
Chapter 1
Introduction: The Data Problem

Machine learning has been growing in scale, breadth of applications, and the amounts
of required data. This presents an important problem, as the requirements of state-
of-the-art machine learning models, especially data-hungry deep neural networks,
are pushing the boundaries of what is economically feasible and physically possible.
In this introductory chapter, we show and illustrate this phenomenon, discuss sev-
eral approaches to solving the data problem, introduce the main topic of this book,
synthetic data, and outline a plan for the rest of the book.

1.1 Are Machine Learning Models Hitting a Wall?

Machine learning is hot, and it has been for quite some time. The field is growing
exponentially fast, with new models and new papers appearing every week, if not
every day. Since the deep learning revolution, for about a decade, deep learning has
been far outpacing other fields of computer science and arguably even science in
general. Analysis of the submissions from arXiv1, the most popular preprint reposi-
tory in mathematics, physics, computer science, and several other fields, shows how
deep learning is taking up more and more of the papers. For example, the essay [117]
cites statistics that show how:

• the percentage of papers that use deep learning has grown steadily over the last
decade within most computer science categories on arXiv;

• and moreover, categories that feature high deep learning adoption are growing in
popularity compared to other categories.

1https://arxiv.org/.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_1&domain=pdf
https://arxiv.org/
https://doi.org/10.1007/978-3-030-75178-4_1

2 1 Introduction: The Data Problem

Fig. 1.1 The structure of a machine learning project.

The essay [117] was published in 2018, but the trend continues to this day: the
number of papers on deep learning is growing exponentially, each individual subfield
of deep learning is getting more and more attention, and all of this does not show
any signs of stopping. We are living on the third hype wave of artificial intelligence,
and nobody knows when and even if it is going to crash like the first two (we will
briefly discuss them in Section 2.1).

Still, despite all of these advances, the basic pipeline of using machine learning
for a given problem remains mostly the same, as shown in Figure 1.1:

• first, one has to collect raw data related to the specific problem and domain at
hand;

• second, the data has to be labeled according to the problem setting;
• third, machine learning models train on the resulting labeled datasets (and often
also validate their performance on subsets of the datasets set aside for testing);

• fourth, after one has trained the model, it needs to be deployed for inference
in the real world; this part often involves deploying the models in low-resource
environments or trying to minimize latency.

The vast majority of the thousands of papers published in machine learning deal
with the “Training” phase: how can we change the network architecture to squeeze
out better results on standard problems or solve completely new ones? Some deal
with the “Deployment” phase, aiming to fit the model and run inference on smaller
edge devices or monitor model performance in the wild.

Still, any machine learning practitioner will tell you that it is exactly the “Data”
and (for some problems especially) “Annotation” phases that take upwards of 80%
of any real data science project where standard open datasets are not enough. Will
these 80% turn into 99% and become a real bottleneck? Or have they already done
so? Let us find out.

For computer vision problems, the labeling required is often very labor-intensive.
Suppose that you want to teach a model to count the cows grazing in a field, a
natural and potentially lucrative idea for applying deep learning in agriculture. The
basic computer vision problem here is either object detection, i.e., drawing bounding
boxes around cows, or instance segmentation, i.e., distinguishing the silhouettes of
cows. To train the model, you need a lot of photos with labeling like the one shown
in Fig. 1.2 (segmentation on Fig. 1.2a; object detection on Fig. 1.2b).

1.1 Are Machine Learning Models Hitting a Wall? 3

)b()a(

Fig. 1.2 Sample labeling for standard computer vision problems: (a) instance segmentation;
(b) object detection.

Imagine how much work it is to label a photo like this by hand. Naturally, people
have developed tools to help partially automate the process. For example, a state-of-
the-art labeling tool (see, e.g., [829]) will suggest a segmentation candidate produced
by some general-purpose model, and the human annotator is only supposed to fix
the mistakes of this model by clicking on individual pixels that are segmented incor-
rectly. But it might still take minutes per photo, and the training set for a standard
segmentation or object detection model should have thousands or even tens of thou-
sands of such photos. This adds up to human-years and hundreds of thousands, if not
millions, of dollars spent on labeling only.

There exist large open datasets for many different problems, segmentation and
object detection included. But as soon as you need something beyond the classes,
settings, and conditions that are already well covered in these datasets, you are out of
luck; for instance, ImageNet does have cows, but not shot from above with a drone.

