
Chapter 1
Introduction

1.1 The Birman-Schwinger Principle

The Birman-Schwinger principle is a widely used and well-established tool in math-
ematical quantum mechanics. It was introduced through the independent works of
Birman [10] and Schwinger [81], with the idea of counting or at least estimating the
number of eigenvalues of Schrödinger operators on L2(Rn). To be more specific,
consider (only formal at this point)

H = −� + V ;

to avoid introducing negative parts, wewill assume that V ≤ 0. Then it is not difficult
to calculate that

(a) −e is a (negative) eigenvalue of H if and only if 1 is an eigenvalue of the
Birman-Schwinger operator

Be = √−V (−� + e)−1
√−V ; (1.1)

see [53, Section 4.3.1].

Furthermore,

(b) if φ is an eigenfunction of H for the eigenvalue −e, then ψ = √−Vφ is an
eigenfunction of Be for the eigenvalue 1;

(c) ifψ is an eigenfunction of Be for the eigenvalue 1, thenφ=(−� + e)−1(
√−Vψ)

is an eigenfunction of H for the eigenvalue −e.

Theoperators Be are non-negativeHilbert-Schmidt operators (ifV decays sufficiently
fast and n ≤ 3), and in particular, they are compact. Their eigenvalues can be ordered:
λ1(e) ≥ λ2(e) ≥ · · · → 0, and the eigenvalue curves are decreasing in e, in that ẽ ≥ e
implies that λk(e) ≤ λk(ẽ) for all k. This implies that the number of eigenvalues of
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2 1 Introduction

H less than or equal to −e agrees with the number of eigenvalues of Be greater than
or equal to 1, counting multiplicities in both cases; cf. [53, Figure 4.1, p. 78] for an
illustration. In this way, not only the number of eigenvalues of H can be bounded,
but for instance also eigenvalue moments like

∑
j | − e j |γ , where the sum extends

over all negative eigenvalues −e j of H . This fact lies at the heart of many important
results in the field. Let us only mention here the Lieb-Thirring bound

∑

j

| − e j | ≤ L1,3

∫

R3
|V (x)|5/2 dx

in three dimensions for an absolute constant L1,3 > 0 and V ∈ L5/2(R3). It is used
in those authors’ proof of the stability of matter [54], which has found many gen-
eralizations [53] and which is much easier to follow than the original argument by
Dyson and Lenard [16]. Good general textbooks that cover the Birman-Schwinger
principle are [53, Section 4.3], [71, 82, 83] or [86, Section 7.9]. A classical reference
is [46], and the papers [8, 34, 68] provide an extensive list of related literature. There
is also a large number of further applications of the Birman-Schwinger principle in
a variety of different contexts. For instance, complex-valued potentials are treated
in [1, 20, 22, 23], Dirac operators in [12], the Bardeen-Cooper-Schrieffer model of
superconductivity in [33] and the linearized 2D Euler equations in [47].

1.2 Non-Relativistic Galactic Dynamics and the
Vlasov-Poisson System

In order to explain how the Birman-Schwinger principle will turn out to be useful
in galactic dynamics, we are going to introduce the gravitational Vlasov-Poisson
system. It is a standard PDE system to describe the time evolution of a self-gravitating
system that consists of a large number of objects (like stars or galaxies),which interact
via gravitational forces.

Galactic dynamics in general refers to the modeling of the time evolution of self-
gravitating matter such as galaxies or, on an even larger scale, clusters of galaxies.
One attempt to do so is to write down an N -body problem, with N quite large:
N ∼ 106 − 1011 for galaxies and N ∼ 102 − 103 for clusters of galaxies. This N -
body problem consists of coupled Newtonian equations, one for each individual
object (the ‘objects’ in a galaxy are stars, those in a cluster of galaxies are galaxies),
to study the collective behavior of the system. While results may be obtainable
numerically in thisway, themathematical complexity of even the three-body problem
prevents one from rigorously addressing deeper questions (concerning for instance
galaxy formation or stability) for such stellar systems.

Therefore, from the early days of the field, a statistical description of the evolution
has been proposed by Vlasov [91] in 1938 for plasmas (in this case a related equation
is satisfied) and by Jeans [41] in 1915 for gravitational systems; see [36] for an
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interesting historical discussion of the origins of the equation. It is also known as the
‘collisionless Boltzmann equation’, which refers to the fact that collisions among the
stars or galaxies are sufficiently rare to be neglected.A standard source of information
on galactic dynamics is [9].

The time evolution of such a system is then governed by a distribution function
f = f (t, x, v) that depends on time t ∈ R, position x ∈ R

3 and velocity v ∈ R
3.

The quantity
∫
X dx

∫
V dv f (t, x, v) should be thought of as the number of objects

(henceforth called ‘particles’) at time t , which are located at some point x ∈ X ⊂ R
3

and which have velocities v ∈ V ⊂ R
3. Each individual particle follows a trajectory

(X (s), V (s)) in phase space R
3 × R

3 such that (X (t), V (t)) = (x, v) at time t and

Ẋ(s) = V (s), V̇ (s) = F(s, X (s)), (1.2)

where F denotes the force field that is collectively generated by all particles. The
requirement that f be constant along the curves defined by (1.2) then leads to the
relation

0 = d

ds
[ f (s, X (s), V (s))]

= ∂t f (s, X (s), V (s)) + V (s) · ∇x f (s, X (s), V (s))

+ F(s, X (s)) · ∇v f (s, X (s), V (s))

for all s. Evaluated at time t , this yields

∂t f (t, t, v) + v · ∇x f (t, x, v) + F(t, x) · ∇v f (t, x, v) = 0

for all (t, x, v), which is usually called the Vlasov equation (despite the historic
inadequacy of this terminology). The next step is to express the force field F in
terms of the distribution function f . Since we are aiming at describing gravitational
binding, we need to have F ∼ −∇x VC for the Coulomb potential VC(x) = − 1

|x | at
large distances. This suggests to use the field F = −∇xU induced by the Poisson
equation

�xU f (t, x) = 4πρ f (t, x), lim|x |→∞U f (t, x) = 0,

where ρ f (t, x) =
∫

R3
f (t, x, v) dv (1.3)

denotes the charge density induced by f . Observe that
∫
X dx ρ f (t, x) represents the

number of particles at time t , of any velocity, which are located at some point x ∈ X .
Then

U f (t, x) = −
∫

R3

ρ f (t, y)

|y − x | dy (1.4)

is Coulomb-like as |x | → ∞.
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To summarize, the Vlasov-Poisson system in the gravitational case is

∂t f (t, x, v) + v · ∇x f (t, x, v) − ∇xU f (t, x) · ∇v f (t, x, v) = 0 (1.5)

together with (1.3), and the equations are supposed to hold for (t, x, v) ∈ R × R
3 ×

R
3. Initial data f (0, x, v) = f0(x, v) at time t = 0 have to be specified for f only,

since then (1.4) determines the initial dataU f (0, x).Wewill exclusively be interested
in classical solutions of (1.5) and (1.3), whose global-in-time existence is ensured,
under reasonable assumptions on f0, by [55, 67, 80]. For a mathematical overview
of the system and more background material, the reader may wish to consult [27,
63, 73].

