
Chapter 11
Privacy Guarantees in Synthetic Data

In this chapter, we discuss another important field of applications for synthetic data:
ensuring privacy. In many real-world problems, real data is sensitive enough that it is
impossible to release. One possible solution could be to train generative models that
would produce new synthetic datasets based on real data, while the real data itself
would remain secret. But how can we be sure that real data will not be inadvertently
leaked? Guarantees in this regard can be provided by the framework of differential
privacy. We give a brief introduction to differential privacy, its relation to machine
learning, and the guarantees that it can provide for synthetic data generation.

11.1 Why is Privacy Important?

In many domains, real data is not only valuable, but also sensitive; it should be
protected by law, commercial interest, and common decency. The unavailability of
real data is exactly what makes synthetic data solutions attractive in these domains.
But models for generating synthetic data have to train on real datasets anyway, so
how do we know we are not revealing it? A number of famous examples show that
naive attempts to anonymize data are often insufficient. Let me begin with a few
illustrative examples that have become famous in the studies of privacy in computer
science.

Probably the first such example dates back to 1997, when the Massachusetts
Group Insurance Commission published a carefully anonymized dataset with the
medical history of state employees. When it was published, a Ph.D. student from
MIT, Latanya Sweeney, spent $20 on a list of all voters from Cambridge, MA (a
perfectly legal operation), joined the two datasets according to zip code, birth date,
and sex (the three fields that they have in common), and immediately identified
William Weld, then the Governor of Massachusetts. She was able to confirm her
findings because Weld had a recent public medical incident, but she did not use

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_11

270 11 Privacy Guarantees in Synthetic Data

that information in the deanonymization procedure. This was one of the first such
incidents that attracted public attention, and Dr. Sweeney’s works dating back to
the 1990s were among the first not only to raise concerns, but also present specific
algorithmswithwhich privacy could be violated even in anonymized data and suggest
some ways to efficiently preserve privacy in practice [832, 833].

The second famous example came on August 4, 2006, when AOL Research, a
division of the internet company AOL that was at the time still a huge internet and
email provider (#1 in the United States) and a very popular web portal, published
anonymized search queries for over 650,000 users over a 3-month period. Naturally,
AOL research did not mean to do any harm: data was released purely for research
purposes, and the dataset did not contain anything other than search queries grouped
only by user id. But search queries often spoke for themselves: in five days, on
August 9, The New York Times ran a profile on one of the searchers whom they were
able to identify personally from the queries. This profile did not contain anything
incriminating, but other search histories were less than innocent: some suggested
that the user might be getting ready to commit murder (here’s an ethical question for
you: should AOL orGoogle be doing anything about this?), and the vagaries of “User
927” even became the basis of an experimental play staged in a Philadelphia theatre
in 2008. No, I am not going to cite what this user searched for, but, fortunately and
somewhat ironically, this information is just a couple of search queries away...

Search queries are, of course, an easy suspect for revealing sensitive information.
AOL Research quickly admitted that they made a mistake, removed the dataset in
three days (not that it helped, of course), and as a result of the scandal Maureen
Govern, the CTO of AOL, resigned in a couple of weeks. But what could go wrong if
we publish a much more restricted data type? Say, only the fields where the users do
not type in any odd thing? Say, their ratings for products in a recommender engine?..

Alas, the third example is exactly this. Every researcher working in the field of
recommender systems knows about the Netflix Prize, a competition held from 2006
to 2009 with a grand prize of one million dollars [64]. This was way before Kaggle
was a thing, and one could say that Kaggle was founded in 2010, in part, as a result
of the resounding success of the Netflix Prize. This competition brought to light
several new ideas about recommender systems that blossomed into whole directions
of research and for a long time defined state of the art in recommender systems [54,
468]. The Netflix Prize dataset only contained the identifiers of movies (names of
the movies were known) and ratings that a given user has given them; the users only
had numerical ids, there was no personal information disclosed.

However, even this kind of dataset proved to be dangerous: in 2008, researchers
from the University of Texas discovered that they could match IMDB user profiles
(which are public) with their anonymized Netflix profiles from the published dataset
with very high confidence [619]. This means that they could mine information about
movie preferences that the users chose not to disclose to their public IMDB profile;
needless to say, some of this informationmight, again, be rather sensitive. As a result,
a class action lawsuit was filed against Netflix based on the arguments from [619];
the company settled with the plaintiffs but had to cancel the second Netflix Prize,
which had already been announced at the time.

