Chapter 4 ®)
A Birman-Schwinger Type Operator oo

As has been outlined in the introduction, the eigenvalues A < 5]2 of L=-T>—-KT
from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain
Birman-Schwinger type operator Q) that acts on functions ¥ = W(r).

4.1 The Operator Q,

Let L? denote the L>-Lebesgue space of radially symmetric functions W (x) = W(r)
on R3, where we take

(W, q>>=f qf(x)q>(x)dx=47r/oor2mcb(r)dr
R3 0

as the inner product of W, ® € Lf. Unless otherwise stated, a generic constant
(denoted by C) is allowed to depend only upon Q.

Definition 4.1 For z € Q@ = C \ [6?, oo[, we introduce

Q.:L*— L2
16w <
QW) =—> | divE) || detdely e ozrizr. et
" =00 D
wi(e, O) [Q'(e)] . . g
——————————sin(kf(r, e, £)) sin(kO(7, e, £)),
(e 0) — 2 (ko( )) sin(k6( )
4.1
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54 4 A Birman-Schwinger Type Operator

where ri (e, £) and 6(r, e, £) are as in Appendix I, Sect. A.1, and D is given by (3.1).
Along with Q,, we also introduce the integral kernels

. 4
K (r,7) = ) Z// dtldely e o)<ri<r (e 0)

k£0 V)

wi(e, O)|Q'(e)]
X

W sin(kO(r, e, £)) sin(k0 (7, e, £)).

4.2)

Remark 4.2 (a) If z=a+ib e C\R, then [k*wi(e, £) —z| > |b| > 0. More
precisely,

V2
|k|z[ 5|a|]+1 = |Kwi(e, ) —zI” = KPwile, &) —a)’ + b’
> (K67 — la))* + b*
1
> Zk“é‘f + b7 (4.3)

On the other hand, if z = A €] — oo, 63[, then
Kw? (e, £) — 7| = KPwi(e, £) = A= k*6F = A= 82 -\ >0,

and hence
1
k| >2 = |Kwile, £) —z| > k*6] — A > (k2 — 1)67 > Ekzdf. (4.4)

In particular, m in (4.1) and (4.2) is well-defined for z € Q.

(b) In the definitions, we understand the factor |Q’(e)| to be zero outside of K,
the support of Q, instead of carrying around another characteristic function all
the time. In particular, always r (e, £) < rp holds, which means the following: in
(4.1), [;° dF W(F) can be replaced by [, dF ¥ (7); (Q.W)(r) can be replaced by
(Q:¥)(r) 1ip<r<r,) and K (r, ') can be replaced by K (r, 7) Ljo<r7<ry)- &

Lemma 4.3 [Properties of Q,] The following assertions hold.

(a) Foreveryz € Q, wehave Q, € B(L?), the space of linear and bounded operators
on Lf. In addition, the map

Q37 Q, e B(L?) (4.5)

is analytic, and for the derivatives
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167!
(Q(I)\I})( ) J Z/ dr \Ij(r) /:/ d@ﬂdel _(e,O)<r,F<ri(e, 0)}

k£0

y w1(6»5)|Q( )
(K2wi(e, £) — z)it!

sin(kf(r, e, £)) sin(kO(7, e, £))

for ¥ e L2.
(b) If z € 2, then
(Q:W)(r) = (Kz:(r, ), ¥)

for W € L2. In particular,
(Q:¥, @) = (¥, Q: D)
for ¥, ® € L2, so that Qf = Q:. Thus, if A €] — oo, 83[, then Q, is symmetric.

(c) Ifz € Q, then Q, is a Hilbert-Schmidt operator on L2.
(d) Ifz € Q, then

(Q. W, )
2 wie, ) [0 f”(&“ . 2
= 647 g(;// dtlde kzwl(e -2 1) eo W (r) sin(kO(r, e, £)) dr

forV e Lf. In particular, if A €] — o0, 5%[, then (Q\W, W) > Ofor ¥ € Lf, ie.,
Q) is positive. In addition, for the derivatives

= C e, £ —

2

ri(e, )
X / W(r)sin(kO(r, e, £))dr| (4.6)

(e, ?)

for v e L2,
(e) There is a constant C > 0 such that for A\, A €] — 0o, 5%[,

1 ~
191 — Qsllys = C (1 + m) [A = Al

where || - ||ys denotes the Hilbert-Schmidt norm.

(f) If\ €] — 00, 631, then the spectrum of Q, consists of 1 (\) > pa(\) > ... — 0
(the eigenvalues are listed according to their multiplicities). In addition,

(A =[xl = sup {{Q\W, W) : W]l < 1}, 4.7)

where || - | = || - | 3(z2), and every function
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2
pic(-) 2 ] — 00, 07— 10, oof

for k € N is monotone increasing and locally Lipschitz continuous (and hence
differentiable a.e. by Rademacher’s Theorem).

Proof (a) Let z € Q be fixed. By Remark 4.2(a), there is ay > 0 such that |k2(,u]2
(e, €) — z] = ap for |k| > 1 and (e, £) € D.In addition, according to (4.3) and (4.4),
there is ko € N so that |k*w? (e, £) — z| > 3k*67 for |k| > ko and (e, £) € D; if ko is
taken to be large enough, we can also make sure that %kzdlz > k3/2. First, we observe
that

r_(e, £) <r <ry(e, £) = £* <2r(ep — Up(0)). (4.8)

To establish this claim, we recall from (3.7) that €2 = 2r% (e — U (r_)) holds, where
ry = r(e, £). Since Uy is increasing and e < ey, we get €2 < 2r? (eg — Up(0)) <
2!‘2(60 - UQ(O))

For 1 < |k| < ko and i € Ny, we now apply (4.8) to r and 7 in order to estimate

Sei(r, 7, 2) = // deldely (. o)<ri<r (e 0)
D

wile, £) Q' ()|
(K2wi(e, £) — z)it!

sin(kf(r, e, £)) sin(kO(7, e, £))
4.9)

as

IA

. l* (0]
|Sk,i(r7 F’ Z)| aa(l+l)Al 1{0§r,75rg}/ déﬁ/ de
0 emin (€)

X1 (e, 0y<r. F<ry (e, 0y 1Q'(©)]

. l* [0
ag VA Lo rry) /0 dee f (e)de
€min

X 12 <2(e0-U0 0y mingr.72}) | Q' (€)]

. €0
0y VA Tg<r vy (e0 — UQ(O))(/ |0/ (e)] de) min{r*, 7*}.

Up(0)

IA

IA

Analogously, for |k| > ko and i € Ny, we deduce

€0

- 1 / )
Isk,i (r, 7, 2)| < PEA Aq 1{0§r,f§rQ} (eo — UQ(O))(/;/ 0 10 (e)|de) min{r~, 7}.

ol

It follows that

D s n Fol < Y ag VA Loy izry) (60 — Ug(0))

k#0 |kl <ko
€o
x(/ |Q’(e)|de> min{r?, 7%}
Up(0)
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1
+ Z PR Ay Ljo<r7<rp) (60 — Ug(0))
[k|>ko

x(/eo |Q’(e)|de) min{r?, 7%}
Ug(0)

< C1i <y j<ry) min{r?, %} (4.10)
for

. © 1 €0
o —(i+1) _ ’ .
Cri = (2koag +23 7)1 (@ UQ<0)>( /U e <e>|de), @.11)

this constant depends upon z and Q, but k is independent of i. Therefore,

16 o0
(Q:0)(r)| = —”Zfo W) seolr. 7. 2) dF

72
k#0
167TC]’()
72

ro
1{0§,§,Q)f |W (7)| min{r?, 7} dF.
0

Next, note that
min{r?, 72} < rf. (4.12)

Thus, using Holder’s inequality,

r

, 256mCY, ro o \?
H(QW)(NI” = ——— Ljo<r=rg} FIv ()| dr
0

256m2Ci 1o e - -
— 1{05r5:-91/ P ) dF
0

647 C? r
- Y
-

Lio<r<ry) ||‘I’||i;,
and this in turn leads to
oo
1Q. W7, = 4 /0 r QW) ()P dr < 264> CF o1y W72

To prove the analyticity of (4.5), we recall that it suffices to show weak analyticity,
in the sense that all maps Q 3 z — (¥, Q,®) € C for ¥, ® € L? are analytic; see
[85, Thm. 3.1.12]. Fix zg € Q. If |z — 70| is sufficiently small, then z € €2 and we
have the series expansion

1 = 1 .
. = . Z—Z
k2wl (e, ) — 2 ;) (e, O) — eyt &
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for every k # 0 and (e, [) € D, which suggests that

ro ro
w o0 =6ir? [ [Tararwmom Y [[areder, oo
0 0

k20 7p5
,0) 10 . . -
% sin(k0(r, e, £)) sin(k6(F, e, £))
o0
=Y aiz—z0) (4.13)
i=0
for
ro ro
a; = 64712 f / dr dF \IJ(r)CID(F)Z / f detdel, (o py<ri<r.(c.0)
o Jo 10 /5

wie, O)1Q'(e)l

Ctet) o sin(kO(r, e, £)) sin(kO(F, e, £)).

