
Chapter 3
Deep Neural Networks for Computer
Vision

Computer vision problems are related to the understandingof digital images, video, or
similar inputs such as 3D point clouds, solving problems such as image classification,
object detection, segmentation, 3D scene understanding, object tracking in videos,
andmanymore. Neural approaches to computer vision were originally modeled after
the visual cortex of mammals, but soon became a science of their own, with many
architectures already developed and newones appearing up to this day. In this chapter,
we discuss the most popular architectures for computer vision, concentrating mainly
on ideas rather than specific models. We also discuss the first step towards synthetic
data for computer vision: data augmentation.

3.1 Computer Vision and Convolutional Neural Networks

Computer vision is one of the oldest and most important subfields of artificial intel-
ligence. In the early days of AI, even leading researchers believed that computer
vision might prove to be easy enough: Seymour Papert, one of the fathers of AI,
initially formulated several basic computer vision problems as a student project in
“an attempt to use our summer workers effectively” [654] (see also Section 5.1). But
it soon became apparent that computer vision is actually a much more ambitious
endeavour, and despite decades of effort and progress the corresponding problems
are still not entirely solved.

One of the most important advances in the study of the visual cortex was made
by David H. Hubel and Torsten N. Wiesel who, in their Nobel Prize-winning collab-
oration, were the first to analyze the activations of individual neurons in the visual
cortex of mammals, most famously cats [376, 377, 925]. They studied the early
layers of the visual cortex and realized that individual neurons on the first layer of
processing react to simple shapes while neurons of the second layer react to cer-
tain combinations of first layer neurons. For example, one first layer neuron might

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_3


60 3 Deep Neural Networks for Computer Vision

react to a horizontal line in its field of view (called a receptive field, a term that
also carried over to artificial intelligence), and another first layer neuron might be
activated by a vertical line. And if these two neurons are activated at the same time,
a second layer neuron might react to a cross-like shape appearing in its receptive
field by implementing something close to a logical AND (naturally, I’m simplifying
immensely but that’s the basic idea). In other words, first layer neurons pick up on
very simple features of the input, and second layer neurons pick up on combinations
of first layer neurons. Hubel and Wiesel were wise enough not to go much farther
than the first two layers because signal processing in the brain becomes much more
complicated afterwards. But even these initial insights were enough to significantly
advance artificial intelligence...

The basic idea of convolutional neural networks (CNN) is quite simple.We know,
e.g., from the works of Hubel and Wiesel that a reasonable way to process visual
information is to extract simple features and then produce more complicated features
as combinations of simple ones. Simple features often correspond to small receptive
fields: for instance, we might want a first layer neuron to pick up a vertical gradient
in a window of size 5 × 5 pixels. But then this feature extraction should be applied
equally to every 5 × 5window, that is, instead of training a neural network to perform
the same operation for eachwindowacross, say, a 1024 × 1024 imagewe could apply
the same learnable transformation to every window, with shared weights. This idea
works as a structural regularizer, saving an immense number of weights in the CNN
compared to an equivalent fully connected network. Mathematically, this idea can be
expressed as a convolution between the input and the small learnable transformation,
hence the name.

Figure 3.1 illustrates the basic idea of a convolutional network: a 5 × 5 input image
is broken down into 3 × 3 windows, and each window is passed through the same
small neural network, getting a vector of features as a result.After this transformation,
the 5 × 5 image becomes a 3 × 3 output in terms of width and height.

Fig. 3.1 The basic idea of a convolutional neural network; blue and red colors follow the transfor-
mations of two 3 × 3 windows, and the same small neural network is applied to the other windows
as well.



3.1 Computer Vision and Convolutional Neural Networks 61

A convolutional layer is actually just one way to implement this idea, albeit
the most popular one by far. It is a layer defined by a set of learnable filters (or
kernels) that are convolved across the entire input tensor. Convolutions can come
in any dimension, but the most popular and intuitive ones for computer vision are
two-dimensional convolutions, so we will use them in our examples. In this case,
the input is a three-dimensional tensor width × height × channels (a grayscale image
has one channel, a color image three, and intermediate representations inside a neural
network can have arbitrarily many), and the convolution is best thought of as a four-
dimensional tensor of dimension

input channels × width × height × output channels.

Figure 3.2 shows a toy numerical example of a convolutional layer consisting of a
linear convolution with a 3 × 3 × 2 tensor of weights and a ReLU activation, applied
to a 5 × 5 × 1 input image.

For the first “real” example, let us consider the Sobel operator, a classical computer
vision tool dating back to 1968 [809]. It is a discrete computation of the image
gradient, used for edge detection in classical computer vision. For our example, we
note that the main components of the Sobel operator are two 3 × 3 convolutions with
matrices

Sx =
⎛
⎝
1 0 −1
2 0 −2
1 0 −1

⎞
⎠ , Sy =

⎛
⎝

1 2 1
0 0 0

−1 −2 −1

⎞
⎠ .

Basically, Sx shows the horizontal component of the image gradient and Sy shows
the vertical component.

If we take an image such as a handwritten digit from the MNIST dataset as
shown in Fig. 3.3a, and apply a convolution with matrix Sx , we get the result shown
in Fig. 3.3b. The result of convolving with matrix Sy is shown in Fig. 3.3c. In this
example,we see howconvolutionswith smallmatrices give rise tomeaningful feature

Fig. 3.2 Sample application of a convolutional layer consisting of a linear convolution with a
3 × 3 × 2 tensor of weights and a ReLU activation.



62 3 Deep Neural Networks for Computer Vision

Fig. 3.3 Sample application of convolutions: (a) original handwritten digit; (b) convolution with
matrix Sx , the horizontal component of the image gradient; (c) convolution with matrix Sy , the
vertical component of the image gradient.

extraction: the meaning of the features shown in Fig. 3.3b, c is quite clear, and they
indeed reflect the variation of the input image’s pixel intensities in the corresponding
direction. Note that in a neural network, both convolutions would be treated as a
single tensor of dimension 3 × 3 × 2, and the result of applying it to an image of
size 28 × 28 would be a tensor with two channels (feature maps) shown in Fig. 3.3b,
c. Note that in this example, the width and height of the output stay at 28 instead
of being reduced by 1 on every side because the results are computed with padding,
i.e., an extra row and column of zeroes is added on every side of the input; this is a
common trick in convolutional networks used when it is desirable to leave the input
size unchanged.

In a trainable neural network, weights in thematrices Sx and Sy would not be set in
advance but would represent weights that need to be learned with gradient descent, as
we discussed in the previous chapter. Actually, the first introduction of convolutions
to artificial neural networks happened a long time ago, when even backpropagation
had not been universally accepted. This was the Neocognitron developed by Kuni-
hiko Fukushima in the late 1970s [248–250]. The Neocognitron was a pioneering
architecture in many respects: it was a deep neural network in times when deep
networks were almost nonexistent, it had feature extraction from small windows of
the input—precisely the idea of convolutional networks—it was training in an unsu-
pervised fashion, learning to recognize different kinds of patterns presented, and it
actually already had ReLU activations—all this in the 1970s! The Neocognitron is
widely regarded as a predecessor to CNNs, and although it did take a few years to
adapt all these ideas into modern CNN architectures, they actually appeared in the
1980s pretty much in their modern form.

In a classical convolutional network such as LeNet [501], convolutional layers are
usually interspersed with nonlinear activation functions (applied componentwise)
and pooling layers that reduce the dimension. The most popular is the max-pooling
layer that does not have any trainable parameters and simply covers the input tensor
with windows (often 2 × 2) and chooses the largest value of every feature in each



3.1 Computer Vision and Convolutional Neural Networks 63

Fig. 3.4 The LeNet-5 architecture [501].

Fig. 3.5 The LeNet-5 training process on MNIST dataset of handwritten digits.

window. The basic intuition is that we want the features to correspond to certain
properties that extend from smaller to larger windows; for example, if there is a cat
present in a 128 × 128 window in the image, there is also a cat in every 256 × 256
window containing it. Max-pooling also induces a lot of sparsity that helps keep the
computations more efficient.

For an extended example, let us implement and study the (slightly modified)
LeNet-5 network operating on 32 × 32 grayscale images (we will be using MNIST
handwritten digits), a simple convolutional architecture shown in Figure 3.4. In the
figure, layers that perform transformations are shown as rectangles filled in green,
and dimensions of current feature maps are shown as rectangles filled in blue. As
you can see, each 5 × 5 convolution reduces the width and height of the input tensor
by 4 because there is no padding here, and each 2 × 2 pooling layer (average pooling
in the case of LeNet) halves the input dimensions.

Figure 3.5 shows the learning process of this network, trained on the MNIST
dataset with Adam optimizer and batch size 32. As you can see, the loss function
(average cross-entropy between the correct answers and network predictions) on the
training set decreases steadily, but the loss function on the held-out validation set is far
from monotone. The best result on the validation set is achieved in this experiment



64 3 Deep Neural Networks for Computer Vision

Fig. 3.6 A view into the first layer of LeNet-5: (a) weights of the six convolutions; (b) sample input
image; (c) activations produced by convolutions from (a) on the image from (b).