11.1 Why is Privacy Important? 271

These three examples show that the computational privacy is a very fragile thing.
The adversary might have additional information, such as a list of voters or public
IMDB profiles. The adversary does not need to attack a large fraction of the dataset
because a successful attack on even a small portion of the data might be damaging;
after all, the vast majority of people couldn’t care less about who knows their movie
ratings. A sparse dataset with high-dimensional information about the users helps the
adversary: high confidence in the case of the Netflix Prize became possible precisely
because there were a lot of movies in the dataset to mine for correlations (about
20,000). And finally, in all three cases, the datasets were not published by malicious
hackers or people who didn’t know any better: they were published by experienced
researchers, in case of AOL and Netflix by researchers who worked in computer
science. Still, the adversaries proved to be more resourceful: in these cases, finding
a crack in the wall is a much easier job than building a perfect all-encompassing
barrier.

When researchers recognized the preservation of privacy as a computer science
problem, formal negative results also followed quickly. A famous paper by Dinur
and Nissim [199] showed that a few database queries (e.g., taking sums or averages
of subsets) suffice to bring about strong violations of privacy even if the database
attempts to preserve privacy by introducing noise. Formally, one of their results was
that if a database of n private bits d1, . . . , dn responds to queries defined by subsets of
bits S ⊆ {1, . . . , n} by specifying the sums qS(D) = ∑

i∈S di approximately, and the
error in the database’s answers is on the order of o(

√
n) (it is hard to imagine a useful

database that responds to queries with an error of
√
n or more!), then a polynomial

number of queries suffices to reconstruct almost all, i.e., n − o(n) private bits in D.
Subsequent results made this even stronger.

This problem also pertains to machine learning. If a machine learning model has
trained on a dataset with a few outliers, how do we know it does not “memorize”
these outliers directly and will not divulge them to an adversary? For a sufficiently
expressive model, such memorization is quite possible, and note that the outliers are
usually themost sensitive data points. For instance, Carlini et al. [114] show that state
of the art language models do memorize specific sequences of symbols, and one can
extract, e.g., a secret string of numbers from the original dataset with a reasonably
high success rate.

How does all this relate to synthetic data? Machine learning on privacy-sensitive
datasets might be an important field of application for synthetic data: wouldn’t it be
great if AOL or Netflix didn’t have to publish their real datasets but would publish
information about synthetic users instead? This would immediately alleviate all pri-
vacy concerns. On the other hand, choosing a uniform distribution for the ratings
or random character strings for search queries would render such synthetic datasets
completely useless: naturally, to be useful the distribution of synthetic data must
resemble the distribution of real data. But then wouldn’t we be divulging private
information? Looks like we need to dig a little deeper.

272 11 Privacy Guarantees in Synthetic Data

11.2 Introduction to Differential Privacy

The field of differential privacy, pioneered by Dwork et al. [214, 216, 218], was
largely motivated by considerations such as the ones we saw in the previous section.
The works of Cynthia Dwork have been widely recognized as some of the most
novel and interesting advances in modern computer science: Prof. Dwork received
the Dijkstra Prize in 2007, the Gödel Prize in 2017 for the work [216], the Hamming
Medal and the Knuth Prize in 2020.

In the main definition of the field, a mechanism (randomized algorithm) M is
called (ε, δ)-differentially private for some positive real parameters ε and δ if for any
two databases D and D′ that differ in only a single point x , D \ {x} = D′ \ {x}, and
any subset of outputs S

p (M(D) ∈ S) ≤ eε p
(
M(D′) ∈ S

) + δ,

or, equivalently, for every point s in the output range of M

∣
∣
∣
∣ln

p (M(D) = s)

p (M(D′) = s)

∣
∣
∣
∣ ≤ ε with probability 1 − δ.

The ratio ln p(M(D)=s)
p(M(D′)=s) is an important quantity called privacy loss that needs to be

bounded in absolute value.
The intuition here is that an adversary who receives only the outputs of M should

have a hard time learning anything about any single point in D. The same intuition
could be reformulated in terms of a Bayesian update of beliefs (recall Section 2.2,
wherewediscussedhow theBayes theorem is the foundation of allmachine learning):
an adversary, after learning the result M(D) = s, updates their beliefs about the two
databases (that is, about the questionwhether the dataset contains some specific point
x) as

p(D | M(D) = s)

p(D′ | M(D) = s)
= p(D)

p(D′)
p(M(D) = s | D)

p(M(D′) = s | D′)
,

and the latter ratio on the right-hand side is precisely the privacy loss whose loga-
rithm’s absolute value is bounded by ε in the definition.