We are going to show that the series (4.13) converges near z. For this, due to (4.10)
and (4.12), we deduce that

/rQ /rQ dr di W(r) ®(F) Y si.i(r. 7. 20)
0 0

k£0

|la;| = 64r°

ro ro
< 6472 cl,,-/ / dr dF |W(r)| |®(7)| min{r?, 7%}
0 0

647> Cl.,-<forgr |\ll(r)|dr>(f0rgf|d>(f)|d?>

16mrg Coi [IW 1l 2 191 22

IA

IA

If we write the constant C; ; from (4.11)as Cy; = C’l aa(’“) + él , with g depend-
ing only on 2o, then |z — zo| < min{%, %} ensures that
Ciilz — Zo|i < C’laglz‘i + élz_i,

which has a finite )_;°,. It follows that (4.13) converges for z €  such that |z —
z0| < min{%o, %}, i.e., on a sufficiently small ball about zy. The formula for the
derivative is gotten from a; and those for the higher order derivatives follow from
this one inductively.

(b) By the definition of K, in (4.2), we have

4 _
K F) = 5 ) sio(rn 7. 2). (4.14)
k#0
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Hence,

(Q; W) (r) = Z/ W (F) sg,o(r, 7, 2)dF —47r/ 2 K, (r, ) V(F)dr = (K:(r, "), V),
k£0
(4.15)

observing that K. = K. Due to K,(r, 7) = K, (7, r), we hence obtain
o0 - o0 -
(Q. W, @) =47r/ r2(Q. W) (r) ®(r)dr =4w/ r2 (K= (r, ), U) ®(r) dr

0 N N 0

:167r2/ drr2[ di P2 K=(r, F) W (F) ®(r)

0 0

= 16772/ dffz\IJ(F)/ dr r* K=(F,r) ®(r)
o

= 471'/ dF P W (F) (K (F, ), @) = (¥, Q: D).
0

(c) According to (b), the operator Q, on Lf has the integral kernel K:. Hence, in
order to verify that Q, is Hilbert-Schmidt, we need to verify that

IIQZII%IS=/ / K. (x, %)* dx dx
R3 JRR3
o0 oo
=167T2/ / rr i \K (r, F)|* dr dF
0 0

ro ro
1671'2/ / 27K, (r, F))? dr dF < oo (4.16)
0 0

for every z € Q, where K, is viewed both as a function of (x, x) and a function
of (r, 7) and we used Remark 4.2(b); see [35, Prop. 6.36]. From (4.14), (4.10) and
(4.12), we get

/ / r P K, (r, P dr dF < 16/ / leko(rmz)l) drdr

k#0
16C2/ / zz(min{rz,fz})zdrdf
r

16C2/ / drdr_16C2rQ<oo

IA

IA

Note that from Q, being Hilbert-Schmidt it follows that Q, is bounded and || Q.|| <
| Q; |lus- i-e., once again we see that (a) holds. However, since the key of the argument
is (4.10) and (4.12), it needs very little additional work to derive both bounds. (d)
Here, we calculate
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QW) =dr [ PO W)
_6471—22:[ dr \Il(r)/ di W (F)
k£0
// dﬁZdel _(e, O)<r,F<ri(e, 0)} wl(e Z) |Q (e)l

wi(e, &) — 2
i wi(e, O)|Q'(e)|
= 641 Zf/dud Pl 2

k#£0 ¥y

ry(e, £) 2
/ W (r)sin(k@(r, e, £))dr| > 0.
r_(e, t)

The proof of (4.6) is analogous. (e) For A, \ < 62, we have, cf. (4.16),

19x — Qsllfs :/3/ |Ky\(x, %) — K5 (x, )|* dx d%
R3 JR3

ro ro
= 167r2/ / r? 7 |K\(r, 7) — K5 (r, F) > dr dF
0 0
o (e dr dr
= 2567‘(2/ / —; _; fo dtldely (o o)< i<r, (e, 0)}
0 o I~ r k20 7
/ 1 1
xwi(e, )0 ()] - T

Kwi(e, £) =X k2wi(e, £) —
2

x sin(k@(r, e, £)) sin(kO(7, e, £))

2o [ [0 dr
<5127 A -
0 o 12’

[o¢]
x ( > // dttdelyy o< izr. e 0)10 ()
k=

_ID

1 1
2wi(e, £) — A k2wi(e, €) —

)

Using (4.8) and (4.12), we may continue this estimate for suitable constants
C,C >0as

"e dr dr
19x — Qslifs <2567 AZ/ / )

x <Z/f dBdelis<cmin2, 72y 1Q'(0)]
k=175
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1 1 )2
4.17)

wie, ) — kzwz(e B) —

rQ rQ d d
gzsész%/ / s
0 0 r- r

oo

(S oo
k=1 D

A=\ )2
(K22 (e, B) — MK e, B) =N /)

For k>2, we know from Remark 4.2(a) that k’w?(e, 3) — A\ > k*6%/2 and
wi(e, B) — A > k262 /2 are verified. If k = 1, then always wi(e, ) — A > 67 — A
and wj (e, B) — b\ > 5]2 X hold. Thus, we arrive at

"o dr dr
19y — Qsllig < CIA — A|/ / = = i’

r2 p2
x(él“Zk%/% IQ’(e)Ide>2
— Ug(0)
e NP / /w dr di ,
(03 — M2(67 — V)2 N

2
X </ |0/ (e)] de)
Ug(0)
<C

(1 n ! ) A= X2
B (62 — N)2(8% — N)? ’

and this yields the claim. (f) According to (b—d), Q) is a symmetric and positive
Hilbert-Schmidt operator, which is in particular compact. Thus, the assertions up
to and including (4.7) are a consequence of the spectral theory for compact posi-
tive self-adjoint operators; see [35, Section 6]. Concerning the j (\), we have the
characterization

i (A\) = max { min  (Q\W, W) : S C Lf is a subspace of dimension k}

wes, Wi =1

(4.18)

according to the Courant max-min principle. In the present situation, this follows

from the spectral decomposition theorem for symmetric and compact operators. By
(d), we obtain for X > ), both in ] — o0, 6%[ and ¥ € L%,

wi [Q'(e)]
(O; ¥, W) —647r22//d€£d o —ay

k#0

2

f W (r) sin(k@) dr
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> 647r22/fd€£d z;|g(€z\|

k0
= (QW, ¥), (4.19)

2

/ W (r) sin(kf) dr

where ry = ry(e, £) and 0 = 6(r, e, £). Hence, (4.18) implies that /Lk(j\) > 1 (M)
for all k € N. To establish the local Lipschitz continuity of p(-), note that

[(QAW, W) — (Q; W, W)| < [1Qx — Q5 117,

whence we deduce from (e)and || - || < || - ||yg thatfor ¥ e L2 satisfying Wil <1,
one has
QW W) — (@ ) = C (14 )X
(5% - )\)(5% - A)

Applying (4.18) once more, we arrive at
e = Ml = € (14 L )-A
Hi Hi = (6%—)0(6%—5\) )
which completes the proof. ]

In the following, we are going to derive some more specific properties of the Q,.
See Appendix II, Sect.B.1 below for the function spaces that are being used. Once
again, we understand that |Q’(e)| vanishes outside of K.

Lemmad4.4 If z € Q and ¢(r, py, £) = |Q'(eg)| py¥(r) for ¥ e Lf, then 1 €
ngd’

19150 < po () 1]l (4.20)
and
KT(-=T* =2~y =10'(eg)| pr(Q.W). 4.21)
In particular,
QW =Ur gy =4m / pr (=T* —2) " dv. (4.22)
R3

Moreover, if also 1/;(1’, pr. £) =10 (ep)] p,\i/(r)for some U € L%, then

1 = Dlixo < po©O)* W — T 2. (4.23)

Proof First, note that ¢ is odd in v and has its support in K. Furthermore, due to
Remark B.2(a), Lemma 2.5 and (A.32),
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2 2
113 = 19122

1
sph, —
P 707

1 2
= s dx d
é/|Q/(eQ>| oG, v)I"dx dv

=//|Q’<eg)|p3|wr)|2dxdv
K

:/ dx|\y(r)|2/ dv|Q'(eg)| p?
|x|<rg R3
:/H dx W (r) [ po(r)

x|<rg

< po(0) dx [W (M) < po(0) 1WII7..

lx|<ro
Thus, ¢ € X%, C X{, and accordingly Corollary B.14 yields
KT(-T* -2y
=|Q'(eg)| pr 167;2i Z/f dtldely_( ¢),r, e on) SinUCM#Z))W(L 0).

