Chapter 3 ®)
On the Period Function 7j R

Associated with every effective potential U (r, £) = Ug(r) + % is a period func-
tion T (-, £) that is defined for certain energies e € [enin(€), eo], for which periodic

solutions of ¥ = —U;(r, £) do exist; see Appendix I, Sect. A. 1, for more information.
According to (A.20), this period function is given by
re(e.d) dr
Ti(e, ) =2 / ,
r ety ~2(e— Ue(r, £))

wherery = ry (e, £) arethe zeros of 0 = 2(e — U (1, £)) and satisfy 0 < r_(e, £) <
r+ (e, £). In addition, for every £ > 0, the potential minimum inf {U (r, £) : r > 0}
is attained at some unique ro(£) €]r_(e, £), r1 (e, £)[. The corresponding frequency

function is wy (e, £) = %

3.1 Upper Boundedness of T;

Recall that
D = {(6’, ﬁ) : ﬁ € [07 ﬂ*]’ e € [emin(ﬁ)v eO]}v (31)

and

D ={(e, ) : B €0, Bul, € €lemin(B), eol}

is its interior. We are going to show that 7} is bounded from above (or equivalently,
wj is bounded from below), uniformly in D°, which is the set of relevant (e, £), where
T is defined. As T; will be shown to be continuous in D (see Theorem 3.13 below),
this is of course for free, but since the direct argument in Theorem 3.2 could be of
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30 3 On the Period Function T;

general interest, we include it anyhow; the same remark applies to Theorem 3.5 on
the lower boundedness of Tj.

We start with an auxiliary lemma that will be useful for the proof of Theorem 3.2
and beyond.

Lemma 3.1 The following assertions are verified.
(a) Ifr > s > 0, then

2 2
{pgm(ﬂ — %) < Ug(r) — Ug(s) < ?ﬂpQ(O)(rz —-). (32

Moreover, forrg > r > s > 0,
e _
Ug(r) = Ug(s) = 15 p (2 )(r 2. (3.3)
(b) One has
r 47
po (_Q) rir: <0< 5 po(0)r’r?

0
6 2

(c) One has

1/4
rg = <—6 ,Q)> Ve

Tpo(

Proof (a) According to (A.2), we have by changing variables s = r7, ds = rdr,

/ 4r " 2 ! 2
UQ(r) = po) ; s po(s)ds = 4mr ; T po(r7)dr. (3.4)

In particular, Ué (r) = 0. Furthermore, for r > s > 0 and putting ¢t = o/r, dt =
dojr,

r r 1
Up(r) — Ug(s) = / Uy(o)do = 4r / doo f drr*po(o7)
K s 0
1 r
:47r/ dTTZ/ doopo(oT) 3.5
0 K
1 1
= 4772 / drr? / dtt po(rrt). (3.6)
0 s

Due to (A.32), we have that p’Q (r) <0,1ie., pg is radially decreasing. Thus, if 7 €
[0,1] and o € [s, 7], then po(r) < pp(0oT) < pp(0) and (3.2) follows from (3.5).
To establish (3.3), we use (3.6). To begin with, since py > 0,

1 1
Up(r)=Ugp(s) > 471'r2/2 dTTZ/ dttpo(rrt).
0 s
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Owing to r <rg, 7 €0, %], and r <1, we have r7t < %Q, so that po(rrt) >

po(%). It follows that
1

9 [ [ s el -))

Ug(r) — Ug(s)>4nr? pQ
which is (3.3). (b) The condition U (r+, £) = e means that Up(r+) +3 q =e,and
hence

2r2Up(rs) + €2 = 2rie. (3.7)

Therefore,

208 —r2)e = 2(riUq(ry) — r2Up(r-))
=207 = r)Uq(ry) +2r2 (Ug(ry) — Up(r-)),
so that
2 2 e 2 2 2
(ri — r_)r—2 =20ry —ri)(e—Uq(ry)) = 2r2(Ug(ry) — Ug(r-)).

+

It remains to use (3.3) and the upper bound from (3.2). (c) First note that po (%) > 0
].By Lemma A.7(a), (3.4) and since p¢ is non-negative

as otherwise supp pp C [0, %Q
and radially decreasing,

1
0 =ryUp(rg) = 47rr6‘/ po(roT) dT > 47rr6‘/
0 0

1
’
2471'}’3/0 TpQ(z)dT —,OQ(TQ)”S-

We will derive a more precise asymptotics of ry as £ — 0T below in (A.34)
Now, we are in a position to derive a uniform lower bound on w; or equivalently

=

TZpQ(r()T) dr
O

a uniform upper bound on 7.

Theorem 3.2 We have
81 = inf {wi (e, £) : (e, £) € D} > 0.

) > 0. Then in particular ag < pg(0), so that

g =1- /#j(o)e[%,l[.

Letry =ry(e, £) and ro = ro(£) be as before. From Lemma 3.1(c), we recall that

o

Proof Putag = po(F
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6 \/4
r0§<—> Ve (3.8)

magp

Case 1: ryp > (1 — dg)ry. Then Lemma A.10(b) in conjunction with (3.8) implies
that

e r2 27 rg 27 6 \'?
Ti(e,0) < <2 —_— — = | — .
e ) = m = A r) S 2T S5 9 0 = (1= 5g) \rag

Case 2: ry < (1 — dp)r. This is the nontrivial part of the argument. Here, we split
up the integral as

dr

Ti(e,0) = 2 2(e — Ut (r, 0)

dr

)
r_ A/2(e — Ut (r, £)) o V2(e— Ug(r, £))

=T (e, £) + T1+(e, £).

