
Chapter 9
Directions in Synthetic Data
Development

In this chapter, we outline the main directions that we believe to represent promising
ways to further improve synthetic data, making it more useful for a wide variety
of applications in computer vision and other fields. In particular, we discuss the
idea of domain randomization (Section 9.1) intended to improve the applications of
synthetic datasets, methods to improve CGI-based synthetic data generation itself
(Section 9.2), ways to create synthetic data from real images by cutting and pasting
(Section 9.3), and finally possibilities to produce synthetic data by generative models
(Section 9.4). The latter means generating useful synthetic data from scratch rather
than domain adaptation and refinement, which we consider in a separate Chapter 10.

9.1 Domain Randomization

Domain randomization is one of the most promising approaches to make straightfor-
ward transfer learning from synthetic-to-real data actually work. The basic idea of
domain randomization had been known since the 1990s [394], but was probably first
explicitly presented and named in [861]. Consider a model that is supposed to train
on a synthetic dataset Dsyn ∼ psyn, where psyn denotes the distribution of synthetic
data, and later be applied to a real dataset Dreal ∼ preal, where preal is the distribution
of real data. The idea is simple: let us try to make the synthetic data distribution psyn
sufficiently wide and varied so that the model trained on psyn will be robust enough
to work well on preal.

Ideally, we would like to cover preal with psyn, but in reality this is never achieved
directly. Instead, synthetic data in computer vision can be randomized and made
more diverse in a number of different ways at the level of either constructing a 3D
scene or rendering 2D images from it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_9

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_9


228 9 Directions in Synthetic Data Development

Fig. 9.1 Sample images generated by the domain randomization approach by Tremblay et al. [867]
for an outdoor driving dataset.

• at the scene construction level, a synthetic data generator (SDG) can randomize the
number of objects, its relative and absolute positions, number and shape of distrac-
tor objects, contents of the scene background, textures of all objects participating
in the scene, and so on;

• at the rendering level, SDG can randomize lighting conditions, in particular, the
position, orientation, and intensity of light sources, change the rendering quality
bymodifying image resolution, rendering type such as ray tracing or other options,
add random noise to the resulting images, and so on.

Tobin et al. [861] made the first steps to show that domain randomization works
well; they used simple geometric shapes (polyhedra) as both target and distractor
objects, random textures such as gradient fills or checkered patterns. The authors
found that synthetic pretraining is indeed very helpful when only a small real training
set is available, but helpful only if sufficiently randomized, in particular, when using
a large number of random textures.

This approach was subsequently applied to a more ambitious domain by NVIDIA
researchers Tremblay et al. [867], who trained object detection models on synthetic
data with the following procedure:

• create randomized 3D scenes, adding objects of interest on top of random surfaces
in the scenes;

• add so-called “flying distractors”, diverse geometric shapes that are supposed to
serve as negative examples for object detection;

• add random textures to every object, randomize the camera settings, lighting, and
other parameters.

The resulting images are completely unrealistic (see Fig. 9.1 for a few samples that
are supposed to represent outdoor scenes to train the detection of cars), yet diverse
enough that the networks have to concentrate on the shape of the objects in question.
Tremblay et al. report improved car detection results for R-FCN [178] and SSD [539]
architectures (but failing to improve Faster R-CNN [719]) on their dataset compared
to Virtual KITTI (see Section 7.2), as well as improved results on hybrid datasets
(adding a domain-randomized training set to COCO [525]), a detailed ablation study,
and extensive experiments showing the effect of various hyperparameters.

Since then, domain randomization has been used and further developed in many
works. Borrego et al. [85] aim to improve object detection for common objects,
showing that domain randomization in the synthetic part of the dataset significantly



9.1 Domain Randomization 229

improves the results. Tobin et al. [860] consider robotic grasping, a problemwhere the
lack of real data is especially dire (see also Sections 7.4 and 10.6). They use domain
randomization to generate a wide variety of unrealistic procedurally generated object
meshes and textured objects for grasping, so that a model trained on them would
generalize to real objects as well. They show that a grasping model trained entirely
on non-realistic procedurally generated objects can be successfully transferred to
realistic objects.

Up until recently, domain randomization had operated under the assumption that
realism is not necessary in synthetic data. Prakash et al. [684] take the next logical
step, continuing this effort to structured domain randomization. They still randomize
all of the settings mentioned above, but only within realistic ranges, taking into
account the structure and context of a specific scene.

