).

LST ¼ BT=1ð Þ þW � BT=14380ð Þ � ln Eð Þ

where:

BT ¼ top of atmosphere brightness temperature (�C)
W ¼ wavelength of emitted radiance [Landsat 4–5 TM ¼10.895, Landsat 8 OLI &

TIRS ¼ 11.45]
E ¼ land surface emissivity

Here, land surface emissivity (E) in formula-1 was calculated via the following
formula for each temporal satellite images.

Emissivity ¼ 0:004 � PVþ 0:986

where PV ¼ proportion of vegetation (proportion of vegetation or fractional vege-
tation cover) in formula-2 which was obtained from NDVI values for vegetation and
soil according to with value various between 0.00 and 1.00.

Fig. 4.2 General methodology for land surface temperature
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PV ¼ NDVI� NDVI minð Þ= NDVI max � NDVI minð Þ½ �2

where the Normalized Differential Vegetation Index (NDVI) in formula-3 is a
standardized vegetation index which is calculated using near infrared (Band 5) and
red (Band 4) bands.

NDVI ¼ NIR� REDð Þ= NIRþ REDð Þ

On the other hand, BT in formula-1 can be derived when spectral radiance data
were converted to top of atmosphere brightness temperature using the thermal
constant values in the Metadata file.

Conversion of Kelvin to Celsius

As the result is in Kelvin, the radiant temperature is revised by adding the absolute
zero (�273.15 �C) to get the result in Celsius.

BT ¼ K2= ln k1=Lλþ 1ð Þ � 273:15

where:

BT ¼ top of atmosphere brightness temperature (�C)
Lλ ¼ TOA spectral radiance (Watts/(m2 * sr * μm))

Using the radiance rescaling factor, thermal infrared digital numbers can be
converted to TOA spectral radiance.

For the validation of the retrieval methods, the land surface temperatures were
also collected in the ground by using an infrared thermometer (LASER—GM320)
over seven stations, namely, Mohanpur, Sonepur Bazari, Khottadih, Kalipahari,
Gourandi, Gourandi-Begunia, and North Searsole.

4.3 Results and Discussion

Land use/land cover data were generated for 1999, 2011, and 2019 with classes like
build-up area, vegetation, mining area, agricultural land, barren land, river, reservoir/
lakes/ponds, and river sand (Fig. 4.3). It showed a sharp increase in the mining area
(open cast) from 1630.53 to 6182.37 ha (0.93 to 3.51%) during 1999–2019
(Fig. 4.4). This was associated with a significant areal increase of built-up area
from 34,293.87 to 52,962.75 ha (19.48 to 30.08%), a steep fall of vegetation
coverage from 23,129.01 ha to 15,309.45 ha (13.14% to 8.7%), as well as agricul-
tural land from 100,666.44 ha to 84799.8 ha (57.15% to 48.15%). The field visit was
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conducted for land use categories for 2019 with a detailed visit to open cast mining
areas. Open cast mining areas on the classified data were also verified with ECL data
for an accurate assessment.

Fig. 4.3 Landsat TM 4 – 5 for January 1999 and February 2011 and Landsat 8 - OLI for January
2019 from USGS (https://earthexplorer.usgs.gov/)

Fig. 4.4 Expansion of open cast mining activity in ADDA region

68 D. Dey et al.

https://earthexplorer.usgs.gov


Land Surface Temperature (LST)

As per the change analysis of LST from 1999 to 2019 (Fig. 4.5), it was ranging from
14 to 28 �C in January 1999, with the highest limit distributed over Sonepur Bazari,
Mohanpur, and Khottadih mine areas. The temperature of these areas increased to a
peak temperature of 32� during February 2011. It further increased to 38� as highest
in January 2019.

On the other hand, Narayankuri, New Kenda, and Banshra open cast mines and
part of BCCL, IISCO Coalfields were showing the medium LST from 23 to 26 �C
with a surrounding LST of 21 �C in 1999. Active mining belts were showing a rise in
temperature (up to 34�) in February 2011. It was showing temperature hot spots on
Gourandi, Gourandi-Begunia, Jambad, Bonjemehari, and Sonepur Bazari OC with
LST values ranging from 32 to 34 �C with surrounding average LST value of 30 �C.
This distribution of land surface temperature over this area was showing an increas-
ing trend even in January 2019 as per LST data retrieved from satellite images. The
high-temperature pixels were distributed in some non-mining areas also. Those are
basically due to the presence of industries and settlements. Hence, the temporal
change of land surface temperature is shown to be closely associated with the rapid
land use/land cover change (Ziaul & Pal, 2016) (Fig. 4.6).

By using an infrared thermometer (LASER—GM320) land surface temperature
was measured in the field to validate the process of deriving LST values from remote
sensing data. Figure 4.9 is showing the variation of LST measured and calculated

Fig. 4.5 Land surface temperature
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values. Field measurements give the highest LST at Gourandi-Begunia OC (43 �C)
and the lowest value at Khottadih OC with 32 �C.

In the cross-sectional profiles in Figs. 4.7 and 4.8, the increasing trend can be
recorded for a time interval from 1999 to 2019. Though it represents a sharp increase
in value for the full graph, the spatial pattern of hotspots is almost static.

Along with the cross profile AB in 1999 LST data (Fig. 4.7), it is found that
Mohanpur OC of Salanpur colliery area experienced maximum LST of about 28 �C
which was increased to nearly 30 �C in 2019. The average LST of Kenda, Bankola
ECL areas were ranging between 26 �C and 24 �C in 1999 but in the 2019 cross-
section, it is showing the value of nearly 29 �C. In 1999, which areas that
include water bodies and forest areas (Fig. 4.3), there giving an LST value of nearly
14 �C. The LST of the rural and semi-urban areas in the cross profile was identified
within the range of 21 �C and 17 �C.

Along the other cross-section CD, Sripur, Satgram, Kunustoria, and Kajora ECL
were showing an LST up to 24 �C in 1999, which increased to nearly 29 �C in 2019
(Fig. 4.8). Cross profile EF was showing the LST of Salanpur–ECL area nearly
18 �C in 1999, which is seen to be increased to as high as 35 �C in 2019. On the other
hand, Sripur, Kenda, Kunustoria, and Kajora were experiencing LST of nearly 21 �C
in January in 1999 which was ranging between 28 to 35 �C in 2019.

Fig. 4.6 Bar graph comparison between Field LST data and Estimated from image data of ADDA
region, February 2019. Source: By Author
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Fig. 4.8 LST profiles (A-B, C-D, and E-F) in January 2019

Fig. 4.7 LST profiles (A-B, C-D, and E-F) in January 1999
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Hence, the cross profiles reveal an abrupt increase in LST during 1999 and 2019
where the mining area also increased to 2.58% during this period. There are many
instances of the unauthorized digging of open cast mines, which can be seen in the
field. The most important reason for increasing LST is coal fire and the
loading-unloading of the overburden of open cast mines. Instances of coal fire
were documented at Ramnagar, Bonjemehari, Jambad, Sangramgarh (Guha et al.,
2012), Khottadih, Sonepur Bazari, Churuliya, Kamarkhola, Belbadh, Sitalpur,
Khayerbandh, Jamuria, and Dhadka (Karfa & Tah, 2019). They may be due to the
spontaneous heating of coal. Sometimes, the heat produced is not dissipated
completely due to the poor supply of air in a confined space. It can also be an
excessive amount of overburden.

As recorded in 2019, the Gourandi and Gourandi-Begunia OC have the highest
LST ranging from 39 to 43 �C, and its surrounding areas having an LST of nearly
37 �C. On the other hand, Mohanpur, Bonjemehari, Dabor, Sonepur Bazari,
Khottadih Madhabpur, Jambad, New Kenda, North Searsole OC, and parts of
BCCL, IISCO Coalfields have the medium LST ranging from 34 to 38 �C, and its
surrounding areas experienced LST of 36 �C. The LST of Madhabpur, Dalurbandh,
Itapara, Madhabpur, Banshra, Narayankuri, Nimcha-Amkola, Bhanora west OC was
within the range of 31 and 34 �C, and its surrounding LST is 30 �C. Besides, there
are many discontinued OC where work is in the disruption. They are generally
showing a moderately lower value of LST from 26 to 29 �C. Though these are not
active mine areas, the vegetation cover has not been replaced and that increased the
LST value.

Though the mining activity is not the sole contributor for increasing LST over the
area, an attempt was made to see the correlation between the overall expansion of the
OCM area in 1999, 2011, and 2019 and the changing annual average value of LST
for those years. The correlation coefficient value (R2) came as 0.9578 which is
representing a strong positive correlation between them (Fig. 4.9).

4.4 Conclusion

This research indicates that the increasing area under open cast mining (1999–2019)
has a significant impact on the economic, social, and environmental fabric of
adjoining areas of ADDA. Expansion of the opencast mining area took place at
the cost of displacement of settlements, demolish of agriculture, and other vegetative
covers. Such a change in land cover especially with a decreasing rate of greeneries
subsequently took the environment toward a quality fall. A change in the annual
seasonal temperature also took a hike. To confirm this, this study got a correlation
statistics between the temporal expansion of open cast mining areas and annual mean
surface temperature change of the corresponding area. The analysis came with a very
strong positive correlation between these factors. Mining area expansion has direct
control over the NDVI change and resulting change in the mean surface temperature
of this Asansol-Durgapur Development Region. This study also explored the
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correlation analysis result between LST and areal change (%) of coal mine areas
(R2 ¼ 0.95) showed a positive relationship and a negative relationship between LST
and NDVI (R2 ¼ 0.89). As a result the spatial relationship linear correlation between
areal changes (%) in Mining, LST, and NDVI where R2 value near about 1.

Sometimes, the exploration is complete in one region, the deactivated mine
remains the same without the proper land reclamation and rebuilding of vegetative
cover. Mining operations can’t be the sole responsible factor behind the environ-
mental quality deterioration, but rather industrial development along with urban
expansion also contribute much. Therefore, these mining activities should be
followed by proper environmental protection measures. Reclamation planning is
one of the major environmental protection measures to reduce air temperature. After
the completion of exploration, abandoned coal mines should be filled up with sand or
soil, or water. Regaining of the soil fertility should be planned along with affores-
tation programs. Advanced mining technology and effective strategies to reduce air
temperature around coal mining areas, as well as public awareness and education,
should be encouraged.
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Chapter 5
Effect of Land Use/Land Cover Change
on Soil Loss in the Tropical River
Catchment of Northeast India

Jatan Debnath and Nibedita Das(Pan)

Abstract Soil erosion becomes a common problem in tropical river basins like the
Muhuri River basin where intensity of rainfall as well as degradation of forest,
unscientific agricultural activities and excessive jhoom cultivation are more pro-
nounced. It accelerates the rate of sediment deposition in the river which disturbs
natural condition of the channel. Therefore, the present research aims to assess the
spatio-temporal change of soil erosion status owing to land use/land cover change
(LULC) in the Muhuri River basin. This study used land sat imageries of 1986
(TM) and 2019 (OLI) along with supervised classification technique to estimate the
LULC change. Moreover, the model of Universal Soil Loss Equation (USLE) was
applied to assess the soil erosion. The whole work was processed and computed
under the geo-processing tool of ArcGIS 10.1. The result revealed that during the
period 1986–2019, the area under dense forest, open forest, degraded forest, jhoom
cultivation and water body were reduced by 92.05, 68.63, 5.05, 25.29 and 25.64%,
respectively, while the extent of the agricultural land, rubber plantation, settlement
and barren land increased by 14.47, 1600.39, 95.36 and 197.33%, respectively. As a
result, the range of average annual soil loss of the Muhuri River was increased from
0 to 101.06 t ha�1 year�1 (during 1986) to 0 to 110.08 t ha�1 year�1 (during 2019).
Obviously, the mean rate of soil erosion is associated with the LULC change of the
study area, and therefore, in case of degraded forest, agricultural land, rubber
plantation and jhoom cultivation, the mean soil loss was increased by 2.37, 1.22,
1.50 and 1.32 t ha�1 year�1 correspondingly within the study period (1986–2019).
Therefore, the findings of the research illustrate that declined natural forest cover
along with increased settled area, barren land, agricultural land and existence of
shifting cultivation increases the soil erosion potential in the river basin over the
study period. Thus, there is a need of sustainable maintenance of watershed
resources to control the sediment influx into the river.
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Keywords LULC · Universal Soil Loss Equation (USLE) · Spatio-temporal
change · Muhuri River basin

5.1 Introduction

Soil erosion is a natural phenomenon ensuing from detachment of the top soil due to
some natural agents (wind and water) and anthropogenic activities (overgrazing,
deforestation, forest fire, etc.). According to Angima et al. (2003), about 85% of land
and degradation occurs owing to soil erosion, and Pandey et al. (2009) opined that
LULC change is the main component for this. Since the last century, soil erosion
expanded via anthropogenic activities becomes the most important environmental
hassle all over the globe (Sharma et al., 2011). In India, almost 113.3 million hectare
of land is affected by soil erosion and almost 5334 million tonnes of soil is being
removed yearly owing to different reasons (Narayan & Babu, 1983), and almost
7.5% areas (0.20 million km2) are effected by intense bank erosion (Ahmad et al.,
2020). According to Bhattacharyya et al. (2016), inappropriate agricultural practices
are mostly responsible for the soil erosion in India, which has reduced the soil
fertility and created an effect on the food and livelihood security of the farmers.
Generally, soil erosion is regulated by the nature of topography, soil properties,
forest cover, land use, etc. Moreover, a group of aspects like slope steepness, heavy
rainfall after long dry period, improper LULC pattern (e.g., degraded forest) and
ecological disaster (e.g., shifting cultivation) along with some inherent characteris-
tics of soil profile, such as thin upper layer and less organic content, make it more
prone to erosion (Ganasri & Ramesh, 2016).

Nowadays, declining forest cover, growing settled area and inappropriate agri-
cultural practice have accelerated soil erosion in the river catchments significantly.
Intense soil erosion amplifies sedimentation in the channel bed and reservoir as well
as affects floodplain morphology and its ecological functioning (Asselman &
Middelkoop, 1995; Verstraeten & Poesen, 2002; Richards et al., 2002). Therefore,
watershed management becomes an important task to the planners. To evaluate the
annual soil loss and sediment yield of a river basin or a watershed and to recognize
the erosion prospective zone at regional, as well as global scale, various models were
used (Pandey et al., 2007; Dabral et al., 2008) among which USLE became widely
accepted throughout the world (Wischmeier & Smith, 1978). The RS and GIS
techniques are extensively used for its cost effectiveness and better accuracy to
soil erosion estimation and its spatial distribution in broader areas (Shit et al., 2015;
Phinzi et al., 2020). The USLE model associated with GIS provides a fruitful and
better accuracy result than the traditional methods (Roy, 2019) and also helps for
mapping the priority-wise erosion prone areas (Girmay et al., 2020; López-García
et al., 2020; Fiener et al., 2020; Delgado, 2020). On the other hand, use of temporal
satellite images to study the relation among the change of LULC and soil erosion
becomes widespread in modern research (Jordan et al., 2005). Apparently, LULC
change and its effects on the soil erosion potential in addition with sediment
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transport rate were studied by many researchers at temporal scale (Sharma et al.,
2011; Esa et al., 2018; Huang et al., 2020).

The present research pursuits to estimate the amount of soil loss due to LULC
change using USLE model with the useful resource of the GIS medhod. Through this
study the contribution of each LULC element on soil erosion was justified. More-
over, the spatio-temporal analysis of soil erosion over the whole basin was support-
ive to identify the most affected part of the basin and useful for the engineers and the
planners for formulating important action plans.

5.2 Regional Setting

The Muhuri River basin consists of three Rural Development Blocks and is located
in the southern part of Tripura (Fig. 5.1). It lies among 23�100 N to 23�250 N latitude
and 91�260 E to 91�460 E longitude occupied about 701.72 km2 surface area. The
River Muhuri originates from the Baramura-Deotamura hill range and enters
Bangladesh after flowing for 53.3 km within Tripura. The basin experiences moist
humid climate with medium to high rainfall (1500–2000 mm). Here the average
summer temperature varies from 25� to 29 �C, whereas the winter temperature from
19 to 24 �C.

The western part of the basin is bounded by Bangladesh. Its total population is
estimated to be more than 1,80,000 among which the immigrated Bengalese dom-
inate over the indigenous community. The area is most densely populated with a
density of 256 persons/km2. Here majority of the tribal population live in the hilly
part and there is predominance of Bengalese in the plain part.

5.3 Materials and Methods

Identification of LULC Change Map

The study of LULC change detection and its evaluation was accomplished by
adopting a series of steps and processes which includes collection of satellite images,
pre-processing, supervised classification using maximum likelihood algorithm and
post classification comparison. In an effort to identify the changes in LULC of the
study area, the researcher used the TM (Thematic Mapper) satellite image of 1986 as
the base year and OLI (Operational Land Imager) image of 2019 as the current year.
All the Landsat images were downloaded from the United States Geological Survey
(USGS) website. The collected raw imageries were processed in ArcGIS 10.1. The
image pre-processing was performed for contrast enhancement of the satellite
images so that the pixel values can be distributed uniformly to avoid the radiometric
distortion, and thus reliability of the pixels’ brightness value increases. On the other
hand, supervised classification technique with maximum likelihood algorithm was
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Fig. 5.1 Location map of the study area
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used to prepare the LULC map from the collected imageries (Debnath et al.,
2017a, b), and accuracy of the classified maps was assessed after field verification.
Post classification comparison was completed to identify the changes of the LULC
classes.

Confusion matrix was used for classification accuracy where producer’s accu-
racy, user’s accuracy, overall accuracy (Eq. 5.1) and Kappa accuracy (Eq. 5.2) were
calculated using this matrix table (Congalton, 1991). These were calculated using the
following formula:

Overall accuracy ¼
Pr
i¼1

xii

N
� 100 ð5:1Þ

Kappa accuracy ¼ N
Pr

i¼1xii �
Pr

i¼1 xiþ � xþið Þ
N2 �Pr

i¼1 xiþ � xþið Þ ð5:2Þ

where r is regarded as the number of rows in the matrix, xii expresses the total
number of correctly classified pixels in row i and column i, xi+ and x+i are the
marginal totals of row i and column i, respectively, and N is the total number of
pixels in the matrix table.

Estimation of Soil Loss Using USLE

USLE is an experimental Equation (Eq. 5.3) which predicts and estimates average
annual soil loss from a particular area and its spatial distribution (Ahmed et al.,
2017). The result of USLE equation depends on the five major factors which are
expressed by the following equation:

A ¼ R� K � LS� C � Pð Þ ð5:3Þ

where A represents the mean annual soil loss in ton ha�1 year�1, R is regarded as
rainfall-runoff erosivity factor, K expresses the soil-erodibility factor, LS is the slope
length and gradient factor, C is the crop-management factor and P is the support
practice factor. All the factors were integrated in GIS environment to calculate the
soil loss from the study area.

For estimation of soil loss of the Muhuri River basin for the years 1986 and 2019,
the Landsat TM 1986 and Landsat OLI 2019 were used to prepare the LULC maps.
These maps were utilized as crop management factor (C) and support practice factor
(P) maps. Rainfall data of Belonia, Bokafa, Sabroom, Sonamura and Amarpur rain
gauge stations were collected for 10 years’ period (for 1986, data of 1976–1985 and
for 2019, data of 2009–2018) to prepare the rainfall erosivity factor map (R).
Whereas, so as to estimate the soil erodibility factor (K) map, the soil map of the
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NBSS and LUP (1996) of 1:250,000 scale was used as the base map. Aster DEM of
30 m resolution was used to produce the slope length and gradient factor (LS) map.

Development of Database

Rainfall-Runoff Erosivity Factor (R)

Rainfall-runoff erosivity factor is one of the essential factors that influence soil
erosion significantly. The R factor usually depicts the erosive power of rainfall at a
particular place on account of the amount and intensity of rain (Uddin et al., 2016). It
is computed (Eq. 5.4) with the help of the storm kinetic energy and the maximum
30 min rainfall intensity and facilitates to identify the effect of rain drop over a piece
of land. As in the present study area such kind of meteorological data is unavailable,
therefore, in this case the Rainfall erosivity factor was calculated using the formula

Ra ¼ 79þ 0:363� P ð5:4Þ

where Ra is the annual R factor and P is Rainfall in mm. R factor data of these five
rain gauge stations were processed using the ArcGIS software. In order to prepare
the map Interpolation method was applied using the IDW tool.

Soil Erodibility Factor (K)

The soil erodibility factor refers to the quantitative analysis of the intrinsic erodibility
strength of a specific sort of soil. It is normally measured on susceptibility to
detachment of soil particles from land surface and flowing through runoff. The K
factor ranges between 0 and 1, where 0 (zero) means minimal prone to erosion, while
1 signifies highly prone to erosion through water. The soil properties that influence K
factor are soil texture like sand, silt and clay, organic matter, soil structure, and its
permeability. Here the soil erodibility factor was evaluated with the help of soil
erodibility nomograph which is depends on Geo-pedological Map of the NBSS and
LUP, 1996 Govt. of India (Wischmeier & Smith, 1978).

Slope Length and Gradient Factor (LS)

Slope length (L) and slope gradient (S) factor is also known as topographic erosivity
factor. Generally, with the steepening of slope, soil erosion also augmented due to
increasing velocity of the surface runoff towards downhill direction (Pradeep et al.,
2015).

The Aster DEM for the study area was used to compute the topographic erosivity
factor using the ArcGIS and Arc Hydro extension tool. The algorithm (Eq. 5.5) used
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by Moore and Burch (1986) was applied to derive the soil erosion weightage for
topographic factor as given below:

LS ¼ Flow accumulation� Cell size
22:13

� �
0:4� sin slope

0:0896

� �
1:3

� �
ð5:5Þ

where flow accumulation denotes the accumulated upslope contributing area for a
specified cell, cell size¼ size of grid cell (30 m for the present research work) and sin
slope ¼ sin value of slope angle in degree.

Crop Management Factor (C)

This factor depends on the nature of LULC of an area. The C factor is especially used
to reflect the erosion rate as the effect of cropping and other management. Moreover,
this factor is highly related with canopy cover of a particular place. In general, soil
erosion reduces in consequence with the growth of canopy cover (Shit et al., 2013).
The land cover interrupts rainfall, permits penetration and decreases the kinetic
energy of rainfall over the land surface. For the present study, Landsat TM, 1986,
and Landsat OLI, 2019, were used to generate the C factor maps.

Support Practice Factor (P)

This factor usually reflects the ratio of soil loss from a particular practice to the
corresponding loss with straight row ploughing up and down slope (Dabral et al.,
2008). The higher value of P factor indicates the application of effective soil
conservation measures (Prasannakumar et al., 2011). During field verification, it
was observed that the soil conservation techniques were adopted in the agricultural
fields only. As a result, the researcher considered agricultural and non-agricultural
land separately and assigned the P value of 0.28 and 1.0 respectively (Fig. 5.5).
These values were used in other literatures also by Pandey et al. (2009) and Ahmed
et al. (2017).

5.4 Result and Discussion

LULC Change (1986–2019)

The present observation shows that in the year 1986 about 5.90, 28.59 and 46.87%
areas of the basin were occupied by dense forest, open forest and degraded forest,
respectively, whereas, 9.99, 1.46, 1.71, 3.41, 1.94 and 0.11% areas were under
agriculture, rubber plantation, jhoom cultivation, settlement, water body and barren
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land, respectively. Again, in the year 2019 about 0.47, 8.97 and 44.50% areas were
under dense forest, open forest and degraded forest, respectively. On the other hand,
11.44, 24.91, 1.28, 6.66, 1.45 and 0.32% areas were occupied by agriculture, rubber
plantation, jhoom cultivation, settlement, water body and barren land, respectively
(Table 5.1).

The temporal data sets of LULC of the study area indicate some considerable
changes between the base year and the current year which were inflated by human, as
well as natural factors. During the 1986–2019 periods of 33 years, the areas under
dense forest, open forest and degraded forest were decreased by 92.05, 68.63 and
5.05%, respectively, whereas areas under rubber plantation and agriculture were
increased significantly by 1600.39 and 14.47%, respectively. Moreover, area under
shifting cultivation was decreased by 25.29% and settled area increased appreciably
by 95.36% with reduction in water body by 25.64% (Table 5.1). During this period,
the basin experienced a significant increase in barren land by 197.33%.

Rainfall Erosivity Factor (R)

In order to compare rainfall erosivity (R) of the years 1986 and 2019, the mean
rainfall of the periods 1976–1985 and 2009–2018, respectively, were used. The R
factor values of the year 1986 ranged between 843.69 and
987.28 MJ mm ha�1 h�1 year�1, whereas during the year 2019, it became 786.55
and 892.15 MJ mm ha�1 h�1 year�1 within the Muhuri basin (Table 5.2).

Table 5.1 Areas under different LULC categories in the Muhuri River basin

LULC Classes

1986 2019 1986–2019

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Changed area
(km2)

Changed area
(%)

Dense forest 41.4 5.90 3.29 0.47 �38.11 �92.05

Open forest 200.63 28.59 62.93 8.97 �137.7 �68.63

Degraded forest 328.92 46.87 312.3 44.50 �16.62 �5.05

Agricultural
land

70.14 10 80.29 11.44 10.15 14.47

Rubber
plantation

10.28 1.46 174.8 24.91 164.52 1600.39

Jhoom
cultivation

12.02 1.71 8.98 1.28 �3.04 �25.29

Settlement 23.93 3.41 46.75 6.66 22.82 95.36

Water body 13.65 1.95 10.15 1.45 �3.5 �25.64

Barren land 0.75 0.11 2.23 0.32 1.48 197.33

Total 701.72 701.72
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The spatial distribution of R factor of 1986 indicates the concentration of highest
R value in the western part and lowest value in the extreme northern part of the basin,
whereas in the year 2019, it was observed in the central and the extreme northwest-
ern portions of the basin, respectively (Fig. 5.2).

Soil Erodibility Factor (K)

Soil type varies according to the topographic and lithologic characters of the
concerned area. The K value of each soil type of the study area was derived from
the work of Ghosh et al. (2013), which was calculated using the nomograph
(Wischmeier & Smith, 1978) of USLE (Table 5.3).

Higher the amount of K value more erosion prone is the area and vice versa. The
highest K value (0.36) was observed in the central part of the basin in the soils of
inter-hill valley, whereas the lowest value (0.16) was observed in the central and the

Table 5.2 Average annual rainfall and R value of the selected stations

Station

Average annual (1976–1985) Average annual (2009–2018)

Rainfall (mm) R-factor Rainfall (mm) R-factor

Matabari 2407.44 952.9 1949.18 795.2

Amarpur 2390.75 946.84 2048.22 786.55

Belonia 2476.62 978.01 2110.03 822.5

Sabroom 2502.15 987.28 2240.09 844.94

Bokafa N.A. N.A. 2129.18 892.15

Sonamura 2106.58 843.69 1972.98 851.89

Fig. 5.2 Spatial distribution of R factor in the Muhuri River Basin for the years 1986 and 2019
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northwestern parts of the basin in the soils of undulating plains with low mounds and
narrow valleys (Fig. 5.3a).

Slope Length and Gradient Factor (LS)

The LS value of the present study ranged between 0 to 44.02. Higher value was
found in the upper and the lower catchments of the basin due to the presence of the
Baramura-Deotamura hill range and the TekkaTulsi hill, respectively, whereas the
minimum value was observed in the central part of the basin over the flood plains
and inter-hill valleys (Fig. 5.3b).

Crop Management Factor (C)

The C values of the study area ranged between 0 to 1 (Table 5.4). The lower value
was observed in the eastern part of the basin due to the presence of forest cover

Table 5.3 K value of the study area according to the geo-pedological characteristics

Soil type K factor

Soils of low relief structural hills and ridges 0.24

Soils of undulating plains with low mounds and narrow valleys 0.16

Soils of inter hill valleys 0.36

Soils of flood plains 0.34

Fig. 5.3 Spatial distribution of (a) K and (b) LS in the Muhuri River basin
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whereas the central and the western parts demonstrated higher values for the
presence of agricultural land, settlement and rubber plantation. However, the occur-
rence of higher C value in the year 2019 in comparison to the year 1986 was due to
the active interference of rubber plantation (Fig. 5.4).

Support Practice Factor (P)

Contour cultivation, strip cropping and terrace system are the most essential con-
servation practices revealed in the USLE. During field verification, only bundings in
the agricultural lands was observed which was ineffective. Therefore, the P value
was set to 0.28 for paddy fields and 1 for rest of the areas (Fig. 5.5).

Table 5.4 C value of differ-
ent LULC classes of the basin

LULC class C value Source

Dense forest 0.004 Dabral et al. (2008)

Open forest 0.008 Dabral et al. (2008)

Degraded forest 0.008 Dabral et al. (2008)

Agricultural land 0.28 Dabral et al. (2008)

Rubber plantation 0.20 Sujaul et al. (2012)

Shifting cultivation 0.33 Dabral et al. (2008)

Settlement 1.00 Dabral et al. (2008)

Water body 0.00 Ganasri and Ramesh (2016)

Barren land 0.18 Pandey et al. (2007)

Fig. 5.4 Spatial distribution of C in the Muhuri River basin for the years 1986 and 2019
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Spatial and Temporal Features of Soil Erosion in the Muhuri
River Basin During 1986 and 2019

Present study shows that during the year 1986 and 2019, the average annual soil loss
from the basin was between 0 to 101.06 t ha�1 year�1 and 0 to 110.08 t ha�1 year�1,
respectively (Fig. 5.6). The amount of annual soil loss has been categorised into five
classes, such as low, medium, high, very high and severe. During 1986 and 2019,
about 82.58 and 51.58% areas were under low soil erosion class, respectively
(Table 5.5), where high vegetal cover in comparison to the open forests was found.

Fig. 5.6 Spatial distribution of annual soil loss of the study area for 1986 and 2019

Fig. 5.5 Spatial distribution of P factor in the study area
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In these years, about 10.78 and 37.92% of the basin experienced moderate soil
loss, 4.39 and 6.63% areas high soil loss, 1.77 and 2.72% very high and 0.46 and
1.14% areas severe soil loss (>100 t ha�1 year�1), respectively.

During the periods 1986–2019, the areas under low soil loss were decreased to
37.54%. On contrary, the areas under moderate, high, very high and severe soil loss
were significantly increased to 251.77, 50.93, 42.41 and 145.74%, respectively
(Table 5.5). The central portion of the basin was mostly occupied by agricultural
lands and settlements but very recently rubber plantation was flourished vigorously
in this part (Fig. 5.6).

Such factors boosted the status of soil erosion in that part of the basin. As we
know that the hilly parts of the basin are mainly affected by the traditional jhooming
practised by the indigenous people and that’s why the degraded forests still remain in
high altitudes which ultimately become responsible for increasing soil erosion in
that part.

Analysis of Relation Between Mean Soil Loss and LULC

Within the study period of 1986 to 2019, about 92.05, 68.63 and 5.05% areas under
dense forest, open forest and degraded forest were decreased, respectively, whereas,
agricultural land, area under rubber plantation, settled area and area under barren
land were increased to 14.47, 1600.39, 95.36 and 197.33%, respectively.

The authors observed a relation between the LULC change and the rate of mean
soil loss in the Muhuri River basin during the periods 1986–2019. With modification
of the land cover, the erosion rate was changed significantly. The rate of mean soil
loss in the areas under degraded forest, agriculture, rubber plantation, jhoom culti-
vation and settlement were 0.25, 11.02, 0.71, 3.55 and 12.85 t ha�1 year�1, respec-
tively, during the year 1986 and became 2.62, 12.24, 2.21, 4.87 and
13.25 t ha�1 year�1, respectively, during 2019. On contrary, during 1986, the rate
of mean soil loss from the areas under dense forest and open forest were 0.01 and
0.02 t ha�1 year�1, respectively, but with decrease in areal coverage the soil loss
became absent during 2019. In case of degraded forest, agricultural land, rubber

Table 5.5 Category-wise areas under soil erosion during 1986 and 2019

Average annual
soil loss
(t ha�1 year�1)

Erosion
class

1986 2019 Change (1986–2019)

Area (ha.)
Area
(%) Area (ha.)

Area
(%) Area (ha.)

Area
(%)

<5 Low 57,713.06 82.58 36,044.69 51.58 �21,668.37 �37.54

5–30 Moderate 7532.75 10.78 26,498.11 37.92 18,965.36 251.77

30–60 High 3071.7 4.39 4636.08 6.63 1564.38 50.93

60–100 Very
high

1239.89 1.77 1903.94 2.72 525.79 42.41

>100 Severe 323.89 0.46 799.17 1.14 475.28 145.74
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plantation, jhoom cultivation, settlement and barren land the mean soil erosion was
increased by 2.37, 1.22, 1.5, 1.32, 0.4 and 0.68 t ha�1 year�1, respectively, whereas
in case of dense forest and open forest, it was decreased considerably (Table 5.6).

Within the study period, all categories of soil erosion illustrated decreasing trend
in case of the dense and open forests as areal coverage declined significantly. Again,
in case of the degraded forest, the percentage of all erosion classes, except moderate
and high class, were declined (Table 5.7). Although agricultural lands are of gentle
slope but the absence of proper conservation practice augmented moderate, high and
very high classes of erosion (Table 5.7). Rubber plantation was newly introduced in
the study area and mainly found on moderate and steep slopes. Since it’s a profit
benefit income source, therefore, the area under rubber plantation increased signif-
icantly within the basin. During the year 1986, the area under rubber plantation was
only 1.46%, whereas it became 24.91% in the year 2019. As a result, all categories of
soil erosion except severe class were increased. However, despite decline in shifting
cultivation by 25.29% areas under erosion classes were increased.

The settled areas which have considerable uncovered surface were revealed as
most vulnerable to erosion. The areas under settlement were increased by 95.36%
within the study period with increasing population pressure. Consequently, the areas
under moderate, high, very high and severe erosion were augmented by 199.24,
215.20, 93.05 and 54.84%, respectively (Table 5.7). On the other hand, the barren
lands were free from high, very high and severe erosion in both the years, while the
susceptibility to low and moderate erosion were increased by 242.86 and 100%,
respectively, with increasing the barren land from 0.11 to 0.32%. A clear relation
between LULC change and amount of mean soil loss was evident in the study area.
Growing anthropogenic activities had already altered the natural forest cover into

Table 5.6 LULC-wise mean annual soil loss of the study area

LULC

1986 2019 1986–2019
Mean soil loss
(t ha�1 year�1)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Change
(%) 1986 2019 Change

Dense forest 4140 5.90 329 0.47 �92.05 0.01 0 �0.01

Open forest 20,063 28.59 6293 8.97 �68.63 0.02 0 �0.02

Degraded
forest

32,892 46.87 3123 44.50 �5.05 0.25 2.62 2.37

Agricultural
land

7014 9.99 8029 11.44 14.47 11.02 12.24 1.22

Rubber
plantation

1028 1.46 1748 24.91 1600.39 0.71 2.21 1.50

Shifting
cultivation

1202 1.71 898 1.28 �25.29 3.55 4.87 1.32

Settlement 2393 3.41 4675 6.66 95.36 12.85 13.25 0.40

Water body 1365 1.94 1015 1.45 �25.64 0 0 0

Barren land 75 0.11 223 0.32 197.33 1.71 2.39 0.68

Total 70,172 100 70,172 100
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degraded forest, as a result, areas under dense and open forests were decreased in the
hilly areas and degraded forests still maintained higher position in the study area in
general and in the hilly part in particular (Debnath et al., 2017a, b). Therefore, the
combination of steep slope and degraded forest had accelerated the moderate, high
and very high rate of soil loss in the hilly areas, although shifting cultivation had also
contributed to moderate to severe erosion in the hilly part.

Rubber plantation was recognised as a substitute monoculture practice in the
forest areas, mainly in the tilla lands with moderate to steep slope. Since the owners
collect latex regularly and there is a chance of forest fire in plantation during dry
season from the flushing leaves (Fig. 5.7a), the owners always try to keep the floor
clean by clearing the secondary growth and removing the flushing leaves from the
floor (Fig. 5.7b). Thus, the plantation floors always remain barren which promote

Fig. 5.7 Priority-wise sub-watersheds (SW) for control of soil erosion
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soil erosion, especially during the monsoon season. According to Wu et al. (2001),
conversion of tropical forests to rubber monoculture increases the rate of soil erosion
significantly. The central and the western parts of the basin were occupied by rubber
plantation and gradually extended towards the hilly part leading to widespread
moderate to very high erosion. In addition, moderate to steep slopes in the plantation
areas favour runoff when rainfall intensity becomes high. Therefore, the barren
ground surfaces of the plantations experience soil loss. The increased demand for
agricultural land owing to the growing population in the study area had consequent
upon the clearing of forest lands.

During field verification, it was observed that the farmers became conscious about
soil fertility and its importance in high yield. As a result, the area under severe
erosion class was slightly decreased, but moderate, high and very high erosion class
still persist in the central part of the basin. Prolonged dry period followed by high
intensity rainfall contributes high risk of soil erosion in the settled areas. The area
under current fallow increases during dry season on account of shortage of irrigation
water and contributes to high erosion.

The assessment of soil erosion using satellite images and GIS technique becomes
the most important means for evaluation and monitoring of the past and present
scenario of a macro- as well as a micro-geographical area in repetitive timescale
coverage. Obviously, the mean rate of soil erosion is related with the nature
of LULC.

The major changes identified in the river basin were due to the introduction of
monoculture activity and decrease of natural forest cover. The significant increase in
soil erosion had accelerated sedimentation process in downstream of the Muhuri
River.

Prioritization of the Sub-watersheds (SW) for the Management

Identification of the priority areas of the entire Muhuri River basin is crucial for
taking decision on soil and water conservation with the forest management
programme (Fig. 5.7). For this purpose, the researcher has considered the actual
amount of erosion, change of the erosion amount within the period 1986 to 2019 due
to LULC change and LULC-wise estimated erosion. In the present study, 18 SW of
the Muhuri River basin have been prioritized into three classes: low, medium and
high based on mean soil loss from them measured through USLE model (Table 5.8).

Low priority level: The sub-watersheds 1, 2, 3, 8, 18 and 20 come under low
priority level class where mean soil loss ranges between 2.43 to 4.40 t ha�1 year�1.
Hence, it’s indicating that these watersheds do not need instantaneous measurement
to reduce the soil erosion.

Medium priority level: The sub-watersheds with the mean soil erosion range of
4.40–6.50 t ha�1 year�1come under the medium priority level. The sub-watersheds
5, 6, 7, 10, 11, 14, 15, 16, 17 and 19 have come under this category. There is need of
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proper attention in order to check these sub-watersheds from conversion to the
successive priority level.

High priority level: Four sub-watersheds i.e., SW-4, 9, 12 and 13 have given
under high priority level due to high mean soil loss of more than 6.50 t ha�1 year�1.
Hence, immediate action plan should be needed in these watersheds to minimize the
soil erosion.

The study of the LULC map shows that the SW having agriculture and settlement
come under high, as well as medium category. All other sub-watersheds except
SW-15, 16, 17 and 19 come under the high and medium priority level, mainly the
zone of rubber plantation, which have spontaneous soil erosion, whereas those
remaining sub-watersheds, located in the hilly areas and mostly under shifting
cultivation, have ultimately achieved the medium priority level in the soil and
water conservation map.

Strategies of Soil Conservation

In order to reduce the intensity of the soil erosion in the Muhuri River basin, few
alternative strategies has been suggested in the present study. Since the study area is
situated in the hilly part of NorthEast India; therefore shifting cultivation is mostly

Table 5.8 Priority ranking of
SW on the basis of mean
soil loss

Code of sub-watershed

Soil loss (t ha�1 year�1)

Mean SD Category

SW-1 3.08 3.61 Low

SW-2 3.35 4.33 Low

SW-3 4.02 5.24 Low

SW-4 7.07 7.58 High

SW-5 4.88 5.3 Medium

SW-6 5 5.42 Medium

SW-7 5.48 7.05 Medium

SW-8 3.73 4.32 Low

SW-9 6.90 7.20 High

SW-10 4.98 5.74 Medium

SW-11 4.41 5.7 Medium

SW-12 7.4 8.22 High

SW-13 7.7 9.87 High

SW-14 4.97 6.32 Medium

SW-15 5.11 5.5 Medium

SW-16 5.72 5.34 Medium

SW-17 4.17 2.61 Medium

SW-18 3.87 3.34 Low

SW-19 4.45 3.99 Medium

SW-20 2.43 2.96 Low

92 J. Debnath and N. Das(Pan)



dominated in the upper catchment. This unscientific way of cultivation recognised as
a vital factor for the soil erosion. Thus, terrace cultivation is recognised as a most
effective conservation technique in the hilly part, which will reduce the surface
runoff along with velocity of the rain water and reduced the soil erosion. According
to Guo et al. (2019) and Dai et al. (2018), contour ridge tillage and cross ridge tillage
are the most important techniques to reduce the soil erosion in the hilly region
compare to the down slope tillage. The experimental study of Sharma et al. (2017)
and Dai et al. (2018) suggested that intercropping and mulching practices can be a
another techniques to reduce the soil erosion in the farm land of the hilly region.

Moreover, construction of check dams in the streams of the hilly parts can be
effective measures to reduce the supply of eroded materials to the main channel
which will reduce the problem of flood hazard in the lower parts of the basin.
Identification of the suitable areas of the afforestation using the modern geospatial
techniques like GIS and remote sensing and implementation of the proper affores-
tation programme can be a important measures in this watershed. This technique will
increase the forest areas and reduce the soil erosion of the study area.

5.5 Conclusion

The role of human activities behind LULC change during last 33 years which led to
change the soil erosion potential, i.e., either positive or negative have been revealed
in the present study. Very limited parts of the watershed have protective land cover
while most of the parts, mainly hilly areas, were affected by deforestation; tilla and
plain areas are experienced by infrastructure and related land degradation which
inherently enlarged the risk of the soil erosion. Obviously, the mean rate of soil
erosion is associated with the LULC change of the study area, and therefore, in case
of degraded forest, agricultural land, rubber plantation and jhoom cultivation, the
mean soil loss was increased by 2.37, 1.22, 1.50 and 1.32 t ha�1 year�1 correspond-
ingly within the study period (1986–2019). The main reasons for such increase of
soil erosion potential in the river basin over the study period were decreased natural
forest cover, increased settled area, barren land, agricultural land and existence of
shifting cultivation. However, this enhanced erosion accelerated sedimentation
problem in downstream of the Muhuri River.

The study illustrated that the conversion of forest land into rubber plantation
became a common phenomenon in the basin which eliminated the effective imped-
iment to soil erosion. Hence, there is a need of management through proper
programme implementation. Recently in order to develop jhum areas, a number of
integrated approaches of mixed land use system become most suitable in the hilly
part. The approaches include promotion of modern agriculture, intercropping diver-
sification with local preference, jhum fallow management, tree farming, floriculture,
agroforestry, watershed management, etc. (Jamir et al., 2004; Verma et al., 2017).
Growth of vegetal cover on the barren surfaces and degraded forests is necessary to
reduce the soil erosion potential of the river basin. Moreover, there is scope of further
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study within this study area where priority of sub-watershed and afforestation
programme related researches could be carried out in order to facilitate the
management plan.
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Chapter 6
Application of Geoinformatics and AHP
Technique to Delineate Flood Susceptibility
Zone: A Case Study of Silabati River Basin,
West Bengal, India

Debasis Ghosh , Monali Banerjee , Manas Karmakar ,
and Dayamoy Mandal

Abstract Among all the natural disasters, floods are the most common phenomena
that cause huge obliteration to the human lives and socio-economic and cultural
infrastructures. Silabati, a monsoon influenced river of West Bengal is well known
for frequent flooding events in its lower basin areas. In the present study, an attempt
has been made to delineate flood susceptible areas of Silabati river basin using AHP
(Analytical Hierarchy Process) technique and geospatial technology. A total number
of 11 physiographic, climatic, and anthropogenic factors (elevation, slope, flow
accumulation, distance from river, drainage density, geomorphology, lithology,
surface runoff, topographic wetness index, land use land cover, and curvature) are
taken into consideration to prepare the flood susceptibility map of the study area. The
map is categorized into five distinct flood susceptible zones, such as very high, high,
moderate, low, and very low susceptible zones, and these zones cover 14.04%,
20.67%, 21.76%, 20.69%, and 22.84% of the total basin area, respectively. Keshpur,
Ghatal, Chandrakona-I, Chandrakona-II, and Daspur-I Community Development
(C.D.) blocks of West Medinipur district located in lower Silabati basin fall under
very high and high flood susceptibility zones. The performance and efficiency of
AHP are validated using Area Under Curve (AUC) method, which ensured signif-
icant accuracy (76.41%) of the study. A large number of people residing on lower
Silabati basin along with several socio-economic and cultural structures get severely
affected many times during floods. Therefore, this study may facilitate the formula-
tion and implementation of flood management strategies in the vulnerable areas of
Silabati river basin.
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6.1 Introduction

Flood is the most common among all catastrophic environmental hazards; it causes
massive damages to the natural and human resources. In respect to the human
society, flood is the most devastating natural hazard because of its irreversible
damage capacity to infrastructure, life loss, loss of agricultural, social disruption,
etc. (Taylor et al., 2011; Dawod et al., 2011; Swain et al., 2020). The low-lying
regions of the world are mostly facing the terrible form of floods due to water
logging for incessant rainfall, exhaust of water beyond the carrying capacity of the
stream, settlement in the front of swirling water, etc. (Ghosh & Kar, 2018; Natarajan
et al., 2021). Globally, on an average, 170 million people are adversely affected by
flood every year (Kowalzig, 2008; Das, 2019). In between 1998 and 2017, more than
two billion people are affected due to the devastation caused by flood events across
the world (World Health Organization, 2018), and 656 million USD economic loss
with more than 1.4 lakh human life loss have occurred during this time span
(Wallemacq & Rowena, 2018). A total number of 4731 people have lost their
lives across the world only in floods occurred in 2016, where average annual
death (2006–2015) in flood is 5709 people (Guha-Sapir et al., 2016; Chowdhuri
et al., 2020). According to world disaster report (2015), Asia recorded highest
number of affected and dead people due to flood around the world in between
2005 and 2014 (World Disasters Report 2015). Most of the developing countries
of Asia bear the devastating results of flood, such as China, India, Pakistan,
Bangladesh, Sri Lanka, Indonesia, etc. (Wallemacq & Rowena, 2018). In India,
every year since 1953 to 2016, 7.19 million hectare area and 31.88 million people on
an average are affected by flood. During this time period due to flood India has
suffered a loss of 347,581.201 crore rupees and the increasing trend of loss with
years is going on (Flood Damage Statistics, 2018). In 2017, a total number of
868 people lost their lives by flood during mid of august (Hindustan Times,
2017a). In the next year (August 2018) a massive flood hit Kerala, where 1.24
million people dislocated and 474 people died (Sphere India, 2018). This terrible
scenario of adverse effects of flood does not change very much for West Bengal. The
flood damage statistics of 2018 revealed that around 244.23 million people of West
Bengal are affected by floods occurs in between 1953 and 2016, and the state has
suffered with a loss of 43,954.792 crore rupees (Flood Damage Statistics, 2018).

Floods in India are mainly occurred because of natural (heavy monsoonal rainfall,
cyclone, cloud blast, etc.) and manmade (large dam, siltation of river, sand mining,
unsystematic management of drainage, etc.) factors (Şen, 2018; Chowdhuri et al.,
2020; Sarkar &Mondal, 2020). In India, rural areas are facing huge agricultural loss,
occasional loss of livestock and human life, etc. and urban areas are suffering with
losses of domestic assets and infrastructures due to inundation of flood plain of the
river, costal area, etc. (Şen, 2018). This amount of losses and damages from floods
are increasing every year in relation with increasing trends of flood frequency (Flood
Damage Statistics, 2018). In the previous two decades, the frequency of floods has
increased by 40% worldwide (Hirabayashi et al., 2013; Khosravi et al., 2019).
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Therefore, impeding an increase in loss and damages by flood are essential for the
sake of human society and environment (Jongman, 2018; Genovese & Thaler,
2020). The analysis of flood events is very significant to reduce the potential
damages of floods (Huang et al., 2008; Samanta et al., 2018). Pre-flood measure,
flood forecasting, post-flood measures are the impost steps of flood analysis
(Wanders et al., 2014; Chowdhuri et al., 2020). The first step of flood mitigation is
the identification of flood vulnerable zone, which helps to forecasting the flood
events (Sanyal & Lu, 2003). Therefore, flood susceptibility mapping is the important
part of flood hazard mitigation system, and it is very useful for early warning system,
mitigation of future floods events, reducing causalities, etc. (Tehrany et al., 2015; Ali
et al., 2019; Sarkar & Mondal, 2020). The susceptibility of flood is determined by
several geographical and flood influencing factors, such as geomorphology, geol-
ogy, rainfall, slope, elevation, land use land cover, drainage density, flow accumu-
lation, etc. (Kazakis et al., 2015; Das, 2018; Hong et al., 2018; Das, 2019). All these
factors are analyzed to assess the flood susceptibility zones. Various researchers
from different field have adopted different kinds of mathematical and statistical
techniques to analyze these factors, such as Analytical Hierarchy Process (AHP)
(Das, 2018; Ali et al., 2019; Yousuf Gazi et al., 2019: Jabbar et al., 2019), Frequency
Ratio (FR) (Khosravi et al., 2016; Lee et al., 2018; Ali et al., 2019; Liuzzo et al.,
2019; Rahman et al., 2019; Sarkar & Mondal, 2020), Logistic Regression (LR)
(Pradhan, 2010; Tehrany & Jones, 2017; Lee et al., 2018; Liuzzo et al., 2019;
Rahman et al., 2019), Evidential Belief Function (EBF) (Shafapour Tehrany et al.,
2019b; Chowdhuri et al., 2020), Artificial Neural Network (ANN) (Jahangir et al.,
2019; Rahman et al., 2019), Analytic Network Process (ANP) (Dano et al., 2019),
Shannon’s Entropy (SE) (Haghizadeh et al., 2017; Liuzzo et al., 2019), Statistical
Index (SI) (Shafapour Tehrany et al., 2019a), Weight of Evidence (WoE) (Khosravi
et al., 2016; Rahmati et al., 2016), and Support Vector Machine (SVM) (Tehrany
et al., 2015, 2019b), etc. All the models have some advantages and limitations; thus,
selection of best model for flood susceptibility is a tough work. The most favorable
and preferred multi-criteria decision-making technique is the AHP techniques for
flood susceptibility mapping, and a wide number of researchers have already
adopted AHP with adequate accuracy (Lawal et al., 2012; Matori et al., 2014;
Elkhrachy, 2015; Ghosh & Kar, 2018; Yousuf Gazi et al., 2019; Hammami et al.,
2019; Hoque et al., 2019; Jabbar et al., 2019; Phrakonkham et al., 2019; Rahman
et al., 2019; Vojtek & Vojteková, 2019; Mishra & Sinha, 2020; Subbarayan &
Sivaranjani, 2020; Chakraborty & Mukhopadhyay, 2019). In this technique, the
impact of flood provoking factors is assessed by the application of pair-wise
comparison matrix and ranked all the factors to delineate priorities zones (Vojtek
& Vojteková, 2019; Swain et al., 2020). Enumerating, weight computation, inter-
polating and integration methods are incorporated in this technique (Chen et al.,
2011). In the recent time, the integration of different factor to delineate the suscep-
tible zones of flood is done through the application of Geographical Information
System (GIS) and Remote Sensing (RS).
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In the recent past, various researchers from different disciplines successfully
integrate multi-criteria decision-making tools and GIS for the delineation of flood
vulnerable zones, such as Das (2019) worked on flood susceptibility mapping and
hydro-geomorphic response to flood. Integrated application of AHP and GIS is used
to fulfill the objective; Saha and Agrawal (2020) adopted AHP and GIS technique to
assess the flood risk of Prayagraj district, India. In their study, flow accumulation
factor is considered as the high influencing factor to food; Sarkar and Mondal (2020)
conducted a study on Kulik river basin to delineate the flood vulnerability zone. The
FR model has been successfully used to perform the quantification of determination
potentiality of causative factors of flood and integrated using GIS platform; Swain
et al. (2020) have tried to find out the flood susceptibility zone of a flood vulnerable
zone of Bihar using AHP and GIS technique. In their study, a total number of
21 flood causative factors are considered; other studies are Ghosh and Kar (2018);
Chowdhuri et al. (2020); Deepak et al. (2020); Natarajan et al. (2021); Malik and Pal
(2021); Arya and Singh (2021); etc. So, widely accepted integration approach of
AHP and GIS has been used in the present study to find the susceptible zone of flood
in Silabati river basin.

In perspective of flood, Silabati river is one of the most vulnerable rivers in south
Bengal (Government of West Bengal, 2019). Almost every year overflow of Silabati
river causes flood, specifically in the areas of Banka, Khirpai, and Ghatal of lower
Silabati river basin (IWAI, 2016; Das et al., 2020). Due to inundation of adjacent
areas of Silabati, thousands of people have dislocated and lots of damages have
occurred (Hindustan Times, 2017b). In between 1978 and 2016, a total number of
10 high magnitude floods hit the flood plain of Silabati basin (Dandapat & Panda,
2018). During the inundation period, the loss of resources in lower reach of Silabati
is maximum (Das et al., 2020). A number of flood hazards have occurred in the
recent past years (2011, 2013, 2014, 2015, 2016, and 2017) in Silabati River caused
huge damages (NRSC, 2018). The narrow channel of lower Silabati River indulges
the overflow of water and causing of embankment breach (Das et al., 2020). This
event causing high inundation of area and people suffered with huge agricultural
losses, which terrifies the people of several villages (News18, 2019). Additionally,
every year some causeways are submerged under the water of Silabati River
(Anandabazar Patrika Online, 2020). In this context, flood susceptibility zone
delineation and level of vulnerability assessment are very much essential for flood
management in Silabati river basin. Considering the flood prone characteristics and
adverse effect of flood in Silabati River, the present study was conducted. Thus, the
present study tried to find out the flood susceptibility zones of Silabati river basin
using AHP and geoinformatics. It will help to provide better forecasting about
inundation intensity to the floodplain dwellers and make a positive step in flood
management of Silabati river basin.
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6.2 Geographical Accounts of Silabati River Basin

The Silabati River is also known as “Silai” which is originated from plateau fringe
region of Chota Nagpur plateau and meets with Dwarakeswar River near Ghatal of
Paschim Medinipur district, West Bengal. Every year flooding characteristics cannot
permit to imagine about the source of Silabati river; it is originated from a pond near
Napara village (23�14009.9400 N and 86�38042.1400 E) of Puncha community devel-
opment (C.D.) block of Purulia district. After origin, the river run about 185 km
southeasterly and several tributaries, such as Joypanda, Kubai, Tamal, Betal, Parang,
Champa, Tarajoli, Mulajor, Purandar and Amoor, etc. enters into the main river
channel during it course. The entire Silabati basin covers an area of 4195 km2 and
located Purulia, Bankura and West Medinipur districts of West Bengal, India
(Fig. 6.1). The geographical extension of the river basin is 22�230N to 23�150N
and 86�380E to 87�460E. Geomorphologically, the basin is located in between
Bengal plateau and stable-self part of Bengal basin. Topography of Silabati river

Fig. 6.1 Location map of Silabati river basin. Different symbols used within the basin indicate age
of various geological formations. (Source: GSI and Google Earth Image)
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basin gradually varies from upper reach (undulating surface of Chota Nagpur
plateau) to lower reach (alluvium plain of Ganga delta) (Geological Survey of
India, 2001). The isolated hillocks (average 150 m height) are found in the upper
part, while isolated highlands are observed at the lower part. The high concentration
of lateritic upland of Pleistocene and river flow along this upland formed the famous
geomorphosite of West Bengal, i.e., bad land of Gangani (Mandal & Chakrabarty,
2021). The study area experiences sub-humid tropical climatic conditions, and
receives annual 100–150 cm rainfall annually (Mahala, 2020). Most of the rainfall
is occurred in Monsoon period. Almost in every year, lower reach of the basin
encounters flood owing to physiographic characteristics and excessive rainfall over a
short time span. It is quite evident from the structures of river bank protection near
Talda, Khamardanga, Mathurakata, Gangra, Jhumka and Gugia villages (Bankura
district) that the flood occurring nature of the river is very much severe. The
important towns within the catchment area are Taldangra and Simlapal of Bankura
district; Garbeta, Salboni, and Chandrakona of Paschim Medinipur district.

6.3 Material and Methods

Data Sources

In order to assess the flood risk and vulnerability mapping of Silabati river basin, a
total number of 11 flood influencing factors, such as elevation, slope, flow accumu-
lation, distance from river, drainage density, geomorphology, lithology, surface
runoff, land use land cover, topographic wetness index, and curvature are taken
into consideration. Data set of these selected causative factors is obtained from
different types of sources, like Digital Elevation Model (DEM) of Shuttle Radar
Topography Mission (SRTM) with spatial resolution of 1 Arc sec (acquired on 23rd
September, 2014) downloaded from the United States Geological Survey (USGS)
website (https://earthexplorer.usgs.gov); Landsat 8 Operational Land Image (OLI)
of 30 m spatial resolution (acquired on 16th May, 2018) obtained from https://
earthexplorer.usgs.gov; Topographical Maps (73I/12, 73I/16, 73J/13, 73M/4,
73M/8, 73M/12, 73N/1, 73N/2, 73N/5, 73N/6, 73N/9 and 73N/10) of Survey of
India (SOI) on a scale of 1:50,000; District Resource Maps of Geological Survey of
India (GSI) on a 1:250,000 scale (Purulia, Bankura and West Medinipur districts);
geomorphological map derived from GSI on a scale of 1:250,000; Socio-economic
and cultural infrastructures from Google Earth Image; and yearly surface runoff data
acquired from https://bhuvan.nrsc.gov.in maintained by National Remote Sensing
Centre (NRSC) of Government of India.
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Preparation of Geospatial Layers

The flood susceptibility map of Silabati river basin is prepared using the mentioned
factors (Fig. 6.2). All these factors are analyzed in geospatial platform, where
geospatial layers of all these factors are prepared. The basin map of the study area
is delineated from SRTM-DEM using the hydrology tools in ArcGIS software.
Before the operation, SRTM-DEM has been projected with Universal Transverse
Mercator (UTM), World Geodetic Survey 1984 (WGS-84) 45 North Zone. After the
delineation, basin map was rectified with topographical maps. The elevation, slope,
flow accumulation, topographic wetness index, curvature and drainage layer of
Silabati river basin are also extracted from SRTM-DEM using spatial analyst tools
in ArcGIS software. The drainage density map is prepared by using Inverse Distance
Weighted (IDW) technique in ArcGIS. In the same way, buffer tools are used to
prepare distance from river layer. The land use land cover layer has been prepared
from Landsat 8 (OLI) satellite imagery using maximum likelihood algorithm of
supervise classification in Erdas Imagine software. Geomorphology and lithology
layer of the basin is prepared from geomorphological and geological map of GSI,
respectively. The surface runoff layer of Silabati river basin is prepared from runoff
data of NRSC and using the interpolation method (IDW) in ArcGIS software. The
geomorphological and geological map has been geo-rectified with the UTM,
WGS-84, 45N zone and prepared the required maps in ArcGIS 10.3.1 platform.
Finally, all thematic layers are classified into five distinct categories following the
Jenks natural break method.

Fig. 6.2 Flowchart of the methodology adopted in the study
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Analytical Hierarchy Process (AHP)

All the 11 flood causative factors are interrelated. In the present study, AHP
technique is used to quantify the influencing capacity of each factor in flood
occurrence through the assigning of weight to each factor (Fig. 6.3). The AHP
technique is introduced by Saaty in 1980 (Saaty, 1980). It is a semi-quantitative
multi-criteria decision-making approach, in which decisions are made through pair-
wise comparison between different factors without inconsistency (Das, 2018;
Chowdhuri et al., 2020; Ghosh et al., 2020a; Karmakar et al., 2021). In the field of
environmental science several problems have severe complexity and it can be
reduced by the application of AHP technique (Kannan, 2010; Çelik, 2019; Arya &
Singh, 2021). Another advantage of the technique is the quantification of influencing
factor by assigning weight for factor based on the relative importance of factor
(Maity & Mandal, 2019; Waris et al., 2019; Ghosh et al., 2020a). In this method,
weight assignment is done on the basis of expert judgment of decision makers, and
assessment of consistency of judgment value by consistency index (CI) is the
strongest part of the method (Das, 2019; Murmu et al., 2019; Karmakar et al.,
2021). In this work, the AHP is consisted of two major parts, such as evaluation of
causative factors and assign weight and integration of all these factors to compute
flood susceptibility index. The evaluation of factors has been done in four steps. In
the beginning, weight of each factor is assigned from the literature review, field
visits, and expert judgments. Using the nine-point scale of Saaty weight of each
factor is assigned based on the relative importance of a factor on the occurrence of

Fig. 6.3 Flowchart of
analytical hierarchy process
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flood (Table 6.1). In the next step, comparison of all factors with each other is done
by a matrix which is known as pair-wise comparison matrix (Eq. 6.1).

W ¼

v11 v12 ⋯ v1n
v21 v ⋯ v2n

⋯ ⋯ ⋯ ⋯
vn1 vn2 ⋯ vnn

���������

���������

ð6:1Þ

Here,W is the pair-wise comparison matrix, v is the assign weight of ith factor. In
this matrix, assignment of weight depends on the importance of the factor compare
to other factor. Thus, the greater influence factor has been assigned to absolute
number (Table 6.1) as weight per requirement and less importance factor assigned
reciprocal of the absolute number in relation of the greater influence factor. The pair-
wise comparison matrix is shown in Table 6.2. After that, estimated Eigen value of
each factor is calculated from the matrix table (Table 6.2) by multiplying of all
assigned weight of all factors in a row and then the Nth root of the product result is
computed by using the Eq. (6.2).

EE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Va � Vb � Vc � . . .VN

N
p ð6:2Þ

Here, EE represent the estimated Eigen value of ith factor; Va, Vb Vc Vn is the
values of the row value of ith factor and N is the total number of factors. The
principle Eigen value of each factor is computed using the Eq. (6.3), where Ev
denotes the principle Eigen value.

Ev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Va � Vb � Vc � . . .VN

N
p

Pn

i¼1
EE

ð6:3Þ

After the principle Eigen value (λmax) has been calculated, the consistency index
(CI) is calculated using the Eq. (6.4). The CI value is divided by the RI value
(Eq. 6.5) to compute the consistency ratio (CR) and verify the judgment coherence.
The RI value is varying with number of parameter taken into consideration. In the
consistency assessment, CR value must be less than 0.1 for acceptance of the
judgment value of factor; if not, the pair-wise comparison matrix has to revise
with new judgment values and this process will continue until the CR value comes
down to less than 0.1 (Saaty, 1990).

CI ¼ λmax � n
n� 1

ð6:4Þ

CR ¼ CI
RI

ð6:5Þ
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The CR value of the present study is 0.054, which revealed that a consistency is
present in the judgment values. Thereafter, weight is assigned to all sub-classes of
each factor and the principle Eigen value is computed by considering same proce-
dure of weight assigning.

Flood Susceptibility Index (FSI)

The flood susceptibility index (FSI) is computed using all the selected flood caus-
ative factors. The weighted linear combination method is adopted to calculate the
FSI. In this method, weight of each factor is multiplied with the rank of sub-classes.
The rank is assigned accordingly to sub-classes based on the weightage value of each
sub-class of a factor (Table 6.3). Now, the Eq. (6.6) is used to calculate the FSI,
where Evi is represented the principle Eigen value of ith factor and rj is the rank of jth
sub-classes of respective ith factor.

FSI ¼
Xn

i¼1

Evi � r j

� � ð6:6Þ

Finally, FSI value is classified into five distinct classes, very low, low, moderate,
high, and very high. Based on this method, all the geospatial layers are integrated in
ArcGIS software using the map algebra tool.

Accuracy Assessment

Accuracy assessment or validation of model is an integral part of any decision-
making model. Without accuracy assessment, any simulation model is incomplete
(Chung & Fabbri, 2003; Ghosh et al., 2020b; Sarkar & Mondal, 2020). There are
several techniques used by different researchers across the world to validate the
simulation models. However, the application of ground level data for accuracy
assessment is the most accurate and convenient technique to validate such a
model. In case of flood susceptibility assessment, use of historical data of inundated
areas due to flood is also evolved as a significant data set for validation of the flood
susceptibility map (Pradhan, 2010; Lee et al., 2018; Ali et al., 2019; Das, 2019). In
the present study, a total number of 197 known flood sites are demarcated during the
flooding season of 2017 using handheld GPS (Garmin eTrex-20) and inundation
area identified from the flood map of 2017 provided by NRSC (collected from
https://bhuvan.nrsc.gov.in). In this study, the Area Under Curve (AUC) is consid-
ered to evaluate the performance and efficiency of the AHP model. To construct the
AUC, resultant flood susceptibility map is classified into 100 classes, and cumulative
percentage of flood occurrence in different susceptibility classes is also computed.
Based on calculation, the AUC is plotted to validate the model (Fig. 6.17).
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Table 6.3 Allocation of weight to the selected parameters and their sub-classes

Factors Weight Sub-classes
Consistency
ratio Weight Rank

Curvature 0.0137 0.33–3.37 0.0542 0.0329 1

0.11–0.33 0.0636 2

(�0.11)–0.11 0.1296 3

(�0.33)–(�0.11) 0.2638 4

(�2.37)–(�0.33) 0.5100 5

Land use land cover 0.0184 Vegetation 0.0098 0.0951 1

Agricultural land 0.1599 2

Build-up area 0.2777 3

Water body 0.4671 4

Topographic wetness
index

0.0222 4.19–7.73 0.0542 0.0329 1

7.73–9.66 0.0636 2

9.66–11.94 0.1296 3

11.94–15.39 0.2638 4

15.39–25.67 0.5100 5

Surface runoff
(mm/day)

0.0372 93.70–109.26 0.0155 0.0615 1

109.26–118.98 0.0975 2

118.98–127.49 0.1602 3

127.49–137.70 0.2634 4

137.70–155.70 0.4174 5

Lithology 0.0476 Chota Nagpur gneissic
complex

0.0066 0.1089 1

Singhbhum group of rock 0.1089 1

Unclassified metamorphic
rock

0.1089 1

Newer alluvium 0.2008 2

Older alluvium 0.4724 3

Geomorphology 0.0521 Denudational hill and
valley

0.0418 0.0271 1

Pediment–pediplain
complex

0.0510 2

Older alluvial plain 0.1114 3

Older flood plain 0.1114 3

Active flood plain 0.2420 4

Water body 0.4571 5

Drainage density
(km/km2)

0.0764 0.12–0.23 0.0358 0.0377 1

0.23–0.29 0.0643 2

0.29–0.34 0.1155 3

0.34–0.40 0.2667 4

0.40–0.50 0.5157 5

Distance from river
(km)

0.1059 >2 0.0299 0.0419 1

1.5–2 0.0730 2

1–1.5 0.1317 3

(continued)
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6.4 Results and Discussion

Elevation

In general, low laying areas are more prone to flood than elevated areas (Nakajima &
Umeyama, 2015). Thus, elevation is the prime factor for determining of flood
susceptible areas (Das, 2018, 2019; Janizadeh et al., 2019). Flat low land area
tends to have higher vulnerability to inundation than the area located at higher
elevation (Das, 2018; Ali et al., 2019; Khosravi et al., 2016; Liuzzo et al., 2019;
Rahman et al., 2019; Sarkar & Mondal, 2020; Vojtek & Vojteková, 2019). The
prepared elevation map of Silabati river basin shows that the elevation varies from
6 to 227 m (Fig. 6.4). The highest elevation is found in the north-western part of the
basin, and continuously decreases towards the south-east direction. The category of
elevation of 37–66 m dominates the river basin with a share of 29.10% area followed
by 6–37 m (27.38%) and 66–96 m (25.49%).

Table 6.3 (continued)

Factors Weight Sub-classes
Consistency
ratio Weight Rank

0.5–1 0.2398 4

<0.5 0.5135 5

Flow accumulation 0.1492 0–168,106 0.0058 0.0427 1

168,106–616,390 0.0750 2

616,390–1,456,922 0.1429 3

1,456,922–2,484,239 0.2697 4

2,484,239–4,744,336 0.4696 5

Slope (degree) 0.1983 4.83–28.67 0.0111 0.0434 1

3.15–4.83 0.0756 2

1.91–3.15 0.1427 3

0.67–1.91 0.2694 4

0–0.67 0.4690 5

Elevation (m) 0.2784 137–227 0.0111 0.0434 1

96–137 0.0756 2

66–96 0.1427 3

37–66 0.2694 4

6–37 0.4690 5
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Slope

Slope refers to the amount of inclination of surface in respect to horizontal plane.
This factor plays a crucial role in controlling surface runoff, infiltration process, and
sub-surface flow (Ali et al., 2019; Das, 2018; Hammami et al., 2019). An area with
gentle slope makes itself more vulnerable during flood as flat terrains are more
susceptible to water stagnation compared to the area under steep slope (Hammami
et al., 2019; Periyasamy et al., 2018). It is observed from the slope map that the slope
ranges from 0� to 28.67� in the study area (Fig. 6.5). An area of 47.63% of the river
basin experiences slope in between 0.67� and 1.91� followed by 1.91� to 3.14�

(24.17%), and only an area of 1.19% belongs to the slope category of 4.83–28.63�.

Flow Accumulation

Flow accumulation is the concentration of flow in a pixel draining out from neigh-
boring pixels (Das, 2018, 2019; Vojtek & Vojteková, 2019). Generally, flow
accumulation is observed to be higher and lower in lower reach and upper reach,
respectively, in a basin, since stream order and flow accumulation are positively

Fig. 6.4 Elevation map of Silabati river basin. (Source: SRTM DEM)
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correlated (Das, 2018). An increase in flow accumulation enhances the propensity of
flood risk (Vojtek & Vojteková, 2019). In this study, highest flow accumulation is
seen in the lower reach of the basin due to flat terrain and very gentle slope (Fig. 6.6).

Distance from River

Distance of an area from an active channel is very significant in the field of flood risk
mapping (Das, 2018). Areas near the active channels are more vulnerable to flood
(Ali et al., 2019; Yousuf Gazi et al., 2019). Based on the drainage network map, a
buffer analysis of active channels is carried out with an interval of 0.5 km using
proximity analysis tool in ArcGIS software (Das, 2018). A total amount of 27.40%
of river basin area lies within 1 km from the active river channel followed by 23.64%
area (within 1–2 km), while 48.96% basin area lies greater than 2 km buffer
(Fig. 6.7).

Fig. 6.5 Distribution of slope in Silabati river basin. (Source: SRTM DEM)
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Fig. 6.6 Flow accumulation map of Silabati river basin. (Source: SRTM DEM)

Fig. 6.7 Distance of basin area from active river channel in Silabati river basin
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Drainage Density

Drainage density describes the closeness of spacing of stream channels (Ghosh et al.,
2020a). It is defined as the total length of streams per unit of area (Kale & Gupta,
2001; Pallard et al., 2009). The area with higher value of drainage density exhibits
greater number of flow accumulation paths, and ultimately becomes more suscepti-
ble to flood (Chapi et al., 2017; Elkhrachy, 2015; Purnawali et al., 2017; Vojtek &
Vojteková, 2019). In Silabati river basin, greater drainage density is observed in
lower middle portion and it decreases to all directions of the basin (Fig. 6.8). The
major areas lowest drainage density is noticed in the uppermost area of Silabati river
basin.

Geomorphology

Geomorphology is the study of earth’s landforms. Low-lying flood plains are more
susceptible to flood compared to pediment–pediplain complex and denudational
hills (Das, 2018; Şen, 2018). The geomorphological map of the study area is
extracted in ArcGIS environment using the geomorphological map published
by GSI. The map reveals that an area of 82.11% of the total basin is formed by

Fig. 6.8 Distribution of drainage density in Silabati river basin. (Source: SRTM DEM and
Topographical map)

114 D. Ghosh et al.



pediment–pediplain complex, while 6.12% and 0.14% of areas are occupied by older
flood plain and active flood plain, respectively (Fig. 6.9). Therefore, it is clear that
only the lower basin area and areas along the main river channel are characterized
with plain lands.

Lithology

Lithological map is used in flood susceptibility assessment due to diverse sensitivity
of lithological units (Tien Bui et al., 2019). An area of hard rock lithology, many a
time, is characterized by low drainage density and stream frequency (Kale & Gupta,
2001); hence the area faces less probability of being flooded (Tien Bui et al., 2019).
A lithological map of the area is obtained from the District Resource Maps of GSI
and processed in ArcGIS software. North-western part of the basin is covered with
hard rock lithology, which is comprised of Chota Nagpur gneissic complex,
Singbhum groups of rocks and metamorphosed basic rocks. Newer alluvium is
found along the Silabati river and south-eastern part of the basin, while the older
alluvium occupies around 70% of the total study area (Fig. 6.10).

Fig. 6.9 Distribution of different geomorphological units in Silabati river basin. (Source: GSI)
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Surface Runoff

During precipitation, the water drains over the land surface following the local
gradient and gravity. This process of water flow is called surface runoff (Uzor-
Totty & Lawal, 2019). The interaction between precipitation and surface runoff
depends on time and space. Surface runoff is influenced by both climatic factors
(precipitation type, rainfall amount, intensity, duration, distribution, soil moisture
resulting from earlier precipitation, direction of storm movement, evaporation,
relative humidity, and seasons) and physical factors (vegetation, soil, elevation,
slope, drainage area, basin shape, drainage network) (Uzor-Totty & Lawal, 2019).
Moreover, anthropogenic activities, such as urbanization and other constructional
activities, and its resultant impervious surfaces reduce the infiltration rate, increase
surface runoff, and shorten runoff time into streams. Finally, all these increase the
chance of higher magnitude and frequency of flood in nearby streams (Uzor-Totty &
Lawal, 2019). To prepare a surface runoff map, maximum surface runoff of 4 years
(2016–2019) is obtained from NRSC and interpolated using the Inverse Distance
Weighted (IDW) method in ArcGIS software. At the end, the resultant map has been
classified into five zones based on Jenks natural break method. The higher amount of
surface runoff is recorded in the lower middle and lower reach of the basin, mainly in
interfluves zones (Fig. 6.11).

Fig. 6.10 Lithological map of Silabati river basin. (Source: GSI and https://bhuvan.nrsc.gov.in)

116 D. Ghosh et al.

https://bhuvan.nrsc.gov.in


Topographic Wetness Index

Topographic wetness index is commonly used to evaluate the influence of topogra-
phy in accumulation of flow or generation of runoff at any point of the basin area (Ali
et al., 2019; Das, 2018, 2019; Moore et al., 1991; Sarkar & Mondal, 2020; Sørensen
et al., 2006). It is expressed as TWI ¼ ln (a/ tan B); where “TWI” refers to
topographic wetness index, “a” is the specific basin area, and “B” is the local
slope (Das, 2018, 2019; Sørensen et al., 2006; Tien Bui et al., 2019). The area
with higher TWI value indicates high potentiality of flood event (Das, 2018; Tien
Bui et al., 2019). It is evident that the higher TWI value is found in active flood plain
region of Silabati river basin because of lower elevation of this area (Fig. 6.12).

Land Use Land Cover

Land use land cover has a significant role in determining surface runoff, which is
directly related to flood event in catchment area (Phrakonkham et al., 2019). An area
covered with vegetation reduces the intensity of surface runoff, and enhances the
proliferation of infiltration process; whereas build-up area strongly impedes water
percolation into the ground and hastens the surface flow (Das, 2018; Hammami
et al., 2019; Roslee et al., 2018; Samanta et al., 2018; Sarkar & Mondal, 2020). To

Fig. 6.11 Surface runoff map of Silabati river basin. (Source: https://bhuvan.nrsc.gov.in)
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perceive the nature of land use in the study area, a supervised classification is done
adopting maximum likelihood method in Erdas Imagine software (Das, 2019; Ghosh
et al., 2020a; Ghosh et al., 2020b; Sarkar & Mondal, 2020). The land use pattern of
Silabati river basin is dominated by agricultural land (76.79%), while forest cover is
the second highest land cover occupying 20% of the total basin area. Here, Sal
(Shorea Robusta), Shishu (Dalbergia), Palas (Butea Monosperma), Arjuna
(Terminalia Arjuna), Sonajhuri (Acacia Auriculiformis) and Eucalyptus (Eucalyptus
Globules), etc., plants are commonly found. Only 2.11% of the basin is covered by
build-up area, while the water body is recorded in a tiny amount, i.e., 0.42%
(Fig. 6.13).

Curvature

Curvature determines surface flow and infiltration process, and ultimately influences
the incidence of flood (Das, 2018, 2019). It can be three types: (1) concave (positive
curvature), (2) flat (zero curvature), and (3) convex (negative curvature). There are
different opinions about the role of curvature in controlling the surface flow. Young
and Mutchler (1969) advocated that a convex slope can produce much more runoff
than the concave slope (Chapi et al., 2017; Young & Mutchler, 1969). Hudson and
Kesel (2000) demonstrated that the area with the curvature value in between 1.0 and

Fig. 6.12 Topographic wetness index map of Silabati river basin. (Source: SRTM DEM)
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2.0 is more vulnerable to flood (Das, 2019; Hudson & Kasel, 2000). The curvature
category of �0.11 to 0.11 possesses an area of 45.72% followed by 0.11 to 0.33
(23.93%) and �0.33 to �0.11 (17.34%). It is the �2.37 to �0.33 category that
shares only 2.89% of the basin area (Fig. 6.14).

Assessment of Flood Susceptibility

The final susceptibility map is generated based on integration of factor weight and
sub-class rank using raster calculator in ArcGIS software. The derived map is
categorized into five distinctive classes by Jenks natural break method. The classes
are very high, high, moderate, low, and very low susceptibility of flood, and these
classes cover 14.04%, 20.67%, 21.76%, 20.69%, and 22.84% of the total basin area,
respectively (Fig. 6.15). The lower segment of the river basin is observed to be in
vulnerable condition, since it belongs to the very high to high flood susceptible
category. It is because the area has low elevation (6–30 m) and low slope (<20). This
portion is distinguished by flat alluvial plain and well developed flood plain. The
north-western part of the basin comes under very low to low flood susceptibility
zone as the elevation is observed to be high (>100 m), and slope is seen more than 20.

Fig. 6.13 Distribution of different types of land use land cover in Silabati river basin. (Source:
Landsat 8 OLI Satellite Image)
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In this section, the river Silabati, flowing through the undulating topography of
Chota Nagpur plateau, is characterized by narrow restricted valley, lower width-
depth ratio, lacking of flood plain development, rough bed configuration and fewer
number of bars; whereas the middle reach of the basin with moderate elevation
shows moderate vulnerability to flood. It is observed that flood susceptibility varies
from higher in south-east to lower in north-west direction (Fig. 6.15). Thus, the
susceptibility of flood decreases as the elevation increases towards north-west
direction.

The degree of flood vulnerability is greatly influenced by social and economic
factors of an area (Działek et al., 2019). Very high and high flood susceptibility
zones of the study area are mainly located at Keshpur, Ghatal, Chandrakona-I,
Chandrakona-II and Daspur-I Community Development (C.D.) blocks of West
Medinipur district (Fig. 6.15). Moreover, Garbeta-I, Garbeta-II, Garbeta-III, Salbani,
and Medinipur C.D. blocks of West Medinipur district are also affected by flood.
The population density and flood vulnerability are positively correlated to each other
(Hoque et al., 2019; Sarkar & Mondal, 2020). These C.D. blocks have a population
density ranging from 340 persons/km2 to 1212 persons/km2. High population
density is found in Daspur-I (1212 persons/km2), Ghatal (1016 persons/km2),
Chandrakona-II (819 persons/km2), Chandrakona-I (702 persons/km2), and Keshpur
(702 persons/km2). The Decadal (2001–2011) population growth rate varies from
13.20 to 21.37% in these blocks (Census of India, 2011). Therefore, a large number

Fig. 6.14 Curvature map of Silabati river basin. (Source: SRTM DEM)
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of people can be affected significantly by the floods. The areas with large number of
households are more at-risk during occurrence of flood (Sarkar & Mondal, 2020).
The household frequency ranges in between 71 and 261 households/km2 in the
studied C.D. blocks (Census of India, 2011). It is reported that the higher number of
household frequency is recorded in Daspur-I (262 households/km2), Ghatal
(215 households/km2), Chandrakona-II (175 households/km2), Chandrakona-I
(157 households/km2), and Keshpur (142 households/km2) (Census of India,
2011). Another important aspect needs to be mentioned here that, the flood vulner-
ability of an area gets momentum owing to its nature of house type (Hoque et al.,
2019; Sarkar & Mondal, 2020). It is noticed that the percentage of permanent, semi-
permanent, and temporary houses in these C.D. blocks varies from 6.39% to
37.95%, 40.76% to 78.83%, and 8.29% to 35.38%, respectively. The large number
of temporary houses is located at Medinipur (35.38%) and Keshpur (18.26%)
C.D. blocks; there are significant numbers of semi-permanent houses in
Chandrakona-I (78.83%), Chandrakona-II (77.92%), Keshpur (75.17%), Garbeta-
II (72.05%), and Garbeta-III (71.46%) (Census of India, 2011). During flood event,
children and females become more vulnerable because of their incapacitation to
move at once during the emergency evacuation situations (Hoque et al., 2019). The
percentage of females and children among the studied C.D. blocks ranges from
48.44% to 49.53% and 11.08% to 13.52%, respectively (Census of India, 2011).

Fig. 6.15 Flood susceptibility map of Silabati river basin. The red dots in the map indicate flood
points verified during 2017 flood
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There is a negative relation between literacy rate and flood vulnerability (Hoque
et al., 2019), and the average literacy rate of these C.D. blocks is calculated to be
67.28% (Census of India, 2011). The entire study area is agriculturally dependent,
and flood incident brings the crop production to an end pushing thousands of men
engaged in cultivation works in distress conditions (Hoque et al., 2019). It is to be
noted that the agriculturally dependent populations of these C.D. blocks vary in
between 59.90 and 83.67%, where the higher number of agriculturally dependent
population is found in the C.D. blocks of Garbeta-II (83.67%), Chandrakona-II
(83.55%), Keshpur (79.88%), Chandrakona-I (76.80%), Garbeta-I (76.37%), and
Salbani (75.31%) (Census of India, 2011). There are several permanent and tempo-
rary bridges over Silabati river, and roads stretch for a considerable length within
very high to moderate flood susceptibility zones (Figs. 6.16 and 6.17). Hence, it is
clear that a large number of people along with many socio-economic infrastructures
can significantly be affected by the flood events of Silabati river basin.

The geospatial modeling provided an effective way of flood management in the
study area. Various spatial components of flood are identified and the extent of
potential flooded area is quantified as well. It will facilitate the implementation of
evacuation strategy, rehabilitation plan, and damage assessment during critical flood
situation. It may also be effective in the development of policy, guidelines, and
recommendation of land use planning.

Fig. 6.16 Distribution of different socio-economic and cultural structures present within Silabati
river basin overlie flood susceptibility map. (Source: Google Earth Image)
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Validation of the Flood Susceptibility Map

In order to assess the validity of the flood susceptibility map, the AUC is computed,
and the output value, i.e., 76.41% depicts that the accuracy level of the flood map
prepared adopting AHP technique is well acceptable (Fig. 6.18). The value of AUC
less than 50% is considered as inappropriate for flood vulnerability mapping, while
the calculated value of AUC exceeding 75% is well accepted for the predicted model
(Akgun et al., 2008; Egan, 1975; Ozdemir & Altural, 2013; Pedzisai, 2010; Saha,
2017; Sarkar & Mondal, 2020).

Fig. 6.17 (a) Flood water spilling over the road near Bhelaidiha, Bankura on 25th July, 2017; (b)
Flood situation near Simlapal, Bankura on 25th July, 2017 that submerged adjacent road; (c and d)
Bank protection structures near Jhumka village, Bankura constructed by Irrigation & Waterways
Department, Kangsabati Circle, Bankura to reduce vulnerability of river bank failure during high
discharge events or floods

6 Application of Geoinformatics and AHP Technique to Delineate Flood. . . 123



6.5 Conclusion

To analyze and perceive the flood vulnerability of the Silabati river, three factors,
such as elevation, slope, and flow accumulation turn out to be most dominating
parameters out of adopted 11 factors considered in the present study. It is found that
an area of 14.04 and 20.67% of the total basin comes under very high and high flood
susceptibility zones, respectively, and most of this area lies in West Medinipur
district. Amongst all C.D. blocks of the West Medinipur district, only ten are more
or less affected by the flood events, but five C.D. blocks, namely: Keshpur, Ghatal,
Chandrakona-I, Chandrakona-II, and Daspur-I are severely influenced by flood due
to flat topography, very low elevation, and higher amount of flow accumulation
compared to other C.D. blocks. As a result, a large number of populations have been
witnessing and suffering from floods almost in every year for decades. Their misery
is the consequences of losing shelters, crops, and cattle. To minimize the conse-
quences of floods in Silabati river basin, implementation of different management
strategies in higher flood susceptible areas is very much required. This research work
may help the policy makers and implementing authorities to gather basic information
related to the flood, including its vastness and areas under risk. It is suggested that C.
D block level assessment of flood susceptibility can give accurate flood potentiality
at local scale. Moreover, a flood simulation study can be helpful to quantify depth,
velocity, and duration of flood and to access the surface water and groundwater
interaction during flood.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
C

u
m

u
la

ti
ve

%
 o

f 
fl

o
o

d
 o

cc
u

ra
n

ce

Index rank (%)

Fig. 6.18 Area under curve for validation of flood susceptibility map of Silabati river basin
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Chapter 7
Soil Loss Estimation Using Models
and Field Database in Lateritic Badlands,
Eastern India: Evaluation and Validation

Sandipan Ghosh

Abstract The key purpose of this chapter is to determine the suitability and
applicability of index-based erosion models for the precise estimation and prediction
of annual soil erosion rates under the monsoon-dominated geo-climatic and land use
systems. The study unit is represented as the lateritic badlands of Dwarka–Brahmani
River Basin (Eastern India). The present study finds a variable range of annual
erosion rates (8.12–24.01 kg m�2 year�1 as measured data) at hillslope scale of
watershed (i.e. basins of permanent gullies) using popular models of Revised
Universal Soil Loss Equation (RUSLE) and Revised Morgan-Morgan-Finney
(RMMF), sedimentation pits and field measured data (2016–2017). The important
part of this experimental design and quantitative analysis, used to assess the effec-
tiveness of models, is to compare the forecast given by model to field measured data.
The regression analysis of experimental results show that there is a positive corre-
lation and increment between measured and predicted erosion data in RUSLE
modelling (Yc ¼ 5.90 + 0.659 X, R2 ¼ 0.521), but an inverse relation and negative
increment are observed in RMMF modelling (Yc ¼ 16.27 + 0.162 X, R2 ¼ 0.212).
The indices of model evaluation and testing statistics have confirmed the reliable
performance (best fit to observed erosion rate) of RUSLE over RMMF. The potential
erosion map of area depicts annual erosion rate beyond the tolerance limit
(1.0 kg m�2 year�1). It is estimated that the mean soil depth of 0.95 cm year�1 is
permanently lost from the surface of lateritic catchments, and the water erosion will
require typically 176 years to erode the mean soil thickness of 1500 mm.
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7.1 Introduction

Soil erosion is regarded as one of pervasive geomorphic hazards in Anthropocene
and taking immediate steps and management actions to preserve our soil resources
should need no explanation (Bell, 2002; Lal, 2012; Poesen, 2018). Soil erosion is
now referred to as the most important factor of land degradation and globally; about
30% of land areas are estimated to be degraded in this condition of environmental
change, affecting almost 3.2 billion people (mainly Brazil, China, Ethiopia, Indian
and Spain) (Wen & Deng, 2020). Erosion visibly degrades landscapes through
exposure of sub-soil, presence of rills and gullies or the occurrence of dust storms.
Land degradation can be defined as a negative trend in land potentiality, caused by
direct or indirect human-induced processes including anthropogenic climate change,
slope modification, deforestation and land use changes, expressed as long-term
reduction or loss of at least one of the follows: biological productivity, ecological
integrity or value humans and soil productivity (Nkonya et al., 2016). In the
Anthropocene, soil losses by human activities (i.e. anthropogenic soil erosion)
have also become very significant: e.g. tillage erosion, soil erosion by land leveling,
soil quarrying, crop harvesting, explosion cratering and trench digging (Bocco,
1991; Poesen, 2019). During the past 60 years, many studies and researches have
documented variable magnitude of soil erosion problems in different parts of the
world (especially in India) (Table 7.1 and Fig. 7.1), expressed as billions of tons of
eroded soil or billions dollars of erosion and sedimentation damage each year
(Narayana & Babu, 1983; Bocco (1991); Kothyari, 1996; Lal, 1990; Singh et al.,
1992; Wasson, 2003; Vente & Poesen, 2005; Pimentel, 2006; Reddy & Galab, 2006;
Thakkar & Bhattacharyya, 2006; Kumar & Pani, 2013; Pimentel & Burgess, 2013;
Sharda et al., 2013; Sharda & Dogra, 2013; Aulakh & Sidhu, (2015); Borrelli et al.,
2017; Froechlich, 2018; Sharma, 2018; Poesen, 2018; Pennock, 2019).