Using Lemma A.10(a), we can bound 77 as

T(e£)<2'/ r+/ rdr

<> r_Tr+ /

- 12 \/r+—r0 . Jr—r_

el | N (3.10)
l ry — 1o

Itfollowsfromry < (1 — dgp)ry that \/ry < 551/24/14 — ro. Thus, by (3.8) and since
do > 1/2,

—1/2 A/T— 1270 v
T\ (e.6) <400 X = rofro—7- <455 4f( ) . (31D
Tag

Regarding 7,", we can invoke Lemma A.7(a) to get for r € [ro, ;] by also using
Lemma A.6(a),

¢ ¢ roUp(ro)  ro Up(ro) 1
< = < 1-0p)==(1-0p)%A
2r2r2 T 2r3rd 2r2 T2 ( 0) 2( 0)” Alro)
1 27
< 3 (1 —30)*A(0) = 3 (1=350)% po(0). (3.12)

We then deduce from (3.3) in Lemma 3.1(a) and (3.12) that for r € [rg, r4],
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& &
e = Ueii(r, €) = Uesi (ry, ) = Uese (r, €) = Ug(ry) + = — Up(r) — -—
2ry 2r
2
- 2 _ 2
=Ug(ry) = Ug(r) — W (ri—r9)

2
> [;T—ZQQ - ?W a _6Q)2PQ(0)i|(ri —r?)

= % aQ(rf_ — r2),

the latter owing to the choice of d¢. This in turn yields

T+(e£)—2/r+ dr -2 ﬁf“L
1 (e, o V2(e = Ueg(r, £)) — wag Jy, /rer _

43 1 " dr 8v/3 1 83
< = Vre—r < :
/Tag JT+ Jry, T+ —7T [Tag JT+ /Tag
Adding this to (3.11), we have shown that
6 \'* 8J/3 1643
Ti(e, 0) <42 (—) + V3 = “/_. (3.13)
7raQ N /7TaQ N /7raQ

Hence, the boundedness of 7} from above is a consequence of (3.9) and (3.13). [

Observe that in the proof of Theorem 3.2 actually no properties of the sets DorD
from (3.1) have been used, apart from the fact that T (e, £) is defined for (e, £) € D.

3.2 Lower Boundedness of T

It is the purpose of this section to verify that 7} is bounded from below (or equiva-
lently, w; is bounded from above), uniformly in D.
In some cases, it will be convenient to be able to re-express the period function

rie.) dr

Ti(e, B) =2 3.14
(. ) .[@@ 2 — U, B)) G149

from (A.20), written in terms of 3 = £2, by means of an integral with fixed limits of
integration; this is more or less taken from [11, Section 2].

Lemma 3.3 We have

/2 do
Ti(e, f) = V2 :
! /2 %(“Msin 0,3),5)
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where

Ve 12
h(s,ﬁ):s( fﬁ) . h(,8) =0,

for
Vs, ) = Uesi (ro(B) + 5, 8) — emin(B).

Also, e(8) = e — enin(3), and R — s(R, 3) = s denotes the inverse mapping to
s — h(s, ) = R. Explicitly,

%(& 5 — sgn(s) Ul (ro(B) + s, 8)

>0, 3.15
2 STt 5.9 —emn® G-19)

so that also

ol [3 (1= p) Ulke(ro(B) + ps(y/é(B) sin 0, B), B) dp]'2

a2 oy Ule(ro(B) + ps(\/e(B) sin 6, B), B) dp 516

Ti(e, B) =22

Proof Letsi(e, B) =ri(e, B) — ro(B). Setting s = r — ro(3), ds = dr, we obtain

sy (e,) ds

Ti(e, ) =2
1(6 ﬁ) »/s‘(e,ﬁ) \/2(6 - emin(ﬂ) - [Ueff(rO(ﬁ) + s, ﬂ) - emin(ﬂ)])

/s+(e,3) ds
=2 . (3.17)
s ep V2@(B) = V(s, B)

Note that V (-, ) is increasing in [0, s (e, 3)], decreasing in [s_(e, 3), 0] and such
that

V(ss(e. §), B) = e — emin(B) = (D).

Furthermore, V (0, 8) = U (ro(3), 8) — emin(8) = 0 by definition and %—¥(0, B) =
Ul (ro(8), B) by (A.35), ie., V(-, () is at least quadratic about s = 0. The next
change of variables to be applied is

s+ R=nh(s,), dR= g—hds, R* = Vs, 3).
s

Then (3.17) transforms into

Ve dR
~Ja® P (s(R. ), B)v/2(B) — RY)

Finally, put R = \/e(83) sinf, dR = \/e(B) cos § df. This yields

Tl(ev 5) = 2
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do
Tie. ) = V2
e o2 B(s(J2B)sind. B). B)’

and thus the claimed formula for 77. The relation (3.15) is straightforward, whereas
(3.16) follows from Lemma A.9. O

Corollary 3.4 Ifs € [r_(e, B) — ro(0), 0], then
1 ! dp 28w
— (3 —— + —pp(0) ).
V2B(rg) ( 6/0 @+ T 3 " )>
Proof Lets_ =s_(e,3) — ro(ﬁ) Ifs e [s_, 0], then
oh |Use (ro(B) + 5, B)]
0=<—(, =
~ Os 0= (s 6)) 2 \/Ueff(ro(ﬁ) +s,0) — emln(ﬁ)

by (3.15) in Lemma 3.3. Thus, it remains to use (A.37) and (A.38) from Lemma A.9.
O

oh
= a(s» ﬁ) =<

Theorem 3.5 We have
Ay =supfwi(e, £): (e, ?) € lo)} < 00.