This definition has a number of important desirable qualities. First, it is robust to
the introduction of additional information, that is, knowledge of some events avail-
able to an adversary: naturally, additional information regarding the database will
help the adversary, but the definition still remains in place: an (ε, δ)-differentially
private mechanism will remain (ε, δ)-differentially private and will not help the
adversary further. Second, it is immune to postprocessing: an adversary cannot com-
pute some function of the private mechanism’s result M(D) and compromise the
privacy, i.e., the privacy loss cannot be increased by thinking hard about the results
of M . Third, it is composable: if an adversary has access to two mechanisms, M1

which is (ε1, δ1)-differentially private and M2 with parameters (ε2, δ2), any com-
position of them will have parameters not exceeding (ε1 + ε2, δ1 + δ2) regardless

11.2 Introduction to Differential Privacy 273

of whether M1 and M2 know about each other; this allows for modular design of
private architectures. Fourth, it allows for group privacy, that is, when the databases
differ by k elements an (ε, 0)-differentially private mechanism will become at most
(kε, 0)-differentially private.

Unfortunately, this definition conceals an unpleasant tradeoff. If we set δ = 0
the definition becomes too strong: for example, it is too pessimistic for repeated
applications of M (the exponent grows linearly). But if not, δ may hide a complete
failure of privacy preservation: for instance, an (ε, δ)-differentially private mecha-
nism may reveal the entire database with probability δ or reveal the δ share of data
with probability 1. Therefore, in practice, it should hold that δ � 1

n .
I do not want to get to a much deeper discussion of differential privacy than

the definitions, so I will conclude this brief intro with an example of the Laplace
mechanism, probably the simplest and most classical example of a differentially
private mechanism. Suppose that we are sending numerical queries to a database
of n integer numbers, that is, a query is a function f : Nn → R

k . An important
property of such functions f in this case is their L1-sensitivity, a measure of how
much changing a single element in the database can change the function:

� f = max
D,D′ :D and D′ differ in one point

∥
∥ f (D) − f (D′)

∥
∥
1 .

The Laplace mechanism works as follows: when someone asks to compute f (D), it
computes the correct answer and gives out a version of it perturbed by the Laplace
distribution (hence the name):

ML(D, f, ε) = f (D) + (
Y1 Y2 . . . Yk

)
, where Yi ∼ Lap

(
� f

ε

)

for some constant ε and for the Laplace distribution

Lap(x | b) = 1

2b
e− 1

b |x |.

Let us now compare the distributions of ML results on two databases D and D′
that differ at a single point. For some point z ∈ R

k ,

p(ML(D, f, ε) = z)
p(ML(D′, f, ε) = z)

=
k∏

i=1

e− ε
� f | f (D)i−zi |

e− ε
� f | f (D′)i−zi | =

=
k∏

i=1

e
ε(| f (D′)i−zi |−| f (D)i−zi |)

� f ≤
k∏

i=1

e
ε(| f (D′)i− f (D)i |)

� f = e
ε‖ f (D)− f (D′)‖1

� f ≤ eε,

where the first inequality is the triangle inequality and the second is by our assumption
on the L1-sensitivity of f . Similarly, p(ML (D, f,ε)=z)

p(ML (D′, f,ε)=z) ≥ e−ε, and we have proved that
the Laplace mechanism is (ε, 0)-differentially private.

274 11 Privacy Guarantees in Synthetic Data

A similar (but much more involved and cumbersome) argument shows that the
same can be achieved with L2-sensitivity and Gaussian noise. In other words, if we
define L2-sensitivity as

�2 f = max
D,D′ :D and D′ differ in one point

∥
∥ f (D) − f (D′)

∥
∥
2

and define the Gaussian mechanism as

MN (D, f, ε) = f (D) + (
Y1 Y2 . . . Yk

)
, where Yi ∼ N (

0,σ2) ,

then MN will be (ε, δ)-differentially private if we let

σ ≥ c
�2 f

ε
, where c2 > 2 ln

1.25

δ
;

see, e.g., [218] for details.

11.3 Differential Privacy in Deep Learning

We aremost interested inmachine learning applications for privacy: how canwe give
access to the results of learning without giving access to the training data? Before
we proceed to applying differential privacy to machine learning, we should define a
formal setting for such considerations. What should we allow the adversary to do?
One might think that we can hide the model from the adversary, but both theory and
practice show that if we provide an interface for running inference on the model
(which we definitely have to assume), a smart adversary can learn so much about
the model that it doesn’t make much sense to distinguish these two cases. Therefore,
research in this field mostly concentrates on how to keep training data private while
giving the model and its weights to the adversary (the “white box” scenario).

Note that a model that generalizes well does not necessarily preserve privacy.
Generalization is an average-case notion, and it characterizes how well the model’s
accuracy (or another objective function) transfers to new data. Privacy, on the other
hand, is a worst-case notion, and it deals with the corner cases and the information
that the entire model provides, not just its performance. For example, if you train an
SVM for classification, it might generalize very well, but the model will explicitly
contain (and thus provide to any adversary) full and unperturbed information about
its support vectors, which can hardly be called privacy-preserving. And let’s not even
get started on nearest neighbors...