Soil erosion is defined as the net long-term balance of all processes that detach
soil particles and move it from its original location through sheet flow, rill and gully
channels (Eekhout & Vente, (2019); Pennock, 2019). In the Indo-Gangetic Plain, the
world’s larger alluvial plain and other agricultural regions of India, soil erosion by
water is the most serious cause of land degradation (Marzolff & Pani, 2019). It
affects 64% of the estimated area of 147 m ha of degraded wasteland in the country
(Marzolff & Pani, 2019). It estimated an annual average potential soil erosion
amounting 35 Pg year�1 for 2001 and in 2012, an overall increase of 2.5% in soil
erosion (Borrelli et al., 2017). RUSLE-based modelling approach predicts global
potential soil erosion rates of 43 Pg year�1, and due to climate change and land use
transformation, average soil erosion can be increased from 30 to 66% in between
2015 and 2070 (Borrelli et al., 2020). About 5–7 million ha (12.4–17.3 million acre)
of arable land in the world is degraded annually through various erosion processes,
and out of 2 billion ha (4.9 billion acre) of degraded area in world, water erosion
alone, being a global phenomenon, contributes about 55% (Fig. 7.1) (Sharda et al.,
2010). Among the soil groups of India, red–lateritic soils (mostly alfisol, inceptisols
and utlisols) and black soils (vertisols and vertic subgroups) acutely suffer due to
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Table 7.1 Key information and findings on soil erosion issues in India

Sl.
no. Important facts and research outcomes Source

1 Annual soil erosion is taking place at the rate of
16.35 t ha�1 year�1

Narayana and Babu
(1983)

2 Indo-Gangetic Plains of Punjab, Haryana, Uttar Pradesh,
Bihar and West Bengal are affected by erosion rate of 5 to
10 t ha�1 year�1

Singh et al. (1992)

3 About 20% of India’s existing reservoirs will have lost 50% of
their previous storage capacity due to soil loss and siltation

Kothyari (1996)

4 3.975 million ha of wastelands are severely affected by gullies
and ravines

Yadav and Bhushan
(2002)

5 Due to siltation, India is losing about 1.3 billion m3 of storage
capacity each year and to create this storage capacity India
will require Rs. 1448 crores

Thakkar and
Bhattacharyya (2006)

6 Paddy is the most affected among all crops in terms of both
productions 4.3 million tonne and monetary loss of
Rs. 24.4 billion

Sharda et al. (2010)

7 The Lower Gangetic Plain and eastern part of Chota Nagpur
Plateau has soil loss tolerance level of 2.5–12.5 t ha�1 year�1

Bhattacharyya et al.
(2007); Mondal and
Sharda (2011)

8 India suffers an annual loss of 13.3 million tonne in produc-
tion of cereals, oilseeds and pulses due to water erosion

Sharda et al. (2013)

9 About 69.5% area of India has soil loss tolerance limit of
<10 t ha�1 year�1

Sharda and Dogra (2013)

10 About 5.4 million tone of fertilizer worth US $ 245 million is
washed away by water erosion

Gulati and Rai (2014)

11 Erosion escalates the siltation rate of reservoirs in India–
Maithon (1.076 mm year�1), Panchet (0.631 mm year�1),
Tilaiya (2.792 mm year�1), Tenughat (0.716 mm year�1),
Durgapur barrage (0.042v), Kangsabati (0.752 mm year�1)
and Massanjore (0.557 mm year�1)

Central Water Commis-
sion (2015)

12 The soil pool loses 110 Mt Carbon into the atmosphere due to
soil erosion. It is projected that 1% increase in rainfall inten-
sity may increase the rainfall Erosivity by 2–6%. Annual loss
due to soil degradation ranges from Rs. 89–232 billion

Bawa (2017)

13 1 mm loss of soil from one hectare land, an additional
1642 MJ of energy is expended, which is equivalent to about
91 kg of petrol

Sharda et al. (2019)

14 It is estimated from satellite images that 9593.06 km2 land of
India (17.09 km2 land of West Bengal) is affected by gullies
and ravines

National Remote Sensing
Agency, NRSC (2019)

15 In a river basin of semi-arid region, soil erosion risk was
assessed using RUSLE and frequency ratio probability algo-
rithm to prioritize erosion susceptible areas

Gayen et al. (2020)
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water erosion (Table 7.2). It is estimated that 120.72 million ha area is affected by
various forms of land degradation and desertification in India with water erosion
being chief contributor (68.4%) (Sharda et al., 2013). About 69.5% area of India has
soil loss tolerance limit of <10 t ha�1 year�1, while about 13.3% area has a soil loss
tolerance limit of only up to 2.5 t ha�1 year�1 (Sharda & Dogra, 2013). In India

Fig. 7.1 Important research
findings of soil erosion
hazard in India—(a) with
increasing percentage of
state-wise degraded land the
production loss of cereals is
also rising, (b) there are a
positive correlation and
increasing trend in between
gross erosion rates of river
basins and sediment
deposition rates of
reservoirs and (c) total
carbon loss from land is
escalating with increasing
soil loss in India
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major rainfed crops suffer an annual production loss of 13.4 Mt due to water erosion
which amounts to a loss of Rs. 305.32 billion in monetary terms (Ghosh et al., 2020).

It is now understood that soil erosion is a pertinent issue where the adage ‘think
globally, act locally’ is clearly applicable (Toy et al., 2013). The essential purpose of
quantitative assessment is that erosion control targeted toward the areas with the
highest rates can markedly reduce erosion averages. Before taking any erosion
protection measures, the estimation of annual erosion rate at plot to basin scale is
the fundamental step towards achieving soil conservation and sustainable develop-
ment (Toy et al., 2013). Models can serve a needful purpose of soil conservation
which acts to make broad-scale erosion surveys in order to realize the existing
problem over an erosion-prone lateritic region of tropical monsoon climate and to
track changes in erosion over time (Nearing, 2013). Modelling and prediction of soil
erosion by water has long legacy and preliminary popular studies published in
various international journals probably seven decades ago using North American
data sets (Bennett, 1939). The largest number of publications with the application of
Revised Universal Soil Loss Equation (RUSLE) model has been found in the USA
(274 papers), China (218 papers), Brazil (88 papers), India (67 papers), Spain
(66) papers), etc. Up to 2017, 1556 research papers have been published at various
spatial scales (1977–2017) (Alewell et al., 2019; Yanshuang et al., 2020). Many
mathematical models categorized as empirical or index-based, conceptual, physi-
cally based or process-oriented are variable to estimate soil erosion at different
spatial and temporal scales (Wischmeier & Smith, 1978; Renard et al., 1997;
Morgan et al., 1998; Flanagan et al., 2001; Morgan, 2001; Merriti et al., 2003;
Avwunudiogba & Hudson, 2014; James et al., 2017; Morgan & Duzant, 2008;
Alewell et al., 2019; Pennock, 2019; Gayen et al., 2020; Yanshuang et al., 2020).

The data availability on land degradation, soil erosion rates and permissible soil
loss limits is either qualitative or insufficient for proficient planning of conservation
and management of erosion intensity at watershed or regional scale (Sharda et al.,
2013). The criterion for judging whether the soil has potential risk of erosion or not is
essentially required for adopting appropriate erosion control measures on grazing
land, arable land, barren land and other land use systems (Sharda et al., 2013).
Realistic assessment of erosion risk or soil loss rate thus constitutes the first step for
understanding the ground reality of erosion and raising awareness among govern-
mental and other stakeholders in a given region to adopt appropriate strategies for

Table 7.2 Expected and average values of loss of soil productivity due to water erosion in different
soils of India (Sharda et al. (2010)

Erosion class Soil loss (t ha�1 year�1)

Loss in productivity (%)

Alluvial soils Black soils Red soils

Very slight <5 0.0 2.5 5.0

Slight 5–10 2.5 7.5 17.5

Moderate 10–20 7.5 17.5 37.5

Strong 20–40 17.5 37.5 60.0

Severe >40 37.5 60.0 –

7 Soil Loss Estimation Using Models and Field Database in Lateritic. . . 135



sustainable and efficient use of natural resources for the current and future genera-
tions (Sharda et al., 2013). Erosion protection measures should start from microscale
to get long-term soil productivity and long-term sustainable agriculture in the
developing counties, like India, where erosion protection technologies are limited
by economic and other cultural conditions. In addition, it is necessary to state that the
laterite terrain of West Bengal (known as Rarh Plain, i.e. the land of red soil) is
severely dissected by the dense network of rills and gullies (Ghosh & Guchhait,
2017), developing badland topography, and there are very few databases of accurate
annual erosion rates and empirical model applications. The lateritic Rarh region and
plateau fringe (districts of Purulia, Bankura, Paschim Barddhaman and Paschim
Medinipur) show lower T value ranging from 2.5 to 5.0 Mg ha�1 year�1 (Mondal &
Sharda, 2011; Lenka et al., 2014). In West Bengal as a whole, about 88% of the area
is identified as T value zone of 12.5 Mg ha�1 year�1 (Mondal & Sharda, 2011;
Lenka et al., 2014). In this regard, this study can give few insights on the aspect of
soil erosion modelling using minimal data inputs and measured plots at basin scale to
estimate annual erosion rate in the lateritic badlands. Two major objectives of the
study are set forth as follows:

(1) To estimate annual soil erosion rate using models and field experimental
database

(2) To evaluate suitability and effectiveness of model in the study area

7.2 Geographical Setting of Study Area

The geomorphic unit of study is recognized as the badlands (interfluves) in between
Brahmani (north) and Dwarka (south) rivers (encompassed by 24� 200 N to 23�

400 N, and 87� 260 E to 88� 210 E) (Fig. 7.2). This geomorphic region is recognized as
plateau proper and plateau fringe of Chota Nagpur, prevailing the patches of laterite
exposures and basaltic hills, and it is categorized as the northern part of the Rarh
Plain (Biswas, 1987). Geologically, the interfluve is associated with the contiguous
unit between Rajmahal Basalt Traps (RBT) (Early Cretaceous origin) and the Bengal
Basin which exhibits shallow Quaternary alluvium deposits. The palaeogenesis of
the deep weathering profiles under intense tropical wet–dry palaeoclimate on the
basaltic surface formed hard ferruginous crust, i.e. Ferricrete (Palaeogene–Early
Pleistocene) (Ghosh et al., 2020).

The sample study area of laterite interfluve (about 176 km2, encompassed by
24�080N to 24�140 N and 87�380 E to 87�440 E) covers Shikaripara block (Dumka,
Jharkhand) and Rampurhat I and Nalhati I blocks (Birbhum,West Bengal) (Fig. 7.3).
Field study reveals successive occurrences of fresh quartz-normative tholeiite
Rajmahal basalt, weathered coarse saprolite, kaolinite pallid zone, mottle zone and
pisolitic ferricrete in the litho-sections (Ghosh & Guchhait, 2015). Each laterite
section reflects both primary in situ-type palaeogenesis of high-level plateau laterites
(Chorley et al., 1984) and secondary ex situ evolution of piedmont slope laterites
which are prone of to water erosion, forming patches of badlands in the Rarh Plain.

136 S. Ghosh



The climate of this region has been identified as sub-humid and sub-tropical
monsoon type, receiving mean annual rainfall of 1300–1437 mm. The amount of
rainfall is decreasing from western to eastern part. On the basis of 2010–2016 rainfall
data, the mean annual rainfall of Paikor, Md. Bazar, Rampurhat and Mallarpur is
720.0 mm, 1176.0 mm, 1293.5 mm and 1372.8 mm respectively. The peak monsoon
and cyclonic rainfall intensity of 21.51 mm h�1 (minimum) to 25.51 mm h�1

(maximum) are the most powerful climate factors to develop this lateritic badlands
(Table 7.3) (Ghosh & Bhattacharya, 2012). The region has experienced intense
thunderstorms during hot summer and prolonged rainfall during the tropical depres-
sion and cyclone.

In and around the study area, the soil series of Bhatina, Raspur and Jhinjharpur
(Sarkar et al., 2007) has been developed in the present geo-climatic setting. Gener-
ally, thin solum is loamy skeletal and hypothermic in nature developing on the
barren lateritic wastelands with sparse bushy vegetation and grass. The dark reddish
to brown-coloured sandy clay loam of 0–16 cm (A horizon, maximum grass root

Fig. 7.2 Spatial extent and elevation zones of Dwarka-Brahmani Interfluve (Ghosh & Guchhait,
2020)
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Fig. 7.3 Standard FCC IRS LISS IV image (Dec, 2015) of study area showing location of sample
gully catchments, SRTM DEM elevation profiles and field photographs

Table 7.3 Climate–erosion relationship in the study area

Climatic phenomena Effects on landforms and soil loss

1. Seasonal variation of temperature
(about 15�–18 �C) and ground moisture

Encourage various processes of weathering, like
block disintegration, formation of cracks and joints

2. High temperature range (max. 45
�
C

and min. 9 �C)
Lowering soil moisture and ground water table,
loosening of soil particles, drying up of surface soils,
reduction in soil cohesiveness

3. Season rainfall (from mid-June to
October)

Weathered products and loose particles are removed
from slope, favour lateritization

4. Short phase of heavy downpour within
monsoon months

Development of badland topography, maximum
erosion, tunnel erosion, mass wasting of valley sides
and head cut migration of rill and gully

Source: Ghosh and Bhattacharya (2012)
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zone) is developed over the fragmented secondary laterites. The loose secondary
laterite (16–34 cm) is developed as cementation (low cohesion and weak structure)
of derived materials over mottle and kaolinte horizon, and it is much prone to
overland flow erosion, tunnel erosion and bank failure (Ghosh & Guchhait, 2020).
The natural vegetation of the study area belongs to the tropical moist and dry
deciduous type with few evergreen types. The observed natural vegetation species
are Babul (Acacia nilotica), Bel (Aegle marmelos), Behara (Terminalia bellirica),
Sal (Shorea robusta), Mahua (Madhuca indica), Khair (Acacia catechu), Khajur
(Phoenix sylvestris), Jamun (Syzygium cumini), etc.

In this context, the land use classification and SCS-CN (Soil Conservation
Service–Curve Number) data of three sample gully catchments are derived. In
gully catchment 1 (basin area of 109,250 m2), the principal land use/land cover is
identified as natural vegetation (25.35%), grassland (37.67%) and bare laterite land
(36.98%) (Table 7.4) (Ghosh & Guchhait, 2020). In gully catchment 2 (basin area of
118,325 m2), the areal coverage of natural vegetation, grassland and bare laterite soil
are 21.88%, 30.65% and 41.47%, respectively. In gully catchment 3 (basin area of
216,050 m2), the total areal coverage of natural vegetation, grassland and bare

Table 7.4 Estimated SCS-CN values of AMC II condition in the sample gully catchment 1, 2 and
3 on the basis of existing land use/land cover

Gully catchment 1

HSG
group LULC

CN
II

Area
(m2)

Product of CN
II � area

CN II
weighted S (mm) II

C Natural
Vegetation

73 27,700 2,022,100 85.88 41.72

B Grassland 86 41,150 3,538,900

B Bare surface 91 40,400 3,680,040

Gully catchment 2
HSG
group

LULC CN
II

Area
(m2)

Product of CN II
� area

CN II
weighted

S
(mm) AMC
II

C Natural
Vegetation

73 25,900 1,890,700 85.52 42.97

B Grassland 86 36,275 3,119,650

B Bare surface 91 56,150 5,109,650

Gully catchment 3
HSG
group

LULC CN
II

Area
(m2)

Product of CN II
� area

CN II
weighted

S
(mm) AMC
II

C Natural
Vegetation

73 64,500 4,708,500 84.9644 44.92

B Grassland 86 28,600 2,459,600

B Bare surface 91 122,950 11,188,450

Note: HSG Hydrologic Soil Group, LULC land use/land cover, CN curve number, S maximum
surface storage, AMC antecedent moisture condition
Source: Ghosh and Guchhait (2020)
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laterite land are 29.85%, 13.23% and 56.94%, respectively (Ghosh & Guchhait,
2020). Applying the SCS-CN method (Chow et al., 1998; Mishra & Singh, 2003;
Mishra et al., 2006; Bhunya et al., 2014; Gajbhiye et al., 2014; Srivastava & Imtiyaz,
2016; Singh, 2016) in three sample watersheds of gullies, it is found that on the basis
of rainfall range of 42–137.2 mm, the sample watersheds can yield runoff of
40.02–118.0 mm in excess moisture condition of monsoon (Ghosh & Guchhait,
2020).

7.3 Methodology

The goal of United Nations Sustainable Development have new challenges and
policy developments which provide opportunities for researchers and scholars to
respond with more accurate assessments of erosion rates and solutions of erosion
vulnerability, targeting negative trend of land degradation (Panagos & Katsoyiannis,
2019). To understand the hydro-geomorphic processes of soil erosion and to apply
quantitative erosion models, the study demands an inter-disciplinary outlook, apply-
ing the methods of hydrology, geomorphology and statistics. The total methodology
is combination of various sequential steps, viz. development of experimental design,
data collection, model description, application and evaluation, soil loss tolerance,
statistical analysis and thematic mapping (Fig. 7.4).

Experimental Design and Erosion Measurement at Hillslope
Scale

The selection of erosion measurement sites to justify the application of erosion
model poses a problem of sampling. Since it is not only possible to take measure-
ments at each specific point in the landscape, it is important that the sample area
should be representative of the catchment as high erosion prone zone (where
maximum erosion is observed). From the field survey, it is observed that except
permanent channels, the gully head slope (average slope 7�340) is the key pathway of
sediment transport to the main gully. In this lateritic terrain, the high erosion risk
catchment of gully is firstly selected, and it has well-defined basin area (about
109,250–216,050 m2) and dense network of gullies (7.57–8.33 km km�2)
(Fig. 7.5). Firstly, 18 gully heads of 3 basins (selected randomly within 17 basins
at study area, based on high drainage density of greater than 7.5 km km�2) were
identified, and then 18 gully head slope elements (considering 2 m width of slope
strip to incorporate soil–land use parameters) were selected, denoting S1–S18,
respectively. The steepness of hillslope was measured using Leica Sprinter 150 m
digital levelling instruments (accuracy – � 0.7 mm of the 250 m distance) and other
parameters of models were estimated in the recurrent field survey (2016–2018) and
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Fig. 7.4 Methodological flowchart of erosion model used in soil erosion research
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Fig. 7.5 Experimental
design for erosion modelling
at hillslope scale in a lower
order catchment: (a)
selection of sample
catchments and (b) selection
of erosion plot and dam sites
in a catchment
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guided values of erosion models (Renard et al., 2011; Renard et al., 1997; Morgan,
2001; Morgan & Duzant, 2008). The total slope length is the overland flow part
between the gully head and water divide. The steepness of slope elements varies
from 3�450to 11�060, whereas slope length varies from 22.1 m to 106.8 m.
Maintaining a certain distance (1.5 to 2 m) from active gully head, 18 check dams
(used as sedimentation pits) were developed (denoting Dam 1 to Dam 18) at the base
(i.e. gully floor) of representative slope elements to trap eroded sediments coming
from upslope in a year (2016–2017) (Fig. 7.6).

Following the shape of gully channel, it was decided to built V-shape design
using sand, cement and laterite boulders of irregular shape, and the gap between
gully head base and dam was used as sedimentation pits to collect eroded materials.
The dams were developed in January 2016 with the help of local manpower and
resources. The constructed dams had a height range of 40–55 cm and width range of

Fig. 7.6 (a) Sample dam locations at gully headcuts in catchment 1, (b) development of temporary
dam to trap sediments, (c) final structure of small dams below gully headcuts and (d) measuring the
morphological parameters above dam
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92–190 cm. Mostly during monsoon period (June to October) of 2016, the eroded
material of these slope elements or upstream drainage areas of gullies were trapped
behind the dams. It is very needed to mention that occasional high sediment flux was
observed during few extreme thunderstorms (5 times in 2016), having very high
rainfall intensity of greater than 25.51 mm h�1 (April to June). Then after one year of
observation, the sedimentation was measured in January 2017, and the mass volume
was measured as multiplying the area of sedimentation behind dam and mean depth
of sedimentation at 18 dam sites. The bulk density of eroded materials was calcu-
lated at laboratory (mean bulk density of materials is 1.717 gm cm�3), and the mass
weight of sedimentation materials was measured by multiplying the volume of mass
(unit in kg) by bulk density. The observed rate of erosion (unit as kg m�2 year�1)
was measured by dividing the mass weight by strip area of slope element or erosion
plot for one year (2016–2017).

It was calculated that in 18 dam sites, the estimated weight of trapped sediments
(i.e. mostly ferruginous nodules and coarse sands) varies to a great extent due to
activeness of water erosion, slope angle and overland flow length, ranging from
566 to 3581 kg. The observed annual erosion rate (O) of three sample catchments
was finally measured as (a) 10.50–24.27 kg m�2 year�1 (gully catchment 1),
(b) 8.12–20.82 kgm�2 year�1 (gully catchment 2) and (c) 11.87–20.82 kgm�2 year�1

(gully catchment 3), respectively (Table 7.5). The average observed rate is near
about 16.27 kg m�2 year�1 which is much greater than the soil loss tolerance T-value
of this region (i.e. 1.0 kg m�2 year�1). Field survey and laboratory analysis suggest
that erosion occurs on two types of soil texture—(1) sandy loam and (2) sandy clay
loam (Table 7.6). Therefore, it can be said that the lateritic badlands of study area
have high erosion risk (rendering organic rich top-soil development and increasing
Fe-crusting, badlands area and degradation of biomass) and the region needs imme-
diate protective measures to check erosion and land degradation at basin scale. After
getting the measured erosion data, the analysis was carrying forward to fulfill the key
purpose of study which was to compare the predicted data of erosion models
(RUSLE and RMMF) with the observed data at field scale.

Secondary Data Collection

The key sources of main secondary data are regional soil report, geology report and
other physical environmental report published by NBSS and LUP (National Bureau
of Soil Service and Land Use Planning), Census of India, district gazetteer, official
websites of IMD (Indian Meterological Department) Pune and Kolkata, Irrigation
and Waterways Dept. of Govt. of West Bengal (IWD), Geological Survey of India
(GSI), related e-books and e-journals. The topographical sheets of Survey of India
(72 P/12/NE, R.F. 1:25,000 and 72 P/12, R.F. 1:50,000), District Resource Map of
Geological Survey of India, District Planning Map of NATMO (National Atlas
Thematic Mapping Organization) and Block map of Census of India are most
important sources of spatial information (Ghosh & Guchhait, 2020). Landsat TM
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and ETM+ (30 m resolution) images are downloaded from the website of Global
Land Cove Facility (GLCF) and SRTM (Shuttle Radar Topography Mission, 90 m
resolution), and ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer, 30 m resolution) elevation data are downloaded from the websites of
GLCF and Consortium for Spatial Information (CGIAR-CSI) (Ghosh & Guchhait,
2020). The spatial information is stored in Geographic Information System (GIS)
and the thematic maps are prepared using GIS software (ArcGIS 9.2 and Erdas
Image 9.1) (Ghosh & Guchhait, 2020).

In this case we have gathered the daily, monthly and annual rainfall data from
three IWD (Irrigation and Waterways Department, Government of Wes Bengal)
rain-gauge stations at Nalhati (24�1702500N, 87�4904400E), Rampurhat (24�1001300N,
87�4605000E) and Mollarpur (24�0403500N, 87�4203600E) which are situated at eastern
part of study area, having areal distance of 18–25 km. The calculated mean annual
rainfall for this region is 1510 mm in 2016 (maximum intensity of erosive rain is
25.21 mm h�1), and the per day rainfall amount is 17.48 mm, considering total
rainfall and rainy days in a year.

The base map is geo-referenced in UTM (Universal Transverse Mercator) pro-
jection with WGS-84 (World Geodetic Survey, 1984) datum. In the GIS framework,
we have plotted the existing drainage of study area (derived from toposheet) on the
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
elevation map to depict the regional dissection of water divides (Ghosh & Guchhait,
2016). The locations of laterite exposures are mapped on the basis of field expedi-
tions, toposheets, survey points of Garmin Montana 650 GPS receiver (with hori-
zontal accuracy of �3 m) and Google Earth Pro. Leica Geosystem Sprinter 150 m
was used to measure the angle of slope facets (Ghosh & Guchhait, 2016). Alongside
few cases (due to physical obstacles) from ASTER DEM (Digital Elevation Model),
the slope length and angle (usually from gully headcut to water divide) is measured
to judge the length of surface flow (responsible for gully erosion) (Ghosh &
Guchhait, 2016).

Table 7.6 Textural data of sample soils in the study area

Sample
site Location

Sand
%

Silt
%

Clay
%

Organic matter
% Soil texture

1 24�1100600N,
87�4204000E

65.3 24.6 10.1 0.61 Sandy loam

2 24�1005700N,
87�4204900E

64.0 22.4 13.6 0.68 Sandy loam

3 24�1102300N,
87�4204000E

52.6 28.3 19.1 0.21 Sandy clay
loam

4 24�1105100N,
87�4204100E

70.2 19.1 10.7 0.57 Sandy loam

146 S. Ghosh



Potential and Problem of Erosion Models

Models are of necessary simplifications of reality (Morgan, 2005). Researchers seek
models that describe how the system functions in order to enlighten understanding of
the system and how it responds to change (Morgan, 2005). It is not possible to take
measurements at every point in the landscape, and it also takes time to build up a
sufficient database and long-term measurements (Morgan, 2005). In order to over-
come these deficiencies, models can be used to predict erosion under a wide range of
conditions. Erosion models can be used as predictive tools for assessing soil loss for
conservation planning, project planning and soil erosion inventories and for regula-
tion, and it can be used a tools for understanding erosion processes and their
interactions and for setting research priorities (Nearing et al., 1994). In selecting
an erosion model, a rational decision must be made as to whether the model is to be
used for on-site concerns (degradation of thinning of the soil profile) or off-site
concerns (sediment yield or siltation of reservoirs) (Nearing, 2013).

The mathematical equations used in erosion models have five components:
(1) independent variables, (2) dependent variables, (3) parameters, (4) mathematical
operators and (5) a computation sequence and logic that link the equations within the
model (Toy et al., 2013). The three major types of erosion models based on model
structure are the regression-derived, index-based and process-based models
(Table 7.7). One was to derive an erosion model that uses statistical regression
procedures to fit an equation to a data set. The equation form and independent
variables (factors) in the equation are selected to give the best fit to the experimental
data as measured by a statistical goodness of fit (Toy et al., 2013). Every erosion
model must represent how the four factors of climate, soil, topography and land use

Table 7.7 A short description of erosion models

Model type Form Derivation method Strengths

Regression-
derived

A single or a few equa-
tions having a for that best
fits the data

Derived by fitting an
equation(s) to an empiri-
cal database representing
field conditions

Generally simple and
easy to use; input values
can be simple and easy to
obtain

Index-
based

Using indices, usually in a
multiplicative form, to
represent how climate,
soil, topography and land
use affect erosion

Values for indices deter-
mined from large empiri-
cal database representing
field conditions

Simple and easy to use;
input values can be sim-
ple and easy to obtain;
very powerful in relation
to simplicity and input
values

Process-
based

Represents individual
erosion processes using
simple steady-state
equations

Equations derived from
theory and empirical
databases for erosion
processes, validated
against database repre-
sentative of field
conditions

Can be simple; repre-
sents main fundamental
erosion processes;
improved performance
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affect soil loss and related variables (Toy et al., 2013). Toy et al. (2013) have
suggested a simple form of erosion as follows (Eq. 7.1):

SL ¼ CF:SF:TF:LUF ð7:1Þ

where SL ¼ average annual soil loss, CF ¼ climate factor, SF ¼ soil factor,
TF ¼ topographic factor and LUF ¼ land use factor.

Equation (7.1) is an index-based erosion model. Each variable in the equation is
an index that represents the effect of that variable based on the value assigned to the
index. In process-based or dynamic models, erosion occurs as a series of discrete
events with different erosion amounts for each event because of differences in storms
and land use conditions at each event (Toy et al., 2013). These models can track
temporal variables by computing values at regular points through time between
storm events. The physically based erosion models and regression models have
until now not always provided very satisfying results for prediction of soil erosion
and sediment yield (Poesen, 2018).

Problems of Using Models and Its Solution

It is found that lumped parameter models (i.e. empirical models) linked to GIS are
practicable for conservation planning than sophisticated distributed parameter
models. Lumped Parameter Models (LPMs) use averaging techniques to lump the
influence of non-uniform spatial processes of a given area, such as a basin-averaged
precipitation for run off computation (Torri & Borselli, (2012); Avwunudiogba &
Hudson, 2014). The RUSLE is an empirical equation for predicting long-term
average soil erosion from agricultural field under specific cropping and management
practice. There are few hindrances or problems to implement distributed parameter
or process-based models (like WEPP, EURSOEM etc.) in the study area. Three key
problems are stated as follows (Boardman & Favis-Mortlock, 1998; Morgan and
Nearing, (2011)):

(1) Does the amount of money and time devoted to collection of the data justify their
application for simple watershed planning in humid tropical environments?

(2) Do communities in these region possess the institutional framework, personnel
and financial commitment to undertake the long-term research necessary for
implementations of process-based models?

(3) LPMs are more attractive in the immediate future because of the ease with which
data requirements can be met and the greater suitability of these models for the
socio-economic context of this region.

The models can be implemented in situations with limited data and parameter
inputs and are particularly useful as a first step in identifying sources of sediment and
nutrient generation (Merriti et al., 2003). Empirical models or index-based models
are based primarily on the analysis of observations and seek to characterize response
from the data. The feature of this class of models is their high level of spatial and
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temporal aggregation and their incorporation of a small number of casual variables
(Merriti et al., 2003). In this study, an index-based model (Revised Universal Soil
Equation, RUSLE) and a combined index-based and process-based model (Revised
Morgan Morgan Finney model, RMMF) are applied to get predicated erosion rates,
and then two models are compared to evaluate the suitability and effectiveness of
each model in the erosion prone region of laterite terrain. The total workflow of
erosion model selection, processing, application and analysis are completed in seven
steps—(1) user requirements, (2) model selection, (3) developing core database,
(4) expanding database, (5) model verification, (6) validating the model and (7) sen-
sitivity analysis (Boardman & Favis-Mortlock, 1998; Nearing, 2013; Morgan, 2005;
Morgan and Nearing, 2011; Toy et al., 2013).

Revised Universal Soil Loss Equation (RUSLE)

One of the main reasons why RUSLE type modelling is so widely used throughout
the world is certainly its high degree of flexibility and data accessibility, a parsimo-
nious parameterization, extensive scientific literature and comparability of results
allowing to adapt the model to nearly every wind of condition and region of the
world (Alewell et al., 2019). The precise description of RUSLE is found in the
writing of Renard et al. (1997), predicting soil erosion by water for conservation
planning in the geo-climatic condition of the USA. Chandramohan et al. (2015) have
applied RUSLE, Unit Sediment Graph (USG) andWater Erosion Predication Project
(WEPP) on small watersheds of Pamba River Basin (Kerala, India) to observe
rainfall–runoff–sediment yield relationship, and they have found good applicability
of RUSLE than other models. Similarly, Smith (1999), Sovrin (2003), Babu et al.
(2004), Martin-Fernandez and Martinez-Nunez (2011), Jain and Das (2012), Sinha
et al., (2012), Sinha and Joshi (2012), Bayramov et al. (2013), Kinnell (2014),
Karydas et al. (2014), Devatha et al. (2015), Mondal et al. (2017) and Benavidez
et al. (2018) have successfully applied RUSLE to assess erosion rate in different
environmental settings, and they have found the suitability and effectiveness of
RUSLE in comparison to other models, e.g. Soil Loss Estimation Model for South-
ern Africa (SLEMSA), Morgan Morgan Finney Model (MMF), Water Erosion
Prediction Project (WEPP) and European Soil Erosion Model (EUROSEM). The
applied version of RUSLE (Eq. 7.2) is mentioned as follows (Renard et al., 1997)
(Table 7.8 and Fig. 7.7):

A ¼ R K L S C P ð7:2Þ

where

• A is the computed soil loss per unit area (tons per acre per year); it can
transformed into SI unit
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• R, the rainfall and runoff factor, is the number of rainfall erosion index units,
i.e. EI30

• K, the soil erodibility factor, is the soil loss rate per erosion index unit for a
specified soil as measured on a unit plot, which defined as a 72.6 ft length of
uniform 9% slope continuously in clean-tilled fallow

• L, the slope-length factor, is the ratio of soil loss from the field slope length to that
from a 72.6 ft length under identical conditions

• S, the slope-steepness factor, is the ratio of soil loss from the field slope gradient
to that from a 9% slope under otherwise identical conditions

• C, the cover and management factor, is the ratio of soil loss from an area with
specified cover and management to that from an identical area in tilled continuous
fallow

Table 7.8 Operating parameters and functions of the RUSLE model

Description Operating functions Parameter definitions Source

Rainfall
Erosivity
Index (R)

R ¼ (R1 + R2)/2
R1 ¼ P
(0.119 + 0.0873 log10
Im). log10 I30
R2 ¼ 79 + 0.363 P

P is the mean annual rain-
fall, Im is the average rain-
fall intensity
(i.e. 25.21 mm h�1), I30 is
the maximum 30 min rain-
fall intensity
(i.e. 75 mm h�1,
recommended by
Wischmeier & Smith, 1978)

Renard et al. (1997);
Sarkar et al. (2005); Jha
and Paudel (2010);
Ganasri and Ramesh
(2016); Benavidez et al.
(2018)

Soil Erod-
ibility
Index (K )

K ¼ 1.2917
[2.1 � 10�4 (12 –

OM)M1.14 + 3.25 (s –
2) + 2.5 ( p – 3)]/100
M ¼ % silt (100 � %
clay)

OM is the percentage of
organic matter in soil, M is
the particle size parameter,
s is the soil structure code
and p is permeability code
recommended by
(Wischmeier &and Smith,
1978)

Sarkar et al. (2005);
Bayramov et al. (2013)

Slope-
Length
Index (LS)

LS ¼ (L/22.13)0.5.
(0.065 + 0.045
θ + 0.0065 θ2)

L is the slope length (m) and
θ is slope steepness in
percent

Sarkar et al. (2005);
Rahaman et al. (2015)

Fig. 7.7 Flowchart of data input and methods for RUSLE-based soil erosion modelling
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• P, the support practice factor, is the ratio of soil loss with a support practice like
contouring, strip cropping or terracing to that with straight-row farming up and
down the slope

Revised Morgan–Morgan–Finney (RMMF) Model

Another popular model is the revised Morgan–Morgan–Finney (RMMF) model
which was documented in the article of Morgan (2001), and its modifications were
done by Morgan and Duzant (2008) to enable the effects of vegetation cover to be
expressed through plant parameters. This model is also effectively applied in a
variety of geo-climatic conditions (Sovrin, 2003; Mondal et al., 2011; Bayramov
et al., 2013; Avwunudiogba & Hudson, 2014; Tesfahunegn et al., 2014; Efthimiou,
2019), and many workers (Jetten et al., 1994; Vente & Poesen, 2005; James et al.,
2017; Choi et al., 2017) have given the results of model evaluation and additional
modifications for the development and further applicability of RMMF model. The
model validation was carried out by comparing predicted and observed values of
annual runoff and erosion for 67 sites in 12 countries (Morgan et al., 1984). The
model comprises a water phase and a sediment phase. Rainfall energy and runoff
volume are estimated from annual rainfall amount in the water phase (Morgan et al.,
1984; Morgan, 1986). In the sediment phase, erosion is taken to result from the
detachment of soil particles by rainsplash and their transport by runoff (Morgan
et al., 1984; Morgan, 1986). The revised version of the model is depicted as follows
(Morgan, 2005) (Table 7.9 and Fig. 7.8).

Sensitivity Analysis

Two types of sensitivity indices are used in this study (Eq. 7.3): (a) Absolute
Sensitivity (AS) and (b) Average Linear Sensitivity (ALS) (Nearing et al., 1989).
The absolute sensitivity describes the rate of change in output with respect to a
change in the value of input. The relative sensitivity describes the normalization of
input and output in relation to their mean values, to produce an average linear
sensitivity index. Now, ALS is widely popular in erosion prediction technology,
and it can be described as follows (Morgan, 2005):

ALS ¼ O2 � O1ð Þ=Om½ �= I2 � I1ð Þ=Im½ � ð7:3Þ

where O1 and O2 are values of model output obtained with values of I1 and I2 of
input and Om and Im represent the respective average values of the two input and
output values. If ALS is greater than 1.0, then the input parameter is highly sensitive
to change in output. Alongside the estimated error between (Eq. 7.4) measured and
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predicted values, it can be calculated by root mean square relative error (RMS-error)
using the following equation (Morgan, 2005).

Table 7.9 Operating parameters and functions of the RMMF model

Description Operating functions Parameter definitions Source

Effective Rainfall
(ER, mm)

ER ¼ Ra (1 � Ac) Ra ¼ mean annual rainfall
(mm); Ac ¼ proportion of
rainfall reaching soil surface
considering canopy cover
(0 to 1) in the basin

Morgan (2005);
Morgan and
Duzant (2008);
Efthimiou (2019)

Leaf Drainage (LD,
mm) and Direct
throughfall (DT,
mm)

LD ¼ (ER � CC),
DT ¼ (ER � LD)

CC ¼ proportion of canopy
cover (0 to 1)

Kinetic energy of
LD (KE LD, J m

�2)
KELD ¼ LD [(15.8
� PH

0.5) � 5.87]
PH ¼ plant height (m)

Kinetic energy of
DT (KE DT, J m

�2)
KE DT ¼ DT
(11.9 + 8.7 log I )

I ¼ erosive rainfall intensity
(mm h�1)

Total kinetic
energy (KET,
J m�2)

KET ¼ KELD + KE
DT

–

Soil moisture stor-
age capacity (RC)

RC ¼ 1000.MS.BD.
EHD.(Et/Eo)

MS ¼ soil moisture content
at field capacity (% w/w);
BD ¼ bulk density of soil
(Mg m�3); effective hydro-
logical EHD ¼ effective
hydrological depth (m); Et/
Eo ¼ the ratio of actual to
potential evapotranspiration

Annual Runoff (Ir,
mm)

Qr ¼ ER. exp (�Rc/
Ro)

Io ¼ mean daily rainfall
(mm)

Annual soil particle
detachment by
raindrop impact (F,
kg m�2)

F ¼ K. KE .10�3 K ¼ soil erodibility (g J�1)

Annual soil particle
detachment by run-
off (H, kg m�2)

H ¼ ZQ1.5 sin
S (1-GC) 10�3

Z ¼ 1/0.5 COH

S ¼ slope steepness;
GC ¼ proportion of ground
cover (0–1); Z ¼ resistance
of soil; COH ¼ soil cohesion
(kPa)

Total detachment
(J, kg m�2)

J ¼ H + Z –

Annual transport
capacity of runoff
(G, kg m�2)

G¼ C Q2 sin S.10�3 I ¼ the product of the C and
P factors of RUSLE
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RMS� error ¼ √ i¼1Σ Xobs � Xpred
� �2

100=m
h i

ð7:4Þ

where m is the number of observations.

Model Validation

Validation is the process of ensuring that the model serves its intended purpose as
described in the user requirements (Morgan, 2005; Toy et al., 2013), although an
important part of validation is to determine how well the model fits measured data.
Erosion models typically fit measured average annual soil loss with an uncertainty of
about �25% for moderate erosion rates of about 6–60 metric tons per hectare per
year (Toy et al., 2013). The model efficiency coefficient (MEC), firstly proposed by
Nash and Sutcliffe (1970), is now increasingly used an alternative to the correlation
coefficient to express the performance of model (Morgan, 2011). Generally, a MEC
value (Eq. 7.5) of greater than 0.5 is considered that the model performs satisfacto-
rily in the region, and one should not expect values to exceed 0.7 (Quinton &
Morgan, 1998; Morgan, 2005, 2011).

MEC ¼ 1� Σ Xobs � Xpred
� �2

=Σ Xobs � X’
obs

� �2 ð7:5Þ

where Xobs is the observed value, Xpred is the value predicted by the model and X’obs
is the mean of a set of observed values.

One of the important methods used to evaluate the effectiveness of soil erosion
model is to compare the predictions given by the model to measured data from soil
loss collected on plots taken under natural rainfall conditions (Nearing, 2013). A
model ‘effectiveness coefficient’ was defined by Nearing (2013) for studies under-
taken on large numbers of prediction versus measured data comparisons. This
method provides a quantitative criterion for taking into account natural variability
and uncertainty in measured erosion plot data when those data are used to evaluate

Fig. 7.8 Flowchart of data input and methods for RMMF-based soil erosion modelling
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erosion models (Nearing, 2013). Null hypothesis is that RUSLE or RMMF predic-
tion (Ps) is equal to the measured value (M ) for that case.

Null hypothesis—H0 : Ps �M ¼ 0

Alternative hypothesis—H1 : Ps �M 6¼ 0

The relative difference (Rdiff) between predicated and measured values (Eqs. 7.6
and 7.7) are calculated and then a particular set of conditions that 95% of the values
for differences in erosion (fall within a certain range) is calculated.

Rdiff ¼ Ps �Mð Þ= Ps þMð Þ ð7:6Þ

Relative difference values (Y-axis) are plotted against measured values (X-axis) to
get a trend in the scatters.

Rdiff ¼ m log 10 Mð Þ þ b ð7:7Þ

The method of evaluation of a single data point may be extended to the larger data
set and, from the analysis a model effectiveness coefficient (Ec), may be calculated.
It is defined Ec as the fraction of simulation model predictions for which a model is
effective in predicting the measured erosion, using the acceptance criteria. Using the
95% occurrence intervals from the replicated erosion data, it would result in a value,
Ec(a¼0.05). The value of Ec(a¼0.05) signifies that the percentage of the difference
between measured and predicted soil loss fell within the expected range of difference
for two measured data points within the same population (Nearing, 2013). The
procedure was as follows:

(1) List the measured and predicted data pairs.
(2) Calculate the relative difference between measured and predicted soil loss (Rdiff).
(3) Compute the 95% occurrence interval as given by equation for each data point.
(4) Determine the number of predictions for which the Rdiff value fell within the

interval.
(5) Calculate Ec(a¼0.05) as the fraction of ‘acceptable’ predictions for the data set.

Statistical Analysis

For the statistical judgement and significant interrelationship of observed and
predicted values, Chi-square test, linear regression, Pearson’s product moment
correlation, t-test of correlation and regression slope are applied (Table 7.10). ϗ2

goodness of fit is used to determine where there is a statistically significant difference
between expected frequencies and observed frequencies in sample population. The
p-value of ϗ2 test is also used to help us on the decision of rejection or acceptance of
null hypothesis. The simple linear regression (Yc ¼ a + bX) and scatter plot gives an
actual picture and trend of X-Y relationship which reflects the resemblance or
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association between observed and predicted erosion rates. The b-value (slope of
trend line) reflects the amplitude of trend line to understand the interdependence of
predicted values on the observed values. In addition correlation coefficient value (r)
also confirms the degree of resemblance in the X-Y relationship. Then the estimated
values of b and r are tested using t-test statistics at 0.05 significance level.

Soil Loss Tolerance

The term ‘soil loss tolerance’ (T value) denotes the maximum level of soil erosion
that will permit a high level of crop productivity to be sustained economically and
indefinitely (Wischmeier & Smith, 1978). The soil loss tolerance value (i.e. T value)

Table 7.10 Statistical parameter used in the study

Statistical
parameter Description and operating functions

Statements of null (H0)/alternate (H1)
hypothesis

Chi-square test
(ϗ2 goodness of
fit)

ϗ2 = Σ (Oi 2 Ei)/Ei,
n 2 1 degree of freedom
Oi ¼ observed erosion rate,
Ei ¼ predicted erosion rate of RUSLE
or RMMF

H0 (Oi � Ei ¼ 0)—no difference
between observed and predicted ero-
sion rate
H1 (Oi � Ei 6¼ 0)—significant differ-
ence between observed and predicted
erosion rate

Linear
regression

Yc = a + b X
Yc ¼ predicted erosion rate of RUSLE
or RMMF
X ¼ observed erosion rate
a ¼ intercept
b ¼ slope
R2 ¼ coefficient of determination

–

Pearson’s prod-
uct moment
correlation (r)

r = Cov(X, Y)/σX σY
Cov (X, Y ) ¼ Covariance of X and Y
σX ¼ standard deviation of X
σY ¼ standard deviation of Y
Range ¼ +1 < r < 21

–

t-test of b-value tb = b/SEb

SEb ¼ standard error of b
SEb ¼ σX/σY √ (1 � rn)/(n � 2)
n ¼ number of sample
degree of freedom (n � 2)

H0—regression slope (based on
observed and predicted erosion rate)
is significant, having close resem-
blance of X–Y relationship
H1—slope is insignificant

t-test of r-value tr = r √ (n 2 2)/(1 2 r)
degree of freedom (n � 2)

H0—there is a zero correlation
H1—there is a significant correlation,
i.e. no zero

Confidence
interval

Ci = Xm � (Z. σX/√n)
Xm ¼ mean of observed erosion rates
Z ¼ the Z value (1.96) for desired
confidence level α (α0.05–95% confi-
dence level) (obtained from normal
curve)

–
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has been defined as indication of how much erosion should be tolerated (Osman,
2014). For example, shallow soils over hard rock terrain have small T values. The
concept of T value mainly described the maximum acceptable soil loss allowing a
high level of productivity to be maintained for a long period, based on consideration
of soil fertility and productivity (Li et al., 2009). A value for the rate of erosion alone
is, however, of limited use without a corresponding value for an ‘acceptable’ or
‘tolerable’ rate (T-value) of erosion. Rates of tolerable soil loss calculated using soil
production rates range from 0.2 to 2.2 t ha�1 year�1 and tolerable rates based on
maintenance of crop production range from approximately 1 to 11 t ha�1 year�1

(Pennock, 2019). The low T value reflects likelihood of rill and gully formation and
loss of plant nutrients by erosion. Here, the T-value is compared with the results of
experiment to understand the erosion risk.

7.4 Results

Analysis of RUSLE Results

The input parameters of RUSLE are mean annual rainfall (P); average rainfall
intensity (Im); soil erodibility (K) based on soil organic matter content and percent-
age of sand, silt and clay particles; crop cover and management factor (C); and
protective erosion control factor (P). Based on average rainfall data of three rain-
gauge stations (collected from Irrigation and Waterways Department, Government
of West Bengal), the mean P is estimated as 1510 mm in 2016–2017, and Im is
calculated as 25.52 mm h�1 for this climatic region. The analysis has assigned the
Rainfall erosivity factor (R) of RUSLE modelling, i.e. 654 for this region. The mean
K-factor of laterite terrain is estimated by soil texture and organic matter content of
sample soils and the average K values of the catchments varies from 0.23 to 0.28
(Table 7.11). In general, coarse granular soil structure (b ¼ 7) and moderate soil
permeability (c ¼ 3) are observed on the ferruginous soils. The length of slope
elements or erosion plots varies from 22.1 to 106.8 m (length in between gully head
and water divide), having 55–75% of bare lateritic stony surface with development
of rills. The steepness of hillslope varies from 3� 450 to 11� 060, having average slope
of 7� 140 3000 in the sample sites. It is observed that the land use/land cover of the
catchments do not change too much throughout the year, and the region has
minimum human disturbance. The C-factor is estimated as weighted value in respect
of land use condition in three gully catchments, and it varies in each slope ele-
ments—(1) 0.61–0.91 (gully catchment 1), (2) 0.65–0.83 (gully catchment 2) and
(3) 0.68–0.82 (gully catchment 3). The most important phenomenon is that the study
area is not protected under any erosive control measures, except few patches of
Acacia plantation. Therefore, in each slope element, the P-factor is regarded as 0.1
for RUSLE modelling.

Based on the above estimation of inputs, multiplied R, K, LS, C and P factors are
taken to get potential or predicated values of annual soil erosion rate (AP). AP of
three gully catchments are estimated as (1) 13.22–20.87 kg m�2 year�1 (gully
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catchment 1), (2) 7.86–19.71 kg m�2 year�1 (gully catchment 2) and (3) 16.06–-
24.47 kg m�2 year�1 (gully catchment 3). It is obtained from database that AP of
hillslope yields maximum erosion value due to high LS-factor (>1.50). It is found
that if the slope is recognized as short length and high steepness, it has high potential
for erosion (at dam sites 1, 2, 6, 11 and 14). Based on 18 dam sites, the average AP is
16.63 kg m�2 year�1 which is beyond the soil tolerance T-value limit
(1.0 kg m�2 year�1), showing high risk of erosion.

Analysis of RMMF Results

The climatic input parameters, i.e. mean annual rainfall 2016–2017 (R), number of
rainy day (Rn) and mean rainfall (RO), are based on the meteorological records of
permanent stations. The effective rainfall (ER) (i.e. the remaining part of rainfall is
stored and added in soil after leaf drainage and it has main role in water erosion) of
the sample sites varies from 936 to 1057 mm, having leaf drainage (LD) of
88.34–290.16 mm and direct throughfall (DT) of 645.84–961.87 mm (Table 7.12).
The parameters of topographic conditions (viz. slope angle, slope length and width)
and soil–plant factors (i.e. soil surface roughness, canopy cover, ground cover, soil
depth and plant height, etc.) are measured at field. Soil moisture content (MS), bulk
density (BD), effective hydrological depth (EHD), soil erodibility index (K) and soil
cohesion (COH) are measured by guide values of RMMF model (Morgan, 2001;
Morgan & Duzant, 2008). The soil moisture at field capacity (Rc, % w/w) varies from

Table 7.12 Primary input parameters for RMMF model

Input data RMMF ER CC LD DT Rc GC C

Catchment 1 936 0.13 121.68 814.32 9.96 0.12–0.44 0.41–0.78

0.27 252.72 683.28 7.67

0.11 102.96 833.04 7.54

0.17 159.12 776.88 8.78

0.31 290.16 645.84 9.91

0.15 140.4 795.6 10.62

Catchment 2 981 0.11 107.96 873.53 13.44 0.1–0.66 0.55–0.79

0.09 88.34 893.16 12.67

0.14 137.41 844.09 14.72

0.15 147.22 834.27 11.64

0.09 88.34 893.16 15.9

0.17 166.85 814.64 14.48

Catchment 3 1057 0.17 179.69 877.31 11.46 0.11–0.68 0.59–0.79

0.11 116.27 940.73 10.72

0.15 158.55 898.45 10.25

0.12 126.84 930.16 12.67

0.09 95.13 961.87 11.55

0.19 200.83 856.17 10.72
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0.28 to 0.31 and other parameter is estimated as (1) actual to potential evapotrans-
piration (Et/Eo, 0.05–0.38), bulk density (1.2–1.3 Mg m�3), soil erobibility index
(0.7–0.8), ground cover proportion (0.1–0.68), canopy cover proportion (0.41–0.79)
and crop cover proportion (0.09–0.31) (Table 7.13).

Based on the above estimates of inputs, firstly we have estimated the potential
detachment rate of soil particle by raindrop (F) which does not vary to great extent in
the catchments, i.e. 14.73–17.24 kg m�2. Then, potential detachment by runoff
(H) is estimated in 18 sites, and it varies from 0.88 to 5.07 kg m�2, and the runoff
amount (Q) fluctuates from 721.63 to 973.08 mm. The addition of F and H gives the
total water erosion rate of catchments (as sediment phase of RMMF model). So, the
total detachment rate (J) varies from 16.67 to 21.28 kg m�2. The J values is
compared with the potential transport capacity by runoff (G) which are very high
in this region and G varies from 30.29 to 84.21 kg m�2 in 18 dam sites. In this case, J
value is much less than G value (i.e. transport capacity is much higher than the
sediment supply rate), so the erosion process is transport limited (here J < G, J value
recognizes annual soil erosion rate). Ultimately, the predicted value of annual soil
erosion rate (SP) varies from 16.67 to 21.28 kg m�2 year�1 which exceeds the soil
tolerance T-value limit of laterites (1.0 kg m�2 year�1), showing high risk of erosion
(Table 7.14).

Model Sensitivity Analysis

To measure the sensitivity of RUSLE, the maximum, minimum and average input
parameters of rainfall (P), slope-length (LS), soil erodibility index (K) and crop
cover (C) are used to estimate maximum, minimum and average output values of
SEP. On the slope element of gullies, all these input and output parameters are
performed within the frame of RSULE (Table 7.15). The prime objective of sensi-
tivity analysis is to measure the effects of variable input parameters on the output soil
loss rate and to calculate the degree of sensitivity. Firstly, Average Linear Sensitivity
(ALS) of P (R-factor) on the estimation of potential soil loss (SEP) is 0.879. Then,
ALS of LS-factor, K-factor and C-factor are 1.001, 0.999 and 1.001, respectively.
So, it can be said that the LS-factor and C-factor (>1.0) are more sensitive in RSULE
model to produce high deviation in SEP values. K-factor is also highly sensitive, but
the R-factor is not sensitive in RUSLE model. Therefore, to apply this model, we
have to caution in measuring accurate slope angle, slope length, soil textural data and
land use data.

Table 7.13 Secondary input parameters for RMMF model

Input database RMMF MS Et/Eo EHD BD K COH

Catchment 1 0.28 0.05–0.23 0.11–0.19 1.2 0.7 2

Catchment 2 0.28 0.25–0.32 0.08–0.12 1.2 0.7 2

Catchment 3 0.31 0.22–0.38 0.08–0.15 1.3 0.8 3
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To measure the sensitivity of RMMF the maximum, minimum and average input
parameters of rainfall (P), slope steepness (S), soil detachability index (K) and
ground cover (GC) are used to estimate maximum, minimum and average output
values of J. All the sensitivity analyses are done on the sample slope element of S1
(Table 7.15). The prime objective of sensitivity analysis is to measure the effects of
sensible input parameters on the predicted values of soil loss, i.e. J, and to calculate
the degree of sensitivity. It is found that the mentioned factors of S and CC are highly
sensitive to erosion prediction accurately, because the both ALS value of K and CC
is 1.001 which is greater than 1.0, i.e. highly sensitive index. The R-factor is
moderately sensitive, as it values about 0.79, but GC factor is less sensitive. This
analysis reflects that during the application and prediction of RMMF model, we
should care about these input parameters.

Model Evaluation and Validation

In this part of model evaluation and validation, we have applied firstly absolute error,
root mean square (RMS) error estimation, Chi-square test, model efficiency coeffi-
cient (MEC) and lastly scatter plot and linear regression (Yc ¼ a + bx), t-test of
b value and product moment correlation (r) and coefficient of effectiveness (EC) at
0.05 level of significance. The total statistical analysis is based on the measured
erosion rate (O) and predicated erosion rate (AP and SP) with 18 sample size (n¼ 18).

Error Analysis

The absolute error between observed and predicted data is measured, showing
positive anomaly (over estimation of erosion in response to observed rate) and
negative anomaly (under estimation of erosion in response to observed rate)
(Table 7.16). It is learned that 55.55% of predicated sample (i.e. ten dam sites)

Table 7.15 Average linear sensitivity analysis of RUSLE and RMMF

Input parameter Maximum Average Minimum ALS

RUSLE
Rainfall (P) 1697 1523 1350 0.871

Slope-length factor (LS) 1.53 1.345 1.16 1.001

K-factor 0.31 0.25 0.19 0.999

C-factor 0.93 0.88 0.83 1.001

RMMF
Rainfall (R) 1697 1523 1350 0.79

Slope steepness (S) 1106 832 558 1.001

K-factor 0.8 0.55 0.3 1.001

GC-factor 0.17 0.12 0.07 0.027
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provide under estimation of erosion phenomena and 44.45% of data gives over
estimation of erosion phenomena in RUSLE modelling. The value of absolute error
varies from �5.81 to +5.57 from the observed data, and the estimated RMS-error is
assigned as 3.22. In RMMFmodelling, it is found that 77.17% of data sample (i.e. 14
dam sites) shows under estimation of erosion phenomena and 22.23% of data sample
shows over estimation of erosion phenomena in respect to observed erosion rate. The
absolute error value varies form �8.55 to +5.0 from the observed data, and the
estimated RMS-error is assigned as 4.45. Therefore, it can be said that the RUSLE
model gives less error than RMMF model.

Chi-Square (ϗ2) Test Statistic

At 0.05 level of significance and 17 (n � 1) degree of freedom, the Chi-square (ϗ2)
test statistic sets forth the null hypothesis (H0, O – AP or SP ¼ 0) which states that
there is no difference between certain characteristics of a population, i.e. difference
between predicted and observed value is zero and good correlation. The alternate
hypothesis (H1, O – AP or SP 6¼ 0) reflects significant difference between predicted
and observed value. The value of ϗ2 statistic is assigned as 27.59 at 0.05 significance
level with 17 degree of freedom (Table 7.17). The ϗ2 statistic values of RUSLE and
RMMF modelling are estimated, respectively, as 10.43 and 20.10 which are much
lower than the tabulated ϗ2 value at 0.05 level. Therefore, it is concluded that H0 is
accepted and H1 is rejected. So, there is no significant difference between observed
and predicted values in the study. Another statistic p-value of this test is used to

Table 7.17 Results of testing statistics

Statistical
parameter

Tabulated testing
statistical value

Calculated value

Remarks on hypothesisRUSLE RMMF

Chi-square
(ϗ2)

ϗ2 statistic is assigned as
27.59 at 0.05 signifi-
cance level with
17 degree of freedom

10.43 20.10 H0 is accepted and H1 is
rejected (both models are
accepted and predicted
values resemblance with
measured values)

t-test statis-
tic of
r value

t statistic is assigned as
2.120 at 0.05 signifi-
cance level with
16 degree of freedom

5.44 3.37 H0 is rejected and H1 is
accepted (both models are
accepted and there is god
correlation)

t-test statis-
tic of
b value

t statistic is assigned as
2.120 at 0.05 signifi-
cance level with
16 degree of freedom

2.99 1.71 H0 is rejected and H1 is
accepted (regression value
of RUSLE give desired
result than RMMF)

Confidence
interval,
α0.05

14.15 to
18.29 kg m�2 year�1 at
0.05 significance level

61% of
sample
fallen
within
interval

38% of
sample
fallen
within
interval

RUSLE model can provide
more satisfactory results
than RMMF
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know the quantitative level of acceptance and large p-value means weakness of
alternative hypothesis. The estimated p-value of RUSLE modelling is 0.8844 which
reflects that H0 is accepted, having 88.44% chance of getting desired results, but in
case of RMMF modelling, there is only 26.90% chance ( p-value –0.2690) of getting
desired results at 0.05 significance level. Now, it can be said that according to ϗ2 test
statistic, RUSLE model gives significant good results than RMMF model in this
analysis.

Model Efficiency Coefficient

Now, applying model efficiency coefficient (MEC) (Nash & Sutcliffe, 1970; Morgan
& Duzant, 2008) into the relation between observed and predicted data, we have
found two MEC values for two erosion models: (1) 0.48 (RUSLE) and (2) 0.22
(RMMF), respectively. The MEC >0.50–0.70 signifies good and satisfactory per-
formance of model in reference to observed erosion results (Quinton, 1997; Morgan,
2011). The result shows that MEC value of RMMF is much lower than 0.50, but
MEC value of RUSLE is much closer to 0.50. So, it can be decided that RUSLE
model can be applied in this geo-climatic setting in place of RMMF model.

Linear Regression and t-Test Statistics

To get the trend of inter-relation between observed and predicted database, now the
scatter plot and linear regression trend line (Yc ¼ a + bX) are prepared, taking
observed data as X and predicted data of RUSLE and RMMF models as Y. It is
finally estimated that the predicted values of RUSLE is statistically interrelated with
the observed values (AP ¼ 5.90 + 0.659 OE), having good coefficient of determina-
tion (R2) of 0.521 (i.e. inter-relation explained 52.10% in population) and notable
slope (b) value of trend line, i.e. 0.659 (Fig. 7.9). The b-value of regression line
(i.e. slope) reflects the quantitative judgment (indicating a change on response
variable caused by a unit change of respective explanatory variable) of
Y dependence on X. The t-test statistic of b value is 2.120 at 0.05 significance
level with 16 (n – 2) degree of freedom (H0: b ¼ 0, Y does not depend on X; H1

� Y depends on X). The estimated values of t-test statistic are 2.99 (RUSLE) and
1.71 (RMMF). This analysis reflects that test statistic of RUSLE b-value is greater
than the tabulated t-value, and it means high dependence of predicted values on the
observed values (i.e. RUSLE predicted values resemblance with observed erosion
rates). In other case, another analysis reflects that test statistic of RMMF b-value is
lower than the tabulated t-value, and it means low dependence of predicted values on
the observed values (i.e. RMMF predicted values do not resemblance with the
observed erosion rates). The Pearson’s product moment correlation (r) of this
analysis is estimated as 0.72 for RUSLE and 0.56 for MMF which reflect good
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Fig. 7.9 Comparing the
final results between
observed and predicted
erosion rates—(a)
composite bar diagram
showing dam site-wise
result deviations in observed
(OE) and predicted erosion
rates (RUSLE and RMMF),
(b) predicted erosion rate
(AP) of RUSLE has close
resemblance with OE,
having 52.1% of
explanation in relationship
and (c) predicted erosion
rate (SP) of RMMF has very
weak resemblance with OE,
having only 21.2% of
explanation in relationship
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correlation between predicted and observed values. Here, again the t-test statistic of
r value is 2.120 at 0.05 significance level with 16 (n – 2) degree of freedom (H0:
b¼ 0, Y does not correlate with X;H1—there is a good correlation between Y and X).
The estimated values of t-test statistics are, respectively, 5.44 (RUSLE) and 3.37
(RMMF) which are much greater than the tabulated t-value at 0.05 significance
level. Here, it can be concluded that r value or correlation between observed and
predicted value is statistically significant in this study, but the results of RUSLE
modelling correlate highly with the observed erosion rates than RMMF modelling.

Effectiveness Coefficient

At last, the effectiveness coefficient (EC) of erosion model is applied on the basis of
linear regression database, 0.05 confidence interval of observed erosion rate (OE)
and Z-value of 1.96. The calculated Rdiff value (relative difference) varies from
+0.196 to�0.139 in RUSLE and + 0.34 to�0.09 in RMMF, respectively. It is found
from the regression analysis (Rdiff ¼ m log10 OE + b) that 55.55% of RUSLE results
is placed in over-predicted zone, whereas 77.7% results of RMMF is located in over-
predicted zone (Fig. 7.10). It generally reflects, from the logarithmic relation
between Rdiff and OE, that RMMF model generates an over-predicted result of the
reality, i.e. always providing high erosion rate than observed rate. The confidence
interval of observed erosion rate is 14.15–18.39 kg m�2 year�1. If the large number
of predicted values is fallen within this confidence interval, then EC yields high
value, signifying the good performance of the model. In general, EC is the ratio
between number of sample fallen within confidence interval and total number of
sample. EC of RUSLE modelling is 0.61 and the value is 0.38 in case of RMMF
modelling. Therefore, it can be concluded that at 0.05 significance of confidence
interval RUSLE model can provide satisfactory results in this region.

7.5 Discussion

Erosion Intensity

In spite of above quantitative analysis, one key question is always raised by soil
scientists, agriculturists and land developers is that ‘how serious is erosion in this
study area’? The first part of the answer to this question involves establishing typical
value of soil erosion by measured data and models: (1) field measured data �8.12 to
24.01 kg m�2 year�1 (mean 16.27 kg m�2 year�1), (2) RUSLE data �7.86 to
24.47 kg m�2 year�1 (mean 16.68 kg m�2 year�1) and (3) RMMF data �16.01 to
21.28 kg m�2 year�1 (mean 18.63 kg m�2 year�1). It is needed to compare the
research results with the T-value to understand the critical level of erosion which can
be reduced to an acceptable limit using crop management and land management
techniques. Erosion is natural geological process, and it is impossible to stop; instead
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the goal is to manage environmental and human impacts on the soils so that the rate
of erosion is within an acceptable range. It is found that T-value of 1 kg m�2 year�1

(i.e. 10 t ha�1 year�1) is experimentally proved in the red and lateritic soils of West
Bengal (Mandal & Sharda, 2013; Lenka et al., 2014). The T-value signifies the
permissible limit to a level of crop and biomass productivity to be sustained
economically in the study area.

The observed and predicted erosion rates show very higher value than the
T-value, reflecting rugged—dissected terrain, low productivity of crops and high
expansion of badlands. The results of erosion rate justify the escalating vertical
erosion of gullies (i.e. up to 1.5–3.5 m depth) which unearths the underlying pallid
kaolinte zone and occasionally weathered bedrock. Now, unit of mass per area per
time can be converted into equivalent depth of soil thickness which is eroded
permanently. Montgomery (2007) used a standard bulk density of 1200 kg m�3 in
the paper to get the loss of soil thickness per year (i.e. dividing the annual erosion
rate by bulk density of eroded materials). Applying the bulk density of eroded
materials (i.e. 1.717 kg m�3 in study area) and observed erosion rates, it is found
that soil thickness of 0.47–1.41 cm year�1 (mean 0.95 cm year�1) is permanently
lost from the lateritic surface of the catchments. In addition Montgomery (2007)
developed an empirical equation to estimate the average time period (Tc, in years)
taken to erode that soil thickness, viz. Tc ¼ S/E – P (where S is initial thickness or
depth of soil profile, E is rate of soil thickness loss and P is the average soil
production rate, 0.2 mm year�1). Using this equation to this study, it is learnt that
the water erosion will require 127–223 years (average 176 years) to erode the mean
soil thickness of 1500 mm in this region.

Factors of Erosion

The observed erosion rates and predicted erosion rates show that the mean annual
erosion rates vary from 16.27 to 18.63 kg m�2 year�1. The high value of erosion rate
reflects the ultimate development of dense network of gullies in the laterite terrain. In
the saturation condition of peak monsoon and cyclonic rainfall period, the surface
crusting (i.e. Fe-Al clay closes the pore spaces of top soils) and less canopy cover on
bare soil promotes high overland flow on the slope elements. Here, the gully erosion
signifies instability in the landscape, and it is regarded as a threshold condition under
certain topographic parameters in the landscape, relating with overland flow erosiv-
ity and surface resistance of laterite terrain (Ghosh & Guchhait, 2020). High runoff,
due to intense rainfall, is the primary trigger, but the local conditions such as slope
morphometry (i.e. high concavity at the base of slope), land use (i.e. high proportion
of bare soil cover and low proportion of canopy cover) and soil characteristics (high
erodibility and surface crusting) control the triggering of gully erosion (Ghosh &
Guchhait, 2020). It is found that 52.51% of gullies are affected by overland flow
erosion (slope steepness, S, 1.2–5.2� and drainage area, A, 2129.1–10513.9 m2),
while 27.96% belongs to landslide erosion (S 5.2–9.5� and A 457.1–5702.5 m2)
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(Ghosh & Guchhait, 2020). This experimental study and model evaluation is
suggested that instead of using RMMF model, the RUSLE model can be applied
for this lateritic region to estimate potential rate of annual soil loss. Therefore, based
on the 17 sub-catchments of gullies (a part of study area) and RUSLE modelling
(considering 118 gully head slope), an erosion map is developed to depict the
potential annual rate of soil loss due to rill and inter-rill erosion in the lateritic
region. The erosion map (Fig. 7.11) shows that the western and eastern part is very
much susceptible to soil erosion (greater than 9.4 kg m�2 year�1) due to high LS
factor and bare soil cover, but the erosion rate (less than 9.4 kg m�2 year�1) is much
lower in the central part, because this part is covered with Acacia plantation, Sal
forest, aerodrome pavement and relatively low LS factor. Also it is understood that
the whole region is under very high erosion risk, because the erosion rate is beyond
the acceptable T value limit (i.e. 1 kg m�2 year�1).

The most vulnerable sites of water erosion (need to be protected) are identified as
(Ghosh et al., 2020): (1) the region above the gully heads where the rills have
tendency to converge; (2) high steepness (>5�) and long stretch of convex slope
(>70 m); (3) the region having high bareness of slope and surface crusting promotes
more runoff; and (4) bank failure due to mass wasting, pipe flow, flow convergence
at heads and undercutting by channel flow. The fundamental problem to control soil
erosion is centred on the on-site management of too much runoff water in short span
of torrential rains or thunderstorms. To check channel erosion, the prime focus of
erosion control strategies should be placed on five aspects: (1) reducing discharge
rate through good growth of vegetation at catchment and water retention basins;
(2) minimizing channel grade through construction of check dams and rock chutes

Fig. 7.11 RUSLE erosion map depicting (rill and inter-rill erosion) spatial coverage of different
zones of annual soil erosion rate (kg m�2 year�1), considering 17 catchments of gullies
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for enhancing deposition; (3) controlling headcut erosion through drop structures at
catchment to recue concentrated flow areas; (4) constructing flow barriers (as gravel
or sand bags or loose rock piles) to control downstream sediment movement; and
(5) promoting vegetative measures (plantation of trees and grasses on bare surface)
to control splash, rill and gully erosion throughout the basin.

7.6 Conclusion

Now it can be said at last that the present research work has fulfilled the objectives
with mentioning the region as a high potential erosion risk at basin scale using
measured data and models (16.27–18.63 kg m�2 year�1). Using limited database and
resources, the research has successfully applied the erosion models and compared
the results against field measured erosion data to get the real picture of laterite
badlands. The experimental design and plan of work reaffirm that RUSLE model
gives desire results in comparison to RMMF model with very high model efficiency
coefficient (0.48) and effectiveness coefficient (0.61). The predicted values of
RUSLE (AP) follow the field measured data (OE), with a positive correlation
(r ¼ 0.72) and trend line (Yc ¼ 5.9 + 0.659 OE) which is not very resemblance in
case of RMMF model. It is learned from the analysis that the logarithmic relation,
between Rdiff (relative difference) and observed erosion rate (OE), reflects more over-
prediction of erosion results (i.e. yielding high predicted erosion rate thanOE) in case
of RMMF modelling than RUSLE. The measured data of erosion rate confirms the
vulnerability and high erosion risk of the region against T-value (1.0 kg m�2 year�1)
of laterite soils. It is found that the mean soil thickness of 0.95 cm per year is
permanently lost from the surface of gully catchments. Applying RUSLE model in
the whole study area, it is estimated that the region is dissected by annual erosion
rates of 5.25–18.12 kg m�2 year�1.

The most challenging task is to apply rightly an erosion model understanding the
geo-environmental conditions which can be measured accurately through input
variable functions of that model. The more inputs in field-based data collection,
innovative techniques, flexibility of model application and better understanding of
hydro-geomorphic processes will help to get good prediction in the soil erosion
research. No model can give exact results in comparison to observed data at plot
scale or basin scale, but high expertise and fine tuning of advanced model can
provide sufficient inference on the erosion rates. It is understood that there is a
need of further research to apply RUSLE or RMMFmodels in different parts of India
for the applicability and validity of model. Validation of any erosion model can only
be done or justified scientifically if the GIS-based model data will evaluate with the
observed data taken at field plots. At last, the present study reveals that anyone
cannot blindly exercise any erosion model and prepare any thematic map of soil
erosion spatially in any particular region without evaluating the scale effect and error
statistics of predicted values in comparison to field measured data.
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Chapter 8
Forest Fire Risk Zone Mapping in Tropical
Forests of Saranda, Jharkhand, Using
FAHP Technique

Sk Mujibar Rahaman, Masjuda Khatun, Sanjoy Garai, Pulakesh Das,
and Sharad Tiwari

Abstract The forest fire has severe environmental and societal consequences caus-
ing millions of monetary losses every year in the form of loss of forest resources,
animals, and man-made infrastructures globally. Mapping and monitoring of forest
fire and its severity are essential to examine the loss of forest cover resources,
environmental degradation, release of carbon, etc. The present study attempts to
demarcate the forest fire-prone zones in Saranda forests, Jharkhand state, India,
which houses Asia’s largest Sal forest area (769 km2). The Sentinel 2A multispectral
satellite data and ALOS PALSAR digital elevation model (DEM) data were used to
identify the forest-fire prone zones employing the fuzzy analytic hierarchy process
(FAHP). The adopted method indicated a high modelling accuracy (overall 88% and
kappa coefficient 84%). The study identified that about 77% area of the total forest
area is under moderate to very high risk of a forest fire. The study suggests that the
dense forest areas, which are characterized by high humidity and residing at higher
altitudes, are less prone to a forest fire risk. Alternatively, the open and moderately
dense forests at drier regimes are more prone to a forest fire. The developed maps are
essential for forest cover management and preparedness to minimize the conse-
quences of a forest fire. Various initiatives such as awareness programs,
safeguarding forests from human interventions, formulation of forest fire task forces,
and afforestation of native species in the open and disturbed forests in the moist areas
are required to mitigate the forest fire risk in the Saranda forests.
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8.1 Introduction

The forest fire is described as uncontrolled burning of vegetation in a forested
landscape. It is caused by various anthropogenic and natural factors including
drought and warm climate and in some instances due to the occurrence of lightning
(Taylor et al., 2008; Westerling et al., 2006). The climate-driven factors are the
major causes of the forest fire, where the paleoclimatic studies have indicated higher
fires accumulation during the prolonged drier period (Clark, 1988). The dry condi-
tion and heat waves have a direct influence on plant growth and humidity (Morgan
et al., 2008). The increased dryness or drought condition due to climate alteration has
significantly increased the fire events in the past few decades. Besides, the anthro-
pogenic disturbances have induced changes in the land use/land cover (LULC)
pattern, which is one of the prime reasons for increased forest fire (Running,
2006). The human interventions in the form of landscape development, land clearing
for various purposes including agriculture or shifting cultivation in hilly terrains, and
negligence during the tourism and other human activities are also regarded as causes
of a forest fire (Behera et al., 2018).

The forest fire significantly contributes to the modification of the ecosystem
structure. The fire severity determines the loss of vegetation cover and thereby the
biodiversity and ecosystem productivity (Pausas, 2004; Piñol et al., 1998). Every
year, fauna and flora in vast stretches of landscape are removed due to wildfire. It
also has societal impacts via deteriorating human health and damages infrastructure.
The forest fire releases enormous tree carbon into the atmosphere and significantly
alters the regional to the global carbon budget (Spracklen et al., 2007). In the past
few decades, several devastating forest fire instances have been reported globally
such as Australian bush fire (2002, 06, 12, 13, 19–20), Russian wildfire (2003, 15),
Northwest territories fires (2014), British Columbia wildfire (2017), Siberian wild-
fire (2019), Amazon rainforest wildfire (2019), California wildfire (2020), etc.
(Iemima, 2018; Luke & McArthur, 2020; Pierce & Meyer, 2008)). In India, forest
fire incidents are also frequent, where the recently reported incidences are
Uttarakhand forest fire (2016) and Bandipur forest fire (2019) were the most
devastating (Milton, 2019; Upadhyay, 2020).

Satellite remote sensing data provides a variety of indicators to assess the forest
fire-driven changes in forest cover, structural attributes, biochemical properties, etc.
The multitemporal analysis (i.e., pre- and post-fire images) allows to examine the
changes in forest and land cover, wherein the GIS analysis facilitates the identifica-
tion of drivers. Visual image interpretation of the satellite imagery allows the manual
identification of fire burnt areas. Moreover, the changes in vegetation indices
(spectral enhancement), e.g., Normalized Difference Vegetation Index (NDVI;
normalized difference between near-infrared and red band) and Enhanced Vegeta-
tion Index (EVI; modified NDVI with canopy background soil correction factor)
during the pre- and post-fire event, allow automatic identification. Several indices
have been developed for effective burned area mapping, such as Normalized Burn
Ratio (NBR; normalized difference between NIR and SWIR band), Normalized
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Difference Moisture Index (NDMI); the pre- and post-event NBR (dNBR) and its
relativized NBR (RdNBR) (Chuvieco et al., 2002; Key & Benson, 2005; Miller &
Thode, 2007; Kolden et al., 2015). The Moderate Resolution Imaging
Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer
(MERIS) sensor generate the global burnt area products at frequent intervals
(1–3 days intervals) at a coarser resolution of 500 m and 30 m, respectively (Giglio
et al., 2003; Alonso-Canas & Chuvieco, 2015), whereas the Landsat satellite data are
widely used for forest fire mapping at moderate resolution (30 m) for the past five
decades at various scales (Escuin et al., 2008; Long et al., 2019).

The forest fire occurrence maps created with the satellite data allows analyzing
the causes of fire events integrating several response variables and proxies in the
Geographical Information System (GIS) environment. The geospatial approach is
recognized as a reliable method in developing fire susceptibility map in India, where
a large portion of forest land is being occupied and managed by the forest dwellers
(Jain et al., 1996; Roy et al., 1991). The statistical analysis of the past events and
drivers enables examining the relative influence of the causative factors and allows
to create a fire risk zone map (Chuvieco et al., 2010; Núñez-Regueira et al., 2000).
Previous studies have identified several factors as biologic, physiographic, and
anthropogenic. The biologic factors have significant impacts on forest fire incidence,
where the forest fires have differential interactions depending on the species diver-
sity and forest type (Kodandapani et al., 2008). Land use/land cover (LULC),
vegetation density, and moisture content of vegetation determine the burnable fuel
for forest fire expansion and severity (Biranvand et al., 2011; Adab et al., 2013;
Siachalou et al., 2009). The moisture condition of vegetation plays a very influential
factor in the spread of forest fire, where high moisturized areas are less prone to
burning and vice-versa (Siachalou et al., 2009). The indices on vegetation greenness
and moisture content as NDVI and NDMI, respectively, are widely used as the
satellite data derived proxies (Serrano et al., 2000). Thin layers of a canopy with a
higher reflectance in a short-wave infrared (SWIR) band signifies high moisture
content, whereas the higher reflectance in NIR band indicates lower moisture content
(Siachalou et al., 2009).

The physiographic variables as elevation and slope are linked with the wind and
direction that act as stimulating factors and regulates the fire spread (Gao et al., 2011;
Jaiswal et al., 2002; Weise & Biging, 1997). The downward spread of forest fire is
slow as compared to the spread of intensity toward a higher slope (Kushla & Ripple,
1997). The moisture content determined by the amount of incident solar energy in an
area is correlated with the aspect. The sun-facing aspects create favorable condition
for the higher rate of fire spread owing to higher sunlight, heat, low clamminess, low
fuel vapors, and heavy winds (Anderson, 1982; Prasad et al., 2008). The anthropo-
genic influences encourage the fire spread rate due to closeness to settlements and
roads (Avila-Flores et al., 2010). Fire risk is higher as it offers more chance for
unpredicted human-made explosions, due to the more forceful human actions
(Alencar et al., 2004).

Jaiswal et al. (2002) employed the LISS-III data derived from forest type, slope,
settlement, and road network map to map the forest fire risk zone in Gorna
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Subwatershed, Madhya Pradesh, India. They have observed the high and very high
risk in around 30% area of the total forest area. Kumari and Pandey (2020) integrated
several factors such as fuel type, bare soil index, slope, aspect, elevation, distance
from road, and settlement using the AHP technique for forest fire risk analysis in
Palamau Tiger Reserve Forest, Jharkhand. They have observed a good agreement
comparing with the MODIS and SNPP-VIRRS product and identified the high and
very high-risk zone in about 43% of the area. Sharma et al. (2012) applied the Crisp
AHP (CAHP) and Fuzzy AHP (FAHP) techniques for forest fire risk mapping in the
Taradevi forest range of the Shimla Forest Division, India. The resultant map
showed high accuracy with the forest fire observed data points and identified
about 6.89 and 9% area as the very high-risk zone for the CAHP and FAHP
technique, respectively. Kayet et al. (2020) compared the Frequency Ratio (FR)
model and AHP technique for the forest fire risk mapping in Melghat Tiger Reserve
forest, India. The validation with the Forest Survey of India (FSI) fire occurrence
point data indicated an overall accuracy of 81% and 79% for the FR and AHP
technique, respectively. Adab et al. (2013) employed the MODIS data product to
compare the accuracies observed for various methods as Hybrid Fire Index, Struc-
tural Fire Index, and Fire Risk Index for northeast Iran. The receiver operating
characteristic (ROC) curve indicated high accuracy of 76.7% for the hybrid fire
index. Ahmad and Goparaju (2017) analyzed the forest fire hotspot districts in
Jharkhand state, India, from 2005 to 2016 and reported the Paschim Singhbhum
district as the most forest fire affected district.

In the present study, we have attempted to assess the forest fire risk in the Saranda
Forest Division of Jharkhand using Fuzzy Analytic Hierarchy Process (FAHP)
model and GIS. The objective of the study was to study the factors responsible for
a forest fire in the Saranda Forest Division and to create a knowledge base that would
enable better planning and management strategies to combat the future forest
fire risk.

8.2 Study Area

The present study was conducted in the Saranda Forest Division (SFD) of West
Singhbhum district, Jharkhand, India (Fig. 8.1). Saranda means “Land of Seven
hundred Hills.” It is Asia’s largest dense Sal (Shorea robusta) forest and lies
between 22� 220 58.8300 N to 22� 00 36.6200 N and 84� 580 47.3500 E to 85� 250

38.2200 E geographic extent and spread over about 1003 km2 of geographical area.
Jharkhand has about 29% of its geographical area under forest cover. Both protected
forests (61%) and reserved forests (19%) are common to forest fires (Mishra, 2013).
Previous studies have identified significant changes in forest cover in the Saranda
Forest Division from 1992 to 2014 and built-up and mining area expansion replacing
the dense and open forests. About 9% forest reduction with equivalent mining and
built-up area expansion was reported by Kayet and Pathak (2015). The analysis
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carried out by the FSI (Forest Survey of India, 2019) estimated about 0.21%, 2.18%,
and 9.16% area of Jharkhand falls under the extreme, very high, and highly fire-
prone zones of the total forest cover in Jharkhand state.

Fig. 8.1 Location map of the study area
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8.3 Material and Methodology

Biologic Data

The biologic factors were introduced employing the NDVI and NDMI maps. These
maps were prepared using the cloud-free Sentinel-2B level 2 high-resolution (10 m
spatial resolution) satellite imagery dated March 28, 2020. The image tiles were
accessed from the open-source archive of Copernicus Open Access Hub (https://
scihub.copernicus.eu/).

Physiographic Data

The physiographic factors, i.e., elevation, slope, and aspect, were extracted from
high resolution (12.5 mspatial resolution) ALOS PALSAR Digital Elevation Model
(DEM) datasets acquired from National Aeronautics and Space Administration
(NASA) Earth Observing Systems Data and Information Systems (EOSDIS) portal
(https://search.asf.alaska.edu/#/?dataset¼ALOS).

Anthropogenic Data

Proximity to road and settlement is sensitive factor for mapping forest fire risk zones.
In the present study, road and settlement maps were prepared using Survey of India
(SOI) 1:50k topographical map (73F3, 73F4, 73F7, 73F8, and 73B16) acquired from
the data portal (https://soinakshe.uk.gov.in/).

Methodology

The various input layers were integrated, employing the AHP technique based on
their relative importance.

The NDVI and NDMI maps were prepared using the QGIS 3.14 software
employing the following formulae (Eqs. 8.1 and 8.2, respectively).

NDVI ¼ NIR� RED
NIRþ RED

ð8:1Þ

NDMI ¼ NIR� SWIR
NIRþ SWIR

ð8:2Þ
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The NDVI layer was used to create the map vegetation and non-vegetation cover,
where the NDVI threshold of 0.2 was considered for segregation (Al-doski, 2013).
The leaf water content of the vegetation was assessed by the NDMI. Lower NDMI
value indicates dry vegetation which is more flammable than fresh vegetation that
has high NDMI value. Thus, alternative lower and higher weights were assigned to
higher and lower moisture conditions areas.

The physiographic factors as elevation, slope, and aspect were derived from the
ALOS DEM datasets using QGIS 3.14 software “raster terrain analysis” tool. Forest
fire influences are higher in the lower altitude due to favorable climatic conditions;
therefore, higher weightage was assigned to lower elevation (Jaiswal et al., 2002).
The higher vertical slope increases the likelihood of increasing the spread of forest
fires due to water loss and more efficient convection prewarming (Kushla & Ripple,
1997). Consequently, high and low slopes were assigned high and low weights,
respectively. In the northern hemisphere, the south and the north-facing slope is
exposed to highest and least sunlight, respectively, thus assigned contrasting higher
and lower weightage (Kumari & Pandey, 2020).

Anthropogenic factors like distance from road and settlement were digitized from
SOI topographical map on 1:50k scale. In the forest fire risk index, roads play both
positive and negative roles. Roads offer more human access to forested areas
enabling more human interference and increased chances of a spark of fire; alterna-
tively, the roads create a barrier that prevents fire spreading. Areas close to the
settlements and roads were assigned with higher weightage values. All the input
variables were converted into raster format with uniform cell size and were projected
for further processing.

Fuzzy Analytical Hierarchy Process (FAHP) Model

The FAHP is the combination of Analytic Hierarchy Process (AHP) and fuzzy logic.
It follows a similar process to the AHP method. In FAHP, the arrays of the AHP are
scaled into the fuzzy triangle scale to retrieve the importance of the input variables
(Putra et al., 2018). Using a fuzzy triangle scale, fuzzified pairwise comparison
matrix was prepared, as shown in Table 8.2.

Estimation of Geometric Mean

For each criterion, the geometric mean (eriÞ fuzzy comparison values are calculated as
shown in the Eq. (8.3) (Buckley, 1985).

eri ¼ Yn

j¼1
edij� �1

n
, i ¼ 1, 2, 3, . . . , n ð8:3Þ

Estimate Weight ( ewi):
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ewi ¼ eri O er1 O er2 O⋯
O ern� ��1

ð8:4Þ

Defuzzified (Mi):

Mi ¼ lwi þ mwi þ uwi

3

� �
ð8:5Þ

Normalized Fuzzy Weight(Ni):

Ni ¼ MiPn
i�1Mi

ð8:6Þ

Forest Fire Risk Index

The input parameters as NDVI, NDMI, elevation, slope, aspect, distance to road, and
distance to settlement were assigned different weights ranging from 2 to 10 based on
their comparative importance to fire risk (Table 8.1). Lower and higher weightage
value indicates the relative lower and higher hazard induced by the drivers. The
mathematical equation used for calculating the forest fire risk index is shown below:

FFRI ¼ Vm � 38ð Þ þ Vi � 20ð Þ þ e � 3ð Þ þ S � 14ð Þ þ a � 4ð Þ þ R � 12ð Þ
þ s � 10ð Þ ð8:7Þ

Where Vm is Normalised Difference Moisture Index, Vi is Normalised Difference
Vegetation Index, e is elevation, S is slope, a is aspect, R is distance from road, s is
distance to settlement, and 38, 20, 3, 14, 4, 12, 10 is the weight of the factor
estimated by using the FAHP model (Tables 8.2, 8.3, and 8.4 and Eqs. 8.3–8.6).

For validation, the Suomi NPP and Visible Infrared Imaging Radiometer (SNPP-
VIRS) forest fire dataset were used. The data were acquired from the Level-1 and
Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive

Table 8.1 Weights assigned to each variable and classes for forest fire risk modelling

Variables Classes Rating of risk

NDMI (�1 to +1) <0, 0–0.16, 0.16–0.26, 0.26–0.36, >0.36 10, 8, 6, 4, 2

NDVI (�1 to +1) <0.2, >0.2 4, 10

Elevation (m) <350, 350–550, >550 10, 6, 2

Slope (�) <5, 5–10, 10–15, 15–20, >20 2, 4, 6, 8, 10

Aspect(�) North, East, West, South 4, 6, 8, 10

Proximity to Road(m) <500, 500–1000, 1000–1500, 1500–2000, >2000 10, 8, 6, 4, 2

Proximity to Settlement(m) <500, 500–1000, 1000–1500, 1500–2000, >2000 10, 8, 6, 4, 2
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Center (DAAC) website (https://ladsweb.modaps.eosdis.nasa.gov/). For validation,
222 points were created randomly, where the respective values were extracted from
the forest fire risk map and SNPP-VIRS to compute the frequency and confusion
matrix.

Table 8.3 Estimated
geometric mean

Criteria Geometric mean erið Þ
NDMI 3.95, 4.63, 5.29

NDVI 1.96, 2.40, 2.85

Elevation 0.28, 0.36, 0.47

Slope 1.42, 1.67, 2.10

Aspect 0.34, 0.45, 0.57

Proximity to road 1.13, 1.43, 1.75

Proximity to settlement 0.96, 1.18, 1.50

Total (T) 10.04, 12.12, 14.52

Reverse (T�1) 0.10, 0.08, 0.07

Table 8.2 Fuzzified pair-wise comparison matrix

Criteria NDMI NDVI Elevation Slope Aspect
Proximity
to road

Proximity to
settlement

NDMI 1, 1, 1 4, 5, 6 5, 6, 7 5,
6, 7

6, 7, 8 5, 6, 7 5, 6, 7

NDVI 1
6 ,

1
5 ,

1
4

1, 1, 1 5, 6, 7 3,
4, 5

5, 6, 7 3, 4, 5 3, 4, 5

Elevation 1
7 ,

1
6 ,

1
5

1
7 ,

1
6 ,

1
5

1, 1, 1 1,
2, 3

1
3 ,

1
2 ,

1
1

1
7 ,

1
6 ,

1
5

1
7 ,

1
6 ,

1
5

Slope 1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

1
3 ,

1
2 ,

1
1

1,
1, 1

1
3 ,

1
2 ,

1
1

1
6 ,

1
5 ,

1
4

1
6 ,

1
5 ,

1
4

Aspect 1
8 ,

1
7 ,

1
6

1
7 ,

1
6 ,

1
5

1, 2, 3 1,
2, 3

1, 1, 1 1
6 ,

1
5 ,

1
4

1
6 ,

1
5 ,

1
4

Proximity to
road

1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

5, 6, 7 4,
5, 6

4, 5, 6 1, 1, 1 1, 2, 3

Proximity to
settlement

1
7 ,

1
6 ,

1
5

1
5 ,

1
4 ,

1
3

5, 6, 7 4,
5, 6

4, 5, 6 1
3 ,

1
2 ,

1
1

1, 1, 1

Table 8.4 Estimated fuzzy weight

Criteria Fuzzy weight ( ewiÞ Defuzzified (Mi) Normalized fuzzy weight (Ni)

NDMI 0.27, 0.38, 0.53 0.39 0.38

NDVI 0.14, 0.20, 0.28 0.21 0.20

Elevation 0.02, 0.03, 0.05 0.03 0.03

Slope 0.10, 0.14, 0.21 0.15 0.14

Aspect 0.02, 0.04, 0.06 0.04 0.04

Proximity to road 0.08, 0.12, 0.17 0.12 0.12

Proximity to settlement 0.07, 0.10, 0.15 0.10 0.10
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8.4 Result

The forest density map is shown in Fig. 8.2, which indicates the dominant occur-
rence of moderately dense forest (519 km2) followed by open forest (281 km2),
grassland (83.65%), and dense forest (35.92%), whereas non-forest areas are esti-
mated in 17.13 km2 area. The factor maps are shown in Fig. 8.2. The NDMI map
indicated higher moisture content for the grassland-dominated regions, as observed
in the eastern and western part of the study area (Fig. 8.3a). The NDVI index map
indicates the dominance of densely vegetated areas except for the eastern and
northwestern part mostly occupied by grassland, settlement, and mining areas
(Fig. 8.3b), which are also mostly in the lower altitudes (Fig. 8.3c). The
corresponding slope map indicates lower slope in these regions and a higher slope
in the rest of the study area (Fig. 8.3d). The aspect map indicates the face of the slope
(Fig. 8.3e), which is categorized in four types as east, west, north, and south. The
south-facing slope is given a higher value, and the north-facing slope is given a

Legend
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Open Forest
Moderate Forest
Dense Forest

Map Scale
0 3 6 12 KM

N

Fig. 8.2 Forest cover map
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Fig. 8.3 Maps depicting: (a) Moisture Index, (b) Vegetation Index, (c) Elevation, (d) Slope, (e)
Aspect, (f) Proximity to Road, and (g) Proximity to Settlement

8 Forest Fire Risk Zone Mapping in Tropical Forests of Saranda, Jharkhand,. . . 187



lower value. The distance to road and settlement map are categorized into five
groups, where the nearby places are given higher weightage and vice-versa.

The modelling accuracy is estimated comparing with the SNPP-VIRS forest fire
data. The satellite data-derived forest fire points are overlaid on the derived forest fire
risk zone map shown in Fig. 8.4. An error matrix is developed employing 222 ran-
dom data points (Table 8.5). The lowest agreement is estimated for the very low-risk
zone category, whereas high accuracy is observed for the rest of the categories. An
overall accuracy of 88% is obtained with a kappa coefficient value of 0.84
(Table 8.6). The maximum producer’s accuracy is observed the moderate- (98%)
and high-risk (97%) zones categories followed by the low- (88%) and very high-risk
(82%) zone.

The entire study area is classified into five risk zones, i.e., very high risk, high
risk, moderate risk, low risk and very low risk. The area falling under different risk
zones is calculated and is depicted in Table 8.7. Dominant forest covers in the
eastern, northern, and western regions are estimated under moderate to high fire risk.

Legend
Validation Point
Very Low Risk Zone
Low Risk Zone
Moderate Risk Zone
High Risk Zone
Very High Risk Zone

Map Scale
0 3 6 12 KM

N

Fig. 8.4 Forest Fire Risk Index map with validated points
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Alternatively, the forest covers in the low to very low-risk zones are mostly observed
in the central and southern parts of the study area. The very high risk is estimated
only 6.52% of the study area, whereas high- and moderate-risk zones are estimated
in 29.64% and 40.58% area. The low-risk zone is estimated in 20.07%, whereas
3.9% area is estimated under the very low risk. The outcome of the study suggested
that higher risk are mostly found in low-lying plain areas characterized by very low
humidity, high slopes, ascending south, close to roads, and settlements. In contrast,
areas characterized by high humidity, lesser land slope, and undisturbed forests are
comparatively less prone to the occurrence and spread of forest fire.