Proof As above, we write ro = ri(e, 8) and rog = ro(3). If r € [r_, ry], then by
Lemma 3.1(a),

e — Ueit(r, ) = Ug(ry) — Ug(r) — r2 —r?)

2.2
2rir

2 ) ) 47
S Ug(ry) —Up(r) ?pQ(O)(hr —r) < ?PQ(0)7+(7+ —r).
(3.18)

Case 1: ry /2 > ry. Here (3.18) implies that

dr
T
(e f) = / V2(e — Ues (1, B rn ve— eff(r

—
VZWpQ(O)ﬁ/ =" \/ 27rpQ<0>\/ r+ >\/ 000

Case 2: r_ < r;/2 < ry. Similarl to the first case, we obtain

Ti(e, B) = / dr / " d—r
e 2(e — Uei (1, B /2 Ve —Ue(r, B)

V 27rPQ(O) Vv /;;/2 Vi — 1 7rPQ(O)
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Case3:0<ry/2 <r_.Thenry /2 <r_ <ryandalsor_ <rg <ry <2r_aswell
asrg <ry <2r_ <2ry,soallofr_, rgand r, are of comparable size. In particular, if
r € [r—,ri], thenry/2 < r < 2r¢. In the following, we are going to use the notation
from the proof of Lemma 3.3. Let R = /é(8) sinf. If § € [—7/2,0], then R €
[—vé(B), 0] and hence s(R, B) € [s_, 0]. Thus, if furthermore p € [0, 1], then ry +
ps(R, B) € ro+ [s—, 0] = [r—, ro], so that

1
3 ro < ro+ ps(R, B) < 2rp. (3.19)

Since s(R, () € [s_, 0], Corollary 3.4 and (3.19) imply that

oh 1 ! dp 287
0 < a(S(R, 6)’ ﬂ) < —TB(rQ) <36/0 —(ro T pS(R, 6))4 + T pQ(O))
< 1 <M + 28_7T (0)) (3.20)
= Beg \rd T3 " '

for § € [—7/2,0]. By (A.34) from Lemma A.7, we have

4_L 514y — L 1/4
it = 5y P O = B( 5 +08)

as 8 — 07. Hence, there is 8y €]0, B:[ such that

B 4 _ 20
24(0) <ry = m, B €10, Bol.

Accordingly, owing to Lemma A.7(a), we can find a constant ¢y > 0 so that rg > ¢
for 8 € [fo, Bs]. If we now distinguish the cases 3 €]0, 5] and 8 € [By, O«], by
using the foregoing estimates, we deduce that in any case

L

ﬁ < max {2A(0),
€

4 —
Ty

Upon going back to (3.20), it follows that

- 28
2A(0), f—4} + =1 pQ(O)) =

1
(4
o) ( 8max{ 1 3

for 0 € [—m/2, 0]. Since generally g—i’ > 0, we finally get from Lemma 3.3

Oh
0= B (s(R, ), P) =
A

/2 do 0 do T
Te.p=va [ -2 - fz/ > ,
e o2 Z(s(R, B), B) e Z(s(R, B), B~ V2C
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which completes the proof, as we have found a positive lower bound on 7; in all
three cases. (Il

3.3 Further Properties of 77

First, we discuss some regularity properties of 7.
Theorem 3.6 We have Ty € C'(D).

Proof The continuity of 7} may be shown directly from (3.14), as we already know
that r. € C2(D) by Remark A.3; we omit the details. To prove the differentiability,
we use a method that is known and that we learned from R. Ortega. It is considerably
less painful than differentiating an explicit relation for 7} like (3.14). For (e, ) € D,
we consider

F=—Ul(rB), r0) =r_(e,), #0)=0,
where r(t) = r(t, e, ). Defining
F:RxD—>R, F(,e () =r@,e/f),

we have F € C'(R x 5) by Lemma A.l11(a). Next observe that F(t,e, ) =0
exactly for

1 3
t=0. 1=%5Ti(e.f). t =%Ti(e.f). 1 =% Tale. ). ...

Fix (¢, 3) € D and define 7 = T} (¢, 3). Then F(7, ¢, 5) = 0 by the above. Further-
more,

OF
E(I$es ﬁ) = ;:(1961 ﬁ) = _Ue/ff(r(tvev 5)! ﬁ)

and r(7, ¢, B) =r(Ty@,B3), 8 3) =r0,é 3) =r_(¢,3) in conjunction with
Lemma A.4 imply that

- e B) = —~Uly(r_(&, B), B) > 0.

Hence, the implicit function theorem yields the existence of a C'-functiont = t (e, /)
that is defined for (e, 3) in a neighborhood U C D of (e, ), such that

F(t(e,3),e,3) =0 for (e,8) € U and t(e, ) =17=T(,0).
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According to our previous remarks, for every (e, 5) € U, we must have
1
t(e, f) = ke, B) 5 Tile. )

for some k(e, 3) € Z. Then k is continuous in U and such that k(e, B) = 2, which
means that k = 2 throughout U. Thus, T} = ¢ in U shows that T} € C!(U). O

Remark 3.7 If py € C¥, then Uy € C**2. Asa consequence, r_ € C**2(D) by the
argument from Remark A.3. Comparing to Lemma A.11(a), this entails F =7 €
CHI(R x Do), so that t = t(e, 8) € C*¥T1(U) for the solution function in the proof
of Theorem 3.6. Hence, we get T} € C¥*! (Do) in this case. <&

Now, we are going to show that 7| can be extended continuously from D to D.
We start with the continuous extension to {(e, 3) : 8 €]0, B«], ¢ = emin(3)}.

