
Chapter 2
Deep Learning and Optimization

Deep learning is currently one of the hottest fields not only in machine learning
but in the whole of science. Since the mid-2000s, deep learning models have been
revolutionizing artificial intelligence, significantly advancing state of the art across
all fields of machine learning: computer vision, natural language processing, speech
and sound processing, generative models, and much more. This book concentrates
on synthetic data applications; we cannot hope to paint a comprehensive picture of
the entire field and refer the reader to other books for a more detailed overview of
deep learning [153, 289, 630, 631]. Nevertheless, in this chapter, we begin with
an introduction to deep neural networks, describing the main ideas in the field. We
especially concentrate on approaches to optimization in deep learning, starting from
regular gradient descent and working our way towards adaptive gradient descent
variations and state-of-the-art ideas.

2.1 The Deep Learning Revolution

In 2006–2007, machine learning underwent a true revolution that began a new, third
“hype wave” for artificial neural networks (ANNs) in particular and artificial intelli-
gence (AI) in general. Interestingly, one can say that artificial neural networks were
directly responsible for all three AI “hype waves” in history1:

• in the 1950s and early 1960s, Frank Rosenblatt’s Perceptron [735, 736], which
in essence is a very simple ANN, became one of the first machine learning for-
malisms to be actually implemented in practice and featured in The New York

1For a very comprehensive account of the early history of ANNs and deep learning, I recommend
a survey by one of the fathers of deep learning, Prof. Jürgen Schmidhuber [767]; it begins with
Newton and Leibniz, whose results, as we will see, are still very relevant for ANN training today.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_2

20 2 Deep Learning and Optimization

Times, which led to the first big surge in AI research; note that the first mathemat-
ical formalizations of neural networks appeared in the 1940s [589], well before
“artificial intelligence” became a meaningful field of computer science with the
foundational works of Alan Turing [878] and the Dartmouth workshop [587, 611]
(see Section 2.3);

• although gradient descent is a very old idea, known and used at least since the
early XIX century, only by the 1980s, it became evident that backpropagation,
i.e., computing the gradient with respect to trainable weights in the network via
its computational graph, can be used to apply gradient descent to deep neural
networks with virtually arbitrary acyclic architectures; this idea became common
in the research community in the early 1980s [924], and the famous Nature paper
by Rumelhart et al. [742] marked the beginning of the second coming of neural
networks into the popular psyche and business applications.

Both of these hype waves proved to be premature, and neither in the 1960s nor
in the 1990s could neural networks live up to the hopes of researchers and investors.
Interestingly, by now we understand that this deficiency was as much technological
as it was mathematical: neural architectures from the late 1980s or early 1990s
could perform very well if they had access to modern computational resources and,
even more importantly, modern datasets. But at the moment, the big promises were
definitely unfounded; let me tell just one story about it.

One of themain reasons the first hypewave came to a halt was the failure of a large
project in no less than machine translation! It was the height of the ColdWar, and the
US government decided it would be a good idea to develop an automatic translation
machine fromRussian toEnglish, at least for formal documents. Theywere excited by
the Georgetown–IBM experiment, an early demonstration of a very limited machine
translation system in 1954 [381]. The demonstration was a resounding success, and
researchers of the day were sure that large-scale machine translation was just around
the corner.

Naturally, this vision did not come to reality, and twelve years later, in 1966, the
ALPAC (Automatic Language Processing Advisory Committee) published a famous
report that had to admit that machine translation was out of reach at the moment and
stressed that a lot more research in computational linguistics was needed [620]. This
led to a general disillusionment with AI on the side of the funding bodies in the U.S.,
and when grants stop coming in, researchers usually have to switch to other topics,
so the first “AI winter” followed. This is a great illustration of just how optimistic
early AI was: naturally, researchers did not expect perfection and would be satisfied
with the state of, say, modern Google Translate, but by now we realize how long and
hard a road it has been to what Google Translate can do today.

However, in the mid-2000s, deep neural networks started working in earnest. The
original approaches to training deep neural networks that proved to work around that
timewere based on unsupervised pretraining [226]: Prof.Hinton’s group achieved the
first big successes in deep learningwith deep belief networks (DBN), amethodwhere
layers of deep architectures are pretrained with the restricted Boltzmann machines,
and gradient descent comes only at the very end [344, 347], while in Prof. Ben-

2.1 The Deep Learning Revolution 21

gio’s group, similar results on unsupervised pretraining were achieved by stacking
autoencoders pretrained on the results of each other [62, 895]. Later, results on acti-
vation functions such as ReLU [281], new regularization methods for deep neural
networks [387, 816], and better initialization of neural network weights [280] made
unsupervised pretraining unnecessary for problems where large labeled datasets are
available. These results have changed ANNs from “the second best way” into the
method of choice revolutionizing one field of machine learning after another.

The first practical field where deep learning significantly improved state of the
art in real-world applications was speech recognition, where breakthrough results
were obtained by DBNs used to extract features from raw sound [346]. It was fol-
lowed closely by computer vision, which we discuss in detail in Chapter 3, and
later natural language processing (NLP). In NLP, the key contribution proved to be
word embeddings, low-dimensional vectors that capture some of the semantic and
syntactic properties of words and at the same time make the input dimensions for
deep neural networks much more manageable [79, 600, 666]. These word embed-
dings were processed initially mostly by recurrent networks, but over recent years,
the field has been overtaken by architectures based on self-attention: Transformers,
BERT-based models, and the GPT family [94, 179, 192, 697, 698, 891]. We will
touch upon natural language processing in Section 8.4, although synthetic data is not
as relevant for NLP as it is for computer vision.

We have discussed in Section 1.1 that the data problem may become a limiting
factor for further progress in some fields of deep learning, and definitely has already
become such a factor for some fields of application. However, at present, deep neural
networks define state of the art in most fields of machine learning, and progress
does not appear to stop. In this chapter, we will discuss some of the basics of deep
learning, and the next chapter will put a special emphasis on convolutional neural
networks (Section 3.1 and further) because they are the main tools of deep learning
in computer vision, and synthetic data is especially important in that field. But let me
begin with a more general introduction, explaining how machine learning problems
lead to optimization problems, how neural networks represent machine learning
models, and how these optimization problems can be solved.

There is one important disclaimer before we proceed. I am writing this in 2020,
and deep learning is constantly evolving. While the basic stuff such as the Bayes rule
and neural networks as computational graphs will always be with us, it is very hard
to say if the current state of the art in almost anything related to machine learning
will remain the state of the art for long. Case in point: in the first draft of this book, I
wrote that activation functions for individual units are more or less done. ReLU and
its leaky variations work well in most problems, you can also try Swish found by
automated search (pretty exhaustive, actually), and that’s it, the future most probably
shouldn’t surprise us here. After all, these are just unary functions, and the Swish
paper explicitly says that simpler activation functions outperform more complicated
ones [702]. But in September 2020... well, let’s not spoil it, see the end of Section 2.3.

That is why throughout this chapter and the next one, I am trying to mostly
concentrate on the ideas and motivations behind neural architectures. I am definitely
not trying to recommend any given architecture because most probably, when you

22 2 Deep Learning and Optimization

are reading this, the recommendations have already changed. When I say “current
state of the art”, it’s just that the snapshot of ideas that I have attempted to make as
up to date as I could, and some of which may have become obsolete by the time you
are reading this. The time for comprehensive surveys of deep learning has not yet
come. So I am glad that this book is about synthetic data, and all I need from these
two chapters is a brief introduction.

2.2 A (Very) Brief Introduction to Machine Learning

Before proceeding to neural networks, let me briefly put them into a more general
context ofmachine learning problems. I usually beginmycourses inmachine learning
by telling students that machine learning is a field of applied probability theory.
Indeed, most of machine learning problems can be mathematically formulated as an
application of the Bayes rule:

p (θ | D) = p(θ)p (D | θ)

p(D)
,

where D denotes the data and θ denotes the model parameters. The distributions in
the Bayes rule have the following meaning and intuition behind them in machine
learning:

• p (D | θ) is the likelihood, i.e., themodel itself; the likelihood captures our assump-
tions about how data is generated in a probability distribution;

• p(θ) is the prior probability, i.e., the distribution of our beliefs about the model
parameters a priori, before we get any data;

• p (θ | D) is the posterior probability, i.e., the distribution of our beliefs about the
model parameters a posteriori, after we take available data into account;

• p(D) = ∫
p (D | θ) p(θ)dθ is the evidence or marginal probability of the data

averaged over all possible values of θ according to the likelihood.

This simple formula gives rise to the mathematical formulations of most machine
learning problems. The first problem, common in classical statistics as well, is to
find the maximum likelihood hypothesis

θML = arg max
θ

p (D | θ) .

The second problem is to multiply the likelihood by the prior, getting the posterior

p (θ | D) ∝ p (D | θ) p(θ),

and then find the maximum a posteriori hypothesis:

θMAP = arg max
θ

p(θ | D) = arg max
θ

p (D | θ) p(θ).

2.2 A (Very) Brief Introduction to Machine Learning 23

These two problems usually have similar structure when considered as optimization
problems (we will see that shortly), and most practical machine learning is being
done by maximizing either the likelihood or the posterior.