Using a “standard model” that has been tried and tested also doesn’t really help.
For example, Zhang et al. [992], in a very important paper that has already become
a classic of deep learning research, studied standard models such as AlexNet on
standard datasets such as ImageNet (we discussed AlexNet in Section 3.2). Their

11.3 Differential Privacy in Deep Learning 275

experiment was to introduce a random permutation of the labels, that is, assign
labels from 1000 ImageNet classes completely at random, thus making the dataset
entirely unlearnable. After training AlexNet, they indeed saw purely random-looking
accuracy on the test set (about 0.1% top-1 accuracy and about 0.5% top-5 accuracy),
but on the training set the model actually achieved more than 90% top-1 accuracy,
not much worse than after training on original labels with the exact same learning
parameters! This means that even in the absence of any possibility for generalization
and extracting useful features, modern deep learning models can learn quite a lot by
simply memorizing the data; note also that AlexNet is by modern standards a pretty
small and weak network...

Therefore, if we want to be able to train on real data, we need to somehow
introduce privacy-preserving transformations into the model training process. Since,
in this book, we are mainly interested in deep learning, I will not go into preserving
privacy with other machine learning models; there is a growing body of research in
this field, and I can refer, e.g., to the surveys [238, 287, 312, 400] and references
therein. Our focus in this section is on how to make complex high-dimensional
optimization, such as training deep neural networks with stochastic gradient descent
(recall Sections 2.4 and 2.5), respect privacy constraints. Aswe have already seen, the
basic approach to achieving differential privacy is to add noise to the output ofM , just
like the Laplace and Gaussian mechanisms do. Many classical works on the subject
focus on estimating and reducing the amount of noise necessary to ensure privacy
under various assumptions [214–217, 520]. However, it is not immediately obvious
how to apply this idea to a deep neural network. There are two major approaches to
achieving differential privacy in deep learning, that is, in stochastic gradient descent.

The most important advance in this field came from Abadi et al. [1], who sug-
gested a method for controlling the influence of the training data during stochastic
gradient descent called Differentially Private SGD (DP-SGD). They use the Gaus-
sian mechanism that we introduced in the previous section, so the basic idea is to add
Gaussian noise to the gradients on every step of the SGD. But in order to estimate
the variance σ for the necessary noise, the Gaussian mechanism needs to know an
estimate on the influence that each individual example can have on the gradient gk
computed on the minibatch at step k. How can we get such an estimate when we do
not have any prior bound on the gradients? We have to bound them ourselves!

Specifically, Abadi et al. clip the gradients on each SGD iteration to a predefined
value of the L2-norm and add Gaussian noise to the resulting gradient value. The
entireDP-SGDscheme is presented inAlgorithm9.By careful analysis of the privacy
loss variable, i.e., log p(A(D)=s)

p(A(D′)=s) above, Abadi et al. show that the resulting algorithm
preserves differential privacy under reasonable choices of the clipping and random
noise parameters. Moreover, this is a general approach that is agnostic to the network
architecture and can be extended to various first-order optimization algorithms based
on SGD.

A year later, Papernot et al. [653] (actually, mostly the same group of researchers
from Google) presented the Private Aggregation of Teacher Ensembles (PATE)
approach. In PATE, the final “student”model is trained froman ensemble of “teacher”
models that have access to sensitive data, while the “student” model only has access

276 11 Privacy Guarantees in Synthetic Data

Algorithm 9: Differentially private stochastic gradient descent
Initialize w0, k := 0;
repeat

Dk := Sample(D);
for d ∈ Dk do

gk(d) := ∇w f (wk , d);
ḡk(d) := gk(d)/max

(
1, 1

C ‖gk(d)‖2
)
;

end

gk := 1
|Dk |

(∑
d∈Dk

ḡk(d) + N (
0,σ2C2I

))
;

wk+1 := wk − αkgk ;
k := k + 1;

until a stopping condition is met;

to (noisy) aggregated results of “teacher” models, which allows to control disclosure
and preserve privacy. A big advantage of this approach is that “teacher” models can
be treated as black box while still providing rigorous differential privacy guarantees
based on the same moments accounting technique from [1]. Incidentally, the best
results were obtained with adversarial training for the “student” in a semi-supervised
fashion, where the entire dataset is available for the “student” but labels are only
provided for a subset of it, preserving privacy.

In conclusion, I think it is important to note the practical side of things. Differential
privacy is a worst-case theoretical concept, and definitions of an (ε, δ)-differentially
private mechanism might have reminded the reader of definitions from theoretical
cryptography, where usually nothing is possible to actually achieve and even the best
results are often either negative or impossible to apply in practice. But differential
privacy for deep learning is a field that has actual implementations. The original paper
by Abadi et al. was already accompanied by a repository that added differentially
private variations of Tensorflow optimizers1. And the latest news is the release of
Opacus, a library developed by Facebook researchers Davide Testuggine and Ilya
Mironov that enables differential privacy for PyTorch models2.