2,2 _
r k0 V) k*wi(e, €) —z

On the other hand,

/ ry(e,l)
(1, ) = L |Q'(e)| wi (e, £) dr W (r)sin(k0(7, e, £)) (4.24)
™ r_(e,f)

by Lemma B.5. Therefore, we arrive at

, 167
KT =270 =10l pr 3 - [ [ deedety conrcon®)
A 5
sin(k@(r, e, £))
k2w?(e, ) — z

10/ (e)| wie, 0)

r(e,l)
/ dr V() sin(kO(7, e, £))
r_(e,l)

16 To
=10 Z/O 47 W)

k£0

// dbldely (o ty<r i<ri(e, 0))
D

wi(e, £)1Q'(e)|

X —_—
K2wi(e, ) — z
= |Q/(6Q)| pr(Qz\I’)a

sin(kf(r, e, £)) sin(kO(7, e, £))
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and this completes the proof of (4.21), by the definition of Q.. Concerning (4.22),
the first part follows from Cg = |Q'(ep)| pr Ugf (r), see (B.37), and for the second
part, one just has to use Lemma 2.4. Lastly, (4.23) is a direct consequence of (4.20)
and the fact that (15 —)(r, pr, £) =10 (eg)l p,(‘if — W) (r). O

Now, we can make the connection from eigenvalues A < &7 of the self-adjoint
operator
L=-T"—KT: X2 = X0

cf. (1.16) and Corollary B.19, to eigenvalues 1 of Q,.
Theorem 4.5 Let A\ < 02. Then X is an eigenvalue of L if and only if 1 is an eigen-
value of Q). More precisely,

(a) ifue X(z)dd is an eigenfunction of L for the eigenvalue X, then ¥ = U, € L?
forr € [0, rg] is an eigenfunction of Q) for the eigenvalue 1;

(b) if ¥ € L? is an eigenfunction of Q) for the eigenvalue 1, then u = (=72 —
N7 Q (eg)| prY) € ngd is an eigenfunction of L for the eigenvalue \.

Proof First, suppose that Lu = A\u for some u € X2, and u # 0. Then (—72 —
Mu = KT u. Defining o) = (=72 — Nu € ngd, Remark B.18(a) implies that ) =
KT (=T? — X\)~'4. Since Kg = |Q'(e0)| pr Uéf,(r) by (B.37), we can put

V() = ’/T(—’TZ—)\)*M;‘)(V) =Ur,(r)

forr € [0, rg]toobtain ) = |Q'(ep)| p, ¥ (r). Then ¥ # 0, as otherwise ) = 0 and
u = 0. Next, we are going to verify that ¥ € L2. Using (B.40) from Lemma B.15
and Lemma B.8(c), we get

1wl = fR NUF gy (P dx
- 47r<ICT(—T2 N, (T - )\)*11/))

=4n(, (=T* = N ")y
— 47T((—T2 — )\)u, M)XU
= 4n([Tullzo — A llull3o)-

X0

In particular, Lemma B.8(a) implies ||‘ll||i2 < 47r||Tu||§0 < 47TA% ||u||§(. < 00, SO
that indeed W € L2. Thus, we deduce from Lemma 4.4 that

1Q'(e0)| pr(Q\W) = KT (=T = N) ' = ¢ = |Q'(e0)| pr ¥,
and consequently O\W = W,

Conversely, suppose that Q)W = W is verified for some W € L? and W # 0.
According to Remark 4.2(b), W has its support in [0, rp]. Defining ¢ = |Q’(ep)
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| pr¥ (r), we obtain ¢ € X%, from Lemma 4.4. As a consequence, u = (=72 —
Ny e Xodd. Also u # 0, since otherwise ¢ = 0 and ¥ = 0. From Lemma 4.4,
we finally get

(=T = Nu =1 =[0Q'(eg)| p, ¥V = |Q'(eg)| pr (W)
=KT(-T* - )" =KTu,

sothat Lu = —T%u — KTu = \u. O

Lemma 4.6 The following assertions hold.

(a) To V¥ € Lf we associate the function Y(r, pr, £) = |Q'(eg)| pr¥(r). If z € Q,
then

1
Ry
Qv w)=eirt Y [[aeede me e or

k20 7p
(4.25)
(b) LetV¥ e Lf be given and supposethat F (r) = F(0) + f(; W(s)dsforr € [0,rp]
as well as g = —| Q' (eg)|(F — Fy), where F is the zero’th Fourier coefficient
of F. Then QoW = U, and furthermore

(QoW, W) 477// dx dv |g|2=4w/ 10/ (e)| (F — Fy)* dx dv.
10(eg)l |

(4.26)
(c) Let ¥ € Lf be given and suppose that F(r) = F(0) + for Y(s)ds for r €
[0, rol. Defineu = —T ' (1Q'(eg)|(F — Fy)). Then u € ngd and

1
(Lu )y = — ((Q%, ¥) = QoW I} ). (4.27)

Proof (a) The relation (4.25) follows from Lemma 4.3(d) and (4.24).

(b) Owing to Lemma B.9, we have g € X!, as well as Tg = — for ¢ as in
(a). In addition, go = 0 by (B.24), so that g € Xé. Thus, Lemma B.13(c) yields
~T'Y=g—g =g

Next, recall that ¢ is odd in v and [|9|xo < pQ(O)l/2 W2 < oo by (4.20),
which means that ¢ € X%, C X{. As a consequence, 7 (—72)" W=-—T =g
by Lemma B.13(e). Hence, if we take z = 0 € Q2 in (4.22) of Lemma 4.4, then we
get

Q¥ =Ur g1y = Uy

To verify (4.26), note first that i kw; g = — fork € Z. Applying (B.4) from Remark
B.2(a), we obtain
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dx dv
2 =167 //dum 2
//| > 0eg) &

k#0 “py
= 167° //dld [ |?
”g |Q<Q>| k%ﬂ '
= 167° //dd£
T ; e |Q( Q)|k2 3|’(/}k|

where we have used that % = wj owing to (A.18). Thus, the claim follow from (a)
for z = 0. (¢) We continue to use the notation and the observations from (b). Since
g€ X}, wehaveu =T 'g € X2. Asalso g € X\, and 7! reverses the parity by
Remark B.18, we get u € X> cdd- Accordlngly, we deduce from (B.44) in Corollary
B.19 that

(Lu, u)xo = [|Tull%0 — (KT u, u)xo.

Now Tu = T7 'g = g due to Lemma B.13(d), so that

1
—(QV¥, W)

2 2 2 _
ITullyo =gl = N8l | ()= -

1
sph, —+
P 107

by Remark B.2(a) and (4.26). Furthermore, using (B.40) from Lemma B.15 in con-
junction with (b), it follows that

(IC’Tu,u)Xo: / U, I dx =1 |U| dx

= 4— IQo\Ifl dx = — IIQo‘lflle,

Altogether, this yields (4.27). U

Lemma 4.7 Let p; :] — oo, 6%[ — 10, oo[ be defined as in Lemma 4.3(f). Then

(a) 0 < (0) < 1.
(b) If A\ < (5% and X\ € [0, \y], or Ay = (5% and X € [0, \,[= [O, 612[, then py(\) < 1.
(c) For X € [0, 512[, let W), € L? denote a normalized eigenfunction of Q) for i (\).
Define (. py, 0) = |Q'(e)| prWA(r) € X0y and gy = (=T? — Nl €
ngd. Then
p1(A) =47 (Py, gx) xo

and
Lgy = (1 — pi(A)Yx + Ag,

as well as .
(Lgr, 80 o = —— (N — 1 (N) + Allgall5o-
47
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(d) The function i :] — 00, 512[ — 10, ool is convex.

(e) We have
"o rre dr dr
pi(A) < 16#(/ / Pl Z// dtldely (o 0)<r 7<r, (e, 0)
o Jo k0 5

wi(e, £) 10 (e)|
k2wi(e, £) — A

2\ 172
sin(k0(r, e, £)) sin(k0(7, e, £)) ) .
Proof (a) Clearly 1(0) > 0, since otherwise ||Qp|l =0, and thus Qy = 0. To

show that 11(0) < 1, let W € L? be given. Define F(r) = for W(s)ds as well as
u=-T"10Q'(eg)|(F — Fy)). Then u € X2, and

1
0= Ml = (Lu )y = 2 ((Qow. %) — 1Q0WI1;) (4.28)
by (1.20) and (4.27) from Lemma 4.6. As a consequence,
QoW 12, < (QoW. W) < Q0¥ [1W]l,

implies that 1 (0) = ||Qoll < 1. Lastly, suppose that 1;(0) = 1. Since p;(0) is an
eigenvalue, we have QyW = W for some W = W (r) # O such that ¥ € Lf; Remark
4.2(b) implies that ¥ has its support in [0, r¢]. For the corresponding u, we deduce
u = 0 from (4.28). Therefore, (B.24), Lemma B.13(d) and Lemma B.9(b) lead to

0="T%u=-T"T"'(1Q'(ep)|(F — Fy))
= -T(1Q (eQ)|(F — Fp)) = —|Q'(e)| p; ¥,

which isimpossible. (b) Recall from Lemma 3.18 that A, < Jf. Thus, if we fix Ain one
of the two cases: (i) A, < 07 and A € [0, A\ ]; or (ii) A, = 67 and A € [0, \.[= [0, 63,
then \ € [0, 512[. Let W, € L? denote a normalized eigenfunction for s (\), i.e., we
have Q W) = w1 (VW) and Wyl = 1. For ¢ (r, p,, £) = [Q'(eg)| prWa(r), we
get i, € ngd, cf. the proof of Lemma 4.6(a). Thus, g\ = (=72 — N~ € ngd.
Using (4.21) from Lemma 4.4, we calculate

KTgy=KT(—T*—=N""9\ = Q' (e0)| p(Q\W))
= 11N Q' (e)| pr¥s = (M.