(specific results might change after a restart with random re-initialization of the
weights) after 12 epochs of training.

Figure 3.6 shows the first layer of the resulting trained network. It shows the
weights of the six 5 × 5 convolutions trained on the first layer in Fig. 3.6a and the
results of applying them to a sample digit shown in Fig. 3.6b (the same as in Fig. 3.3,
only padded with zeroes to size 32 × 32) are shown in Fig. 3.6c. You can see that
the first layer has learned to extract simple geometric features, in many ways similar
to the image gradients shown in Fig. 3.3.

Modern networks used in computer vision employ very similar convolutional
layers. They usually differ from LeNet in that they use ReLU activation functions or
its variations rather than sigmoidal activations (recall the discussion in Section 2.1).
The ReLU nonlinearity was re-introduced into deep learning first for Boltzmann
machines in [616] andwidely popularized in deep convolutional networks byAlexNet
(see Section 3.2 below).

Over the last decade, CNNs have been dominating computer vision and have been
rising in popularity in many other fields of machine learning. For example, in 2014–
2016 one-dimensional CNNs were becoming increasingly crucial for natural lan-
guage processing (NLP), supplementing and even replacing recurrent networks [423,
1010]; after 2017, the best results in NLP were produced by architectures based on
self-attention such as Transformer, especially BERT and GPT families [192, 697,
891]. But BERT-like models are still often used to pretrain word embeddings, and
embeddings are then processed by CNNs and/or RNNs to solve downstream tasks.

However, there still remain valid criticisms even for the basic underlying idea
of convolutional architectures. Two of the most important criticisms deal with the



3.1 Computer Vision and Convolutional Neural Networks 65

lack of translational invariance and loss of geometry along a deep CNN. Lack of
translational invariance means that units in a CNN that are supposed to produce a
given feature (say, recognize a cat’s head on a photo) might not activate if the head
is slightly moved or rotated. In machine learning practice, translational invariance in
CNNs is usually achieved by extensive data augmentation that always includes simple
geometric transformations such as re-cropping the image, rescaling by a factor close
to 1, and so on (we will discuss augmentations in detail in Section 3.4). However,
achieving full translational invariance by simply extending the dataset is far from
guaranteed and appears extremely wasteful: if we are dealing with images we already
know that translational invariance should be in place, why should we learn it from
scratch for every single problem in such a roundabout way?

The “loss of geometry” problem stems from the fact that standard convolutional
architectures employ pooling layers that propagate information about low-level fea-
tures to high-level feature maps with smaller resolutions. Therefore, as the signal
travels from bottom to top layers, networks progressively lose sight of the exact
locations where features have originated. As a result, it is impossible for a high-level
feature to activate on specific geometric interrelations between low-level features, a
phenomenon sometimes called the “Picasso problem”: a convolutional feature can
look for two eyes, nose, and mouth on a face but cannot ensure that these features
are indeed properly positioned with respect to each other. This is because pooling
layers, while they are helpful to reduce the redundancy of feature representation in
neural networks, prevent overfitting, and improve the training process, and at the
same time represent a fixed and very crude way of “routing” low-level information
to high-level features.

These two problems have been pointed out already in 2014 by Geoffrey Hin-
ton [343]. An attempt to alleviate these problems has led Hinton to develop a new
approach to architectures that perform feature composition: capsule networks. In a
capsule network, special (trainable) routing coefficients are used to indicate which
low-level features are more important for a given high-level feature, and the features
(capsules) themselves explicitly include the orientations and mutual positions of fea-
tures and explicitly estimate the likelihood of the resulting composite feature [247,
349, 452, 748]. As a result, translational invariance is built in, routing is dynamic,
capsule networks have much fewer parameters than CNNs, and the entire process
is much more similar to human vision than a CNN: capsules were designed with
cortical columns in mind.

However, at present it still appears too hard to scale capsule networks up to real-
world problems: computational tricks developed for large-scale CNNs do not help
with capsule networks, and so far they struggle to scale far beyond MNIST and
similar-sized datasets. Therefore, all modern real-life computer vision architectures
are based on CNNs rather than capsules or other similar ideas, e.g., other equivariant
extensions such as sphericalCNNs [163] or steerableCNNs [164], and applications of
capsule networks are only beginning to appear [227]. Thus, we will not be discussing
these alternatives in detail, but I didwant tomention that the future of computer vision
may hold something very different from today’s CNNs.



66 3 Deep Neural Networks for Computer Vision

3.2 Modern Convolutional Architectures

In this section, we give an overview of the main ideas that have brought computer
vision to its current state of the art. We will go over a brief history of the development
of convolutional architectures during the deep learning revolution, butwill only touch
upon the main points, concentrating on specific important ideas that each of these
architectures has brought to the smörgåsbord of CNNs that we have today. For a
more detailed introduction, we refer to [153, 225, 631] and other sources (Fig. 3.7).

MCDNN. The deep learning revolution in computer vision started during 2010–
2011, when recent advances in deep learning theory and the technology of training
and using neural networks on highly parallel graphical processors (GPUs) allowed
training much deeper networks with much more units than before. The first basic
problem that was convincingly solved by deep learning was image classification. In
2011, a network by Dan Cireşan from Jürgen Schmudhuber’s group won a number
of computer vision competitions [159]. In particular, this network was the first to
achieve superhuman performance in a practically relevant computer vision problem,
achieving a mere 0.56% error in the IJCNN Traffic Sign Recognition Competition,
while the average human error on this dataset was 1.16% [160].

Architecturally, Ciresan’s network, called Multi-Column Deep Neural Network
(MCDNN), is a committee of deep convolutional networks with max-pooling. It
showcases several important ideas:

• MCDNN uses a basic convolutional architecture very similar to the LeNet family
of networks (so we do not show a separate figure for it), but it was one of the first
to consistently use max-pooling instead of average-pooling or other variations;

• the architecture contains several identical networks trained on differently prepro-
cessed inputs, where preprocessing variations include different combinations of
color normalization and contrast adjustment; thus, MCDNN was already showing

Fig. 3.7 The AlexNet architecture [477].



3.2 Modern Convolutional Architectures 67

the power of data augmentation for computer vision, a theme that remains crucial
to this day and that represents one of the motivations for synthetic data.

AlexNet. However, MCDNN operated on very small images, cutting out traffic
sign bounding boxes of size 48 × 48 pixels. The development of large-scale modern
architectures that could dealwith higher resolution images startedwithAlexNet [477],
a network developed by Alex Krizhevsky in Prof. Hinton’s group (see Fig. 3.7 for
an illustration). With 8 trainable layers, AlexNet became one of the first successful
truly deep convolutional networks. It was introduced at the ImageNet Large Scale
VisualRecognitionChallenge (ILSVRC) in 2012,whereAlexNet beat all competitors
with an unprecedented margin: two submitted versions of AlexNet had test set errors
(measured as classification accuracy for top-5 guesses) about 15–16%, while the
nearest competitor could only achieve an error of 26%1! Architecturally, AlexNet
again introduced several new ideas:

• it introduced and immediately popularized ReLU activations as nonlinearities used
in convolutional layers; previously, tanh activations had been most often used in
convolutional networks;

• it emphasized the crucial role of data augmentation in training neural networks
for computer vision problems; we will discuss the case of AlexNet in detail in
Section 3.4;

• it was one of the first large-scale networks to consistently use dropout for additional
regularization;

• finally, it was one of the first neural networks to feature model parallelization: the
model was distributed between two GPUs; back in 2012, it was a real engineering
feat, but since then it has become a standard feature of deep learning frameworks
such as PyTorch or Tensorflow.

AlexNet’s resounding success marked the start of a new era in computer vision:
since 2012, it has been dominated by convolutional neural architectures. CNNs
have improved and defined state of the art in almost all computer vision problems:
image classification, object detection, segmentation, pose estimation, depth estima-
tion, object tracking, video processing, and many more. We will talk in more detail
about object detection and segmentation architectures in Section 3.3. For now, the
important part is that they all feature a convolutional backbone network that performs
feature extraction, often on several layers simultaneously: bottom layers (nearest to
input) of a CNN extract local features and can produce high-resolution feature maps,
while features extracted on top layers (nearest to output) have large receptive fields,
generalize more information, and thus can learn to have deeper semantics, but lose
some of the geometry along the way (we have discussed this problem above in
Section 3.1).

VGG. The next steps in deep CNN architectures were also associated with the
ILSVRC challenge: for several years, top results in image classification were marked
by new important ideas that later made their way into numerous other architectures as
well. One of the most fruitful years was 2014, when the best ImageNet classification

1http://image-net.org/challenges/LSVRC/2012/results.html.

http://image-net.org/challenges/LSVRC/2012/results.html


68 3 Deep Neural Networks for Computer Vision

Fig. 3.8 VGG: decomposing large convolutions [802].

was achieved by the VGG network by Simonyan and Zisserman [802]; the name
originates from the Visual Geometry Group in the University of Oxford. The main
idea that defined the VGG family is that individual convolutions in a CNN virtually
never need to be large: a 5 × 5 convolution can be expressed as a composition of two
3 × 3 convolutions without any pooling or nonlinearities in between, a 7 × 7 convo-
lution is just three layers of 3 × 3 convolutions, and so on. Figure 3.8 shows the first
successful network from the VGG family; note how max-pooling layers come after
groups of two or three convolutional layers, thus decomposing larger convolutions.
This results in much deeper networks with fewer weights, serving as additional reg-
ularization and at the same time making training and inference more efficient. Later
architectures also experimented with expressing n × n two-dimensional convolu-
tions as compositions of 1 × n and n × 1 one-dimensional convolutions, and this
trick is also common in modern CNN architectures.