Thus, deep learning with differential privacy guarantees may eventually provide
a good answer to the problem of preserving information regarding the datasets. But
if you want to release a dataset for the general public, say organize a Kaggle compe-
tition, rather than just publish your model while keeping the original dataset private,
you still cannot avoid the generation of synthetic data with privacy guarantees. This
is exactly what we will discuss in the next section.

1At the time of writing (late 2020), the Tensorflow Privacy library is alive and well supported:
https://github.com/tensorflow/privacy.
2At the time of writing (late 2020), this library has been very recently released, so it obviously also
does not lack support: https://github.com/pytorch/opacus

https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus

11.4 Differential Privacy Guarantees for Synthetic Data Generation 277

11.4 Differential Privacy Guarantees for Synthetic Data
Generation

In this section, we review the applications of differential privacy and related con-
cepts to synthetic data generation. The purpose is similar: the release of a synthetic
dataset generated by somemodel trained on real data should not disclose information
regarding the individual points in this real dataset. Our review is slanted towards deep
learning; for a more complete picture of the field, we refer to the surveys in [71, 214].
However, we do note the efforts devoted to generating differentially private synthetic
datasets in classical machine learning. In particular, Lu et al. [559] develop a model
for making sensitive databases private by fixing a set of queries to the database
and perturbing the outputs to ensure differential privacy. Zhang et al. present the
PrivBayes approach [997]: construct a Bayesian network that captures the correla-
tions and dependencies between data attributes, inject noise into the marginals that
constitute this network, and then sample from the perturbed network to produce the
private synthetic dataset. In a similar effort, the DataSynthetizer model by Ping et
al. [673] is able to take a sensitive dataset as input and generate a synthetic dataset
that has the same statistics and structure but at the same time provides differential
privacy guarantees.

We also note some privacy-related applications of synthetic data that are not about
differential privacy. For example, Ren et al. [721] present an adversarial architecture
for video face anonymization; their model learns to modify the original real video to
remove private information while at the same time still maximizing the performance
of action recognition models (see also Section 6.6).

The general approaches we have discussed in the previous section have been
modified and applied for producing synthetic data with generative models, mostly,
of course, with generative adversarial networks. Although the methods are similar,
we note an important conceptual difference that synthetic data brings in this case.
Model release approaches in the previous section assumed access to and full control
of model training.Data release approaches (here we use the terminology from [871])
that perform synthetic data generation have the following advantages:

• they can provide private data to third parties to construct better models and develop
new techniques or use computational resources that might be unavailable to the
holders of sensitive data;

• moreover, these third parties are able to pool synthetic data from different sources,
while in the model release framework this would require a transfer of sensitive
data;

• synthetic data can be either traded of freelymade public, which is an important step
towards reproducibility of research, especially in such fields as bioinformatics and
healthcare, where reproducibility is an, especially, important problem and where,
at the same time, sensitive data abounds.

In this section, we discuss existing constructions of GANs that provide rigorous
privacy guarantees for the resulting generated data. Basically, in the ideal case, a

278 11 Privacy Guarantees in Synthetic Data

differentially private GAN has to generate an artificial dataset that would be sampled
from the same distribution pdata but with differential privacy guarantees as discussed
above. One general remark that is used in most of these works is that in a GAN-based
architecture, it suffices to have privacy guarantees or additional privacy-preserving
modifications (such as adding noise) only in the discriminator since gradient updates
for the generator are functions of discriminator updates. Another important remark
is that in cases when we generate differentially private synthetic data, a drop in
quality for subsequent “student” models trained on synthetic data is expected in
nearly all cases, not because of any deficiencies of synthetic data vs. real in general
but because the nature of differential privacy requires adding random noise to the
generative model training.

Xie et al. [955] present the differentially private GAN (DPGAN) model, which is
basically the already classical Wasserstein GAN [27, 303] but with additional noise
on the gradient of the Wasserstein distance, in a fashion following the DP-SGD
approach (Section 11.3). They apply DPGAN to generate electronic health records,
showing that classifiers trained on synthetic records have accuracy approaching that
of classifiers trained on real data, while guaranteeing differential privacy. This was
further developed by Zhang et al. [1002], who used the Improved WGAN frame-
work [303] and obtained excellent results on the synthetic data generated from vari-
ous subsets of the LSUN dataset [1002], which is already a full-scale image dataset,
albeit at low resolution (64 × 64).