Lemma 3.8 Let B €10, B,]). Then

2T
VB@o(3)

Proof This relies on the representation (3.16) of T(e, 3), which we recall as

Ti(e, ) — as D3 (e, ) = (emin(3), ). (3.21)

d0 fo(l p) Ul (ro(B) + ps(y/é(B) sin 8, 3), B) dp]'/?
—/2 oy Ule(ro(B) + ps(\/e(B) sin 6, B), B) dp o

Here, h(s, #) = s(X%2)!/2 and h(0, 8) =0 for V(s, 3) = Uest (ro(B) + s, 3) —
emin(3). Furthermore, é(3) = e — epnin(B3) and R s(R, ) = s denotes the inverse
mapping to s — h(s, 3) = R. Due to § — ﬂ > 0, we can assume that § > 5/2
throughout the argument. If r € [r_, r;] and 3 €]0, 5,], then Lemma A.6(c) and
(A.28) yields

Ti(e, B) =22

12 12
Usr(r, ) = —r—sﬁ + B'(r) —=3A'(r) = —r—f + 4mply(r) — 2A(r)
128

8t [
_ __=F 4 / _ 2 3 7 d )
5 + WPQ(”) ! /0 S PQ(S) s

Therefore, (Q4) gives the bound

1
UG A= C(14 ). relrnl Bel0Bl eelem(d). el

(3.23)
By definition, we have U (r-) + % = e. Hence, U ’Q (r) = 0leads to

% < Ugp(r-) — Up(0) + % =e—Up(0),
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r_ > ﬁ > ﬁ
T\ 2(e = Ug(0) ~ \ 4e—Ug(0))

for B € [3/2, B«] and e € [enin(0), eol; note that we will have e — emin(ﬁ) >
U (0). Going back to (3.23), we obtain

and thus

Ui I <C. relr.ril, BelB/2.5.]. e€lemn(®. el (3.24)

Next, we assert that

lim sup ls(+/e(B)sinb, B3)| = 0. (3.25)

)34)[’ e"emm(/j) Oe[—n/2,m/2]

Otherwise, there would be £y > 0 and sequences (3;), (e;) and (6;) such that
Bj = B,0; > 0 e[—n/2,7/2], e(B)) = e; — emin(B;) = emin() — emin(F) =0
as well as [s(\/é(8;)sin6;, 8;)| > ¢o for all j € N; here it was used that emin (8) =
Ues (ro(9), B) is continuous in 8 €]0, B.[, cf. Remark A.3. Thus, \/é(8;) sinf; — 0

and s(,/é(8;) sinb;, B;) — s(0, B) = 0, which is a contradiction. For the latter con-
vergence, note that s — h(s, 3) for s € [s_, s;] is an increasing function that con-
nects —/e(f) to y/é(f3). Since é(3;) — 0, we must also have s1(e;, 3;) — 0: for

instance, if we had s; (e;, 5;) — 54+ > 0 (along a subsequence), then A(s, B) =0
for s € [0, 5+], which is impossible. Thus, s+ (e;, ;) — 0, and due to |s(R, )| <

max{|s_(e, B)|, s+ (e, B)}, we obtain s(,/e(5;) sind;, 3;) — 0 as claimed.
Coming back to (3.22) and using Lemma A.7(d) and (3.24), we estimate

‘/ Ut (ro(B) + ps(v/é(B) sin ), 5),ﬂ)dp—3(ro(5))'
= '/0 [Uegr(ro(B) + ps(Veé(B) sin, B), B) — Uggy (ro(B), 5)]dﬂ|

1
c /O Is(/2() sin . B)| dp < CS(e, ),
S(e, B) = sup |s(+/e(B)sinb, B)|. (3.26)

fe[—m/2.7/2]

Similarly,

1 1
‘ /0 (1 = p) Ul (ro(B) + ps(v/e(B) sinb, 3), 3)dp — 3 B(ro(ﬁ))' < CS(e, ).

(3.27)
From (3.26), (3.27) and (3.25), in conjunction with Lebesgue’s dominated conver-
gence theorem and B(ry(5)) > 0, we deduce (3.21). O
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Remark 3.9 Note that T (e, 3) is defined for e = ¢y and 3 €]0, 3,]; it is the period
of the orbit of ¥ = —UJ;(r, B) that has the largest energy e = ey. Therefore, it is
straightforward that

74 (eo,3) dr
Ti (e, B) = 2/
r(e0.8) V2(e0 — Uett (r, 3))
extends 77 continuously to {(e, §) : e = eq, B €]0, B1}. &

There is yet another way to represent 71; see [24, Exercise 1, p. 40].