Inception and GoogLeNet. In the same year, Google presented GoogLeNet, a
network by Szegedy et al. that won the object detection track of ILSVRC 2014 [836].
Together with a precursor work on “network-in-network” architectures by Lin et
al. [522], it had three important ideas that have stayed with us ever since: Inception
modules, 1 × 1 convolutions, and auxiliary classifiers.

First, “network-in-network” architectures take the basic idea of convolutional
networks—applying the same simple transformation to all local windows over the
input—and run with it a bit further than regular CNNs. Instead of just using a matrix
of weights, they design special architectures for the “simple transformation” (not so
simple anymore), so that a single layer is actually applying a whole neural network to
each window of the input, hence the name. The architecture of these small networks
from [836], called Inceptionmodules, is shown in Fig. 3.9. Since then, there have been
plenty of modifications, including Inception v2 and v3 [837] and later combinations
of Inception with ResNet (see below).

Second, 1 × 1 convolutions play an important part in all variations of network-in-
networkmodules. At first glance, it may appear that 1 × 1 convolutions are pointless.
However, while they indeed do not collect any new features from neighboring pixels,
they provide additional expressiveness by learning a (nonlinear, otherwise it is point-
less indeed) transformation on the vector of features in a given pixel. In practice, this
is usually needed to change the dimension of the feature vector, often reducing it
before performing more computationally demanding transformations.



3.2 Modern Convolutional Architectures 69

Fig. 3.9 Inception modules:
(a) basic “naive” Inception
v1 module [836]; (b)
Inception v1 module with
dimension reductions via
1 × 1 convolutions [836]; (c)
sample Inception v2
module [837].

For example, a 3 × 3 convolution that maps a 512-dimensional vector into a 512-
dimensional vector has 512 × 3 × 3 × 512 = 9 · 218 ≈ 2.36M weights. But if we
first apply a 1 × 1 convolution to reduce the dimension to 64 and then map the
result back into dimension 512, we add two convolutions with 512 × 1 × 1 × 64 =
215 = 32768 weights each but reduce the 3 × 3 convolution to 64 × 3 × 3 × 64 =
9 · 212 weights, for a total of 2 · 215 + 9 · 212 ≈ 102K weights, a reduction by a
factor of more than 20! The additional approximation that this kind of dimensionality
reduction implies usually does not hurt and may even serve as additional structural
regularization.



70 3 Deep Neural Networks for Computer Vision

This idea has been widely used in architectures that try to minimize the memory
footprint or latency of convolutional neural models. Figure 3.9b shows the Incep-
tion v1 module with 1 × 1 convolutions that perform these dimension reductions,
and Figure 3.9c shows how Inception v2 has modified this module with the VGG
basic idea of decomposing larger convolutions into compositions of 3 × 3 convolu-
tions [837]. We do not show all variations of Inception modules here and refer to
[836, 837] for more details.

Third, GoogLeNet is a deep network, it has 22 layers with trainable parameters,
or 27 if you count pooling layers. When training by gradient descent, GoogLeNet
faces problems that we discussed in Section 2.4 in relation to deep neural networks in
general: error propagation is limited, and when top layers reach saturation it becomes
very hard for bottom layers to train. To overcome this problem, Szegedy et al. [836]
proposed to use auxiliary classifiers to help the loss gradients reach bottom layers.
The GoogLeNet architecture (see Fig. 3.10) has two auxiliary classifiers that have
separate classification heads (shallow networks ending in a classification layer). The
loss functions are the same (binary cross-entropy classification loss), and they are
simply added together with the main loss function to form the objective function for
the whole network:

LGoogLeNet = LMainBCE + α1LAuxBCE1 + α2LAuxBCE2 .

The α coefficient was initialized to 0.3 and gradually reduced during training. This
trick was intended to speed up the training of bottom layers on early stages of training
and improve convergence, but Szegedy et al. report that in practice, convergence rate
did not improve significantly, but the final performance of the network was better, so
auxiliary classifiers served more like a regularizer.

ResNet. Despite these promising results, auxiliary classifiers are not widely used
in modern architectures. The reason is that the main problem that they had been
intended to solve, problems with error propagation after the saturation of top layers,
was solved in a different way that proved to be much better. A Microsoft Research
team led by Kaiming He developed and implemented the idea of deep residual learn-
ing [330] that was the main driving force behind the success of ResNet architectures
that won ILSVRC 2015 in both classification (reducing the ImageNet Top-5 error
rate to 3.5%) and object detection (with the Faster R-CNN detection architecture that
we will discuss below in Section 3.3).

The basic structure of ResNet is simple: it is a composition of consecutive lay-
ers, and each of them is usually simply a convolutional layer, perhaps with batch
normalization on top. The main difference is that in a residual unit, the layer that
computes a function F(x) for some input x (shown schematically in Fig. 3.11a) is
supplemented with a direct residual connection that goes around the layer, so that the
overall function that produces the kth layer output, denoted as y(k), from the input
vector x(k) is computed as

y(k) = F(x(k)) + x(k),



3.2 Modern Convolutional Architectures 71

Fig. 3.10 The GoogLeNet general architecture.



72 3 Deep Neural Networks for Computer Vision

Fig. 3.11 Deep residual learning: (a) schematics of a simple layer; (b) schematics of a layer with
a residual connection; (c) sample ResNet layer from [330].

where x(k) is the input vector of the kth layer, F(x) is the function that the layer
computes, and y(k) is the output of the residual unit that will later become x(k+1) and
will be fed to the next layer in the network (see Fig. 3.11b).

The name comes from the fact that if the layer as a whole is supposed to approx-
imate some function H(x), it means that the actual neural layer has to approximate
the residual, F(x) ≈ H(x) − x; this does not complicate the problem for F(x)much
(if at all), but at the same time provides a direct way for the gradient to flow around
F(x). Now

∂y(k)

∂x(k)
= 1 + ∂F(x(k))

∂x(k)
,

and even if the layer F becomes completely saturated, its near-zero derivatives
will not hinder training: the gradient will simply flow down to the previous layer
unchanged.

Residual learning was not a new idea: it is the same constant error carousel
idea that had been used in recurrent architectures for a long time, in particular in the
famous long short-termmemory (LSTM) architectures developed in the late 1990s by
Hochreiter, Gers, and Schmidhuber [273, 350]. A recurrent network is, in essence, a
very deep network by default (consider its computational graph when unrolled along
the entire input sequence), and the same phenomenon leads to either exploding or
vanishing gradients that effectively limit the propagation of information (“memory”)
in recurrent networks. The constant error carousel is precisely the idea of having a
“direct path” for the gradient to flow.

However, He et al. were the first to apply this idea to “unrolled” deep convo-
lutional networks, with great success. Note that a comparison of several residual
architectures performed in [331] shows that the best results are achieved with the
simplest possible residual connections: it is usually best to leave the direct path as
free from any transformations (such as nonlinearities, batch normalizations, and the



3.2 Modern Convolutional Architectures 73

like) as possible. It even proved to be a bad idea to use control gates that could poten-
tially learn to “open” and “close” the path around the layer F(x), an idea that had
been successful in LSTM-like recurrent architectures. Figure 3.11c shows a simple
sample residual layer from [330], although, of course, many variations on this idea
have been put forward both in the original paper and subsequent works.

Architecturally, this has led to the possibility of training very deep networks.
Kaiming He coined the term “revolution of depth”: VGG had 19 trainable layers,
GoogLeNet had 22, but even the very first version of ResNet contained 152 layers.
It is still a popular feature extraction backbone, usually referred to as ResNet-152,
with a popular smaller variation ResNet-101 with 101 layer (there is really neither
space nor much sense in presenting the architectures of deep residual networks in
the graphical form here). Theoretically, residual connections allow to train networks
with hundreds and even thousands of layers, but experiments have shown that there
is no or very little improvement in performance starting from about 200 layers.

Some of the best modern convolutional feature extractors result from a combina-
tion of the network-in-network idea coming from Inception and the idea of residual
connections. In 2016, Szegedy et al. [835] presented Inception-v4 and several ver-
sions of InceptionResNet architectureswith new architectures for both small network
units and the global network as a whole. The resulting architectures are still among
the best feature extractors and often serve as backbones for object detection and
segmentation architectures.