Beaulieu-Jones et al. [50] apply the same idea to generating electronic health
records, specifically training on the data of the Systolic Blood Pressure Trial
(SPRINT) data analysis challenge [205, 854], which are in nature low-dimensional
time series. They used the DP-SGD approach for the Auxiliary Classifier GAN (AC-
GAN) architecture [637] and studied how the accuracy of various classifiers drops
when passing to synthetic data. Triastcyn and Faltings [871] continue this line of
work and show that differential privacy guarantees can be obtained by adding a spe-
cial Gaussian noise layer to the discriminator network. They show good results for
“student” models trained on synthetically generated data for MNIST, but already at
the SVHN dataset the performance degrades more severely.

Bayesian methods are a natural fit for differential privacy since they deal with
entire distributions of parameters and lend themselves easily to adding extra noise
needed for DP guarantees. In a combination of generative models and Bayesian
methods, a Bayesian variant of the GAN framework, which provides representa-
tions of full posterior distributions over the parameters, was provided by Saatchi
and Wilson [747]. The idea of their Bayesian GAN is to introduce prior distribu-
tions on generator parameters θg and discriminator parameters θd , p

(
θg | αg

)
, and

p (θd | αd) , respectively, and infer posteriors over θg and θd

11.4 Differential Privacy Guarantees for Synthetic Data Generation 279

p
(
θg | Z ,θd

) ∝p
(
θg | αg

)
Ng∏

n=1

D
(
G

(
zn;θg

) ;θd
)
,

p
(
θd | Z , X,θg

) ∝p (θd | αd)

Nd∏

n=1

D (xn;θd)

Ng∏

n=1

(
1 − D

(
G

(
zn;θg

) ;θd
))

,

where xn are real inputs, zn are randomnoise samples, and Nd and Ng are the numbers
of real and fake samples, respectively.

Saatchi and Wilson provide learning algorithms in this setting, marginalizing
the above posteriors over random noise by Monte Carlo integration and sampling
from posterior distributions with stochastic gradient Hamiltonian Monte Carlo [136,
1033]. Arnold et al. [30] adapted the BayesGAN framework for differential privacy
by injecting noise into the gradients during training, which was shown by Wang et
al. [918] to lead to DP guarantees. They apply the resulting DP-BayesGAN frame-
work to microdata, i.e., medium-dimensional samples of 40 explanatory variables of
different nature and one dependent variable.

As for the PATE framework, it cannot be directly applied to GANs since noisy
aggregation of a PATE ensemble is not a differentiable function that could serve as
part of a GAN discriminator. Ács et al. [6] proposed to use a differentially private
clustering method to split the data into k clusters, then train a separate generative
models (the authors tried VAE) on their own clusters, and then create a mixture of the
resulting models that would inherit differential privacy properties as well. A recent
work by Jordon et al. [976] circumvents the non-differentiability problem by training
a “student-discriminator” on already differentially private synthetic data produced
by the generator. The learning procedure alternates between updating “teacher” clas-
sifiers for a fixed generator on real samples and updating the “student-discriminator”
classifier and the generator for fixed “teachers”. PATE-GAN works well on low-
dimensional data but begins to lose ground on high-dimensional datasets such as,
e.g., the UCI Epileptic Seizure Recognition dataset (with 184 features).

However, these results are still underwhelming; it has proven very difficult to
stabilize GAN training with the additional noise necessary for differential privacy
guarantees, which has not allowed researchers to progress to, say, higher resolution
images so far. In a later work, Triastcyn and Faltings [870] consider a different
approach: they use the empirical DP framework [3, 124, 168, 768], an approach that
empirically estimates the privacy of a posterior distribution, and themodification that
ensures privacy is usually a sufficiently diffuse prior. In this framework, evaluating
the privacy would reduce to training a GAN on the original dataset D, removing one
sample from D to obtain D′, retraining the GAN and comparing the probabilities
of all outcomes, and so on, repeating these experiments enough times to obtain
empirical estimates for ε and δ. For realistic GANs, a large number of retrainings
is impractical, so Triastcyn and Faltings modify this procedure to make it operate
directly on the generated set D̃ rather than the original dataset D. They study the
tradeoff of privacy vs. accuracy of the “student” models trained on synthetic data

280 11 Privacy Guarantees in Synthetic Data

and show that GANs can fall into the region of practical values for both privacy and
accuracy. Their proposedmodification of the architecture (a single randomizing layer
close to the end of the discriminator) strengthens DP guarantees while preserving
good generation quality for datasets up to CelebA [542]; in fact, it appears to serve
as a regularizer and improve generation.