In addition,
T?g\ = (T>+ N)gr — Agr = — ) — Ag).

This yields
Lgy=—T"g\—KTgr= (1 — i (\)x + Aga (4.29)
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hence in particular

(Lgxr, 83 = (L&x, g\ xo = (1 — (V) (¢, g1)xo + Allgallo- (4.30)
Thus, by the Antonov stability estimate, Theorem 1.2,

Allgallko < (1= 1 (N) @, g2 x0 + Allgall3os

so that
0 < = Vllgallzo < (1= (V) @, g2 xo- (4.31)

Now, (B.26) in Corollary B.10 yields

(hx, 8\ x0 = (U, (=T = NP yo = (=T = N) 'y, 1) xo

_ 1g-3 1 | (I, O
= 167 gé/ dldee C@] B O - N (4.32)

and in particular (1), g\)yo > 0, as otherwise ¥, = 0 and consequently ¥y = 0,
which is impossible. Hence, (4.31) shows that p1(\) < 1.
(c) Note that due to Lemma 4.6(a),

i) = Nl(/\)”"p)\”ig = {1 (W)W, W) = ()W), )

1 W) (1, O
= 647" //de k
" % L Core 010@] Ruie.t) — X
— 6474 1 (W), O
= 641 Z/fdudl Tl Pt Do

k£0 ¥y

and therefore the first claim follows by comparing to (4.32). The other relations are
due to (4.29) and (4.30). (d) If A €] — o0, 5%[ and ¥ € Lf, then

d2
—5 (AW, W) = (QW, W)

d\?
_ ’ wie, £)|Q'(e)|
= 12877 // detde @ 3}

k£0 )y

X

ry(e, £) 2
/ W (r)sin(kO(r, e, £)) dr
r_(e, t)

>0

by (4.6) from Lemma 4.3(d). Thus, every function ] — 00, §7[ > A > (Q\W, W) is
convex. As a consequence of (4.7), also 1 (A) = sup {({(Q\W, W) : Wil < 1} is



4.1 The Operator Q, 69
convex. (e) Here, we use

) = 11ullsaz) = 1L lus

and the fact that

ro ro
||QA||%{S=167¥/ / 27 | Ka(r, P dr dF

er d
= 25672 / / rar Z//dﬁEdEI _(e, O)<r,F<ri (e, )}

k#0 “p
wie, 010" o ?
X W sin(k@(r, e, £)) sin(kO(7, e, £)) | ,

cf. [35, Prop. 6.36] and (4.16). O

According to Lemma 4.3(f), the monotone limits

per = lim () = sup (V) : A € [0, 811} € [1(0), o0]

do exist. Of particular importance to us will be the number

po = pay =l (V) = sup (V) < A € 10, 81} € [11(0), 00].  (4.33)

Remark 4.8 If \, = 5]2, then p, < 1. This follows from Lemma 4.7(b). &

The next result will use assumption (w;-3). If w; attains its minimum at an interior
point (e, B) € 5, then we are in the situation of (w;-2), and Corollary 4.16 below
applies. Otherwise, since wj is continuous on D, its minimum is attained on the
boundary 0D, which consists of three parts: the left side

{(e,0) : e € [Ug(0), eol},

the lower boundary curve

{(e. B) s e = emin(B), B € [0, B}

and the upper line

{(e0, #) : B € [0, B:1}. (4.34)

Corollary 3.16 shows that the minimum can only be attained on this upper line (4.34)
ata point (eo, B), and (w;-3) roughly concerns the case where both a“‘ L (eo, B) #0

and (eo, ,8) # 0, which is reasonable to expect for a minimum on the boundary.
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Lemma 4.9 Suppose that (w1-3) is satisfied. Then

Q(szz lim Q)\ (435)
S

does exist in the Hilbert-Schmidt norm || - ||gs of L%. In particular, the kernel of the
symmetric and positive Hilbert-Schmidt operator Q(;]z is given by

~ 4
Kiih) = o Y [[ decdet, coeraniny

k0’55

% sin(k0(r, e, £)) sin(kO(F, e, £)),
1 ’ 1

and iy = || Qaf | < co. More generally, the k’th eigenvalue ofga% is fs . Fork e N,
the functions
() 11— 00,811 — 10, oo

are monotone increasing, locally Lipschitz continuous on ] — 0o, 82| and continuous
on ] — oo, 512], if we set /Mc(512) = s k. In particular, the py. are differentiable a.e.
Furthermore, |11 : | — 00, 6%] — 10, ool is a convex function.

Proof We need to refine (4.17), from where we know that

e e dr di [
n@—%ms%wmqll-ﬁﬁ(zfﬂwwm@mmw
k=1 D

1 1

Rwi(e, ) =X K2wi(e, ) — A

X

;

for A, A< 5% and a suitable constant C > 0. Thus
19x — Qslifs
e e dr di [ ,
< 512w2A%/0 /0 == (Zf/ dfdel;_¢,7 10 ()
k=2 "y

5 A=Al )2
(K2wi(e, B) — N (K2wi(e, B) — M)

"o rre dyr dr ’
+5127r2A%/0 /O 33 (// dfdel i ¢,q Q')
D

1 1 2
* ‘wz(e B =X Wie ﬁ)—:\))
1\= 1\,
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<o [T [redrdi (N1 2
242 -8 2
< 819272A2578 1A = )| /0 /0 r—”—z(;ﬁ//dﬁdel{ﬁimﬂg(en)
— D

re rre dr dr ,
+10247r2A%/ / = (//dﬁdel{dsér;}lQ (e)|
0 0 o
1

d

1 2
Wie, B)— A wie, f) -7 D

o o dr di ,
+10247r2A§/0 /0 53 (//dﬁdelmfé,,} Q' (e)l
D

1 1 2
x ‘ 2 Y T2 _ 62 ‘)
wl(ev 5) A wl(e’ ﬁ) 1
r r e 2
SCM—W/Qderdf(/ IQ’(e)|de> +CTON) +CTN)
0 Jo 0(0)

U,

<CIA=AP+CTN)+CTN), (4.36)

where

ro rro dr dr 1 1 2
T\ = — — dBdel,,_s, . — .
@ A A ﬂﬂ(é/ﬁ‘”%m}@wm—A ﬁmm—ﬁD

We assert that

lim T(\) =0, (4.37)
A—>02—

and to establish this claim, we are going to use Lebesgue’s dominated convergence

in [3° [ dr dF together with the condition

wile. B) — &1l = cil(e. ) — (eo. D). (e, 3) € D, (4.38)

from (w;-3), where (e, B) e D satisfies wj (e, ﬁA) = ¢;. Let r, ¥ > 0 be fixed and

define
1 1

T(r,7) = // dpde l[ﬂgérf} w]Z(e’ 3) — - le(e,ﬂ) — (512 .
D

If (e, B) € D aresuchthat§ < Crrand (e, B) # (e, B),thenwl(e, B)—6>a>0
for a = a(e, () by (4.38), and accordingly

1 1 _ =2
wie,B) =X wie,®) =861 (wie, B) — N(Wwi(e, B) — 63
<6220 =N =0, A— §—,
(4.39)
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for this (e, 3). On the other hand,

1 1 » 1

Wie. f)— A wie.f)— o =2 wi(e, ) —di

1
<25t —————  (4.40)

(e, B) — (eo, )]

by (4.38). Next, we are going to bound

1
I(R)=//dﬁde1;5 - R>0O. (4.41)
. e )~ (eo. B

Case 1: 3 > 0.If 3 < R < 3/2, then |(e, B) — (eo, 3)| = |3 — B| > (3/2 and hence
I(R) < 2371(60 —Up)R, R=< 3/2 4.42)