Striving for efficiency: MobileNet, SqueezeNet, and others. The very best
results in basic problems such as image classification are achieved by heavy networks
such as the Inception ResNet family. However, one often needs to make a trade-off
between the final performance and available computational resources; even a desktop
GPU may be insufficient for modern networks to run smoothly, and computer vision
is often done on smartphones or embedded devices. Therefore, the need arises to
develop architectures that save on the network size (memory, usually related to the
number of weights) and its running time (usually depending on the number of layers)
without losing much in terms of performance. Naturally, it would be great to have
the best of both worlds: excellent performance and small networks. Below, we will
not present the exact architectures (I believe that after giving one full example with
GoogLeNet, a further presentation of complete architectures would only clutter the
book with information that is easy to find and unnecessary to remember) but only
survey the ideas that researchers have used in these architectures.

How can one save weights?We have discussed above that convolutions are a great
structural regularizer: by applying the same weights across a large image, convolu-
tions can extract features in an arbitrarily large input with a fixed and relatively small
number of weights. But that’s not all: convolutions themselves can also grow to be
quite large.

Suppose, for instance, that you have a layer with 256 channels (a very reasonable
number, on the low side even), and you want to apply a 5 × 5 convolution to get
another 256 channels at the output. A straightforward four-dimensional convolution
would have, as we discussed in Section 3.1,



74 3 Deep Neural Networks for Computer Vision

Fig. 3.12 Illustration for reducing the convolutions: (a) basic single convolution; (b) the VGG
trick; (c) the bottleneck trick.

256 × 5 × 5 × 256 = 1638400

weights (as shown in Fig. 3.12a). This is, of course, a big improvement compared to
a feedforward layer that would have 256 × width × height × 256 weights, but it is
often desirable to reduce these 1.6M weights further.

Let us briefly go through the main ideas used for this purpose in modern architec-
tures. Note that all methods shown below, strictly speaking, are not equivalent to a
single convolution, which is only natural: a network with 1.6M weights can be more
expressive than a network with ten times fewer weights. Fortunately, it turns out that
this added expressiveness usually does not improve performance and actually can
deteriorate it due to overfitting or insufficient data to train so many weights.

First, we can use the VGG trick and represent a 5 × 5 convolution with a composi-
tion of two 3 × 3 convolutions (see Fig. 3.12b). This reduces the number ofweights to
2 × (256 × 3 × 3 × 256) = 1179648. It can be reduced even further if we represent
3 × 3 convolutions as compositions of 1 × 3 and 3 × 1, following [837].

Second, we can use the bottleneck trick that was first popularized by the Inception
family of architectures. The 1.6 million weights in the layer above result from the
fact that we have to multiply all dimensions of the convolution. But we can turn
some of these multiplications into additions if we first compress the 256 channels
down to a more manageable size with a 1 × 1 convolution, then do the spatial 5 × 5
convolution on the reduced tensor, again producing a tensor with a small number of
channels (say 32 again), and only then expand it backwith another 1 × 1 convolution.
This method, illustrated in Fig. 3.12c, is somewhat akin to a low-rank approximation
for the convolution tensor. Suppose that the bottleneck part has 32 channels; then the
total number of weights in the three resulting convolutions will be

256 × 1 × 1 × 32 + 32 × 5 × 5 × 32 + 32 × 1 × 1 × 256 = 41984,

with minor further reductions again available if we apply the VGG trick to the
5 × 5 convolution in the middle. At this point, we have already achieved a dramatic



3.2 Modern Convolutional Architectures 75

reduction in network size, reducing the total number of weights by a factor of more
than 28.

The bottleneck idea was presented and successfully used in the SqueezeNet archi-
tecture that replaced Inception units with Fire modules that have a “squeeze-then-
expand” structure: first use 1 × 1 convolutions to reduce the number of channels and
then expand them back, applying a number of different convolutions and concate-
nating the outputs [382].

But even that’s not all! Third, we can take the bottleneck approach even further
by using depthwise separable convolutions. The idea is now to further decompose
the tensor in the middle, a 32 × 5 × 5 × 32 convolution that still has all four factors
present. This convolutionmixes all channels together; butwhat if we leave themixing
for 1 × 1 convolutions (after all, that’s exactly what they do) and concentrate only on
the spatial part? Formally speaking, we replace a single convolution with 32 separate
5 × 5 convolutions, each applied only to a single channel. This definitely reduces the
expressiveness of the convolution in the middle since now each channel in the result
has access to only one channel in the input; but since the channels can freely exchange
information in the 1 × 1 convolution, it usually does not lead to any significant loss
of performance. In our running example, we could apply this idea to the bottleneck,
shaving off one of the 32 factors and getting a total of

256 × 1 × 1 × 32 + 32 × 5 × 5 + 32 × 1 × 1 × 256 = 17184

weights. Alternatively, we could just forget about the whole bottleneck idea and do
256 depthwise separable convolutions instead of one of the 1 × 1 convolutions and
the bottleneck, getting

256 × 1 × 1 × 256 + 256 × 5 × 5 = 71936

weights. The second approach looks worse in this case, but, first, it depends on
the actual dimensions, and second, compressing all features to an exceedingly small
bottleneck does tend to lose information, so if we can achieve the same result without
compressing the features it might result in better performance.

Depthwise separable convolutions were introduced by Francois Chollet in [152],
where he noted that a basic Inception module can be represented as a depthwise
separable convolution that mixes subsets of channels and presented the Xception
modules that take this idea to its logical conclusion as we have just discussed. They
also became the main tool in the construction of the MobileNet family of networks
that were designed specifically to save on memory and still remain some of the best
tools for the job [358].

Neural architecture search and EfficientNet. In the survey above, basic ideas
such as compressing the channels with 1 × 1 convolutions are easy to understand,
and we can see how researchers might come up with ideas like this. A more difficult
question is how to come up with actual architectures. Who and how could establish
that for GoogLeNet you need exactly two convolutional layers in the stem followed
by nine basic Inceptionmodules interspersed with max-pooling in just the right way?



76 3 Deep Neural Networks for Computer Vision

The actual answer is simple: there is no theorem that shows which architecture is
best; you just have to come up with a wide spectrum of different architectures that
“make sense” in terms of dimensions, test a lot of them in practice, and choose the
one that performs best.

This looks suspiciously like a machine learning problem: you have the build-
ing blocks (various convolutions, pooling layers, etc.) and a well-defined objective
function (say, performance on the ImageNet test set after the training converges).
Naturally, it was not long before researchers decided to automate this process. This
problem is quite naturally formulated as a reinforcement learning problem: while
we do not have a ready-to-use dataset, we can compute the objective function on
any network. But computing the objective function is quite expensive (you need to
train a large model to convergence). This approach to developing neural networks is
known as neural architecture search (NAS); I will not go into more details about it
and will refer to the main sources on NAS [532, 846, 930, 1031].

In convolutional architectures, neural architecture search yielded the EfficientNet
family, proposed in 2019 by Tan and Le [847]. They introduced the compound scal-
ingmethod, basically generalizing all of the above discussion into a single approach
that scales network width, depth, and resolution according to a set of scaling coef-
ficients. This approach by itself already allowed to improve existing architectures,
but even more importantly, this generalization allowed the authors to formulate the
problem of finding the best network in an efficient parameter space. The resulting
networks outperformed all predecessors, setting a whole new Pareto frontier for the
performance/efficiency trade-off.

To sum up, in this section we have seen the main ideas that constitute the state
of the art in convolutional architectures. But note that everything that we have been
talking about could be formulated in terms of “training on ImageNet”, that is, all
networks mentioned above solve the image classification problem. But this is only
one problem in computer vision, and hardly even the most important one... how do
we solve object detection, segmentation, and all the rest? Let’s find out.

3.3 Case Study: Neural Architectures for Object Detection

In subsequent chapters, we will consider the use of synthetic data for computer
vision.We have seen abovewhich convolutional architectures are regarded as the best
state-of-the-art feature extractors for images.However, computer vision encompasses
many problems, and feature extraction is usually just the beginning. Indeed, even the
basic setting of computer vision introduced in the 1960s—teaching a robot to look
around itself and navigate the environment—involves much more than just image
classification.When I am typing this text, I do not just recognize a “monitor” although
it does take up most of my field of view: I can also see and distinguish the keyboard,
my own hands, various objects on the screen all the way down to individual letters,
and so on, all in the same image.



3.3 Case Study: Neural Architectures for Object Detection 77

Fig. 3.13 Sample training set annotations from the OpenImages dataset [61, 473, 489]: (a) object
detection; (b) segmentation.

The real high-level problems in this basic computer vision setting are

• object detection, i.e., finding the location of an object in the image, usually formal-
ized as a bounding box (rectangle defined by four numbers, usually the coordinates
of two opposing angles), and classifying the object inside each bounding box;

• instance segmentation, i.e., finding the actual silhouette of every object in the
image; this can be formalized as a separate classification problem for every pixel
in the image: which object (or background) does this specific pixel belong to?

Figure 3.13 shows sample training set annotations from the OpenImages dataset,
which is currently one of the largest available datasets of real data with object detec-
tion and segmentation labeling [61, 473, 489].

Note that in these new problems, the output of the network suddenly takes up a
much higher dimension than ever before. In an ImageNet classification problemwith
1000 classes, the output is a vector of probabilities assigned to these classes, so it has
dimension 1000. In an object detection problem, the output has the same dimension
1000 plus four numbers defining the bounding box for every object, and as we will
see shortly, it is usually even higher than that. In a classification problem, the output
has, formally speaking, dimension 1000 per pixel, although in practice segmentation
is rarely formalized in this straightforward way.

