
Springer Optimization and Its Applications 174

Sergey I. Nikolenko

Synthetic
Data for
Deep Learning

Springer Optimization and Its Applications

Volume 174

Series Editors

Panos M. Pardalos , University of Florida

My T. Thai , University of Florida

Honorary Editor

Ding-Zhu Du, University of Texas at Dallas

Advisory Editors

Roman V. Belavkin, Middlesex University

John R. Birge, University of Chicago

Sergiy Butenko, Texas A&M University

Vipin Kumar, University of Minnesota

Anna Nagurney, University of Massachusetts Amherst

Jun Pei, Hefei University of Technology

Oleg Prokopyev, University of Pittsburgh

Steffen Rebennack, Karlsruhe Institute of Technology

Mauricio Resende, Amazon

Tamás Terlaky, Lehigh University

Van Vu, Yale University

Michael N. Vrahatis, University of Patras

Guoliang Xue, Arizona State University

Yinyu Ye, Stanford University

https://orcid.org/0000-0003-2824-101X
https://orcid.org/0000-0003-0503-2012

Aims and Scope

Optimization has continued to expand in all directions at an astonishing rate. New
algorithmic and theoretical techniques are continually developing and the diffusion
into other disciplines is proceeding at a rapid pace, with a spot light on machine
learning, artificial intelligence, and quantum computing. Our knowledge of all
aspects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in areas not
limited to applied mathematics, engineering, medicine, economics, computer
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to publish
state-of-the-art expository works (monographs, contributed volumes, textbooks,
handbooks) that focus on theory, methods, and applications of optimization. Topics
covered include, but are not limited to, nonlinear optimization, combinatorial
optimization, continuous optimization, stochastic optimization, Bayesian optimiza-
tion, optimal control, discrete optimization, multi-objective optimization, and more.
New to the series portfolio include Works at the intersection of optimization and
machine learning, artificial intelligence, and quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical
Reviews, and SCOPUS.

More information about this series at http://www.springer.com/series/7393

http://www.springer.com/series/7393

Sergey I. Nikolenko

Synthetic Data for Deep
Learning

123

Sergey I. Nikolenko
Synthesis AI
San Francisco, CA, USA

Steklov Institute of Mathematics
St. Petersburg, Russia

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-030-75177-7 ISBN 978-3-030-75178-4 (eBook)
https://doi.org/10.1007/978-3-030-75178-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-75178-4

Preface

Dear reader,

You are holding in your hands… oh, come on, who holds books like this in their
hands anymore? Anyway, you are reading this, and it means that I have managed to
release one of the first books specifically devoted to the subject of synthetic data,
that is, data produced artificially with the purpose of training machine learning
models. In this preface, let me briefly explain why this subject might deserve your
attention.

As we will see in the introductory chapter, machine learning, and especially deep
learning, is developing at a breakneck pace these days. Alas, as most exponential
growths go, in the real world, there are several constraints that will almost inevi-
tably turn this exponential curve into a sigmoid. One of them is computational: deep
learning is currently outpacing Moore’s law by far, and this cannot continue
indefinitely.

In this book, we primarily deal with another constraint: the amount of available
data, especially labeled data for supervised learning problems. In many applica-
tions, especially computer vision (which is a very big part of this book), manual
labeling is excruciatingly hard: imagine labeling for instance segmentation, and
don’t even try to imagine manual labeling for depth or optical flow estimation.

Synthetic data is a way to prolong the march of progress in these fields: if you
have a three-dimensional virtual scene complete with objects of interest, and images
for the dataset are produced by rendering, it means that you automatically know
which object every pixel belongs to, what are the 3D relations between them, and so
on, and so forth. Producing new data becomes very cheap, and labeling becomes
free, which is the main attraction of synthetic data. In the book, we will give a broad
overview of synthetic data currently used for various machine learning endeavours
(mostly, but not exclusively, computer vision problems) and directions in which
synthetic data can be further improved in the future.

Naturally, this approach comes with its own problems. Most such problems can
be united under the term of domain transfer: if we produce synthetic data for
machine learning models, we plan to train the models on the synthetic domain, but

v

the final goal is almost always to apply them on real data, i.e., on a completely
different domain. A large part of the book will be devoted to ways to cope with the
domain transfer problem, including domain randomization, synthetic-to-real
refinement, model-based domain adaptation, and others.

We will also discuss another important motivation for synthetic data: privacy
concerns. In many sensitive applications, datasets theoretically exist but cannot be
released to the general public. Synthetic data can help here as well, and we will
consider ways to create anonymized datasets with differential privacy guarantees.

But in order to have a meaningful discussion of synthetic data for deep learning
and synthetic-to-real domain adaptation, we need a firm grasp of the main concepts
of modern machine learning. That includes deep neural networks, especially con-
volutional networks and their most important architectures for computer vision
problems, generative models, especially generative adversarial networks and their
loss functions and architectures, and much more. Therefore, the book contains
several introductory chapters that present deep neural networks and the corre-
sponding optimization problems and algorithms, neural architectures for computer
vision, and deep generative models. I do not claim that this book is a suitable
introductory textbook on deep learning in general (this would require a far longer
text), but I hope that a somewhat prepared reader will be able to find something of
interest in these introductory chapters and use them as reference material for the rest
of the book.

Finally, a word of gratitude. This book could not appear without the help of
Synthesis AI, where I currently serve as Head of AI, and especially the CEO of
Synthesis AI, Yashar Behzadi. Yashar, many thanks for your support and patience! I
also personally thank Alex Davydow and Rauf Kurbanov who read the manuscript
and made insightful suggestions for improvement.

St. Petersburg, Russia Sergey I. Nikolenko
February 2021

vi Preface

Contents

1 Introduction: The Data Problem . 1
1.1 Are Machine Learning Models Hitting a Wall? 1
1.2 One-Shot Learning and Beyond: Less Data for More

Classes . 4
1.3 Weakly Supervised Training: Trading Labels

for Computation . 7
1.4 Machine Learning Without Data: Leaving Moore’s Law

in the Dust . 8
1.5 Why Synthetic Data? . 11
1.6 The Plan . 13

2 Deep Learning and Optimization . 19
2.1 The Deep Learning Revolution . 19
2.2 A (Very) Brief Introduction to Machine Learning 22
2.3 Introduction to Deep Learning . 30
2.4 First-Order Optimization in Deep Learning 40
2.5 Adaptive Gradient Descent Algorithms 47
2.6 Conclusion . 57

3 Deep Neural Networks for Computer Vision 59
3.1 Computer Vision and Convolutional Neural Networks 59
3.2 Modern Convolutional Architectures . 66
3.3 Case Study: Neural Architectures for Object Detection 76
3.4 Data Augmentations: The First Step to Synthetic Data 88
3.5 Conclusion . 95

4 Generative Models in Deep Learning . 97
4.1 Introduction to Generative Models . 97
4.2 Taxonomy of Generative Models in Deep Learning

and Tractable Density Models: FVBNs and Normalizing
Flows . 102

vii

4.3 Approximate Explicit Density Models: VAE 108
4.4 Generative Adversarial Networks . 113
4.5 Loss Functions in GANs . 117
4.6 GAN-Based Architectures . 121
4.7 Case Study: GAN-Based Style Transfer 125
4.8 Conclusion . 136

5 The Early Days of Synthetic Data . 139
5.1 Line Drawings: The First Steps of Computer Vision 139
5.2 Synthetic Data as a Testbed for Quantitative Comparisons 142
5.3 ALVINN: A Self-Driving Neural Network in 1989 145
5.4 Early Simulation Environments: Robots and the Critique

of Simulation . 149
5.5 Case Study: MOBOT and The Problems of Simulation 154
5.6 Conclusion . 159

6 Synthetic Data for Basic Computer Vision Problems 161
6.1 Introduction . 161
6.2 Low-Level Computer Vision . 163
6.3 Datasets of Basic Objects . 166
6.4 Case Study: Object Detection With Synthetic Data 171
6.5 Other High-Level Computer Vision Problems 181
6.6 Synthetic People . 184
6.7 Other Vision-Related Tasks: OCR and Visual Reasoning 190
6.8 Conclusion . 194

7 Synthetic Simulated Environments . 195
7.1 Introduction . 195
7.2 Urban and Outdoor Environments: Learning to Drive 197
7.3 Datasets and Simulators of Indoor Scenes 205
7.4 Robotic Simulators . 208
7.5 Vision-Based Applications in Unmanned Aerial Vehicles 211
7.6 Computer Games as Virtual Environments 214
7.7 Conclusion . 215

8 Synthetic Data Outside Computer Vision . 217
8.1 Synthetic System Logs for Fraud and Intrusion Detection 217
8.2 Synthetic Data for Neural Programming 220
8.3 Synthetic Data in Bioinformatics . 222
8.4 Synthetic Data in Natural Language Processing 224
8.5 Conclusion . 226

9 Directions in Synthetic Data Development 227
9.1 Domain Randomization . 227
9.2 Improving CGI-Based Generation . 229

viii Contents

9.3 Compositing Real Data to Produce Synthetic Datasets 230
9.4 Synthetic Data Produced by Generative Models 233

10 Synthetic-to-Real Domain Adaptation and Refinement 235
10.1 Synthetic-to-Real Domain Adaptation and Refinement 235
10.2 Case Study: GAN-Based Refinement for Gaze Estimation 236
10.3 Refining Synthetic Data with GANs . 240
10.4 Making Synthetic Data from Real with GANs 245
10.5 Domain Adaptation at the Feature/Model Level 252
10.6 Domain Adaptation for Control and Robotics 257
10.7 Case Study: GAN-Based Domain Adaptation for Medical

Imaging . 261
10.8 Conclusion . 267

11 Privacy Guarantees in Synthetic Data . 269
11.1 Why is Privacy Important? . 269
11.2 Introduction to Differential Privacy . 272
11.3 Differential Privacy in Deep Learning 274
11.4 Differential Privacy Guarantees for Synthetic Data

Generation . 277
11.5 Case Study: Synthetic Data in Economics, Healthcare,

and Social Sciences . 280
11.6 Conclusion . 283

12 Promising Directions for Future Work . 285
12.1 Procedural Generation of Synthetic Data 285
12.2 From Domain Randomization to the Generation Feedback

Loop . 287
12.3 Improving Domain Adaptation with Domain Knowledge 290
12.4 Additional Modalities for Domain Adaptation Architectures . . . 291
12.5 Conclusion . 293

References . 295

Contents ix

Acronyms

All acronyms are listed below and the corresponding definitions are also introduced
and explained in the text of the book; this list is provided purely for reference
purposes.

AAE Adversarial autoencoder
AdaIN Adaptive instance normalization
AI Artificial intelligence
ALV Autonomous land vehicle
ANN Artificial neural network
BEGAN Boundary equilibrium generative adversarial network
BERT Bidirectional encoder representations from Transformers
BN Batch normalization
CGI Computer-generated imagery
CNN Convolutional neural network
COCO Common objects in context
CPU Central processing unit
CV Computer vision
DA Domain adaptation
DBN Deep belief network
DCGAN Deep convolutional generative adversarial network
DL Deep learning
DP Differential privacy
DQN Deep Q-network
EBGAN Energy-based generative adversarial network
EM Expectation–maximization
FCN Fully convolutional network
FPN Feature pyramid network
FUNIT Few-shot unsupervised image-to-image translation
FVBN Fully visible belief network
GAN Generative adversarial network

xi

GD Gradient descent
GPT Generative pretrained transformer
GPU Graphics processing unit
IAF Inverse autoregressive flow
ILSVRC ImageNet large-scale visual recognition challenge
KL Kullback–Leibler
LSGAN Least squares generative adversarial network
LSTM Long short-term memory
MADE Masked autoencoder for distribution estimation
MAF Masked autoregressive flow
MUNIT Multimodal unsupervised image-to-image translation
NAG Nesterov accelerated gradient
NAS Neural architecture search
NIPS Neural information processing systems
NLP Natural language processing
OCR Optical character recognition
PATE Private aggregation of teacher ensembles
PCA Principal component analysis
QA Question answering
ReLU Rectified linear unit
RL Reinforcement learning
RNN Recurrent neural network
ROS Robot operating system
RPN Region proposal network
SGD Stochastic gradient descent
SLAM Simultaneous localization and mapping
SSD Single-shot detector
SVM Support vector machine
UAV Unmanned aerial vehicle
VAE Variational autoencoder
VGG Visual geometry group
VQA Visual question answering
WGAN Wasserstein generative adversarial network
YOLO You only look once

xii Acronyms

Chapter 1
Introduction: The Data Problem

Machine learning has been growing in scale, breadth of applications, and the amounts
of required data. This presents an important problem, as the requirements of state-
of-the-art machine learning models, especially data-hungry deep neural networks,
are pushing the boundaries of what is economically feasible and physically possible.
In this introductory chapter, we show and illustrate this phenomenon, discuss sev-
eral approaches to solving the data problem, introduce the main topic of this book,
synthetic data, and outline a plan for the rest of the book.

1.1 Are Machine Learning Models Hitting a Wall?

Machine learning is hot, and it has been for quite some time. The field is growing
exponentially fast, with new models and new papers appearing every week, if not
every day. Since the deep learning revolution, for about a decade, deep learning has
been far outpacing other fields of computer science and arguably even science in
general. Analysis of the submissions from arXiv1, the most popular preprint reposi-
tory in mathematics, physics, computer science, and several other fields, shows how
deep learning is taking up more and more of the papers. For example, the essay [117]
cites statistics that show how:

• the percentage of papers that use deep learning has grown steadily over the last
decade within most computer science categories on arXiv;

• and moreover, categories that feature high deep learning adoption are growing in
popularity compared to other categories.

1https://arxiv.org/.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_1&domain=pdf
https://arxiv.org/
https://doi.org/10.1007/978-3-030-75178-4_1

2 1 Introduction: The Data Problem

Fig. 1.1 The structure of a machine learning project.

The essay [117] was published in 2018, but the trend continues to this day: the
number of papers on deep learning is growing exponentially, each individual subfield
of deep learning is getting more and more attention, and all of this does not show
any signs of stopping. We are living on the third hype wave of artificial intelligence,
and nobody knows when and even if it is going to crash like the first two (we will
briefly discuss them in Section 2.1).

Still, despite all of these advances, the basic pipeline of using machine learning
for a given problem remains mostly the same, as shown in Figure 1.1:

• first, one has to collect raw data related to the specific problem and domain at
hand;

• second, the data has to be labeled according to the problem setting;
• third, machine learning models train on the resulting labeled datasets (and often
also validate their performance on subsets of the datasets set aside for testing);

• fourth, after one has trained the model, it needs to be deployed for inference
in the real world; this part often involves deploying the models in low-resource
environments or trying to minimize latency.

The vast majority of the thousands of papers published in machine learning deal
with the “Training” phase: how can we change the network architecture to squeeze
out better results on standard problems or solve completely new ones? Some deal
with the “Deployment” phase, aiming to fit the model and run inference on smaller
edge devices or monitor model performance in the wild.

Still, any machine learning practitioner will tell you that it is exactly the “Data”
and (for some problems especially) “Annotation” phases that take upwards of 80%
of any real data science project where standard open datasets are not enough. Will
these 80% turn into 99% and become a real bottleneck? Or have they already done
so? Let us find out.

For computer vision problems, the labeling required is often very labor-intensive.
Suppose that you want to teach a model to count the cows grazing in a field, a
natural and potentially lucrative idea for applying deep learning in agriculture. The
basic computer vision problem here is either object detection, i.e., drawing bounding
boxes around cows, or instance segmentation, i.e., distinguishing the silhouettes of
cows. To train the model, you need a lot of photos with labeling like the one shown
in Fig. 1.2 (segmentation on Fig. 1.2a; object detection on Fig. 1.2b).

1.1 Are Machine Learning Models Hitting a Wall? 3

)b()a(

Fig. 1.2 Sample labeling for standard computer vision problems: (a) instance segmentation;
(b) object detection.

Imagine how much work it is to label a photo like this by hand. Naturally, people
have developed tools to help partially automate the process. For example, a state-of-
the-art labeling tool (see, e.g., [829]) will suggest a segmentation candidate produced
by some general-purpose model, and the human annotator is only supposed to fix
the mistakes of this model by clicking on individual pixels that are segmented incor-
rectly. But it might still take minutes per photo, and the training set for a standard
segmentation or object detection model should have thousands or even tens of thou-
sands of such photos. This adds up to human-years and hundreds of thousands, if not
millions, of dollars spent on labeling only.

There exist large open datasets for many different problems, segmentation and
object detection included. But as soon as you need something beyond the classes,
settings, and conditions that are already well covered in these datasets, you are out of
luck; for instance, ImageNet does have cows, but not shot from above with a drone.

And even if the dataset appears to be tailor-made for the problem at hand, it
may contain dangerous biases. For example, suppose that the basic problem is face
recognition, a classic computer vision problem with large-scale datasets freely avail-
able [37, 38, 366, 542]; there also exist synthetic datasets of people, and we will
discuss them in Section 6.6. But if youwant to recognize faces “in thewild”, you need
a dataset that covers all sorts of rotations for the faces, while standard datasets mostly
consist of frontal photos. For example, the work [1017] shows that the distribution of
face rotations in IJB-A [460], a standard open large-scale face recognition dataset, is
extremely unbalanced; the work discusses how to fill in the gaps in this distribution
by producing synthetic images of faces from the IJB-A dataset (see Section 10.3,
where we discuss this work in detail).

4 1 Introduction: The Data Problem

Fig. 1.3 General architecture of a simple classification network.

To sum up: current systems are data-intensive, data is expensive, and we are
hitting the ceiling of where we can go with already available or easily collectible
datasets, especially with complex labeling. So what’s next? How can we solve the
data problem? Is machine learning heading towards a brick wall? Hopefully not, but
it will definitely take additional effort. Over the next sections, we discuss what can
be done to alleviate the data problem. We will give a very high-level overview of
several possible approaches currently explored by machine learning researchers and
then make an introduction to the main topic of this book: synthetic data.

1.2 One-Shot Learning and Beyond: Less Data for More
Classes

We have already mentioned face recognition systems and have just discussed that
computer vision systems generally need a lot of labeled training samples to learn how
to recognize objects from a new class. But then how are face recognition systems
supposed to work at all? The vast majority of face recognition use cases break down
if we require hundreds of photos in different contexts taken for every person we need
to recognize. How can a face recognition system hope to recognize a new face when
it usually has at most a couple of shots for every new person?

The answer is that face recognition systems are a bit different from regular image
classifiers. Any machine learning system working with unstructured data (such as
photographs) is basically divided into two parts:

• feature extraction, the part that converts an image into a (much smaller) numerical
vector, usually called an embedding or a latent code, and

• a machine learning model (e.g., a classifier) that uses extracted features to actually
solve the problem.

So a regular image classifier consists of a feature extraction network followed by
a classification model, as shown in Fig. 1.3; this kind of architecture was used by the
first neural networks that brought the deep learning revolution to computer vision
such as AlexNet, GoogLeNet, and others (we will discuss them in Section 3.1). In
deep learning, the classifier is usually very simple, in most cases basically equivalent
to logistic regression, and feature extraction is the interesting part. Actually, most of
the advantages of deep learning come from the fact that neural networks can learn to
be much better at feature extraction than anything handcrafted that we humans had
been able to come up with.

1.2 One-Shot Learning and Beyond: Less Data for More Classes 5

Fig. 1.4 General architecture of a Siamese network.

To train this kind of network, you do indeed need a lot of labeled faces, and to add a
new face, you need quite a few examples of the newclass.However, this is not the only
way.An important direction in the development ofmodern face recognition systems is
related to learning face embeddings (learning feature extraction) in various ways. For
example,FaceNet [771] learns with amodification of the Siamese network approach,
where the target is not a class label but rather the distances or similarities between
face embeddings. The goal is to learn embeddings in such a way that embeddings
of the same face will be close together while embeddings of different faces will be
clearly separated, far from each other.

The general architecture of this approach is shown in Fig. 1.4: feature extractors
produce numerical features that are treated as vectors in a Euclidean space, and the
loss function is designed to, roughly speaking, bring the vectors corresponding to the
same person close to each other and push vectors extracted from images of different
people apart.

After the FaceNet model shown in Fig. 1.4 has been trained with distance-based
metrics in mind, we can use the embeddings to do what is called one-shot learning.
Assuming that the embedding of a new face will have the same basic properties,
we can simply compute the embedding for a new person (with just a single photo
as input!) and then do classification by looking for nearest neighbors in the space
of embeddings. While this approach has met with some problems specifically for
face recognition due to complications in the mining of hard negative examples, and
some state-of-the-art face recognition systems are currently trained as classifiers
with additional tricks and modified loss functions [188, 915, 966], this approach
still remains an important part of the research landscape.

This is a simplified but realistic picture of how one-shot learning systems work.
But one can go even further: what if there is no data available at all for a new class?
This setting is known as zero-shot learning. The problem sounds impossible, and
it really is: if all you know are images from “Class 1” and “Class 2”, and then
you are asked to distinguish between “Class 3” and “Class 4” with no additional
information, no amount of machine learning can help you. But in real life, it does not
work this way: we usually have some background knowledge about the new classes
even if we do not have any images. For example, when we are asked to recognize a

6 1 Introduction: The Data Problem

“Yorkshire terrier”2, we know that it is a kind of dog, and maybe we even have its
verbal description that can be lifted, e.g., fromWikipedia. With this information, we
can try to learn a joint embedding space for both class names and images, and then
use the same nearest neighbors approach but look for the nearest label embedding
rather than other images (which we do not have for a new class).

This kind of cross-modal zero-shot learning was initiated by Socher et al. [810],
who trained a model to recognize objects on images based on knowledge about class
labels learned from unsupervised text corpora. Their model learns a joint latent space
of word embeddings and image feature vectors. Naturally, this approach will not give
the same kind of accuracy as training on a large labeled set of images, but zero-shot
learning systems are increasingly successful. In particular, amore recent paper byZhu
et al. [1029] uses a generative adversarial network (GAN) to “hallucinate” images
of new classes by their textual descriptions and then extracts features from these
hallucinated images; this comes close to the usage of GANs to produce and refine
synthetic data that we explore in Chapter 10; see also recent surveys of zero-shot and
few-shot learning [911, 916, 917, 949].

Note, however, that one- and zero-shot learning still require large labeled datasets.
The difference is that we do not need a lot of images for each new class anymore. But
the feature extraction network has to be trained on similar labeled classes: a zero-shot
approach will not work if you train it on birds and then try to look for a chair based
on its textual description. Until we are able to use super-networks trained on every
kind of images possible (as we will see shortly, we still have quite a way to go before
this becomes possible, if it is even possible at all with our current approaches), this
is still a data-intensive approach, although restrictions on what kind of data to use
are relaxed.

A middle ground is taken by models that try to generalize from several examples,
a field known as few-shot learning [916]. Similar to one-shot learning, generaliz-
ing from few examples in complex problems is a process that has to be guided by
expressive and informative prior distributions—otherwise, the data will simply not
be enough. In many ways, this is how human learning works: we usually need a few
examples to grasp a novel concept, but never thousands of examples, because the
new concept probably fits into the prior framework about the world that we have
built over our lifetimes.

To get these prior distributions in a machine learning model, we can use a number
of different approaches. We have seen a couple of examples above, and the general
classification of one- and few-shot approaches includes at least the following:

• data augmentation that extends the small available dataset with transformations
that do not change the properties that we need to learn;

• multitask learning that trains a model to solve several problems, each of which
may have a small dataset, but together these datasets are large enough;

• embedding learning that learns latent representations which can be generalized to
new examples, as we have discussed above;

2ImageNet [187], the main basic dataset for computer vision models, is very fond of canines: it
distinguishes between 120 different dog breeds from around the world.

1.2 One-Shot Learning and Beyond: Less Data for More Classes 7

• fine-tuning that updates existing models that have been pretrained on different
tasks (possibly unsupervised) with small amounts of new data.

We will encounter all of these techniques in this book.

1.3 Weakly Supervised Training: Trading Labels for
Computation

Formany problems, obtaining labeled data is expensive but unlabeled data, especially
data that is not directly related to the specific problem at hand, is plentiful. Consider
again the basic computer vision problems we have talked about: it is very expensive
to obtain a large dataset of labeled images of cow herds, but it is much less expensive
to get a large dataset of unlabeled such images, and it is almost trivial to simply get
a lot of images with and without cows.

But can unlabeled data help? Basic intuition tells that it may not be easy but
should be possible. After all, we humans learn from all kinds of random images, and
during infancy, we develop an intuition about the world around us that generalizes
exceptionally well. Armed with this intuition, we can later in life do one-shot and
zero-shot learning with no problem. And the images were never actually labeled, the
learning we do can hardly be called supervised. Although it is still a far cry from
human abilities (see, e.g., a recent treatise by Francois Chollet [154] for a realistic
breakdown of where we stand in terms of artificial general intelligence), there are
several approaches being developed in machine learning to make use of all this extra
unlabeled data lying around.

First, one can use unlabeled data to produce new labeled data; although the new
“pseudolabels” are not guaranteed to be correct, they will still help, and one can
revisit and correct them in later iterations. A striking illustration of this approach has
appeared in a recent work by Xie et al. [956], where researchers from Google Brain
and Carnegie Mellon University applied the following algorithm:

• start from a “teacher” model trained as usual, on a (smaller) labeled dataset;
• use the “teacher” model on the (larger) unlabeled dataset, producing pseudolabels;
• train a “student” model on the resulting large labeled dataset;
• use the trained student model as the teacher for the next iteration, and then repeat
the process iteratively.

This is a rather standard approach, used many times before in semi-supervised
learning and also known as knowledge distillation [129, 293, 345, 541, 603]. But
by adding noise to the student model, Xie et al. managed to improve the state-of-
the-art results on ImageNet, the most standard and beaten-down large-scale image
classification dataset. For this, however, they needed a separate dataset with 300
million unlabeled images and a lot of computational power: 3.5 days on a 2048-core
Google TPU, on the same scale as AlphaZero needed to outperform every other

8 1 Introduction: The Data Problem

engine in Go and chess [800]; we will shortly see that this kind of computation does
not come for free.

Another interesting example of replacing labeled data with (lots of) unlabeled
data comes from the problem we already discussed: segmentation. It is indeed very
hard to produce labeled data for training segmentation models... but do we have
to? Segmentation models from classical computer vision, before the advent of deep
learning, do not require any labeled data: they cluster pixels according to their features
(color and perhaps features of neighboring pixels) or run an algorithm to cut the graph
of pixels into segments with minimal possible cost [657, 839]. Modern deep learning
models work better, of course, but it looks like recent advances make it possible to
train deep learning models to do segmentation without labeled data as well.

Approaches such as W-Net [948] use unsupervised autoencoder-style training
to extract features from pixels and then segment them with a classical algorithm.
Approaches such as invariant information clustering [399] develop image clustering
approaches and then apply them to each pixel in a convolution-based way, thus
transforming image clustering into segmentation. One of the most intriguing lines
of work that results in unsupervised clustering uses GANs for image manipulation.
The “cut-and-paste” approach [716] works in an adversarial way:

• one network, themask generator, constructs a segmentationmask from the features
of pixels in a detected object;

• then the object is cut out according to this mask and transferred to a different,
object-free location on the image;

• another network, the discriminator, now has to distinguish whether an image patch
has been produced by this cut-and-paste pipeline or is just a patch of a real image.

The idea is that good segmentation masks will make realistic pasted images, and in
order to convince the discriminator, the mask generator will have to learn to produce
high-quality segmentation masks.Wewill discuss this approach and its ramifications
for synthetic data in Section 9.3.

Semi-supervised teacher–student training and unsupervised segmentation via cut-
and-paste are just two directions out of many that are currently being developed. In
these works, researchers are exploring various ways to trade the need for labeled
datasets for extra unlabeled data, extra unrelated data, or extra computation, all of
which are becoming more and more readily available. Still, this does not completely
solve the data problem, and the computational challenges might prove to be insur-
mountable.

1.4 Machine Learning Without Data: Leaving Moore’s
Law in the Dust

Interestingly, some kinds of machine learning do not require any external data at
all, let alone labeled data. Usually, the idea is that they are able to generate data for
themselves, and the catch is that they need a lot of generation power.

1.4 Machine Learning Without Data: Leaving Moore’s Law in the Dust 9

Fig. 1.5 General reinforcement learning flowchart.

Themain fieldwhere this becomes possible is reinforcement learning (RL), where
an agent learns to perform well in an interactive environment [788, 831]. An agent
can perform actions and receive rewards for these actions from the environment.
Usually, modern RL architectures consist of the feature extraction part that processes
environment states into features and an RL agent that transforms features into actions
and converts rewards from the environment into weight updates; see an illustration
in Figure 1.5.

The poster child of these approaches is AlphaZero by DeepMind [800]. Their
original breakthrough was AlphaGo [799], a model that beat Lee Sedol, one of the
top human Go players, in an official match inMarch 2016. Long afterDeepBlue beat
Kasparov in chess, professional-level Go was remaining out of reach for computer
programs, and AlphaGo’s success was unexpected even in 2016. The match between
Lee Sedol and AlphaGo became one of the most publicized events in AI history and
was widely considered as the “Sputnik moment” for Asia in AI, the moment when
China, Japan, and South Korea realized that deep learning is to be taken seriously.
But AlphaGo utilized a lot of labeled data: it had a pretraining step that used a large
database of professional games.

AlphaZero takes its name from the fact that it needs zero training data: it begins
by knowing only the rules of the game and achieves top results through self-play,
actually with a very simple loss function combined with tree search. AlphaZero beat
AlphaGo (and its later version,AlphaGo Zero) inGo and one of the top chess engines,
Stockfish, in chess.

A recent result by the DeepMind reinforcement learning team, MuZero [770], is
even more impressive. MuZero is an approach based on model-based RL, that is, it
builds a model of the environment as it goes and does not know the rules of the game
beforehand but has to learn them from scratch; e.g., in chess, it cannot make illegal
moves as actions but can consider them in tree search and has to learn that they
are illegal by itself. With this additional complication, MuZero was able to achieve
AlphaZero’s skill in chess and shogi and even outperform it in Go. Most importantly,
the same model could also be applied to situations with more complex environment

10 1 Introduction: The Data Problem

Fig. 1.6 The changing trend in deep learning: a comparison of “Moore’s law” in machine learning
before and after the rise of deep learning. Chart by OpenAI [16].

states, e.g., to computer games in Atari environments (a standard benchmark in
reinforcement learning).

So what’s the catch? Is this the end of the data problem? One drawback is that
not every problem can be formulated in terms of RL with no data required. You can
learn to play games, i.e., self-contained finite structures where all rules are known
in advance. But how do we learn, say, autonomous driving or walking, with a much
wider variety of possible situations and individual components of these situations?
One possible solution here is to use synthetic virtual environments, and we will
discuss them in detail in Chapter 7.

Another, perhaps evenmore serious, problem is the amount of computation needed
for further advances in reinforcement learning. To learn to play chess andGo,MuZero
used 1000 third-generation Google TPUs to simulate self-play games. This does not
tell us much by itself, but here is an interesting observation made by the OpenAI
team [16], illustrated in Fig. 1.6. They noticed that before 2012, computational
resources needed to train state-of-the-art AI models grew basically according to
Moore’s Law, doubling their computational requirements every two years. But with
the advent of deep learning, in 2012–2019, computational resources for top AImodel
training doubled on average every 3.4 months! This is a huge rate of increase, and,
obviously, it cannot continue forever, as the actual hardware computational power
growth is only slowing down compared to Moore’s Law. Replication of AlphaZero
experiments has been recently estimated to cost about $35 million at current Google

1.4 Machine Learning Without Data: Leaving Moore’s Law in the Dust 11

Cloud rates [365]; while the cost of computation is dropping, it does so at a much
slower rate than the increase of computation needed for AI.

Thus, one possible scenario for further AI development is that yes, indeed, this
“brute force” approach might theoretically take us very far, maybe even to general
artificial intelligence, but it would require more computational power than we actu-
ally have in our puny Solar System. Note that a similar phenomenon, albeit on a
smaller scale, happened with the second wave of hype for artificial neural networks:
researchers in the late 1980s had a lot of great ideas about neural architectures (includ-
ing CNNs, RNNs, RL, and much more), but neither the data nor the computational
power was sufficient to make a breakthrough, and neural networks were relegated to
“the second best way of doing just about anything”3.

Still, at present, reinforcement learning represents another feasible way to trade
labeled data for computation, as the example of AlphaGo blossoming into AlphaZero
and MuZero clearly shows. With this, we finish a brief overview of alternatives and
come to the main subject of this book: synthetic data.

1.5 Why Synthetic Data?

Let us go back to segmentation, a standard computer vision problem that we already
discussed in Section 1.1. How does one produce a labeled dataset for image seg-
mentation? At some point, all images have to be manually processed: humans have
to either draw or at least verify and correct segmentation masks. Making the result
pixel-perfect is so laborious that it is commonly considered to be not worth the effort.
Figure 1.7a–c shows samples from the industry standardMicrosoft Common Objects
in Context (MSCOCO) dataset [525]; you can immediately see that the segmentation
mask is a rather rough polygon and misses many finer features. It did not take us
long to find such rough segmentation maps, by the way; these are some of the first
images found by the “dog” and “person” queries.

How can one get a higher quality segmentation dataset? To manually correct all
of these masks in the MS COCO dataset would probably cost hundreds of thousand
dollars. Fortunately, there is a different solution: synthetic data. In the context of
segmentation, this means that the dataset developers create a 3D environment with
modes of the objects they want to recognize and their surroundings and then ren-
der the result. Figure 1.7d–e shows a sample frame from a synthetic dataset called
ProcSy [449] (we discuss it in more detail in Section 6.5): note how the segmentation
map is now perfectly correct. While 3D modeling is still mostly manual labor, this is
a one-time investment, and after this investment, one can get a potentially unlimited
number of pixel-perfect labeled data: not only RGB images and segmentation maps
but also depth images, stereo pairs produced from different viewpoints, point clouds,
synthetic video clips, and other modalities.

3A quote usually attributed to John Denker; see, e.g., [339].

12 1 Introduction: The Data Problem

In general, many problems of modern AI come down to insufficient data: either
the available datasets are too small or, also very often, even while capturing unla-
beled data is relatively easy, the costs of manual labeling are prohibitively high.
Synthetic data is an important approach to solving the data problem by either pro-
ducing artificial data from scratch or using advanced data manipulation techniques
to produce novel and diverse training examples. The synthetic data approach is most
easily exemplified by standard computer vision problems, as we have done above,
but it is also relevant in other domains (we will discuss some of them in Chapter 8).

Naturally, other problems arise; the most important of them being the problem
of domain transfer: synthetic images, as you can see from Figure 1.7, do not look
exactly like real images, and one has tomake them as photorealistic as possible and/or
devise techniques that help models transfer from synthetic training sets to real test
sets; thus, domain adaptation becomes a major topic in synthetic data research and in
this book as well (see Chapter 10). Note, however, that a common theme in synthetic
data research iswhether realism is actually necessary; wewill encounter this question
several times in this book.

We begin with a few general remarks regarding synthetic data. First, note that
synthetic data can be produced and supplied to machine learning models on the fly,
during training, with software synthetic data generators, thus alleviating the need to
ever store huge datasets; see, e.g., Mason et al. [583] who discuss this “on the fly”
generation in detail. Second, while synthetic data has been a rising field for some
time, I do not know of a satisfactory general overview of synthetic data in machine
learning or deep learning, and this was my primary motivation for writing this book.
I would like to note surveys that attempt to cover applications of synthetic data [157,
467, 875] and a special issue of the International Journal of Computer Vision [253],
but I hope that the present work paints a more comprehensive picture.

Third, we distinguish between synthetic data and data augmentation; the latter
is a set of techniques intended to modify real data rather than create new synthetic
data. These days, data augmentation is a crucial part of virtually every computer
vision pipeline; we refer to the surveys [792, 914] and especially recommend the
Albumentations library [104] that has proven invaluable in our practice, but in this
survey, we concentrate on synthetic data rather than augmentations (the latter will
only be the subject of Section 3.4). Admittedly, the line between them is blurry, and
some techniques discussed here could instead be classified as “smart augmentation”.

Fourth, we note a natural application of synthetic data inmachine learning: testing
hypotheses and comparing methods and algorithms in a controlled synthetic setting.
Toy examples and illustrative examples are usually synthetic, with a known data
distribution so that machine learning models can be evaluated on how well they
learn this distribution. This approach is widely used throughout the field, sometimes
for entire meta-analyses [80, 491, 797], and we do not dwell on it here; our subject
is synthetic data used to transfer to real data rather than direct comparisons between
models on synthetic datasets.

1.6 The Plan 13

Fig. 1.7 Sample images: (a–c) MS COCO [525] real data samples with ground truth segmentation
maps overlaid; (d–e) ProcSy [449]: (d) RGB image; (e) ground truth segmentation map.