And even if the dataset appears to be tailor-made for the problem at hand, it
may contain dangerous biases. For example, suppose that the basic problem is face
recognition, a classic computer vision problem with large-scale datasets freely avail-
able [37, 38, 366, 542]; there also exist synthetic datasets of people, and we will
discuss them in Section 6.6. But if youwant to recognize faces “in thewild”, you need
a dataset that covers all sorts of rotations for the faces, while standard datasets mostly
consist of frontal photos. For example, the work [1017] shows that the distribution of
face rotations in IJB-A [460], a standard open large-scale face recognition dataset, is
extremely unbalanced; the work discusses how to fill in the gaps in this distribution
by producing synthetic images of faces from the IJB-A dataset (see Section 10.3,
where we discuss this work in detail).

4 1 Introduction: The Data Problem

Fig. 1.3 General architecture of a simple classification network.

To sum up: current systems are data-intensive, data is expensive, and we are
hitting the ceiling of where we can go with already available or easily collectible
datasets, especially with complex labeling. So what’s next? How can we solve the
data problem? Is machine learning heading towards a brick wall? Hopefully not, but
it will definitely take additional effort. Over the next sections, we discuss what can
be done to alleviate the data problem. We will give a very high-level overview of
several possible approaches currently explored by machine learning researchers and
then make an introduction to the main topic of this book: synthetic data.

1.2 One-Shot Learning and Beyond: Less Data for More
Classes

We have already mentioned face recognition systems and have just discussed that
computer vision systems generally need a lot of labeled training samples to learn how
to recognize objects from a new class. But then how are face recognition systems
supposed to work at all? The vast majority of face recognition use cases break down
if we require hundreds of photos in different contexts taken for every person we need
to recognize. How can a face recognition system hope to recognize a new face when
it usually has at most a couple of shots for every new person?

The answer is that face recognition systems are a bit different from regular image
classifiers. Any machine learning system working with unstructured data (such as
photographs) is basically divided into two parts:

• feature extraction, the part that converts an image into a (much smaller) numerical
vector, usually called an embedding or a latent code, and

• a machine learning model (e.g., a classifier) that uses extracted features to actually
solve the problem.

So a regular image classifier consists of a feature extraction network followed by
a classification model, as shown in Fig. 1.3; this kind of architecture was used by the
first neural networks that brought the deep learning revolution to computer vision
such as AlexNet, GoogLeNet, and others (we will discuss them in Section 3.1). In
deep learning, the classifier is usually very simple, in most cases basically equivalent
to logistic regression, and feature extraction is the interesting part. Actually, most of
the advantages of deep learning come from the fact that neural networks can learn to
be much better at feature extraction than anything handcrafted that we humans had
been able to come up with.

1.2 One-Shot Learning and Beyond: Less Data for More Classes 5

Fig. 1.4 General architecture of a Siamese network.

To train this kind of network, you do indeed need a lot of labeled faces, and to add a
new face, you need quite a few examples of the newclass.However, this is not the only
way.An important direction in the development ofmodern face recognition systems is
related to learning face embeddings (learning feature extraction) in various ways. For
example,FaceNet [771] learns with amodification of the Siamese network approach,
where the target is not a class label but rather the distances or similarities between
face embeddings. The goal is to learn embeddings in such a way that embeddings
of the same face will be close together while embeddings of different faces will be
clearly separated, far from each other.

The general architecture of this approach is shown in Fig. 1.4: feature extractors
produce numerical features that are treated as vectors in a Euclidean space, and the
loss function is designed to, roughly speaking, bring the vectors corresponding to the
same person close to each other and push vectors extracted from images of different
people apart.

After the FaceNet model shown in Fig. 1.4 has been trained with distance-based
metrics in mind, we can use the embeddings to do what is called one-shot learning.
Assuming that the embedding of a new face will have the same basic properties,
we can simply compute the embedding for a new person (with just a single photo
as input!) and then do classification by looking for nearest neighbors in the space
of embeddings. While this approach has met with some problems specifically for
face recognition due to complications in the mining of hard negative examples, and
some state-of-the-art face recognition systems are currently trained as classifiers
with additional tricks and modified loss functions [188, 915, 966], this approach
still remains an important part of the research landscape.

This is a simplified but realistic picture of how one-shot learning systems work.
But one can go even further: what if there is no data available at all for a new class?
This setting is known as zero-shot learning. The problem sounds impossible, and
it really is: if all you know are images from “Class 1” and “Class 2”, and then
you are asked to distinguish between “Class 3” and “Class 4” with no additional
information, no amount of machine learning can help you. But in real life, it does not
work this way: we usually have some background knowledge about the new classes
even if we do not have any images. For example, when we are asked to recognize a

6 1 Introduction: The Data Problem

“Yorkshire terrier”2, we know that it is a kind of dog, and maybe we even have its
verbal description that can be lifted, e.g., fromWikipedia. With this information, we
can try to learn a joint embedding space for both class names and images, and then
use the same nearest neighbors approach but look for the nearest label embedding
rather than other images (which we do not have for a new class).