Very-high fire risk is observed for open and moderately dense forests due to
suitable biological, anthropogenic, and topographical conditions like less soil and
vegetation moisture condition, gentle slope condition, low elevation, proximity to
roads and settlements, and south-facing slope. In contrast, dense forests due to less
human interference and its distribution along high altitudes fall under the low-risk
zone. The moderately and open forest occupied the majority of the study area
followed grassland, dense forest, and non-forest areas. In the dense forest, the

Table 8.5 Error matrix between the observed and predicted category

Fire risk

Observed

Very low Low Moderate High Very high Total

Predicted Very low 8 1 0 0 0 9

Low 2 37 1 0 0 40

Moderate 4 1 88 0 1 94

High 5 2 0 51 2 60

Very high 2 2 0 2 13 19

Total 21 43 89 53 16 222

Table 8.6 Error and accuracy estimate

Fire risk
Commission
error

User
accuracy

Omission
error

Producer
accuracy

Overall
accuracy

Kappa
value

Very low 11 89 24 76 88 84

Low 7 93 12 88

Moderate 7 93 2 98

High 15 85 3 97

Very
high

31 69 18 82

Table 8.7 Area of forest fire
risk zone

Risk zone Area (km2) Percentage (%)

Very low 31.98 3.19

Low 201.38 20.07

Moderate 406.99 40.58

High 297.24 29.64

Very high 65.41 6.52
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majority of the area is estimated in lower-risk zone followed by moderate risk. Out of
the total moderately dense forest of 519.6 km2, the moderate risk zone is estimated in
226.38 km2area followed by the low- (156.34 km2) and high-risk zone (111.67 km2)
(Fig. 8.5). In the open forest, more than 60% of the area is estimated in the high-risk
zone, whereas 32% area is estimated in the moderate risk-zone. The majority of areas
under grassland are estimated in the moderate-risk zone (56.31 km2) followed by
nearly 5 km2 and 4.5 km2 under the high- and low-risk zones.

8.5 Discussion

Understanding the factors leading to an ecosystem vulnerable is important to assess
ecosystem susceptibility (Chuvieco & Congalton, 1989). Almost 89% of the forest
fires in tropical regions took place during the drier periods, e.g., March and April
(Ahmad et al., 2018). West Singhbhum is the highest forest fire-prone district of
Jharkhand state and experiences more than 30% of total forest fire of the state in
about 17% of the state forest cover (Ahmad & Goparaju, 2017). The present study
revealed that the open forests and moderate forest cover area form the majority forest
cover, which is highly vulnerable to forest fire occurrence. Consequently, these parts
are more dominated by human activities and experiencing an increase in surface
temperature (Kayet et al., 2020). Human interventions could be one of the major
drivers that ignite the forest fire (Dong et al., 2005). The study revealed that
landscapes falling under the grassland category are prone to forest fire occurrence.
The forest and grassland areas near the roads and settlements are more prone to fire
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Fig. 8.5 Graph showing forest cover wise forest fire risk zone
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detonation because accidental fires can be caused by forest dweller and the tourists
(Jaiswal et al., 2002). In comparison, the dense forests are estimated less prone to
forest fire; which could be due to less human intervention and being distributed at a
higher altitude. At higher altitudes, fire intensity remains less acute due to higher
precipitation (Chuvieco & Congalton, 1989). Further, being densely distributed, the
area is characterized by compactness, comparatively low temperature, and high
moisture content, leading to a reduced risk of fire. Another major factor that
contributes significantly to the spread of forest fire is wind. The densely distributed
compact undisturbed forests act as a barrier to wind flow and thus reduce the forest
fire intensity or spread. In contrast, moderately dense and open forest areas due to
suitable biological, anthropogenic, and topographical conditions like low moisture,
gentle slope, low elevation, open spaces, and proximity to roads and settlements
provide an ideal environment for the occurrence of a forest fire. The Fuzzy AHP
technique is successfully applied for the present study as indicated by the compar-
ison (overall accuracy 88%) with the satellite-based observations. In comparison to
FAHP, CAHP, and Dong model, FAHP and CAHP performed better (Sharma et al.,
2012) than Dong model (Eskandari & Miesel, 2017). The study revealed that about
~23% area of Saranda forest falls under low- to very low-risk zone class and the
remaining area ~77% that forms the majority of the Saranda forest division falls
under moderate to very high risk prone zone and is vulnerable to forest fire incidents.

8.6 Control Measures

As the majority of the forest fire incidents are mostly caused by human activities, the
prevention or control of forest fire can be achieved through people’s participation.
Identification and prioritization of the fire prone areas and region specific causes are
more important. Creating awareness among local inhibitors living in the proximity
of forests is very important. Various studies have suggested that the open and
disturbed forest that are more prone to forest fire occurrence. These spaces shall be
filled through afforestation programs based on the selection of native tree species
supporting a high moisture environment. Formation of trained task forces equipped
to deal with any situation of forest fire needs to be conformed and well-deployed in
fields. Forest departments need to be equipped with modern firefighting equipment.
Creation of small water resources like ponds and similar structures can be developed
in the proximity of high-risk areas. Regular field monitoring, trained staff, and
awareness among locals are some of the initiatives that can help to combat the
forest fire.
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8.7 Conclusion

The present study attempted to study the forest fire proneness in Saranda forests. The
adopted methodology provided a reliable output well verified with the satellite-based
observations. The study suggested that about 769 km2 area of the study area, which
is close to approximately ~77% of the total geographical area of Saranda forest
division is vulnerable to moderate to very high risk of forest fire incidence. The
various input maps and final forest risk zone map could be highly useful for the
forest and biodiversity managers. The study exhibited that areas falling under
vegetation class, i.e., grassland, open and moderately dense forests, are more
prone to forest fire occurrence and dense forest areas are comparatively less prone
to forest fire risk. The Saranda forest is one of the major Sal forests of Asia and is a
hub to diverse species of economic and medicinal importance. Thus, the area needs
special attention to safeguard it from increasing human interventions. Additionally,
future studies may include assessment of the invasive species spread in the Saranda
forests, as the presence of the bushy type of invasive weeds not only alter the native
resources but also act as fire stimulation agents. An integrated approach in the form
of research, awareness, and prioritization of area needs to be carried out to strengthen
the management strategies to mitigate the increased risk of a forest fire.
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Chapter 9
Impact of Land Use/Land Cover Changes
on Climate Change Parameters

Ratnakar Swain

Abstract Urbanization and industrialization are responsible for a variety of envi-
ronmental issues like air pollution, increased runoff and subsequent flooding,
increase in temperature, and deterioration of water quality. It is evident that for
environment management and decision-making process especially in climate impact
analysis, the study of land use/land cover (LULC) plays a vital role. The aim of this
study is analyzing the climate change response due to land use/land cover (LULC)
changes in the eastern India’s Brahmani River Basin that experienced a fast increase
in industrialization and deforestation in the recent decades. Herein, the Landsat
satellite images were collected from the United States Geological Survey (USGS)
from year 1975 to 2018 and processed in ERDAS Imagine software. The whole
LULC mapping involves (1) geo-referencing, (2) mosaicking, (3) sub-setting on the
basis of Area of Interest (AOI), (4) development of signature files, and (5) classifi-
cation. The supervised classification method is followed herein to classify the study
area with delineated classes such as water bodies, sand, barren/crop land, forest area,
and built-up area. The study reveals that the major land cover in the study area is
dense forest which decreases from 71.70% to 14.85% from year 1975 to 2018. The
second major category of land is barren/crop land, which was increased by 30% due
to development in agricultural technology, irrigation facilities. The third category of
land cover is built-up area which increases by 32.73% from year 1975 to 2018 due to
man-made activities. The sand comes under the fourth category which has slightly
increased 6.57% to 7.05%. The least area covered by water bodies which is the fifth
category of land cover was 0.33% in the year 1975 which increased to 1.65% in the
year 1999 due to the construction of Rengali Dam and Samal Barrage but subse-
quently decreased to 0.87% in 2018. Hence, it is verified that the industrialization
and development activities cause heavy deforestation in the catchment. It is also
proved that the remote sensing satellite data can be efficiently used for the spatio-
temporal changes in LULC in real time.
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9.1 Introduction

Land use and land cover (LULC) analysis plays a crucial role in studying climate
change parameters. As per the US National Research Council (NRC, 2005), LULC
should be studied for the climate change analysis. Due to changes in vegetation,
urbanization, and agriculture land, the greenhouse gases, CO2 emission, CO2

absorption, and other atmospheric changes occur (NRC, 2005). There is a huge
impact of LULC changes on climatic conditions like temperature, precipitation,
humidity, etc. in global and regional scale. NRC report also suggests that changes
in landscape and human settlement have greater influence on ecological cycle and
energy cycle which has link with climatic response. Different organization like
International Geosphere-Biosphere Programme (IGBP) and the Global Energy and
Water Cycle Experiment (GEWEX) also gives importance to LULC on climate
change studies. In literature, it is proved that the deforestation and urbanization are
mainly responsible for changes in daily peak rainfall and trends of rainfall
(Kishtawal et al., 2010; Petchprayoon et al., 2010; Swain & Sahoo, 2015; Swain
et al., 2018).

Petchprayoon et al. (2010) described changes in stream flow in the Yom River
Basin due to change LULC particularly urbanization. Similarly, Sertel et al. (2010)
verify the impact of land cover changes on climate parameters like temperature.
Moreover, the changes in the island of Indonesia were studied by Tokairin et al.
(2010) using meso-scale model and found that the human settlement and deforesta-
tion are prime reasons of the climate change. Also, Costa and Pires (2010) studied
the tropical forest region of South America and concluded that the deforestation over
the period of time changes the rainfall pattern and quantity. Lawrence and Chase
(2010) studied the simulation of global climate with existing and maximum possible
vegetation without any that anthropogenic LULC changes. In the southern region of
the USA, agricultural especially the winter crop like wheat is the main responsible
for the change in regional surface temperature as stated by Ge (2010). The effect of
Three Gorges Dam is also being analyzed to study the changes in hydro-
meteorological characteristics of the basin (Xiao et al., 2010).

From India’s perspective, various studies have been conducted in different
catchments of India to analyze the impact of LULC changes on climate change
parameters. Hengade and Eldho (2016) studied both climate and LULC changes
using VIC model in Ashti River Basin of India. Similarly, Khan et al. (2019)
conducted a study on peninsular river basin in India to estimate future scenario of
flow and sediment load under changes in climate and LULC. Moreover, the impact
of LULC change on streamflow is assessed by Sinha et al. (2020a, 2020b). Sinha
et al. (2020a, 2020b) used hydro-meteorological data of river basin of Western Ghat,
India, and found there is a significant impact of both climate and LULC on
streamflow in river. Impact of LULC and climate changes on river streamflow
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were also analyzed by Chanapathi and Thatikonda (2020) in Krishna River Basin,
India. Chanapathi and Thatikonda (2020) and Garg et al. (2017) prove that the
present and future scenario of LULC changes plays a major role in changing the river
streamflow. With the streamflow characteristics, the sediment yield is directly
affected by the change in climate and LULC in Netravati River Basin, Western
Ghats, India, as shown by Sinha et al. (2020a, 2020b) and Sinha and Eldho (2018).
Dynamics of hydrometeorological parameters such as evapotranspiration, surface
runoff base flow and infiltration also is altered by the change in LULC in eastern
India’ river basin (Das et al., 2018). Furthermore, impact of LULC changes on
streamflow response was studied in Tons River Basin, India, by Kumar et al. (2018),
and in Nethravathi River Basin, India, by Babar and Ramesh (2015). A similar study
is conducted in Tapi River Basin to analyze the streamflow as well as sediment yield.
Nilawar and Waikar (2019) found serious impacts of climate change and LULC on
streamflow and sediment concentration Purna River Basin, India.

Many studies have been conducted by several authors across the globe and
concluded that the disturbance in the LULC highly impacts the regional climate
condition (Takahashi et al., 2010; Xiao et al., 2010; Strengers et al., 2010; Lawrence
& Chase, 2010; Swain & Sahoo, 2015). Herein, the Brahmani River Basin of Odisha
state of Eastern India is chosen due to various anthropogenic activities over the last
4–5 decades. Especially after the construction of Rengali Dam in the Brahmani
River, there are huge agricultural activities which disturb the LULC of the basin.
Moreover, the vast industrial setup in the basin is also the prime reason of human
settlement which is responsible for deforestation and vegetation change (Swain &
Sahoo, 2017a, b). In this study, the LULC changes have been studied over the last
four decades. Impact of the LULC changes is verified with the change in climate
change parameters like extreme temperature, extreme daily rainfall pattern, and
extreme relative humidity. In the last, the peak streamflow at Jenapur a downstream
gauging station in the Brahmani River is analyzed.

9.2 Methodology

Multispectral LULC classification is widely used in planning and management of the
forest area and urban and rural area over the long period especially after develop-
ment of various satellites (Hord, 1982). Nowadays due to development of different
remote sensing satellites of various spatio-temporal resolutions, LULC mapping
becomes more informative and also cost effective. Remote sensing techniques play
a vital role in predicting LULC changes accurately (Comber et al., 2005;
Townshend, 1992).

Recently, satellite images are widely used for the large-scale studies like LULC,
landscape mapping, hydrological studies, etc. Herein, the freely available Landsat
satellite images are used for the LULC mapping due to its 30 m � 16-day spatio-
temporal resolution. All the Landsat-6, Landsat-7 TM, and Landsat-8 ETM as per
the availability over the time period and study area are used for making the LULC
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mapping. ERDAS IMAGINE software is used for geo-referencing, mosaicking, and
sub-setting of the images on the basis of area of interest (AOI). The LULC classi-
fication is carried out using supervised image classification algorithm. In this
algorithm, firstly, pixel signature is assigned and then five types of landscape are
provided based upon the digital number (DN) (Fig. 9.1). The delineated classes were
crop land, sand, water bodies, built-up areas, and deciduous broad leaf forest which
are identified in the study area. Maximum likelihood method of supervised classi-
fication is flowed here in which the classification is done based upon the training sets
provided and field knowledge. The procedure to carryout supervised classification
using ERDAS IMAGINE is described in Fig. 9.1. Herein, five types of signature are
provided such as (1) barren/crop land, (2) sand, (3) water bodies, (4) built-up areas,
and (5) dense forest.

After LULC mapping, the important climate change parameters such as extreme
precipitation, maximum temperature, peak relative humidity, and maximum
streamflow are taken into consideration for the analysis. Over the period of LULC
study, all these hydro-meteorological data are plotted in time-series, and peak values
are used in the analysis. The nonlinear regression-based trend analysis of the climate
parameter is carried out to study the impact of LULC. The extreme values of climate
parameters such as annual maximum temperature, maximum daily rainfall, and
annual maximum relative humidity are taken into trend analysis. The daily average
temperature and relative humidity over the study period are also considered to find

Collection of Landsat Surface Reflectance
Imageries

Layer Stack

Mosaic

Subset

Creation of Signature Editor

Supervised Classification

Analysis

Fig. 9.1 Procedure of
supervised LULC
classification
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any regional change in pattern. Since relative humidity and temperature have a vital
role in changing precipitation, the daily peak over the years is added in the analysis.
LULC also plays major role in change in infiltration and surface runoff. Therefore,
the change in peak streamflow over the study period at the basin outlet is also
considered in the analysis. It is evident that the industrial, domestic, and agricultural
demand also affect streamflow characteristics along with LULC change. Therefore,
it is difficult to relate streamflow with LULC change.

9.3 Study Area and Data Collection

Herein, the Brahmani River Basin, the second largest river of Odisha, is considered
for the study due to vast industrialization and deforestation of its catchment. The
Brahmani River is formed by the confluence of the Sankh and South Koel rivers,
near the major industrial town of Rourkela at 22 150N and 84 470. After flowing
through the districts such as Cuttack, Angul, Jajpur, Kendrapara, and Sundargarh,
the Brahamani River forms a delta with the Baitarani River near Bay of Bengal. The
total length of the rivers including its constituent streams is about 799 km of which
541 kilometers are in Orissa. Catchment area of the basin is about 39,033 km2

(15,071 mi2) in Odisha alone. The Brahmani River Basin is located in northern
latitude of 20�280 to 23�350 and east longitude of 83�520 to 87�030. In the Brahmani
River, there are many hydraulic structures constructed in the last 4–5 decades.
Among the major structures are Rengali Dam and Samal Barrage located near
Angul and Talcher town of the basin, respectively. The mean annual rainfall of the
basin is around 1460 mm. 70–80% of rainfall occur only during southwest monsoon
in the period of June–October. In the Bay of Bengal, low pressure and cyclonic
precipitation is common throughout the year. The summer climate is hot, and
gradually the peak temperature increases every year. The winter climate is medium
cold, and temperature ranges from 10 to 15 �C. The peak temperature during summer
varies from 38 to 50 �C (Figs. 9.2 and 9.3).

The Landsat satellite images of the study area were collected from USGS Earth
Explore website (https://earthexplorer.usgs.gov/). The 33 years (1979–2012) daily
stage and discharge data available at Jenapur gauging stations were collected from
the Water Resources Information System (WRIS), India. The 0.50 lat-long gridded
daily meteorological data for the study area for the same period were also collected
from the Climate Forecast System Reanalysis (CSFR), India. The daily scale mete-
orological variables of maximum temperature, minimum temperature, rainfall, and
relative humidity were downloaded for the study period from 1979 to 2014 (https://
climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr). To
get the average LULC of the study area representing the study period, the available
cloud-free Landsat images of November 19, 1975, and January 9, 2018, were
downloaded from http://www.earthexplorer.usgs.gov. The various images collected
are mentioned in Table 9.1.

9 Impact of Land Use/Land Cover Changes on Climate Change Parameters 201

https://earthexplorer.usgs.gov/
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
http://www.earthexplorer.usgs.gov


Fig. 9.2 Index map of Brahmani River Basin

Fig. 9.3 Location of major industries over Brahmani River Basin (Swain & Sahoo, 2017b)

202 R. Swain



9.4 Result and Discussion

LULC Classification

The supervised classification of LULC of the Brahmani River Basin over the years
1975–2018 are shown in Fig. 9.4a–c. The maroon color represents the built-up area,
dark green color represents the forest area, blue color shows the water bodies, yellow
color shows the crop land, and white shows the sand. The areas under each
classification were calculated in km2 and expressed in percentage (%). The areas
under water bodies, sand, barren/crop land, forest area, and built-up area were
subsequently entered in the table along with their respective dates. Classified images
depict spatial distributional pattern of land use/cover of the Bramhani Basin for the
year 1975–2018.

These data reveal that in 1975, about 71.70% (29,517 km2) of area were under
forest, 27.41% (11,284 km2) under crop/barren land, 00.00% (0 km2) under built-up
land and 0.33% (134.34 km2) under water body, and 0.56% (230.30 km2) under
sand. During 1988, the area under these land categories was found about 14.85%
(22,369 km2) forest, 34.7% (14,273 km2) crop/barren land, 7.13% (2933 km2) sand,
2.69% (1105.29 km2) built-up land, and 1.11% (457.63 km2) water body, whereas in
1999, it was found that about 39.39% (16,205 km2) belongs to forest, 54.79%
(22,538 km2) crop/barren land, 2.87% (1182 km2) sand, 1.3% (532.96 km2) built-
up land, and 1.65% (679 km2) water body. During 2005 the area of deep forest was
29.18% (10,836 km2), the area of crop/barren land 62.06% (23,044 km2), the area of
sand 0.12% (45.89 km2), area of built-up land 7.49% (8454 km2), and 1.13%
(562.49 km2) under water body. During 2018, the area under these land categories
was found about 54.38% (5514 km2) under forest, 51.46% (19,107 km2) under crop/
barren land, 0.08% (31.40 km2) sand, 32.73% (12,153 km2) under built-up land, and
0.87% (322.46 km2) under water body.

Analysis of Change in LULC

The LULC change from year 1975 to 2018 is shown in Figs. 9.5 and 9.6. Figure 9.1
shows that the area of dense forest was high in 1975, i.e., 71.70%; eventually it was
decreasing linearly to only 14.85% at the current time period. So, there is a huge loss
of vegetation, and ultimately it has a great impact on the climate and rainfall. Also, it

Table 9.1 Specification of
Landsat surface reflectance
imageries used

Data Period Date

Landsat-MSS 1970–1980 November 19, 1975

Landsat-TM 1980–1990 February 8, 1988

Landsat-ETM 1990–2000 November 29, 1999

Landsat-2005 2000–2005 November 5, 2005

Landsat 8 2015–2020 January 9, 2018
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Fig. 9.4 (a) LULC classification of the Brahmani River Basin of dated November 19, 1975, and
February 8, 1988. (b) LULC classification of the Brahmani River Basin of dated November
29, 1999, and November 05, 2005. (c) LULC classification of the Brahmani River Basin of dated
January 9, 2018



is clear from the table that in 1975, the water bodies are only 0.33% of the total area,
but it is somehow increased to 1.65% in 1999 due to the construction of Rengali
Dam and Samal Barrage. Then it is again decreased to 0.87% in current time period.

Fig. 9.5 Representation of LULC changes of Brahmani River Basin (%)

Fig. 9.6 Graphical representation of change in different land cover from 1975 to 2018
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The area of sand was only 0.56% in 1975, and it reached to a pick of 7.13% in 1988,
and it is again decreased to 1.13% and 0.08% in 2005 and 2018, respectively.

There was only 27.41% of crop land in 1975 due to the lack of irrigation facilities,
but subsequently it increased to 62.06% in 2005. It is also clear from the table that
there is a negligible portion of residential or built-up areas in 1975, but it increased in
a steadily to 2.69% in 1988. And there is again a fall in built-up area in 1999, i.e.,
from 2.69 to 1.30%. Thereafter it increased to 7.49% in 2005, and at the current
stage, it is 32.73%. The various graphs were also plotted for the change in the
parameters of land cover with respect to the time period.

Analysis of Change in Climate Change Parameters

It is clear from the above analysis and from Figs 9.5 and 9.6 that the area of dense
forest was very high in 1975, i.e., 71.70%; eventually it is decreasing in a linear
manner to only 14.85% at the current time period. So, this indicates a very negative
impact on our environment. So, there is a huge loss of vegetation, and ultimately it
has a great impact on discharge, temperature, rainfall, and relative humidity
(Figs. 9.7, 9.8, 9.9, and 9.10). The precipitation data from period 1979–2014 over
the study area shows that the maximum of daily peak rainfall is increasing gradually
(Fig. 9.7). The average first 5-year data and last 5-year data from the period
1979–2014 shows that there is 45% increase in peak rainfall. However, the average
annual rainfall over the Brahmani River Basin is 1460 mm (Swain & Sahoo, 2015)
which remains constant approximately. However, the maximum of daily peak
rainfall increases in the pattern of exponential growth as shown in Fig. 9.7. Although
the value of exponential power component value is only 0.0286 and coefficient of
correlation (R2), small increase in peak rainfall is the main responsible for frequent
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flood in the whole region. Rainfall water couldn’t get sufficient percolation time for
the infiltration and so surface runoff increases due high intensity of rainfall which
causes sudden flood in the basin and downstream of the basin.

The maximum and average of daily peak temperature data is plotted as shown in
Fig. 9.8. The peak temperature is one of the main parameters of climate change. Both
the trend lines show that the maximum and average of peak temperature increase
with nonlinear temporal pattern as shown in Fig. 9.8. Here also it is observed that the
values of coefficients of the regression equation and R2 are very small. However, the
increase in peak temperature is a matter of concern although it is gradual. The data
shows that there is 8.6% and 4.6% increase in maximum and average of daily peak
temperature respectively from year 1979 to year 2014. This increase in temperature
can be correlated with deforestation and hence with LULC in the local and global
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scale. Similarly, the maximum and average of daily peak relative humidity is plotted
as shown in Fig. 9.9. Here also similar trend of temporal change is found in both
maximum and average of peak relative humidity. The data shows that there is 9.9%
and 1.14% increase in average and maximum values of daily peak relative humidity
from year 21,978 to 2014, respectively. The temperature rises over the region which
increases evaporation in the basin and water body of Bay of Bengal at downstream of
the Brahmani River Basin, having an effect on relative humidity largely. Therefore,
there is indirect effect of LULC and deforestation on the relative humidity.

The streamflow data of Jenapur gauging station which is located toward down-
stream of Brahmani River is collected from Central Water Commission (CWC). The
annual maximum discharge is plotted from year 1978–2014. The trend line shows
that the peak flood at the Jenapur gauging station varies linearly with time. Here also
the value of R2 is only 0.0248. Low R2 value doesn’t show strong linear correlation
of peak flood with time. Although all climate parameters such as maximum temper-
ature, relative humidity, and precipitation changes with the LULC change over the
region in local as well as global scale, the streamflow data depends indirectly on
change in LULC. It is evident that in a basin, the change in streamflow at any
gauging station depends upon many factors such as LULC change, precipitation, soil
type, water demand, etc. Due to increase in agricultural and industrial growth along
with human settlement in the Brahmani River Basin, the demand of water also
increased drastically. Therefore, the peak flood data is likely to be biased if only
the effect of LULC change is considered. Therefore, peak flood data at Jenapur
station is considered to be not following any trend line. Although LULC change
have major impact on the peak flood, other important factor like water demand needs
to be taken into consideration in the study.

Fig. 9.10 Change in annual maximum flood at Jenapur gauging station
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9.5 Conclusion

The LULC study reveals that there are major changes in the LULC over the years
1975–2018 in the study area especially dense forest cover. The area under dense
forest decreased by 57% due to an increase in urbanization and agriculture. The
second major category of land in the study area is barren/crop land, which was
increased by 30% due to development in agricultural technology, irrigation, trans-
portation facilities, etc. The third major category of land in the study area is built-up
area which is increasing by 32.73%. During the study period (i.e., 1975–2018), built-
up area has been increased due to advancement of communication, transportation,
and agricultural activities. The area under fourth category of land, i.e., the sand, has
increased at the first stage by 6.57%, and in the later stage it is decreased by 7.05%.
Hence, the present study proves that remote sensing technology can be efficiently
used for the spatio-temporal changes in catchment cover no cost and in real time.

From this study, we clearly found the decrease in about 56.85% of forest land in
just 36 years and its serious impact on climate, temperature, rainfall, relative
humidity, and discharge by analyzing the previous 36 years (1979–2014) data. So,
we have to stop the rapid deforestation and to increase afforestation to reduce the
unwanted weather change and hence to reduce global warming and other calamities.
The climate parameters maximum and average of daily peak temperature and
relative humidity data from year 1978–2014 shows an increasing trend. Similarly,
maximum of daily peak rainfall data over the study area shows increasing trend. In
this study, it is proved that the change in LULC and deforestation have direct impact
on these climate parameters. The streamflow data is also studied at Jenapur gauging
station and the change in peak flood also is observed. However, the change in peak
flood is also affected by change in agricultural, industrial, and municipal water
demand. Therefore, due to all these different factors, the trend in peak flood could
not be defined.

However, the LULC change is not only responsible for change in climate change
parameters. The climate change parameters also affected by global climate change
which is due to large-scale pollution and deforestation globally as well as locally.
This study is carried out on a regional scale. Therefore, there is a need to analyze the
impact of global LULC changes along with pollution on the climatic parameters
which can be addressed in future study. Additionally, the changes in river
streamflow are largely affected by various local demands such as municipal, indus-
trial, and agricultural demand. Therefore, these demand factors should take into
consideration along with LULC to detect the impact on streamflow. These research
gaps can be addressed in a future study.
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Chapter 10
Application of Geospatial Technique
in Analysis of Malaria Prevalence
in an Endemic Area of Ranchi, India

Manoj Prasad Gandhi, Fayma Mushtaq , Afaan Gulzar Mantoo,
and Mili Ghosh Nee Lala

Abstract The fatality and endemic nature of malaria is one of the prime causes of
mortality and morbidity in the Tribal states of India. Despite many advanced control
measures, India contributes up to 1000 deaths per year. This present study was
conducted to determine the impact of topographic factors, socio-economic status,
and climatic conditions on malaria prevalence in Ranchi district of Jharkhand state.
The Landsat-derived indices including NDVI and NDWI have been used along with
the Primary Health Care center’s data to spatially assess the malaria incidences.
Malaria hotspots have been identified by using the criteria developed by the
NVBDCP, Ministry of Health and Family Welfare, India, based on Slide Positive
Rate (SPR), Annual Parasite Incidence (API), and Annual Blood Examination Rate
(ABER). The Bundu and Sonahatu blocks have been identified as the vulnerable
areas for malaria, where topographical variation and socio-economic factors played
an important role to aggravate the malaria incidences along with climatic factors.
The year 2005 was found to be worst affected observing 17 deaths. Elevation range
of 200–400 m was found as favorable for malaria occurrences. Rainfall and average
maximum temperature were found to be positively correlated with API in monsoon
months, whereas relative humidity was found to be positively correlated with SPR.
This work illustrates the efficacy of geomatics to assess the spatio-temporal rela-
tionship among malaria host, agent, and environmental factors.
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10.1 Introduction

In the twenty-first century, the mosquito-borne malaria is an endemic throughout the
tropical and subtropical regions of the world. Malaria results in enormous socio-
economic deprivations and is a major cause of the grim scenario of poverty in India
as well as in many developing countries (Dhiman, 2009; Gallup & Sachs, 2001;
Sarkar et al., 2019). In addition to extermination of people, malaria creates a
substantial economic burden globally, especially for poor people living in remote
areas of the world (Amegah et al., 2013; Enayati & Hemingway, 2010; Rai et al.,
2014; Sachs & Malaney, 2002; Sharma, 2003; Worrall et al., 2005). In the north-
eastern India people reside under deprived health environmental conditions, which
enhances the possibility to get affected by the malarial transmission (Dev et al.,
2003). Several researchers have mentioned that there is a high incidence of malaria
disease in the northeastern states of India (Dhiman et al., 2010; Nath et al., 2013;
Rabha et al., 2011; Yadav et al., 2012). The World Health Organization (referred as
“WHO” hereafter) reveals that malaria caused 584 thousand deaths throughout the
world in the year 2013 (WHO, 2014). WHO reports indicate that approximately
300 million cases of acute malaria cases have been recorded every year. Despite the
high level of control measures, this disease of antiquity remains prevalent.

A vector-borne disease (VBD) such as malaria generates an unacceptable and
terrible health burden on developing nations (Ceccato et al., 2005; Ratmanov et al.,
2013; Mutheneni et al., 2014). In Southeast Asia, India has the highest malaria
burden (61%), followed by Myanmar and Indonesia (World Malaria Report, Fact
Sheet, 2012). However, malaria is not homogenous in its distribution and has a
major regional burden variation. Malaria is the major health problem faced by the
tribal states of India including Assam (Yadav et al., 2014), Orissa (Daash et al.,
2009), Jharkhand (Saxena et al., 2014), Madhya Pradesh (Bharti et al., 2020), and
north-western Rajasthan (Kochar et al., 1997). The tribal population of India con-
tributes nearly about 30% of total malaria cases with more than 60% of Plasmodium
falciparum, and 50% deaths owing to malaria (Srivastava et al., 2009). National
Vector Borne Disease Control Programme (NVBDCP) India indicated that the low
socio-economic development, difficult terrains, and less developed infrastructure are
the major attributes responsible for the malaria eruption in the country. The malaria
control measures and efforts initiated in India have been presented in Fig. 10.1.

In the 1940s, DDT was introduced to control malaria epidemic in India. Malaria
pervasiveness remained low in India throughout the 1960s and then experienced a
slight revival in the 1970s (Cutler et al., 2010). Malaria prevalence or its vector
proliferation is primly attributed to anthropogenic activities, immigration behavior,
and performance of control measures in an endemic area. In the state of Jharkhand,
studies conducted by the National Institute of Malaria Research (NIMR), India,
indicated that An. fluviatilis has been found dichlorodiphenyl trichloroethylene
(DDT) resistant/tolerant, whereas An. culicifacies shows resistant nature for DDT
and malathion and the secondary vector An. annularis was found resistant to DDT,
susceptible to deltamethrin, and tolerant to malathion. Jharkhand is one of the states
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of India where regions with Annual Parasite Incidence (i.e., a malariomatric index to
express malaria cases per thousand population) (API) >5 can be seen. Anopheles
fluviatilis, Anopheles culicifacies, and Anopheles annularis are some of the malaria
vectors which are more prevalent in the Ranchi district of Jharkhand, India (Saxena
et al., 2012).

Multitudinous research work has been conducted in the tribal states of India (such
as Haryana, Gujarat, Assam, Jharkhand, etc.) to identify the malarial hotspots (Bharti
et al., 2020; Saxena et al., 2014; Srivastava et al., 1999; Srivastava et al., 2009;
Yadav et al., 2014;). Sonitpur district in Assam (Nath et al., 2012, 2013), Gwalior
city, Koraput district of Orissa (Daash et al., 2009), and Udalguri district in Assam
(Yadav et al., 2012) are some of the studied regions of India. In order to explore
malaria vector transmissions, the ecological and entomological studies have been
performed very well (Ahmad et al., 2011; Smith et al., 2013); spatial modeling of
vector-borne diseases (Machault et al., 2011) and effectiveness of the malaria control
measures (Karema et al., 2012) are some of the important researches in the field of
malaria preventions.

Globally immense progressions have been made in the direction of malaria
eradication. Despite of the advance and fast intensification of malaria control
measures, geographically half of the world remains at risk of contracting this disease
(Gething et al., 2011). In this view the Geographical Information System (GIS)
played an important role in better understanding of spatial distribution of malaria
burden (Craig et al., 1999; Omumbo et al., 2004; Saxena et al., 2014). GIS provides

Fig. 10.1 Historical and a new future prospect related particularly to the malaria disease in India
from the year 1945 to 2017
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better visualization of malaria prevalence (e.g., Kleinschmidt et al., 2000), relation-
ship with other potential malaria factors (Hu et al., 1998; Hightower et al., 1998;
Saxena et al., 2014), malaria risk mapping (Clements et al., 2006; Kirk et al., 2015;
Snow et al., 1999), development of malaria surveillance index (Cohen et al., 2010),
and malaria ecotoping (Kaewwaen & Bhumiratana, 2015). The Malaria Information
Systems (MIS) which is a PC-based purpose-designed system was developed to
collect the accurate data for effective decision-making in the malarious provinces of
South Africa (Carrin et al., 2002). Louis Jr. et al. (2005) presented the issues
confronting Roll Back Malaria with the influential Italian drive to eliminate malaria
disease between the mid-twentieth centuries. A detailed research has been conducted
to study the altering epidemiology about malaria by means of interpretations of
political, ecological, and social changes in local population over 40 years in the
Cascades region of southwestern Burkina Faso (Giles-Vernick et al., 2011). Oloukoi
et al. (2014) conducted a study to examine the observed and predicted trends of
related health risk due to climatic variability and mitigation strategies at the house-
hold level in Nigeria.

Presently, GIS has been widely used to assess the malaria transmission risk,
control measures, and identification of malaria hotspots and to develop geospatial
attributes for anti-malarial plants (Srivastava et al., 2004; Qayum et al., 2014, 2015).
The surveillance of malaria vectors, outbreak investigations, and potential environ-
mental factors and socio-economic variable can be mapped using a GIS frame.
Global malaria risk distribution maps have been prepared using GIS that helps to
combat with any calamity in any region of the world. It has been stated that malaria
shows a positive correlation with proximity to wetland areas (Van der Hoek et al.,
2003; Zhou et al., 2012). In the year 2004, Hay et al. (2004) presented a single global
malaria risk distribution map using overlay operations in GIS.

The real burden of malaria in India is still not known, and this jeopardizes the
desirable outcomes despite extensive planning and resource allocation for malaria
eradication. The present work is an effort to identify the areas of malarial transmis-
sion risk in Ranchi based on defined risk categories related to the various climatic,
topographic, and ecological indicators in a GIS environment. The study attempts to
address suspected underreporting of malaria cases in the neglected region where the
ecological malaria suitability is high, while case detection is low. The generated
ecology-based geospatial malaria risk model should help the identification of
hotspots and contribute to judicious planning and management of the malaria
situation in all potentially endemic areas, which is of particular importance in the
elimination phase. Knowledge of malaria and socio-economic upliftment are key
factors in adopting the appropriate intervention strategies. Keeping in mind that there
are many risk factors that influence vulnerability to malaria including proper knowl-
edge about malaria transmission and prevention, demography, and socio-economic
status of different population groups, the present study was undertaken to identify
factors predisposing to malaria in highly endemic areas in Ranchi district. This work
represents a GIS-based assessment of environmental and socio-economic drivers
which facilitates to the malaria combating agencies for targeting the vector control
measures in the Jharkhand state of India. Identification of malaria hotspot in this
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plateau region at the block and village level has been also attempted with the help of
ancillary survey data. The findings will help to understand the patterns of malaria
epidemiology in district Ranchi and would present an understanding how the
malarial parasite is circulating constantly and which area requires more effective
control measures to combat it.

10.2 Study Area

Ranchi, the capital of Jharkhand state, is situated in the southern part of Chotanagpur
plateau, India, consisting an area of 7698 km2 with a population of around
29,14,253. Ranchi district has 14 administrative blocks with an average literacy
rate of 87.68%, and 13% of the total population contributes as below the age of
6 years. This district is the 46th largest city in India with geographical extent from
23�05’ N and 84�520 E to 23�24’ N and 85�540 E and 23�43’ N and 84�580 E to
23�23’N and 85�220 E. The average elevation of the study area is 650 m and western
region having a relatively higher elevation compared to eastern part. Ranchi has a
rolling topography with approximately 159.14 ha of dense tropical forest. This area
mainly lies in humid sub-tropical climate zone “Cfa,” but unique topographical
settings and dense forest provide a pleasant climate to this region. The
“Subarnarekha” River and tributaries of “South Koel” are the life-lines for Ranchi
region. In the summer temperature varies from 20 to 40 �C, whereas winter expe-
riences a range of temperature from 1 to 25 �C. This region receives 80% of the total
precipitation during monsoon, and the average annual rainfall of the district recorded
as 56.34 inches. The state of Jharkhand is malaria endemic and attributed approx-
imately 7% of the total cases of malaria disease in India. Apart from that, the district
of Ranchi has been identified as a malaria vulnerable district in India. Anopheles
culicifacies, An. annularis, and An. fluviatilis have been identified as the major
vectors of malaria in Jharkhand state (Saxena et al., 2012). The “Bundu” PHC of
the Ranchi district has been identified as the most malaria-affected area (Saxena
et al., 2014). The lowlands of the district Ranchi have been found to be suitable for
paddy cultivation, whereas the uplands provide conditions for orchards and cultiva-
tion of pulse, millet, and vegetables. The study area is shown in Fig. 10.2.

10.3 Methodological Framework

This section describes the collection of spatial and non-spatial data, details of study
design, and image pre-processing steps undertaken to generate the spatio-temporal
analysis of malaria prevalence in Ranchi district: first, the temporal design decided
for identification of malaria prevalent regions; second, input satellite images have
been described along with elevation data information; third, the strategy for ancillary
data collection, discussions about criteria for finding malaria hotspot, and related
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calculations have been presented; and fourth, the thematic layer generation
pertaining to the malaria hotspot surveillance in the Ranchi district. Lastly, vegeta-
tion condition assessment and Water Indexing have been performed to explore the
environmental influences in malaria aggravation in the study area.

Study Design (Temporal) Strategy

The present study has been carried out for the year 2000–2010. Remote sensing and
GIS have been used in the identification of malaria-affected regions in Ranchi
district. The study has been designed as dividing the total study years into four
different time periods (subgroups), i.e., T1-Study of Malaria Epidemic (SME)
(2000–2002); T2-SME (2003–2005); T3-SME (2006–2008); and T4-SME
(2008–2010).

Fig. 10.2 Geographical location of the study area
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Satellite Images, Elevation, and Ancillary Data Information

In GIS modeling framework a collection of well-defined secondary database is
required to describe the relationship among various spatial and non-spatial attributes.
In this view, malaria incidence data has been collected from the State Malaria Office,
Ranchi, Jharkhand, for the given time periods. The Primary Health Centre (PHC)
and Health Sub Centre (HSC) wise annual statistics regarding malaria disease data
has been obtained for the year 2000–2010. In the present work Landsat TM image of
November 2005 has been used. The satellite image which has been used in analysis
was converted to the reflectance units. The Survey of India Toposheet of 1:50,000
and 1:250,000 scales has been considered for the base map generation. Elevation
information has been extracted by using ASTER Digital elevation model data.
Rainfall, temperature, and humidity records have been utilized to explore the
relationship between occurrence of malaria incidences and environmental influence,
especially pertaining to the climate convenience of malaria disease. The present
work basically aimed to explore the influence of socio-demographic and environ-
mental characteristics over the malaria incidences in Ranchi district. In this connec-
tion block wise demographical data (i.e., status of families below poverty line (BPL),
district literacy rate, and population density) was taken into consideration.

Malaria Hotspots Identification Criteria

An ample number of malaria indicators have been defined by the World Health
Organization. The main problem is to select the appropriate “Core Indicators” that
can provide an accurate information about targeted population by a specific vector-
borne disease. In the present study, criteria developed by the NVBDCP, Ministry of
Health and Family Welfare, India, have been used to identify the highly malaria-
prone areas in Ranchi region. The criteria are as follows:

1. Number of deaths owing to the malaria disease (based on clinical diagnosis or
microscopic confirmation).

2. Annual Parasite Incidence (API) must be 5 or >5 during the last 3 years.
3. Annual Blood Examination Rate (ABER) must be 10% or higher during any of

the years from the last 3 years.
4. Malaria case reports contribute to the proportion of P. falciparum as 30% or

higher, provided the SPR ¼ 3% or higher during any of the years from the last
3 years.
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Calculation of Core Indicators

The prime objective of surveillance is to identify alteration in trend or distribution in
malaria diseases. It is the basis of vector-borne disease control measure strategy.
There are several indicators for malaria surveillance which have been proposed, i.e.,
Annual Falciparum Incidence (AFI), Annual Malaria Incidence (AMI), Malaria
Death Rate (MDR), Crude Death Rate (CDR), and Under-Five Mortality. In spite
of that some standard principal indicators have also been documented for malaria
surveillance, i.e., Annual Blood Examination Rate (ABER), Annual Parasite Inci-
dence (API), and Slide Positivity Rate (SPR). The Slide Falciparum Rate (SFR) and
Plasmodium Falciparum (PF%) are two other decisive indicators for the malaria
disease assessment. From the aforementioned indicators selectively ABER, API,
SPR, and PF% presented in Fig. 10.3 have been calculated as follows:

Annual Blood Examination Rate (ABER)—ABER gives the total number of
blood smears examined for Malaria Parasites per 100 populations in a year and
expressed as % of population. The operational efficiency of the control measures can
be optimized by using ABER. The status about accurate Annual Parasite Incidence

Fig. 10.3 Maps of core indicators for malaria surveillance in Ranchi during T4-SME generated
using hotspot criteria: (a) ABER � 10 in any of the last 3 years; (b) API � 5 in any of the last
3 years; (c) PF % > 30 in any of last three years and SPR � 3
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(API) fundamentally depends upon the ABER. It has been calculated by Eq. (10.1)
as given below

ABER ¼ Number of Slides Examined=Populationð Þ � 100 ð10:1Þ

Annual Parasite Incidence (API)—API defines total number of blood smears
positive for malaria parasite (MP) per 1000 population in a given year for a given
area. It depends on the adequacy of case detection mechanism of ABER. API has
been calculated by using Eq. (10.2) as given below:

API ¼ Total Positive=Total Populationð Þ � 1000 ð10:2Þ

Slide Positive Rate (SPR)—SPR expresses the total number of blood slides found
positive for malaria parasite per 100 number of blood slides examined. It is more
reliable than API even for areas where ABER fluctuates by year to year and has been
calculated by using Eq. (10.3)

SPR ¼ No: of Blood Smears found Positive for Malaria Parasite
Total Blood Silde Examination

� 100 ð10:3Þ

Plasmodium Falciparum Percentage (PF%)—It is the total number of blood
smears found positive for P. falciparum per 100 number of blood smears positive
for malaria parasite. PF% facilitates the relative proportion of P. falciparum infec-
tion and trends in relation to the total case load. It has been calculated by Eq. (10.4)

PF% ¼ Total No: of Blood Smears Positive for P:falciparum
Total No: of Blood Smears Positive for Malaria Parasite

� 100 ð10:4Þ

Development of Thematic Layers

A GIS-based framework facilitates the overlay operations that can be very useful to
interpret the relationship among the malaria surveillance indices. Thematic layers
developed by using ArcGIS software provide the indispensable information about
the malaria-affected region over the temporal as well as spatial scale. Based on
certain pre-defined criteria (Sect. 3.3), a series of thematic maps have been
generated.
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Socio-Environmental Condition Assessment

This study aimed to explore the influence of environmental and socio-economic
factors on malaria prevalence in the Ranchi region. In this view, it was necessary to
assess the regional vegetation and water resources condition of the area under
investigation. Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Water Index (NDWI) have been developed to assess the regional envi-
ronment. Further, BPL data and census 2001 and 2011 demographic data were
collected to analyze % BPL population, % literacy, and population density in the
study area.

10.4 Results and Discussion

Statistical Analysis

During the total time-period considered, the PF% was found highest (62.11%) in the
year 2003; interestingly no death has been reported in this year. In year 2005,
17 deaths were reported despite the low PF% (43%) as compared to PF% in 2003
(Table 10.1). An increasing trend in API (from 1.03 to 4.73) has been observed
during 2003–2009, whereas the PF% values have been found to be decreased from
60.11% to 30.15% in the years of 2003–2006, respectively (Fig. 10.4a, b).

A block wise malaria incidence trend has also been analyzed from year 2000 to
2010. It was observed that the Bundu, Lapung, and Silli were the most malaria-
affected administration blocks of Ranchi district in the years 2008, 2001, and 2009,
respectively (Fig. 10.5a, b). It has also been found that most of the malaria cases
occurred in the month of August and September due to continuous rainfall credited
to the Monsoons. Owing to the regular precipitation the local waterbodies and water
channels receive plenty of water that supports the mosquito breeding events. From
the detailed examination of the spatial distribution of malaria surveillance

Table 10.1 Malaria case sit-
uation of district Ranchi dur-
ing 2000–2010

Year ABER API SPR SFR PF%

2000 2.51 2.38 9.50 4.89 51.49

2001 1.97 2.26 11.49 5.83 50.75

2002 1.58 1.92 12.20 6.60 54.10

2003 0.90 1.03 11.36 7.06 62.11

2004 2.31 1.69 7.31 3.01 41.20

2005 7.92 3.27 4.13 1.77 42.77

2006 2.96 2.42 8.17 2.46 30.15

2007 3.25 3.39 10.43 4.26 40.83

2008 5.93 4.66 7.85 3.95 50.33

2009 9.77 4.73 4.85 2.44 50.28

2010 9.72 2.76 2.84 1.16 40.88
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parameters over the Ranchi district, the administrative block Bundu has been
identified as the most malaria-affected region in the district.

Identification of Malaria Hotspot Region

As the identification of malaria hotspot regions was the prime objective for the
present study, malaria-affected blocks of Ranchi district have been identified using
thematic layers generated in GIS environment based on the criteria defined in Sect.
3.3. It has been observed that the Bundu block was the most frequently affected by
malaria during the study periods (Fig. 10.6a–f). Most of the malaria hotspots have
been observed in the southeast and northeastern region of the Ranchi district. At the
level of HSCs from the year 2005 to 2007, Bundu and Sonahatu blocks have been
identified as the most vulnerable area for malaria (Fig. 10.6f). A detailed investiga-
tion revealed that a total of 68 villages from Bundu and 40 villages from Sonahatu
block have been under serious impacts of malaria incidences.

Fig. 10.4 (a) Yearly variation in Plasmodium falciparum (PF%) during the years from 2000 to
2010; (b) yearly variation in Annual Parasite Incidence (API) during the years from 2000 to 2010
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Analysis of Factors Responsible for Malaria Incidence

Topography and Malaria

Topography is one of the decisive parameters for occurrence of malaria incidences in
plateau region. During summer season malaria vectors have shown a tendency of
shifting their habitats from lower to higher elevations. Figure 10.7a, b depicts that
areas having elevation up to 400 meters in Ranchi district are highly prone to malaria
disease due to availability of favorable conditions for breeding of the malaria
parasites, i.e., temperature, vegetation cover, and humidity. Lower elevated areas
are closely related to the streams/swamps and forest that develop a positive impact
for suitability of malaria vector and their growth as water is not washed away when it

Fig. 10.5 (a) Block wise yearly variation in malaria incidences of Ranchi district during the years
from 2000 to 2010; (b) block wise monthly variation in malaria incidences of Ranchi district during
the year 2010
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rains as in the mountainous areas. At higher elevations temperature decreases which
decreases the rate of parasite reproduction; therefore areas having higher elevation
are less prone to malaria in the study area. The vulnerability of malaria incidences
with respect to altitude variation at the HSC level has been presented in Fig. 10.7a.
The Bundu block (300–600 m) has shown favorable habitat conditions for the
malaria vector in this region.

Fig. 10.6 (a–e) Highly affected regions by malarial disease in the district of Ranchi from 2000 to
2010; (f) highly affected regions by the malarial disease at the Health Sub-Centre level in Ranchi
district during 2005–2007
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Vegetation and Malaria

The NDVI, as a measure of photosynthesis, can be used as a proxy for suitability of
mosquito development. In the present study, areas with having NDVI values from
0.3 to 0.5 shows a high suitability or malaria prevalence in this area (Fig. 10.8a, b).
The cropland habitats coupled with its humid conditions support rapid multiplication
of malaria vectors. The Bundu block identified under NDVI ranges of 0.3–0.6 during
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Fig. 10.7 (a–b) Altitudinal variation and locations of the malaria hotspots in the study area

Fig. 10.8 (a–b) NDVI map and locations of the malaria hotspots in the Ranchi district
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2000–2010 has been found favorable for malaria vector breeding as most of the areas
of the block were under paddy cultivation and with occurrence of grasslands
(Fig. 10.9). Form the vegetation map it has been observed that Bundu block is
highly prone to malaria incidences.

Water Bodies and Malaria

The waterlogged area is one of the major factors for providing favorable conditions
for breeding of the malaria parasite and may include riverbeds, oases, drainages, and
other man-made water sites. It provides a perfectly suitable site for mosquitoes to lay
their eggs. In the present work it has been observed that Ranchi district shows a
frequent presence of water bodies. NDWI values of 0.1–0.8 have been observed
during study period which acts as a favorable habitat for malaria vectors
(Fig. 10.10a, b). The Bundu, Tamar, and Angara blocks have high NDWI values
as compared to other blocks and are most vulnerable to malaria disease.

Meteorological Factors and Malaria

Different meteorological parameters such as rainfall, temperature, and humidity with
API values have been determined for Ranchi district for the years of 2000–2010. The
interaction between temperature and rainfall was found highly responsible for the
seasonal characteristic of malaria transmission in this area. Among the several
environmental factors, rainfall was found to be well correlated with malaria inci-
dences (Fig. 10.11a). The relative humid condition was associated with increased
vector longevity and greater frequency of feeding. The relationship between the
aforementioned meteorological parameters and the occurrence of malaria incidences

Fig. 10.9 Normalized
difference vegetation map of
Bundu block with HSC level
hotspots
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has been shown in Fig. 10.11a–c. After detailed investigation it was found that there
exists a strong correlation between API and rainfall for the year of 2005, 2008, 2009,
and 2010. The API and humidity were also found highly correlated for the same time
period.

Socio-Economic Factors and Malaria

The average API and different socio-economic data of different blocks of Ranchi
district have been investigated. It has been observed that most of the administrative
blocks show a positive relationship in between API and %BPL status data, whereas a

Fig. 10.10 (a–b) The NDWI map and locations of the malaria hotspots in the Ranchi district

Fig. 10.11 (a) Relationship between the rainfall and API; (b) relationship between the relative
humidity and API in Ranchi; (c) relationship between the temperature and API in Ranchi
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poor relationship was found in case of blocks named Chanho, Namkum, and Ratu
(Fig. 10.12a). In Bundu block, the %BPL during the year 2010 was >60%, and it was
found that the total API was also very high (10 per 1000 population approx.). It is
worth mentioning that in Kanke block, the value of API per 1000 population was
very low with respect to the block population density along with low value of %BPL
(Fig. 10.12a, b). Kanke block’s population has not been much triggered by the
malaria incidence owing to the high literacy percentage instead of its population
density (Fig. 10.12c). It implies that education is one of the very important factors
that can change the current malaria status in the country. The possible reasons behind
the vulnerability and highly frequent malaria incidences in the Bundu block have
been found as a combined impact of comparatively lower literacy rate and socio-
economic condition of the block.

Role of GIS in the Management of Malaria

GIS has been used in many studies as a powerful tool for monitoring public health in
various geographical locations (Clarke et al., 1996; Hay et al., 2009; Tanser & Le
Sueur, 2002). Use of climate data, topographical data, medical reports, and ques-
tionaries can be processed using a GIS package to generate information for any
epidemic. The information may include hotspot zonation and locating Public Health
Centre/hospitals. GIS can be used in rapid estimation of the spatial distribution of
malaria prevalence and incidence, medical facilities, and disseminating data to the
concerned authorities. The community-based data generated using GIS is valuable as

Fig. 10.12 (a) Relationship between the BPL% (Year-2010) and API; (b) relationship between the
population density (Census-2011) and API; (c) relationship between percentage literacy (Census-
2011) and API
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an operational tool for planning actions against the malaria risk. GIS coupled with
other technologies such as the Internet and broadcast networks can be used to create
a spatial database to constrain the limits of malaria transmission. These databases can
be assembled and analyzed by a team of geographers, statisticians, epidemiologists,
biologists, and public health specialists. Furthermore, the information can be made
available to public via mediums like mobile apps, radios, TV sets, and newspapers.

10.5 Conclusion

GIS is a powerful tool that can assist in the control of environmental diseases where
spatial analysis is essential to focus scarce resources, improve the efficacy of control,
and decrease the burden of disease. In the present study malaria prevalence in the
Ranchi district has been investigated. The impact of environmental factors and
socio-economic conditions on malaria incidences has been investigated. Based on
criteria defined by ICMR India, malaria hotspot mapping has been performed. The
Bundu administrative block has been found as the most affected area by malaria
parasite in this region during the last decade (2000–2010). The monsoon period and
post-monsoon time have a great possibility to aggravate the malarial situation in this
region. As malaria control measures studies rely mainly on ground-based surveys,
the present work would facilitate as baseline research for the ongoing malaria
eradication program in India. It could be helpful to achieve the malaria elimination
target in India by the year 2022. The present work reveals that the environmental
settings and socio-economic factors along with the availability of disease control
measures can have a decisive impact on malaria eradication program. This study,
although limited to a particular area, can serve as a model for a larger area to
highlight malaria hotspots and to monitor the pace of control programs, which is
not otherwise feasible. GIS-based models can be used, even at village or cluster
level, to pin point the malaria hotspots, and information can be updated and retrieved
easily. The methodology has the potential to be applied to other diseases and areas of
health that will benefit from being able to display and analyze spatial relationships
based on accurate and reliable data. Using the extrapolation technique for current
malaria incidence as well as in the past, and the hotspot identification used in this
study, malaria occurrence could be predicted in the future, and policy makers could
be advised accordingly for effective and optimal distribution of governmental aid for
malaria control. The conclusion is that modeling such as this can help determine
spatio-temporal prediction and mapping of malaria incidence to aid in the design and
administration of appropriate interventions. The study does not suggest any specific
control measure, but emphasizes the need to concentrate malaria surveillance and
monitoring programs in these malaria hotspots. More studies should be carried out,
such as on bed net usage, the relationship between household presence of trees and
malaria, and others. The map generated can be further linked with the vector density,
vector breeding sites, physio-chemical factors, socio-economic status, and available
health resources to provide excellent framework for disease management.
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Chapter 11
Assessment on Social Vulnerability to Adapt
the Hindrances of Natural Hazards
in Purba Medinipur District, West Bengal,
India

Sumita Gayen and Ismael Vallejo Villalta

Abstract Social vulnerability is the resistance power of a community that influ-
ences its ability to cope with the impact of natural hazards which depicts the
difficulties of advancement in local livelihood. Vulnerability not only depends on
the frequency and intensity of hazards but also on the socio-economic conditions of
local people in a region. Strong socio-economic infrastructure of a region can protect
people from destructions of natural hazards and make the region less vulnerable. The
present chapter represents block wise assessment of social vulnerability in Purba
Medinipur district, located in eastern part of India. To determine the resistance
power of the district, block wise data have been utilized. Eighteen indicators were
identified and principal component analysis technique has been employed to calcu-
late the social vulnerability index. After principal component analysis, 18 indicators
were reduced to six components. The result also shows that Moyna block is most
vulnerable and Haldia, Sutahata, Contai-I blocks are socio-economically least vul-
nerable. This assessment helps to identify communities; those may need support in
preparing for hazards or recovering after hazards.

Keywords Social vulnerability · Natural hazards · Indicators · Principal component
analysis · Vulnerable zone

11.1 Introduction

Social vulnerability is a pre-existing condition of the population that influences its
ability to prepare for, respond to, and recover from hazard events (Cutter et al.,
2003). It is the complex set of some characteristics that include a person’s initial
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well-being, livelihood and resilience, self-protection, social-protection, and social
and political networks and institutions (Cannon et al., 2003). Social vulnerability is a
measure of the capability of some elements to withstand events of a certain physical
character (Weichselgartner, 2001).

Social vulnerability assessment is a process of identifying, quantifying, and
analyzing the vulnerability factors in a region. It has been documented that by
reducing human vulnerability to natural hazards, the impact of hazards could be
minimized. In present time, social vulnerability assessment is a common approach
for both regional (Dwyer et al., 2004; Müller et al., 2011) and country levels (Cutter
et al., 2003; Holand et al., 2011; Frigerio et al., 2018). Dwyer et al. (2004) selected
13 vulnerability indicators and 2 hazard indicators and measured the social vulner-
ability of Perth in Western Australia. Müller et al. (2011) analyzed urban vulnera-
bility of flood for the capital city of Chile, Santiago de Chile. Cutter et al. (2003)
constructed Social Vulnerability Index (SoVI) of the United States based on data of
the year 1990. At first, 42 variables were used by Cutter et al. (2003) and then were
reduced to 11 independent factors. Holand et al. (2011) classified the SoVI into two
groups, Socio-economic Vulnerability Index (SeVI) and Built Environment Vulner-
ability Index (BEVI), to measure the social vulnerability in Norway. Frigerio et al.
(2018) identified 16 indicators and used data of 1991, 2001, and 2011 census years
and created social vulnerability index of Italy.

In India, social vulnerability assessment has been conducted both in regional and
national levels. Table 11.1 represents some works of social vulnerability analysis
conducted in India.

The study area of the present chapter is Purba Medinipur district of West Bengal
state of India. In the last decade a lot of studies have been conducted in Sagar Island
of West Bengal. Mondal (2013), Mukherjee et al. (2019), and Mondal et al. (2020)
have selected their study areas for different vulnerability assessment in Sagar Island.
But there is no such vulnerability assessment work performed at block level in Purba
Medinipur district. The present work has been assessed through 18 indicators that
describe the demographic, social, economic, and health condition of the district. The
aim of this indicator-based assessment is to measure the block level hazard resistance
power of Purba Medinipur district of West Bengal.

11.2 History of Natural Hazards in Purba Medinipur
District and Relationship with Social Vulnerability

Purba Medinipur district is located (Fig. 11.1) in the southern part of West Bengal,
India. It was formed on 1st January 2002 after the partition of Medinipur district into
Purba Medinipur district and Paschim Medinipur district. It is surrounded by
Rupnarayan and Hooghly rivers in the east, Paschim Medinipur district in the
west, Howrah and Paschim Medinipur district by the north, and south by the Bay
of Bengal. In the south-west corner, this district shares a common border with the
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state of Orissa. The district comprises of 25 blocks and 5 municipalities. The district
headquarter is located in Tamluk.

Geographically Purba Medinipur district is situated between 21�3603500N and
22�5701000N and 86�3305000E and 88�1204000E longitude (Census of India, 2011).
The district is a part of lower Ganga plain. Costal features like estuary, tidal flats,
mud flats, salt pans, and sand dunes are observed in Purba Medinipur district. Haldi,
Rasulpur, Keleghai, Kangsabati, and Rupnarayan are the main rivers of the district.
All the rivers of Purba Medinipur district flow from west to east according to the
slope of the region. The climate of Purba Medinipur district is of tropical
monsoon type.

Natural hazards are natural processes or phenomena that occur in the biosphere
and may constitute a damaging event (ISDR, 2004). Purba Medinipur district is a
natural hazard prone region of West Bengal. The district is affected by several types
of natural hazards mainly flood, tropical cyclone, earthquake, and drought. Flood is a
very common event and is the main natural disaster in Purba Medinipur district.
Almost all blocks of this district have suffered due to flood. Mainly floods occurred
during south-west monsoon period from middle of June to September. Some parts of
the district are affected by flood in almost every year. Kaliaghai and New Cossey
rivers are mainly responsible for flood in the district. The district is a part of Ganga
delta. Most of the rivers of the district are small in character. Flood of the district
becomes voluminous because of the shape of the catchment area, its steep slope
starting from a high level plateau area in the neighboring states and sloping sharply
down to a flat terrain near the outfall.

Purba Medinipur district touches Bay of Bengal. All the coastal blocks,
Ramnagar-I, Ramnagar-II, Contai-I, Deshapran, Khejuri-II, and Nandigram-I are
cyclone-prone blocks in the district. The district has two cyclone seasons—pre-
monsoon (April–May) and post-monsoon (October–November). The peak
cyclone frequency is found in the months of May and November. Shallow water
of Bay of Bengal, low flat coastal topography, and funnel shape of the coastline are
the main causes of huge damage even in moderate intensity of cyclone (McBride,

Fig. 11.1 Location map of Purba Medinipur district
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1995). The return periods of severe cyclone and normal cyclones are 38 years and
4 years (survey year: 1891–2004), respectively (Hazard Assessment and Disaster
Mitigation for West Bengal due to Tropical Cyclones, 2006). Normally cyclones in
the Bay of Bengal move northward, westward, and north-westward. Cyclone brings
strong winds and rains that damage coastal region.

The most devastated earthquake so far was recorded in Purba Medinipur district
on 15 April 1964 which caused widespread damage in the Contai region. The
epicenter of the 1964 earthquake was between the Contai coast and Sagar islands
(Maiti et al., 2017b). Large earthquake is very rare in the district. Sometimes
earthquakes are felt, but the intensity is low. Generally no damages were recorded
due to this type of earthquakes. According to the new classification by the Bureau of
Indian Standards [IS-1893 (Part-1): 2002], Purba Medinipur district falls under
seismic zone III which is moderate intensity zone (Source: Ministry of Earth
Science). The intensity on Modified Mercalli scale (MM) is VII for Zone III.

The experience of drought is also common in the district. Drought affects the
population frequently and causes damage to the limited agriculture in the area. In
2010–2011, 598 mouzas of Tamluk, Contai, and Egra sub-divisions are affected by
drought-like situation. All the mouzas have Kharif Paddy production below 50% due
to this situation (Source: Office of the Deputy Director of Agriculture [Admn.],
Purba Medinipur).

Summing up, the main natural hazards of Purba Medinipur district are flood and
cyclone. After independence of India, there have been 46 major and medium floods
and 23 cyclones which attacked the region (undivided Medinipur district, survey
year: 1948–2015). In a hazard assessment, normally intensity, frequency, and
probability of occurrence are evaluated. Relationship between destruction of hazard
and socio-economic condition of people are closely related. Socio-economic condi-
tion plays a key role in hazard and social vulnerability analysis. For example, one
region may be very highly vulnerable for flood but the density of population is very
low, and another region is highly vulnerable for flood but having high density of
population. So, relatively the second region is more vulnerable to flood. Social
vulnerability helps to explain why different communities can experience the same
hazard event differently (Morrow, 2008).

Nobody can stop the hazards, but it is possible to reduce the damage of hazards by
improving the socio-economic condition of the society. Social vulnerability iden-
tifies the weak points of a society to cope with hazards. This is why social vulnera-
bility assessment is very important to identify the vulnerable region against any type
of hazard. The aim of this indicator-based vulnerability assessment is to measure the
block level hazard resistance power and causes of vulnerability and try to give some
possible remedies to reduce the vulnerability of Purba Medinipur district of West
Bengal state of India.
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11.3 Methodology

The methodology has seven stages. Figure 11.2 shows the flow chart of the research
methodology.

Data Collection

The analysis was performed using data of Census of India (2011), West Bengal,
District Human Development Report (Purba Medinipur, 2011), and District Statis-
tical Handbook (2012–2015). Data of Census of India is mostly used in this analysis.

Selection of Indicators

An indicator is a measurable variable which represents an associated factor. In
another way, it can be defined as a tool of measurement. In almost all research
works, the selection of indicators depends on the objectives of the study. What
should be the ideal characteristics of the indicators? The point of views of different
authors are different, shown in Table 11.2.

This chapter identifies four characteristics of the indicators. The criteria are listed
below:

Fig. 11.2 Flow chart of the research methodology
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• Easily understood and applied by potential users.
• Meaningful and related in research topic.
• Reliable and acceptable.
• Based on the data availability.

When vulnerability increases with the increasing value of indicator, it is called
positive relationship. For negative relationship, vulnerability decreases with increas-
ing the value of indicator. Table 11.3 shows the name of the selected indicators and
some basic information about those.

Table 11.4 depicts the basic values of indicators that are used in this study.

Standardization

Standardization is the process of bringing data into a same format. The main purpose
of standardization is to transfer scores in one scale. Several standardization methods
are used to process the data. In this study, min-max rescaling transformation method
has been adopted. In this method, data are transformed to a specific range (0–1).

For standardization, minimum and maximum values were chosen from each and
every indicator. Then the value of vulnerability for each block of Purba Medinipur

Table 11.2 Characteristics of indicators according to different authors

Schneiderbauer
and Ehrlich
(2004) Tapsell et al. (2005) Birkmann (2006)

• Availability
and coverage
• Measurability
and accuracy
• Frequency of
update

• Reliable and verifiable
• Sensitive to change over time
• Simple and easily understood
while reflecting complexity of concept
• Quantitative-measurable via read-
ily understood model
• Recognizable by others
• Objective
• And ideally, comparable within
and between communities

• Measurable
• Relevant, represent an issue
that is important to the relevant
topic
• Policy-relevant
• Only measure important key
elements instead of trying to indi-
cate all aspects
• Analytically and statistically
sound
• Understandable
• Easy to interpret
• Sensitivity; be sensitive and
specific to the underlying phe-
nomenon
• Validity/accuracy
• Reproducible
• Based on available data
• Data comparability
• Appropriate scope
• Cost-effective
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Table 11.3 Selected vulnerability indicators

Sl.
No. Indicators Name Description

Relationship
with
vulnerability

Literature
Review

1 Distance from
capital

DCA Capital plays an important role
for different administrative
services. Economic growth
rate is higher in capital com-
pared to other regions. Capital
region is well connected by
other regions, and also job
opportunities are more.

Positive Gayen
et al.
(2021)

2 Population
density

PDE High population density indi-
cates more people are vulner-
able in any hazard.

Positive Tascón-
González
et al.
(2020)

3 Population
growth rate

PGR Higher population growth rate
increases vulnerability to haz-
ards. Limited space, limited
escapes routes, and dense
infrastructure lead to the
vulnerability.

Positive Holand and
Lujala
(2013)

4 Female
population

GEN Women are more vulnerable
than men. Women workers are
paid less salary than men for
the same work.

Positive Navarro
et al.
(2020)

5 Child population
(0–6 years)

CPO Children have less physical
strength, and they are depen-
dent on others for survival.

Positive Aksha et al.
(2019)

6 Rural population RPO Rural peoples have poor med-
ical facilities and higher rates
of morbidity due to remote-
ness from hospital.

Positive Cutter et al.
(2003)

7 Minority
population

MPO Minority population belongs
to low levels of education,
poor economic condition, poor
health, and malnutrition.

Positive Yang et al.
(2019)

8 Literacy rate LRA Higher education gives a better
job opportunity. Educated
society enjoys a greater eco-
nomic growth.

Negative Kablan
et al.
(2017)

9 Households with-
out electricity

HLI Without electricity no chance
to access the television, inter-
net, and modern technologies.

Positive Mavhura
et al.
(2017)

10 Households with-
out sanitation

HSA Sanitation can reduce diarrhea
and other diseases and thus
reduces health hazards.

Positive Ge et al.
(2017)

11 Households with-
out car

HCA In case of emergency situation,
car of a family member is
a need.

Positive Bergstrand
et al.
(2015)

(continued)
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district with respect to each indicator has been calculated by using Eqs. (11.1) and
(11.2).

For positive relationship,

x ¼ xi � min
max � min

ð11:1Þ

where xi ¼ Actual value, min ¼ Minimum value, max ¼ Maximum value.

Table 11.3 (continued)

Sl.
No. Indicators Name Description

Relationship
with
vulnerability

Literature
Review

12 Households with-
out kitchen

HKI Cooking in open space is
unhygienic.

Positive Chen et al.
(2013)

13 Households with-
out sewage

HSE Sewage system helps to keep
the environment safe and pre-
vents the spread of water-
borne diseases. Poor sewage
system also provides less pro-
tection against mosquitoes.

Positive de Mello
Rezende
(2016)

14 Employment rate ERA Higher employment rate indi-
cates healthy food, better
medical facilities, and high
standard of living.

Negative Cutter et al.
(2008)

15 Households hav-
ing banking
service

HBS Bank account is an easy way to
save money with interest and
keep it safe. Online payment
of different bills is easy
through bank account. Bank
also helps to arrange loans for
education, home, and
business.

Negative Maiti et al.
(2017a)

16 Infant mortality
rate

IMR Infant mortality rate reflects
the social, economic, and
health-care system of a soci-
ety. Higher rate of infant mor-
tality indicates poor
development of a society.

Positive de Oliveira
Mendes
(2009)

17 Pressure of popu-
lation/hospital
(including nurs-
ing home)

PHS If the numbers of hospitals are
more, everyone will have the
opportunity to get treatment
nearby to home. This is very
important mainly for patient
with serious condition.

Positive Emrich and
Cutter
(2011)

18 Pressure of popu-
lation/bed

PBE More number of beds in hos-
pital means more people will
be able to get treatment.

Positive Lixin et al.
(2014)
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For negative relationship,

x ¼ max � xi
max � min

ð11:2Þ

where max ¼ Maximum value, xi ¼ Actual value, min ¼ Minimum value.
After standardization, for positive relationship minimum value of any indicator

gets transformed to 0 and maximum value to 1, and for negative relationship it is vice
versa. The other values of indicator will change in decimal and stay between 0 and 1.

Data Processing

For data processing and statistical analysis, principal component analysis technique
has been employed. Principal component analysis is one of the most extended and
successful methodologies (Contreras et al., 2020). It is a technique that used to
reduce the dimension of data and help to explain data. The criteria to retain all the
factors were selected based on eigenvalues greater than 1 (Kaiser Criterion). The

Table 11.4 Indicators and their range, mean, standard deviation, variance values

Sl.
no. Vulnerability indicators Range Mean

Standard
deviation Variance

1 Distance from capital 90.20 44.61 24.10 557.44

2 Population density 1209.71 1319.26 365.10 127962.71

3 Population growth rate 6.03 15.54 1.89 3.41

4 Female population 1.18 48.41 0.25 0.06

5 Child population 3.56 11.57 0.79 0.61

6 Rural population 53.97 89.96 14.80 210.18

7 Minority population 51.63 15.81 9.83 92.80

8 Literacy rate 12.00 80.20 2.65 6.73

9 Households without
electricity

42.97 54.40 11.09 118.12

10 Households without sanitation 18.33 10.52 6.11 35.89

11 Households without car 1.44 98.90 0.40 0.15

12 Households without kitchen 27.81 33.85 7.79 58.31

13 Households without sewage 8.27 92.23 2.23 4.76

14 Employment rate 12.31 37.26 3.13 9.43

15 Households having banking
service

20.97 38.91 5.46 28.59

16 Infant mortality rate 51.43 20.32 11.61 129.39

17 Pressure of population/
hospital

96704.82 38314.72 23159.21 514,895,265

18 Pressure of population/bed 14355.02 5428.80 3236.44 10,055,567
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varimax rotation method has been applied in this study. Generally varimax rotation
has been considered as the best orthogonal rotation (Fabrigar et al., 1999). Orthog-
onal rotation generates factors that are uncorrelated. The Statistical Package for the
Social Sciences (SPSS, Version 26) was used to calculate the principal component
analysis.

Weighting

Weighting is a relative degree which indicates importance of an indicator. Maximum
vulnerability assessment studies do not use weights for vulnerability indicators, and
the indicators are generally considered as independent and equally important vari-
ables (Yoon, 2012). Rygel et al. (2006) showed that vulnerability assessment is
possible without practice of weighting for various indicators. An equal weighting
was used to avoid the priority of any factor, and each factor has an equal contribution
to the county’s overall vulnerability (Cutter et al., 2003). In this study equal weight
was applied for all the indicators. Except Cutter et al. (2003), Aksha et al. (2019),
Mavhura et al. (2017), and Tate, 2012 also followed equal weighting technique for
analysis of indicators.

Social Vulnerability Index (SVI) Construction

The SVI was developed by adding together the six component scores for every
block.

Equation of SVI ¼ Fac1 + Fac2 + Fac3 + Fac4 + Fac5 + Fac6.

Mapping

Social vulnerability mapping is a method to communicate which areas are more
vulnerable to the impacts of disasters (Chen et al., 2013). The maps have been
prepared by using ArcGIS (Version 10.2) based on standard deviation method.
Standard deviation score is divided into very low, low, moderate, high, and very
high vulnerability categories based on the same difference.

Some of the literatures, where same methods for standardization, data processing,
and mapping have been used, are listed in Table 11.5.
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11.4 Results and Discussion

This block wise social vulnerability assessment identifies vulnerable blocks in each
category. Eighteen indicators were standardized by min-max rescaling transforma-
tion method, and then principal component analysis was used for data analysis.
Principal component analysis was the most common method in the last 10 years for
the reduction of variables (Contreras et al., 2020).

If communalities of one variable are low (between 0.0 and 0.4), then that variable
may struggle to load significantly on any factor. Higher values of communalities are
better. Here all the communalities values are higher than 0.55 (Table 11.6) which
indicates that the extracted components represent the variables quite well.

The total variance explained in Table 11.7 shows 18 components. The first
component explains the higher variance, and the last component signifies the least
variance. Eigenvalue represents the total variance explained by each factor.
According to the Kaiser criterion (Kaiser, 1960), an appropriate threshold for
component extraction includes those components having an eigenvalue greater
than 1.00. Six components have eigenvalues greater than 1. So, only six factors
can be retained for further analysis. 27.18% variance is explained by the first
component. First six components explained 82.51 percent of the total cumulative
variance, and the rest of the 12 components capture only 17.49 percent of the
cumulative variance.

The values of “Initial eigenvalues” and “Extraction sums of squared loadings”
columns are the same. The “Rotation sums of squared loadings” represent the
distribution of the variance after the varimax rotation (here varimax rotation has
been used). Total percent of variance explained is the same (cumulative value for
factor 6 is 82.51%) for all of three (initial eigenvalues, extraction sums of squared
loadings, rotation sums of squared loadings). But rotation changes the extracted

Table 11.5 Literature review of standardization, data processing, and mapping methodology

Process Method Authors

Standardization Min-max rescaling
transformation

Cutter et al. (2010), Khan and Salman (2012), Lixin
et al. (2014), Sajjad and Jain (2014), Tali et al. (2016),
Žurovec et al. (2017), Ge et al. (2019), Lianxiao and
Morimoto (2019), Gayen et al. (2020)

Data
processing

Principal compo-
nent analysis

Boruff et al. (2005), Fekete (2009), de Oliveira Mendes
(2009), Bergstrand et al. (2015), Guillard-Gonçalves
et al. (2015), Kirby (2015), Letsie and Grab (2015),
Frigerio and Amicis (2016), Mavhura et al. (2017),
Frigerio et al. (2018), Zhang et al. (2018), Aksha et al.
(2019), Dintwa et al. (2019), Ge et al. (2019), Yang et al.
(2019)

Mapping ArcGIS Letsie and Grab (2015), Gautam (2017), Mavhura et al.
(2017), Žurovec et al. (2017), Alizadeh et al. (2018),
Lianxiao and Morimoto (2019), Yang et al. (2019)
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factors of eigenvalues. So, after rotation each extracted factor counts for a different
percentage of variance explained.

Scree plot (Fig. 11.3) is a line of the eigenvalues against components in an
analysis. It always displays the eigenvalues in a downward curve. It helps to
determine the number of factors remaining and the relative importance of the factors.
The x-axis contains component number and y-axis represents the eigenvalue. From
scree plot, the components having score above one (total six) have been considered.
At the end of the graph, line is almost flat, which signifies that on that portion each
successive component is accounting smaller amounts of the total variance.

After analysis of total variance explained, only six components have been
retained, which have been shown in Table 11.8. The rotated component matrix
referred to as the loadings for each item on each component as a high positive
loading or negative loading. The highest loading for each component is highlighted.
Here correlations of less than 0.3 or 0.4 are regarded as being insignificant.

Six factors have been derived from the principal component analysisSocial
vulnerability assessmentprincipal component analysis and contribute to social vul-
nerability assessment in Purba Medinipur district (Table 11.9).

Following Cutter et al. (2003) methodology, all the six factors summed up to
obtain final or SVI score (Table 11.10).

SVI scores were classified using the standard deviation by the ArcMap10.2. The
block wise standard deviation (SD) score is divided into very low, low, moderate,
high, and very high vulnerability categories based on the same difference. Higher

Table 11.6 Communalities

Initial Extraction

Distance from capital 1.000 0.898

Population density 1.000 0.938

Population growth rate 1.000 0.829

Female population 1.000 0.922

Child population 1.000 0.947

Rural population 1.000 0.875

Minority population 1.000 0.604

Literacy rate 1.000 0.809

Households without electricity 1.000 0.856

Households without sanitation 1.000 0.868

Households without car 1.000 0.740

Households without kitchen 1.000 0.906

Households without sewage 1.000 0.861

Employment rate 1.000 0.784

Households having banking service 1.000 0.863

Infant mortality rate 1.000 0.770

Pressure of population/hospital 1.000 0.555

Pressure of population/bed 1.000 0.825
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Fig. 11.3 Scree plot

Table 11.8 Rotated component matrix

Component

1 2 3 4 5 6

Distance from capital 0.906 �0.026 �0.085 �0.112 �0.132 �0.196

Population density �0.901 �0.201 0.135 �0.219 �0.121 �0.073

Households without sanitation �0.854 0.228 �0.186 �0.199 �0.101 �0.048

Households without electricity 0.655 0.358 0.128 0.184 0.346 0.359

Literacy rate �0.126 0.859 �0.215 0.065 �0.039 0.054

Minority population 0.211 0.697 0.188 �0.056 0.152 0.109

Child population �0.050 0.694 0.419 0.389 0.251 0.271

Employment rate 0.015 0.070 0.864 �0.104 �0.142 0.045

Households without kitchen 0.528 0.180 �0.677 �0.089 �0.009 0.359

Population growth rate 0.234 0.471 0.612 �0.118 0.282 0.291

Infant mortality rate 0.005 0.069 0.058 �0.856 0.174 �0.006

Rural population 0.373 0.133 �0.318 0.767 0.151 0.079

Population/hospital 0.095 0.262 0.130 0.506 0.425 0.153

Households without sewage 0.072 0.165 �0.027 �0.174 0.891 �0.066

Population/bed �0.076 �0.054 �0.536 0.295 0.577 0.330

Households without car 0.192 �0.427 �0.306 0.364 0.491 0.232

Households having banking
service

0.081 0.322 0.011 0.199 0.042 0.843

Female population 0.232 0.510 0.101 0.473 �0.056 �0.608
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value indicates higher level of vulnerability and vice versa. SVI values <�0.1.5 SD
are considered as a low vulnerability category. �1.5 to �0.50 SD values are
assigned under low category. Values from �0.50 to 0.50 SD are termed as moderate
vulnerability. High vulnerability values lie between 0.50 and 1.5 SD. Values >1.5
SD are marked as a very high vulnerability. Figure 11.4 shows different zones of
social vulnerability in Purba Medinipur district. This study reveals that most vulner-
able blocks are lying on the central, east, and western part of the district.

The result shows that the most vulnerable block is Moyna. The block is located
near to the district capital Tamluk. But rural population is high (97.09%) in Moyna.
Social parameters like households without electricity, no latrine, no kitchen in house,
and no sewage system make Moyna the most vulnerable block in the district. Social
parameters of vulnerability like households having no sanitation, no sewage system,
and no kitchen are related to health problems. Sewage system and sanitation
facilities are important to reduce health-related problems. Almost one in two people
in the developing countries don’t have improved sanitation (Human Development
Report, 2006). After a decade of twenty-first century more than 18.29% households
have no sanitation facility in Moyna block. Even some people do not use latrine,
though they have latrine. Sewage systems carry waste water by pipes. From the
dumped sewage water, ground water could be contaminated, and water-borne
diseases such as hepatitis, cholera, and typhoid could spread.

Table 11.9 Dimension of six factors

Name % of variance explained Dominant indicator
Component
loading

Factor 1 27.181 Distance from capital 0.906

Population density �0.901

Households without sanitation �0.854

Households without electricity 0.655

Factor 2 17.685 Literacy rate 0.859

Minority population 0.697

Child population 0.694

Factor 3 13.256 Employment rate 0.864

Households without kitchen �0.677

Population growth rate 0.612

Factor 4 10.102 Infant mortality rate �0.856

Rural population 0.767

Population/hospital 0.506

Factor 5 8.046 Households without sewage 0.577

Population/bed 0.491

Households without car 0.042

Factor 6 6.239 Households having banking service 0.843

Female population �0.608

11 Assessment on Social Vulnerability to Adapt the Hindrances of Natural. . . 251



T
ab

le
11

.1
0

S
V
I
sc
or
es

an
d
vu

ln
er
ab
le
zo
ne
s
fo
r
25

bl
oc
ks

of
P
ur
ba

M
ed
in
ip
ur

di
st
ri
ct

B
lo
ck
s

F
ac
1

F
ac
2

F
ac
3

F
ac
4

F
ac
5

F
ac
6

S
V
I
sc
or
e

R
an
k

L
ev
el
of

vu
ln
er
ab
ili
ty

T
am

lu
k

�1
.8
68

49
�0

.2
00

82
0.
16

24
3

0.
04

97
9

�0
.4
29

1
�1

.1
47

4
�3

.4
33

53
22

L
ow

S
ah
id

M
at
an
gi
ni

�1
.8
24

38
�0

.6
35

05
0.
19

56
4

0.
08

27
5

�1
.2
90

1
0.
04

69
�3

.4
24

26
21

L
ow

P
an
sk
ur
a

�1
.3
76

59
0.
76

42
6

1.
64

01
1

0.
34

08
4

0.
03

81
�0

.5
80

8
0.
82

59
3

13
M
ed
iu
m

K
ol
ag
ha
t

�1
.5
29

12
�0

.4
22

88
1.
00

20
5

0.
19

13
9

�1
.0
34

6
�0

.2
03

9
�1

.9
97

03
19

L
ow

M
oy

na
�0

.8
05

05
�0

.1
07

43
1.
03

91
7

�0
.1
38

85
1.
47

36
2.
08

57
3.
54

71
8

1
V
er
y
hi
gh

N
an
da
ku

m
ar

�1
.0
30

44
0.
79

71
2

0.
59

31
0.
02

96
4

0.
99

16
�0

.1
68

6
1.
21

23
9

10
H
ig
h

C
ha
nd

ip
ur

�0
.4
41

71
�0

.1
50

19
�0

.7
67

43
0.
74

73
8

0.
57

07
0.
95

8
0.
91

68
12

M
ed
iu
m

M
ah
is
ha
da
l

�0
.6
10

12
�0

.5
41

97
�0

.6
82

88
1.
23

37
4

�0
.0
12

7
�0

.5
48

1
�1

.1
61

98
18

M
ed
iu
m

N
an
di
gr
am

-I
0.
07

46
9

0.
76

03
5

�1
.6
32

92
1.
55

55
2

�0
.0
96

1.
17

07
1.
83

23
7

H
ig
h

N
an
di
gr
am

-I
I

0.
24

48
8

�0
.3
99

63
�1

.6
37

29
1.
05

73
3

0.
28

08
�0

.3
12

�0
.7
65

91
17

M
ed
iu
m

S
ut
ah
at
a

�0
.7
27

97
0.
77

96
�1

.2
51

86
�1

.7
63

8
�0

.8
51

7
0.
12

26
�3

.6
93

18
23

V
er
y
lo
w

H
al
di
a

�0
.5
04

71
�0

.2
27

37
�1

.7
74

58
�3

.1
12

07
1.
39

26
�0

.4
1

�4
.6
36

14
25

V
er
y
lo
w

P
ot
as
hp

ur
-I

0.
85

32
3

�0
.4
43

43
1.
55

53
6

�0
.5
01

93
2.
09

69
�0

.7
47

7
2.
81

24
1

3
H
ig
h

P
ot
as
hp

ur
-I
I

1.
20

05
9

0.
46

00
7

0.
69

38
9

�0
.5
25

17
0.
14

59
0.
52

86
2.
50

38
4

4
H
ig
h

B
ha
ga
w
an
pu

r-
I

�0
.1
86

15
�0

.1
57

98
�0

.2
14

8
0.
63

09
1

1.
44

37
0.
61

2
2.
12

76
3

5
H
ig
h

E
gr
a-
I

0.
96

28
3

1.
11

31
3

1.
47

74
8

�1
.0
33

48
�2

.0
22

2
0.
18

86
0.
68

63
3

14
M
ed
iu
m

E
gr
a-
II

1.
17

33
6

�0
.3
31

3
0.
58

55
5

�0
.0
44

88
�0

.4
64

2
0.
92

49
1.
84

34
6

6
H
ig
h

K
he
ju
ri
-I

0.
65

75
1

0.
02

05
5

�0
.4
37

42
0.
96

44
1

�0
.7
63

2
0.
77

86
1.
22

05
2

9
H
ig
h

K
he
ju
ri
-I
I

0.
71

74
9

3.
39

76
9

�0
.7
26

71
0.
07

37
2

0.
15

6
�0

.3
32

8
3.
28

54
2

2
H
ig
h

B
ha
ga
w
an
pu

r-
II

0.
71

63
5

�0
.8
16

93
0.
04

90
7

0.
56

67
4

�0
.5
45

6
0.
63

54
0.
60

50
8

15
M
ed
iu
m

R
am

na
ga
r-
I

0.
83

60
7

�0
.0
56

33
�0

.5
52

42
0.
59

69
4

�0
.4
42

9
�3

.0
01

8
�2

.6
20

43
20

L
ow

R
am

na
ga
r-
II

1.
18

15
7

�0
.8
52

95
0.
39

64
8

0.
07

39
5

0.
06

46
�1

.1
58

6
�0

.2
94

95
16

M
ed
iu
m

C
on

ta
i-
I

0.
67

95
3

�2
.1
81

89
�0

.7
20

98
�1

.2
03

03
�1

.2
19

8
0.
75

13
�3

.8
94

85
24

V
er
y
lo
w

D
es
ha
pr
an

0.
75

83
4

0.
34

39
4

0.
55

57
6

�0
.3
44

31
�0

.5
51

5
0.
57

28
1.
33

50
8

8
H
ig
h

C
on

ta
i-
II
I

0.
84

82
8

�0
.9
10

56
0.
45

32
3

0.
47

24
5

1.
06

88
�0

.7
64

3
1.
16

78
9

11
M
ed
iu
m

252 S. Gayen and I. V. Villalta



Mainly middle part of the district is highly vulnerable. Maximum blocks of Purba
Medinipur district (36%) come under high vulnerable category. Khejuri-II block
belongs to this category and is the second most vulnerable block in the district. Here
population density is quite low, but values of other indicators are high. Khejuri-II has
the highest rural population, minority population, illiteracy rate, and households
without electricity within the district. Another important cause of vulnerability is
high population growth rate. Population growth is considered as increase of vulner-
ability (Cutter et al., 2003). Decadal population growth of Purba Medinipur district is

Fig. 11.4 Social vulnerability map of Purba Medinipur district
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15.54%, which is considered as quite high. Khejuri-II block has no urban population;
but population growth rate (18.75) is extremely high.

Nandakumar, Bhagawanpur-I, Patashpur-I, Patashpur-II, Egra-II, Deshapran,
Khejuri-I, and Nandigram-I blocks are also categorized in highly vulnerable zone.
High rate of child and rural population, high percentage of without electrified
household, and household with no sewage system are the main causes of vulnera-
bility for maximum blocks. Nandakumar, Patashpur-II, Egra-II, and Khejuri-I blocks
have 100% rural population. Normally rural population has lack of good communi-
cation system. The vulnerability of a region also depends on its location and spatial
interaction with other regions. Communication is important for resource mobiliza-
tion, accessibility, and area development. Good connectivity provides better relief
facilities during the hazards. Nandigram-I block has the highest population growth
rate (18.97%) and highest child population (13.66%) within the district. Children are
the most vulnerable groups in the society during disaster events (Cutter et al., 2003).
They are vulnerable due to lack of their education, experience, and knowledge
during the time of hazard (Gayen et al., 2021).

32% of blocks fall into the medium vulnerable zone. Panskura, Mahishadal,
Chandipur, Nandigram-II, Bhagawanpur-II, Contai-III, Egra-I, and Ramnagar-II
blocks are under this category.

Three blocks of northern part (Kolaghat, Sahid Matangini, Tamluk) and one
block of southern part (Ramnagar-I) in Purba Medinipur district have low vulnera-
bility. Except Ramnagar-I block, other blocks have high population density. Tamluk
is district capital and Kolaghat and Sahid Matangini blocks are near to district
capital. All the health and medical indicators like IMR, pressure of population/
hospital, and pressure of population/bed contribute to reduce the vulnerability.
After disaster, accessibility of medical service is very important (Chen et al., 2013).

Haldia, Sutahata, and Contai-I blocks are in very low vulnerable category. These
blocks have low female population, child population, and rural population and high
literacy rate and employment rate. Several researchers (Morrow, 1999; Dwyer et al.,
2004; Tapsell et al., 2005; Kuhlicke et al., 2011) mentioned women section of
society is more vulnerable than men. Economically disadvantaged peoples are
more affected by disasters (Flanagan et al., 2011). Good economic condition leads
population to live better and longer lives as well as good standard of living. Good
economic condition means high rate of employment that translated into the con-
sumption of higher quantity and better quality nutrients. As well, it helps to cope
with natural hazard and to a faster recovery from those. Besides these conditions, a
number of hospitals and nursing homes and bed availability are quite good than other
blocks of the district. In Contai-I block female population and child populations are
lowest and literacy rate is highest in the district, but distance from capital is far.
Haldia block is least vulnerable within the district. Good demographic, social
parameter, and health conditions are the main contributors of low vulnerability for
Haldia block. Another important thing is Haldia is the most industrialized block of
the district. So, employment rate of Haldia block is high. Though Haldia block has
high population growth rate, overall vulnerability index is less.
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Purba Medinipur district comprises of five municipalities: Tamluk, Panskura,
Haldia, Egra, and Contai. All the municipalities included blocks that are situated
between very low (Contai, Haldia), low (Tamluk), and medium (Panskura, Egra)
vulnerable zones, because municipalities are facilitated with different possibilities
(communication, more job opportunities, hospital facilities, etc.) than other regions.