ThegravitationalVlasov-Poisson system iswidelyused todescribe non-relativistic
galactic dynamics. When it comes to relativistic galactic dynamics, the appropriate
model is the Einstein-Vlasov system [2]. In the present book, we will not be deal-
ing with this more general system, but of course it will be tempting to determine
which results could be transferred to the Einstein-Vlasov system; see [18, 19, 31,
32, 38–40] for work in this context that is related to the so-called Antonov bound.

1.3 Steady State Solutions

The Vlasov-Poisson system possesses an abundance of solutions Q = Q(x, v) that
are independent of time. It is therefore of interest to study the stability of those steady
states and, more ambitiously, the dynamics close to a steady state. Let eQ(x, v) =
1
2 |v|2 +UQ(x) denote the particle energy and let �2 = |L|2 = |x |2|v|2 − (x · v)2 be
the square of the angular momentum L = x ∧ v. Then both eQ and �2 are conserved
along solutions of the characteristic equations Ẍ(s) = −∇UQ(X (s)), which result
from (1.2) for F = −∇UQ ; note that alsoUQ is independent of time. Next, recall that
a function g = g(x, v) is said to be spherically symmetric if g(Ax, Av) = g(x, v) for
all A ∈ SO(3) and x, v ∈ R

3. Expressed in more sophisticated terms, g needs to be
equivariant w.r. to the group action SO(3) × (R3 × R

3) → R
3 × R

3, (A, x, v) �→
(Ax, Av). Now, it is the content of Jeans’s theorem that the distribution function
Q of every spherically symmetric steady state solution has to be of the form Q =
Q(eQ, �2); see [7, Section 2] for a precise formulation. Such steady state solutions are
called non-isotropic, in contrast to the isotropic ones, which can be written as Q =
Q(eQ); a solution of the latter form will necessarily be spherically symmetric [25,
72]. Observe that we are going to systematically abuse notation in that we consider
Q = Q(x, v) to be a function of (x, v) and at the same time write Q = Q(eQ, �2) or
Q = Q(eQ), which indicates that Q is a function of two or of one scalar variable(s);
in general, no confusion will result from this simplification.

To precisely state our results later, we will focus on the isotropic case, and we
need to introduce the following assumptions (Q1)–(Q4) that we are going to impose
throughout the book on the profile function Q : R → [0,∞[ and the (radial) density
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ρQ : [0,∞[→ [0,∞[. The diligent reader is invited to checkwhich parts of thiswork
remain valid under less restrictive hypotheses (there are several) or for non-isotropic
steady states.

(Q1) The support K = supp Q of the steady state solution Q is compact and its mass
‖Q‖L1(R6) is finite.

(Q2) Q ∈ L∞
loc(R) satisfies Q ≥ 0, and there exists a cut-off energy e0 < 0 such that

Q(e) = 0 for e ≥ e0, Q ∈ C1(] − ∞, e0[) and Q > 0 in some interval [e1, e0[,
where e1 < e0. For ê ∈]UQ(0), e0[, there exists ε > 0 such that

inf{|Q′(e)| : e ∈ [ê − ε, ê + ε]} > 0.

(Q3) Q′ ∈ L∞
loc(R) and Q′(e) ≤ 0 a.e.

(Q4) ρQ is continuous and has compact support supp ρQ = [0, rQ]. In addition, ρQ ∈
C1([0, rQ]).

For one result (Corollary 4.17),wewill needmoreprecise informationon thebehavior
of Q′ close to e = e0.

(Q5) There are constants C > 0 and α > 0 such that

|Q′(e)| ≤ C(e0 − e)α, e ∈ [UQ(0), e0[.

1.4 Examples

To illustrate that the general assumptions on Q as stated in Sect. 1.3 are verified in
many cases, we consider the steady state solution class of the polytropes and the King
models in some more detail. It should be remarked that many further examples could
be given, for instance by using [69] or [74, Theorem 3.1(a)], which basically says that
undermild technical assumptions on Q and if Q(e) = C(e0 − e)k+ + O((e0 − e)k+δ

+ )

as e → e0− for some e0 < 0, k ∈] − 1
2 ,

3
2 [, C > 0 and δ > 0, then the resulting

steady state solution will have a finite radius and finite mass.

1.4.1 Polytropes

We consider the polytropes

Q(eQ) = (e0 − eQ)k+ (1.6)

for a cut-off energy e0 < 0 and k ∈] − 1
2 ,

7
2 [. Then
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ρQ(r) = cn(e0 −UQ(r))n+, n = k + 3

2
∈]1, 5[, cn = (2π)3/2

�(k + 1)

�(k + 5
2 )

;

see [7, Example 4.1]. All these steady state solutions do have finite radius rQ
(i.e., compact support) and finite mass MQ = ∫

R3 ρQ(x) dx = 4π
∫ rQ
0 r2ρQ(r) dr =∫

R3

∫
R3 Q(x, v) dx dv. The limiting case k = 7/2 is called the Plummer sphere,

where MQ is still finite, but rQ = ∞. We have Q′(e) = −k(e0 − e)k−1
+ ≤ 0 (outside

of e = e0 for k ≤ 1) and ρQ ∈ C1([0, rQ]). Thus, if we take k > 1 for simplicity,
then assumptions (Q1)–(Q5) are satisfied.