The final and usually the hardest problem is to find the predictive distribution for
the next data point:

p (x | D) =
∫

p (x, θ | D) dθ =
∫

p (x | θ) p (θ | D) dθ.

For at least moderately complex model likelihoods, this usually leads to intractable
integrals and the need to develop approximate methods. Sometimes, it is this third
problem which is called Bayesian inference, although the term is applicable as soon
as a prior appears.

Thismathematical essence canbe applied to awide variety of problemsof different
nature. With respect to their setting, machine learning problems are usually roughly
classified into (Figure 2.1 provides an illustration):

• supervised learning problems, where data is given in the form of pairs D =
{(xn, yn)}Nn=1, with xn being the nth data point (input of the model) and yn being
the target variable:

– in classification problems, the target variable y is categorical, discrete, that is,
we need to place x into one of a discrete set of classes;

– in regression problems, the target variable y is continuous, that is, we need to
predict values of y given values of x with as low error as possible;

• unsupervised learning problems that are all about learning a distribution of data
points; in particular,

Fig. 2.1 A general taxonomy of machine learning problems.

24 2 Deep Learning and Optimization

– dimensionality reduction techniques aim to learn a low-dimensional representa-
tion that still captures important information about a high-dimensional dataset;

– clustering does basically the same but reduces not to a continuous space but to
a discrete set of clusters, assigning each x from the input dataset with a cluster
label; there is a parallel here with the classification/regression distinction in
supervised learning;

• reinforcement learning problems where the data usually does not exist before
learning begins, and an agent is supposed to collect its own dataset by interacting
with the environment;

– agents in direct reinforcement learning learn their behaviour policy π directly,
either by learning a value function for various states and actions or by parame-
terizing π and learning it directly via policy gradient;

– agents in indirect reinforcement learning use their experience to build a model
of the environment, thus allowing for planning.

There are, of course, intermediate cases and fusions of these problems, the most
important being probably semi-supervised learning, where a (usually small) part of
the dataset is labeled and the other (usually far larger) part is not.

In this book, we will mostly consider supervised learning problems. For example,
in computer vision, an image classification problem might be formalized with xn
being the image (a three-dimensional array of pixels, where the third dimension is the
color) and yn being a one-hot representation of target classes, i.e., yn = (0 ... 0 1 0 ... 0),
where 1 marks the position of the correct answer.

For a simple but already nontrivial example, consider the Bernoulli trials, the
distribution of tossing a (not necessarily fair) coin. There is only one parameter here,
let’s say θ is the probability of the coin landing heads up. The data D is in this case
a sequence of outcomes, heads or tails, and if D contains n heads and m tails, the
likelihood is

p(D | θ) = θn (1 − θ)m .

The maximum likelihood hypothesis is, obviously,

θML = arg max
θ

θn (1 − θ)m = n

n + m
,

but in real life, this single number is clearly insufficient. If you take a random coin
from your purse, toss it once, and observe heads, your dataset will have n = 1 and
m = 0, and the maximum likelihood hypothesis will be θML = 1, but you will hardly
expect that this coin will now always land heads up. The problem is that you already
have a prior distribution for the coin, and while the maximum likelihood hypothesis
is perfectly fine in the limit, as the number of experiments approaches infinity, for
smaller samples, the prior will definitely play an important role.

Suppose that the prior is uniform, p(θ) = 1 for θ ∈ [0, 1] and 0 otherwise. Note
that this is not quite what you think about a coin taken from your purse, you would

2.2 A (Very) Brief Introduction to Machine Learning 25

rather expect a bell-shaped distribution centered at 1
2 . This prior is more suitable for

a new phenomenon about which nothing is known a priori except that it has two
outcomes. But even for that prior, the conclusion will change. First, the posterior
distribution is now

p(θ | D) = p(θ)p(D | θ)

p(D)
=

{
1

p(D)
θn (1 − θ)m , for θ ∈ [0, 1],

0 otherwise,

where the normalizing constant can be computed as

p(D) =
∫

p(θ)p(D | θ)dθ =
∫ 1

0
θn (1 − θ)mdθ =

=�(n + 1)�(m + 1)

�(n + m + 2)
= n!m!

(n + m + 1)! .

Since the prior is uniform, the posterior distribution is still maximized at the exact
same point:

θMAP = θML = n

n + m
.

This situation is illustrated in Figure 2.2a that shows the prior distribution, likelihood,
and posterior distribution for the parameter θ with uniform prior and the dataset
consisting of two heads. The posterior distribution, of course, has the samemaximum
as the likelihood, at θMAP = θML = 1.

Fig. 2.2 Distributions related to the Bernoulli trials: (a) uniform prior, two heads in the dataset; (b)
prior Beta(15, 15), two heads in the dataset.

26 2 Deep Learning and Optimization

But the predictive distribution will tell a different story because the posterior is
maximized at its right border, and the predictions should integrate over the entire
posterior. Let us find the probability of this coin landing heads on the next toss:

p(heads|D) =
∫ 1

0
p(heads|θ)p(θ |D)dθ =

∫ 1

0

θn+1(1 − θ)m

p(D)
dθ =

= (n + 1)!m!
(n + m + 2)! · (n + m + 1)!

n!m! = n + 1

n + m + 2
.

In this formula, we have derived what is known as Laplace’s rule of succession,
which shows how to apply Bayesian smoothing to the Bernoulli trials.

Note that in reality, if you take a random coin out of your pocket, the uniform prior
would be a poor model for your beliefs about this coin. It would probably be more
like the prior shown in Fig. 2.2b, where we show the exact same dataset processed
with a non-uniform, informative prior p(θ) = Beta(θ; 15, 15). The beta distribution

Beta(θ;α, β) ∝ θα−1 (1 − θ)β−1

is the conjugate prior distribution for the Bernoulli trials, which means that after
multiplying a beta distribution by the likelihood of the Bernoulli trials, we again get
a beta distribution in the posterior:

Beta(θ;α, β) × θn (1 − θ)m ∝ Beta(θ;α + n, β + m).

For instance, in Fig. 2.2b, the prior is Beta(θ; 15, 15), and the posterior, after multi-
plying by θ2 and renormalizing, becomes Beta(θ; 17, 15).

In machine learning, one assumption that is virtually always made is that different
data points are produced independently given the model parameters, that is,

p (D | θ) =
N∏

n=1

p(dn | θ)

for a dataset D = {dn}Nn=1. Therefore, it is virtually always a good idea to take loga-
rithms before optimizing, getting the log-likelihood

log p (D | θ) =
N∑

n=1

log p(dn | θ)

and the log-posterior (note that proportionality becomes an additive constant after
taking the logarithm)

log p(θ | D) = log p(θ) +
N∑

n=1

log p (dn | θ) + Const,

2.2 A (Very) Brief Introduction to Machine Learning 27

which are usually the actual functions being optimized. Therefore, in complex
machine learning models priors usually come in the form of regularizers, additive
terms that impose penalties on unlikely values of θ .

For another relatively simple example, let us consider linear regression, a super-
vised learning problem of fitting a linear model to data, that is, finding a vector of
weightsw such that y ∼ w�x for a dataset of pairs D = (X, y) = {(xn, yn)}Nn=1. The
first step here is to define the likelihood, that is, represent

y = w�x + ε

for some random variable (noise) ε and define the distribution for ε. The natural
choice is to take the normal distribution centered at zero, ε ∼ N (0, σ 2), getting the
likelihood as

p(y | w, X) =
N∏

n=1

p(yn | w, xn) =
N∏

n=1

N (yn | w�xn, σ 2).

Taking the logarithm of this expression, we arrive at the least squares optimization
problem:

log p(y | w, X) =
N∑

n=1

logN (yn | w�xn, σ 2) =

= −N

2
log

(
2πσ 2) − 1

2σ 2

N∑

n=1

(
yn − w�xn

)
,

so maximizing log p(y | w, X) is the same as minimizing
∑N

n=1

(
yn − w�xn

)
, and

the exact value of σ 2 turns out not to be needed for finding the maximum likelihood
hypothesis.

Linear regression is illustrated in Figure 2.3, with the simplest one-dimensional
linear regression shown in Fig. 2.3a. However, even if the data is one-dimensional,
the regression does not have to be: if we suspect a more complex dependency than
linear, we can express it by extracting features from the input before running linear
regression.

In this example, the data is generated from a single period of a sinusoid function,
so it stands to reason that it should be interpolated well by a cubic polynomial.
Figure 2.3b shows the resulting approximation, obtained by training the model

y = w0 + w1x + w2x
2 + w3x

3 + ε,

which is equivalent to y = w�x + ε for x = (
1 x x2 x3

)�
, i.e., equivalent to manu-

ally extracting polynomial features from x before feeding it to linear regression. In
this way, linear regression can be used to approximate much more complex depen-

28 2 Deep Learning and Optimization

Fig. 2.3 Linear regression: (a) one-dimensional linear regression; (b) linear regression with poly-
nomial features; (c) linear regression with Gaussian features; (d) overfitting in linear regression.

dencies. For example, Figure 2.3c shows the same dataset approximated with five
Gaussian features, i.e., features of the form

φ(x;μ, s) = e− 1
2s (x−μ)2 .