1.6 The Plan

This book covers three main directions for the use of synthetic data in machine
learning; in this section, we introduce all three, giving references to specific parts of
the book related to these directions.

1. Using synthetically generated datasets to train machine learning models directly.
This is an approach often taken in computer vision, and most of this book is
devoted to variations of this approach. In particular, one can:

• train models on synthetic data with the intention to use them on real data; we
discuss this approach through most of Chapters 6, 7, and 8;

• train (usually generative) models that change (refine) synthetic data in order to
make it more suitable for training or adapt the model to allow it to be trained
on synthetic data; Chapter 10 is devoted to this kind of models.

2. Using synthetic data to augment existing real datasets so that the resulting hybrid
datasets are better suited for training the models. In this case, synthetic data is
usually employed to cover parts of the data distribution that are not sufficiently
represented in the real dataset, with the main purpose being to alleviate dataset
bias. The synthetic data can either:

• be generated separately with, e.g., CGI-basedmethods for computer vision (see
examples in Chapters 3 and 7)

14 1 Introduction: The Data Problem

• or be generated from existing real data with the help of generative models (see
Section 10.4).

3. Using synthetic data to resolve privacy or legal issues that make the use of real
data impossible or prohibitively hard. This becomes especially relevant for certain
specific fields of application, among which we discuss:

• synthetic data in healthcare, which is not restricted to imaging but also extends
to medical records and the like (Section 10.7);

• synthetic data in finance and social sciences, where direct applications are hard
but privacy-related ones do begin to appear (Section 11.5);

• synthetic data with privacy guarantees: many applications are sensitive enough
to require a guarantee of privacy, for example, from the standpoint of the dif-
ferential privacy framework, and there has been an important line of work that
makes synthetic data generation provide such guarantees, which we consider
in Chapter 11.

The book is organized as follows. Chapter 2 gives a very brief introduction to deep
learning; while one cannot hope to deliver an actual in-depth introductory text in the
space of a single chapter, we will nevertheless start with the basics of how the deep
learning revolution has transformed machine learning in the late 2000s (Section 2.1),
how a neural network is organized (Section 2.3), and how it is trained via various
modifications of gradient descent (Sections 2.4 and 2.5).

Next, since computer vision is by far the most common domain for applying
synthetic data, we will devote Chapter 3 to deep architectures that are designed
for computer vision problems and that will be used throughout other chapters of the
book. Section 3.1 introduces the notion of convolutional neural networks, Section 3.2
shows several basic ideas that underlie modern convolutional architectures for image
classification, object detection, and segmentation, and Section 3.3 provides a case
study of neural architectures for object detection; we cannot hope to cover everything
but at least try to take a deep dive into a single topic to illustrate the depth and
variability of deep learning approaches in computer vision.

The final, most advanced introductory chapter deals with generative models in
deep learning; they are the topic ofChapter 4.Webegin bydiscussing generativemod-
els in machine learning in general (Section 4.1), introducing the difference between
discriminative and generative models. Next, we discuss Ian Goodfellow’s taxonomy
of generative models in deep learning and give an overview of tractable density mod-
els, including an introduction to normalizing flows (Section 4.2). In Section 4.3, we
talk about variational autoencoders as the primary example of approximate explicit
density models. Section 4.4 introduces the class of generative models most directly
relevant to synthetic data: generative adversarial networks (GAN). Section 4.5 dis-
cusses loss functions in modern GANs, Section 4.6 gives a brief overview of some
important general GAN-based architectures, and Section 4.7 finishes the chapter
with a case study of GAN-based style transfer, a problem which both serves as
a good illustration for modern adversarial architectures and is directly relevant to
synthetic-to-real domain adaptation.

1.6 The Plan 15

Chapter 5 is devoted to the early history of synthetic data. It may seem that
synthetic data has only been on the rise for the last few years, but we will see that
the use of synthetic data dates back to the 1970s, when computer vision took its first
steps (Section 5.1), was used as a testbed for experimental comparisons throughout
the history of computer vision (Section 5.2), and was used to train one of the first
self-driving cars in 1989 (Section 5.3). The final sections of this chapter are devoted
to early robotics: we first discuss how synthetic data was used to train robot control
systems from their very inception and how it was faced with some reservations and
criticism (Section 5.4) and then make a more detailed example of an early robotic
navigation system called MOBOT (Section 5.5).

Chapter 6 presents synthetic datasets and results for basic computer vision prob-
lems, including low-level problems such as optical flow or stereo disparity estimation
(Section 6.2), datasets of basic objects (Section 6.3), basic high-level computer vision
problems, including a case study on object detection (Section 6.4) and a discussion of
other high-level problems (Section 6.5), human-related synthetic data (Section 6.6),
and character and text recognition and visual reasoning problems (Section 6.7).
Throughout Chapter 6, we refer to specific architectures whose results have been
improved by training on synthetic data and show examples of images from synthetic
datasets.

In Chapter 7, we proceed to synthetic datasets that are more akin to full-scale
simulated environments, covering outdoor and urban environments (Section 7.2),
indoor scenes (Section 7.3), synthetic simulators for robotics (Section 7.4), simu-
lators for autonomous flying vehicles (Section 7.5), and computer games used as
simulation environments (Section 7.6). Synthetic simulated environments are an
absolute necessity for, e.g., end-to-end reinforcement learning architectures, and we
will see examples of situations where they suffice to train a successful RL agent as
well as situations where additional work on domain transfer is required.

While synthetic data has been most instrumental in computer vision, there are
other domains of application for synthetic data as well, and Chapter 8 is devoted
to exactly such domains. In particular, neural programming (Section 8.2) is a field
completely reliant on automatically generated training samples: it does not make
any sense to force humans to write millions of trivial computer programs. In bioin-
formatics (Section 8.3), most applications of synthetic data again lie in the domain
of medical imaging, but there are fields where one learns to generate other kinds of
information, for instance, fingerprints of molecules, and trains subsequent models on
this synthetically generated data. Finally, natural language processing (Section 8.4)
is not a field where synthetic data has really taken off despite obvious successes in
text generation [94, 697, 698]. A computer program that can generate coherent text
with predefined properties must be an AI model that captures a lot of useful features
about the language, and it is usually more productive to use the model itself than
try to learn a different model on its outputs; however, there are some examples of
synthetic data in NLP as well.

Chapter 9 discusses research intended to improve synthetic data generation. The
notion of domain randomization (Section 9.1) means trying to cover as much of
the data distribution with synthetic samples as possible, making them maximally

16 1 Introduction: The Data Problem

different and randomized, with the hope to capture the real data in the support of
the synthetic data distribution as well. Section 9.2 discusses current developments
in methods for CGI-based generation, including more realistic simulations of real-
world sensors (cameras, LiDAR systems, etc.) and more complex ways to define and
generate synthetic scenes. Synthetic data produced by “cutting and pasting” parts of
real data samples is discussed in Section 9.3, andwe end the chapter with a discussion
of the direct generation of synthetic data by generative models (Section 9.4). It is rare
to see such examples because, similar to natural language processing, a generative
model trained to produce high-quality samples from a given domain probably already
contains a model that can be used directly or fine-tuned for various applications; still,
there are situations where GANs can help directly.

The next part of the book deals with the main research problem of synthetic data,
namely synthetic-to-real domain adaptation: how can we make a model trained on
synthetic data perform well on real samples? After all, the ultimate goal of the entire
enterprise is always to apply the model to real data. With this, we get to Chapter 10
that discusses synthetic-to-real domain adaptation itself. There are many approaches
to this problem that can be broadly classified into two categories:

• synthetic-to-real refinement, where domain adaptation models are used to make
synthetic data more realistic (Section 10.1);

• domain adaptation at the feature/model level, where the model and/or the training
process are adapted rather than the data itself (Section 10.5).

The difference is that with refinement, one usually can extract refined input data:
either synthetic samplesmade “more realistic” or real samplesmade “more synthetic-
like”; with domain adaptation at the model level, the architectures usually just learn
to extract common features from both domains. In this chapter, we also discuss case
studies of domain adaptation for control and robotics (Section 10.6) and medical
imaging (Section 10.7).

Chapter 11 is devoted to the privacy side of synthetic data: can we generate syn-
thetic data which is guaranteed not to contain personal information about individual
entries from the original dataset? To get such guarantees, we need to venture into
differential privacy, a field that belongs more to the domain of theoretical cryptogra-
phy than machine learning. Sections 11.2 and 11.3 introduce differential privacy in
general and specifically for deep learning models, Section 11.4 shows how to gen-
erate synthetic data with differential privacy guarantees, and Section 11.5 presents
a case study about private synthetic data in finance and related fields, in particular,
electronic medical records.

In an attempt to look forward, we devote Chapter 12 to directions for further work
related to synthetic data that seemmost promising.We consider four such directions:

• Section 12.1 considers procedural generation of synthetic data, where the data
is made more realistic not by low-level refinement but by improving the high-
level generation process: for instance, instead of refining the textures of wood
and fabric on chairs, we are talking about a more consistent layout of the entire
synthetic room’s interior;

1.6 The Plan 17

• in Section 12.2, we introduce the notion of closing the feedback loop for syn-
thetic data generation: since the end goal is to improve the performance of models
trained on synthetic datasets, maybe we can change the parameters of synthetic
data generation in such a way as to directly increase this metric;

• Section 12.3 talks about introducing domain knowledge into domain adaptation;
specifically, we consider an example where the model contains both a domain-
specific generative model designed to produce synthetic images and a bottom-up
model that estimates the necessary parameters in an image;

• Section 12.4 shows how domain adaptation models can be improved with addi-
tional modalities that are easy to obtain in synthetic datasets; for instance, in
computer vision, it is trivial to augment synthetic data with 3D information such
as depth maps of surface normals since synthetic data is produced from 3D scenes,
somaybe this additional information can help a refiner tomake this data evenmore
realistic.

Finally, Section 12.5 concludes the book by drawing some general conclusions about
the place of synthetic data in modern AI and possible future work in this direction.

By now, we have seen how the deep learning revolution makes demands on com-
putational power and data that are increasingly hard to satisfy. There are some ways
to get around the need for ever growing labeled datasets, but they usually seem to
require even more computational resources, which are by now also not so easy to
obtain. We have seen that synthetic data is one possible way out of this conundrum.
But for the uninitiated, it is still unclear what this “deep learning” is all about, and
this is exactly what awaits us in the next chapter.

Chapter 2
Deep Learning and Optimization

Deep learning is currently one of the hottest fields not only in machine learning
but in the whole of science. Since the mid-2000s, deep learning models have been
revolutionizing artificial intelligence, significantly advancing state of the art across
all fields of machine learning: computer vision, natural language processing, speech
and sound processing, generative models, and much more. This book concentrates
on synthetic data applications; we cannot hope to paint a comprehensive picture of
the entire field and refer the reader to other books for a more detailed overview of
deep learning [153, 289, 630, 631]. Nevertheless, in this chapter, we begin with
an introduction to deep neural networks, describing the main ideas in the field. We
especially concentrate on approaches to optimization in deep learning, starting from
regular gradient descent and working our way towards adaptive gradient descent
variations and state-of-the-art ideas.

2.1 The Deep Learning Revolution

In 2006–2007, machine learning underwent a true revolution that began a new, third
“hype wave” for artificial neural networks (ANNs) in particular and artificial intelli-
gence (AI) in general. Interestingly, one can say that artificial neural networks were
directly responsible for all three AI “hype waves” in history1:

• in the 1950s and early 1960s, Frank Rosenblatt’s Perceptron [735, 736], which
in essence is a very simple ANN, became one of the first machine learning for-
malisms to be actually implemented in practice and featured in The New York

1For a very comprehensive account of the early history of ANNs and deep learning, I recommend
a survey by one of the fathers of deep learning, Prof. Jürgen Schmidhuber [767]; it begins with
Newton and Leibniz, whose results, as we will see, are still very relevant for ANN training today.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_2

20 2 Deep Learning and Optimization

Times, which led to the first big surge in AI research; note that the first mathemat-
ical formalizations of neural networks appeared in the 1940s [589], well before
“artificial intelligence” became a meaningful field of computer science with the
foundational works of Alan Turing [878] and the Dartmouth workshop [587, 611]
(see Section 2.3);

• although gradient descent is a very old idea, known and used at least since the
early XIX century, only by the 1980s, it became evident that backpropagation,
i.e., computing the gradient with respect to trainable weights in the network via
its computational graph, can be used to apply gradient descent to deep neural
networks with virtually arbitrary acyclic architectures; this idea became common
in the research community in the early 1980s [924], and the famous Nature paper
by Rumelhart et al. [742] marked the beginning of the second coming of neural
networks into the popular psyche and business applications.

Both of these hype waves proved to be premature, and neither in the 1960s nor
in the 1990s could neural networks live up to the hopes of researchers and investors.
Interestingly, by now we understand that this deficiency was as much technological
as it was mathematical: neural architectures from the late 1980s or early 1990s
could perform very well if they had access to modern computational resources and,
even more importantly, modern datasets. But at the moment, the big promises were
definitely unfounded; let me tell just one story about it.

One of themain reasons the first hypewave came to a halt was the failure of a large
project in no less than machine translation! It was the height of the ColdWar, and the
US government decided it would be a good idea to develop an automatic translation
machine fromRussian toEnglish, at least for formal documents. Theywere excited by
the Georgetown–IBM experiment, an early demonstration of a very limited machine
translation system in 1954 [381]. The demonstration was a resounding success, and
researchers of the day were sure that large-scale machine translation was just around
the corner.

Naturally, this vision did not come to reality, and twelve years later, in 1966, the
ALPAC (Automatic Language Processing Advisory Committee) published a famous
report that had to admit that machine translation was out of reach at the moment and
stressed that a lot more research in computational linguistics was needed [620]. This
led to a general disillusionment with AI on the side of the funding bodies in the U.S.,
and when grants stop coming in, researchers usually have to switch to other topics,
so the first “AI winter” followed. This is a great illustration of just how optimistic
early AI was: naturally, researchers did not expect perfection and would be satisfied
with the state of, say, modern Google Translate, but by now we realize how long and
hard a road it has been to what Google Translate can do today.

However, in the mid-2000s, deep neural networks started working in earnest. The
original approaches to training deep neural networks that proved to work around that
timewere based on unsupervised pretraining [226]: Prof.Hinton’s group achieved the
first big successes in deep learningwith deep belief networks (DBN), amethodwhere
layers of deep architectures are pretrained with the restricted Boltzmann machines,
and gradient descent comes only at the very end [344, 347], while in Prof. Ben-

2.1 The Deep Learning Revolution 21

gio’s group, similar results on unsupervised pretraining were achieved by stacking
autoencoders pretrained on the results of each other [62, 895]. Later, results on acti-
vation functions such as ReLU [281], new regularization methods for deep neural
networks [387, 816], and better initialization of neural network weights [280] made
unsupervised pretraining unnecessary for problems where large labeled datasets are
available. These results have changed ANNs from “the second best way” into the
method of choice revolutionizing one field of machine learning after another.

The first practical field where deep learning significantly improved state of the
art in real-world applications was speech recognition, where breakthrough results
were obtained by DBNs used to extract features from raw sound [346]. It was fol-
lowed closely by computer vision, which we discuss in detail in Chapter 3, and
later natural language processing (NLP). In NLP, the key contribution proved to be
word embeddings, low-dimensional vectors that capture some of the semantic and
syntactic properties of words and at the same time make the input dimensions for
deep neural networks much more manageable [79, 600, 666]. These word embed-
dings were processed initially mostly by recurrent networks, but over recent years,
the field has been overtaken by architectures based on self-attention: Transformers,
BERT-based models, and the GPT family [94, 179, 192, 697, 698, 891]. We will
touch upon natural language processing in Section 8.4, although synthetic data is not
as relevant for NLP as it is for computer vision.

We have discussed in Section 1.1 that the data problem may become a limiting
factor for further progress in some fields of deep learning, and definitely has already
become such a factor for some fields of application. However, at present, deep neural
networks define state of the art in most fields of machine learning, and progress
does not appear to stop. In this chapter, we will discuss some of the basics of deep
learning, and the next chapter will put a special emphasis on convolutional neural
networks (Section 3.1 and further) because they are the main tools of deep learning
in computer vision, and synthetic data is especially important in that field. But let me
begin with a more general introduction, explaining how machine learning problems
lead to optimization problems, how neural networks represent machine learning
models, and how these optimization problems can be solved.

There is one important disclaimer before we proceed. I am writing this in 2020,
and deep learning is constantly evolving. While the basic stuff such as the Bayes rule
and neural networks as computational graphs will always be with us, it is very hard
to say if the current state of the art in almost anything related to machine learning
will remain the state of the art for long. Case in point: in the first draft of this book, I
wrote that activation functions for individual units are more or less done. ReLU and
its leaky variations work well in most problems, you can also try Swish found by
automated search (pretty exhaustive, actually), and that’s it, the future most probably
shouldn’t surprise us here. After all, these are just unary functions, and the Swish
paper explicitly says that simpler activation functions outperform more complicated
ones [702]. But in September 2020... well, let’s not spoil it, see the end of Section 2.3.

That is why throughout this chapter and the next one, I am trying to mostly
concentrate on the ideas and motivations behind neural architectures. I am definitely
not trying to recommend any given architecture because most probably, when you

22 2 Deep Learning and Optimization

are reading this, the recommendations have already changed. When I say “current
state of the art”, it’s just that the snapshot of ideas that I have attempted to make as
up to date as I could, and some of which may have become obsolete by the time you
are reading this. The time for comprehensive surveys of deep learning has not yet
come. So I am glad that this book is about synthetic data, and all I need from these
two chapters is a brief introduction.

2.2 A (Very) Brief Introduction to Machine Learning

Before proceeding to neural networks, let me briefly put them into a more general
context ofmachine learning problems. I usually beginmycourses inmachine learning
by telling students that machine learning is a field of applied probability theory.
Indeed, most of machine learning problems can be mathematically formulated as an
application of the Bayes rule:

p (θ | D) = p(θ)p (D | θ)

p(D)
,

where D denotes the data and θ denotes the model parameters. The distributions in
the Bayes rule have the following meaning and intuition behind them in machine
learning:

• p (D | θ) is the likelihood, i.e., themodel itself; the likelihood captures our assump-
tions about how data is generated in a probability distribution;

• p(θ) is the prior probability, i.e., the distribution of our beliefs about the model
parameters a priori, before we get any data;

• p (θ | D) is the posterior probability, i.e., the distribution of our beliefs about the
model parameters a posteriori, after we take available data into account;

• p(D) = ∫
p (D | θ) p(θ)dθ is the evidence or marginal probability of the data

averaged over all possible values of θ according to the likelihood.

This simple formula gives rise to the mathematical formulations of most machine
learning problems. The first problem, common in classical statistics as well, is to
find the maximum likelihood hypothesis

θML = arg max
θ

p (D | θ) .

The second problem is to multiply the likelihood by the prior, getting the posterior

p (θ | D) ∝ p (D | θ) p(θ),

and then find the maximum a posteriori hypothesis:

θMAP = arg max
θ

p(θ | D) = arg max
θ

p (D | θ) p(θ).

2.2 A (Very) Brief Introduction to Machine Learning 23

These two problems usually have similar structure when considered as optimization
problems (we will see that shortly), and most practical machine learning is being
done by maximizing either the likelihood or the posterior.

The final and usually the hardest problem is to find the predictive distribution for
the next data point:

p (x | D) =
∫

p (x, θ | D) dθ =
∫

p (x | θ) p (θ | D) dθ.

For at least moderately complex model likelihoods, this usually leads to intractable
integrals and the need to develop approximate methods. Sometimes, it is this third
problem which is called Bayesian inference, although the term is applicable as soon
as a prior appears.

Thismathematical essence canbe applied to awide variety of problemsof different
nature. With respect to their setting, machine learning problems are usually roughly
classified into (Figure 2.1 provides an illustration):

• supervised learning problems, where data is given in the form of pairs D =
{(xn, yn)}Nn=1, with xn being the nth data point (input of the model) and yn being
the target variable:

– in classification problems, the target variable y is categorical, discrete, that is,
we need to place x into one of a discrete set of classes;

– in regression problems, the target variable y is continuous, that is, we need to
predict values of y given values of x with as low error as possible;

• unsupervised learning problems that are all about learning a distribution of data
points; in particular,

Fig. 2.1 A general taxonomy of machine learning problems.

24 2 Deep Learning and Optimization

– dimensionality reduction techniques aim to learn a low-dimensional representa-
tion that still captures important information about a high-dimensional dataset;

– clustering does basically the same but reduces not to a continuous space but to
a discrete set of clusters, assigning each x from the input dataset with a cluster
label; there is a parallel here with the classification/regression distinction in
supervised learning;

• reinforcement learning problems where the data usually does not exist before
learning begins, and an agent is supposed to collect its own dataset by interacting
with the environment;

– agents in direct reinforcement learning learn their behaviour policy π directly,
either by learning a value function for various states and actions or by parame-
terizing π and learning it directly via policy gradient;

– agents in indirect reinforcement learning use their experience to build a model
of the environment, thus allowing for planning.

There are, of course, intermediate cases and fusions of these problems, the most
important being probably semi-supervised learning, where a (usually small) part of
the dataset is labeled and the other (usually far larger) part is not.

In this book, we will mostly consider supervised learning problems. For example,
in computer vision, an image classification problem might be formalized with xn
being the image (a three-dimensional array of pixels, where the third dimension is the
color) and yn being a one-hot representation of target classes, i.e., yn = (0 ... 0 1 0 ... 0),
where 1 marks the position of the correct answer.

For a simple but already nontrivial example, consider the Bernoulli trials, the
distribution of tossing a (not necessarily fair) coin. There is only one parameter here,
let’s say θ is the probability of the coin landing heads up. The data D is in this case
a sequence of outcomes, heads or tails, and if D contains n heads and m tails, the
likelihood is

p(D | θ) = θn (1 − θ)m .

The maximum likelihood hypothesis is, obviously,

θML = arg max
θ

θn (1 − θ)m = n

n + m
,

but in real life, this single number is clearly insufficient. If you take a random coin
from your purse, toss it once, and observe heads, your dataset will have n = 1 and
m = 0, and the maximum likelihood hypothesis will be θML = 1, but you will hardly
expect that this coin will now always land heads up. The problem is that you already
have a prior distribution for the coin, and while the maximum likelihood hypothesis
is perfectly fine in the limit, as the number of experiments approaches infinity, for
smaller samples, the prior will definitely play an important role.

Suppose that the prior is uniform, p(θ) = 1 for θ ∈ [0, 1] and 0 otherwise. Note
that this is not quite what you think about a coin taken from your purse, you would

2.2 A (Very) Brief Introduction to Machine Learning 25

rather expect a bell-shaped distribution centered at 1
2 . This prior is more suitable for

a new phenomenon about which nothing is known a priori except that it has two
outcomes. But even for that prior, the conclusion will change. First, the posterior
distribution is now

p(θ | D) = p(θ)p(D | θ)

p(D)
=

{
1

p(D)
θn (1 − θ)m , for θ ∈ [0, 1],

0 otherwise,

where the normalizing constant can be computed as

p(D) =
∫

p(θ)p(D | θ)dθ =
∫ 1

0
θn (1 − θ)mdθ =

=�(n + 1)�(m + 1)

�(n + m + 2)
= n!m!

(n + m + 1)! .

Since the prior is uniform, the posterior distribution is still maximized at the exact
same point:

θMAP = θML = n

n + m
.

This situation is illustrated in Figure 2.2a that shows the prior distribution, likelihood,
and posterior distribution for the parameter θ with uniform prior and the dataset
consisting of two heads. The posterior distribution, of course, has the samemaximum
as the likelihood, at θMAP = θML = 1.

Fig. 2.2 Distributions related to the Bernoulli trials: (a) uniform prior, two heads in the dataset; (b)
prior Beta(15, 15), two heads in the dataset.

26 2 Deep Learning and Optimization

But the predictive distribution will tell a different story because the posterior is
maximized at its right border, and the predictions should integrate over the entire
posterior. Let us find the probability of this coin landing heads on the next toss:

p(heads|D) =
∫ 1

0
p(heads|θ)p(θ |D)dθ =

∫ 1

0

θn+1(1 − θ)m

p(D)
dθ =

= (n + 1)!m!
(n + m + 2)! · (n + m + 1)!

n!m! = n + 1

n + m + 2
.

In this formula, we have derived what is known as Laplace’s rule of succession,
which shows how to apply Bayesian smoothing to the Bernoulli trials.

Note that in reality, if you take a random coin out of your pocket, the uniform prior
would be a poor model for your beliefs about this coin. It would probably be more
like the prior shown in Fig. 2.2b, where we show the exact same dataset processed
with a non-uniform, informative prior p(θ) = Beta(θ; 15, 15). The beta distribution

Beta(θ;α, β) ∝ θα−1 (1 − θ)β−1

is the conjugate prior distribution for the Bernoulli trials, which means that after
multiplying a beta distribution by the likelihood of the Bernoulli trials, we again get
a beta distribution in the posterior:

Beta(θ;α, β) × θn (1 − θ)m ∝ Beta(θ;α + n, β + m).

For instance, in Fig. 2.2b, the prior is Beta(θ; 15, 15), and the posterior, after multi-
plying by θ2 and renormalizing, becomes Beta(θ; 17, 15).

In machine learning, one assumption that is virtually always made is that different
data points are produced independently given the model parameters, that is,

p (D | θ) =
N∏

n=1

p(dn | θ)

for a dataset D = {dn}Nn=1. Therefore, it is virtually always a good idea to take loga-
rithms before optimizing, getting the log-likelihood

log p (D | θ) =
N∑

n=1

log p(dn | θ)

and the log-posterior (note that proportionality becomes an additive constant after
taking the logarithm)

log p(θ | D) = log p(θ) +
N∑

n=1

log p (dn | θ) + Const,

2.2 A (Very) Brief Introduction to Machine Learning 27

which are usually the actual functions being optimized. Therefore, in complex
machine learning models priors usually come in the form of regularizers, additive
terms that impose penalties on unlikely values of θ .

For another relatively simple example, let us consider linear regression, a super-
vised learning problem of fitting a linear model to data, that is, finding a vector of
weightsw such that y ∼ w�x for a dataset of pairs D = (X, y) = {(xn, yn)}Nn=1. The
first step here is to define the likelihood, that is, represent

y = w�x + ε

for some random variable (noise) ε and define the distribution for ε. The natural
choice is to take the normal distribution centered at zero, ε ∼ N (0, σ 2), getting the
likelihood as

p(y | w, X) =
N∏

n=1

p(yn | w, xn) =
N∏

n=1

N (yn | w�xn, σ 2).

Taking the logarithm of this expression, we arrive at the least squares optimization
problem:

log p(y | w, X) =
N∑

n=1

logN (yn | w�xn, σ 2) =

= −N

2
log

(
2πσ 2) − 1

2σ 2

N∑

n=1

(
yn − w�xn

)
,

so maximizing log p(y | w, X) is the same as minimizing
∑N

n=1

(
yn − w�xn

)
, and

the exact value of σ 2 turns out not to be needed for finding the maximum likelihood
hypothesis.

Linear regression is illustrated in Figure 2.3, with the simplest one-dimensional
linear regression shown in Fig. 2.3a. However, even if the data is one-dimensional,
the regression does not have to be: if we suspect a more complex dependency than
linear, we can express it by extracting features from the input before running linear
regression.

In this example, the data is generated from a single period of a sinusoid function,
so it stands to reason that it should be interpolated well by a cubic polynomial.
Figure 2.3b shows the resulting approximation, obtained by training the model

y = w0 + w1x + w2x
2 + w3x

3 + ε,

which is equivalent to y = w�x + ε for x = (
1 x x2 x3

)�
, i.e., equivalent to manu-

ally extracting polynomial features from x before feeding it to linear regression. In
this way, linear regression can be used to approximate much more complex depen-

28 2 Deep Learning and Optimization

Fig. 2.3 Linear regression: (a) one-dimensional linear regression; (b) linear regression with poly-
nomial features; (c) linear regression with Gaussian features; (d) overfitting in linear regression.

dencies. For example, Figure 2.3c shows the same dataset approximated with five
Gaussian features, i.e., features of the form

φ(x;μ, s) = e− 1
2s (x−μ)2 .

In fact, most neural networks that solve regression problems have a linear regres-
sion as their final layer, while neural networks for classification problems use a
softmax layer, i.e., the logistic regression model. The difference and the main ben-
efit that neural networks are providing is that the features for these simple models
implemented at final layers are also learned automatically from data.

With this additional feature extraction, even linear regression can show signs of
overfitting, for instance, if the features (components of the vector x) are too heavily
correlated with each other. The ultimate case of overfitting in linear regression is
shown in Fig. 2.3d: if we fit a polynomial of degree N − 1 to N points, it will

2.2 A (Very) Brief Introduction to Machine Learning 29

obviously be simply interpolating all of these points, getting a perfect zero error on
the training set but providing quite useless predictions, as Fig. 2.3d clearly illustrates.

In this case,wemightwant to restrict the desirable values ofw, for instance say that
the values of w should be “small”. This statement, which I have quite intentionally
made very vague, can be formalized via choosing a suitable prior distribution. For
instance, we could set a normal distribution centered at zero as prior. This time, it’s a
multi-dimensional normal distribution, and let’s say that we do not have preferences
with respect to individual features so we assume the prior is round:

p(w) = N (w | 0, σ 2
0 I).

Then we get the following posterior distribution:

log p (w | y, X) =
N∑

n=1

logN (yn | w�xn, σ 2) + logN (w | 0, σ 2
0 I) =

= −N

2
log

(
2πσ 2) − 1

2σ 2

N∑

n=1

(
yn − w�xn

) − d

2
log

(
2πσ 2) − 1

2σ 2
0

w�w.

The maximization problem for this posterior distribution is now equivalent to
minimizing

N∑

n=1

(
yn − w�xn

) + λ

2
w�w, where λ = σ 2

σ 2
0

.

This is known as ridge regression. More generally speaking, regularization with a
Gaussian prior centered around zero is known as L2-regularization because as we
have just seen, it amounts to adding the L2-norm of the vector of weights to the
objective function.

We will not spend much more time on Bayesian analysis in this book, but note
one thing: machine learning problems are motivated by probabilistic assumptions
and the Bayes rule, but from the algorithmic and practical standpoint, they are usu-
ally optimization problems. Finding the maximum likelihood hypothesis amounts
to maximizing p (D | θ), and finding the maximum a posteriori hypothesis means
to maximize p(θ | D); usually, the main computational challenge in machine learn-
ing lies either in these maximization procedures or in finding suitable methods to
approximate the integral in the predictive distribution.

Therefore, once probabilistic assumptions aremade and formulas such as the ones
shownabove areworkedout, algorithmicallymachine learning problemsusually look
like an objective function depending on the data points and model parameters that
need to be optimized with respect to model parameters. In simple cases, such as the
Bernoulli trials or linear regression, these optimization problems can be worked out
exactly. However, as soon as the models become more complicated, optimization
problems become much harder and almost always nonconvex.

30 2 Deep Learning and Optimization

This means that for complex optimization problems, such as the ones represented
by neural networks, virtually the only available way to solve them is to use first-order
optimization methods based on gradient descent. Over the next sections, we will
consider how neural networks define such optimization problems and what methods
are currently available to solve them.

2.3 Introduction to Deep Learning

Before delving into state-of-the-art first-order optimization methods, let us begin
with a brief introduction to neural networks in general. As a mathematical model,
neural networks actually predate the advent of artificial intelligence in general: the
famous paper by Warren McCulloch and Walter Pitts was written in 1943 [589],
and AI as a field of science is generally assumed to be born in the works of Alan
Turing, especially his 1950 essay Computing Machinery and Intelligence where he
introduced the Turing test [877, 878]. What is even more interesting, the original
work by McCulloch and Pitts already contained a very modern model of a single
artificial neuron (perceptron), namely the linear threshold unit, which for inputs x,
weights w, and threshold a outputs

y =
{
1, if w�x ≥ a,

0, if w�x < a.

This is exactly how units in today’s neural networks are structured, a linear com-
bination of inputs followed by a nonlinearity:

y = h(w�x).

The activation function h is usually different today, and we will survey modern
activation functions in a page or two.

The linear threshold unit was one of the first machine learning models actually
implemented in software (more like hardware in those times): in 1958, the Percep-
tron device developed by Frank Roseblatt [735] was able to learn the weights from
a dataset of examples and actually could receive a 20 × 20 image as input. The Per-
ceptron was also an important factor in the first hype wave of artificial intelligence.
For instance, a New York Times article (hardly an unreliable tabloid) devoted to the
machine said the following: “The embryo of an electronic computer... learned to
differentiate between right and left after fifty attempts in the Navy’s demonstration...
The service said that it would use this principle to build the first of its Perceptron
thinking machines that will be able to read and write. It is expected to be finished in
about a year at a cost of $100,000” [858]. Naturally, nothing like that happened, but
artificial neural networks were born.

2.3 Introduction to Deep Learning 31

The main underlying idea of the deep neural network is connectionism, an
approach in cognitive science and neurobiology that posits the emergence of com-
plex behaviour and intelligence in very large networks of simple computational
elements [51, 52]. As a movement in both philosophy and computer science, con-
nectionism rose to prominence in the 1980s, togetherwith the secondAI “hypewave”
caused by deep neural networks. Today, deep learning provides plenty of evidence
that complex networks of simple units can perform well in the most complex tasks
of artificial intelligence, even if we still do not understand the human brain fully and
perhaps strong human-level AI cannot be achieved by simple stacking of layers (to
be honest, we don’t really know).

An artificial neural network is defined by its computational graph. The com-
putational graph is a directed acyclic graph G = (V, E) whose nodes correspond
to elementary functions and edges incoming into vertices correspond to their argu-
ments. The source vertices (vertices of indegree zero) represent input variables, and
all other vertices represent functions of these variables obtained as compositions of
the functions shown in the nodes (for brevity and clarity, I will not give the obvious
formal recursive definitions). In the case of neural networks for machine learning, a
computational graph usually contains a single sink vertex (vertex of outdegree zero)
and is said to compute the function that corresponds to this sink vertex.

Figure 2.4 shows a sample computational graph composed of simple arithmetic
functions. The graph shows variables and elementary functions inside the corre-
sponding nodes and shows the results of a node as functions of input variables along
its outgoing edge; the variables are artificially divided into “inputs” x and “weights”

Fig. 2.4 A sample computational graph: (a) function definitions; (b) sample computation for x1 =
x2 = 1, w1 = 0, w2 = 2.

32 2 Deep Learning and Optimization

w for illustrative purposes. In this example, the top vertex of the graph computes the
function

f = (x1 + w1)
2(x1w1 + x2w2).

The main idea of using computational graphs is to be able to solve optimization
problems with the functions computed by these graphs as objectives. To apply a
first-order optimization method such as gradient descent to a function f (w) with
respect to its inputs w, we need to be able to do two things:

(1) compute the function f (w) at every point w;
(2) take the gradient ∇w f of the objective function with respect to the optimization

variables.

The computational graph provides an obvious algorithm for the first task: if we
know how to compute each elementary function, we simply traverse the graph from
sources (variables) to the sink, computing intermediate results and finally getting
the value of f . For example, let us set x1 = x2 = 1, w1 = 0, w2 = 2; traversing the
graph in Fig. 2.4 yields the values shown in Fig. 2.4b:

a = x1 + w1 = 1, b = x1w1 = 0, c = x2w2 = 2,
d = a2 = 1, e = b + c = 2, f = de = 2.

As for the second task, there are two possible ways to take the gradients given a
computational graph. Suppose that in Fig. 2.4, we want to compute ∇w f for x1 =
x2 = 1, w1 = 0, w2 = 2. The first approach, forward propagation, is to compute
the partial derivatives along with the function values. In this way, we can compute
the partial derivatives of each node in the graph with respect to the same variable;
Fig. 2.5 shows the results for derivatives with respect to w1:

∂a
∂w1

= ∂w1
∂w1

= 1, ∂b
∂w1

= x1
∂w1
∂w1

= 0, ∂c
∂w1

= 0,
∂d
∂w1

= 2a ∂a
∂w1

= 2, ∂e
∂w1

= ∂b
∂w1

+ ∂c
∂w1

= 1, ∂ f
∂w1

= d ∂e
∂w1

+ e ∂d
∂w1

= 1 + 4 = 5.

This approach, however, does not scale; it only yields the derivative ∂ f
∂w1

, and in

order to compute ∂ f
∂w2

, we would have to go through the whole graph again! Since
in deep learning, the problem is usually to compute the gradient ∇w f with respect
to a vector of weights w that could have thousands or even millions of components,
either running the algorithm |w| times or spending the memory equal to |w| on every
computational node is entirely impractical.

That is why in deep learning, the main tool for taking the gradients is the reverse
procedure, backpropagation. The main advantage is that this time we obtain both
derivatives, ∂ f

∂w1
and ∂ f

∂w2
, after only a single backwards pass through the graph.

