Chapter 6 ®)
Invariances Check for

It is well-known that the Vlasov-Poisson system (1.5), (1.3) has many invariances,
see [49, p. 427], for instance: if f = f(¢, x, v) is a solution, so is

fE, %,0) 6.1)

_n (f—i-to X+ x0 5)
BB EEANS U WA

where 11, A > 0, o € R and x € R3. The associated potential and density are

- . 1 f—i—l‘o X+ x9 - . 1 ;—i—t() X+ xo
U’Tt, :—U > ) 7t7 = ’ °
FN =0 f< pA oA ) P D)= oy pf( A A ?62)

It can be expected that quantities that are invariant will play a particularly important
role. It is the purpose of this section to determine several such quantities.
Let O = Q(x, v) be a steady state solution. According to (6.1) and (6.2), then

O, 1) = % QG ) 6.3)

is a steady state solution for every u, A > 0. The associated potential and density are

X X

Ug® =5 Uo(3). rat® = 5z r0(5):

The variables transform as x = § and v = p so that in particular r = § forr = |x|
and 7 = |x]|.
Next let O = Q(ep) depend only upon ep (x, v) = % [v|*> + Up(x). Then,
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1 1 - 1~
eo(x,v) =7 > 4+ Up(x) = §M2|U|2 +Up(\7'%)
1, . . .
= 5 WP + UG () = ey (¥, D), (6.4)
and (6.3) leads to

Oteg) = 13 Qleg) = 15 QUiey).

Thus, if Q = Q(ep) and 0= Q(eQ) are understood as functions of one variable,
then

0'ey) == 0'eg). (6.5)
For radial potentials and densities, we have
Up(F) 1 Up(r) () L (r) (6.6)
() = — r), ~(7F) = r), .
0 2 e Po N2 e

which leads to !
U’Q(F) = )\_/LZ U’Q(r). (6.7)

The central densities are related by

1
p60) = 555 o). (6.8)

The effective potential from (7.4)is Ut (1, £) = U (r) + %, which we also write
as Uege (r, 3) = Ug(r) + % for 3 = £2. Let

Y
B=—
2
Then,
- B 1 A2 1
Ueff(r’ﬁ)~=UQ(r)+ﬁ=?UQ(V)'FEBW:EUeff(V’ﬂ)

is the corresponding transformation rule. The points r+ = r. (e, 3) are determined
by the relation Ueg (r+ (e, 3), B) = e. Owing to

~ ~ o~ 1 B 1
Uer(7s(e, B), B) = ¢ e eff(xlfi(é,ﬂ),g)zﬁe
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we obtain

P+, B) = Ars(e, B).

Next, ro = ro(0) is the point where U (-, §) attains its minimum. Since Uesr (F, B) =
1 Ueti (r, B) = 2 Uesr(\7'F, ), we get

U7, B) = X2 ULeV'F, B,

and this implies that ~
ro(B3) = Aro(B).

In terms of the variables ¢ and (3, the period function from (A.20) is

ry(e,3) dr

T, (e, =2 .
(. ) /r_@,/a) 20 — U (. D)

Using the transformation 7 = Ar, dr = Adr, it follows that

. F @B
Tl(eaﬂ)zz . ~ ~
en \J2(e - U (7, )
NE@B) d
=2\ / ) :
YRED\J2G — urhr. B)
ri(e,f) dr
= 2)\/
e 2(u2e — p=2Ue(r, B))
= AuTi(e, B).

In particular, @ (e, B) = /\Lﬂ wi (e, B) for oy = 2f—”, and if we denote §; = inf wy, then
1
also :

0 = 1. 6.9
1 )\Ml (6.9)

Next we consider the space prh . (K) = X of spherically symmetric functions

SP- o7
with the Q-dependent inner product

1 R
(i, uz)g = //mul(x,v)uz(x,v)dxdv,
K

as in Remark B.2. Defining

i o) =L u(f ,w) (6.10)
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in accordance with (6.3), we calculate, using dx = A73d¥ and dv = ,u3df) as well

as (6.5):
dx dv
il =// L LPTE N
“lo 0l

/ / Ndxp?dy = A 2 ©.11)
= ux, = — |((u . .
3A4 1Q/(eg)| pt e

Let the operator (7g)(x,v) =v-V,g(x,v) — V,g(x,v) - V,Up(x) be as in
(1.11). From the above relations, it follows that

(Tu)(x,v) =0 - Viu — Viu - V);UQ
= AN Ve — p A PP AT V- V.Ug
= A" (Tuw)(x,v). (6.12)

Alternatively, 7u = {u, e} can be used. From (6.4) and (6.10), we get

(Tﬁ)(i, l~)) = {ﬁ, €Q} = V; u- Vf) EQ - Vg EQ . Vi} 7
= p\ " Vou - ,LFZ;LVUEQ - ufz)flver PNV u
=\ {u,ep) = A\ (Tu)(x, v).