IfR > /5’ /2, then we always have

ﬂ* [0} 1 ﬂ* —;9 ey— UQ (0) 1
I(R) < / dg de —— < / dx2/ dx; ———
0 U (e —ep, B—P) B 0 [(x1, x2)]

B eO*UQ(O) 1
< / dxzf dx) ——— < C. (4.43)
—B. 0 [(xr, x2)|

Case 2: B = 0. Then

R ey 1 R eq UQ(()) 1
I(R)g/ dp de—f/ dx2/ dxy ————
0 ve  lle—eo, DI T Jo 0 |(x1, x2)]

R x1=e9—Ug(0)
:f dx21n<x1+,/x12+x§) e
0

R
- / dxs [m (eo — Up(0) + \/(eo — Up(0))2 + xg) “In x2:|
0
<CR—R(InR—1)<CR—RInR. (4.44)

X1:0

Thus, if we summarize (4.39) and (4.42)—(4.44) for R = Crr, it follows that
T7(r,7) > 0as A — 6%— for all r,7 > 0. Hence, to complete the proof of (4.37),
we need to obtain an integrable majorant. For, using (4.40), we can bound

¢dr dr 1 1 ’
I(/\) / / }”2 (// dﬁde 1{3<ér? w%(e, /6)) Y B w%(e,ﬂ) _ 5% })

"o dr dr "o dr dr
/ / —T(r 7)? <C/ / o I(Crr)
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Case 1: ﬁA > 0. Let £ = min{ry, %} Ifr <£orr <§é, then Cri < CA’EArQ < 3/2,
ro

and thus we can apply (4.42) in this case, as well as (4.43) in the opposite case.

Therefore, we split the integral to obtain

ro fro 1 ~
I\ < C/ / dr di Vy<: or i<ty 5= 1(Cri)’
0 0 r<r
c [ [ arar1 L1y
+ /0 /0' rar {r>éandf>§}ﬁ ( rr)
o fro 1
<C drdily<:orjz 7
= \/0 /0 rar {r<é or < }r2f2 rr
ro rro 1
C drdrl, _. P s
+ /0 /0 rarly-zand -2 25

ro ro
SC/ / drdr,
o Jo

which shows that a suitably large constant provides an integrable majorant. Case 2:
6 = 0. By (4.44), we get

ro ro 7 N
I\ <C / / dr dr 1(Cri)?
0 0

r2 72

"o (re dr dr A A A _ o
<C — (CCrr — CrriIn(Crr))
o Jo

22
ro fro n
5c[ / (1 — In(Cri))*dr dr
0 0

ro ro
5c/ / 1+ |Inr)® + | In7?) dr dF.
0 0

Since 1 + | Inr|?> 4+ |In7|? is integrable on [0, rol x [0, rol, we have found an inte-
grable majorant also in this case. Altogether, we have shown that (4.37) is verified.
At the same time, this yields limjs_, P T(\) =0, and going back to (4.36), we
deduce that (4.35) holds for an appropriate Hilbert-Schmidt operator Qs on L2
Since || - ll5z2) < Il - lns» (4.35) in particular implies that Qg = lim,_,_ Q) in
B(Lf). Recalling from (4.7) that p;(\) = || QAHB(L;), we can use (4.33) to get

M = AEI}IL“‘(A) = ,\EI;%, “Q)\”B(Lf) = ||Qaf||B(L3),

as claimed.
Let k1 > Ky > ... — 0 denote the eigenvalues (listed according to their multi-
plicities) of the symmetric and positive Hilbert-Schmidt operator Q(;%. Then

Kr = max { min  (QpW, W) : S C Lf is a subspace of dimension k}
wes, Wl =11
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by the Courant max-min principle. Passing to the limit limy_, 52— in (4.36), we derive

19x = Qs llyg < CIX =81+ CT (N2,

where limAﬁ(;]z, T(A) = 0. Thus, if ¥ € Lf is such that || W 22 = 1, then we have

{QUW, W) — (Qp W, W)| < Q) — Qi ll,,o < CIA =37+ CT (W',
Since the yi; (A) are also characterized by the Courant max-min principle, see (4.18),
it follows that

lueN) = kil < CIA =671+ CT (V'

and accordingly fu,x = limy_, 52 pe(A) = Ky.
The next assertion is due to the definition of p, ; and Lemma 4.3(f), whereas the
convexity of p; on ] — oo, 512] is a consequence of Lemma 4.7(d). ([

Corollary 4.10 Suppose that (w;-3) is satisfied.

(a) There is a constant C > 0 such that for every A € [0, 612] and r, 7 €10, rg], we
have

C
Ka(n )] <
-

(14 Inr]).

(b) For X\ € [0, 6% [, let W) € Lf denote a normalized eigenfunction of Q) for pi(N).
Then there is a constant C > 0 such that for every \ € [0, 5%[ and r €]0,rp], we
have

(W) = C(L+ [Inr]) [Wallz2-

(c) For Wy as in (b), define Y, (r, pr, £) = |Q'(eg)| py¥\(r) € ngd. Then there is a
constant C > 0 such that for every X € [0, 6?[ and k € Z, we have

W, 01 < C1O" @ Wall2, (I, £) € D,
where (1)), are the Fourier coefficients of 1.

Proof (a) From (4.14) and similar to the argument following (4.9), we obtain with
min{r?, 72} < r? and using (w;-3)

Z Sk,()(r, F, )\)‘

k£0

[K\(r, 7)| —4
ril = —=
A 272

c 1
Loy ier dfdelg<cry 57—
272 H0=rF=ro) Z// Bdelip=cr k2wie, B) — A

k#0 Y5

C 2
o) Lio<rizrg) // dfdeli<c, e

k1=2 "5

IA

IA
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c 1
+_~1 <r,r<r, //d d 1/< P2y
272 Mosrizr) | fdelis<cr e B =

C C 1
<_~1 <rF<r r2+_~1 <rr<r //d del[< 2} TH . o
= y2p2 0=risro) 22 0=risrol g p =cr) wie, B) — 07

C

C 1
= Lio<ri<ro) + 5= Lo<ri<ry) // dBdelig<cry ————5—.
2 coore o (e, ) = (e0. D)

IA

By means of the function I from (4.41), this can be expressed as

C

- C A
[Kx(r,P)| < ) Lio<ri<ry) + Fors) Lio<ri<ry) 1(Cr?)

for certain constants C, C > 0 that only depend on Q. Once again, we distinguish
two cases. Case 1: [? >0.Ifr? < % then we can apply (4.42) to get

- C
[Kx(r, F)] < = Lo<ri<ry)-

On the other hand, if 2 > % then (4.43) leads to

Cc

C
K\(r, 7)| < = ligey — 1 ; <=
[Ka(r )] = 72 0=rF=ro} + F2F2 (2 2<r<rg, 0<i<rg) = F2

Lio<rizro}-
Case 2: B = 0. Here, we invoke (4.44) to deduce that
- c Cc Ao Ao c
|K\(r,7)| < ﬁ l{OSr’;SrQ] + m 1{057,;57Q} [CreIn(Cro)| < ;7 1{057,;57Q} (14 |Inr)).

Hence, in any case, we arrive at the bound

C
KA )] < =
E

(14 |Inr)),

as desired. (b) Using (a), we obtain from (4.15) and Remark 4.2(b)

L O WA = i (MIWAE)] = (QuWa) (D] = 4

ro
/ 72 K\(r, F) U\ (F) dF
0
ro
scaﬂmm/|%®wﬂ
0

so that ro
(W) < Ci(1 +|In rl)/ W\ ()| dF (4.45)
0
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for a certain constant C, > 0 that only depends on Q. Fix a, €]0, ro[ such that

o+ |Inr)dr < ﬁ.Then

IA

Ay ax ro B 1 ro B B
/ W)l dr C*/ a1+ Ilnrl)dr/ WA dr < E/ W) dr
0 0 0 0

1 [* o1 fTe I
—/ I‘I’A(r)ldr-i-—/ [Wa(r)|dr
2 0 2 a,

entails [, |W)(F)|dF < [/ |W\(F)| dF. Going back to (4.45), it follows by means
of Holder’s inequality that

WA = Ce(1 + \lnrl)[/o ’ I\I/A(f)ldf-i-/ ¢ I‘IJA(f)\df] =2C(1 4+ |1nr\)/ ¢ WA drF

1/2
20, ro o ZC*rQ

= a +|lnr|)f FIWA(P)|dr < A+ Inr) 1wl 2,
ax as T s r

from where a suitable C > 0 can be read off. (c) Owing to (4.24), Theorem 3.5 and
(b), we have

ry(e,f)

% Q' (e)| wi (e, E)‘ / W, (7) sin(kO(7, e, £)) dr

_(e,l)

[, O]

IA

ro
CIQ’(e)I/ |WA ()| dF
0
ro
<C IQ’(e)I(/O (I+ |1n7|)df>|I‘IJAIILg < ClQ' @ ¥l L2,

which completes the proof. (]