1.4.2 King models

The ansatz function for the King model [9, pp. 307–311] is given by

Q(eQ) = (exp (e0 − eQ) − 1)+

for some cut-off energy e0 < 0. Then Q ∈ C1(] − ∞, e0[) and Q′(e) = − exp(e0 −
e) ≤ 0 for e < e0. The associated steady state solution does exist and has finite radius
and finite mass; see [74, Theorem 3.1(a) and Sect. 4]. The density is found to be

ρQ(r) =
∫

R3
Q(x, v) dv

=
∫

R3

(

exp
(
e0 − 1

2
|v|2 −UQ(r)

)
− 1

)

+
dv

= (
√
2π)3

(
es erf(

√
s) −

√
4s

π

(
1 + 2s

3

))
, s = e0 −UQ(r),

where erf(x) = 2√
π

∫ x
0 e−t2 dt denotes the error function, which has the asymp-

totic expansion erf(x) = 2x√
π

− 2x3

3
√

π
+ O(x5) as x → 0. For ϕ(s) = es erf(

√
s) −

√
4s
π
(1 + 2s

3 ), this yields the asymptotic expansion ϕ(s) = 8s5/2

15
√

π
+ O(s7/2) as s →

0+. SinceUQ ∈ C2([0,∞[), we infer that in particular ρ′
Q(rQ) = 0 holds and it fol-

lows that assumptions (Q1)–(Q4) are satisfied. However, since Q(e) = (e0 − e) +
O((e0 − e)2) as e → e0−, assumption (Q5) does not hold for the King model.

1.5 Linearization and the Antonov Stability Estimate

Without being too precise about its properties, we consider an isotopic steady state
solution Q = Q(eQ). To study the stability of Q, we will closely follow [30] and
write f (t) = Q + g(t) with g ‘small’. The total energy
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H( f (t)) = 1

2

∫

R3
|v|2 f (t, x, v) dx dv − 1

8π

∫

R3
|∇U f (t)(t, x)|2 dx

is conserved along solutions, so it could be suspected to be a Lyapunov function.
The expansion about Q then yields

H( f (t)) = H(Q) +
∫

R3

∫

R3

(1

2
|v|2 +UQ

)
g(t) dx dv

− 1

8π

∫

R3
|∇Ug(t)|2 dx + O(g3); (1.7)

note that f �→ U f is linear. The linear term on the right-hand side of (1.7) does not
vanish, i.e., Q is not a critical point of H. However, this defect can be remedied by
making use of the fact that every ‘Casimir functional’

C�( f (t)) =
∫

R3

∫

R3
�( f (t, x, v)) dx dv

is also conserved along solutions, provided that� is sufficiently well-behaved. Pass-
ing from H to

H� = H + C�

and repeating the expansion, one arrives at

H�( f (t)) = H�(Q) +
∫

R3

∫

R3
(eQ + �′(Q)) g(t) dx dv

+ 1

2

∫

R3

∫

R3
�′′(Q) g(t)2 dx dv − 1

8π

∫

R3
|∇Ug(t)|2 dx + O(g3).

(1.8)

Writing e = eQ , since Q = Q(e), the equation e + �′(Q(e)) = 0 can be (formally)
solved by taking �′(ξ) = −Q−1(ξ), at least if for instance Q′(e) < 0 is verified for
the relevant e in the support of Q. Then Q becomes a critical point of this H�, and
due to 1 + �′′(Q(e))Q′(e) = 0 and Q′(e) < 0, the expansion (1.8) simplifies to

H�( f (t)) = H�(Q) + 1

2
A(g(t), g(t)) + O(g3),

A(g, g) =
∫

R3

∫

R3

dx dv

|Q′(eQ)| |g|2 − 1

4π

∫

R3
|∇xUg|2 dx . (1.9)

Thus, one can expect that the stability of Q will be determined by the properties
of the quadratic (second variation) part A = 2 D2H�(Q), which we will call the
Antonov functional. It should also be noted that A(g(t), g(t)) is conserved along
solutions g(t) of the system that is linearized about Q; see [63, Prop. 3.2] and (1.21)
below.
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If we now consider functions u = u(x, v) that are spherically symmetric and odd
in v, i.e., they satisfy u(x,−v) = −u(x, v), then the celebrated Antonov stability
estimate [4, 5] is

A(T u, T u) ≥ c‖u‖2Q (1.10)

for some constant c > 0 that only depends on Q, where

T g = {g, eQ} = v · ∇x g − ∇vg · ∇xUQ (1.11)

for the standard Poisson bracket {g, h} = ∇x g · ∇vh − ∇vg · ∇xh. The weighted
inner product

(g, h)Q =
∫∫

K

1

|Q′(eQ)| g(x, v) h(x, v) dx dv (1.12)

induces the norm ‖ · ‖Q , and K = supp Q ⊂ R
6 denotes the support of the steady

state solution Q, which is compact, if (Q1) holds. Perturbations of the form g = T u
are called ‘dynamically accessible’, for reasons explained in [62]; also see [66].
Antonov [4, 5] could prove that the positive definiteness (1.10) is equivalent to the
linear stability of Q. Many works followed these pioneering observations, and until
to date, almost all stability proofs, linear or nonlinear, use the Antonov stability
estimate in one way or another. The bound (1.10), or variations thereof, is applied
in a number of papers, both in the physics and in the mathematics community, to
address a variety of stability issues; see [15, 26, 28, 30, 42, 43, 50, 51, 60, 89] and
many further.

1.6 The Best Constant in the Antonov Stability Estimate

In this section, we will explain the connection of the functional u �→ A(T u, T u)

from (1.10) to a certain self-adjoint operator L . Before doing so, we need to introduce
some relevant notation, function spaces, etc. Since we restrict ourselves to isotropic
steady states, the solutions will be spherically symmetric. Thus, we will consider
(1.5) and (1.3) in the spherical symmetric framework only, and it is well-known [7]
that then the system can be written as

∂t f (t, r, pr , �
2) + pr ∂r f (t, r, pr , �

2) +
(�2

r3
− ∂rU f (t, r)

)
∂pr f (t, r, pr , �

2) = 0

and

U ′′
f (t, r) + 2

r
U ′

f (t, r) = 4πρ f (t, r), lim
r→∞U f (t, r) = 0,

ρ f (t, r) = 2π

r2

∫ ∞

0
d� �

∫

R

dpr f (t, r, pr , �
2), (1.13)
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the ′ indicating d
dr or ∂r , and pr = x ·v

r . If g = g(x, v) is spherically symmetric, then
ρg(x) = ρg(r) and Ug(x) = Ug(r) are radially symmetric, and we will in general
denote

ρg(x) =
∫

R3
g(x, v) dv, Ug(x) = −

∫

R3

ρg(y)

|y − x | dy. (1.14)

Also g = g(x, v) canbe identifiedwith a function g = g(r, pr , �)or g = g(r, pr , �2);
see Appendix I, Section A.1.

