
Chapter 6
Invariances

It is well-known that the Vlasov-Poisson system (1.5), (1.3) has many invariances,
see [49, p. 427], for instance: if f = f (t, x, v) is a solution, so is

f̃ (t̃, x̃, ṽ) = μ

λ2
f
( t̃ + t0

μλ
,
x̃ + x0

λ
,μṽ

)
, (6.1)

where μ,λ > 0, t0 ∈ R and x0 ∈ R
3. The associated potential and density are

U f̃ (t̃, x̃) = 1

μ2
U f

( t̃ + t0
μλ

,
x̃ + x0

λ

)
, ρ f̃ (t̃, x̃) = 1

μ2λ2
ρ f

( t̃ + t0
μλ

,
x̃ + x0

λ

)
.

(6.2)
It can be expected that quantities that are invariant will play a particularly important
role. It is the purpose of this section to determine several such quantities.

Let Q = Q(x, v) be a steady state solution. According to (6.1) and (6.2), then

Q̃(x̃, ṽ) = μ

λ2
Q

( x̃
λ

,μṽ
)

(6.3)

is a steady state solution for every μ,λ > 0. The associated potential and density are

UQ̃(x̃) = 1

μ2
UQ

( x̃
λ

)
, ρQ̃(x̃) = 1

μ2λ2
ρQ

( x̃
λ

)
.

The variables transform as x = x̃
λ
and v = μṽ so that in particular r = r̃

λ
for r = |x |

and r̃ = |x̃ |.
Next let Q = Q(eQ) depend only upon eQ(x, v) = 1

2 |v|2 +UQ(x). Then,
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eQ(x, v) = 1

2
|v|2 +UQ(x) = 1

2
μ2|ṽ|2 +UQ(λ−1 x̃)

= 1

2
μ2|ṽ|2 + μ2UQ̃(x̃) = μ2eQ̃(x̃, ṽ), (6.4)

and (6.3) leads to

Q̃(eQ̃) = μ

λ2
Q(eQ) = μ

λ2
Q(μ2eQ̃).

Thus, if Q = Q(eQ) and Q̃ = Q̃(eQ̃) are understood as functions of one variable,
then

Q̃′(eQ̃) = μ3

λ2
Q′(eQ). (6.5)

For radial potentials and densities, we have

UQ̃(r̃) = 1

μ2
UQ(r), ρQ̃(r̃) = 1

λ2μ2
ρQ(r), (6.6)

which leads to

U ′
Q̃
(r̃) = 1

λμ2
U ′

Q(r). (6.7)

The central densities are related by

ρQ̃(0) = 1

λ2μ2
ρQ(0). (6.8)

The effective potential from (7.4) isUeff(r, �) = UQ(r) + �2

2r2 , whichwe alsowrite

as Ueff(r,β) = UQ(r) + β
2r2 for β = �2. Let

β̃ = λ2

μ2
β.

Then,

Ũeff(r̃ , β̃) := UQ̃(r̃) + β̃

2r̃2
= 1

μ2
UQ(r) + λ2

μ2
β

1

2λ2r2
= 1

μ2
Ueff(r,β)

is the corresponding transformation rule. The points r± = r±(e,β) are determined
by the relation Ueff(r±(e,β),β) = e. Owing to

Ũeff(r̃±(ẽ, β̃), β̃) = ẽ ⇐⇒ 1

μ2
Ueff(λ

−1r̃±(ẽ, β̃),β) = 1

μ2
e
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we obtain
r̃±(ẽ, β̃) = λ r±(e,β).

Next, r0 = r0(β) is the point whereUeff(·,β) attains itsminimum. Since Ũeff(r̃ , β̃) =
μ−2Ueff(r,β) = μ−2Ueff(λ

−1r̃ ,β), we get

Ũ ′
eff(r̃ , β̃) = λ−1μ−2U ′

eff(λ
−1r̃ ,β),

and this implies that
r̃0(β̃) = λ r0(β).

In terms of the variables e and β, the period function from (A.20) is

T1(e,β) = 2
∫ r+(e,β)

r−(e,β)

dr√
2(e −Ueff(r,β))

.

Using the transformation r̃ = λr , dr̃ = λdr , it follows that

T̃1(ẽ, β̃) = 2
∫ r̃+(ẽ,β̃)

r̃−(ẽ,β̃)

dr̃√
2(ẽ − Ũeff(r̃ , β̃))

= 2λ
∫ λ−1r̃+(ẽ,β̃)

λ−1r̃−(ẽ,β̃)

dr√
2(ẽ − Ũeff(λr, β̃))

= 2λ
∫ r+(e,β)

r−(e,β)

dr√
2(μ−2e − μ−2Ueff(r,β))

= λμ T1(e,β).