The radar chart (Fig. 11.5) shows position of every block within the district in a
diagram

The relationship between 18 indicators is presented in Table 11.11. A strong
relationship between child population and population growth is not surprising.
Population density also decreases with the increasing distance from capital. So
relationship between population density and distance from capital is negatively
strong. Moderate negative association has been found between rural population
and population density. A fair relationship has been found between minority popu-
lation and population growth and also between minority population and child
population.

Recommendations

Purba Medinipur district is a multi-hazard-prone district, specially for hazards like
flood and cyclone (District Disaster Management Plan, Purba Medinipur, 2019–20).
According to hazard (earthquake, flood, wind and cyclone, landslide, and

Fig. 11.5 Social vulnerability index of different blocks within the district in radar diagram
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subsidence) classification map, the district comes under highly vulnerable category
(Nath et al., 2008). To prevent destruction from hazards, good socio-economic
construction as well as natural hazard management strategy is needed.

Demographic problems like high population growth rate and high percentage of
child population could be reduced only by awareness. Awareness on population
control should not be confined to only for a day in the year. It should be conducted at
regular intervals from the village level.

To improve economic condition, job opportunity is needed. Purba Medinipur
district is the most literate district of West Bengal, having literacy rate of 87%,
whereas the literacy rate of West Bengal is 76.26% (Census of India, 2011). Even the
literacy rate of Purba Medinipur district is higher than the state capital Kolkata
(86.31%). Higher education gives a better job opportunity. People of coastal blocks
have a great opportunity to engage themselves in pisciculture and fish-related works.
Establishment of small and medium industries can also create work opportunities.

The main cause of vulnerability for maximum blocks of Purba Medinipur district
is inferior health condition. Overall health picture in Purba Medinipur district is very
poor. Infant mortality rate is the mirror of general public health (Lee, 2014). Average
infant mortality rate is 20.32. Institutional birth is considered as an important
powerful determinant for infant mortality rate. It reduces the probability of death
of newborn baby and mother. But institutional birth rate is quite low, mainly in the
rural areas of the district. Goli and Jaleel (2014) showed that institutional deliveries
reduce infant mortality rate and maternal mortality rate. The number of government
hospitals is also very less. Private hospitals and nursing homes are mainly concen-
trated in municipality-related blocks like Tamluk, Haldia, Egra-I, and Contai-I. Poor
people are unable to get access of these private health facilities because of high cost.
They are dependent on existing public health-care center. After any natural hazard,
the most important necessity is hospitals with bed capacity. Dependency rate of
average number of people/hospital and nursing home is 38314.72, and average
number of people/bed is 5428.80. These both factors are in very severe condition
in Purba Medinipur district. The national norm of India is 1000 persons per bed
(District Human Development Report, Paschim Medinipur, 2011). To improve these
conditions, it is essential to establish new hospitals and increase number of beds in
existing hospitals. Also the condition of primary health centers (PHCs) needs to
improve. These health centers are suffering from basic infrastructural facilities such
as beds, toilets, and drinking water facility.

To prevent the natural hazards, hazard management and development planning is
needed. In present time geographic information system (GIS) is used as a necessary
tool for natural hazard management almost in all countries of the world. GIS data can
be used to explain past floods, and to predict future flood-prone area. By using
satellite imagery, it is possible to identify flood-prone areas, duration of flood, depth
of flood, and progress of flood. Satellite-based information is the major source for
cyclone. It is helpful to locate origin, tracking, and movement of cyclone.

During the time of hazard, geo information can help to identify the locations
where people may be trapped or injured and to provide medical or food supply.
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During the recovery phase, GIS can help damage measurement and impact of
environment measurement. Mainly satellite images are very useful to identify the
changes of landscape after hazard.

It is not possible to stop natural hazards, but their impacts can be minimized using
satellite images, like rescue people with weather forecast.

11.5 Conclusion

Natural hazards are natural phenomenon. But it turns into disaster when destructions
are added with it. The destruction is multiplied when combined with demographic,
social parameters, economic, and health factors. The impact of hazards is signifi-
cantly higher in densely populated region. Human cannot reduce the severity of
natural hazards. Vulnerability to hazard is highly correlated with the level of
development of a society. Human Development Report (2014) highlighted the
need of human development to reduce vulnerabilities. Every community is exposed
to natural hazards. But those have low levels of resistance power, suffer more
damages, and recover less quickly than others. Indicators are one part of disaster
risk assessments and provide crucial information necessary for supplementing haz-
ard mitigation assessments. Social vulnerability assessment in Purba Medinipur
district is effected due to the lack of availability of data and no updation of data.
For future studies, some data of indicators in different categories like income, birth
rate, mortality rate, elderly population, dependency ratio, crime rate, suicide cases,
etc. could also be added for better explanation. In the present study, an equal
weighting technique was accomplished which is a simple aggregation technique.
Also future vulnerability studies could be focused on a specific hazard and individual
indicator index weighting technique that will help to improve the interpretation of
vulnerability results.

This social vulnerability assessment can improve a block’s ability to promote
hazard reduction, thereby protecting communities, infrastructures, and properties.
Social and economic capacity for adaptation, development and application of poli-
cies, strategies, and practices should be designed in district level to minimize
vulnerabilities from natural hazards.
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Chapter 12
Understanding the Development
and Progress of Extremely Severe Cyclonic
Storm “Fani” Over the Bay of Bengal

Pankaj Bhardwaj and Omvir Singh

Abstract The Bay of Bengal (BoB) experiences the occurrence of tropical cyclones
(TCs) almost throughout the year. However, the extremely severe cyclonic storm
(ESCS) Fani has formed in April 2019 has shown uniqueness in terms of its location
of origin, direction of track, and landfall location. Therefore, in this study, an attempt
has been made to examine the development and progress of ESCS Fani over the
BoB. The analyses have shown that a low pressure area has formed near equator
(approximately 2.7�N latitude) over the southern BoB on 25 April 2019 and
strengthened into depression on 26 April at the same location. This depression has
further strengthened into cyclonic, severe cyclonic, very severe cyclonic, and
extremely severe cyclonic storm and moved northwestward. Then, it has recurved
and moved northeastward and make landfall over Orissa coast. It has been reported
among the long-lasting cyclones of BoB as it travelled the distance of about
3030 km. The total accumulated cyclone energy and power dissipation index
generated by the ESCS Fani have been found higher than their long-term mean
(1972–2017). The analyses of large-scale dynamic and thermodynamic conditions
have shown favorable environment for the development of cyclone over the southern
BoB. The consistent strong convective activity, high SST (approximately 30 �C),
more relative humidity, strong vertical motion, low level cyclonic vorticity, and less
vertical wind shear have supported for further intensification of cyclonic system. The
cyclone Fani has followed the recurving track which has been chiefly steered by an
upper tropospheric level anticyclonic circulation.
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12.1 Introduction

Tropical cyclones (TCs) are among the most disastrous events, resulting immense
damage to infrastructure and property, and human lives loss at the time of landfall
(Peduzzi et al., 2012). Many tropical and subtropical coastal regions are frequently
devastated by the occurrence of these TCs (Li & Li, 2013). However, vulnerability
and their impact significantly vary from one region to another (Bhardwaj et al.,
2020). It is well-known that the development and progress of these TCs is largely
controlled by a few thermodynamic and dynamic environmental factors such as high
sea surface temperature (SST) (>26.5 �C), reduced vertical wind shear, high low
level vorticity, substantial Coriolis force, and high mid-tropospheric relative humid-
ity (Gray, 1968, 1975; Webster et al., 2005). Therefore, these factors have been
frequently used as the key predictors for their development and progress (Chan &
Liu, 2004; Aiyyer & Thorncroft, 2006).

The Bay of Bengal (BoB) accounts nearly 80 per cent of the total TCs of the
North Indian Ocean (IMD, 2011). These TCs cause huge loss of lives in the rim
countries, i.e., India, Bangladesh, and Myanmar (Alam & Dominey-Howes, 2015).
For example, two extreme cyclones originated in BoB in the years 1970 and 1991
have caused a loss of about 3,00,000 and 1,40,000 human lives, respectively, in
Bangladesh (Choudhury, 2001). Likewise, in the year 1999 Orissa super cyclone
and in 2008 cyclone Nargis have killed about 10,000 and 1,38,000 people in India
and Myanmar, respectively (Chittibabu et al., 2004; Fritz et al., 2009). Bhardwaj and
Singh (2020) have shown that majority of TCs in the BoB occurs in two seasons. The
post-monsoon season accounts for about 64 per cent, and pre-monsoon season
accounts for about 21 per cent of the total annual TCs. However, the conversion
rate of cyclonic storms into intense cyclonic storms is greater during pre-monsoon
than post-monsoon season in the BoB. Besides, most of pre-monsoon’s TCs usually
follow the northward tracks or recurved towards northeast and make landfall over
Bangladesh and Myanmar coasts. During 1891–2017, 14 TCs have formed in April
in the BoB; however, only one TC made landfall over the Indian mainland coast
(Sangomla, 2019). Balasubramanian and Chalamalla (2020) have examined the
dynamics which led the rapid intensification of Amphan cyclone in the BoB.

Recently, the TCs of BoB have shown an unusual behavior in terms of timings of
occurrence and intensification rates. For instance, cyclones Ockhi of 2017 and Titli
of 2018 have rapidly intensified just before the landfall. This cyclonic system has
formed near the equator (2.7�N latitude). In such lower latitudes, the cyclones’
formation is rare. The ESCS Fani of 2019 is second in the past 118 years that has
formed in the month of April in BoB and crossed the Indian mainland (Sangomla,
2019). It is the most intense cyclone during satellite era (1965 onwards) which
formed during the pre-monsoon season and crossed the Orissa coast. Also, it is
the10th most severe TC in Indian subcontinent in the last 52 years. It has affected the
large parts of eastern and northeastern Indian states and resulted in about 64 deaths
and property loss of about 9000 crores. Moreover, Kumar et al. (2020) have
examined the impacts of the Fani cyclone and noticed that it has severely affected
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the agricultural and built-up area over the eastern India and Bangladesh. Therefore, a
detailed study of cyclone Fani is of very much importance. In this study, an attempt
has been made to examine the development and progress of ESCS Fani over the
BoB. It is believed that the finding pertaining to the formation and intensification of
Fani cyclone will be helpful for meteorologists, forecasters, scientific community,
and disaster managers to reduce the impacts of future cyclones.

12.2 Data and Methods

For North Indian Ocean, Regional Specialized Meteorological Centre (RSMC), New
Delhi, provides the TCs’ best track data. Therefore, the best track data of RSMC,
New Delhi has been used to examine the various characteristics of Fani cyclone
(RSMC, 2019a). The TC Fani is chiefly monitored with satellite supported by
meteorological buoys, coastal and inland observations, and Doppler Weather
Radars. The dataset comprised a detailed information of Fani TC including the
latitudinal and longitudinal position, current intensity number, estimated maximum
sustained wind (MSW) (kt), estimated central pressure (hPa), estimated pressure
drop at the center (hPa), and grade at 3-hourly time (0000, 0300, 0600, 0900, 1200,
1500, 1800, 2100 UTC) (Table 12.1).

Additionally, to examine the development and progress of Fani cyclone, several
dynamic and thermodynamic environmental conditions have been examined. The
daily SST data has been obtained from Advanced Very High Resolution Radiome-
ter-SST from National Oceanic and Atmospheric Administration. Besides, the data
pertaining to relative humidity, outgoing longwave radiation (OLR), precipitable
water, vertical velocity (omega), lower (850 hPa) and upper (200 hPa) winds, and
vertical wind shear have been acquired from the National Centers for Environmental
Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis
(Kalnay et al., 1996). The composite maps of these environmental parameters
have been prepared to examine their daily pattern during the cyclone period. The
composite maps have been prepared by means of GrADS software. Besides, track of
Fani cyclone has been prepared by using the ArcGIS 10.1 software.

12.3 Results and Discussion

A Brief Life History of ESCS Fani

A low-pressure area has formed near equator (approximately 2.7�N latitude) over the
southeast BoB in the early morning (0530 IST) on 25 April 2019 (Fig. 12.1). It has
deepened over the same region due to favorable environmental conditions and
classified as depression on 26 April. Then it has moved northwestward and strength-
ened into a deep depression on 27 April. It has further intensified into a cyclonic
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Table 12.1 Best track positions and other parameters of the ESCS Fani over BoB during 26 April–
04 May, 2019

Date
Time
(UTC)

Center
latitude

Center
longitude

Current
intensity
No.

MSW
(kt)

Estimated
central
pressure
(hPa)

Estimated
pressure
drop at the
center
(hPa) Intensity

26-
04-
19

3 2.7 89.7 1.5 25 998 4 D

6 3.0 89.4 1.5 25 998 4 D

12 3.2 89.2 1.5 25 998 4 D

18 3.7 88.8 1.5 25 998 4 D

27-
04-
19

0 4.5 88.8 2.0 30 997 5 DD

3 4.9 88.7 2.0 30 996 6 DD

6 5.2 88.6 2.5 35 995 7 CS

9 5.4 88.5 2.5 40 994 8 CS

12 5.9 88.5 3.0 45 992 10 CS

15 6.3 88.5 3.0 45 992 10 CS

18 6.6 88.2 3.0 45 992 10 CS

21 6.9 87.9 3.0 45 992 10 CS

28-
04-
19

0 7.3 87.9 3.0 45 992 10 CS

3 7.3 87.9 3.0 45 992 10 CS

6 7.4 87.8 3.0 45 992 10 CS

9 7.7 87.5 3.0 45 992 10 CS

12 8.2 87.0 3.0 45 992 10 CS

15 8.3 86.9 3.0 45 992 10 CS

18 8.4 86.9 3.0 45 992 10 CS

21 8.5 86.9 3.0 45 992 10 CS

29-
04-
19

0 8.6 86.9 3.0 45 992 10 CS

3 8.7 86.9 3.0 45 992 10 CS

6 9.2 86.9 3.0 45 992 10 CS

9 9.7 86.8 3.0 45 992 10 CS

12 10.1 86.7 3.5 55 986 16 SCS

15 10.4 86.7 3.5 55 986 16 SCS

18 10.8 86.6 3.5 55 986 16 SCS

21 11.1 86.5 3.5 60 986 16 SCS

30-
04-
19

0 11.7 86.5 4.0 65 980 22 VSCS

3 12.3 86.2 4.5 75 974 28 VSCS

6 12.6 85.7 4.5 80 970 32 VSCS

9 13.0 85.3 4.5 85 966 36 VSCS

12 13.3 84.7 5.0 90 962 40 ESCS

15 13.4 84.5 5.0 95 957 45 ESCS

18 13.5 84.4 5.0 95 957 45 ESCS

21 13.6 84.2 5.0 95 957 45 ESCS

0 13.9 84.0 5.0 95 957 45 ESCS

3 14.1 83.9 5.0 95 957 45 ESCS

(continued)
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storm named as “Fani” nearby noon on 27 April. Then it has moved towards
northwest and further strengthened into severe, very severe, and extremely severe
cyclonic storm. It has started to recurve towards north and northeastward from
1 May and reached at its peak (115 kt) on 2 May. It has crossed the Orissa coast
as an ESCS with MSW about 110 kt in the morning on 3 May. Then it has moved
towards northeast and crossed the West Bengal, Bangladesh, and finally diminished
nearby central Assam on 4 May. The total accumulated cyclone energy and power
dissipation index generated by the ESCS Fani are approximately 16.7 � 104 kt2 and
15.1 � 106 kt3, respectively, which are higher than their long-term mean
(1972–2017), i.e., 13.0 � 104 kt2 and 12.4 � 106 kt3 (Bhardwaj & Singh, 2020).
The 3-hourly detailed information cyclone of Fani has been presented in Table 12.1,
and the track and daily development and progress of ESCS Fani have been displayed

Table 12.1 (continued)

Date
Time
(UTC)

Center
latitude

Center
longitude

Current
intensity
No.

MSW
(kt)

Estimated
central
pressure
(hPa)

Estimated
pressure
drop at the
center
(hPa) Intensity

01-
05-
19

6 14.2 83.9 5.0 95 957 45 ESCS

9 14.5 84.1 5.0 95 955 45 ESCS

12 14.9 84.1 5.5 100 950 50 ESCS

15 15.1 84.1 5.5 100 950 50 ESCS

18 15.2 84.1 5.5 100 950 50 ESCS

21 15.5 84.2 5.5 100 950 50 ESCS

02-
05-
19

0 15.9 84.5 5.5 105 945 55 ESCS

3 16.2 84.6 5.5 105 945 55 ESCS

6 16.7 84.8 5.5 110 940 60 ESCS

9 17.1 84.8 6.0 115 932 66 ESCS

12 17.5 84.8 6.0 115 932 66 ESCS

15 17.8 84.9 6.0 115 934 66 ESCS

18 18.2 85.0 6.0 115 934 66 ESCS

21 18.6 85.2 6.0 115 934 66 ESCS

03-
05-
19

0 19.1 85.5 6.0 105 945 55 ESCS

3 19.6 85.7 5.5 100 950 50 ESCS

6 20.0 85.9 . 85 952 46 VSCS

9 20.5 86.0 . 75 970 28 VSCS

12 21.1 86.5 . 70 976 22 VSCS

15 21.5 86.7 . 60 980 18 SCS

18 21.9 87.1 . 55 986 16 SCS

21 22.5 87.9 . 50 990 12 SCS

04-
05-
19

0 23.1 88.2 . 40 994 8 CS

3 23.6 88.8 . 30 996 6 DD

6 24.3 89.3 . 25 998 5 D

12 25.2 90.7 . 20 1000 4 D
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in Figs. 12.1 and 12.2. It is among the long-lasting cyclones of BoB as it travelled the
distance of about 3030 km. Hence, all these facts suggest the need for a detailed
analysis of the large-scale environmental conditions linked with the development
and progress of ESCS Fani. These have been discussed in the subsequent section:

Large-Scale Environmental Conditions

Outgoing Longwave Radiation (OLR)

OLR is a proxy indicator of convective clouds. Strong convective activity over a
region supports the formation of TCs. The higher OLR values indicate less convec-
tive activity and vice-versa. Figure 12.3 demonstrates the daily mean OLR pattern

Fig. 12.1 Genesis location and track of ESCS Fani over the Bay of Bengal during April 26 to May
04, 2019

268 P. Bhardwaj and O. Singh



during April 26 to May 04, 2019.The figure clearly shows that the convective
activity is higher in the region where the Fani has initially developed as low pressure
area. The convectively active phase of Madden-Julian Oscillation (MJO) with
amplitude greater than 1 has also located continuously over the Bay of Bengal
which provided the favorable conditions for the enhancement of convection and
strengthening of Fani (Bhardwaj et al., 2019a; RSMC, 2019b). Then this region of
strong convective activity has moved towards Orissa coast. However, the convective
activity has weakened near the coast and reduced significantly after the landfall of
ESCS Fani.

Fig. 12.2 Progress of ESCS Fani over the Bay of Bengal during April 26 to May 04, 2019.Images
are of moderate-resolution imaging spectroradiometer (MODIS) Terra sensor
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Sea Surface Temperature (SST)

SST is the most important factor which controls the development and strengthening
of TCs (Sebastian & Behera, 2015). Figure 12.4 displays the daily SST pattern over
the BoB during April 26–May 04, 2019. The figure clearly exhibits that SST is near
about 30 �C over the large parts of BoB during the cyclone period, which is very
high than the minimum required SST (>26.5 �C) for the formation of a cyclone
(Gray, 1968). The consistent high SST is suitable for the formation and strengthen-
ing of cyclone Fani over the BoB. Also, a cooling of SST can be seen over the central
parts of the BoB from the 1 May, as the Fani has intensified further. This cooling of
SST is mainly ascribed to the evaporation produced by the strong winds and
blockage of solar radiations due to presence of large-scale convective clouds asso-
ciated with Fani (Bhardwaj et al., 2019b). Similarly, a rapid reduction in SST can be
seen towards the coastal areas of Orissa where Fani reached at its peak.

Fig. 12.3 Composites of OLR (Wm�2) during the lifetime of ESCS Fani during 26 April to
04 May, 2019
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Relative Humidity

The sufficient amount of relative humidity (at least 40%) at mid-tropospheric level is
required for the intensification of TCs (Gray, 1968). Figure 12.5 exhibits that relative
humidity is approximately 80 per cent at mid-tropospheric level where the Fani has
developed as depression on 26 April in the southern BoB. Then, this region of high
humidity has migrated towards north with the movement of cyclone over the BoB.
The presence of higher relative humidity at mid-tropospheric level has released high
latent heat which energized and intensified the system. However, after the landfall of
the Fani, the relative humidity has decreased rapidly.

Vertical Velocity (Omega)

Figure 12.6 shows the spatial pattern of vertical velocity over the BoB during April
26 to May 04, 2019, at mid-tropospheric level. A negative omega indicates upward
motion and vice-versa. Small negative omega values indicate slightly weak vertical
motion over the areas where cyclone has initially developed as depression on
26 April over the southern BoB. After that, a strong vertical motion has taken
place over the central to northern BoB on 29–30 April. On 30 April, again small

Fig. 12.4 As in Fig. 12.3, but for SST (�C)
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negative omega values indicate the fast surface motion of cyclone towards Orissa
coasts. After 30 April, again strong vertical motion has occurred over the Orissa
coast and continued after the landfall. The presence of strong vertical motion over
warm oceanic water has transported the moisture to mid-tropospheric level and
helped in intensification of cyclone.

Low Level Winds (850 hPa)

Figure 12.7 shows the pattern of low-level winds during April 26 to May 04, 2019,
over the BoB. The figure clearly shows that a low level cyclonic circulation is
present over the southern BoB on 26 April, which assisted in formation of cyclone.
On 27–28 April, the cyclonic circulation has moved towards the central BoB. Later,
this cyclonic circulation has intensified with movement towards Orissa coast
between April 29 and May 02. On 3 May, the cyclonic circulation has mostly
crossed the Orissa coast. The strong winds can be seen around the eye of cyclonic
circulation, whereas winds are weak within eye and nearby region. The cyclonic
circulation has weakened rapidly on 04 May after the landfall on 3 May.

Fig. 12.5 As in Fig. 12.3, but for relative humidity (%)
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Upper Level Winds (200 hPa)

It is well-known that upper level winds control the track direction of cyclones.
Figure 12.8 displays the pattern of upper level winds during April 26 to May
04, 2019, over the BoB. On 26 and 27 April, strong easterly (westerly) winds can
be seen in the upper troposphere over the southern (northern) BoB when the cyclone
Fani is in initial stage. An anticyclonic circulation lies over South Thailand and
adjoining South Andaman Sea in the middle and upper tropospheric levels (RSMC,
2019b). This anticyclonic circulation has steered the system northwestward. Then,
this anticyclonic system has embedded with strong upper level westerly winds and
steered the cyclone northeastward. After landfall, due to the impact of upper level
westerly winds, the cyclonic system has moved rapidly with an average speed of
24.0 km/h.

Vertical Wind Shear (200–850 hPa)

Vertical wind shear is a vital factor which controls the TCs. The less amount of
vertical wind shear is favorable for the development and strengthening of TCs and
vice-versa. Figure 12.9 demonstrates the pattern of vertical wind shear during April

Fig. 12.6 As in Fig. 12.3, but for vertical velocity (Omega; Pa/s)
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Fig. 12.7 As in Fig. 12.3, but for low level winds (850 hPa; ms�1)

Fig. 12.8 As in Fig. 12.3, but for upper level winds (200 hPa; ms�1)
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26 to May 04, 2019, over the BoB. The vertical wind shear is less on 26 April when
initial low pressure system has developed as depression over the southern BoB.
Later, the region of less vertical wind shear has spread over all the parts of BoB
during the cyclone period. This less vertical wind shear has continuously provided
the favorable condition for the intensification of cyclone Fani over the BoB.

12.4 Conclusions

The major conclusions of this study are as follows:

• The cyclone Fani of April 2019 is among the most intense cyclones which formed
over the southern BoB and crossed the Indian mainland.

• It is distinctive in terms of its location of origin, direction of track, and landfall
location.

• It is the most intense cyclone during the satellite era (1965 onwards), which has
formed during the pre-monsoon season and crossed the Orissa state of Indian
mainland.

Fig. 12.9 As in Fig. 12.3, but for vertical wind shear (200–850 U; ms�1)
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• Various environmental conditions are favorable for the formation of initial low
pressure system near the equator.

• For example, SST has been found approximately 30 �C over the large parts of
BoB, which is sufficient for development of cyclonic system.

• Strong convective activities along with the active MJO have taken place during
the storm period.

• Relative humidity is very high at mid-tropospheric level, which has released the
latent heat and energized the system. Strong vertical motion has transported the
moisture up to mid-tropospheric level.

• Presence of cyclonic vorticity at lower level and less vertical wind shear has
helped in strengthening of system during the entire life period.

• It is believed that this comprehensive analysis of large-scale environmental
conditions during the period of ESCS Fani will be helpful to understand the
development and progress of future extreme TCs.

• Further, comparative studies may be conducted on the recent extreme cyclones of
the BoB for their better understanding.
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Chapter 13
AHP-Based Spatial Composite Impact
Assessment Model (SCIAM) of Highway
Broadening in Sikkim Himalaya

Polash Banerjee , Mrinal K. Ghose , and Ratika Pradhan

Abstract The environmental degradation associated with a highway project can
sometimes outweigh its benefits. Limited studies on the aggregate spatial impacts of
highway projects in remote areas on varied environmental criteria have been done.
SCIAM assesses the spatial distribution of impacts of the highway broadening
project in East Sikkim on environmental criteria like air, water, noise, biodiversity,
socioeconomy, and landslide susceptibility. The impacts predicted under the “with”-
and “without”- project scenarios are based on mathematical models, landscape
metrics, and socioeconomic survey. Spatially Explicit Sensitivity Analysis
(SESA), model validation, and cross-validation criteria suggest that the spatial
model is robust. SCIAM indicates that areas near the highway had a severe adverse
impact compared to areas away from the highway. Moreover, Spatial Composite
Impact Index (SCII) shows that the highway broadening is not viable for the local
environment. These outcomes are primarily explained by the outweighing of loss of
biodiversity, landslide susceptibility, and water pollution over the gains of socio-
economic benefits and decline in air and noise pollution due to the project. SCIAM
can be a geovisualization and decision support tool for environmental managers.
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Supplementary Information The online version of this chapter (https://doi.org/10.1007/978-3-
030-75197-5_13) contains supplementary material, which is available to authorized users.

P. Banerjee (*)
Independent researcher, Gangtok, India

M. K. Ghose
Computer Engineering and Applications, Institute of Engineering & Technology, GLA
University, Mathura, UP, India
e-mail: mrinalkanti.ghose@gla.ac.in

R. Pradhan
Department of Computer Engineering, Sikkim Institute of Science and Technology, Sikkim, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. K. Shit et al. (eds.),Geospatial Technology for Environmental Hazards, Advances
in Geographic Information Science, https://doi.org/10.1007/978-3-030-75197-5_13

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75197-5_13&domain=pdf
https://orcid.org/0000-0002-2187-9347
https://orcid.org/0000-0002-6403-6112
https://doi.org/10.1007/978-3-030-75197-5_13#DOI
https://doi.org/10.1007/978-3-030-75197-5_13#DOI
mailto:mrinalkanti.ghose@gla.ac.in
https://doi.org/10.1007/978-3-030-75197-5_13#DOI


13.1 Introduction

Remote areas enjoy substantial benefits through highway projects in the form of
greater security, development, and connectivity (Brown, 2003; Rudiarto &
Handayani, 2011). However, environmental concerns should be weighed against
such benefits to assess the viability of a highway project. Conventional Environ-
mental Impact Assessment (EIA) often ignores the composite and spatial impacts of
a project (Glasson et al., 2005; Takyl, 2012). GIS and Multi-Criteria Decision
Making (MCDM) method based SCIAM can overcome these limitations. Spatial
analysis can predict the spatial impacts of a project, while a composite impact
analysis based on these predictions can facilitate prompt decision-making by the
stakeholders. GIS can be integrated with mathematical models to assess the spatio-
temporal impacts of development projects and act as a decision support tool
(Atkinson & Canter, 2011). Presently, such integrations are predominantly confined
to address spatial impacts concerning one or a few environmental criteria, like air,
water, noise, or biodiversity. SCIAM presents a methodology to combine and assess
the spatial impacts of a highway broadening project on a wider set of environmental
criteria in the East district of Sikkim.

Limited studies have been conducted so far on the application of spatial analysis
in the composite impact assessment of development projects in mountainous areas
(Geneletti, 2008; Geneletti & Dawa, 2009; Warner & Diab, 2002). To be more
specific, applications of spatial analysis of highway projects in mountainous areas
remain largely unexplored (Banerjee & Ghose, 2016). GIS-based EIA of highway
projects can identify environmental issues that sometimes conventional EIA fails to
capture (Atkinson & Canter, 2011). Unfortunately, much of the spatial impact
assessments on highway projects focus on either physical impacts due to pollution
(Ahmed et al., 2017; Amin et al., 2017; Banerjee et al., 2016; Cai et al., 2015),
impacts on biodiversity (Bennett, 2017; Geneletti, 2004; Gülci & Akay, 2015),
socioeconomic impacts (Banerjee & Ghose, 2017), or natural hazards associated
with highways (Wang et al., 2017; Zhao et al., 2017). The data constraints associated
with EIA of remote areas often limit the use of spatial analysis in EIA studies.
However, a fair part of such limitations can be overcome with the use of mathemat-
ical modelling and expert opinion-based impact assessment (Banerjee & Ghose,
2016; Therivel & Wood, 2017). Use of SESA (H. Chen et al., 2011; Y. Chen et al.,
2010; Crosetto et al., 2000; Feizizadeh et al., 2014; Lilburne & Tarantola, 2009; Qi
et al., 2013; Xu & Zhang, 2013), model validation criteria (Paliwal & Srivastava,
2014), and spatial cross-validation criteria (Chang, 2017; Lloyd, 2009) can assess
the robustness and effectiveness of such impact assessment models (Lo & Yeung,
2006; Longley et al., 2010). Recent attempts to capture the sustainability issues of
highway projects have been addressed by very few studies (El-Kholy & Akal, 2020).
However, such studies lack the spatial dimensions of environmental impacts.

In the majority of spatial analysis-based highway-related impact studies, sensi-
tivity analysis is often ignored due to its high computation cost, at the expense of
ignoring the assessment of the robustness of the model. Moreover, socioeconomic
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impact assessments of highway projects are overlooked (Burdge, 2002; Geurs et al.,
2009). SCIAM intends to address these literature gaps. SCIAM attempts to perform
spatial analysis of composite impact assessment of highway projects in a remote area
and a developing country. It is a Weighted Linear Combination (WLC) model of
environmental criteria maps. Environmental criteria like air quality, water quality,
noise, biodiversity value, socioeconomic conditions, and landslide susceptibility and
their sub-criteria were estimated either using a mathematical model or through
survey methods. Analytic Hierarchy Process (AHP) was used in weighing the
environmental criteria and their sub-criteria. AHP is an MCDM method that uses
expert opinion-based criteria weighing (Saaty, 1980, 1990; Saaty & Vargas, 1994).
In comparison to data-intensive statistical methods, AHP relies on experts’ opinion
for criteria weighing (Arriaza & Nekhay, 2008). Moreover, unlike non-expert
opinion based MCDM, AHP can capture the study area-specific peculiarities of
environmental criteria through experts’ valuation (Karbassi et al., 2011). Experts
used in AHP of environmental criteria should ideally have sufficient knowledge of
the local environment of the study area and understanding of the plausible impacts of
the concerned development project on the local environment.

In this study, a methodology is presented to construct a spatial model that predicts
the magnitude, distribution, and impacts of the project on the local environment. The
overarching objectives of this study are:

• Integrate spatial analysis in the environmental impact evaluation of the consid-
ered development project.

• Quantification of various impacts of the project on the environmental criteria and
present a composite impact map.

• Assess the viability of the project based on spatial impacts.
• Assess the robustness and reliability of the model.

The study showed that the areas near the highway had the highest adverse
impacts. Also, SESA suggested that areas near the highway were most sensitive to
changes in environmental criteria weight. Model validation, cross-validation, and
SESA indicated that SCIAM was robust. The present study is most likely the first
attempt to integrate a wide range of environmental criteria and sub-criteria
encompassing the physico-chemical, ecological, socioeconomic, and disaster-related
impacts of a highway project that affects the mountainous and remote study area in a
developing country.

13.2 Materials and Methods

Study Area

Sikkim is a small mountainous state of India in the North-Eastern Hills of Himalaya.
Firstly, the state is geopolitically critical, as it shares its borders with Nepal, China,
and Bhutan. Secondly, it is culturally unique due to its high proportion of tribal
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population predominantly following Buddhism. Thirdly, Sikkim is a part of the
North-Eastern Himalayan biodiversity hotspot. These features make it a very attrac-
tive tourist spot. To address the tourism and defense needs of the state, a project has
been undertaken by the government of India in 2007 to broaden the sole national
highway of Sikkim NH10 from 7 to 12 m width. The project extends from the border
of West Bengal to the Indo-China border in North Sikkim. The project has its fair
share of impacts on the local environment. To analyze the spatial impacts of the
project, a road corridor of 2 km radius along a stretch of 27 km of NH 10 was
considered in the East district of Sikkim between the towns of Ranipool
(27�17028.7400 N, 88�35031.1100 E, Elevation 847 m) and Rangpo (27�10031.2600 N,
88�31044.4300 E, Elevation 300 m) (Banerjee et al., 2016; Banerjee & Ghose, 2017).
The likely change in traffic volume and composition for with-project and without
project alternatives were projected (Supplement Table 13.S1). The rationale of
considering a small study area was primarily due to the ease of data collection.
The study area is mainly covered with dense vegetation, interrupted by agrarian land,
villages, and small townships like Rangpo, Singtam, and Ranipool. NH 10 from
Ranipool closely follows the river Ranikhola till Singtam, and then river Teesta till
Rangpo and beyond.

Overview of SCIAM

To study the impacts of the project on the environment, depending on the nature of
environmental criteria, varied extent and shapes of impact areas were considered
based on expert opinions and available literature (Antunes et al., 2001; Geneletti,
2004) (Fig. 13.1). The road corridor was considered as an impact area for air quality,
noise level, and socioeconomic conditions as well as biodiversity representative area
(Banerjee et al., 2020; Geneletti, 2003; Stoms, 2000). For estimating the impact of
highway broadening on the landslide susceptibility, the highway side mountain
slope area was only taken into account. It spanned from the edge of the river to
500 m buffer of the highway (Banerjee et al., 2018a). Accessibility of humans and
wildlife to rivers and road runoff were also considered while demarcating the impact
area. Hence, the 50 m buffer along the rivers and the highway were merged to
construct the water impact area (Banerjee et al., 2018b).

Several submodels were used to assess the impacts of the “with- and without-
project” scenarios on the individual environmental criterion. For each environmental
criterion, ancillary databases and geodatabase were created to run individual
submodels. Maps of each subcriterium under individual environmental criterion
(like nitrogen dioxide under air quality criterion, Chemical Oxygen Demand
(COD) as water quality criterion, etc.) were generated from the submodels, and
WLC was used to prepare Composite Impact Assessment map for each environ-
mental criterion. The weights of the environmental criteria and their sub-criteria
were estimated by AHP, an expert opinion-based method.
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Air quality impact assessment due to traffic was done using Indian Institute of
Technology Line Source (IITLS) pollutant dispersal model (Banerjee & Ghose, 2017).
Federal Highway Authority Traffic Noise Model (FHWA TNM 2.5) was used to
assess the noise level in the impact area (Banerjee et al., 2016). Water quality impact
assessment was done using a combination of Soil Conservation Service-Curve Num-
ber (SCS-CN) method, an empirical model of traffic-induced highway runoff compo-
sition, and mass balance model to assess the contribution of highway runoff on the

Fig. 13.1 Impact areas under various environmental criteria. (Courtesy of ESRI)
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pollution load of the nearby rivers, viz., Ranikhola and Teesta (Banerjee et al., 2018b).
The biodiversity impact assessment was performed using a set of landscape metrics
and experts’ opinion-based spatial model (Banerjee et al., 2020). For socioeconomic
impact assessment, a GPS tagged structured questionnaire method was used (Banerjee
& Ghose, 2017). Landslide susceptibility assessment along the highway was based on
the information value method (Banerjee et al., 2018a). Spatial composite impact
assessment map was prepared by using WLC of normalized impact assessment
maps of environmental criteria (Chang, 2017). Furthermore, SESA indices, viz.,
Mean Absolute change rate (MACR) and Impact Category Change Rate (ICCR),
were used to assess the robustness of SCIAM (Banerjee et al., 2018b). Also, the
change in spatial impacts of “with-project” scenario from the “without-project”
scenario was used in the Spatial Composite Impact Index (SCII) to assess the viability
of highway broadening Fig. 13.2). All the GIS-related analysis was performed in
ArcGIS 10.3 environment.

Data Collection

Two sets of databases were prepared to describe the environmental conditions of the
year 2004 as “without-project” alternative and 2014 as “with-project” alternative. In
the “without-project” alternative, the highway width was 7 m, and the road pavement
was made up of a non-bitumen emulsion of 300 mm thickness. In contrast, in “with-
project” alternative, the highway width was 12 m, and the road pavement was made
up of bitumen emulsion of 580 mm thickness. Other model inputs like highway
traffic volume and composition and land use and land cover (LULC) were also
considered under the two alternatives. A wide set of spatially referred and ancillary
data was prepared to perform spatial impact analysis (Table 13.1). These inputs were
fed into the submodels for project impact predictions. For instance, during socio-
economic impact assessment GPS-tagged responses by the project-affected people
were converted into point feature maps for the preparation of socioeconomic rasters.

AHP Model

To find the weights or relative importance of the environmental criteria and their
sub-criteria, AHP was performed. The weights estimated by AHP were used in WLC
of the criteria rasters for the preparation of impact prediction maps. For this, the
project was decomposed into a hierarchical structure of project alternatives and
criteria. According to Saaty (1980), based on experts’ opinion a comparison matrix
of the relative importance of the various criteria and alternatives of the project was
constructed on a numerical scale, as shown in Table 13.2. It was used to calculate the
weight or importance of the various environmental criteria and project alternatives
considered in SCIAM. In AHP, the elements of the comparison matrix, aij > 0,
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expresses the expert’s preference of the i-th criterion in comparison to the j-th. For
i ¼ j, aij ¼ 1,otherwise aij ¼ 1/aij. The total number of pairwise comparisons by an
expert is n(n � 1)/2, where “n” is the total number of criteria under consideration.
The eigenvector, w, satisfying the maximum eigenvalue, λmax, of the comparison
matrix is the solution of the AHP model (Eqs. (13.1) and (13.2)):

Aw ¼ λmaxw ð13:1Þ

In another form,

a11 ⋯ a1n
⋮ ⋱ ⋮
an1 ⋯ ann

0
B@

1
CA

w1

⋮
wn

0
B@

1
CA ¼ λmax

w1

⋮
wn

0
B@

1
CA ð13:2Þ

where A is the comparison matrix. The elements of w are subject to
Pn
i¼1

wi ¼ 1 and

λmax ¼ n . The reliability of the AHP model is assessed by Consistency Ratio,
CR ¼ CI/RI, where Consistency Index, CI ¼ (λmax � n)/(n � 1), and Random
Consistency Index, RI, are obtained by a large number of simulation runs. It varies
upon the order of the comparison matrix (Saaty, 2000; Taha, 2010). An inconsis-
tency value �0.1 is acceptable for an AHP model.

Once the weights were known, they were used in the modelling of impact pre-
dictions of the environmental criteria and sub-criteria.

Air Quality Impact Assessment

Air pollutants, viz., CO, NO2, SO2, and SPM, were only considered in this study, as
other pollutants were in negligible level in the impact area. To estimate the ground-
level air pollution, a point-feature map was prepared considering villages, towns,

Table 13.2 Importance scale used in AHP

Scale of
importance Description

1 Both decision elements are equally important

3 First element is slightly more influenced than the second

5 First element is stronger than the second

7 First element is significantly stronger than the second

9 First element is extremely significant than the second

2, 4, 6, 8 Judgment values between equally, slightly, strongly, very strongly, and
extremely

Reciprocals When i-th criterion is compared to j-th criterion, aij, then 1/aij is the judgment
value when j-th criterion is compared with i-th, i.e., aij ¼ 1/aij
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isolated houses, and randomly selected points in the impact area (n ¼ 873). IITLS, a
Gaussian line source air dispersal model, was selected as it outperformed other
dispersal models in mountainous areas of India. Such dispersal models predict the
air pollution level at a point in space away from the source based on traffic and
meteorological parameters (Agrawal et al., 2007; Goyal et al., 2006; Goyal and
Rama Krishna, 1999) (Eqs. (13.3) and (13.4)):

C x, 0ð Þ ¼ 2qffiffiffiffiffi
2π

p
σzu

exp � 1
2

H
σz

� �2
" #

ð13:3Þ

where

q ¼
X4
i¼1

eiviNi ð13:4Þ

Model inputs like traffic volume (N ), vehicle speed (v), vehicle composition (i),
proximity of the receiver from the highway (x), average wind speed (u) (Goyal,
2008), vertical dispersal parameter (σz) (Gifford, 1961), and emission factor (q)
(CPCB, 2007; Ramachandra & Shwetmala, 2009) were used to estimate the down-
wind ground-level (H ¼ 0) pollutant concentration (C) of the receivers (Table 13.1).
The pollution dataset generated by IITLS model was fed into the GIS framework as
known points. The known points were interpolated using Empirical Bayesian
Kriging (EBK) and clipped with the impact area to create air pollutant maps of
CO, NO2, SO2, and SPM. EBK is a robust and unsupervised machine-learning
spatial interpolation technique. It predicts values in the unsampled areas of a region
of interest with the known points with the help of geostatistical algorithms. In
comparison to other forms of kriging, EBK includes stochasticity in spatial param-
eters. It divides the known points into subsets. For each subset, semivariograms are
simulated repeatedly and compared with the known point locations. This results in a
distribution of several local semivariograms based interpolated surfaces. These local
surfaces are put together to get the final output map (Banerjee et al., 2016; Cui et al.,
1995; Krivoruchko, 2012; Pilz & Spöck, 2008). Model validation was done by
comparing the estimated value with the observed at three well-spaced locations in
the impact area. The air pollutant maps were reclassified using Indian Air Quality
Index (IND-AQI) (CPCB, 2015).The composite air quality impact map was pre-
pared by WLC of reclassified maps for both the with- and without-project scenarios
(Banerjee et al., 2018c).
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Water Quality Impact Assessment

An empirical model of highway runoff composition estimation constructed by
Kayhanian et al. (2003) in combination with the mass-balance model was used to
assess the impact of traffic-induced water pollution. The set of water quality param-
eters was confined to Chemical Oxygen Demand (COD), pH, Total Dissolved Solids
(TDS), Total Suspended Solids (TSS), and Heavy metal (Zn), mainly due to lack of
historical data and innate constraints of the empirical model. The microcatchment
drainages that feed the highway runoff and rivers along the highway were estimated
by SCS-CN method using HEC-GeoHMS, a geospatial hydrological extension of
ArcGIS (Vojtek & Vojteková, 2016). Highway runoff pollutant level (CH

i ) was
estimated from inputs (xi), viz., event rainfall, maximum intensity rainfall, anteced-
ent dry period, cumulative seasonal rainfall, watershed area, and Average Annual
Daily Traffic (AADT) (Table 13.1) (Eq. (13.5)):

CH
i ¼ exp bi þ

X6
j¼1

a jx j

 !
ð13:5Þ

where bi is the y-intercept of the i-th water quality parameter, aj is the proportionality
coefficient of j-th predictor variable, and H is the highway runoff.

Mass balance model was used to estimate the downstream concentration of i-th
water pollution in the r-th river (CR

i ) by considering the j-th upstream discharge rate
(Qj) and the concentration of the water quality parameters in it (Cij), the runoff from
the D-th micro-catchments (QD), and the concentration of the water quality param-
eter in the highway runoff (CH

i ) (Barthwal, 2012; Davie, 2008) (Eq. (13.6)):

CR
i ¼ QDC

H
i þPn

j¼1Q jCij

QD þPn
j¼1Q j

ð13:6Þ

The estimated concentration of water quality parameters at the sink of the impact
area was compared with the observed data using model validation criteria (Paliwal &
Srivastava, 2014). The estimated concentration of water quality parameters due to
traffic in the rivers along the highway were attributed to randomly selected points
(n ¼ 100) in the impact area and interpolated using EBK. The interpolated surfaces
of water quality parameters were standardized1 to Single Factor Pollution Index
(SFPI) maps and reclassified (Li et al., 2009; Yan et al., 2015). The reclassified SFPI
maps were linearly combined using AHP weight and normalized to prepare a water
quality impact assessment map for both the project scenarios (Mushtaq et al., 2015).
A detailed account of the method is available with Banerjee et al. (2018b).

1Considering the ecological and cultural importance of the study area, US Public Health Service
(USPH,1962) and Bureau of Indian Standards (BIS, 2012) water quality standards were used for the
local water bodies.
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Noise Impact Assessment

Two noise level indices were estimated, viz., Leq(H) (Hourly A-Weighted Equiva-
lent Sound Level) and Ldn (Day-Night Average Sound Level) using FHWA TNM
2.5. It is one of the most popular computer-based traffic noise measurement models,
and it is recommended by the Ministry of Environment and Forest (MoEF), Govt. of
India, for EIA of highway projects. The TNM algorithm performs a series of
adjustments to the basic noise level called reference sound level (L0) of a stream
of vehicles by considering several factors, namely, volume and speed correction
(AVS), distance correction (AD), barrier correction (AB), flow correction (AF), gradient
correction (AG), and ground cover correction (AS)(FHWA, 1998) (Eq. (13.7)):

Leq Hð Þ ¼ L0 þ AVS þ AD þ AB þ AF þ AG þ AS ð13:7Þ

Leq(H ) is more appropriate for the assessment of noise in human habitations,
while Ldn is better for nonresidential areas like ecologically sensitive areas. Based
on the need of TNM, several spatial inputs were created for the estimation of noise
level indices. Noise level at various receiver locations (n¼ 872) was fed into the GIS
framework and interpolated using EBK. Model validation was done by comparing
the estimated value with the observed at three well-spaced locations in the impact
area. A composite noise impact assessment map was prepared by a WLC of the noise
indices maps for both project scenarios. A detailed account of the method is
available in Banerjee et al. (2016).

Biodiversity Impact Assessment

Five landscape metric maps were created from the georeferenced forest type map
(FSI, 2011) of the study area, viz., core area, disturbance, patch size index, proxim-
ity, and rarity (Geneletti, 2003, 2004). The core area is a measure of the fraction of an
undisturbed area of habitat. It was estimated by removing the disturbance zone from
a forest patch using the buffer method. The disturbance is the measure of the level of
degradation of a habitat. Usually, the proximity of a habitat to human settlement or
an asset like roadways is a good measure of disturbance. It was considered as the
inverse of the shortest Euclidian distance between the edges of the forest patch and
disturbance polygon (like human settlement, road corridor, etc.). Patch size indicates
the geometry of a habitat. Ideally, a circular patch is considered least degraded as the
core of the habitat is far more than its edges. A patch size greater than one indicates
the deformation and deviation of the shape of a forest patch from a perfect circle due
to human disturbance. The proximity between two like habitat provides corridors for
the species to migrate and disperse. Hence, proximity is a measure of connectivity
between habitats. It was estimated as the Shortest Euclidian distance between the
edges of polygons of the same habitat type. The rarity of a habitat is a measure of the
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degree of scarcity of a habitat patch. The rarity of a forest patch was measured by
estimating the percentage change in the forest patch from its potential size in the
absence of any disturbance (Geneletti, 2003). The potential forest map of the study
area was created by reclassification method based on the criteria proposed by
Champion and Seth (1968) like elevation, precipitation, and soil type, to name a few.

The range of values in each landscape metrics map was converted into expert
opinion value using AHP. These values were normalized, and the curve fitting
method (MyCurveFit, 2017) was used to create a normalization equation for each
landscape metric. For this study, the proportionate rate growth model showed the
best curve fitting (Hobbie & Roth, 2015). The normalization equation was used in
converting landscape metric maps into normalized landscape metric maps. The
biodiversity value map was made by a WLC of the normalized landscape metric
maps (Banerjee et al., 2020).

Socioeconomic Impact Assessment

A structured score-based questionnaire was administered to a set of randomly
selected people (n ¼ 100) from the local population at various distances and
elevations from the highway. Based on expert opinion and pilot survey, 15 socio-
economic attributes, viz., archaeological monuments, banking and insurance-related
activities, commodity prices, criminal activities, cultural heritage, demographic
profile, educational facilities, employment opportunities, farming activities, health
facilities, industrial activity, land use and land value, per capita income, tourism, and
traditional local values, were considered for the study (Table 13.1). The question-
naire was based on the perception of the extent of change in the socioeconomic
criteria under “with-project” scenario compared to the “without-project” scenario.
Hence, the assessment was focused on the alterations due to the project. The GPS
location of the respondent was also included in the questionnaire. The GPS locations
of the respondents were converted into a point map. The points were populated with
socioeconomic attributes and interpolated using EBK and clipped to the impact area
to create socioeconomic maps of all sub-criteria. Socioeconomic impact assessment
map was prepared by WLC of the socioeconomic attribute maps. A detailed account
of the method is available in Banerjee and Ghose (2017).

Landslide Susceptibility Assessment

Eleven landslide inducing factors, viz., Aspect, Distance from Fault, Distance from
Road, Drainage Density, Land Use and Land Cover, Lithology, Plan Curvature,
Rainfall, Slope, Soil Depth, and Soil Texture, were identified as the most relevant
factors concerning highway projects in mountainous areas (Table 13.1) (Das & Raja,
2015; Devkota et al., 2013; Pourghasemi et al., 2012). A landslide inventory map of
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the impact area was prepared using ArcGIS basemaps, Google Earth, Wikimapia,
and GPS-based ground-truthing. Each landslide inducing factor raster was
reclassified into intervals, and the landslide inventory map was overlaid on them
to estimate the information values of the intervals using the information value
method (Cao et al., 2016; Pardeshi et al., 2013) (Eq. (13.8)):

I xi,Hð Þ ¼ ln
Ni=N
Si=S

� �
ð13:8Þ

where S is the total number of pixels in the study area, N is the total landslide pixels
in the study area, Si is the pixels count of the LIF in the study area, and Ni is the
landslide pixels count of the LIF. A higher information value indicates a greater
possibility of landslides associated with the concerned landslide inducing factor. The
information values estimated for the landslide inducing factors were used in creating
their information value maps. Landslide susceptibility assessment map was prepared
using WLC of the information value maps of landslide inducing factors (Banerjee
et al., 2018b). Validation of landslide susceptibility assessment model was done
using the Evaluation Accuracy Analysis method (Cao et al., 2016).

Model Validation and Cross-Validation

Validation of the estimated values of the sub-criteria under air, water, and noise was
done by comparing them with the observed values at appropriate locations within the
study area. The correlation coefficient (COR), Fractional Bias (FB), Normalized
Mean Square Error (NMRE), and Index of Agreement (IOA) were estimated as
model validation criteria (Paliwal & Srivastava, 2014). Cross-validation of the EBK
interpolation was done using Mean Standardized Error (MSE) and Standardized
Root Mean Square Error (SRME) (Chang, 2017; Lloyd, 2009).

Spatial Composite Impact Assessment Map

The environmental criteria impact assessment maps prepared using various
submodels were normalized (Chang, 2017) (Eq. (13.9)):

ηij ¼
Iij � min ðIijÞ

max ðIijÞ � min ðIijÞ ð13:9Þ

where ηij is the normalized impact value of the i-th environmental criteria at j-th
location. min(Iij) and max(Iij) are the minimum and maximum impact value, respec-
tively, in the set of all impact values under the impact area of i-th environmental
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criteria. Spatial composite impact assessment map is a WLC spatial model of
normalized environmental criteria maps (Chang, 2017) (Eq. (13.10)):

C j ¼
Xn
i¼1

wiηij ð13:10Þ

where Cj is the composite impact value at j-th location and wi is the weight of i-th
environmental criteria.

Spatially Explicit Sensitivity Analysis

Sensitivity analysis of SCIAM was performed by changing the environmental
criteria weights. The analysis is based on One factor At a Time (OAT) method,
which mainly involves assessing the impact of model input change on the model
output, considering one input at a time (Murphy et al., 2004). A total of 100 spatial
composite impact assessment maps were prepared by manipulating the weight of all
environmental criteria in a range of�20% to +20% with a step size of�2%. The run
maps were generated using Eq. (13.11):

Ciα ¼ wiηit þ
Xn
j6¼i

1� wið Þ wiPn
j 6¼iw j

ηit ð13:11Þ

subject to the condition (Eq. (13.12)):

Xn
i¼1

wi ¼ 1 ð13:12Þ

where Ciα is dependent on the normalized value of i-th environmental criteria and
step size, α.wi, is the changed weight and 1� wið Þ W jPn

j 6¼i

W j

is the adjusted weight for

j-th environmental criteria (H. Chen et al., 2011; Xu & Zhang, 2013). Impact
Category Change Rate (ICCR) (Banerjee et al., 2018a) was used to visualize the
role of criteria weight on area coverage by individual impact categories
(Eq. (13.13)):

ICCRiα2 ¼ 1
j α j �

Ciα2 � Ci02
Ci02

����
����� 100 ð13:13Þ

ICCRiαE � 1 indicates that the ε-th impact category is sensitive to i-th environ-
mental criteria weight at α-th step size, while ICCRiαE < 1 implies an insensitivity and
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ICCR at α ¼ 0 is undefined. In other words, SCIAM impact category will be
considered sensitive, if a change in the criterion weight causes equivalent or greater
change in the model output (Longley et al., 2010). To evaluate the change in the
composite impact value per pixel per change in the weight, a change rate function
was used (Eq. (13.14)):

CRijα ¼ Cijα � Cij0

Cij0
� 100 ð13:14Þ

where CRijα is the change rate of composite impact value due to i-th environmental
criteria weight for j-th pixel at α-th step size in comparison to the without-project
scenario, CRij0 Mean Absolute Change Rate (MACR), a summary sensitivity index,
was used to assess the overall sensitivity of the entire study area with the change in
environmental criteria weights (Xu & Zhang, 2013) (Eq. (13.15)):

MACRiα ¼ 1
N

XN
i¼1

Cijα � Cij0

Cij0

����
����� 100 ð13:15Þ

where MACRiα is the mean absolute value of change rate of composite impact value
due to change in the weight of environmental criteria and N is the total number of
pixels. MACRiα � α indicates that the SBIAM is sensitive to i-th environmental
criteria weight at α-th step size, whileMACRiα < α implies an insensitivity (Longley
et al., 2010).

Spatial Composite Impact Index

A suite of indices was developed to assess the viability of the project. In case of air
quality, water quality, and noise impact assessments, the mean change of the impact
values from “without- to with- project” scenarios was considered as the impact
scores of the k-th environmental criterion (Eq. (13.16)):

Ik ¼ 1
N

XN
i¼1

Ijp
Ijw

� 1

� �
ð13:16Þ

where Ijp and Ijw are the impact values under with- and without-project scenarios at j-
th pixel. N is the total number of pixels. For noise, a weighted average of impact
scores of Leq(H ) and Ldn was taken as the noise impact score.

Regarding the impact due to biodiversity loss, a 50 m buffer along the highway
was created as the biodiversity loss area, for the road width of 7 m and 12 m
representing “without- and with-project” scenarios (Geneletti, 2004). The biodiver-
sity value map was clipped by these buffers. Weighted area loss of biodiversity was
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estimated by summation of the biodiversity value times area per biodiversity value.
This was done for both the scenarios. The difference between the mean values of the
weighed area loss under the two scenarios was estimated and considered as the
biodiversity impact score (Eq. (13.17)):

Ik ¼
PNp

i¼1AjpBjp�PNw
i¼1AlwBlw

PNw
i¼1AlwPNp

i¼1Ajp

� 1 ð13:17Þ

where B is biodiversity value and A is the area under the biodiversity value. j and
l are the index number of the biodiversity value under “with-” ( p) and “without-” (w)
project scenarios. N is the number of patch areas.

The mean value of the socioeconomic impact assessment map represented socio-
economic impact score (Eq. (13.18)):

Ik ¼
PN

i¼1ΔSi
N

ð13:18Þ

where Δ represents the people’s perception-based change in socioeconomic criteria
S due to the project and N is the total pixel count.

To assess the impact of landslide susceptibility under the two scenarios, a vehicle
vulnerability assessment was done, as proposed by Das et al. (2011) (Banerjee et al.,
2018a). For this, the hazard areas were demarcated based on two conditions that
(a) the area belonged to high to very high landslide susceptibility zone and (b) also
had a history of at least one landslide. The expected number of vehicles along a
highway section that belonged to a hazard area was estimated from the average daily
hourly traffic volume, the average speed of the vehicle type, and the time taken by
the vehicles to cover the highway section (Table 13.1) (Guzzetti, 2005). The vehicle
vulnerability in a hazard area was estimated from (a) expected number of vehicles of
the two scenarios and (b) the coefficient of damage due to landslides (Jaiswal et al.,
2009) using a Poisson distribution method (Liu, 2006). Change in the mean vulner-
ability value under the two scenarios was considered as the landslide impact score
(Eq. (13.19)):

Ik ¼
PNp

i¼1xi,pVi,p�PNw
i¼1xi,wVi,w

PNw
i xi,wPNp

i xi,p
� 1 ð13:19Þ

where x is the road section and V is the vulnerability associated with the i-th road
section. The landslide vulnerability score is the weighted mean of the impact scores
estimated for the vulnerabilities of light and heavy vehicles.

The impact score can be negative or positive in value. The impact score is
negative if the “with-project” scenario leads to a lesser adverse impact on the
concerned environmental criterion compared to “without-project” scenario, imply-
ing an environmental gain due to the project implementation. In contrast, a positive
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impact score will occur when the mean adverse impact of “with-project” scenario is
greater than “without-project” scenario, implying environmental loss.

The SCII is the ratio of the weighted negative impact scores to the weighted
positive impact scores (Eq. (13.20)):

SCII ¼
Pl

k¼1jwkIk
���8Ik < 0

� �
Pp

k¼1jwkIk
���8Ik > 0

� � ð13:20Þ

SCII can hold any value from zero to infinity. A value of SCII more than 1.0 (i.e.,
the total environmental gain is more than the total environmental loss) is preferred,
while SCII < 0.75 is critical. For the present work, the minimum permissible value of
SCII for a project alternative was considered as 0.75, based on the information
available in the literature (Agrawal, 2005; Leopold et al., 1971; Modak & Biswas,
1999).

13.3 Results

AHP Model

Expert opinion-based AHP model gave higher priority to the “with-project” scenario
as compared to the “without-project” scenario. Among environmental criteria,
biodiversity and landslide susceptibility had the highest weight. Under air quality,
CO and NO2 had the highest weight. The disturbance subcriterion was the predom-
inant factor in the biodiversity impact assessment. Distance from the road and slope
received higher weight under landslide susceptibility. Equal weight was given to the
noise indices. Under socioeconomic changes, employment opportunities and
changes to LULC were given higher weight (Table 13.3).

Model Validation and Cross-Validation

For air quality modelling, the predicted value of CO significantly deviated from the
observed value. This was mainly due to the high variation of the observed CO
concentration at various locations in the impact area. Otherwise, IITLS performed
satisfactorily in predicting the ambient air concentrations of the remaining pollut-
ants. Water quality predicted by the mass balance model performed satisfactorily,
while noise quality predicted by FHWA TNM did well, except under the “Index of
Agreement” criterion. The AHP-Information Value Method based landslide suscep-
tibility assessment model performed satisfactorily with 85% predictability of
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landslides within the impact area. Cross-validation criteria showed satisfactory
results for all EBK interpolations (Tables 13.3, 13.4 and 13.5, Supplement
Table 13.S2).

Impact Assessment Maps of Environmental Criteria
and Spatial Composite Impact Assessment Map

Under air quality impact assessment, high pollution level was estimated near the
highway (Fig. 13.3a). Except for a single large forest patch, a very low to low
biodiversity value was estimated in the forest patches near the highway (Fig. 13.3b).
Landslide susceptibility was found to be high near the highway and along the steep
slopes (Fig. 13.3c). The noise level was estimated to be high along the highway and
in areas with gentler elevations (Fig. 13.3d). Moderate socioeconomic benefits were
expected in the northern part of the impact area, while slight socioeconomic benefits
were felt in the remaining impact area (Fig. 13.3e). Water pollution was high
throughout the impact area. However, it was highest in the Teesta area (Fig. 13.3f).

The spatial composite impact assessment map showed that the high to severe
adverse impacts were confined within a 500 m buffer distance along the highway.
The moderate adverse impact was distributed in the entire impact area except for
some pockets of slight to low adverse impact (Fig. 13.4).

Table 13.4 Model validation criteria

Criteria and
sub-criteria (#)

Fractional
bias

Normalized mean
square error

Correlation
coefficient

Index of
agreement

Ideal value (!) 0 0 1 1

CO 0.978 4.597 0.425 0.571

NO2 0.129 0.031 0.969 0.982

SO2 �0.058 0.349 0.288 0.871

SPM 0.207 0.082 0.663 0.977

Water �0.042 0.035 0.997 0.997

Noise 0.230 0.076 0.990 0.291

Evaluation accuracy analysis method

Ideal value 1

Landslide 0.851
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Spatially Explicit Sensitivity Analysis

Impact Category Change Rate

All impact categories of SCIAM showed insensitivity to changes in the weights of
air, noise, and water. Furthermore, the weight change of landslide susceptibility and
socioeconomy led to marginal sensitivity. ICCR due to a change of air weight
showed higher changes in severe adverse impact category confined mainly near
the highway. ICCR of SCIAM due to changes in biodiversity weight showed a high
sensitivity for all impact categories. At lower biodiversity weight, the moderate
adverse impact category was the most sensitive, while at higher biodiversity weight,
high and severe adverse impact categories showed the highest sensitivity. Impact
categories remained insensitive to changes in noise weight. The rise in

Table 13.5 Cross-validation of Empirical Bayesian Kriging

Criteria and sub-criteria (#)
Mean standardized
error

Standardized root mean square
error

Ideal value (!) 0 1

Air 0.024 0.896

COD 0.003 0.769

pH 0.012 0.884

TSS 0.002 0.850

TDS 0.016 0.963

Zn 0.007 0.819

Leq(H ) 0.017 0.965

Ldn 0.024 0.980

Archaeological monuments �0.045 0.996

Banking and insurance-related
activities

�0.029 1.010

Commodity prices 0.008 1.013

Criminal and criminal activities 0.015 0.994

Cultural heritage �0.072 0.986

Demographic profile �0.012 0.976

Educational facilities �0.002 0.991

Employment opportunities 0.036 0.987

Farming activities �0.003 0.969

Health facilities �0.037 0.964

Industrial activity �0.032 0.986

Land use and land value �0.027 1.008

Per capita income 0.021 0.996

Tourism �0.051 0.955

Traditional local values �0.015 0.966
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Fig. 13.3 (a) Air quality impact assessment. (b) Biodiversity impact assessment map. (c) Landslide
susceptibility map. (d) Noise impact assessment map. (e) Socioeconomic impact assessment map.
(f) Water quality impact assessment map
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Fig. 13.3 (continued)
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Fig. 13.3 (continued)

13 AHP-Based Spatial Composite Impact Assessment Model (SCIAM) of Highway. . . 305



Fig. 13.3 (continued)
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Fig. 13.3 (continued)
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Fig. 13.3 (continued)
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socioeconomic weight led to a steady decline in the change rate of low and slight
adverse impact categories. The high adverse impact category showed marginal
change at the higher socioeconomic weight. High adverse impact category showed
a greater change to change in water weight (Fig. 13.5).

Fig. 13.4 Spatial composite impact assessment map
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Fig. 13.5 Graphical representation of ICCR of SCIAM over the change in (a) air weight. (b)
Biodiversity weight. (c) Landslide weight. (d) Noise weight. (e) Socioeconomy weight. (f) Water
weight
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Landslide susceptibility
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Socioeconomic benefits
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Mean Absolute Change Rate

MACR curves of SCIAM showed a linear, symmetrical, and radial distribution of
varied slopes around the origin due to equal and opposite changes in environmental
criteria weight (Fig. 13.6). Furthermore, MACR slopes were much steeper in the
case of biodiversity and landslide susceptibility compared to other environmental
criteria weights (Fig. 13.6).

Spatial Change Rate

Figure 13.7 illustrates the percentage change in the composite impact value with
16 percentage rises in the environmental criteria weight. Areas with a high concen-
tration of air pollutants showed the greatest adverse impacts, while the impact value
declined in the areas with low air pollution. A similar trend was observed with
biodiversity and socioeconomic weight changes. The rise in the landslide weight led
to a fall in the impact value in areas with higher landslide susceptibility, while a rise
in the impact value was observed in areas with low susceptibility. A similar trend
was observed for the changes in water weight too. In the case of noise pollution, the
impact value was high near the highway and areas with low noise pollution. Overall,
the adverse impact was high near the highway in the cases. An almost equal and

Fig. 13.6 Graphical representation of MACR of SCIAM over the change in environmental criteria
weights
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opposite change rate in the impact value was observed with an equal and opposite
change in environmental criteria weights (Fig. 13.8).

Spatial Composite Impact Index

SCIAM estimated that broadening of the highway will decrease the air and noise
pollution while increasing the socioeconomic benefits. Thereby the project at least
initially will cause environmental gains for these criteria (Table 13.6, column 8). In
contrast, an increase in adverse impact was estimated for vehicle vulnerability to
landslides, a decline in biodiversity value, and an increase in water pollution.
Thereby, the project will cause environmental losses for these criteria (Table 13.6,
column 7). However, the overall environmental losses outweighed the environmen-
tal gains. Based on these arguments and the impact scores estimated, SCII was 0.65
(<0.75), implying that the project was not environmentally viable (Table 13.6,
column 9).

Fig. 13.7 Change rate map of composite impact value due to an increase in environmental criteria
weight by +16 percentage
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13.4 Discussion

The goal of the study was to construct, implement, and analyze SCIAM in the impact
assessment of highway broadening in the East Sikkim. With few exceptions, model
validation criteria and cross-validation criteria showed promising results regarding
the effectiveness of SCIAM in impact prediction. In addition, SESA showed that the
model output, namely, the composite impact value, did not perturb significantly with
a substantial change in environmental criteria weight. This can be verified by the

Fig. 13.8 Change rate map of composite impact value due to change in the weight of biodiversity
and noise by �18 percentage
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flatter slopes of MACR (<45�) and small perturbations of ICCR curves in most of the
cases (<1). These observations suggested that SCIAM was robust.

The spatial composite impact assessment map and change rate maps clearly
showed that areas near the highway (�500 m) were most vulnerable to the adverse
impacts of the project. Under the AHP model, the high endemicity of the local
biodiversity and frequent incidents of landslides, especially during monsoon, was
reflected in experts’ opinion propensity to giving higher weights to the two criteria.
Furthermore, a higher priority to “with-project” scenario indicated the experts’
perception of greater adverse impacts due to highway broadening than otherwise.
A decline in pollution was estimated in the case of air and noise impact assessments
under the “with-project” scenario, mainly due to the decline in the traffic volume of
heavy trucks. The socioeconomic impact assessment also showed an overall
improvement in socioeconomy due to the project. However, these benefits were
outweighed by the loss of biodiversity area, highway runoff induced water pollution,
and greater vehicle vulnerability to landslides. This led to a low SCII value indicat-
ing non-viability of the project (<0.75).

Socioeconomic benefits caused due to highway broadening were in harmony with
earlier studies where highway projects have benefited the local people (Brown,
2003; Rudiarto & Handayani, 2011). Moreover, our study was in line with the
claim of the predominant literature that highway runoff is a major pollution source
to local waterbodies (Gan et al., 2008) and contradicts the exceptions (Hwang &
Weng, 2015). Furthermore, our study acknowledges that highway projects can be a
major threat to biodiversity (Atkinson & Canter, 2011; Geneletti, 2003, 2004).
However, in contrast to the prevailing literature, air and noise pollution declines in
the with-project scenario (Amin et al., 2017; Monazzam et al., 2015).

Some limitations of SCIAM include a limited number of sub-criteria were taken
for air and water quality impact assessment. This was mainly due to the lack of a
wider set of historical data of these environmental criteria. Next, highway runoff was
estimated only for the storm runoff with the onset of the monsoon. The yearlong
contribution of the water pollutants generated from the highway runoff was not
considered due to the lack of high-resolution meteorological data of the study area.
Then, only patch level landscape metrics were considered for biodiversity impact
assessment, ignoring the impacts associated with habitat or higher-level ecological
complexes. Moreover, the vulnerability assessment due to landslide was only esti-
mated for vehicles. Other elements like property and mortality were not included as
it was difficult to predict their temporal trend. Also, instead of a detailed socioeco-
nomic survey, a rapid people’s perception-based survey was done, which may not
have captured the true nature of the socioeconomic impacts. Finally, SCIAM
requires a reliable database, expertise in the use of spatial analysis, and impact
prediction software.

SCIAM is probably the first attempt to integrate the biophysical, socioeconomic,
and hazard-related impacts due to a highway project in mountainous or remote areas
in a developing country. It provides a single impact map and a single impact score
that can be easily interpreted by the stakeholders to assess the viability of the project.
Also, the present study uses SESA to assess the robustness of the model and
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highlights the role of criteria weight in overall spatial impact assessment. Possibly,
this is the first attempt to include SESA in highway-related spatial impact assess-
ment. The MACR outcomes were in harmony with the SESA method suggested by
Xu and Zhang (2013). The effectiveness of SCIAM needs to be assessed in varied
terrains, spatial extent, meteorological conditions, project types, and with the inte-
gration of submodels. The SESA of SCIAM is deterministic. It can be improved by
introducing stochastic methods like Monte Carlo simulation (Xu and Zhang, 2013;
Qi et al., 2013). Subject to high-quality data availability, non-expert opinion based
MCDMmethods like artificial neural networking or multiple regression analysis can
be used instead of AHP for SCIAM. Use of habitat connectivity analysis in biodi-
versity impact assessment and cost-distance analysis in socioeconomic impact
assessment can be included in the future. Consideration of the principal component
analysis may reduce data redundancy, if any, in SCIAM. The SCII can be pushed
towards a viable score (�0.75) by mitigation measures like slope stabilization,
compensatory afforestation, preservation of ecological corridors, and diversion of
highway runoff to local water treatment facilities. Overall, SCIAM can be a reliable
geovisualization and decision support tool to the project stakeholders.

Geospatial modelling is progressively becoming indispensable in natural as well
as anthropogenic hazard mitigation and preparedness. Hazards like landslides,
earthquakes, floods, and coastline hurricanes are some major threats to highway
infrastructure. On the other hand, roadways constructed on unstable slopes are a
major triggering factor of landslides. The likelihood of such natural hazards can be
effectively mapped using geospatial modelling. Open access GIS software like
QGIS and GRASS, cloud computing-based platforms like Google Earth Engine
and Collect Earth, and geocomputation-based predictive mapping in R as well as
Python are becoming the cornerstone of geospatial hazard modelling. In the same
spirit, SCIAM has been used to assess the susceptibility of landslides in highway NH
10 and the associated vulnerability of such landslides to vehicular traffic.

13.5 Conclusion

SCIAM is a robust model that integrates physico-chemical, ecological, socioeco-
nomic, and hazard susceptibility impacts in spatial impact assessment. It showed that
the areas near the highway (� 500 m) were most affected by the highway broadening
project in the East Sikkim. However, SCIAM requires a comprehensive and reliable
database and expertise in the use of spatial analysis and impact modelling. Then
again, with the affordability of GIS software, the growing human resources in GIS,
and an ever-increasing Internet-based spatially referred data warehouse, SCIAM can
be a viable option in developing countries. It can be further improved by the
inclusion of stochasticity in MCDM and submodelling of environmental criteria.
SCII aids in decision-making by providing a single score to assess the viability of a
project, although it fails to identify the factors responsible for it. Both SCIAM and
SCII heavily depend on the experts’ opinions. Hence a large set of experts
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specialized in both specific and holistic aspects of the project is a prerequisite. The
reliability of SCIAM under varied geographic conditions, spatial extent, and project
scenarios needs to be assessed in the future. Consideration of GIS in the mainstream
EIA studies is still far from a practice, primarily due to the lack of GIS experts and as
it is used mainly in the preparation of the baseline database. In contrast, SCIAM
indicates that GIS can be a useful tool for the geovisualization and decision support
process during EIA. SCIAM can further help in the prediction of geohazards
associated with the highway construction and planning of mitigation measures.
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Chapter 14
Evaluation of Post-Seismic Ground
Deformation Using the D-InSAR Technique

Bijay Halder, Veera Sri Naga Sai, Satiprasad Sahoo, and Pulakesh Das

Abstract Tamenglong, the city of Manipur, and its surrounding areas, were hit by
an earthquake at 6.7Mw on 4 January 2016. The epicenter is located at 24.834�N,
93.656�E (Noney in the Tamenglong district), at a depth of 55 km, and caused
injuries of 200 people with 11 life losses and huge economic loss. In the present
study, the Differential Interferometric Synthetic Aperture Radar (D-InSAR) tech-
nique is used to estimate the ground deformation due to this earthquake. A pair of
complex C-band Sentinel-1 SAR data, acquired during the pre-seismic and post-
seismic events were used to generate the phase change image, indicates the ground
deformation due to the earthquake. The use of SAR data for two closest times
assumes similar atmospheric attenuation removed employing the metadata informa-
tion. The SRTM DEM data was used for Doppler terrain correction accounts for the
local topographic discrepancies in the SAR images and to derive the deformation
map. The D-InSAR technique estimated deformation along the line-of-sight (LoS)
indicated a significant deformation along the various cross-sections. Moreover, the
comparison between the SRTM DEM and phase image derived DEM estimated the
observed deformations. Six regions were highlighted along the western part of the
Manipur state to understand the deformations, where the majority of the deformation
was observed around 2.3 mm, and minimum deformation was 0.72 mm. The
estimated deformation is essential in various related studies, e.g., structural and
geodetic observations. Moreover, long-term deformation studies will help in hazard
mapping, which will be beneficial in many ways including preparedness and hazard
management activities.

Keywords Sentinel-1 · D-InSAR · Manipur earthquake · Ground deformation
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14.1 Introduction

Hazard assessment of a region poses many challenges and it is a very complex task.
Estimating the effects of hazard is a very sophisticated process. Many countries have
formed hazard or disaster management departments that continuously monitor
various disasters and develop mitigation and action plans. In India, the National
Center for Seismology (NCS) monitors earthquake events using 115 stations spread
all across the country. Since -•50 Ma, the Indian subcontinent has faced a quick
collision with Eurasia, which results in a wide convergence zone about 1500 km and
nearly 3500 km in the west and east, respectively, where the corresponding conver-
gence rate is about 43 mm/year and 52 mm/year (DeMets et al., 1994). Recurrent
earthquakes are observed in the Himalayan ranges causing significant crustal defor-
mation and ground subsidence. An earthquake produces seismic waves that propa-
gate outward and cause ground shaking and permanent displacement of the earth’s
surface. Such disaster adversely affects resulting in the loss of life, havoc damages,
and huge economic loss. Although there is significant reduction in the fatality rate
due to natural disasters, the mortality rate due to earthquake remains persistent
(Elliott, 2020). The recent (in the year 2021) earthquake incidents map published
by NCS, India, indicates the majority of the events in and around the Himalayan
range. Although the Indo-Gangetic Plains and Peninsular India is seismically less
active, experienced a number of earthquake events in the past, indicated >60% of
the area in India total area under threat (Jain, 2016) (Fig. 14.1).

Fig. 14.1 National Center for Seismology portal shows the location of recent (in the year 2021)
earthquakes events (https://seismo.gov.in/MIS/riseq/earthquake)
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The satellite observations, including imaging and non-imaging systems are
an essential source of data for monitoring and assessing the hazards. The highly
accurate global position systems are widely used for studying crustal velocity, plate
movement, and tectonic deformations (Jade et al., 2004; Bisht et al., 2020). Alter-
natively, the Synthetic Aperture Radars (SAR) imaging systems operate in the
microwave region of the electromagnetic spectrum and enables the generation of
the spatial maps on ground deformation. The active microwave systems can operate
both in day and night-time, and the microwave signals have the capacity of pene-
trating the clouds and enable all weather imaging system. The microwave data
contains the backscatter microwave signals (amplitude) and the phase information.
The microwave signals are transmitted and recorded in two polarizations as hori-
zontal (H) and vertical (V) and produce four data combinations as VV, VH, HV, and
HH. The VV data indicates vertically transmitted and vertically received, and VH
indicates vertically transmitted and horizontally received, and so on. The interfero-
metric SAR (InSAR) is a widely used technique for ground deformation estimation.
It uses two symmetric radar images, which enable the generation of a 3D surface or
Digital Elevation Model (DEM). The change analysis of the DEM or ground
deformation between two acquisitions is known as Differential InSAR (DInSAR).
The InSAR technique derives the information on ground deformation developing the
interferogram formed by analyzing the phase differences between two complex SAR
images. Moreover, the prerequisite of an interferogram SAR image pair for defor-
mation study is image coherence, i.e., acquired for the same area from two slightly
different positions. The two coherent images are acquired either from two antennas
on the same platform and separated perpendicularly along the flight direction (single
pass SAR interferometry), or from different passes of the same SAR antenna (repeat-
pass interferometry). With the movement of any point on the earth surface, the
distance between the sensor and the point changes, which modifies the recorded
phase information. The coherence between a pair of co-registered complex SAR
images decreases or leads to temporal de-correlation due to system noise, volume
scattering, temporal changes in vegetation, weathering, change in dielectric property,
etc. (Zhou et al. 2009). The phase shift of 2π is equivalent to the distance variation by
half of the wavelength (λ/2; λ is the operating wavelength of the microwave system).
The phase change is also caused by the scattering due to the atmospheric constitu-
ents. Such attenuation can be minimized by considering a pair of SAR images
(master and slave images) having similar observational geometry assuming they
have similar scattering properties (Raucoules et al., 2007). The interferogram
develops fringe pattern which indicates the lines of equal phase, where the number
of fringes surrogates the alteration in the surface or topography. The potential factors
that cause the fringe pattern include ground deformation due to earthquake, mining
subsidence, land cover changes, change in water levels, land uplift, snow accumu-
lation, etc. The selection of a SAR image pair depends on the coherence and the
sensitivity of the interferogram, formed by the two co-registered images, which is
expressed by the altitude of ambiguity (ha). The altitude of ambiguity (ha) is
estimated using the orbital separation between the two image acquisitions, and it is
equal to the size of a DEM that would produce one artifactual fringe (Zhou et al.
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2009). However, the topographic effects can be ignored when ha is significantly
higher compared to the estimated vertical accuracy of a DEM. The ha is expressed as:

ha ¼ λR sin θ=2B

where θ is local incidence angle, R is slant range between the ground point and
antenna in the master image, and B is the distance between the two acquisitions.

The change in signal phase can be expressed as follows:

Δφ ¼ 4π
λ
ΔRþ αþ εþ noise

where ΔR is displacement or ground deformation along the satellite line of sight
(LoS), α is phase shift due to atmospheric attenuation, and є is the possible errors in
the DEM that was used to remove the topographic effects. With a lower noise (less
de-correlation) and the phase contribution due to the local topography is precisely
measured (є is low), the phase change can be simplified as:

Δφ ¼ 4π
λ
ΔRþ α

The Sentinel-1 SAR sensor operating in C-band (6 cm, 4–8 GHz) is a freely
available SAR data facilitated since 2014 by the Copernicus Programme of the
European Space Agency (ESA). The Sentinel-1 mission comprises a constellation
of two polar-orbiting satellites which have capabilities for rapid data dissemination
at short revisit cycles (12 days for single sensor and 6 days for Sentinel-1A and
Sentinel-1B). The interferometric capabilities of Sentinel-1C enable geohazard
monitoring including land subsidence assessment. Salvi et al. (2012) reviewed the
existing and past SAR system for ground deformation studies comparing with the
Sentinel-1 data. They have highlighted the advantages of Sentinel-1 data in estimat-
ing the surface displacement. Polcari et al. (2017) employed the COSMO-skyMAP
X- and Sentinel-1 C-band InSAR data to estimate the local deformation caused by
the 2016–2017 Central Italy seismic sequence. They estimated a deformation
~2–3 cm along the LoS, where the results from X- and C-band indicated similar
results (cross-validated each other). Raspini et al. (2018) employed the Sentinel-1 to
develop a system for continuous and systematic tracking of the ground deformation
with a case study in the Tuscany region (Central Italy). They indicated the opera-
tional use of Sentinel-1 data in facilitating the retrieval of crustal deformation at high
temporal frequency, which is particularly important for risk mitigation. Neelmeijer
et al. (2018) analyzed the ground deformation due to water level variations in the
Toktogul Reservoir, Kyrgyzstan, using the Envisat ASAR and Sentinel-1 data for
the period 2004–2009 and 2014–2016, respectively. The Sentinel-1 data derived
analysis indicated a mean vertical subsidence rate of 2.5 cm/year for the period of
March 2015–November 2016 well verified with the results obtained from elastic
modelling (TEA12 Earth model). Imamoglu et al. (2019) estimated ground
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deformation using the multitemporal Sentinel-1 data employing the InSAR tech-
nique in Bolvadin, Turkey. The highest subsidence in this region is estimated as
35 mm/year, characterized by the presence of soft alluvial deposits, where the
primary cause of subsidence could be due to overexploitation of groundwater and
hydrological changes. Ramirez et al. (2020) employed the Sentinel-1 data for long-
term monitoring of the ground deformation using the InSAR technique in a few
selected sites in South Korea. They have reiterated the applicability of the InSAR
technique and SAR data for geohazard assessment. The present study was conducted
in the Tamenglong city and its surrounding areas, Manipur state, which was hit by an
earthquake at 6.7Mw on 4 January 2016. The Sentinel-1 SAR data was used to
estimate the ground deformation employing the InSAR technique.

14.2 Study Area

This state of Manipur is one of the states in the eastern Himalayan region bounded
between 23�500N to 25�420N latitude and 92�580E to 94�450E longitude, and was
considered as the study area. It covers an area of 22,327 km2 and occupies 0.68% of
the total geographic area of India. The state is neighboring by Nagaland in the north,
Mizoram in the south, Assam in the west, and sharing an international boundary with
Burma/Myanmar in the east. Geologically, this state belongs at the young folded
with various rocks from the upper Cretaceous to the present alluvium. Two major
broad soil types are observed, the red ferruginous soil in the hills and alluvium in the
valleys (https://investinmanipur.nic.in/). According to Census India, 2011, the total
population of Manipur is 2,721,756. The state belongs to the tropical climate zone
with an annual precipitation raging between 1200 mm and 2700 mm, and average
annual temperature varies between 14.5 �C and 38 �C. The dominant land cover of
the state is forest (~80%) followed by cropland, a biodiversity-rich landscape.
Additionally, the current study was focused on the earthquake observed in the
Tamenglong city and its surrounding region, hit by an earthquake with magnitude
6.7 on 4 January 2016, caused loss of a few lives and many injuries with significant
land deformation (Fig. 14.2).

14.3 Data Used and Methodology

Data Used

The Sentinel-1 C-band (wavelength: ~5.6 cm) SAR data was used to estimate the
ground deformation, where the IW products were used before and after the land
subsidence event as 11 December 2015 and 28 January 2016, respectively. The
Sentinel-2 multi-spectral and Shuttle Radar Topographic Mission (SRTM) DEM
were also employed in the current study.
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The SNAP Sentinel-1 toolbox data processing platform is used for data analysis
and ArcGIS software for map preparation. The processing of the SAR data for
interferogram generation is briefly stated as follows: the image co-registration was
performed to remove the relative mis-registration errors between the two interfero-
metric SAR images. The enhanced spectral diversity (ESD) method was used, and
the pixel by pixel phase information was retrieved from the different spectral looks.
Thereafter, all the patch pairs with good cross-correlation were chosen. The average
peak coordinates were extracted to estimate the range and azimuth offsets, which
were then applied to the slave image by shifting with the estimated offset values. The
interferogram was generated integrating the master and refined slave image, where
the coherence for image pair was also estimated. The pixel by pixel phase difference
image was obtained by multiplying two images. The metadata and orbit information
for the interferometric image pair were integrated to subtract the flat-earth phase
(indicates the phase present in the interferometric signal owing to the reference
surface curvature) from the generated interferogram. The TOPSAR IW SLC prod-
ucts consist of one image per swath per polarization with multiple sub-swaths. It
consists of a series of bursts, where each burst was processed separately and merged
to a single image according to the azimuth-time order. The individually focused
complex burst images are included into a single sub-swath image, with black-fill
demarcation in between. Thereafter, the topographic phase removal was conducted
employing the DEM data, which estimates and subtracts the topographic phase from
the generated interferogram.

The Goldstein adaptive radar interferogram phase filtering (proposed by Gold-
stein and Werner, 1998) was applied to enhance the SNR, which fundamentally uses
the Fourier spectrum. Where the difference image between the filtered and unfiltered

Elevation (m)
2956

26

Fig. 14.2 Study area map: elevation (ASTER DEM) map of Manipur state
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interferogram generates a residual systematic phase trend denotes the loss of reso-
lution due to filtering. The range Doppler terrain correction was then performed to
compensate for the topographic distortions and to generate the orthorectified image.
These distortions are introduced due to topographic variations in a scene and tilting
of satellite sensor. To derive the precise geolocation information, the terrain correc-
tion process uses the available orbit state vector information in the metadata, the
radar timing annotations, the slant to ground range conversion parameters, and the
reference DEM. In the two-pass method, the DEM is used as a synthetic interfero-
gram simulating topographic phase. Although it does not require the unwrapping
process, the accuracy depends on the DEM accuracy, which produces phase error of
(Error in DEM/ha) cycles in the interferogram. The overall methodology flow
diagram is shown in Fig. 14.3.

Sentinel  1

Master Image

(21/12/15)

Slave Image

(28/01/16)

Coregistration

Back

Geocoding
Enhance Spectral

Diversity

Interferogram Formation

Deburst

Topographic Phase Removal (D-InSAR)

Goldstein Phase Filtering

Range Doppler Terrain Correction

Final Deformation

Measurement from

D-InSAR

DEM Generation

Elevation Map

Fig. 14.3 Overall methodology flow diagram
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14.4 Result and Discussion

Using the InSAR technique, the interferogram was generated employing two-pass
approach with the Sentinel-1 SAR acquired on 11 December 2015 and 28 January
2016. The Sentinel-1 data derived coherence image is shown in Fig. 14.4, which
indicated a significant coherence in the majority of the region in Manipur state. The
interferometric coherence is an essential factor that indicates the suitability of the
SAR image pair to assess the ground deformation. The coherence factor is computed
as the absolute value of the correlation coefficient obtained from the radar image
pair. The coherence values varied between 0.995 and 0.000015, with an average
value of 0.4975. High coherence is observed in the majority of the area with some
places with lower coherence values. The observed average coherence in the study
indicated much higher coherence reported by Ramirez et al. (2020) estimated as less
than 0.3.

The phase difference map is shown in Fig. 14.5, indicating low variations or low
spatial frequency, which could be attributed to the minor atmosphere attenuation.
The attenuation due to atmospheric effects is a major limitation to generate precise
digital elevation model limits the accurate measurement of ground deformations.
Alternatively, the interferometric phase is independent of atmospheric attenuation
and relies on the relative difference in elevation, which is directly proportionate to
baseline. The higher baseline indicates higher phase variation corresponds to the

Fig. 14.4 Coherence image generated using the Sentinel-1 SAR data
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same topography; wherein, the higher baseline of the interferometric image pair
indicates lower topographic error.

A differential interferogram was generated employing an external DEM data to
nullify the effects due to topography. The fringes in the differential interferometric
are clearly visible enabling proper analysis. The result indicated that fringes are
identical to those of the real topographic interferogram. Area with higher fringes
indicates ground deformation (Fig. 14.6). Three cross-section profiles were drawn on
the differential interferogram indicating gradual phase changes along the distance.
The red and black lines show the phase before and after the ground deformation
caused by the earthquake, respectively (Fig. 14.7).

The DEM developed integrating the SRTM DEM and D-InSAR data exhibits the
topographic deformation generated. The SRTM DEM and D-InSAR data derived
DEM are shown in Fig. 14.8. Six regions in the image area are shown along with the
cross-section to visualize the nature of changes occurred in topography due to the
earthquake (Fig. 14.9). The highlighted area clearly indicates the changes in topog-
raphy compared with the SRTM DEM data. The curve generated between the
distance and deformation also exhibits the nature of deviation compared to
pre-event topographic variations. The maximum deformation was observed as
2.3 mm, and the lower deformations were observed as 0.72 mm in the highlighted
regions.

Fig. 14.5 Phase images derived using the InSAR technique
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14.5 Conclusion

The study highlights the applicability of InSAR and D-InSAR technique for ground
deformation assessment employing the freely available Sentinel-1 C-band SAR data.
The pre-seismic and post-seismic complex SAR images were acquired for the
Manipur state, hit by an earthquake of magnitude 6.7 on 4 January 2016. The
obtained land deformation map indicated a realistic value that corroborates the
observations reported in previous studies. Significant ground deformation has been
identified in various regions around the Tamenglong city and neighboring regions.
The high average coherence between the two complex SAR images indicates the
reliability of the obtained results. The distance vs deformation curve generated for
the cross-sections in different regions clearly exhibits the nature of observed ground
deformation. Regular monitoring of the surface deformation can be performed to
generate earthquake hazard map, which is essential for identifying the risk zone area
over a large region. This will help the managers and planners of various domains in
improved planning and management activities. More importantly, the resultant maps
will bear significant importance in preparedness and to reduce the damage due to
unwanted hazards. The earthquake hazard maps can also be utilized for planning of
land use, road and building construction, and many more application areas.

Fig. 14.6 Differential interferogram generated using the D-InSAR technique
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Fig. 14.8 (a) SRTM DEM and (b) D-InSAR data derived DEM
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Chapter 15
Spatial Clustering of P. falciparum Malaria
Epidemiology in Murshidabad District

Poly Patra and Gouri Sankar Bhunia

Abstract The distribution of malaria in low-incidence settings is patchy, with local
transfer points being an ongoing source of infection. This research work is based on
data on the prevalence of malaria in the Murshidabad district of West Bengal (India),
to identify species-specific clusters. P. falciparum incidence data was collected in
2009–2016 from Murshidabad, West Bengal, and West Bengal State Health Depart-
ment. The spatio-temporal cluster of malaria incidences has been analyzed through
Anselin Local Moran’s I statistics. The statistical data of the local Getis-Ord G
statistics (G�

i ) were calculated for each block based on the spatial weight of disease
incidence. Moran’s I was the highest in 2013 (0.94), while P. falciparum malaria
was the lowest in Moran’s I in 2012 (0.53). In 2009, high P. falciparum clusters in
the central part were observed, and a low-low cluster in the south and east parts were
observed. In 2015 and 2016 the high cluster in the western part of the district was
observed, and in the south and east the low cluster was identified. Identifying the risk
factors of specific malarial species provides key insights into the low transmission
epidemiology of malaria that can guide the targeting of additional interventions.