Again, the main tool in this computation is simply the chain rule. Given a graph
node v = h(x1, . . . , xk) that has children g1, . . . , gl in the computational graph, the
backpropagation algorithm computes

2.3 Introduction to Deep Learning 33

Fig. 2.5 Gradient computation on the graph from Fig. 2.4 for x1 = x2 = 1, w1 = 0, w2 = 2:
forward propagation.

Fig. 2.6 Gradient computation on the graph from Fig. 2.4 for x1 = x2 = 1, w1 = 0, w2 = 2:
backpropagation.

∂ f

∂v
= ∂ f

∂g1

∂g1
∂v

+ . . . + ∂ f

∂gl

∂gl
∂v

,

where the values ∂ f
∂g j

∂g j

∂v
have been obtained in the previous steps of the algorithm

and received by the node v from its children, and sends to each of the parents xi of
the node v the value ∂ f

∂v
∂v
∂xi

. The base of the induction here is the sink node, ∂ f
∂ f = 1,

rather than source nodes as before. In the example shown in Figure 2.4, we get the
derivatives shown in Figure 2.6:

34 2 Deep Learning and Optimization

∂ f
∂ f = 1, ∂ f

∂d = e = 2, ∂ f
∂e = d = 1,

∂ f
∂a = 2a ∂ f

∂d = 4, ∂ f
∂b = ∂ f

∂e = 1, ∂ f
∂c = ∂ f

∂e = 1,
∂ f
∂w1

= ∂ f
∂a

∂a
∂w1

+ ∂ f
∂b

∂b
∂w1

= 5, ∂ f
∂w2

= ∂ f
∂c

∂c
∂w2

= x2 = 1.

A real-life neural network is almost always organized into layers. This means that
the computational graph of a neural network has subsets of nodes that are incompara-
ble in topological order and hence can be computed in parallel. These nodes usually
also have the same inputs and activation functions (or at least the same structure of
inputs, like convolutional neural networks thatwewill consider in Section 3.1),which
means that operations on entire layers can be represented as matrix multiplications
and componentwise applications of the same functions to vectors.

This structure enables the use of graphics processing units (GPUs) that are specif-
ically designed as highly parallel architectures to handle matrix operations and com-
ponentwise operations on vectors, giving speedups of up to 10-50x for training com-
pared to CPU-based implementations. The idea of using GPUs for training neural
networks dates back at least to 2004 [639], and convolutional networks were put on
GPUs already in 2006 [127]. This idea was quickly accepted across the board and
became a major factor in the deep learning revolution: for many applications, this
10-50x speedupwas exactly what was needed to bring neural networks into the realm
of realistic solutions.

Therefore, one of the first and most natural neural network architectures is the
fully connected (or densely connected) network: a sequence of layers such that a
neuron at layer l receives as input activations from all neurons at layer l − 1 and
sends its output to all neurons at layer l + 1, i.e., each two neighboring layers form
a complete bipartite graph of connections.

Fully connected networks are still relevant in some applications, and many archi-
tectures include fully connected layers. However, they are usually ill-suited for
unstructured data such as images or sound because they scale badly with the number
of inputs, leading to a huge number of weights that will almost inevitably overfit.
For instance, the first layer of a fully connected network that has 200 neurons and
receives a 1024 × 1024 image as input will have more than 200 million weights! No
amount of L2 regularization is going to fix that, and we will see how to avoid such
overkill in Section 3.1. On the other hand, once a network of a different structure
has already extracted a few hundred or a couple thousand features from this image,
it does make sense to have a fully connected layer or two at the end to allow the
features to interact with each other freely, so dense connections definitely still have
a place in modern architectures.

Figure 2.7 presents a specific example of a three-layered network together with
the backpropagation algorithm worked out for this specific case. On the left, it shows
the architecture: input x goes through two hidden layers with weight matrices W (1)

and W (2) (let us skip the bias vectors in this example in order not to clutter notation
even further). Each layer also has a nonlinear activation function h, so its outputs are
z(1) = h

(
W (1)x

)
and z(2) = h

(
W (2)z(1)

)
. After that, the network has a scalar output

y = h
(
w(3)�z(2)

)
, again computed with activation function h and weight vector

2.3 Introduction to Deep Learning 35

w(3) from z(2), and then the objective function f is a function of the scalar y. The
formulas in the middle column show the forward propagation part, i.e., computation
along the graph, and formulas on the right show the backpropagation algorithm that
begins with ∂ f

∂y and progresses in the opposite direction. Dashed lines on the figure
divide the architecture into computational layers, and the computations are grouped
inside the dashed lines.

For example, on the second hidden layer, we have the weight matrix W (2), input
z(1) from the layer below, output z(2) = h

(
W (2)z(2)

)
, and during backpropagation,

we also have the gradient∇z(2) f coming from the layer above as part of the induction
hypothesis. In backpropagation, this dense layer needs to do two things:

• compute the gradient with respect to its own matrix of weights W (2) so that they
can be updated; this is achieved as

∇W (2) f = h′ (W (2)z(2)
)
(∇z(2) f) z(1)�;

note how the dimensions match: W (2) is a 3 × 4 matrix in this example, ∇z(2) f is
a 3 × 1 vector, and z(1) is a 4 × 1 vector;

• compute the gradient with respect to its input z(1) and send it down to the layer
below:

∇z(1) f = h′ (W (2)z(2)
)
W (2)�∇z(2) f.

Figure 2.7 shows the rest of the computations, introducing intermediate vectors
o for brevity. As we can see, this algorithm is entirely expressed in the form of
matrix operations and componentwise applications of functions, and thus it lends
itself easily to GPU-based parallelization.

Fig. 2.7 A three-layered fully connected architecture with computations for backpropagation.

36 2 Deep Learning and Optimization

The only thing left for this section is to talk a bit more about activation functions.
Theoriginal threshold activation, suggestedbyMcCulloch andPitts and implemented
by Rosenblatt, is almost never used now: if nothing else, thresholds are hard to opti-
mize by gradient descent because the derivative of a threshold function is everywhere
zero or nonexistent. Throughout neural network history, the most popular activation
functions had been sigmoids, usually either the logistic sigmoid

σ(a) = 1

1 + e−a

or the hyperbolic tangent

tanh(a) = ea − e−a

ea + e−a
.

Several classical activation functions, from threshold to ReLU, are shown in Fig. 2.8.
Research of the last decade, however, shows that one can get a much better family

of activation functions (for internal layers of deep networks—you still can’t get
around a softmax at the end of a classification problem, of course) if one does not
restrict it by a horizontal asymptote at least on one side. The most popular activation
function in modern artificial networks is the rectified linear unit (ReLU)

ReLU(x) =
{
0, if x < 0,

x, if x ≥ 0

and its variations that do not have a hard zero for negative inputs but rather a slower
growing function, for example, the leaky ReLU [570]

Fig. 2.8 A comparison of activation functions: classical activation functions.

2.3 Introduction to Deep Learning 37

LReLU(x) =
{
ax, if x < 0,

x, if x > 0

or the exponential linear unit [161]

ELU(x) =
{

α (ex − 1) , x < 0,

x, x ≥ 0.

There is also a smooth variant of ReLU, known as the softplus function or [282]:

softplus(x) = ln
(
1 + ex

)
.

You can see a comparison of ReLU variations in Figure 2.9. In any case, all activation
functions used in modern neural networks must be differentiable so that gradient
descent can happen; it’s okay to have kinks on a subset of measure zero, like ReLU
does, since one can always just set the derivative to zero at that point.

It is always tempting to try and get a better result just by switching the activation
function, but most often it fails: it is usually the last optimization I would advise to
actively try. However, if you try many different activation functions systematically
and with a wide range of models, it might be possible to improve upon standard
approaches.

In 2017, Google Brain researchers Ramachandran et al. [702] did exactly this:
they constructed a search space of possible activation functions (basically a recursive
computational graph with a list of possible unary and binary functions to insert
there), used the ideas of neural architecture search [1031] to formulate the search
for activation functions as a reinforcement learning problem, and made good use
of Google’s huge computational power to search this space as exhaustively as they

Fig. 2.9 A comparison of activation functions: ReLU variations.

38 2 Deep Learning and Optimization

Fig. 2.10 A comparison of activation functions: Swish and Mish.

could. The results were interesting: in particular, Ramachandran et al. found that
complicated activation functions consistently underperform simpler ones. As the
most promising resulting function, they highlighted the so-called Swish activation:

Swish(x) = xσ (βx) = x

1 + e−βx
.

Depending on the parameter β, Swish scales the range from perfectly linear (when
β = 0) to ReLU (when β → ∞). Figure 2.10 shows Swish activation and other
variations; the most interesting feature of Swish is probably the fact that it is not
monotone and has a minimum in the negative part of the spectrum.

In 2019, Misra [604] suggested theMish activation, a variation of Swish:

Mish(x) = x tanh (softplus(x)) = x tanh
(
ln

(
1 + ex

))
.

Both Swish andMish activations have been tested in many applications, including
convolutional architectures for computer vision, and they now define state of the art,
although good old ReLUs are far from completely replaced.

The text above was written in the summer of 2020. But, of course, this was not
the end of the story. In September 2020, Ma et al. [567] presented a new look on
Swish and ReLUs. They generalized them both by using a smooth approximation of
the maximum function:

Sβ(x1, . . . , xn) =
∑n

i=1 xi e
βxi

∑n
i=1 e

βxi
.

Let us substitute two functions in place of the arguments: for the hard maximum
max (g(x), h(x)), we get its smooth counterpart

2.3 Introduction to Deep Learning 39

Sβ (g(x), h(x)) = g(x)
eβg(x)

eβg(x) + eβh(x)
+ h(x)

eβh(x)

eβg(x) + eβh(x)
=

= g(x)σ (β (g(x) − h(x))) + h(x)σ (β (h(x) − g(x))) =
= (g(x) − h(x)) σ (β (g(x) − h(x))) + h(x).

Ma et al. call this the ActivateOrNot (ACON) activation function. They note that

• for g(x) = x and h(x) = 0, the hard maximum is ReLU(x) = max(x, 0), and the
smooth counterpart is

f ACON−A (x, 0) = Sβ(x, 0) = xσ (βx) ,

that is, precisely the Swish activation function;
• for g(x) = x and h(x) = ax with some a < 1, the hardmaximum is LReLU(x) =
max(x, px), and the smooth counterpart is

f ACON−B = Sβ(x, ax) = (1 − a) xσ (β(1 − a)x) + ax;

• both of these functions can be straightforwardly generalized to

f ACON−C = Sβ(a1x, a2x) = (a1 − a2) xσ (β(a1 − a2)x) + a2x;

in this case, a1 and a2 can become learnable parameters, and their intuitivemeaning
is that they serve as the limits of ACON-C’s derivative:

lim
x→∞

d f ACON−C

dx
= a1, lim

x→−∞
d f ACON−C

dx
= a2.

Figure 2.11 shows the ACON-C function for different values of a1, a2, and β, starting
from exactly the Swish function and showing the possible variety.

All this has only just happened, and so far it is hard to say whether this idea is
going to catch on across many neural architectures or die down quietly. But this is
a great example of how hard it is to write about deep learning; we will see such
examples in later sections as well.

Let us summarize. We have seen how neural networks are structured as com-
putational graphs composed of simple functions, and how this structure allows us
to develop efficient algorithms for computing the gradient of an objective function
represented as such a graph with respect to any subset of its variables, in case of
neural networks usually with respect to the weights. However, being able to take the
gradient is only the first step towards an efficient optimization algorithm. In the next
section, we briefly discuss the main first-order optimization algorithms currently
used in deep learning.

40 2 Deep Learning and Optimization

Fig. 2.11 A comparison of activation functions: the ACON-C function with different parameters.

2.4 First-Order Optimization in Deep Learning

In this section, we continue our introduction to deep learning, considering it from
the optimization point of view. We have already seen how to compute the gradients,
and here we will discuss how to use these gradients to find the local minima of given
functions. Throughout this section, we assume that we are given a loss function
f (w, d), where d is a data point and w is the vector of weights, and the optimization
problem in question is to minimize the total loss function over a given dataset D with
respect to w:

F(w) =
∑

d∈D
f (w, d) →w min .

Algorithm 1 shows the regular “vanilla” gradient descent (GD): at every step,
compute the gradient at the current point and move in the opposite direction. In
regular GD, a lot depends on the learning rate α. It makes sense that the learning rate
should decrease with time, and the first idea would be to choose a fixed schedule for
varying α:

• either with linear decay:

α = α0

(

1 − t

T

)

• or with exponential decay:
α = α0e

− t
T .

In both cases, T is called the temperature (it does play a role similar to the temperature
in statistical mechanics), and the larger it is, the slower the learning rate decays with
time.

2.4 First-Order Optimization in Deep Learning 41

Algorithm 1: Gradient descent
Initialize w0, k := 1;
repeat

wk+1 := wk − α
∑

d∈D ∇wF(wk , d);
k := k + 1;

until a stopping condition is met;

But these are, of course, just the very first ideas that can be much improved.
Optimization theory has a whole field of research devoted to gradient descent and
how to find the optimal value of α on any given step. We refer to, e.g., books and
surveys [84, 96, 625, 633] for a detailed treatment of this and give only a brief
overview of the main ideas.

In particular, basic optimization theory known since the 1960s leads to the so-
called Wolfe conditions and Armijo rule. If we are minimizing f (w), and on step k
we have already found the direction pk to which we need to move—for instance, in
gradient descent, we have pk = ∇w f (wk)—the problem becomes

min
α

f (wk + αpk),

a one-dimensional optimization problem.
Studying this problem, researchers have found that

• for φk(α) = f (wk + αpk), we have φ′
k(α) = ∇ f (wk + αpk)�pk , and if pk is the

direction of descent, then φ′
k(0) < 0;

• the step size α must satisfy the Armijo rule:

φk(α) ≤ φk(0) + c1αφ′
k(0) for some c1 ∈ (0,

1

2
);

• or even stronger Wolfe conditions, which mean the Armijo rule and, in addition,

|φ′
k(α)| ≤ c2|φ′

k(0)|,

i.e., we aim to reduce the projection of the gradient.

The optimization process now should stop according to a stopping condition with
respect to the L2-normof the gradient, i.e.,when‖∇w f (wk)‖2 ≤ ε or‖∇w f (wk)‖2 ≤
ε‖∇w f (w0)‖2.

However, first-order methods such as gradient descent begin to suffer if the scale
of different variables is different. A classical example of such behaviour is shown in
Figure 2.12, where the three plots show gradient descent optimization for three very
simple quadratic functions, all in the form of x2 + ρy2 for different values of ρ.

42 2 Deep Learning and Optimization

Fig. 2.12 Sample gradient descent optimization with different scale of variables: (a) f (x, y) =
x2 + y2; (b) f (x, y) = x2 + 1

10 y
2; (c) f (x, y) = x2 + 1

100 y
2.

The functions are perfectly convex, and SGD (in fact, full GD in this case) should
have no trouble at all in finding the optimum. And indeed it doesn’t, but as the scale
of variables becomes too different, gradient descent slows down to a crawl when it
comes to the vertical axis; the plots show how the same learning rates work great for
comparable x and y but slow down significantly as they become too different.

Algorithm 2: Stochastic gradient descent with mini-batches

Initialize w0, k := 0;
repeat

Dk := Sample(D);
wk+1 := wk − α

∑
d∈Dk

∇w f (wk , d);
k := k + 1;

until a stopping condition is met;

Cases like this are very common in deep learning: for instance, weights from
different layers of a deep network certainly might have different scales. Therefore,
for machine learning problems, it is much better to use adaptive gradient descent
algorithms that set the scale for different variables adaptively, depending on the
optimization landscape. Naturally, the best way to do that would be to pass to second-
order methods. Theoretically, we could apply Newton’s method here:

gk = ∇w f (wk), Hk = ∇2
w f (wk),

2.4 First-Order Optimization in Deep Learning 43

and we get that
wk+1 = wk − αk H

−1
k gk .

The Armijo rule is applicable here as well: we should choose αk such that

f (wk+1) ≤ f (wk) − c1αkg
�
k H

−1
k gk, where c1 ≈ 10−4.

Using Newton’s method to train deep neural networks would be great! Unfortu-
nately, real-life neural networks have a lot of parameters, on the order of thousands or
even millions. It is completely impractical to compute and support a Hessian matrix
in this case, and even less practical to invert it—note that second-order methodsmake
use of H−1

k .
There exist a wide variety of quasi-Newton methods that do not compute the

Hessian explicitly but rather approximate it via the values of the gradient. The most
famous of them is probably the BFGS algorithm, named after Charles George Broy-
den, Roger Fletcher, Donald Goldfarb, and David Shanno [237]. The idea is not to
compute the Hessian but keep a low-rank approximation and update it via the current
value of the gradient. It’s a great algorithm, it has versions with bounded memory,
and it would also work great to rescale the gradients...

...But a hugeHessian is just the beginning of our troubles.What’smore, in the case
of machine learning, we cannot really afford gradient descent either! The problem is
that the loss function is defined as a sum over the input dataset

∑
d∈D f (w, d), and

in reality, it is usually infeasible to go over the entire dataset to make only a single
update to the neural network weights. This means that we cannot use the BFGS
algorithm and other quasi-Newton methods because we don’t have the value of the
gradient either.

Therefore, in deep learning, one usually implements stochastic gradient descent
(SGD), shown in its general form in Algorithm 2: the difference is that on every step,
the gradient is computed not over the entire dataset D but over a subsample of the
data Dk .

How do we understand stochastic gradient descent formally and how does it fit
into optimization theory? Usually, the problem we are trying to solve can be framed
as a stochastic optimization problem:

F(w) = Eq(y)
[
f (w, y)

] → min
w

,

where q(y) is some known distribution. The basic example here is the minimization
of empirical risk:

F(w) = 1

N

N∑

i=1

fi (w) = Ei∼U(1,...,N) [fi (w)] → min
w

.

Another important example is provided by minimizing the variational lower bound,
but this goes beyond the scope of this section.

44 2 Deep Learning and Optimization

This formalization makes it clear what mini-batches are from the formal point of
view. Averaging over a mini-batch can be thought of simply as an empirical estimate
of the stochastic optimization objective function, computed on a subsample:

F̂(w) = 1

m

m∑

i=1

f (w, yi), ĝ(w) = 1

m

m∑

i=1

∇w f (w, yi),

wherem denotes the mini-batch size. Basic mathematical statistics tells us that these
estimates have a lot of desirable properties: they are unbiased, they always converge
to the true value of the expectation (albeit convergence might be slow), and they are
easy to compute.

In general, stochastic gradient descent is motivated by these ideas and can be
thought of as basically a Monte Carlo variation of gradient descent. Unfortunately, it
still does not mean that we can plug theseMonte Carlo estimates into a quasi-Newton
method such as BFGS: the variance is huge, the gradient on a single mini-batch
usually has little in common with the true gradient, and BFGS would not work with
these estimates. It is a very interesting open problem to devise stochastic versions of
quasi-Newton methods, but it appears to be a very hard problem.

But SGD has several obvious problems even in the first-order case:

• it never goes in the exactly correct direction;
• moreover, SGD does not even have zero updates at the exact point where F(w) is
minimized, i.e., even if we get lucky and reach the minimum, we won’t recognize
it, and SGD with constant step size will never converge;

• since we know neither F(w) nor ∇F(w) (only their Monte Carlo estimates with
huge variances), we cannot use the Armijo rule and Wolfe conditions to find the
optimal step size.

There is a standard analysis that can be applied to SGD; let us look at a single
iteration of SGD for some objective function

F(w) = Eq(y)
[
f (w, y)

] →w min .

In what follows, we denote by gk the gradient of F at point wk , so that

wk+1 = wk − αk ĝk, E
[
ĝk

] = gk = ∇F(wk).

Let us try to estimate the residue of the point on iteration k; denoting bywopt the true
optimum, we get

‖wk+1 − wopt‖2 = ‖wk − αk ĝk − wopt‖2 =
=‖wk − wopt‖2 − 2αk ĝ�

k (wk − wopt) + α2
k‖ĝk‖2.

2.4 First-Order Optimization in Deep Learning 45

Taking the expectation with respect to q(y) on iteration k, we get

E
[‖wk+1 − wopt‖2

] = ‖wk − wopt‖2 − 2αkg�
k (wk − wopt) + α2

kE
[‖ĝk‖2

]
.

And now comes the common step in optimization theory where wemake assump-
tions that are far too strong. In further analysis, let us assume that F is convex; this
is, of course, not true in real deep neural networks, but it turns out that the resulting
analysis is indeed relevant to what happens in practice, so let’s run with it for now.
In particular, we can often assume that even in nonconvex optimization, once we get
into a neighborhood of a local optimum, the function can be considered to be convex.
Specifically, we will use the fact that

F(wopt) ≥ F(wk) + g�
k (wk − wopt).

Now let us combine this with the above formula for E
[‖wk+1 − wopt‖2

]
:

αk(F(wk) − F(wopt)) ≤ αkg�
k (wk − wopt) =

= 1

2
‖wk − wopt‖2 + 1

2
α2
kE

[‖ĝk‖2
] − 1

2
E

[‖wk+1 − wopt‖2
]
.

Next, we take the expectation of the left-hand side and sum it up:

k∑

i=0

αi (E [F(wi)] − F(wopt)) ≤

≤ 1

2
‖w0 − wopt‖2 + 1

2

k∑

i=0

α2
i E

[‖ĝi‖2
] − 1

2
E

[‖wk+1 − wopt‖2
] ≤

≤ 1

2
‖w0 − wopt‖2 + 1

2

k∑

i=0

α2
i E

[‖ĝi‖2
]
.

We have obtained a sum of values of the function in different points with weights
αi . Let us now use the convexity assumption:

E

[

F

(∑
i αiwi∑
i αi

)

− F(wopt)

]

≤

≤
∑

i αi (E [F(wi)] − F(wopt)∑
i αi

≤
1
2‖w0 − wopt‖2 + 1

2

∑k
i=0 α2

i E
[‖ĝi‖2

]

∑
i αi

.

Thus, we have obtained a bound on the residue for some intermediate value in a
linear combination ofwi ; this is also a common situation in optimization theory, and
again, in practice, it usually turns out that there is no difference between the mean
and the last point, or the last point wK is even better.

46 2 Deep Learning and Optimization

In other words, we have found that if the initial residue is bounded by R, i.e.,
‖w0 − wopt‖ ≤ R, and if the variance of the stochastic gradient is bounded by G,
i.e., E

[‖ĝk‖2
] ≤ G2, then

E
[
F(ŵk) − F(wopt)

] ≤ R2 + G2 ∑k
i=0 α2

i

2
∑k

i=0 αi

.

This is the main formula in the theoretical analysis of stochastic gradient descent. In
particular, for a constant step size αi = h, we get that

E
[
F(ŵk) − F(wopt)

] ≤ R2

2h(k + 1)
+ G2h

2
→k→∞

G2h

2
.

Let us summarize the behaviour of SGD that follows from the above analysis:

• SGD comes to an “uncertainty region” of radius 1
2G

2h, and this radius is propor-
tional to the step size;

• this means that the faster we walk, the faster we reach the uncertainty region, but
the larger this uncertainty region will be; in other words, it makes sense to reduce
the step size as optimization progresses;

• SGD converges quite slowly: it is known that the full gradient for convex functions
converges at rate O(1/k), and SGD has a convergence rate of only O(1/

√
k);

• on the other hand, the rate of convergence for SGD is also O(1/k) when it is far
from the uncertainty region, it slows down only when we have reached it;

• but all of this still depends on G, which in practice we cannot really estimate
reliably, and this is also an important point for applications of Bayesian analysis
in deep learning.

Algorithm 3: Stochastic gradient descent with momentum

Initialize w0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
uk+1 := γuk + α

∑
d∈Dk

∇w f (wk , d);
wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

All of the above means that we need some further improvements: plain vanilla
SGD may be not the best way, there is no clear answer as to how to change the
learning rate with time, and the problem of rescaling the gradients in an adaptive
way still remains open and important.

2.4 First-Order Optimization in Deep Learning 47

Fortunately, there are plenty of improvements that do exactly that. We again
refer to [84, 96, 625, 633] for classical optimization techniques and proceed to the
approaches that have proven particularly fruitful for optimization in deep learning.

Algorithm 4: Nesterov accelerated gradient

Initialize w0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
uk+1 := γuk + α

∑
d∈Dk

∇w f (wk − γuk , d);
wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

2.5 Adaptive Gradient Descent Algorithms

As we have seen in the previous section, basic gradient descent is infeasible in the
case of deep neural networks, and stochastic gradient descent needs one to be careful
about the choice of the learning rate and,most probably, requires some rescaling along
different directions aswell. Here, we discuss various ideas in first-order optimization,
some classical and some very recent, that have proven to work well in deep learning.

The first idea is the momentum method: let us think of the current value of w as a
material point going down the landscape of the function F that we are minimizing,
and let us say that, as in real Newtonian physics, this material point carries a part of its
momentum from one time moment to the next. In discrete time, it means that in step
k we are preserving a part of the previous update uk−1, as shown in Algorithm 3. In
real situations, the momentum decay parameter γ is usually close to 1, e.g., γ = 0.9
or even γ = 0.999. The momentum method has been a staple of deep learning since
at least the mid-1980s; it was proposed for neural networks in the famous Nature
paper by Rumelhart, Hinton, and Williams [742].

The momentum method is often combined with another important heuristic,
implicit updates. In regular SGD, using implicit updates means that the gradient
is computed not at the point wk but at the next point wk+1:

wk+1 := wk − α
∑

d∈Dk

∇w f (wk+1, d).

This makes it an implicit equation rather than explicit and can be thought of as the
stochastic form of the proximal gradient method. In classical optimization theory,
using implicit updates often helps with numerical stability.

48 2 Deep Learning and Optimization

Fig. 2.13 Gradient descent optimization for F(x, y) = x2 + 1
100 y

2: the effect of momentum.

Applied to the computation of momentum, implicit updates yield the Nesterov
accelerated gradient (NAG) method, named after its inventor Yurii Nesterov [624].
In this approach, instead of computing the gradient at the point wk , we first apply
the momentum update (after all, we already know that we will need to move in that
direction) and then compute the gradient at the point wk + γuk . In this way, the
updates are still explicit but numerical stability is much improved, and Nesterov’s
result was that this version of gradient descent converges faster than the usual version.
We show the Nesterov accelerated gradient in Algorithm 4.

Figure 2.13 shows howmomentum-based methods solve the problem that we saw
in Fig. 2.12. In Fig. 2.13, we consider the same problematic function F(x, y) =
x2 + 1

100 y
2 and show the same number of iterations for every method. Now both

regular momentum and Nesterov accelerated gradient converge much faster and in
fact have enough time to converge while regular SGD is still crawling towards the
optimum. Note how the Nesterov accelerated gradient is more stable and does not
oscillate as much as basic momentum-based SGD: this is exactly the stabilization
effect of the “lookahead” in computing the gradients.

Tomove further, note that so far, the learning rate was the same along all directions
in the vector w, and we either set a global learning rate α with some schedule of
decreasing or chose it with the Armijo rule along the exact chosen direction. Modern
adaptive variations of SGD use the following heuristic: let us move faster along the
components of w that change F slowly and move slower when we get to a region
of rapid changes in F (which usually means that we are in the vicinity of a local
extremum).

2.5 Adaptive Gradient Descent Algorithms 49

The first approach along these lines was Adagrad proposed in 2011 [209]. The
idea was to keep track of the total accumulated gradient values in the form of their
sum of squares; this is vectorized in the form of a diagonal matrixGk whose diagonal
elements contain sums of partial derivatives accumulated up to this point:

Algorithm 5: Adagrad
Initialize w0, G0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Gk+1 := Gk + diag (gk);
wk+1 := wk − α√

Gk+1+ε
gk+1;

k := k + 1;
until a stopping condition is met;

Gk,i i =
k∑

l=1

∂Fl
∂wi

, where Fl(w) =
∑

d∈Dl

f (w, d).

Adagrad is summarized in Algorithm 5. The learning rate now becomes adaptive:
when the gradients along somedirection i become large, the sumof their squaresGk,i i

also becomes large, and gradient descent slows down along this direction. Thus, one
does not have to manually tune the learning rate anymore; in most implementations,
the initial learning rate is set to α = 0.01 or some other similar constant and left with
no change.

However, the main problem of Adagrad is obvious as well: while it can slow
descent down, it can never let it pick the pace back up. Thus, if the slope of the
function F becomes steep in a given direction but then flattens out again, Adagrad
will keep going very slowly along this direction. The fix for this problem is quite
straightforward: instead of a sum of squares of the gradients, let’s use an exponential
moving average.

Algorithm 6: RMSprop

Initialize w0, G0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Gk+1 := γGk + (1 − γ) diag (gk);
wk+1 := wk − α√

Gk+1+ε
gk+1;

k := k + 1;
until a stopping condition is met;

50 2 Deep Learning and Optimization

The first attempt at this is the RMSprop algorithm, proposed by Geoffrey Hinton
in his Coursera class but, as far as I know, never officially published. It replaces the
sum of squares of gradients Gk+1 := Gk + diag (gk) with a formula that computes
the exponential moving average:

Gk+1 := γGk + (1 − γ) diag (gk) ;

Hinton suggested to use γ = 0.9. We show RMSprop in Algorithm 6.
But there is onemore, slightly less obvious problem. If you look at the final update

rule inRMSprop, or actually at the update rule in any of the stochastic gradient descent
variations we have considered so far, you can notice that the measurement units in
the updates don’t match! For instance, in the vanilla SGD, we update

wk+1 := wk − α∇wFk(wk, d),

which means that we are subtracting fromw the partial derivatives of Fk with respect
to w. In other words, if w is measured in, say, seconds and f (w, d) is measured
in meters, we are subtracting meters per second from seconds, hardly a justified
operation from the physical point of view! In mathematical terms, this means that
the scale of these vectors may differ drastically, leading to mismatches and poor
convergence.

Adagrad and RMSprop change the units but the problem remains: we are now
dividing the gradient update by a square root of the sum of squared gradients, so
instead of meters per second we are now subtracting a dimensionless value—hardly
a big improvement. Note that in second-ordermethods, this problemdoes not arise; in
Newton’s method, the update rule is wk+1 = wk − αk H

−1
k gk ; in the example above,

we would get

seconds := seconds − α

(
meters

second2

)−1 meters

second
,

and now the measurement units match nicely.

Algorithm 7: Adadelta
Initialize w0, G0 := 0, H0 := 0, u0 := 0, k := 0;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

Hk+1 := ρHk + (1 − ρ) diag (uk);
Gk+1 := γGk + (1 − γ) diag (gk);

uk+1 :=
√
Hk+1+ε√
Gk+1+ε

gk ;

wk+1 := wk − uk+1;
k := k + 1;

until a stopping condition is met;

2.5 Adaptive Gradient Descent Algorithms 51

Algorithm 8: Adam
Initialize w0, G0 := 0, m0 := 0, v0 := 0, u0 := 0, k := 1;
repeat

Dk := Sample(D);
gk := ∑

d∈Dk
∇w f (wk , d);

mk := β1mk−1 + (1 − β1)gk ;
vk := β2vk−1 + (1 − β2)g2k ;
m̂k := mk

1−βk
1
, v̂k := vk

1−βk
2
;

uk := α√
v̂k+ε

m̂k ;

wk+1 := wk − uk ;
k := k + 1;

until a stopping condition is met;

To fix this problem without resorting to second-order methods, the authors of
Adadelta [989] propose to add another exponential moving average, this time of the
weight updates themselves, adding it to the numerator and thus arriving at the correct
measurement units for the update. In other words, in Adadelta, we are rescaling the
update with respect to the values of theweights, keeping track of the averageweights:

wk+1 := wk − uk+1 = wk −
√
Hk+1 + ε√
Gk+1 + ε

gk,

where
Hk+1 = ρHk + (1 − ρ) diag (uk) ,

that is, Hk accumulates the weight updates from previous steps. In this way, the
updates are properly rescaled, and the measurement units are restored to their proper
values.

But that’s not the end of the line. The next algorithm, Adam (Adaptive Moment
Estimation) [454], in many applications remains the algorithm of choice in deep
learning up to this day. It is very similar to Adadelta and RMSprop, but Adam also
stores an average of the past gradients (that is, an exponential moving average as
usual), which acts as a kind of momentum for its updates.

Formally, this means that Adam has two parameters for the decay of updates, β1

and β2, keeps two exponential moving averages, mk for gradients and vk for their
squares, and computes the update similar to RMSProp but with momentum-based
mk instead of just gk . Another feature is that sincemk and vk are initialized by zeros,
they are biased towards zero, and the authors correct for this bias by dividing over
(1 − βk

i):

52 2 Deep Learning and Optimization

Fig. 2.14 Gradient descent with different learning rates for the Beale function.

mk = β1mk−1 + (1 − β1)gk,

vk = β2vk−1 + (1 − β2)g2k .

uk = α
√

vk
1−βk

2
+ ε

mk

1 − βk
1

.

We give a full description in Algorithm 8.
When Adam appeared, it quickly took the field of deep learning by storm. One of

its best selling features was that it needed basically no tuning of the hyperparameters:
the authors, Diederik Kingma and Jimmy Ba, recommended β1 = 0.9, β2 = 0.999,
ε = 10−8, and these values work just fine for the vast majority of practical cases.
Basically, by now Adam is the default method of training deep neural networks, and
practitioners turn to something else only if Adam fails for some reason.

Before proceeding to a brief overview of other approaches and recent news, let me
give an example of all these algorithms in action. For this example, I have chosen a
standard function that is very common in examples like this; this is the Beale function

F(x, y) = (1.5 − x + xy)2 + (
2.25 − x + xy2

)2 + (
2.625 − x + xy3

)2
.

It is a simple and continuous but nonconvex function that has an interesting opti-
mization landscape. All optimization algorithms were run starting from the same
point (1, 3

2), and the Beale function has a single global minimum at (3, 1
2), which is

our main goal.

2.5 Adaptive Gradient Descent Algorithms 53

Fig. 2.15 Momentum-based methods for the Beale function.

Fig. 2.16 Adaptive gradient descent methods for the Beale function.

54 2 Deep Learning and Optimization

Experimental results are shown in Figures 2.14, 2.15, and 2.16. Figure 2.14 shows
that even in complex optimization landscapes, one usually can find a learning rate
for the basic SGD that would work well. The problem is that this value is far from
obvious: for instance, in this case, we see that overshooting the best learning rate
(which appears to be around 0.01) even a little can lead to divergence or other
undesirable behaviour: note how the plot with α = 0.05 quickly gets out of hand.
Figure 2.15 shows how momentum-based methods work: we see that for the same
initial learning rate and the same number of iterations, SGD with momentum and
SGD with Nesterov accelerated gradients find the optimummuch faster. We also see
the stabilization effect of NAG again: SGDwithNesterovmomentum overshoots and
oscillates much less than SGD with regular momentum. Finally, Fig. 2.16 shows the
behaviour of adaptive gradient descent algorithms; in this specific example, Adagrad
andAdam appear towork best although this two-dimensional example does not really
let the adaptive approaches shine.

There have been attempts to explain what is going on with Adam and why it
is so good. In particular, Heusel et al. in an influential paper [340] showed that
stochastic optimization with Adam can be described as the dynamics of a heavy ball
with friction (HBF), that is, Adam follows the differential equation for an HBF in
Newtonian mechanics. Averaging over past gradients helps the “ball” (current value
of w) get out of small regions with local minima and prefer large “valleys” in the
objective function landscape. Heusel et al. use this property to help a GAN generator
avoid mode collapse (we will talk much more about GANs in Chapter 4), but the
remark is fully general and applies to Adam optimization in any context.

There have also been critiques of Adam and similar approaches. In another influ-
ential paper, Wilson et al. [927] demonstrate that

• when the optimization problem has a lot of local minima, different adaptive algo-
rithms can converge to different minima even from the same starting point;

• in particular, adaptive methods can overfit, i.e., find non-generalizing local solu-
tions;

• and all of this happens not only in the theoretical worst case, which would be
natural and fine with us, but in practical examples.

Wilson et al. conclude that adaptive gradient descent methods are not really advan-
tageous over standard SGD and advise to use SGD with proper step size tuning over
Adam and other algorithms.

Therefore, researchers have continued to search for the holy grail of a fast and
universal adaptive gradient descent algorithm. Since Adam was presented in 2014,
there have been a lot of attempts to improve adaptive gradient descent algorithms
further. Since this is not the main subject of the book and since Adam still remains
mostly the default, I will not give a comprehensive survey of these attempts but will
only mention in passing a few of the most interesting ideas.