Lemma 3.10 Define

1 1
x(r, e, B) = / dr (1 — T)f do Ule(tri(e, B) +o(1 —1)r
0 0
+ A=) =1)r_(e, B, B).
Then

V+(‘-’ﬁ) d}"
r e (rie, ) —r)(r —r_(e, B) x(r, e, B)

Ti(e, ) = /2 (3.28)

Proof 1If r > s, then
1
Usit(r, B) — Ut (5. B) = (r — 5) / ULy (rr + (1= P)s, B)dr,
0

and in particular Ugg (r4, 8) = e yields fol Ul(try + (1 — 7)r—, B)d7 = 0. There-
fore, we can write

e — Uet(r, 3) = Uett (r+, 8) — Ueit (1, )
1
= (ry — r)/ Ulg(rry + (1 — 1), B)dr
0

1
= (ry — r)/0 [Ule(rre+(1 =), B)=Ulg(rro+(1—7)r_, B)1d7

1 1
=0y —r)— r_)/ dr (1 — 7')/ do Ule(try +o(1 = 1)r
0 0
+( -0 -7)r_, 3,

which leads to (3.28). O
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Lemma 3.11 We have

T(e, B) — as D> (e, B) = (Up(0), 0). (3.29)

27
VB(O)
Proof First, we note that, although it won’t be used, ¢ — ey (3) > 0 together with
Lemma A.7(f) implies e — Ug(0) > emin(8) — Up(0) ~ /Ué(O)\/B as 3 — 0,
which means that as e — U Q (0), the quantity e — Uy (0) can’t be too small in terms
of 3 — 0; due to U”(r) + = U’ (r) =4mpg(r), we have U” 0) =4 3 po(0) > 0.

To actually verify (3.29), we are going to write

"+ dr
T (e, B) = «/E/ 3.30
e, 5) . =N =X 30

as in (3.28) from Lemma 3.10, where

1
x(r) =x(r,e, B) = / dr (1 — 7')/ dUUﬁ(TrJr +o(l —71)r
0
+A=-0)1—-1)r_,pJ).

Due to Lemma A.6(c), we have U (r, ) = i—f + B(r) — 3A(r). By explicit inte-
gration,

1
35/ d“/ = e = r + (=) =)

1 2ry +or+ (1 —o)r-
2;»+ 0 T T or+ (A —oyry
ﬁ ]d ! + — s ldo !
r+ Jo (cr+ Q=0 212 Jy (or + (1 —o0)r_)?
B r+r_ 6 1
P
_ é r(r—+ry)+r_ry

2 r2rir?
_é(r++r)(r —i—r)_g 1
2 r2rr2 2 rir?’

Hence, we obtain
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_ BN+

T e, (3.31)

1 1
x2(r) = / dr (1 — 7')/ do (B —3A)(try +0(1 —1)r
0 0

g 1
U =0) 1 =7r) = 5
-y

and x»(r) = xz(r e, 3). From Lemma A.6(a) and (b), we get (B —3A)(0) =
165 9o (0) = 222 po(0) = 4 pg(0) = US(0). Since 7y +o(1 —7)r + (1 —0)
(1 —T)r_ € [r, ry] C [0,ry]forT,0 €[0,1]and r € [r_, ry], it follows from

1 1
x2(r) = / dr (1 — T)/ do[(B—-3A)(try +0(1 —7)r
0 0
+ (1 —-—0)(1 —7)r-) — (B —3A)(0)]

1 1
+= Ué(O) §

and (A.26) in Lemma A.5 that

1
sup [xa(r,e, B)| < 5 sup (B —3A)(s) — (B —3A4)(0)]
refr-,ryl s€[0,ry(e,()]
1
4= sup |UY(s) — ULO)] (3.32)
s€[0,r4(e, )]

for (e, B) € D and ry =ri(e, B).
Next, we assert that

ri(e.8) > 0 as D> (e, B) — (Up(0),0). (3.33)

To establish this claim, we will use the relation

UQ(r-‘r) UQ(F())—E— 26 emm(ﬂ)_{' 6 6‘mm(ﬂ)_‘_ 52( .2t,._r())
ri 2rgry
Hence, (3.3) from Lemma 3.1 yields
= po(2) 02 =rd) = e = Uo(0) + Ug(0) = emin(3) + 5 f A
(3.34)

Due to Lemma A.7(f), we have |enin(3) — Up(0)| = O(B'Y?) and ry = O(B'*4)
as 3 — 0. Thus, if r, (e, 8) — 7y > 0 as (e, 6) — (Up(0), 0), and along some
subsequence, then (3.34) would imply that {5 pQ( )r < 0, whichisacontradiction
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and confirms (3.33). Since both (B — 3A)(s) and Ué(s) are continuous at s = 0,

(3.32) in turn shows that

lim sup |x2(r, e, B)| = 0.
e—>Ug(0), B0 yefy_ phr]

A further preparatory step is to rewrite (3.31) as

ﬁ (ry +r)r—+7)

x(r) = T (1 + x3(r)),
2 r2r2r3_
x3(r) = xX2(r),

B e

for x3(r) = x3(r, e, 3). Owing to Lemma 3.1(b), we have

rzri <Cp.
Since also m < 1, it follows from (3.35) that
lim sup |x3(r, e, 3)| =0.

e—=Up(0), —0 relr_.ryi]

(3.35)

(3.36)

(3.37)

(3.38)

Coming back to (3.29), consider sequences e; — Up(0) and 3; — 0. Lete > 0
be given. According to (3.38), there is jo € N such that sup,.i, ., 3,).r, ;.51 1X3
(r,ej, B;)| < efor j > jo.Due to (3.36), this yields for j > joand r € [r_(e;, 3;),

r(ej, Bj)]