Next, define the linear operator K by

Kg = {Q,Ug};

it should bementioned that both T from (1.11) andK do arise naturally upon lineariz-
ing the Vlasov-Poisson system about Q; see (1.21) below. SinceUg(x) = Ug(|x |) =
Ug(r), we obtain

Kg = {Q,Ug} = −∇vQ · ∇xUg = −Q′(eQ) v · x
r
U ′

g(r) = −Q′(eQ) pr U
′
g(r).

(1.15)
The operator L is introduced as

Lu = −T 2u − KT u. (1.16)

For what concerns the appropriate function spaces, we will pass to action-angle
variables as follows. On K = supp Q, we consider the equation

r̈ = −U ′
eff(r, �), (1.17)

where Ueff(r, �) = UQ(r) + �2

2r2 is the effective potential that occurs in the energy
function

eQ = eQ(r, pr , �) = 1

2
|v|2 +UQ(r) = 1

2
p2r +Ueff(r, �),

where pr = ṙ is the radial velocity and � should be thought of as fixed. By standard
Hamiltonian system theory (see Section A.1 for details), it is then possible to write
spherically symmetric functions g = g(x, v) = g(r, pr , �) in the form g = g(θ, I, �)
if we apply a canonical transformation (θ, I ) �→ (r, pr ) at fixed �.Working in action-
angle variables has many advantages. First of all, it turns out that eQ becomes a
function of (I, �) alone, eQ = E(I, �). Secondly, the functions g are 2π-periodic in
θ, so they can be conveniently represented as a Fourier series

g(θ, I, �) =
∑

k∈Z
gk(I, �) e

ikθ,

where

gk(I, �) = 1

2π

∫ 2π

0
g(θ, I, �) e−ikθ dθ
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are the Fourier coefficients. The spaces Xα
odd (cf. Appendix II, Sect.B.1) are defined

in terms of this series representation by means of the norms

‖g‖2Xα ∼
∑

k∈Z
(1 + k2)

α ‖gk‖2L2
1

|Q′ |
(D)

,

where L2
1

|Q′ |
(D) is a weighted L2-space on the domain D of the variables (I, �). The

subscript ‘odd’ in Xα
odd indicates that the functions are odd in v, which translates into

the condition g−k = −gk for k ∈ Z on the coefficients (so that in particular g0 = 0).
Nowwe can give a precise meaning to the fact thatA(T u, T u) = (Lu, u)Q is the

quadratic form associated with the operator L from (1.16). We have the following
result.

Lemma 1.1 L is self-adjoint on the domain D(L) = X2
odd in X0

odd. In addition,
(Lu, u)Q = A(T u, T u) holds for u ∈ X2

odd.

Proof Most of this will be shown later; see Corollary B.19 for the properties of L . At
this point, let us just mention that by (B.44) in Corollary B.19 the term (KT u, u)Q
can be written as 1

4π

∫
R3 |∇xUT u |2 dx . Hence, we deduce that

(Lu, u)Q = (−T 2u, u)Q − (KT u, u)Q

=
∫

R3

∫

R3

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

= A(T u, T u); (1.18)

recall (1.9). �

As a consequence, we can re-express (1.10) as follows.

Theorem 1.2 (Antonov stability estimate) If u ∈ X2
odd, then

(Lu, u)Q = A(T u, T u) ≥ c ‖u‖2Q (1.19)

for c = 1
r3Q

‖Q‖L1(R6) > 0, where supp ρQ = [0, rQ].
We will indicate a proof of Theorem 1.2 in Chapter 2. Therefore,

λ∗ = inf {(Lu, u)Q : u ∈ X2
odd, ‖u‖Q = 1} > 0 (1.20)

is well-defined; it is the ‘best constant’ in the Antonov stability estimate and a main
object of study in the present work. We will derive many results related to λ∗, as will
be described in Section 1.8. In particular, we will be able to characterize the cases
whereλ∗ is attained, in the sense thatλ∗ = (Lu∗, u∗)Q for someminimizing function
u∗ ∈ X2

odd such that ‖u∗‖Q = 1. It turns out that then u∗ will be an eigenfunction
of L corresponding to the eigenvalue λ∗, so that Lu∗ = λ∗u∗. The quantity λ∗ will
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be of fundamental importance for the dynamics of the gravitational Vlasov-Poisson
system.

Lemma 1.3 Let u∗ ∈ X2
odd be a minimizer and define

g∗(t, x, v) = cos(
√

λ∗t) u∗(x, v) − 1√
λ∗

sin(
√

λ∗t) (T u∗)(x, v).

Then g∗ is a 2π√
λ∗
-periodic solution of the equation

∂t g + T g + Kg = 0 (1.21)

that is obtained by linearizing (1.5) and (1.3) about Q.

Proof To linearize the system about Q, let f = Q + g as before. As a consequence
of the fact that v · ∇x f − ∇xU f · ∇v f = { f, e f } for e f (x, v) = 1

2 |v|2 +U f (x), we
may write

0 = ∂t f + { f, e f } = ∂t g +
{
Q + g,

1

2
|v|2 +UQ +Ug

}

= ∂t g − ∇vQ · ∇xUg + v · ∇x g − ∇vg · ∇xUQ − ∇vg · ∇xUg,

which is equivalent to

∂t g + T g + Kg = ∇vg · ∇xUg. (1.22)

Thus, (1.21) is indeed the linearization.Next, note that u∗ is odd in v. Hence,ρu∗(x) =∫
R3 u∗(x, v) dv = 0 implies that Uu∗ = 4π�−1ρu∗ = 0 and therefore Ku∗ = 0 by
(1.15). Consequently,

∂t g∗ + T g∗ + Kg∗ = −
√

λ∗ sin(
√

λ∗t) u∗ − cos(
√

λ∗t) T u∗

+ cos(
√

λ∗t) T u∗ − 1√
λ∗

sin(
√

λ∗t) T 2u∗

+ cos(
√

λ∗t)Ku∗ − 1√
λ∗

sin(
√

λ∗t)KT u∗

= −
√

λ∗ sin(
√

λ∗t) u∗ + 1√
λ∗

sin(
√

λ∗t) Lu∗ = 0,

as claimed. �

At present, it is not known if periodic solutions to (1.5) and (1.3) close to steady
state solutions do exist; see [17, 56, 70]. However, in this case, 2π√

λ∗
will conceivably

be the limiting period of the oscillations, a fact for which there is some numerical
evidence [70]. To give a heuristic argument, suppose that gε is an ε-small and Tε-
periodic solution to (1.22) such that Tε → T0 as ε → 0. Then, g̃ε = ε−1gε will be of
order one, Tε-periodic and satisfies



12 1 Introduction

∂t g̃ε + T g̃ε + Kg̃ε = ε∇v g̃ε · ∇xUg̃ε
.