Corollary 4.11 Suppose that (w,-3) is satisfied. Let (\;) C [0, 5%[ be such that
lim; o Aj = 5%. ForjeN, letW; e L? denote a normalized eigenfunction of 0,
Sfor 1 (). Furthermore, define ;(r, p,, £) = |Q'(eg)| p,V;(r) € ngd. Then there
is a subsequence j' — 00 so that

jl—oo
does exist in L* and
ty = lim '(/}j’
j'—00

does exist in X°, where Yu(r, pr, €) = 1Q'(eg)| pr Vi (r). In addition, ||‘-IJ*||L3 =1
and QpWV, = p, W, as well as j1,. = || Q|-

Proof Recall from (4.33) and Lemma 4.9 that p, € [u,(0), oo[. For j, k € N, we
can estimate
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el Wi = Wil 2 < (e — pn QUG 1 + 190, W5 — ka‘kaL;

+ (e — ) Wil 2

= (e = D) + (e = 1 AD) + 1(Qy; — L) Wil
T1Qs Y — Qi Wil + 1(Qs — QI Will

= (e = QD) + (e = 1 AD) + 19y, = Lipll5 )
T1Qs Y — Qi Wil + 195 — il

< (e = (X)) + (s — 1 (A)) + 1R — Qi ll
Qs — Qullyg + 195V — LaWill - (4.46)

According to Lemma 4.9, we have lim,_, 5_ [|Qz — Q,\||HS =0and Qs : L2 — L?
is a Hilbert-Schmidt operator, and hence compact. Thus, since ||¥;]|,, =1, the

set {thf V;:jeN}C L? is relatively compact. Therefore, there is a subsequence

j' = o0 and a function ¥ € L2 so that lim . QpW; = ¥ in L2. From (4.46),
we deduce that along the subsequence

pallWjr = Wil 2 < (e = (X)) + (e — 1 (i)
195 = Ol + 125 — Quyl
+||Q5%\IJ]’/—Q<;12\IJ](/”LZ —)O, j/,k/—> Q0.

As a consequence, ¥, = lim_, o, W does exist in Lf. Since
172
1 = ellyo < PO 1W) — Wil 2

by (4.23), also v, = limj._,, 1;» does exist in X0, where ¢, (r, p,, £) = |Q'(ep)]
prV.(r) a.e. Lastly,
195 W, = a2 = 195 (% = Wil . + Qg — Q)W
+ (e = Q) Wl 2 + el — Wl 2
< 2 |W = Wil + 195 = oyl
+ (s — 1)) = 0, j' — oo,

implies that Q(;]z W, = p, W, O

The following criterion is useful for proving that 47 is an eigenvalue of L in the
case where p, = 1.

Lemma 4.12 Suppose that (w,-3) is satisfied and that i, = 1. Let (A;) C [0, 5%[ be
such that limj_, o \j = 82. For j €N, let v; e L? denote a normalized eigenfunc-
tion of Qy, for py(X)). Furthermore, define 1 (r, p,, £) = |Q'(eg)| p,V;(r) € ngd
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andg; = (=T> = \))""p; € X2 If (g)) € X* = prh "\ (K) is bounded, then &}
SP: 7o,
is an eigenvalue of L.

Proof From (4.21), we deduce

KTg; =KT (=T — X)) "4;=|Q(e0)| p-(Qx,¥))
= (A Q' (el pr¥; = i (X)Y;. (4.47)

Since —72g i =1%j 4+ Ajgj, using Corollary B.19, this implies that for every odd
function & € X%, we have

(gjs Lh)xo = (ng, h)Xo = (_ngjvh)x() - (ICngvh)XU
=@+ Ajgj M) yo — 1 (X)), )y
= X85 Mo + (1 = iAW, h) yo. (4.48)

Next, from (4.20), we get [9jllyo < po(O)'/? W], < po(0)'/%.  Since
lim ;o0 p11(Aj) = ps = 1, this yields in particular that

ilin(}o[(l — M) @), h) 3] = 0. (4.49)

By assumption, (g;) C X° is bounded. Hence, passing to a subsequence (that is
not relabeled), we may assume that g; — g, weakly in X% as j — oo for some
function g, € X%,. Suppose that g, = 0. Then g; — 0 weakly in X° implies that
KTg; — 0 weakly in X° as j — 0o, by Lemma B.15(d). Due to (4.47), this yields
; — 0 weakly in X% as j — oo. On the other hand, by Corollary 4.11, we may
pass to a subsequence j' — 0o so that W, = lim;_,o, ¥} does exist in L? and
Yy =limj_, o 1) does exist in X° as strong limits; the functions are linked via
Yo (r, pr, €) = |1Q'(eg)| pr Wy (r). But then we must have 1, = 0 and accordingly
W, = 0, which however contradicts ||W,|| =1 cf. Corollary 4.11. As a conse-
quence, it follows that g, € ngd satisfies g, #~ 0. Passing to the limit j — oo
in (4.48) and using (4.49), we moreover infer that (g., Lh)xo = 6f(g*, h)xo for
every odd function 7 € X%. From Lemma C.11, we conclude that g, € ngd and
Lg, = 67g., which completes the proof.

4.2 Relating p, to the Fact That )\, is an Eigenvalue of L

Theorem 4.13 We have
e >1 <= A < 5%.

In this case, 11 (\y) = 1 and )\, is an eigenvalue of L.



4.2 Relating p, to the Fact That A, is an Eigenvalue of L 79

Proof 1f pu, > 1, then \, = 6% is impossible by Remark 4.8, so that we must have
A < 6%. Conversely, suppose that A\, < 6% holds. Then, according to Theorem C.8,
A, is an eigenvalue of L. Let u, € X2, be an eigenfunction of L for the eigenvalue
Ay Using Theorem 4.5(a), it follows that W, = UL, € L} for r € [0, rg] is an
eigenfunction of Q) for the eigenvalue 1. Since p; (\,) is the largest eigenvalue of
Q,,,we get (11 (M) > 1. On the other hand, £4; (A\,) < 1 by Lemma 4.7(b), and hence
(1 (Ay) = 1. It remains to show that y, > 1. Suppose that on the contrary p, < 1is
satisfied. For A € [\, 5%[, the monotonicity of ) thenyields 1 = p1(\y) < pu1(A) <
s < 1, whichmeans that ;11 (\) = 1isconstantfor A € [\,, (5%[. Take A\, < A< )\<
5%. and let W5 denote a normalized eigenfunction for (5\). Then, by (4.19) and (4.7),

L= (V) = (Q5¥5, W5) < (QuW5, W3) < [ Qall 1W5ll7; = ) =1,

which means that (Q,\W5, ¥;5) =1 for all A\, < A< )\< 512. Differentiating this
relation w.r. to A at a fixed Ay €], &2[, it follows from (4.6) that

0 = (Q),¥;, ¥y)

o wile, 0)|Q'(¢)]
= 647 Zf/ dttde B ) — o)’

k#0 “py

ry(e, £) 2
/ Vs (r) sin(k0(r, e, £)) dr
r_(e, £)

for all \ € [As, Aol. Defining o5 (r, p,, £) = |Q'(eg)| p,¥5(r) € X(O’dd, then (4.24)
implies that (1/5) <=0 for k € Z, so that ¢; = 0 and in turn W5 = 0, which however
is impossible. (]

Theorem 4.14 Suppose that (wy-1) is satisfied. If ju, < 1, then A, = 8% and this is
not an eigenvalue of L.

Proof The approach is inspired by [20, Section 2]. Since A, < 47 by Lemma 3.18,
s« < 1 together with Theorem 4.13 implies A\, = 7. Now suppose on the contrary
that there is a function u, € X2, such that ||lu.llyo = 1 and Lu, = 63u,. If we
define W, (r) = U’Tu*(r) for r € [0, 7¢], then W, € Lf and (B.37) yields K7 u, =
|Q"(eo)| pr Uz, (r) = Q' (eg)| pr W«(r). Hence, fora > 0 and b € R, we get

Since z = 07 — a + ib € Q, it follows from (4.21) that

10 (e)| pr(Qsr—aripWs) = KT (=T> — (67 —a+ib) " (KT u,)
= KTu, — (a —ib) KT (=T* — (6} —a+ib)) " u,
=10'(eg)| p; V.
—(@—ib) |0 (e)| Pr U122 —ayity)-tu,

and therefore,
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Q(;%—(H-ib"y* = \IJ* - (a - lb) U';’(_TZ_((;IZ_Q_H‘;)))—IM*‘ (450)
We claim thatif a = a(¢) — 0" and b = b(¢) — 0 as € — 0, then
@ =i Ur 2 aripyn, = 00 €= 0%, (4.51)

in L%. For, we can invoke Corollary B.16 as well as (B.25) to deduce

2
(=T2—(82—a+ib)~'u, I 12

< 167200 (0) (a® + b*) (=T = (62 — a + i) "u, 0

_ 5 2, 42 1 ()i (I, )]
= 2567 (0) (a® + b?) Z// dldee O PR T0 - & —a DT

@ — ib) Uy

k#0715
1 ()i (1, O
= 2567 g (0) (a® + b* f/dldw k .
TreO (@t )g | 0@ K231 0) — & + a1 b2

If |k| > 2, then k*wi(l, €) — 6 +a > (k* — 1)67 > 367. Thus,

(@ — ib) U/T(szf((SffaHb))"u* ”iz
< 217674 po(0) (@® + b2 [l %0
2 b2
+ 51270 (0) //dldu @t
D

(Wi(I,€) — 6 4+ a)* + b2

o1(1, £)

for 1 (1, £) = “lhﬂ e L'(D).Foralmostall (1, £) € D, we know from hypoth-

Q'(e)

esis (wy-1) that wy (I, £) # 01, i.e., wi (I, £) > §,. For such an (/, £), we have

a’+b? a’®+b?