This kind of cross-modal zero-shot learning was initiated by Socher et al. [810],
who trained a model to recognize objects on images based on knowledge about class
labels learned from unsupervised text corpora. Their model learns a joint latent space
of word embeddings and image feature vectors. Naturally, this approach will not give
the same kind of accuracy as training on a large labeled set of images, but zero-shot
learning systems are increasingly successful. In particular, amore recent paper byZhu
et al. [1029] uses a generative adversarial network (GAN) to “hallucinate” images
of new classes by their textual descriptions and then extracts features from these
hallucinated images; this comes close to the usage of GANs to produce and refine
synthetic data that we explore in Chapter 10; see also recent surveys of zero-shot and
few-shot learning [911, 916, 917, 949].

Note, however, that one- and zero-shot learning still require large labeled datasets.
The difference is that we do not need a lot of images for each new class anymore. But
the feature extraction network has to be trained on similar labeled classes: a zero-shot
approach will not work if you train it on birds and then try to look for a chair based
on its textual description. Until we are able to use super-networks trained on every
kind of images possible (as we will see shortly, we still have quite a way to go before
this becomes possible, if it is even possible at all with our current approaches), this
is still a data-intensive approach, although restrictions on what kind of data to use
are relaxed.

A middle ground is taken by models that try to generalize from several examples,
a field known as few-shot learning [916]. Similar to one-shot learning, generaliz-
ing from few examples in complex problems is a process that has to be guided by
expressive and informative prior distributions—otherwise, the data will simply not
be enough. In many ways, this is how human learning works: we usually need a few
examples to grasp a novel concept, but never thousands of examples, because the
new concept probably fits into the prior framework about the world that we have
built over our lifetimes.

To get these prior distributions in a machine learning model, we can use a number
of different approaches. We have seen a couple of examples above, and the general
classification of one- and few-shot approaches includes at least the following:

• data augmentation that extends the small available dataset with transformations
that do not change the properties that we need to learn;

• multitask learning that trains a model to solve several problems, each of which
may have a small dataset, but together these datasets are large enough;

• embedding learning that learns latent representations which can be generalized to
new examples, as we have discussed above;

2ImageNet [187], the main basic dataset for computer vision models, is very fond of canines: it
distinguishes between 120 different dog breeds from around the world.

1.2 One-Shot Learning and Beyond: Less Data for More Classes 7

• fine-tuning that updates existing models that have been pretrained on different
tasks (possibly unsupervised) with small amounts of new data.

We will encounter all of these techniques in this book.

1.3 Weakly Supervised Training: Trading Labels for
Computation

Formany problems, obtaining labeled data is expensive but unlabeled data, especially
data that is not directly related to the specific problem at hand, is plentiful. Consider
again the basic computer vision problems we have talked about: it is very expensive
to obtain a large dataset of labeled images of cow herds, but it is much less expensive
to get a large dataset of unlabeled such images, and it is almost trivial to simply get
a lot of images with and without cows.

But can unlabeled data help? Basic intuition tells that it may not be easy but
should be possible. After all, we humans learn from all kinds of random images, and
during infancy, we develop an intuition about the world around us that generalizes
exceptionally well. Armed with this intuition, we can later in life do one-shot and
zero-shot learning with no problem. And the images were never actually labeled, the
learning we do can hardly be called supervised. Although it is still a far cry from
human abilities (see, e.g., a recent treatise by Francois Chollet [154] for a realistic
breakdown of where we stand in terms of artificial general intelligence), there are
several approaches being developed in machine learning to make use of all this extra
unlabeled data lying around.

First, one can use unlabeled data to produce new labeled data; although the new
“pseudolabels” are not guaranteed to be correct, they will still help, and one can
revisit and correct them in later iterations. A striking illustration of this approach has
appeared in a recent work by Xie et al. [956], where researchers from Google Brain
and Carnegie Mellon University applied the following algorithm:

• start from a “teacher” model trained as usual, on a (smaller) labeled dataset;
• use the “teacher” model on the (larger) unlabeled dataset, producing pseudolabels;
• train a “student” model on the resulting large labeled dataset;
• use the trained student model as the teacher for the next iteration, and then repeat
the process iteratively.