Assuming now that g̃ε → g̃∗ in a suitable norm, g̃∗ �= 0 will be T0-periodic and such
that

∂t g̃∗ + T g̃∗ + Kg̃∗ = 0.

If ∂t + T + K does have a one-dimensional kernel, then g̃∗ is proportional to g∗
from Lemma 1.3, and hence T0 = 2π√

λ∗
.

1.7 Domains in Action-Angle Variables

Beforewewill be able to describe ourmain results and their connection to theBirman-
Schwinger principle in Sect. 1.8, we have to take a closer look at the domains that
occur as the supports of steady state solutions, expressed in action-angle variables
(θ, I, �); recall that the particle energy eQ = E(I, �) is a function of (I, �) alone.

The frequency functions associated with the energy E are

ω1(I, �) = ∂E(I, �)

∂ I
, ω2(I, �) = ∂E(I, �)

∂L3
= 0, ω3(I, �) = ∂E(I, �)

∂�
,

where (I, L3, �) are the action variables.Wewould like to emphasize thatω1, together
with the corresponding period function T1(I, �) = 2π

ω1(I,�)
, will be a main player in

the game, and understanding its properties will be of central importance. This is due
to the fact that in action-angle variables the operator T from (1.11) is found to be
very simple:

(T g)(θ, I, �) = ω1(I, �) ∂θg(θ, I, �),

or gk �→ ikω1 gk in terms of the Fourier coefficients. Since ω1 is independent of θ,
this also yields −T 2g = −ω2

1 ∂2
θ g or gk �→ k2ω2

1 gk . It will turn out (see Section
3.1) that ω1 is strictly positive, so that, at fixed �, the map I �→ E(I, �) is strictly
increasing. Therefore, it can be inverted as a map E �→ I (E, �), and accordingly
functions g = g(θ, I, �) can be viewed as functions g̃(θ, E, �) = g(θ, I (E, �), �)

and vice versa.
From (Q1)–(Q4) in Sect. 1.3, the following can be shown (cf. the argument in

Sect. 1.7.1 below):
In action-angle variables, one has

K = {(θ, E,β) : θ ∈ [0, 2π],β ∈ [0,β∗], E ∈ [emin(β), e0]},

where E = E(I, �) and I = I (E, �). Furthermore, β = �2, β∗ > 0, and

emin(β) = Ueff(r0(β),β)
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is the minimal energy of the effective potential Ueff(·,β), which is attained at the
unique point r0(β); see Appendix I, Sect.A.1. Also, emin(·) is non-decreasing and

min {emin(β) : β ∈ [0,β∗]} = UQ(0) < e0,

max {emin(β) : β ∈ [0,β∗]} = e0.

We will always denote

D = {(E,β) : β ∈ [0,β∗], E ∈ [emin(β), e0]},

which at times will be expressed in terms of � as

D = {(E, �) : � ∈ [0, �∗], E ∈ [emin(�), e0]}, (1.23)

and similarly, we will write

K = {(θ, E, �) : θ ∈ [0, 2π], � ∈ [0, l∗], E ∈ [emin(�), e0]}. (1.24)

It is also understood that K and D can bewritten in terms of the variables (θ, I,β),
(θ, I, �) and (I,β), (I, �), respectively, without this being reflected by renaming the
sets. In any case, we will always have K = [0, 2π] × D.

For illustration, we are going to determine K and D for the polytropes and the
King models, respectively. A general domain D is shown in Fig. 1.1.

Fig. 1.1 The domain D in coordinates (e,β) = (E,β)
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1.7.1 Polytropes Revisited

We wish to determine the support

K = supp Q = {e0 − eQ ≥ 0}

of the polytropes in terms of β = �2 and e = eQ . More precisely, since always θ ∈
[0, 2π] on K for the angular variable θ, we have to exhibit a set D of (e,β) such that
K = [0, 2π] × D. On this domain D, we need to have

e0 ≥ e ≥ Ueff(r,β) ≥ Ueff(r0(β),β) = UQ(r0(β)) + β

2r0(β)2
, (1.25)

with r0(β) denoting the unique point where the effective potential Ueff(r,β) =
UQ(r) + β

2r2 attains its minimum value emin(β) = Ueff(r0(β),β). From (1.25),
we get

2r0(β)2 (e0 −UQ(r0(β)) ≥ β.

Let
J = {β ≥ 0 : 2r0(β)2 (e0 −UQ(r0(β)) ≥ β}.

First, we claim that J is an interval. To see this, note that

2r2(e0 −Ueff(r,β)) + β = 2r2
(
e0 −UQ(r) − β

2r2

)
+ β = 2r2(e0 −UQ(r)).

Therefore,
2r2(e0 −UQ(r)) ≥ β ⇐⇒ Ueff(r,β) ≤ e0,

which implies that
J = {β ≥ 0 : emin(β) ≤ e0}. (1.26)

Now β �→ emin(β) is increasing by Lemma A.7(c) below (which is a general result),
and thus J has to be an interval.

The next aim is to show that [0, ε] ⊂ J for some ε > 0 small enough. For, by
Lemma A.7(f), we have

r0(β)4 = 1

A(0)
β + O(β2) and emin(β) = UQ(0) + O(β1/2)

as β → 0+. SinceUQ(0) < e0 (the cut-off energy), the condition emin(β) ≤ e0 from
the characterization of J in (1.26) is satisfiedwith strict inequality atβ = 0. It follows
that [0, ε] ⊂ J if ε > 0 is sufficiently small.