In fact, most neural networks that solve regression problems have a linear regres-
sion as their final layer, while neural networks for classification problems use a
softmax layer, i.e., the logistic regression model. The difference and the main ben-
efit that neural networks are providing is that the features for these simple models
implemented at final layers are also learned automatically from data.

With this additional feature extraction, even linear regression can show signs of
overfitting, for instance, if the features (components of the vector x) are too heavily
correlated with each other. The ultimate case of overfitting in linear regression is
shown in Fig. 2.3d: if we fit a polynomial of degree N − 1 to N points, it will

2.2 A (Very) Brief Introduction to Machine Learning 29

obviously be simply interpolating all of these points, getting a perfect zero error on
the training set but providing quite useless predictions, as Fig. 2.3d clearly illustrates.

In this case,wemightwant to restrict the desirable values ofw, for instance say that
the values of w should be “small”. This statement, which I have quite intentionally
made very vague, can be formalized via choosing a suitable prior distribution. For
instance, we could set a normal distribution centered at zero as prior. This time, it’s a
multi-dimensional normal distribution, and let’s say that we do not have preferences
with respect to individual features so we assume the prior is round:

p(w) = N (w | 0, σ 2
0 I).

Then we get the following posterior distribution:

log p (w | y, X) =
N∑

n=1

logN (yn | w�xn, σ 2) + logN (w | 0, σ 2
0 I) =

= −N

2
log

(
2πσ 2) − 1

2σ 2

N∑

n=1

(
yn − w�xn

) − d

2
log

(
2πσ 2) − 1

2σ 2
0

w�w.

The maximization problem for this posterior distribution is now equivalent to
minimizing

N∑

n=1

(
yn − w�xn

) + λ

2
w�w, where λ = σ 2

σ 2
0

.

This is known as ridge regression. More generally speaking, regularization with a
Gaussian prior centered around zero is known as L2-regularization because as we
have just seen, it amounts to adding the L2-norm of the vector of weights to the
objective function.

We will not spend much more time on Bayesian analysis in this book, but note
one thing: machine learning problems are motivated by probabilistic assumptions
and the Bayes rule, but from the algorithmic and practical standpoint, they are usu-
ally optimization problems. Finding the maximum likelihood hypothesis amounts
to maximizing p (D | θ), and finding the maximum a posteriori hypothesis means
to maximize p(θ | D); usually, the main computational challenge in machine learn-
ing lies either in these maximization procedures or in finding suitable methods to
approximate the integral in the predictive distribution.

Therefore, once probabilistic assumptions aremade and formulas such as the ones
shownabove areworkedout, algorithmicallymachine learning problemsusually look
like an objective function depending on the data points and model parameters that
need to be optimized with respect to model parameters. In simple cases, such as the
Bernoulli trials or linear regression, these optimization problems can be worked out
exactly. However, as soon as the models become more complicated, optimization
problems become much harder and almost always nonconvex.

30 2 Deep Learning and Optimization

This means that for complex optimization problems, such as the ones represented
by neural networks, virtually the only available way to solve them is to use first-order
optimization methods based on gradient descent. Over the next sections, we will
consider how neural networks define such optimization problems and what methods
are currently available to solve them.

2.3 Introduction to Deep Learning

Before delving into state-of-the-art first-order optimization methods, let us begin
with a brief introduction to neural networks in general. As a mathematical model,
neural networks actually predate the advent of artificial intelligence in general: the
famous paper by Warren McCulloch and Walter Pitts was written in 1943 [589],
and AI as a field of science is generally assumed to be born in the works of Alan
Turing, especially his 1950 essay Computing Machinery and Intelligence where he
introduced the Turing test [877, 878]. What is even more interesting, the original
work by McCulloch and Pitts already contained a very modern model of a single
artificial neuron (perceptron), namely the linear threshold unit, which for inputs x,
weights w, and threshold a outputs

y =
{
1, if w�x ≥ a,

0, if w�x < a.

This is exactly how units in today’s neural networks are structured, a linear com-
bination of inputs followed by a nonlinearity:

y = h(w�x).

The activation function h is usually different today, and we will survey modern
activation functions in a page or two.

The linear threshold unit was one of the first machine learning models actually
implemented in software (more like hardware in those times): in 1958, the Percep-
tron device developed by Frank Roseblatt [735] was able to learn the weights from
a dataset of examples and actually could receive a 20 × 20 image as input. The Per-
ceptron was also an important factor in the first hype wave of artificial intelligence.
For instance, a New York Times article (hardly an unreliable tabloid) devoted to the
machine said the following: “The embryo of an electronic computer... learned to
differentiate between right and left after fifty attempts in the Navy’s demonstration...
The service said that it would use this principle to build the first of its Perceptron
thinking machines that will be able to read and write. It is expected to be finished in
about a year at a cost of $100,000” [858]. Naturally, nothing like that happened, but
artificial neural networks were born.

2.3 Introduction to Deep Learning 31

The main underlying idea of the deep neural network is connectionism, an
approach in cognitive science and neurobiology that posits the emergence of com-
plex behaviour and intelligence in very large networks of simple computational
elements [51, 52]. As a movement in both philosophy and computer science, con-
nectionism rose to prominence in the 1980s, togetherwith the secondAI “hypewave”
caused by deep neural networks. Today, deep learning provides plenty of evidence
that complex networks of simple units can perform well in the most complex tasks
of artificial intelligence, even if we still do not understand the human brain fully and
perhaps strong human-level AI cannot be achieved by simple stacking of layers (to
be honest, we don’t really know).

An artificial neural network is defined by its computational graph. The com-
putational graph is a directed acyclic graph G = (V, E) whose nodes correspond
to elementary functions and edges incoming into vertices correspond to their argu-
ments. The source vertices (vertices of indegree zero) represent input variables, and
all other vertices represent functions of these variables obtained as compositions of
the functions shown in the nodes (for brevity and clarity, I will not give the obvious
formal recursive definitions). In the case of neural networks for machine learning, a
computational graph usually contains a single sink vertex (vertex of outdegree zero)
and is said to compute the function that corresponds to this sink vertex.

Figure 2.4 shows a sample computational graph composed of simple arithmetic
functions. The graph shows variables and elementary functions inside the corre-
sponding nodes and shows the results of a node as functions of input variables along
its outgoing edge; the variables are artificially divided into “inputs” x and “weights”

Fig. 2.4 A sample computational graph: (a) function definitions; (b) sample computation for x1 =
x2 = 1, w1 = 0, w2 = 2.

32 2 Deep Learning and Optimization

w for illustrative purposes. In this example, the top vertex of the graph computes the
function

f = (x1 + w1)
2(x1w1 + x2w2).

The main idea of using computational graphs is to be able to solve optimization
problems with the functions computed by these graphs as objectives. To apply a
first-order optimization method such as gradient descent to a function f (w) with
respect to its inputs w, we need to be able to do two things:

(1) compute the function f (w) at every point w;
(2) take the gradient ∇w f of the objective function with respect to the optimization

variables.

The computational graph provides an obvious algorithm for the first task: if we
know how to compute each elementary function, we simply traverse the graph from
sources (variables) to the sink, computing intermediate results and finally getting
the value of f . For example, let us set x1 = x2 = 1, w1 = 0, w2 = 2; traversing the
graph in Fig. 2.4 yields the values shown in Fig. 2.4b:

a = x1 + w1 = 1, b = x1w1 = 0, c = x2w2 = 2,
d = a2 = 1, e = b + c = 2, f = de = 2.

As for the second task, there are two possible ways to take the gradients given a
computational graph. Suppose that in Fig. 2.4, we want to compute ∇w f for x1 =
x2 = 1, w1 = 0, w2 = 2. The first approach, forward propagation, is to compute
the partial derivatives along with the function values. In this way, we can compute
the partial derivatives of each node in the graph with respect to the same variable;
Fig. 2.5 shows the results for derivatives with respect to w1:

∂a
∂w1

= ∂w1
∂w1

= 1, ∂b
∂w1

= x1
∂w1
∂w1

= 0, ∂c
∂w1

= 0,
∂d
∂w1

= 2a ∂a
∂w1

= 2, ∂e
∂w1

= ∂b
∂w1

+ ∂c
∂w1

= 1, ∂ f
∂w1

= d ∂e
∂w1

+ e ∂d
∂w1

= 1 + 4 = 5.

This approach, however, does not scale; it only yields the derivative ∂ f
∂w1

, and in

order to compute ∂ f
∂w2

, we would have to go through the whole graph again! Since
in deep learning, the problem is usually to compute the gradient ∇w f with respect
to a vector of weights w that could have thousands or even millions of components,
either running the algorithm |w| times or spending the memory equal to |w| on every
computational node is entirely impractical.

That is why in deep learning, the main tool for taking the gradients is the reverse
procedure, backpropagation. The main advantage is that this time we obtain both
derivatives, ∂ f

∂w1
and ∂ f

∂w2
, after only a single backwards pass through the graph.