As much as I would like to, I have neither the space nor the willpower to make
this chapter into a wide survey of the entire research field of computer vision. So in
this section, I will attempt a more in-depth survey of one specific computer vision
problem, namely object detection. This will showcase many important ideas in mod-
ern computer vision and will align with the case study in Section 6.4, where we will
see how object detection architectures that we consider here benefit from the use of
synthetic data.



78 3 Deep Neural Networks for Computer Vision

Both object detection and segmentation have been around forever, at least since
the 1960s. I will not dwell on classical approaches to these problems since, first, our
focus is on deep learning, and second, most classical approaches have indeed been
obsoleted bymodern neural networks. I want to mention only one classical approach,
the selective search algorithm developed in 2004 [234]. In brief, it represents the
image as a graph where edge weights show similarities between small patches, start-
ing from single pixels and gradually uniting them until the image is broken into a
lot (usually several hundred) small patches. This is known as pre-segmentation or
sub-segmentation, and the resulting patches are often called superpixels, i.e., the
assumption is that the patches are so uniform that they definitely should belong to
the same object. This may be a useful approach even today, and it is still used in
some cases as preprocessing even for deep learning approaches [184], because after
pre-segmentation the dimension of the problem is greatly reduced, from millions of
pixels to hundreds or at most a few thousand of superpixels.

In 2012, selective search became the basis for a classical object detection algo-
rithm [884] that worked as follows:

• use selective search to do pre-segmentation;
• greedily unite nearest neighbors in the resulting graph of patches; there can be lots
of different proximity measures to try, based on color, texture, fill, size, and other
properties;

• as a result, construct a large set of bounding boxes out of the superpixels; this is
the set of candidates for object detection, but at this stage, it inevitably contains a
lot of false positives;

• choose positive and negative examples, taking care to include hard negative exam-
ples that overlap with correct bounding boxes;

• train a classifier (SVM in this case) to distinguish between positive and negative
examples; during inference, each candidate bounding box is run through the SVM
to filter out false positives as best we can.

This pipeline will bring us to our first series of neural networks. But before we do
that, we need to learn one more trick.

Convolutionalization andOverFeat. In the previous section, we have seenmany
wonderful properties of convolutional neural networks. But there is one more impor-
tant advantage that we didn’t mention there. Note how when we were counting the
weights in a CNN, we never used the width and height of the input or output image,
only the number of channels and the size of the convolution itself. That is because
convolutions don’t care about the size of their input: they are applied to all windows
of a given size with shared weights, and it does not matter how many such windows
the image contains. A network is called fully convolutional if it does not contain
any densely connected layers with fixed topology and therefore can be applied to an
input of arbitrary size.

But we can also turn regular convolutional neural networks, sayAlexNet for image
classification, into fully convolutional networks! In a process known as convolu-
tionalization, we simply treat fully connected layers as 1 × 1 convolutions. The
default AlexNet takes 224 × 224 images as input, so we can cover the input image



3.3 Case Study: Neural Architectures for Object Detection 79

by 224 × 224 windows and run every window through AlexNet; the fully connected
layers at the end become 1 × 1 convolutions with the corresponding number of chan-
nels and have the samekind of computational efficiency.As a result of this process,we
will transform the original image into a heatmap of various classes: every 224 × 224
window will become a vector of probabilities for the corresponding classes.

This procedure is very helpful; in particular, one of the first successful applications
of modern deep neural networks to object detection, OverFeat, did exactly this,
replacing the final classifier with a regression model that predicts bounding boxes
and postprocessing the results of this network with a greedy algorithm that unites
the proposed bounding boxes (naturally, such a procedure will lead to a lot of greatly
overlapping candidates) [782]. This approach won the ILSVRC 2013 challenge in
both object detection and object localization (a variant of object detection where it is
known a priori that there is only one significant object in the picture, and the problem
is to locate its bounding box).

Most modern architectures do not take this idea to its logical conclusion, i.e., do
not produce vectors of class probabilities for inputwindows. But basically, all of them
use convolutionalization to extract features, i.e., run the input image through the first
layers of a CNN, which is often one of the CNNs that we discussed in the previous
section. This CNN is called the backbone of an object detection or segmentation
pipeline, and by using a fully convolutional counterpart of a backbone the pipelines
can extract features from input images of arbitrary size.

Two-stage object detection: the R-CNN family. Let us now recall the object
detection pipeline based on selective search from [884] and see how we can bring
CNNs into the mix.

The first idea is to use a CNN to extract the features for object classification inside
bounding boxes and perhaps also the final SVM that weeds out false positives. This
was exactly the idea of R-CNN [276], a method that defined new state of the art for
object detection around 2013–2014. The pipeline, illustrated in Figure 3.14a, runs
as follows:

• run a selective search to produce candidate bounding boxes as above;
• run each region through a backbone CNN such as AlexNet (pretrained for image
classification and possibly fine-tuned on the training set); on this stage, the original
R-CNN actually warped each region to make its dimensions match the input of
the CNN;

• train an SVM on the features produced by the CNN for classification to remove
the false positives;

• train a separate bounding box regression on the same features used to refine the
bounding boxes, i.e., shift their corners slightly to improve the localization of
objects.

This approach was working very well but was very fragile in training (it had
quite a few models that all had to be trained separately but needed to work well in
combination) and hopelessly slow: it took about 45–50 seconds to run the inference
of the R-CNN pipeline on a single image, even on a GPU! This was definitely



80 3 Deep Neural Networks for Computer Vision

Fig. 3.14 The R-CNN family of architectures: (a) original R-CNN pipeline [276]; (b) Fast R-
CNN [277]; (c) Faster R-CNN [718].

impractical, and further developments in this family of approaches tried to make
R-CNN work faster.

The main reason for this excessive running time was that R-CNN needs to make a
pass through the CNN for every region. Therefore, Fast R-CNN [277], illustrated in
Fig. 3.14b, was designed so that it could use a single pass of the main backbone CNN
for the whole image. The main idea of Fast R-CNN is to introduce a region of interest
(RoI) projection layer that collects features from a region. The RoI projection layer
does not have any weights; it simply maps a given bounding box to a given layer of
features, translating the geometry of the original image to the (reduced) geometry in
this layer of features. As a result, the tensors of features corresponding to different
bounding boxes will have different dimensions.

To be able to put them through the same classifier, Fast R-CNN introduced the
RoI pooling layer that performs max-pooling with dimensions needed to reduce all
bounding boxes to the same size. As a result, for every bounding box we get a tensor
of features with the same dimensions that can now be put through a network that



3.3 Case Study: Neural Architectures for Object Detection 81

performs object classification and bounding box regression (which means that it has
four outputs for bounding boxes and C outputs for the classes). Only this last part of
the network needs to be run for every bounding box, and the (much larger) part of
the network that does feature extraction can be run once per image.

Fast R-CNN was two orders of magnitude faster than regular R-CNN at no loss of
quality. But it was still relatively slow, and now the bottleneck was not in the neural
network. The slowest part of the system was now the selective search algorithm that
produced candidate bounding boxes.

The aptly named Faster R-CNN [718] removed this last bottleneck by producing
candidate bounding boxes as part of the same neural network. In the Faster R-CNN
architecture (now it is indeed a neural architecture rather than a pipeline of different
models and algorithms), shown in Fig. 3.14c, the input image first goes through
feature extraction and then the tensor of features is fed to a separate region proposal
network (RPN). The RPNmoves a sliding window of possible bounding boxes along
the tensor of features, producing a score of how likely it is to have an object in this
box and, at the same time, exact coordinates of this box. Top results from this network
are used in the RoI projection layer, and then it works exactly as discussed above.
Note that all of this processing now becomes part of the same computational graph,
and the gradients flow through all new layers seamlessly: they are all at the end just
differentiable functions.

To me, this is a perfect illustration of the expressive power of neural networks:
if you need to do some additional processing along the way, you can usually just
do it as part of the neural network and train the whole thing together, in an end-
to-end fashion. Soon after Faster R-CNN appeared, it was further improved and
sped up with R-FCN (region-based fully convolutional network), which introduced
position-sensitive feature maps that encode information regarding a specific position
in the bounding box (“left side of the object”, “bottom right corner”, etc.) [177]; we
will not go into the details here. Faster R-CNN and R-FCN remain relevant object
detection frameworks up to this day (they are considered to be slow but good), only
the preferred backbones change from time to time.

One-stage object detection: YOLO and SSD. The R-CNN family of networks
for object detection is known as two-stage object detection because even Faster
R-CNN has two clearly distinguishable separate stages: one part of the network
produces candidate bounding boxes, and the other part analyzes them, ranks their
likelihood to be a true positive, and classifies the objects inside.