= 0, 0.
Q1O —C P+~ @O -2+ 7

Since always
a’ +b? -
Wi(I,0) =6 +a)2 +b* ~

’

it follows by using Lebesgue’s dominated convergence theorem that indeed (4.51) is
verified. Going back to (4.50), this entails that

lim Qp_yip W = Wi i L2 (4.52)



4.2 Relating p, to the Fact That A, is an Eigenvalue of L 81

Next, we are going to compare Qs _, ;5 to Qs2_,. Here, we find

|(Q6127a+iblll*1 \I}*) - <Q(5]27a\11*’ \I/*)| = |((Q(527a+ib - Q(52 a)\lj*v \II*H

= 6477 fodude
k#£0 V)
[ wi(e, £) Q' (e)] _wile, O ]Q'(e)] ]
202 (e, £) — (03 —a —ib)  Kwi(e, £) — (07 — a)

ro ro -
x / / dr dF U (1) 0o Lo, trcr.rrio. o SIn(kO(r e, ) sin(kO(F, e, ) .
0 0

cf. Lemma 4.3(d) and the definition of Q.. Using (4.8), (4.12) and similar arguments
as in the proof of Lemma 4.3(a), we obtain

|<Q62—a+ibqj*’ W) — (Q52_a\y*, W)l

1
= CW/;// dtede|Q'(e)] k2w (e, £) — (6% — a — ib)| k2w (e, €) — (6% — a)|

ro rro )
< [ [ ararie.one.@neen.
0 0
Now

K*wie, £) — (67 —a —ib)|* = (Kwi(e, &) — 6; +a)’ +b* = a°,
KPwile. ) = (0F — a)* = Kwie, O) = 0 +a)* = @,

so that

Q52 ativ W Ws) — (L W, Wil

|b| Z/ / dr dr |V, (r)| |V, (r)|rr<f ' |Q’(e)|de>
Up(0)

k#0

< —2 1,12,

So if we take for instance b(e) = &> and a(e) = ¢, it follows that

lg% |(Q61275+i53q}*a \Ij*> - <Qz5]275\y*7 kIJ*H =0.

Using also (4.52), we conclude that

lim (Qp_. ., Ws) = | WallZ;
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Asa consequence,

IWall7, = lim (Qp_ Wy, W) < limsup || Qg | 1%
e~ e—>0 "

= limsup 111 (0} — &) W3, < g 10,13,

e—>0

Since 1, < 1, this enforces W, = 0 and hence K7 u, = 0. Therefore, —7 2u,, =
~T?u, — KTu, = Lu, = &u,, i.e., 6 is an eigenvalue of —7 > with eigenfunction
u.. However, this contradicts Lemma B.12. |

The next result clarifies the case where p, = 1.
Theorem 4.15 Suppose that (w;-3) is satisfied and that ., = 1. Then \, = 6, and

this is an eigenvalue of L if and only if

”M/l”Lx(]—oo,(Slz[) < o0 (453)

holds.

Proof Since \. < 07 by Lemma 3.18, j1, = 1 together with Theorem 4.13 imply
Ay = 6%. For the actual proof, recall from Lemma 4.3(f) that p;(-) : ] — oo, 5%[ —
10, ool is differentiable a.e., so (4.53) makes sense.

First, we consider the case where 5% is an eigenvalue of L. Let u, € ngd
be such that ||uy|lyo =1 and Lu, = 51214*. If we define W, (r) = U/Tu*(r) for r €
[0,70], then W, € L? and (B.37) implies that K7 u, = |Q'(eg)| pr U/Tu*(r) =
|0/ (e0)| pr Wa(r) =: ¥, € X°,,. For A\ < 07, we have

(=T = Nuw = Luy + KT uy — Mty = Py + (67 — Nt (4.54)

and hence
(w0 = N W) = @i + (67 — Ny, k € Z, (4.55)

for the Fourier coefficients. Since
1 ’ 2 1 2
(s, M*)Xo = (’CTM*, u*)XO = |U']'u*(r)| dx = _”\I"*”LZ
4 JRs 47 v
by (B.40) from Lemma B.15(b), taking the inner product in X° of (4.54) with u,,

we deduce

1
(=T% = Mt ) xo = = W7z + 0F = Vil (4.56)

Next, due to (4.25) from Lemma 4.6, we have

o 1 1
(O\W,, W,) = 647 Z// dtlde G DIO®) Bie D 3

k£0 ¥y

x | ()i (1, O
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Thus, by (B.4), (A.18), Lemma B.8(b) and (4.55) applied twice,

(=T% = Ny, us) xo
o0 o0 1
= 167 /dlf dee —T2 — Nu (1, 0) (), (I, ¢
”Zo i o [ YTk (1, €) ()i (1, 0)

k#0

_ 3 1 2,2 _ 2
= 16 Z// detde s (uwie. ) = N 1wl O]

k£0 Vg

1 I—
- 3 [ —
= 167 2// detde o W 0 w1, D

k#0 “fy
1
+ 1673 (5% — X //dud — ) (I, 02
(6] )%D ¢ e nioE @0l
1
= l167° //dud — (W), ¢
" g e nige
D
(Wi, £) 2 (w1, £)
x (k%uf(e, H_aT O =N K2 (e, 0) — A)
+ (07 = N [l 3o
1
=1 (W, W)
3.0 1 ()i (1, £)
Hlome A);// detde e D@ K*wi(e, £) — A
#0°p
+ 07 = M) sl 3o
Comparing to (4.56), this yields
1 2
ol LAY 72
1
=1 (W, W)
3,0 1 ()i, £)
+ 167 (52 A)%// dttde RO |Q,(€)|(¢*)k(1, 0) Coe b %
D
(4.57)

If we had W, = 0, then also 1, = 0 and consequently (kzwf — 612)(u*)k =0in D
for k # 0 by (4.55). This implies that (u,), = 0 for |k| > 2 and (w; — §;)(u,); =0
in D. Owing to (w;-1), this enforces (u,); = 0 a.e. and therefore u, = 0, which is a
contradiction. In other words, we do know that W, # 0. Hence, by (4.7) and (4.57),
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pi(A) = sup {{QuW, W) = [W]l2 < 1}
1

Z — 5 Q lIJ*, \I/*
v, ||iz( g )
= 5=\ //deed S —
||w ||Lz( );; ‘ ite, Z)IQ(e)I
(L, 0)
X (1/]*)]((17 £) —kzw%(e, 0 — 3

Thus,

T—m) _ 64 //dgd
Zox S 2 ewl(eﬁ)IQ(e)l

2 k0 Vg
(u)i, £)
(L, ) ———
X (1/} )k( )kzw%(e’ 6) —
and upon using (4.55) one more time, we conclude that
L—m) _  64r? Z// Kwie, o) - 1 o O
N AT e €)|Q @ Kl ) —r K
647T f/ 2
= [ (1, O)]
||w*||izk% LIl E)IQ()I .

s
= 4.58
A s (4.58)

for all \ < 5%. Since p; is convex on | — oo, 5%] by Lemma 4.9(d), the difference
quotients
pr(A+h) — (A
h

for & > 0 are monotone increasing in A (and also in h); see [14, p. 13/14]. Let
Ao €] — 00, 5]2[ be a point where p, is differentiable and let 4 > 0. For A\; = Ao — &
and \y = 67 — h, we have \; < )\, whence 1;(6}) = p. = 1 in conjunction with
(4.58) for A = 62 — h leads to

p1(Ao) — pi(Xo —h) (A +h) — pi(Ay)
h B h
~ o+ ) — )
- h
2 2
_ p1(67) /;1(51 h) < 47T2 ||“*||§(0
Wl
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It follows that ||z} ll 2o -0, 1 I|u*|l§(0, which proves (4.53).