Bj (r4, j+r)(r— it

ﬁj (ry, j+r)(r— it

where ry j = ri(ej, 3;). Therefore, (3.30) leads to

T T 2 T T 2
< Ti(ej, <
e N

for j > jo, where

T+.j r
I; :/ dr
J " (r-2-,j _ r2)1/2(r2 _ rzyj)l/Z

(149,

Setting s = r2, ds = 2r dr, this integral may be evaluated as /; = 7/2. Thus, we

obtain
1—¢ ﬁj < 1 1+4+¢ ﬁj

<
2ozt T Tie B T om

(3.39)
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for j > jo. From (A.26) in Lemma A.5, we know that

/6/ " 1 "
———— —Up0)| = sup [|Uy(r) —Uy(0)|.
VE, j ri, j © rel0,ry ;] © ¢

Asry j — 0by (3.33), we may assume that jo is already taken so large that

2

U// _
0(0)—e =< P :
—J

L}Z <ULO0) +e

for j > jy. Therefore, (3.39) implies that

l—¢ 1 I1+¢
UG =) < s = 5 WO + )

w2

s

for j > jo. Altogether, this shows that lim;_, T1(e;, 3;) = , and it remains

NGAT)
to recall that B(0) = 167” po(0) = 4Ué (0), cf. Lemma A.6(a), (b). U
Lemma 3.12 Leré €]Uy(0), egl. Then
7@ dr .
Ti(e,3) — 2 as D> (e,B) — (¢,0), (3.40)

0 2 —Ug(r)

where 7 (e) € [0, ro] is the unique solution to Uq (7 (e)) = e.

Proof First, we are going to show that .. stays away from zero in the limiting case
that we are considering here. For this, we may assume that v, < rp /2. Due to (3.6),
we have

rio(rs) + % =Ug(ry) — Up(0) + % =e—Up(0) (3.41)
+ +

for X .
©(ry) = 4r f drr? f dtt po(rtry).
0 0
Since py is radially decreasing and 0 < 7¢r < rg/2, it follows that

27 r

2
[Y
0<ei=p0(2) =0rs) = 5000 = C1. (3.42)

In (3.41), solving the resulting quadratic equation for ri, we obtain

2= Up(0) £ /(e — Ug(0)2 — 2¢(r1) 3

= 3.43
* 2p(ry) ( )

Let us suppose that the sign were ‘—’, along (a subsequence) of ¢ — ¢ and 3 — 0.
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Then
5

e —Ug(0) + /(e = Ug(0))*> — 2¢(r1) 3

2 _
ry =

together with é — Uy (0) > 0 and (3.42) would yield ¢, < ri < C,[3 for suitable
constants C, > ¢, > 0. By Lemma 3.1(b), we have the general estimate

cf < riri.
As a consequence,
¢ 2
— <ri.
&)
However, r?> < 13 = O(3'/?) as 3 — 0 by Lemma A.7(f), which gives a contradic-
tion. To summarize, we may suppose that the sign is ‘4’ in (3.43). Hence,

) e=UgO) + (e —Ug@)? —20(r)f _ 1
2= o = 56~ Uo®)

for g < %(e —-Up (0))? yields the desired lower bound for r . Thus, in what fol-
lows, we can assume that r, (e, 3) > 1y > 0 for an appropriate constant 7y and

(e, B) — (¢, 0).

Next, we are going to show that

dr
A 2(e — Ui (1, 3))

For, owing to (3.10), we get

—0 as D> (e f)— (6,0). (3.44)

T\ (e, ) = 2[

. N - N
R o TR L N AN

Since r2r3 < C3 by (3.37) and ro = O(B'/*) by Lemma A.7(f), ry. > 1o yields

T, (e, B) < CB*/®

and completes the argument for (3.44).
Thus, in order to establish (3.40), we need to prove that

AT Ba(e.f) > 2.0 (345)

re dr 7(é)
/n, JeUa D) ./0 NG

note that Ug (ry) < Ug(ry) 4+ - = e = Uy (#(e)) implies ry < 7(e). In addition,

2 T
using (3.3), we obtain .
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™

12

™

po(Z)m (&) = 1) = == po(2) (e =)

A

A

1
Ug#(e) ~ Ug(ro) = 2 = o
+ 0

Similarly, by (3.2),

BB )
% =< ﬁ =Up@r(e)) —Up(ry)
2
< o)) —r2)

-3

IA

4 R
?PQ(O) ro (r(e) —ry),

so that ¢33 < 7(e) — ry < C;30. To validate (3.45), we are going to show

/ " dr f " 0 (3.46)
_— — ——— = 0, .
n vVe—=Usgr, B) Jo Je—Upr)
/f@ dr e dr
_—— —— |0, (3.47)
0 Je—Up(r) 0 e—Up)

both as D > (e, B) — (e, 0); the second relation is independent of 3.
To begin with,

f’“ dr 7o) dr 0
_— — — 0.
0 e—Ug(r) . Je—Ug(r)

For the first claim, if 0 <r <rg = (9(61/4) and e — ¢ > Up(0), we may suppose

that e — Up(r) = 1 > O for the e and r in question; therefore, the first claim in
(3.48) follows. Regarding the second assertion, we write

—~ 0 and (3.48)

1
e—Ug(r)=Ug(F(e)) — Up(r) = (F(e) — r)/0 Uy(ti(e) + (1 —1)r)dr

forr € [5,7(e)]. If s € [, 7(e)], then the fact that pg is radially decreasing yields

47 (S 4r (T+/2 3 r
’ _ar 2 am 2 T +
Up(s) =5 /0 o2pg(0)do > réfo o?pp(0)do > o po( 0 )z m >0

(3.49)
Hence,

e —Up(r) = m(Fle) — 1), e [% f(e)], (3.50)



3.3 Further Properties of 7 47
and accordingly,

F(e) dl" < —1/2 F(e) dr 2 _
=1 T =4
T+ Ve_UQ(r : T+ \,r(e)—r ?