In particular, ω̃1(ẽ, β̃) = 1
λμ

ω1(e,β) for ω̃1 = 2π
T̃1
, and if we denote δ1 = inf ω1, then

also

δ̃1 = 1

λμ
δ1. (6.9)

Next we consider the space L2
sph, 1

|Q′ |
(K ) = X0 of spherically symmetric functions

with the Q-dependent inner product

(u1, u2)Q =
∫∫

K

1

|Q′(eQ)| u1(x, v) u2(x, v) dx dv,

as in Remark B.2. Defining

ũ(x̃, ṽ) = μ

λ2
u
( x̃
λ

,μṽ
)

(6.10)
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in accordance with (6.3), we calculate, using dx = λ−3dx̃ and dv = μ3d ṽ as well
as (6.5):

‖ũ‖2Q̃ =
∫ ∫

dx̃ d ṽ

|Q̃′(eQ̃)| |ũ(x̃, ṽ)|2

= λ2

μ3

μ2

λ4

∫ ∫
λ3dx μ−3dv

|Q′(eQ)| |u(x, v)|2 = λ

μ4
‖u‖2Q . (6.11)

Let the operator (T g)(x, v) = v · ∇x g(x, v) − ∇vg(x, v) · ∇xUQ(x) be as in
(1.11). From the above relations, it follows that

(T ũ)(x̃, ṽ) = ṽ · ∇x̃ ũ − ∇ṽ ũ · ∇x̃UQ̃

= μ−1μλ−2λ−1 v · ∇xu − μλ−2μμ−2λ−1 ∇vu · ∇xUQ

= λ−3(T u)(x, v). (6.12)

Alternatively, T u = {u, eQ} can be used. From (6.4) and (6.10), we get

(T ũ)(x̃, ṽ) = {ũ, eQ̃} = ∇x̃ ũ · ∇ṽ eQ̃ − ∇x̃ eQ̃ · ∇ṽ ũ

= μλ−3∇xu · μ−2μ∇veQ − μ−2λ−1∇xeQ · μ2λ−2∇vu

= λ−3 {u, eQ} = λ−3(T u)(x, v).

This in turn leads to

(T 2ũ)(x̃, ṽ) = {T ũ, eQ̃} = ∇x̃ (T ũ) · ∇ṽ eQ̃ − ∇x̃ eQ̃ · ∇ṽ (T ũ)

= λ−4∇x (T u) · μ−2μ∇veQ − μ−2λ−1∇xeQ · λ−3μ∇v(T u)

= λ−4μ−1{T u, eQ} = λ−4μ−1(T 2u)(x, v). (6.13)

Alternatively, if we put û(x̃, ṽ) = u( x̃
λ
,μṽ), then ũ = μλ−2û, so (6.13) may be re-

expressed as
(T 2û)(x̃, ṽ) = λ−2μ−2(T 2u)(x, v). (6.14)

For the density induced by T ũ, (6.12) yields

ρT ũ(x̃) =
∫

(T ũ)(x̃, ṽ) d ṽ = λ−3μ−3
∫

(T u)(x, v) dv = λ−3μ−3ρT u(x),

so that
UT ũ(x̃) = λ−1μ−3UT u(x)

for the potential. In particular,

∇x̃UT ũ(x̃) = λ−2μ−3 ∇xUT u(x),
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and hence

∫
|∇x̃UT ũ(x̃)|2 dx̃ = λ−4μ−6λ3

∫
|∇xUT u(x)|2 dx

= λ−1μ−6
∫

|∇xUT u(x)|2 dx . (6.15)

For

(Lu, u)Q =
∫ ∫

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

as given by (1.18), we then obtain from (6.5), (6.12) and (6.15):

(Lũ, ũ)Q̃ =
∫ ∫

dx̃ d ṽ

|Q̃′(eQ̃)| (T ũ)2 − 1

4π

∫
|∇x̃UT ũ |2 dx̃

= λ3μ−3λ2μ−3λ−6
∫ ∫

dx dv

|Q′(eQ)| (T u)2 − 1

4π
λ−1μ−6

∫
|∇xUT u |2 dx

= λ−1μ−6 (Lu, u)Q . (6.16)

In (1.20), the quantity

λ∗ = inf {(Lu, u)Q : u ∈ X2
odd, ‖u‖Q = 1}

is introduced. Therefore, owing to (6.16) and (6.11),

λ̃∗ = inf {(Lũ, ũ)Q̃ : ũ ∈ X2
odd, ‖ũ‖Q̃ = 1}

= λ−1μ−6 inf {(Lu, u)Q : u ∈ X2
odd,λμ−4 ‖u‖Q = 1}

= λ−1μ−6λ−1μ4 inf {(Lû, û)Q : û ∈ X2
odd, ‖û‖Q = 1}

= λ−2μ−2λ∗, (6.17)

by setting u = λ−1/2μ2 û; it maybe checked that u ∈ X2
odd if and only if ũ ∈ X2

odd
w.r. to the transformed variables.