Keywords Malaria · P. falciparum · Moran’s I · Spatial cluster · Disease control

15.1 Introduction

Globally, the incidence of malaria has dropped by 29% between 2000 and 2012, and
the mortality rates of severe malaria have fallen by 45% over the same period (WHO,
2017). In 2016, malaria has caused 216 million cases and 445,000 deaths worldwide
(WHO, 2017). The malaria map is through with over 35 malaria free-standing
approved countries and another 21 indigenous transmission-zero countries (Dhiman
et al., 2018). Malaria is transmitted by five species of Plasmodium: Plasmodium
ovale (Po), Plasmodium falciparum (Pf), Plasmodium malariae (Pm), Plasmodium
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vivax (Pv), and Plasmodium knowlesi (Pk) (Cox, 1982; Hundessa et al., 2016). In
India Pv and Pf are traditionally prevalent, and the proportion fluctuates throughout
India (Sharma, 1998). Mixed Plasmodium infection is another major malaria case
typically underreported due to over-reporting by traditional diagnostic methods of
the more pronounced P. falciparum or P. vivax (Ginouves et al., 2015).

In tropical and subtropical areas where the climate is ideal for infection, malaria is
a life-threatening infectious disease that seriously affects susceptible members of
society. In 2017, India reported 0.84 million malaria cases, and almost all 36 states/
UTs are regularly subsidizing malaria cases (NVBDCP, 2018). 80% of the total
malaria encumbrance having deliberation of cases (Annual Parasitic Index >10) are
donated through north-eastern, eastern, and central Indian states, and these areas are
associated with enormous forest asylum, racial tribes, paucity, and the huge amount
of rainfall (Sharma, 2012; Sharma et al., 2015). However, there was a severe
diminution in the malaria incidence. The death of malaria was caused due to
subsequent overview of artemisinin-based combination therapy (ACT) initiating
2010 combined with insecticide-treated netting materials (ITNs). Nevertheless,
reports of malaria incidence and death in the research area may be under-reported.
The under-reporting factors include administration in the private sector of 2/3 of
patients, lack of regular death certification in rural areas, and inadequate malaria
diagnosis infrastructure in public healthcare facilities.

Earlier research suggested that the spatial location of malaria is not evenly
disseminated in space (Valle & Lima, 2014; Bhunia et al., 2016). Incidence of
malaria exhibits spatio-temporal differences with respect to suitable environmental
settings (Ikeda et al., 2017; Bi et al., 2013) and immigration of infectious hosts
(Bousema et al., 2012) that encourage disease propagation and tenacity. Moreover,
the inconsistency of disease pattern due to natural chauffeurs can be further intricate
by patterns in host insusceptibility which is a conceivable clarification for intra-
annual and inter-annual dissimilarities (Hay et al., 2001; Clements et al., 2009; Wu
et al., 2018). Therefore, understanding the interface between connectivity demar-
cated by the geographical circumstances in disease propagation via spatial statistical
models has the prospective to enhance update control and annihilation policies of
malaria in real-word situations (Acevedo et al., 2015).

However, studies about the spatio-temporal clustering pattern of the disease have
been supportive in effective design and execution of malaria control program and
anticipation (Hay & Snow, 2006; Umer et al., 2018). In addition to enhancing
control and the allocation of health resources, better understanding of spatio-
temporal changes in the distribution of diseases is crucial. Several studies have
been performed using space and time scans to detect malaria clusters (Wen et al.,
2011; Hundessa et al., 2016). In this regard, GISs are very obliging to detect and
understand the epidemiological behavior of developing and reemerging infectious
diseases (Franke et al., 2015; Anvikar et al., 2016). In order to inform monitoring
and the distribution of health resources, a better understanding of the spatio-temporal
amendment in the circulation of diseases is essential. Several studies have taken
geographical and spatial scan statistics to identify malaria groupings (Umer et al.,
2018) and other infectious diseases in space and time (Lessler et al., 2016; Chowell

340 P. Patra and G. S. Bhunia



& Rothenberg, 2018). This chapter analyzed the spatio-temporal clustering pattern
of Plasmodium falciparum malaria incidences during the period between 2009
and 2016.

15.2 Study Area

District Murshidabad is located on the river Ganges, which covers an area of
5341 square kilometers and has a population of 7103 million in 2011 Census. The
center of West Bengal is Murshidabad between latitudes 23�43’N and 24�52’N and
longitude 87�490E and 88�440E. The Bhagirathi and Jalangi Rivers and their affluent
are flooding the district. The average annual temperature is about 27 �C; the average
monthly temperature is between 17 �C and 35 �C. During the Monsoon, approxi-
mately 300 mm rainfall occurs in August. Massive cultivation in the west of
mulberry is carried out with rice, jute, legumes, oil seeds, wheat, barley, and
mangoes. The Scheduled Tribe (ST) is estimated as 12.63% of the population of
the district of Murshidabad and the Scheduled Tribe (ST) population was calculated
as 1.28%. The population density of the region is 1334 per square kilometer. The
district’s sexual relationship is 958, and the district’s literacy rate is 66.6%. Culti-
vators and agricultural workers account for 14.7% and 32.5% of the total workers,
respectively.

15.3 Materials and Methods

Malaria Epidemic Data Acquisition and Database Creation

In a febrile patient with P. falciparum malaria infection microscopically confirmed
infection, who lived in Murshidabad between 2009 and 2016. Malaria data from
Murshidabad, West Bengal, and the State Department of Health of West Bengal was
obtained in 2009–2016. In order to obtain these tests, successful survivors of
P. falciparum infection were identified during the analysis in various healthcare
facilities. The population and demographic figures are measured by age and sex by
the Indian government (Fig. 15.1).

Cluster-Outlier Analysis

The spatial cluster among malaria incidence blocks of the district of Murshidabad
has been analyzed on the GIS platform (Mitchell, 2005). The research took place
using fixed remote bad methods using Anselin Local Moran’s I statistics, where each
block is analyzed in the sense of the adjoining characteristics. The critical distance is
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less than 500 m in this study. The neighboring block outside the critical distance has
a weight of “0” and has no effect on the calculation of blocks affected by malaria.
The study has established four cluster types, such as high-high (cluster of high
malaria incidence block), low-low (cluster of low malaria incidence block), high-low
(outlier in which higher malaria incidence block is surrounded by lower malaria
incidence block), and low-high (outlier in which low malaria incidence block are
surrounded by high malaria incidence block). With a 95% meaning level, the cluster-
outlier analysis was carried out (Anselin, 1995).

Malaria Hotspot and Cold Spot Analysis

Every block was designed for 2009–2016 with the incidence of the spatial cluster
existence. The statistical data of the local Getis-Ord G statistics (G�

i ) were calculated

Fig. 15.1 Location map of Murshidabad district in West Bengal, India
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for each block based on the spatial weight with the following different threshold
spaces (Eq. (15.1)):

G�
i dð Þ ¼

X
j

wij dð Þx jP
jx j

ð15:1Þ

where Wij is a spatial weight matrix at expected proximity lag in kilometers (d )
(Wij(d ) is 1 when the proximity from block j to i is within d, or elseWij(d ) is 0). The
incidence of local malaria clustering was performed depending upon z-score values
in the study blocks. The higher positive Z-score is >1.96, suggesting that block “i” is
surrounded by relatively high malaria incident blocks while block “i” is limited to a
rather small malaria incidence block with a very high but not very important Z-score
value. Z-score values��1.96 and�1.96 indicate incidence rate of a malaria regular,
random, or cluster pattern (Getis & Ord, 1992).

15.4 Results

Distribution of Malaria Spatial Auto-Correlation

To comprehend the spatial auto-correlation quantitatively, global Moran’s I statis-
tical analysis was applied. The spatial auto-correlation analysis for P. falciparum
malaria occurrence showed statistically significant Moran’s I value (Table 15.1).
However, the values of Moran’s I for P. falciparum malaria were varied strangely.
Calculated value of Moran’s I was the highest in 2013 (0.94), while Moran’s I
lowest in 2012 (0.53) was reported for P. falciparum malaria. In the period
2009–2016, Global Moran’s I value of the overall incidence of malaria in
Murshidabad differed from 0.64 to 0.80 the Global Moran’s I of P. falciparum
varying from 0.63 to 0.94. The spatial auto-correlation of P. falciparum is graphi-
cally depicted in Fig. 15.2. The results showed that changes in the annual incidence
of malaria and the incidence of P. falciparum during the entire study period were
relatively stable.

Table 15.1 Estimated
Moran’s I value of malaria
incidences in Murshidabad
district (2009–2016)

Year Moran’s I Z-Score P-value

2009 0.74 4.36 0.00013

2010 0.65 3.81 0.0001

2011 0.63 3.76 0.0004

2012 0.52 3.15 0.0001

2013 0.94 3.49 0.000

2014 0.84 4.79 0.0002

2015 0.74 4.29 0.0001

2016 0.91 5.39 0.000
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Fig. 15.2 Cluster-Outlier analysis of Plasmodium falciparum in Murshidabad district in 2009
and 2012
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Cluster and Outlier Analysis of Malaria Distribution
in Murshidabad District

Throughout 2009 there was a strong space cluster in the central part of the district,
whereas in the southeast and south of the district, a small cluster of annual incidence
blocks of malaria was found. Mapping of P. falciparum malaria clusters at the
Murshidabad district during the period between 2009 and 2016 is represented in
Fig. 15.2. In 2009, a high-high cluster of P. falciparum was observed in the central
part, and the low-low cluster was observed in the south and eastern part. In the south
part of the district, high-low outlier was also observed (Fig. 15.2). Although a small
low-high outlier was seen in the central part of the district in 2010, the clustering
pattern of P. falciparum malaria is more or less the same. High cluster in the central
part of the district was observed in 2011 and 2012, while in the central and southern
areas the low outlier was observed (Fig. 15.2). A small low-low cluster was in the
north in 2011, whereas the small low-low cluster was observed in the south in 2012.
In 2013, a high cluster in the north and low outliers in the east of the district were
observed. The low-low cluster was observed in the south of the study area
(Fig. 15.3). In 2014, the pattern of clustering P. falciparum was different as the
high-level cluster in the western portion and the low-level cluster in the south and
west were observed. A small high-low outlier was observed in the extreme north of
the study area. The high cluster in the west of the district was seen in 2015 and 2016,
while the low cluster in the south and east of the district was found (Fig. 15.3).

Hotspot and Cold Spot Analysis of P. falciparum Malaria
Incidence

Within the null hypothesis, the outcomes of the estimations were analyzed. The
incidence rates for the P. falciparum malaria in the block level were measured each
year (based on Getis-Ord G statistics). As the P-value is less than 0.5 for
P. falciparum malaria and the Z-score is positive, the high incidence block spatial
distribution was shown to be geographically more clustered than would be projected
if the spatial processes were simply random.

The spatial clustering of the blocks in Fig. 15.4 showed the incidence of malaria
and major changes over time (2009–2016). The hotspots lead to similar high
incidences of malaria and the cold spots to similar values of low blocks of malaria.
Maps show hotspots and high-risk areas for important variables with the use of
Getis-Ord Gi

* and cold spot figures as low-risk areas for major variables. It provides
real malaria clustering, which reveals heterogeneousness and hotspots/cold spots at
risk of the district of Murshidabad (Table 15.2).

Figure 15.5 demonstrated the study of the hotspot and cold spot of P. falciparum
malaria in Murshidabad district. The hotspot regions in the middle and east of the
district were found in 2009, and there was a small cold spot in theWest. The hotspots
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Fig. 15.3 Cluster-Outlier analysis of Plasmodium falciparum in Murshidabad district in 2015
and 2016
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Fig. 15.4 Identification of Plasmodium falciparummalaria hotspots and cold spots in Murshidabad
district in 2009 and 2012
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were found in 2010 in the east of the district of Murshidabad (Fig. 15.4). The hotspot
cluster P. falciparum was observed in the middle part in 2011, while in the northern
part of the study area, the cluster of hotspots was presented in 2012. A small cluster
of cold spots was found in the south-west of the Murshidabad district in 2012
(Fig. 15.5). In 2013, the pattern of the hotspot and cold spot cluster of
P. falciparum was similar with the preceding year, whereas, in 2014, cluster of
hotspots was observed in the central part and the cold spot areas were observed in the
south-east and south-west of the district (Fig. 15.5). In 2015 the hotspot cluster in the
central-east and a small cold spot cluster were realized in the east of the study area.
The hotspot areas in the north and east of Murshidabad district have been demarcated
in 2016.

15.5 Discussion

In Bhagwangola, Jiaganj, Sagardighi, and Lalgola blocks, the high incidence of
malarial diseases is reported primarily. For many reasons, transmission within the
blocks is very different, such as climate conditions, environmental factors, and
disease control measures (Wangdi et al., 2011). The outcome of auto-correlation
analysis demonstrates that the spatial relationship of malaria-affected blocks was not
altered in the Murshidabad district, indicating that each affected block is directly
and/or indirectly connected to the adjacent block transmission. Getis-Ord G con-
firmed further clustered cases of malaria distribution pattern in Murshidabad district.
The local similarities of climatic and ecological parameters that are linked to the
vector dynamics may be responsible for this. Furthermore, high-incidence block
clustering may be linked with socio-economic factors which affect the efficiency of
the vector control program (Qayum et al., 2015). A previous study clearly showed
that malaria was linked directly toWest Bengal’s socio-economic factor (Mazumdar,
2011). Malaria control programs are perceived to contain government-supported
public health centers and local vector control efforts in some high-incidence areas
(Al-Amin et al., 2015), and in rural and border areas the epidemic continues,
underlining the need for a continued and improved malaria control strategy.

Table 15.2 Estimation of
clustering pattern of malaria
incidences in Murshidabad
district (2009–2016)

Year Getis-Ord G Z-Score P-value

2009 0.22 3.475 0.0005

2010 0.21 3.719 0.0002

2011 0.26 4.38 0.0001

2012 0.35 5.49 0.0000

2013 0.29 3.89 0.0009

2014 0.23 3.47 0.0005

2015 0.27 3.07 0.002

2016 0.23 2.82 0.004
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Fig. 15.5 Identification of Plasmodium falciparummalaria hotspots and cold spots in Murshidabad
district in 2015 and 2016
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Therefore, the prevalence of malaria in the central regions is significantly improved,
and there are prospects for changes in borders with the endemic regions.

The detection of clusters would provide important information on malaria trans-
mission in the district of Murshidabad (Patra et al., 2017). The results showed that
the central area has a very high cluster of malaria while the southern part has low
clusters. This can be attributed with the sub-tropical climate to an environmentally
favorable condition and also facilitates the vector multiplication. Conversely, most
paddy fields, palaeochannels, and shallow depressions in the region could provide
mosquito breeding grounds. In addition, it might also be a consideration for the
identification of malaria clusters that community fish farming will take place in these
blocks. The aquatic ecosystem was developed for mosquito development by this fish
farm. In the system extenuating malaria transmission, this result could be necessary.
Significant local clustering of malaria incidence ensues between pairs of blocks.
P. falciparum commonly preponderates P. vivax during the period of increased
transmission. Our research also suggests that geographical variations at the block
level are more beneficial and add value to prevention schemes. The detected local
malaria incidence clustering in Murshidabad district could be significantly explained
by local risk factors, such as surface waterbodies, the admission to health facilities,
monitoring procedures, and others.

There were a few limitations to this study. First, information on clinical and care
data from cases and controls was collected instead of forward-looking from the
available documents. Second, this study covered only the case reported to the
medical officer of the district. The incidence of malaria reported in the private sector
was likely lower than in the public sector. The research work could therefore have
underrated the share of private sector incidence reporting. Such limitation would
have caused the true odds ratio to be underestimated and did not promote the
research capacity to conclude.

15.6 Conclusion

In general, data on the spatial and time cluster identification consider that
P. falciparum malaria is highly dangerous. All species are divided into clusters
between the endemic area blocks. In the central and transboundary regions of that
district, the majority of the clusters were identified. There is an apparent coverage
and credibility limit to surveillance data assessed in the research, and therefore the
actual incidence rate of malaria in the population, particularly at a micro-level, can
be underestimated. In the early warning decision support system and for further
operational analysis, the blocks in clusters should be considered to precede. In
addition, this finding recommends that malaria transmission clusters not usually
occur in certain regions. Investments in primary data collection at local level will
continue to be significant priorities for malaria control and elimination in the next
decade, as the landscape of malaria diversifies, evolving and continuing use of
comprehensive modelling methods. Furthermore, data should be guided and
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scientifically established in variable selection procedures to optimize the predictable
precision of the risk mapping of malaria.
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Chapter 16
Mapping, Measuring and Modelling
Common Fluvial Hazards in Riparian
Zones: A Brief Review of Relevant Concepts
and Methods

Sayoni Mondal and Priyank Pravin Patel

Abstract The channel and adjacent floodplain tracts of rivers comprise the riparian
zone, which is sensitive to a variety of natural/environmental and human-induced
hazards. The degradation of this riparian zone leads to the loss of landscape
connectivity, interruption of biogeochemical cycles and material fluxes and engen-
ders adverse impacts on the flora and fauna occupying it, both physiologically and
through habitat loss and fragmentation. This brief review paper examines the salient
characteristics of the riparian zone and the common hazards that afflict it. It also
provides insights into the various mapping, measurement and modelling methods
construed over time that are in vogue to investigate and characterise such hazards,
gauge their impacts and devise possible ameliorative frameworks for the same. The
natural hazards considered here are annual floods and high stream flows, soil loss
occurring due to overbank flow and runoff, river erosion and bankline failure.
Alongside this, the marked degradational impacts engendered by sand mining within
the river channel (both on the bed and from in-channel deposits) and from the
adjacent floodplain on the local environment are detailed. Word clouds have been
used to highlight the most oft-repeated or used catchphrases and terms while
undertaking the above researches in the respective hazard domains. We also provide
a temporal overview of how these concepts and concerns have come more and more
into the fluvial geomorphologic and riparian ecosystem subject purviews, reflecting
the rising focus in these areas and the need for further research on the discussed
aspects.

S. Mondal · P. P. Patel (*)
Department of Geography, Presidency University, Kolkata, India
e-mail: priyank.geog@presiuniv.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. K. Shit et al. (eds.),Geospatial Technology for Environmental Hazards, Advances
in Geographic Information Science, https://doi.org/10.1007/978-3-030-75197-5_16

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75197-5_16&domain=pdf
mailto:priyank.geog@presiuniv.ac.in
https://doi.org/10.1007/978-3-030-75197-5_16#DOI


16.1 Introduction

Riparian zone management has been considered as an essential component of river
rehabilitation and an integral part of ecological restoration (Gregory et al., 1991;
Trimble, 2004; Gurnell et al., 2016). In its most literal meaning, the word riparian
means or pertains to the bank of a river. It has been further defined as an undisturbed,
naturally vegetated strip of land lying just adjacent to the river that provides critical
and valuable ecosystem functions in the form of protecting water quality, supporting
wildlife and augmenting flood storage (Verry et al., 2000). Thus, it is a vegetative
zone linking the stream to its adjacent floodplain and upland areas and serves as the
connecting link between the aquatic and the terrestrial ecosystem (Agouridis et al.,
2010; Cavaille et al., 2013; Fierro et al., 2017). Such stream corridors are
characterised by a high level of interaction between the ambient soil, water and
vegetation aspects (Naiman & Decamps, 1997; Covino, 2017; McMillan & Noe,
2017) and thus have high physical, structural and biotic functionality (Acuna et al.,
2016). This zone is also affected by frequent perturbations including annual inun-
dation, transportation and deposition of sediments and the erosive forces of water
(Banerji & Patel, 2019) that in turn create a habitat diversity which is essential in
building up an ecologically versatile and self-sustaining ecosystem (Verry et al.,
2000; Ramirez et al., 2012). Thus, quite some research has concentrated on exam-
ining this particular zone, to understand the factors that govern it and the possible
hazards that affect it (López-Baucells et al., 2017). A number of mapping, measure-
ment and modelling methods have accordingly been developed to simulate such
hazards (mostly of fluvial origin), and this paper proves a brief overview of the same.

16.2 Ecological Functions of Riparian Zones in Promoting
Ecosystem Stability

A typical riparian buffer zone is composed of three main sectors: Zone I which is
located just beside the river and is composed of fast and slow-growing water-tolerant
species; Zone II is located next to the trees and contains shrubs; and Zone III is the
zone of grasses and forbs and is positioned next to the shrubs (Agouridis et al.,
2010). Riparian buffers perform a host of functions ranging from the physical and
ecological to the economic and social (Nakamura, 1995; Mondal & Patel, 2018).
They are also known to stabilise eroding stream banks (Hughes, 2016; Mondal &
Patel, 2020). These buffers dissipate stream energy and hydraulic action (Zhang
et al., 2019), thus reducing channel scouring. The roots of the vegetative buffers hold
soil particles together (Scott, 2016) and thus have greater tensile strength, fostering
higher resistance against erosive water action (Eiseltova, 2010; Smith & Wynn-
Thompson, 2018). Riparian buffers also act as effective flood storages by retarding
the rate of surface runoff (Blackwell et al., 2006; Keeton et al., 2017), thereby
retaining and enhancing infiltration of the excess overbank flow that can
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subsequently recharge the local groundwater table up to a considerable extent
(Parkyn, 2004; Grabowski et al., 2014). The above ground biomass of the riparian
buffers increases the surface roughness coefficient, and this retards flow velocities of
high flood events (Keesstra et al., 2012), in the event diminishing their potentiality to
damage life and property (Docker & Hubble, 2008; Maffra et al., 2017). By trapping
and filtering excess sediments and contaminants and preventing them from flowing
into the channel, it enhances the ambient water quality (Kumar et al., 1992; Patel
et al., 2020a), thereby sustaining many aquatic fauna, like fishes (Angermeier &
Karr, 1984; Rayner, 2001). They provide food to different species in the form of
leaves, twigs, litter and debris (Miserendino et al., 2011), while large woody debris
provide suitable habitats where aquatic organisms thrive (Carolyn et al., 2001). The
shade created by riparian vegetation helps in reducing in-stream water temperature
(Hawes & Smith, 2005) and elevating dissolved oxygen levels, creating better
habitats for fishes to thrive in (D’Ambrosio et al., 2014). Deep-rooted vegetation
strengthens channel boundary conditions (Shit &Maiti, 2012; Mulyono et al., 2018),
thereby providing hydraulic conditions that are ideal for the development of aquatic
habitats. These buffers also allow the stream to maintain its base-flow during low
flow seasons (Schlosser & Karr, 1981), which directly affects the aquatic habitat
extent and quality (O’Brien et al., 2017).

Stream buffers ideally consist of native tree species preserved in their natural
form for much of the stream length and provide easy travel and dispersal routes for
wildlife (Lees & Peres, 2008), thereby helping preserve the biodiversity of the region
(O’Donnell et al., 2015). Forested riparian buffers serve as excellent sediment filters
(Naiman et al., 2013) that effectively allow the absorption and retention of sediments
by slowing down the overland flow (Wolter et al., 2016). They also act as buffers and
filters for excess nutrients and contaminants (Craig et al., 2008; Cockburn et al.,
2016). Approximately 80–85% of phosphorus is retained by the plants, and as much
as 50–100% of sediments can be retained by riparian zones (Hawes & Smith, 2005;
Covino, 2017). Riparian buffers have economic worth, and healthy stream buffers
influence property values while also promoting hiking, camping and other recrea-
tional activities (Junker & Buchecker, 2008; Vollmer et al., 2015), with these being
some of the many other additional ecosystem services it provides (Watson et al.,
2016). Large forested buffers allow environmental enthusiasts to enjoy the visual
aesthetic appeal provided by undisturbed continuous tracts of diverse native plant
species (Zhao et al., 2016; Lopez-Rodriguez et al., 2018; Saha et al., 2020).

16.3 Human Interventions into Riparian Zones
and Ambient Fluvial Hazards

These riparian zones that maintain a chain of ecological functions are, however,
amongst the most degraded ecosystems in the world, mainly as a result of anthro-
pogenic interventions into fluvial systems (Behbahani et al., 2017). Almost every
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riparian zone has seen accelerated human activities, which speeds up and negatively
impacts their natural functions (Gregory, 2006). In most cases, the degree of change
caused by such externalities is greater than the natural resilience and healing rate
of such buffer strips, leading to an overall degradation of their natural func-
tions (Chatterjee & Patel, 2016; Patel et al., 2020c; Sahana et al., 2020). In most
river basins across the world, the present riparian area bears little resemblance to its
original natural character. While small streams have usually been silted up, the larger
ones are most often channelized and tamed, and their riparian zones quite entirely
cleared of vegetation to support human needs (Behbahani et al., 2017).

Riparian areas are mostly affected by infrastructural and agricultural develop-
ments which induce instabilities in the river bed, making them erode their banks
quickly and accentuate annual flooding, leading to the loss of otherwise productive
areas (Mondal et al., 2016; Olokeogun et al., 2020; Olokeogun & Kumar, 2020).
Channels and riparian zones, although different in their respective resilience to
floods, suffer from frequent and large flood events due to anthropogenic disturbances
having modified the riparian zone, which in turn influences and modifies local
livelihoods and land use (Patel & Mondal, 2019; Patel & Dasgupta, 2009). Almost
90% of North American and European floodplains have been severely altered due to
agriculture and other intensive floodplain uses for infrastructural developments
(Entwistle et al., 2019). Similar scenarios also prevail in Asia, with the situation
herein being more grievous due to the already very high and increasing population
pressure over the last few decades, engendering marked land cover alterations within
foothill-piedmont zones and along river valleys (Sarkar & Patel, 2016). Thus,
riparian habitats remain some of the most severely at-risk and threatened ecosystems
worldwide (Tockner & Stanford, 2002).

The increasing population pressure and its concentration along rivers for suste-
nance induces urbanisation, which causes the water table to lower therein (Wakode
et al., 2018) due to enhanced extraction and diversion of surface flows, whereas
greater tracts of impervious surfaces amplify peak flows, exacerbating floods
(Coleman et al., 2005; Du et al., 2015). Increased peak flows also enhance down-
cutting and erosion of bank sediments, which further leads to hydrologic disconnec-
tion of the riparian sub-surface from the stream channel. Hydrologic disconnections
between the channel and riparian floodplains in the form of embankments, structural
crossings and dams degrade riparian areas by separating a substantial part of the
riparian zone from active fluvial processes (Nilsson & Berggren, 2000; New & Xie,
2008). Bank stabilisation structures also disrupt riparian processes by restricting
water availability along channels (Baird et al., 2015). Cleared riparian zones for
agriculture often raise nutrient inflow into streams, which have serious consequences
on the river biota (Dosskey et al., 2010).

Riparian areas are also subjected to mining activities in addition to sand excava-
tion from the river bed. Sand mining not only causes bed degradation (Pitchaiah,
2017) and engenders morphological and hydrological changes within the channel
(Padmalal et al., 2008), but also affects floodplains and riparian zones and directly
impacts the riparian biota. Complete removal of riparian vegetation, in some
instances, in order to create access roads for tractors and hydraulic excavators to

356 S. Mondal and P. P. Patel



enter into the river bed causes habitat fragmentation and destruction of floodplain
species, in addition to accelerating bank erosion and loss of valuable arable lands
(Asraf et al., 2011). Researches worldwide have asserted that sand mining alone has
caused severe destruction of riparian forested lands, along with the depletion of
native vegetation colonies and water pollution (Behbahani et al., 2017).

This paper discusses the various fluvial hazards that occur in a riparian zone and
provides a very brief review of the various methods available to investigate and
measure the consequences of such hazards in the channel-riparian zone interaction.

16.4 Flood Management, Modelling and Mitigation:
Considerations and Methods

Riparian zones witness a number of fluvial hazards. Significant amongst them are
flooding and bank erosion, soil erosion and land degradation and sand excavation
practices, all of which have far-reaching implications on the fluvial system. A brief
review of these hazards is presented below.

Floods have been identified as the single most harmful natural disaster which
caused almost 31% of worldwide economic losses and 55% of lives lost within a
single decade of 1986–1995 (Borrows & Bruin, 2006). Yearly, about 170 million
people worldwide get afflicted by floods (Das, 2019), with the United Nations
reporting that nearly 2.3 billion were affected with 157,000 deaths from flooding
during 1995–2015 (Hoque et al., 2019). In India, out of 3290 lakh hectare of
geographical land, 40 mha have been declared as flood prone, with an annual
average of 75 lakh hectares being affected, either directly or indirectly (Gangwar,
2013). Causative natural factors relating to hydrology, geology and geo-physical
attributes like the general elevation and slope of the region, soil type, precipitation
received and land use pattern determine the susceptibility level of a region to floods
in general (Blistanova et al., 2016). Although the average frequency of major flood
events is 5 years, such catastrophic events have severely increased in recent years
due to global issues like climate change, rapid urbanisation and associated develop-
ments, river management programmes and unscientific agricultural practices within
the riparian zone (Das, 2019). Such hazards have the potential of setting back
development goals and hamper the process of economic development in any region,
and thus flood hazard preparedness and management has been the most obvious
ways of combating such disasters (Behanzin et al., 2015).

Comprehensive flood management requires detailed information regarding all
aspects of flooding, i.e. hydrological, physiographical, geotechnical, economic,
social as well as political (Tehrany et al., 2014). Concepts like flood risk manage-
ment and flood hazard preparedness have become particularly important in view of
the rising concern regarding the mitigation of this natural disaster (Rimba et al.,
2017). Forecasting and early prevention being the only strategy to reduce its ill
effects, flood management programmes have shifted focus towards assessing the
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vulnerability and susceptibility of regions prone to flooding rather than just evalu-
ating damages already caused by it (Hoque et al., 2019). Integrating the physical and
social vulnerability factors along with the coping capacity of the concerned com-
munity is an important indicator in assessing the flood risk (Rakib et al., 2017).

A most crucial component within flood risk management is the identification of
areas that are more susceptible to flooding so that early forecasting can help provide
early warning facilities that would significantly reduce the chaos caused due to it
(Sahana & Patel, 2019). Defining flood-prone areas in a particular region based on
detailed physical and socio-economic data can be really helpful in formulating quick
evacuation plans once the disaster starts hitting. This not only reduces flood fatalities
and damages caused, but also helps in building up a more resilient society through
stronger community participation and collective cooperation, thus promoting sus-
tainable land planning and preserving valuable ecological corridors along most
rivers (Cao et al., 2016). This can also aid in identifying areas that are comparatively
distant and thus safer from the flood effect, especially in urban areas, so that further
commercial and residential expansions can take place in these zones at minimal risk
from such events. Such a process would also help determine the suitability of urban
commercial and residential developments (Rimba et al., 2017).

The use of Multi-Criteria Decision-Making techniques (MCDM) with geospatial
data have greatly aided flood susceptibility studies. MCDMs are used in the process
of decision-making to arrive at the best possible alternative for a particular event.
These methods use numeric techniques to choose amongst discrete sets of alternative
decisions (Triantaphyllou et al., 1998). MCDMs are basically optimization
approaches used for setting ranks, especially if multidimensional criteria are consid-
ered (Jahan et al., 2016). The most common MCDM technique used in flood
susceptibility studies is the Analytical Hierarchy Process (AHP) which is a
decision-support tool and uses a multi-level structural hierarchy to prioritise alter-
natives, using a set of pair-wise comparison matrices (Triantaphyllou & Mann,
1995). The comparison matrix is constructed based on a numerical scale where
each number denotes the magnitude of dominance of one particular aspect over the
other on the basis of the comparison criterion (Saaty, 2008). A considerable pool of
literature has used AHP and its variants in susceptibility studies (Lawal et al., 2012;
Dahri & Abida, 2017; Kaur et al., 2017; Santos et al., 2018; Sozer et al., 2018;
Hammani et al., 2019; Talha et al., 2019; Chakraborty & Mukhopadhyay, 2019;
Nourani & Andaryani, 2019; Ghezelsofloo & Hajibigloo, 2020; Sozer, 2020).

However, MCDMs have often been criticised for being too qualitative in nature
and therefore give rise to uncertainty that arises from the selection, comparison and
ranking of criteria, which invariably involves expert knowledge in assigning the
weights that would ultimately define the susceptible zones (Tehrany et al., 2014).
Thus, flood susceptibility studies have further used machine learning algorithms like
Artificial Neural Network (ANN), decision trees, Support Vector Machines (SVM),
Fuzzy Logic, Frequency Ratio (FR), Multivariate Regression analysis (MR) and a
multitude of other models which seemingly provide a better reliability and accuracy
(Valizadeh et al., 2017; Das, 2019; Malik et al., 2020). A combination of bivariate
probability methods together with multivariate statistical techniques allows better
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precision and thus enhances performances of individual methods (Tehrany et al.,
2014). Hydraulic risk mapping is another integral part of flood susceptibility assess-
ment that is more focussed on understanding the flow and velocity dynamics like
flood hydrographs, peak discharge curves and flow depth and extent of inundation
(Cao et al., 2016).

Another aspect of flood management and mitigation deals with gauging the
inherent vulnerability of the populace exposed to the hazard. The report of the
World Conference on Disaster Reduction denotes vulnerability as the situation/
condition as determined by the economic, social, physical and environmental factors
that can possibly augment the at-risk status and susceptibility of a societal group
(UN/ISDR, 2004; Behanzin et al., 2015). It has often been taken to encapsulate an
overall measure of the ambient human welfare of a societal group as reflected in the
institutional, economic and political capabilities of its members (Blistanova et al.,
2016; Proske, 2008).

The flood risk has therefore been defined as hazard multiplied by vulnerability,
i.e. it considers both the susceptibility of a region to flooding and the vulnerability of
the local community affected by it (Kron, 2005). Vulnerability has been viewed from
three aspects: a community’s exposure to a crisis and its associated stress, its
inadequate coping capacity (often termed as resilience) and the consequent risks
associated with slow recovery from the event (sensitivity). This perspective thus
highlights that the most vulnerable communities are often those who are most
exposed to the event, have highest sensitivity, have the least coping capacity and
are the weakest in terms of recovery from the event (Gangwar, 2013). Vulnerability
assessment studies therefore start with understanding the interaction between the
physical, social and human systems and how these factors vary locally, i.e. the
differential exposure of people and places to natural hazards (Singh et al., 2014).
These help identify regions and communities that are at risk when hit by a hazard and
thus form part of the disaster preparedness plan. This can also help improve the flood
map inventory by providing valuable information regarding areas at high risk
(Schwarz et al., 2018).

Social vulnerability has been considered to be the most important factor that
possibly governs the resilience of the residents in overcoming a disaster’s impacts
and is measured at various scales-regional, community and individual levels, based
on indicator-specific approaches (Behanzin et al., 2015; Lixin et al., 2017). As
vulnerability mainly deals with the risk associated with the hazard, community-
based risk assessment has been the prime focus of vulnerability assessment studies,
with social vulnerability being the sole indicator in such methods. Just as flooding
depth, magnitude and duration have been considered as most important factors
affecting vulnerability in a region (Li et al., 2016), other factors like the population
distribution pattern and density of the resident community, their economic condition,
social diversity and level of innovative technology and preparedness also condition
the extent of hazard exposure and the associated vulnerability (Lixin et al., 2017).
Questions like what are the exact estimates of flood damages from previous floods
and how are they linked to hydrologic flood characteristics, whether such results can
be compared and simulated for upcoming floods of similar or higher magnitude, are
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crucial and should be properly addressed for accurate estimation of the vulnerability
of a region to flooding (Wijayanti et al., 2017).

Many studies have analysed and measured the social vulnerability to flood
hazards (Zheng et al., 2009; Rufat et al., 2015; Torok, 2018; De Silva & Kawasaki,
2018; Kirby et al., 2019; Munyai et al., 2019; Tascon-Gonzalez et al., 2020) based
on the Social Flood Vulnerability Index (FVIsocial) that is computed using various
demographic, economic and social parameters. Concepts like community resilience
and household-level preparedness have subsequently become important terms in
flood management studies. Community resilience has been denoted as the capability
of a community to cope with a disaster, the time taken by the community to come
back to normalcy after the event has passed and also the ability to learn and adapt
skilfully from the impacts of the disaster. An important aspect of community
resilience has been social responsibility (SR). FEMA, in the USA, has also denoted
personal responsibility as one of the key elements in building up a resilient commu-
nity (Soetanto et al., 2017), while household-level preparedness to combat disasters
has been considered as an important criterion in hazard preparedness research. The
consideration of the individuals’ psychological and cognitive factors, their ability to
take joint decisions in emergency situations, their economic, social and ecological
factors, their perception of a hazard and their mobility and awareness all end up
cumulatively affecting the overall hazard preparedness and can be considered crucial
in preparing management plans (Hung, 2017).

Efforts to improve flood prediction methods have led to the development of flood
simulation models that have greatly facilitated flood risk and damage assessment and
mapping, real-time flood forecasting, simulation of inundation extents and depths
and the effects of hydraulic structures in causing floods. These methods have further
moved on to incorporate floodplain and channel sediment transport mechanisms,
together with channel and catchment hydrology dynamics (Teng et al., 2017). Flood
simulation models have been widely used in disaster management, with special
emphasis on engineering designs relating to floodplain management in urban sce-
narios. These models often include rainfall-runoff estimations, modelling of the
hydrodynamics of channel and overland flow, with special inputs for sediment
transport rates and groundwater movements (Li et al., 2016). The use of hydrody-
namic models involving 1D, 2D and coupled 1D-2D methodologies to simulate flow
characteristics within the channel and the floodplains has gained popularity within
the scientific community. A critical review of the various available hydrodynamic
models used in flood modelling studies has been given by Teng et al. (2017).
Numerous studies have dealt with various hydrodynamic models like HEC-RAS
(Hussain, 2017; Ongdas et al., 2020; Ogras & Onen, 2020), LISFLOOD-FP (Sanyal
et al., 2014; Amarnath et al., 2015; Neal et al., 2018; Shustikova et al., 2019),
SRH-2D (Lavoie & Mahdi, 2017) and CCHE2D-Flow (Hasan et al., 2007;
ShahiriParsa et al., 2016; Salunkhe et al., 2018; Jia & Hunt, 2016; Ying & Wang,
2005). The HAZUS-MH flood model employs a variety of topographic and flow-
discharge data to model flood frequencies and inundation extents of big floods,
especially for wide rivers having extensive floodplains. This model is also equipped
with flood loss and damage estimation capabilities that effectively support
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management decisions. It also provides scope to calculate both direct and indirect
damages and includes special modules that can calculate both the physical and
economic losses caused due to such hazards (Scawthorn et al., 2006a). Further,
this model uses flood-depth data and depth-damage function curves which permit
rapid analysis of possible damages that can be caused to buildings and infrastruc-
tures situated close to rivers and thus allows the formulation of better flood warnings/
preparedness/insurance that can help in minimising flood vulnerabilities to a great
extent (Scawthorn et al., 2006b).

16.5 Soil Loss and Land Degradation: Estimation
and Analysis

Besides flooding, riparian zones are affected by topsoil loss and concomitant land
degradation. This can be through rill or sheet erosion or from denudation of unstable
river banks and has been considered as a most critical threat to the ecological
stability of a landscape.

Overland flow induced soil loss is the wearing away of the productive uppermost
layer of the soil that has direct implications on soil productivity, and is thus
considered as a serious cause of concern all over the world (Bekele et al., 2019).
Natural soil erosion occurs at about 0.5 ton/ha/year, which is generally quite similar
to the average soil formation rate (Roy, 2018). However, most of the present-day
soils are considered to be either in poor or in fair condition, with estimates of around
56% of them showing traces of acute soil erosion, mainly by water. The conversion
of forested lands into cultivable plots contributes significantly to soil loss with
almost 40% of the Earth’s land now devoted to agriculture (Alewell et al., 2019).
At an estimate, the total river-borne sediments debouched into oceans has risen
considerably from about 9.9 billion tons/year to almost 265 billion tons/year, mainly
as a result of agricultural and grazing activities and related anthropogenic pressures
on the land (Roy, 2018). The global average annual soil erosion rate is 12–15 tons/
ha, a number which is quite alarming (Susanti et al., 2019). This has direct bearing
on crop productivity. Approximately 90% of the nitrogen and phosphorus loss from
agricultural watersheds occurs as a result of soil erosion, which directly affects soil
fertility. Studies have shown that in the USA, the total productivity loss is around
$25 billion, with 90% of the croplands losing soil at unsustainable rates. Iowa, a
major agricultural region, has lost half of its fertile topsoil in the last 150 years,
which is still continuing at a rate of about 30 ton/ha/year (Zhang et al., 2009).
Another estimate says that around 17% reduction in crop productivity has been
noticed all over the world due to topsoil loss, particularly in African and Asian
countries, induced by the surmounting population pressure on land and its conse-
quent lack of soil conservation measures by small or marginal landholders (Bekele
et al., 2019) who farm most of the available lands. In India, soil erosion results in
further deterioration of almost 87% of the nation’s total degraded lands (Roy, 2018).
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Apart from climatic factors and the intrinsic soil characteristics, such accelerated
soil erosion is largely a product of anthropogenic interventions into natural land-
scapes through reckless vegetation clearance to promote agricultural practices, even
on poorly maintained marginal slopes, overambitious infrastructural development
projects and unscientific agricultural practices (Sobral et al., 2014). The most erosive
soils have been found in the vicinity of agricultural fields and settlement zones, while
the naturally forested soils have shown lower signs of erosion, once again indicating
the fact that most of the modern-day erosion activities have been further accentuated
by intense anthropogenic interventions in natural processes (Ergodan et al., 2007).

Soil loss and the consequent land degradation being a grievous problem, numer-
ous studies have tried to quantify the total actual soil loss and investigate the causes
behind such occurrences. Spatial soil loss and soil erosion susceptibility maps
provide a very good basis for prioritising erosion-prone zones to allow primary
land conservation measures to be properly implemented, especially in agricultural
watersheds (Gayen et al., 2019). The driving forces operative behind soil erosion
have been much researched using soil erosion models that tend to measure the
amount of soil loss along with identifying zones that have an enhanced susceptibility
to soil erosion (Benavidez et al., 2018).

Although calculating soil loss from agricultural fields has been in vogue since the
1940s, through studies in the US Corn Belt using a technique called the slope-
practice method, the classic Universal Soil Loss Equation (USLE) of Wischmeier
and Smith (1978) is the most frequently used model in predicting soil loss across
landscapes (Majhi et al., 2021). USLE estimates the long-term average soil eroded
from arable lands based on those factors that can influence erosion via rainfall events
and its consequent overland flow (Simanton et al., 1980) and uses alternative
cropping combinations and management practices based on the specific soil type,
rainfall pattern and topographic setting of the region. The USLE equation also
groups the various interrelated physical, crop management and conservation factors
that tend to influence the rate of erosion where site-specific values of each parameter
can be expressed in numeric terms. The whole database for this model has been
generated from specific farm fields and small erosion-prone regions of eastern USA
and has been designed to model rill and sheet erosion mainly from agricultural plots
under specific conditions. Soil loss tolerance values are generated, which depict the
highest allowable limit of soil erosion that may still sustain enhanced crop produc-
tivity, both economically and ecologically (Wischmeier & Smith, 1978). A number
of authors have used this model to provide an estimate of the average annual soil loss
in their examined regions (Kitahara et al., 2000; Karamage et al., 2016; Jazouli et al.,
2017; Gao et al., 2017; Bera, 2017; Roy, 2018; Botelho et al., 2018; Liu et al., 2018;
Pham et al., 2018; Marques et al., 2019).

However, this equation was primarily grounded in small agricultural plot-wise
information generated and collected from eastern USA. It was particularly framed to
estimate the possible yield of sediment from a single storm event, as measured at the
watershed outlet, based on that catchment’s runoff characteristics. It thus aimed to
make the sediment yield prediction more accurate and eliminate the requirement of
delivery ratios (Arekhi et al., 2012). Thus its application in other regions needs case-
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specific modifications to the original parameters stated and relationships used. This
becomes one of the major drawbacks of the model, especially where it has failed to
properly estimate soil loss rates for larger watersheds. The basic premises of the
original model assumed that from small watersheds the soil loss would match the
sediment yield and thus the sediment delivery ratio would be unity, which seldom
happens in real cases. The inconsistencies related to the prediction of sediment yield
as obtained from the sediment delivery ratios often vary spatially and can lead to
erroneous results in some scenarios. It was also stated that the soil erodibility
nomograph would provide representative K values for every soil type, which again
does not always fit properly in every region (Simanton et al., 1980), as was shown by
testing its validity for estimating erosion amounts from ultisols in Brazil in compar-
ison to that measured by direct field methods (Cassol et al., 2018). This model also
cannot predict deposition rates or sediment delivery rates and yields separately
resulting from gully, streambed and stream bank erosion (Wischmeier & Smith,
1978).

The Revised Universal Soil Loss Equation (RUSLE) was a modification of the
USLE model to incorporate methods developed after 1978 and to address sediment
transport and deposition rates associated with concentrated flows and ponded areas
along with inter-rill and rill erosion (Lin & Wang, 2006; Guabi et al., 2016;
Gianinetto et al., 2019). The RUSLE also specially addresses the R-factor (rain-
fall-runoff erosivity) and the K-factor (soil erodibility) (McCool et al., 1995).
MUSLE is a further modification of the RUSLE which substitutes the rainfall energy
using a runoff factor to make the sediment yield prediction more accurate by
eliminating delivery ratios. This then allows the equation to be used to gauge the
effects of singular storms (Sadeghi et al., 2014). This runoff coefficient is calculated
from the Curve Number (CN) method while the peak discharge is computed from the
graphical peak discharge calculation method. The ArcMUSLE toolset, an extension
of ArcGIS, suitably predicts soil loss from a particular rainfall event and also
prioritises suitable soil erosion areas so that better soil conservation methods can
be employed for this purpose (Zhang et al., 2009).

The revaluation of factors like soil factors and cropping practices and land
management norms/methods on runoff characteristics have led to the construction
of the USLE-M model, a refined form of the USLE, through explicit consideration of
the parameters like rainfall erosivity, soil erodibility and crop management. The new
model has refined the K and C values by 1.4–3.9 times and 1.0–32.3 times,
respectively, with the result that the final model can now predict soil loss more
precisely than the original version. This model can further effectively measure soil
loss from impervious conditions (Kinnell & Risse, 1998). MUSLE has successfully
and accurately predicted sediment yield from numerous diverse watersheds across
the world, e.g. from the Kengir watershed in Iran (Arekhi et al., 2012), with high
precision results being obtained by the authors when they compared the model
generated values with the actual observed ones. Annual soil loss estimates were
calculated for the Dwarka and Brahmani river interfluves near the Rajmahal Traps
using a combination of USLE and the MMF (Morgan and Morgan and Finney)
method to judge the efficacy of both methods in predicting soil loss. While the
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traditional USLE has been considered as a benchmark technique in estimating soil
loss, the MMFmethod addresses more detailed internal and external soil loss factors,
while incorporating separately the water erosion and sediment removal phases
(Ghosh & Guchhait, 2012).

Similar other models estimating soil loss include Water Erosion Prediction
Project (WEPP, Flanagan et al., 2001; Amore et al., 2004; Shen et al., 2009; Landi
et al., 2011; Han et al., 2016; Effendy et al., 2019), Chemicals, Runoff and Erosion
from Agricultural Management Systems (CREAMS) Model (Knisel, 1980) and the
Soil and Water Analysis Tool (SWAT, Tibebe & Bewket, 2011; Moshabi et al.,
2012; Dutta & Sen, 2017; Melaku et al., 2018; Abbaspour et al., 2019; Hussain et al.,
2019; Briak et al., 2019). A very succinct review of the USLE and its various revised
and modified versions such as RUSLE, MUSLE and other soil erosion prediction
models has been provided in the previously/aforementioned studies, while critically
analysing the various sub-factors used in the equations, their strengths and limita-
tions in their applicability in various climatic regions and the uncertainties associated
with them (for the USLE’s applicability and use in the Indian context, see Majhi
et al., 2021). Several recommendations have also been provided by the authors
indicating their future potentials in using such models (Avwunudiogba & Hudson,
2014; Igwe et al., 2017; Benavidez et al., 2018).

16.6 Riverbank Erosion Hazard: Measurement
and Simulation

Soil removal due to bank erosion/failure is another natural geomorphic process by
which rivers tend to shape their morphological pattern and behaviour and transport
sediments from their upper catchments towards their lower courses (Bordoloi et al.,
2020). It has been considered as a desirable attribute in rivers that creates dynamic
habitats for riparian communities by promoting riparian vegetation succession and is
thus crucial for river ecosystem functions. The various desirable attributes of bank
erosion as a natural process have been succinctly explained by Florsheim et al.
(2008). However, certain river management programmes, while apparently promot-
ing landscape and economic stability, have accelerated this natural process to an
extent where it has been increasingly termed as an environmental hazard associated
with accelerated vertical bank instability and active meander migration (Thorne,
1992).

Eroding streambanks are the single main provider of sediments in channels,
approximately contributing around 80% of the total load (Mandal, 2017), although
this rate varies as a function of channel geometry and time (Thorne, 1992). Streams
with unstable banklines and profiles and beside farmlands that have limited or no
riparian vegetation often become the prime sites for erosion, which become more
active during the monsoon season. Increased streambank erosion is considered as a
major cause of non-point pollution in rivers, contributing to an increased sediment
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load into the channel and thereby decreasing the water quality. Rosgen (2001)
further identified that accelerated stream bank erosion often destabilised the stream
by changing its major stream type (Ramirez-Avila et al., 2010), resulting in its
planform metamorphosing.

Over the years, understanding the processes and mechanisms involved in bank
erosion and the rates at which they occur has become fundamental to any bank
erosion assessment study. The processes of sediment accretion and degradation and
lateral shifting of bank lines as a result of erosion have also been studied because
these processes contribute to channel instability in addition to contributing sediment
into the channel while causing the destruction of arable lands and valuable floodplain
resources along major streams (Lovric & Tosic, 2016). Bank erosion has thus been
treated as a hazard which is not easily diagnosed in the field, yet its analysis and
prediction are considered vital towards predicting long-term channel stability (NRCS
USDA, 2009). Identifying the factors of vertical and lateral channel instability, their
relation to bank retreat, the active dominant erosive processes, the bank geotechnical
and morphological characteristics and the major bank failure mechanisms are the
key concerns that need to be addressed in any bank erosion assessment study
(Thorne, 1992).

Although instability in some river channels can be inherent due to the basic nature
of the fluvial system or tectonic history of the region, the stability of a streambank is
said to be a direct function of channel and flow characteristics and the composition of
the bank material. A number of natural factors have been identified as affecting
streambank erosion, most important amongst which are the pre-storm soil moisture
conditions and nature of storm event, flow characteristics of the channel, bank and
channel geometry, bank material composition, stream power and the curvature of the
meander bend (Islam, 2008). Recent bank failure mechanisms have however seen a
heavy impact of human-induced causes like removal of riparian vegetation (Heeren
et al., 2012), increasing imperviousness leading to soil compaction and lesser
infiltration and trampling by livestock and vehicles (Watson & Basher, 2006).
Globally relevant bank erosion coefficients framed by Hasegawa (1989) identified
this process as a function of cross-sectional mean velocity while others have
associated bank erosion rate with the geotechnical nature of the bank substrate and
the effect of channel hydraulics. Duan (2005) used a deterministic method to
quantify the basal erosion rate by predicting bank failure, which varies according
to the effects of hydraulic force and the bank geometry and material, through derived
analytical equations.

Bank failure occurs by the dual acts of entrainment and basal erosion coupled
with mass wasting, the former as a result of hydraulic force, while the latter is a result
of gravity (Coryat, 2014). Hydraulic forces, at or below the water surface, scour and
entrain sediments and directly cause erosion of mostly non-cohesive materials
through the processes of toe undercutting, basal clean out and bed degradation
(Watson & Basher, 2006). The hydraulic tractive force on exceeding the critical
shear stress of the bank material causes it to fail, and this is usually accelerated by a
lack of riparian vegetation and persistent high boundary velocities (NRCS USDA,
2009). Thus the erodibility of the bank material and its shear strength, i.e. the ability
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of the material to withstand gravitational forces, are considered as important param-
eters while assessing bank erosion rates (Thorne, 1981).

The second process (i.e. mass wasting) includes mass failure mechanisms which
tend to detach sediments mostly from cohesive banks under the influence of gravity
and make those sediments available for fluvial transport. These processes mainly
include shallow and rotational failures, cantilever and piping failures along the
vertical bank face (Watson & Basher, 2006). This is related to the bank geotechnical
character and depends on the ambient or antecedent soil moisture condition. The soil
moisture amount affects the bank’s ability to withstand stresses, and thus geotech-
nical failures occur, often as a result of bank toe scouring and undercutting and
the consequent mass failure (NRCS USDA, 2009). Seepage or piping, a lesser
known process, also sometimes contributes to bank erosion. Seepage at the bank
toe results in toe undercutting, which makes the entire vertical section of the bank
prone to mass failure (Coryat, 2014). The above two processes are frequently
interlinked and often work in conjunction, with the incident hydraulic forces being
the precursor to gravitational failures (Watson & Basher, 2006).

Quantification methods of bank erosion rates are classified into two broad groups:
in situ methods and remote sensing methods. Traditional in situ methods are mostly
field intensive techniques requiring detailed data on channel morphology and
banklines, typically involving the use of survey instruments. These are short-term
studies involving a smaller portion of a stream reach that can be investigated by
repeat topographic profiling with much more precision and accuracy but is not
always time and cost-effective (Watson & Basher, 2006). Also, since erosive
banks are not evenly distributed in space and largely vary with respect to time,
channel planform repeat surveys are not usually adequate in picking up the temporal
and spatial variations, and thus erosion pins have been widely used as an alternative
to this. First used by Wolman (1959), several studies have used erosion pins to
successfully estimate bank erosion rates. However, in rivers where the bank is not
dominated by alluvial material, erosion pins do not always provide the desired
results (Thorne, 1981). Moreover, these are comparatively difficult to install at
sites that have high banks and often tend to loosen and impact vertical bank profiles
wherever there is coarse material. Complete loss or burial of erosion pins can also
occur at sites where rotational mass failure processes are dominant (Watson &
Basher, 2006).

Sedimentological and botanical evidences have also been employed to quantify
rates of bank erosion in long-term studies (decadal or longer). Chronologies of
historical alluvial deposition help in reconstructing the history of river activity
based on the types of river deposits, their age and spatial distribution. This process
is mainly done to record histories dating back to more than 50 years and can be
effectively used to reconstruct the major channel pattern and floodplain evolution
and the changing nature of land use in the recent past (Watson & Basher, 2006). A
continuous monitoring of turbidity and event sampling of suspended sediment in a
particular river reach can also provide valuable insights into the volume of material
lost to bank failure.
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Geospatial techniques, using remote sensing, on the other hand are a compara-
tively recent method which has contributed markedly to bank assessment studies.
The ability of remote sensing techniques to capture large amounts of information,
over a large temporal extent, has further helped in precisely quantifying the rates of
erosion and the volume of eroded materials (Lovric & Tosic, 2016). Satellite remote
sensing also has the advantage of providing a synoptic view of a large area which
allows easy detection of changes occurring along channel banklines (Bordoloi et al.,
2020). These methods have four main characteristics, frequency, extent, precision
and resolution, and thus a diverse variety of aim-specific methods have been
formulated (Duro et al., 2018). Aerial photographs and historical imageries available
over a greater period of time can provide reliable information on the extent of bank
migration and bank profile development. However, it has often been argued that
historical maps and aerial photographs do not always provide the detailed measure-
ments and insight into the actual fluvial processes which are at play, as obtained from
on-site surveys and thus these two methods have been considered as complimentary
and not always necessarily alternatives. Rather an integration of these two methods
would provide a better insight into the actual bank erosion process and rate under
consideration (Thorne, 1981). A much more recent technique, i.e. Structure-from-
Motion photogrammetry (SfM), is now being used quite frequently to measure bank
erosion rates and surface erosion (Patel et al., 2020b). This has evolved as a cost-
effective measure of quantifying bank retreat and for identifying the major processes
acting behind erosion, although the failure surface needs to be devoid of vegetation
and the channel must have low water levels to properly capture the photographs
(Duro et al., 2018).

Channel stability assessment protocols are often used to assess bank condition
and stability, because they are rapid, are easy to use and provide useful information
regarding bank conditions. Rapid Geomorphic Assessment Protocols (RGA) are
used to characterise stream reaches with homogenous streambank characteristics,
based on the Channel Stability Index (CSI), which is a metric score based on a
number of parameters like bed material, bank geometry, channel evolution phase,
percentage of channel constriction, meander geometry and fluvial erosion processes.
Stream reaches are easily categorised into suitable classes of instability based on
their metric score. Such methodologies have been adopted for the Barren Fork and
Spavinaw Creeks and later been collated into the Oklahoma Streambank Erosion
Potential Index (OSEPI) to fix the existing protocol into ecoregion-specific terms for
large streams of the region (Heeren et al., 2012). The Australian River Assessment
System (AUSRIVAS) has a special module and scoring matrices for bank erosion
and stability module. The SEDNET framework (also developed for Australia) pre-
dicts the bank retreat rate based on bankfull discharge and uses empirical equations
to calculate erosion rates (Watson & Basher, 2006). Conversely, the Stream Bank
and Bed Stability Assessment Protocol assesses channel stability by identifying
areas along channel reaches that are most severely affected by erosion and are at
the greatest risk of future failure based on parameters like bed and bank material,
bank slope and vegetation coverage and the amount of active bed and bank erosion,
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providing a final score that would necessarily be the initial step for restoration
projects (Sholtes & Giordanengo, 2014).

The Bank Assessment for Non-point source Consequences of Sediment
(BANCS), developed by Rosgen (2001), uses the Bank Erosion Hazard Index
(BEHI) and Near Bank Stress (NBS) to demarcate potential erosion zones (Kwan
& Swanson, 2014). This process-integration approach using rational estimation
quantifies and predicts stream bank erosion rates through intensive field surveys
and empirically derived relationships (Rosgen, 2001). It is a multimetric semi-
quantitative index for quantifying the potentiality of bank erosion of unstable
streams (Simpson et al., 2014). The BEHI parameters are a combination of visual
assessments and measured field indices that together determine a bank’s suscepti-
bility to erosion (Sass & Keane, 2012). The estimated variables include bank-height
ratio, weighted root density, root-depth ratio, surface protection, stream bank angle,
stream bank material and its stratification, whereas, for the quantification of NBS,
there are five methods for general prediction, and two methods for detailed predic-
tion (Rosgen, 1996). Some examples of places where this technique has been
employed are the Stony Clove watershed in the Catskills Mountains (Coryat,
2014) and along the River Ganga upstream of the Farakka Barrage in West Bengal
(Mandal, 2017).

Another most commonly used model for bank failure assessment prediction and
stabilization is the Bank Stability and Toe Erosion Model (BSTEM), from USDA-
ARS (US Department of Agriculture-Agricultural Research Service) (Simon et al.,
1999). It contains two components: modules for Bank Stability and Toe Erosion. To
assess bank stability, it combines and simulates three Limit Equilibrium Methods:
horizontal layers, vertical slices for failure blocks having tension crack and cantile-
ver failure. The horizontal layer method accounts for the vertical heterogeneity of
bank materials and divides the bank profile into layers of distinct geotechnical
character. These are user-input layers depending on the riverbank characteristics.
Along the vertical slices, the shear and normal forces active in the failure block
segments are evaluated. Failure blocks having tension cracks are generally analysed
by this method. The cantilever failure algorithm is a further modification of the
CONCEPTS model (Langendoen, 2011; Langendoen, 2011), simulating incised
stream evolution and reduces sediment yield for long-term stream rehabilitation
and management. Combining these three algorithms, the model generates a numer-
ical value called the Factor of Safety (FoS). The value is a ratio of the driving and the
resisting forces along a potential failure plane, where the driving forces include tall
bank height, steep bank angle and non-cohesive materials while the resisting forces
are low bank height, surface protection, gentle bank angle and presence of cohesive
materials. The factors which influence bank stability are effective internal angle of
friction, matric suction force or pore water pressure, effective cohesion and the bank
slope. This model also includes a RipRoot component, which explains the effec-
tiveness of vegetation in providing slope stability. The BSTEMmodel has been used
to evaluate soil erosion in the sub-watersheds of the Ganetti station in Sudan using
the Sediment Transport Index (STI) (Kheiralla & Siddeg, 2015).
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The use of modelling techniques has further refined such studies, with the devised
algorithms typically ranging from empirical equations to process-based approaches.
Prevalent are some catchment-based erosion models like RIVERMorph (Klavon
et al., 2016), SRH-2D (Lai, 2017) and MIKE-21C(Nikhil et al., 2019), which have
special modules and are trained to estimate and predict sediment routing and
transportation rates, bed and bank erosion and soil loss from watersheds. The use
of 2D mathematical models to predict bank erosion rates depending on local channel
geometry, flow and sediment pattern and distribution has also become common in
the last decade (Islam, 2008). However, more process-based models are focused on
incorporating both gravitational and hydraulic failure mechanisms into the analysis
to arrive at the erosion rate. The GRAF model predicts erosion based on historical
channel change and flood information where the probability of bank erosion is
directly related to the flood magnitude and inversely so to the upstream and lateral
distance from a channel (Watson & Basher, 2006).

16.7 Sand Mining and Channel Instabilities: Mapping
and Impacts

Another human-made hazard having far reaching implications on the channel and its
riparian areas is sand excavation and mining. Sand mining is the removal of sands
(loose or consolidated) from the foreshore regions of rivers, lakes and oceans and
including from their beds (Mukerji, 2016). It is practised both mechanically and
manually. Manual methods of mining are considered to be more eco-friendly as
these are more localised phenomena, carried out on a much smaller-scale and the
volume of extracted sand is also quite low. This type of mining is essentially
practised in the smaller river basins where the quantity of available sand is often
low. Mechanical mining, on the other hand, especially when practised on a large-
scale commercially, is what causes environmental degradation by altering riverine
ecosystem functions and balance. High-powered jet pumps, draglines and hydraulic
excavators are generally used in this type of mining.

Commercial extraction of sand from rivers and riparian zones occurs worldwide
and is one of the most profitable enterprises because this industry seldom projects/
gauges itself in any EIA or cost-benefit scenario (Kondolf, 1994). Worldwide, sand
is the next most extracted natural resource after freshwater and is the most traded
commodity in terms of weight. 85% of the global mining activity has been sand and
gravel, which is largely used in the construction industry and glass, ceramics and
electronic industries. Globally, the total volume of sand extracted per year is
estimated to be around 40 billion tonnes, out of which only 15 billion has been
stated as legally traded (UNEP, 2019). China’s Poyang Lake has been the world’s
largest sand mine with a staggering 236 million cubic meters per year yield.
Singapore has emerged as the biggest importer of sand in recent times to meet up
its over-ambitious land reclamation projects (Mahadevan, 2019).
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Sand mining in India also has a long history, with the industry booming since the
1990s (in the post-economic reforms phase that has ushered in marked growth in real
estate and urbanisation in the country) and has been widespread across all the major
river basins in India (Padmalal & Maya, 2014; Mukerji, 2016). It has been consid-
ered as a disorganised crime in a growing economy like India and is thought to be a
problem of large but unknown proportions. With a tripling in the demand for sand
from 2000 to 2017 and a total market worth of 150 billion rupees, India houses the
third-biggest construction sector globally, accounting for 9% of its economy and
employing over 35 million people. Extraction of sand from river beds did not pose a
problem in the past since it was considered that natural process would replenish the
voids created by mining. But the real problem is the scale at which it occurs. To meet
up the growing demand, illicit sand mining often occurs at rates that are beyond the
capacity of the natural process to replenish the same. In recent times, there is
possibly no river in India that has not been affected by illegal sand mining activities
(Padmalal & Maya, 2014). It is said to be practised in more or less every state in
India, with 22 out of 29 provinces reporting illegal sand mining and the prevalence
of sand mafias that run this industry. According to one estimate, a single river in
Kerala was reported to have been mined for sand at a rate 40 times greater than the
natural rate of replenishment, while the highest rates of extraction have been seen to
be in the vicinity of Kochi city, one of the most industrialised and urbanised cities in
the country (Mahadevan, 2019). The Palar and Vaigai rivers in Tamil Nadu; the
Periyar and Bharatapuzha rivers in Kerala; the Yamuna, Ganga and Ghaghar rivers
in the National Capital Territory; the Narmada in Madhya Pradesh; and the Damo-
dar, Mahanadi, Darakeswar and Kangsabati in West Bengal are examples where
extensive illegal sand mining activities occur. The Tawa River, which is Narmada’s
tributary, has been known to change its course due to extensive mining activities,
frequently breaching its banks and causing massive floods (Mukerji, 2016). The
Irrigation andWaterways Department inWest Bengal has identified around 248 min-
ing sites around the state that are operated by sand mafias practising illegal mining
along the major rivers of Rarh Bengal (Ghosh et al., 2016). A detailed state-wise
report on the mining activities in different rivers in India has been documented by
Kelkar (2016), along with the mentioning of different government acts of omissions
and commissions to control and regulate illegal excavation of sand from riverbeds.

River aggregate mining (Koehnken et al., 2020) has been categorised into three
groups: in-stream or wet mining, i.e. excavating directly from the flowing channel
with materials collected from either the main channel or from the edges of the rivers;
dry mining, i.e. collection of sand from either the floodplains, terraces or from the
dry exposed channel margin or from ephemeral streams that are dry for a greater part
of the year; and bar skimming or bar scalping which involves raking away of sand
from the upper layers of the sand bars, often up to varying depths (Koehnken &
Rintoul, 2018). In-stream sand mining occurs from a number of geomorphic river
units like sand bars, point bars and the active channel itself. It requires less
processing and is the most common type of mining activity prevalent in recent
times. Bar skimming or scalping refers to the process of removing the top layer of
sand to smoothen the irregularities present on the uppermost layers of the bar,
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without hollowing out the surface to beneath the water level in summer. To maintain
the hydraulic control prevailing in the upstream of the bar, the most preferred bar
skimming technique involves scalping the remaining two-thirds portion of the bar
along its downstream end and leaving the uppermost one-third portion intact
(Kondolf, 1994). Wet pit channel mining involves sand extraction from dry ephem-
eral stream beds below the alluvial ground water table. Such type of mining activities
often require the use of draglines or hydraulic excavators to dig out sand from below
the water line (Ghosh et al., 2016). Both pit excavation and bar skimming affect the
channel morphology, with the first one leading to an increase in the channel depth
and the latter causing an increase in the channel width. Both these processes lead to
slower flow velocities and consequent slow energy gradients at the mining sites,
creating a situation where the normal flow becomes devoid of required sediments
and therefore tends to pick up more sediment from the downstream segments
causing a “hungry water effect” (Kondolf, 1997; Graviletea, 2017).

Sand mining is known to disturb channel equilibrium through the interception of
the sediment load that moves along such a dynamic system and thus triggers
morphologic responses, inducing channel instability. Changes in bed forms are by
far the most obvious and direct alterations caused by massive sand mining activities.
Even though it remains confined to limited areas within the channel bed, it triggers
bed and bank erosion which increases the sediment load in channels (DID, 2009).
Bed degradation is the most distinguishable effect of sand mining and occurs
primarily through the processes of headward cutting and hungry water effect. Sand
excavation from within the channel increases the channel depth, which creates local
knick points that steepen channel slopes and increase erosion. Such knick points
during high flows migrate upstream through headward erosion, thereby increasing
the sediment volume in the downstream sections. The channel cross-sectional
characteristics and planform geometry also undergo modification due to sand min-
ing. Bed deepening from channel incision becomes apparent through cross-sectional
modification of the channel. Furthermore, rivers have “long memories,” with chan-
nel adjustments due to sand extractions being realised at a much later date even after
the activity has ceased to occur (Kondolf, 1998). Large-scale sand mining from
alluvial rivers has led to irrevocable changes in fluvial systems, and this has still
continued unabated, as the geomorphic and hydrologic effects of such activities
often manifest itself at a later stage during events of high flows. Impacts of sand
mining have been classified as on-site and off-site impacts (Madyise, 2013). While
the on-site impacts are directly related to channel and floodplain modifications, the
off-site changes are mostly related to the transportation of the excavated materials
and pollution-related aspects. Although sand mining is sometimes said to have
positive impacts, which reduces river flooding by deepening and widening channel
courses that provides more lateral space to a channel and also increases its carrying
capacity, the negative impacts associated with channel instability outnumbers its
positive impacts (Nandakumaran et al., 2014).

Indiscriminate and unscientific sand mining activities in the alluvial reaches of the
River Damodar have brought about changes in thalweg dynamics and river plan-
form, instability of river bars, bank erosion, changes in riffle-pool sequences and
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channel bifurcation (Ghosh et al., 2016). Mergers of nearby pits during the mon-
soonal flows often lower the bed at a much faster rate, thereby causing channel
instability and bank erosion problems. Studies from across the world have
highlighted how such channel instability has been engendered and perpetuated.
The Cheney Creek in the US experienced a bed lowering of almost 4.9 m while a
Russian channel near Healdsburg incised on average over 3 m within a stretch of
only 11 km, with this rising up to 6 m in some spots. The seven rivers flowing into
Kerala’s Vembanad Lake have reported around 12 million tonnes of sand being
removed in a single year, resulting in the average lowering of the river beds by
7–15 cm/year (Padmalal et al., 2008). The Periyar River, considered as the lifeline of
Kochi city, has witnessed a maximum bed lowering rate of 19 cm/year and is still
now exhibiting continuous bed lowering due to relentless mining activities (Mukerji,
2016). The Balason River in the vicinity of the Siliguri in West Bengal has seen a
steady rise in the volume of sand extracted from the river during 2002–2010, with
clear signs of channel incision and fluctuations in water levels measured across the
Matigara Bridge on this river. Government reports have suggested that within
20 years the river bed level has been lowered by approximately 1.3 m, i.e. 7 cm/
year on an average (Wiejaczka et al., 2018). In certain instances, the removal of the
coarser layer from the bar top had exposed the finer sediment layer below, which was
then mobilised even at lower flows, causing destruction of the entire sand bar and
resulting in altering the hydrodynamic regime of the river. Creation of new pools,
elongation of existing pools and destruction of riffles are amongst the common
morphological impacts of such mining (Koehnken & Rintoul, 2018).

Another noted impact of such sand mining is the loss of in-stream and riparian
species and the overall degradation of the riparian habitat. Natural rivers are blessed
with a unique assemblage of in-stream and floodplain biota that helps in maintaining
the ecological balance in riverine ecosystems (Sheeba, 2009). Sand mining affects
stream biota through sequential changes in the biological, physical and chemical
constituents of flowing water. The selective removal of finer sand particles and their
deposition in other sections of the channel also alter the natural habitat of certain
in-stream organisms, which greatly affect their taxonomic diversity and bring about
ecological changes in the entire system. Sand mining induces channel widening,
which shallows down the river forming braided river flows that further affect the
movement of fishes in the pool sections of the channel (Pitchaiah, 2017). Indiscrim-
inate sand mining from alluvial reaches also alters sediment size characteristics in
rivers, as seen in the Manimala and Muvattupuzha Rivers in South India (Padmalal
& Maya, 2014).

Physical habitat degradation and impairment of food-web sequential functions
have also been reported for some rivers due to this anthropogenic activity. Changes
in channel morphology and sediment characteristics adversely affect fish and other
benthic communities as well as the three-tier vegetation gradient in rivers. A high
level of turbidity due to excess sediments in the stagnated pools prevents photosyn-
thetic activities of in-stream organisms and adversely affects planktonic and benthic
growth in channels, causing destabilisation of the food and energy transfer
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mechanisms that are important for their survival (as was reported by Prabhakar et al.
(2019) from the River Ganga in Bihar). The environmental and ecological ramifi-
cations of sand mining along the Ithikkara River in Kerala were a considerable
decline in its fish population due to loss of breeding and feeding grounds, due to
depletion of the detritus which serves as the common food for such organisms
(Sheeba, 2009). It also provides suitable bottom substrate for various benthic
organisms along with facilitating favourable environmental conditions for spawning,
breeding and movement of fishes across river channels. Sand excavation often to the
extent of exposing the underlying hard rock has also led to the complete disappear-
ance ofWallago attu, a common species that once flourished abundantly in that river
(Sheeba, 2009).

A significant alteration in the stream biota along with the water quality has been
noticed along the middle course of the Kangsabati River in the vicinity of its sand
mining sites as compared to the upper and lower courses, where mining activities are
rare. Increased turbidity and reduction in fish species (as much as 80% for some
species) have been reported by Bhattacharya (2018) for this area. The Habitat
Suitability Index (HSI) was used to quantify habitat fragmentation and degradation
and loss of species abundance and diversity for this river (Bhattacharya & Chatter-
jee, 2016; Bhattacharya et al., 2019a). Indicators like pH, TDS, DO, salinity,
turbidity and electrical conductivity were used to assess the water quality, and then
its impact on the in-stream biota was measured using the Simpson’s Index of
Diversity, Simpson’s Reciprocal Index, Shannon’s Diversity Index and Pielou’s
Evenness Index, all of which indicated that a deterioration in the water quality due
to increased sand mining activities engendered changes in species richness, diversity
and overall ecological instability in the landscape (Bhattacharya et al., 2019b).

Creation of access roads to support mining activities has caused fragmentation of
forested riparian zones along stretches of France’s Lower Eygues River (Kondolf
et al., 2007). Kondolf (1994) also observed an increase in the water temperature in
pockets where flow velocities were lower as a result of channel widening. Such
increased water temperatures often cause changes in the habitat structure due to
lower DO concentrations and an increase in toxic pollutants like heavy metals,
insecticides, pesticides and other natural toxicants (Koehnken & Rintoul, 2018). A
decline in the growth rate of a perennial grass species which usually thrives on the
exposed dry bed of River Darakeshwar in West Bengal during the post-monsoon
season was observed followed by a changing channel pattern in terms of river
deepening due to excessive wet mining activities directly from the channel bed
(Sinha, 2016).

Another notable impact of sand mining is the lowering of ground water table
(Padmalal et al., 2008). Not only do they act as aquifer systems storing groundwater,
but also act as filters to various kinds of pollutants, thus improving water quality and
maintaining ecosystem health. In alluvial channels, as the banks are drained to the
river level, increased channel incision would cause lowering of ground water tables
and affect the water supply in nearby wells and tubewells (Sreebha & Padmalal,
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2011). Another widely documented impact of a lowered water table is the degrada-
tion of the adjacent riparian/floodplain vegetation as and when the water level goes
beneath their root zone. A lowered water table also induces ecological changes
through the loss of hyporheic habitats through dewatering of adjacent river banks
(Koehnken et al., 2020). Baseflow in channels is also lowered as a result of
decreased water table that brings about instability in the hydrologic and ecologic
regime of a stream (Oude Essink, 2001).

Measuring and quantifying the above-noted impacts of sand mining are quite
difficult, while the total volume of sediment that is actually being mined seldom gets
documented. River cross-sectional profiling and morphological changes are quanti-
fied using different field survey techniques, while the areas affected by mining are
measured by geospatial techniques. In recent times, the development of hydraulic
and sediment transport models can gauge the possible sand deposition rate and their
particular flow direction. This has been done in the downstream segments of the
Selangor River in Malaysia using the HEC-RAS 1D model. It could also predict the
maximum depth up to which sand excavation should be permitted and allowed in a
river to maintain channel stability. The maximum allowable mining depth as
predicted by the model was up to 1.5 m above the natural channel thalweg (Asraf
et al., 2011).

16.8 Overview of Methods in Riparian Zone Hazard
Assessment

The above sections have outlined in detail some of the major hazards (both natural/
environmental and societal/human induced) that affect riparian zones along streams.
We have also delved into some of the methods that are used to examine these
hazards. Taking a selection of the papers considered in this study, word clouds
(Fig.16.1) have been prepared for each of the four main hazard types—riverbank
erosion, soil erosion from overland flow/runoff, floods (including the flood suscep-
tibility and flood vulnerability aspect) and sand mining—taking the selected paper
titles and their respectively mentioned keywords. In each case, the preponderance of
geospatial methods to gauge the extent and severity of these hazards is quite
apparent, with these methods being more extensively used for the analysis of floods
(quite a few studies in this domain have used the AHP method) and soil loss
mapping/estimation (USLE (along with its variations) and SWAT models) than in
other cases. The riverbank erosion aspect is mostly examined based on developing
combined field and geospatial data-based indices to enumerate the channel bankline
changes (e.g. the BEHI-NBS-BANCS method) while a dearth of any such over-
whelmingly apparent technical investigative method was seen in case of the sand
mining hazard, denoting the relatively lesser amount of studies that have examined
this aspect. Thus, possibly there is much greater scope for developing holistic
investigative methods in this domain that considers the physical alteration of the
stream’s morphological aspects along with the changes wrought about in the ambi-
ent riparian ecological character and attributes.
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Our other investigation into the temporal prevalence of studies that have exam-
ined the above four main hazards (Fig. 16.2) also reveals the over-dominance of
studies looking to soil loss and soil erosion, followed by the studies of the impact of
floods (flood hazard and its related aspects of inundation preparedness and flood risk/
vulnerability/susceptibility). This analysis uses the dataset available in the Google
Ngram viewer, and as such only the present texts between the years 1900 and 2012
were examined in respect of the frequency of occurrence of some key phrases. It is
therefore quite logical that geospatial models developed to gauge the soil loss from
catchments (USLE and its modifications—RUSLE, MUSLE) should rank highest
followed by flood simulation and bank erosion analysis methods. What the diagrams
reveal too is that there has been a growing focus on studies that look into the riparian
zone and river ecology and not just into the physical character of the stream.

16.9 Conclusion

With the ever-increasing human pressure on riparian zones, continuous degradation
of riparian health has been seen to occur across the major river basins of the world.
Indiscriminate felling of riparian vegetation to make space for agricultural lands,
extensive river channelization programmes, illegal and massive sand excavation

Fig. 16.1 Word clouds prepared for the different hazards examined based on select references in
this paper and their keywords, for (a) riverbank erosion, (b) soil loss and erosion, (c) flood hazard,
including flood susceptibility and vulnerability, and (d) sand mining effect on river channels and
riparian zones
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practices, rapid expansion of infrastructural developments mainly along the major
river catchments and faulty and unscientific agricultural practices all have led to
enhanced channel instability and resultant loss of valuable riparian tracts. With the
advancement of scientific technologies aided by a myriad of geospatial techniques,
the quantification of such hazards have become easier, but their proper management
and mitigation still remains a problem, especially in poorly resourced developing
nations wherein these hazards are an annual menace. In developing nations like
India, often the riparian health is compensated to make way for hard engineering
structures to manage these hazards. The ensuing loss of channel-floodplain linkages
and the consequent fragmentation of the riparian habitat and impairment of riparian

Fig. 16.2 Frequency of key phrase in the examined texts in Google Ngram—(a) different hazards
and aspects without considering the soil erosion hazard, (b) including the soil erosion aspect, which
shows its marked dominance in hazard studies, and (c) the preponderance of soil loss estimation
models in the examined literature
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biodiversity have been identified as some of the most crucial riparian health hazards
noticeable amongst Indian rivers. Flooding and increased bank erosion problems that
cause loss of arable land is another recognised problem. Especially the latter is
markedly accentuated by exploitative sand mining activities that not only make the
channel more unstable but also put at risk the entire riparian ecosystem. Compared to
the traditional and long undertaken studies on soil loss, riverbank erosion and flood
hazards, examinations of sand mining activities have received comparatively lesser
attention, with a dearth of investigative frameworks and guidelines on the same.
Further studies in this domain are thus pertinent. It is also paramount that in all such
hazard modelling investigations of riparian zones and river components, the ecolog-
ical aspect and connectivity issues be incorporated, in order to better gauge the
impacts of such disturbances on the entirety of the lotic environment.
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Chapter 17
Village Level Landslide Probability
Analysis Based on Weighted Sum Method
of Multi-Criteria Decision-Making Process
of Darjeeling Himalaya, West Bengal, India

Santanu Samanta, Jyotibrata Chakraborty , and Subrata B. Dutta

Abstract The Himalayan mountains are highly prone to landslides, and every year
a multitude of slide events take place along its entire ranges. Darjeeling Himalayan
region of West Bengal is not an exception and also highly prone to landslides. In the
Darjeeling Himalayan extents, landslides are the major threat to the lives and
properties of the people and also hamper the connectivity and commerce of the
region aggravating lopsided development and poor economic condition. Consider-
ing the magnitude of landslide frequency and its extremities, this study aims to
develop a landslide probability index (LPI) for the projection of landslide probabil-
ities at the village level. The proposed methodology of the LPI is based on the
weighted sum method of multi-criteria decision-making processes that involve eight
explicitly localised proxy/indicator quantitative analysis, normalisation and weight
assignment. The result of the derived LPI is divided into 4 distinct classes, viz.
(a) very high landslide probability class comprising 45 villages, (b) high landslide
probability class consists of 138 villages, (c) moderate landslide probability class
includes 109 villages and (d) 56 villages are in low landslide probability class. It is
evident from the study that the nature of landslide phenomenon is resulting from the
interaction of contributing physical indicators, i.e. fragile lithology shares 34.58% in
the radar diagram as the prime contributor of landslides in the DHR followed by
drainage density at 17.91% and high degree of slope at 14.77%, and identification of
such drivers of landslide probability can also be used in developing targeted adap-
tation planning and interventions.
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17.1 Introduction

The Himalayan mountains are highly prone to landslides. Landslides are simply
defined as the movement of the mass of dislodged rock, debris or earth materials
down a slope including a broad range of motions whereby falling, sliding and
flowing under the influence of gravity (Mandal & Maiti, 2014). Basically, landslide
is nothing but a complex and systematic interaction between sets of physical and
manmade factors governed by geologic, hydrologic, climatic, geomorphic and land
use attributes (Wilson & Keefer, 1985). Every year a multitude of slide events takes
place along the entire Himalayan ranges. Darjeeling Himalayan region (DHR) of
West Bengal is no exception and is also highly susceptible to landslides. Every
consecutive year more than hundreds of new landslide events add to the region’s
landscape during the monsoon and immediate post-monsoon season (Mondal,
2016).

Regionally, the geomorphology of this terrain represents an intricate interplay of
erosional and gravitational processes (e.g. mass wasting) aided by the active tectonic
effects of the Himalayas due to proximity of regional tectonic plates (Ghosh et al.,
2014). Mallet (1874) opined that in the Darjeeling territory the Gondwana rocks are
overlain by metamorphic rocks, which are termed as Darjeeling gneiss (mainly mica-
gneisses and schists) and Daling (mainly slates and phyllites). These two lithological
units are highly fractured and have been weathered by rainwater to considerable
depths below the surface. Thus, in the mountainous region, the ground behind the
cliffs is highly decomposed vis-a-vis porous, and during the rains as saturation takes
place, the rock face is gradually detached from the ground leading to small and large
blocks of rock bodies to slide (Basu & Majumder, 2006). Alongside, the rainwater
triggers landslides as it alters the pressure within the slope, which leads to slope
instability. Consequently, the heavy water-laden slope materials (soil, rock, etc.) will
succumb to the forces of gravity (Conners, 2017). Starkel (1972) for the first time
observed the geomorphic effects of an extreme rainfall event in the eastern Himalaya
(Darjeeling), India. Froehlich et al. (1990) investigated the same area and found that
shallow slides and slumps on steep slope segments occur when 24 h rainfall reaches
130–150 mm or continuous 3 days rainfall totals 180–200 mm. Though the natural
factors are very conducive to the occurrence of slides, owing to the regional
instability, immature geology and meandering streams, the actual chaos on slopes
came when the man entered the scene (Bhandari, 2006). Vast areas of the DHR hilly
parts fell to his axe and were robbed of the protective vegetal cover in terms of
lopping of trees for fuel or fodder, overgrazing, increased domestic and industrial
consumptions of timber, which were chiefly responsible for deforestation. Never-
theless, the spurt of human settlements has increased the number and frequency of
landslides, over the period of past few decades (Bhattacharya, 2012). Growing
urbanisation and uncontrolled land use are increasing overwhelming pressure on
immediately available sloppy mountainous land and making the ecosystem vulner-
able with a rising trend of landslide hazards. These quasi-natural events are major
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threat to the lives and properties of the people and also hamper the connectivity and
commerce of the region aggravating lopsided development and poor economic
condition.

Earlier studies have analysed landslides of the Darjeeling Himalayas from differ-
ent perspectives. Many of them begin with geographical characteristics and climate
that impacts the landslide configuration followed by some with unexpected conse-
quences of the landslide. Contemporary research works have also tried to introduce
new approaches to the landslide studies. Caine and Mool (1982) and Dhakal et al.
(1999) focused on landslide risk assessment in Himalayan terrains by analysing
physical properties of landslides and debris flows, effects of regional and local
geological settings and recommendations for environmental-friendly preventive
measures. Some studies attempt to establish the hazard mapping methods that
consider natural terrain parameters which play a role in slope failure (Hays, 1981;
Kitutu et al., 2009; Sarkar & Kanungo, 2010). Nevertheless, interesting works are
also available in which the authors tried to apply intensive methods for landslide
vulnerability zonation, and most of them include geologic and geomorphometric
analysis of the study area to understand the various terrain parameters responsible for
the different magnitudes of landslide susceptibility and field survey (Powde & Saha,
1976; Ghosh, 2011; Bhattacharya, 2014). Basically, the landslide vulnerability
zonation contains two vital parts starting with the prediction of spatial probability
of the occurrence of landslides in various magnitude zones over an area (Sharma
et al., 2009, 2011; Luan et al., 2010; Mukhopadhyay et al., 2012) and ending with
their use in the planning of risk mitigation as well as understanding their relation
with the elements at risk, e.g. the population, buildings, civil engineering works,
economic activities, public services, utilities, infrastructure, etc. (Govt. of India,
2009). Thus, it is quite clear that the landslide phenomenon of hilly regions has been
examined from different viewpoints in the past, but this present study aims to
develop a probability index of landslide occurrence at village level in the DHR.
Based on the available data and geospatial techniques used, this particular study tries
to identify possible sites of landslide occurrence on a microscale prior to the events
within the selected geographical location.

The increasing trend of landslide events demands a better understanding of what
causes landslides and how to mitigate future damage. The field of landslide risk
assessment is growing rapidly, and many spatio-temporal modelling tools are
addressing how to predict landslide frequency and severity. In this context, consid-
ering the magnitude of landslide frequency of the DHR and its extremities, the
extended part of this study prepares a detailed inventory of landslide events with
spatial information. The geoinformation technology played a formidable role in
quantitative model building for village-wise landslide probability index (LPI)
involving region-specific significant indicators and will empower us to identify
villages with a higher probability of landslide occurrence as well as suggests
strategic intervention mechanism. The outcomes of this study will enable the local
administrators and stakeholders in proper decision-making and enforcement of better
management strategies to combat with the recurring quasi-natural hazard owing to
the regional settings within the concerned region and considered to be necessary
input for effective area planning in near future.
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17.2 Materials and Method

Study Area

The Darjeeling Himalayas hilly parts are the portion of tertiary young fold mountain
system, characterised by lofty ridges, numerous river valleys, mountain spurs and
foothills (Terai) with its ramifications comprising a total area about 2390 km2,
extending from 27�13’N to 26�44’N latitude and 88�530E to 87�590E longitude,
bordered by Mechi and Jaldhaka rivers in the western and eastern sides, respectively,
and bounded by the state of Sikkim in the north, Nepal in the west, Bhutan on the
north-east and Bangladesh in the south-east directions (Bhattacharya, 2017). More
specifically the present study area deals with 6 hilly community development (C.D)
blocks of Darjeeling district and 3 C.D blocks of Kalimpong district that includes
117 gram panchayats in which 348 villages/census and towns/municipalities have
been well demarcated (Fig. 17.1).

Fig. 17.1 Location map of the study area
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Collection of Dataset and Processing

To generate the base database for this study, topographical sheets bearing numbers
78A/4, 78A/8, 78A/12, 78A/16, 78B/1, 78B/2, 78B/3, 78B/5, 78B/6, 78B/7, 78B/9
and 78B/13 on 1:50,000, 1:63,360 and 1:2,50,000 have been collected earlier from
Survey of India and National Atlas and Thematic Mapping Organisation Kolkata.
Initially, toposheets have been geo-referenced using ESRI ArcGIS v10.3 software in
Universal Traverse Mercator projection system. During the geo-referencing process,
four ground control points were taken over the whole area from each topographical
sheet whose latitude and longitude are identified. Afterwards, known coordinate
values have been manually put to create the link, and a first-order transformation has
been used for registration with root mean square error of 0.5 which is good.
Resampling is performed by nearest neighbour technique to create a final
geo-referenced map.

Pre-processed Linear Imaging Self Scanning-IV multispectral image (spatial
resolution 5.8 m, path/row 584-587/272-273) of 2015–2016 fused with Cartosat-1
panchromatic data (spatial resolution 2.5 m) of 2015–2016 that were obtained from
National Remote Sensing Centre, India, images and eventually exercised to obtain
Standard False Colour Composite (SFCC) images in ERDAS Imagine v14 software.
The Advanced Land Observing Satellite, PALSAR, orthorectified digital elevation
model (DEM) data (spatial resolution 12.5 m) of 2015 were retrieved from the
Alaska Satellite Facility repository to determine the spatial distribution of slope
and aspects. Secondary data sources like geo-referenced digital lithology and min-
eral occurrence map on scale 1:2,50,000 have been collected from the Geological
Survey of India.

Inventorisation of Landslide Events

The most crucial step in this landslide probability study is to make a landslide
inventory for past events. Geospatial inventory of landslides helps to draw the spatial
relationship not only between landslides and biophysical factors, but it also enables
us to enlighten the role of human interventions in the occurrence of the landslide. A
landslide inventory is usually a collection of points and polygon shapes which
represent the boundary of a single event or a complex landslide, generated by
multiple events (van Westen, 1993; Guzzetti et al., 2012). Nowadays landslides
are delineated digitally in a geographical information system environment (Carrara
et al., 1991; Van Den Eeckhaut & Hervás, 2012) and even in several complex
environments (forested areas with frequent debris or earth flows triggered by earth-
quakes) where certain geospatial data are available (high-resolution imagery, DEM)
(Scaioni et al., 2014). Hence in this work, initially based on the SFCC images,
landslides were marked in and around the study area by placing a single point on
each landslide event that has occurred between 2005 and 2020. Consequently, the
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village level spatial location of single landslide points has been precisely validated in
the Google Earth Pro platform with limited field checks. For the sake of a detailed
study, the derived landslide points are being analysed with every indicator data that
are taken to develop the LPI to figure out the maximum correlation between them.
Such case study approach that has been taken here for a transparent understanding in
a substantial proportion for landslide inventories based on topographic maps and
DEM could also be used for checking landslide probabilities in respect to the
geomorphological-topological inconsistencies.

Development of LPI

Selection of Region-Specific Indicators

Landslide susceptibility mapping using digital spatial information has been
conducted extensively since the early 1980s (van Westen et al., 2008). Most
susceptibility mapping techniques in landslide study the potential use of previous
landslide records in predicting future landslides with the reflection of certain regional
factors (Abdulwahid & Pradhan, 2016). Therefore, in case of developing LPI for the
projected landslide probabilities at the village level, a set of conditioning factors of
the DHR have been taken into serious consideration. The proposed methodology of
the village-wise LPI is based on the weighted sum method of multi-criteria decision-
making (MCDM) processes involving eight explicitly localised proxy/indicators,
namely, (a) fragile lithology (phyllite, schist, sandstone dominated), (b)more than
30� slope, (c) drainage density, (d) the number of landslide events that occurred,
(e) forest cover, (f) pucca road density, (g) south and south-east aspect and
(h) settlement.