2.5 Adaptive Gradient Descent Algorithms 55

First of all, Adam itself has received several modifications:

• the original Adam paper [454] proposed Adamax, a modification based on the
L∞-norm instead of L2-norm for scaling the gradients; in this variation, mk is
computed as above, and instead of vk the scaling is done with

v∞
k = max (βavk−1, |gk |) ,

and v∞
k is used instead of v̂k in Algorithm 8 (initialization bias does not occur in

this case);
• AMSGrad [708] is a very similar idea: the authors present an example of a simple
problem where the original Adam does not converge and fix this by normalizing
the running average of the gradient with a maximum of all vt up to this point
instead of the exponential moving average vt ; in Algorithm 8, it means that we let

uk := α
√
v′
k + ε

m̂k

for v′
k = max

(
v′
k−1, vk

)
, where max is understood componentwise and vk is

defined exactly as in Algorithm 8;
• Nadam [204] is themodificationofAdam that uses theNesterovmomentum instead
of regular momentum formk ; expanding one step back, the Adam update rule can
be written as

wk+1 = wk − α
√
v̂k + ε

(
β1mk−1

1 − βk
1

+ (1 − β1)gk
1 − βk

1

)

≈

≈ wk − α
√
v̂k + ε

(

β1m̂k−1 + (1 − β1)gk
1 − βk

1

)

(approximate becase we do not distinguish between 1 − βk
1 and 1 − βk−1

1 in the
denominator), and now we can replace the bias-corrected estimate m̂k−1 with the
current estimate m̂k , thus changing regular momentum into Nesterov’s version:

wk+1 = wk − α
√
v̂k + ε

(

β1m̂k + (1 − β1)gk
1 − βk

1

)

;

• QHAdam (quasi-hyperbolic Adam) [565] replaces both momentum estimators
in Adam, vk and mk , with their quasi-hyperbolic versions, i.e., with weighted
averages between plain SGD and momentum-based Adam updates; the update
rule in QHAdam looks like

wk+1 = wk − α
(1 − ν1) gk + ν1m̂k

(1 − ν2) g2k + ν2v̂k
,

where m̂k and v̂k are defined as in Algorithm 8 and ν1, ν2 are new constants;

56 2 Deep Learning and Optimization

• the critique of Wilson et al., combined with much faster convergence of Adam
during the initial stages of the optimization process, led to the idea of switching
from Adam to SGD at some strategic point during the training process [447].

AdamW [556, 557] is probably one of the most interesting Adam variations. It
goes back to the 1980s, to the original L2 regularization method for neural networks
which was weight decay [322]:

wk+1 = (1 − β)wk − α∇xk Fk,

where β is the weight decay rate and α is the learning rate. In this formulation, the
weights are brought closer to zero. Naturally, it was immediately noted (right in the
original paper [322]) that this approach is completely equivalent to changing the
objective function Fk :

F reg
k (wk) = Fk(wk) + β

2
‖wk‖22

or even directly changing the gradient:

∇wk F
reg
k = ∇wk Fk + βwk .

Butwhile this equivalence holds for plain vanilla SGD, it does not hold for adaptive
variations of gradient descent! The idea ofAdamW is to go back to the original weight
decay and “fix” Adam so that the equivalence is restored. The authors show how to
do that without losing efficiency, by changing Adam updates only very slightly. The
only change compared to Algorithm 8 is that now the update uk is given by

uk := αm̂k√
v̂k + ε

+ λwk

instead of adding λwk to gk as it would happen ifAdamwas straightforwardly applied
to a regularized objective function.

It has been shown in [556, 557] that AdamW has several important beneficial
properties. Apart from improved generalization (in some experiments), it is better
than the original Adam in decoupling the hyperparameters. This means that the best
values of hyperparameters such as initial learning rate α and regularization parameter
λ do not depend on each other and thus can be found with independent trials, which
makes hyperparameter tuning much easier.

Despite this wide variety of first-order optimization algorithms and their varia-
tions, the last word has not yet been said in optimization for deep learning. As often
as now, new ideas that at first glance might revolutionize the field fade into obscurity
after the original experiments are not confirmed in wider research and engineering
practice. One good example of such an idea is super-convergence [806], the idea that
it is beneficial to change the learning rate with a cyclic schedule, increasing it back
to large values from time to time in order to provide additional regularization and

2.5 Adaptive Gradient Descent Algorithms 57

improve generalization power. The original experiments were extremely promising,
and the idea of curriculum learning has a long and successful history in deep learn-
ing [63] (we will actually return to this idea in a different context, in particular, in
Section 6.4). But the “super” in “super-convergence” has not really proven to be true
across a wide variety of situations. The idea of increasing the learning rate back has
been added to the toolbox of deep learning practicioners, but cyclic learning rates
have not become the staple of deep learning.

2.6 Conclusion

To sum up, in this section, we have seen the main ideas that have driven the first-
order optimization as applied to deep neural networks over recent years. There has
been a lot of progress in adaptive gradient methods: apart from classical momentum-
based approaches, we have discussed the recently developed optimization methods
that adapt their learning rates differently to different weights. By now, researchers
working in applied deep learningmostly treat the optimization question as tentatively
solved, usingAdam or some later variation of it such asAdamW by default and falling
back to SGD if Adam proves to get stuck in local minima too much. However, new
variations of first-order adaptive optimizationmethods continue to appear, and related
research keeps going strong.

Second-order methods or their approximations such as quasi-Newton optimiza-
tion methods remain out of reach. It appears that it would be very hard indeed to
develop their variations suitable for stochastic gradient descent with the huge vari-
ances inherent in optimizing large datasets bymini-batches. But there are no negative
results that I know in this direction either, so who knows, maybe the next big thing in
deep learning will be a breakthrough in applying second-order optimization methods
or their approximations to neural networks.

I would like to conclude by noting some other interesting directions of study that
so far have not quite led to new optimization algorithms but may well do so. In the
latest years, researchers have begun to look at deep neural networks and functions
expressed by them as objects of research rather than just tools for approximation
or optimization. In particular, there have been interesting and enlightening recent
studies of the optimization landscape in deep neural networks. I’d like to highlight a
few works:

• Li et al. [514] study how the learning rate influences generalization and establishes
a connection between the learning rates used in training and the curriculum of
which patterns the model “learns” first;

• Huang et al. [370] show that a real-life neural network’s optimization landscape
has plenty of bad minima that have near-perfect training set accuracy but very
bad generalization (test set accuracy); the authors describe this landscape as a
“minefield” but find that SGD somehow “miraculously” avoids the bad minima
and finds a local minimum with good generalization properties;

58 2 Deep Learning and Optimization

• Keskar et al. [446] and He et al. [326] study the landscape of the loss functions
commonly used in deep learning, find that “flat” local minima have better gener-
alization properties than “sharp” ones, and discuss which training modes are more
likely to fall into flat or sharp local minima;

• Chen et al. [132] put some of this theory into practice by showing how to deform
the optimization landscape in order to help the optimizer fall into flat minima;

• Izmailov et al. [391] note that better (wider) local optima can be achieved by a
very simple trick of stochastic weight averaging, where the weights at several
points along the SGD trajectory are combined together; this is a simplification of
the previously developed fast geometric ensembling trick [263];

• Nakkiran et al. [618] discuss the double descent phenomenon, where performance
gets worse before getting better as the model size increases; double descent had
been known for some time, but Nakkiran et al. introduce effective model com-
plexity, a numerical measure of a training procedure that might explain double
descent;

• Wilson and Izmailov [928, 929] considers the same effects from the Bayesian
standpoint, explaining some mysteries of deep learning from the point of view of
Bayesian inference and studying the properties of the prior over functions that are
implied by regularization used in deep learning.

These are just a few examples, there are many more. This line of research appears to
be very promising and actually looks like it is still early in development. Therefore,
I expect exciting new developments in the nearest future in this direction.

In the next chapter, we proceed from general remarks about deep learning and
optimization to specific neural architectures. We will consider in more detail the
field of machine learning where synthetic data is used most widely and with the best
results: computer vision.

Chapter 3
Deep Neural Networks for Computer
Vision

Computer vision problems are related to the understandingof digital images, video, or
similar inputs such as 3D point clouds, solving problems such as image classification,
object detection, segmentation, 3D scene understanding, object tracking in videos,
andmanymore. Neural approaches to computer vision were originally modeled after
the visual cortex of mammals, but soon became a science of their own, with many
architectures already developed and newones appearing up to this day. In this chapter,
we discuss the most popular architectures for computer vision, concentrating mainly
on ideas rather than specific models. We also discuss the first step towards synthetic
data for computer vision: data augmentation.

3.1 Computer Vision and Convolutional Neural Networks

Computer vision is one of the oldest and most important subfields of artificial intel-
ligence. In the early days of AI, even leading researchers believed that computer
vision might prove to be easy enough: Seymour Papert, one of the fathers of AI,
initially formulated several basic computer vision problems as a student project in
“an attempt to use our summer workers effectively” [654] (see also Section 5.1). But
it soon became apparent that computer vision is actually a much more ambitious
endeavour, and despite decades of effort and progress the corresponding problems
are still not entirely solved.

One of the most important advances in the study of the visual cortex was made
by David H. Hubel and Torsten N. Wiesel who, in their Nobel Prize-winning collab-
oration, were the first to analyze the activations of individual neurons in the visual
cortex of mammals, most famously cats [376, 377, 925]. They studied the early
layers of the visual cortex and realized that individual neurons on the first layer of
processing react to simple shapes while neurons of the second layer react to cer-
tain combinations of first layer neurons. For example, one first layer neuron might

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_3

60 3 Deep Neural Networks for Computer Vision

react to a horizontal line in its field of view (called a receptive field, a term that
also carried over to artificial intelligence), and another first layer neuron might be
activated by a vertical line. And if these two neurons are activated at the same time,
a second layer neuron might react to a cross-like shape appearing in its receptive
field by implementing something close to a logical AND (naturally, I’m simplifying
immensely but that’s the basic idea). In other words, first layer neurons pick up on
very simple features of the input, and second layer neurons pick up on combinations
of first layer neurons. Hubel and Wiesel were wise enough not to go much farther
than the first two layers because signal processing in the brain becomes much more
complicated afterwards. But even these initial insights were enough to significantly
advance artificial intelligence...

The basic idea of convolutional neural networks (CNN) is quite simple.We know,
e.g., from the works of Hubel and Wiesel that a reasonable way to process visual
information is to extract simple features and then produce more complicated features
as combinations of simple ones. Simple features often correspond to small receptive
fields: for instance, we might want a first layer neuron to pick up a vertical gradient
in a window of size 5 × 5 pixels. But then this feature extraction should be applied
equally to every 5 × 5window, that is, instead of training a neural network to perform
the same operation for eachwindowacross, say, a 1024 × 1024 imagewe could apply
the same learnable transformation to every window, with shared weights. This idea
works as a structural regularizer, saving an immense number of weights in the CNN
compared to an equivalent fully connected network. Mathematically, this idea can be
expressed as a convolution between the input and the small learnable transformation,
hence the name.

Figure 3.1 illustrates the basic idea of a convolutional network: a 5 × 5 input image
is broken down into 3 × 3 windows, and each window is passed through the same
small neural network, getting a vector of features as a result.After this transformation,
the 5 × 5 image becomes a 3 × 3 output in terms of width and height.

Fig. 3.1 The basic idea of a convolutional neural network; blue and red colors follow the transfor-
mations of two 3 × 3 windows, and the same small neural network is applied to the other windows
as well.

3.1 Computer Vision and Convolutional Neural Networks 61

A convolutional layer is actually just one way to implement this idea, albeit
the most popular one by far. It is a layer defined by a set of learnable filters (or
kernels) that are convolved across the entire input tensor. Convolutions can come
in any dimension, but the most popular and intuitive ones for computer vision are
two-dimensional convolutions, so we will use them in our examples. In this case,
the input is a three-dimensional tensor width × height × channels (a grayscale image
has one channel, a color image three, and intermediate representations inside a neural
network can have arbitrarily many), and the convolution is best thought of as a four-
dimensional tensor of dimension

input channels × width × height × output channels.

Figure 3.2 shows a toy numerical example of a convolutional layer consisting of a
linear convolution with a 3 × 3 × 2 tensor of weights and a ReLU activation, applied
to a 5 × 5 × 1 input image.

For the first “real” example, let us consider the Sobel operator, a classical computer
vision tool dating back to 1968 [809]. It is a discrete computation of the image
gradient, used for edge detection in classical computer vision. For our example, we
note that the main components of the Sobel operator are two 3 × 3 convolutions with
matrices

Sx =
⎛
⎝
1 0 −1
2 0 −2
1 0 −1

⎞
⎠ , Sy =

⎛
⎝

1 2 1
0 0 0

−1 −2 −1

⎞
⎠ .

Basically, Sx shows the horizontal component of the image gradient and Sy shows
the vertical component.

If we take an image such as a handwritten digit from the MNIST dataset as
shown in Fig. 3.3a, and apply a convolution with matrix Sx , we get the result shown
in Fig. 3.3b. The result of convolving with matrix Sy is shown in Fig. 3.3c. In this
example,we see howconvolutionswith smallmatrices give rise tomeaningful feature

Fig. 3.2 Sample application of a convolutional layer consisting of a linear convolution with a
3 × 3 × 2 tensor of weights and a ReLU activation.

62 3 Deep Neural Networks for Computer Vision

Fig. 3.3 Sample application of convolutions: (a) original handwritten digit; (b) convolution with
matrix Sx , the horizontal component of the image gradient; (c) convolution with matrix Sy , the
vertical component of the image gradient.

extraction: the meaning of the features shown in Fig. 3.3b, c is quite clear, and they
indeed reflect the variation of the input image’s pixel intensities in the corresponding
direction. Note that in a neural network, both convolutions would be treated as a
single tensor of dimension 3 × 3 × 2, and the result of applying it to an image of
size 28 × 28 would be a tensor with two channels (feature maps) shown in Fig. 3.3b,
c. Note that in this example, the width and height of the output stay at 28 instead
of being reduced by 1 on every side because the results are computed with padding,
i.e., an extra row and column of zeroes is added on every side of the input; this is a
common trick in convolutional networks used when it is desirable to leave the input
size unchanged.

In a trainable neural network, weights in thematrices Sx and Sy would not be set in
advance but would represent weights that need to be learned with gradient descent, as
we discussed in the previous chapter. Actually, the first introduction of convolutions
to artificial neural networks happened a long time ago, when even backpropagation
had not been universally accepted. This was the Neocognitron developed by Kuni-
hiko Fukushima in the late 1970s [248–250]. The Neocognitron was a pioneering
architecture in many respects: it was a deep neural network in times when deep
networks were almost nonexistent, it had feature extraction from small windows of
the input—precisely the idea of convolutional networks—it was training in an unsu-
pervised fashion, learning to recognize different kinds of patterns presented, and it
actually already had ReLU activations—all this in the 1970s! The Neocognitron is
widely regarded as a predecessor to CNNs, and although it did take a few years to
adapt all these ideas into modern CNN architectures, they actually appeared in the
1980s pretty much in their modern form.

In a classical convolutional network such as LeNet [501], convolutional layers are
usually interspersed with nonlinear activation functions (applied componentwise)
and pooling layers that reduce the dimension. The most popular is the max-pooling
layer that does not have any trainable parameters and simply covers the input tensor
with windows (often 2 × 2) and chooses the largest value of every feature in each

3.1 Computer Vision and Convolutional Neural Networks 63

Fig. 3.4 The LeNet-5 architecture [501].

Fig. 3.5 The LeNet-5 training process on MNIST dataset of handwritten digits.

window. The basic intuition is that we want the features to correspond to certain
properties that extend from smaller to larger windows; for example, if there is a cat
present in a 128 × 128 window in the image, there is also a cat in every 256 × 256
window containing it. Max-pooling also induces a lot of sparsity that helps keep the
computations more efficient.

For an extended example, let us implement and study the (slightly modified)
LeNet-5 network operating on 32 × 32 grayscale images (we will be using MNIST
handwritten digits), a simple convolutional architecture shown in Figure 3.4. In the
figure, layers that perform transformations are shown as rectangles filled in green,
and dimensions of current feature maps are shown as rectangles filled in blue. As
you can see, each 5 × 5 convolution reduces the width and height of the input tensor
by 4 because there is no padding here, and each 2 × 2 pooling layer (average pooling
in the case of LeNet) halves the input dimensions.

Figure 3.5 shows the learning process of this network, trained on the MNIST
dataset with Adam optimizer and batch size 32. As you can see, the loss function
(average cross-entropy between the correct answers and network predictions) on the
training set decreases steadily, but the loss function on the held-out validation set is far
from monotone. The best result on the validation set is achieved in this experiment

64 3 Deep Neural Networks for Computer Vision

Fig. 3.6 A view into the first layer of LeNet-5: (a) weights of the six convolutions; (b) sample input
image; (c) activations produced by convolutions from (a) on the image from (b).

(specific results might change after a restart with random re-initialization of the
weights) after 12 epochs of training.

Figure 3.6 shows the first layer of the resulting trained network. It shows the
weights of the six 5 × 5 convolutions trained on the first layer in Fig. 3.6a and the
results of applying them to a sample digit shown in Fig. 3.6b (the same as in Fig. 3.3,
only padded with zeroes to size 32 × 32) are shown in Fig. 3.6c. You can see that
the first layer has learned to extract simple geometric features, in many ways similar
to the image gradients shown in Fig. 3.3.

Modern networks used in computer vision employ very similar convolutional
layers. They usually differ from LeNet in that they use ReLU activation functions or
its variations rather than sigmoidal activations (recall the discussion in Section 2.1).
The ReLU nonlinearity was re-introduced into deep learning first for Boltzmann
machines in [616] andwidely popularized in deep convolutional networks byAlexNet
(see Section 3.2 below).

Over the last decade, CNNs have been dominating computer vision and have been
rising in popularity in many other fields of machine learning. For example, in 2014–
2016 one-dimensional CNNs were becoming increasingly crucial for natural lan-
guage processing (NLP), supplementing and even replacing recurrent networks [423,
1010]; after 2017, the best results in NLP were produced by architectures based on
self-attention such as Transformer, especially BERT and GPT families [192, 697,
891]. But BERT-like models are still often used to pretrain word embeddings, and
embeddings are then processed by CNNs and/or RNNs to solve downstream tasks.

However, there still remain valid criticisms even for the basic underlying idea
of convolutional architectures. Two of the most important criticisms deal with the

3.1 Computer Vision and Convolutional Neural Networks 65

lack of translational invariance and loss of geometry along a deep CNN. Lack of
translational invariance means that units in a CNN that are supposed to produce a
given feature (say, recognize a cat’s head on a photo) might not activate if the head
is slightly moved or rotated. In machine learning practice, translational invariance in
CNNs is usually achieved by extensive data augmentation that always includes simple
geometric transformations such as re-cropping the image, rescaling by a factor close
to 1, and so on (we will discuss augmentations in detail in Section 3.4). However,
achieving full translational invariance by simply extending the dataset is far from
guaranteed and appears extremely wasteful: if we are dealing with images we already
know that translational invariance should be in place, why should we learn it from
scratch for every single problem in such a roundabout way?

The “loss of geometry” problem stems from the fact that standard convolutional
architectures employ pooling layers that propagate information about low-level fea-
tures to high-level feature maps with smaller resolutions. Therefore, as the signal
travels from bottom to top layers, networks progressively lose sight of the exact
locations where features have originated. As a result, it is impossible for a high-level
feature to activate on specific geometric interrelations between low-level features, a
phenomenon sometimes called the “Picasso problem”: a convolutional feature can
look for two eyes, nose, and mouth on a face but cannot ensure that these features
are indeed properly positioned with respect to each other. This is because pooling
layers, while they are helpful to reduce the redundancy of feature representation in
neural networks, prevent overfitting, and improve the training process, and at the
same time represent a fixed and very crude way of “routing” low-level information
to high-level features.

These two problems have been pointed out already in 2014 by Geoffrey Hin-
ton [343]. An attempt to alleviate these problems has led Hinton to develop a new
approach to architectures that perform feature composition: capsule networks. In a
capsule network, special (trainable) routing coefficients are used to indicate which
low-level features are more important for a given high-level feature, and the features
(capsules) themselves explicitly include the orientations and mutual positions of fea-
tures and explicitly estimate the likelihood of the resulting composite feature [247,
349, 452, 748]. As a result, translational invariance is built in, routing is dynamic,
capsule networks have much fewer parameters than CNNs, and the entire process
is much more similar to human vision than a CNN: capsules were designed with
cortical columns in mind.

However, at present it still appears too hard to scale capsule networks up to real-
world problems: computational tricks developed for large-scale CNNs do not help
with capsule networks, and so far they struggle to scale far beyond MNIST and
similar-sized datasets. Therefore, all modern real-life computer vision architectures
are based on CNNs rather than capsules or other similar ideas, e.g., other equivariant
extensions such as sphericalCNNs [163] or steerableCNNs [164], and applications of
capsule networks are only beginning to appear [227]. Thus, we will not be discussing
these alternatives in detail, but I didwant tomention that the future of computer vision
may hold something very different from today’s CNNs.

66 3 Deep Neural Networks for Computer Vision

3.2 Modern Convolutional Architectures

In this section, we give an overview of the main ideas that have brought computer
vision to its current state of the art. We will go over a brief history of the development
of convolutional architectures during the deep learning revolution, butwill only touch
upon the main points, concentrating on specific important ideas that each of these
architectures has brought to the smörgåsbord of CNNs that we have today. For a
more detailed introduction, we refer to [153, 225, 631] and other sources (Fig. 3.7).

MCDNN. The deep learning revolution in computer vision started during 2010–
2011, when recent advances in deep learning theory and the technology of training
and using neural networks on highly parallel graphical processors (GPUs) allowed
training much deeper networks with much more units than before. The first basic
problem that was convincingly solved by deep learning was image classification. In
2011, a network by Dan Cireşan from Jürgen Schmudhuber’s group won a number
of computer vision competitions [159]. In particular, this network was the first to
achieve superhuman performance in a practically relevant computer vision problem,
achieving a mere 0.56% error in the IJCNN Traffic Sign Recognition Competition,
while the average human error on this dataset was 1.16% [160].

Architecturally, Ciresan’s network, called Multi-Column Deep Neural Network
(MCDNN), is a committee of deep convolutional networks with max-pooling. It
showcases several important ideas:

• MCDNN uses a basic convolutional architecture very similar to the LeNet family
of networks (so we do not show a separate figure for it), but it was one of the first
to consistently use max-pooling instead of average-pooling or other variations;

• the architecture contains several identical networks trained on differently prepro-
cessed inputs, where preprocessing variations include different combinations of
color normalization and contrast adjustment; thus, MCDNN was already showing

Fig. 3.7 The AlexNet architecture [477].

3.2 Modern Convolutional Architectures 67

the power of data augmentation for computer vision, a theme that remains crucial
to this day and that represents one of the motivations for synthetic data.

AlexNet. However, MCDNN operated on very small images, cutting out traffic
sign bounding boxes of size 48 × 48 pixels. The development of large-scale modern
architectures that could dealwith higher resolution images startedwithAlexNet [477],
a network developed by Alex Krizhevsky in Prof. Hinton’s group (see Fig. 3.7 for
an illustration). With 8 trainable layers, AlexNet became one of the first successful
truly deep convolutional networks. It was introduced at the ImageNet Large Scale
VisualRecognitionChallenge (ILSVRC) in 2012,whereAlexNet beat all competitors
with an unprecedented margin: two submitted versions of AlexNet had test set errors
(measured as classification accuracy for top-5 guesses) about 15–16%, while the
nearest competitor could only achieve an error of 26%1! Architecturally, AlexNet
again introduced several new ideas:

• it introduced and immediately popularized ReLU activations as nonlinearities used
in convolutional layers; previously, tanh activations had been most often used in
convolutional networks;

• it emphasized the crucial role of data augmentation in training neural networks
for computer vision problems; we will discuss the case of AlexNet in detail in
Section 3.4;

• it was one of the first large-scale networks to consistently use dropout for additional
regularization;

• finally, it was one of the first neural networks to feature model parallelization: the
model was distributed between two GPUs; back in 2012, it was a real engineering
feat, but since then it has become a standard feature of deep learning frameworks
such as PyTorch or Tensorflow.

AlexNet’s resounding success marked the start of a new era in computer vision:
since 2012, it has been dominated by convolutional neural architectures. CNNs
have improved and defined state of the art in almost all computer vision problems:
image classification, object detection, segmentation, pose estimation, depth estima-
tion, object tracking, video processing, and many more. We will talk in more detail
about object detection and segmentation architectures in Section 3.3. For now, the
important part is that they all feature a convolutional backbone network that performs
feature extraction, often on several layers simultaneously: bottom layers (nearest to
input) of a CNN extract local features and can produce high-resolution feature maps,
while features extracted on top layers (nearest to output) have large receptive fields,
generalize more information, and thus can learn to have deeper semantics, but lose
some of the geometry along the way (we have discussed this problem above in
Section 3.1).

VGG. The next steps in deep CNN architectures were also associated with the
ILSVRC challenge: for several years, top results in image classification were marked
by new important ideas that later made their way into numerous other architectures as
well. One of the most fruitful years was 2014, when the best ImageNet classification

1http://image-net.org/challenges/LSVRC/2012/results.html.

http://image-net.org/challenges/LSVRC/2012/results.html

68 3 Deep Neural Networks for Computer Vision

Fig. 3.8 VGG: decomposing large convolutions [802].

was achieved by the VGG network by Simonyan and Zisserman [802]; the name
originates from the Visual Geometry Group in the University of Oxford. The main
idea that defined the VGG family is that individual convolutions in a CNN virtually
never need to be large: a 5 × 5 convolution can be expressed as a composition of two
3 × 3 convolutions without any pooling or nonlinearities in between, a 7 × 7 convo-
lution is just three layers of 3 × 3 convolutions, and so on. Figure 3.8 shows the first
successful network from the VGG family; note how max-pooling layers come after
groups of two or three convolutional layers, thus decomposing larger convolutions.
This results in much deeper networks with fewer weights, serving as additional reg-
ularization and at the same time making training and inference more efficient. Later
architectures also experimented with expressing n × n two-dimensional convolu-
tions as compositions of 1 × n and n × 1 one-dimensional convolutions, and this
trick is also common in modern CNN architectures.

Inception and GoogLeNet. In the same year, Google presented GoogLeNet, a
network by Szegedy et al. that won the object detection track of ILSVRC 2014 [836].
Together with a precursor work on “network-in-network” architectures by Lin et
al. [522], it had three important ideas that have stayed with us ever since: Inception
modules, 1 × 1 convolutions, and auxiliary classifiers.

First, “network-in-network” architectures take the basic idea of convolutional
networks—applying the same simple transformation to all local windows over the
input—and run with it a bit further than regular CNNs. Instead of just using a matrix
of weights, they design special architectures for the “simple transformation” (not so
simple anymore), so that a single layer is actually applying a whole neural network to
each window of the input, hence the name. The architecture of these small networks
from [836], called Inceptionmodules, is shown in Fig. 3.9. Since then, there have been
plenty of modifications, including Inception v2 and v3 [837] and later combinations
of Inception with ResNet (see below).

Second, 1 × 1 convolutions play an important part in all variations of network-in-
networkmodules. At first glance, it may appear that 1 × 1 convolutions are pointless.
However, while they indeed do not collect any new features from neighboring pixels,
they provide additional expressiveness by learning a (nonlinear, otherwise it is point-
less indeed) transformation on the vector of features in a given pixel. In practice, this
is usually needed to change the dimension of the feature vector, often reducing it
before performing more computationally demanding transformations.

3.2 Modern Convolutional Architectures 69

Fig. 3.9 Inception modules:
(a) basic “naive” Inception
v1 module [836]; (b)
Inception v1 module with
dimension reductions via
1 × 1 convolutions [836]; (c)
sample Inception v2
module [837].

For example, a 3 × 3 convolution that maps a 512-dimensional vector into a 512-
dimensional vector has 512 × 3 × 3 × 512 = 9 · 218 ≈ 2.36M weights. But if we
first apply a 1 × 1 convolution to reduce the dimension to 64 and then map the
result back into dimension 512, we add two convolutions with 512 × 1 × 1 × 64 =
215 = 32768 weights each but reduce the 3 × 3 convolution to 64 × 3 × 3 × 64 =
9 · 212 weights, for a total of 2 · 215 + 9 · 212 ≈ 102K weights, a reduction by a
factor of more than 20! The additional approximation that this kind of dimensionality
reduction implies usually does not hurt and may even serve as additional structural
regularization.

70 3 Deep Neural Networks for Computer Vision

This idea has been widely used in architectures that try to minimize the memory
footprint or latency of convolutional neural models. Figure 3.9b shows the Incep-
tion v1 module with 1 × 1 convolutions that perform these dimension reductions,
and Figure 3.9c shows how Inception v2 has modified this module with the VGG
basic idea of decomposing larger convolutions into compositions of 3 × 3 convolu-
tions [837]. We do not show all variations of Inception modules here and refer to
[836, 837] for more details.

Third, GoogLeNet is a deep network, it has 22 layers with trainable parameters,
or 27 if you count pooling layers. When training by gradient descent, GoogLeNet
faces problems that we discussed in Section 2.4 in relation to deep neural networks in
general: error propagation is limited, and when top layers reach saturation it becomes
very hard for bottom layers to train. To overcome this problem, Szegedy et al. [836]
proposed to use auxiliary classifiers to help the loss gradients reach bottom layers.
The GoogLeNet architecture (see Fig. 3.10) has two auxiliary classifiers that have
separate classification heads (shallow networks ending in a classification layer). The
loss functions are the same (binary cross-entropy classification loss), and they are
simply added together with the main loss function to form the objective function for
the whole network:

LGoogLeNet = LMainBCE + α1LAuxBCE1 + α2LAuxBCE2 .

The α coefficient was initialized to 0.3 and gradually reduced during training. This
trick was intended to speed up the training of bottom layers on early stages of training
and improve convergence, but Szegedy et al. report that in practice, convergence rate
did not improve significantly, but the final performance of the network was better, so
auxiliary classifiers served more like a regularizer.

ResNet. Despite these promising results, auxiliary classifiers are not widely used
in modern architectures. The reason is that the main problem that they had been
intended to solve, problems with error propagation after the saturation of top layers,
was solved in a different way that proved to be much better. A Microsoft Research
team led by Kaiming He developed and implemented the idea of deep residual learn-
ing [330] that was the main driving force behind the success of ResNet architectures
that won ILSVRC 2015 in both classification (reducing the ImageNet Top-5 error
rate to 3.5%) and object detection (with the Faster R-CNN detection architecture that
we will discuss below in Section 3.3).

The basic structure of ResNet is simple: it is a composition of consecutive lay-
ers, and each of them is usually simply a convolutional layer, perhaps with batch
normalization on top. The main difference is that in a residual unit, the layer that
computes a function F(x) for some input x (shown schematically in Fig. 3.11a) is
supplemented with a direct residual connection that goes around the layer, so that the
overall function that produces the kth layer output, denoted as y(k), from the input
vector x(k) is computed as

y(k) = F(x(k)) + x(k),

3.2 Modern Convolutional Architectures 71

Fig. 3.10 The GoogLeNet general architecture.

72 3 Deep Neural Networks for Computer Vision

Fig. 3.11 Deep residual learning: (a) schematics of a simple layer; (b) schematics of a layer with
a residual connection; (c) sample ResNet layer from [330].

where x(k) is the input vector of the kth layer, F(x) is the function that the layer
computes, and y(k) is the output of the residual unit that will later become x(k+1) and
will be fed to the next layer in the network (see Fig. 3.11b).

The name comes from the fact that if the layer as a whole is supposed to approx-
imate some function H(x), it means that the actual neural layer has to approximate
the residual, F(x) ≈ H(x) − x; this does not complicate the problem for F(x)much
(if at all), but at the same time provides a direct way for the gradient to flow around
F(x). Now

∂y(k)

∂x(k)
= 1 + ∂F(x(k))

∂x(k)
,

and even if the layer F becomes completely saturated, its near-zero derivatives
will not hinder training: the gradient will simply flow down to the previous layer
unchanged.

Residual learning was not a new idea: it is the same constant error carousel
idea that had been used in recurrent architectures for a long time, in particular in the
famous long short-termmemory (LSTM) architectures developed in the late 1990s by
Hochreiter, Gers, and Schmidhuber [273, 350]. A recurrent network is, in essence, a
very deep network by default (consider its computational graph when unrolled along
the entire input sequence), and the same phenomenon leads to either exploding or
vanishing gradients that effectively limit the propagation of information (“memory”)
in recurrent networks. The constant error carousel is precisely the idea of having a
“direct path” for the gradient to flow.

However, He et al. were the first to apply this idea to “unrolled” deep convo-
lutional networks, with great success. Note that a comparison of several residual
architectures performed in [331] shows that the best results are achieved with the
simplest possible residual connections: it is usually best to leave the direct path as
free from any transformations (such as nonlinearities, batch normalizations, and the

3.2 Modern Convolutional Architectures 73

like) as possible. It even proved to be a bad idea to use control gates that could poten-
tially learn to “open” and “close” the path around the layer F(x), an idea that had
been successful in LSTM-like recurrent architectures. Figure 3.11c shows a simple
sample residual layer from [330], although, of course, many variations on this idea
have been put forward both in the original paper and subsequent works.

Architecturally, this has led to the possibility of training very deep networks.
Kaiming He coined the term “revolution of depth”: VGG had 19 trainable layers,
GoogLeNet had 22, but even the very first version of ResNet contained 152 layers.
It is still a popular feature extraction backbone, usually referred to as ResNet-152,
with a popular smaller variation ResNet-101 with 101 layer (there is really neither
space nor much sense in presenting the architectures of deep residual networks in
the graphical form here). Theoretically, residual connections allow to train networks
with hundreds and even thousands of layers, but experiments have shown that there
is no or very little improvement in performance starting from about 200 layers.

Some of the best modern convolutional feature extractors result from a combina-
tion of the network-in-network idea coming from Inception and the idea of residual
connections. In 2016, Szegedy et al. [835] presented Inception-v4 and several ver-
sions of InceptionResNet architectureswith new architectures for both small network
units and the global network as a whole. The resulting architectures are still among
the best feature extractors and often serve as backbones for object detection and
segmentation architectures.

Striving for efficiency: MobileNet, SqueezeNet, and others. The very best
results in basic problems such as image classification are achieved by heavy networks
such as the Inception ResNet family. However, one often needs to make a trade-off
between the final performance and available computational resources; even a desktop
GPU may be insufficient for modern networks to run smoothly, and computer vision
is often done on smartphones or embedded devices. Therefore, the need arises to
develop architectures that save on the network size (memory, usually related to the
number of weights) and its running time (usually depending on the number of layers)
without losing much in terms of performance. Naturally, it would be great to have
the best of both worlds: excellent performance and small networks. Below, we will
not present the exact architectures (I believe that after giving one full example with
GoogLeNet, a further presentation of complete architectures would only clutter the
book with information that is easy to find and unnecessary to remember) but only
survey the ideas that researchers have used in these architectures.

How can one save weights?We have discussed above that convolutions are a great
structural regularizer: by applying the same weights across a large image, convolu-
tions can extract features in an arbitrarily large input with a fixed and relatively small
number of weights. But that’s not all: convolutions themselves can also grow to be
quite large.

Suppose, for instance, that you have a layer with 256 channels (a very reasonable
number, on the low side even), and you want to apply a 5 × 5 convolution to get
another 256 channels at the output. A straightforward four-dimensional convolution
would have, as we discussed in Section 3.1,

74 3 Deep Neural Networks for Computer Vision

Fig. 3.12 Illustration for reducing the convolutions: (a) basic single convolution; (b) the VGG
trick; (c) the bottleneck trick.

256 × 5 × 5 × 256 = 1638400

weights (as shown in Fig. 3.12a). This is, of course, a big improvement compared to
a feedforward layer that would have 256 × width × height × 256 weights, but it is
often desirable to reduce these 1.6M weights further.

Let us briefly go through the main ideas used for this purpose in modern architec-
tures. Note that all methods shown below, strictly speaking, are not equivalent to a
single convolution, which is only natural: a network with 1.6M weights can be more
expressive than a network with ten times fewer weights. Fortunately, it turns out that
this added expressiveness usually does not improve performance and actually can
deteriorate it due to overfitting or insufficient data to train so many weights.

First, we can use the VGG trick and represent a 5 × 5 convolution with a composi-
tion of two 3 × 3 convolutions (see Fig. 3.12b). This reduces the number ofweights to
2 × (256 × 3 × 3 × 256) = 1179648. It can be reduced even further if we represent
3 × 3 convolutions as compositions of 1 × 3 and 3 × 1, following [837].

Second, we can use the bottleneck trick that was first popularized by the Inception
family of architectures. The 1.6 million weights in the layer above result from the
fact that we have to multiply all dimensions of the convolution. But we can turn
some of these multiplications into additions if we first compress the 256 channels
down to a more manageable size with a 1 × 1 convolution, then do the spatial 5 × 5
convolution on the reduced tensor, again producing a tensor with a small number of
channels (say 32 again), and only then expand it backwith another 1 × 1 convolution.
This method, illustrated in Fig. 3.12c, is somewhat akin to a low-rank approximation
for the convolution tensor. Suppose that the bottleneck part has 32 channels; then the
total number of weights in the three resulting convolutions will be

256 × 1 × 1 × 32 + 32 × 5 × 5 × 32 + 32 × 1 × 1 × 256 = 41984,

with minor further reductions again available if we apply the VGG trick to the
5 × 5 convolution in the middle. At this point, we have already achieved a dramatic

3.2 Modern Convolutional Architectures 75

reduction in network size, reducing the total number of weights by a factor of more
than 28.

