
Chapter 2
The Antonov Stability Estimate

The purpose of this short chapter is to provide some more details on the Antonov
stability estimate, Theorem 1.2.

Proof of Theorem 1.2 We (formally) repeat the argument from [50, Prop. 4.1(ii)];
also see [30, Appendix]. Define q(x, v) = u(x,v)

x ·v . Then a direct calculation shows
that

|T u|2 = (x · v)2 |T q|2 + T
(
(x · v)|q|2T (x · v)

)
− (x · v) |q|2T 2(x · v).

Moreover T (x · v) = |v|2 − rU ′
Q(r) and, using �UQ = 4πρQ ,

T 2(x · v) = −(x · v)
(
4πρQ(r) + U ′

Q(r)

r

)
. (2.1)

Therefore,

|T u|2 − 4πρQ(r)|u|2 = (x · v)2 |T q|2 + T
(
(x · v) |q|2T (x · v)

)
+ U ′

Q(r)

r
|u|2.

Now integration by parts yields
∫
R3

∫
R3

dx dv
|Q′(eQ)| T (. . .) = 0, cf. LemmaB.9(a). So

what remains after integration is

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

=
∫

R3

∫

R3

dx dv

|Q′(eQ)|
[
4πρQ(r)|u|2 + (x · v)2 |T q|2 + U ′

Q(r)

r
|u|2

]

− 1

4π

∫

R3
|∇xUT u |2 dx .
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From Lemma 2.4 below, we have U ′
T u(r) = 4π

∫
R3 pr u dv. Therefore,

∫

R3
|∇xUT u |2 dx =

∫

R3

∣∣∣ x
r
U ′

T u

∣∣∣
2
dx = 16π2

∫

R3

∣∣∣
∫

R3
pr u dv

∣∣∣
2
dx,

and this leads to

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)|
[
(x · v)2

∣∣∣T u

x · v

∣∣∣
2 + U ′

Q(r)

r
|u|2

]

+ 4π
∫

R3
dx

[
ρQ(r)

∫

R3

dv

|Q′(eQ)| |u|2 −
∣∣∣∣
∫

R3
pr u dv

∣∣∣∣
2 ]

. (2.2)

To obtain the lower bound, note that by Lemma2.5 below

∣∣∣∣
∫

R3
pr u dv

∣∣∣∣ =
∣∣∣∣
∫

R3
pr |Q′(eQ)|1/2 |Q′(eQ)|−1/2 u dv

∣∣∣∣

≤
( ∫

R3
p2r |Q′(eQ)| dv

)1/2( ∫

R3

dv

|Q′(eQ)| |u|2
)1/2

= ρQ(r)1/2
( ∫

R3

dv

|Q′(eQ)| |u|2
)1/2

.

Therefore, (2.2) yields

(Lu, u)Q ≥
∫

R3

∫

R3

dx dv

|Q′(eQ)|
U ′

Q(r)

r
|u|2. (2.3)

The function A(r) = U ′
Q(r)

r , together with B(r) = 4πρQ(r) + A(r), will be consid-
ered in Lemma A.6. It turns out that this function is strictly decreasing, positive and
such that A(rQ) = 1

r3Q
‖Q‖L1(R6). Hence (1.19) follows. �

Example 2.1 We are going to show that

L (|Q′(eQ)|(x · v)) = A(r) |Q′(eQ)| (x · v), (2.4)

and in particular u(x, v) = |Q′(eQ)| (x · v) is not an eigenfunction for λ∗ from
(1.20). Regarding (2.4), (2.1) says that T 2(x · v) = −(x · v)(4πρQ(r) + A(r)) =
−B(r)(x · v), cf. Lemma A.6. Hence, using T |Q′(eQ)| = 0 from Lemma B.9(a),
also T 2u = −B(r)u holds. Therefore, due to (B.37), Lemma 2.4 and Lemma 2.5,

KT u = 4π |Q′(eQ)| pr
∫

R3
p̃r u d ṽ = 4π |Q′(eQ)| pr r

∫

R3
p̃2r |Q′(eQ)| d ṽ

= 4π |Q′(eQ)| (x · v)ρQ(r) = 4πρQ(r)u,
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where pr = x · v/r and p̃r = x · ṽ/r . As a consequence,

Lu = −T 2u − KT u = B(r)u − 4πρQ(r)u = A(r)u,

so that (2.4) is established. ♦
Corollary 2.2 We have

0 < A(rQ) ≤ λ∗ < A(0) and 0 < B(rQ) ≤ λ∗ < B(0).