All of these indicators were found to be an active contributor in the landsliding
process specifically in the hilly terrain, and the rationales behind their involvement
are well articulated in previous research studies. A vast amount of geotechnical
information has been already collected as a result of demand-oriented studies. These
studies reveal that the lithology of the DHR in most of the places is fragile in nature,
and it is observed that phyllite-dominated Proterozoic litho-unit Reyang Formation
of Daling group and another schist-dominated Proterozoic litho-unit Gorubathan
Formation of the same group are highly weathered and foliated with maximum
landslide probability (Basu, 1969–70). The slope is a constant influential
acclimatising agent in landslide occurrence. This factor directly affects landslide
occurrence and is typically considered in landslide susceptibility analysis
(Alimohammadlou et al., 2013; Biswajit & Sameen, 2017). As the slope becomes
steep, the vertical component of gravity increases; hence, most of the landslides
occur on more than 30� slope (Tournadour et al., 2015; Abdulwahid & Pradhan,
2016). The slope aspect denotes downslope direction in respect to the alignment of
slope facet, is an important casuative element for landslides. This factor stimulates
weathering process by receiving direct hit of precipitation, wind and sunlight
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(Budimir et al., 2015). In this study south and south-east aspects have been taken into
account. Due to its windward face, south-west monsoon hits directly throughout the
monsoon season resulting in the maximum number of landslide events. The drainage
density is often used to estimate the surface flow and potential instability of fragile
slope (Mondal & Maiti, 2013), along with higher drainage density of an area which
indicates the higher magnitude of headward erosion on steep slope with fragile
lithological ground results in slope failure-type landslide events (Roy & Sensharma,
1967). Among the selected indicators, only the forest cover maintains a negative
functional relationship with the landslide, as the root system of forested vegetation
stabilises hillslope by reinforcing soil shear strength. The more the roots penetrate a
potential a shear plane, the greater is the chance that the vegetation will increase
slope stability (Abe & Ziemer, 1990). However, changes in the forest landscape or
large-scale logging can alter the soil infiltration and ground evapotranspiration rates,
thus indirectly affecting the water contents in soil and reducing slope stability
(Vanacker et al., 2005; van Noordwijk, 2005; Chuang & Shiu, 2017).

Anthropogenic interventions like the extensive spread of human habitation in
form of settlement are highly site- and situation-oriented entity of land use practice,
but the availability of suitable land for settlement in the mountains is quite chal-
lenging. At present, people of high mountains are living in risky and hazardous
terrain and facing serious threats. The replacement of forests by agriculture and
settlements is thought to cause severe erosion and landslides (Glade, 2003; Soini,
2005; Chuang & Shiu, 2017). The growing population of the hills demand better
communication and mobility that in turn give rise to metalled road construction that
are generally believed to compromise slope stability and trigger landslides as well as
debris flows (Burton & Bathurst, 1998; Chuang & Shiu, 2017).

Indicators Quantification

Defined indicators are correlated with landslide by their functional relationship. It
may be described in terms of sensitivity and adaptive capacity. Indicators for
sensitivity reflect to what extent a system is sensitive or responding to the exposure
from an external stress or hazard such landslide, whereas the adaptive capacity
indicators represent the ability or capacity of systems, institutions and infrastructure
to adjust to potential damage or change due to external stresses or hazards, including
climate (Esteves et al., 2016; Sharma et al., 2019). In the case of LPI, the indicators
having higher sensitivity will be of higher landslide probability and vice versa.
Furthermore, to quantify all considered indicators in terms of numerical values and
to fit them in the ultimate equation of LPI, mathematical operations have been
performed accordingly (Table 17.1) (Fig. 17.2).
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Normalisation of Indicators

The normalisation of indicators is an essential part to compare among the indicators
in which information can be combined in a logical way. Indicators are in different
units, that is why it cannot be simply added to imply the index value (Esteves et al.,
2016). The normalisation procedure enables aggregation of indicators with different
units, by removing the units and converting all the values into dimensionless units.
The normalised values of indicators lie between 0 and 1 and thus could be aggre-
gated (Esteves et al., 2016; Sharma et al., 2019). Thus, in this study, normalisation
has been done for landslide probability indexing and ranking that enable comparison
and prioritisation among landslide-probable villages. Before starting the
normalisation processes, it is essential to establish the functional relationship
between the indicators and probability. There are basically two types of possible
functional relationship: positive and negative relationship (Ravindranath et al.,
2011).

Table 17.1 Village level selected indicators and their data extraction method for LPI development

Village level indicators Methods of data extraction

Percentage of area covered by the fragile
lithological classes (phyllite, schist, sand-
stone dominated)

Geo-referenced lithology and mineral occurrence
map that has been collected from geological sur-
vey of India vectorised precisely and intersected
to village layer in GIS platform to determine
spatial distribution

Area percentage of more than 30� slope Using the slope algorithm of spatial analyst tool
in ArcGIS, pixel-based calculation has been
performed to figure out slope value as the maxi-
mum rate of change in value from that cell to its
neighbours. After obtaining the downslope
values, the output raster has been reclassified for
vectorisation and spatially joined with the village
layer

Percentage area under south and south-east
aspect

Performed using spatial analyst aspect tool that
identifies the downslope direction of the maxi-
mum rate of change in value from each cell to its
neighbours. The values of each cell in the output
raster indicate the compass direction that the
surface faces at that location. Furthermore, spa-
tially joined to villages to retrieve desired results

Drainage density in km/km2 Based on the SFCC images drainage, forest
cover, settlement area and road network up to
village level were extracted in and around the
study area by on-screen digitisation on scale
1:10,000

Percentage of area covered with forest

Percentage of settlement area

Pucca road density in km/km2

Number of landslide events that occurred Remote sensing methods based on image prop-
erties of both SFCC and high-resolution Google
earth imageries were used to obtain historical
records of the landslides over the past
15 (2005–2020) years. Field validations have
been conducted using geographical positioning
system device
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Normalisation Method for Indicators of Positive Relationship with Landslide
Probability

In positive relationship cases, the higher the value of the indicator, the higher will be
the probability. As the values of these indicators increase, greater will be the
vulnerability of the community. In such cases the variables have direct and positive
functional relationship with probability, and normalisation is done using Eq. (17.1):

Xp
ij ¼

Xij �Mini Xij

� �

Maxi Xij

� ��Mini Xij

� � ð17:1Þ

where Xij is the variable that is being normalised, i.e. in this case Xij is the value of jth
indicator for the ith region and Xp

ij is the normalised value. Normalised value of Xp
ij

scores will lie between 0 and 1. The value 1 will correspond to that village with
maximum value, and 0 will correspond to the village with minimum value (Esteves
et al., 2016; Sharma et al., 2019).

Fig. 17.2 Example of the village level selected indicators data extraction method to develop partial
and full landslide probability indices. (a) Percentage of area covered by the fragile lithological units
(phyllite, schist, sandstone) represented by different colours, (b) area percentage of more than 30�

slope, (c) estimation of drainage density (length of drainage/unit area), (d) number of landslide
events that occurred, (e) percentage of area covered with forest, (f) measurement of pucca road
density in km/unit area, (g) percentage area under south and south-east aspect and (h) percentage of
settlement area
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Normalisation Method for Indicators of Negative Relationship with Landslide
Probability

For indicators where the probability increases with decrease in the value of the
indicator, the following normalisation equation (Eq. (17.2)) needs to be adopted, and
the normalised score of the indicator can be computed accordingly:

Xn
ij ¼

Maxi Xij

� �� Xij

Maxi Xij

� ��Mini Xij

� � ð17:2Þ

In the above Eq. (17.2), Xij is the variable that is being normalised, i.e. in this case
Xij is the value of the jth indicator for the ith region and Xn

ij is the normalised value.
Normalised value of Xn

ij scores will lie between 0 and 1. The value 1 will correspond
with that village with maximum value, and 0 will correspond to the village with
minimum value (Ravindranath et al., 2011; Esteves et al., 2016; Sharma et al., 2019).

Assigning Weights of Indicators

Assignment of proper weights to indicators is practically crucial job to imply reliable
results. The problem of choosing an appropriate method of determining weights in
MCDM process is very important which complies with the decision-making process
(Pamučar et al., 2018). There are different methods of weight assignment, but in this
specific study, expert judgement method was adopted, and the opinion of experts
was considered to attribute weights for an individual indicator on 0 to 1 rating scale.
Regarding the set of experts, who are knowledgeable about the region, their views on
selected factors responsible for landslides and relationship with the process in the
DHR are seriously taken into account for arranging indicator’s weight (Table 17.2).

Aggregation of Indicators and Indexing

Aggregation of different indicators with appropriate weights is necessary to obtain a
composite index or aggregated value (Esteves et al., 2016, Sharma et al., 2019). The
weights are multiplied with the normalised indicator value and aggregated to obtain
the LPI or the ranking of the systems. Probability index is normally developed to
assist the policymakers, development administrators, NGOs and planners in
prioritising the villages. It may also suggest (a) a comparative index value of
different villages, (b) the spatial distribution of the high or low probability units
and (c) helps to identify the drivers of landslide hazard, so that adaptation invest-
ments can be focused on dominant drivers (Sharma et al., 2015; Sharma et al., 2019).
The result of the probability assessment can be classified on a scale of very high to
very low vulnerability and represented spatially through profile maps. The results
indicate the vulnerability ranking of landslide-prone villages on the basis of LPI
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values, and a critical utility of this probability assessment is the identification of the
drivers of landslides along with their proportional contribution. Information about
the indicators or factors that contribute most to the aggregate probability is useful in
prioritising development and implementation of adaptation interventions.

17.3 Results and Discussion

Quantitative Analysis of the Regional Indicators

This part of the study is categorised into some major dimensions, as the exploration
of diversified region-specific varied indicators data and their spatial components that
provide efficient support for intensive landscape hazard analysis. The combination
of lithology and slope involving primary rock strata and structural control of
lithology on the fluvial characteristics influences the local terrain as well as climatic
characteristics and impacts the micro-level land use planning, whereas the drainage
is similarly one of the most important factors that contribute to the landslide
mechanism. Other influencing regional characteristics that are basically a result of
modern-day man-environment interaction are also considered here for landslide
probability assessment.

Lithological Setup and Landslides Occurrences: An Association

The DHR can be subdivided laterally from south to north as (a) the sub-Himalaya or
the Siwalik belt composed of Upper Tertiary Siwalik sediments; (b) the lower or
lesser Himalayas composed of Gondwana, Lower Tertiaries and Achaean rocks

Table 17.2 Village level selected indicators and their functional relationship with landslide and
assignment of weights to develop LPI

Sl
No. Village level indicators

Functional relationship with
landslide (positive/negative) Weights

a Percentage of area covered by the fragile lith-
ological classes (phyllite, schist, sandstone
dominated)

Positive 0.21

b Area percentage of more than 30� slope Positive 0.17

c Drainage density in km/km2 Positive 0.14

d Number of landslide events that occurred Positive 0.12

e Percentage of area covered with forest Negative 0.12

f Pucca road density in km/km2 Positive 0.10

g Percentage area under south and south-east
aspect

Positive 0.08

h Percentage of settlement area Positive 0.06

Total 1
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along with some intrusive; and (c) the higher Himalayas, composed of intrusive
Tertiary granites and other igneous and metamorphic rocks. The Siwalik belt is
subdivided into an upper pebbly sandstone/conglomerate facies and lower sandstone
facies, and it comprises of soft greyish sandstone, mudstone, shales and conglom-
erates that cover about 209.18 km2 area in the studied region. During the monsoon
season, a high amount of rainfall seeping through the pore spaces of these coarse-
textured sandstone decomposed the feldspar to form kaolin which acts as a lubricant
for sliding of rock materials. Hence, an amalgamation of this triggering factor makes
the Siwalik a landslide regime of the region; a total of 196 landslide events have been
identified here, and these are concentrated mainly in deforested Lish and Gish basin
area of the Kalimpong district. Subsequently, upper Carboniferous to Permian
feldspathic and micaceous quartzite, sandstone and carbonaceous slates with thin
seams of crushed coal contain the Damuda group of Gondwana supergroup, which is
highly landslide prone, as 149 past landslide events have been demarcated within
114.63 km2 area of this group (Fig. 17.3).

Further to the north, low-grade meta-psammopelitic sequence of Precambrian
Daling group’s Gorubathan and Reyang formations cover 16% area of the study
area, are taken into account due to its extensive geographical coverage with the
selected studied reach. The Gorubathan Formation comprises green slate, phyllite,

Fig. 17.3 Fragile lithological details and its association with landslides. As demonstrated in (a)
landslide over Daling group (Gorubathan Formation) in Sangser village of Kalimpong II block, (b)
landslide of the South Shibkhola Tea Garden village of Kurseong block on Daling group (Reyang
Formation) and (c) another landslide located on Gondwana supergroup (Damuda group) in
Latpanchar forest village
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phyllonite, cherty chlorite quartzite and green tuffaceous wake with basic
metavolcanic materials, while the Reyang Formation consists of variegated slates,
phyllite and low-graded schists. Highly metamorphosed argillaceous rocks in both
the formations of the Daling group, where 136 landslides in Gorubathan and
261 landslides in Reyang formation have occurred respectively, are extremely fragile
and most landslide prone litho-units of this region.

On the other hand, the Central Crystalline Gneissic Complex (CCGC) is domi-
nantly present in the DHR. Fundamentally this group is made up with schists and
Darjeeling gneisses of higher rank with subordinate quartzites and lenticular isolated
bodies of calcsilicate rocks. It is spatially distributed over the entire north-western
part of Darjeeling and north-eastern corner of the Kalimpong district with an area
coverage about 28% comprising 163 landslide events. Considering the geographical
area of this group of formation, the number of landslide events that occurred is
inconsequential to contribute sensitivity, as the rock types of this formation are
harder in nature and make it less vulnerable to landslide. Although variability in
precipitation, altitudinal effects and aspects are all responsible for a landslide, the
diversified lithological characteristics, as slight recrystallised and coarse-grained
sandstone, are characterised by cataclastic deformation which destroy the clastic
texture with intense granulation along ramifying narrow zones of fractures, which
initiate landslide hazards (Basu & Sarkar, 1985; Basu & Ghosh, 1993). Furthermore,
intense metamorphism of Daling is referred to as the classical ground of the
low-grade metamorphosed rocks, influencing landslides (Acharya, 1972).

Characterisation of Slope and Aspect with Landslides

The high degrees of slope, specifically more than 30� with fragile lithology, are the
most favourable element of slope failure in the selected region. This category of
slopes covers 27.05% area to the total area of the study. More than 30� slopes are
often regarded as steep slopes, mainly concentrated on escarpments, and the source
region of first-order streams and coupled with the fragile lithology range is
witnessing greater percentage of landslide events. A total of 498 out of 1045 number
of landslide events have occurred in this slope category which is 47.66% of total
observed landslides and the rest of landslide events under other lower degree of
slopes, which covers 72.95% of the total study area. The south- and south-east-
facing slopes are in windward direction and get a high amount of sunlight, respec-
tively, compared to north-facing slopes, which have steeper inclinations and receive
a higher amount of rainfall as the branch of south-west monsoon hits directly from
the south during monsoons. This group of aspects covers 652.22 km2 area that
denotes only 27.29%, but 503 out of the total number of landslide events are
accountable over it (Fig. 17.4a, b).

Owing to the unique tectonic setting of the Himalayan thrust front failures, earth
materials along the slope are common. The strength of hillslope materials is a
function of geologic composition and stress state and is modified by past movement,
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weathering, vegetation and hydrologic processes (Lu & Godt, 2008), and here
south-facing slopes exhibit more landslide activity and are thus an important pre-
dictor of susceptibility to translational landslide (Ghosh et al., 2011).

Drainage Density Estimation

The complex interplay of rock types and its structure in the Himalaya produces
varied hydrogeological environments that often lie in proximity to each other.
Further, variability in precipitation, altitudinal effects and aspects are all responsible
for the formation of intricate drainage network in the DHR. The hilly Darjeeling
Himalaya gave rise to unaccountable streams and numerous rivers and have been
divided into two parts by the Tista River. In this work, village level drainage density
has been calculated and used as a significant proxy that alone could address the litho-
structural effect active on the region participating in the landsliding process. Village-
wise drainage density of the DHR shows a diverse characteristic as the values range
from 0 to 12.75 km/km2, and the maximum density was observed in the north-
western part which is composed of central crystalline rock group as well as in parts
of Kalimpong districts where the CCGC and Daling rock groups are prevalent
(Fig. 17.5a, b). Here, high densities can also indicate a greater probability of
landslide (Mandal & Mandal, 2016). Drainage density is also determined as a
good susceptibility index for rainfall-induced landslides, and study of drainage
density is a practical approach for disaster management (Hasegawa et al., 2009).

Forest Cover Depletion and Spread of Settlement and Transport Network

The forest cover of the study area is considered as an adaptive proxy in the LPI
study. Usually, the preventive nature of forest vegetation root system helps to arrest
soil erosion and slope failures in a hillslope. From the historical perspective, the
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entire hilly tract of Darjeeling Himalaya was completely clothed with dense forests
from the top of the hills to the very bottom of the valleys, but timely demand of land
for settlements, cultivation, tea (Cinchona) plantation and road constructions leads to
deforestation activities. Figure 17.6 establishes this fact, as it shows there is a
negative correlation between the percentage of forest cover and settlement areas in
villages within the defined study area.

Fig. 17.5 Village level drainage density assessment. (a) Drainage network and landslides events of
the study area and (b) computed drainage density of villages that ranges from 0 to 12.75 km/km2
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Especially in the east of the Tista River, hilly tracts of Kalimpong district have
been highly altered from dense forest land to Khasmahal or government estates to
fulfil the demand of the land. In the areas of Khasmahal like Pabringtar,
Yangmakum, Nobgaon, Samether and Suruk, landslides are quite frequent, and
some of the past landslides were also reactivated within the last few decades. It is
observed that 415 out of 1045 landslide events have been marked in the Kalimpong I
block of Kalimpong district, and most of them are associated with deforested
Khasmahal areas. Moreover, increasing pressure of population, heavy inflow of
tourist and other livelihood activities are transforming rural areas of the hills into
urban centres. Based on the tourist demand, multistoried buildings and homestays
are continuously built on unstable slopes underlying with fragile lithology. Road
construction similarly alters the terrain characteristics, as slope modification at
the toe of a slope compromises the continuity of water flow and reduces the ability
of the slope to drain, in turn reducing its stability (Fig. 17.7a, b). It is observed that
the major roads of the DHR are familiar to the renowned landslides, e.g. Tindharia,
Gayabari 14th Mile and Khairekhola landslides are on Hill Cart Road and National
Highway 10 and Sevok-Teesta Bazaar sector, the famous Setijhora and 29th Mile
landslides are on State Highway 12 (SH 12) and Algarah-Gorubathan sector and the
Chibo, Bong, Chisopani, Bhameygaon and Kolbong landslides of the Kalimpong
district are located nearby SH 12.

Khasmahals are severely affected by extensive deforestation, tremendous agri-
cultural pressure and overgrazing; as a result, most of the precipitated water goes
down the deforested slopes causing soil erosion and sliding (Basu & Ghosh, 1993).
Besides, the vulnerability of roads is not only delaying overall development by
impacting the livelihood of the people and delaying administrative activities and
accessibility to daily needs of goods and medicine, but also heavy vehicular con-
gestion along the narrow passage of hilly road increases expenses from longer

Fig. 17.7 Village level pucca road density analysis. (a) Landslides events located along the pucca
road corridor in the study area and (b) calculated pucca road density of villages that ranges from 0 to
18.395 km/km2
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driving distances due to road blockages (Zeˆzere et al., 2007; Chuang & Shiu, 2017).
This indirect damage entails the effects on society from disruptions to utility services
and local businesses, which result in a loss of revenue and tourism (vanWesten et al.,
2008).

Interpretation of LPI

Village level quantification of differential contributing data in a precise manner
further leads to normalisation of indicators in accordance with the stated methodol-
ogy. Therefore, functional relationships of the selected proxies have been rationally
attributed to indicators in compliance with weight assignment to them, and finally,
aggregation was done for different indicator value to obtain the LPI. The prepared
LPI is divided into four distinct classes by maintaining equal intervals of LPI values.
The (a) very high landslide probability class comprises 45 villages with LPI value
more than 4.33, (b) high landslide probability consists of 138 villages having the LPI
range from 4.32 to 3.03, (c) moderate landslide probability zone includes 109 vil-
lages where the values LPI ranging between 3.03 and 1.73, and 56 villages are in
(d) low landslide probability zone of LPI value less than 1.73 (Fig. 17.8).

Fig. 17.8 Landslide probability map showing landslide-prone villages of different categories,
e.g. very high landslide probability, high landslide probability, moderate landslide probability
and low landslide probability villages
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Village-wise lithological configuration shows that very high and high probability
of landslide occurrence villages like Kolbong Khasmahal, Lingding Khasmahal,
Chegra Khasmahal, Hum Tukdah Khasmahal, Labda Khasmahal, etc. of Rangli
Rangliot block and Mangpu Cinchona Plantation, Malotar Tea Garden, Lizziepur
Tea Garden, Majua Tea Garden, Mahal Diram Tea Garden, etc. of Kurseong block
are lying over landslide-prone Daling group. On the other hand, villages having
certain percentage area covered by high degree of slope, e.g. Rambi Bazar
D.I.F. (97.84%), Singi Khasmahal (40.61%) of Kalimpong I block, North Shibkhola
Tea Garden (44.23%) of Kurseong block, Kolbong Khasmahal (34.97%) of Rangli
Rangliot block, and villages, namely, Phuguri Forest (82.58%) of Mirik block,
Chegra Khasmahal (75.96%), Hum Tukdah Khasmahal (74.39%) of Rangli Rangliot
block, Turzam Forest (65.67%) of Kalimpong I block, Lodhama (61.49%) of
Darjeeling Pulbazar block, Majua Tea Garden (57.92%) and Jungpana Tea Garden
(57.35%) of Kurseong block covered with by certain percentage of area of a
specified slope aspects, are in very high to high probability of landslide category
(Fig. 17.9a, b).

Villages of the high landslide probability class correspondingly display high
values of drainage density, as identical in Singi Khasmahal (8.10 km/km2) of
Kalimpong I block, Dayal Thong (D.R.) Tea Garden (8.08 km/km2), Edenvale Tea
Garden (7.51 km/km2) of Kurseong block, Parmaguri Khasmahal (7.92 km/km2) of
Jorebunglow Sukhiapokhri, Hum Tukdah Khasmahal (7.89 km/km2), Kolbong
Khasmahal (7.80 km/km2) and Rayak Khasmahal (7.40 km/km2) of Rangli Rangliot
block. The LPI result also reveals villages, viz. Lapchu Khasmahal (36.19%),
Soriang Khasmahal (35.85%) of Rangli Rangliot block, Saurinibasti (29.05%) of
Mirik block, North Shibkhola Tea Garden (25.44%) of Kurseong block, Patliabas
Forest (27.33%) and Lodhama (25.75%) of Darjeeling Pulbazar block having
maximum settlement covers, are also included very high to high chances of landslide
occurrence.

Fig. 17.9 Validation of LPI results as with limited field checks as exemplified in (a) the Paglajhora,
one of the famous landslides of the DHR falls in the very high landslide probability class and (b) the
devastating lower Karmat landslide is under the high landslide probability class
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In contrast, villages characterised by harder rocks type of CCGC, a lesser area
covered with high degree of slope and determinant aspect, low drainage density
along with the high percentage of forest cover and insignificant settlement transport
distribution are in moderate to low landslide probability category. Most of the
villages of these classes are sporadically distributed over the concerned study area;
the majority of them are situated near Neora Valley National Park of Kalimpong II
block, while others are close to the foothills zone. So the weakest lithologies with
cohesion, consolidation or interlayering of materials having highly varied perme-
abilities can lead to high degrees of fracturing, jointing or erosional dissection
(Cruden & Varnes, 1996). As landslide risk is fundamentally a product of hazard
and vulnerability; these two phenomena can be managed in mutually varying pro-
portions (Alexander, 2012), and, thus, the assessment of landslide probability is very
essential as it predicts the places associated with hazard at a microscale prior to its
occurrence.

Identification of Drivers of Landslide Probability
for Adaptation Planning

The LPI assessments are often designed to support and improve adaptation planning,
with the overall objective of reducing vulnerability in the region under consider-
ation. It can also help to substantiate decision-making when it comes to selecting
adaptation measures, based on the assessment of drivers of landslide occurrences
with their index value. Thus, this LPI can be designated to assess the drivers of
probability for developing targeted adaptation planning. Here in this study, the
contribution of a single indicator to the LPI was obtained as a product of its weight
and measured value. In this study, the different drivers of landslides and their
contribution to it are shown in the radar diagram (Fig. 17.10) which depicts the

Fig. 17.10 Drivers of
landslide probability and
their contribution in the LPI
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fragile lithology shares 34.58% as the prime contributor of landslides in the DHR
followed by drainage density (17.91%) and high degree of slope (14.77%). The
study reveals that the physical indicators like fragile lithology, drainage density and
high degree of slope are main causative factors to the occurrence of landslide events
of the region, but most significantly the forest cover holds 18.39% in the radar plot
and that stands for the adaptive capacity measures to minimise landslide hazards.

Contrastingly, indicators like south and south-east aspects and the number of
landslide events contribute 6.92% and 1.98%, respectively, in the landslide proba-
bility. Landslide events identified on south and south-east aspects are mainly
monsoon driven in nature. In case of the proportional contribution of landslide
events, it is necessary here to mention that this particular proxy is result oriented
while others are causative. Eventually, reactivation nature of previously occurred
major landslides locally increases high chances of slope failure which is not reflected
throughout the region. It is also observed from the present study that the frequency of
landslides under forested area is less, while other parts of the study area are highly
infested with such hazards as the percentage of settlement area and road density
share 2.18% and 3.25% correspondingly. Here, the contemporary ground scenario is
an evidence that reveals that the combination of anthropogenic activities like defor-
estation, slope cutting, digging for settlements and road construction is highly
impacting the recurring hazard phenomenon in the entire DHR. As the Himalaya
represents one of the most fragile mountain ecosystems of the world, systematic
planning is a must for successful implementation of developmental schemes
(Anbalagan et al., 2008); thereafter, the LPI and its results are truly a practical
approach that might be taken into account for both the inherent and external
parameters responsible for slope instability and future landslides.

17.4 Conclusion

The proposed index has analysed all the significant indicators that are actively taking
part in the landslide mechanism and represents the vulnerable state of the DHR.With
the advancement of time, the exposure to landslide hazards may increase to both
people and places as the elements may intensify depending on situations. It is also
evident from the study that the nature of landslide phenomenon results from the
interaction of contributing physical indicators, i.e. fragile lithology, high degree of
slope, high drainage density over the studied region, which are considered to be the
active agents working in 183 villages of very high to high landslide probability
categories.

Through geospatial technology, the adopted methodology can be applicable to all
territorial systems, and this will allow to visualise the results, through maps, as a
realistic representation and to identify and manage the process through an easily
comprehensible flow chart programming in form of spatial decision support system.
In this way, this study may prove to be adequate in the integration of climate,
landscape and social dynamics data that will enable us not only in developing
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landslide early warning system but also considered as the base input to the planners
and policymakers for strategic intervention and good governance approach to
minimise the landslide vulnerability, which is directly related to the human life
and livelihood of the region.
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Chapter 18
Vulnerability Assessment of Landslide
with the Help of Geospatial Approach
in Western Himalayas, Upper Basin
of River Sutlej, India

Amit Jamwal and Vikram Sharma

Abstract Vulnerability assessment is an important part of environmental manage-
ment, and this approach is used for the identification of hazards and its potential risk
in the upper basin of the river Sutlej. The geospatial tool was used to analyse,
monitor and map landslide vulnerability. Rockslide, rock fall, slump, earthflow, and
subsidence types of landslides were identified in the field. High summital convexity
(1), rectilinear (0.8), high relative relief (>1000 m), high dissection ratio (>0.97), less
forest cover (8%), slope aspects; southeast (1), south (0.9), the fine texture of soil (1),
subhumid region (1), limestone-based lithology (0.9), high earthquakes magnitudes
(1), and hydropower construction (1) were the major factors that indicated a high
degree of vulnerability (0.68) and a high weighted score (0.58). The major finding of
the vulnerability assessment indicated that 27% (1812 km2) area of the basin had a
high vulnerability of landslide; however, 39% (2617 km2) area of the basin exists
with low vulnerability. In the future, if anthropogenic activities increase in this basin,
then the impacts of landslides and their loss of physical environment shall be
increased.
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18.1 Introduction

Hazards are natural phenomena, which also include geological and meteorological
hazards such as earthquakes, volcanic eruptions, wildfires, cyclones, floods,
droughts, avalanches, and landslides. Landslide refers to the terms of a different
form of mass wasting that include rock fall, deep-seated slope failures, mudflow, and
debris flow (Rosi et al., 2018). Lithology, rainfall, nature of the slope, status of land
use, land cover, snowfall, aquifer recharge, increasing hydrostatic pressure in rocks
cracks, soil structure, and forest fire are all factors that control frequency and
magnitude of the mass movement (Wei et al., 2018) Physical and chemical
weathering also weaken the rocks and also increase the incidences of landslides
(Di Maio et al., 2017). In recent times landslide incidences identification is a very
simple method. Remote sensing and geographic information system are an applied
science tool, which is used in many fields. It is more helpful in tuff terrain where field
observation is not possible. The vulnerability assessment of hazards depends on the
presence of threat and its impact factor. The Sutlej Basin of district Kinnaur is known
for its geohazards such as landslides, cloud bursts, earthquakes, and avalanches.
Landslide is one of the major responsible incidences for the loss of physical
landscape in the basin (Jamwal et al., 2019). The anthropogenic activities such as
hydropower construction are one major triggering factor for the loss of physical and
social environment. Slope failure is very common in the basin because of construc-
tion activities (Blasting and mining) (Fan et al., 2019).

The climate of the Sutlej Basin is subhumid to temperate type. The lower region
has high rainfall, and the upper region has maximum rainfall in the form of snowfall.
The snowfall region has arid condition, and incidences of shooting stone are very
common (IPCC, 2007a, 2007b). The lower region (Rampur, Noli) suffered very
much because of its varied climatic condition. Debris flow, earthflow, debris slide,
rock fall, rock slide, slump, and subsidence were some common types of mass
movement. When the slope material becomes saturated with water, it becomes debris
flow or mudflow (Di Maio et al., 2017). Very fine grain clay, fine sand silt, and fine-
grained pyroclastic material were found in the basin areas like Karcham Wangtoo,
Shuda Rang, Dhakhu, Barang, and Tapri. Earthflow incidences were recorded in the
area of Tapri, Shongtong, and Powari during the rainy season from June to August.
This also increased pour pressure and decreases the shared stress of material (David
et al., 1984).

Debris slide incidences were commonly observed in the lower portion of the
basin where rainfall intensity was high and soil texture was coarse. The debris
includes the small fragments of rocks, trees, and coarse grain of soil. Doris slides
also occurred in the upper region of the basin where the impact of snowfall was high.
The fine particles of soil and small pieces of rock were common with the rolling
snow (Hutchinson, 1968). Small and shallow landslides were observed in the area
like Kasang, Barang, Apka, Sumdo, Khab, and Reckong Peo. High permeable soil
was on the top, and low permeable soil was in the bottom. But road cutting, dam
construction, and blasting caused deep-seated landslides. The Urni landslide
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occurred after the high-intensity rainfall of 2014. The recorded average debris flow
was 23.5 m/s (Kumar et al., 2019). The Urni villages (elevation, 2300 m) agriculture
and horticulture land was damage. This landslide was one of the deep-seated
landslides that were associated with slope failure in the form of rock fall, rockslide,
rotational, transitional, and complex movement. The Sutlej Basin River was highly
affected under the incidences of landslides from Khab to Tapri. The natural setting
and land use status of this basin indicate the vulnerability of the physical landscape.
The study revealed that incidences of landslides were increased because of haphaz-
ard development of hydropower project in the basin (Kuniyal et al., 2019). The
vulnerability assessment includes the phenomena identification, monitoring, map-
ping, buffering, risk, and threat. It could be highly valuable on ground level if the
development process considers the vulnerability map. But in reality, the landslide
safety majors are not considered in the Indian Himalayas region. Management
information system (MIS) is more effective for the real time monitoring of hazards
(Chen & Wang, 2007). The landslide vulnerability, susceptibility, and risk depend
on the topographical characteristics and human activities in that region. The selected
indicators such as anthropogenic activities, curvature, geological structure, slope,
slope profile, relative relief, land use and land cover, lithology, soil texture, and
precipitation were taken to complete this process (Jamwal et al., 2019).

The landslide hazard analysis was done with factors such as geomorphology,
geology, land use, and hydrology. High-resolution satellite imageries were very
helpful to study topography very precisely (De La Ville et al., 2002). Along the
National Highway 5, a number of landslides incidences were observed. The inci-
dences of slope failure were very common on the convexity of the basin such as
Dublin landslide, Spillow landslide, Khadra Dhaank landslide, Lippa landslide,
Pangi Nala landslide, Powari landslide, Sapni landslide, Brua landslide, Kuppa
landslide, Urni landslides, Sholding landslide, and Nathpa landslide (Fig. 18.1).

Landslide analysis through the geospatial approach provides us a valuable strat-
egy to control the potential risk. Geospatial technology is also suitable for the
vulnerability assessment of the physical landscape, and low vulnerable areas can
be considered for development. High vulnerable areas can be put under the
management.

18.2 Study Area

The landslide vulnerability assessment was done in the upper basin of Sutlej River,
Himachal Pradesh, India. Geographically this area was extended from 31�30012”N
to 32�22016”N and 77�4001600E to 79�1301600E. The total area covered under this
region was 6401 km2 and elevated from 2320 m to 6816 m. This region was covered
by Tibet and China in the east direction and Shimla in the west. This basin was
known for its geographical complexities. The MCT passing through this basin and a
number of faults were found in this area. Main central thrust (MCT) was defined as
the boundary between quartzite and phyllite, from the Lesser Himalayan sequence,
and the orthogenesis biotitic-rich schist, which belongs to the Greater Himalayan
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crystalline complex (Daniel, 2003). The 80% (5483.92 km2) basin area was found
under the categories of high steep slope (>30�) and 74% area under the high altitude
(>3000 m) (Jamwal et al., 2019). The basin had subhumid to arid temperate climate.
This basin is known for its geohazards, and unique culture was related to tribal
population of Mongoloid as well as Mediterranean. This region was known for its
hydropower development and many social issues related to its development
(Kuniyal et al., 2017). The upper basin of river Sutlej had the temperature type of
subhumid temperate alpine highland and frigid aridic type. The low-altitude region
of the basin had high rainfall during the monsoon season, and rainfall varies from
600 mm to 1400 mm. The average annual temperature of the basin was 13 �C. The
total population (84,181) habituated in the 10% area of the basin and suffered huge
losses during the incidences of hazards (Fig. 18.1).

18.3 Methodology

The vulnerability assessment of landslide was done on the basis of the selected
parameters. All parameters were elected on the basis of geophysical aspects such as
relative relief, anthropogenic activities, curvature, geological structure, slope aspect,

Fig. 18.1 Study area, upper basin, district Kinnaur, Himachal Pradesh. (1) Elevation status of
upper basin. (2) Habitations and locations of HEPs. (3) Landslide incidences
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slope profile, land use and land cover, lithology, precipitation, and soil texture. The
slope, slope aspect, relative relief, and curvature were generated from the ASTER
DEM (USGS, 2004) of 30 m resolution. The geological map was prepared on the
basis of the Geological Survey of India (GSI). The soil texture map was prepared
with the help of a second map of the National Bureau of Soil Science (NBSS). The
slope profile map was prepared on the basis of the geomorphological map, and later
it was corrected and analysed through a field survey (SOI). The precipitation map of
the study area was prepared by using weather station data. The landslide points
(GPS) were collected from the field along the Sutlej Valley, Tapri to Khab, and also
along the Baspa Valley. The terrain was very complex, and it was difficult to collect
all landslide incidences, so these landslide points were extracted from Google Earth.
Google Earth images of WGS84 were used to extract the affected area under the
landslides at the resolution of 15 m. Then, the shape files of landslide area were
overlapped on the raster data set with other parameters. The extracted area was
calculated on every subclass of parameters. The selected parameters were classified,
and the affected areas were identified on these subclasses. The highest affected area
was scored with the highest number from the total number of subclasses. The values
were normalized from 0 to 1 to check the impacts on parameter classes.

The formula was used to normalized the value:

PN parameters normalizedð Þ ¼ Ps Parameters Scoreð Þ
=Np Total the number of parametersð Þ ð18:1Þ

Then vulnerability was also identified in every subclass. The vulnerability scored
on the basis of impact factors such as 0 for no vulnerability and 1 for vulnerability.

The risk was also identified on the basis of normalizing value and impact (threat
value), and the formula is as follows:

Risk ¼ Impacts Threat areað Þ � weight rank Wnð Þ ð18:2Þ

Equation (18.2) was used to analyse the risk on every parameter. Then the
average vulnerability and risk score were calculated. The vulnerability and risk
score index was generated. Finally, the overlay analysis was done, and one vulner-
ability score map was prepared. This indicated the region with the high, medium, and
low vulnerability of landslides.

18.4 Types of Landslides

Landslides were classified on the basis of its nature of occurrences and its geomet-
rical shape. Rock fall, rock slide, debris slide, complex slide, and transitional debris
were noticed as mass movement in the field. Crown cracks slide and transitional
debris slide were commonly noticed in the field. Minor scarps were observed on the
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rectilinear section of the slope profile. Debris fall was noticed where soil structure
belongs to coarse grain soil. Earthflow incidences were highly noticed in the upper
region of Sutlej like that Akpa, Spillow, Khas, Pangi, and Kwangi. Debris flow was
noticed in the upper basin of Sutlej and known for its devastating impact. Pagal Nall
received a huge amount of rocks, fine soil, and clay with water with rapid movement
(Varnes, 1978). During the rainfall in the basin, the incidences of debris were very
commonly found in the place of Akpa, Ribba, Purbani, Powari, Shongtong,
Karcham, and Ghanvi (Jamwal et al., 2019). Geological elements had the dominant
impact on such types of landslides which include rotational failure, flow, falls, and
debris slides. The basin was also known for its earthquake incidences. The vibration-
based landslides occurred in places like Shoultu, Pangi, Kang, Purbani, Sudharang
Dhaku, and Malling. The human-induced landslides were noticed in and around of
hydroelectric project affected area of Khab, Jangi-Thopan-Powari, Shongtong
Karcham, and Karcham Wangtoo. These landslides were caused due to the slope
excavation, mining, and blasting (Fig. 18.2).

Fig. 18.2 Landslides incidences; (a) Tapri, (b) Near Pangi, (c) Near Powari, and (d) Near Barang
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18.5 Result and Discussion

Identification and Status of Landslides as per the Selected
Parameters

The Sutlej Basin in district Kinnaur is known for its complex topography. The basin
had received a number of landslides of different scale; some were very large, and
some were very small. The triggering factors were such as relative relief, slope, slope
aspect, lithology, curvature, soil texture, lithology, effective land use, and anthro-
pogenic activities. Geographic information system indicated that the landslide’s
occurrence value was higher in and around of hydroelectric project affected area
of Khab, Jangi-Thopan-Powari, Shongtong Karcham, and Karcham Wangtoo.

Relative Relief (RR)

Relative relief is one of the important topographic factors for the analysis of the
landscape. The high degree of relative relief (RR ¼ 1244–6755 m) and high
dissection indicate the high vulnerability of landslide and soil erosion (Singh,
2004a). In the Sutlej upper basin, maximum landslides occurred under the high
relative relief (Muthukumar et al., 2009). The human activities in this elevation were
the major cause of this environmental loss. The whole basin had high relative relief
>3000 m which had high vulnerability (1) and risk and for agriculture and horticul-
ture. Human properties and lives lost were observed along the river Sutlej Rampur to
Khab with a risk score of 1 (Table 18.1).

Slopes

The slope was classified on the basis of A. Young classification (Young, 1964). The
sloping nature of the region decided the vulnerability of landslide and erosion (Webb
et al., 2011). The region had a high degree of slope, and maximum degraded area
was observed under the vertical slope (17.01 km2) and under the moderately steep
slope (6.42 km2). The vertical slope had a high degree of risk (17.01 km2) and
vulnerability scored as 1. The risk factor was increased on the steep slope
(Table 18.1).

Slope Profile

The slope profiles were one of the deciding factors for the acceleration of eroded
material and slope segments classified on the basis of geometrical shape (Singh,
2004b). Summit convexity, rectilinear section, free face, and basal connectivity were
the main identified slope profiles in the basin. About 8.1 km2 area was degraded
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Table 18.1 Landslide impacts and status on different parameters. (Wn)W, Weighted; n, number of
classes of parameter

S. No. parameters
(Weight) Classification

Area degradation
(mass
movements)

Identification
and weight rank
(Wn) Vulnerability Risk

1. Anthropogenic (W4) Under construction 5.47 1 1 5.47

Commissioned 2.41 0.7 1 1.687

Obtaining clearance 1.14 0.2 0 0.228

Under investigation 2.03 0.5 0 1.015

2. Curvature (W2) Concavity 7.3 to
�7.3

1 1 1

Convexity 8.12 to
�8.12

0.5 0 0.5

3. Geological aspects
(W2)

Geological structure 2 fault
1 thrust

1 1 1

Magnitudes 5.5 0.5 1 2.75

4. Slope (W6) Gentle slope (0�–5�) 0.31 0.1 0 0.031

Moderate slope (5�–10�) 3.31 0.3 0 0.993

Moderate steep slope
(10�–18�)

6.42 0.8 0 5.136

Steep slope (18�–30�) 6.12 0.6 1 3.672

Very steep slope (30�–
45�)

4.45 0.5 1 2.225

Vertical slope (45�–90�) 17.01 1 1 17.01

5. Slope profile (W4) Summital convexity 4.6 1 1 4.6

Rectilinear section 1.9 0.7 1 1.33

Free face 1.8 0.5 1 0.9

Basal concavity 0.1 0.2 0 0.02

6. Relative relief W2 RR 1244–3000 DI (0.93) 0.5 0 0.5

RR > 3000 DI (0.97) 1 1 1

7. Land use and land
cover (LULC) (W8)

Settlements 0.15 0.2 1 0.03

Agricultural 0.7 0.3 1 0.21

Forest cover 0.8 0.5 0 0.4

Wasteland 8.46 1 1 8.46

Grass/grazing 8.39 0.8 1 6.712

Scrubland 1.97 0.7 1 1.379

Water bodies 1.17 0.6 0 0.702

Snow/glacier – 0.1 0 0

8. Slope aspect Flat 0.85 0.2 0 0.17

North 1 0.5 0 0.5

North-east 0.71 0.3 1 0.213

East 3.24 0.7 1 2.268

South-east 9.47 0.8 1 7.576

(continued)
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under all different segments. The summital convexity had high vulnerability (1) and
high risk (4.6). The free face segments of the slope were highly affected due to
construction activities (Table 18.1). Rock fall incidences were highly noticed under
this section of the slope. The basal concavity segments of the slope profile were
highly affected due to flood and soil erosion (Fig. 18.3).

Slope Aspects

Solar energy is the main driving force that affects the slope aspects (Dearman, 1974).
In general, the slope aspect can influence the distribution and density of mass

Table 18.1 (continued)

S. No. parameters
(Weight) Classification

Area degradation
(mass
movements)

Identification
and weight rank
(Wn) Vulnerability Risk

South 14.12 1 1 14.12
South-west 2.93 0.6 1 1.758

West 0.22 0.1 0 0.022

North-west 0.91 0.4 1 0.364

9. Lithology Pt1 regionally
metamorphosed

11.46 1 0 11.46

Pt3e greenish grey
sandstone

5.7 0.8 1 4.56

Y granite and granitoid 0.91 0.2 1 0.182

Pg3o Boulder conglomer-
ate, sandstone, shale, clay

4.24 0.7 1 2.968

OC limestone, siltstone,
shale

2.31 0.4 1 0.924

Pt23 slate, phyllite,
quartzite, grey shale

3.28 0.5 1 1.64

Pt2 Ortho-quartzite, basic
volcanic

0 0.1 1 0

10. Soil texture Coarse texture 4.3 0.5 1 0.5 2.15

Fine texture 15.1 1 1 15.1

Medium texture 3.8 0.2 1 0.76

Rocky/badland 4.5 0.7 1 3.15

11. Precipitation Subhumid 16.1 1 1 16.1

Subtropical 4.9 1 1 4.9

Subhumid temperate 8.9 0.5 1 4.45

0.58 0.7 164.2
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Fig. 18.3 Parameter-based analysis
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movement by controlling the concentration of soil moisture or orientation of tectonic
fracture (Wieczorek et al., 1997). In the northern hemisphere above the 33� latitudes,
the maximum sunny area was found under the south, south-west, and south-east
aspect of a slope. The high risk was found on the south (1), south-east (0.8), east
(0.7), and south-west (0.6) aspect of slope. High vulnerability (1) and high risk
(14.2 km2) were observed under the slope aspect of the south.

Curvatures

The acceleration and deceleration of flow across on earth’s surface depend on the
concavity and convexity of a slope. A negative value (�10.4) indicates that the
surface is upwardly convex at that cell, and flow will be decelerated. A positive
profile (10.4) indicates that the surface is upwardly concave at that cell, and the flow
will be accelerated (Rautelal & Lakhera, 2000). The incidences of soil erosion and
landslide were noticed both curvatures of the slope. But affected pixels had a high
value on the concavity of slope. The vulnerability (1) and risk (1) were high on the
concavity of slope. The risk factors of human settlements were very high at the
convexity segments of the slope, and the concave segments of the slope were highly
affected due to anthropogenic activities (road and dam construction). The convex-
ities of slopes were highly scored as 1, and concavities of the slope were scored as
0.5 (Table 18.1).

Soil Texture

Soil texture and rainfall are two important factors which affect the movement of
landslides. Coarse texture, fine texture, medium texture, and very fine texture were
classified categories of soil in the study region. Very fine textures were commonly
observed in the upper basin and coarse texture in the lower basin. In the lower basin
of the study region, the coarse texture gives birth to debris slides and debris fall. The
very fine texture of soil generates the mudflow with tiny particles in the presence of
rainfall. This was very common in the upper region of district Kinnaur, where
climate types are arid and very cold (subhumid temperate). Here maximum rainfall
in the form of snowfall and vegetation belongs to alpine type. The rocky surface of
the region was not very much affected but un-stabilized by haphazard human
activities.

High vulnerability and risk were found under the fine texture of the soil (1). This
indicates a high risk (15.1 km2) of the physical landscape. Fine textures were scored
as 1, the coarse texture was scored as 0.5, a medium-fine was scored as 0.2, and
rocky badland was scored as 0.7 (Table 18.1). The soil textures of the region were
also determined by the climatic condition of the region. But it’s very fine, and the
fine texture of the region had sparse vegetation, which was more susceptible to
landslides and soil erosion (Jenny, 1941; NRSC, 2010).
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Lithology

The lithology of the study region is a type of sandstone, shale, clay, limestone,
siltstone, and regionally metamorphism. The lithology is one of the dominant factors
which control the rate of surface erosion. Lithology consist the rock types such as
alluvial, sedimentry, limestone, siltstone, shale, and dolomite in the lower regions,
were affected with mass movement during the season of rainfall. Below the
Shongtong and Tapri area region, most of the rock strata were loosed because of
the high rainfall intensity. The highest affected area was found under the categories
of regionally metamorphosed rocks type Pt1 and Pg3o and scored as 1 with high risk
and a high risk of 11.46 km2. Boulder conglomerate, sandstone, shale, and clay were
scored as 0.7, Pt23 is scored as 0.8, limestone, siltstone, and shale OC were scored as
0.4, greenish grey sandstone pt3e was scored as 0.8, granite granitoid base was scored
as 0.2, and orthoquartzite basic volcanic rocks were scored with the lowest 0.1
(Gupta, 2003).

The average magnitude of the basin varies from M5.5 to 6.0, and this magnitude
was sufficient to generate small- and large-scale landslides (Fig. 18.4). The slopes
cutting process were including the vibration of slopes area which later becomes the
causes of slopes failure. These continuous vibrations of magnitude were generating a
small number of landslides. The Sudharang Dakhu landslide occurred due to high
rainfall in June 2014 but still continuous sliding one of possible causes was earth-
quakes vibrations (Keefer, 1994). Shallow-focus earthquakes were crustal earth-
quakes, and they existed in the crustal layer. Deep-focus earthquakes were generated
because of the collision of two plates and generated from the depth 300–700 km.
Deep-focus earthquakes generate high energy, which had a high vulnerability of
destruction (Meunier et al., 2013).

Land Use and Land Cover (LULC)

The study region has covered only 8% forest cover, the maximum area of the study
region falls under snow-covered 2490 km2 (39%), and the wasteland was
2030.63 km2 (31%). Barren and sparsely vegetated areas were more prone to
weathering and erosion (Majumder et al., 2019). According to forest policy, the
minimum 33% area should be covered under the forest cover for a healthy landscape.
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The percentage of wasteland and snow-covered land was very high, which was 70%.
The 1.89 km2 of agriculture land was very low and is about 1.2%, which indicates
the tuff terrain and low possibility of agriculture (0.7 km2) and settlement (0.15 km2)
development in this region.

The increase of wasteland is a very serious problem in the basin, and wasteland
has high vulnerability (1) and high risk of 8.46 km2. It was evidient from the field
survey that the other land use type’s agriculture (0.7 km2), settlement (0.15 km2)
types were highly affected by mass movement and agriculture was scored as 0.7 and
settlements were scored as 0.2. The scrubland (1.97 km2) was scored as 0.7. A forest
of the region was also affected (0.8 km2) under the mass movement and scored as 0.5
(Table 18.1).

Anthropogenic Activities

The Sutlej Basin of district Kinnaur is known for its development of hydroelectric
projects. Different types of hydroelectric projects such as under construction,
commissioned, obtaining clearance and under investigation were identified in
study region. Under construction types, hydroelectric projects have a number of
landslide incidences. Tunnelling and blasting had adverse impacts on human settle-
ments and the physical landscape (Kuniyal et al., 2015; Kuniyal et al., 2017). Slope
instability is found under the surrounding area of hydropower projects (CEIA,
2014). Increased landslide incidences, flash floods, river morphological changes,
water quality deterioration, reduction in agricultural/horticultural production, forest
degradation, land degradations, inadequate compensation due to construction activ-
ities, damage to human health due to dust, and cracks in houses are major adverse
impacts noticed within the project-affected area (Lata et al., 2017) (Fig. 18.5). The
impact value was high under the construction types of HEPs, which have a threat of
mass movement and scored with high vulnerability and risk (1). The susceptibility
score (21.88 km2) was high under these categories. But the other categories of the
hydroelectric projects have a low vulnerability and less susceptibility. Land degra-
dation and loss of agricultural land are found under the construction hydroelectric
projects. A high vulnerability is found within the buffer of under-construction
hydroelectric projects.

Precipitation

Precipitation is one of the dominant factors for the generation of landslides. About
80% of landslide is related to rainfall, and the remaining 20% belongs to the other
responsible factors. According to the intergovermental panel of climate change
(IPCC) 2014 model projection relative to 1986–2005, RCP2.6 (left) and RCP8.5
(right), the dotted pattern shows the projected change and variability in rainfall. This
IPCC model also indicated the sign of the change (IPCC, 2014) (Fig. 18.6). The
precipitation pattern was different in the study region which was influenced by
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topographic variance (434–6448 m). Isohyets study made it clear that the annual
isohyets varied from 100 to 1400 mm. Annual rainfall in this basin was decreased
from the Lesser to the Greater Himalayan range. Subhumid subtropical region
(below Tapri) received maximum incidences of the landslide which was scored as

Fig. 18.5 Glimpse of study area; (a) degraded river valley, (b) landslides at Sudharang Dakhu, (c)
interaction with respondent, (d) River valley at Powari

Fig. 18.6 Change in average precipitation (1986–2005 to 2081–2100) after: IPCC, 2014
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1, and above Tapri, the region was found under the sub-temperate which received
fewer incidences of landslides which were scored as 0.5 (Table 18.1).

18.6 Comprehensive Vulnerability

No vulnerability region had no any anthropogenic activities and highly covered with
forest. The low vulnerability region had a vulnerability score of 0.3–0.5 and sparsely
covered with the vegetation. The incidences of landslides were also recorded in this
region. Moderate vulnerability score was varies from 0.5 to 0.7, and human settle-
ments were also recorded in this region. The incidences if earthquakes were also
recorded in this zone. This zone was not much affected by hydropower development
but highly affected by the incidences of slope failures because of road cutting. The
region of high vulnerability had most incidences of landslides, floods, and earth-
quakes. The region of high vulnerability had a high vulnerability score >9 with high
losses of the landscape. High incidences of landslides were also recorded in this
region (Fig. 18.7). This region recorded along the river Sutlej from Tapir to Khab.
The numbers of under-construction hydroelectric projects were developed in this

Fig. 18.7 Landslides incidence identification in Sutlej Basin
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region. Constructed hydroelectric projects were more responsible for the number of
landslides. The development of hydroelectric projects and any other developmental
activities should be a sustainable way, and all suggestive approaches and methods
should be adopted to control the incidences of landslides.

18.7 Suggestive Approach to Control the Incidences
of Landslides

• In the Sutlej Basin, structural managements were very poor and not properly
followed. Channel linings are another method for stabilizing a stream. The
boulders could be deposited near the bank of the river. It could be helpful to
protect the riverbank and settlements/road near the river. This can be used near
the riverbank of Karcham Wangtoo. Linings are not costly like the check dam.

• Basically check dams are small, sediment storage dams which are made of
dressed and undressed stone. This can be implemented in the upper Sutlej
Basin from Khab to Rampur. In Himachal Pradesh the check dam formation
process was completed under the forest department. This technique reduces the
soil erosion, reduces the steep gradient of the river, and offers toe support to small
stream slopes.

• Ditches and drains method could be implemented in the convex types of slopes,
where the soil of the lower slope segment has a fine to medium texture. The lower
trench could be little excavated to the base of the shallow soil. The eroded
material will be deposited on the lower section of the slope. The stability of the
concave slope could be attained. The ditches and drains methods could be
implemented in Pangi and Powari villages.

• Horizontal drain piping is a commonly used method to reduce the risk of
landslide. In this method, PVC pipes were installed in the wall. This hydraulic
method reduces the water table and also reduces the risk of slope failure. This
method will be very effective near the Powari region where the soil is fine and
sandy and the water table fluctuates with rainfall. In the rainfall, the water table
raises, and vulnerability of landslide is increased. The drain pipes reduce the
intensity of storing water in sandy soil and reduce the risk of landslides.

• The gabion wall-based wire mesh technique is widely used in the basin because
this technique required less engineering knowledge. Most of constructed works of
gabion walls in Tapri, Kwangi, Karcham, Powari, Brang, Shongtong, Sudharang
Dhaku, Khab, Sangla, and Chitkul were done by local labourers. This technique
became helpful to cut soil erosion and landslide incidences but not very much
effective. There is a need to strengthen the base foundation of gabion walls. Large
and long gabion walls were constructed on the left bank of river Sutlej in
Shongtong. The army settlements were protected by this gabion wall from a
massive flood in 2014. This wall can be constructed in the Powari village on the
left bank of river Sutlej.
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• It is a very serious matter that in the Sutlej Basin 8% area covers green cover and
36% falls under barren or wasteland. The slope stabilized through the growth of
vegetation. The shrub is enough to control soil erosion and landslide incidences.
The shrub-covered area was less prone to landslides and reduces the surface
runoff. Bioengineering techniques can be used to stabilize the slope in the area of
Urni and Apka landslides. But here slope was very steep, and hydraulic seedling
can be used for the reduction of slope failure incidences. However, this region
was very complex but not impossible.

• In the valley along the roadside, >65% area had the steep slope, and the problem
of rock fall and shooting slope was very high from the Tapri to Khab road and
another link road. Wire mesh can be placed on the rocky surface of the slope. It
can be helpful to protect the people from the falling rocks. This mesh can be
helpful to prevent small rocks less than 0.75 m from falling. The rock curtain can
be used in and surrounding of highly vulnerable area (Apka) of the Sutlej Basin,
where wind speed is very high and rolls out the rock fragment on the road. An
open rock shed can be constructed where the slope was very steep and the
problem of shooting stone was very high (Apka and Khab).

• This is best to avoid the blasting and mining, according to the people of the study
region, as they are the most destructive of the region due to the anthropogenic
activities. The blasting and mining activities lead to incidences of slope failures
and landslide incidences. A hydraulic rock hammer could be used to down the
rock from the slope.

• If we see the future perspective of this research, this validates the way for physical
vulnerability. However when we go to resource management and their sustain-
able development, then we have to go through geospatial technology. The real
implementation of vulnerability assessment required micro-level study and also
requires a better budget.
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Chapter 19
Application of Fractal Dimension
Technique on a Badland Topography
in Tapi Basin, Deccan Trap Region, India

Veena Joshi

Abstract A fractal is a fragmented geometric shape which is characterized by scale
invariance under contractions or dilations. Fractal is statistically a self-similar body,
which implies that some aspect of a process or phenomena is invariant under scale-
changing transformation. Fractal dimension is applied in geomorphology in wide
range of topics, such as tectonics, coastal configuration, river basin geometry,
landslides, soil studies, karst features, etc. With the availability of high-resolution
digital elevation data and operating GIS tools, further new interests have arisen in the
technique. In the present study, fractal dimension has been applied to an alluvial
badland topography along the banks of Tapi River, in the Deccan Trap region, India.
The area is characterized by semi-arid climate. A newly developed software ‘Viz-
Morphotec’ was used to calculate fractal dimension (D) for the entire area of
badlands which yielded that ‘D’ values between 2.9 and above clearly coincide
with the location of badlands in the basin. Two sample catchments were selected for
determining fractal properties of these badlands and to understand microprocesses
operating in this topography. Fractal dimensions were calculated at three levels,
namely, linear, perimeter and surface. Variograms were computed for both the
catchments also. Results indicate a multifractal topography, where two or more
processes are operating in the landscape. The curves of the variograms indicate
possible influence of diffusional and erosional processes operating on the topogra-
phy or could be a result of tectonics or changes in the climatic conditions that are still
manifested in the landscape. Hence, these badland areas indicate multifractal topog-
raphy where more than one process are operating within it. The results also reveal
that rivers are actively eroding, and linear erosion is predominant in the whole
region.

Keywords Fractal dimension · Viz-Morphotec · Variogram · Badlands · Deccan
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19.1 Introduction

A fractal is a fragmented geometric rough shape that can be delineated into parts,
each of which is a reduced-size copy of the whole structure. The characteristics,
so-called symmetries, in a fractal signify invariance under contractions or dilations.
The roughness and fragmentation of a natural fractal shape neither fluctuate up and
down or vanish but stay unchanged at any zoom level. The key to the whole structure
is still attached to the structure of every piece in a fractal. Fractals possess self-
similarity in a structure across all scales. As we zoom in or zoom out a feature, the
geometry and appearance of a fractal surface remain unchanged or self-similar
(Mandelbrot, 1989). Self-similarity has been used under two contexts. It suggests
that each part of the body/structure of a fractal is very much like a tree branch or a
piece of a broccoli which is simply a linear geometric reduction of the whole body. It
also expresses that not only is the reduction linearly geometric but also the ratio of
reduction is the same in all directions. Self-similarity indicates that some aspect of a
process or phenomena is invariant under scale-changing transformation, such as
simple zooming in or out. In short, a self-similar structure repeats a unit pattern on
different scale or size. Self-affine shapes and self-affinity are recent terms that are
mostly used in geomorphology and relief analysis, which suggests that though the
reduction is still linear, it is different in a way that, as one goes from a large piece to
small piece, we must contract the vertical and horizontal coordinates in different
ratios (Burrough, 1981). If a natural scene is self-similar, determination of its scale is
not possible. The simplest visual test of self-similarity is to see whether any
enlargement of any part of a structure remains indistinguishable from the whole or
from any other part of the same body.

Since the term fractal was first coined by Benoit Mandelbrot in 1975, fractal
models and related analysis techniques were matters for speculative coffee break
discussions between sessions at geoscience conferences. For the first time, fractal
geometry proposed by Mandelbrot (1975) has provided the possibility of precisely
simulating and describing landscapes by employing a mathematical model. Fractal
analysis without any question has shown to look beyond the traditional techniques to
contain ‘new’ information in a phenomenon. If a landscape possesses fractal char-
acter, it should reveal statistically self-similar or statistically self-affine nature.
Simulating landforms processes using Mandelbrot’s fractional Brownian motion
(fBm) has gained enormous popularity in the last three decades. The application of
fractal technique in geomorphology started sprouting only by the 1980s, though it
was suggested that the application of fractal was always important to geomorphol-
ogy, even before Mandelbrot’s coining the word ‘fractal’. Reviewing all the papers
of fractal in geomorphology is beyond the scope of this paper; however, some of the
most cited landmark papers that focused on different themes of geomorphology are
presented here.

Goodchild (1982) presented fractal Brownian process as a terrain simulation
model. Mark and Aronson (1984) studied scale-dependent fractal dimension of
topographic surface: with special application in geomorphology. ‘Self-similar’
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profiles of deep-sea topography were investigated by Fox (1986). Culling and Datko
(1987) applied fractal geometry to soil-covered landscapes. Goodchild and Mark
(1987) conducted a comprehensive review of the relevance of fractals to geography
under three headings: self-similarity, the response of measure to scale and the
recursive subdivision of space. The fractal geometry of the landscape was measured
by Milne (1988). Gilbert, 1989 evaluated whether the topographic data sets have
fractal properties or otherwise. Fractal mapping of digital images of Arizona were
conducted by Huang and Turcotte (1989). Fractal sinuosity of stream channel was
determined by Snow (1989). Unwin (1989) introduced fractals and geosciences to
computer geosciences. The surface roughness of talus slope was studied by applying
fractal techniques by Andrle and Abrahams (1989). Fingerprints and fractal terrain
were assessed by Piech & Piech, 1990. Polidori et al. (1991) applied fractal tech-
nique to assess quality of digital elevation model.

In 1992, a special issue was published in the journal Geomorphology, devoted to
the application of fractal geometry on landform analysis, where there are nine
articles in the theme, ranging in topic including catchment evolution model, fluvial
land sculpturing, tectonic, climate and lithology control, measurement of self-
affinity, fractal significance of drainage basin parameters, fractal dimension of
sinkholes, desert storm, etc. (Willgoose et al., 1991a; Willgoose et al., 1991b;
Tarboton et al., 1992; Chase, 1992; Klinkengerg, 1992; Nathaniel & Chase, 1992;
Ouchi & Matsushita, 1992; Breyer & Snow, 1992; Reams, 1992; Mayer, 1992;
Snow, 1992). Whether there exists any relationship between fractals and morpho-
metric measures has been investigated by Klinkengerg (1992) in the same issue. A
review article on fractals, fractal dimensions and landscapes came out in 1993 by Xu
et al. The next year, another review article was published by Jie & Haosheng (1994)
on fractal geomorphology, where the authors focused on the issues of geomorphic
fractals and geomorphic conditions, fractal dimensions and geomorphic processes,
digital modelling of fractal landscape, range scale of geomorphic fractals and fractal
characteristics of geomorphic phenomena in space and time. Gao & Xia published
fractals in Physical Geography in 1996 (Gao & Xia, 1996). Chaos, fractals and self-
organization in coastal geomorphology were investigated by Baas (2002). The
author simulated dune landscapes in vegetated coastal environments. Hagerhalla
et al. (2004) studied fractal dimension of landscape silhouette outlines as a predictor
of landscape preference. Taud and Parrot (2005) measured roughness of DEM
applying the local fractal dimension. Another review paper came out by Sun et al.
(2006) where the scholars took a survey of several methods for fractal dimension
calculation which are commonly used in many studies. Turcotte (2007) related
fundamental statistical properties of landform and drainage networks that have
been developed in statistical physics. Fractal dimension of a badland topography
at Deccan was investigated by Joshi et al. (2009). Relationships between the fractal
dimension of the drainage basins were assessed by Khanbabaei et al. (2013). A
review article on the methods of fractal geometry used in the study of complex
geomorphic networks was published by Kusák, 2014, where the focus was on the
comparisons of the basic terms used in fractal geometry. Tectonic and lithological
control on topography and their reflection in fractal dimension were presented by
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Liucci & Melelli (2017). Pardo-Iguzquiza et al. (2019) took a complete review of
fractals in karst to demonstrate fractal behaviour of karst topography. A case study of
fractal-based modelling and spatial analysis of urban form and growth of Shenzhen
in China was conducted by Man & Chen, 2020. Patuano & Tara (2020) presented the
summary of a literature review of the methods and interpretations of fractal geom-
etry, currently used in landscape architecture. Over 40 studies were examined for
their use of fractal concepts within the analysis of landscape-related elements.

A brief traverse through the fractal journey of the landscape from the 1980s till
the present, as outlined in the previous paragraphs, revealed that the application field
is widely variable, ranging from tectonics, coastal configuration, river basin geom-
etry, landslides, soil studies and hordes of other applications. With the availability of
high-resolution digital elevation data and operating GIS tools, further new interests
have arisen in the technique.

Fractal geomorphology emerges as a new discipline to evaluate the origin,
process and distribution of relief on the earth. Though landforms widely exhibit
fractal nature, it is complex to asses it due to the non-homogeneity of relief geometry
in space. The main objective of the present study is to assess the applicability of
fractal dimension to identify badland locations and to understand microprocesses
operating in badland topography. The significance of the study is that fractal
dimension technique addresses spatial characteristics of the landform features and
therefore represents a powerful method to investigate the relationships between
landforms and their underlying processes.

19.2 Study Area

The study area selected for the study is the Tapi Basin which is the second largest
west flowing peninsular river in India (Fig. 19.1). It flows through the states of
Madhya Pradesh, Maharashtra and Gujarat. Its length is 724 km, and it drains an area
of 64,750 km2. It rises from Satpura Ranges at an elevation of 762 m and drains into
Arabian Sea. It flows through a rift valley, and its trough accommodates consider-
able deposits of alluvium. The area extends between 75

�
150E to 75

�
450E longitude

and 20
�
250 to 22

�
35’N latitude. The climate is semi-arid with the annual average

rainfall between the range of 650 and 780 mm. December is the coldest month with
the mean daily minimum temperature at 11.9 �C and the mean daily maximum at
29.8 �C. Temperatures begin to rise steadily from the beginning of the March,
reaching its peak in May. Mean daily maximum temperature reaches 45–48 �C on
the hottest day in May. Natural vegetation is mostly absent except in the form of
acacia thorny plants. Deccan Trap region as a whole is rocky landscape where
sediment deposits are restricted and thin, if at all they are present. River Tapi
flows for a large part within a rift valley, and its trough accommodates considerable
deposits of alluvium. On the right-hand bank of the river, numerous tributaries,
collecting their headwaters from foot of Satpura systems, have dissected the
alluvium-covered pediment surface and have caused badland formations along a
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stretch of 60–70 km. There has not been any document/report or research article on
the origin of these badlands, though tectonics as well as climate forcing during the
LGM are speculated during the scientific discussions. The focus of the present study
is these badland areas.

Fig. 19.1 Location map of the study area in general and also showing two sample basins
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19.3 Material and Methods

Fractal dimension of the entire area covered by badlands in the basin was calculated
first, to assess whether there is any relation between badlands and values of fractal
dimension (D). In other words, whether values of D can be used to identify and
demarcate badlands in any region.

‘Viz-Morphotec’ is a new set of software application programs for morphometry
developed by Dr. Prakash Joglekar (Scientist F, DRDO, Delhi) as per well-
documented algorithms and procedures. Fractal dimension of landscape is one of
the parameters in this software and has been used for the computation of fractal
dimension indices in this study. The specification of the system and program is
Turbo Pascal for Windows, 32-bit OS, 4 GB Disk Memory, 2 GB RAM, Intel Xeon
3.40 GHz. Currently there are 10–12 programs plus few more in the software. The
software was designed to compute basin and topographic indices at regional scale,
such as hypsometric integral, asymmetry factor, knick points, valley width–height
ratio, stream profiles, stream order, bifurcation ratio, sinuosity index, circularity
ratio, elongation ratio, fractal dimension (basin), iso-base, hypsometric integral,
roughness index, surface index, mountain front sinuosity and rose diagram, swath
profiles trend surface and fractal dimension (topography). Input DEM 3601�3601
ASTER (1�1), SRTM (3�3), Re-sampled SRTM (15�15). Output files: Compat-
ibility with ENVI, ERDAS, Geomatica/.bmp.

The fractal dimension program in the software was used to compute the D indices
in the present study. For morphometric analysis, ASTER and SRTM DEMs are
mostly used in the software, since the software was mainly designed to detect
morphometry at a regional scale. But the input DEM for the present study was
self-generated Cartosat (10 m) for the part of the Tapi Basin where badlands are
present.

To evaluate the fractal property (self-similar/self-affine) of the badland areas in
the basin, fractal dimensions were calculated at micro level for two selected catch-
ments from the area at three levels, namely, linear D (Laverty 1987), D for the basin
area (Goodchild, 1982; Turcotte, 1992) and D for the surface (Mandelbrot, 1975).

Results were synthesized, and findings were presented.

DEM Extraction Using Cartosat-1 Stereo Imagery

Cartosat-1, which was launched on May 5, 2005 (carrying two panchromatic sensors
with 2.5-m spatial resolution and having fore-aft stereo capability), has been
designed to generate DEMs and ortho-images for terrain modelling and is widely
used nowadays, especially in India. Cartosat DEM of 30-m resolution is available on
Bhuvan portal for free download. But the study needs a higher-resolution DEM than
that; hence a DEM was self-generated for the present study using 8 Cartosat-1 stereo
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images taken over the badlands along Tapi River. The details of each scene of the
eight Cartosat images are displayed in Table 19.1.

Extraction of DEM from stereo images can be treated as a semi-automatic
procedure. Leica Photogrammetry Suite (LPS) 9.2 was used for DEM generation.
The first step is to identify the GCPs for each image, and for that, both the Google
image and the Cartosat images were opened in ArcGIS. After the points have been
identified, the images PAN-A and PAN-F were imported in Leica LPS as indicated
in Fig. 19.2. Cartosat-1 images are provided with ‘rational polynomial coefficients’
(RPC). These RPCs are computed by using the available information, i.e. sensor
model, sensor position and attitude data, ellipsoid parameters and map projection.
Further, rational polynomial coefficients (RPC) file is attached in the block file as a
part of image orientation. GCPs were collected directly from the field by using
differential Global Positioning System (dGPS). Five GCPs were taken for each
image. Figure 19.3 indicates the GCPs of one image actually in the field. Twenty-
five GCPs were used as control points to refine orientation results (Fig. 19.4). Using

Table 19.1 Details of each
scene of the eight Cartosat
images used to create DEM

Sr. No. Path Row Date

1 524 299 12 Jan 2012

2 524 300 12 Jan 2012

3 525 299 31 Dec 2011

4 525 300 31 Dec 2011

5 526 299 18 Dec 2011

6 526 300 18 Dec 2011

7 527 299 30 March 2011

8 527 300 30 March 2011

Fig. 19.2 Input GCP, classic point measurement tool in LPS
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the ‘bundle method’ of aerial triangulation, tie points were generated. The RMSEs of
the residuals were obtained after block triangulation. Once aerial triangulation with
optimum RMSE is done, the data is exported in ArcGIS 10, and DEM was extracted
at 10-m resolution. Standard WGS-84 projection and datum were assigned for the
Cartosat 1 photogrammetry model. The ortho-rectified image is indicated in
Fig. 19.5. For accuracy checking, the Survey of India topographical maps of the
area were used which revealed error-free matching with great accuracy. The flow
chart in Fig. 19.6 demonstrates the entire steps of DEM creation from IRS Cartosat
stereo images using LPS and ArcGIS.

Figure 19.7 demonstrates the Carto DEM of 10-m resolution which became the
input DEM for all the further calculations.

Calculation of Fractal Dimension

Calculations of the fractals were computed for 137 � 77 grids cell of 100 � 100
pixel dimension. The box counting was performed by varying grid dimension from
4 to 50 cells in x, y and z axes. The fractal dimension (D) was computed for each
pixel based on the slope of regression of graph of log (N ) against log (r). N is the
number of boxes that cover the pattern, and r is the magnification or the inverse of

Fig. 19.3 Measuring ground control points in the field using dGPS
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Fig. 19.4 Depicting the positions of the 25 GCPs as control points to refine orientation results

Fig. 19.5 DEM and the ortho-rectified image
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the box size. Density-sliced image for local D (D range 2.8–3.0) is presented in
Fig. 19.8. The density-sliced image of D has been draped on Google Earth image of
the area (Fig. 19.9) which reveals a remarkable match of the areas with D values

Fig. 19.6 Flow chart demonstrating the entire steps of DEM creation from IRS Cartosat stereo
images using LPS and ArcGIS
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above 2.8 with the location of badlands in the basin. The percentage area against the
D values were obtained (Fig. 19.10) which indicates clearly that D values around
2.90–2.95 were observed over the badlands in the region. The result is showing that
fractal dimension can be effectively used to delineate badlands in any basin. The
software proved to be useful in determining fractal dimension on a broad scale in
addition to other morphometric parameters.

Fig. 19.7 Carto DEM of 10-m resolution which is the input DEM for Viz-Morphotec software

Fig. 19.8 Density-sliced image for local D, Calculated using Viz-Morphotec software (D ranges
from 2.8 to 3.0)
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Fig. 19.9 Density-sliced image of D has been draped on Google Earth image of the area, depicting
the perfect coincidence of badlands with D values between 2.8 and 3

Fig. 19.10 Percentage area against the D values, revealing that values above 2.9 are clustered
within the badlands in the area, as shown by red in the circle
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The next step is to test whether we can meaningfully apply the technique to
evaluate the fractal properties of the badlands. Badlands are deeply dissected
topography, with dense drainage density. Relief within a badland can be variable,
such as in areas like Chambal badlands of India where relief of more than 100 m is
found, but the badlands that are developed over the Deccan region are usually of a lot
smaller dimension in terms of vertical relief and horizontal extent (Joshi et al., 2009).
The Deccan Trap region as a whole is rocky, and sediments and soils have been
formed at only restricted patches along some riverbanks and few foot slope pediment
zones. The badlands in the study area have maximum relief of 10–25 m, so landform
processes are operating at a much finer resolution. Hence, Cartosat DEM of 10-m
resolution is believed to be a fair match with the landscape operating scale here.

Linear Fractal Dimension of the Channel

In order to evaluate the linear fractal dimension of the streams in the basin, a field
survey was conducted to select a few badland catchments using the locations of
badlands identified by the D values of the area (Fig. 19.9). Two sample catchments
were selected in the field and demarcated them in the DEM. The locations of these
two sample catchments are indicated in the location map (Fig. 19.1), and field views
are shown in Fig. 19.11. They are Bhaunak Basin and Sur Basin. General

Fig. 19.11 The field views of the two sample catchments, where (a) and (b) depict parts of
Bhaunak Basin and (c) and (d) capture parts of Sur Basin. What is seen in the pictures are the
true badland parts of the basins
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geomorphometry of these two sample basins is presented in Table 19.2. There are
two distinct geomorphic units within both the basins, namely, pediments and
badlands. It is clearly visible in Fig. 19.12 that there is a sharp break of slope,
indicated by a red line in the diagram. Figures 19.13 and 19.14 display surface and
slope maps of the basins. As we can see in these maps, the upstream part is the
hillslope pediment zone, and the downstream reach is the true badland alluvial zone.
The fractal dimension (D), in general, ranges between 1 (indicating almost straight)
and 2 (nearly filling the plane). Over a range of scales, statistically self-similar lines
demonstrate constant values of D (Mandelbrot, 1967). The fractal value (D) of a
curve is calculated by measuring the entire length of the curve using various step
sizes. When the curve is irregular, the step size increases, leading to increase in the
total length of the curve. Two stream channels were selected each from the two

Table 19.2 Topographical
parameters of the sample
basins

Parameters Bhaunak Basin Sur basin

Basin area 209.093 km2 347.409 km2

Basin length 22.329 km 26.85 km

Basin width 12.743 km 17.84 km

Relative relief 911 m 896 m

Dissection index 85.78% 84.44%

Absolute relief 1062 m 1061 m

Slope 2.64� 2.02�

Fig. 19.12 Contour maps of Sur and Bhaunak basins and the threshold contour (in red colour),
which demarcates upstream and downstream reaches
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Fig. 19.13 Surface maps of the two sample basins, namely, Sur and Bhaunak

Fig. 19.14 Slope maps of the two sample basins, namely, Sur and Bhaunak
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sample catchments, and linear fractal dimensions were computed using Eq. (19.1) in
the program:

log L ¼ K þ B log d ð19:1Þ
D ¼ 1� B

where L is the length of the curve, d is the step size, B is the slope of the regression,
K is a constant, and D is function of the regression slope B. The steeper the negative
slope (B is negative value), the higher the fractal dimension. The results of the
calculation are present in Fig. 19.15 and Table 19.3. It is clear from the table that the

Fig. 19.15 Linear fractal dimensions of the channels, showing upstream and downstream curves
separately

Table 19.3 Linear fractal
dimension for the sample
basins

Name Fractal value (D)

Bhaunak Basin (channel I) 1.09

Bhaunak Basin (channel II) 1.13

Sur Basin (channel I) 1.47

Sur Basin (channel II) 1.42

450 V. Joshi



values are closer to 1 than 2, indicating low sinuosity of the channels in question.
Variations in fractal dimensions are observed between Bhaunak and the Sur basins,
but there is no significant variation within the individual basins. Bhaunak shows
lower D than the Sur Basin.

Fractal Dimensions of the Basin Area

The catchment boundaries of Bhaunak Nadi and Sur Nadi were demarcated with the
help of hydrology tool in ArcGIS 10. The fractal dimension of the basin area for the
sample basins was calculated using box-counting method (Goodchild, 1982;
Turcotte, 1992), for that grids of different scales were plotted on area as well as
sample basin boundary, and fractal has been calculated with the help of Eq. (19.2):

Dð Þ ¼
ln Nn þ 1

Nn

� �

ln rn
rn

� �
þ 1

ð19:2Þ

where (r) is the size of the grid and (N ) signifies the number of boxes to cover the
entire area for each grid size. The computed D for the perimeter for the two basins is
demonstrated in Table 19.4. The box-counting dimension is much more widely used
than the self-similarity dimension since the box-counting dimension can measure
pictures that are not self-similar (and most real-life applications are not self-similar).
Due to the nearly box-shaped nature of the demarcated basins, the values are close to
2, indicating near space filling.

Variograms and the Surface Fractal Dimensions

The roughness or spatial continuity in a data set is indicated by variograms. Of all
the varieties of methods of computation of D for surface, variogram technique is the
most widely used one. The variogram of a surface is constructed by considering the
variance of its elevation as a function of its horizontal distance. For a pair of points

Table 19.4 Box sizes and the number of boxes (for box-counting method) and fractal values for
the two basins

Basin
name

Size of each box
(r)

No. of required boxes
(N )

Fractal values (D) of the whole
catchment

Bhaunak Basin

Channel I
Channel II

1.0 km
0.5 km

147
333

1.971

Sur Basin

Channel I
Channel II

1.0 km
0.5 km

203
429

1.989
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x1, y1, z1 and x2, y2, z2 on a grid of digital topography, with x and y horizontal
coordinates and ‘z’ being the elevation, the contribution to the variance is expressed
as

Z1 � Z2ð Þ2 ¼ Δzð Þ2 ð19:3Þ

and the horizontal distance is depicted as:

x1 � x2ð Þ þ y1 � y2ð Þ½ �1=2 ¼ Δx ð19:4Þ

It calculates these for every pair of points on the grid and plots the logarithm of
the standard deviation over a binned distance interval, against the logarithm of the
distance at the logarithmic midpoint of that interval. Manually it is computationally
intensive operation, because n by n grid contains n2(n2 � 1)/2 points. The following
equation (Eq. (19.5), Carr, 1995) has been employed in the program to calculate
variograms of the sample basins, which is expressed as:

y hð Þ ¼ 1=2nð Þ
X

Z xi, yið Þ � Z xiþh, yiþh

� �� �2 ð19:5Þ

where γ(h)¼ semivariance at lag distance h; Z(xi,yi)¼ data value at location i; Z(xi+h,
yi+h) ¼ data value at location plus distance h; and n ¼ number of points in the
data set.

Estimation of Fractal Dimension from Variograms

Fractal dimension of the landscape can be directly obtained from the variogram,
assuming that land surfaces have statistical properties to those of fractional
Brownian surface (Mandelbrot, 1975). The two random function of F(t) and F(rt)/
rH, when properly rescaled, are statistically similar. For a surface, the single variable
t is replaced by point coordinated x and y on a plane to give F(x,y) as the surface
altitude z at position (x,y). The surface that consists of these F(x.y) points is usually
called a fractional Brownian surface (fBm) (Mandelbrot, 1975).

On fractional Brownian surface, the variogram is described by what is expressed
in Eq. (19.6), such as

E F x, yð Þ � F xþ Δx, yþ Δyð Þ2 ¼ Δx2 þ Δy2
� �2Hh

ð19:6Þ

The variogram takes on the form of a power function in whichH (Hurst exponent)
should range between 0 and 1. In case of a fractional Brownian surface, D ¼ 3 � H.
As H increases toward its upper limit (i.e. small D), the variability of the surface is
locally small but rises rapidly with distance; whereas, when H is small (i.e. large D),
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the surface shows high local variability but a slow increase at large distance
(Mandelbrot, 1975).

The slope and the trend of a variogram can be directly used to interpret the nature
of fractal of the landscape. On a log plot of standard deviation v/s distance, the slope
of a variogram will be indicated by (3 � D)/2, resulting into a steep variogram
representing low fractal dimension, while a gentle slope implies high fractal dimen-
sion. Straight variogram represents a true fractal (self-similar). If the variogram has
breaks in the slope, it indicates that each break is associated with changes in the
process or lithology and represents a ‘multifractal’ landscape. In a topography where
there are variations in either lithology and/or processes, a variogram shows generally
a multifractal topography (Voss, 1988).

Relation Between H and Self-Similarity of the Landscape

If the relief (or variance of elevation) in a small area resembles that of the entire area,
when the relief is magnified by the area factor (entire area/small area ratio), the
landform is considered as self-similar, where H ¼ 1. If relief increases, on the other
hand, then the landform is considered self-affine (0 < H < 1). This is a more probable
situation in real landscapes. With similar total relief, the greater the local relief, the
lesser the value of H. With similar local relief, the greater the value of H, the lesser
the total relief.

Texture is a word used in landform studies to indicate arrangements of topo-
graphic heights and the frequency of changes, and surface fractal dimension is
simply the measure of it. The calculated D values fall within the general range of
2 (flat) to 3 (completely space filling).Using the equations cited above, variograms
and the fractal dimensions were computed for the two sample basins. Both Bhaunak
and Sur basins were demarcated into two sectors, namely, upstream pediment
section and downstream badland section. Variograms were separately generated
for all the four sections, and results are depicted in Fig. 19.16 and Table 19.5.
Hurst components (H ) were also calculated for the sample basins, and they are also
included in Table 19.5.

19.4 Discussions

In the present study, demarcations of badlands were done using a new software,
Viz-Morphotec, which clearly reveals a strong association of D values with the
occurrences of badlands. At a micro-level, the fractal calculations were done at three
levels, namely, linear, perimeter and surface, for two sample basins. The data
presented above reveals that in case of linear D, the low values for both the channels
in Bhaunak suggest that the rivers are actively eroding, and linear erosion is
predominant in the entire section being included in the analysis. They are also
close to the source areas. Sinuosity will always indicate low under such conditions.
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The gradients of these badland gullies/streams are high that directly drain into the
main streams. Hence there is rapid linear erosion resulting in low values of D. Sur is
revealing higher values of D, showing more sinuosity. Minor variations prevail in
the values of D between the two catchments, which could be due to the variations in
their textural and stratigraphic characteristics as well as gradients of the longitudinal
profiles.

Fig. 19.16 Variograms for both the upstream and downstream sections of the sample basins.
Upstream reaches of both the basins as depicted in (a) and (b) are straight lines, implying self-
similarity, whereas, downstream reaches shown in (c) and (d) show slight concavity, that is
deviation from self-similarity but more of self-affinity

Table 19.5 Fractal dimension of the surface and ‘H’ values of the sample basins

River name Fractal dimension (D) Hurst exponent (H )

Bhaunak Basin (upstream) 1.56 1.44

Bhaunak Basin (downstream) 2.36 0.64

Sur Basin (upstream) 1.82 1.18

Sur Basin (downstream) 2.77 0.23
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The fractal dimension of the basin perimeters conducted using box-counting
method yielded in the high values of D for both the basins, reaching almost
2. This is due to the nearly box-shaped nature of the demarcated basins.

In surface D, values above 2.5 are considered to be very rough surface, and the
values for both the basins are more than that. Values for upstream basins are below
2. Generally, surface fractal values range between 2 and 3, but in this calculation, for
the upstream reaches, the values are less than 2. This is very unusual. The surface
shows high local variability. There is a slow increase in roughness with distance for
the badland areas, while the hillslope areas demonstrate exactly the opposite trend.
The fractal dimension (D) of a surface is a relief-independent parameter. High fractal
does not necessarily mean a rough surface but rapid change in the relief in a small
local area (but gradual change in a large area), and low fractal suggests slow changes
in a small area but large variation over a long distance (Sung and Chen, 2004). High
values of D and small H (Table 19.5) as shown in these areas are in accordance with
the normal trend. Hurst exponent is useful to determine the self-similarity of the
landscape and even more useful when comparisons are made of the minor variations
in the surface morphology between the two sites. The upstream areas are very small
in aerial extent, and hence variation in the surface relief is not significantly reflected
in the analysis.

A straight variogram suggest self-similar landscape. The fractal dimension of a
topography is controlled by the changes in its variability with distance but not the
amplitude of that variability (Joshi et al., 2009). A topography which is uncorrelated
at all length scales will indicate high fractal value, while topography that is strongly
correlated at short wavelengths (but less so at long wavelengths) will reveal low
fractal dimension (Mandelbrot, 1989). A true fractal must reveal a straight
variogram. Departure from the straightness indicates multifractal topography, more
so at lower fractal dimension, at lesser wavelength scales (Voss, 1988; Mandelbrot,
1989). Multifractal can be interpreted in two ways: that the landscape is not self-
similar and also that more than one process is operating in the region.

The trend lines of the two sample basins (Fig. 19.15) do not reveal noteworthy
difference with each other. The variograms of the two sample basins are smooth and
slightly concave, not straight, indicating multifractal topographic distribution for this
range. Sur Upper course (Fig. 19.16a) shows almost smooth and straight trend,
indicating a fractal self-similar topography for a short range. Even the upstream trend
of Bhaunak (Fig. 19.16b) also is straight. However, downstream for both the basins
show smooth but slightly concave profile. Breaks in the variogram slopes are
indicative of multifractal topography and change in the processes operating within
the area. The variograms show steeper slopes at shorter length scales with
D clustering around 2.2/2.3 and gentler slopes at wavelengths longer than 1 km,
representing D, in the vicinity of 2.4 and above. The interpretation of the variogram
slopes suggest that ‘statistical self-similarity’ is not indicated here and also that two
processes are dominantly operating in the badland areas. There is no sharp break in
the slope of the variograms, but smooth concave slope, indicating that one process
merges into the other.
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19.5 Conclusions

Along the banks of Tapi River within Maharashtra, badlands have been developed
along a stretch of approximately 70 km. The exact locations of these badlands have
been delineated using fractal values calculated in a new software, Viz-Morphotec.
The microprocesses operating at these badlands were further attempted at finer
landscape operation scale at linear, perimeter and surface levels by selecting two
badland catchments and performing the fractal calculations.

Within the two catchments under review, two distinct geomorphic units could be
identified: hillslope and pediment zone. The pediment zone is deeply overlain by
alluvium that continues till the riverbanks of the main stream. These alluviums are
severely dissected to form badlands. Fractal values of the streams (linear) show low
to moderate values, indicating less sinuosity of the streams and high competence.
The D values for basin perimeters are close to 2, which is nearly space filling. The
trend lines of the variograms show slightly concave curve, indicating multifractal
topography (not self-similar in true sense), and two processes are dominantly
operating, with one merging smoothly into another. Though fractal dimension
does not highlight the actual process in the area, based on the understanding of the
general processes operating on the badlands and the slope of the variograms, it is
very likely that in the upstream reach, which is the hillslope units of these basins,
unusually low D values are found as against high values downslope. It is probably
because high D values do not indicate necessarily high relief or rougher surface, but
it indicates that the rate of change in relief over a small area is high but gradual at the
long distance and vice versa. Surface fractal dimension indicates values higher than
2.5 implying a rough surface, which is very typical of badland topography. Marginal
variations occur in the two sample basins, but not significant enough to warrant
attention. The curves of the variograms indicate possible influence of erosional and
diffusional processes operating on the topography, or they could be the result of
tectonics or changes in the climatic conditions, which are still manifested in the
landscape. In future, more data need to be generated from similar badland water-
sheds to make comparison and for better understanding of the landscape processes
operating at micro-scale within the badland watersheds in the region.
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Chapter 20
Flood Hazard Mapping in Assam Using
Sentinel-1 SAR Data

Sujoy Mudi, Jaya Prakash A, and Pulakesh Das

Abstract Floods are one of the most devastating natural hazards, which lead to fatal
outcomes to socio-economic and human life for several weeks in vast areas. Floods
mostly occur in the monsoon season when cloud-free optical data are hardly
available; whereas, microwave data has advantages to penetrate the cloud and
enables real-time flood mapping. The current study focuses using Sentinel-1 syn-
thetic aperture radar (SAR) images for flood or water inundation mapping in Assam
during July – September in 2018, 2019 and 2020. Otsu’s automatic thresholding
method was applied on the vertically transmitted vertically received
(VV) polarization band Sentinel-1 SAR data to identify the water inundated areas.
The Google Earth Engine (GEE) platform was used for data processing, which
requires lesser data processing capabilities in the user system and less time than
other traditional approaches. The comparison with the Sentinel-2 optical data avail-
able for few regions indicated high mapping accuracy (�87%). The total water
inundated area was identified as identified as 1453, 2081 and 3634 km2 in 2018,
2019 and 2020, respectively. All the districts in the floodplain of the Brahmaputra
River and three districts in the southern region of Assam experienced three-time
flood events in the last 3 years. Overlaying with vegetation map indicated that Vthe
flood events severely affected vast cropland, grassland and fores. Overlaying with
vegetation map indicated that the flood events severely affected vast cropland,
grassland and forest. The Sentinel-1 SAR data and GEE platform allowed rapid
flood assessment and enabled real-time mapping, which is particularly important for
the decision-makers to develop flood controlling measures, mitigation, relief,and
rescue planning.
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20.1 Introduction

Flood is one of the most powerful natural disasters affecting the socio-economic
conditions of millions of people, causing loss of life, food, infrastructure, etc.
(DeVries et al., 2020). The severity of flood events depends on the location, flood
preparedness, mitigation and action plans. Periodic flood mapping and long-term
monitoring can help in developing appropriate policies and preparedness, whereas
real-time flood mapping will help the decision-makers in disaster management
through improved mitigation and action plans. The identification of water inundation
through remote sensing techniques is useful for assessing flood hazards, especially in
remote areas. Both the permanent and temporary surface water areas can easily be
identified using optical (mono- and multispectral) and microwave satellite images
(synthetic aperture radar, SAR) due to their unique spectral behaviour and backscat-
tering properties, respectively. The optical data is applicable during daylight and
under the cloud-free sky conditions, which has limitations during flood events due to
the cloud covers. On the contrary, SAR data has advantages over optical data as it
can operate at night and can penetrate through clouds and other aerosols. Past studies
have shown that low backscatter values for water-dominated pixels in SAR images
are beneficial for flood extent mapping (Sghaier et al., 2018). However, the urban
areas consist of various artificial structures that act as scatterer and restrict water
inundation area mapping due to the higher incidence angle causing the radar shadow.