The bottleneck idea was presented and successfully used in the SqueezeNet archi-
tecture that replaced Inception units with Fire modules that have a “squeeze-then-
expand” structure: first use 1 × 1 convolutions to reduce the number of channels and
then expand them back, applying a number of different convolutions and concate-
nating the outputs [382].

But even that’s not all! Third, we can take the bottleneck approach even further
by using depthwise separable convolutions. The idea is now to further decompose
the tensor in the middle, a 32 × 5 × 5 × 32 convolution that still has all four factors
present. This convolutionmixes all channels together; butwhat if we leave themixing
for 1 × 1 convolutions (after all, that’s exactly what they do) and concentrate only on
the spatial part? Formally speaking, we replace a single convolution with 32 separate
5 × 5 convolutions, each applied only to a single channel. This definitely reduces the
expressiveness of the convolution in the middle since now each channel in the result
has access to only one channel in the input; but since the channels can freely exchange
information in the 1 × 1 convolution, it usually does not lead to any significant loss
of performance. In our running example, we could apply this idea to the bottleneck,
shaving off one of the 32 factors and getting a total of

256 × 1 × 1 × 32 + 32 × 5 × 5 + 32 × 1 × 1 × 256 = 17184

weights. Alternatively, we could just forget about the whole bottleneck idea and do
256 depthwise separable convolutions instead of one of the 1 × 1 convolutions and
the bottleneck, getting

256 × 1 × 1 × 256 + 256 × 5 × 5 = 71936

weights. The second approach looks worse in this case, but, first, it depends on
the actual dimensions, and second, compressing all features to an exceedingly small
bottleneck does tend to lose information, so if we can achieve the same result without
compressing the features it might result in better performance.

Depthwise separable convolutions were introduced by Francois Chollet in [152],
where he noted that a basic Inception module can be represented as a depthwise
separable convolution that mixes subsets of channels and presented the Xception
modules that take this idea to its logical conclusion as we have just discussed. They
also became the main tool in the construction of the MobileNet family of networks
that were designed specifically to save on memory and still remain some of the best
tools for the job [358].

Neural architecture search and EfficientNet. In the survey above, basic ideas
such as compressing the channels with 1 × 1 convolutions are easy to understand,
and we can see how researchers might come up with ideas like this. A more difficult
question is how to come up with actual architectures. Who and how could establish
that for GoogLeNet you need exactly two convolutional layers in the stem followed
by nine basic Inceptionmodules interspersed with max-pooling in just the right way?

76 3 Deep Neural Networks for Computer Vision

The actual answer is simple: there is no theorem that shows which architecture is
best; you just have to come up with a wide spectrum of different architectures that
“make sense” in terms of dimensions, test a lot of them in practice, and choose the
one that performs best.

This looks suspiciously like a machine learning problem: you have the build-
ing blocks (various convolutions, pooling layers, etc.) and a well-defined objective
function (say, performance on the ImageNet test set after the training converges).
Naturally, it was not long before researchers decided to automate this process. This
problem is quite naturally formulated as a reinforcement learning problem: while
we do not have a ready-to-use dataset, we can compute the objective function on
any network. But computing the objective function is quite expensive (you need to
train a large model to convergence). This approach to developing neural networks is
known as neural architecture search (NAS); I will not go into more details about it
and will refer to the main sources on NAS [532, 846, 930, 1031].

In convolutional architectures, neural architecture search yielded the EfficientNet
family, proposed in 2019 by Tan and Le [847]. They introduced the compound scal-
ingmethod, basically generalizing all of the above discussion into a single approach
that scales network width, depth, and resolution according to a set of scaling coef-
ficients. This approach by itself already allowed to improve existing architectures,
but even more importantly, this generalization allowed the authors to formulate the
problem of finding the best network in an efficient parameter space. The resulting
networks outperformed all predecessors, setting a whole new Pareto frontier for the
performance/efficiency trade-off.

To sum up, in this section we have seen the main ideas that constitute the state
of the art in convolutional architectures. But note that everything that we have been
talking about could be formulated in terms of “training on ImageNet”, that is, all
networks mentioned above solve the image classification problem. But this is only
one problem in computer vision, and hardly even the most important one... how do
we solve object detection, segmentation, and all the rest? Let’s find out.

3.3 Case Study: Neural Architectures for Object Detection

In subsequent chapters, we will consider the use of synthetic data for computer
vision.We have seen abovewhich convolutional architectures are regarded as the best
state-of-the-art feature extractors for images.However, computer vision encompasses
many problems, and feature extraction is usually just the beginning. Indeed, even the
basic setting of computer vision introduced in the 1960s—teaching a robot to look
around itself and navigate the environment—involves much more than just image
classification.When I am typing this text, I do not just recognize a “monitor” although
it does take up most of my field of view: I can also see and distinguish the keyboard,
my own hands, various objects on the screen all the way down to individual letters,
and so on, all in the same image.

3.3 Case Study: Neural Architectures for Object Detection 77

Fig. 3.13 Sample training set annotations from the OpenImages dataset [61, 473, 489]: (a) object
detection; (b) segmentation.

The real high-level problems in this basic computer vision setting are

• object detection, i.e., finding the location of an object in the image, usually formal-
ized as a bounding box (rectangle defined by four numbers, usually the coordinates
of two opposing angles), and classifying the object inside each bounding box;

• instance segmentation, i.e., finding the actual silhouette of every object in the
image; this can be formalized as a separate classification problem for every pixel
in the image: which object (or background) does this specific pixel belong to?

Figure 3.13 shows sample training set annotations from the OpenImages dataset,
which is currently one of the largest available datasets of real data with object detec-
tion and segmentation labeling [61, 473, 489].

Note that in these new problems, the output of the network suddenly takes up a
much higher dimension than ever before. In an ImageNet classification problemwith
1000 classes, the output is a vector of probabilities assigned to these classes, so it has
dimension 1000. In an object detection problem, the output has the same dimension
1000 plus four numbers defining the bounding box for every object, and as we will
see shortly, it is usually even higher than that. In a classification problem, the output
has, formally speaking, dimension 1000 per pixel, although in practice segmentation
is rarely formalized in this straightforward way.

As much as I would like to, I have neither the space nor the willpower to make
this chapter into a wide survey of the entire research field of computer vision. So in
this section, I will attempt a more in-depth survey of one specific computer vision
problem, namely object detection. This will showcase many important ideas in mod-
ern computer vision and will align with the case study in Section 6.4, where we will
see how object detection architectures that we consider here benefit from the use of
synthetic data.

78 3 Deep Neural Networks for Computer Vision

Both object detection and segmentation have been around forever, at least since
the 1960s. I will not dwell on classical approaches to these problems since, first, our
focus is on deep learning, and second, most classical approaches have indeed been
obsoleted bymodern neural networks. I want to mention only one classical approach,
the selective search algorithm developed in 2004 [234]. In brief, it represents the
image as a graph where edge weights show similarities between small patches, start-
ing from single pixels and gradually uniting them until the image is broken into a
lot (usually several hundred) small patches. This is known as pre-segmentation or
sub-segmentation, and the resulting patches are often called superpixels, i.e., the
assumption is that the patches are so uniform that they definitely should belong to
the same object. This may be a useful approach even today, and it is still used in
some cases as preprocessing even for deep learning approaches [184], because after
pre-segmentation the dimension of the problem is greatly reduced, from millions of
pixels to hundreds or at most a few thousand of superpixels.

In 2012, selective search became the basis for a classical object detection algo-
rithm [884] that worked as follows:

• use selective search to do pre-segmentation;
• greedily unite nearest neighbors in the resulting graph of patches; there can be lots
of different proximity measures to try, based on color, texture, fill, size, and other
properties;

• as a result, construct a large set of bounding boxes out of the superpixels; this is
the set of candidates for object detection, but at this stage, it inevitably contains a
lot of false positives;

• choose positive and negative examples, taking care to include hard negative exam-
ples that overlap with correct bounding boxes;

• train a classifier (SVM in this case) to distinguish between positive and negative
examples; during inference, each candidate bounding box is run through the SVM
to filter out false positives as best we can.

This pipeline will bring us to our first series of neural networks. But before we do
that, we need to learn one more trick.

Convolutionalization andOverFeat. In the previous section, we have seenmany
wonderful properties of convolutional neural networks. But there is one more impor-
tant advantage that we didn’t mention there. Note how when we were counting the
weights in a CNN, we never used the width and height of the input or output image,
only the number of channels and the size of the convolution itself. That is because
convolutions don’t care about the size of their input: they are applied to all windows
of a given size with shared weights, and it does not matter how many such windows
the image contains. A network is called fully convolutional if it does not contain
any densely connected layers with fixed topology and therefore can be applied to an
input of arbitrary size.

But we can also turn regular convolutional neural networks, sayAlexNet for image
classification, into fully convolutional networks! In a process known as convolu-
tionalization, we simply treat fully connected layers as 1 × 1 convolutions. The
default AlexNet takes 224 × 224 images as input, so we can cover the input image

3.3 Case Study: Neural Architectures for Object Detection 79

by 224 × 224 windows and run every window through AlexNet; the fully connected
layers at the end become 1 × 1 convolutions with the corresponding number of chan-
nels and have the samekind of computational efficiency.As a result of this process,we
will transform the original image into a heatmap of various classes: every 224 × 224
window will become a vector of probabilities for the corresponding classes.

This procedure is very helpful; in particular, one of the first successful applications
of modern deep neural networks to object detection, OverFeat, did exactly this,
replacing the final classifier with a regression model that predicts bounding boxes
and postprocessing the results of this network with a greedy algorithm that unites
the proposed bounding boxes (naturally, such a procedure will lead to a lot of greatly
overlapping candidates) [782]. This approach won the ILSVRC 2013 challenge in
both object detection and object localization (a variant of object detection where it is
known a priori that there is only one significant object in the picture, and the problem
is to locate its bounding box).

Most modern architectures do not take this idea to its logical conclusion, i.e., do
not produce vectors of class probabilities for inputwindows. But basically, all of them
use convolutionalization to extract features, i.e., run the input image through the first
layers of a CNN, which is often one of the CNNs that we discussed in the previous
section. This CNN is called the backbone of an object detection or segmentation
pipeline, and by using a fully convolutional counterpart of a backbone the pipelines
can extract features from input images of arbitrary size.

Two-stage object detection: the R-CNN family. Let us now recall the object
detection pipeline based on selective search from [884] and see how we can bring
CNNs into the mix.

The first idea is to use a CNN to extract the features for object classification inside
bounding boxes and perhaps also the final SVM that weeds out false positives. This
was exactly the idea of R-CNN [276], a method that defined new state of the art for
object detection around 2013–2014. The pipeline, illustrated in Figure 3.14a, runs
as follows:

• run a selective search to produce candidate bounding boxes as above;
• run each region through a backbone CNN such as AlexNet (pretrained for image
classification and possibly fine-tuned on the training set); on this stage, the original
R-CNN actually warped each region to make its dimensions match the input of
the CNN;

• train an SVM on the features produced by the CNN for classification to remove
the false positives;

• train a separate bounding box regression on the same features used to refine the
bounding boxes, i.e., shift their corners slightly to improve the localization of
objects.

This approach was working very well but was very fragile in training (it had
quite a few models that all had to be trained separately but needed to work well in
combination) and hopelessly slow: it took about 45–50 seconds to run the inference
of the R-CNN pipeline on a single image, even on a GPU! This was definitely

80 3 Deep Neural Networks for Computer Vision

Fig. 3.14 The R-CNN family of architectures: (a) original R-CNN pipeline [276]; (b) Fast R-
CNN [277]; (c) Faster R-CNN [718].

impractical, and further developments in this family of approaches tried to make
R-CNN work faster.

The main reason for this excessive running time was that R-CNN needs to make a
pass through the CNN for every region. Therefore, Fast R-CNN [277], illustrated in
Fig. 3.14b, was designed so that it could use a single pass of the main backbone CNN
for the whole image. The main idea of Fast R-CNN is to introduce a region of interest
(RoI) projection layer that collects features from a region. The RoI projection layer
does not have any weights; it simply maps a given bounding box to a given layer of
features, translating the geometry of the original image to the (reduced) geometry in
this layer of features. As a result, the tensors of features corresponding to different
bounding boxes will have different dimensions.

To be able to put them through the same classifier, Fast R-CNN introduced the
RoI pooling layer that performs max-pooling with dimensions needed to reduce all
bounding boxes to the same size. As a result, for every bounding box we get a tensor
of features with the same dimensions that can now be put through a network that

3.3 Case Study: Neural Architectures for Object Detection 81

performs object classification and bounding box regression (which means that it has
four outputs for bounding boxes and C outputs for the classes). Only this last part of
the network needs to be run for every bounding box, and the (much larger) part of
the network that does feature extraction can be run once per image.

Fast R-CNN was two orders of magnitude faster than regular R-CNN at no loss of
quality. But it was still relatively slow, and now the bottleneck was not in the neural
network. The slowest part of the system was now the selective search algorithm that
produced candidate bounding boxes.

The aptly named Faster R-CNN [718] removed this last bottleneck by producing
candidate bounding boxes as part of the same neural network. In the Faster R-CNN
architecture (now it is indeed a neural architecture rather than a pipeline of different
models and algorithms), shown in Fig. 3.14c, the input image first goes through
feature extraction and then the tensor of features is fed to a separate region proposal
network (RPN). The RPNmoves a sliding window of possible bounding boxes along
the tensor of features, producing a score of how likely it is to have an object in this
box and, at the same time, exact coordinates of this box. Top results from this network
are used in the RoI projection layer, and then it works exactly as discussed above.
Note that all of this processing now becomes part of the same computational graph,
and the gradients flow through all new layers seamlessly: they are all at the end just
differentiable functions.

To me, this is a perfect illustration of the expressive power of neural networks:
if you need to do some additional processing along the way, you can usually just
do it as part of the neural network and train the whole thing together, in an end-
to-end fashion. Soon after Faster R-CNN appeared, it was further improved and
sped up with R-FCN (region-based fully convolutional network), which introduced
position-sensitive feature maps that encode information regarding a specific position
in the bounding box (“left side of the object”, “bottom right corner”, etc.) [177]; we
will not go into the details here. Faster R-CNN and R-FCN remain relevant object
detection frameworks up to this day (they are considered to be slow but good), only
the preferred backbones change from time to time.

One-stage object detection: YOLO and SSD. The R-CNN family of networks
for object detection is known as two-stage object detection because even Faster
R-CNN has two clearly distinguishable separate stages: one part of the network
produces candidate bounding boxes, and the other part analyzes them, ranks their
likelihood to be a true positive, and classifies the objects inside.

But one can also do object detection in a single pass, looking for both bound-
ing boxes and the objects themselves at the same time. One of the first successful
applications of this approach was the original YOLO (“you only look once”) object
detector by Redmon et al. [709]. This was, again, a single neural network, and it
implemented the following pipeline:

• split the image into an S × S grid, where S is a fixed small constant (e.g., S = 7);
• in each cell, predict both bounding boxes and probabilities of classes inside them;
this means that the network’s output is a tensor of size

82 3 Deep Neural Networks for Computer Vision

S × S × (5B + C),

whereC is the number of classes (we do classification inside every cell separately,
producing the probabilities p(classi | obj) of various classes assuming that this cell
does contain an object) and 5B means that each of B bounding boxes is defined
by five numbers: four coordinates and the score of how certain the network is in
that this box is correct;

• then the bounding boxes can be ranked simply by the overall probability

p(classi | obj)p(obj)IoU,

where p(obj)IoU is the target for the certainty score mentioned above: we want it
to be zero if there is no object here and if there is, to reflect the similarity between
the current bounding box and the ground truth bounding box, expressed as the
intersection-over-union score (also known as the Jaccard similarity index).

All this could be trained end-to-end, with a single loss function that combined
penalties for incorrectly predicted bounding boxes, incorrect placement of them, and
wrong classes. Overall, YOLO minimizes

L(θ) =λcoord

S2∑
i=1

B∑
j=1

�Obji j�
((
xi − x̂i (θ)

)2 + (
yi − ŷi (θ)

)2)

+λcoord

S2∑
i=1

B∑
j=1

�Obji j�

((√
wi −

√
ŵi (θ)

)2 +
(√

hi −
√
ĥi (θ)

)2
)

+
S2∑
i=1

B∑
j=1

�Obji j�
(
Ci − Ĉi (θ)

)2 + λnoobj

S2∑
i=1

B∑
j=1

�¬Obji j�
(
Ci − Ĉi (θ)

)2

+
S2∑
i=1

�Obji j�
∑
c

(
pi (c) − p̂i (c; θ)

)2
,

where θ denotes the weights of the network, and network outputs are indicated as
functions of θ .

Let us go through the original YOLO loss function in more detail as it provides
an illustrative example of such loss functions in other object detectors as well:

• �Obji j� is the indicator of the event that the j th bounding box (out of B) in cell
i (out of S2) is “responsible” for an actual object appearing in this cell, that is,
�Obji j� = 1 if that is true and 0 otherwise;

• similarly, �Obji� = 1 if and only if an object appears in cell i ;
• the first two terms dealwith the bounding box position and dimensions: if bounding
box j in cell i is responsible for a real object, the bounding box should be correct,
so we are bringing the coordinates of the lower left corner, width, and height of
the predicted bounding box closer to the real one;

3.3 Case Study: Neural Architectures for Object Detection 83

• the third and fourth terms are related to Ĉi (θ), the network output that signifies
the confidence that there is an object in this cell; it is, obviously, brought closer to
the actual data Ci ; note that since cells with and without objects are imbalanced
(although this imbalance cannot hold a candle to the imbalance that we will see in
SSDs), there is an additional weight λcoord to account for this fact;

• the fifth term deals with classification: the internal summation runs over classes,
and it brings the vector of probabilities p̂i (c) that the network outputs for cell i
closer to the actual class of the object, provided that there is an object in this cell;

• λcoord and λnoobj are hyperparameters, constants set in advance; the original YOLO
used λcoord = 5 and λnoobj = 1

2 .

The original YOLO had a relatively simple feature extractor, and it could achieve
results close to the best Faster R-CNN results in real time, with 40–50 frames per
second while Faster R-CNN could do less than 10.

Further development of the idea to predict everything at once led to single-shot
detectors (SSD) [540]. SSD uses a set of predefined anchor boxes that are used as
default possibilities for each position in the feature map. It has a single network that
predicts both class labels and the corresponding refined positions for the box angles
for every possible anchor box. Applied to a single tensor of features, this scheme
would obviously detect only objects of a given scale since anchor boxes would take
up a given number of “pixels”. Therefore, the original SSD architecture already
applied this idea on several different scales, i.e., several different layers of features.
The network is, again, trained in an end-to-end fashion with a single loss function.

Note that SSDhas a lot of outputs: it hasM × N × (C + 4) outputs for anM × N
featuremap,which for the basic SSDarchitecturewith a 300 × 300 input image came
to 8732 outputs per class, that is, potentially millions of outputs per image. But this
does not hinder performance significantly because all these outputs are computed in
parallel, in a single sweep through the neural network. SSD worked better than the
original YOLO, on par with or even exceeding the performance of Faster R-CNN,
and again did it at a fraction of the computational costs.

Since the original YOLO, the YOLO family of one-stage object detectors has
come a long way. I will not explain each in detail but will mention the main ideas
incorporated by Joseph Redmon and his team into each successive iteration:

• YOLOv2 [710] tried to fix many localization errors and low recall of the original
YOLO; they changed the architecture (added batch normalization layers and skip
connections from earlier layers to increase the geometric resolution, predicted
bounding box offsets rather than coordinates, etc.), pretrained their own high-
resolution (448 × 448) classifier instead of using one pretrained on ImageNet
(256 × 256), and addedmulti-scale training, i.e., trained on different image sizes;

• YOLO9000, presented in the same paper [710], generalized object detection to a
large number of classes (9000, to be precise) by using the hierarchical softmax
idea: instead of having a single softmax layer for 9000 classes, a hundred of which
are various breeds of dog, let us first classify if the object is a living thing, then if
it is an animal, get to a specific breed only after going down several layers in the
decision tree;

84 3 Deep Neural Networks for Computer Vision

• YOLOv3 [711] changed the feature extraction architecture and introduced a num-
ber of small improvements, in particular a multi-scale architecture similar to the
feature pyramid networks that we will discuss below.

Another important addition to the family of one-stage object detectors was Reti-
naNet by Lin et al. [524]. Themain novelty here is a modified loss function for object
detection known as focal loss. One problem with one-stage object detection is that
the output is wildly imbalanced: we have noted several times that one-stage detectors
have a huge number of outputs that represent a wide variety of candidate bounding
boxes, but how many of them can actually be correct?

The mathematical side of this problem is that even correctly classified examples
(a bounding box in the background correctly classified as “no object”) still contribute
to the classification loss function: the usual cross-entropy loss equals − log p for an
example where the correct class gets probability p. This is a small value when p
is close to 1 (which it should be when the network is sure), but negative examples
outweigh positive examples by a thousand to one, and these relatively small values
add up. So focal loss downweighs the loss on well-classified examples, bringing it
close to zero with an additional polynomial factor in the loss function: the focal loss
for a correctly classified example is −(1 − p)γ log p for some γ > 0 instead of the
usual cross-entropy loss − log p. Focal loss has proved to be an extremely useful
idea, used in a wide variety of deep learning models since the original work [524].

The YOLO family of networks and RetinaNet have defined state of the art in
real-time object detection for a long time. In particular, YOLOv3 was the model of
choice for at least 2 years, and this situation has begun to change only very recently.
We will go back to the story of YOLO at the end of this section, but for now let us
see the other main ideas in modern object detection.

Object detection at different scales: feature pyramid networks. To motivate
the next set of ideas, let us analyze which specific problems have historically plagued
object detection. If you look at the actual results in terms of how many objects are
usually detected, you will see that the absolute numbers in object detection are
pretty low: long after image classifiers beat ImageNet down to superhuman results
of less than 5% top-5 test error (human level was estimated at about 5.1%) [329],
the best object detectors were getting mean average precision of about 80% on
the (relatively simple) PASCAL VOC dataset and struggled to exceed 35% mean
average precision on the more realistic Microsoft COCO dataset. At the time of
writing (summer of 2020), the best mAP on Microsoft COCO is about 55%, still
very far from perfect [848, 900]. Why are the results so low?

One big problem lies in the different scales of objects that need to be recognized.
Small objects are recognized very badly by most models discussed above, and there
are plenty of them in real life and in realistic datasets such asMicrosoft COCO. This is
due to the so-called effective stride: by the time the region proposal network kicks in,
the original geometry has already been compressed a lot by the initial convolutional
layers. For example, the basic Faster R-CNN architecture has effective stride 16,
i.e., a 16 × 16 object is only seen as a single pixel by the RPN. We could try to
reduce effective stride mechanically, by doing convolutional layers without pooling

3.3 Case Study: Neural Architectures for Object Detection 85

Fig. 3.15 Types of convolutions: (a) regular convolutions; (b) dilated convolutions.

Fig. 3.16 Multi-scale object recognition: a sample architecture from [222] that does not have
top-down connections.

and without reducing the geometry, but then the networks become huge and basically
infeasible. On the other hand, there are also large objects: a car may be taking up
either 80% of the photo or just a tiny 30 × 30 pixel spot somewhere; sometimes both
situations happen on the same photo. What do we do?

One idea is to changehowwedoconvolutions.Manyobject detection architectures
use dilated (sometimes also called atrous) convolutions, i.e., convolutions whose
inputwindow is not a contiguous rectangle of pixels but a strided set of pixels from the
previous layer, as shown in Fig. 3.15; see, e.g., [211] for a detailed explanation. With
dilated convolutions, fewer layers are needed to achieve large receptive fields, thus
saving on the network size. Dilated convolutions are used in Faster R-CNN, R-FCN,
and other networks; see, e.g., a work by Yu and Koltun where dilated convolutions
were successfully applied to semantic segmentation [980].

But this is just a trick that can improve the situation, not a solution.We still need to
copewithmulti-scale objects in the same image. The first natural idea in this direction
is to gather proposals from several different layers in the backbone feature extraction

86 3 Deep Neural Networks for Computer Vision

Fig. 3.17 Feature pyramid networks: (a) top-down architecture with predictions on the bottom
level [108, 674]; (b) feature pyramid network [523].

network. In a pure form, this idea was presented by Eggert et al. [222], where the
architecture has several (three, to be precise) different region proposal networks,
each designed to recognize a given scale of objects, from small to large. Figure 3.16
shows an outline of their architecture; the exact details follow Faster R-CNN quite
closely. The results showed that this architecture improved over basic Faster R-CNN,
and almost the entire improvement came from far better recognition of small objects.
A similar idea in a different form was implemented by Cai et al. [108], who have a
single region proposal network with several branches with different scales of outputs
(the branches look kind of like GoogLeNet).

But the breakthrough came when researchers realized that top layers can inform
lower layers in order to make better proposals and better classify the objects in them.
An early layer of a convolutional backbone can only look at a small part of the input
image, and it may lack the semantic expressiveness necessary to produce good object
proposals. Therefore, it would be beneficial to add top-down connections, i.e., use
the semantically rich features produced on top layers of the CNN to help the early
layers understand what objects they are looking at.

This is exactly the idea of feature pyramid networks (FPN), presented in 2016
by Lin et al. [523]. Actually, there are two ways to do that. One way is to use skip
connections to get from the top down; thework [108] already contains an architecture
that implements this idea, and it appeared in other previous works as well [674]; we
illustrate it in Fig. 3.17a. The difference in the feature pyramid approach is that
instead of sending down semantic information to the bottom layer, Lin et al. make
RoI predictions independently on several layers along this top-down path, as shown
in Fig. 3.17b; this lets the network better handle objects of different scales. Note
that the upscaling and composition parts do not have to have complicated structure:
in [523], upscaling is a single convolutional layer, and composition is done by using
a single 1 × 1 convolution on the features and adding it to the result of upscaling.

3.3 Case Study: Neural Architectures for Object Detection 87

Fig. 3.18 The top-down pathway in various pyramid architectures: (a) FPN [523]; (b) PANet [538];
(c) NAS-FPN [274]; (d) BiFPN from EfficientDet [848]. Dashed rectangles show repeated blocks.

The “predict” part can be complicated if needed, e.g., it can represent the RPN from
Faster R-CNN.

Feature pyramids have become a staple of two-stage object detection. One impor-
tant advance was Path Aggregation Network (PANet) [538], which added new path-
ways between layers of the pyramid and introduced adaptive feature pooling; specif-
ically, they added another bottom-up pathway to the top-down one, as shown in
Fig. 3.18b. Another advance was NAS-FPN [274], which used neural architecture
search to find a better feature pyramid architecture. Its resulting architecture is shown
in Fig. 3.18c; note that only one block is shown but it is repeated several times in the
final architecture.

At present, research into feature pyramid architectures has culminated with Effi-
cientDet, a network developed by Google Brain researchers Tan et al. [848]. Varia-
tions of this network currently show record performance, sometimes losing to solu-
tions based onCSPNet, a new recently developed CNNbackbone (wewill not go into
details on this one) [900]. EfficientDet introduced a new solution for the multi-scale
feature fusion problem, an architecture called BiFPN (weighted bidirectional feature
pyramid network); the outline of one of its repeated blocks is shown in Fig. 3.18d.

YOLOv4, YOLOv5, and current state of the art. I would like to finish this
section with an interesting story that is unfolding right as I’m writing this book.

After YOLOv3, Joseph Redmon, the main author of all YOLO architectures
that we have discussed above, announced that he stopped doing computer vision
research2. For about 2 years, YOLOv3 basically defined the state of the art in object
detection: detectors that could outperform it worked much slower. But in 2020,
Alexey Bochkovskiy et al. released YOLOv4, a significantly improved (and again
sped up) version of YOLO [78]. By using newmethods of data augmentation, includ-
ing evenGAN-based style transfer (wewill discuss such architectures in Chapter 10),

2He said that the main reason was that “the military applications and privacy concerns eventu-
ally became impossible to ignore”. Indeed, modern computer vision can bring up certain ethical
concerns, although it is far from obvious on which side the scales tip.

88 3 Deep Neural Networks for Computer Vision

using the mixup procedure in training [993], and actually a large and diverse collec-
tion of other recently developed tricks (see Section 3.4), Bochkovskiy et al. managed
to reach performance comparable to EfficientDet with performance comparable to
YOLOv3.

But that’s not the end of the story. In just two months, a different group of authors
released an object detector that they called YOLOv5. At the time of writing (summer
of 2020), there is still no research paper or preprint published about YOLOv5, but
there is a code repository3, and the blog posts by the authors claim that YOLOv5
achieves the same performance as YOLOv4 at a fraction of model size and with
better latencies [622, 623]. This led to the usual controversy about naming, credit,
and all that, but what is probably more important is that it is still not confirmed which
of the detectors is better; comparisons are controversial, and third-party comparisons
are also not really conclusive. Matters are not helped by the subsequent release of
PP-YOLO [547], an improved reimplementation of YOLOv3 that also added a lot
of new tricks and managed to outperform YOLOv4...

By the time you are reading this, the controversy has probably already been settled,
and maybe you are already using YOLOv6 or later, but I think this snapshot of the
current state of affairs is a great illustration of just how vigorous and alive modern
deep learning is. Even in such a classical standard problem as object detection, a lot
can happen very quickly!

3.4 Data Augmentations: The First Step to Synthetic Data

In the previous section, we have alreadymentioned data augmentation several times.
Data augmentations are defined as transformations of the input data that change the
target labels in predictable ways. This allows to significantly (often by several orders
of magnitude) increase the amount of available data at zero additional labeling cost.
In fact, I prefer to view data augmentation as the first step towards synthetic data:
there is no synthetic data generation per se, but there is recombination and adaptation
of existing real data, and the resulting images often look quite “synthetic”.

The story of data augmentation for neural networks begins even before the deep
learning revolution; for instance, Simard et al. [801] used distortions to augment
the MNIST training set in 2003, and I am far from certain that this is the earliest
reference. The MC-DNN network discussed in Section 3.2, arguably the first truly
successful deep neural network in computer vision, also used similar augmentations
even though it was a relatively small network trained to recognize relatively small
images (traffic signs).

But let us begin in 2012, with AlexNet [477] that we have discussed in detail in
Section 3.2. AlexNet was the network that made the deep learning revolution happen
in computer vision... and even with a large dataset such as ImageNet, even back in

3https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5

3.4 Data Augmentations: The First Step to Synthetic Data 89

2012 it would already be impossible without data augmentation! AlexNet used two
kinds of augmentations:

• horizontal reflections (a vertical reflection would often fail to produce a plausible
photo) and

• image translations; that is the reason why the AlexNet architecture, shown in
Fig. 3.7, uses 224 × 224 × 3 inputs while the actual ImageNet data points have
256 pixels by the side: the 224 × 224 image is a random crop from the larger
256 × 256 image.

With both transformations, we can safely assume that the classification label will
not change. Even if we were talking about, say, object detection, it would be trivial
to shift, crop, and/or reflect the bounding boxes together with the inputs—that is
exactly what we mean by “changing in predictable ways”. The resulting images
are, of course, highly interdependent, but they still cover a wider variety of inputs
than just the original dataset, reducing overfitting. In training AlexNet, Krizhevsky
et al. estimated that they could produce 2048 different images from a single input
training image. What is interesting here is that even though ImageNet is so large
(AlexNet trained on a subset with 1.2 million training images labeled with 1000
classes),modern neural networks are even larger (AlexNet has 60million parameters).
Krizhevsky et al. had the following to say about their augmentations: “Without this
scheme, our network suffers from substantial overfitting, which would have forced
us to use much smaller networks” [477].

By now, this has become a staple in computer vision: while approachesmay differ,
it is hard to find a setting where data augmentation would not make sense at all.

To review what kind of augmentations are commonplace in computer vision, I
will use the example of the Albumentations library developed by Buslaev et al. [103];
although the paper was only released in 2020, the library itself had been around for
several years and by now has become the industry standard.

The first candidates are color transformations. Changing the color saturation,
permuting color channels, or converting to grayscale definitely does not change
bounding boxes or segmentation masks, as we see in Figure 3.19. This figure also
shows two different kinds of blurring, jpeg compression, and various brightness and
contrast transformations.

The next obvious category are simple geometric transformations. Again, there is
no question about what to do with segmentation masks when the image is rotated or
cropped: we can simply repeat the same transformationwith the labeling. Figure 3.20
shows examples of both global geometric transformations such as flipping or rotation
(Fig. 3.20a) and local distortions defined according to a grid (Fig. 3.20b). The same
ideas can apply to other types of labeling; for instance, keypoints (facial landmarks,
skeletal joints in pose estimation, etc.) can be treated as a special case of segmentation
and also changed together with the input image.

All of these transformations canbe chained and appliedmultiple times. Figure 3.21
shows a more involved example produced with the Albumentations library; it corre-
sponds to the following chain of augmentations:

90 3 Deep Neural Networks for Computer Vision

Fig. 3.19 Sample color transformations and blurring provided by theAlbumentations library [103].

• take a random crop from a predefined range of sizes;
• shift, scale, and rotate the crop to match the original image dimension;
• apply a (randomized) color shift;
• add blur;
• add Gaussian noise;
• add a randomized elastic transformation for the image;
• perform mask dropout, removing a part of the segmentation masks and replacing
them with black cutouts on the image.

That’s quite a few operations! But how do we know that this is the best way
to approach data augmentation for this particular problem? Can we find the best
possible sequence of augmentations? Indeed, recent research suggests that we can
look for a meta-strategy for augmentations that would take into account the specific
problem setting; we will discuss these approaches in Section 12.2.

3.4 Data Augmentations: The First Step to Synthetic Data 91

Fig. 3.20 Sample geometric transformations provided by the Albumentations library [103]:
(a) global transformations; (b) local distortions.

But even that is not all! What if we take augmentation one step further and allow
augmentations to produce more complex combinations of input data points? In 2017,
this idea was put forward in the work titled “Smart Augmentation: Learning an
Optimal Data Augmentation Strategy” by Lemley et al. [506]. Their basic idea is
to have two networks, “Network A” that implements an augmentation strategy and
“Network B” that actually trains on the resulting augmented data and solves the
downstream task. The difference here is that “Network A” does not simply choose
from a predefined set of strategies but operates as a generative network that can, for
instance, blend two different training set examples into one in a smart way. I will not
go into the full details of this approach, but Figure 3.22 provides two characteristic
examples from [506].

This kind of “smart augmentation” borders on synthetic data generation: transfor-
mations are complex, and the resulting images may look nothing like the originals.
But before we turn to actual synthetic data generation in subsequent chapters, let us
discuss other interesting ideas one could apply even at the level of augmentation.

Mixup, a technique introduced by MIT and FAIR researchers Zhang et al. in
2018 [993], looks at the problem from the opposite side: what if we mix the labels
together with the training samples? This is implemented in a very straightforward
way: for two labeled input data points, Zhang et al. construct a convex combination

92 3 Deep Neural Networks for Computer Vision

Fig. 3.21 An involved example of data augmentation by transformations from the Albumentations
library [103].

Fig. 3.22 An example of “smart augmentations” by Lemley et al. [506]: the image on the left is
produced as a blended combination of two images on the right.

3.4 Data Augmentations: The First Step to Synthetic Data 93

Fig. 3.23 The famous “panda-to-gibbon” adversarial example [292]: the image on the left is recog-
nized by AlexNet as a panda with 57.7% confidence, but after adding small random-looking noise
the network recognizes the image on the right as a gibbon with 99.3% confidence.

of both the inputs and the labels:

x̃ = λx1 + (1 − λ)x2, where x1, x2 are raw input vectors,

ỹ = λy1 + (1 − λ)y2, where y1, y2 are one-hot label encodings.

The blended label does not change either the network architecture or the training
process: binary cross-entropy trivially generalizes to target discrete distributions
instead of target one-hot vectors.

The resulting labeled data covers a muchmore robust and continuous distribution,
and this helps the generalization power. Zhang et al. report especially significant
improvements in trainingGANs. By now, the idea of mixup has become an important
part of the deep learning toolbox: you can often see it as an augmentation strategy,
especially in the training of modern GAN architectures.

The last idea that I want to discuss in this section is self-adversarial training, an
augmentation technique that incorporates adversarial examples [292, 484] into the
training process. Adversarial examples are a very interesting case that showcases
certain structural and conceptual problems with modern deep neural networks. It
turns out that for most existing artificial neural architectures, one can modify input
images with small amounts of noise in such a way that the result looks to us humans
completely indistinguishable from the originals but the network is very confident
that it is something completely different. The most famous example from one of the
first papers on adversarial examples by Goodfellow et al. [292], with a panda turning
into a very confident gibbon, is reproduced in Fig. 3.23.