This is a rather standard approach, used many times before in semi-supervised
learning and also known as knowledge distillation [129, 293, 345, 541, 603]. But
by adding noise to the student model, Xie et al. managed to improve the state-of-
the-art results on ImageNet, the most standard and beaten-down large-scale image
classification dataset. For this, however, they needed a separate dataset with 300
million unlabeled images and a lot of computational power: 3.5 days on a 2048-core
Google TPU, on the same scale as AlphaZero needed to outperform every other

8 1 Introduction: The Data Problem

engine in Go and chess [800]; we will shortly see that this kind of computation does
not come for free.

Another interesting example of replacing labeled data with (lots of) unlabeled
data comes from the problem we already discussed: segmentation. It is indeed very
hard to produce labeled data for training segmentation models... but do we have
to? Segmentation models from classical computer vision, before the advent of deep
learning, do not require any labeled data: they cluster pixels according to their features
(color and perhaps features of neighboring pixels) or run an algorithm to cut the graph
of pixels into segments with minimal possible cost [657, 839]. Modern deep learning
models work better, of course, but it looks like recent advances make it possible to
train deep learning models to do segmentation without labeled data as well.

Approaches such as W-Net [948] use unsupervised autoencoder-style training
to extract features from pixels and then segment them with a classical algorithm.
Approaches such as invariant information clustering [399] develop image clustering
approaches and then apply them to each pixel in a convolution-based way, thus
transforming image clustering into segmentation. One of the most intriguing lines
of work that results in unsupervised clustering uses GANs for image manipulation.
The “cut-and-paste” approach [716] works in an adversarial way:

• one network, themask generator, constructs a segmentationmask from the features
of pixels in a detected object;

• then the object is cut out according to this mask and transferred to a different,
object-free location on the image;

• another network, the discriminator, now has to distinguish whether an image patch
has been produced by this cut-and-paste pipeline or is just a patch of a real image.

The idea is that good segmentation masks will make realistic pasted images, and in
order to convince the discriminator, the mask generator will have to learn to produce
high-quality segmentation masks.Wewill discuss this approach and its ramifications
for synthetic data in Section 9.3.

Semi-supervised teacher–student training and unsupervised segmentation via cut-
and-paste are just two directions out of many that are currently being developed. In
these works, researchers are exploring various ways to trade the need for labeled
datasets for extra unlabeled data, extra unrelated data, or extra computation, all of
which are becoming more and more readily available. Still, this does not completely
solve the data problem, and the computational challenges might prove to be insur-
mountable.

1.4 Machine Learning Without Data: Leaving Moore’s
Law in the Dust

Interestingly, some kinds of machine learning do not require any external data at
all, let alone labeled data. Usually, the idea is that they are able to generate data for
themselves, and the catch is that they need a lot of generation power.

1.4 Machine Learning Without Data: Leaving Moore’s Law in the Dust 9

Fig. 1.5 General reinforcement learning flowchart.

Themain fieldwhere this becomes possible is reinforcement learning (RL), where
an agent learns to perform well in an interactive environment [788, 831]. An agent
can perform actions and receive rewards for these actions from the environment.
Usually, modern RL architectures consist of the feature extraction part that processes
environment states into features and an RL agent that transforms features into actions
and converts rewards from the environment into weight updates; see an illustration
in Figure 1.5.

The poster child of these approaches is AlphaZero by DeepMind [800]. Their
original breakthrough was AlphaGo [799], a model that beat Lee Sedol, one of the
top human Go players, in an official match inMarch 2016. Long afterDeepBlue beat
Kasparov in chess, professional-level Go was remaining out of reach for computer
programs, and AlphaGo’s success was unexpected even in 2016. The match between
Lee Sedol and AlphaGo became one of the most publicized events in AI history and
was widely considered as the “Sputnik moment” for Asia in AI, the moment when
China, Japan, and South Korea realized that deep learning is to be taken seriously.
But AlphaGo utilized a lot of labeled data: it had a pretraining step that used a large
database of professional games.

AlphaZero takes its name from the fact that it needs zero training data: it begins
by knowing only the rules of the game and achieves top results through self-play,
actually with a very simple loss function combined with tree search. AlphaZero beat
AlphaGo (and its later version,AlphaGo Zero) inGo and one of the top chess engines,
Stockfish, in chess.