Thus, both relations in (3.48) hold, and therefore (3.46) comes down to proving that

2 Ji(e) —ry < CB'* — 0.

—0 as D> (B — (20).

o ve—Ue(r, 3) e—Up(r)

Ifr € [ro, (1 — 84)r ], then £ < 5% < CB'/2,as ry = O(B"/*). Therefore, (3.3)
)

yields

e—Up(r) =z e —Ues(r, f) =e—Ug(r) — 5

> Ug(F(e)) — Ug((1 — Y*ry) — Y2
v
> S ro(2) (@ — (1= g — cp'l

m
> =02 ) m (@) = ri + By — €32
> cifp + s - CB172
> o',

From the estimate JLE — % < b ji for b > a > 0, we hence infer

A=, =" gy
/ro e —Ue(r, 3) /r‘0 Ve—Ug(r)

< g /(l—/11/4)r+ 1 dr
2, (e — Uet(r, B))\Je — Ug(r) 12
B [a=8"r )
S 1/
< ng ; 3/253/8 dr <Cp7° — 0. (3.51)

For the remaining part, r € [(1 — ﬂ1/4)r+, r+], we note that for such r, by (3.50),
e—Ug(r) =mF(e) —r) = mFle) —ry) = mes B
In addition,

e — Ui (r, B) = Uet (ry, B) — Uesi (1, )
1
= (ry — r)/ Ug(rre + (1 —1r, B) dr. (3.52)
0
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Ifre[(1=8Y*ry, ril thens=rry + (1 — T)r € [(1 — BYHry, ] C [5, Fe)] for
instance, and

) 5 80
Ueff(sv B) = UQ(S) > — r_ > —
by (3.49), if 3 is small enough. Thus, (3.52) leads to

1
e = Uuar(r, ) = 5m (e =), r €[l = By, ryl.

1 1 b— .
If we now use that NN < ﬁ‘; for b > a > 0, we obtain the bound
‘ /r r /’* dr
A-p"4r, A€ — Ueff(r, ﬂ) (1-84)r, /€ — UQ(}”)

F+ 1 dr
(=g, Ve — Uei(r, B)(e — Ug(r)) r?

B

2

64 1 2 / 1 s

- — = ———dr<Cp'"* > 0. (3.53)
25 mes BN m Jazpuay, ST —T

By (3.51) and (3.53), the proof of (3.46) is complete.

Therefore, it remains to check that (3.47) is satisfied. This is not worked out,
since it is just the continuity of the standard period function in the potential V (x) =
Ugp(x) —Ug(0) for x > 0 and V(x) = Up(—x) — Up(0) for x <0, for energies
e=e—Ugy(0) €]0,e0 — Uy (0)]. O

IA

IA

If we now summarize Lemma 3.8, Remark 3.9 and Lemmas 3.11 and 3.12, then
we have shown the following result (note that e, (0) = U (0) and r¢(0) = 0).

Theorem 3.13 We have T) € C(D). The extensions to 0D are given by

NEE) D e =emn(0), B €0, B
r+(e 3) dr ) _
Tite. ) = 1 2/ e aataemy ¢ €= 0B €0.5]
r(e) dr . _
Ve=Ugry e €]Ug(0), e0], =0

where 7 (e) € [0, ro] is the unique solution to Ug (7 (e)) = e.

In the remaining part of this section, we will discuss some monotonicity properties
of T1 .

Lemma 3.14 The function [0, 3,] 2 B +— Ti(emin(B), B) is strictly increasing.
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Proof We know from Lemma A.7(e) that 3 — ry(0) is strictly increasing, and fur-
thermore r — B(r) is strictly decreasing by Lemma A.6(b). Hence, the claim follows

from T (emin(5), ) = s O

Lemma 3.15 The function [Up(0), eg] > e — Ti(e, 0) is strictly increasing.

Proof The argument is analogous to the fact that for a one degree of freedom oscilla-
tor X = —V’(x) about a stable center, where V(0) = V’(0) = 0and V(—x) = V(x)
for simplicity, the condition V'(x) > 0 and V" (x) > V’(x)/x for x > O guarantees
that the period function of the periodic orbits about x = 0 is decreasing in the energy
e = %)&2 + V(x). The first reference to point this out seems to be [64] (which we
basically follow); related papers are [11, 78, 79]. To see the connection, first observe
that, by (1.13), Remark A.1 and (A.32),

p Upy(r) 3, 4 (T 5,
UQ(r)—T =47TpQ(l’)—;UQ(l’)= py ; s pQ(s)ds <0, r>0.