By now, adversarial examples and ways to defend against them have become a
large field of study in modern deep learning; let me refer to [781, 963] for recent
surveys on adversarial examples, attacks, and defenses.

In the simplest case, such adversarial examples are produced by the following
procedure:

• suppose that we have a network and an input x that we want to make adversarial;
let us say that we want to turn a panda into a gibbon;

94 3 Deep Neural Networks for Computer Vision

• formally, it means that we want to increase the “gibbon” component of the net-
work’s output vector y (at the expense of the “panda” component);

• so we fix the weights of the network and start regular gradient ascent, but with
respect to x rather than the weights!

This is the key idea for finding adversarial examples; it does not explain why they
exist (it is not an easy question) but if they do, it is really not so hard to find them
in the “white box” scenario, when the network and its weights are known to us, and
therefore we can perform this kind of gradient ascent with respect to the input image.

So how do we turn this idea into an augmentation technique? Given an input
instance, let us make it into an adversarial example by following this procedure for
the current network that we are training. Then we train the network on this example.
This maymake the networkmore resistant to adversarial examples, but the important
outcome is that it generally makes the network more stable and robust: now we are
explicitly asking the network to work robustly in a small neighborhood of every
input image. Note that the basic idea can again be described as “make the input data
distribution cover more ground”, but by now we have come quite a long way since
horizontal reflections and random crops.

Note that unlike basic geometric augmentations, this may turn out to be a quite
costly procedure. But the cost is entirely borne during training: yes, you might have
to train the final model for two weeks instead of one, but the resulting model will, of
course, work with exactly the same performance. The model architecture does not
change, only the training process does.

One of the best recent examples for the combined power of various data aug-
mentations is given by the architecture that we discussed in Section 3.3: YOLOv4
by Bochkovskiy et al. [78]. Similar to many other advances in the field of object
detection, YOLOv4 is in essence a combination of many small improvements. Faced
with the challenge of improving performance but not sacrificing inference speed,
Bochkovskiy et al. systematize these improvements and divide them into two sub-
sets:

• bag of freebies includes tricks and improvements that do not change the inference
speed of the resulting network at all, modifying only the training process;

• bag of specials includes changes that do have a cost during inference but the cost
is, hopefully, as small as possible.

The “bag of specials” includes all changes related to the architecture: new activation
functions, bounding box postprocessing, a simple attention mechanism, and so on.
But the majority of the overall improvement in YOLOv4 comes from the “bag of
freebies”... which almost entirely consists of augmentations.

YOLOv4 uses all kinds of standard augmentations, self-adversarial training, and
mixup that we have just discussed, and introduces newMosaic and CutMix augmen-
tations that amount to composing an input image out of pieces cropped out of other
images (together with the objects and bounding boxes, of course). This is just one
example but there is no doubt that data augmentations play a central role in modern
computer vision: virtually every model is trained or pretrained with some kind of
data augmentations.

3.5 Conclusion 95

3.5 Conclusion

In this chapter, we have seen a brief introduction to the world of deep learning for
computer vision. We have seen the basic tool for all computer vision applications—
convolutions and convolutional layers,—have discussed how convolutional layers
are united together in deep feature extractors for images, and have seen how these
feature extractors, in turn, can become key parts of object detection and segmentation
pipelines.

There is really no hope to cover the entirety of computer vision in a single short
chapter. In this chapter, I have decided to concentrate on giving at least a very brief
overview of the most important ideas of convolutional architectures and review as an
in-depth example of one basic high-level computer vision problem, namely object
detection. Problems such as object detection and segmentation are verymuch aligned
with the topic of this book, synthetic data. In synthetic images, both object detection
and segmentation labeling come for free: since we control the entire scene, all objects
in it, and the camera, we know precisely which object every pixel belongs to. On the
other hand, hand-labeling for both problems is extremely tedious (try to estimate how
long it would take you to label a photo like the one shown in Fig. 3.13!). Therefore,
such basic high-level problems are key to the whole idea of synthetic data, and in
Chapter 6 we will see how modern synthetic datasets help the networks that we have
met in this chapter. In fact, I will devote a whole case study in Section 6.4 to just
object detection with synthetic data.

In this chapter, we have also begun to discuss synthetic data, in its simplest form
of data augmentations. We have seen how augmentations have become a virtually
indispensable tool in computer vision these days, from simple geometric and color
transformations to very complex procedures such as self-adversarial training. But
still, even “smart” augmentations are just combinations and modifications of real
data that someone has had to label in advance, so in Chapter 6 the time will come
for us to move on to purely synthetic examples.

Before we do that, however, we need another introductory chapter. In the next
chapter, we will consider generative models in deep learning, from a general intro-
duction to the notion of generative models to modern GAN-based architectures and a
case study of style transfer, which is especially relevant for synthetic-to-real domain
adaptation.

Chapter 4
Generative Models in Deep Learning

So far, we have mostly discussed discriminative machine learning models that aim
to solve a supervised problem, i.e., learn a conditional distribution of the target
variable conditioned on the input. In this chapter, we consider generative models
whose purpose is to learn the entire distribution of inputs and be able to sample new
inputs from this distribution. We will go through a general introduction to generative
models and then proceed to generative models in deep learning. First, we will discuss
explicit density models that model distribution factors with deep neural networks
and their important special case, normalizing flows, and explicit density models that
approximate the distribution in question, represented by variational autoencoders.
Then we will proceed to the main content, generative adversarial networks, discuss
various adversarial architectures and loss functions, and give a case study of style
transfer with GANs that is directly relevant to synthetic-to-real transfer.

4.1 Introduction to Generative Models

All the methods that we consider in this book lie in the domain of machine learning,
and most of them use deep neural networks and thus fall into the deep learning cate-
gory. In Chapter 2, we saw a very brief introduction to the most important paradigms
of machine learning: probabilistic foundations of machine learning with the prior,
posterior, and likelihood, supervised and unsupervised learning, and other basic con-
cepts of the field.

In this chapter, it is time to discuss another important distinction that spans the
entire machine learning: the distinction between discriminative and generative mod-
els. Intuitively, the difference is quite clear: if you need to distinguish between cats
and dogs on a picture, you are training a discriminative model, and if you want to
generate a new picture of a cat, you need a generative model.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_4

98 4 Generative Models in Deep Learning

Formally, this difference can be expressed as follows:

• discriminative models learn a conditional distribution p (y | x), where x is the
input data point and y is the target variable;

• generative models learn a joint distribution p(y, x) or p(x), or at least learn some
way to sample from this distribution (we will see the difference in this chapter).

It is also quite intuitively clear that learning a generativemodel is harder than learning
a discriminative one: it should be harder to generate a new photo of a cat than just
to distinguish between cats and dogs, right? This is also clear formally: if you have
a generative model and can compute p(y, x), to get p (y | x) it suffices to compute
p(y, x) for all values of y (usually quite feasible in a classification problem) and
normalize the result, but there is no clear way to go from p (y | x) to p(y, x).

In practice, this means that generative models either have to struggle with more
difficult optimization problems (as we will see in the case of GANs) or have to make
stronger assumptions about the structure of this distribution. Note that models for
unsupervised learning are often generative because there is no clear target variable,
but it is actually not necessary at all: e.g., we will discuss how a simple autoencoder,
while being a perfectly fine model for unsupervised dimensionality reduction, does
not quite work as a generative model yet.

Before proceeding further, let me begin with one important remark about gen-
erative models. Consider learning a generative model in the maximum likelihood
framework:

θ∗ = arg max
∏

x∈D
p(x; θ) = arg max

∑

x∈D
log p(x; θ),

where p = pmodel is the model probability density. Note that here D denotes the
dataset, so if our model is sufficiently expressive to simply memorize the data, it
will probably be the best strategy with respect to maximum likelihood; overfitting is
a problem in generative models as well, and we have to alleviate it by introducing
more restrictive assumptions and/or priors on p(x; θ).

We can look at the same optimization problem from a different perspective. Con-
sider the “data distribution” pdata that is defined as the uniform distribution concen-
trated at the points from the dataset D. In this case, the Kullback–Leibler divergence
between pdata and pmodel becomes

KL (pdata‖pmodel) =
∑

x∈D

1

|D| log
1

|D|pmodel(x)
dx =

= − 1

|D|
∑

x∈D

log pmodel(x)dx + Const,

which means that minimizing the KL-divergence between pdata and pmodel is exactly
equivalent to maximizing the likelihood above. In other words, in the optimization
problem the data points try to “pull up” the probability density pmodel, while the

4.1 Introduction to Generative Models 99

Fig. 4.1 Sample generative and discriminative models in machine learning: (a) directed graphical
model for naive Bayes; (b) factor graph for logistic regression; (c) directed graphical model for an
HMM; (d) factor graph for a linear chain CRF.

opposing constraints are our probabilistic assumptions and the fact that pmodel has to
sum to one.

In this section, let us consider a couple of examples that illustrate the difference
and the inherent duality between generative and discriminative models.

For a simple yet very illustrative example, consider the naive Bayes classifier. It
is a generative model that makes the assumption that features in x = (x1 ... xK) are
independent given the class label y:

p(y, x) = p(y)

K∏

k=1

p (xk | y) .

Under such strong assumptions, even a generative model is rather straightforward
to train: assuming that there are N classes, y ∈ {1, . . . , N }, and that each xk is a
discrete variable with M values, xk ∈ {1, . . . , M}, the parameters of naive Bayes are

θkmn = p (xk = m | y = n) , θn = p(y = n),

and they can be learned independently by collecting dataset statistics. The same
goes for other (e.g., continuous) distributions of xk : naive Bayes assumptions let us
learn them independently from subsets of the data. Once this model is trained, it
becomes straightforward to sample from the joint distribution p(y, x): first sample y
and then sample xk conditional on y. Figure 4.1a shows the directed graphical model
corresponding to naive Bayes.

100 4 Generative Models in Deep Learning

Let us rewrite the joint likelihood of the naive Bayes classifier in a different form,
explicitly showing the dependence on parameters:

p (D | θ) =
∏

(x,y)∈D

p(y)

K∏

k=1

p (xk | y) =
∏

(x,y)∈D

N∏

n=1

(
θn

M∏

m=1

K∏

k=1

θ
�xk=m�
kmn

)�y=n�

=

= exp

⎛

⎝
∑

(x,y)∈D

(
N∑

n=1

�y = n�θn +
N∑

n=1

M∑

m=1

K∑

k=1

�y = n��xk = m�θkmn

)⎞

⎠ ,

where �·� denotes 1 if the statement in the brackets holds and 0 if it does not.
In other words, the naive Bayes classifier makes the assumption that the log-

likelihood

log p (x, y | θ) =
N∑

n=1

�y = n�θn +
N∑

n=1

M∑

m=1

K∑

k=1

�y = n��xk = m�θkmn

is a linear function of trainable parameters with coefficients that represent certain
features of the data point (indicators of various values for x and y).

Consider nowa lineardiscriminativemodel thatmakes basically the same assump-
tion: logistic regression. In logistic regression, for an input x and y we model

p (y = n | x; θ) = e
∑K

k=1 θnk xk

∑N
n′=1 e

∑K
k=1 θn′k xk

= 1

Z(x)
exp

(
K∑

k=1

θnk xk

)
,

so

log p (y = n | x; θ) =
K∑

k=1

θnk xk + log Z(x).

We now see that the expression for naive Bayes is a special case of this expression,
for a specific (albeit quite general) form of the features. Logistic regression provides
a simple decomposition for the conditional distribution p (y | x) similar to the naive
Bayes decomposition, and its factor graph shown in Fig. 4.1b is very similar. Note,
however, that now it is a factor graph rather than a directed graphical model: this is
only a decomposition of p (y | x) rather than the full joint distribution p(y, x).

Thus, as a discriminative model, logistic regression generalizes the naive Bayes
model, providing greater flexibility for modeling the distribution p (y | x) without
additional restrictions on the form of features imposed in the naive Bayes version, at
no extra cost for training. On the other hand, the constant in the likelihood of logistic
regression depends on x. This means that for a general form of the features x, it
would be hard to compute, and logistic regression does not give us a convenient way
to sample from the joint distribution p(y, x). Naive Bayes provides precisely the
special case when this constant is feasible and can be computed. Due to this duality,

4.1 Introduction to Generative Models 101

we say that naive Bayes and logistic regression form a generative–discriminative
pair.

Another, slightly more involved example of a generative–discriminative pair is
given by hidden Markov models (HMM) and conditional random fields (CRF). A
hidden Markov model contains a sequence of observables X = {xt }T

t=1 and hidden
states Y = {yt }T

t=1, with the following independence assumptions:

p (y | x) =
T∏

t=1

p(yt | yt−1)p(xt | yt).

The corresponding directed graphical model is shown in Fig. 4.1c. Again, it is
straightforward to sample from an HMM when the parameters are known: we can
simply go along the direction of increasing time.

Similar to naive Bayes above, let us rewrite HMM in a different form:

p (y | x) =
T∏

t=1

exp

⎛

⎝
∑

i, j∈S

θi j�yt = i��yt−1 = j� +
∑

i∈S

∑

o∈O

μoi�yt = i��xt = o�

⎞

⎠ ,

where S is the set of hidden states, O is the set of values for the observables, and in
terms of the hidden Markov model, we have

θi j = log p(yt = i | yt−1 = j), μoi = log p(x = o | y = i).

Similar to logistic regression, we can introduce feature functions fk(yt , yt−1, xt)

corresponding to the indicators above; let us do it explicitly:

fi j (y, y′, x) = �y = i��y′ = j� for every transition,

fio(y, y′, x) = �y = i��x = o� for every observable.

Note that each feature depends only on two adjacent hidden states and a single
observation (actually even less than that, but let us generalize a little).

We can now do a trick similar to how logistic regression could be obtained from
naive Bayes: we pass to a more general form of the features, expressing the condi-
tional distribution p (y | x) instead of the joint distribution p(y, x):

p (y | x) =
∏T

t=1 exp
(∑K

k=1 θk fk(yt , yt−1, xt)
)

∑
y′

∏T
t=1 exp

(∑K
k=1 θk fk(y′

t , y′
t−1, xt)

) .

This is exactly how a linear chain conditional random field (CRF) is defined:

102 4 Generative Models in Deep Learning

p (y | x) = 1

Z(x)

T∏

t=1

exp

(
K∑

k=1

θk fk(yt , yt−1, xt)

)
,

i.e., we simply allow for a more general form of the features and observables. The
factor graph corresponding to a linear chain CRF is shown in Fig. 4.1d.

Note that since it is now truly infeasible to compute Z(x), we have to resort to
discriminative modeling, and again there is no easy way to sample from p(x, y).

Conditional random fields represent a very interesting class of models. It is one of
the few “simple” probabilistic models that still remain relevant for complex unstruc-
tured inputs in the world of deep learning: linear chain CRFs are commonly used
“on top” of deep neural networks in sequence tagging problems that arise in natural
language processing, semantic segmentation, or video analysis [29, 508]; for exam-
ple, the BiLSTM-CNN-CRF architecture has become a staple in problems such as
named entity recognition [144, 494, 569, 650, 938]. But I merely wanted to use
CRFs as an example to illustrate the difference between generative and discrimina-
tive models; for further information on CRFs, I refer to [830, 978]; note also CRFs
can also be thought of as recurrent neural networks and thus integrated into a neural
architecture [1022].

To summarize this section, in these two examples we have seen a natural corre-
spondence between generative and discriminative probabilistic models in machine
learning. In general, discriminative models are usually more flexible and expressive
than their generative counterparts when it comes to predicting the target variable; this
is understandable as they are solving an easier problem. There are several reasons
why generative models are important and can be preferable to their discriminative
counterparts, but in this book it will be sufficient to say that sometimes we actually
need to generate x: draw a picture of a cat, refine a synthetic image to make it more
realistic, or introduce additional variety in a dataset. Let us see what our options are
for such a high-dimensional generation.

4.2 Taxonomy of Generative Models in Deep Learning and
Tractable Density Models: FVBNs and Normalizing
Flows

In the previous section, we have laid out the main foundations of generative models
in machine learning and have seen two specific examples. In this part, we will discuss
how generative models make their way into deep learning.

The general taxonomy of generative models in deep learning, shown in Fig. 4.2,
follows IanGoodfellow’s famousNIPS 2016 tutorial [291]where he presented gener-
ative adversarial networks (GANs) and also discussed the place of generative models
in modern machine learning and introduced a taxonomy similar to the one shown
in Fig. 4.2. However, nodes in this taxonomy have received many new examples

4.2 Taxonomy of Generative Models in Deep Learning and Tractable … 103

Fig. 4.2 Taxonomy of generative models in deep learning [291].

over the last years, so let us briefly go over these variations before proceeding to
generative adversarial networks.

The first split in the taxonomy is the distinction between explicit density and
implicit density models. The difference is that in the former, we make explicit prob-
abilistic assumptions that allow us to write down the density of the resulting joint
distribution as a product of smaller distributions. Both generative models that we saw
in Section 4.1 are explicit density models: in fact, if you can draw a factor graph or
directed graphical model for your set of assumptions, you are probably in the explicit
density domain.

In reality, such explicit factorizations are almost always of the form char-
acteristic for directed graphical models: to decompose a large joint distribution
p(x) = p(x1, . . . , xn), let us first of all note that

p(x) = p(x1, . . . , xn) = p(x1)p (x1 | x2) . . . p (xn | x1, x2, . . . , xn−1) .

This decomposition is, of course, always true. But now let us try to impose restric-
tions that would reduce the set of conditions in each of these factors. For instance,
the naive Bayes classifier that we discussed above cuts each condition down to a
single (target) variable:

p(x, y) = p(y)p (x1 | y) . . . p (xn | y) .

The big divide in explicit density models happens depending on the fact whether
we treat this simplified decomposition as the density itself, assuming it is tractable
and learning its parameters, or as a class of approximations where we need to find the

104 4 Generative Models in Deep Learning

best one. Classical probabilistic models such as the ones we discussed in Section 4.1
belong to the class of tractable density models, but recent advances in deep learning
have extended this class with a lot of new interesting cases.

The first class of tractable density models in deep learning are fully visible
belief nets (FVBN), initially developed in Geoffrey Hinton’s group back in the mid-
1990s [242, 243] but currently being developed at a much larger scale. They make
use of the decomposition above:

pmodel(x) =
n∏

i=1

pmodel (xi | x1, x2, . . . , xi−1) ,

and then use neural networks to model each of the probability distributions
pmodel (xi | x1, x2, . . . , xi−1). There is no need to go into details as wewill not use the
models from this family too much, but let us briefly mention some notable examples.

Neural Autoregressive Distribution Estimation (NADE) [887] is an architecture
that changes a standard autoencoder architecture, which maps x to x̂ with a loss
function that makes x̂ ≈ x, in such a way that the first component x̂0 does not depend
on x at all, x̂1 depends only on x0, x̂2 on x0 and x1, and so on. In this way, NADE
changes a classical autoencoder into one that satisfies the decomposition above and
can thus be used for generation. The next iteration of thismodel,Masked Autoencoder
for Distribution Estimation (MADE) [272], achieved the same goal with clever use
of masking and was able to average over different orderings of variables in x, which
improved things further.

In the domain of images, FVBNs were represented by PixelRNN and PixelCNN
developed by DeepMind researchers Aäron van den Oord et al. [645]. The basic idea
of the decomposition remains the same, and generation proceeds pixel by pixel, but
now each factor pmodel (xi | x1, x2, . . . , xi−1) is modeled by a recurrent or convolu-
tional architecture, respectively, that takes as input all previously generated pixels.
The novelty here lies in how to organize the recurrent or convolutional network to
combine information from a not-quite-rectangular set of pixels generated up to this
point.VandenOord et al. proposed special LSTM-based architectures that proceedby
rows and columns for PixelRNN and special masked convolutions (the masks ensure
that the network does not look ahead to pixels not yet generated) for PixelCNN. The
PixelCNN model was later improved to PixelCNN++ by OpenAI researchers Tim
Salimans et al. [755].

One important win for tractable density models was WaveNet by van den Oord
et al. [642]. WaveNet made a breakthrough in text-to-speech, producing very lifelike
speech samples and generally pushing the state of the art in audio generation. In
essence, WaveNet is an FVBN model with one-dimensional dilated convolutions
used to combine all previously generated inputs in the conditional part of the current
distribution. WaveNet was later improved in [156] and made much more efficient
in [140, 643]... but in order to add efficiency, DeepMind researchers had to push the
latest version of WaveNet outside the domain of FVBNs.

4.2 Taxonomy of Generative Models in Deep Learning and Tractable … 105

The general problem with FVBNs is that by their very design, the generation
process has to be sequential: in order to generate xi , an FVBN has to know xi−1,
and in fact it is likely that xi−1 is one of the most important conditions for xi due
to its proximity: e.g., in audio generation, it stands to reason that the last tick is the
most important, and in image generation neighboring pixels are probably important
as well. So by design, there is no way to achieve parallel generation for FVBN-based
architectures, which means that for high-dimensional problems such as image or
audio generation such models will inevitably be quite slow: you have to run a neural
network for each pixel in an image (millions of times) or for each value in an audio
(tens of thousands times per second).

Fortunately, there is a different way to compose explicit density models that is
rapidly gaining popularity in recent years. Normalizing flows provide a way to con-
struct complex distributions as a composition of individual components represented
by invertible transformations [462, 723]. We know that for z ∈ R

d , z ∼ q(z), and
an invertible function f : Rd → R

d , the random variable y = f (z) will have the
density

qy(z) = q(z)

∣∣∣∣det
∂ f −1

∂z

∣∣∣∣ = q(z)

∣∣∣∣det
∂ f

∂z

∣∣∣∣
−1

.

It is also easy to see what happens if we compose several such functions in a row:

zK = fK ◦ . . . ◦ f1(z0), z0 ∼ q0(z0),

zK ∼ qK (z) = q0(z0)
K∏

k=1

∣∣∣∣det
∂ fk

∂zk−1

∣∣∣∣
−1

,

log qK (z) = log q0(z0) −
K∑

k=1

log

∣∣∣∣det
∂ fk

∂zk−1

∣∣∣∣ .

This general idea is illustrated in Fig. 4.3a.
In this way, we can try to approximate a very complex distribution as a simple

distribution (say, the standard Gaussian) transformed by a large composition of rel-
atively simple transformations. Such transformations can include, for example, a
planar (linear) flow that “cuts” the space with hyperplanes:

f (z) = z + uh(w
z + b),
∣∣∣∣det

∂ f

∂z

∣∣∣∣ = ∣∣1 + u
 (
h′(w
z + b)w

)∣∣ ,

or a radial flow that cuts it with spheres:

f (z) = z + βh(α, r) (z − z0) , where

r = ‖z − z0‖2 , h(α, r) = 1

α + r
.

106 4 Generative Models in Deep Learning

Fig. 4.3 Flow-based generative models: (a) the general idea of a flow as a composition of trans-
formations; (b) masked autoregressive flow (MAF); (c) inverse autoregressive flow (IAF).

The only restriction here is that for every transformation f (z), we need to have
an efficient way to compute its Jacobian det ∂ f

∂z . At first glance, it does sound quite
restrictive because computing determinants is hard. But note that if the Jacobian is
triangular, its determinant is simply the product of the main diagonal! This is exactly
the idea of autoregressive flows [456], where

yi = f (z1, . . . , zi), det
∂ f

∂z
=

d∏

i=1

∂yi

∂zi
.

The simplest example of an autoregressive flow is given by Real Non-Volume Pre-
serving Flows (RealNVP) [198] that are not very expressive but very efficient.Volume
preservation here refers to the Jacobian: if det ∂ f

∂z = 1 then volume is preserved, and
in RealNVP it is emphatically not so. For some functions μ, σ : Rk → R

d−k , we
define

y1:k = z1:k, yk+1:d = zk+1:d · σ(z1:k) + μ(z1:k),

i.e., we copy the first k dimensions and apply a linear transformation to the rest. As a
result, the matrix of first derivatives that consists of a unit matrix follows by a lower
triangular one, and the Jacobian can be computed as

4.2 Taxonomy of Generative Models in Deep Learning and Tractable … 107

det
∂y
∂z

=
d−k∏

i=1

σi (z1:k).

Note that in this case, it is very easy to compute (completely in parallel!) and easy
to invert even for non-invertible μ and σ .

There are twoways to generalize R-NVP tomore expressive transformations. The
first is Masked Autoregressive Flows (MAF) [652], illustrated in Fig. 4.3b:

y1 = μ1 + σ1z1, yi = μ(y1:i−1) + σ(y1:i−1)zi .

This is amore expressivemodelwhose Jacobian is still very simple,
∏

i σ(y1:i−1), and
can be easily inverted. But now it cannot be computed in parallel (at least in general).
Therefore, MAFs can be used efficiently for density estimation (i.e., training) but the
result is slow to apply, just like FVBNs.

The other way is given by Inverse Autoregressive Flows (IAF) [456] that are
shown in Fig. 4.3c and operate basically the other way around:

yi = ziσ(z1:i−1) + μ(z1:i−1).

Now y depends only on z, and it can be computed very efficiently (in parallel):

y = z · σ(z) + μ(z), det
∂y
∂z

=
d∏

i=1

σi (z),

and if we consider a composition fK ◦ . . . ◦ f0(z), we get

log qK (zK) = log q(z) −
K∑

k=0

d∑

i=1

log σk,i .

Now it is very efficient to sample from this model, but it is harder to compute its
density, although still possible analytically.

The deep learning part here is that we can parameterize μ and σ with neural
networks. In particular, PixelRNN, MADE, and WaveNet can all be viewed as spe-
cial cases of a normalizing flow. The next interesting step was taken in Parallel
WaveNet [643] with the method of parallel density distillation.

WaveNet is the kind of model that is quick to learn (learning can be done in
parallel) but slow to sample (sampling has to be sequential). It would be great to pass
to an IAF to sample quickly:

log pX (x) = log pZ (z) − log

∣∣∣∣
∂x
∂z

∣∣∣∣ , log

∣∣∣∣
∂x
∂z

∣∣∣∣ =
∑

t

log
∂ f (z≤t)

∂zt
.

108 4 Generative Models in Deep Learning

Now sampling would work as z ∼ q(z) (the logistic distribution in case ofWaveNet),
and then we get

xt = zt · s(z≤t , θ) + μ(z≤t , θ),

and for s and μ we can use the exact same kind of convolutional networks as in the
basic WaveNet.

It is now easy to sample from this IAF, but entirely impractical to train it. The
parallel density distillation trick is to train a student model pS(x) based on the teacher
model pT (x) with loss function

KL (PS‖PT) = H(PS, PT) − H(PS).

Skipping the math, I will just say that the probabilistic assumptions and the form
of the logistic distribution allow to easily compute the entropy and cross-entropy,
and we can now generate x from the student, compute pT (xt | x<t) in parallel in the
teacher, and then efficiently sample several xt from pS(xt | x<t) for every t . Adding
a few more auxiliary loss functions for the student network, we get the same kind of
audio generation quality. But the original WaveNet could produce 172 samples per
second, while the distilled Parallel WaveNet can use the same hardware to produce
more than 500,000 samples per second...

The logical alternative is to generalize the kind of flows that can be efficient for
both sampling and training (that is, RealNVP flows) as much as possible. I will
not go into the details but note the GLOW model [455] that is able to generate
high-resolution images and the WaveGLOWmodel [685] that combines GLOW and
WaveNet to achieve even faster generation.

4.3 Approximate Explicit Density Models: VAE

In the previous section, we have considered tractable density models, where an
explicit function is assumed to represent the probability distribution in question.
Now we turn to approximate density models, where the explicit tractable family of
distribution densities is used to find the best approximation to the data distribution
pdata with a member of this family.

We will not consider in detail Boltzmann machines that can be viewed as Markov
chainMonte Carlo approximations to a given density; see [348, 752, 753] for details.
But let us consider, at least briefly, probably the currently most important represen-
tative of this family: variational autoencoders (VAE) [200, 457, 458].

To arrive at the variational autoencoder, let us start from a regular autoencoder
architecture that consists of

• the encoder E that produces a latent code z from input x and
• the decoder D that tries to reconstruct x from the latent code z.

4.3 Approximate Explicit Density Models: VAE 109

In other words, a given image x is first compressed down to a latent representation
z = E(x) and then “decompressed” back into

x̂ = D(E(x))

that is supposed to match the original x. In this case, to train the composition of
encoder E and decoder D, we can use various similarity metrics between x̂ and x:
in the simplest case, the L2 or L1-norm of the difference ‖x̂ − x‖.

But this idea also proves to be insufficient to obtain a generative model. While
a well-trained autoencoder can ensure that a real photo x will be reconstructed as
such after D(E(x)), this says nothing about decoding a random vector z of the same
dimension. The latent vectors corresponding to real images (say, photos of cats) will
most probably comprise a rather involved subset (subvariety) in the space of latent
codes, and a random vector sampled from some standard distribution will have very
little chance to fall into this subset, almost like a set of random pixels that have very
little chance to comprise a photo-like image.

Thus, we need to “iron out the wrinkles” in this distribution. One way to do
it would be to use strong assumptions for the latent code distribution, that is, use
encoders and decoders that have a simple enough structure so that this subset of
codes will necessarily have a simple structure as well.

In the extreme case, this reduces to principal component analysis (PCA), amethod
that can be thought of as an autoencoder with linear encoder and linear decoder. PCA
minimizes the L2-norm of the difference (Euclidean distance) between the points and
their projections on the resulting subspace. The probabilistic interpretation of this
model, known as probabilistic PCA, is formulated as a generative model for x with
Gaussian noise:

x ∼ N (
x | Wz, σ 2I

)
, z ∼ N (z | 0, I) .

But in deep learning for high-dimensional data, we would like to be able to train
more expressive encoders and decoders. The variational autoencoder begins with
the same idea as probabilistic PCA but substituting a nonlinear function instead of a
linear projection:

p(x, z | θ) = p(x | z, θ)p(z | θ) = N(z | 0, I)
D∏

j=1

N(x j | μ j (z), σ j (z)).

Now we can parameterize μ j (z) and σ j (z) with a neural network with parameters
θ ; in VAEs, σ j (z) is usually assumed to be a constant σ .

Formally speaking, a VAE is a generative model that is trained to maximize the
likelihood of every x in the dataset

p(D | θ) =
∏

x∈X

∫
p(x | z, θ)p(z)dz =

∏

x∈X

∫
N (

x | f (z, θ), σ 2I
)

p(z)dz.

110 4 Generative Models in Deep Learning

The prior distribution for z is usually taken to be the standard Gaussian p(z) =
N (z | 0, I).

Note that this formalization does not have any encoders yet, only a decoder. To
train this model, we can use stochastic gradient ascent: sample z1, . . . , zn from p(z),
approximate

p(x | θ) ≈ 1

n

n∑

i=1

N (
x | f (zi , θ), σ 2I

)
p(zi)

and maximize this approximation by gradient ascent along θ .
The problem with this approach is that p(x | z, θ) will be vanishingly small for

almost all z except for z from a small region of z’s that can produce an image sim-
ilar to x, so straightforward sampling would require exponentially (and completely
impractically) many zi . This is where the encoder comes into the VAE framework:
the encoder captures a distribution q (z | x) that is supposed to produce latent codes
z from this neighborhood, i.e., z’s with high values of p(x | z, θ).

To achieve this, we need q(z) to serve as an approximation for p (z | x) for a
given x. Let us try to get this approximation in a relatively straightforward way, by
minimizing the KL-divergence between the two distributions:

KL (q(z)‖p (z | x)) = Ez∼q
[
log q(z) − log p (z | x)] =

= Ez∼q
[
log q(z) − log p (x | z) − log p(z)

] + log p(x) =
= Ez∼q

[
log q(z) − log p(z)

] − Ez∼q
[
log p (x | z)] + log p(x) =

= KL (q(z)‖p(z)) − Ez∼q
[
log p (x | z)] + log p(x),

which means that

log p(x) − KL (q(z)‖p (z | x)) = Ez∼q
[
log p (x | z)] − KL (q(z)‖p(z)) .

Now, since we are free to choose any distribution q, VAE makes q(z) dependent
on x, turning it into q (z | x), and now the right-hand side of the equation above
serves as the lower bound for the value log p(x), which we want to maximize. This
is exactly the famous variational lower bound for our case, but since we will not use
variational inference further I won’t go into more details. Suffice it to say that the
lower bound becomes exact if q (z | x) matches p (z | x) exactly, driving the KL-
divergence down to zero, and if we use a sufficiently expressive model for q (z | x)
we can hope that the lower boundwill be sufficiently precise so that we canmaximize
the right-hand side. We achieve this, of course, by using a neural network to express
q (z | x).

In other words, VAE consists of

• the encoder, a neural network that maps an input x into the parameters of a dis-
tribution q (z | x); let’s assume (as VAEs usually do) that q (z | x) is a Gaussian
whose parameters are produced by the encoder:

4.3 Approximate Explicit Density Models: VAE 111

Fig. 4.4 Variational autoencoders: (a) basic idea with sampled z; (b) the reparametrization trick
with noise ε sampled in advance.

q (z | x) = N (
z | μ(x; θq),�(x; θq)

) ;

• the decoder, a neural network that maps a latent code z sampled from q (z | x) into
x.

How do we train a VAE? To train encoder parameters, we need to minimize

Ez∼q(z|x)
[
log p (x | z)] − KL (q (z | x) ‖p (z | x)) .

Since both p and q have a known standard form, say two Gaussians, the second
term can be computed analytically as a function of the parameters θq . The first term
cannot be computed exactly, and we need to approximate it by sampling. Actually,
VAEs sample just a single value z ∼ q (z | x), substitute it into the log-likelihood,
and obtain a function of θ as a result; this is exactly what stochastic gradient descent
does.

The resulting scheme is shown in Fig. 4.4a. Now it looks like we could simply
use some standard reconstruction loss function such as the L2-norm ‖x − x̂‖2, but
we still have one problem left: our autoencoder is sampling z between the encoder
and decoder steps! It’s no problem to sample from N (

z | μ(x; θq),�(x; θq)
)
on

the forward step, but it is not clear how to pass the gradients through the sampling
process...

112 4 Generative Models in Deep Learning

Fortunately, there is an option, called the reparametrization trick, that lets us
sidestep this problem. The solution is simply to sample the noise ε from the standard
Gaussian, ε ∼ N (0 | I), and rescale it with the results of the encoder:

z = μ(x; θq) + �1/2(x; θq)ε.

With the reparametrization trick, ε can be sampled in advance and treated as another
input for the autoencoder; there is no need for sampling inside the network. Now the
whole pipeline, shown in Fig. 4.4b, can be trained with gradient descent.

This is only the first, vanilla variation of VAE. There are plenty of extensions,
and in recent years, variational autoencoders have become a very important class of
models, starting to rival GANs in versatility and generation quality. For example,
one can adapt VAEs for discrete objects; in particular in collaborative filtering [516,
789], dynamic VAEs are used to process sequential data [275], and so on, and so
forth. In the high-dimensional generation of images, which is the most important
application for us, VAEs are also rapidly approaching the quality of the best GANs.
There are two main directions in this regard.

In Vector Quantized VAE developed by DeepMind researchers van den Oord et
al. [644] and later extended by Razavi et al. [707], the latent code is quantized:

Quant(ze(x)) = ek, k = arg min
j

‖ze(x) − e j‖2.

The gradient is simply copied over through the discrete layer (which would stop
backpropagation otherwise). The embeddings are trainedwith the vector quantization
algorithm, i.e., we simply bring e closer to the encoder outputs ze(x), and the encoder
is also brought closer to the embeddings. The resulting loss function is

LVQ-VAE = log p
(
x | zq(x)

) + ‖sg[ze(x)] − e‖22 + β ‖ze(x) − sg[e]‖22 ,

where sg (stopgradient) is the operator that stops gradient propagation: its forward
pass computes the identity function, and the backward pass returns zero. The decoder
is optimizing the first term inLVQ-VAE, the encoder deals with the first and third terms,
and the embeddings themselves are trained with the second term.

The original VQ-VAE was based on PixelCNN and produced very reasonable
images by 2017 standards, while VQ-VAE-2 has made the generation process hier-
archical which led to high-resolution images with state-of-the-art generation quality.