Now, we are going to show that J is bounded. First, if β ∈ J , then r0(β) ≤
rQ , where supp ρQ = [0, rQ]. Otherwise, we would have r0(β) > rQ for some
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β ∈ J \ {0}. Since rQ is characterized by UQ(rQ) = e0, this gives UQ(r0(β)) > e0,
and consequently β ≤ 2r0(β)2 (e0 −UQ(r0(β)) ≤ 0, which is a contradiction. Then,
r0(β) ≤ rQ for β ∈ J in turn leads to the boundedness of J , owing to

β ≤ 2r0(β)2 (e0 −UQ(r0(β)) ≤ 2r2Q (e0 −UQ(r0(β)) ≤ 2r2Q (e0 −UQ(0))

uniformly for β ∈ J .
Lastly, we will check that β∗ = max J satisfies emin(β∗) = e0. In fact, at β∗, we

must have 2r0(β∗)2 (e0 −UQ(r0(β∗)) = β∗. Thus,

emin(β∗) = Ueff(r0(β∗),β∗) = UQ(r0(β∗)) + β∗
2r0(β∗)2

= e0. (1.27)

To summarize, since the condition on e is e0 ≥ e ≥ emin(β), we have shown that

D = {(β, e) : β ∈ [0,β∗], e ∈ [emin(β), e0]}

and K = [0, 2π] × D for the support K of Q in terms of e and β, and the lower
boundary curve [0,β∗] � β �→ emin(β) strictly increases from UQ(0) to e0.

We would also like to point out that r0(β∗) ∈]0, rQ[. By construction, one has
r0(β∗) ≤ rQ , so suppose that we had r0(β∗) = rQ . Since r0(β)3U ′

Q(r0(β)) = β,
(1.27) yields

e0 = UQ(r0(β∗)) + β∗
2r0(β∗)2

= UQ(r0(β∗)) + 1

2
r0(β∗)U ′

Q(r0(β∗)). (1.28)

But UQ(rQ) = e0, whence 0 = U ′
Q(rQ) = 4π

r2Q

∫ rQ
0 s2ρQ(s) ds, which is a contradic-

tion. The relation (1.28) characterizes r0(β∗), since ϕ(r) = UQ(r) + 1
2 rU

′
Q(r) sat-

isfies ϕ′(r) = 1
2 r B(r) for B(r) = U ′

Q(r)

r + 4πρQ(r) > 0 from Lemma A.6(b). In
addition, ϕ(0) = UQ(0) < e0 and ϕ(rQ) = e0 + 1

2 rQU
′
Q(rQ) > e0.

Finally, observe that the reasoning in this section did not depend on the specific
form of the polytropic ansatz function (1.6), but only on the general properties of the
functions r0(β) and emin(β).

1.7.2 King Models Revisited

Exactly as in Sect. 1.7.1, here we also get

K = supp Q = [0, 2π] × D, D = {(β, e) : β ∈ [0,β∗], e ∈ [emin(β), e0]},

for the corresponding functions r0(β) and emin(β) = Ueff(r0(β),β). In addition, we
have r0(β∗) ∈]0, rQ[.
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1.8 Summary of the Main Results

Now, we are in a position to outline the main results of this book. In Chap.3, we
will study the properties of ω1 or equivalently of T1 in some detail. First, it is shown
(Theorem 3.2) that

δ1 = inf {ω1(e, �) : (e, �) ∈ D̊} > 0. (1.29)

This fact has beenmentioned above and it will be usedmany times. The number δ1, or
more precisely δ21 , is intimately related to the spectrum of L , since δ21 = min σess(L)

is the minimum of the essential spectrum of L . In this connection, let us also mention
that the essential spectrum of L can be determined explicitly, and it is large in the
sense that [λc,∞[⊂ σess(L) for some λc > δ21 . Furthermore, λ∗ ≤ δ21 is satisfied
(Section 3.4). Along with (1.29), we will also prove that

�1 = sup {ω1(e, �) : (e, �) ∈ D̊} < ∞;

see Theorem 3.5. Concerning the regularity of ω1 or T1, it is not very difficult to
see that T1 ∈ C1(D̊), as will be derived in Theorem 3.6. It is considerably harder to
verify that T1 ∈ C(D), i.e., that T1 can be continuously extended to the boundary
∂D of D. This will be done in a series of lemmas, and the results are summarized
in Theorem 3.13; the most challenging part is to make sure that T1 is continuous at
(e,β) = (UQ(0), 0), which is the lower left corner of D. It will also turn out that
T1 is increasing on the lower boundary curve of D (Lemma 3.14) and on the left
boundary part of D (Lemma 3.15).

In Chapter 4, we are going to make the connection of the spectral problem for
L to the Birman-Schwinger principle. We will be using an approach to reformulate
the problem that is inspired by the physics reference [61], although this paper does
neither use the operator L nor realize the underlying Birman-Schwinger principle.
Let L2

r denote the L
2-Lebesgue space of radially symmetric functions �(x) = �(r)

on R
3 with inner product

〈�,�〉 =
∫

R3
�(x) �(x) dx = 4π

∫ ∞

0
r2 �(r)�(r) dr.

It will be shown that one can define a family Qλ of non-negative Hilbert-Schmidt
operators on L2

r with the following properties for λ < δ21:

(a) λ is an eigenvalue of L if and only if 1 is an eigenvalue of Qλ.

This observation provides a natural way for showing that λ∗ is an eigenvalue of
L , provided that one has λ∗ < δ21 (i.e., there is a spectral gap). The first eigenvalue
function μ1(λ) ofQλ turns out to be increasing in λ, and one has to locate the value
of λ, where μ1 becomes 1; in this way, we will be able to show that λ∗ is attained.
Furthermore, we will also prove:
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(b) if u ∈ X2
odd is an eigenfunction of L for the eigenvalue λ, then � = 4π

∫
R3 pr u

dv ∈ L2
r is an eigenfunction of Qλ for the eigenvalue 1;

(c) if � ∈ L2
r is an eigenfunction of Qλ for the eigenvalue 1, then u = (−T 2 −

λ)−1(|Q′(eQ)| pr�) ∈ X2
odd is an eigenfunction of L for the eigenvalue λ.

Thus, if we compare (a)–(c) for our galactic dynamics setup to (a)–(c) from the
Schrödinger case in Sect. 1.1, then we see that both are formally identical if we asso-
ciate pr ∼ √−V and −� ∼ −T 2 and furthermore disregard the velocity average∫
R3 dv; the appearance of |Q′(eQ)| in |Q′(eQ)| pr� is due to the (·, ·)Q that is used.
There is yet another fact that supports the analogy of both approaches. One of the
ways to represent Qλ is

Qλ� = 4π
∫

R3
pr (−T 2 − λ)−1 (|Q′(eQ)| pr�) dv. (1.30)

Comparing this relation to (1.1), it turns out that both relations do agree if we apply
the same identifications as before.