A recent result by the DeepMind reinforcement learning team, MuZero [770], is
even more impressive. MuZero is an approach based on model-based RL, that is, it
builds a model of the environment as it goes and does not know the rules of the game
beforehand but has to learn them from scratch; e.g., in chess, it cannot make illegal
moves as actions but can consider them in tree search and has to learn that they
are illegal by itself. With this additional complication, MuZero was able to achieve
AlphaZero’s skill in chess and shogi and even outperform it in Go. Most importantly,
the same model could also be applied to situations with more complex environment

10 1 Introduction: The Data Problem

Fig. 1.6 The changing trend in deep learning: a comparison of “Moore’s law” in machine learning
before and after the rise of deep learning. Chart by OpenAI [16].

states, e.g., to computer games in Atari environments (a standard benchmark in
reinforcement learning).

So what’s the catch? Is this the end of the data problem? One drawback is that
not every problem can be formulated in terms of RL with no data required. You can
learn to play games, i.e., self-contained finite structures where all rules are known
in advance. But how do we learn, say, autonomous driving or walking, with a much
wider variety of possible situations and individual components of these situations?
One possible solution here is to use synthetic virtual environments, and we will
discuss them in detail in Chapter 7.

Another, perhaps evenmore serious, problem is the amount of computation needed
for further advances in reinforcement learning. To learn to play chess andGo,MuZero
used 1000 third-generation Google TPUs to simulate self-play games. This does not
tell us much by itself, but here is an interesting observation made by the OpenAI
team [16], illustrated in Fig. 1.6. They noticed that before 2012, computational
resources needed to train state-of-the-art AI models grew basically according to
Moore’s Law, doubling their computational requirements every two years. But with
the advent of deep learning, in 2012–2019, computational resources for top AImodel
training doubled on average every 3.4 months! This is a huge rate of increase, and,
obviously, it cannot continue forever, as the actual hardware computational power
growth is only slowing down compared to Moore’s Law. Replication of AlphaZero
experiments has been recently estimated to cost about $35 million at current Google

1.4 Machine Learning Without Data: Leaving Moore’s Law in the Dust 11

Cloud rates [365]; while the cost of computation is dropping, it does so at a much
slower rate than the increase of computation needed for AI.

Thus, one possible scenario for further AI development is that yes, indeed, this
“brute force” approach might theoretically take us very far, maybe even to general
artificial intelligence, but it would require more computational power than we actu-
ally have in our puny Solar System. Note that a similar phenomenon, albeit on a
smaller scale, happened with the second wave of hype for artificial neural networks:
researchers in the late 1980s had a lot of great ideas about neural architectures (includ-
ing CNNs, RNNs, RL, and much more), but neither the data nor the computational
power was sufficient to make a breakthrough, and neural networks were relegated to
“the second best way of doing just about anything”3.

Still, at present, reinforcement learning represents another feasible way to trade
labeled data for computation, as the example of AlphaGo blossoming into AlphaZero
and MuZero clearly shows. With this, we finish a brief overview of alternatives and
come to the main subject of this book: synthetic data.

1.5 Why Synthetic Data?

Let us go back to segmentation, a standard computer vision problem that we already
discussed in Section 1.1. How does one produce a labeled dataset for image seg-
mentation? At some point, all images have to be manually processed: humans have
to either draw or at least verify and correct segmentation masks. Making the result
pixel-perfect is so laborious that it is commonly considered to be not worth the effort.
Figure 1.7a–c shows samples from the industry standardMicrosoft Common Objects
in Context (MSCOCO) dataset [525]; you can immediately see that the segmentation
mask is a rather rough polygon and misses many finer features. It did not take us
long to find such rough segmentation maps, by the way; these are some of the first
images found by the “dog” and “person” queries.

How can one get a higher quality segmentation dataset? To manually correct all
of these masks in the MS COCO dataset would probably cost hundreds of thousand
dollars. Fortunately, there is a different solution: synthetic data. In the context of
segmentation, this means that the dataset developers create a 3D environment with
modes of the objects they want to recognize and their surroundings and then ren-
der the result. Figure 1.7d–e shows a sample frame from a synthetic dataset called
ProcSy [449] (we discuss it in more detail in Section 6.5): note how the segmentation
map is now perfectly correct. While 3D modeling is still mostly manual labor, this is
a one-time investment, and after this investment, one can get a potentially unlimited
number of pixel-perfect labeled data: not only RGB images and segmentation maps
but also depth images, stereo pairs produced from different viewpoints, point clouds,
synthetic video clips, and other modalities.

3A quote usually attributed to John Denker; see, e.g., [339].