But here too, NVIDIA researchers appear to stay ahead: Nouveau VAE (NVAE)
by Vahdat and Kautz [888] is a VAE that is able to generate samples on par with the
latest GANs. NVAE is also a hierarchical model:

4.3 Approximate Explicit Density Models: VAE 113

p(z) =
∏

l

p (zl | z<l) ,

q (z | x) =
∏

l

q (zl | z<l , x) ,

LVAE(x) = Eq
[
log p (x | z)] − KL (q (z1 | x) ‖p(z1))

−
L∑

l=2

Eq(z<l |x) [KL (q (zl | x, z<l) ‖p (zl | z<l))] ,

where q (z<l | x) = ∏l−1
i=1 q (zi | x, z<i). It is trained similar to the basic VAE, via

the reparametrization trick. The authors of NVAE have taken care to find the best
architectures for the encoder and decoder and have used special tricks to stabilize
training (an important problem for hierarchicalmodels) and savememory.As a result,
NVAE provides arguably some of the best generated samples for, say, high-definition
faces, a common benchmark for generative models.

Variational autoencoders are starting to gain traction in synthetic data generation
as well. As an interesting recent example, I would like tomention the work byXiao et
al. [953] who generate synthetic spatiotemporal aggregates, i.e., multi-scale images
used for geospatial analysis and remote sensing, conditioned on both pixel-level and
macroscopic feature-level conditions such as the road network. They introduce a
novel deep conditional generative model (DCGM) architecture based on a VAE and
demonstrate the usefulness of the resulting synthetic data for training models for
downstream tasks.

But still, generative adversarial networks remain the most flexible and often the
best class of modern generative models. Many examples of synthetic-to-real domain
adaptation in the next chapter will make use of GANs. So starting from the next
section, we will work through a brief review of generative adversarial networks,
doing it in slightly more detail than the models we have discussed to this point.

4.4 Generative Adversarial Networks

From now on, our primary examples of generativemodels will come from the “Direct
implicit density” class in Fig. 4.2 and will be represented by generative adversarial
networks (GANs). In my opinion, the most clear motivation for GANs comes from
the optimization problem associated with a black-box generative model, or, to be
more precise, an evident lack of such a problem.

Indeed, suppose that you want a neural network to draw pictures of cats. It is
no problem to design a convolutional architecture that accepts as input a vector of
random numbers (we need some source of randomness, a neural network won’t give
us one by itself) and outputs a tensor that represents an image of a given dimension.
It can even be a reasonably simple architecture... but what will the objective function
be? We cannot write down a formal differentiable function that would capture the

114 4 Generative Models in Deep Learning

Fig. 4.5 The basic architecture of GANs. Thick green arrows show the flow of gradients: the
discriminator is trained with a classification loss, and the generator is trained with an adversarial
loss that is also computed with the discriminator’s help.

“catness” of an image: that sounds suspiciously like exactly the problem that we
are trying to solve. In Section 4.3, we have seen one way to approach this problem:
get the basic inspiration for the loss function from autoencoders, but modify their
architecture in such a way that the distribution of latent codes will be simple enough
to sample from.

The main idea of generative adversarial networks is a different way to formalize
this “catness” property. GANs do it via a separate network, the discriminator, that
tries to distinguish between real objects from the pdata distribution and fake objects
produced by the generator, from the pg distribution. The discriminator (see Fig. 4.5
for a general illustration) is solving a binary classification problem, learning to output,
say, 1 for real images and 0 for fake images. The generator, on the other hand, is
trying to “fool” the discriminator into thinking that fake samples produced by the
generator from random noise are in fact taken from the real dataset. This means that
the generator’s loss also depends on the current state of the discriminator; it is shown
in Fig. 4.5 as the adversarial loss Ladv. Note that in the most basic formulation, Ladv

andLclass are the same function optimized in two different directions by the generator
and the discriminator, but in our exposition (and in the history of GANs), they will
become different almost immediately.

In an EM-like scheme, the generator G and discriminator D can be trained alter-
nately, and in the ideal case the training would proceed as follows:

• at first the generator produces basically random noise, but the discriminator also
cannot distinguish anything;

• so first we train the discriminator to differentiate real images from the random
noise that G is producing;

• then we train the generator with an objective function of “fooling” the discrimi-
nator;

• but this will only be a generator that has learned to fool a very simple discriminator,
so we continue this alternating training until convergence.

Formally speaking, the generator is a function

4.4 Generative Adversarial Networks 115

G = G(z; θg) : Z → X,

while the discriminator is a function

D = D(x; θd) : X → [0, 1].

The objective function for the discriminator is usually the binary classification
error function, i.e., the binary cross-entropy

Ex∼pdata(x)
[
log D(x)

] + Ex∼pg(x)
[
log(1 − D(x))

]
,

where pg(x) = Gz∼pz (z) is the distribution generated by G; in other words, during
training the discriminator assigns label 0 to fake data produced by G and label 1 to
real data.

The generator is learning to fool the discriminator, that is, in the simplest setting
G is minimizing

Ex∼pg(x)
[
log(1 − D(x))

] = Ez∼pz(z)
[
log(1 − D(G(z)))

]
.

And now, combining the two, we get a typical minimax game:

min
G

max
D

V (D, G), where

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))].

Note that this immediately makes training GANs into a much more difficult opti-
mization problem than anythingwe have seen in this book before: generally speaking,
optimization problems become much harder with every additional change of quanti-
fiers. Much of what has been happening in the general theory and practice of GANs
has been related to trying to simplify and streamline the training process.

The optimization problem above has some nice properties. One can show [290]
that maxD V (D, G) is minimized exactly when pg = pdata. It is also straightforward
to show that for a fixed generator G, the optimal distribution for the discriminator D
is the distribution

D∗
G(x) = pdata(x)

pdata(x) + pg(x)
,

that is, simply the optimal Bayesian classifier between pdata and pg .
The global minimum of the criterion is achieved if and only if pg = pdata almost

everywhere; the criterion itself for optimal D is equivalent to minimizing

KL

(
pdata

∥∥∥∥
pdata + pg

2

)
+ KL

(
pg

∥∥∥∥
pdata + pg

2

)
,

116 4 Generative Models in Deep Learning

a symmetric similarity measure between two distributions known as the Jensen–
Shannon divergence.

So we know that, at least in theory, a GAN should arrive at the correct answer and
bring pg as close to pdata as possible. But all these theoretical results hold for the gen-
erator objective function equal toEz∼pz (z)[log(1 − D(G(z)))], that is for theminimax
problemwith a single objective function for both G and D. Unfortunately, in practice
it proves to be a very inconvenient objective function for the generator, leading to
saturation and extremely slow convergence. Even the original work that introduced
GANs [290] immediately suggested that instead of Ez∼pz(z)[log(1 − D(G(z)))], one
should minimize

−Ez∼pz(z)[log D(G(z))].

Informally speaking, with this objective function we maximize the probability of D
giving the wrong answer rather than minimize the probability of D giving the right
answer; there is a difference!

Thus, GANs are commonly trained with an alternating EM-like scheme:

• fix the weights of G and update the weights of D according to minimizing the
error function

Ex∼pdata(x)
[
log D(x)

] + Ex∼pg(x)
[
log(1 − D(x))

] ;

• fix the weights of D and update the weights of G according to minimizing the
error function

−Ex∼pdata(x)[log D(x)].

The original GANs worked on toy examples such as MNIST, and one of the
first truly successful architectures based on these principles was Deep Convolu-
tional GAN (DCGAN) [696]. It used a fully convolutional architecture without max-
pooling (using strided convolutions instead), added batch normalization layers, used
the Adam optimizer that was new at the time, and added a fewmore tricks to improve
the results. As a result, DCGAN learned to generate very reasonable interiors on the
LSUN dataset, that is... 64 × 64 color images.

Since 2015, GANs have come a long way. Famous modern architectures include
StyleGAN [438, 439] that is able to generate lifelike 1024 × 1024 images of human
faces and BigGAN [90] able to generate 512 × 512 images from thousands of dif-
ferent categories when trained on ImageNet or JFT-300M [827]. Obviously, modern
architectures are much larger and more involved than DCGAN, and the datasets are
also orders of magnitude larger than LSUN. But there are also conceptually new
ideas that have proven to be very useful for training high-quality GANs. In the rest
of this chapter, we discuss these ideas from the general standpoint of GAN train-
ing, but delve into details only for those ideas that will be immediately useful for
synthetic-to-real domain adaptation afterwards.

4.5 Loss Functions in GANs 117

4.5 Loss Functions in GANs

In the previous section, we saw the basic idea of aGAN and saw their training process
as optimization alternating between learning the parameters of G and D. As we have
seen, even original GANs [290] did not use the same loss function for the generator
and discriminator. Since 2015, many different loss functions have been proposed for
the generator and discriminator in GANs. In this section, I will give a brief overview
of these ideas and show the loss functions that are especially relevant for the GANs
discussed in subsequent chapters. In the literature, these loss functions are usually
called adversarial losses (recall Fig. 4.5).

One of the first but still commonly used ideas is Least Squares GAN (LSGAN)
[580]. The problem with GANs shown above is that the error function (Jensen–
Shannon divergence) is saturated when the generator distribution pg is far from
the correct answer: the discriminator D has a logistic sigmoid function at the end,
and gradients for the generator have to come through this sigmoid first. Due to this
saturation effect, training regular GANs is often slow and unstable.

The LSGAN idea flies in the face of everything you know about classification.
LSGAN proposes to pass from a sigmoidal to a quadratic error function for the
classification:

min
D

VLSGAN(D) = 1

2
Ex∼pdata

[
(D(x) − b)2

] + 1

2
Ez∼pz

[
(D(G(z)) − a)2

]
,

min
G

VLSGAN(G) = 1

2
Ez∼pz

[
(D(G(z)) − c)2

]
,

which means that the discriminator learns to output a for fake inputs and b for real
inputs, while the generator tries to “convince” the discriminator to output c on fake
inputs (G has no control over real inputs so that part always disappears from its
objective function). This is highly counterintuitive for classification since trying to
learn a classifier with least squares is usually a very bad idea: for example, the error
begins to grow for inputs that are classified correctly and with high confidence!

However, there even exists a nice theoretical result that comes with LSGAN: if
b − c = 1 and b − a = 2, that is, the generator is convincing the discriminator to
output “I don’t know” for fake data (c is exactly midway between a and b), the
LSGAN optimization problem for the optimal discriminator

D∗
LSGAN = bpdata(x) + apg(x)

pdata(x) + pg(x)

is equivalent to minimizing the Pearson χ2 divergence between pdata and pg . But in
this case, practice again differs from theory: in practice, LSGAN is usually trained
with a = 0 and b = c = 1. LSGAN has been shown to be more stable to changes in
the architectures of G and D, easier to train, and less susceptible to mode collapse; in

118 4 Generative Models in Deep Learning

general, the quadratic adversarial loss function has become one of the staple methods
in modern GAN-based architectures.

Another important adversarial loss function, and a very interesting one as well,
comes from the Wasserstein GAN (WGAN) [27]. To explain what is going on here,
we need to take a step back.

What does it mean to learn a probability distribution? It means that the learned
distribution pmodel should become similar to the given distribution pdata, that is, we
would most probably like to minimize either KL(pdata‖pmodel), KL(pmodel‖pdata), or
some other similarity measure from the same family such as the Jensen–Shannon
divergence.

Suppose now that the two distributions, pdata and pmodel, have disjoint supports.
For example, suppose that pdata is the distribution of “color photos of cats of size
1024 × 1024”; this means that its support lies in the space of dimension R

3·220 ,
which is a pretty big space! If we parameterize some model distribution pmodel to
have low-dimensional support (which also sounds very reasonable as we don’t want
to cover the entire space of dimension 3 · 220, we want to capture the cat photos),
with overwhelming probability the intersection of their supports will be zero until
pmodel is already very similar to pdata.

Unfortunately, this throws a wrench into the usual similarity measures between
distributions. The Kullback–Leibler divergence is

KL (pdata‖pmodel) =
∫

pdata(x) log
pdata(x)

pmodel(x)
dx,

so if their supports are disjoint the KL-divergence is infinite. The Jensen–Shannon
divergence is not infinite, but it degenerates into a constant:

JSD (pdata‖pmodel) =
= 1

2
KL

(
pdata‖ pdata + pmodel

2

)
+ 1

2
KL

(
pmodel‖ pdata + pmodel

2

)
= log 2.

Alas, infinities and constants do not make for good objective functions: a small
perturbation in pmodel will not change either KL or JSD, so the gradients will be zero
or nonexistent.

This sounds like a quite general critique, so why doesn’t the entire machine learn-
ing fail in this way? The thing is, machine learning usually employs model distribu-
tions pmodel that span the entire space. For example, we could add a full-dimensional
Gaussian noise to the pmodel distribution concentrated on a low-dimensional variety,
thus extending its support to the entire space; this would solve the problem entirely
(now it’s no problem that pdata is concentrated on a low-dimensional subset) and
would probably correspond to an L2-norm somewhere in the error function.

This solution is fine if all you need is to find the maximum of pmodel after training
it, i.e., find the maximum likelihood or maximum a posteriori hypothesis. But for
generative models, it may lead to problems: we don’t really want to sample from the

4.5 Loss Functions in GANs 119

“blurred” noisy distribution. In explicit generative models, we can usually remove
this noise after training the model, which solves the problem. But in GANs that
would be a very difficult task because we do not really have the distribution density
pmodel, all we have is a black box that somehow manages to sample from it.

To solve this problem, Wasserstein GAN (WGAN) proposes to consider other
similarity measures between pdata and pmodel. I will not go into full mathematical
details and refer to [27] for details. In brief, WGAN is based on the Earth Mover
distance, also known as the Wasserstein distance:

W (pdata, pmodel) = inf
γ∈�(pdata,pmodel)

E(x,y)∼γ

[‖x − y‖] ,

where �(pdata, pmodel) is the set of joint distributions γ (x, y) whose marginals are
pdata and pmodel. In other words, γ (x, y) shows how much “earth” (probability mass)
one has to move in order to change the “mound of earth” corresponding to pdata into
the “mound” corresponding to pmodel in an optimal way.

In the example above, if pdata and pmodel look the same way and are concentrated
on parallel straight lines at distance θ , the Earth Mover distance between them will
be θ : you need to move total mass 1, moving each point over distance θ . Thus, its
gradient will exist and gradient descent will actually bring the parallel lines closer
together.

Wasserstein distance sounds exactly right for the task, but the functional that
defines W (pdata, pmodel) does not look like something that would be easy to compute
or take gradients of. Fortunately, Kantorovich–Rubinstein duality says (again, let’s
skip the proofs) that the infimum

W (pdata, pmodel) = inf
γ∈�(pdata,pmodel)

E(x,y)∼γ

[‖x − y‖]

is equivalent to the supremum

W (pdata, pmodel) = sup
‖ f ‖L≤1

(
Ex∼pdata [f (x)] − Ex∼pmodel [f (x)]

)
,

where the supremum is taken over by all functions with Lipschitz constant ≤ 1.
Since we want to train a generative model pmodel = gθ (z), it now simply remains

to parameterize everything by neural networks. Let us introduce a network fw for the
function f and a network gθ for g. Then training can again proceed in an alternating
fashion, as follows:

• for a given gθ update the weights of fw, maximizing

Ex∼pdata [f (x)] − Ex∼pmodel [f (x)] ;

• for a given fw, compute

120 4 Generative Models in Deep Learning

∇θ W (pdata, pmodel) =∇θ

(
Ex∼pdata [f (x)] − Ex∼pmodel [f (x)]

) =
= −Ez∼Z [∇θ fw(gθ (z))] .

It only remains to ensure that fw is Lipshitz with constant ≤ l. The original work
does it in a very simple yet effective fashion: it clips the gradients to ensure that their
norm does not exceed l. But it was soon found [303] that it is a much better idea to
introduce a soft regularizer on the gradient, for example,

λEx̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1
)2]

.

LSGAN and WGAN are the two most popular adversarial loss functions at the
time of writing (late 2020). But there are other options that remain relevant as well.

In particular, Energy-Based Generative Adversarial Network (EBGAN) [1019]
considers the discriminator as an energy function that assigns low energy values to
regions near the data distribution and high energy values to the other regions. The
generator in this setting is supposed to produce highly variable samples withminimal
values of energy.

This approach allows to use as the discriminator basically any architecture, not
necessarily a classifier that ends with a logistic sigmoid. The second idea from
EBGAN [1019] is to use an autoencoder as the discriminator, outputting its recon-
struction error, i.e.,

D(x) = ‖Dec(Enc(x)) − x‖ .

Now the low-energy regions are those that can be accurately reconstructed by this
autoencoder, and high-energy regions are those that cannot. The idea is to use real
images to train this autoencoder, under the assumption that fake images will not
map nicely into the autoencoder’s latent features and will not be reconstructed well.
Figure 4.6 provides an illustration.

This is a fruitful idea but we also need to “help” the discriminator a little bit.
Thus, the training loss for the discriminator includes both the reconstruction loss and
a hinge loss that kicks in when G(z) begins to produce reasonable images and asks
D to differentiate between real and fake samples:

LEBGAN
D (x, z) = D(x) + [m − D(G(z))]+ ,

where [a]+ = max(0, a).
As for the generator, its adversarial loss in EBGAN is straightforward (there are

variations, but let us skip them for now):

LEBGAN
G (z) = D(G(z)).

Finally, the last adversarial loss that we will need comes from Boundary Equilib-
rium Generative Adversarial Networks (BEGAN) [66]. It follows the general idea of
EBGAN (in fact, Fig. 4.6 is still perfectly relevant) but adds a little bit ofWasserstein

4.5 Loss Functions in GANs 121

Fig. 4.6 The basic architecture of EBGAN [1019].

GAN’s ideas. The idea of BEGAN is to keep the autoencoder structure but shift from
optimizing the reconstruction loss in the discriminator directly to optimizing the dis-
tance between distributions of reconstruction losses from real and fake images. The
authors of BEGAN argue that the Wasserstein distance between two distributions
has a lower bound in the L1-norm of the difference of their means, |m1 − m2|. We
can capture this function on a given mini-batch of images, substituting instead ofm1

the mean autoencoder loss Lrec(x) for real images in the mini-batch and instead of
m2 the mean autoencoder loss Lrec(G(z)) for fake images in the mini-batch. Now
the result should be maximized by the discriminator (which wants to pull these dis-
tributions apart) and, respectively, minimized by the generator (which wants to make
the two distributions as similar as possible). We refer to [66] for further details and
proofs.

At this point,we have seen several adversarial losses that can be substituted instead
of the basic GAN loss that we discussed in Section 4.4. In the next section, we will
consider some general GAN-based architectures that appear in the literature and in
various applications very often and constitute the bulk of applications for generative
adversarial networks.

4.6 GAN-Based Architectures

GANs as presented above are designed to learn to generate objects x from a domain
defined by a dataset; the aim is to generate “fake” objects in such a way that these
objects are indistinguishable from real ones. However, there are situations where
the idea of adversarial learning still works great but the basic architecture shown in
Fig. 4.5 needs certain modifications. In this section, we discuss three basic architec-
ture ideas that have been used many times in very different applications: conditional
GANs, adversarial autoencoders, and progressively growing GANs.

First, what if we want to generate objects of several different classes and control
which class we are generating from now? Training several separate GANs would be

122 4 Generative Models in Deep Learning

Fig. 4.7 The general conditional GAN architecture [602].

a waste of time and data: if you want to generate cats and dogs, it would be really
helpful to join the dataset into one because both classes will have the same basic
features almost up until the very end.

To train a single GAN for several classes, we can use a conditional GAN, first
proposed almost immediately after the original GAN publication, in 2014 [602].
This is a straightforward extension: we supply the condition y to both generator
and discriminator, as shown in Fig. 4.7. In our example, the generator would know
whether it has to generate a cat or a dog, and the discriminator would know which
animal the fake image is supposed to represent. A conditional GAN can utilize the
same loss functions as a regular GAN, which we have discussed in Section 4.5.

The second important idea in this section deals with adversarial autoencoders
invented by Makhzani et al. in 2016 [576]. In Section 4.3, we have discussed why
autoencoders do not give rise to generative models by themselves: the distribution
of latent codes may be quite complicated even in their low(er) dimensional space. In
that section, we discussed variational autoencoders that provide one way to fix this
problem by parameterizing the distribution of latent codes.

Adversarial autoencoders (AAE) represent a different way to fix this problem that
makes use of the same basic idea of adversarial training, introducing a discriminator
into the picture. But here the discriminator is not distinguishing between fake and
real images, but rather between fake and real codes. The general AAE structure is
shown in Fig. 4.8:

• the encoder Enc is trying to learn the distribution q (z | x), producing the latent
code zfake;

• we call it zfake because the discriminator D is trying to distinguish zfake from zreal
samples from a given distribution p(z);

• at the same time, the decoder Dec is reconstructing the original x in the usual
autoencoder fashion, producing a reconstruction x̂;

4.6 GAN-Based Architectures 123

Fig. 4.8 Adversarial autoencoder [576].

• the loss function for this architecture is composed of the reconstruction lossLAAE
rec ,

which shows how similar x̂ and x are, and the adversarial loss LAAE
adv for the dis-

criminator, usually simply the binary cross-entropy.

Obviously, we choose p(z) to be a simple standard distribution that we can sample
from. This idea is similar in spirit to VAEs, but instead of minimizing the KL-
divergence between q(z) and a given prior, AAEs use an adversarial procedure.

Let me use the example of AAEs to illustrate the diversity of possible adversarial
architectures, even when they are intended for the same problem. Suppose that we
want to make a conditional AAE, say generate cats, dogs, and rabbits while being
able to control which of these classes we are generating. The basic conditional AAE
architecture can add the condition in the same way as a conditional GAN shown in
Fig. 4.7, adding condition y as input to all three networks in the architecture: encoder,
decoder, and discriminator, also choosing a different distribution for each class so
that we can sample latent codes z separately from each class.

This, alas, is not the best idea (I haven’t even drawn a figure about it) because
this approach does not generalize to the semi-supervised setting: what if for some
images we do not know their labels? It would still be useful to train the autoencoder,
and we would even know which distribution to distinguish it from: let’s simply take
the mixture of all class distributions (uniform or with class priors if we know them).

But there still are two reasonable approaches to making a conditional AAE, each
with its own properties. Figure 4.9 shows these two possible approaches:

• in Fig. 4.9a, the autoencoder does not care about class labels at all, and the label
(with an extra option for unknown class) is fed only to the discriminator; this

124 4 Generative Models in Deep Learning

Fig. 4.9 Two versions of the conditional adversarial autoencoder [576]: (a) class labels are given
only to the discriminator; (b) the decoder receives the class label.

means that the discriminator will try to associate each class with a separate mode
of the distribution p(z);

• in Fig. 4.9b, the class label is fed to the decoder; this means that the decoder now
has the class information “for free”, and the latent code is encoding only the style
of the image; this architecture can lead to the disentanglement of style and content
(in this case, the content is a class label); we will see more examples of such
disentanglement in Section 4.7.

Both of these ideas appeared already in the original work [576], and since then
AAEs have received many extensions and have been successfully used in many
applications of generative models, including the generation of discrete objects such
as molecular structures [419, 420, 679]. Adversarial autoencoders still remain a
viable alternative to VAEs in many problems.

Our next stop is related to the problem of generating high-dimensional data. In
2014, GANs were doing a reasonably good job on 28 × 28 black-and-white images
from the MNIST dataset but had no chance to handle reasonably sized photos.
Improved architectures such as the above-mentioned DCGAN got generation up
to 64 × 64 color images, but it was still a far cry from real-world applications. New
ideas were needed.

Probably the most fruitful idea in this regard is progressive growing of GANs,
which first appeared in theProGAN model developed byNVIDIA researchers Karras
et al. [435]. The basic idea is simple: suppose we want to generate high-resolution
images (in reality, ProGAN reached 1024 × 1024 for human faces and 512 × 512
for more general datasets). It is not a big deal to train a regular GAN to generate
4 × 4 images. Then let’s use this 4 × 4 image as an input (one could also say—as a

4.6 GAN-Based Architectures 125

Fig. 4.10 Progressive growing of GANs: an excerpt from the generator structure of ProGAN [435].

condition) for the next GAN that performs basically superresolution, upsampling the
4 × 4 image to an 8 × 8 image, and so on, and so forth: each layer is only supposed
to perform 2x superresolution, which is quite possible even for high resolutions.

Figure 4.10 illustrates this idea with an excerpt from the ProGAN generator’s
architecture. The idea is to gradually add new upsampling modules but keep training
all layers in the deep architecture as the training progresses. To avoid sudden sur-
prises that could upset previous layers as we shift to the next layer with untrained
weights, ProGAN gradually “fades in” each new layer with a residual architecture
shown in Fig. 4.10 and α gradually increasing from 0 to 1. The discriminator (not
shown in Fig. 4.10) is also growing progressively together with the generator; we can
downsample high-resolution images to get real images of any intermediate dimen-
sion.

ProGAN was an important breakthrough in GAN-based generation: suddenly
GANs were able to produce high-resolution images, with high-quality latent space
interpolations. It was widely publicized, and it gave rise to architectures such as
BigGAN [89] and StyleGAN that we will discuss in the next section.

4.7 Case Study: GAN-Based Style Transfer

The primary use of GANs in this book is related to synthetic-to-real domain adap-
tation. As we will see in Chapter 10, one important approach to this problem is
refinement, that is, trying to make synthetic data more realistic. This is usually done
with GAN-based architectures.

Therefore, in this section let us consider themore general problemof style transfer,
i.e., redrawing images from one style to another while preserving the content. This
will allow us to discuss the main GAN-based architectures for style transfer that will
be referenced a lot in Chapter 10.

126 4 Generative Models in Deep Learning

We begin with an architecture that put artistic style transfer on the map back
in 2015, A Neural Algorithm of Artistic Style by Gatys et al. [264]. They used a
straightforward CNN and noted that high-level content information is preserved in
features extracted by both lower and higher layers of the network, but the exact pixel-
wise information is lost in higher layers. On the other hand, the style of an image
is captured by correlations between extracted features, an idea that had been noted
previously in [265] and has since become a staple in GANs in the form of the texture
loss. In [264], correlations were formalized by Gram matrices of the corresponding
features.

The key idea in [264] is that these representations are separable, and you can have
an image that combines the content (feature activations) from one input image and
style (feature correlations) from another. The basic idea is simple yet beautiful: let
us fix a feature extractor CNN and perform gradient descent with respect to the input
image x rather than with respect to the network weights. This idea is quite similar to
the production of adversarial examples that we discussed in Section 3.4.

The loss function for the image will consist of similarities between feature acti-
vations of x and the content image xc (the content loss LGat

content), and similarities
between Gram matrices of x and the style image xs (the style loss LGat

style):

LGat(x) = αLGat
content(x, xc) + βLGat

style(x, xs), where

LGat
content(x, xc) =

L∑

l=1

w
(l)
content ·

1

2

∑

i, j

(
F (l)

i, j (x) − F (l)
i, j (xc)

)2
,

LGat
style(x, xs) =

L∑

l=1

w
(l)
style · 1

4W 2
l H 2

l

∑

i, j

(
G(l)

i, j (x) − G(l)
i, j (xs)

)2
,

where F (l)(x) denotes the features extracted by the CNN at layer l from x, G(l)(x) is
the Gram matrix of these features, G(l)

i, j (x) = ∑
k F (l)

i,k (x)F (l)
j,k(x), Wl and Hl are the

dimensions of the feature tensor at layer l,w(l)
content andw

(l)
style are constant weightswith

which different layers occur in the content and style loss, respectively, and α and β

are constants. This architecture is illustrated in Fig. 4.11 with a sample convolutional
architecture with five layers that produce the necessary features.

The method of Gatys et al. worked very well for artistic style transfer, and it was
the first style transfer method to be widely publicized around 2015, when pictures
with “photos made into Picasso paintings” briefly flooded the Web. This approach,
however, has an important drawback: to perform style transfer, you need to actually
perform gradient descent on the image pixels, which for a high-resolution image
is basically equivalent to training a neural network with several million weights to
convergence. This process takes a long time, may have trouble converging, may get
stuck in local minima, and so on. So this is where GANs came into style transfer.

4.7 Case Study: GAN-Based Style Transfer 127

Fig. 4.11 Artistic style transfer by Gatys et al. [264]. Green arrows denote gradient flow: note that
optimization here is done with respect to the target image x, and the neural network weights are
fixed.

The most direct GAN-based approach to style transfer is provided by the pix2pix
model developed by Isola et al. [389]. This is a straightforward conditional GAN,
illustrated in Fig. 4.12:

• the generator receives as input (condition) an image in one style and is supposed
to produce the same image in a different (target) style;

• the discriminator receives two images (the fake or real image and the condition)
and tries to distinguish real images in the target style and fake images produced
by the generator.

Later, pix2pix was further improved in the pix2pixHD model [909] that uses
enhanced architectures for encoder and decoder and scales the original pix2pix up
to high-definition images. In particular, the generator in pix2pixHD consists of two
parts with the second part enhancing the result of the first. The “styles” in this
idea do not even have to be actual image styles. One could argue that, for instance,
StackGAN [994], a model for text-to-photo image synthesis, is also a style transfer
model very similar to pix2pix, but the source style here is not an image but rather a
textual description of what the image should look like.

128 4 Generative Models in Deep Learning

Fig. 4.12 The pix2pix model [389].

However, the conditional GAN that serves as the foundation for pix2pix models
has a principled limitation: it requires a paired dataset that contains images of two
styles with matching content. Indeed, in Fig. 4.12 inputs to the discriminator in two
different styles have to match, and without it, nothing would prevent the generator
from simply memorizing a few images in the target style and always outputting
them with no regard to its input. For some style transfer applications, this is not a
problem: for instance, if we want to create a realistic photo from a segmentation
map, we need a dataset of segmentation maps, and where else could they come from
if not from segmenting real images? But in other applications, we are not as lucky:
for instance, we would be hard-pressed to find photographs that perfectly match
the content of Monet paintings. Synthetic-to-real style transfer also falls into the
latter category: usually, we produce synthetic data by CGI rendering, and there is no
perfectly matching scene that we could photograph in the real world.

How can we avoid this problem? We are again facing a task similar to how at
the beginning of this chapter we wanted to capture the “catness” of an image. Now
the problem is how to capture the content of a given image with no regard to its
style. And again, an interesting solution comes by introducing more networks into
the architecture. The idea of CycleGAN [1025], illustrated in Fig. 4.13, is to train not
one but two style transfers at the same time. Given a source domain X and a target
domain Y , we train

• a generator F : X → Y that translates images from the source domain to the target
domain; this is the function that we actually want to train as the result of the whole
process;

• another generator G : Y → X that translates images from the target domain to the
source domain;

• a discriminator DX that learns to distinguish between real and fake images in the
source domain X ;

• another discriminator DY that learns to distinguish between real and fake images
in the target domain Y .

4.7 Case Study: GAN-Based Style Transfer 129

Fig. 4.13 The general architecture of CycleGAN [389] (compared to previous diagrams, nodes
with random noise and random choice of discriminator inputs are omitted for clarity).

CycleGAN has the usual loss functions for these two GANs: classification loss
functions for DX and DY and adversarial loss functions for G and F ; the original
CycleGAN model [1025] used the basic GAN loss that we discussed in Section 4.4,

LGAN(F, DY , X, Y) = Ex∼pX
data

[
log (1 − DY (F(x)))

]
,

LGAN(G, DX , Y, X) = Ey∼pY
data

[
log (1 − DX (G(y)))

]
,

but one can use any modern adversarial loss that we discussed in Section 4.5 for a
similar architecture. The novelty here is the idea that once we translate an image x
from the source domain to the target domain and back, the resulting image G(F(x))
should match x exactly, and we can use a simple pixel-wise loss to capture this
fact. In the original CycleGAN [1025], this cycle consistency loss was defined as the
L1-norm of the difference:

Lcycle(F, G) = Ex∼pX
data

[‖G(F(x)) − x‖1
] + Ey∼pY

data

[‖F(G(y)) − y‖1
]
,

130 4 Generative Models in Deep Learning

where the expectations mean that we sample x from the dataset of source domain
images and y from the dataset of target domain images (but they do not have to match
each other’s content any more).

The final loss is now simply a linear combination of the above:

LCycle = LGAN(F, DY , X, Y) + LGAN(G, DX , Y, X) + λLcycle(F, G).

CycleGAN proved to be a very powerful idea that has led to many improvements
and derivative models. It has become an important tool for image generation and
manipulation models, and we will encounter many such cycles and cycle consistency
losses in Chapter 10.

But all of these models need relatively large datasets in each style. Often it’s not a
problem, but, for instance, for artistic style transfer there are only that many Monet
paintings available, and if you have a few hundred different styles or want to let the
user specify their own style, problems arise as well. To perform a few-shot style
transfer, we need one more idea.

While GAN-based style transfer was progressing to CycleGAN, the basic idea
of Gatys et al., that is, disentangling style and content by using different statistics
of features, also received further developments. One of the most important recently
developed tools in style transfer was the idea of adaptive instance normalization
(AdaIN) by Huang and Belongie [371]. Let us first recall one of the basic building
blocks of modern deep learning models: batch normalization [387]. In a batch nor-
malization (BN) layer, mini-batch statistics are used to reduce internal covariate shift
in the previous layer’s outputs:

BN(x) = γ

(
x − μ(X)

σ (X)

)
+ β,

where X denotes a mini-batch of inputs, and statistics are computed according to
this mini-batch, while γ and β are BN layer parameters learned from data.

Statistics used in a BN layer are a natural candidate for the same kind of statistics
that define a style. But, of course, averaging over amini-batch of completely different
images will not help style transfer, so for style transfer we move to instance normal-
ization IN(x): the exact same transformation as BN(x) but with statistics computed
over every channel of a single image separately.

The first application of this idea to style transfer was in conditional instance
normalization [210], a method where γ and β are trained separately for every style:

CIN(x; s) = γs

(
x − μ(x)

σ (x)

)
+ βs .

But this still required running a separate training procedure for every style and
could not extend to large numbers of styles. The next logical step, taken in adaptive
instance normalization (AdaIN), is to use the same transformation for the content
image xc but with parameters γ and β learned as statistics of the style image xs :

4.7 Case Study: GAN-Based Style Transfer 131

Fig. 4.14 The basic AdaIN model from [371].

AdaIN(xc, xs) = σ(xs)

(
xc − μ(xc)

σ (xc)

)
+ μ(xs).

Huang and Belongie [371] showed that AdaIN can work for style transfer even
in a very simple architecture, illustrated in Fig. 4.14. They applied it to artistic style
transfer, where the need for such methods is especially dire because we cannot rely
on having a large dataset of images in a given style. In this architecture, the AdaIN
layer is applied to the result of a convolutional encoder F (specifically, a VGG
encoder in this case). Then the result is decoded back with a decoder G, and the
whole architecture is trained with two losses:

LAdaIN = LAdaIN
content + λLAdaIN

style ,

where

• the content loss LAdaIN
content is basically the autoencoder loss, checking that if we

encode back the result of G by F , we get the same tensor of features that we
started with:

LAdaIN
content = ‖F(G(z)) − z‖2 ,

where z = AdaIN(F(xc), F(xs));
• the style lossLAdaIN

style compares the statistics (that are supposed to encode the style)
of the encoding of the style image xs and the resulting image with supposedly
swapped styles:

LAdaIN
style =

L∑

l=1

∥∥μ
(
F (l) (G(z))

) − μ
(
F (l) (xs)

)∥∥
2 +

+
L∑

l=1

∥∥σ
(
F (l) (G(z))

) − σ
(
F (l) (xs)

)∥∥
2 ,

132 4 Generative Models in Deep Learning

where F (l) denotes the output of layer l in the VGG encoder F .

The most important feature of AdaIN layers is that the style can be encoded from
style features or even a single image. Therefore, models based on AdaIN do not
require large datasets and can solve the problem we faced a few paragraphs back. In
particular, the Few-Shot Unsupervised Image-to-Image Translation model (FUNIT)
developed by Liu et al. [537] is able to transfer between many different styles, each
of which is defined by a few pictures (hence “few-shot” in the title).

The basic idea in FUNIT includes a conditional generator and a multitask adver-
sarial discriminator. The discriminator is solving several classification tasks, one for
each class, deciding whether the input image is a real image of this class or a trans-
lation output produced by the generator. FUNIT training is done by the optimization
problem

min
D

max
G

LFUNIT(D, G),

LFUNIT(D, G) = LFUNIT
GAN (D, G) + λ1LFUNIT

rec (G) + λ2LFUNIT
feat (G),

where

• LFUNIT
GAN (D, G) is the usual conditional GAN loss,

• LFUNIT
rec (G) is the reconstruction loss that says that if we use the same image for

both style and content, we should get the same image as the output:

LFUNIT
rec (G) = Ex

[‖x − G(x, x)‖1
] ;

• LFUNIT
feat (G) is the featurematching loss that tries tomatch the discriminator features

from class images {y1, . . . , yK } and translation output x̂:

LFUNIT
feat (G) = Ex,{y1,...,yK }

[∥∥∥∥∥D f (x̂) − 1

K

K∑

k=1

D f (yk)

∥∥∥∥∥
1

]
,

where D f (x) are the features taken from the penultimate layer of the discriminator;
in other words, the feature matching loss is directly asking the generator to fool the
discriminator into confusing x̂ and {y1, . . . , yK }, serving as a kind of regularizer.