Finally, another important direction is learning how to randomize. Van Vuong et
al. [897] provide one of the first works in this direction, concentrating on picking the
best possible domain randomization parameters for sim-to-real transfer of reinforce-
ment learning policies. They show that the parameters that control sampling over
Markov decision processes are important for the quality of transferring the learned
policy to a real environment and that these parameters can be optimized. We mark
this as a first attempt and expect more works devoted to structuring and honing the
parameters of domain randomization.

9.2 Improving CGI-Based Generation

The basic workflow of synthetic data in computer vision is relatively straightforward:
prepare the 3D models, place them in a controlled scene, set up the environment
(camera type, lighting etc.), and render synthetic images to be used for training.
However, some works on synthetic data present additional ways to enhance the data
not by domain adaptation/refinement to real images (wewill discuss these approaches
in Section 10), but directly on the stage of CGI generation.

There are two different directions for this kind of added realism inCGI generation.
The first direction is to make more realistic objects. For example, Wang et al. [904]
recognize retail items in a smart vending machine; to simulate natural deforma-
tions in the objects, they use a surface-based mesh deformation algorithm proposed
in [906], introducing and minimizing a global energy function for the object’s mesh
that accounts for random deformations and rigidity properties of the material (Wang
et al. also use GAN-based refinement, see Section 10.3). Another approach, initiated
by Rozantsev et al. [738], is to estimate the rendering parameters required to syn-
thetize similar images from data; this approach ties into the synthetic data generation
feedback loop that we discuss in Section 12.2.

The second direction is to make more realistic “sensors”, introducing synthetic
data postprocessing that mimics the noise characteristics of real cameras/sensors.
For example, we discussed DepthSynth by Planche et al. [677] (see Section 6.5), a
system that makes simulated depth data more realistic, more similar to real depth



230 9 Directions in Synthetic Data Development

sensors, while the OVVV system by Taylor et al. [853] (Section 6.6), and the ICL-
NUIM dataset by Handa et al. [321] (Section 7.2) take special care to simulate the
noise of real cameras. There is even a separate area of research completely devoted
to better modeling of the noise and distortions in real-world cameras [72]

Apart from added realism on the level of images, there is also the question of high-
level coherence and realism of the scenes. While there is no problem with coherence
when the scenes are done by hand, the scale of modern datasets requires to automate
scene composition as well. We note a recent joint effort in this direction by NVIDIA,
University of Toronto, and MIT: Kar et al. [433] presentMeta-Sim, a general frame-
work that learns to generate synthetic urban environments (see also Section 7.2).
Meta-Sim represents the composition of a 3D scene with a scene graph and a proba-
bilistic scene grammar, a common representation in computer graphics [1026]. The
goal is to learn how to transform samples coming from the probabilistic grammar
so that the distribution of synthetic scenes becomes similar to the distribution of
scenes in a real dataset; this is known as bridging the distribution gap. What’s more,
Meta-Sim can also learn these transformations with the objective of improving the
performance of networks trained on the resulting synthetic data for a specific task
such as object detection (see also Section 12.2).

There are also a number of domain-specific developments that improve synthetic
data generation for specificfields. For example,Cheung et al. [145] presentLCrowdV,
a generation framework for crowd videos that combines a procedural simulation
framework that concentrates of movements and human behaviour and a rendering
framework for image/video generation, while Anderson et al. [20] develop a method
for stochastic sampling-based simulation of pedestrian trajectories (see Section 6.6).

In general, while computer graphics is increasingly using machine learning to
speed up rendering (by, e.g., learning approximations to complex computationally
intensive transformations [424, 651]) and improve the resulting 3D graphics, works
on synthetic data seldom make use of these advances; a need to improve CGI-based
synthetic data is usually considered in the direction of making it more realistic with
refinement models (see Section 10.1). However, we do expect further interesting
developments in specific domains, especially in situations where the characteristics
of specific sensors are important (such as, e.g., LIDARs in autonomous vehicles).

9.3 Compositing Real Data to Produce Synthetic Datasets

Another notable line of work that, in our opinion, lies at the boundary between
synthetic data and data augmentation is to use combinations and fusions of different
real images to produce a larger and more diverse set of images for training. This
does not require the use of CGI for rendering the synthetic images, but does require
a dataset of real images.

Early works in this direction were limited by the quality of segmentation needed
to cut out real objects. For some problems, however, it was easy enough to work.
For example, Eggert et al. [221] concentrate on company logo detection. To generate



9.3 Compositing Real Data to Produce Synthetic Datasets 231

synthetic images, they use a small number of real base images where the logos are
clearly visible and supplied with segmentation masks, apply random warping, color
transformations, and blurring, and then paste the modified (segmented) logo onto a
new background image. Training on this extended dataset yielded improvements in
logo detection results. In Section 6.6, we have discussed the “Frankenstein” pipeline
for compositing human faces [360].