12 1 Introduction: The Data Problem

In general, many problems of modern AI come down to insufficient data: either
the available datasets are too small or, also very often, even while capturing unla-
beled data is relatively easy, the costs of manual labeling are prohibitively high.
Synthetic data is an important approach to solving the data problem by either pro-
ducing artificial data from scratch or using advanced data manipulation techniques
to produce novel and diverse training examples. The synthetic data approach is most
easily exemplified by standard computer vision problems, as we have done above,
but it is also relevant in other domains (we will discuss some of them in Chapter 8).

Naturally, other problems arise; the most important of them being the problem
of domain transfer: synthetic images, as you can see from Figure 1.7, do not look
exactly like real images, and one has tomake them as photorealistic as possible and/or
devise techniques that help models transfer from synthetic training sets to real test
sets; thus, domain adaptation becomes a major topic in synthetic data research and in
this book as well (see Chapter 10). Note, however, that a common theme in synthetic
data research iswhether realism is actually necessary; wewill encounter this question
several times in this book.

We begin with a few general remarks regarding synthetic data. First, note that
synthetic data can be produced and supplied to machine learning models on the fly,
during training, with software synthetic data generators, thus alleviating the need to
ever store huge datasets; see, e.g., Mason et al. [583] who discuss this “on the fly”
generation in detail. Second, while synthetic data has been a rising field for some
time, I do not know of a satisfactory general overview of synthetic data in machine
learning or deep learning, and this was my primary motivation for writing this book.
I would like to note surveys that attempt to cover applications of synthetic data [157,
467, 875] and a special issue of the International Journal of Computer Vision [253],
but I hope that the present work paints a more comprehensive picture.

Third, we distinguish between synthetic data and data augmentation; the latter
is a set of techniques intended to modify real data rather than create new synthetic
data. These days, data augmentation is a crucial part of virtually every computer
vision pipeline; we refer to the surveys [792, 914] and especially recommend the
Albumentations library [104] that has proven invaluable in our practice, but in this
survey, we concentrate on synthetic data rather than augmentations (the latter will
only be the subject of Section 3.4). Admittedly, the line between them is blurry, and
some techniques discussed here could instead be classified as “smart augmentation”.

Fourth, we note a natural application of synthetic data inmachine learning: testing
hypotheses and comparing methods and algorithms in a controlled synthetic setting.
Toy examples and illustrative examples are usually synthetic, with a known data
distribution so that machine learning models can be evaluated on how well they
learn this distribution. This approach is widely used throughout the field, sometimes
for entire meta-analyses [80, 491, 797], and we do not dwell on it here; our subject
is synthetic data used to transfer to real data rather than direct comparisons between
models on synthetic datasets.

1.6 The Plan 13

Fig. 1.7 Sample images: (a–c) MS COCO [525] real data samples with ground truth segmentation
maps overlaid; (d–e) ProcSy [449]: (d) RGB image; (e) ground truth segmentation map.

1.6 The Plan

This book covers three main directions for the use of synthetic data in machine
learning; in this section, we introduce all three, giving references to specific parts of
the book related to these directions.

1. Using synthetically generated datasets to train machine learning models directly.
This is an approach often taken in computer vision, and most of this book is
devoted to variations of this approach. In particular, one can:

• train models on synthetic data with the intention to use them on real data; we
discuss this approach through most of Chapters 6, 7, and 8;

• train (usually generative) models that change (refine) synthetic data in order to
make it more suitable for training or adapt the model to allow it to be trained
on synthetic data; Chapter 10 is devoted to this kind of models.

2. Using synthetic data to augment existing real datasets so that the resulting hybrid
datasets are better suited for training the models. In this case, synthetic data is
usually employed to cover parts of the data distribution that are not sufficiently
represented in the real dataset, with the main purpose being to alleviate dataset
bias. The synthetic data can either:

• be generated separately with, e.g., CGI-basedmethods for computer vision (see
examples in Chapters 3 and 7)

14 1 Introduction: The Data Problem

• or be generated from existing real data with the help of generative models (see
Section 10.4).

3. Using synthetic data to resolve privacy or legal issues that make the use of real
data impossible or prohibitively hard. This becomes especially relevant for certain
specific fields of application, among which we discuss:

• synthetic data in healthcare, which is not restricted to imaging but also extends
to medical records and the like (Section 10.7);

• synthetic data in finance and social sciences, where direct applications are hard
but privacy-related ones do begin to appear (Section 11.5);

• synthetic data with privacy guarantees: many applications are sensitive enough
to require a guarantee of privacy, for example, from the standpoint of the dif-
ferential privacy framework, and there has been an important line of work that
makes synthetic data generation provide such guarantees, which we consider
in Chapter 11.