This in turn leads to

(T?a)(%,0) = {Tii,ep} = Vi (Tit) - Vyey — Vieg - Vi (Ti)
= \"*V, (Tu) ~u_2queQ - M_z)\_lVXeQ ATV (Tu)
=AY Tu, ep) = X N (T u) (x, v). (6.13)
Alternatively, if we put #(X, U) = u(’%, ud), then it = pA =24, so (6.13) may be re-
expressed as

(TR (X, D) = A2 (T ?u) (x, v). (6.14)

For the density induced by 7 i, (6.12) yields

pra(X) = / (Ti)(F,0)dv = A"p™ f (Tu)(x,v)dv = A" pry(x),

so that
Uri ) = 23 Uz (x)

for the potential. In particular,

ViUra() = A2 Vo Ugy (%),
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and hence

/ Vi Ura (D)2 di = A 5N / IV, U (0) dx

=\ *G/W Uz ()| dx. (6.15)

dx dv 1
(Lu, u) // u|2——/ IV Uru|* dx
o= | | 0o am Je T
as given by (1.18), we then obtain from (6.5), (6.12) and (6.15):
dx dv 1
i = [ [ S (i 2——/|vfun|2di
|Q(eQ>| 4m

= N33O f/ dxdv_ e 1o *6/|v Ural? dx
|Q’(e Q)I 4

=N (Lu, ). (6.16)

For

In (1.20), the quantity
A =inf {(Lu, u)g 1 u € Xoyq. llullp = 1}
is introduced. Therefore, owing to (6.16) and (6.11),

Ao =inf {(Lil, it) g : i € Xogq, il =1}
= A0 inf {(Lu, u)g 1 u € XZq, A flully = 1}
= ANt inf ((La, @) < i € Xiyg, il = 1)
= A2, (6.17)

by setting u = A\~'/21% i; it maybe checked that u € X2, if and only if # € X2,

w.I. to the transformed variables.

Using (6.7), the function A(r) = U/Qr(r) from (A.27) is found to scale as
U@ U, (r)
AF) = L — = "'u? i— = A2u2A0) (6.18)
r r

for 7 € [0,rp5l, with r5 = Arg denoting the end of the support of pg, if ro
denotes the end of the support of py.
Similarly, denoting B(r) = 4mpo(r) + A(r) asin Lemma A.7(d), owing to (6.18)
and (6.6) one gets
B(F) = A\2u2B(r).
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Now we turn to the operators Q,, from Chap. 4 and their first eigenvalues y; (v) for
v €] — oo, 6%[; note the change in notation here for the parameter of the operators,
since the letter A is already occupied from x = Ax, 7 = Ar. Let

1
V.
222

U=

If v €] — 00, &[, then & €] — o0, §2[ due to (6.9). For ¥ = W(r) let ¥ (7) = \IJ(§).
Since p, = ﬁ =p! ﬁ = i~ p,, we obtain from (6.5):

DF, pr 0) =10 (ep)| pr W) = 1PA72Q (eg)| ™" pr W(r)
(PAT21Q ()| pr W(r) = 2A72U(r, pr, £). (6.19)

First we determine the scaling of (—7 2 — z)~!4). Defining

5 1
= )\2—“2 Z,
we assert that
(=T = D7'P)E, D) = p* (=T* = 27 ") (x, v). (6.20)

To see this, let § = (=72 —)~'¢ and g = (=72 — z)~ 4. Then, (6.20) is equiv-
alent to g = u*g, but g and g are not necessarily related by (6.10); in fact § = u*g
or (=7?% —3)g = u*(=T?* — 7)g is to be shown. For, owing to (6.14) and (6.19) we
have

pH=T? = 2§ = pH (AT — NP Tzg) = PN TH(=T — g = AT
=¢=(-T>-23,
which completes the proof of (6.20). From (4.22) together with (6.20), we obtain
@) =an [ (T =5 D0y ds

= dmpt X0 (=T? =2 ")\ 7'%, pud) dD

|X]
)\_li -V 2 —1 —1~
=4r | —— ((=T° —2)7 P)(A"'X,v)dv
IATIX]
= (Q;V)(r).

Thus, if we define B
fin (@) = m\2o), b el—oo, 5l
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then i, (V) is the first eigenvalue of @;,, and U = W () is an associated eigenfunction
if and only if ¥ = W(r) is an eigenfunction of Q, for the eigenvalue y;(v). Due to
(4.33) it follows that

poe = lim @)= lim @)=

1/%6 - v—>83—

As already noted at the beginning of this chapter, it can be expected that quantities
that are unaffected by the scaling do have a special relevance. Hence, i, is one such
quantity. In addition, the condition \, < 47 is invariant, as a consequence of (6.17)
and (6.9). Further, we would like to mention

2w
m \Y pQ(O)v

cf. [59, Remark, p. 555], for which we deduce from (6.17) and (6.8):

\F,/pQ(o Vo) = : Vo).

This is called the Eddington-Ritter relation; also see [17, (27), p. 15] and [70, Section
4]. The relevance of the number j—/\l is that it is the ‘linear period’ of the system, in
the sense that the linearized system about Q has a periodic solution of this period (if
A« is an eigenvalue of L); recall Lemma 1.3.

Moreover, for any r € [0, rp] and 7 = Ar one in fact has

Pe() _po) AG) _ A BG) _ B()

A R PV (D Vi
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