Frigerio et al. [246] extend theDPGAN framework to continuous, categorical, and
time series data. They use the Wasserstein GAN loss function [303], extending the
moment accountant to this case. To handle discrete variables, the generator produces
an output for every possible value with a softmax layer on top, and its results are sent
to the discriminator. Bindschadler [71] presents a seedbased modification of syn-
thetic data generation: an algorithm that produces data records through a generative
model conditioned on some seed real data record; this significantly improves quality
but introduces correlations between real and synthetic data. To avoid correlations,
Bindschadler introduces privacy tests that reject unsuitable synthetic data points.
The approach can be used in complex models based on encoder-decoder architecture
by adding noise to a seed in the latent space; it has been evaluated across different
domains from census data to celebrity face images, the latter through a VAE/GAN
architecture [497].

Finally, we note that synthetic data produced with differential privacy guarantees
is also starting to gain legal status; in a technical report [58], Bellovin et al. from the
Stanford Law School discuss various definitions of privacy from the point of view of
what kind of data can be released. They conclude: “...as we recommend, synthetic
data may be combined with differential privacy to achieve a best-of-both-worlds
scenario”, i.e., combining added utility of synthetic data produced by generative
models with formal privacy guarantees.

11.5 Case Study: Synthetic Data in Economics, Healthcare,
and Social Sciences

Synthetic data is increasingly finding its way into economics, healthcare, and social
sciences in a variety of applications. We discuss this set of models and applications
here since often the main concern that drives researchers in these fields to synthetic
data is not lack of data per se but rather privacy issues. A number of models that
guarantee differential privacy have already been discussed above, so in this section,
we concentrate on other approaches and applications.

As long ago as 1993, Rubin [740] discussed the dangers of releasing micro-
data (i.e., information about individual transactions) and the extremely complicated
legal status of data releases, as the released data might be used to derive protected
information even if it had been masked by standard techniques. To avoid these com-
plications, Rubin proposed to use imputed synthetic data instead: given a dataset
with confidential information, “forget” and impute confidential values for a sam-
ple from this dataset, using the same background variables but drawing confidential

11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences 281

data from the predictions of some kind of imputation model. Repeating the pro-
cess for several samples, we get a multiply-imputed population that can then be
released. In the same year (actually, the same special issue of the Journal of Offi-
cial Statistics), Little [530] suggested to also keep the non-confidential part of the
information to improve imputation. By now, synthetic datasets produced by multiple
imputation are a well-established field of statistics, with applications to finance and
economics [195, 713], healthcare [18], social sciences [102], survey statistics [4, 13],
and other domains. Since the main emphasis of the present survey is on synthetic
data for deep learning, we do not go into details about multiple imputation and refer
to the book [207] and the main recent sources in the field [206, 700, 712, 714].

In a very recent work, Heaton and Witte [332] propose another interesting take
on synthetic data in finance. They begin with the well-known problem of overfitting
during backtesting: since there is a very large number of financial products and
relatively short time series available for them, one can always find a portfolio (subset
of products) that works great during backtesting, but it does not necessarily reflect
future performance. The authors suggest to use synthetic data not to train financial
strategies (they regard it as infeasible), but rather to evaluate developed strategies,
generating synthetic data with a different distribution of abnormalities and testing
strategies for robustness in these altered circumstances. Interestingly, the motivation
here is not to improve or choose the best strategies, but to obtain evidence of their
robustness that could be used for regulatory purposes. As a specific application,
the authors use existing fraud detection algorithms to find anomalies in the Kaggle
Credit Card Fraud Detection Dataset [180] and generate synthetic data that balances
the found abnormalities.

However, at present, I know of no direct applications where synthetically gener-
ated financial time series that would lead to improved results in financial forecasting,
developing financial strategies, and the like. In general, financial time series are
notorious for not being amenable to either prediction or accurate modeling, and even
with current state-of-the-art economic models, it looks like generating useful syn-
thetic financial time series is still in the future. Moreover, the reasons we discussed in
Section 8.4 regarding why synthetic data is unpopular in natural language processing
apply here as well.

As for healthcare, this is again a field where the need for synthetic data was under-
stood very early, and this need was mostly caused by privacy concerns: hospitals are
required to protect the confidentiality of their patients. Ever since the first works in
this direction, dating back to early 1990s, researchers mostly concentrated on gener-
ating synthetic electronic medical records (EMR) in order to preserve privacy [44].
Amongmore recent works,MDClone [594] is a system that samples synthetic EMRs
from the distributions learned on existing cohorts, without actually reusing original
data points. Walonoski et al. [898] present the Synthea software suite designed to
simulate the lifespans of synthetic patients and produce realistic synthetic EMRs.
McLaghlan [591] discusses realism in synthetic EMR generation and methods for
its validation, and in another work presents a state transition machine that incorpo-
rates domain knowledge and clinical practice guidelines to generate realistic synthetic
EMRs [592].

282 11 Privacy Guarantees in Synthetic Data

Fig. 11.1 The architecture of medGAN [150]. Blocks with identical labels have shared weights.