Using (6.7), the function A(r) = U ′
Q(r)

r from (A.27) is found to scale as

Ã(r̃) =
U ′

Q̃
(r̃)

r̃
= λ−1μ−2

U ′
Q(r)

λr
= λ−2μ−2A(r) (6.18)

for r̃ ∈ [0, rQ̃], with rQ̃ = λrQ denoting the end of the support of ρQ̃ , if rQ
denotes the end of the support of ρQ .

Similarly, denoting B(r) = 4πρQ(r) + A(r) as in LemmaA.7(d), owing to (6.18)
and (6.6) one gets

B̃(r̃) = λ−2μ−2B(r).
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Nowwe turn to the operators Qν fromChap.4 and their first eigenvaluesμ1(ν) for
ν ∈] − ∞, δ21[; note the change in notation here for the parameter of the operators,
since the letter λ is already occupied from x̃ = λx , r̃ = λr . Let

ν̃ = 1

λ2μ2
ν.

If ν ∈] − ∞, δ21[, then ν̃ ∈] − ∞, δ̃21[ due to (6.9). For � = �(r) let �̃(r̃) = �( r̃
λ
).

Since p̃r = x̃ ·ṽ
|x̃ | = μ−1 x ·v

|x | = μ−1 pr , we obtain from (6.5):

ψ̃(r̃ , p̃r , �̃) = |Q̃′(eQ̃)| p̃r �̃(r̃) = μ3λ−2|Q′(eQ)| μ−1 pr �(r)

= μ2λ−2 |Q′(eQ)| pr �(r) = μ2λ−2 ψ(r, pr , �). (6.19)

First we determine the scaling of (−T 2 − z)−1ψ. Defining

z̃ = 1

λ2μ2
z,

we assert that

((−T 2 − z̃)−1ψ̃)(x̃, ṽ) = μ4 ((−T 2 − z)−1ψ)(x, v). (6.20)

To see this, let g̃ = (−T 2 − z̃)−1ψ̃ and g = (−T 2 − z)−1ψ. Then, (6.20) is equiv-
alent to g̃ = μ4g, but g̃ and g are not necessarily related by (6.10); in fact g̃ = μ4ĝ
or (−T 2 − z̃)g̃ = μ4(−T 2 − z̃)ĝ is to be shown. For, owing to (6.14) and (6.19) we
have

μ4(−T 2 − z̃)ĝ = μ4(−λ−2μ−2T 2g − λ−2μ−2zg) = μ2λ−2(−T 2 − z)g = μ2λ−2 ψ

= ψ̃ = (−T 2 − z̃)g̃,

which completes the proof of (6.20). From (4.22) together with (6.20), we obtain

(Q̃z̃�̃)(r̃) = 4π
∫

p̃r ((−T 2 − z̃)−1ψ̃)(x̃, ṽ) d ṽ

= 4πμ4
∫

x̃ · ṽ

|x̃ | ((−T 2 − z)−1ψ)(λ−1 x̃,μṽ) d ṽ

= 4π
∫

λ−1 x̃ · v

|λ−1 x̃ | ((−T 2 − z)−1ψ)(λ−1 x̃, v) dv

= (Qz�)(r).

Thus, if we define
μ̃1(ν̃) = μ1(λ

2μ2ν̃), ν̃ ∈] − ∞, δ̃21[,
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then μ̃1(ν̃) is the first eigenvalue of Q̃ν̃ , and �̃ = �̃(r̃) is an associated eigenfunction
if and only if � = �(r) is an eigenfunction of Qν for the eigenvalue μ1(ν). Due to
(4.33) it follows that

μ̃∗ = lim
ν̃→δ̃21−

μ̃1(ν̃) = lim
ν→δ21−

μ1(ν) = μ∗.

As already noted at the beginning of this chapter, it can be expected that quantities
that are unaffected by the scaling do have a special relevance. Hence, μ∗ is one such
quantity. In addition, the condition λ∗ < δ21 is invariant, as a consequence of (6.17)
and (6.9). Further, we would like to mention

2π√
λ∗

√
ρQ(0),

cf. [59, Remark, p. 555], for which we deduce from (6.17) and (6.8):

2π√
λ̃∗

√
ρQ̃(0) = 2π

λ−1μ−1
√

λ∗
λ−1μ−1

√
ρQ(0) = 2π√

λ∗

√
ρQ(0).

This is called the Eddington-Ritter relation; also see [17, (27), p. 15] and [70, Section
4]. The relevance of the number 2π√

λ∗
is that it is the ‘linear period’ of the system, in

the sense that the linearized system about Q has a periodic solution of this period (if
λ∗ is an eigenvalue of L); recall Lemma 1.3.

Moreover, for any r ∈ [0, rQ] and r̃ = λr one in fact has

ρQ̃(r̃)

λ̃∗
= ρQ(r)

λ∗
,

Ã(r̃)

λ̃∗
= A(r)

λ∗
,

B̃(r̃)

λ̃∗
= B(r)

λ∗
.
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