Again, the main tool in this computation is simply the chain rule. Given a graph
node v = h(x1, . . . , xk) that has children g1, . . . , gl in the computational graph, the
backpropagation algorithm computes

2.3 Introduction to Deep Learning 33

Fig. 2.5 Gradient computation on the graph from Fig. 2.4 for x1 = x2 = 1, w1 = 0, w2 = 2:
forward propagation.

Fig. 2.6 Gradient computation on the graph from Fig. 2.4 for x1 = x2 = 1, w1 = 0, w2 = 2:
backpropagation.

∂ f

∂v
= ∂ f

∂g1

∂g1
∂v

+ . . . + ∂ f

∂gl

∂gl
∂v

,

where the values ∂ f
∂g j

∂g j

∂v
have been obtained in the previous steps of the algorithm

and received by the node v from its children, and sends to each of the parents xi of
the node v the value ∂ f

∂v
∂v
∂xi

. The base of the induction here is the sink node, ∂ f
∂ f = 1,

rather than source nodes as before. In the example shown in Figure 2.4, we get the
derivatives shown in Figure 2.6:

34 2 Deep Learning and Optimization

∂ f
∂ f = 1, ∂ f

∂d = e = 2, ∂ f
∂e = d = 1,

∂ f
∂a = 2a ∂ f

∂d = 4, ∂ f
∂b = ∂ f

∂e = 1, ∂ f
∂c = ∂ f

∂e = 1,
∂ f
∂w1

= ∂ f
∂a

∂a
∂w1

+ ∂ f
∂b

∂b
∂w1

= 5, ∂ f
∂w2

= ∂ f
∂c

∂c
∂w2

= x2 = 1.

A real-life neural network is almost always organized into layers. This means that
the computational graph of a neural network has subsets of nodes that are incompara-
ble in topological order and hence can be computed in parallel. These nodes usually
also have the same inputs and activation functions (or at least the same structure of
inputs, like convolutional neural networks thatwewill consider in Section 3.1),which
means that operations on entire layers can be represented as matrix multiplications
and componentwise applications of the same functions to vectors.

This structure enables the use of graphics processing units (GPUs) that are specif-
ically designed as highly parallel architectures to handle matrix operations and com-
ponentwise operations on vectors, giving speedups of up to 10-50x for training com-
pared to CPU-based implementations. The idea of using GPUs for training neural
networks dates back at least to 2004 [639], and convolutional networks were put on
GPUs already in 2006 [127]. This idea was quickly accepted across the board and
became a major factor in the deep learning revolution: for many applications, this
10-50x speedupwas exactly what was needed to bring neural networks into the realm
of realistic solutions.

Therefore, one of the first and most natural neural network architectures is the
fully connected (or densely connected) network: a sequence of layers such that a
neuron at layer l receives as input activations from all neurons at layer l − 1 and
sends its output to all neurons at layer l + 1, i.e., each two neighboring layers form
a complete bipartite graph of connections.

Fully connected networks are still relevant in some applications, and many archi-
tectures include fully connected layers. However, they are usually ill-suited for
unstructured data such as images or sound because they scale badly with the number
of inputs, leading to a huge number of weights that will almost inevitably overfit.
For instance, the first layer of a fully connected network that has 200 neurons and
receives a 1024 × 1024 image as input will have more than 200 million weights! No
amount of L2 regularization is going to fix that, and we will see how to avoid such
overkill in Section 3.1. On the other hand, once a network of a different structure
has already extracted a few hundred or a couple thousand features from this image,
it does make sense to have a fully connected layer or two at the end to allow the
features to interact with each other freely, so dense connections definitely still have
a place in modern architectures.

Figure 2.7 presents a specific example of a three-layered network together with
the backpropagation algorithm worked out for this specific case. On the left, it shows
the architecture: input x goes through two hidden layers with weight matrices W (1)

and W (2) (let us skip the bias vectors in this example in order not to clutter notation
even further). Each layer also has a nonlinear activation function h, so its outputs are
z(1) = h

(
W (1)x

)
and z(2) = h

(
W (2)z(1)

)
. After that, the network has a scalar output

y = h
(
w(3)�z(2)

)
, again computed with activation function h and weight vector

2.3 Introduction to Deep Learning 35

w(3) from z(2), and then the objective function f is a function of the scalar y. The
formulas in the middle column show the forward propagation part, i.e., computation
along the graph, and formulas on the right show the backpropagation algorithm that
begins with ∂ f

∂y and progresses in the opposite direction. Dashed lines on the figure
divide the architecture into computational layers, and the computations are grouped
inside the dashed lines.

For example, on the second hidden layer, we have the weight matrix W (2), input
z(1) from the layer below, output z(2) = h

(
W (2)z(2)

)
, and during backpropagation,

we also have the gradient∇z(2) f coming from the layer above as part of the induction
hypothesis. In backpropagation, this dense layer needs to do two things:

• compute the gradient with respect to its own matrix of weights W (2) so that they
can be updated; this is achieved as

∇W (2) f = h′ (W (2)z(2)
)
(∇z(2) f) z(1)�;

note how the dimensions match: W (2) is a 3 × 4 matrix in this example, ∇z(2) f is
a 3 × 1 vector, and z(1) is a 4 × 1 vector;

• compute the gradient with respect to its input z(1) and send it down to the layer
below:

∇z(1) f = h′ (W (2)z(2)
)
W (2)�∇z(2) f.

Figure 2.7 shows the rest of the computations, introducing intermediate vectors
o for brevity. As we can see, this algorithm is entirely expressed in the form of
matrix operations and componentwise applications of functions, and thus it lends
itself easily to GPU-based parallelization.

Fig. 2.7 A three-layered fully connected architecture with computations for backpropagation.

36 2 Deep Learning and Optimization

The only thing left for this section is to talk a bit more about activation functions.
Theoriginal threshold activation, suggestedbyMcCulloch andPitts and implemented
by Rosenblatt, is almost never used now: if nothing else, thresholds are hard to opti-
mize by gradient descent because the derivative of a threshold function is everywhere
zero or nonexistent. Throughout neural network history, the most popular activation
functions had been sigmoids, usually either the logistic sigmoid

σ(a) = 1

1 + e−a

or the hyperbolic tangent

tanh(a) = ea − e−a

ea + e−a
.

Several classical activation functions, from threshold to ReLU, are shown in Fig. 2.8.
Research of the last decade, however, shows that one can get a much better family

of activation functions (for internal layers of deep networks—you still can’t get
around a softmax at the end of a classification problem, of course) if one does not
restrict it by a horizontal asymptote at least on one side. The most popular activation
function in modern artificial networks is the rectified linear unit (ReLU)

ReLU(x) =
{
0, if x < 0,

x, if x ≥ 0

and its variations that do not have a hard zero for negative inputs but rather a slower
growing function, for example, the leaky ReLU [570]

Fig. 2.8 A comparison of activation functions: classical activation functions.

2.3 Introduction to Deep Learning 37

LReLU(x) =
{
ax, if x < 0,

x, if x > 0

or the exponential linear unit [161]

ELU(x) =
{

α (ex − 1) , x < 0,

x, x ≥ 0.

There is also a smooth variant of ReLU, known as the softplus function or [282]:

softplus(x) = ln
(
1 + ex

)
.

You can see a comparison of ReLU variations in Figure 2.9. In any case, all activation
functions used in modern neural networks must be differentiable so that gradient
descent can happen; it’s okay to have kinks on a subset of measure zero, like ReLU
does, since one can always just set the derivative to zero at that point.

It is always tempting to try and get a better result just by switching the activation
function, but most often it fails: it is usually the last optimization I would advise to
actively try. However, if you try many different activation functions systematically
and with a wide range of models, it might be possible to improve upon standard
approaches.

In 2017, Google Brain researchers Ramachandran et al. [702] did exactly this:
they constructed a search space of possible activation functions (basically a recursive
computational graph with a list of possible unary and binary functions to insert
there), used the ideas of neural architecture search [1031] to formulate the search
for activation functions as a reinforcement learning problem, and made good use
of Google’s huge computational power to search this space as exhaustively as they

Fig. 2.9 A comparison of activation functions: ReLU variations.

38 2 Deep Learning and Optimization

Fig. 2.10 A comparison of activation functions: Swish and Mish.

could. The results were interesting: in particular, Ramachandran et al. found that
complicated activation functions consistently underperform simpler ones. As the
most promising resulting function, they highlighted the so-called Swish activation:

Swish(x) = xσ (βx) = x

1 + e−βx
.

Depending on the parameter β, Swish scales the range from perfectly linear (when
β = 0) to ReLU (when β → ∞). Figure 2.10 shows Swish activation and other
variations; the most interesting feature of Swish is probably the fact that it is not
monotone and has a minimum in the negative part of the spectrum.

In 2019, Misra [604] suggested theMish activation, a variation of Swish:

Mish(x) = x tanh (softplus(x)) = x tanh
(
ln

(
1 + ex

))
.

Both Swish andMish activations have been tested in many applications, including
convolutional architectures for computer vision, and they now define state of the art,
although good old ReLUs are far from completely replaced.