Another related direction of research concentrates not on individual EMRs, but
on modeling entire populations of potential patients. Synthetic micro-populations
produced by Smith et al. [805] are intended to match various sociodemographic
conditions found in real cities and use them in imitational modeling to estimate the
effect of interventions. Moniz et al. [610, 746] create synthetic EMRs made avail-
able on the CDC Public Health grid for imitational modeling. Buczak et al. [98]
generate synthetic EMRs for an outbreak of a certain disease (together with back-
ground records). Kartoun [441] progressed from individual EMRs to entire virtual
patient repositories, concentrating on preserving the correct general statistics while
using simulated individual records. However, most of this work does not make use of
modern formalizations of differential privacy or recent developments in generative
models, and only very recently researchers have attempted to bring those into the
healthcare microdata domain as well.

A direct application of GANs for synthetic EMR generation was presented by
Choi et al. [150]. Their medGAN model consists of a generator Gmed, discriminator
Dmed, and an autoencoder with encoder Encmed and decoder Decmed; the architecture
is shown in Fig. 11.1. The autoencoder is trained to reconstruct real data xT ∼ XT ,
while Gmed learns to generate latent representations Gmed(z) from a random seed
z such that Dmed will not be able to differentiate between Decmed(Gmed(z)) and a
real sample xT ∼ XT . Privacy in the medGAN model is established empirically, and
the main justification for privacy is the fact that medGAN uses real data only for the
discriminator and never trains the generator on any real samples. We note, however,
that in terms of generation medGAN is not perfect: for example, Patel et al. [659]
present the CorrGAN model for correlated discrete data generation (with no regard
for privacy) and show improvements overmedGAN with a relatively straightforward
architecture.

The DP-SGD framework has also been applied to GANs in the context of medical
data. We have discussed Beaulieu-Jones et al. [50] above. Another important appli-
cation for synthetic data across many domains, including but not limited to finance,
would be to generate synthetic time series. This, however, has proven to be a more
difficult problem, and solutions are only starting to appear. In particular, Hyland
et al. [228] present the Recurrent GAN (RGAN) and Recurrent Conditional GAN
architectures designed to generate realistic real-valuedmulti-dimensional time series.
They applied the architecture to generating medical time series (vitals measured for

11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences 283

ICU patients) and reported successful generation and ability to train classifiers on
synthetic data, although there was a significant drop in quality when testing on real
data. Hyland et al. also discuss the possibility to use a differentially private training
procedure, applying the DP-SGD framework to the discriminator and thus achieving
differential privacy for the RGAN training. The authors report that after this proce-
dure, synthetic-to-real test results deteriorate significantly but remain reasonable in
classification tasks on ICU patient vitals.

Finally, we note another emerging field of research related to generating synthetic
EMRs for the sake of privacy: generating clinical notes and free-text fields in EMRs
with neural language models (see also Section 8.4). Latest advances in deep learning
for natural language processing have led to breakthroughs in large-scale language
modeling [193, 359, 697], and it has been applied to smaller datasets of clinical
notes as well. Lee [505] uses an encoder-decoder architecture to generate chief
complaint texts for EMRs. Guan et al. [302] propose a GAN architecture called
mtGAN (medical text GAN) for the generation of synthetic EMR text. It is based on
the SeqGAN architecture [982] and is trained with the REINFORCE algorithm; the
primary difference is a condition added by Guan et al. to be able to generate EMRs
for a specific disease or other features. Melamud and Shivade [597] compare LSTM-
based language models for generating synthetic clinical notes, suggesting a new
privacy measure and showing promising results. Further advances in this direction
may be related to the recently developed differentially private languagemodels [593].

11.6 Conclusion

In this chapter, we have investigated a motivation for synthetic data very different
from the rest of the book. Instead ofmaking synthetic data that alleviates the hardships
of collecting and labeling real data, here we have beenmaking synthetic data because
real data, while available, cannot be published for legal or ethical reasons. This
motivation has led to very different methods: now the main problem is to guarantee
that real data is not released by publishing the synthetic dataset. Therefore, in this
chapter,we have beenmostly talking about themain (and probably the only) approach
that can provide these guarantees: differential privacy.

Next, we come to the final chapter of the book. In it, we will try to highlight
the most promising directions for further research, ideas that I believe will bring
interesting advances in the nearest future. Who knows, maybe my readers will be
among those who take up these directions and bring machine learning to new heights
with synthetic data. Let’s find out together!

	11 Privacy Guarantees in Synthetic Data
	11.1 Why is Privacy Important?
	11.2 Introduction to Differential Privacy
	11.3 Differential Privacy in Deep Learning
	11.4 Differential Privacy Guarantees for Synthetic Data Generation
	11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences
	11.6 Conclusion