The lower surface reflectance for water areas beyond the visible bands allows
easy identification in multispectral remote sensing images. Several indices,
e.g. normalized difference water index [NDWI ¼ (Green � NIR)/(Green+NIR)],
modified normalized difference water index [MNDWI ¼ (Green � SWIR)/
(Green + SWIR)] and image classification algorithms (parametric and
non-parametric), are used to identify the surface water areas (Das & Pandey, 2019;
Behera et al., 2018). On the contrary, in microwave images, the smooth texture and
higher dielectric constant of the water body induce significantly lower backscatter
values compared to other land surface features, which enables the use of
the thresholding method for water area mapping (Das et al., 2021; Manjusree
et al., 2012). Several studies have employed different supervised or unsupervised
classification and machine learning (ML) techniques for the water inundation area
mapping using SAR data (Townsend, 2001; Martinis & Twele, 2010; Giustarini
et al., 2016). The use of supervised classification achieves higher accuracy but has
limitations in training sample collection in each time (Kussul et al., 2008; Song et al.,
2007). Pulvirenti et al. (2011) developed an automatic classifier based on fuzzy
logic, which also depends on the human-labelled samples. Several studies were
carried out, where the threshold value method was used for surface water area
mapping (Kuenzer et al., 2013; Martinis & Rieke, 2015; Schumann et al., 2009).
Various ML approaches, e.g. support vector machines (SVM), random forest (RF)
and artificial neural networks (ANN), are widely used for various regression and
classification studies (Dadhich et al., 2019; Uddin et al., 2019; Kussul et al., 2011).
The ML algorithms are compelling non-linear regression methods that are used as an
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alternative to traditional ways to handle complex and non-linear problems (Breiman,
2001). In ML algorithms, no prior assumptions are made about the nature of the
relationships between the response and predictor variables (Prasad et al., 2006). As a
result, these algorithms allow for all the possible interactions, including complex
non-linear ones, among the predictor variables, and do not rely on the data distribu-
tion (Ali et al., 2015).

The RGB colour composite image is a fast and reliable method to enhance
selective features in an image depending on the pre- and during-event conditions.
The changes in dielectric constant and backscatter values during the pre- and during-
flood events allow easy delineation of water spread areas (Lu et al., 2014). Conde
and De Mata Muñoz (2019) applied the RGB clustering and thresholding technique
for the flood inundation assessment and reported that the Sentinel-1 SAR data has a
high potential for flood inundation extent mapping. Shen et al. (2019) highlighted
that the SAR data-derived inundation results may comprise errors due to other water-
like surfaces, geometric error and speckle noise, and removal of such errors requires
additional inputs or use of the semi-automatic approaches. Otsu’s method, named
after Nobuyuki Otsu, is an automatic image thresholding technique (Sezgin &
Sankur, 2004). This algorithm returns a single-intensity threshold computed from
the radiometric histogram, which separates the image pixels into two classes as
foreground and background. This threshold is determined by minimizing intra-class
intensity variance or equivalently by maximizing inter-class variance (Otsu, 1979).
Lee et al. (1990) reported an accepted accuracy of this method when object area
covers at least 30% of the total image area, and the accuracy declines when the object
area is reduced below 10%.

The Sentinel-1 is a freely available C-band SAR data and records the backscatter
values in two polarizations as vertically transmitted vertically received (VV) and
vertically transmitted horizontally received (VH). Previous studies have indicated a
higher accuracy for VV polarization compared to VH polarization for the surface
water mapping (Psomiadis, 2016; Agnihotri et al., 2019). Clement et al. (2018)
applied Otsu’s method for water inundation area mapping employing the Sentinel-1
SAR data. They estimated the accuracy compared with the MNDWI results and
reported higher accuracy for VV band. Ruzza et al. (2019) compared the manual
threshold approach, Otsu methodology, and K-means clustering for flood mapping
using Sentinel-1 data and observed a similar accuracy. The latest Google Earth
Engine (GEE) is a cloud-based image-processing platform that consists of various
spatial datasets including the Sentinel-1 SAR data (Huang et al., 2017). Vanama
et al. (2020) applied Otsu’s thresholding algorithm on the Sentinel-1 data in the GEE
platform to map the water inundation areas during the Kerala flood event in August
2018 and observed a well-accepted accuracy. The Brahmaputra, Ganga and
Meghana River basins occupy about 60% of the total area in India and experience
recurrent flood events, almost every year (Shivaprasad Sharma & Roy, 2017). The
present study focuses on water inundation area mapping using the Otsu thresholding
approach employing the Sentinel-1 SAR data in the state of Assam.
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20.2 Study Area

The present study was conducted for flood mapping in Assam, India (Fig. 20.1). The
study area is geographically situated between 88.25�E to 96.00�E longitude and
24.50oN to 28.00oN latitude. The major rivers of Assam include Brahmaputra River,
Barak River and Manas river. The total area of Assam state is ~78,438, wherein
56,194 and 22,244 km2 areas are occupied by the Brahmaputra and Barak River
basins (Govt. of Assam, n.d. water resources). The Brahmaputra River is both a
snow- and rainfed river and has continuous flow throughout the year (Shivaprasad
Sharma & Roy, 2017). The state of Assam is affected by recurrent flood events and
experiences nearly one severe flood event every year. According to the Rashtriya
Barh Ayog, about 31,500 km2 in Assam is flood-prone area, which is about 39.58%
of the total land area of Assam and about 9.40% of the total flood-prone area of the
whole country. The total population of Assam is about more than 30 million, who are
mostly living along the floodplain of Brahmaputra River and dependent on agricul-
ture and allied sectors. In addition, the study region is home to several important
sites, e.g. Kaziranga National Park, a UNESCO World Heritage Site in the Eastern
Himalayas, an ecologically important region.

20.3 Materials and Methodology

Materials

A total number of 30 Sentinel-1 C-band image tiles [interferometric large swath
(IW) GRD] were used in this study to map the flood inundation areas from 2018 to
2020. The Sentinel-2 optical data was used for reference and accuracy assessment.

Fig. 20.1 Study area showing an elevation map with river channels
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Method

Sentinel-1 Preprocessing

Sentinel-1 SAR images require a number of image corrections as robust geometric,
radiometric, thermal and speckle corrections. The ESA Sentinel Application Plat-
form (SNAP) tool is widely used for Sentinel-1 data preprocessing using the
following steps: (a) precise geocoding employing the orbit file, (b) radiometric
calibration, (c) thermal noise removal, (d) speckle noise removal, (e) the range
Doppler terrain correction and (f) deriving the backscattering coefficients (in dB)
from the orthorectified sigma band (Dadhich et al., 2019). However, the GEE offers
the preprocessed Sentinel-1 Ground Range Detected (GRD) images readily usable
for image processing (Filipponi, 2019). In the present study, the Sentinel-1 images
for the monsoon season (July to September) were processed for the flood mapping in
Assam in 2018, 2019 and 2020.

The preprocessed image data were classified into water and non-water areas
employing Otsu’s automatic thresholding method. Otsu’s algorithm assumes the
distribution of image pixel intensities as a bimodal histogram and separates the
classes. This method uses the clustering method to generate the threshold value and
to separate the classes as the foreground and background. To determine the optimal
threshold value, it minimizes the weighted sum of within-class (intra-class) vari-
ances for the foreground and background pixels. The mathematical expression for
Otsu’s algorithm is given as follows:

The pixels in a given image are represented in L grey levels (1, 2, 3, L ). ni
represents the number of pixels at level i, and N denotes the total number of pixels:

N ¼ n1 þ n2n3 þ nL ð20:1Þ

The normalized grey level histogram and probability can be expressed as
Eqs. (20.2)–(20.4):

Pi ¼ ni=N ð20:2Þ
Pi � 0 ð20:3Þ

XL

i¼1
P1 ¼ 1 ð20:4Þ

Threshold k divides the pixels into two classes (i.e. foreground and background).
The optimum value of k can be computed by maximizing the intra-class variance
(within the class). The criterion function ρ is introduced and defined as.

P kð Þ ¼ σ2B kð Þ=σ2BT ð20:5Þ

σ2B and σ2BT can be expressed as
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σ2B ¼ ω0ω1 μ1 � μ0ð Þ2 ð20:6Þ

σ2BT ¼
XL

i¼1
i� μTð Þ2ηi ð20:7Þ

where ρ is the criteria function, σ2B is the between class variance, σ2BT is the total
variance, ω0 is the probabilities of class occurrence for background, ω1 is the
probabilities of class occurrence for foreground, μ0 is the class mean of background,
μ1 is the class mean of foreground, μT is the total mean grey level of the image, and
k is the threshold value.

The probability of class occurrence and the class mean levels are expressed in the
Eqs. (20.8) and (20.9):

ω kð Þ ¼
Xk

i¼1
ηi ð20:8Þ

μ kð Þ ¼
Xk

i¼1
iηi ð20:9Þ

The Sentinel-2 multispectral data for monsoon was accessed to validate the water
inundation map generated by the Sentinel-1 data. The Sentinel-2 images were
visually interpreted to collect the reference points for validation. In 2018, 95 refer-
ence points were generated, which were 110 and 140 for 2019 and 2020, respec-
tively. The national scale land use and land cover (LULC) map generated by Roy
et al. (2016) was downloaded from the ORNL-DAAC website. The LULC map for
the year 2005 was the latest available LULC map, which was employed in the
current analysis to assess the flood impact. The overall data processing methodology
is shown in Fig. 20.2.

Sentinel-1 SAR data 
(VV polarization)

Pre-Processing

• Orbital File Correction
• Thermal Noise Removal
• Radiometric Calibration
• Terrain Correction

Backscatter image generation 
and speckle filtering

Inundation map

Validation 
(Reference Points)

Sentinel-2 optical data 

Threshold Detection
(Otsu Algorithm)

Land Use Land Cover 
(LULC) –2005 

Fig. 20.2 Methodology flow chart diagram
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20.4 Results and Discussion

The water inundation areas were identified employing Otsu’s automatic threshold
method using the VV polarization data. The GEE platform was employed for data
processing and identifying water inundation in 2018, 2019 and 2020. The bimodal
histograms generated for the VV polarization images for 2018, 2019 and 2020 are
shown in Fig. 20.3. Otsu’s algorithm uses an optimal threshold value to differentiate
between the foreground and background, i.e. the water and non-water areas. The
identified threshold value was �14.90 for 2018, which were �14.92 and�14.93 for
2019 and 2020, respectively.

The comparison of the reference points visually identified in the Sentinel-2
optical data indicated a well-accepted accuracy for all 3 years. The estimated overall
accuracies were 89%, 87% and 91% for 2018, 2019 and 2020, respectively. A few
image tiles were created for the cloud-free optical data (in standard false colour
composite, SFCC), and the overlaid water inundation layers on the SFCC map
(Fig. 20.4) which also indicated high accuracy. Vanama et al. (2020) applied
Otsu’s thresholding algorithm on the Sentinel-1 data in the GEE platform to map
the water inundation area during the Kerala flood (2018) and reported a similar
accuracy (overall accuracy of 82% and 78.5% for flood class). A few field photo-
graphs were collected for the year 2020 during the flood events in Assam, as shown
in Fig. 20.5. These field photographs were collected for the Hatibat and Notun goan
in Makum, Tinsukia, Bishnupur and Pohukhowa Gaon region.

The water inundation area maps of 2018, 2019 and 2020 are shown in Fig. 20.6.
The LULC areas affected by the flood events in different years are shown in
Fig. 20.7. The majority of the flooded regions were identified along the Brahmapu-
tra River, where the floodplains were mostly inundated in the last 3 years (during
2018–2020) (Fig. 20.6). The total inundation area was identified as 1453.82 km2 in
2018, which increased to 2080.95 km2 in 2019 and 3633.81 km2 in 2020
(Table 20.1). The flood hazard map of Assam prepared by the Govt. of Assam
through Assam State Disaster Management Authority (ASDMA, n.d.) identified
about 28.75% area of Assam was affected by flood during 1998–2015, wherein
17 out of 34 districts were severely affected. The flood hazard map indicated a high
similarity with the water inundation area maps developed in the current study. Flood
events during 2018–2020 were observed in all the districts in the floodplain of
Brahmaputra River and the three districts in the southern region as Karimganj,
Hailakandi and Cachar (Fig. 20.6).

The maximum water inundation in the year 2018 was observed for cropland
(777.43 km2) followed by grassland (477.78 km2) (Table 20.1; Fig. 20.7). In
comparison, about 1379.40 and 2670.55 km2 cropland were flooded in 2019 and
2020, respectively. About 152.83 km2 forest area was flooded with 15.24 km2

shrubland in 2018. The forested areas inundated in 2019 and 2020 were 183.91
and 272.33 km2, respectively, and the shrubland inundated areas were 10.95 and
21.34 km2, respectively. About 463.08 and 616.81 km2 grassland were inundated in
2019 and 2020, respectively. Moreover, various settlement areas that were flooded
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Fig. 20.3 Bimodal histograms of VV images for the year (a) 2018, (b) 2019 and (c) 2020
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(a) (c)

(b) (d)

(e) (g)

(f) (h)

Fig. 20.4 Comparison of optical data and identified flooded areas for the year 2019: (a) SFCC
image and (b) flood map overlaid on SFCC image tile-1; (c) SFCC image and (d) flood map
overlaid on SFCC image tile-2 for the year 2020: (e) SFCC image and (f) flood map overlaid on
SFCC image tile-3; (g) SFCC image and (h) flood map overlaid on SFCC image tile-4
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indicated 7 km2 in 2018, 18.70 km2 in 2019 and 20.61 km2 in 2020 (Table 20.1).
Borah et al. (2018) studied the water inundated areas in the Kaziranga National Park,
Assam, employing the Sentinel-1 SAR data and reported that about 35% of the total
area was inundated twice in the year 2017. Shivaprasad Sharma and Roy (2017)
studied the flood inundation in the Kopili River basin, Assam, and recorded
183 flood events in two decades. They reported that 29% of the Kopili River basin
experienced floods during 1977, 1988 and 1998–2015.

The water inundation maps identified for the past 3 years indicated high accuracy
(>87%). The total water inundated areas in 2018 were increased by 1.5 times in 2019
and 2.5 times in 2020. The use of the GEE platform for flood mapping solves the
issue of data downloading, data preprocessing and good computation facility for
Sentinel-1 data processing. Moreover, the computation facility provided by the GEE
enables quick data processing and accessibility of the data employing a simple web
browser from any location. The adopted method is useful to generate the flood map
in a short time and allows to prepare real-time water inundation maps using the
Sentinel-1 data. The real-time flood mapping will help the decision-makers and
policy developers in developing action plans during flood events, rescue and relief
operations, route preparation, flood control measures, flood hazard mitigation,
preparedness, assessing the resource loss, etc.

(a)

(b)

(d)(c)

Fig. 20.5 Field photographs of water inundation in (a) Hatibat (b) Notun goan in Makum, (c)
Bishnupur (d) Pohukhowa Gaon
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2020

2019

2018

Fig. 20.6 Water inundation map for the year (a) 2018, (b) 2019, and (c) 2020
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Fig. 20.7 LULC affected by the water inundation
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20.5 Conclusion

Accurate identification of water inundation areas during a flood event can provide
valuable and timely information to the policymakers. Otsu’s automatic thresholding
method was applied to identify the water inundation areas using the Sentinel-1 SAR
data in the GEE platform. The verification with the Sentinel-2 optical data indicated
high accuracy (�87%) for the last 3 years (2018, 2019 and 2020). The
adopted method identified the water inundation areas without site-specific training
data and local knowledge. The use of the GEE platform allowed us to perform the
data processing with minimum system requirement and in a short time. We have
observed severe flood-affected areas in Assam for the last 3 years (i.e. 2018, 2019
and 2020). All the districts situated in the floodplain of the Brahmaputra River and
three districts in the southern part of Assam experienced water inundation. Extensive
cropland, grassland and forest areas were flooded in the last 3 years, which indicating
a total area of 1453.82, 2080.95 and 3633.81 km2 in 2018, 2019 and 2020,
respectively. The adopted method and generated maps appeal to increasing interest
in real-time flood mapping using Web-GIS platforms like GEE and Sentinel-1
SAR data.
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Chapter 21
Assessment of Socio-Economic
Vulnerability in a Forested Region:
An Indicator-Based Study in Bankura
District of West Bengal, India

Shyamal Dutta and Soumen Chatterjee

Abstract Vulnerability is the degree to which people, resources, economic and
cultural environment or activity are exposed to hostile agent and are suffering from
the propensity of being harmed from them. Climate change coupled with environ-
mental degradation seems to be the major driver for forest clearance which pushes
millions of people on the verge of socio-economic vulnerability. It is basically the
endogenous inability that leads the society towards the inequality and social conflict
which not only poses problem for local development but also considered to be a
matter of serious concern for regional development on a sustainable way. Accord-
ingly several efforts have been made by FAO, USAID and WFP to reduce vulner-
ability to combat with reducing the inequality, alleviation of poverty and maintain
food security and well-being. So study of vulnerability is not only important for
resource management but also essential for future planning. The present study
addresses this problem over the forested district of Bankura to explore the extent
of socio-economic vulnerability by using three major components of vulnerability
defined by IPCC, namely, exposure, sensitivity and adaptive capacity. The extent of
this component has been computed at subdistrict level using quantitative techniques,
and the whole data has been processed in the GIS environment. The result reflects
that exposure is closely associated with physiological conditions, whereas economic
environment controls the sensitivity factors. It was also found that eastern and
southern part are better equipped with adaptive capacity by virtue of their developed
infrastructure. Combining all those environmental stress prevailing on the study area
has been assessed with adequate measures.

Keywords Vulnerability · Quantitative analysis · Indicator-based approach · Forest
ecology, GIS
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21.1 Introduction

Vulnerability may be considered as a state of diminished capacity of an individual or
a group to anticipate with a changing environment which may prove hostile to them
while other may not find it as such. Alternatively it may be considered as an extent to
which persons, resources, socio-economic environment as well as life and livelihood
are liable to damage or deterioration being uncovered to intimidating causes or
factor. In the circumstance of changing climate with environmental degradation,
many ecosystems are either degraded heavily in some form or other on a regional
scale. It not only pushes the species of those ecosystem on the verge of extinction to
some extent but also makes most of them vulnerable in the changing face of the
environment to a great extent. Hence, the study of vulnerability is considered to be a
major issue of scientific research in recent time with special emphasis on forest
ecosystem which is reflected from the work carried out by major apex global bodies.
For instance, IPCC considers climate change as foreseeable and expected to exac-
erbate the physiological hassle on green space of environment through temperature
rising, prolonged drought and customized rate of occurrence of any farthest events
(IPCC, 2012; Sharma et al., 2017). In the twenty-first century, such levels of climatic
as well as non-climatic occurrences are likely to have stern impacts for the vulner-
ability of forests especially in the tropics (IPCC, 2014).

Extending over 30% of the global land cover, forest ecosystems are one of the
most biologically rich and genetically assorted ecosystems on the planet (Köhl et al.,
2015). Apart from the various ecological functions like moulding the climate,
protection of the soil cover and as a host, forest indirectly provides opportunities
to sustain millions of livelihood. It is popularly reported that above 400 million
people and more than 1 billion people are highly dependent on forests for continu-
ation with income as well as for forest-based products and services partially for their
livelihoods, respectively (Munang et al., 2011). As a matter of fact, anthropogenic
influences over the forest cover are found to be increasing day by day. Forest
continues to serve the ever-increasing demands of man which is increasingly putting
stress on the natural resources and making them more vulnerable. Increasing human
population pooled with irrational uses of resources, underprivileged management
and conservation practices further contributes to their vulnerability (Sharma et al.,
2009; Tse-ring et al., 2010). Therefore, forest vulnerability assessment has emerged
as a critical prerequisite to ensure forest resource management, conservation and
long-term adaptation and/or mitigation under increasing perturbations (Murthy et al.,
2011; Ribot, 2011). Seidl et al. (2011) also consider the assessment of vulnerability
as urgent due to the time factor needed for any adaptive measures undertaken and
development of adaptive capacities to formulate. Vulnerability assessments should
be conducted at a local scale (e.g. small forest patch) as well as regional scales like
broad landscapes to serve diverse objectives (Sharma et al., 2013; Engström et al.,
2020). Assessments at regional scales would support in identification of vulnerable
forest areas as well as prioritize them for competent resource allocation (Naess et al.,
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2006), where assessment in local level is obligatory for scheming site-specific
enhancement measures for forest resilience (Sharma et al., 2013).

Assessment of association between physical and social system using diversified
techniques is foremost important for vulnerability assessment in any space as
assortment of appropriate site-specific indicators from both the system is mandatory
to address versatile issues for vulnerability assessment (Hahn et al., 2009). Malakar
and Mishra (2017) point out that this assessment fundamentally depends on the
social and economic state of affairs of any social system. That’s why such assess-
ment is very crucial for shaping the extent of agony of the relying population and
their economic space due to disasters (Sahana et al., 2019). Vulnerability database
can be efficiently accomplished using both the data sources, primary (Challinor
et al., 2010) and secondary (Sahana & Sajjad, 2019). Several studies are found to be
conducted on this particular issue over different ecological setups by applying
several techniques to obtain targeted outcome. For instance, Sullivan et al. (2002)
applied gap method, Bray et al. (2012) used human development index, composite
vulnerability index has been applied by Rygel et al. (2006) with Sajjad and Nasreen
(2016) who implied sustainable livelihood security index, whereas fuzzy logic has
been used Ahmed et al. (2018) for the assessment of vulnerability. Beside this,
several approaches have been found to be applied in different time to assess the level
of vulnerability, for example, technical measures (Brooks, 2003), social science-
oriented approaches and human-oriented approach involving diverse aspects from
ecological and socio-economic as well as institutional parameters (Blaikie et al.,
2005) in different time.

However, a holistic and interdisciplinary approach seems to be more appropriate
and useful for the assessment of vulnerability as the concept itself consists of
heterogeneous components. Use of indicators from several aspects proves to be
more useful and applicable in this context as they have the provision to use
quantitative as well as qualitative indicators which are informative, analytical and
collaborative in nature, so they will yield a more realistic result which may facilitate
the research and planning and also useful for decision-making process. Socio-
ecological vulnerability which resulted from changing climate as well as unprinci-
pled distribution of resource in the Himalayan region has been highlighted by
Pandey and Bardsley (2015), whereas Sahana et al. (2019) highlighted the socio-
economic vulnerability in the Indian Sundarban region using pragmatic approach.
Thakur et al. (2019) and Sharma et al. (2013) applied a similar technique over the
forest areas of western Himalaya and Western Ghat region, respectively. Sharma
et al. (2015) in another study assessed the vulnerability on a national scale and
categorized different levels of vulnerability. They also suggested minimum human
interference and conservation of biodiversity may help to reduce the vulnerability.

The present study has been carried over the dry deciduous forest region of
Bankura district. The district has vast forested patches with a large population
dependant on the forest. The present study intended to address several aspects of
socio-economic vulnerability with reference to livelihood and well-being of the
people in the light of traditional conflict assessment. This will surely provide an
accurate and prevention-oriented approach to minimize the conflict and inequality
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and also will be very useful to improve the coordination between the local people
and developmental agencies engaged in management and policy implementation.
Beside this the assessment will be able to monitor the changing well-being of the
environment with reference to the economic and social condition and risk managing
apatite of the household. So the study considers being necessary with respect to the
need of the time. The present study considers the IPCC definition of vulnerability
which is ‘the degree to which a system is susceptible to or unable to cope with
adverse effects of climate change, including climate variability and extremes’. As
per definition, three key components of vulnerability are exposure, sensitivity and
adaptive capacity. Exposure (E) is mainly highlighted in the climatic extreme
phenomenon as well as ecological factors, which include topographic factors and
environmental aspects too. So exposure factor can be an amalgamation of both
changing climatic phenomena and ecosystem factors. Sensitivity (S) is a
distinguishing feature of the system and represents ‘dose-response relationship’
between exposure and its associated impacts. Adaptive capacity (A) is a property
of the system to fiddle with its uniqueness or behaviour in order to expand its coping
range under existing variability in socio-economic as well as ecological system over
certain time. The major objective of the present study is to focus on the subdistrict or
block level assessment of socio-economic vulnerability in a forested district based
on the relative importance of three fundamental components with their constituting
subcomponents, i.e. exposure, sensitivity and adaptation capacity. Another objective
of the study is to identify the priority blocks based on these parameter-wise
responses which will eventually assist for preparation of future planning and
management.

21.2 Methods and Database

Study Area

Containing diversified regional identity in physiography, climate and edaphic as well
as vegetation characteristics, Bankura is positioned in the western part of the West
Bengal which is known as Rarh in Bengal bounded between the latitudes of 22�380

and 23�380 North and longitudes of 86�360 and 87�460 East (Fig.21.1). River
Damodar separated this district from Purba and Paschim Bardhaman district in the
north. In the south-east, Bankura is bounded by Hugli district, on the south by
Paschim Medinipur district and on the west by Puruliya district. The Survey of India
(SOI) toposheet covering the districts is 73I, 73 J, 73 M and 73 N. Except Damodar,
other significant rivers are Dwarakeswar, Sali, Gandheswari, Shilabati and
Kangsabati which are mostly identified as hill streams, originating in the hills in
the western plateau region and flow from the north-east to the south-west direction in
courses roughly parallel to one another (O’Malley, 1908). Bankura district is one of
the vegetated districts comprising three divisions, viz. Bankura (North) Division,
Bankura (South) Division and Panchet Division, which is about 1285.58 km2
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territorial forest jurisdiction and covers 18.68% of the total land area of the district.
Per capita availability of forest in this district is 0.035 ha which is low than the other
south-western districts. The climatic scenario especially in the western upland is
much drier than in the eastern or southern part of the district. In pre-monsoon period
(March to early June), when the monsoon sets in, hot westerly winds prevail, and the
temperature raises up to 45 �C. Winter months of the district are pleasing with
temperatures dropping down to below 27 �C at end of the year. The total average
rainfall is recorded as 1400 mm, which mostly comes in the months of June to
September.

Bankura district has a total population of 3,596,674 with a population density of
523 inhabitants per square kilometre (Census of India, 2011). Population growth rate
over the last decade (2001–2011) was recorded as 12.64% with sex ratio of
954 females for every 1000 males as well as a literacy rate of 70.95%. Bankura is
economically underdeveloped where agriculture and farming activities are the main

Fig. 21.1 Location of the study area and its geo-environmental setup
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primary activity which is primarily influenced by rainfall, temperature and humidity
from climatic regime, plateau fringe as well as alluvial plains from topographic
identity and hydrology with soil condition of the district. Almost 70% of the
district’s income is generated through agriculture, where 80% of the farmers are
small and marginal in nature (Census of India, 2011). In 2006, Bankura district has
been identified as one of the country’s 250 most backward districts (out of a total of
640) by the Ministry of Panchayati Raj (2009). Simultaneously Bankura is one of the
19 districts in the state presently receiving funds from the Backward Regions Grant
Fund (BRGF) programme.

Data Preparation of Indicator-Based Vulnerability Assessment

Assortments of appropriate site-specific indicators from both physical and social
system are required to deal with comprehensive issues for vulnerability assessment
(Hahn et al., 2009; Vincent, 2004; O’Brien et al., 2004; Rygel et al., 2006; Preston
et al., 2011). The foremost steps of an indicator-based vulnerability assessment are
selection of indicators using a defined vulnerability framework covering all aspects
of standard vulnerability components, normalization as well as weighing, clubbing
and plotting the variability in space context (Preston et al., 2011; Tate, 2012). This
indicator-based approach facilitates the development of composite index which
covers multidimensional temperament of vulnerability (Wiréhn et al., 2016). Though
vulnerability assessment of any region has biophysical, social and economic dimen-
sions, all these should be covered under the trio of exposure, sensitivity and adaptive
capacity (IPCC, 2001). The site-specific indicators mainly subdistrict or block level
of Bankura district have been chosen to analyse the vulnerability stress in the study
area. There is no unbendable conformity on applying indicators to socio-economic
vulnerability analysis. All these block level biophysical along with socio-economic
indicators for assessment of socio-economic vulnerability also help in evaluating the
priority areas where efforts can be made in reducing exposure and sensitivity and
increasing adaptation. The following are the block level indicators with their asso-
ciated role in vulnerability framework to construct socio-economic vulnerability
index (Table 21.1).

• Exposure indicators: Elevation, slope and aspect form topographic perspective,
rainfall and temperature from climatic perspective and per capita availability of
forest land as well as agricultural land from environmental and carrying capacity
perspectives.

• Sensitivity indicators: Total area under forest and agricultural land uses, popu-
lation density, household density, total work participation, engagement in pri-
mary economic activity, engagement as main agricultural labourer, non-working
population, engagement of female workers, illiteracy, marginalized population
(belongs to Scheduled Caste and Scheduled Tribe population) and total agricul-
tural land under irrigation.
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Table 21.1 Framework of indicators with dimensions for socio-economic vulnerability assessment

Domains ID Description of indicators Dimension Data source

Exposure E1 Elevation in metres Physical
dimension

SRTM DEM (https://
earthexplorer.usgs.gov/)

E2 Slope in degree Physical
dimension

SRTM DEM (https://
earthexplorer.usgs.gov/)

E3 Aspect Physical
dimension

SRTM DEM (https://
earthexplorer.usgs.gov/)

E4 Average rainfall (mm) Climatic
dimension

Agriculture Meteorolo-
gist, Directorate of Agri-
culture, W.B (2013)

E5 Average temperature in �C Climatic
dimension

Agriculture Meteorolo-
gist, Directorate of Agri-
culture, W.B (2013)

E6 Per capita availability of
forest (ha/100 person)

Environmental
carrying
capacity

District Census Hand-
book, Bankura WB
(2011)

E7 Per capita availability of
agricultural land (ha/100
person)

Environmental
carrying
capacity

District Census Hand-
book, Bankura WB
(2011)

Sensitivity S1 Total forest area (ha) Environmental
dimensions

District Census Hand-
book, Bankura WB
(2011)

S2 Total land under agricul-
tural land uses (ha)

Environmental
dimensions

District Census Hand-
book, Bankura WB
(2011)

S3 Population density Demographic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S4 Household density Demographic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S5 Engagement in primary
economic activity

Economic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S6 Engagement as main agri-
cultural labourer

Economic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S7 Non-working population Economic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S8 Engagement of female
workers

Economic
dimensions

District Census Hand-
book, Bankura WB
(2011)

S9 Total work participation Economic
dimensions

District Census Hand-
book, Bankura WB
(2011)

(continued)
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• Adaptation indicators: Total literate population with female literate population,
road density per km2, number of banks served per 1000 persons, number of
cooperative society, distance nearest railway station from the block headquarter,
number of originating/terminating bus routes, number of primary schools and
number of primary health centres.

All the respective indicators under three vulnerability components were normal-
ized using universal normalization technique of minimum-maximum rescaling
which provides indicators a unique range between zero (0) and one (1). Numerous
composite indices (e.g. HDI) were also formulated using such type of normalization
technique (UNDP, 2014). Normalization of data has been formulated by using the
following equation:

Table 21.1 (continued)

Domains ID Description of indicators Dimension Data source

S10 Illiteracy Social
dimensions

District Census Hand-
book, Bankura WB
(2011)

S11 Total agricultural land
under irrigation

Infrastructural
dimensions

District Census Hand-
book, Bankura WB
(2011)

S12 Marginalized population
(SC and ST population)

Social
dimensions

District Census Hand-
book, Bankura WB
(2011)

Adaptation A1 Total literate population Social
dimensions

District Census Hand-
book, Bankura WB
(2011)

A2 Female literate population Social
dimensions

District Census Hand-
book, Bankura WB
(2011)

A3 Road density per km2 Infrastructural
dimensions

District Statistical Hand-
book, Bankura (2014)

A4 Number of banks served per
1000 persons

Infrastructural
dimensions

District Statistical Hand-
book, Bankura (2014)

A5 Number of cooperative
societies

Infrastructural
dimensions

District Statistical Hand-
book, Bankura (2014)

A6 Distance nearest railway
station from the block
H.Q. (K.M.)

Infrastructural
dimensions

District Statistical Hand-
book, Bankura (2014)

A7 Number of primary schools Infrastructural
and social
dimensions

District Statistical Hand-
book, Bankura (2014)

A8 Number of primary health
centres

Infrastructural
and health
dimensions

District Statistical Hand-
book, Bankura (2014)

A9 Number of originating/ter-
minating bus routes

Infrastructural
dimensions

District Statistical Hand-
book, Bankura (2014)
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Niab ¼
Xiab � min ab Xið Þ

max ab Xiabð Þ � min ab Xið Þ
ð21:1Þ

where Nias indicates normalized indicator value, i denotes to variables (1,2,3. . .i), ‘a’
indicates components and ‘b’ indicates blocks of the district.

Though the impacts of indicators are unknown before putting them under vul-
nerability assessment, equal weights have been incorporated to assign (Tate, 2012).
This weightage is applied when comprehension about indicators is limited. Then,
during the clubbing of all these indicators has been normalized and summed up to
acquire the arithmetic mean which in a well-known method (Tate, 2012). Simulta-
neously, all the indicators are assumed to be equally significant to stir up vulnera-
bility in any region (Krishnan et al., 2019). Various researchers have publicized
effectiveness of integrated approach where a number of researches have suggested
equal weighting approach (e.g. Holsten & Kropp, 2012; Krishnan et al., 2019;
Sahana & Sajjad, 2019; Haq, 2003). Human development index (HDI) using three
constituents, i.e. education, knowledge and standard of living by UNDP (2015),
followed equal weights which justified uses of such weights as indicators direct and
easily interpretable. This consistency factor of equal weight techniques is also
convinced by different scholars over time (Chowdhury & Squire, 2006; Nguefack-
Tsague et al., 2011; Villa & McLeod, 2002).

Selection of the Indicators

Exposure refers to the extent of any system or region which is uncovered to the
variable climatic phenomena and change in prime elements of physical environment.
It also gives impulse to the economic sector of the region by influencing vegetation
growth and crop production. Elevation, slope and aspects all are significant variables
of exposure for analysing socio-economic vulnerability as elevation helps to identify
vulnerable zones where areas with high elevation received ample amount of sun-
shine and encourage the growth of vegetations. On the contrary areas with high slope
become susceptible to soil erosion (Deb et al., 2019). Propensity to soil erosion
which resulted from advanced topographic slope enhances inherent vulnerability of
any forested region. Aspects strongly give impact on temperature and soil which has
impact on growth of vegetation. It is a causative parameter that is responsible for
forest fire too. SRTM-DEM with 30 m spatial resolution has been obtained from
Earth Explorer (https://earthexplorer.usgs.gov/) to generate overall as well as block
level average slope, aspect and elevation of the study area. Diversity in topographic
elevation direct to variability in precipitation and temperature with soil type etc.
which ultimately affects the vegetation growth whereas Slope, aspect is indispens-
able in understanding the vegetation growth and for sustainable forest management
(Sinha et al., 2018; Hu et al., 2018). Thus these three physical determinants,
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i.e. slope, elevation and aspect, are imperative to analyse the vulnerability in forested
region. Climate aspects, mainly rainfall and temperature, are central for vulnerability
assessment in any forested region as well as area proliferated with agro-based
economic activities. Allocation of vegetation and agricultural land as well as
cropping pattern is largely exaggerated by the variability in climatic phenomena
(Cui et al., 2016).

Rationale of the Selection of the Indicators

In the present study, layers containing average annual temperature and precipitation
have been prepared from the collected database from 11 block agricultural meteo-
rologist section and interpolated to the whole district to prepare block level climatic
scenario. Population parameter has importance to judge the impact of demography
on natural element by various means, i.e. per capita availability and land use
pressure. Per capita availability of forest area and agricultural land in terms of net
sown area has been calculated by summing up the village level amenities data from
District Census Handbook. Both these sub-components have been incorporated as
this region is endowed with forest as well as belongs to one of forested districts of
South Bengal, and agriculture builds the main economic structure of this region. All
these seven indicators have been integrated to construct an exposure index of the
study area by using the following formula and categorized using quintile method in
GIS platform:

Ei ¼
P

xieP
i
P

xie
ð21:2Þ

where Ei indicates to exposure index, ∑Xie depicts summation of variables and ∑i

∑Xie depicts the number of indicators.
Sensitivity indicates the extent to which the blocks of the district are affected by

any stress on socio-economic system. It includes the level of tolerance in an existing
social organization. So it has immense importance in vulnerability frameworks.
Population attributes, infrastructural availability and population belonging to work-
ing categories are the vital components of socio-economic framework (Schmidtlein
et al., 2008). Population data as well as data belonging to socio-economic status was
gathered from Primary Census Abstract (Census of India, 2011) based on different
indicators such as population density, marginalized population who mainly belong
to Scheduled Caste and Scheduled Tribe categories, illiteracy, category- and gender-
wise working categories of population and availability of resources in terms of
different land uses (forest, agricultural land and irrigated area). Population parameter
has importance to judge the impact of demography on natural element in terms of
carrying capacity (Shukla et al., 2016; Sharma et al., 2013). Percentage of area under
forest cover and agricultural land as well as irrigated are to total net sown area are
imperative to judge the sensitivity of the different blocks to carry the increasing
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population pressure. The people engaged in primary sector, i.e. agricultural activities
(as cultivators and agricultural labourer), will be more affected by any type of stress
arising in socio-economic system, whereas the non-working population already has
trends to be vulnerable (Sharma et al., 2013). Agricultural labours works in others’
farms on the basis of daily wages have low economic security. Marginalization in
social ladder by belonging to Scheduled Caste and Scheduled Tribes categories as
well as illiteracy factor has direct sensitivity to overall social system. So they are in
corporate in the present framework as this clubbing is being trigger with social
weeping as well as paucity of resources. Sensitivity index has been formulated by
using the following equation:

Si ¼
P

xisP
i
P

xis
ð21:3Þ

where Si indicates sensitivity index, ∑Xis refers to summation of variables and ∑i

∑Xis refers to the number of indicators.
Adaptation indicates adjustment as well as potentiality of the inhabitants of any

region to cope when any kind of stress arises in socio-economic system as well as
environmental scenario of that particular region. In most of the cases, it depends on
socio-economic quality as well as infrastructural facilities and access of basic
amenities in a social system. Percentage share of literate population to total popu-
lation as well as number of female literate to total female population has been
obtained from Primary Census Abstract (Census of India, 2011). Road density in
terms of length of road per area, availability of bank and cooperative society as well
as their serving categories, distance of block headquarter from nearest railway
station, number of originating and terminating bus routes, availability of primary
school and primary health centres was obtained from District Statistical Handbook
of Bankura district. Literate population might have improved perceptive and aware-
ness about adaptation measures. General literate population and female literate
population will endow with insights about the level of awareness and education
among the communities. High degree of road density, minimum distance from
railway and bus connectivity indicate better accessibility of resources which
enhances the quality of life and reduces the chance to be vulnerable. Availability
of education facility by primary schools and healthcare facilities by primary health
centres, banking facility and availability of cooperative society cumulatively have
great significance in rural agro-based socio-economic system as they have more
adaptation capacity. The adaptation capacity index was formulated as

Ai ¼
P

xiaP
i
P

xia
ð21:4Þ

where Ai indicates adaptation capacity index, ∑Xia refers to the sum of variables of
adaptation indicator and ∑i ∑Xia refers to the total number indicators.
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Finally, the indicators of these three components, i.e. exposure, sensitivity and
adaptation, have been incorporated to formulate composite SCVI, i.e. socio-
economic vulnerability index, by the following equation:

SCVI ¼
P

xieP
i
P

xie
þ

P
xisP

i
P

xis

� �
�

P
xiaP

i
P

xia
ð21:5Þ

21.3 Analysis and Results

Block Level Scenario of Exposure, Sensitivity and Adaptation

Very high level (value >0.47) of exposure is found in the western part of the study
area covering the blocks of Ranibandh, Hirbandh, Chhatna and Bankura I. High
level of mean elevation, average slope factor along with moderate level of rainfall
with high temperature as well as high per capita availability of agricultural land are
the probable causes of high level of exposure in the study area (Fig. 21.2). In
Ranibandh, mean elevation and average slope recorded as 168.97 metres and
3.48�, respectively, both of which are highest among all blocks in Bankura district.
Per capita availability of agricultural land is also highest (i.e. 20.99 ha per 100 per-
son) in the district. Climatic parameters like average rainfall and average temperature
are also moderate to high level in this particular block which ultimately depicted the
high level of exposure. In rest of the three blocks, mean elevation and slope are also
moderate to high. High level of exposure (value 0.40–0.46) was found in the blocks
of Saltora followed by Gangajalghati in northern part, Indpur in western part and
Taldangra and Sarenga in southern part. Moderate to high level of elevation and
slope along with the characteristics under medium rainfall temperature regime with
moderate per capita availability of agricultural land are the prime controlling factors
of these five blocks to be incorporated in highly exposed zone. Low value of
exposure (<0.36) was found in the easternmost blocks in a continuous orientation.
These are Mejia, Barjora, Patrasayer, Joypur-, Indus, and Kotulpur- in the eastern
part of the study area adjoining to Purba Bardhaman District and in Khatra block
(0.36) in the Central part of the study area. This region mainly belongs to flat in
topographic expression with lesser surface slope and aspects with high level of
rainfall and low to moderate level of temperature. The rest of the blocks like
Onda, Simlapal, Raipur and Bankura II fall under the medium level of exposure
zone. All determining factors are low to moderate level in this part.

There are no specific spatial similarity in sensitivity in the study area as the very
high sensitivity (value >0.56) was found in the blocks of Sonamukhi, Patrasayer and
Indus in the eastern part, followed by Ranibandh and Raipur in the south-western
part as well as Onda in the middlemost part of the district (Fig. 21.3). High values in
socio-economic factors, e.g. high-level participation in primary economic activities,
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moderate-level engagement as main agricultural labourers and low level of literacy
along with low-level irrigated area coverage (except Indus) in these six blocks, create
very high level of sensitivity in this district. High level of sensitivity (value 0.45 to
0.55) has been found in the blocks of Indpur and Hirbandh in the western part
followed by Taldangra, Simlapal and Sarenga in the southern part as well as
Bishnupur, Kotulpur and Joypur in a contiguous manner in eastern part of the
district. In Sonamukhi and Patrasayer (both have highest value of 0.625), high
level of work participation in primary sector as well and main agricultural labourers
along with high level of illiteracy pushes them to become more sensitive to any type
of stress. In Bishnupur illiteracy (33.7%) and moderate level engagement as main
agricultural labourers (38.76%). In Joypur high level of household density
(131/km2), high level of engagement in primary economic activity (70.3%) as well

Fig. 21.2 Spatial distribution of degree of exposure in different blocks of Bankura district
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as high level of irrigated area (above 75% of total NSA) are the controlling factors of
high level of sensitivity. High population density (754/km2, i.e. highest in all blocks)
and high household density (164/km2, i.e. highest in all blocks) played a vital role to
enhance the sensitivity. Low level of sensitivity (<0.34) was found only in three
blocks of Bankura I and II and Mejia. Medium sensitivity zone (0.35–0.44) was also
found around the low sensitive zone in the northern portion of the district containing
the four blocks of Saltora, Gangajalghati, Barjora and Chhatna (Fig. 21.3).

In vulnerability frameworks of the district, exposure and sensitivity have better
contact on adaptive capacity of the region (Table 21.2). In the present study, area
with very high adaptation capacity (value >0.48) was found in a dispersed manner in
the blocks of Sonamukhi followed by Kotulpur, Taldangra, Simlapal and Raipur.
Very high connectivity parameters like road density (Raipur: 2036 km/km2), dis-
tance from railway station and number of bus routes along with availability of

Fig. 21.3 Spatial distribution of degree of sensitivity in different blocks of Bankura district
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cooperative society are the dominant indicators behind such promising level of
adaptation capacity of these blocks (Fig. 21.4). High-level adaptation capacity
(0.45–0.47) was found in the blocks of Joypur, Onda, Chhatna, Sarenga and Barjora
where the literacy and availability of primary schools are high. In the blocks of
Bishnupur, Bankura I and II along with Hirbandh, low level of adaptation capacity is
found due to low level of primary education and lack of primary health facility. Due
to excess population pressure in the blocks, the education facility and health and
connectivity infrastructure faced serious lacking.

Socio-Economic Vulnerability Index

Block level score value of the three domains of vulnerability has been used in the
mentioned formulae to prepare SCVI of the district (Fig. 21.5). Vulnerability
assessment based on specific indicators discovered that very high vulnerability
(value above 0.52) was found in four blocks of Ranibandh (0.83), Hirbandh
(0.68), Saltora (0.66) and Bishnupur (0.58). Very high level of exposure and
sensitivity with medium adaptation capacity are the prime causes for Ranibandh to
be in very high vulnerability, whereas low level of adaptation capacity with high

Table 21.2 Socio-economic vulnerability and its components in different C.D. blocks in Bankura
district

Name of the 
Blocks

Exposure Sensitivity Adaptive capacity  Vulnerability Index
Score Category Score Category Score Category Score Category

Bankura I 0.493 Very high 0.336 Low 0.320 Low 0.51 High

Bankura II 0.395 Medium 0.295 Low 0.371 Low 0.32 Low

Barjora 0.357 Low 0.394 Medium 0.471 High 0.28 Low

Bishnupur 0.380 Medium 0.551 High 0.350 Low 0.58 Very high

Chhatna 0.470 Very high 0.435 Medium 0.451 High 0.45 Medium

Gangajalghati 0.438 High 0.408 Medium 0.379 Medium 0.47 Medium

Hirbandh 0.469 Very high 0.514 High 0.302 Low 0.68 Very High

Indpur 0.409 High 0.507 High 0.443 Medium 0.47 Medium

Indus 0.254 Low 0.577 Very high 0.429 Medium 0.40 Medium

Joypur 0.241 Low 0.527 High 0.465 High 0.30 Low

Khatra 0.361 Low 0.437 Medium 0.432 Medium 0.37 Medium

Kotulpur 0.193 Low 0.518 High 0.708 Very high 0.00 Low

Mejia 0.307 Low 0.256 Low 0.229 Low 0.33 Low

Onda 0.385 Medium 0.576 Very high 0.466 High 0.49 High

Patrasayer 0.264 Low 0.625 Very high 0.407 Medium 0.48 High

Raipur 0.393 Medium 0.580 Very high 0.708 Very high 0.27 Low

Ranibandh 0.646 Very high 0.598 Very high 0.414 Medium 0.83 Very high

Saltora 0.456 High 0.422 Medium 0.214 Low 0.66 Very high

Sarenga 0.425 High 0.516 High 0.465 High 0.48 High

Simlapal 0.380 Medium 0.519 High 0.472 Very high 0.43 Medium

Sonamukhi 0.360 Low 0.625 Very high 0.492 Very high 0.49 High

Taldangra 0.430 High 0.522 High 0.535 Very high 0.42 Medium
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level of sensitivity is responsible for very high vulnerability in case of Hirbandh,
Saltora and Bishnupur. High level of vulnerability (0.48–0.51) was found in the
blocks of Bankura I, Onda, Patrasayer, Sonamukhi and Sarenga. High to medium
level of exposure and sensitivity with low to medium adaptation capacity are the
prime reasons behind such scenario except Sarenga where the three domains are in
the high category, but the value of adaptation is quite low in comparison to the other
two factors.

Fig. 21.4 Spatial distribution of degree of adaptation capacity in different blocks of Bankura
district
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21.4 Discussions

Block level indicator-based scores have been processed in regression frame by least
square methods to judge the relative importance of individual indicator to the overall
exposure domain under vulnerability assessment (Table 21.3). Exposure index has
been prepared based on the reflection of the seven indicators. From the standardized
coefficient values, it is clear that average temperature (0.457), average rainfall
(0.403) and mean elevation (0.382) are the more dominant indicators to overall
refection of exposure domain (Fig. 21.6). Sensitivity domain of vulnerability frame-
work is composed of 12 indicators from demographic, socio-economic and infra-
structural dimensions. In this domain, except the household density (0.077) and

Fig. 21.5 Spatial distribution of socio-economic vulnerability index in different blocks of Bankura
district
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non-working population (0.017), the rest of the indicators respond almost the same
as their coefficient values as nearly 0.2. So all these indicators are almost equally
relevant to overall sensitivity of the study region. Among them, population density
(0.28) from demographic perspectives, engagement in primary workers (0.259),
along with engagement as main agricultural labourer (0.269) from socio-economic
dimensions and area under irrigation (0.270) from infrastructural dimensions are
worth mentioning. Adaptation capacity is composed of nine indicators from socio-
economic and infrastructural dimensions with availability of basic services perspec-
tives. Here connectivity indicators like distance of block HQ from railway station
(0.294) and the number of originating and terminating bus routes (0.363) and road
density (0.287) play the dominant role to enhance the adaptation capacity.

Table 21.3 Indicator-wise reflection of β values of exposure, sensitivity and adaptation capacity

Vulnerability
components

Sl.
no. Indicators

Standardized
coefficients (β)

Exposure E1 Elevation in metres 0.382

E2 Slope in degree 0.299

E3 Aspect 0.354

E4 Average rainfall (mm) 0.403

E5 Average temperature in �C 0.457

E6 Per capita availability of forest (ha/100 person) 0.291

E7 Per capita availability of agricultural land
(ha/100 person)

0.318

Sensitivity S1 Total forest area (ha) 0.275

S2 Total land under agricultural land uses (ha) 0.241

S3 Population density 0.280

S4 Household density 0.077

S5 Engagement in primary economic activity 0.259

S6 Engagement as main agricultural labourer 0.269

S7 Non-working population 0.017

S8 Engagement of female workers 0.152

S10 Illiteracy 0.182

S11 Total agricultural land under irrigation 0.270

S12 Marginalized population (SC and ST
population)

0.240

Adaptive capacity A1 Total literate population 0.198

A2 Female literate population 0.239

A3 Road density per km2 0.287

A4 Number of banks served per 1000 persons 0.189

A5 Number of cooperative society 0.236

A6 Distance to the nearest railway station from the
block H.Q. (K.M.)

0.294

A7 Number of primary schools 0.222

A8 Number of primary health centres 0.224

A9 Number of originating/terminating bus routes 0.363
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The overall analysis of socio-economic vulnerability revealed that there are three
blocks (Saltora, Hirbandh and Ranibandh) mainly located in the westernmost ele-
vated region (elevation above 100 m) with moderate rainfall and high temperature
except Bishnupur where the sensitivity factor is most dominant to be incorporated in
the very high vulnerability class. So exposure plays the most determining role in the
vulnerability class as the correlation coefficient between exposure score and overall
SEV score is 0.754 in comparison to sensitivity (r ¼ 0.21) and adaptation capacity
(r ¼ �0.60). The determining factors in high-vulnerable blocks (e.g. Sonamukhi,
Patrasayer, Onda, etc.) have shifted from exposure to sensitivity factor highly but
partial implication of exposure factor is still present mainly in case of Sarenga and
Bankura I where the exposure score is still very high (above 0.47). Elevation, Slope,
Temperature factors responses comparatively low in the block of Sonamukhi,
Patrasayer, Onda and Sarenga which ultimately impacted on exposure score enor-
mously (Fig. 21.7).

Socio-economic vulnerability assessment has been recognized as helpful imple-
mentation for analysing vulnerability at subdistrict rank. It increases the knowledge
about any socio-economic as well as environmental stress intervention in any socio-
economic strata and support in site-specific vulnerability assessment (Ahsan &
Warner, 2014; Sorg et al., 2018). SEVI analysis discovered that blocks of
Ranibandh, Saltora, Hirbandh and Bankura I along with Sonamukhi, Patrasayer

Fig. 21.6 Indicator-wise standardized coefficient (β) of exposure, sensitivity and adaptation
capacity
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Fig. 21.7 Dimension-wise vulnerability score in different blocks of Bankura district

Table 21.4 Priority blocks for vulnerability reductions

Blocks Exposure index Sensitivity index Adaptation index

Bankura I √ � √
Bankura II � � √
Barjora � � �
Bishnupur � √ √
Chhatna √ � �
Gangajalghati √ � √
Hirbandh √ √ √
Indpur √ √ √
Indus � √ √
Joypur � √ �
Khatra � � √
Kotulpur � √ �
Mejia � � √
Onda � √ �
Patrasayer � √ √
Raipur � √ �
Ranibandh √ √ √
Saltora √ � √
Sarenga √ √ �
Simlapal � √ �
Sonamukhi � √ �
Taldangra √ √ �
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and Sarenga require instantaneous consideration to reduce the level of vulnerability
(Table 21.4). These blocks have registered a high degree of sensitivity (first priority)
and exposure with negligible adaptation. These priority blocks are mostly located
along the highly elevated along with less rainfall with high temperature regime with
normally create a physical constrains to overall socio-economic status. As reduction
in exposure is not so easy to conduct, thus efforts could be made to increase the
adaptive capacity simultaneously with reducing sensitivity by indicator-wise devel-
opment mainly in primary education, basic health services and infrastructural sector
development mainly through connectivity enhancement to reduce the socio-
economic vulnerability. Enhancement of adaptation capacity and reduction in sen-
sitivity factors are also needed in case of Chhatna, Indpur, Gangajalghati, Indus and
Simlapal to reduce future chances of high vulnerability (Table 21.4).

21.5 Conclusion

The present study thus analyses the level of socio-economic vulnerability in dry
deciduous forested district of Bankura. The study uses three major components of
vulnerability, namely, exposure, sensitivity and adaptive capacity. The index value
of each has been computed by quantitative method. The western blocks, namely,
Ranibandh, Hirbandh and Chhatna having areas with greater elevation, average
slope, per capita arable land, moderate rainfall and high temperature, were found
to have high value of exposure. Moderate exposure value was found to be associated
with the northern, central and southern blocks and the low exposure was found to
prevail over the eastern blocks. The exposure value shows close association with
their physiographical regime. No definite trend was found to exist for the sensitivity
value which seems to be associated with work participation rate, irrigation facilities,
etc. Some western and eastern blocks have greater sensitivity value, while the
northern part has low value zones. Transport, communication and financial aspect
are considered important for adaptation capacity value. The eastern and southern part
was found to be equipped with higher capacity; contrary to this, western blocks have
low value. Eventually, combining all those, Ranibandh, Hirbandh, Saltora and
Bishnupur are found to be more vulnerable socio-economically with higher index
value. This will help to identify the existing environmental stress prevailing over the
subdistricts and also helps to identify the major causes for their poor performance in
the basic amenities. Being rigid in nature, the exposure factors hardly change; hence
emphasis should be given on adaptive capacity building measures coupled with
basic infrastructure development in health, education and communication which
may be considered to be helpful for reducing the socio-economic vulnerability on
a long-term basis.
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Chapter 22
Assessing River Bank Erosion in the Ganges
Using Remote Sensing and GIS

Masjuda Khatun, Sk Mujibar Rahaman, Sanjoy Garai, Pulakesh Das,
and Sharad Tiwari

Abstract River bank erosion is one of major issues occurring due to high flow,
extra silt charge and river channel shift and causes several physical and socio-
economic issues to the dependent population. Remote sensing and geographic
information system (GIS) are an idyllic and seemingly tool for monitoring river
erosion and its line transfer. The study evaluates spatial and temporal river bank
changes, channel shifting and its impact on land use land cover (LULC) change
around the Ganges River from the bottom of the Rajmahal Hill to the Farakka
Barrage for the period 1980–2020. The Landsat imagery with 30/60 m spatial
resolution was employed to river bank demarcation and LULC mapping. The GIS
layers on the river banks lines were created at decadal interval and overlaid. The
results indicated significant shift of the river bank towards the left bank along the
flow direction. The total erosion and accretion of the study zone from 1980 to 2020
were estimated as 250.82 and 236.75 km2, respectively. Moreover, a significant
increase (more than sevenfold) was observed in the island’s area and numbers during
the study period, which could be attributed due to the construction of Farakka
Barrage. The river bank erosion and accretion with the LULC change analysis
indicated major transactions between agriculture land, agriculture fallow, river and
sand. The finding of the study has policy level implications and useful for agricul-
ture, water resource and landscape planners for improved management and planning.
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22.1 Introduction

The river bank erosion is an erratic natural disaster that causes extensive land
damage. River channel migration is a process that can cause catastrophic local or
regional changes. The widespread impact of such changes becomes a socio-
economic disaster for the people living in the respective rivers’ floodplains. River
bank erosion causes various physical and socio-economic problems on the river
banks. Every year, millions of people are affected by river bank erosion and shift that
causes loss of croplands, farmland and settlement areas, destruction of artificial
structures, etc. (Rahman & Gain, 2020). The seasonal and periodic changes occur
in the floodplain, mostly due to alterations in river discharge and poly load (Guite &
Bora, 2016). Most of the world’s river banks are suffering from erosion and
waterlogging due to both natural and human activities (Majumdar & Mandal,
2019). The river bank erosion is typically associated with high flow, extra silt charge
and river channel shift (Das et al., 2014). Much of the river is controlled by areas
such as river drainage basins, groundwater, vegetation cover, land use land cover
(LULC), tectonic activity, and climate factors (rainfall and temperature) (Das et al.,
2018; Debnath et al., 2017). The abrupt increase in river discharge during monsoon
enforces pressure on its two banks due to the turbulent water flow condition and
initiates lateral erosion and leads to river bank erosion. The changes in river bank
lines cause various alterations, e.g. change in the flow direction due to neck cut-off
and alteration of the meander bends that account for translational, lateral, rotational
and extensional shifts (Sarma et al., 2007). The spatio-temporal river channel
assessment is essential for geomorphological studies, improved river, water resource
and agriculture management activities and planning.

The seven major rivers and their tributaries form India’s dominant river systems
(Water Resources Systems Division, 2020). Recurring flood events in India cause
severe damages to the land and other resources (Singh & Kumar, 2017). The Ganges
and Brahmaputra are the two major rivers experiencing severe erosion for decades
(Phukan et al., 2012). The Ganges is one of the most important river systems in
India, covering an enormous portion of India. Every year, the Ganges, its tributaries
and distributors carry millions of tons of sediment and deposit in the plains. As an
alluvial river with low velocity and flat stream, the Ganges deposits large silt and
causes many issues like reduction of depth, waterlogging and flood events in various
parts of Bihar and West Bengal mostly (Iqbal, 2010). The Ganges system has
developed some exclusive features like shifting discharge, sedimentary pressure,
tidal interruption, erosion, reduced water flow in the western tributaries and different
tectonic structures of delta (Das, 2011). Studies have indicated that the right bank has
erosion-resistant basalt rock, whereas the left bank has weak alluvial soil structures
that make it more vulnerable to excessive river bank erosion (Majumdar & Mandal,
2019). Several studies have been carried out assessing the river bank erosion and its
impact on the Ganges River in recent time. Biswas and Anwaruzzaman (2019) used
the pressure and release (PAR) model to measure the vulnerability posed by the
erosion of the Ganges in Malda district of West Bengal state. They have highlighted
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the socio-economic issues villagers face due the river bank erosion. Several other
studies have identified the consequences of river bank erosion and flood on people’s
livelihood and socio-economic condition in various districts in West Bengal state
(Majumdar, 2018; Das et al., 2012; Iqbal, 2010).

Remote sensing and geographic information system (GIS) are the idyllic and
seemingly tool for identifying and monitoring river erosion and its line transfer.
Sarma et al. (2007) studied the sequential changes in Burhi Dihing River’s bank
lines employing the Survey of India (SOI) toposheets (for the years 1934 and 1972)
and the IRS 1D and IRS P4 satellite images (for the years 2001 and 2004). They
considered 13 segments along the flow direction (at 50 longitude equivalent to 15 km
intervals) to assess the overall shift and erosion. Thakur et al. (2012) studied the river
bank erosion using toposheet (1955) and Landsat satellite images (1977 to 2005) due
to the morphometric transformation of the Ganges in between Rajmahal and Farakka
Barrage. They observed drastic changes in the morphometric parameters such as
sinuosity, beardedness index and the island area percentage. Ghosh and Sahu (2019)
assessed the impact of the Ganges-Bhagirathi river bank line shifting on LULC
changes during 1980–2010 in the Murshidabad district, West Bengal, India. Debnath
et al. (2017) evaluated bank erosion and channel migration along the Khowai River
in north-eastern India using remotely sensed data from 1975 to 2014. Akter et al.
(2017) assessed the lateral channel movements of the lower reaches of the Jamuna
River from 1976 to 2015 using space-based imagery. Hassan et al. (2017) measured
the erosion and accretion of spatio-temporal dynamics at different locations on the
Jamuna River. Islam and Rashid (2011) studied the Meghna river bank erosion and
its impact on the population displacement and socio-economic status in Bangladesh.
They concluded that the socio-economic condition, removal of settlement areas,
household size changes, educational attainment, labour force participation and
occupational status, land holding and income were negatively affected at both
individual and household levels.

The current study focuses on assessing the river bank erosion in the part of the
Ganges River falling under Malda district of West Bengal, employing the multi-
temporal Landsat images. The study evaluates spatial and temporal changes in
channel shifting and erosion and its impact on LULC in the study region.

22.2 Study Area

The current study was conducted in the Malda district of West Bengal state, India, on
the Ganges between the Rajmahal Hills and Farakka Barrage (Fig. 22.1). Majority of
this area covers four blocks as Manikchak, Kaliachak I, Kaliachak II and Kaliachak
III of the Malda district. Geographically the study area extended between the
latitudes 24�3704100N to 25�404800N and the longitudes 87�4503000E to 88�0802200E.
The Farakka Barrage was constructed primarily to maintain the water flow at
Calcutta Port. However, the construction of barrage has led to significant changes
in the upstream and river high sediment deposition and river bank erosion. Previous
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studies have identified significant loss of river banks, e.g. around 750 km2 in the
Manikchak and Kaliachak blocks in the past 30 years (Banerjee, 1999).

22.3 Data and Methodology

Landsat satellite images were used for the spatio-temporal analysis of river bank
shift for the five different time period (at 10 years interval) from 1980 to 2020. The
cloud-free surface reflectance images were acquired for the pre-monsoon dry period.
The image data were downloaded from the USGS Earth Explorer website and are
enlisted in Table 22.1.

The maximum likelihood supervised image classification approach was adopted
to generate the LULC maps. The 2000 and 2020 images were classified into six
major classes such as agricultural land, agricultural fallow, river, sand, plantation
and fallow land. For accuracy assessment, a set of random points was created and
compared with the high-resolution multi-temporal Google Earth imagery. The river
bank lines and islands were demarcated for five time periods employing the visual

Fig. 22.1 The Ganges River network map and the Google Earth image view of the study area
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image interpretation technique. The temporal data layers on river bank and islands
were further employed for GIS analysis to assess the various processes like erosion,
accretion, river bank line shifting. The methodology used in the present study is
shown in Fig. 22.2.

Table 22.1 Details of Landsat data used in the current study

Sensor(Landsat) Path/row Date of acquisition Spatial resolution (m)

MSS 149/43 17/01/1980 60

TM 139/43 06/02/1990 30

ETM+ 139/43 29/03/2000 30

TM 139/43 02/04/2010 30

OLI/TIRS 139/43 12/03/2020 30

Satellite Imagery
Landsat (1980, 1990, 
2000, 2010 and 2020)

Census of India
Block Map 2011

Digitization (Visual 
Image Interpretation)

Supervised 
Classification

GIS Analysis Land Use Land Cover (LULC) Map
(2000 and 2020)

River Bank Erosion Mapping and 
Impact Assessment

Fig. 22.2 Methodology flow diagram
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22.4 Result

Land Use Land Cover Change

The LULC maps generated for the years 2000 and 2020 were validated with
84 points randomly generated on the image. The estimated accuracy for both the
years indicated well-accepted accuracy, where a higher accuracy was observed for
2020 compared to 2000 (Tables 22.2 and 22.3). The user’s accuracy for the year
2000 varied between 75% and 100%, whereas the producer’s accuracy varied
between 71% and 90%. The user’s accuracy for the year 2020 varied between
68% and 94%, whereas the producer’s accuracy varied between 77% and 91%.
Moreover, the overall accuracies for 2000 and 2020 were estimated as 83% and 85%
and Kappa values as 0.79 and 0.82, respectively (Tables 22.2 and 22.3).

The generated LULC maps for the year 2000 and 2020 are shown in Fig. 22.3. In
2000, the plantation (837.8 km2) was observed as the dominant class followed by
agriculture land (761.12 km2), agriculture fallow (496.81 km2), river (266.08 km2)
and fallow land (252.73 km2) (Table 22.4), whereas the least area was observed for
sand or river bed (80.29 km2) in 2000. During 2000–2020, the maximum reduction
of 135.27 km2 was observed for plantation followed by 96.54 km2 in agriculture land
and 20.6 km2 in sand. Alternatively, an increase in area was observed maximum for

Table 22.2 Classification accuracy metrics for the year 2000

Class
User accuracy
(%)

Producer accuracy
(%)

Overall accuracy
(%) Kappa

Agricultural land 0.84 0.87 83 0.79

Agricultural
fallow

0.83 0.75

Plantation 0.83 0.90

Fallow land 0.81 0.86

River 1 0.71

Sand 0.75 0.85

Table 22.3 Classification accuracy metrics for the year 2020

Class
User accuracy
(in %)

Producer accuracy
(in %)

Overall accuracy
(in %) Kappa

Agricultural
land

0.88 0.91 85 0.82

Agricultural
fallow

0.94 0.85

Plantation 0.91 0.84

Fallow land 0.68 0.84

River 0.8 0.8

Sand 0.88 0.77
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fallow land (136.65 km2) followed by agriculture fallow (108.33 km2) and river
(7.43 km2).

River Channel Shifting, Erosion and Accretion

The overall shifts in the river banks identified in the satellite images during 1980 and
2020 are shown in Fig. 22.4. The change analysis indicated that the course of the
river has significantly changed, leading to the differential alteration in the river

Fig. 22.3 LULC map of the year of 2000 and 2020

Table 22.4 LULC class-wise
change in different landscape
areas due to erosion during the
period between 2000
and 2020

Sl. no. Class name

Area (km2)

2000 2020 Change

1 Agricultural fallow 496.81 605.14 108.33

2 Agricultural land 761.12 664.58 �96.54

3 Fallow land 252.73 389.38 136.65

4 Plantation 837.80 702.53 �135.27

5 River 266.08 273.51 7.43

6 Sand 80.29 59.69 �20.60
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banks. The maps are inferring the shift of river bank line in both the sides, which
indicates a greater shift towards the left bank along the flow direction.

To find the sequential changes of the river bank and channel from 1980 to 2020,
the river boundaries identified in the different years were overlaid. The erosion and
accretion observed at 10 years interval are shown in Fig. 22.5. The corresponding
changes in area due to erosion and accretion are given in Table 22.5. During
1980–1990, the estimated erosion was 71.91 km2, and accretion was 67.60 km2,
which were 91.95 and 23.85 km2 during 1990–2000, 38.60 and 74.05 km2 during
2000–2010 and 48.36 and 71.25 km2 during 2010–2020 (Table 22.5). The maxi-
mum erosion was thus observed for the period 1990–2000, and the minimum during
2000–2010 (Fig. 22.6), whereas the maximum accretion was observed between 2000
and 2010 and the minimum between 1990 and 2000. The common surface water area
of the river was observed least (156.75 km2) during 1980–1990 and maximum
(285.11 km2) during 2000–2010.

Change Analysis of Island (Char)

The islands identified within the study area in the different years are shown in
Fig. 22.7, and area statistics is shown in Fig. 22.6. The maps indicated a significant

Fig. 22.4 The overall change in river channel, erosion and accretion observed from 1980 to 2020
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increase in the numbers and area of islands since 2000. The maximum area was
estimated in 2010 (132 km2) followed by 2020 (102 km2) and 2000 (89 km2),
whereas the areas were mapped as 14 and 32 km2 in 1980 and 1990, respectively

Fig. 22.5 Erosion and accretion maps for the different period from1980 to 2020

Table 22.5 Year-wise ero-
sion and accretion area (km2)

Duration Erosion Accretion Channel in both year

1980–1990 71.91 67.60 156.75

1990–2000 91.95 23.85 204.81

2000–2010 38.60 74.05 285.11

2010–2020 48.36 71.25 260.90
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Fig. 22.6 Diagram showing erosion and accretion for the different periods
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(Fig. 22.8). Majority of the islands were created owing to sand deposition and shift
of river bank leftward along the flow direction.

The river channel migration and corresponding erosion caused the LULC change.
Majority of such changes were observed due to the conversion of agriculture land to
the river, followed by the conversions of plantation and agriculture fallow areas.
Moreover, the erosion of a few sand bars causes conversion of sand to river and river
to sand conversion. Similarly, the reverse conversions took place between agricul-
ture land, agriculture fallow and rivers.

Fig. 22.7 Islands area identified in the different years from 1980 to 2020
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Fig. 22.8 Area of the islands for the different years from 1980 to 2020
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22.5 Discussion

In the present study, the GIS analysis for different time periods ranging from the year
1980 to 2020 has shown the migration of river bank lines of the Ganges within the
study area. The results indicated the maximum erosion (91.95 km2) and the mini-
mum accretion (23.85 km2) occurred between 1990 and 2000. In contrast, the
minimum erosion (38.60 km2) and the maximum accretion (74.05 km2) were
observed in between 2000 and 2010. The erosion is higher when there is more
storage capacity in the river and vice versa (Shahin, 2007). The shift of river bank
line indicated an overall leftward shift along the flow direction. A similar change was
also reported by Majumdar and Mandal (2019), who observed leftward shift of the
river bank owing to weak alluvial soil structures in the left bank compared to
erosion-resistant basalt rock in the right bank. The study revealed that the formation
of river islands has been steadily increasing from 1980 to 2010, except in 2020 when
the river accretion was decreased as compared to 2010. The total island area of
14 km2 experienced more than ninefold and sevenfold increase, resulting in the total
area of 132 and 102 km2 in 2010 and 2020, respectively. This could be indicating
higher sediment accumulation during the period 2000–2020 in comparison to the
earlier decades. Moreover, the amount of accretion was maximum in 2010, which
led to maximum islands in 2010 (132 km2). The significant change in the area of
curvature, leading to river meandering, infers the high river bank erosion (Zhou &
Endreny, 2020).The major drivers of river bank line shifts could be either climatic or
anthropogenic. Moreover, the flood events and soil erosion in the upper catchment
also influence such changes. The soil erosion in upper catchment leads to sediment
accumulation in these places (Mehebub et al., 2015). The swiftness of the river
channel has led to significant alterations in the river bed and adjoining land use
patterns. Majority of the LULC changes were observed as the conversion between
agriculture land, agriculture fallow, river and sand. The rise in the number of sand
bars or islands could be attributed to the increasing deposition of sediment due to the
construction of the Farakka Barrage, leading to lower river flow. Thakur et al. (2012)
also analysed the river bank erosion between Rajmahal and Farakka Barrage from
1955 to 2005. They have reported that the soil stratification of the river bank,
presence of hard rocky area around Rajmahal, higher sediment load, lack of dredging
and construction of Farakka Barrage which act as an obstruction to the natural river
flow could be the major factors of river bank failure in this region. Ghosh and Sahu
(2019) studied the impact of bank line shifting on LULC changes for an adjoining
Ganga-Bhagirathi River in the Jangipur subdivision of Murshidabad district, West
Bengal, and reported much lesser change (erosion, 7.93 km2; deposition, 3.244 km2)
compared to the current study.

There is a historical outlook on the relationship between human and river
ecosystem, which has furnished the regional cultural activities. The versatile
human interaction with the river benefits in several ways. Thus, changes in the
river modify the local environment, hydrological and climatic conditions, water
availability, irrigation and agriculture, socio-economic condition of the dependent
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population, etc. The noticeable incidents or changes observed during the study
period are summarized as follows:

1. Eradication the soil and plants on the river banks.
2. River bank degeneration causes destruction or relocation of habitat settlements.
3. Removal of productive soil and cropland leads to significant loss in crop yield.
4. Reduction in water level due to deepening of the soil bed.
5. Unutilized sedimentation has occurred on the opposite side of decay.
6. River bank erosion and corresponding changes in river’s physical and the under-

ground allies.
7. Alteration in the cultural activities.

22.6 Conclusion

The current study employed the satellite remote sensing data-derived GIS layers to
assess the river morphology in the Ganges in parts of Malda district in West Bengal,
India. The Landsat satellite imageries were used for visual image interpretation to
map the erosion and accretion and corresponding changes in the river bank line. The
GIS analysis of the past four decades (1980–2020) indicated significant changes in
the river bank with an overall leftward shift along the flow direction. The maximum
erosion with least accretion was observed during 1990–2000, whereas the minimum
erosion with maximum accretion was observed during 2000–2010. Such changes in
the river bank mostly reduced the fertile croplands and rural settlements along the
river channel. A significant increase was observed in the number of islands and total
area. The time series changes observed in the past four decades indicate the river
meandering. The total islands area of 11 km2 in 1980 monotonically increased to
132 km2 in 2010 and then reduced to 102 km2 in 2020, which could be indicating
significant accumulation of sediment in the river beds. However, the deposition of
sediment or developments of chars in the region may lead to flooding during the
monsoon. The generated maps are useful in understanding the river processes and
local hydrological regimes. Moreover, the study outcomes have multiple usage and
implications. These will help the water resource, agriculture, forest and landscape
planners and managers for improved management and mitigation planning, policy
development, conservation, etc.
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Chapter 23
Spatiotemporal Detection and Delineation
of Bhagirathi-Hooghly River Bank Erosion
Using GIS Analytics, West Bengal, India

Mantu Das and Snehasish Saha

Abstract West Bengal is a riverine state in India. So the floodplain areas in the
lower Gangetic plain experience several natural hazards like monsoon floods and
bank failure every year due to the extensive river network. The study area is a part of
the moribund delta and is formed by alluvial deposits (sand, silt, and clay). Due to
regular river course shifting, the Ganga River faces frequent bank erosion hazards.
The primary objective of this research is to detect bank erosion sites with concerning
spatiotemporal channel migration in between Nabadwip and Katwa (84-km-long
reach) in West Bengal, India. In recent time, remote sensing (RS) and geographical
information system (GIS) have been considered powerful applications for the river
study basically in spatial change identification. In this study, using six selected maps
from 1954 to 2020, the river bank erosion patterns and dynamics of the Ganga
(Bhagirathi-Hooghly) river resulting from processes for 66 years were analyzed.
Therefore, here, multispectral satellite imagery (Landsat 8 OLI/TIRS, Landsat
7 ETM+, Landsat 5 TM, and Landsat 3 MSS) for the year 1980, 1990, 2000, 2010
and 2020, and 1954 have been used. Toposheet (NF-45/3) was used as base
information. Temporal river course detection is a studious task. Moreover, here,
Toposheet was resampled with WGS 84 UTM projection, and satellite imageries
were also resampled and rectified and finally processed through modified Normal-
ized Difference Water Index (NDWI) to detect active river flow more precisely. In
the period between 1954 and 2020, most of the sites of the right bank (76% of
referenced sites; 24% toward leftward direction) are being shifted toward the
rightward direction. But in the case of the left bank, 52% of sites are eroded toward
the rightward direction, and 48% of sites are moved toward the leftward. The
western part of the river Bhagirathi-Hooghly (Nabadwip to Katwa) is highly vul-
nerable due to bank erosion. The Bhagirathi-Hooghly river course within the studied
periods (1954–2020) normally followed a straight to the sinuous path, and the SSI
ranged between 1.006 and 1.031. In 1954–2020, topographic interferences played a
great role (TSI gt; HIS) in river course shifting at the Nabadwip-Katwa section. The
river shifting rates are based on the differences in 1954–1980, 1980–1990,
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1990–2000, 2000–2010, and 2010–2020. Results show few sites along the river
course are highly affected by bank erosion, i.e., near Akandanga (T8), Uttar
Srirampur (T12), Bargara (T17), and Sankarpur (T20). Therefore, these sites expe-
rienced greater economic loss by degrading land loss, i.e., fertile agricultural land,
settlement area, etc., due to the river bank erosion. So bank protection and hazard
mitigation fulfil the purpose of sustainable river basin management and will be good
practice in order for human to benefit.

Keywords Bank erosion · Bank line shifting · NDWI · Remote sensing · GIS ·
Bhagirathi-Hooghly River

23.1 Introduction

River bank erosion occurs as a natural threat caused by water and land interactions
and is greatly affected during monsoon period due to bankful discharge with
astonishing flow dynamics, but sometimes it’s called quasi-natural because of
human involvement as soil digging, riverine agricultural practices, settlement expan-
sion, etc. Lateral displacement of the channel confers to the spatial shift of a river
course as a response of flow dynamics, sediment supply, bank materials (cohesive
and non-cohesive materials), and channel configuration/geometry (Bandyopadhyay
et al., 2014; Roy et al., 2020). Therefore, channel migration is a process that is
continuously amalgamated with river bank erosion to the channel bed and channel
wall under dynamic flow situations which may cause baneful local and regional
changes. In the present research work, authors have acquired knowledge about the
river bank erosion with special reference to lateral shifting of the channel within the
Nabadwip-Katwa section of the lower Ganga (Bhagirathi-Hooghly) river.

Rivers are complex systems in dynamic equilibrium within natural environmental
settings (Das et al., 2014; Chakraborty & Mukhopadhyay, 2015). Alluvial river
courses are a very subtle exponent of channel morphodynamic changes that can
readjust through the interaction of flow characteristics, bank bed geometry, and
sediment supply and tectonics activity (Schumm et al., 2002; Konsoer et al.,
2016). Throughout the river network, diverse bank erosion mechanisms take place
from upstream to downstream (base level). River bank erosion and bank line shifting
on a spatiotemporal scale are a fluvio-morpho-dynamical phenomena under various
flow regimes (Das et al., 2007; Das & Saraf, 2007; Pati et al., 2008; Ghosh & Sahu,
2018; Biswas & Anwaruzzaman, 2019; Dekaraja & Mahanta, 2020).

A review study on the assessment of river bank collapse and lateral channel
adjustments was performed by Lawler (1993), who stated that sedimentological data,
botanical proof, historical records, repetitive cross profiling, erosion pins, and
terrestrial photogrammetry were the methods covered to fulfil the objectives. Muller
et al. (1993) and Lovric and Tosic (2016) made a summary of multispectral satellite
data with GIS applications to river studies. In this review, all types of remotely
sensed multispectral data with the varying spatial resolution are currently available
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on the free domain (USGS Earth Explorer, Bhuvan-Indian Geo-Platform of ISRO,
etc.) and payable mode, and their versatile uses in river studies basically in channel
migration, bank erosion, and morphological changes have been highlighted. Remote
sensing and GIS applications in bank erosion study have a great role in management
study (Das & Saraf, 2007; Das et al., 2012; Ophra et al., 2018).

India is a country of rivers which is comprised of seven major rivers and
associated tributaries and distributaries making up the river network in India (Thakur
et al., 2012; Das et al., 2014). Every year monsoon floods are a frequent natural
hazard in India. Two main river systems, namely, Ganga and Brahmaputra river
system, are highly affected by bank erosion activity (Das et al., 2014; Sarma, 2013;
Mukherjee et al., 2017; Islam & Guchhait, 2019; Dekaraja & Mahanta, 2020). It is
noteworthy that Nadia district is experiencing badly invaded by the bank erosion
dynamics along the Bhagirathi river course (Islam and Guchhait 2018; Islam &
Guchhait, 2015). The Gangetic plain has immense value in human life as well as
environmental perspective also. But every year in the plain region (old stage of the
river), the river bears millions of tons of sediment loads and deposits on the river bed,
bank, and surface of the base level of erosion causing morphological modification to
the channel. (Khan et al., 2018; Parua, 1999). The sediment accumulation (bed
materials and suspended particles) creates several problems like water quality issues,
channel shrinkage, and the decrease of river depth due to riverbed siltation
(Wilkinson et al., 2006). But when the discharge increases or at bankful discharge
(during monsoon rainfall), the river exerts pressure on its bank walls and begins
lateral expansion by the erosive agents (water, suspended, and bed materials)
depending on bank materials, compactness, tension magnitude, etc., which in the
floodplain area becomes the source of several floods and river bank erosion hazards
(Wu et al., 2008; Xia et al., 2010). Around the same time, anthropogenic interference
along the river course (embankment, dam construction, unauthorized encroachment,
etc.) disturbs the balance of river dynamics and speeds up the rate of bank erosion
(Das et al., 2014). Previous studies show West Bengal, especially Ganga major and
Bhagirathi-Hooghly River, has experienced high bank erosion phases, and the
Farakka Barrage was the main triggering factor (Rudra, 2010; Chatterjee & Mistri,
2013) upstream Malda. So it is necessary to analyze the behavior of the ever-
changing river course on natural settings with human interferences over the spatio-
temporal scale and its severity in terms of unhealthy impact to the areas where the
concerned authorities can take preventive measures. To accomplish these targets,
this research work has been perpetrated with the following subject matters: to
quantify the magnitude of bank line migration or changes due to bank erosion on
space-time domain and quantification of these changes using the morphometric
parameters of the Hooghly River.

Natural hazard like river bank erosion is vulnerable to the riverine environment
which includes a rich ecosystem, human society, and valuable earth surface. More-
over, it appears in our society as a great evil toward a sustainable environment during
the peak monsoon period because of bankful discharge and dynamic hydraulic
nature. Riverbank shifting over time and space due to bank erosion continuously
knowing to human society, what is the changing nature? What are the causes and
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consequences? Through this study we can predict the spatiotemporal changing trend
of the bank erosion in the recent future and help us to take necessary precautions to
minimize the risk, e.g., economic loss, river ecosystem, social forestry, natural
vegetation, and so on. So river bank erosion study has an immense value not only
for human society rather in a sustainable physical environment. Several investiga-
tions (Das et al., 2017; Chakraborty & Mukhopadhyay, 2015; Mondal et al., 2014;
Sarma, 2014; Mandal, 2017) revealed the great significance of this study to manage
natural hazards as river bank erosion.

23.2 Brief Description of the Study Area

The studied river course, Hooghly River, passes along the administrative boundary
of Nadia (western side) and Burdwan (eastern side) districts of West Bengal
(Fig. 23.1). The selected river reach of the Bhagirathi-Hooghly River middle course
is 84 km of water track from Katwa (upstream) to Nabadwip (downstream), com-
prising a portion of the districts of Burdwan and Nadia. This present study is
comprised of the bank displacement of the river Hooghly caused by erosional
activities. The studied reach is located within the coordinates of 23�45012.2400 N to
23�21049.6600 N and 88�11033.6800 E to 88�21022.5500 E. The average height of the
study area is 8 m above MSL and comes under the lower Ganga plain (Sinha et al.,

Fig. 23.1 Locational personality of the study area characterized by morphological features
emerged as a footprint of erosional and depositional activity of the river. (a) Meander loop near
Akandanga in 2010, (b) oxbow lake near Akandanga in 2020, (c) mid channel bar near Kashthasali
in 2020
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2005) (Fig. 23.2). Three main landforms are accessible, i.e., from the Lower Ganga
plains, uplands, old fluvial/deltaic plains, and young fluvial plains are established
(Singh et al., 1998), in which the study area is situated within old deltaic plains. This
area is situated geologically in the Rarh region, the lower part of the Bengal Basin’s
dying deltaic section. (Islam & Guchhait, 2015) and is made up of a recent Pleisto-
cene deposit. Initially, along the river course, the region is covered by sandy clay,
sand, fine silt, sandy loam, and loamy soil contained in the extensive low gradient
land surface of the plain. Moreover, fertile soil of the floodplain areas is suitable for
quality or productive cultivation. The studied reach has been divided into a total of
25 cross section lines. These cross section lines are made on the basis of the
maximum amount of shifting, analyzing the satellite images through logical per-
spectives (Fig. 23.3).

23.3 Data Sources and Methodology

Data Used

The following data were considered to study the river bank erosion mapping and
channel morphodynamic changes. The overview of the methodology is represented
in Fig. 23.2.

Fig. 23.2 Comprehensive flowchart of the river bank erosion mapping research approach
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Fig. 23.3 The Hooghly River course extracted from multispectral satellite imageries by using
MNDWI model. (a) 1980, (b) 1990, (c) 2000, (d) 2010, and (e) 2020

518 M. Das and S. Saha



Data Processing

Topographical map is on a sufficiently large scale to enable individual features to be
shown on the map. The study area’s topographical map is 1:250,000 series map
which was surveyed in 1954 as found in the NF 45/3 Toposheet. Remote sensing is
one of the techniques in which the capturing of spatial information without physical
contact with a spatial object of the earth’s surface, which is not only essential for
comprehensive spatial analysis rather has immense value for precise resource man-
agement. In this regard, primarily multispectral satellite imagery for the year 1980,
1990, 2000, 2010, and 2020 has been resampled and rectified in ArcMap software
for the present study. So, here, two steps have been developed. At first the pixel
value of individual bands was converted into surface reflectance to precisely identify
the surface features (Bhatta, 2011; Lillesand et al., 2015). The DN values of a
particular band were converted to the top of atmosphere (ToA) radiance by the
spectral radiance scaling method and finally converted to the ToA reflectance. Then,
the required atmospheric correction (minimized cloud coverage over the study area)
has been performed in the GIS environment. The proper findings of river shifting and
bank erosion are obtained from various data sources and GIS techniques (Langat
et al., 2019; Momin et al., 2020). The base map prepared by software analyses the
precision of river shifts over topographical and remote sensing data.

River Course Detection

River channel detection with high precision is a sturdy task to the researcher. Here,
satellite imagery and Modified Normalized Difference Water Index (MNDWI) have
been accomplished to detect the channel over spatiotemporal scale (Jovanovic et al.,
2014; Tiwari et al., 2016; Nijhawan & Jain, 2018). For MNDWI, two bands, namely,
green band and short-wave infrared (SWIR) band, are the key components, and
aftermath raster calculation results show the difference between water body and land
surface (Eq. 23.1). Results, if lower the raster calculated value (�1 to 0) means earth
surface covered with water. On the other hand, a greater value (0 to 1) refers to the
dry surface (land surface) on earth. The NDWI has been determined by using the
following formula (Xu, 2006; Mukherjee et al., 2017):

NDWI ¼ Green band� SWIR bandð Þ
Green bandþ SWIR bandð Þ ModifiedNDWI afterH:Xu2006ð Þ

ð23:1Þ
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Bank Erosion Mapping

This research work is accomplished with the help of remote sensing multispectral
satellite data, topographic map (NF 45-3), and Google Earth imagery. All these data
have individually been processed and analyzed in a GIS environment (ArcMap 10.8
pirated version) to prepare thematic maps on bank erosion. By the topographical
map, the situation of 1954 of Hooghly River has been drafted, while the satellite
imagery data are showing the conditions of 1980, 1990, 2000, 2010, and 2020 of the
river. Two databases were overlaid on one another along with the WGS-84 UTM
projections in GIS platform to find out the channel shifting of Hooghly River
(Nabadwip to Katwa). This shifted segment of the river is mapped by vectorization
in the GIS domain.

Morphometric Measurements

Channel morphometric analysis has been carried out using remote sensing and GIS
applications. The sinuosity index (Aswathy et al., 2008; Kumar et al., 2014) has been
applied in river study to access the temporal changes of channel braiding nature due
to bank erosion. The following equations (Muller 1968) were incorporated here:

Hydraulic Sinuosity Index HSIð Þ ¼ Channel index� Valley indexð Þ
Channel index� 1ð Þ ð23:2Þ

Topographic Sinuosity Index TSIð Þ ¼ Valley index� 1ð Þ
Channel index� 1ð Þ ð23:3Þ

Standard Sinuosity Index SSIð Þ ¼ Channel length CLð Þ
Valley length VLð Þ ð23:4Þ

Standard Sinuosity Index (SSI) represents the nature of river course which ranges
from a straight to braided course on the basis of ratio between channel length (the
length of the channel in the stream under study) and valley length (the valley length
along a stream, i.e., the length of a line which is everywhere midway between the
base of the valley walls. It will equal channel length wherever the valley walls
descend directly to the water’s edge and will be less than channel length wherever a
floodplain has developed) (Eq. 23.4). According to Vijith and Dodge-Wan (2018),
Maurya and Yadav (2016), and Tiwari et al. (2016), SSI value is categorized into
five distinct groups, i.e., straight course (<1.05), sinuous (1.05–1.30), moderate
meandering (1.30–1.50), meandering (1.50–2.00), and braided course (>2.00).
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On the other hand, HSI and TSI reveal that course departure from their straight
course is due to hydraulic characteristics and topographic behavior over space and
time, respectively (Mueller, 1968; Ghosh & Mistri, 2012; Kumar et al., 2014). The
total value of TSI, when added to HSI, should always be 100. It means any one of
these two (TSI or HSI) has been calculated and the next one has also been derived
through simple subtraction (100-HSI or TSI). Results show (Eqs. (23.2) and (23.3))
higher TSI and HSI means river course is highly deviated from straight path due to
geo-topographic interferences (e.g., geology, undulating surface, plain, plateau,
foothill, and mountain topography) and ever-changing hydraulic nature which is
greatly affected during peak monsoon period.

Statistical Analysis

Statistical tools are considered as an important key for establishing the facts in a
precise way. Statistical analysis includes mean, standard deviation (SD), coefficient
of variation (CV), skewness, and kurtosis, which have been proceeded to compre-
hend the changing behavior (space-time domain) of river bank line and their
consistency for understanding the future trend (Mandal et al., 2018; Dey & Mandal,
2019). The selected statistical methods have been performed in the IBM SPSS
Statistics (trial) software. Spatial mapping of bank erosion as lateral shifting of
bank line is a common phenomenon in the natural riverine environment. Standard
deviation is a widely used measure of the variability of the bank line migration
(Gabet, 1998; Dey & Mandal, 2019). Higher SD value refers to migration rates
distributed over the wide range of scales, and low SD value means that migration
rates appear to be very normal migration due to erosional activity. The CV of
variation of bank line migration is higher which means less consistent migration
and vice versa (uniform in nature). Kurtosis is employed to refer to the peakedness of
a distribution curve of bank line shifting. The nature of the distribution pattern of the
bank line migration is analyzed by kurtosis. And finally, skewness has also been
applied to convey the degree of asymmetry of the spatial migration of the temporal
bank line due to bank erosion activity.

23.4 Results and Discussion

Spatiotemporal Scenario of River Bank Erosion (1954–2020)

Hooghly River Reach in 1954

River course has been delineated from the 1954 Texas University topographical map
(Table 23.1). A total of 25 transects across the river have been considered as a
reference site (Fig. 23.4), and this Toposheet is also considered a base map for the
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Table 23.1 Description of the topographical map

Toposheet
No. Series Area Scale

Survey
year Publisher

NF 45-3 U502 Burdwan 1:
2,50,000

1954 Map room, General Libraries, PCL
1.302, University of Texas, Austin, TX
78713-7330

Source: https://legacy.lib.utexas.edu/maps/ams/india/

Fig. 23.4 Referenced transects across the Hooghly River course in relation to topographic eleva-
tion between Nabadwip and Katwa, West Bengal
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study. In 1954, the river course was near the straight path (Horacio, 2014). The SSI
value for the selected study reach from Nabadwip to Katwa was 1.016 (Eq. 23.2)
(<1.05 indicates straight course). It is also observed that the calculated HSI and TSI
were 0.029 (Eq. 23.3) and 0.971 (Eq. 23.4), respectively (Table 23.2).