But one can also do object detection in a single pass, looking for both bound-
ing boxes and the objects themselves at the same time. One of the first successful
applications of this approach was the original YOLO (“you only look once”) object
detector by Redmon et al. [709]. This was, again, a single neural network, and it
implemented the following pipeline:

• split the image into an S × S grid, where S is a fixed small constant (e.g., S = 7);
• in each cell, predict both bounding boxes and probabilities of classes inside them;
this means that the network’s output is a tensor of size



82 3 Deep Neural Networks for Computer Vision

S × S × (5B + C),

whereC is the number of classes (we do classification inside every cell separately,
producing the probabilities p(classi | obj) of various classes assuming that this cell
does contain an object) and 5B means that each of B bounding boxes is defined
by five numbers: four coordinates and the score of how certain the network is in
that this box is correct;

• then the bounding boxes can be ranked simply by the overall probability

p(classi | obj)p(obj)IoU,

where p(obj)IoU is the target for the certainty score mentioned above: we want it
to be zero if there is no object here and if there is, to reflect the similarity between
the current bounding box and the ground truth bounding box, expressed as the
intersection-over-union score (also known as the Jaccard similarity index).

All this could be trained end-to-end, with a single loss function that combined
penalties for incorrectly predicted bounding boxes, incorrect placement of them, and
wrong classes. Overall, YOLO minimizes

L(θ) =λcoord

S2∑
i=1

B∑
j=1

�Obji j�
((
xi − x̂i (θ)

)2 + (
yi − ŷi (θ)

)2)

+λcoord

S2∑
i=1

B∑
j=1

�Obji j�

((√
wi −

√
ŵi (θ)

)2 +
(√

hi −
√
ĥi (θ)

)2
)

+
S2∑
i=1

B∑
j=1

�Obji j�
(
Ci − Ĉi (θ)

)2 + λnoobj

S2∑
i=1

B∑
j=1

�¬Obji j�
(
Ci − Ĉi (θ)

)2

+
S2∑
i=1

�Obji j�
∑
c

(
pi (c) − p̂i (c; θ)

)2
,

where θ denotes the weights of the network, and network outputs are indicated as
functions of θ .

Let us go through the original YOLO loss function in more detail as it provides
an illustrative example of such loss functions in other object detectors as well:

• �Obji j� is the indicator of the event that the j th bounding box (out of B) in cell
i (out of S2) is “responsible” for an actual object appearing in this cell, that is,
�Obji j� = 1 if that is true and 0 otherwise;

• similarly, �Obji� = 1 if and only if an object appears in cell i ;
• the first two terms dealwith the bounding box position and dimensions: if bounding
box j in cell i is responsible for a real object, the bounding box should be correct,
so we are bringing the coordinates of the lower left corner, width, and height of
the predicted bounding box closer to the real one;



3.3 Case Study: Neural Architectures for Object Detection 83

• the third and fourth terms are related to Ĉi (θ), the network output that signifies
the confidence that there is an object in this cell; it is, obviously, brought closer to
the actual data Ci ; note that since cells with and without objects are imbalanced
(although this imbalance cannot hold a candle to the imbalance that we will see in
SSDs), there is an additional weight λcoord to account for this fact;

• the fifth term deals with classification: the internal summation runs over classes,
and it brings the vector of probabilities p̂i (c) that the network outputs for cell i
closer to the actual class of the object, provided that there is an object in this cell;

• λcoord and λnoobj are hyperparameters, constants set in advance; the original YOLO
used λcoord = 5 and λnoobj = 1

2 .

The original YOLO had a relatively simple feature extractor, and it could achieve
results close to the best Faster R-CNN results in real time, with 40–50 frames per
second while Faster R-CNN could do less than 10.

Further development of the idea to predict everything at once led to single-shot
detectors (SSD) [540]. SSD uses a set of predefined anchor boxes that are used as
default possibilities for each position in the feature map. It has a single network that
predicts both class labels and the corresponding refined positions for the box angles
for every possible anchor box. Applied to a single tensor of features, this scheme
would obviously detect only objects of a given scale since anchor boxes would take
up a given number of “pixels”. Therefore, the original SSD architecture already
applied this idea on several different scales, i.e., several different layers of features.
The network is, again, trained in an end-to-end fashion with a single loss function.

Note that SSDhas a lot of outputs: it hasM × N × (C + 4) outputs for anM × N
featuremap,which for the basic SSDarchitecturewith a 300 × 300 input image came
to 8732 outputs per class, that is, potentially millions of outputs per image. But this
does not hinder performance significantly because all these outputs are computed in
parallel, in a single sweep through the neural network. SSD worked better than the
original YOLO, on par with or even exceeding the performance of Faster R-CNN,
and again did it at a fraction of the computational costs.

Since the original YOLO, the YOLO family of one-stage object detectors has
come a long way. I will not explain each in detail but will mention the main ideas
incorporated by Joseph Redmon and his team into each successive iteration:

• YOLOv2 [710] tried to fix many localization errors and low recall of the original
YOLO; they changed the architecture (added batch normalization layers and skip
connections from earlier layers to increase the geometric resolution, predicted
bounding box offsets rather than coordinates, etc.), pretrained their own high-
resolution (448 × 448) classifier instead of using one pretrained on ImageNet
(256 × 256), and addedmulti-scale training, i.e., trained on different image sizes;

• YOLO9000, presented in the same paper [710], generalized object detection to a
large number of classes (9000, to be precise) by using the hierarchical softmax
idea: instead of having a single softmax layer for 9000 classes, a hundred of which
are various breeds of dog, let us first classify if the object is a living thing, then if
it is an animal, get to a specific breed only after going down several layers in the
decision tree;



84 3 Deep Neural Networks for Computer Vision

• YOLOv3 [711] changed the feature extraction architecture and introduced a num-
ber of small improvements, in particular a multi-scale architecture similar to the
feature pyramid networks that we will discuss below.

Another important addition to the family of one-stage object detectors was Reti-
naNet by Lin et al. [524]. Themain novelty here is a modified loss function for object
detection known as focal loss. One problem with one-stage object detection is that
the output is wildly imbalanced: we have noted several times that one-stage detectors
have a huge number of outputs that represent a wide variety of candidate bounding
boxes, but how many of them can actually be correct?

The mathematical side of this problem is that even correctly classified examples
(a bounding box in the background correctly classified as “no object”) still contribute
to the classification loss function: the usual cross-entropy loss equals − log p for an
example where the correct class gets probability p. This is a small value when p
is close to 1 (which it should be when the network is sure), but negative examples
outweigh positive examples by a thousand to one, and these relatively small values
add up. So focal loss downweighs the loss on well-classified examples, bringing it
close to zero with an additional polynomial factor in the loss function: the focal loss
for a correctly classified example is −(1 − p)γ log p for some γ > 0 instead of the
usual cross-entropy loss − log p. Focal loss has proved to be an extremely useful
idea, used in a wide variety of deep learning models since the original work [524].

The YOLO family of networks and RetinaNet have defined state of the art in
real-time object detection for a long time. In particular, YOLOv3 was the model of
choice for at least 2 years, and this situation has begun to change only very recently.
We will go back to the story of YOLO at the end of this section, but for now let us
see the other main ideas in modern object detection.

Object detection at different scales: feature pyramid networks. To motivate
the next set of ideas, let us analyze which specific problems have historically plagued
object detection. If you look at the actual results in terms of how many objects are
usually detected, you will see that the absolute numbers in object detection are
pretty low: long after image classifiers beat ImageNet down to superhuman results
of less than 5% top-5 test error (human level was estimated at about 5.1%) [329],
the best object detectors were getting mean average precision of about 80% on
the (relatively simple) PASCAL VOC dataset and struggled to exceed 35% mean
average precision on the more realistic Microsoft COCO dataset. At the time of
writing (summer of 2020), the best mAP on Microsoft COCO is about 55%, still
very far from perfect [848, 900]. Why are the results so low?

One big problem lies in the different scales of objects that need to be recognized.
Small objects are recognized very badly by most models discussed above, and there
are plenty of them in real life and in realistic datasets such asMicrosoft COCO. This is
due to the so-called effective stride: by the time the region proposal network kicks in,
the original geometry has already been compressed a lot by the initial convolutional
layers. For example, the basic Faster R-CNN architecture has effective stride 16,
i.e., a 16 × 16 object is only seen as a single pixel by the RPN. We could try to
reduce effective stride mechanically, by doing convolutional layers without pooling



3.3 Case Study: Neural Architectures for Object Detection 85

Fig. 3.15 Types of convolutions: (a) regular convolutions; (b) dilated convolutions.

Fig. 3.16 Multi-scale object recognition: a sample architecture from [222] that does not have
top-down connections.

and without reducing the geometry, but then the networks become huge and basically
infeasible. On the other hand, there are also large objects: a car may be taking up
either 80% of the photo or just a tiny 30 × 30 pixel spot somewhere; sometimes both
situations happen on the same photo. What do we do?

One idea is to changehowwedoconvolutions.Manyobject detection architectures
use dilated (sometimes also called atrous) convolutions, i.e., convolutions whose
inputwindow is not a contiguous rectangle of pixels but a strided set of pixels from the
previous layer, as shown in Fig. 3.15; see, e.g., [211] for a detailed explanation. With
dilated convolutions, fewer layers are needed to achieve large receptive fields, thus
saving on the network size. Dilated convolutions are used in Faster R-CNN, R-FCN,
and other networks; see, e.g., a work by Yu and Koltun where dilated convolutions
were successfully applied to semantic segmentation [980].