The text above was written in the summer of 2020. But, of course, this was not
the end of the story. In September 2020, Ma et al. [567] presented a new look on
Swish and ReLUs. They generalized them both by using a smooth approximation of
the maximum function:

Sβ(x1, . . . , xn) =
∑n

i=1 xi e
βxi

∑n
i=1 e

βxi
.

Let us substitute two functions in place of the arguments: for the hard maximum
max (g(x), h(x)), we get its smooth counterpart

2.3 Introduction to Deep Learning 39

Sβ (g(x), h(x)) = g(x)
eβg(x)

eβg(x) + eβh(x)
+ h(x)

eβh(x)

eβg(x) + eβh(x)
=

= g(x)σ (β (g(x) − h(x))) + h(x)σ (β (h(x) − g(x))) =
= (g(x) − h(x)) σ (β (g(x) − h(x))) + h(x).

Ma et al. call this the ActivateOrNot (ACON) activation function. They note that

• for g(x) = x and h(x) = 0, the hard maximum is ReLU(x) = max(x, 0), and the
smooth counterpart is

f ACON−A (x, 0) = Sβ(x, 0) = xσ (βx) ,

that is, precisely the Swish activation function;
• for g(x) = x and h(x) = ax with some a < 1, the hardmaximum is LReLU(x) =
max(x, px), and the smooth counterpart is

f ACON−B = Sβ(x, ax) = (1 − a) xσ (β(1 − a)x) + ax;

• both of these functions can be straightforwardly generalized to

f ACON−C = Sβ(a1x, a2x) = (a1 − a2) xσ (β(a1 − a2)x) + a2x;

in this case, a1 and a2 can become learnable parameters, and their intuitivemeaning
is that they serve as the limits of ACON-C’s derivative:

lim
x→∞

d f ACON−C

dx
= a1, lim

x→−∞
d f ACON−C

dx
= a2.

Figure 2.11 shows the ACON-C function for different values of a1, a2, and β, starting
from exactly the Swish function and showing the possible variety.

All this has only just happened, and so far it is hard to say whether this idea is
going to catch on across many neural architectures or die down quietly. But this is
a great example of how hard it is to write about deep learning; we will see such
examples in later sections as well.

Let us summarize. We have seen how neural networks are structured as com-
putational graphs composed of simple functions, and how this structure allows us
to develop efficient algorithms for computing the gradient of an objective function
represented as such a graph with respect to any subset of its variables, in case of
neural networks usually with respect to the weights. However, being able to take the
gradient is only the first step towards an efficient optimization algorithm. In the next
section, we briefly discuss the main first-order optimization algorithms currently
used in deep learning.

40 2 Deep Learning and Optimization

Fig. 2.11 A comparison of activation functions: the ACON-C function with different parameters.

2.4 First-Order Optimization in Deep Learning

In this section, we continue our introduction to deep learning, considering it from
the optimization point of view. We have already seen how to compute the gradients,
and here we will discuss how to use these gradients to find the local minima of given
functions. Throughout this section, we assume that we are given a loss function
f (w, d), where d is a data point and w is the vector of weights, and the optimization
problem in question is to minimize the total loss function over a given dataset D with
respect to w:

F(w) =
∑

d∈D
f (w, d) →w min .

Algorithm 1 shows the regular “vanilla” gradient descent (GD): at every step,
compute the gradient at the current point and move in the opposite direction. In
regular GD, a lot depends on the learning rate α. It makes sense that the learning rate
should decrease with time, and the first idea would be to choose a fixed schedule for
varying α:

• either with linear decay:

α = α0

(

1 − t

T

)

• or with exponential decay:
α = α0e

− t
T .

In both cases, T is called the temperature (it does play a role similar to the temperature
in statistical mechanics), and the larger it is, the slower the learning rate decays with
time.

2.4 First-Order Optimization in Deep Learning 41

Algorithm 1: Gradient descent
Initialize w0, k := 1;
repeat

wk+1 := wk − α
∑

d∈D ∇wF(wk , d);
k := k + 1;

until a stopping condition is met;

But these are, of course, just the very first ideas that can be much improved.
Optimization theory has a whole field of research devoted to gradient descent and
how to find the optimal value of α on any given step. We refer to, e.g., books and
surveys [84, 96, 625, 633] for a detailed treatment of this and give only a brief
overview of the main ideas.

In particular, basic optimization theory known since the 1960s leads to the so-
called Wolfe conditions and Armijo rule. If we are minimizing f (w), and on step k
we have already found the direction pk to which we need to move—for instance, in
gradient descent, we have pk = ∇w f (wk)—the problem becomes

min
α

f (wk + αpk),

a one-dimensional optimization problem.
Studying this problem, researchers have found that

• for φk(α) = f (wk + αpk), we have φ′
k(α) = ∇ f (wk + αpk)�pk , and if pk is the

direction of descent, then φ′
k(0) < 0;

• the step size α must satisfy the Armijo rule:

φk(α) ≤ φk(0) + c1αφ′
k(0) for some c1 ∈ (0,

1

2
);

• or even stronger Wolfe conditions, which mean the Armijo rule and, in addition,

|φ′
k(α)| ≤ c2|φ′

k(0)|,

i.e., we aim to reduce the projection of the gradient.

The optimization process now should stop according to a stopping condition with
respect to the L2-normof the gradient, i.e.,when‖∇w f (wk)‖2 ≤ ε or‖∇w f (wk)‖2 ≤
ε‖∇w f (w0)‖2.

However, first-order methods such as gradient descent begin to suffer if the scale
of different variables is different. A classical example of such behaviour is shown in
Figure 2.12, where the three plots show gradient descent optimization for three very
simple quadratic functions, all in the form of x2 + ρy2 for different values of ρ.

42 2 Deep Learning and Optimization

Fig. 2.12 Sample gradient descent optimization with different scale of variables: (a) f (x, y) =
x2 + y2; (b) f (x, y) = x2 + 1

10 y
2; (c) f (x, y) = x2 + 1

100 y
2.

The functions are perfectly convex, and SGD (in fact, full GD in this case) should
have no trouble at all in finding the optimum. And indeed it doesn’t, but as the scale
of variables becomes too different, gradient descent slows down to a crawl when it
comes to the vertical axis; the plots show how the same learning rates work great for
comparable x and y but slow down significantly as they become too different.

Algorithm 2: Stochastic gradient descent with mini-batches

Initialize w0, k := 0;
repeat

Dk := Sample(D);
wk+1 := wk − α

∑
d∈Dk

∇w f (wk , d);
k := k + 1;

until a stopping condition is met;

Cases like this are very common in deep learning: for instance, weights from
different layers of a deep network certainly might have different scales. Therefore,
for machine learning problems, it is much better to use adaptive gradient descent
algorithms that set the scale for different variables adaptively, depending on the
optimization landscape. Naturally, the best way to do that would be to pass to second-
order methods. Theoretically, we could apply Newton’s method here:

gk = ∇w f (wk), Hk = ∇2
w f (wk),

2.4 First-Order Optimization in Deep Learning 43

and we get that
wk+1 = wk − αk H

−1
k gk .

The Armijo rule is applicable here as well: we should choose αk such that

f (wk+1) ≤ f (wk) − c1αkg
�
k H

−1
k gk, where c1 ≈ 10−4.

Using Newton’s method to train deep neural networks would be great! Unfortu-
nately, real-life neural networks have a lot of parameters, on the order of thousands or
even millions. It is completely impractical to compute and support a Hessian matrix
in this case, and even less practical to invert it—note that second-order methodsmake
use of H−1

k .
There exist a wide variety of quasi-Newton methods that do not compute the

Hessian explicitly but rather approximate it via the values of the gradient. The most
famous of them is probably the BFGS algorithm, named after Charles George Broy-
den, Roger Fletcher, Donald Goldfarb, and David Shanno [237]. The idea is not to
compute the Hessian but keep a low-rank approximation and update it via the current
value of the gradient. It’s a great algorithm, it has versions with bounded memory,
and it would also work great to rescale the gradients...

...But a hugeHessian is just the beginning of our troubles.What’smore, in the case
of machine learning, we cannot really afford gradient descent either! The problem is
that the loss function is defined as a sum over the input dataset

∑
d∈D f (w, d), and

in reality, it is usually infeasible to go over the entire dataset to make only a single
update to the neural network weights. This means that we cannot use the BFGS
algorithm and other quasi-Newton methods because we don’t have the value of the
gradient either.

Therefore, in deep learning, one usually implements stochastic gradient descent
(SGD), shown in its general form in Algorithm 2: the difference is that on every step,
the gradient is computed not over the entire dataset D but over a subsample of the
data Dk .

How do we understand stochastic gradient descent formally and how does it fit
into optimization theory? Usually, the problem we are trying to solve can be framed
as a stochastic optimization problem:

F(w) = Eq(y)
[
f (w, y)

] → min
w

,

where q(y) is some known distribution. The basic example here is the minimization
of empirical risk:

F(w) = 1

N

N∑

i=1

fi (w) = Ei∼U(1,...,N) [fi (w)] → min
w

.

Another important example is provided by minimizing the variational lower bound,
but this goes beyond the scope of this section.