Throughout the book, we are going to exploit this Birman-Schwinger principle in
galactic dynamics to deal with the question in which cases λ∗ from (1.20) is attained.
However, there seems to be a wide range of further possible applications that could
for instance be related to a limiting absorption principle or L p–Lq -estimates on the
‘free resolvent’ (−T 2 − λ)−1, in the spirit of [45] for the Laplacian. One advantage
when dealing with (1.1) is that, in three dimensions, the operator has the explicit
integral kernel

Be(x, y) = √−V (x)
1

4π|x − y| exp(−√
e |x − y|)√−V (y),

which allows for hands-on estimates. It would also be desirable to obtain something
similar for (1.30).

The explicit form of the operator Qλ is

Qλ : L2
r → L2

r ,

(Qλ�)(r)=16π

r2
∑

k �=0

∫ ∞

0
dr̃ �(r̃)

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}
ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − λ

× sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)),

where r±(e, �) are the maximal resp. minimal value of r along the orbit of (1.17)
that has energy e, and θ(r, e, �) is the associated angle. Note that λ < δ21 implies
k2ω2

1(e, �) − λ ≥ δ21 − λ > 0 for k �= 0, so the denominators do not vanish. It turns
out that the familyQλ can be analytically continued toQz for z ∈ � = C \ [δ21,∞[,
by simply replacing λ with z. In addition, we can write (Qz�)(r) = 〈Kz̄(r, ·),�〉
for some L2 × L2-integral kernel K , which allows us to show that each Qz is a
Hilbert-Schmidt operator on L2

r . Furthermore, 〈Qλ�,�〉 ≥ 0 and λ → 〈Qλ�,�〉
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are increasing for real λ. Then, the spectrum of Qλ consists of μ1(λ) ≥ μ2(λ) ≥
. . . → 0 (the eigenvalues are listed according to their multiplicities). In addition,

μ1(λ) = ‖Qλ‖ = sup {〈Qλ�,�〉 : ‖�‖L2
r
≤ 1},

where ‖ · ‖ = ‖ · ‖B(L2
r )
, and every function

μk(·) : ] − ∞, δ21[ → ]0,∞[

for k ∈ N is monotone increasing and locally Lipschitz continuous. According to the
Birman-Schwinger characterization of an eigenvalue λ for L , we have to determine
those k and λ, where μk(λ) = 1. Since we expect λ∗ ≤ δ21 to be the principal eigen-
value of L , more specifically we need to find λ such that μ1(λ) = 1. In this respect,
the quantity

μ∗ = lim
λ→δ21−

μ1(λ) = sup {μ1(λ) : λ ∈ [0, δ21[} ∈ [μ1(0),∞]

will be important, and in what follows, we are going to outline our results, depending
on μ∗.

Let us first recall that δ21 = min σess(L), and if λ∗ < δ21 and λ∗ were an eigenvalue
of L , then therewould exist a spectral gap.We are going to prove in Theorem4.13 that
the conditions λ∗ < δ21 and μ∗ > 1 are equivalent, and in this case, μ1(λ∗) = 1 and
λ∗ is an eigenvalue of L . The difficult part of the argument is to show that a spectral
gap λ∗ < δ21 forces λ∗ to be an eigenvalue. This is accomplished by studying (at great
length in Appendix C) a certain evolution equation, for which λ∗ < δ21 translates into
a compactness condition; the argument is summarized in Section C.1.

Next, we turn to the case where μ∗ < 1. Then necessarily λ∗ = δ21 , so there is no
spectral gap and we cannot use the Birman-Schwinger principle. Nevertheless, it is
possible to prove (Theorem 4.14) that now λ∗ = δ21 is not an eigenvalue, provided
that the following condition is satisfied:

(ω1-1) {(I, �) ∈ D : ω1(I, �) = δ1} has the Lebesgue measure zero.

This excludes (Lemma B.12) that δ21 is an eigenvalue of −T 2. The proof works by
deriving suitable estimates for the operatorsQδ21−ε+iε3 in the limit ε → 0+.Wewould
not be surprised if the case μ∗ < 1 could not occur at all, but we were not able to
verify this.

The most pathological case seems to be μ∗ = 1. Then once again λ∗ = δ21 , there
is no spectral gap and the Birman-Schwinger principle does not apply. To see that
here one needs to add another condition on ω1, let us change the perspective and ask
where, in D, δ1 = inf D̊ ω1 = minD ω1 is attained. If this happens at an interior point
(ê, β̂) ∈ D̊, then ∇ω1(ê, β̂) = (0, 0) and the following condition will be verified:

(ω1-2) There are a point (ê, β̂) ∈ D̊, a neighborhood U of (ê, β̂) and a constant
C1 > 0 such that ω1(ê, β̂) = δ1 and
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|ω1(e,β) − δ1| ≤ C1 |(e,β) − (ê, β̂)|2, (e,β) ∈ U. (1.31)

But then Corollary 4.16 implies that μ∗ = ∞, which is not compatible with μ∗ = 1.
Hence, we can assume that the minimum is attained at some point (ê, β̂) ∈ ∂D, the
boundary of D. According to Corollary 3.16, then (ê, β̂) lies on the ‘upper line’
{(e,β) : e = e0,β ∈ [0,β∗]} of the boundary and one needs to have more precise
information on the behavior of ω1 close to (ê, β̂) = (e0, β̂). If ∇ω1(e0, β̂) ∼ (0, 0)
(the followingmotivation is not rigorous sincewe don’t know thatω1 is differentiable
on ∂D), then we would be in a similar situation as what has been described before.
Therefore, we can assume that ∇ω1(e0, β̂) � (0, 0) in the sense that at least one
of the derivatives ∂ω1

∂e and ∂ω1
∂β

does not vanish at (e0, β̂). If it is exactly one of
the two derivatives that does not vanish, one could also derive a bunch of results,
with techniques that are similar to the ones outlined below. Hence, we are going to
assume that both derivatives do not vanish, in a weak sense that does not need the
differentiability, as formulated in the following condition:

(ω1-3) There are a point (e0, β̂) ∈ D and a constant c1 > 0 such that ω1(e0, β̂) = δ1
and

|ω1(e,β) − δ1| ≥ c1|(e,β) − (e0, β̂)|, (e,β) ∈ D;

it would be sufficient to require (ω1-3) only locally in a neighborhood of (e0, β̂).
Supposing that (ω1-3) holds, we can show in Theorem 4.15 for μ∗ = 1 that λ∗ = δ21
is an eigenvalue of L if and only if

‖μ′
1‖L∞(]−∞,δ21 [) < ∞ (1.32)

is verified; since μ1(·) is differentiable a.e., this condition is meaningful. The
proof works by first observing that, as a consequence of (ω1-3), the operator
Qδ21

= limλ→δ21− Qλ does exist in the Hilbert-Schmidt norm (Lemma 4.9) and hence
is a Hilbert-Schmidt operator itself. In addition, μ∗ = 1 is its first eigenvalue μ1(δ

2
1).