But this is just a trick that can improve the situation, not a solution.We still need to
copewithmulti-scale objects in the same image. The first natural idea in this direction
is to gather proposals from several different layers in the backbone feature extraction



86 3 Deep Neural Networks for Computer Vision

Fig. 3.17 Feature pyramid networks: (a) top-down architecture with predictions on the bottom
level [108, 674]; (b) feature pyramid network [523].

network. In a pure form, this idea was presented by Eggert et al. [222], where the
architecture has several (three, to be precise) different region proposal networks,
each designed to recognize a given scale of objects, from small to large. Figure 3.16
shows an outline of their architecture; the exact details follow Faster R-CNN quite
closely. The results showed that this architecture improved over basic Faster R-CNN,
and almost the entire improvement came from far better recognition of small objects.
A similar idea in a different form was implemented by Cai et al. [108], who have a
single region proposal network with several branches with different scales of outputs
(the branches look kind of like GoogLeNet).

But the breakthrough came when researchers realized that top layers can inform
lower layers in order to make better proposals and better classify the objects in them.
An early layer of a convolutional backbone can only look at a small part of the input
image, and it may lack the semantic expressiveness necessary to produce good object
proposals. Therefore, it would be beneficial to add top-down connections, i.e., use
the semantically rich features produced on top layers of the CNN to help the early
layers understand what objects they are looking at.

This is exactly the idea of feature pyramid networks (FPN), presented in 2016
by Lin et al. [523]. Actually, there are two ways to do that. One way is to use skip
connections to get from the top down; thework [108] already contains an architecture
that implements this idea, and it appeared in other previous works as well [674]; we
illustrate it in Fig. 3.17a. The difference in the feature pyramid approach is that
instead of sending down semantic information to the bottom layer, Lin et al. make
RoI predictions independently on several layers along this top-down path, as shown
in Fig. 3.17b; this lets the network better handle objects of different scales. Note
that the upscaling and composition parts do not have to have complicated structure:
in [523], upscaling is a single convolutional layer, and composition is done by using
a single 1 × 1 convolution on the features and adding it to the result of upscaling.



3.3 Case Study: Neural Architectures for Object Detection 87

Fig. 3.18 The top-down pathway in various pyramid architectures: (a) FPN [523]; (b) PANet [538];
(c) NAS-FPN [274]; (d) BiFPN from EfficientDet [848]. Dashed rectangles show repeated blocks.

The “predict” part can be complicated if needed, e.g., it can represent the RPN from
Faster R-CNN.

Feature pyramids have become a staple of two-stage object detection. One impor-
tant advance was Path Aggregation Network (PANet) [538], which added new path-
ways between layers of the pyramid and introduced adaptive feature pooling; specif-
ically, they added another bottom-up pathway to the top-down one, as shown in
Fig. 3.18b. Another advance was NAS-FPN [274], which used neural architecture
search to find a better feature pyramid architecture. Its resulting architecture is shown
in Fig. 3.18c; note that only one block is shown but it is repeated several times in the
final architecture.

At present, research into feature pyramid architectures has culminated with Effi-
cientDet, a network developed by Google Brain researchers Tan et al. [848]. Varia-
tions of this network currently show record performance, sometimes losing to solu-
tions based onCSPNet, a new recently developed CNNbackbone (wewill not go into
details on this one) [900]. EfficientDet introduced a new solution for the multi-scale
feature fusion problem, an architecture called BiFPN (weighted bidirectional feature
pyramid network); the outline of one of its repeated blocks is shown in Fig. 3.18d.

YOLOv4, YOLOv5, and current state of the art. I would like to finish this
section with an interesting story that is unfolding right as I’m writing this book.

After YOLOv3, Joseph Redmon, the main author of all YOLO architectures
that we have discussed above, announced that he stopped doing computer vision
research2. For about 2 years, YOLOv3 basically defined the state of the art in object
detection: detectors that could outperform it worked much slower. But in 2020,
Alexey Bochkovskiy et al. released YOLOv4, a significantly improved (and again
sped up) version of YOLO [78]. By using newmethods of data augmentation, includ-
ing evenGAN-based style transfer (wewill discuss such architectures in Chapter 10),

2He said that the main reason was that “the military applications and privacy concerns eventu-
ally became impossible to ignore”. Indeed, modern computer vision can bring up certain ethical
concerns, although it is far from obvious on which side the scales tip.



88 3 Deep Neural Networks for Computer Vision

using the mixup procedure in training [993], and actually a large and diverse collec-
tion of other recently developed tricks (see Section 3.4), Bochkovskiy et al. managed
to reach performance comparable to EfficientDet with performance comparable to
YOLOv3.

But that’s not the end of the story. In just two months, a different group of authors
released an object detector that they called YOLOv5. At the time of writing (summer
of 2020), there is still no research paper or preprint published about YOLOv5, but
there is a code repository3, and the blog posts by the authors claim that YOLOv5
achieves the same performance as YOLOv4 at a fraction of model size and with
better latencies [622, 623]. This led to the usual controversy about naming, credit,
and all that, but what is probably more important is that it is still not confirmed which
of the detectors is better; comparisons are controversial, and third-party comparisons
are also not really conclusive. Matters are not helped by the subsequent release of
PP-YOLO [547], an improved reimplementation of YOLOv3 that also added a lot
of new tricks and managed to outperform YOLOv4...

By the time you are reading this, the controversy has probably already been settled,
and maybe you are already using YOLOv6 or later, but I think this snapshot of the
current state of affairs is a great illustration of just how vigorous and alive modern
deep learning is. Even in such a classical standard problem as object detection, a lot
can happen very quickly!

3.4 Data Augmentations: The First Step to Synthetic Data

In the previous section, we have alreadymentioned data augmentation several times.
Data augmentations are defined as transformations of the input data that change the
target labels in predictable ways. This allows to significantly (often by several orders
of magnitude) increase the amount of available data at zero additional labeling cost.
In fact, I prefer to view data augmentation as the first step towards synthetic data:
there is no synthetic data generation per se, but there is recombination and adaptation
of existing real data, and the resulting images often look quite “synthetic”.

The story of data augmentation for neural networks begins even before the deep
learning revolution; for instance, Simard et al. [801] used distortions to augment
the MNIST training set in 2003, and I am far from certain that this is the earliest
reference. The MC-DNN network discussed in Section 3.2, arguably the first truly
successful deep neural network in computer vision, also used similar augmentations
even though it was a relatively small network trained to recognize relatively small
images (traffic signs).

But let us begin in 2012, with AlexNet [477] that we have discussed in detail in
Section 3.2. AlexNet was the network that made the deep learning revolution happen
in computer vision... and even with a large dataset such as ImageNet, even back in

3https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5


3.4 Data Augmentations: The First Step to Synthetic Data 89

2012 it would already be impossible without data augmentation! AlexNet used two
kinds of augmentations:

• horizontal reflections (a vertical reflection would often fail to produce a plausible
photo) and

• image translations; that is the reason why the AlexNet architecture, shown in
Fig. 3.7, uses 224 × 224 × 3 inputs while the actual ImageNet data points have
256 pixels by the side: the 224 × 224 image is a random crop from the larger
256 × 256 image.

With both transformations, we can safely assume that the classification label will
not change. Even if we were talking about, say, object detection, it would be trivial
to shift, crop, and/or reflect the bounding boxes together with the inputs—that is
exactly what we mean by “changing in predictable ways”. The resulting images
are, of course, highly interdependent, but they still cover a wider variety of inputs
than just the original dataset, reducing overfitting. In training AlexNet, Krizhevsky
et al. estimated that they could produce 2048 different images from a single input
training image. What is interesting here is that even though ImageNet is so large
(AlexNet trained on a subset with 1.2 million training images labeled with 1000
classes),modern neural networks are even larger (AlexNet has 60million parameters).
Krizhevsky et al. had the following to say about their augmentations: “Without this
scheme, our network suffers from substantial overfitting, which would have forced
us to use much smaller networks” [477].

By now, this has become a staple in computer vision: while approachesmay differ,
it is hard to find a setting where data augmentation would not make sense at all.

To review what kind of augmentations are commonplace in computer vision, I
will use the example of the Albumentations library developed by Buslaev et al. [103];
although the paper was only released in 2020, the library itself had been around for
several years and by now has become the industry standard.

The first candidates are color transformations. Changing the color saturation,
permuting color channels, or converting to grayscale definitely does not change
bounding boxes or segmentation masks, as we see in Figure 3.19. This figure also
shows two different kinds of blurring, jpeg compression, and various brightness and
contrast transformations.

The next obvious category are simple geometric transformations. Again, there is
no question about what to do with segmentation masks when the image is rotated or
cropped: we can simply repeat the same transformationwith the labeling. Figure 3.20
shows examples of both global geometric transformations such as flipping or rotation
(Fig. 3.20a) and local distortions defined according to a grid (Fig. 3.20b). The same
ideas can apply to other types of labeling; for instance, keypoints (facial landmarks,
skeletal joints in pose estimation, etc.) can be treated as a special case of segmentation
and also changed together with the input image.