Proof The lower bound λ∗ ≥ A(rQ) follows from (2.3) and A(r) ≥ A(rQ). Regard-
ing the upper bound λ∗ < A(0), consider as in Example 2.1 the function u(x, v) =
|Q′(eQ)|(x · v), which is odd in v. Then Lu = A(r)u, and thus

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)| A(r) |u|2 ≤ A(0)
∫

R3

∫

R3

dx dv

|Q′(eQ)| |u|2 = A(0)‖u‖2Q .

(2.5)
Hence, it follows that λ∗ ≤ A(0), and it remains to be shown that λ∗ = A(0) is
impossible. Suppose that in fact λ∗ = A(0). Then, for the same u,

∫

R3

∫

R3

dx dv

|Q′(eQ)| A(0) |u|2 = A(0)‖u‖2Q = λ∗‖u‖2Q

≤
(
L

u

‖u‖Q
,

u

‖u‖Q

)

Q

‖u‖2Q = (Lu, u)Q .

Using

(Lu, u)Q =
∫ ∫

K

dx dv

|Q′(eQ)| A(r) |u|2

from (2.5), this leads to

∫

R3

∫

R3

dx dv

|Q′(eQ)| (A(r) − A(0)) |u|2 ≥ 0.

But this is not possible since A is strictly decreasing by Lemma A.6(a). For the
estimates in terms of B, it is sufficient to note that B(r) ≥ A(r) and B(rQ) = A(rQ),
cf. Lemma A.6(b). �

Remark 2.3 Observe that 0 < A(rQ) ≤ λ∗ < A(0) and 0 < B(rQ) ≤ λ∗ < B(0)
fromCorollary 2.2 together with LemmaA.6 imply thatλ∗ = A(rA) andλ∗ = B(rB)

for certain rA, rB ∈]0, rQ[. It would be interesting to understand whether these radii
rA and rB do have a special meaning. ♦

The following observation has been made before; see [30, p. 507] and [50, (B.1)]
for instance.
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Lemma 2.4 For appropriate spherically symmetric functions g,

U ′
T g(r) = 4π

∫

R3
pr g dv.

Proof Since ∇xUQ is independent of v, by (1.11) the density is found to be

ρT g(x) =
∫

R3
(v · ∇x g − ∇vg · ∇xUQ) dv = divx

∫

R3
v g dv.

Therefore, using (A.2) below and Gauss’s theorem, it follows that

U ′
T g(r) = 1

r2

∫

|x |≤r
ρT g(x) dx = 1

r2

∫

|x |≤r
dx divx

( ∫

R3
v g dv

)

= 1

r2

∫

|x |=r
dS(x)

x

r
·
( ∫

R3
v g dv

)
= 1

r2

∫

|x |=r
dS(x)

( ∫

R3
pr g dv

)
,

where g = g(x, v) = g(r, pr , �). As g is spherically symmetric, the functionG(x) =∫
R3 pr g dv is invariant under rotation, i.e., G(x) = G(|x |). Thus, U ′

T g(r) = 4π
∫
R3

pr g dv as desired. �

For the next lemma, cf. [30, p. 507] and [50, (B.3)].

Lemma 2.5 We have ∫

R3
|Q′(eQ)| p2r dv = ρQ(r).

Proof Since d
dpr

[Q(eQ)] = Q′(eQ)pr due to eQ = 1
2 p2r +UQ(r) + �2

2r2 , we have
from (A.40):

∫

R3
|Q′(eQ)| p2r dv = −

∫

R3
Q′(eQ) p2r dv

= − 2π

r2

∫

R

dpr

∫ ∞

0
d� � Q′(eQ) p2r

= − 2π

r2

∫ ∞

0
d� �

∫

R

dpr
d

dpr
[Q(eQ)] pr

= 2π

r2

∫ ∞

0
d� �

∫

R

dpr Q(eQ)

=
∫

R3
Q(eQ) dv = ρQ(r),
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where once again (A.40) has been used. Note that the boundary term vanishes in the
integration by parts above. Indeed, if we use the notation fromLemmaB.7, cf. (B.10),
(B.11) and (B.12), then for fixed r and � ∈ [0, l̂(r)], we see that

(Q(eQ) pr )
∣∣∣
p̂

− p̂
= Q(e0) p̂ − Q(e0)(− p̂) = 2 p̂ Q(e0) = 0,

since Q(e0) = 0 by (Q2). �
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