D= H‘l’ I|2

To establish the converse, we assume (4.53) to hold, and we are going to ver-
ify that 67 is an eigenvalue of L. For this, we are going to use Lemma 4.12. The
operator family Q. for z € Q = C\ [6?, oo satisfies the assumptions of Lemma
D.1 with A = 512 and H = Lf, by Lemmas 4.3 and 4.9. Hence, there are sequences
Aj /101, e;>0and @ € L7 for A €]\; — ¢, A + €[ such that [|®; 5[], = 1,

N —ejXj+ejeA> @), € L?

isreal analyticfor j € N,and Q\®; y = p1(\)®; rforj e Nand A €]); —¢;, A +
¢;l. Furthermore, p is real analytic in [\; — €;, A; + ¢;[ and satisfies

A = (Q\ P\, @) (4.59)

for X €]A\; — €, Aj + €;[. By decreasing € ; further, if necessary, we may assume that
€j — 0as j — oo.Dueto (4.53), there exists aset N C] — 00, (512[ of measure zero

suchthat § = supy¢)_ 22p\w 111 (M| < 00.Foreach j € N,pickj\j ENj —¢gj, A\j +
€;[\N and define ¥; = <I>j.;\’_. It follows that lim_, o S\j = (512 and |W;|l,, = 1. In
addition, Q;\j\llj = QXXCDJ.’& = ,ul(:\j)cbjjf = ,ul(:\j)lllj, i.e., ¥; is a normalized

eigenfunction for the eigenvalue j; (5\ j)of O Y such that

sup (Qf W), W)) < S, (4.60)
jeN

the latter due (4.59); recall that generally (Q\W, W) > 0 by (4.6). Now define

G pr ) = 10/ (e) py¥;(r) € XSy and  g; = (=T% = A)"'; € X2y,
To complete the proof, we need to show that (g;) C X 9 is bounded. From (B.4),
(A.18), (B.25), (4.24) and (4.6), we obtain

lgjl1%0 = 16733 / dr / et —— (g, (I, O
o )
=167 Z//dude @), d. OF
orll wi (e, E)IQ @O (Kwi(e, ) — Aj)?
ry(e,l) 2
= ]67‘(2//d€€ ‘”1(6 v1g@l /+ W (r) sin(k0(r, e, €)) dr
k20" wie. ) = A2 Jr_(e.0)

1 /

Thus, the claim follows from (4.60). O
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4.3 Some Further Results

The following observation corresponds to the situation where w; is differentiable
and attains its minimum at an interior point (¢, 3) of D; cf. assumption (w;-2).

Corollary 4.16 Suppose that (w;-2)is satisfied. Then i, = 00, A, < (512, wi) =1
and A\ is an eigenvalue of L.

Proof We only need to show that y, = oo, then the remaining assertions do follow
from Theorem 4.13. The lower boundary curve (0D); = {(e, ) € D : e = epnin(6)}
of D characterizes the (e, 3) where r_(e, 8) = ro(8) = ro(e, 3). Since (e, ﬁA) €
int D = {(e, B) : B €0, Bil, e €lemin(B), eo[} C D \ (0D); by hypothesis, we have
that r, (e, ﬂA) —r_(e, B) = 6m > 0. The functions ry are known to be continuous
(even C1) on int D; see [30, 50] and [88, Def./Thm. 2.4(b)]. Thus, by shrinking the
neighborhood U of (e, B) if necessary, we may assume that

(e, ) —r-@ Bl <n, Iri(e,f)—ri@ Ml <n, (e,f) €U,

is verified, along with

wie, ) — 61l < Cil(e, B) = (&, B)I*, (e, ) €U, (4.61)

from (1.31). Next, we have 0(r_(e, ﬁ) e, ﬂ) =0 and 9(r+(e ﬂ) e, ﬁ) = 7. Since
% ”1 dueto(A.21)and p, > 0 along the half-orbit, (-, ¢, 6) is strictly increasing.
In partlcular, we obtain

~ 1 ~ ~
sin@(r,,,e,3) =20 >0 for 7, = 3 (r_(e, B) +ry(e, ).
As also

0:{(r,e,B):(e,B)eintD,r_(e,) <r <ri(e,B)} = R

is continuous, thereis ¢ €]0, n]such thatsin O(r,e, B) = ofor(e, 3) € Usothat|e —
él<e |B—PBl<cand r € [y — e, Fu+elNlr_(e, B), r+(e B)= [Fm =&, T +
e]. If ¢ > 0 is small enough, we may assume that [é — ¢, ¢ + €] X [[3 —e,f+e]lC
U Cint D as well as [/, — &, P, + €] C [0, rg]. Furthermore, note that in general
sind(r, e, 3) > 0 for (e, B) € int D and r_(e, B) < r < ry(e, 3). Next, owing to
(e, B) € int D, we have e €]Uy(0), ep[. Using (Q2), we can thus make sure that
inf{|Q'(e)| : e € [¢ — ¢, e + €]} = a > 0. Now, we consider the function

_ 4 . 172
W) =7 W) 7= (F U2l =l = 1)

for which [Wollz: = 1. Hence, for A < 512 by Lemma 4.3(d),
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pe = 1 (A) = |Qall = sup {QaW, W) : V]| < 1} = (QaWo, Wo)
2 wi(e, B3)Q'(e)] /’*(6’3) .
=327 Z / f dBde ool Wo(r) sin(kf(r, e, B)) dr

2

k20 V3 —(e, )
ri(e, 3) 2
> 3072 / / dfide ”'(f(f /)3')Q e ( f ) wo<r>sin<0<r,e,ﬁ)>dr)
r_(e, 3)
B+e Fmte 2
> 327%6,y" / dﬂ/ (lngN (/ sin(6(r, e, 3)) dr)
B+e 1
2 2,2
z 12870 L a / e _ita (462)

where a = 6% — A > 0. From Theorem 3.5 and (4.61), we deduce that

wie, B) = +a <2MCi 1€ —EP +a, E=(e,), =, 1)

As a consequence,

pre 1 d?¢
ol e st Lo ot
je.p)—ot+a  Jig=g=e 201C1 1 —&1* +a

© P

0 2A1C1p%+a
o In 2A1C152+a
T 2A1C a

— 00, a— 07T,

Thus, if we pass to the limit A — 512—, i.e.,a — 07,in(4.62),itfollows that i, = oo.
O

Regarding Theorem 4.15, if (w;-3) holds and if u, = 1, then one can show that
A = 47 is an eigenvalue of L, provided one is able to gain a little bit from the term
|Q’(e)], in the sense that Q’(eg) = 0 in a controlled way, as expressed by (Q5); then
the inherent logarithmic singularity can be dealt with. To simplify the presentation,
we additionally assume that /., is simple as an eigenvalue of Qs , but with some
more technical efforts, this assumption could be disposed of.

Corollary 4.17 Suppose that (w,-3) and (Q5) are satisfied, and assume that i, = 1
is a simple eigenvalue of Qs. Then A = 5%, and this is an eigenvalue of L.

Proof We already know that A\, = 512; see the proof of Theorem 4.15. To verify that
6% is an eigenvalue of L, we are going to use Theorem 4.15. According to LemmaD.2,
there is € > 0 such that ]6% — &, 5%[3 A+ p1(A) is real analytic. In addition, there
are W) € L% satisfying Wallz =1, O\ = 1AWy, and]5f — g, 5%[5 A= Wy
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is real analytic. Also y1j (\) = (Q) Wy, W) holds for A €]07 — ¢, 67[. By Lemma 4.9,
the function 1 is convex, so that i > 0 and ] is increasing. In other words,

’ . , o
”/J'l ”L"O(]—oo,&f[) = )\EI;} 1251 ()\) =1 [y
2

does exist in ]0, co], and the issue is to show that p/, < oo. Defining ¢, (r, p,, £) =
|Q'(eg)| pr¥(r) € X (0)dd as before, we get, from Lemma 4.3(d), (4.24) and Corollary
4.10(c),

LA = (Q\Wy, W)
2 wi(e, £) Q' (e)]
= 641 2// dtede T

k£0 )y

ri(e, £) 2
X [ W, (r) sin(kb(r, e, £)) dr

(e, £)

4 1 |, OF
=642 /f detde (k2wi(e, £) — N wile, 0) 1Q'(e)

k20 Y5

< CZ//dZZde—(kzw TN |0/ (e)]

k#0 /5

10" (e)]
> //d66d664 4+C//dK€de—(w1(e,E)—6])2'
=2D D

Thus, using (w;-3) and (Q5),

(e —eg)”

(e, B) — (e0. DI

ui () < C+Cf/d£€de

B €o 1
<C+ C/ ap de ~ -
0 emin(8) [(e, B) — (eo, B)|

Be—p e0—Up(0) 1
§C+Cf de/ dx1|—<C,
_3 0 X

2—a —
B |

where x = (x1, x). Therefore i, < C and the proof is complete. U
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