44 2 Deep Learning and Optimization

This formalization makes it clear what mini-batches are from the formal point of
view. Averaging over a mini-batch can be thought of simply as an empirical estimate
of the stochastic optimization objective function, computed on a subsample:

F̂(w) = 1

m

m∑

i=1

f (w, yi), ĝ(w) = 1

m

m∑

i=1

∇w f (w, yi),

wherem denotes the mini-batch size. Basic mathematical statistics tells us that these
estimates have a lot of desirable properties: they are unbiased, they always converge
to the true value of the expectation (albeit convergence might be slow), and they are
easy to compute.

In general, stochastic gradient descent is motivated by these ideas and can be
thought of as basically a Monte Carlo variation of gradient descent. Unfortunately, it
still does not mean that we can plug theseMonte Carlo estimates into a quasi-Newton
method such as BFGS: the variance is huge, the gradient on a single mini-batch
usually has little in common with the true gradient, and BFGS would not work with
these estimates. It is a very interesting open problem to devise stochastic versions of
quasi-Newton methods, but it appears to be a very hard problem.

But SGD has several obvious problems even in the first-order case:

• it never goes in the exactly correct direction;
• moreover, SGD does not even have zero updates at the exact point where F(w) is
minimized, i.e., even if we get lucky and reach the minimum, we won’t recognize
it, and SGD with constant step size will never converge;

• since we know neither F(w) nor ∇F(w) (only their Monte Carlo estimates with
huge variances), we cannot use the Armijo rule and Wolfe conditions to find the
optimal step size.

There is a standard analysis that can be applied to SGD; let us look at a single
iteration of SGD for some objective function

F(w) = Eq(y)
[
f (w, y)

] →w min .

In what follows, we denote by gk the gradient of F at point wk , so that

wk+1 = wk − αk ĝk, E
[
ĝk

] = gk = ∇F(wk).

Let us try to estimate the residue of the point on iteration k; denoting bywopt the true
optimum, we get

‖wk+1 − wopt‖2 = ‖wk − αk ĝk − wopt‖2 =
=‖wk − wopt‖2 − 2αk ĝ�

k (wk − wopt) + α2
k‖ĝk‖2.

2.4 First-Order Optimization in Deep Learning 45

Taking the expectation with respect to q(y) on iteration k, we get

E
[‖wk+1 − wopt‖2

] = ‖wk − wopt‖2 − 2αkg�
k (wk − wopt) + α2

kE
[‖ĝk‖2

]
.

And now comes the common step in optimization theory where wemake assump-
tions that are far too strong. In further analysis, let us assume that F is convex; this
is, of course, not true in real deep neural networks, but it turns out that the resulting
analysis is indeed relevant to what happens in practice, so let’s run with it for now.
In particular, we can often assume that even in nonconvex optimization, once we get
into a neighborhood of a local optimum, the function can be considered to be convex.
Specifically, we will use the fact that

F(wopt) ≥ F(wk) + g�
k (wk − wopt).

Now let us combine this with the above formula for E
[‖wk+1 − wopt‖2

]
:

αk(F(wk) − F(wopt)) ≤ αkg�
k (wk − wopt) =

= 1

2
‖wk − wopt‖2 + 1

2
α2
kE

[‖ĝk‖2
] − 1

2
E

[‖wk+1 − wopt‖2
]
.

Next, we take the expectation of the left-hand side and sum it up:

k∑

i=0

αi (E [F(wi)] − F(wopt)) ≤

≤ 1

2
‖w0 − wopt‖2 + 1

2

k∑

i=0

α2
i E

[‖ĝi‖2
] − 1

2
E

[‖wk+1 − wopt‖2
] ≤

≤ 1

2
‖w0 − wopt‖2 + 1

2

k∑

i=0

α2
i E

[‖ĝi‖2
]
.

We have obtained a sum of values of the function in different points with weights
αi . Let us now use the convexity assumption:

E

[

F

(∑
i αiwi∑
i αi

)

− F(wopt)

]

≤

≤
∑

i αi (E [F(wi)] − F(wopt)∑
i αi

≤
1
2‖w0 − wopt‖2 + 1

2

∑k
i=0 α2

i E
[‖ĝi‖2

]

∑
i αi

.

Thus, we have obtained a bound on the residue for some intermediate value in a
linear combination ofwi ; this is also a common situation in optimization theory, and
again, in practice, it usually turns out that there is no difference between the mean
and the last point, or the last point wK is even better.

46 2 Deep Learning and Optimization

In other words, we have found that if the initial residue is bounded by R, i.e.,
‖w0 − wopt‖ ≤ R, and if the variance of the stochastic gradient is bounded by G,
i.e., E

[‖ĝk‖2
] ≤ G2, then

E
[
F(ŵk) − F(wopt)

] ≤ R2 + G2 ∑k
i=0 α2

i

2
∑k

i=0 αi

.

This is the main formula in the theoretical analysis of stochastic gradient descent. In
particular, for a constant step size αi = h, we get that

E
[
F(ŵk) − F(wopt)

] ≤ R2

2h(k + 1)
+ G2h

2
→k→∞

G2h

2
.

Let us summarize the behaviour of SGD that follows from the above analysis:

• SGD comes to an “uncertainty region” of radius 1
2G

2h, and this radius is propor-
tional to the step size;

• this means that the faster we walk, the faster we reach the uncertainty region, but
the larger this uncertainty region will be; in other words, it makes sense to reduce
the step size as optimization progresses;

• SGD converges quite slowly: it is known that the full gradient for convex functions
converges at rate O(1/k), and SGD has a convergence rate of only O(1/

√
k);

• on the other hand, the rate of convergence for SGD is also O(1/k) when it is far
from the uncertainty region, it slows down only when we have reached it;

• but all of this still depends on G, which in practice we cannot really estimate
reliably, and this is also an important point for applications of Bayesian analysis
in deep learning.

Algorithm 3: Stochastic gradient descent with momentum

Initialize w0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
uk+1 := γuk + α

∑
d∈Dk

∇w f (wk , d);
wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

All of the above means that we need some further improvements: plain vanilla
SGD may be not the best way, there is no clear answer as to how to change the
learning rate with time, and the problem of rescaling the gradients in an adaptive
way still remains open and important.

2.4 First-Order Optimization in Deep Learning 47

Fortunately, there are plenty of improvements that do exactly that. We again
refer to [84, 96, 625, 633] for classical optimization techniques and proceed to the
approaches that have proven particularly fruitful for optimization in deep learning.

Algorithm 4: Nesterov accelerated gradient

Initialize w0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
uk+1 := γuk + α

∑
d∈Dk

∇w f (wk − γuk , d);
wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

2.5 Adaptive Gradient Descent Algorithms

As we have seen in the previous section, basic gradient descent is infeasible in the
case of deep neural networks, and stochastic gradient descent needs one to be careful
about the choice of the learning rate and,most probably, requires some rescaling along
different directions aswell. Here, we discuss various ideas in first-order optimization,
some classical and some very recent, that have proven to work well in deep learning.

The first idea is the momentum method: let us think of the current value of w as a
material point going down the landscape of the function F that we are minimizing,
and let us say that, as in real Newtonian physics, this material point carries a part of its
momentum from one time moment to the next. In discrete time, it means that in step
k we are preserving a part of the previous update uk−1, as shown in Algorithm 3. In
real situations, the momentum decay parameter γ is usually close to 1, e.g., γ = 0.9
or even γ = 0.999. The momentum method has been a staple of deep learning since
at least the mid-1980s; it was proposed for neural networks in the famous Nature
paper by Rumelhart, Hinton, and Williams [742].

The momentum method is often combined with another important heuristic,
implicit updates. In regular SGD, using implicit updates means that the gradient
is computed not at the point wk but at the next point wk+1:

wk+1 := wk − α
∑

d∈Dk

∇w f (wk+1, d).

This makes it an implicit equation rather than explicit and can be thought of as the
stochastic form of the proximal gradient method. In classical optimization theory,
using implicit updates often helps with numerical stability.

48 2 Deep Learning and Optimization

Fig. 2.13 Gradient descent optimization for F(x, y) = x2 + 1
100 y

2: the effect of momentum.

Applied to the computation of momentum, implicit updates yield the Nesterov
accelerated gradient (NAG) method, named after its inventor Yurii Nesterov [624].
In this approach, instead of computing the gradient at the point wk , we first apply
the momentum update (after all, we already know that we will need to move in that
direction) and then compute the gradient at the point wk + γuk . In this way, the
updates are still explicit but numerical stability is much improved, and Nesterov’s
result was that this version of gradient descent converges faster than the usual version.
We show the Nesterov accelerated gradient in Algorithm 4.

Figure 2.13 shows howmomentum-based methods solve the problem that we saw
in Fig. 2.12. In Fig. 2.13, we consider the same problematic function F(x, y) =
x2 + 1

100 y
2 and show the same number of iterations for every method. Now both

regular momentum and Nesterov accelerated gradient converge much faster and in
fact have enough time to converge while regular SGD is still crawling towards the
optimum. Note how the Nesterov accelerated gradient is more stable and does not
oscillate as much as basic momentum-based SGD: this is exactly the stabilization
effect of the “lookahead” in computing the gradients.