Due to the compactness ofQδ21
, if � j ∈ L2

r is a normalized eigenfunction of Qλ j for
μ1(λ j ) and λ j → δ21−, then a subsequence will converge to a normalized eigenfunc-
tion �∗ ofQδ21

for the eigenvalue μ∗ = 1 (Corollary 4.11, no need to assume (1.32)).
Once again, the situation is very much analogous to what is known for Schrödinger
operators, cf. [82, pp. 83–85] and [84, Section 2] for instance: a threshold eigen-
value and eigenfunction of the Birman-Schwinger operator do not immediately give
rise to a threshold eigenvalue and eigenfunction of the Schrödinger operator, but in
fact the existence of the latter is characterized by an additional condition, which is
(1.32) in our case. To understand its meaning, suppose for simplicity of the presen-
tation that there is ε > 0 such that ]δ21 − ε, δ21[� λ �→ μ1(λ) is real analytic, and in
addition that there are �λ ∈ L2

r satisfying ‖�λ‖L2
r
= 1, Qλ�λ = μ1(λ)�λ, so that

also ]δ21 − ε, δ21[� λ �→ �λ is real analytic. This will follow from the Kato-Rellich
perturbation theory if μ∗ is known to be a simple eigenvalue of Qδ21

. In the general
case, which is much more technical, one needs to work with appropriate sequences
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λ j → δ21− that are constructed using an appropriate generalization of the standard
Kato-Rellich perturbation theory (Appendix IV). In the real analytic case, define
ψλ(r, pr , �) = |Q′(eQ)| pr�λ(r) and gλ = (−T 2 − λ)−1ψλ. Then it is found that

‖gλ‖2X0 = 1

4π
〈Q′

λ�λ, �λ〉 = 1

4π
μ′
1(λ)

and μ′
1 is increasing. Thus, (1.32) is equivalent to the condition sup ‖gλ‖X0 < ∞,

i.e., to the boundedness of (gλ) ⊂ X0. In addition, one can prove that

Lgλ = (1 − μ1(λ))ψλ + λgλ,

cf. Lemma 4.7(c). Since μ1(λ) → μ1(δ
2
1) = μ∗ = 1, the weak convergence gλ ⇀ g∗

is seen to be sufficient to ensure that g∗ �= 0 and Lg∗ = δ21g∗, i.e., g∗ is the wanted
eigenfunction of L . To establish the converse assertion, i.e., that the existence of an
eigenfunction of L for λ∗ = δ21 leads to (1.32), a different argument has to be used;
see Theorem 4.15. Corollary 4.17 contains an example of a situation where (1.32)
can be shown to hold. For this, we add (Q5) from Sect. 1.3 as an additional condition
on Q. It should not be surprising that the regularity of Q′ close to e = e0 will become
important in this respect since we are dealing with integrals of the form

∑

k �=0

∫∫

D

dβ de
ω1(e,β) |Q′(e)|
k2ω2

1(e,β) − λ
(. . .)

many times. If λ ∼ δ21 and k = ±1, then the behavior of ω1 close to (e,β) = (e0, β̂)

gets important; this is addressed by condition (ω1-3). On the other hand, there is an
interplay with the term |Q′(e)| for e close to e0, which could compensate for possible
losses (or it could be bad itself). Generally speaking, many different results could be
derived for μ∗ = 1 by combining assumptions of ω1 with assumptions on Q′ close
to e0.

Let us remark that we don’t see an immediate path to calculate μ∗ for a given
steady state solution Q. However, there might be a smart way to settle this question,
and in any case μ∗, together with additional important quantities like λ∗ and δ1,
for sure could be determined numerically. Another notable fact is as follows. The
Vlasov-Poisson system (1.5) and (1.3) has many invariances; see Chap.6; quantities
that remain invariant under the scaling could be expected to be of ‘fundamental’
importance. It turns out that μ∗ is such a quantity, but λ∗ and δ1 are not. On the
contrary, the conditions λ∗ < δ21 and λ∗ = δ21 are both invariant. We will deduce
several other invariants in Chap.6, among them the “Eddington-Ritter relation”,
which says that

2π√
λ∗

√
ρQ(0)

is invariant; note that 2π√
λ∗

is the “linear period” from Lemma 1.3.
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There are several other operators around that are used to assist (by means of
their coercivity) stability proofs for stellar systems, among them the “Hartree-Fock
exchange operator” by Lynden-Bell [57, 58] and the “Guo-Lin operator” [29, 88].
Concerning the latter, we are able to make a connection to the operators Qλ that
we are using, more precisely to Q0. Let λGL > 0 denote the best constant for the
Guo-Lin operator; see (5.2). Then we have

λGL + μ1(0) = 1

by Lemma 5.1, and 0 < μ1(0) < 1 implies that λGL > 0 will always be attained
(Corollary 5.2). Of course, the clear advantage of the operatorsQλ is the underlying
Birman-Schwinger principle, as they can be used to detect the λ∗ that will be the
eigenvalue.

Finally, there are four appendices. Appendix I and Appendix II contain the neces-
sary backgroundmaterial forwhat concerns the change of coordinates to action-angle
variables, function spaces and operators. Appendix III is independent and provides
a proof (using a new evolution equation) of the fact that λ∗ < δ21 implies that λ∗ is
an eigenvalue of L; this will enter into the theorems obtained in Sect. 4.2. Lastly,
Appendix IV concerns some specifics of the Kato-Rellich perturbation theory that
are also used to study the properties of Qλ as λ → δ21−.
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