Thus, (U/Q(r)/r)/ = (rUé(r) - U/Q(r))/r2 < 0 forr > 0, and it follows that
1 / /
— UQ(pr) < UQ(r), p>1, r>0. (3.54)
p

The function 7 is strictly increasing, due to 1 = U 0 (r(e)) F'(e) and U o(r) > 0 for
r > 0. Therefore, its inverse [0, rg] 3 7 > e(7) € [Ug(0), o] is well-defined and
strictly increasing too; note that 7(Uy(0)) = 0 and 7(eg) = rg. Let

dr

T¢) = 2/r _ .
DT U — Up)

Then
#(e) dr
0 2(Ug(F(e)) — Up(r)

Ti(e,0) =2 = T(7(e)),

which implies that e — T (e, 0) is increasing if and only if 7 f"(f) is increasing.
If p > 1 and s € [0, 7], then by (3.54), one has

Ug(pF) — Ug(ps)=p / Uy(pr)dr<p’ / Uy(T)dr=p*(Ug(#) — Ug(s)).

s

As a consequence,
pr dr 5 /f ds
= =zp =
0 2WUo(pF) —Up(r) 0 2(Ug(pF) — Up(ps))
4 ds
Y —
0 V2WUo(F) —Ug(s)

T(pf) =2

=T@),

which completes the proof. (]
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Corollary 3.16 Suppose that 0, = inf y w; = minp w; is attained at some point
(e, B) € OD. Then (e, ﬂA) lies on the ‘upper line’ {(e, 3) : e = ey, B € [0, ]} of
the boundary.

Proof This follows from w; = 2T—’]T together with Lemmas 3.14 and 3.15. (]

Remark 3.17 It will certainly be important to gain a better understanding of the
monotonicity properties of w; (or, equivalently, 77) in D. In particular, we expect
that it should be significant to locate those points in D, where w attains its minimum
61. Some relations for % and % are stated in Lemma A.12(b), (c¢). For instance,
we have

or 19 [heh ds o [P dr
—1<e,ﬁ>:———/ —2=——/ A (3.55)
ap 2 Oe Jy r(s) oe J. o3 Tpr

which could provide a way to approach the monotonicity of 7; in 3. To see this,
we apply the transformation p = /Br~!, dp = —/Br 2 dr, like for the ‘apsidal
angle’ [77]. Defining

VB
ri(ev ﬂ) '

- 1
0p.B) =507+ Ug(g), pele. ) =

and recalling that p, = \/Z(e —Up(r) — %), we get

LI Ny
85 ’ ﬁ Oe p—(e,) 2(e — U(p, /6))

At fixed (3, this has turned the integral on the right-hand side of (3.55) into the period

function
- pi(e.3)
T(e) = /
p-(e,p)

for the transformed potential U; note that 0 < p_ < p; and U(p+, 3) = e. One
could study the monotonicity of 7 (e) in the energy e by checking the criteria that
have been listed in the papers we mentioned in the proof of Lemma 3.15 or which
can be found in similar works. Let us state a remarkable relation that could be useful
in this respect. Writing U (p) = U (p, B), it is calculated that

U'(p) = —“;—? Ué(%ﬁ) t+p. U'(p)= 5 ng(*/TB) +

2(e — Ulp, B))

2By,
P

(D).

p

and using (1.13) this yields
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0" (p) — 0/;”) = p—Ué(f) + p—{U&(?)

JB NN NN
= e () - e ()| e ()
= [ama()+ 5wl
zﬁB(ﬁ),

pt N p

In other words,

(57) = 5265

and the function B is strictly positive. Comparing to the reasoning in Lemma 3.15, this
looks promising for proving that T(e)is increasing in e, i.e., that dT‘ < 0. However,

the argument does not seem to work properly, since the integral deﬁmng T (e) is on
[p—, p+1, instead of it beginning at zero, as is the case in Lemma 3.15. <

34 X, <67

From (1.20), recall the definition of \,.
Lemma 3.18 We have )\, < 5%.

Proof From (1.18), cf. Corollary B.19 and Lemma B.8(c), we deduce that, for u €
ngd’

dx dv , 1 5
(Lu, M)Q bt| - T IViUrul dx
R3 JR3 |Q (eQ)l 4 Jps

dx dv
< _— z 2 Z = 16 3 k2 .
- /RB /]R3 |Q'(eg)| ITul” = 1Tullfo = 167 Z A L (D)

k0 o7
Since u_; = —u; by Lemma B.3(b), this yields
3 2
A\ < 327 Zk ||w]uk||Ll ) (3.56)
k=1 1071

for all u € XOdd such that ||M||Xo = ||u||Q = 1. Now we specialize (3.56) to u =
(..,0,u_1,0,u,0,...)=¢(.. —uy,0,uq,0,...) to find that
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A\, < 327r3||w1u1||§_ o , =327 //didu W2 (1, ) |ui (I, 0)]?
D

1
1Q'(e)]

=327 //dede lwl(e 0 luy (e, 0))? (3.57)

forall uy = u; (I, €) = ui(e, £) € L?, (D) satisfying
10|

1:323f/d1du 1,0
", |Q(>|'”1( )

=327 //dedM ! ! lui (e, 0)%;
g |Q'(e)| wile, £)

see Definition B.1 and cf. (A.18). Let ¢ > 0. Since ¢; = inf 5 wy, there is (¢, f) eh
such that w (e, i) < 01 + /2. As wy is continuous in D by Theorem 3.6, there is
an open neighborhood U C D of (&, ) with the property that w; (e, ) < §; + ¢ for
(e,1) € U; then [[ dedt ¢ > 0. Define

U

1 epeU
X(e’e)_{o © (e,0) e D\U

and u (e, €) = a |Q'(e)|'*wi (e, £)'/* x(e, ¢) for a = (327 [[ dedt £)~"/2. It fol-
U

3 1 2 _ 3.2 —
e)|w
D ! U

Thus, by (3.57),

s 5327T3//dedE£|Q—||u1| =321 f/deduwf
D

U

lows that

< 327%a% (6, + ¢)? // dedlt = (5, +¢)°.

Ase — 0F, we get \, < 2. O
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