Tomove further, note that so far, the learning rate was the same along all directions
in the vector w, and we either set a global learning rate α with some schedule of
decreasing or chose it with the Armijo rule along the exact chosen direction. Modern
adaptive variations of SGD use the following heuristic: let us move faster along the
components of w that change F slowly and move slower when we get to a region
of rapid changes in F (which usually means that we are in the vicinity of a local
extremum).

2.5 Adaptive Gradient Descent Algorithms 49

The first approach along these lines was Adagrad proposed in 2011 [209]. The
idea was to keep track of the total accumulated gradient values in the form of their
sum of squares; this is vectorized in the form of a diagonal matrixGk whose diagonal
elements contain sums of partial derivatives accumulated up to this point:

Algorithm 5: Adagrad
Initialize w0, G0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Gk+1 := Gk + diag (gk);
wk+1 := wk − α√

Gk+1+ε
gk+1;

k := k + 1;
until a stopping condition is met;

Gk,i i =
k∑

l=1

∂Fl
∂wi

, where Fl(w) =
∑

d∈Dl

f (w, d).

Adagrad is summarized in Algorithm 5. The learning rate now becomes adaptive:
when the gradients along somedirection i become large, the sumof their squaresGk,i i

also becomes large, and gradient descent slows down along this direction. Thus, one
does not have to manually tune the learning rate anymore; in most implementations,
the initial learning rate is set to α = 0.01 or some other similar constant and left with
no change.

However, the main problem of Adagrad is obvious as well: while it can slow
descent down, it can never let it pick the pace back up. Thus, if the slope of the
function F becomes steep in a given direction but then flattens out again, Adagrad
will keep going very slowly along this direction. The fix for this problem is quite
straightforward: instead of a sum of squares of the gradients, let’s use an exponential
moving average.

Algorithm 6: RMSprop

Initialize w0, G0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Gk+1 := γGk + (1 − γ) diag (gk);
wk+1 := wk − α√

Gk+1+ε
gk+1;

k := k + 1;
until a stopping condition is met;

50 2 Deep Learning and Optimization

The first attempt at this is the RMSprop algorithm, proposed by Geoffrey Hinton
in his Coursera class but, as far as I know, never officially published. It replaces the
sum of squares of gradients Gk+1 := Gk + diag (gk) with a formula that computes
the exponential moving average:

Gk+1 := γGk + (1 − γ) diag (gk) ;

Hinton suggested to use γ = 0.9. We show RMSprop in Algorithm 6.
But there is onemore, slightly less obvious problem. If you look at the final update

rule inRMSprop, or actually at the update rule in any of the stochastic gradient descent
variations we have considered so far, you can notice that the measurement units in
the updates don’t match! For instance, in the vanilla SGD, we update

wk+1 := wk − α∇wFk(wk, d),

which means that we are subtracting fromw the partial derivatives of Fk with respect
to w. In other words, if w is measured in, say, seconds and f (w, d) is measured
in meters, we are subtracting meters per second from seconds, hardly a justified
operation from the physical point of view! In mathematical terms, this means that
the scale of these vectors may differ drastically, leading to mismatches and poor
convergence.

Adagrad and RMSprop change the units but the problem remains: we are now
dividing the gradient update by a square root of the sum of squared gradients, so
instead of meters per second we are now subtracting a dimensionless value—hardly
a big improvement. Note that in second-ordermethods, this problemdoes not arise; in
Newton’s method, the update rule is wk+1 = wk − αk H

−1
k gk ; in the example above,

we would get

seconds := seconds − α

(
meters

second2

)−1 meters

second
,

and now the measurement units match nicely.

Algorithm 7: Adadelta
Initialize w0, G0 := 0, H0 := 0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Hk+1 := ρHk + (1 − ρ) diag (uk);
Gk+1 := γGk + (1 − γ) diag (gk);

uk+1 :=
√
Hk+1+ε√
Gk+1+ε

gk ;

wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

2.5 Adaptive Gradient Descent Algorithms 51

Algorithm 8: Adam
Initialize w0, G0 := 0, m0 := 0, v0 := 0, u0 := 0, k := 1;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

mk := β1mk−1 + (1 − β1)gk ;
vk := β2vk−1 + (1 − β2)g2k ;
m̂k := mk

1−βk
1
, v̂k := vk

1−βk
2
;

uk := α√
v̂k+ε

m̂k ;

wk+1 := wk − uk ;
k := k + 1;

until a stopping condition is met;

To fix this problem without resorting to second-order methods, the authors of
Adadelta [989] propose to add another exponential moving average, this time of the
weight updates themselves, adding it to the numerator and thus arriving at the correct
measurement units for the update. In other words, in Adadelta, we are rescaling the
update with respect to the values of theweights, keeping track of the averageweights:

wk+1 := wk − uk+1 = wk −
√
Hk+1 + ε√
Gk+1 + ε

gk,

where
Hk+1 = ρHk + (1 − ρ) diag (uk) ,

that is, Hk accumulates the weight updates from previous steps. In this way, the
updates are properly rescaled, and the measurement units are restored to their proper
values.

But that’s not the end of the line. The next algorithm, Adam (Adaptive Moment
Estimation) [454], in many applications remains the algorithm of choice in deep
learning up to this day. It is very similar to Adadelta and RMSprop, but Adam also
stores an average of the past gradients (that is, an exponential moving average as
usual), which acts as a kind of momentum for its updates.

Formally, this means that Adam has two parameters for the decay of updates, β1

and β2, keeps two exponential moving averages, mk for gradients and vk for their
squares, and computes the update similar to RMSProp but with momentum-based
mk instead of just gk . Another feature is that sincemk and vk are initialized by zeros,
they are biased towards zero, and the authors correct for this bias by dividing over
(1 − βk

i):

52 2 Deep Learning and Optimization

Fig. 2.14 Gradient descent with different learning rates for the Beale function.

mk = β1mk−1 + (1 − β1)gk,

vk = β2vk−1 + (1 − β2)g2k .

uk = α
√

vk
1−βk

2
+ ε

mk

1 − βk
1

.

We give a full description in Algorithm 8.
When Adam appeared, it quickly took the field of deep learning by storm. One of

its best selling features was that it needed basically no tuning of the hyperparameters:
the authors, Diederik Kingma and Jimmy Ba, recommended β1 = 0.9, β2 = 0.999,
ε = 10−8, and these values work just fine for the vast majority of practical cases.
Basically, by now Adam is the default method of training deep neural networks, and
practitioners turn to something else only if Adam fails for some reason.

Before proceeding to a brief overview of other approaches and recent news, let me
give an example of all these algorithms in action. For this example, I have chosen a
standard function that is very common in examples like this; this is the Beale function

F(x, y) = (1.5 − x + xy)2 + (
2.25 − x + xy2

)2 + (
2.625 − x + xy3

)2
.

It is a simple and continuous but nonconvex function that has an interesting opti-
mization landscape. All optimization algorithms were run starting from the same
point (1, 3

2), and the Beale function has a single global minimum at (3, 1
2), which is

our main goal.

2.5 Adaptive Gradient Descent Algorithms 53

Fig. 2.15 Momentum-based methods for the Beale function.

Fig. 2.16 Adaptive gradient descent methods for the Beale function.

54 2 Deep Learning and Optimization

Experimental results are shown in Figures 2.14, 2.15, and 2.16. Figure 2.14 shows
that even in complex optimization landscapes, one usually can find a learning rate
for the basic SGD that would work well. The problem is that this value is far from
obvious: for instance, in this case, we see that overshooting the best learning rate
(which appears to be around 0.01) even a little can lead to divergence or other
undesirable behaviour: note how the plot with α = 0.05 quickly gets out of hand.
Figure 2.15 shows how momentum-based methods work: we see that for the same
initial learning rate and the same number of iterations, SGD with momentum and
SGD with Nesterov accelerated gradients find the optimummuch faster. We also see
the stabilization effect of NAG again: SGDwithNesterovmomentum overshoots and
oscillates much less than SGD with regular momentum. Finally, Fig. 2.16 shows the
behaviour of adaptive gradient descent algorithms; in this specific example, Adagrad
andAdam appear towork best although this two-dimensional example does not really
let the adaptive approaches shine.

There have been attempts to explain what is going on with Adam and why it
is so good. In particular, Heusel et al. in an influential paper [340] showed that
stochastic optimization with Adam can be described as the dynamics of a heavy ball
with friction (HBF), that is, Adam follows the differential equation for an HBF in
Newtonian mechanics. Averaging over past gradients helps the “ball” (current value
of w) get out of small regions with local minima and prefer large “valleys” in the
objective function landscape. Heusel et al. use this property to help a GAN generator
avoid mode collapse (we will talk much more about GANs in Chapter 4), but the
remark is fully general and applies to Adam optimization in any context.