The book is organized as follows. Chapter 2 gives a very brief introduction to deep
learning; while one cannot hope to deliver an actual in-depth introductory text in the
space of a single chapter, we will nevertheless start with the basics of how the deep
learning revolution has transformed machine learning in the late 2000s (Section 2.1),
how a neural network is organized (Section 2.3), and how it is trained via various
modifications of gradient descent (Sections 2.4 and 2.5).

Next, since computer vision is by far the most common domain for applying
synthetic data, we will devote Chapter 3 to deep architectures that are designed
for computer vision problems and that will be used throughout other chapters of the
book. Section 3.1 introduces the notion of convolutional neural networks, Section 3.2
shows several basic ideas that underlie modern convolutional architectures for image
classification, object detection, and segmentation, and Section 3.3 provides a case
study of neural architectures for object detection; we cannot hope to cover everything
but at least try to take a deep dive into a single topic to illustrate the depth and
variability of deep learning approaches in computer vision.

The final, most advanced introductory chapter deals with generative models in
deep learning; they are the topic ofChapter 4.Webegin bydiscussing generativemod-
els in machine learning in general (Section 4.1), introducing the difference between
discriminative and generative models. Next, we discuss Ian Goodfellow’s taxonomy
of generative models in deep learning and give an overview of tractable density mod-
els, including an introduction to normalizing flows (Section 4.2). In Section 4.3, we
talk about variational autoencoders as the primary example of approximate explicit
density models. Section 4.4 introduces the class of generative models most directly
relevant to synthetic data: generative adversarial networks (GAN). Section 4.5 dis-
cusses loss functions in modern GANs, Section 4.6 gives a brief overview of some
important general GAN-based architectures, and Section 4.7 finishes the chapter
with a case study of GAN-based style transfer, a problem which both serves as
a good illustration for modern adversarial architectures and is directly relevant to
synthetic-to-real domain adaptation.

1.6 The Plan 15

Chapter 5 is devoted to the early history of synthetic data. It may seem that
synthetic data has only been on the rise for the last few years, but we will see that
the use of synthetic data dates back to the 1970s, when computer vision took its first
steps (Section 5.1), was used as a testbed for experimental comparisons throughout
the history of computer vision (Section 5.2), and was used to train one of the first
self-driving cars in 1989 (Section 5.3). The final sections of this chapter are devoted
to early robotics: we first discuss how synthetic data was used to train robot control
systems from their very inception and how it was faced with some reservations and
criticism (Section 5.4) and then make a more detailed example of an early robotic
navigation system called MOBOT (Section 5.5).

Chapter 6 presents synthetic datasets and results for basic computer vision prob-
lems, including low-level problems such as optical flow or stereo disparity estimation
(Section 6.2), datasets of basic objects (Section 6.3), basic high-level computer vision
problems, including a case study on object detection (Section 6.4) and a discussion of
other high-level problems (Section 6.5), human-related synthetic data (Section 6.6),
and character and text recognition and visual reasoning problems (Section 6.7).
Throughout Chapter 6, we refer to specific architectures whose results have been
improved by training on synthetic data and show examples of images from synthetic
datasets.

In Chapter 7, we proceed to synthetic datasets that are more akin to full-scale
simulated environments, covering outdoor and urban environments (Section 7.2),
indoor scenes (Section 7.3), synthetic simulators for robotics (Section 7.4), simu-
lators for autonomous flying vehicles (Section 7.5), and computer games used as
simulation environments (Section 7.6). Synthetic simulated environments are an
absolute necessity for, e.g., end-to-end reinforcement learning architectures, and we
will see examples of situations where they suffice to train a successful RL agent as
well as situations where additional work on domain transfer is required.

While synthetic data has been most instrumental in computer vision, there are
other domains of application for synthetic data as well, and Chapter 8 is devoted
to exactly such domains. In particular, neural programming (Section 8.2) is a field
completely reliant on automatically generated training samples: it does not make
any sense to force humans to write millions of trivial computer programs. In bioin-
formatics (Section 8.3), most applications of synthetic data again lie in the domain
of medical imaging, but there are fields where one learns to generate other kinds of
information, for instance, fingerprints of molecules, and trains subsequent models on
this synthetically generated data. Finally, natural language processing (Section 8.4)
is not a field where synthetic data has really taken off despite obvious successes in
text generation [94, 697, 698]. A computer program that can generate coherent text
with predefined properties must be an AI model that captures a lot of useful features
about the language, and it is usually more productive to use the model itself than
try to learn a different model on its outputs; however, there are some examples of
synthetic data in NLP as well.