The field started in earnest with the Cut, Paste, and Learn approach by Dwibedi
et al. [213], which is based on the assumption that only patch-level realism is needed
to train, e.g., an object detector. They take a collection of object instance images,
cut them out with a segmentation model (assuming that the instance images are
simple enough that segmentation will work almost perfectly), and paste them onto
randomized background scenes, with no regard to preserving scale or scene composi-
tion. Dwibedi et al. compare different classical computer vision blending approaches
(e.g., Gaussian and Poisson blending [669]) to alleviate the influence of boundary
artifacts after the paste; they report improved instance detection results. The work on
cut-and-paste was later extended with GAN-based models (used for more realistic
pasting and inpainting) and continued in the direction of unsupervised segmentation
by Remez et al. [716] and Ostyakov et al. [648].

Subsequent works extend this approach for generating more realistic synthetic
datasets. Dvornik et al. [212] argue that an important problem for this type of data
augmentation is to preserve visual context, i.e., make the environment around the
objects more or less realistic. They describe a preliminary experiment where they
placed segmented objects at completely random positions in new scenes and not only
did not see significant improvements for object detection on the VOC’12 dataset, but
actually saw the performance deteriorate, regardless of the distractors or strategies
used for blending and boundary artifact removal. Therefore, they added a separate
model (also a CNN) that predicts what kind of objects can be placed in a given
bounding box of an image from the rest of the image with this bounding box masked
out; then the trained model is used to evaluate potential bounding boxes for data
augmentation, choose the ones with the best object category score, and then paste a
segmented object of this category in the bounding box. The authors report improved
object detection results on VOC’12.

Wang et al. [903] develop this into an even simpler idea of instance switching: let us
switch only instances of the same class between different images in the training set; in
this way, the context is automatically right, and shape and scale can also be taken into
account.Wang et al. also propose to use instance switching to adjust the distribution of
instances across classes in the training set and account for class importance by adding
more switching for classes with lower scores. The resulting PSIS (Progressive and
Selective Instance Switching) system provides improved results on the MS COCO
dataset for various object detectors including Faster-RCNN [719], FPN [523], Mask
R-CNN [327], and SNIPER [803].

For a detailed consideration, let us consider a recent work by Jin and Rinard [402]
who take this basic cut-and-paste approach to the next level. In essence, they still
use the same basic pipeline:



232 9 Directions in Synthetic Data Development

• take an object space O consisting of synthetic objects placed in random poses and
subjected to a number of different augmentations;

• take a context space C consisting of background images;
• superimpose objects from O against backgrounds from C at random;
• train a neural network on the resulting composite images.

However, Jin andRinard consider this approach in detail and introduce several impor-
tant tricks that allow this simple approach to provide some of the very best results
available in domain adaptation and few-shot learning.

First, the sampling. One common pitfall of computer vision is that when you
have relatively few examples of a class, they cannot come in a wide variety of
backgrounds. Hence, in a process akin to overfitting the networksmight start learning
the characteristic features of the backgrounds rather than the objects in this class.

What is the easiest way out of this? How can we tell the classifier that it’s the
object that’s important and not the background? With synthetic images, it’s easy: let
us place several different objects on the same background! Then, since the labels
are different, the classifier will be forced to learn that backgrounds are not important
and it is the objects that differentiate between classes. Therefore, Jin and Rinard
take care to introduce balanced sampling of objects and backgrounds. The basic
procedure samples a random biregular graph so that every object is placed on an
equal number of backgrounds and vice versa, every background is used with the
same number of objects.

The other idea used by Jin andRinard stems from the obvious fact that the classifier
must learn to distinguish between different objects. Therefore, it would be beneficial
for training to concentrate on the hard cases where the classifier might confuse two
objects. In [402], this idea comes in two flavors. First, specifically for images the
authors suggest to superimpose one object on top of another, so that the previous
object provides a maximally confusing context for the next one. Second, they use
robustness training, a method basically equivalent to self-adversarial training that
we discussed in Section 3.4 but applied to synthetic images here. The idea is that if
we are training on synthetic image that might look a little unrealistic and might not
be hard enough to confuse even an imperfect classifier, we can try to make it harder
for the classifier by turning it into an adversarial example.