All of these transformations canbe chained and appliedmultiple times. Figure 3.21
shows a more involved example produced with the Albumentations library; it corre-
sponds to the following chain of augmentations:



90 3 Deep Neural Networks for Computer Vision

Fig. 3.19 Sample color transformations and blurring provided by theAlbumentations library [103].

• take a random crop from a predefined range of sizes;
• shift, scale, and rotate the crop to match the original image dimension;
• apply a (randomized) color shift;
• add blur;
• add Gaussian noise;
• add a randomized elastic transformation for the image;
• perform mask dropout, removing a part of the segmentation masks and replacing
them with black cutouts on the image.

That’s quite a few operations! But how do we know that this is the best way
to approach data augmentation for this particular problem? Can we find the best
possible sequence of augmentations? Indeed, recent research suggests that we can
look for a meta-strategy for augmentations that would take into account the specific
problem setting; we will discuss these approaches in Section 12.2.



3.4 Data Augmentations: The First Step to Synthetic Data 91

Fig. 3.20 Sample geometric transformations provided by the Albumentations library [103]:
(a) global transformations; (b) local distortions.

But even that is not all! What if we take augmentation one step further and allow
augmentations to produce more complex combinations of input data points? In 2017,
this idea was put forward in the work titled “Smart Augmentation: Learning an
Optimal Data Augmentation Strategy” by Lemley et al. [506]. Their basic idea is
to have two networks, “Network A” that implements an augmentation strategy and
“Network B” that actually trains on the resulting augmented data and solves the
downstream task. The difference here is that “Network A” does not simply choose
from a predefined set of strategies but operates as a generative network that can, for
instance, blend two different training set examples into one in a smart way. I will not
go into the full details of this approach, but Figure 3.22 provides two characteristic
examples from [506].

This kind of “smart augmentation” borders on synthetic data generation: transfor-
mations are complex, and the resulting images may look nothing like the originals.
But before we turn to actual synthetic data generation in subsequent chapters, let us
discuss other interesting ideas one could apply even at the level of augmentation.

Mixup, a technique introduced by MIT and FAIR researchers Zhang et al. in
2018 [993], looks at the problem from the opposite side: what if we mix the labels
together with the training samples? This is implemented in a very straightforward
way: for two labeled input data points, Zhang et al. construct a convex combination



92 3 Deep Neural Networks for Computer Vision

Fig. 3.21 An involved example of data augmentation by transformations from the Albumentations
library [103].

Fig. 3.22 An example of “smart augmentations” by Lemley et al. [506]: the image on the left is
produced as a blended combination of two images on the right.



3.4 Data Augmentations: The First Step to Synthetic Data 93

Fig. 3.23 The famous “panda-to-gibbon” adversarial example [292]: the image on the left is recog-
nized by AlexNet as a panda with 57.7% confidence, but after adding small random-looking noise
the network recognizes the image on the right as a gibbon with 99.3% confidence.

of both the inputs and the labels:

x̃ = λx1 + (1 − λ)x2, where x1, x2 are raw input vectors,

ỹ = λy1 + (1 − λ)y2, where y1, y2 are one-hot label encodings.

The blended label does not change either the network architecture or the training
process: binary cross-entropy trivially generalizes to target discrete distributions
instead of target one-hot vectors.

The resulting labeled data covers a muchmore robust and continuous distribution,
and this helps the generalization power. Zhang et al. report especially significant
improvements in trainingGANs. By now, the idea of mixup has become an important
part of the deep learning toolbox: you can often see it as an augmentation strategy,
especially in the training of modern GAN architectures.

The last idea that I want to discuss in this section is self-adversarial training, an
augmentation technique that incorporates adversarial examples [292, 484] into the
training process. Adversarial examples are a very interesting case that showcases
certain structural and conceptual problems with modern deep neural networks. It
turns out that for most existing artificial neural architectures, one can modify input
images with small amounts of noise in such a way that the result looks to us humans
completely indistinguishable from the originals but the network is very confident
that it is something completely different. The most famous example from one of the
first papers on adversarial examples by Goodfellow et al. [292], with a panda turning
into a very confident gibbon, is reproduced in Fig. 3.23.

By now, adversarial examples and ways to defend against them have become a
large field of study in modern deep learning; let me refer to [781, 963] for recent
surveys on adversarial examples, attacks, and defenses.

In the simplest case, such adversarial examples are produced by the following
procedure:

• suppose that we have a network and an input x that we want to make adversarial;
let us say that we want to turn a panda into a gibbon;



94 3 Deep Neural Networks for Computer Vision

• formally, it means that we want to increase the “gibbon” component of the net-
work’s output vector y (at the expense of the “panda” component);

• so we fix the weights of the network and start regular gradient ascent, but with
respect to x rather than the weights!

This is the key idea for finding adversarial examples; it does not explain why they
exist (it is not an easy question) but if they do, it is really not so hard to find them
in the “white box” scenario, when the network and its weights are known to us, and
therefore we can perform this kind of gradient ascent with respect to the input image.

So how do we turn this idea into an augmentation technique? Given an input
instance, let us make it into an adversarial example by following this procedure for
the current network that we are training. Then we train the network on this example.
This maymake the networkmore resistant to adversarial examples, but the important
outcome is that it generally makes the network more stable and robust: now we are
explicitly asking the network to work robustly in a small neighborhood of every
input image. Note that the basic idea can again be described as “make the input data
distribution cover more ground”, but by now we have come quite a long way since
horizontal reflections and random crops.

Note that unlike basic geometric augmentations, this may turn out to be a quite
costly procedure. But the cost is entirely borne during training: yes, you might have
to train the final model for two weeks instead of one, but the resulting model will, of
course, work with exactly the same performance. The model architecture does not
change, only the training process does.

One of the best recent examples for the combined power of various data aug-
mentations is given by the architecture that we discussed in Section 3.3: YOLOv4
by Bochkovskiy et al. [78]. Similar to many other advances in the field of object
detection, YOLOv4 is in essence a combination of many small improvements. Faced
with the challenge of improving performance but not sacrificing inference speed,
Bochkovskiy et al. systematize these improvements and divide them into two sub-
sets:

• bag of freebies includes tricks and improvements that do not change the inference
speed of the resulting network at all, modifying only the training process;

• bag of specials includes changes that do have a cost during inference but the cost
is, hopefully, as small as possible.

The “bag of specials” includes all changes related to the architecture: new activation
functions, bounding box postprocessing, a simple attention mechanism, and so on.
But the majority of the overall improvement in YOLOv4 comes from the “bag of
freebies”... which almost entirely consists of augmentations.

YOLOv4 uses all kinds of standard augmentations, self-adversarial training, and
mixup that we have just discussed, and introduces newMosaic and CutMix augmen-
tations that amount to composing an input image out of pieces cropped out of other
images (together with the objects and bounding boxes, of course). This is just one
example but there is no doubt that data augmentations play a central role in modern
computer vision: virtually every model is trained or pretrained with some kind of
data augmentations.



3.5 Conclusion 95

3.5 Conclusion

In this chapter, we have seen a brief introduction to the world of deep learning for
computer vision. We have seen the basic tool for all computer vision applications—
convolutions and convolutional layers,—have discussed how convolutional layers
are united together in deep feature extractors for images, and have seen how these
feature extractors, in turn, can become key parts of object detection and segmentation
pipelines.

There is really no hope to cover the entirety of computer vision in a single short
chapter. In this chapter, I have decided to concentrate on giving at least a very brief
overview of the most important ideas of convolutional architectures and review as an
in-depth example of one basic high-level computer vision problem, namely object
detection. Problems such as object detection and segmentation are verymuch aligned
with the topic of this book, synthetic data. In synthetic images, both object detection
and segmentation labeling come for free: since we control the entire scene, all objects
in it, and the camera, we know precisely which object every pixel belongs to. On the
other hand, hand-labeling for both problems is extremely tedious (try to estimate how
long it would take you to label a photo like the one shown in Fig. 3.13!). Therefore,
such basic high-level problems are key to the whole idea of synthetic data, and in
Chapter 6 we will see how modern synthetic datasets help the networks that we have
met in this chapter. In fact, I will devote a whole case study in Section 6.4 to just
object detection with synthetic data.

In this chapter, we have also begun to discuss synthetic data, in its simplest form
of data augmentations. We have seen how augmentations have become a virtually
indispensable tool in computer vision these days, from simple geometric and color
transformations to very complex procedures such as self-adversarial training. But
still, even “smart” augmentations are just combinations and modifications of real
data that someone has had to label in advance, so in Chapter 6 the time will come
for us to move on to purely synthetic examples.

Before we do that, however, we need another introductory chapter. In the next
chapter, we will consider generative models in deep learning, from a general intro-
duction to the notion of generative models to modern GAN-based architectures and a
case study of style transfer, which is especially relevant for synthetic-to-real domain
adaptation.


	3 Deep Neural Networks for Computer Vision
	3.1 Computer Vision and Convolutional Neural Networks
	3.2 Modern Convolutional Architectures
	3.3 Case Study: Neural Architectures for Object Detection
	3.4 Data Augmentations: The First Step to Synthetic Data
	3.5 Conclusion