Chapter 9 discusses research intended to improve synthetic data generation. The
notion of domain randomization (Section 9.1) means trying to cover as much of
the data distribution with synthetic samples as possible, making them maximally

16 1 Introduction: The Data Problem

different and randomized, with the hope to capture the real data in the support of
the synthetic data distribution as well. Section 9.2 discusses current developments
in methods for CGI-based generation, including more realistic simulations of real-
world sensors (cameras, LiDAR systems, etc.) and more complex ways to define and
generate synthetic scenes. Synthetic data produced by “cutting and pasting” parts of
real data samples is discussed in Section 9.3, andwe end the chapter with a discussion
of the direct generation of synthetic data by generative models (Section 9.4). It is rare
to see such examples because, similar to natural language processing, a generative
model trained to produce high-quality samples from a given domain probably already
contains a model that can be used directly or fine-tuned for various applications; still,
there are situations where GANs can help directly.

The next part of the book deals with the main research problem of synthetic data,
namely synthetic-to-real domain adaptation: how can we make a model trained on
synthetic data perform well on real samples? After all, the ultimate goal of the entire
enterprise is always to apply the model to real data. With this, we get to Chapter 10
that discusses synthetic-to-real domain adaptation itself. There are many approaches
to this problem that can be broadly classified into two categories:

• synthetic-to-real refinement, where domain adaptation models are used to make
synthetic data more realistic (Section 10.1);

• domain adaptation at the feature/model level, where the model and/or the training
process are adapted rather than the data itself (Section 10.5).

The difference is that with refinement, one usually can extract refined input data:
either synthetic samplesmade “more realistic” or real samplesmade “more synthetic-
like”; with domain adaptation at the model level, the architectures usually just learn
to extract common features from both domains. In this chapter, we also discuss case
studies of domain adaptation for control and robotics (Section 10.6) and medical
imaging (Section 10.7).

Chapter 11 is devoted to the privacy side of synthetic data: can we generate syn-
thetic data which is guaranteed not to contain personal information about individual
entries from the original dataset? To get such guarantees, we need to venture into
differential privacy, a field that belongs more to the domain of theoretical cryptogra-
phy than machine learning. Sections 11.2 and 11.3 introduce differential privacy in
general and specifically for deep learning models, Section 11.4 shows how to gen-
erate synthetic data with differential privacy guarantees, and Section 11.5 presents
a case study about private synthetic data in finance and related fields, in particular,
electronic medical records.

In an attempt to look forward, we devote Chapter 12 to directions for further work
related to synthetic data that seemmost promising.We consider four such directions:

• Section 12.1 considers procedural generation of synthetic data, where the data
is made more realistic not by low-level refinement but by improving the high-
level generation process: for instance, instead of refining the textures of wood
and fabric on chairs, we are talking about a more consistent layout of the entire
synthetic room’s interior;

1.6 The Plan 17

• in Section 12.2, we introduce the notion of closing the feedback loop for syn-
thetic data generation: since the end goal is to improve the performance of models
trained on synthetic datasets, maybe we can change the parameters of synthetic
data generation in such a way as to directly increase this metric;

• Section 12.3 talks about introducing domain knowledge into domain adaptation;
specifically, we consider an example where the model contains both a domain-
specific generative model designed to produce synthetic images and a bottom-up
model that estimates the necessary parameters in an image;

• Section 12.4 shows how domain adaptation models can be improved with addi-
tional modalities that are easy to obtain in synthetic datasets; for instance, in
computer vision, it is trivial to augment synthetic data with 3D information such
as depth maps of surface normals since synthetic data is produced from 3D scenes,
somaybe this additional information can help a refiner tomake this data evenmore
realistic.

Finally, Section 12.5 concludes the book by drawing some general conclusions about
the place of synthetic data in modern AI and possible future work in this direction.

By now, we have seen how the deep learning revolution makes demands on com-
putational power and data that are increasingly hard to satisfy. There are some ways
to get around the need for ever growing labeled datasets, but they usually seem to
require even more computational resources, which are by now also not so easy to
obtain. We have seen that synthetic data is one possible way out of this conundrum.
But for the uninitiated, it is still unclear what this “deep learning” is all about, and
this is exactly what awaits us in the next chapter.

	1 Introduction: The Data Problem
	1.1 Are Machine Learning Models Hitting a Wall?
	1.2 One-Shot Learning and Beyond: Less Data for More Classes
	1.3 Weakly Supervised Training: Trading Labels for Computation
	1.4 Machine Learning Without Data: Leaving Moore's Law in the Dust
	1.5 Why Synthetic Data?
	1.6 The Plan