With all these ideas combined, Jin and Rinard obtain a relatively simple pipeline
that is able to achieve state-of-the-art results by training with only a single synthetic
image of each object class. Note that there is no complex domain adaptation here:
all ideas can be thought of as smart augmentations similar to the ones we considered
in Section 3.4.

With the development of conditional generative models, this field has blossomed
into more complex conditional generation, usually called image fusion, that goes
beyond cut-and-paste; we discuss these extensions in Section 10.4.



9.4 Synthetic Data Produced by Generative Models 233

9.4 Synthetic Data Produced by Generative Models

Generative models, especially generative adversarial networks (GAN) [290] that we
will discuss in detail in Chapter 4, are increasingly being used for domain adaptation,
either in the form of refining synthetic images to make them more realistic or in
the form of “smart augmentation”, making nontrivial transformations on real data.
We discuss these techniques in Chapter 10. Producing synthetic data directly from
random noise for classical computer vision applications generally does not sound
promising: GANs can only try to approximate what is already in the data, so why
can’t the model itself do it? However, in a number of applications synthetic data
produced by GANs directly from random noise, usually with an abstract condition
such as a segmentation mask, can help; in this section, we consider several examples
of these approaches.

Counting (objects on an image) is a computer vision problem that, formally speak-
ing, reduces to object detection or segmentation but in practice is significantly harder:
to count correctly the model needs to detect all objects on the image, missing not
a single one. Large datasets are helpful for counting, and synthetic data generated
with a GAN conditioned on the number of objects or a segmentation mask with
known number of objects, either produced at random or taken from a labeled real
dataset, proves to be helpful. In particular, there is a line of work that deals with leaf
counting on images of plants: ARIGAN by Giuffrida et al. [278] generates images
of arabidopsis plants conditioned on the number of leaves, Zhu et al. generate the
same conditioned on segmentation masks [1028], and Kuznichov et al. [490] gener-
ate synthetically augmented data that preserves the geometric structure of the leaves;
all works report improved counting.

Santana and Hotz [758] present a generative model that can learn to generate
realistic looking images and even videos of the road for potential training of self-
driving cars. Their model is a VAE+GAN autoencoder based on the architecture
from [497] that is combined with a recurrent transition model that learns realistic
transitions in the embedded space. The resulting model produces synthetic videos
that preserve road texture, lane markings, and car edges, keeping the road structure
for at least 100 frames of the video. This interesting approach, however, has not yet
led to any improvements in the training of actual driving agents.

It is hard to find impressive applications where synthetic data is generated purely
from scratch by generative models; as we have discussed, this may be a principled

)b()a(

Fig. 9.2 Sample handwritten text generated by Alonso et al. [14]: (a) French; (b) Arabic.



234 9 Directions in Synthetic Data Development

limitation. Still, even a small amount of additional supervision may do. For exam-
ple, Alonso et al. [14] consider adversarial generation of handwritten text (see also
Section 6.7). They condition the generator on the text itself (sequence of characters),
generate handwritten instances for various vocabulary words, and augment the real
RIMES dataset [299] with the resulting synthetic dataset (Fig. 9.2). Alonso et al.
report improved character recognition performance in terms of both edit distance
and word error rate. This example shows that synthetic data does not need to involve
complicated 3D modeling to work and improve results; in this case, all information
Alonso et al. provided for the generative model was a vocabulary of words.

A related but different field considers unsupervised approaches to segmentation
and other computer vision problems based on adversarial architectures, including
learning to segment via cut-and-paste [716], unsupervised segmentation by moving
objects between pairs of images with inpainting [648], segmentation learned from
unannotated medical images [1011], and more [70]. While this is not synthetic data
per se, in general we expect unsupervised approaches to computer vision to be an
important trend in the use of synthetic data.

At this point, we have seen many examples and applications of synthetic data.
Most synthetic data generation that we have encountered has involved manual com-
ponents: for instance, in computer vision, the 3D scene is usually set up by hand,
with manually crafted 3D objects. However, we have already seen a few cases where
synthetic data can be produced automatically with generative models. What’s even
more important in the context of synthetic data applications, generative models can
help adapt synthetic data to make it more realistic, or adapt models for downstream
tasks toworkwell on real data after training on synthetic.We have already introduced
generative models and specifically GAN-based architectures in Chapter 4, and in the
next chapter, it is time to put them to work for synthetic-to-real domain adaptation.


	9 Directions in Synthetic Data Development
	9.1 Domain Randomization
	9.2 Improving CGI-Based Generation
	9.3 Compositing Real Data to Produce Synthetic Datasets
	9.4 Synthetic Data Produced by Generative Models