There have also been critiques of Adam and similar approaches. In another influ-
ential paper, Wilson et al. [927] demonstrate that

• when the optimization problem has a lot of local minima, different adaptive algo-
rithms can converge to different minima even from the same starting point;

• in particular, adaptive methods can overfit, i.e., find non-generalizing local solu-
tions;

• and all of this happens not only in the theoretical worst case, which would be
natural and fine with us, but in practical examples.

Wilson et al. conclude that adaptive gradient descent methods are not really advan-
tageous over standard SGD and advise to use SGD with proper step size tuning over
Adam and other algorithms.

Therefore, researchers have continued to search for the holy grail of a fast and
universal adaptive gradient descent algorithm. Since Adam was presented in 2014,
there have been a lot of attempts to improve adaptive gradient descent algorithms
further. Since this is not the main subject of the book and since Adam still remains
mostly the default, I will not give a comprehensive survey of these attempts but will
only mention in passing a few of the most interesting ideas.

2.5 Adaptive Gradient Descent Algorithms 55

First of all, Adam itself has received several modifications:

• the original Adam paper [454] proposed Adamax, a modification based on the
L∞-norm instead of L2-norm for scaling the gradients; in this variation, mk is
computed as above, and instead of vk the scaling is done with

v∞
k = max (βavk−1, |gk |) ,

and v∞
k is used instead of v̂k in Algorithm 8 (initialization bias does not occur in

this case);
• AMSGrad [708] is a very similar idea: the authors present an example of a simple
problem where the original Adam does not converge and fix this by normalizing
the running average of the gradient with a maximum of all vt up to this point
instead of the exponential moving average vt ; in Algorithm 8, it means that we let

uk := α
√
v′
k + ε

m̂k

for v′
k = max

(
v′
k−1, vk

)
, where max is understood componentwise and vk is

defined exactly as in Algorithm 8;
• Nadam [204] is themodificationofAdam that uses theNesterovmomentum instead
of regular momentum formk ; expanding one step back, the Adam update rule can
be written as

wk+1 = wk − α
√
v̂k + ε

(
β1mk−1

1 − βk
1

+ (1 − β1)gk
1 − βk

1

)

≈

≈ wk − α
√
v̂k + ε

(

β1m̂k−1 + (1 − β1)gk
1 − βk

1

)

(approximate becase we do not distinguish between 1 − βk
1 and 1 − βk−1

1 in the
denominator), and now we can replace the bias-corrected estimate m̂k−1 with the
current estimate m̂k , thus changing regular momentum into Nesterov’s version:

wk+1 = wk − α
√
v̂k + ε

(

β1m̂k + (1 − β1)gk
1 − βk

1

)

;

• QHAdam (quasi-hyperbolic Adam) [565] replaces both momentum estimators
in Adam, vk and mk , with their quasi-hyperbolic versions, i.e., with weighted
averages between plain SGD and momentum-based Adam updates; the update
rule in QHAdam looks like

wk+1 = wk − α
(1 − ν1) gk + ν1m̂k

(1 − ν2) g2k + ν2v̂k
,

where m̂k and v̂k are defined as in Algorithm 8 and ν1, ν2 are new constants;

56 2 Deep Learning and Optimization

• the critique of Wilson et al., combined with much faster convergence of Adam
during the initial stages of the optimization process, led to the idea of switching
from Adam to SGD at some strategic point during the training process [447].

AdamW [556, 557] is probably one of the most interesting Adam variations. It
goes back to the 1980s, to the original L2 regularization method for neural networks
which was weight decay [322]:

wk+1 = (1 − β)wk − α∇xk Fk,

where β is the weight decay rate and α is the learning rate. In this formulation, the
weights are brought closer to zero. Naturally, it was immediately noted (right in the
original paper [322]) that this approach is completely equivalent to changing the
objective function Fk :

F reg
k (wk) = Fk(wk) + β

2
‖wk‖22

or even directly changing the gradient:

∇wk F
reg
k = ∇wk Fk + βwk .

Butwhile this equivalence holds for plain vanilla SGD, it does not hold for adaptive
variations of gradient descent! The idea ofAdamW is to go back to the original weight
decay and “fix” Adam so that the equivalence is restored. The authors show how to
do that without losing efficiency, by changing Adam updates only very slightly. The
only change compared to Algorithm 8 is that now the update uk is given by

uk := αm̂k√
v̂k + ε

+ λwk

instead of adding λwk to gk as it would happen ifAdamwas straightforwardly applied
to a regularized objective function.

It has been shown in [556, 557] that AdamW has several important beneficial
properties. Apart from improved generalization (in some experiments), it is better
than the original Adam in decoupling the hyperparameters. This means that the best
values of hyperparameters such as initial learning rate α and regularization parameter
λ do not depend on each other and thus can be found with independent trials, which
makes hyperparameter tuning much easier.

Despite this wide variety of first-order optimization algorithms and their varia-
tions, the last word has not yet been said in optimization for deep learning. As often
as now, new ideas that at first glance might revolutionize the field fade into obscurity
after the original experiments are not confirmed in wider research and engineering
practice. One good example of such an idea is super-convergence [806], the idea that
it is beneficial to change the learning rate with a cyclic schedule, increasing it back
to large values from time to time in order to provide additional regularization and

2.5 Adaptive Gradient Descent Algorithms 57

improve generalization power. The original experiments were extremely promising,
and the idea of curriculum learning has a long and successful history in deep learn-
ing [63] (we will actually return to this idea in a different context, in particular, in
Section 6.4). But the “super” in “super-convergence” has not really proven to be true
across a wide variety of situations. The idea of increasing the learning rate back has
been added to the toolbox of deep learning practicioners, but cyclic learning rates
have not become the staple of deep learning.

2.6 Conclusion

To sum up, in this section, we have seen the main ideas that have driven the first-
order optimization as applied to deep neural networks over recent years. There has
been a lot of progress in adaptive gradient methods: apart from classical momentum-
based approaches, we have discussed the recently developed optimization methods
that adapt their learning rates differently to different weights. By now, researchers
working in applied deep learningmostly treat the optimization question as tentatively
solved, usingAdam or some later variation of it such asAdamW by default and falling
back to SGD if Adam proves to get stuck in local minima too much. However, new
variations of first-order adaptive optimizationmethods continue to appear, and related
research keeps going strong.

Second-order methods or their approximations such as quasi-Newton optimiza-
tion methods remain out of reach. It appears that it would be very hard indeed to
develop their variations suitable for stochastic gradient descent with the huge vari-
ances inherent in optimizing large datasets bymini-batches. But there are no negative
results that I know in this direction either, so who knows, maybe the next big thing in
deep learning will be a breakthrough in applying second-order optimization methods
or their approximations to neural networks.

I would like to conclude by noting some other interesting directions of study that
so far have not quite led to new optimization algorithms but may well do so. In the
latest years, researchers have begun to look at deep neural networks and functions
expressed by them as objects of research rather than just tools for approximation
or optimization. In particular, there have been interesting and enlightening recent
studies of the optimization landscape in deep neural networks. I’d like to highlight a
few works:

• Li et al. [514] study how the learning rate influences generalization and establishes
a connection between the learning rates used in training and the curriculum of
which patterns the model “learns” first;

• Huang et al. [370] show that a real-life neural network’s optimization landscape
has plenty of bad minima that have near-perfect training set accuracy but very
bad generalization (test set accuracy); the authors describe this landscape as a
“minefield” but find that SGD somehow “miraculously” avoids the bad minima
and finds a local minimum with good generalization properties;

58 2 Deep Learning and Optimization

• Keskar et al. [446] and He et al. [326] study the landscape of the loss functions
commonly used in deep learning, find that “flat” local minima have better gener-
alization properties than “sharp” ones, and discuss which training modes are more
likely to fall into flat or sharp local minima;

• Chen et al. [132] put some of this theory into practice by showing how to deform
the optimization landscape in order to help the optimizer fall into flat minima;

• Izmailov et al. [391] note that better (wider) local optima can be achieved by a
very simple trick of stochastic weight averaging, where the weights at several
points along the SGD trajectory are combined together; this is a simplification of
the previously developed fast geometric ensembling trick [263];

• Nakkiran et al. [618] discuss the double descent phenomenon, where performance
gets worse before getting better as the model size increases; double descent had
been known for some time, but Nakkiran et al. introduce effective model com-
plexity, a numerical measure of a training procedure that might explain double
descent;

• Wilson and Izmailov [928, 929] considers the same effects from the Bayesian
standpoint, explaining some mysteries of deep learning from the point of view of
Bayesian inference and studying the properties of the prior over functions that are
implied by regularization used in deep learning.

These are just a few examples, there are many more. This line of research appears to
be very promising and actually looks like it is still early in development. Therefore,
I expect exciting new developments in the nearest future in this direction.

In the next chapter, we proceed from general remarks about deep learning and
optimization to specific neural architectures. We will consider in more detail the
field of machine learning where synthetic data is used most widely and with the best
results: computer vision.

	2 Deep Learning and Optimization
	2.1 The Deep Learning Revolution
	2.2 A (Very) Brief Introduction to Machine Learning
	2.3 Introduction to Deep Learning
	2.4 First-Order Optimization in Deep Learning
	2.5 Adaptive Gradient Descent Algorithms
	2.6 Conclusion