Hooghly River Reach in 1980

The river course has been detected and extracted from Landsat 3 MSS multispectral
satellite image (Table 23.3). During this time, the study reach was almost a straight
course. The calculated SSI, HSI, and TSI were 1.006 (Eq. 23.2), 0.008 (Eq. 23.3),
and 0.992 (Eq. 23.4), respectively (Table 23.2). During this period, a total of
10 referenced spots on the left bank and 16 spots on the right bank were affected
by the bank erosion (Table 23.4 and Fig. 23.4).

Hooghly River Reach in 1990

The Hooghly River course has been extracted from Landsat 5 TM satellite imagery
(Table 23.3). In 1990, the river course followed almost a straight path (SSI-1.012).
Temporal changes of sinuosity index refer to the impact of the erosional and
depositional activity. Therefore, it was noticed that the measured SSI, HSI, and
TSI were about 1.019 (Eq. 23.2), 0.027 (Eq. 23.3), and 0.972 (Eq. 23.4), respectively
(Table 23.2). Channel morphometric parameters are the indicators of spatiotemporal

Table 23.2 Temporal status
of river morphometric
parameters

Year HSI TSI SSI

1954 0.029 0.971 1.016

1980 0.008 0.992 1.006

1990 0.027 0.972 1.012

2000 0.043 0.956 1.019

2010 0.005 0.934 1.031

2020 0.034 0.965 1.018

Source: Calculated by Das and Saha (this volume)
HSI Hydraulic Sinuosity Index, TSI Topographic Sinuosity Index,
SSI Standard Sinuosity Index

Table 23.3 Description of satellite imageries

Sl. No Satellite Sensor Path Row Acquisition date Spatial resolution

1 Landsat 3 MSS 149 44 02nd Feb. 1980 30 � 30 m

2 Landsat 5 TM 138 44 14th Nov. 1990 30 � 30 m

3 Landsat 5 TM 138 44 27th Dec. 2000 30 � 30 m

4 Landsat 7 ETM+ 138 44 15th Dec. 2010 30 � 30 m

5 Landsat 8 OLI/TIRS 138 44 02nd Dec. 2020 30 � 30 m

Source: USGS Earth explorer (http://earthexplorer.usgs.gov/)
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river course change. Bank erosion is common in every monsoon season for Hooghly
River course. Table 23.4 shows that 13 sites on the left bank and 14 sites on the right
bank experienced bank erosion.

Hooghly River Reach in 2000

The river has been digitized from Landsat 5 TM satellite imagery (Table 23.3) after
processing the NDWI model (Fig. 23.3). According to Table 23.2, the calculated SSI
value was 1.019 which indicates near to straight river course. Moreover, the HSI and
TSI were 0.043 (Eq. 23.3) and 0.956 (Eq. 23.4), respectively. During this period,
most of the sites were affected by erosion. It is observed that 18 spots on the left bank
and 16 spots on the right bank have received identifiable mark of bank erosion.

Hooghly River Reach in 2010

The river has been extracted from Landsat 7 ETM+ multispectral satellite imagery
(Table 23.3). In the period between 2000 and 2010, the river Hooghly had experi-
enced a devastating flood which greatly affected the river morphology. The river
reach received SSI of 1.031 (Eq. 23.2), and 0.065 (Eq. 23.3) and 0.934 (Eq. 23.4)
were the calculated values of HSI and TSI accordingly. Moreover, 17 referenced
sites on the left bank and 17 sites on the right bank were affected by bank erosion.

Table 23.4 River bank erosion spots along Hooghly River (1954–2020)

Time
interval Left bank erosion Right bank erosion

1954–1980 T1, T3, T4, T6, T7, T11, T13, T14,
T20, T22

T2, T5, T6, T8, T9, T10, T12, T15,
T16, T17, T18, T19, T20, T21, T23,
T25

1980–1990 T1, T5, T7, T8, T9, T11, T13, T15, T16,
T20, T21, T22, T24

T1, T4, T5, T6, T7, T10, T12, T14,
T17, T18, T19, T21, T23, T25

1990–2000 T3, T5, T6, T7, T8, T9, T10, T11, T14,
T15, T16, T18, T19, T20, T22, T23, T24,
T25

T1, T2, T4, T6, T9, T12, T13, T14,
T16, T17, T18, T19, T21, T22, T23,
T25

2000–2010 T1, T3, T5, T7, T8, T9, T10, T11, T12,
T13, T15, T17, T18, T19, T20, T21, T24

T2, T3, T4, T6, T7, T8, T10, T12, T13,
T14, T15, T16, T17, T19, T22, T23,
T25

2010–2020 T1, T3, T5, T6, T10, T11, T12, T13, T14,
T16, T18, T19, T21, T23

T1, T2, T4, T7, T8, T9, T14, T19, T22,
T25

Source: Prepared by Das and Saha (this volume)
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Hooghly River Reach in 2020

The river has been digitized from Google Earth satellite image and verified by
overlay analysis using Landsat 8 OLI/TIRS satellite imagery in GIS environment.
During monsoon period every year, the river is continuously experiencing bank
erosion with the changing nature of bank, and the river readjusts itself by auto-cut-
fill process. Therefore, at present time the river course follows almost a straight path.
In 2020, the calculated SSI, HSI, and TSI were 1.018 (Eq. 23.2), 0.034 (Eq. 23.3),
and 0.965 (Eq. 23.4), respectively (Table 23.2). At the end of 2020, 14 referenced
spots on the left bank and 10 spots on the right bank have been identified as erosional
sites with reference to 2010 base map.

Temporal Shifts of the Hooghly River Bank

River shifting is the cause of river erosion and depositional activity itself or accel-
erating by human interventions. In the period between 1954 and 1980, four sites on
the right bank vastly shifted, i.e., T1 (735.73 m), T5 (522.90 m), T11 (958.93 m),
and T25 (1384.78 m), which are located near Naliapur, Basatpur, Jhaudanga, and
Parmedia, respectively. But in left bank, six sites experienced high shifting rate, i.e.,
T1 (969.68 m) at Naliapur, T11 (1070.47 m) at Jhaudanga, T12 (1028.59 m) at Uttar
Srirampur, T17 (1084.39 m) at Mertala, T18 (1262.43 m) at Gopipur, and T20
(1028.22 m) at Sankarpur. In the period between 1980 and 1990, the highly shifted
places were T19, T20, T21, and T22 on the right bank; on the other hand, T12, T20,
and T22 on the left bank experienced a drastic change of bank line. Year 2000 shows
five referenced spots (i.e., T8, T11, T14, T15, and T19) on the right bank, and four
spots (i.e., T8, T15, T15, and T21) were higher shifted sites. During 2000–2010, a
large amount of shifting was experienced at T8, T15, and T18 on the left bank and at
T8 and T22 on the right bank of Hooghly River. But during the last decade
(2010–2020), maximum sites experienced a more consistent nature of bank line
shifting (Table 23.5). It is observed that only T22 referenced site on the right bank
and four sites (i.e., T7, T8, T16, and T17) on the left bank were identified as large
amounts of bank line shifting (Table 23.6). Moreover, it is observed that most of the
sites were identified as a normal migration within 10 years of temporal scale.

Change of River Width

River width, according to spatiotemporal scale, is changing parameters in natural
environmental settings by the river process and man-induced causes. The spatial
dimension of channel geometry has been modified due to the high river discharge,
velocity during heavy flows, and (the monsoon period) lateral erosion during floods
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over time. The measurement of river width over defined cross sections is required to
detect the strength of lateral erosion to account for this change of the river bank
(Table 23.7; Fig. 23.5). The high variability in channel width is observed near
Rajnagar (T5), Akandanga (T8), Kashthasali (T19), and Rudrapara (T21) along
the Hooghly River (Fig. 23.5). Moreover, maybe due to the erosive agents with
high discharge, the lateral erosion has increased.

In 1954–2020, the Hooghly River course between Nabadwip and Katwa has gone
through several natural hazards, i.e., flood (devastating flood in 1978 and 2000),
bank erosion, channel shifting, land loss, etc. Clear picture of the site-specific bank
erosion and associated aftermath result is very crucial in river management practices.
On the right bank side, from statistical point of view, greater variability of bank line
shifting is observed at T1 (308.20), T8 (543.73), T11 (359.89), T17 (505.33), T18
(606.56), T20 (1857.83), and T25 (606.92) which points out that bank line shifting
rates are distributed over an extensive range of scale during the period between 1954
and 2020 (Table 23.8). It is highlighted that the coefficient of variation (CV) is

Table 23.7 Descriptive statistics on temporal changes of channel width (1954–2020)

Transects Minimum Maximum Mean SD CV Skewness Kurtosis

T1 231.22 708.60 513.63 162.71 0.32 �0.98 1.68

T2 165.17 273.39 218.14 35.23 0.16 0.14 1.58

T3 161.70 373.67 317.89 78.93 0.25 �2.13 4.77

T4 297.53 634.80 416.45 132.77 0.32 0.98 �0.15

T5 203.05 1183.37 846.74 374.27 0.44 �1.22 0.68

T6 327.10 537.04 389.13 78.77 0.20 1.69 2.99

T7 215.84 883.32 572.72 247.10 0.43 �0.34 �1.00

T8 353.76 1970.02 740.17 609.73 0.82 2.32 5.52

T9 247.09 607.92 406.66 156.55 0.38 0.50 �2.11

T10 220.63 282.74 253.89 24.73 0.10 �0.09 �1.50

T11 284.22 442.73 350.90 69.76 0.20 0.69 �1.88

T12 236.75 1067.37 429.84 316.67 0.74 2.31 5.42

T13 356.86 852.62 577.19 232.15 0.40 0.28 �2.62

T14 292.47 361.20 325.91 26.75 0.08 0.25 �1.47

T15 217.81 878.47 441.38 254.48 0.58 1.29 0.58

T16 288.05 691.61 550.77 156.34 0.28 �1.05 0.28

T17 289.40 578.14 480.70 100.35 0.21 �1.74 3.71

T18 317.31 1251.53 581.78 358.44 0.62 1.64 2.80

T19 231.65 1871.17 1302.07 598.68 0.46 �1.30 1.77

T20 260.29 961.43 459.77 256.80 0.56 2.01 4.30

T21 320.73 1273.12 684.15 336.70 0.49 1.06 1.59

T22 242.48 518.70 379.92 98.06 0.26 0.06 �0.47

T23 288.90 484.03 346.52 71.06 0.21 1.91 4.02

T24 398.82 700.33 576.17 138.91 0.24 �0.74 �1.88

T25 475.66 624.46 546.65 65.48 0.12 0.26 �2.39

Source: Calculated by Das and Saha (this volume)
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Fig. 23.5 Temporal changes of channel width at various transect points (1954–2020)
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comparatively higher in the upper section (e.g., T1, T2, T3, T4, T5) of the study
reach which reveals less consistent lateral migration. But most of the cross section
sites have experienced a more uniform nature of migration. Moreover, excessive
asymmetry (skewness >2.00) of bank line migration has been observed in the entire
study area (40%). Contrary to this, for the left bank, extreme variability is calculated
at T8 (585.10), T11 (416.27), T12 (450.93), T17 (456.66), T18 (483.92), T20
(1936.26), and T25 (659.83) during the study periods. The coefficient of variation
is high in some specific place, i.e., T1, T17, T20, and T25 which indicates more
flexible lateral migration. However, higher asymmetry of bank line migration was
observed at about 24% referenced site from Nabadwip to Katwa along Hooghly
River. Channel cutoff and finally oxbow lakes formation are the landmark of
extreme channel migration. In the study area, two oxbow lakes have emerged at
Rajarampur and Purbasthali by extensive channel shifting (Fig. 23.6).

The average river width in the study area was 508.36 m. From statistical analysis
of the river width, it is clear that greater variability of river width was at T5 (374.27),
T8 (609.73), T18 (358.44), and T19 (598.68), which means there was a wide range
of variation. Meanwhile, coefficient of variation shows uniform nature of river width
variation. Here, most of the sites experienced symmetric form of channel width in
order to temporal scales (1954–2020) (Table 23.7).

Land use/land cover (LULC) change over spatiotemporal scale is one of the
driving factors of river bank erosion, course change, morphometric change, etc. In
this regard, 40 years temporal LULC (1980–2020) in the study is showing various
changes which directly or indirectly affect the bank erosion. In 1980, dense vegeta-
tion, sparse vegetation, river, water body, agricultural land, fallow land, and settle-
ment covered an area of 20.17%, 5.67%, 3.14%, 0.50%, 50.47%, 4.43%, and
15.65%, respectively (Fig. 23.7). But, in 2020, the dense vegetation was decreased

Fig. 23.6 River bank shifting for the period between 1954 and 2020. (A) Oxbow lake formation
due to extensive right bank erosion at Rajarampur and (B) oxbow lake formation due to lateral
erosion toward left bank near Purbasthali
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by an area of 5.24% due to population growth (settlement area 22.77%). River area is
gradually decreasing in trend due to human encroachment by practicing agriculture
and settlement in Char areas. It is notable that vegetation signifies a special alterna-
tive to conventional inert material-based preventive measures (Bache & Macaskill,
1981; Polvi et al., 2014; Zanetti et al., 2016). But with flourishing urbanization,
vegetation loss along or near the bank has been considered as a bank failure as well
as economic loss by destroying the valuable fertile land.

23.5 Bank Erosion Management Plan through GIS
Application

Natural hazards like bank erosion are the victims of a sustainable/healthy society. So
risk mitigation is the main challenge to diminish the losses, e.g., valuable fertile
agricultural land, settlement destruction, river ecology, infrastructural insecurity, and
so on. Various initiatives were developed for collaborative mapping of topographic
features (spatial attributes of earth surface), also directed to as “crowd sourcing.” For
example, Open Street Map (OSM) is a free editable map of the whole world, which is
made employing collaborative mapping by volunteers/citizens. It authorizes users to
collect, view, edit, and use geographical data (spatial changes like bank erosion, land
use and land cover alteration, different topographic features, etc.) in a collaborative
way from any places any time on the earth (Open Street Map, 2021 https://www.
openstreetmap.org/edit#map ¼ 16/22.9865/87.8556). Through this application, we
can easily understand the present scenario (during bank erosion) and what makes it
in our grip. The Bhagirathi-Hooghly River reach (Nabadwip-Katwa section) passed
through eight C.D. blocks (four blocks come under Nadia district and four blocks in

Fig. 23.7 Land use /land cover changes along Hooghly River course (Nabadwip to Katwa) in the
period between 1980 and 2020
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Bardhaman district). The total population was 1,048,699 (Census, 2011a, 2011b),
out of which approximately 5% of the population is residing along the river and over
the riverine landscape. Therefore, every year they are experiencing river bank
erosion and aftermath bad consequences upon rehabilitation, land degradation,
destroying the standing crop, etc. So monthly monitoring (depends on bank erosion
rate and seasonal behavior) through OSM application can make a good platform to
take decisions according to risk magnitude. The Virtual Disaster Viewer is a
crowdsourcing tool for collaborative natural disaster impact and damage assessment.
Remote sensing experts can be assigned in specific areas of the affected sites to
review and provide their assessment by comparing before and after situation using
high-resolution satellite images, which became obtainable on Google Earth instantly
after the disaster and which served as the groundwork for the collaborative mapping.
On the other hand, Internet-based GIS systems have been developed in which all the
individual layers are separated (multitier approach), thus allowing many clients to
access and visualize the geo-data at the same time (VanWesten, 2013). AWebGIS is
a special GIS tool that uses the Internet as means to access and transmit remote data,
conduct analysis, and present GIS results. WebGIS applications for risk visualization
have been developed for different purposes. Users can visualize, download, or
extract data on past hazardous events, human and economic hazard exposure, and
risk from natural hazards on a platform compliant with the Open Geospatial Con-
sortium (OGC) Web Services (OWS). Such a collaborative mapping platform and
Internet-based GIS applications might become very significant tools in the future.

23.6 Conclusion

This research is primarily depending upon remote sensing and GIS techniques
associated with statistical methods corresponding to the spatial approach to degra-
dation of river banks and management structures, with an emphasis on local to focal
level operations. Basically, in the field of environmental conservation, hydro-tech-
nical studies, and in various areas of environmental protection, the study of river
bank erosion has played a very important role in basin management. Bank erosion is
the successive collapse of a river banks and is a significant problem in the area of
water and land conservation. In this research, 66 years of temporal study provides us
with an evolving pattern and trend of bank line shifting in relation to bank erosion,
which would be a helpful document for us for improved management practice.

Continuous monitoring of the river bank erosion is a ticklish task, but it gives a
sophisticated knowledge toward maintaining the riverine environment. Such kind of
study basically has a significant scope in the field of land resource management,
agricultural management along riverine space, water and near-bank ecosystem
management, river health management (water quality, channel efficiency, etc.),
and finally good social practices. Better management practices in river bank erosion
can simplify our life in order to minimize the risk.
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Chapter 24
Landslide Susceptibility Mapping
in Gangtok, Sikkim Himalaya

Arnab Sengupta and Sankar Kumar Nath

Abstract Landslides and other mass movements are serious geo-environmental
hazards in the Greater Gangtok region. It is intensified manifolded by human
interferences in terrain. Massive landslides kill thousands of people with catastrophic
damages in this region. Therefore, in the present study, a methodology for landslide
susceptibility mapping has been developed through an integrated GIS technique.
Thus, four major causative factors, i.e. morphometric, geological, environmental and
triggering for landslides, have been prepared on the GIS platform. A frequency ratio
technique has been used for landslide susceptibility zonation mapping. Thereafter,
the entire Sikkim Himalaya has been categorized into five landslide susceptible
classes, viz. low, moderate, high, very high and severe. The susceptibility map has
been validated by correlating with the landslide inventory, and it is found that more
than 80% of the landslide has occurred in the severe to high susceptibility zone.
Also, it is observed that the major urban clusters like Chandmari, Bhurtuk, Tadong
and the northwestern part of the terrain are most vulnerable to the landslide.

Keywords Landslide Susceptibility Zones · Greater Gangtok · Landslide Inventory

24.1 Introduction

Landslide, mass movements and slope instability are a common and serious
geo-environmental problem in highland ecosystems, particularly in seismically
active regions like the Himalayas. In fact, wherever the mountain slopes are steep,
there is always a possibility of the occurrence of disastrous landslides due to gravity
sliding of saturated rock debris. Widespread landsliding is triggered there by earth-
quakes in the Sikkim Himalaya region. The rapid movement of a mass of rock,
debris or earth down a slope separated from stationary part of highlands produces
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disastrous effects on both the natural environment and man-made structures, weak-
ening infrastructural facilities, rendering people homeless and also disrupting the
productive bases. Although landslide is a local phenomenon, the loss of life and
property due to its impact is particularly seen more frequently in recent times.
Figure 24.1(b) depicts a landslide inventory map of the Sikkim Himalaya containing
about 1200 landslides.

Gangtok, the state capital of Sikkim, is situated within a structurally complex and
perennially landslide-prone fold-thrust belt in Sikkim Himalaya with an elevation of
678–2482 m from mean sea level, as is depicted in Fig. 24.1(c). The city has a
demographic growth of 82% with 98,658 inhabitants (Chandramouli & General,
2011), compared to 2001 which contains only 43,711 inhabitants and is character-
ized by steep to moderate topographic gradient, fragile geologic base, active tecton-
ics, accelerated erosion, rapid channel changes, widespread deforestation and intense
land use pressure. The region was exaggerated by several significant active/palaeo-
landslides illustrated in Table 24.1, among which the most disastrous causing
innumerable destruction are situated at the ninth Mile slide, a perennial landsliding

Fig. 24.1 Location map of the study region. (a) Landslide inventory of Indian peninsula, (b)
Darjeeling-Sikkim Himalaya overlaid with landslide inventory, (c) Gangtok, the capital city of
Sikkim-Himalaya, located in East Sikkim district. The black circle represents the training (70%)
landslide dataset, and the blue circle represents the testing (30%) landslide dataset
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Table 24.1 Inventory of major landslide in and around Gangtok that occurred during 1957–2007
(Sharma, 2008)

Slide name Lithology Nature of mass movement Causative factors
Current
status

9th Mile
(1957 to
present)

Biotite schist
and highly
fractured
slates

Rotational slide, circular
failure with subsidence

Debris/soil slump due
to pore pressure
increase

Active
slide

Ranipool
(24th
September
2005)

Phyllitic
quartzites

Debris slide High-intensity rainfall Palaeo-
slide

Samdur (24th
September
2005)

Highly
weathered
schist

6th Mile
(1997 to
present)

Schist/
phyllite

Active
slide

Amdo Golai
(13th June
2007)

Schist/gneiss Rockslide Vast boulder broke
loose following heavy
rains

Tathangchen
(ninth June
1997)

Schist Composite schistosity
controlled in the upper
part; slumping in the lower
part

High-intensity rainfall Palaeo-
slide

Ganesh Tok
(12th July
2007)

Schist/
granite

Debris slide

Chandmari
(1960 to
present)

Gneiss Active
slide

Bakthang
(sixth July
2005)

Schist Heavy rain, presence of
highly weathered real-
ize material and water
seepage

Active
slide

Majadhari Gneiss boul-
ders, no
orientation

Perennial water flow,
steep slope, road
cutting

Palaeo-
slide

Panchmil I Hornblende
gneiss with
mica flakes

Rock-cum-debris slide Weathering of mica-
ceous material, steep
slope

Active
slide

Panchmil II Fine-grained
hornblende
gneiss

Rockslide (planar failure) Weathering of gneiss,
toe erosion,
unfavourable
discontinuities

Panchmil III Quartzite and
gneiss

Rock-cum-debris slide Gully erosion debris
slide due to high pore
pressure

Lumsey
Basty (1995)

Schist Debris slide High-intensity rainfall Palaeo-
slide

(continued)
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zone with recurrence for over 50 years undergoing differential subsidence and
sinking both across and along the slope since 1957. The entire distressed zone is
covered by overburden material with a few exposures of highly weathered and
decomposed schistose rock mass and is characterized by debris slide in which the
toe of the slide extends up to the Rongni Chu River. The 6th Mile sinking zone is
located in southern Gangtok, tranquiled with steep to moderate slope characterized
by debris slide under the metamorphic terrain within the lower grade, and is
composed of organic and red soil, fractured saturated zone in the weathered rock
mass and sliding surface discontinuity. Chandmari slide is a palaeo-landsliding zone
in the eastern part of Gangtok and is experiencing both rainfall and earthquake-
induced landslides since 1960 in which the slope movement involves a combination
of earth slide and debris flow as the maximum topsoil in the area is comprised of
medium-grained sandy soil which is mixed with boulders and weathered mica
gneiss.

Landslide susceptibility mapping (LSM) is a continuously progressing part of the
research and a broad review of susceptibility models. The consistency of LSM
depends mostly on the availability of spatial/aspatial data, scale and the selection
of the appropriate methodology of analysis. Comprehensive studies have been
conducted in and around the Greater Gangtok region for landslide susceptibility
mapping during the last decades using a heuristic, deterministic, statistical and data-
driven techniques by Kaur et al. (2018), Mandal and Mandal (2018), Kaur et al.
(2019), Sarkar et al. (2008), Gupta and Shukla (2018), Bhasin et al. (2002) and
Sharma et al. (2011). Thus, in the present study, our main motivation is to classify
the entire terrain into various landslide susceptibility zones by using the frequency
ratio technique on GIS environment for the appropriate mitigational measures in
highly vulnerable areas in the view of the socio-economic aspect and will also bridge
the gap between the contemporary levels of landslide experts.

Table 24.1 (continued)

Slide name Lithology Nature of mass movement Causative factors
Current
status

Tadong
(eighth June
1997)

Schist/
phyllite

Syari (16th
September
1990)

Schist/
phyllite/
gneiss

Upper Sichey
(1997)

Schist/
quartzite

5th Mile
(third June
2005)

Schist/
phyllite

Arithang
(2005)

Schist/
gneiss
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24.2 Data Acquisition and Methodology

There are various interrelated landslide causative factors, based on the data avail-
ability listed in Table 24.2. In the present study, elevation, slope, Terrain Rugged-
ness Index, aspect, drainage density and Topographic Wetness Index are
morphometric causative factors, while surface geology, geomorphology, hydrologic
soil group, landform and lineament density are used as geological causative factors,
whereas land use/land cover, Normalized Differences Vegetation Index (NDVI) and
road density thematic layers are used as an environmental factors; however, average
annual rainfall, surface-level peak ground acceleration (PGA) and epicentre prox-
imity are used as a landslide triggering factors.

Frequency Ratio (Probability Approach)

The framework of the methodology embraced in the present study is depicted in
Fig. 24.2 which includes data acquisition and causative factors generation; thereaf-
ter, all the causative factors have been converted to a raster grid of 12.5 m � 12.5 m
cell size and integrated through a probabilistic approach using frequency ratio
method on GIS environment.

The frequency ratio model is a probabilistic approach that is based on the
pragmatic liaison between the landslide distribution and each landslide-dependent
factors. It is the ratio between the landslides in the class as a percentage of all

Table 24.2 List of spatial/aspatial data used in the present study

Spatial/aspatial data
Data
format Source

Landslide inventory Vector Hazard, risk and vulnerability analysis (HRVA)—Gangtok
(Sharma, 2008), multispectral satellite imagery, Google
Earth imagery and field investigation

ALOS PALSAR
DEM

Raster Japan Aerospace Exploration Agency

LISS-III Raster National Remote Sensing Centre (NRSC)—ISRO

Geology map Vector Geological Survey of India

Soil map Raster National Bureau of Soil Survey and Land Use Planning
(NBSS&LUP)

Geomorphology and
lineament map

Raster and
vector

Dasgupta et al. (2000), National Mission on Geomorpho-
logical and Lineament Mapping, http://bhuvan.nrsc.gov.in/
gis/thematic/index.php

Road map Raster and
vector

Open Street Map and Google Earth

Rainfall data Raster Hazard, risk and vulnerability analysis (HRVA)—Gangtok

PGA map Vector Adhikari and Nath (2016)

Earthquake catalogue Vector Nath et al. (2017), USGS, IMD and ISC

24 Landslide Susceptibility Mapping in Gangtok, Sikkim Himalaya 543

http://bhuvan.nrsc.gov.in/gis/thematic/index.php
http://bhuvan.nrsc.gov.in/gis/thematic/index.php


landslides and the area of the class as a percentage of the entire map (Lee & Pradhan,
2007). When evaluating the probability of a landslide within a specific period and
within a certain area, it is of major importance to recognize the conditions that can
cause the landslide and the process that could trigger the movement (Shahabi et al.,
2014; Yalcin et al., 2011). The correlation between the landslide areas and the
associated factors can be allocated from the connections between the areas without
past landslides and the landslide-related parameters (Shahabi et al., 2014). The
frequency ratio values for each class of every causative factor have been calculated
by using the following equation (Karim et al., 2011; Lee & Talib, 2005; Lee &
Pradhan, 2007; Shahabi et al., 2014):

Fri ¼
Npix Lið Þ=Npix Tið ÞP
Npix Lið Þ=

P
Npix Tið Þ

ð1Þ

where Npix Lið Þis the number of pixels containing landslide in class (i), Npix Tið Þis the
total number of pixels having class (i) in the whole area, ΣNpix Lið Þis the total number

Fig. 24.2 Computational protocol of an integrated approach for landslide susceptibility zonation
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of pixels containing landslide and ΣNpix Tið Þ is the total number of pixels in the
whole area.

The frequency ratio of each factor type or range has been calculated from their
relationship with landslide events. The frequency ratio has been calculated for the
sub-criteria of parameter, and then the frequency ratio has been summed up to
calculate the Landslide Susceptibility Index (LSI) (Lee & Sambath, 2006):

LSI ¼ Fr1 þ Fr2 þ Fr3 þ Fr4 þ :: . . . . . . . . .þ Frn ð2Þ

where Fr is the rating of each factor type or range and n is the number of factors.
According to the frequency ratio method, the ratio is that of the area where a
landslide has occurred to the total area, so a value of 1 is an average value. A
value greater than 1 indicates a higher correlation because the percentage of land-
slide is higher than the area, whereas a value less than 1 indicates a lower correlation
(Shahabi et al., 2014).

Accuracy Assessment

Receiver operating characteristic (ROC) curve is a technique for visualizing, orga-
nizing and selecting classifiers based on their performance. It is defined as a plot of
test sensitivity or true positive rate (TPR) as the y-coordinate versus its 1-specificity
or false positive rate (FPR) as x-coordinate at various threshold settings which is an
effective method for evaluating the performance of dichotomy problems (Park et al.,
2004; Swets et al., 2000). It is widely used in the validation of landslide suscepti-
bility maps and also for estimating the accuracy of GIS-based statistical models. The
area under the ROC curve known as AUC is a common metric that can be used to
compare different tests, and the values ranging from 0.5 to 1 will be widely
employed to estimate the accuracy of the presence or absence of predictive models.
An AUC close to 0.5 corresponds to a poor diagnostic test, and larger AUC is more
accurate in the test. Additionally, the accuracy of the resulting LSI was evaluated
using the index of relative landslide density (R-index).

24.3 Results and Discussions

Mapping of Landslide Influencing Factor

A landslide inventory is an important attribute for landslide susceptibility zonation,
and also a prior knowledge is required for the miscellany of thematic layers (Guzzetti
et al., 1999). However, we have used 70% of the landslide inventory as a training
database for the calculation of landslide frequency of each thematic layer attribute
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for different causative factors and the remaining 30% for the validation purpose. In
the present study, based on the data arability, we have selected the landslide
causative factors based on morphometric (as depicted in Fig. 24.3), geological
(as shown in Fig. 24.4), environmental (as portrayed in Fig. 24.5) and triggering
(as represented in Fig. 24.6) aspect as illustrated in Table 24.3.

Landslide Susceptibility Zonation Mapping Using
Frequency Ratio

The results obtained through the frequency ratio method for each thematic attributes
are exemplified in Table 24.4. It is observed that the morphological facet slope of
40.01–45� has the maximum weightage of frequency ratio (3.01). Therefore,

Fig. 24.3 Causative factors map used in the present study. (a) Elevation, (b) Slope, (c) Terrain
Ruggedness Index, (d) Aspect, (e) Drainage Density and (f) Topographic Wetness Index
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according to Mohammady et al. (2012), the shear stress in the soil or other uncon-
solidated material usually increases as the slope angle increases, whereas the gentle
slopes are concomitant with low shear stress and are anticipated to have low
landslide frequency. On the other hand, in terms, the steepest direction of slope,
the frequency ratio is higher towards southwest (2.15) and flat in north and northeast
(0.00) as most of the landslides have occurred by facing towards southwest and
southeast direction. As the rivers of Gangtok continuously saturate the lower portion
of the material and erode the slope, it therefore affects the stability. Thus, the
evaluation in terms of drainage density highlights that the class of 12.01–15 and
18.01–21 km2 with frequency ratio weight of (1.79) and (1.55), respectively, have
high correlation for the occurrence of landslide. Although the state is the quarry of
landslides during monsoon, therefore in context of rainfall it is witnessed that the
frequency ratio weight is the highest (1.25) in 3400 mm of rainfall. In terms of
geological aspect, it is realized that the weightage of frequency ratio is the highest

Fig. 24.4 Causative factors map used in the present study. (a) Surface Geology, (b) Geomorphol-
ogy, (c) Hydrology Soil Group, (d) Landform and (e) Lineament Density
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(2.17) in Lingtse granitic gneiss, (1.44) in quartz-chlorite-sericite-phyllite and (1.16)
in schist for the event of landslides, respectively. In case of lineament density, the
class of 0–50 km2 has a high frequency ratio weight (2.21) which shows the
existence of various discontinuities and lineaments for the occurrence of landslide
and the probability of slope failure. However, in the case of hydrology soil group, it
is observed that frequency ratio weight is highest (1.22) in HSG-C, (0.87) in HSG-B,
which indicates that low infiltration rates when thoroughly wet and consists chiefly
of soils with a layer that impedes downward movement of water and soils with
moderately fine to fine structure will be a brink of slope failure and mass movement.
Lastly from the environmental point of view, it is observed that in context of various
land use/land cover classes, the frequency ratio weight is highest (2.10) in built up,

Fig. 24.5 Causative factors map used in the present study. (a) Landuse/landcover, (b) NDVI and
(c) Road Density

Fig. 24.6 Causative factors map used in the present study. (a) Average Annual Rainfall, (b) PGA
and (c) Proximity to the Epicentre
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Table 24.3 Importance of different landslide causative factors used in the present study

Causative factor Importance of causative factor

Elevation Elevation or altitude is one of the morphometric causative
factors for landslide occurrences

Slope angle Slope failure is a very significant issue for the landslide
occurrence in the hilly terrain and is associated with the slope
movement due to the gravitational forces (Catani et al., 2005)

Terrain ruggedness index (TRI) TRI is defined as elevation variation between neighbouring
cells of a digital elevation model

Slope aspect Aspect which identifies the steepest downslope across a sur-
face and plays an augmented role for the event of landslide

Drainage density The propinquity of steep slope to drainage network is an
additional key element for the stability analysis, and drainage
network has been chosen in order to simultaneously contem-
plate the undercutting of hydrographic system for the role of
inappropriate drainage (Shahabi et al., 2012)

Topographic wetness index Topographic Wetness Index is an important morphometric
factor within the surface run-off model (Beven & Kirkby,
1979)

Surface geology The surface geological features have been considered as an
independent variable because there might be a variance in
permeability of rocks and soils which leads to a variation of
lithology and structure (Ayalew & Yamagishi, 2005)

Geomorphology Geomorphology and landform are the spatial topological
interactions of landforms which involve segregating the terrain
into intangible spatial objects such as chronology, composition
and structure

Landform

Hydrologic soil group Hydrologic soil group (HSG)-B has a moderate infiltration rate
when thoroughly wet and consists chiefly of moderately deep
to deep, moderately well to well-drained soils with moderately
fine to moderately coarse textures. HSG-C has low infiltration
rates when thoroughly wet and consists chiefly of soils with a
layer that impedes downward movement of water and soils
with moderately fine to fine structure

Lineament density The lineament is also an important factor for the landslide
occurrence as the degree of fracturing and weathering plays a
crucial role for slope failure (Bui et al., 2012)

Land use/land cover Land use/land cover is one of the most important environment
factors to govern slope stability as it controls the rate of
weathering and erosion

Normalized differences vegeta-
tion index (NDVI)

NDVI can also be used as a virtuous gage for the probability of
mass movement because the value of NDVI is higher in
landslide-prone areas where there is a dense vegetation cover
such as the areas with heavy rainfall and the soil with drenched
condition (Vakhshoori & Zare, 2016)

Road density The road segmentation is basically a significant spot of
anthropogenic instability, and the numerous road construction
activities such as quarrying of soil, striking of additional load,
vertical segmentation of slope, dam construction and vegeta-
tion removal may lead to a slope failure which frequently

(continued)
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(0.00) in river and grass, which is due to the various anthropogenic activities and
unplanned urbanization. In case of vegetation indices (NDVI), the frequency ratio
weight is the highest (2.54) in the class 0.21–0.3 because the soil is in drenched
condition with dense vegetation cover (Vakhshoori & Zare, 2016), and for road
density, the weightage of frequency ratio is the highest, (4.80) and (1.85), between
10.01–12 and 6.01–8 km2, respectively.

After that, the spatial distribution of Landslide Susceptibility Index (LSI) is adopted
from the frequency ratio method and has been classified into five susceptible zones
including low, moderate, high, very high and severe as depicted in Fig. 24.7(a). It is
observed that around 7.77 and 7.90 km2 of the total area fall under severe and very high
zones, whereas 8.56, 10.00 and 20.15 km2 of the total area fall under high, moderate
and low susceptible zones, respectively, but the lower part of Greater Gangtok is
covered under low susceptible zone. The susceptibility area vs. the number of landslide
plot exhibits that high to severe landslide susceptibility zones is more prone to
landslide, as depicted in Fig. 24.7(b). The R-index values for the severe to high
susceptibility class are FR is 0.16%, 0.15% and 0.09% respectively as shown in
Fig. 24.7(c). The result obtained from ROC indicates that the severe zone is more
susceptible to landslide as compared to very high, high, moderate and low zones as
depicted in Fig. 24.7(d). The estimated AUC of 0.751 suggests that the landslide
susceptibility map obtained through the frequency ratio model is in strong agreement
with the inventory and could be used for various mitigational measures.

24.4 Conclusion

The landslide susceptibility zonation is very essential to delineate the landslide-
prone region in the Greater Gangtok. Based on the above studies, a landslide
susceptibility zonation map has been prepared here by using the frequency ratio
technique. The entire terrain has been divided into five landslide susceptibility zones
such as low, moderate, high, very high and severe. The present study is an attempt
towards the application of GIS for landslide susceptibility mapping based on mor-
phometric, geological, environmental and triggering causative factors. Application
of GIS involves the generation of thematic data layers and their spatial relation to
determine the numerical weights of the factors in order of their influence on landslide
occurrences. The zonation map is validated by determining landslide inventory data

Table 24.3 (continued)

Causative factor Importance of causative factor

serves as a cradle for the occurrence of landslide (Saadatkhah
et al., 2014)

Rainfall The rainfall, peak ground acceleration and proximity to
epicentre are deliberated as a dynamic/triggering and eliciting
factor for the mass movement

Peak ground acceleration

Proximity to epicentre
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and is found to be in coherence with the ground instability conditions. The verifica-
tion procedure proved that the produced landslide hazard zonation maps are sub-
stantial for land degradation management and planning of the study region. Besides
this, landslide susceptibility maps can be useful for planners for selecting suitable
locations for developmental activities in the region.
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Fig. 24.7 Landslide susceptibility zonation map of the Greater Gangtok region. (a) The suscepti-
bility map has been classified into five zones, viz. low, moderate, high, very high and severe. (b)
The susceptibility area vs. the number of landslide plot. (c) Relative landslide density index
(R-index) of the frequency ratio based susceptibility map. (d) ROC curve of the landslide
susceptibility map
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Chapter 25
Glacial Lake Outburst in Uttarakhand
(India): Role of Geospatial Technology
for its Mitigation Strategy

Gouri Sankar Bhunia and Pravat Kumar Shit

Abstract Glacial lakes are usually found in isolated areas and higher elevations in
mountainous regions. Glaciers in mountainous areas are retreating and gradually
becoming lakes due to changing climate and human-induced threats, which pose a
great challenge in the context of a storm surge in the case of a glacial lake outburst
flood (GLOF) for downstream settlements. Owing to the insularity of the places, the
large number of glacial lakes and their poor accessibility, field-based mapping and
monitoring of glacial lake vulnerabilities are daunting in these areas. Glacial lakes
can be physically digitised from multi-spectral or multi-polarisation satellite data
such as acquired by Landsat and Sentinel-2 or Sentinel-1 from true or false colour
composites (TCC/FCC), mostly accompanied by high-resolution images derived
from Google Earth. After the launch of the Sentinel-1 and Sentinel-2 Copernicus
satellites, data from these satellites has been progressively included as SAR can see
through the clouds and has a higher spatial resolution (10 m) and revisit time (5 days
with S-2A and S-2B).

Keywords Glacial lake outburst flood · Sentinel data · Google Earth · SAR data ·
Uttarakhand · India

25.1 Introduction

Ice from snowfall accumulates from glaciers on hilltops and the margins of valleys.
In a method called ablation, this ice melts, contributing warmth to downstream water
sources and rivers. The phase is ongoing and is part of the normal cycle of water on
Earth. As glaciers recede, they leave a gap filled with water that becomes a glacial
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lake. The water in glacial lakes piles up behind fragile, natural “glacial/moraine
dams” consisting of ice, sand, pebbles and ice particles as glaciers retreat. The
unstable architecture of the moraine dam contributes, unlike earthen dams, to the
sudden collapse of the dam on top of the glacial lake, which retains vast amounts of
water. A dam collapse has the capacity to spill millions of cubic metres of water in a
fleeting period, inducing downstream devastating floods. A glacial lake outburst
flood (GLOF) corresponds to the overflowing that takes place when abruptly the
water dredged by a glacier or moraine is released.

A glacial lake outburst flood (GLOF), possibly caused by a massive slab of ice
breaking from a glacier, was the flash flood of water, mud and rocks that rushed
through the Rishiganga and Dhauliganga river valleys at Chamoli village (located in
30�29016.79000N, 79�55031.94200E) in Uttarakhand on February 9, 2021 (Fig. 25.1).
At about 3700 m above sea level, floodwaters crashed into the Rishi Ganga hydro-
electric dam and totally swept it down. At least 35 people working on the project are
absent, according to the chief minister of Uttarakhand. The Rishi Ganga project’s
concrete and rubble were then taken downstream and crashed into the 520 MW
Tapovan Vishnugad hydropower project under operation, inflicting severe damage.
Ice and rock plunged into a glacial pool, allowing the banks to break and the steep
and narrow gorges of the upper Himalayas to gush down with water. Because of
climate change, the number and area of glacial lakes have risen in the mountain

Fig. 25.1 Location map of the study area
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range (Aggarwal et al., 2016). A report undertaken in the Science Advances journal
in 2019 cautioned that the Himalayan glaciers are deteriorating at an unprecedented
pace and could occur again in the 2013 Kedarnath-like catastrophe. The visibility
and awareness are that since the beginning of the twentieth century, owing to climate
change, the glaciers of the Himalayas have melted nearly twice as fast (Maurer et al.,
2019).

25.2 Observations of Scientific Community

In the case of the Uttarakhand glacier burst, it is suspected that the water pockets
inside the Nanda Devi glacier that led to this incident may have formed. This
catastrophe is also related by some scientists to climate change and global warming.
High temperatures and less snowfall will contribute to an uptick in glacier melting,
allowing glacial lake water to climb above levels. Based on the initial observation of
glaciology and hydrology division at the Dehradun-based Wadia Institute of Hima-
layan Geology, satellite imaging has pointed to the probability of the flood having
been exacerbated by the melting of snow and not a glacial eruption of the lake.
Preliminary observation stated that satellite images have shown that on February
2, 2021, there was no snow in the valley, but on February 5 and 6, 2021, very heavy
snowfall was observed. On February 7, 2021 (Fig. 25.2), this fresh snow began to
melt, resulting in the regressing of the snow bank and a corresponding landslide. It
gained momentum and kinetic energy as the snow bank proceeded down the valley,
thus raising the amount of water and soil on the path (Roy & Sinha, 2021). Similarly,
a comprehensive study performed at the Indian Institute of Science in Bengaluru by
the Divecha Centre for Climate Change confirmed that the flash flood may have been
triggered by the discharge of water locked in a lake underneath the northern Nanda
Devi glacier. The potential of this underground lake was to hold 4.5 million cubic

Fig. 25.2 Change analysis of Uttarakhand glacial lake outburst
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metres of water. If this water-filled depression creates enough hydrostatic pressure,
the lower portion of the ablation zone (near the tip of the glacier where the snowmelt
occurs) can be accelerated, potentially releasing water from the underground lake.
The possible explanation for the flash flood may be this.

However, before the flooding incident, available satellite imagery did not indicate
the existence of a glacial lake. Although scientists and researchers are now trying to
determine what caused the flood, the leading hypothesis is that a large fragment of
ice broke at an altitude above 5500 m above sea level due to a rock slide. Interna-
tional geologists and glaciologists analysing satellite imagery suggest the origin of
the Uttarakhand flooding catastrophe in Chamoli tends to be a landslide and not, as
generally assumed, a glacial eruption. Dr. Dan Shugar of the University of Calgary,
who experts in glacial and geological conditions at high altitudes, carried out the first
identification. In order to deduce that a landslide caused the devastating flash floods
along the Alaknanda and Dhauliganga rivers, Shugar used multi-temporal satellite
images from Planet Laboratories (Fig. 25.3), taken before and after the tragedy, as
also shown by a path of dust visible in the satellite imagery.

Scientists warn that several of these glacial lakes that have increased in size in
current history pose a possible danger to downstream environments and have
suggested short-term and long-term solutions to reduce the possibility of cata-
strophic flooding (Fig. 25.4). In the upper reaches of the Himalayas, avalanches

Fig. 25.3 Digital elevation Model of Uttarakhand glacial burst (Source: Planet Team, 2021)
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are unlikely in February as the snow and ice remain frozen owing to reduced
temperatures. Conversely, this year has been colder than expected, and Uttarakhand
and the rest of India witnessed their maximum average temperature in 60 years in
January. The warming temperatures due to climate change cause accidents more
common, such as avalanches, melting ice and landslides. As with colder winters,
irregular weather conditions such as increased snowfall and rainfall play a part.
However, the possibility of potential catastrophic moraine breaches and flash
flooding raises as the number of glacial lakes and their sizes rise.

25.3 Geospatial Technology, Glacial Lake Identification
and Monitoring

Glacial lake changes are of broad significance in the sense of global warming and
have become a crucial component for recognising the risks of glacial lakes
(Bajracharya et al., 2007; Bolch et al., 2011). Glacial lakes can be physically
digitised from multi-spectral or multi-polarisation satellite data such as acquired
by Landsat (Wang et al., 2015) and Sentinel-2 or Sentinel-1 (Wangchuk et al., 2019)
from true or false colour composites (TCC/FCC), mostly accompanied by high-
resolution images derived from Google Earth or Bing Maps (Zhang et al., 2015).
After the launch of the Sentinel-1 and Sentinel-2 Copernicus satellites, data from
these satellites has been progressively included as SAR can see through the clouds
and has a higher spatial resolution (10 m) and revisit time (5 days with S-2A and
S-2B). Investigation on changes in glacial lakes is primarily focused on remote
sensing data using techniques like multi-spectral data combination (Kargel et al.,
2005), water surface index (Huggel et al., 2002), remap tables reclassification
(Wu and Zhu 2008), spectral analysis (Aggarwal et al., 2016) and geospatial
modelling (Rounce et al., 2017) to analyse variation in region. Satellite images

Fig. 25.4 Uttarakhand
glacier burst: a large piece of
Nanda Devi glacier broke
off on a chilly winter
morning of February 2021
and fell into a river,
triggering an avalanche and
glacial lake outburst flood
(GLOF). (Source:
Photograph Rupali Pruthi on
Feb 8, 2021)
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that can be checked by ground survey can conveniently denote different features of
glaciers and lakes, like the recognition of the snow line, glacier moraines, lake
borders and area (Mal et al., 2016). The Normalised Difference Water Index
(NDWI) is the most widely used semi-automated optical data technique since it
increases the appearance of water sources in visible spectral imagery by using a band
with comparatively high-water reflectance (e.g. the blue or green band) and one with
low or no reflectance (e.g. near-infrared (NIR) or short-wave infrared (SWIR) bands)
(McFeeters, 1996; Amin et al., 2020). It has been found that the use of SAR data is
reliable for mapping partly frozen glacial lakes, but noise removal across glacial
lakes relies on supplementary datasets like glacier outlines, digital elevation model
(DEM), vegetation maps extracted from the Normalised Difference Vegetation
Index (NDVI) and manual corrections (Wangchuk et al., 2019). However, some
other criteria that include ground evaluations are taken into consideration when
designing the GLOF model. A computer terrain model and field survey data are
essential for unsteady GLOF simulation and modelling. One of the evolving
specialised flood prediction and recognition methods for downstream flood zones
is the Hydrologic Engineering Center’s river analysis method (HEC-RAS and HEC-
GeoRAS) by Matkan et al. (2009). In several fields of geoscience, for example, the
machine learning algorithm (random forest) has been successfully used to detect past
GLOF events in the Himalayas (Veh et al., 2018). A fully automatic system for
mapping glacial lakes through alpine regions has been developed by Wangchuk and
Bolch (2020), including the Python module called “GLakeMap”.

25.4 Future Direction and Conclusion

Glacial lakes are usually found in isolated areas and higher elevations in mountain-
ous regions. Glaciers in mountainous areas are retreating and gradually becoming
lakes due to changing climate and human-induced threats, which pose a great
challenge in the context of a storm surge in the case of a GLOF for downstream
settlements. Owing to the insularity of the places, the large number of glacial lakes
and their poor accessibility, field-based mapping and monitoring of glacial lake
vulnerabilities are daunting in these areas. For a several glacial lakes, the demarca-
tion of glacial lake outlines is marginally problematic (1) where the spatial disparity
between the surface of the lake and the shadow is not apparent and (2) where the
inter-pixel spatial interaction extends beyond a beach location. The use of SAR data
to chart glacial lakes is also stable, while visual datasets depend on the elimination of
misidentified pixels.
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fragmented geometric rough shape, 436
geomorphology, 436
morphometric measures, 437

self-similarity, 436
symmetries, 436

Fractal Brownian process, 436
Fractal dimension

applicability, 438
badland topography, 437
box-counting method, 455
DEM extraction, 440–442
landscape silhouette outlines, 437
Tapi Basin, 438–440
tectonic and lithological control, 437
topography, 455

Fractal dimension calculation
Basin Area, 451
D values, 445
estimation, 452, 453
foot slope pediment zones, 447
grid cells, 442
H and self-similarity, 453
linear, 447, 448, 450, 451
variograms and surface, 451, 452

Fractal geometry, 436, 437
Fractal geomorphology, 437, 438
Fractal journey, 438
Fractal mapping, 437
Fractal sinuosity, 437
Fractal terrain, 437
Fractional Bias (FB), 293
Fractional Brownian surface (fBm), 452
Fragile mountain ecosystems, 410
Fragmented secondary laterites, 139
Frequency Ratio (FR), 10, 180, 358, 543–546,

548, 550, 551, 553, 554, 557
Fuzzified pairwise comparison matrix, 183, 185
Fuzzy Analytic Hierarchy Process (AHP)

model
fuzzy triangle scale, 183
geometric mean estimation, 183
pair-wise comparison matrix, 185
variable and classes, 184

Fuzzy logic, 7
Fuzzy-theory, 11

G
Gabion wall-based wire mesh technique, 430
Ganga-Meghna-Brahmaputra (GBM) basin, 40
Ganges, 500
Ganges River bank erosion assessment

data and methodology, 502, 503
drivers, 509
GIS analysis, 509, 510
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human and river ecosystem relationship,
509

island change analysis, 506, 508
LULC change, 504, 505, 509
river channel shifting, 505, 506
RS, 510
sediment accumulation, 510
soil stratification, 509
study area, 501, 502

Gangetic plain, 515
Gaussian line source air dispersal model, 289
GEE platform, 465, 468, 471
General geomorphometry, 447
Geo-climatic setting, 137
Geographic information system (GIS), 4, 9, 99,

100, 146, 257, 416
community-based data, 229
control measures, 216
environmental and socio-economic

factors, 216
environmental disease control, 230
frequency ratio method, 543
frequency ratio technique, 542
global malaria risk distribution maps, 216
identification, malaria-affected regions, 218
landslide susceptibility mapping, 550
malaria hotspots, 230
malaria prevalence, 216
malaria surveillance indices, 221
malaria transmission risk, 216
monitoring public health, 229
thematic layers, 223

Geographical information system
environment, 395

Geographically weighted gradient boosting
machine (GW-GBM) algorithm, 11

Geohazard assessment, 329
Geoinformatics, 100

and crowdsourcing, 12–13
and data science, 9–12

Geoinformation technology, 393
Geological formations, 27
Geological Survey of India (GSI), 24, 102, 419
Geomorphology, 114, 115, 392
Geospatial Artificial Intelligence (GeoAI),

9–11, 13
Geospatial inventory, 395
Geospatial layers, 103
Geospatial modelling, 8, 318
Geospatial technology, 410, 417

multi-hazard (see Multi-hazard risk
assessment)

GIS-based arsenic-contaminated zoning
map, 48

GIS-based EIA, 280
GIS-based hydro-geological databases, 53
GIS-based landslide susceptibility mapping

accuracy assessment, 24
environmental causative factors, 29, 31
geological causative factors, 27, 29
inventory map, 24
LR method, 22, 23
morphometric causative factors, 25–27
multivariate regression, 32–33
spatial and non-spatial data, 21, 22
triggering causative factors, 31, 32

GIS-based model data, 170
GIS overlay analysis, 43
GIS platform, 31, 484
GIS techniques, As assessment

adopted methods, 48, 49
composite vulnerability index, 48
concentration zoning map, 46
DRASTIC model, 47
geo-chemical analysis, 47
geostatistical approach, 48
groundwater vulnerability mapping, 46
hybrid multi-modeling approach, 47
mitigation plan, 48
multidimensional, 45
random forest machine-learning model, 47
regional scale-based assessment, 47
thematic map, 47
time-series data, 45

GIS-related analysis, 284
Glacial lake changes, 565
Glacial lake outburst flood (GLOF)

causes, 562
glacier/moraine, 562

Glacial lakes, 566
Glacial/moraine dams, 562
Glaciers, 566
GLakeMap, 566
Global Energy and Water Cycle Experiment

(GEWEX), 198
Global Land Cove Facility (GLCF), 146
Global warming, 563
GlobCover land cover map, 29
GLOF model, 566
Goldstein adaptive radar interferogram phase

filtering, 330
Good connectivity, 254
Google Earth, 533, 565
Google Earth Engine (GEE), 461
Google Earth Pro platform, 396
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Google Earth satellite, 525
Google EarthTM, 8
Google Ngram, 375, 376
Google Scholar, 5
GoogleMapMaker, 13
Gorubathan Formation, 402
GPS tagged structured questionnaire

method, 284
GRAF model, 369
Grassland category, 190
Greater Gangtok

landslide inventory, 540, 541
landslide susceptibility mapping, 542, 557
low susceptible zone, 550
sinking zone, 542

Ground cover (GC), 161
Ground deformation

earthquake, 333
elastic modelling, 328
fringe pattern, 327
InSAR, 327
LoS, 328
monitoring, 334
SAR system, 328
spatial maps, 327

Ground Range Detected (GRD), 463
Ground-shaking intensity, 31
Group on Earth Observation (GEO), 4
GTOPO30, 7
Gully erosion, 146, 168, 170
Gully headcuts, 143

H
Hanta virus pulmonary syndrome (HPS), 8
Haphazard development, 417
Hazard and disaster management (HADM), 2
Hazard assessment, 326
Hazard mapping methods, 393
Hazard mitigation assessments, 258
Hazard modelling, 377
Hazard preparedness research, 360
Hazards, 416

description, 2
HAZUS-MH flood model, 360
Heavy metal (Zn), 290
Heavy vehicular congestion, 406
HEC-FDA, 8
HEC-GeoRAS, 566
HEC-RAS, 360, 374
High humidity, 189
High-resolution regional-scale hydro-

stratigraphic model, 47

High-resolution satellite imageries, 417
High-risk zone, 190
Highway-related spatial impact assessment, 318
Himalaya and Western Ghat region, 477
Himalayan mountains, 392
Himalayan seismogenic zone, 31
Holistic and interdisciplinary approach, 477
Horizontal drain piping, 430
Hotspot and cold spot analysis, 342, 343, 345
Household-level preparedness, 360
Human development index (HDI), 477, 483
Human Development Report, 258
Human interference, 189
Human interventions, 178, 190
Human settlements, 392
Hybrid Fire Index, 180
Hybrid multi-modeling approach, 47
Hydraulic control, 371
Hydraulic forces, 365
Hydraulic risk mapping, 359
Hydraulic Sinuosity Index (HSI), 521
Hydroelectric projects, 429
Hydro-geomorphic processes, 140, 170
Hydrologic Engineering Center’s river analysis

method (HEC-RAS), 566
Hydrologic flood characteristics, 359
Hydropower development, 418
Hydrostratigraphic model, 43
Hydro-technical studies, 533

I
IBM SPSS Statistics (trial) software, 521
IDW interpolation technique, 31
ILWIS GIS framework assessment module, 8
Image acquisitions, 327, 328
Image pre-processing, 77
Imaging and non-imaging systems, 327
Impact category change rate (ICCR), 284,

294, 302, 309
In situ-type palaeogenesis, 136
Inconsistencies, 363
Index of Agreement (IOA), 293
Indian Institute of Technology Line Source

(IITLS), 283
Indian Iron & Steel Company (IISCO), 64
Indian Meterological Department (IMD), 144
Indicator weighting techniques, 258
Indigenous community, 77
Indigenous transmission-zero countries, 339
Indo-Gangetic Plain, 132, 326
Initial eigenvalues, 247
Innovative techniques, 170
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Insecticide-treated netting materials (ITNs), 340
In-stream sand mining, 370
Intense soil erosion, 76
Interferogram, 327, 330
Interferometric SAR (InSAR), 6, 7, 327

Bolvadin, 329
correlation coefficient, 332
data, 329–331
ground deformation, 329
interferogram, 332
phase difference map, 332, 333
SRTM DEM, 333, 336
study area, 329

International geologists and glaciologists
analysing satellite imagery, 564

International Geosphere-Biosphere Programme
(IGBP), 198

Interpolation method (IDW), 103
Intrusive Tertiary granites, 402
Inverse distance weighted (IDW), 31, 103, 116
Irregular weather conditions, 565
Irrigation and Waterways Department

(IWD), 146

J
Jenapur gauging station, 201, 208

K
Kalimpong I block of Kalimpong district, 406
kappa coefficient value, 188
Kaziranga National Park, 462, 468
Kerala flood event, 461
Kernel logistic regression, 7
Khairekhola landslides, 406
Khejuri-II block, 253
K-means clustering, 11
Kopili River basin, 468
Kriging method, 48
Krishna River Basin, 199

L
Land degradation, 132, 134, 357, 361, 362, 427
Landsat 7 ETM+ multispectral satellite

imagery, 524
Landsat 8 OLI/TIRS satellite imagery, 525
Landsat Earth observation, 3
Landsat satellite images, 199, 201
Landsat surface reflectance imageries, 203
Landsat Thematic Mapper (TM), 8
Landscape metric maps, 291, 292

Landslide
definition, 20, 416
Eastern Boundary Zone, 21
environmental conditions, 20
inventory map, 20
man-made activities, 20
monotony, 25
morphological factors, 25
physical activities, 20
remote sensing-GIS (see GIS-based

landslide susceptibility mapping)
susceptibility zones, 21
types, 419

Landslide analysis, 417
Landslide density index (R-index), 24
Landslide events, 395, 396, 410
Landslide hazard analysis, 417
Landslide hazard index, 23
Landslide identification and status, selected

parameters
anthropogenic activities, 427
curvatures, 425
lithology, 426
LULC, 426
precipitation, 427, 429
RR, 421
slope aspects, 423, 425
slope profiles, 421
slopes, 421
soil texture and rainfall, 425
Sutlej Basin, 421

Landslide incidences control strategies, 430, 431
Landslide inducing factors, 292, 293
Landslide inventory

Gangtok, 540, 541
Indian peninsula, 540
landslide susceptibility zonation, 545
map of Sikkim Himalaya, 540

Landslide inventory map, 24, 292
Landslide inventory training dataset, 32
Landslide occurrence villages, 408
Landslide probability class, 408
Landslide probability index (LPI), 393, 410
Landslide probability mapping

landslide-prone villages, 407
Landslide susceptibility, 301
Landslide susceptibility assessment, 284,

292, 293
Landslide susceptibility assessment map, 293
Landslide susceptibility assessment model, 293
Landslide Susceptibility Index (LSI), 545, 550
Landslide susceptibility map, 303
Landslide susceptibility mapping (LSM), 542
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Landslide susceptibility mapping (LSM) (cont.)
curvature, 25
digital spatial information, 396
Eastern Boundary Block, Northeast

India, 21, 33
hazard mitigation and management, 34
LR method, 33
topography, 25

Landslide susceptibility zones
accuracy assessment, 545
causative factors, 545–549
data availability, 543
frequency ratio, 543–546, 548, 550, 551,

553, 554, 557
inventory map of Sikkim Himalaya, 540
LSM, 542
mass movements, 539
sinking zone, 542
slope instability, 539
spatial/aspatial data, 543

Landslide vulnerability, 411
geographical complexities, 417
GSI, 419
landslide points, 419
parameters, 418, 419
Sutlej River, 417

Landslide vulnerability zonation, 393
Land surface emissivity, 66
Land surface temperature (LST)

air temperature, 64
areas, 72
change analysis, 69
coal burning, 64
cross profile, 70
distribution, 69
field measurements, 70
general methodology, 66
infrared thermometer, 67, 69
mining activity, 72
radiative temperature, 66
Salanpur–ECL area, 70
spontaneous heating, 72
temporal change, 69
unauthorized digging, 72

Large-scale environmental conditions, 276
Lateral channel adjustments, 514
Lateral displacement, 514
Laterite badlands, 170
Laterite exposures, 136, 146
Laterite interfluve, 136
Laterite section, 136
Laterite terrain, 136, 149, 156, 168
Lateritic badlands, 137, 144

Leaf area index (LAI), 8
Leica Geosystem Sprinter, 146
Leica Photogrammetry Suite (LPS), 441
Lesser Himalayan sequence, 417
Level-1 and Atmosphere Archive and

Distribution System (LAADS), 184
Light Detection and Ranging (LiDAR), 7
Limit Equilibrium Methods, 368
Lineament, 29, 548
Linear fractal dimension, 447, 448, 450, 451
Lingtse granitic gneiss, 548
LISFLOOD-FP, 360
Lithological map, 115, 116
Lithology, 416
Lithology-related geological formation, 48
Litho-structural effect, 404
Locational personality, 516
Logistic regression (LR), 8, 22, 23, 32, 34,

43, 99
Lower Ganga plains, 517
LPI adaptation planning, 409, 410
LPI development

assigning weights, indicators, 400
indicators and indexing aggregation, 400, 401
indicators normalisation, 398–400
region-specific indicators selection,

396–398
LPI interpretation

drainage density, 408, 409
equal intervals, 407, 408
erosional dissection, 409
indicators normalisation, 407
limited field checks, 408

LST change analysis, 64
LULC analysis, 198
LULC change (1986–2019), 81, 82
LULC change detection, 77, 79
LULC changes impact studies

Brahmani River Basin, 201
change analysis, 203, 206
climate change parameters, 198, 206–209
climatic conditions, 198
human settlement, 199
hydrometeorological parameters, 199
methodology, 199–201
rainfall pattern and quantity, 198
regional climate conditions, 199
stream flow, 198, 199
supervised classification, 203
urbanization and agriculture, 209

LULC classification, 200
LULC effect, soil loss estimation

C factor, 81, 84
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change detection, 77, 79
K factor, 80, 83
LS factor, 80, 81, 84
Muhuri River basin, 79, 86, 87
P factor, 81, 85
R factor, 80, 82
regional setting, 77
relation analysis, 87, 88, 90, 91
soil conservation strategies, 92
SW prioritization, 91
USLE model, 77, 79, 80

LULC mapping, 200
LULC supervised classification, 203
LULC-wise mean annual soil loss, 88
Lumped Parameter Models (LPMs), 148

M
Machine learning (ML), 7, 9, 11–13, 460
Madden-Julian Oscillation (MJO), 269
Main central thrust (MCT), 417
Malaria

ACT, 340
clustering, 350
clusters detection, 350
control and annihilation policies, 340
deliberation, 340
epidemiology, 216
geographical and spatial scan, 340
GIS, 216
incidence, 339, 340, 350
India

DDT, 214
malaria control measures, 214, 215
northeastern states, 214
poverty, 214
tribal states, 214, 215

infections, 340
map, 339
MIS, 216
mortality rates, 339
prevalence (seeMalaria prevalence, Ranchi,

Jharkhand (India))
socio-economic deprivations, 214
spatio-temporal clustering pattern, 340
surveillance, 216
transmission, 350

Malaria control programs, 348
Malaria hotspot identification, 215, 216,

219, 223
Malaria incidence data, 219
Malaria Information Systems (MIS), 216
Malaria prevalence, Ranchi, Jharkhand (India)

An. annularis, 214
An. culicifacies, 214
An. fluviatilis, 214
Annual Parasite Incidence, 215
block wise malaria incidence, 2000 to 2010,

222, 224
core indicator calculation, 220, 221
ecology-based geospatial malaria risk

model, 216
elevation information, 219
environmental factors, 222, 230
factors, 216
factors analysis, malaria incidences

GIS, 230
meteorological factors, 227, 228
socio-economic factors, 228
topography, 224
vegetation, 226
water bodies, 227

GIS, 215, 216, 229, 230
indicators, malaria surveillance, 220
malaria case situation, 2000–2010, 222
malaria control measures, 215, 230
malaria hotspot identification, 216, 219,

223, 230
malaria vector transmissions, 215
methodology, 230
risk categories, 216
satellite images, 217, 219
socio-economic factors, 222, 230
statistical analysis, 222
study area, 217, 218
temporal design, 217, 218
thematic layer development, 221

Malarial diseases, 348
Management and mitigation planning, 510
Management information system (MIS), 417
Mandelbrot’s fractional Brownian motion

(fBm), 436
Manipur earthquake, 329, 334
Marginalization, 485
Mass balance model, 290
Massive cultivation, 341
Material-based preventive measures, 532
Maximum sustained wind (MSW), 265
Mean absolute change rate (MACR), 284,

295, 313
Mean elevation, 486
Mean Standardized Error (MSE), 293
Mechanical mining, 369
Medium Resolution Imaging Spectrometer

(MERIS), 179
Medium sensitivity zone, 488
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Meteorological parameters, 227, 228
Meteorological Phenomenon Identification

Near the Ground (mPING), 13
Microwave signals, 327
Middle Ganga Plain (MGP), 41
Minimum system requirement, 471
Mining area expansion, 72
Ministry of Environment and Forest

(MoEF), 291
Minor variations, 454
ML algorithms, 461
Model efficiency coefficient (MEC), 153, 164
Model validation, 280, 291
Moderate Resolution Imaging

Spectroradiometer (MODIS),
6, 11, 179

Modern firefighting equipment, 191
Modified Mercalli scale (MM), 240
Moisture content, 179, 191
Mongoloid, 418
Monsoon, 547
Morgan and Morgan and Finney (MMF)

method, 149, 363
Morphometric causative factors, landslide

drainage network, 26
elevation, 25
plan and profile curvature, 25
slope angle, 25
slope aspect, 25
TRI, 26

Mosquito-borne malaria, 214
Mountain slopes, 539
MS Virtual EarthTM, 8
Muhuri River basin, 92
Multi-criteria analysis (MCA), 53
Multi-criteria decision analysis (MCDA), 7, 280
Multi-criteria decision-making (MCDM), 99,

358, 396, 400
Multi-faceted computational approaches, 7
Multifractal, 453, 455
Multi-hazard

concept, 2
description, 2
planning and response, 2
pre-disaster prevention, 2

Multi-hazard risk analysis, 7
Multi-hazard risk assessment

framework, 3–5
GeoAI, 10
geoinformatics (see Geoinformatics)
geospatial technology, 4, 5
natural disaster prevention and planning, 3
and satellite data, 6, 7

and spatial modelling, 7–9
strategies, 2
topography, 7

Multi-risk modelling methodology, 7
Multispectral LULC classification, 199
Multispectral remote sensing images, 460
Multitemporal analysis, 178
Multi-temporal satellite images, 564
Multivariate Regression analysis (MR), 358
Multivariate statistics-based LR

technique, 32, 34
Municipality-related blocks, 257
MUSLE, 363

N
Nanda Devi glacier, 563
National Aeronautics and Space Administration

(NASA), 182
National Atlas Thematic Mapping Organization

(NATMO), 144
National Bureau of Soil Science (NBSS), 419
National Bureau of Soil Science and Land Use

Planning (NBSS & LUP), 80
National Bureau of Soil Service (NBSS), 144
National Center for Seismology (NCS), 326
National Centers for Environmental Prediction-

National Center for Atmospheric
Research (NCEP-NCAR), 265

National Oceanographic and Atmospheric
Administration (NOAA), 7

National Remote Sensing Centre (NRSC), 102
National Vector Borne Disease Control

Programme (NVBDCP), 214
National Water Mission of India, 54
Natural and human resources, 98
Natural hazards, 5, 239, 258
Natural soil erosion, 361
Natural vegetation, 139, 438
NDVI and NDMI maps, 182
NDVI index map, 29, 186
Near Bank Shear Stress (NBS), 368
Near-infrared (NIR), 566
Nethravathi River Basin, 199
Neural-fuzzy systems, 11
Noise impact assessment, 291, 303
Non-expert opinion based MCDM, 281
Nonlinear regression-based trend analysis, 200
Non-point source Consequences of Sediment

(BANCS), 368
Normalised Difference Vegetation Index

(NDVI), 8, 566
Normalised DifferenceWater Index (NDWI), 566
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Normalization technique, 482
Normalized Difference Water Index (MNDWI),

222, 227, 228, 460, 519
Normalized Differences Vegetation Index

(NDVI), 29, 67, 222, 226, 227, 543,
549, 550, 555

Normalized Fuzzy Weight (Ni), 184
Normalized Mean Square Error (NMRE), 293
Null hypothesis, 154

O
Oklahoma Streambank Erosion Potential Index

(OSEPI), 367
One factor At a Time (OAT), 294
Open access GIS software, 318
Open Geospatial Consortium (OGC), 533
Open Street Map (OSM), 532
Opencast mining activity

change detection, 64
high increasing rate, 64
land-use dynamics, 64
surface temperature spatial distribution, 64
underground mining, 64

Opencast mining impact assessment
LST (see Land surface temperature (LST))
LULC datasets, 65, 66
NDVI values, 66
spectral radiance data, 67
supervised classification method, 65

OpenStreetMap (OSM) platforms, 13
Operational analysis, 350
Operational Land Image (OLI), 102
Ordinary differential equation (ODE)-

dependent agent models, 4
ORNL-DAAC website, 464
Otsu thresholding, 468
Otsu’s algorithm, 465
Otsu’s automatic thresholding method, 463
Otsu’s thresholding algorithm, 461
Outgoing longwave radiation (OLR), 265,

268, 269
Overland flow erosivity, 168
Overland flow induced soil loss, 361

P
Pair-wise comparison matrix, 99, 105, 107
Palaeogenesis, 136
Palaeo-landsliding zone, 542
Panchromatic Remote-Sensing Instrument for

Stereo Mapping (PRISM) Advanced
World-3D Advanced (AW3D), 7

Parallelism, 29
Passive optical imaging systems, 4
PC-based purpose-designed system, 216
Peak ground acceleration (PGA), 543
People’s perception-based change, 296
Periodic flood mapping, 460
Perturbations, 354
Phyllite-dominated Proterozoic litho-unit

Reyang Formation, 396
Physical and chemical weathering, 416
Physical Geography in 1996, 437
Physical habitat degradation and

impairment, 372
Pielou’s Evenness Index, 373
Plan and profile curvature, 25
Plasmodium Falciparum Percentage

(PF %), 221
Plasmodium infection, 340
Plasmodium species, 339
Population parameter, 484
Post-flood measures, 99
Post-monsoon season, 264, 373
Precambrian Daling group’s Gorubathan and

Reyang formations, 402
Prediction-based vulnerability maps, 46
Pre-flood measure, 99
Pre-monsoon season accounts, 264
Preparedness enhancement of disasters, 4
Pre-processed Linear Imaging Self Scanning-IV

multispectral image, 395
Prevention-oriented approach, 477
Primary Census Abstract, 484
Principal component analysis, 247, 318
Priority blocks, 495
Priority-wise sub-watersheds, 90, 92
Process-integration approach, 368
Proterozoic litho-unit Gorubathan

Formation, 396
Proximity, 291
Purba Medinipur district

BoB, 239
costal features, 239
earthquake, 240
human Development Report, 257
inferior health condition, 257
job opportunity, 257
location map, 239
multi-hazard-prone district, 255
municipalities, 255
natural hazard prone region, 239
natural hazards, 240
population, 255
seismic zone III, 240
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Purba Medinipur district (cont.)
vulnerability assessment, 236

(see also Social vulnerability
assessment

West Bengal state, 236
Purna River Basin, 199

Q
Qualitative analysis, 43
Quantifiable methods, 8
Quartz-chlorite-sericite-phyllite, 548
Quartz-normative tholeiite Rajmahal

basalt, 136
Quasi-natural, 392, 393, 514
Quaternary alluvium deposits, 136

R
Radial basis function, 10
Radiance rescaling factor, 67
Radiometric histogram, 461
Rain water harvesting (RWH)

aquifers, 52
artificial recharge schemes, 54
As removal plants, 51
awareness generation, 53
conjunctive use, 51, 52
effective regulations, 52
FAD, 54
governmental policy failure, 52
injection well, 53
law enforcement, 55
user-friendly, 54

Rainfall, 31
Rainfall intensity, 144
Rainfall-induced landslides, 20
Rainfall-runoff erosivity factor, 79, 80, 82, 83
Rainfall-runoff estimations, 360
Rainfed crops, 135
Rajmahal Basalt Traps (RBT), 136
Random Consistency Index, 288
Random forest (RF), 7, 460
Random forest algorithms, 11
Random forest machine-learning model, 47
Random forest model, 43
Rapid Geomorphic Assessment

Protocols (RGA), 367
Rarh, 136, 478
Raster terrain analysis, 183
Rational polynomial coefficients (RPC), 441
Realistic assessment, 135
Real-time flood mapping, 468

Real-time monitoring, 417
Receiver operating characteristic (ROC), 24,

34, 180, 545
Reclamation planning, 73
Reference sound level, 291
Regional indicators quantitative analysis

dimensions, 401
drainage density estimation, 404
forest cover depletion, 404–406
landslides occurrences, 401–403
lithological setup, 401–403
slope characterisation, 403
unique tectonic setting, 403

Regional instability, 392
Regional Specialized Meteorological Centre

(RSMC), 265
Region-specific indicators selection, 396–398
Regular field monitoring, 191
Reinsurance understanding, 4
Relative difference (Rdiff), 154, 166, 167, 170
Relative humidity, 272, 276
Relative landslide density index (R-index), 557
Relative relief (RR), 421
Relief-independent parameter, 455
Remote areas, 280
Remote sensing (RS), 8, 99, 199, 209, 416, 460
Rescue process operations, 2
Revised Morgan Morgan Finney model

(RMMF), 149
annual soil erosion rate, 159, 160
input parameters, 158, 159
mean annual rainfall, 158
model evaluation, 151
modifications, 151
operating parameters and functions, 152
potential detachment, 159
rainfall energy, 151
runoff volume, 151
topographic conditions, 158

Revised Universal Soil Equation (RUSLE),
149, 363

annual soil erosion rate, 156
C-factor, 156
degree of flexibility, 149
description, 149
erosion rate assessment, 149
LULC, 156
operating parameters and functions, 150
P-factor, 156
predicted erosion rate, 157
rainfall erosivity factor, 156
soil organic matter content, 156
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RGB clustering and thresholding
technique, 461

RGB colour composite image, 461
Rill/sheet erosion, 361
Riparian buffers

economic worth, 355
effective flood storages, 354
forested, 355
ground biomass, 355
host of functions, 354
zones, 354

Riparian ecosystem, 377
Riparian vegetation, 355, 356, 375
Riparian zone hazard assessment

bank erosion analysis methods, 375
dataset, 375
hazard types, 374
holistic investigative methods, 374
inundation preparedness, 375
soil loss mapping/estimation, 374
temporal prevalence, 375

Riparian zone management, 354
Riparian zones

chain of ecological functions, 355
fluvial hazards, 357
human activities, 356
infrastructural and agricultural

development, 356
intensive floodplain, 356
mining activities, 356
peak flows, 356
stabilisation structures, 356

RipRoot component, 368
Rishi Ganga hydroelectric dam, 562
Risk

appraisals, 2
description, 2

Risk assessment
AI, 12
and estimation, 13

Risk mapping, 6
Risk mitigation planning, 393
River aggregate mining, 370
River bank collapse, 514
River bank erosion

channel migration, 501
erratic natural disaster, 500
in Ganges, 500, 501
GIS, 501
high flow, 500
Hooghly River, 524
Landsat satellite images, 501
lateral shifting, 514

natural hazards, 516
physical and socio-economic problems, 500
RS, 501
socio-economic condition, 501
ticklish task, 533
turbulant water flow condition, 500
vulnerability, 515
water and land interactions, 514

Riverbank erosion hazard
analysis and prediction, 365
assessment study, 365
basal erosion rate, 365
dual acts, 365
erosion rates, 366
geospatial techniques, 367
hydraulic tractive force, 365
management programmes, 364
mass failure mechanisms, 366
natural geomorphic process, 364
non-point pollution, 364
quantification methods, 366
remote sensing, 367
river channel instability, 365
sedimentological and botanical

evidences, 366
sediments, 364

River bank line shifting scenario, 516
River bank shifting, 526, 527, 531
River channel detection, 519
River channel migration, 500
River management programmes, 357
Rivers, 514
Road density, 485
Road segmentation, 29
ROC curve, 24
ROC statistics, 34
Rock fall incidences, 423
Rooftop rainwater harvesting (RRH), 53, 54, 56
Root mean square (RMS), 161
Rotated component matrix, 248
Rotation changes, 247
Roughness/spatial continuity, 451
Rubber plantation, 90
RUSLE-based modelling approach, 132
RUSLE-based soil erosion modelling, 150
RUSLE b-value, 164
RUSLE erosion map, 169

S
Sal forest, 169
Sand excavation, 371, 373
Sand extractions, 371
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Sand mining
aggregate, 370
bed degradation, 371
channel equilibrium, 371
channel widening, 372
environmental and ecological

ramifications, 373
illegal, 370
impact, 373, 374
indiscriminate and unscientific, 371
in-stream, 370
Kangsabati River, 373
knick points, 371
large-scale, 371
manual methods, 369
mechanical, 369
on-site impacts, 371
riparian species, 372
rivers, 370, 372
state-wise report, 370
trades, 369

SAR data, 565, 566
SAR data-derived inundation, 461
SAR image, 327
Saranda forest, 191, 192
Saranda Forest Division (SFD), 180, 191
Satellite-based emergency mapping (SEM), 6
Satellite-based information, 257
Satellite data, 6, 7
Satellite line of sight (LoS), 328
Satpura systems, 438
Scientific community, 563
Scree plot, 248, 250
SCS-CN method, 139, 140, 290
Sea surface temperature (SST), 264, 270
Sediment accumulation, 515
Sedimentation, 144
SEDNET framework, 367
Seepage/piping, 366
Selected indicators, 417
Self-similar’ profiles, 436
Self-similarity dimension, 451
Self-sustaining ecosystem, 354
Semivariograms, 289
Sensitivity (S), 478
Sensitivity factor, 493
Sensitivity index, 485
Sensitivity indicators, 480
Sentinel Application Platform (SNAP), 463
Sentinel-1, 461, 565
Sentinel-1 C-band InSAR data, 328
Sentinel-1 data derived analysis, 328
Sentinel-1 preprocessing, 463, 464

Sentinel-1 SAR data, 461, 471
Sentinel-1 SAR sensor, 328
Sentinel-1C enable geohazard

monitoring, 328
Sentinel-2 Copernicus satellites, 565
Sentinel-2 multi-spectral, 329, 464
Sentinel-2 optical data, 465
SESA indices, 284
SEVI analysis, 493
Sewage system and sanitation, 251
SFCC image, 467
Shallow tube-well (STW), 44
Shannon’s Diversity Index, 373
Shannon’s Entropy (SE), 99
Shear stress, 547
Short-wave infrared (SWIR), 179, 519, 566
Shuttle Radar Topographic Mission (SRTM), 7,

102, 329
Sikkim Himalaya region, 539
Silabati river basin

AHP, 104–108
catchment area, 101
curvature, 118–120
data sources, 102
distance, 112, 113
drainage density, 114
elevation, 110, 111
flood hazards, 102
flow accumulation, 111, 113
FSI, 108–110
geographical extension, 101
geomorphology, 101, 114, 115
geospatial layers, 103
huge damages, 100
lithological map, 115, 116
location map, 101
LULC, 117, 118
rainfall, 102
slope, 111, 112
surface runoff, 116, 117
TWI, 117–120

Simpson’s Index of Diversity, 373
Simpson’s Reciprocal Index, 373
Single Factor Pollution Index (SFPI), 290
Single pass SAR interferometry, 327
Sinking zone, 542
Sinuosity, 453
Site-and situation-oriented entity, 397
Site-specific enhancement measures, 477
Slide Positive Rate (SPR), 221
Slope, 111, 112
Slope Aspect, 25
Slope element, 144
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Slope failure, 25
Slope instability, 427
Slope length (L) and slope gradient (S)

factor, 80, 81, 84
SNPP-VIRRS product, 180, 188
Social acceptance, 56
Social Amplification of Risk Framework

(SARF), 12
Social Flood Vulnerability Index

(FVIsocial), 360
Social parameters, 251
Social responsibility (SR), 360
Social science-oriented approaches, 477
Social vulnerability, 359, 360

assessment, 236
BEVI, 236
definition, 236
pre-existing condition, 235
Purba Medinipur district, 251
SeVI, 236

Social vulnerability assessment, 236, 237
block’s ability, 258
communalities, 247
components, 247
data collection, 241
data processing, 245
indicator characteristics, 241
indicator selection, 241
mapping, 246, 247
negative relationship, 242
principal component analysis, 248
Purba Medinipur district, 258
scree plot, 248
SD, 248
standardization, 242, 245
SVI construction, 246
SVI scores, 248
total variance, 248
variance values, 245
vulnerable block, 247, 251, 253, 254
weighting, 246

Social vulnerability index, 236, 255
Social vulnerability mapping, 246
Societal group, 359
Socio-cultural infrastructure, 102
Socio-ecological vulnerability, 477
Socioeconomic benefits, 317
Socio-economic dimensions, 492
Socio-economic environment, 476
Socio-economic factors, 228, 348, 486
Socioeconomic impact assessment, 292,

303, 317
Socio-economic infrastructures, 102

Socioeconomic survey, 317
Socio-economic vulnerability, 489

analysis, 493, 495
aspects, 477
connectivity enhancement, 495
exposure, 483
Indian Sundarban region, 477
infrastructure development, 495

Socio-economic vulnerability assessment
implementation, 493

Socio-economic vulnerability index
(SCVI), 236

adaptation capacity, 489
equation, 486
formulae, 489
spatial distribution, 491

Socio-economic vulnerability, forest region
indicator-based, 480, 481, 483
indicators selection, 483–486
study area, 478–480
subdistrict/block level assessment, 478

Soft-computing models, 7
Soil and Water Analysis Tool (SWAT), 364
Soil cohesion (COH), 158
Soil Conservation Service–Curve Number

(SCS-CN), 139, 283
Soil erodibility factor (K), 80, 83
Soil erodibility index (K), 158
Soil erosion

agricultural watersheds, 361
anthropogenic activities, 76
BSTEM model, 368
estimation, 76
global average, 361
inappropriate agricultural practices, 76
land degradation, 132
magnitude, 132
natural, 361
pervasive geomorphic hazards, 132
prediction model, 132, 135, 364
quantitative assessment, 135
soil conservation methods, 363
susceptibility, 362
temporal satellite images, 76

Soil erosion estimation
conservation and management, 135
mathematical models, 135
objectives, 136

Soil loss calculation, 362
Soil loss estimation

erosion factors, 168–170
erosion intensity, 166, 168
experimental design, 140, 142–144
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Soil loss estimation (cont.)
model validation (see Erosion model

validation
potential and problem, 147, 148
problems and solutions, 148, 149
RMMF (see Revised Morgan–Morgan–

Finney (RMMF))
RUSLE (see Revised Universal Soil

Equation (RUSLE))
secondary data collection, 144, 146
sensitivity analysis, 151, 153, 159, 161
soil loss tolerance, 155, 156
statistical analysis, 154, 155
study area, 136, 137

Soil Loss Estimation Model for Southern Africa
(SLEMSA), 149

Soil loss tolerance, 134, 140, 144, 155, 156, 362
Soil moisture content (MS), 158
Soil productivity, 135
Soil textures, 425
Solar energy, 423
Space observations, 4
Spatial analysis-based highway-related impact

studies, 280
Spatial change rate, 313
Spatial Clustering, P. falciparum malaria

cluster-outlier analysis, 341, 342, 346
data acquisition and database creation, 341
distribution Murshidabad District, 344,

345, 348
hotspot and cold spot analysis, 342,

343, 345, 347, 349
spatial auto-correlation, 343
study area, 341

Spatial composite impact assessment,
284, 293, 309

Spatial composite impact assessment model
(SCIAM)

air quality impact assessment, 283
biodiversity impact assessment, 284
change rate maps, 317
COD, 282
comprehensive and reliable database, 318
development projects, 280
effectiveness, 318
EIA, 280
environmental criteria, 281, 282
geographic conditions, 319
GIS, 280
highway projects, 280, 281, 315, 317
landslide susceptibility, 282
schematic representation, 285
SCII, 284

SESA, 318
Spatial composite impact index, 284,

295–297, 314
Spatial cross-validation criteria, 280
Spatial decision support system, 410
Spatially Explicit Sensitivity Analysis (SESA),

294, 295, 302
Spatial modelling, 7–9
Spatial smoothing kernels, 11
Spatio-temporal changes, 209
Spatiotemporal detection and delineation

bank erosion mapping, 520
data processing, 519
data sources, 517
Hooghly River reach in 1954, 521
Hooghly River reach in 1980, 523
Hooghly River reach in 1990, 523
Hooghly River reach in 2000, 524
Hooghly River reach in 2010, 524
Hooghly River reach in 2020, 525
Hooghly River, erosion and depositional

activity, 525
LULC, 531
morphometric measurements, 520, 521
river course detection, 519
river width change, 523, 525, 528, 531
statistical analysis, 521
study area, 516

Spatio-temporal dynamics, 501
Spatio-temporal modelling tools, 393
Spatio-temporal resolutions, 199
Spatio-temporal river channel assessment, 500
SRTM DEM data, 103, 333, 483
Standard deviation (SD), 248
Standard false colour composite (SFCC), 465
Standard FCC IRS LISS IV image, 138
Standard Sinuosity Index (SSI), 520
Standard WGS-84 projection, 442
Statistical analysis, 48, 521
Statistical Index (SI), 99
Statistical Package for Social Sciences

(SPSS), 32
Statistical self-similarity, 455
Steepness, 143
Stony Clove watershed, 368
Stream Bank and Bed Stability Assessment

Protocol, 367
Stream buffers, 355
Stream corridors, 354
Structural Fire Index, 180
Structure-from-Motion photogrammetry

(SfM), 367
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Subarnsiri-Dikrong-Ranganadi River system,
41

Substantial Coriolis force, 264
Sub-watersheds (SW), 91, 92
Summary sensitivity index, 295
Summit convexity, 421
Suomi NPP and Visible Infrared Imaging

Radiometer (SNPP-VIRS), 184
Supervised classification, 200, 460
Supervised classification method, 65
Support practice factor (P), 81, 85
Support vector machine (SVM), 7, 10, 99,

358, 460
Surface consistent peak ground acceleration

(PGA), 31
Surface fractal dimension, 451, 452, 456
Surface fractal values, 455
Surface morphology, 455
Surface reflectance, 460
Surface resistance, 168
Surface runoff, 116, 117
Survey of India (SOI), 102, 478
Susceptibility index map, 33
Susceptibility zonation map, 34
Sustainability reduction investing, 4
Sustainable groundwater management, 55, 56
Sustainable land planning, 358
Sutlej Basin, 416, 417
Synthetic aperture radar (SAR), 4, 327, 460
Synthetic interferogram simulating topographic

phase, 331

T
Tapi River Basin, 199
Targeted adaptation planning, 409
Temporal de-correlation, 327
Terrace cultivation, 93
Terrain, 21
Terrain Ruggedness Index, 25, 26, 543, 549
Terrestrial ecosystem, 354
Texture, 453
Thermal infrared digital numbers, 67
Thiessen polygon, 43
Threat detection, 4
Three Gorges Dam, 198
TNM algorithm, 291
TOA spectral radiance, 67
Top of atmosphere (ToA), 519
Topographic expression, 486
Topographic Gradient, 25
Topographic interferogram, 333
Topographic phase removal, 330

Topographic Sinuosity Index (TSI), 521
Topographic Wetness Index, 117–120, 543
Topographical Maps, 102
Topography, 25, 224
TOPSAR IW SLC products, 330
Total Dissolved Solids (TDS), 290
Total Suspended Solids (TSS), 290
Traditional jhooming, 87
Traditional water conservation systems, 54
Traditional water sources, 55
Tropical cyclones (TCs), 264
Tropical Rainfall Measurement Mission

(TRMM), 8
True/false colour composites (TCC/FCC), 565
Tube wells (TWs), 43
Tuscany region (Central Italy), 328

U
Uncontrolled land use, 392
Under-reporting factors, 340
United States Geological Survey (USGS),

77, 102
Universal Soil Loss Equation (USLE), 76, 77,

79, 83, 85, 91, 362
Universal Transverse Mercator (UTM),

103, 146
Unscientific agricultural practices, 362
Urban commercial and residential

developments, 358
Urban vulnerability, 236
US Department of Agriculture-Agricultural

Research Service (USDA-ARS), 368
US National Oceanic and Atmospheric

Administration (NOAA), 13
USA introduced community-level arsenic

removal units, 52
USGS Earth Explorer, 515
USLE-M model, 363
Uttarakhand flooding catastrophe, 564
Uttarakhand forest fire, 178
Uttarakhand glacial burst, 564
Uttarakhand glacial lake outburst, 563

V
Variogram technique, 451–453, 455, 456
Vector-borne disease (VBD), 8, 214
Vegetation, 226
Vegetation coverage, 67
Vegetation greenness, 179
Vegetation roots, 29
Vegetative covers, 72
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Vehicle vulnerability, 296
Versatile human interaction, 509
Vertical velocity (omega), 271, 273
Vertical wind shear, 275
Vertically transmitted horizontally received

(VH), 461
Vertically transmitted vertically received

(VV), 461
VH polarization, 461
Vibration-based landslides, 420
Village level drainage density assessment, 405
Village level quantification, 407
Village level selected indicators, 399, 401
Village-wise LPI, 393
Virtual Disaster Viewer, 533
Visual image interpretation technique, 502
Viz-Morphotec software, 456
Voluntary geographic information (VGI), 11
V-shape design, 143
Vulnerability

definition, 2
Vulnerability assessment, 317, 417

hazards, 416
local scale, 476
space, 477

Vulnerability assessment studies, 359
Vulnerability database, 477
Vulnerability frameworks, 488, 491
VV polarization, 461, 465

W
Warming temperatures, 565
Wasteland, 427
Water area mapping, 460
Water bodies, 227

Water Erosion Prediction Project
(WEPP), 149, 364

Water inundation, 465, 471
Water inundation maps, 465, 468, 469
Water quality impact assessment, 283, 290,

303, 317
Water Resources Information System

(WRIS), 201
Water safety plan, 56
Water security, 55
Water spilling, 123
Water surface index, 565
Weak policy implementation system, 52
WebGIS applications, 533
Web-GIS platforms, 471
Weight of Evidence (WoE), 99
Weighted area loss of biodiversity, 295
Weighted Linear Combination (WLC)

model, 281
Weighting, 246
Weights of evidence (WofE), 8
West Bengal Municipal, 53
West Singhbhum, 190
Wet pit channel mining, 371
Wikimapia, 13
World Conference on Disaster Reduction, 359
World Geodetic Survey 1984 (WGS-84), 103
World Health Organization (WHO), 214

Y
Yom River Basin, 198

Z
Z-score value, 343
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