The interesting part of FUNIT is the generator architecture, shown in Fig. 4.15. It
explicitly distinguishes between content and style encoders: the former is applied to
the content image x, and the latter to each of the input class images {y1, . . . , yK } that
together define the style. Then the features produced from style images are averaged
to obtain the style code zy, and this code, after a few more fully convolutional layers,
is used as the style input (coefficients μ and σ) for the AdaIN blocks in the decoder.

The next step along these lines was taken in the Multimodal Unsupervised Image-
to-Image Translation (MUNIT) model by Huang et al. [374] that combines the ideas
of FUNIT and CycleGAN. The autoencoder used in MUNIT is very similar to the

4.7 Case Study: GAN-Based Style Transfer 133

Fig. 4.15 FUNIT generator architecture [537].

Fig. 4.16 Sample MUNIT results on synthetic-to-real and real-to-synthetic transfer [374]: (a)
SYNTHIA to Cityscapes; (b) Cityscapes to SYNTHIA.

FUNIT architecture shown in Fig. 4.15: from an input image x, one encoder Ec

produces the content code c and another encoder Es produces the style code s, which
is then used in the decoder (generator) G via AdaIN blocks. Similar to FUNIT,
this explicit disentanglement of style and content allows to perform style transfer
by combining the style code from one image and content code from another in the
decoder; Fig. 4.16 shows sample MUNIT results in synthetic-to-real and real-to-
synthetic transfer.

The difference lies in the general structure of how these autoencoders are used,
as shown in Figure 4.17. The overall loss function in MUNIT is

134 4 Generative Models in Deep Learning

LMUNIT =LMUNIT
GAN,1 + LMUNIT

GAN,2 + λ1(LMUNIT
rec,x1 + LMUNIT

rec,x2)+
+ λ2(LMUNIT

rec,c1 + LMUNIT
rec,c2) + λ3(LMUNIT

rec,s1 + LMUNIT
rec,s2), where

• LMUNIT
GAN,1 is the adversarial loss in the domain of x1 and LMUNIT

GAN,2 , in the domain of
x2;

• LMUNIT
rec,x1 and LMUNIT

rec,x2 are reconstruction losses for autoencoders applied to images
x1 and x2, respectively, (not shown in Fig. 4.17):

LMUNIT
rec,x1 = Ex1

[∥∥G1(Ec
1(x1), Es

1(x1)) − x1
∥∥
1

] ;

• LMUNIT
rec,c1 and LMUNIT

rec,c2 are content reconstruction losses for the two respective
domains:

LMUNIT
rec,c1 = Ec1,s′2∼q

[∥∥Ec
2(G2(c1, s′2)) − c1

∥∥
1

]
,

where q(s) = N (s | 0, I) is the standard Gaussian prior for style codes;
• LMUNIT

rec,s1 andLMUNIT
rec,s2 are style reconstruction losses for the two respective domains:

LMUNIT
rec,s1 = Ec2,s′1∼q

[∥∥Es
1(G1(c2, s′1)) − s′1

∥∥
1

]
.

With this architecture, MUNIT can learn to perform style transfer in a fully unsu-
pervised fashion, with unpaired data and domains encoded by sets of images.

Note that style transfer models can, in principle, be used directly for synthetic-to-
real style transfer, making synthetic imagesmore realistic similar to how artistic style
transfer models would turn aMonet landscape into a photo. Manymodels mentioned
in this section provide synthetic-to-real sample results; in particular, Figure 4.16
reproduces a few examples of the synthetic-to-real style transfer for outdoor scenes
produced by MUNIT [374]. We will speak in much more detail about synthetic-to-
real refinement in Chapter 10.

All of these ideas have come together in themost recent style transfer models. One
famous architecture is StyleGAN by NVIDIA researchers Karras et al. [437] whose
main use case is to generate human faces with conditions (styles) taken from other
faces at different “granularity levels”. The basic idea is to use the styles extracted
from style images as inputs on different layers of the generator, and the styles are
defined and used in the AdaIN fashion. On the other hand, the levels themselves
follow the progressive growing idea that we have discussed in Section 4.6.

The StyleGAN architecture is illustrated in Fig. 4.18. I will not go into the full
details of this (admittedly quite complicated) architecture, but let me briefly explain
the main data flow in Fig. 4.18:

• StyleGAN uses a progressively growing architecture; Fig. 4.18 shows the first
two blocks with 4 × 4 and 8 × 8 outputs, and subsequent blocks have the same
structure as the 8 × 8 block in Fig. 4.18;

• StyleGAN does not have a latent noise input at the beginning; it begins with a
constant 4 × 4 × 512 tensor;

4.7 Case Study: GAN-Based Style Transfer 135

Fig. 4.17 MUNIT general architecture [374].

• the noise is injected on every progressive level after convolutional blocks; it is
uncorrelatedGaussian noise that undergoes scalingwith learned per-feature factors
(denoted as B in Fig. 4.18);

• the style is added in AdaIN layers in the usual AdaIN structure that we have
discussed above; the style vectors are produced from a given latent vector z, which
is mapped to a weight vector w by a fully connected mapping network, and then
the vector w is specialized into styles (γ, β) for each AdaIN block with learned
affine transformations denoted as A in Fig. 4.18.

With this architecture, StyleGAN is able to have very fine-grained control over the
resulting image because styles and noise at different levels of progressive growing
produce changes of different “scale” in the final image. In particular, for human
faces low resolutions (4 × 4, 8 × 8) control the pose, general hairstyle, and large
details such as sunglasses; facial features, specific details of the hairstyle, and facial
expressions are governed by middle resolutions (16 × 16, 32 × 32); final layers (up
to 1024 × 1024) control the color scheme and very fine details. This means that

136 4 Generative Models in Deep Learning

Fig. 4.18 StyleGAN architecture [437].

by using several different style vectors w for different resolutions, we can combine
several faces into one, controlling even what exactly wewant to take from each input.
A similar idea has also been used in the Face Swapping GAN (FSGAN) by Nirkin
et al. [632].

The next steps were taken in StyleGAN2, the next iteration by the same NVIDIA
team of Karras et al. [440]. There have been two further developments after that: a
semi-supervised version of StyleGAN that performsdisentanglement learning in high
resolution [629] and a variation of StyleGAN training with additional augmentations
that further improves the resulting quality on limited size datasets [436]. Style transfer
and related tasks remain a very active and interesting field of study, and I definitely
expect many new models and improvements in the nearest future.

4.8 Conclusion

This chapter has been an attempt to provide a very brief introduction into the world
of generative deep learning models. Naturally, in this short chapter we have not
been able to give full justice to this wide topic. But I hope that the basic ideas we
have outlined here will suffice to give the reader a first acquaintance, sufficient to
understand Chapter 10, and the references provided in this chapter will help learn
more about generative models in deep learning.

4.8 Conclusion 137

The last section with the style transfer case study was far from random: style
transfer is the underlying task for synthetic-to-real refinement that we will discuss
in Section 10.1 and Section 10.4. As we have already noted, new models for style
transfer can be almost directly applied to make synthetic data look more realistic.
But the next chapter will paint a wider picture: it will survey many different ideas
for synthetic-to-real domain adaptation. Still, many of them are based on generative
models, especially generative adversarial networks, so expect a lot more GAN-based
architectures in Chapter 10.

But before we proceed to domain adaptation, in the next chapters we will consider
more straightforward applications of synthetic data. In the next chapter, we begin
with the history of early works in computer vision that seem to be inseparable from
synthetic data in one form or another.

Chapter 5
The Early Days of Synthetic Data

It may appear that synthetic data has become instrumental only very recently, with
the rise of modern computer graphics that allows for near-photorealistic imagery.
But in fact, synthetic data has been used throughout the history of computer vision,
starting from its very inception in the 1960s. In this chapter, we begin with the early
days of synthetic data, show some of the earliest models and applications of computer
vision, and discuss aspects of computer vision that have always been very hard or
even impossible to do without synthetic data.

5.1 Line Drawings: The First Steps of Computer Vision

In this chapter, we will see how synthetic data started its journey and what its early
days looked like. We will see how synthetic data has permeated computer vision
starting from its very first steps; then in subsequent chapters, we will proceed to
the modern state of the art and how synthetic data can help with it as well. But the
journey of synthetic data begins much earlier than the rise of deep learning...

Computer vision in its modern form began almost as soon as the field of artificial
intelligence started in earnest, and right off the bat, it was a very ambitious endeavour.
A famous anecdote saying that Marvin Minsky asked his undergraduate student
Gerald Sussman to solve computer vision as a summer project is not entirely true; it
appears that the real task was to “connect a camera to a computer and do something
with it”, Minsky did not expect much.

However, this anecdote definitely does reflect the spirit of the times. In 1966, the
Summer Vision Project by Seymour Papert was intended for a group of about 10 sum-
mer interns and asked them to construct a segmentation system: “The summer vision
project is an attempt to use our summer workers effectively in the construction of a
significant part of a visual system... The primary goal of the project is to construct a
system of programs which will divide a vidisector picture into regions such as likely

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_5

140 5 The Early Days of Synthetic Data

Fig. 5.1 Sample line drawings from [379]: an “X-ray” graph with labeled edges (left) and a picture
graph with labeled edges (right).

objects, likely background areas, and chaos... The final goal is OBJECT IDENTIFI-
CATION which will actually name objects by matching them with a vocabulary of
known objects” [654].

This kind of optimism was, of course, unwarranted. Back in the 1960s and 1970s,
usable segmentation on real photographs was very hard to achieve, even as a purely
academic exercise. As a result, computer vision researchers turned to... synthetic
data. In this case, the main purpose of early synthetic data was to provide easier
test problems for computer vision algorithms, back when many computer vision
problems were widely believed to be amenable to an algorithm rather than a large
trainable model. Synthetic images in the form of artificial drawings are all over early
computer vision.

Consider, for example, the line labeling problem: given a picture with clearly
depicted lines,markwhich of the lines represent concave edges andwhich are convex.
Figure 5.1 shows a sample picture with this kind of labeling for two embedded
parallelepipeds, taken from the classic paper by David Huffman, Impossible Objects
as Nonsense Sentences [379]. The figure on the left shows a fully labeled “X-ray”
image with all invisible edges also clearly labeled, and the figure on the right shows
only the visible part, but still fully labeled. The problem is, given a graph such as the
one on the right but without labels, to produce the labeling, marking convex edges
with “+” and concave edges with “−”.

A different but very similar kind of problem was posed by Maxwell Clowes in
his seminal paper On Seeing Things [162]. A sample illustration of this problem is
shown in Fig. 5.2a. Here, Clowes distinguishes different types of corners based on
how many edges form them and what kind of edges (concave or convex) they are.
Basically, the problem is the same: find out the shape of a polyhedron defined as a
collection of edges projected on a plane, i.e., shown as a line drawing.

Note how both Huffman and Clowes abstract out the problem of actually con-
structing this graph (inmodern computer vision, it would be known as edge detection)
and start operations assuming that the line graph has been constructed. This is exactly
why they need synthetic data: real-world edge detection in the 1970s would present
too many problems. On the other hand, abstracting away real photographs misses

5.1 Line Drawings: The First Steps of Computer Vision 141

Fig. 5.2 Line drawings and impossible objects: (a) an example from [162]; (b) the Penrose triangle
(image taken from Wikipedia).

Fig. 5.3 Hard-to-detect impossible objects: (a) an example from [379]; (b) an example from [162].

important information on the textures and lighting that could be used to deduce
which edges are convex and which are concave. Modern single-image 3D scene
reconstruction models try to make good use of such information.

Both researchers worked (as far as I know, independently) towards the goal of
developing algorithms for this problem. They addressed it primarily as a topological
problem, used the language of graph theory, and developed conditions under which
a 2D line drawing can correspond to a feasible 3D object. It appears that they both
were fascinated with impossible objects, 2D drawings that look realistic and satisfy
a lot of reasonable necessary conditions for realistic scenes but at the same time still
cannot be truly realized in 3D space. Think of M.C. Escher’s drawings or the famous
Penrose triangle (shown in Fig. 5.2b). Figure 5.3 shows two of the more complex
polyhedral shapes, the one on the left (Fig. 5.3a) taken from Huffman’s work and on
the right (Fig. 5.3b), from Clowes. They are both impossible but it is not so easy to
spot the impossibility by examining local properties of their graphs of lines.

142 5 The Early Days of Synthetic Data

Algorithms in both papers did not need training sets but they were tested entirely
on artificially produced line drawings, one of the first and simplest examples of
synthetic data in computer vision. While by modern standards this sounds like a very
artificial example and the problem seems to belongmore to the field of computational
geometry than computer vision, it is very characteristic for early work on vision,
relying more on the algorithmic approach than bottom-up feature extraction and
learning.

5.2 Synthetic Data as a Testbed for Quantitative
Comparisons

As we saw in the last section, in the early days of computer vision, many problems
were tackled not by machine learning but by direct attempts to develop algorithms
for specific tasks. Let us take as the running example for this section the problem of
measuring optical flow. This is one of the basic low-level computer vision problems:
estimate the distribution of apparent velocities of movement for the pixels of an
image.

Optical flow can help find moving objects on an image or estimate (and probably
subtract) the movement of the camera itself, but its most common use is for stereo
matching: by computing optical flow between images taken at the same time from
two cameras, one can construct a stereo view of the scene, do depth estimation,
and generally go a long way towards true 3D scene understanding. Mathematically,
optical flow is a field of vectors that estimate the movement of every pixel between
a pair of images.

Algorithms for optical flow estimation fall into two categories: dense optical
flow estimation aims to calculate the difference between entire images while sparse
algorithms track only a small subset of given points. Figure 5.4 shows sample optical
flow estimation on a Shibuya crossing video with two representative algorithms:
Farnebäck’s algorithm for dense optical flow estimation [232] and the Lucas–Kanade
algorithm for the sparse version [561], as implemented in the opencv library [390].

Typical for low-level computer visionproblems and earlyworkon computer vision
in general, both Farnebäck’s and Lucas–Kanade methods are fixed algorithms, there
are no parameters to be learned from data and no training sets to be labeled. This is a
natural approach for this problemsincemanual labelingof optical flow is a gargantuan
task, and there still do not exist large-scale datasets of real images with ground truth
labeling for optical flow estimation; we will discuss contemporary synthetic datasets
in Section 6.2, but none of them has any large-scale component composed of real
scenes.

However, another question arises: while there is no need to have a training set for
classical optical flow estimation algorithms, what about a test set? How can we find
out which algorithm works better if there are no datasets with ground truth answers
where we could compare them?

5.2 Synthetic Data as a Testbed for Quantitative Comparisons 143

Fig. 5.4 Sample optical flow estimation, example code taken from [521]: (a) first original frame;
(b) second original frame; (c) dense optical flow between the frames computed by Farnebäck’s
algorithm [232]; (d) sparse optical flow for several keypoints estimated by the Lucas–Kanade
algorithm [561] over a longer video sequence.

Early works in computer vision often overlooked this question entirely. For exam-
ple, in their seminal 1981 paper [561], Lucas and Kanade do not provide any quanti-
tative estimates for how well their algorithm works, they just give several examples
based on a single real-world stereo pair, shown in Figure 5.5. This is entirely typical:
all early works on optical flow estimation develop and present new algorithms but
do not provide any means for a principled comparison beyond testing them on a few
real examples.

When enough algorithms had been accumulated; however, the need for an honest
and representative comparison became really pressing. For an example of such a
comparison, we jump forward to 1994, to the paper by Barron et al. called Perfor-
mance of Optical Flow Techniques [42]. They present a taxonomy and a survey of
optical flow estimation algorithms, including a wide variety of differential (such as
Lucas–Kanade), region-based, and energy-based methods. But to get a fair exper-
imental comparison, they needed a test set with known correct answers. And, of
course, they turned to synthetic data for this.

Barron et al. concisely sum up the pluses and minuses of synthetic data that
remain true up to this day: “The main advantages of synthetic inputs are that the
2D motion fields and scene properties can be controlled and tested in a methodical
fashion. In particular, we have access to the true 2D motion field and can therefore
quantify performance.Conversely, itmust be remembered that such inputs are usually

144 5 The Early Days of Synthetic Data

Fig. 5.5 Real-world stereo pair used for testing in [561].

Fig. 5.6 Sample synthetic optical flow fields from [42]: (a) a translation sequence, the camera
moves horizontally along a larger image; (b) a diverging sequence, the camera moves along its line
of sight perpendicular to the image.

clean signals (involving no occlusion, specularity, shadowing, transparency, etc.) and
therefore this measure of performance should be taken as an optimistic bound on the
expected errors with real image sequences” [42].

Specifically, for simple examples in their comparison, they used sinusoidal inputs
and a moving dark square over a bright background. For more complex tasks, they
used synthetic camera motion. For example, if you take a still real photograph and
start cropping out a moving window over this image, as a result, you basically get a
camera moving perpendicular to its line of sight along the image, and the optical flow
is fully known because you control the speed of thismotion (see Fig. 5.6a). And if you
take a window and start expanding it, you get a camera moving outwards, along its
line of sight and perpendicular to the image plane (see Fig. 5.6b). These synthetic data
generation techniques were simple and may seem naive by contemporary standards,
but they did allow for a reasonable quantitative comparison: it turned out that even
on such seemingly simple inputs, classical optical flow estimation algorithms gave
very different answers, with widely varying accuracy.

5.2 Synthetic Data as a Testbed for Quantitative Comparisons 145

This example illustrates a more general point: while classical algorithms for low-
level computer vision problems almost never involved any learning of parameters,
to make a fair comparison, one needs a test set with known correct answers, and
this is exactly where synthetic data can step up. In problems where large-scale real
datasets remain unavailable, such as optical flow estimation, synthetic test sets are
widely used to this day.

5.3 ALVINN: A Self-Driving Neural Network in 1989

The idea of a self-driving vehicle is very old. A magic flying carpet appears in The
Book of the ThousandNights andOneNight, where it is attributed to the court of King
Solomon. Leonardo da Vinci left a sketch of a clockwork cart that would go through
a preprogrammed route. For a comprehensive historical overview, I refer to an article
by Marc Weber that shows plenty of drawings and photographs of early attempts at
self-driving cars [922]. To borrow just one example, back in 1939, General Motors
had a large pavillion at the New YorkWorld’s Fair; in an aptly named Futurama ride
(didMatt Groening take inspiration fromGeneralMotors?), they showed their vision
of cities of the future. These cities included smart roads that would inform smart
vehicles, and they would drive autonomously with no supervision from humans.

Reality still has not quite caught up with this vision, and the path to self-driving
vehicles has been challenging. But successful experiments with self-driving cars
started as early as the 1970s. In particular, in 1977, the Tsukuba Mechanical Engi-
neering Laboratory in Japan developed a computer that would automatically steer a
car based on visually distinguishable markers that city streets would have to be fitted
with.

In the 1980s, a project funded by DARPA produced a car that could actually travel
along real roads using computer vision. This was the famous ALV (Autonomous
Land Vehicle) project, and its vision system was able to locate roads on images
from cameras, solve the inverse geometry problem, and send the resulting three-
dimensional road center points to the navigation system. The vision system, called
VITS (for Vision Task Sequencer) and summarized in a paper by Turk et al. [879]
(Figures 5.7 and 5.8 are taken from there), did not use machine learning in the

Fig. 5.7 General architecture of the ALV self-driving car control system [879].

146 5 The Early Days of Synthetic Data

Fig. 5.8 Architecture of the VITS vision system designed for the ALV self-driving car [879].

contemporary meaning of the word. Similar to other computer vision systems of
those days, as we discussed above, it relied on specially developed segmentation,
road boundary extraction, and inverse geometry algorithms. Figure 5.7 shows the
general architecture of ALV as shown in [879], and Figure 5.8 shows the pipeline of
the vision system.

The paper reports that ALV “could travel a distance of 4.2 km at speeds up to 10
km/h, handle variations in road surface, and navigate a sharp, almost hairpin, curve”.
After obstacle avoidance had been added to the navigation system, Alvin (that was
the nickname of the actual self-driving car produced by the ALV project) could steer
clear of the obstacles on a road and speed up to 20 km/h on a clear road. These were
really impressive results for the time, and they were achieved purely by custom-made
algorithms: Alvin did not learn, did not need any data, and therefore had no use for
synthetic datasets.

But this “no learning” stance changed very soon. In 1989, Dean A. Pomerleau
published a paper on NIPS (this was the second NIPS, a very different kind of
conference than what it has blossomed into now) called ALVINN: An Autonomous
Land Vehicle In a Neural Network [680]. This was one of the first attempts to produce
computer vision systems for self-driving cars based onmachine learning.What’s even
more interesting for a contemporary reader is it was based on a neural network!

The basic architecture of ALVINN is shown in Fig. 5.9. The neural network
had two inputs of different nature: 30× 32 videos supplemented with 8× 32 range
finder data. The neural architecture was a classic two-layer feedforward network:
input pixels go through a hidden layer and then on to the output units that try to
recognize what is the curvature of the turn ahead, so that the vehicle could stay on
the road. There is also a special road intensity feedback unit that simply tells whether
the road was lighter or darker than the background on the previous input image.

5.3 ALVINN: A Self-Driving Neural Network in 1989 147

Fig. 5.9 Architecture of the
ALVINN neural
network [680].

The next stepwas to train ALVINN. To learn, the neural network needed a training
set with ground truth labels. Dean Pomerleau writes the following about training data
collection: “Training on actual road images is logistically difficult, because in order
to develop a general representation, the network must be presented with a large
number of training exemplars depicting roads under a wide variety of conditions.
Collection of such a data set would be difficult, and changes in parameters such as
camera orientation would require collecting an entirely new set of road images...”
This is exactly the kind of problem with labeling and dataset representativeness that
we discussed in Chapter 1 for modern machine learning, only Pomerleau was talking
about these problems in 1989, in the context of 30× 32 pixel videos.

And what is his solution? Let us read on: “...To avoid these difficulties, we have
developed a simulated road generatorwhich creates road images to be used as training
exemplars for the network”. As soon as researchers needed to solve a real-world
computer vision problem with a neural network, synthetic data appeared. This was
one of the earliest examples of automatically generated synthetic datasets used to
train a real computer vision system. Actually, the low resolution of the sensors in
those days made it even easier to use synthetic data. Figure 5.10 shows two images
used by ALVINN, a real one on the left and a simulated one on the right. It does not
take too much effort to achieve photorealism in synthetic data when the real camera
works like this.

The results were positive. On synthetic test sets, ALVINN could correctly (within
two units) predict turn curvature approximately 90% of the time, on par with the best
handcrafted algorithms of the time. In real-world testing, ALVINN could drive a car
along a 400meter path at a speed of half ameter per second. Interestingly, the limiting

148 5 The Early Days of Synthetic Data

Fig. 5.10 Sample frames from real and synthetic video inputs used by ALVINN [680].

factor here was the speed of processing for the computer systems. Pomerleau reports
that ALV’s handcrafted algorithms could achieve a speed of 1 meter per second, but
only on a much fasterWarp computer, while ALVINN was working on the onboard
Sun computer, and he expected “dramatic speedups” after switching toWarp.

This section probably features too many quotes from the ALVINN paper [680],
but this work is such an excellent early snapshot of the positive features of synthetic
data that I cannot but quote again from Pomerleau’s conclusions: “Once a realistic
artificial road generator was developed, backpropagation produced in half an hour
a relatively successful road following system. It took many months of algorithm
development and parameter tuning by the vision and autonomous navigation groups
at CMU to reach a similar level of performance using traditional image processing
and pattern recognition techniques.”

Pomerleau says this more as a praise for machine learning over handcrafted algo-
rithmdevelopment, but it also highlights the advantages of synthetic data overmanual
labeling: it would takemuchmore than half an hour if Pomerleau’s group had to label
every single image from a real camera by hand. And to train for different driving
conditions, they would need to collect a whole new dataset in the field, with a real
car, rather than just tweak the parameters of the synthetic data generator.

By now, computer vision systems for self-driving cars are hard to imagine without
synthetic datasets; we will discuss them in much more detail in Section 7.2. But
modern approaches to synthetic data for autonomous vehicles often concentrate on
not just creating a collection of labeled synthetic images and video but rather on
providing an interactive simulation, a virtual city that could be used to train the
driving algorithm as well. This brings us to our next topic.

5.4 Early Simulation Environments: Robots and the Critique of Simulation 149

5.4 Early Simulation Environments: Robots and the
Critique of Simulation

Robotics is not quite as old as artificial intelligence: the challenge of building an
actual physical entity that could operate in the real world was too big a hurdle for
the first few years of AI. However, robotics was recognized as one of the major
problems in AI very early on, and as soon as it became possible, people started to
build real-world robots. One of the earliest attempts at a robot equipped with a vision
system, the Stanford Cart built in the 1970s, is shown in Figure 5.11 (the pictures
are taken from a later review paper by Hans Moravec [613]).

The Cart had an onboard TV system, and a computer program tried to drive the
Cart through obstacle courses based on the images broadcast by this system. Based
on several images taken from different camera positions (a kind of “super-stereo”
vision), its vision algorithm tried to find interest points (features), detect obstacles,
and avoid or go around them. It was extremely successful for such an early system,
although performance was less than stellar: the Cart moved in short lurches, about 1
meter, every 10–15 minutes. Still, in these lurches, the Cart could successfully avoid
real-life obstacles.

Aswe have already discussed, before the 1990s, computer visionwas very seldom
based on learning of any kind: researchers tried to devise algorithms, and data was
only needed to test and compare them. This is also true for robotics: early robots such
as the Cart had hardcoded algorithms for vision, pathfinding, and everything else.
However, experiments with the Cart and similar robots taught researchers that it is far
too costly and often entirely impossible to validate their ideas in the real world. Most
researchers decided that they want to first test the algorithms in computer simulations
and only then proceed to the real world. There are two main reasons for this:

• it is, of course, far easier, faster, and cheaper to test new algorithms in a simulated
world than embed them into real robots and test in reality;

• simulations can abstract away many problems that a real-world robot has to face,
such as unpredictable sources of noise in sensor readings, imperfections in the
hardware, accumulating errors, and so on; it is important to be able to distinguish
whether your algorithm does not work because it is a bad idea in general or because
the sensor noise is too large in this particular case.

Fig. 5.11 The Stanford Cart [613].

150 5 The Early Days of Synthetic Data

Fig. 5.12 Sample exploration results with systematic and 10% random error from [479].

Hence, robotics moved to the “simulate first, build second” principle which it
abides by this day.

For example, Benjamin Kuipers and Yung-Tai Byun developed an approach to
robot exploration and mapping based on a semantic hierarchy of spatial represen-
tations [479, 481]. This means that their robot is supposed to gradually work its
way up from the control level, where it finds distinctive places and paths, through
the topological level, where it creates a topological network description of the envi-
ronment, and finally to the geometric level, where the topology is converted to a
geometric map by incorporating local information about the distances and global
metric relationships between the places. Figure 5.12 shows a sample trajectory of
this navigation algorithm that explores a maze under noisy sensor readings.

The method itself was a seminal work, but it is not our subject right now and
I will not go into any more details about it. I would like to note, however, their
approach to implementing and testing the method: Kuipers and Byun programmed
(in Common Lisp, by the way) a two-dimensional simulated environment called the
NX Robot Simulator. The virtual robot in this environment has access to sixteen
sonar-type distance sensors and a compass and moves by two tractor-type chains.
Another interesting part of this simulation is that Kuipers and Byun took special care
to implement error models for the sonars that actually reflect real-life errors.

Figure 5.13a shows a sample picture from their simulation; on the left, you can
see a robot shooting sonar rays in 16 directions, and the histogram on the right shows
sensor readings (with vertical lines) and true distances (with X and Omarkers). Note
how the Omarkers represent a systematic error due to specular reflection, muchmore
serious than the deviations of X markers that result from normal random error. The
authors also made it into a software product with a GUI interface, which was much
harder to do in the 1980s than it is now; a sample screenshot is shown in Fig. 5.13b.

The algorithms worked fine in a simulation, and the simulation was so realistic
that it actually allowed to transfer the results to the real world. In a later work [480],

5.4 Early Simulation Environments: Robots and the Critique of Simulation 151

Fig. 5.13 The NX Robot Simulator: (a) sample image from the simulation [479]; (b) graphical
interface of the simulation program [481].

Kuipers et al. report on their experiments with two physical mobile robots, Spot
and Rover, that quite successfully implemented their algorithms on two different
sensorimotor systems.

Note that synthetic data was much harder to do back in the 1980s than today.
As another early example, I can refer to the work by Raczkowsky and Mitten-
buehler [694] who discussed camera simulations in robotics. It is mostly devoted

152 5 The Early Days of Synthetic Data

Fig. 5.14 Early robotics: (a) synthetic data from [694]; (b) Allen, Herbert, Tom, and Jerry from
the MIT AI Lab [93].

to the construction of a 3D scene, and back in 1989, you had to do it all yourself, so
the paper covers:

• surfaces, contours, and vertices that define a 3D object;
• optical surface properties including Fresnel reflection, diffuse reflectance, flux
density, and more;

• light source models complete with radiance, wavelengths, and so on;
• and finally a camera model that simulates a lens system and electronic hardware
of the robot’s camera.

In those days, only after working through all that could you produce such marvelous
photorealistic images as the 200× 200 synthetic photo of some kind of workpieces
shown in Fig. 5.14a.

Fortunately, by now, most of these problems have already been worked out in
modern 3D modeling software or gaming engines. However, camera models are still
relevant in modern synthetic data applications. For instance, an important use case
for, e.g., a smartphone manufacturer might be to retrain or transfer its computer
vision models when the camera changes, and you need a good model for both old
and new cameras in order to capture this change and perform this transition.

Despite these successes, not everybody believed in computer simulations for
robotics. In the same book as [480], another chapter by Rodney Brooks and Maja
Mataric, aptly titled Real Robots, Real Learning Problems [93], had an entire section
devoted to warning researchers in robotics from relying on simulations too much.
Brooks and Mataric put it as follows: “Simulations are doomed to succeed. Even
despite best intentions there is a temptation to fix problems by tweaking the details
of a simulation rather than the control program or the learning algorithm. Another
common pitfall is the use of global information that could not possibly be available to
a real robot. Further, it is often difficult to separate the issues which are intrinsic to the
simulation environment from those which are based in the actual learning problem.”

5.4 Early Simulation Environments: Robots and the Critique of Simulation 153

Basically, they warned that computer vision had not been solved yet, and while a
simulation might provide the robot with information such as “there is food ahead”, in
reality, such high-level informationwould never be available. This, of course, remains
true to this day, and modern robotic vision systems make use of all modern advances
in object detection, segmentation, and other high-level computer vision tasks (where
synthetic data also helps a lot, by the way, as we see in the rest of this book).

This sounds like some very basic points that are undoubtedly true, and they sound
more as a part of the problem setting than true criticism. However, Brooks also
presents a much more interesting criticism which is not so much against synthetic
data and simulations as against the entire computer vision program for robotics; while
this is an aside for this book, this is an interesting aside, and I want to elaborate on it.

Brooks’ ideas were summarized in two of his seminal papers, IntelligenceWithout
Representation [92] and Intelligence Without Reason [91]. In the former, Brooks
argues that abstract representation of the real world, which was a key feature of
contemporary AI solutions, is a dangerous weapon that can lead to self-delusion. He
says that real-life intelligence has not evolved as a machine for solving well-defined
abstract problems such as chess playing or theorem proving: intelligence in animals
and humans is inseparable from perception and mobility. This was mostly a criticism
of early approaches to AI that indeed concentrated on abstractions such as block
worlds or knowledge engineering.

In Intelligence Without Reason, Brooks goes further to argue that abstraction
and knowledge are basically unavailable to systems that have to operate in the real
world, that is, to robotic systems. For example, he mentions vision algorithms based
on line drawings that we discussed in Section 5.1 and admits that although some early
successes in line detection had dated back to the 1960s, even in the early 1990s, we
did not have a reliable way to convert real-life images to line drawings. “Try it! You’ll
be amazed at how bad it is,” Brooks comments, and this comment is not very far
from the truth even today.

Brooks presents four key ideas that he believes to be crucial for AI:

• situatedness, i.e., placing AI agents in the real world “with continuity, surprises,
or ongoing history”; Brooks agrees that such a world would be hard to accurately
reflect in a simulation and concludes that “the world is its own best model”;

• embodiment, i.e., physical grounding of a robot in the real world; this is important
precisely in order to avoid self-delusional pitfalls that abstract simulations may
lead to; apart from new problems, the embodiment may also present solutions to
abstract problems by grounding the reasoning and conclusions in the real world;

• intelligence, which Brooks proposes to model after animals simpler than humans,
concentrating at first on perception and mobility and only then moving to abstract
problem solving, just like we humans did in the process of evolution;

• emergence, where Brooks makes the distinction between traditional AI systems
whose components are functional (e.g., a vision system, a pathfinding system, and
so on) and behaviour-based systems where each functional unit is responsible for
end-to-end processing needed to form a given behaviour (e.g., obstacle avoidance,
gaze control, etc.).

154 5 The Early Days of Synthetic Data

As for simulations, Brooks concludes that they are examples of precisely the kind
of abstractions that may lead to overly optimistic interpretations of results and argues
for complete integrated intelligent mobile robots.

Interestingly, this resonates with the words of Hans Moravec that he wrote in
his 1990 paper about the Stanford Cart robot that I referenced above [613]: “My
conclusion is that solving the day to day problems of developing a mobile organism
steers one in the direction of general intelligence, while working on the problems of
a fixed entity is more likely to result in very specialized solutions.”

Brooks put his ideas into practice, leading a long-term effort to create mobile
autonomous robots in the MIT AI lab. The robots developed there—Allen, Herbert,
Tom, and Jerry, shown in Fig. 5.14b—were designed to interact with the world rather
than plan and carry out plans. This work soon ran into technological obstacles: the
hardware was just not up to the task in the late 1980s. But Brooks’ ideas live on:
Intelligence Without Representation has more than 2000 citations and is still being
cited to this day, infields ranging from robotics to cognitive sciences, nanotechnology,
and even law (AI-related legislature is a very interesting topic, by the way).

So are simulations useful for robotics? Of course, and increasingly so! While I
believe that there is a lot of truth to the criticism shown above, in my opinion in most
applications, it boils down to the following: when your robot works in a simulation,
it does not yet mean that it will work in real life. This is, of course, true.

On the other hand, if your robot does not work even in a simulation, it is definitely
too early to start building real systems. Moreover, modern developments in robotics
such as the success of reinforcement learning seem to have a strange relationship
with Brooks’ ideas. On the one hand, this is definitely a step in the direction of
creating end-to-end systems that are behaviour-oriented rather than composed of
clear-cut predesigned functional units. On the other hand, in the modern state of
reinforcement learning, it is entirely hopeless to suggest that complex systems such
as robots could be trained in real life: they absolutely need simulations because they
require millions, if not billions, of training episodes. We will see examples of such
systems in Chapter 7.

But while researchers are training robots in simulation up to this day, accurate 3D
modeling is not quite enough to create a simulation that would be useful for robotics.
Let us conclude this chapter with another early example in robotics that illustrates
this point.

5.5 Case Study: MOBOT and The Problems of Simulation

In the previous section, we have talked about robotic simulations in general: what
they are and why they are inevitable for robotics based on machine learning. We
even touched upon some of the more philosophical implications of simulations in
robotics, discussing early concerns on whether simulations are indeed useful or may
become a dead end for the field. Here, let us consider in more detail the example of
MOBOT, an important project about a robot navigating indoor environments.

5.5 Case Study: MOBOT and The Problems of Simulation 155

Fig. 5.15 Illustrations for the MOBOT project [97, 219, 356, 414, 872, 1030]: (a) the robot itself;
(b) hierarchy of MOBOT’s abstraction layers; (c) world modeling in MOBOT; (d) the ps-WM
architecture.

MOBOT (Mobile Robot, and that is one of the most straightforward acronyms
you will see in this section) was developed in the first half of the 1990s by a group
led by Ewald von Puttkamer in the University of Kaiserslautern [97, 219, 356, 414,
872, 1030].

The MOBOT (specifically, the MOBOT-IV version) is shown in Fig. 5.15a. Note
the black boxes that form a 360 degree belt around the robot: these are sonar sensors,
and we will come back to them later. The main problem that MOBOT developers
were solving was navigation in the environment, that is, constructing the map of the
environment and understanding how to go where the robot needed to go. There was
a nice hierarchy of abstraction layers that gradually grounded the decisions down to
themostminute details, illustrated in Fig. 5.15b. And therewere three different layers
of the world modeling, too; the MOBOT viewed the world differently depending on
the level of abstraction, as shown in Fig. 5.15c.

In essence, this came down to the same old problem: figure out the sensor readings
and map them to all these nice abstract layers where the robot could run pathfinding
algorithms such as the evergreen A* [323]. Apart from the sonars, the robot also had

156 5 The Early Days of Synthetic Data

a laser radar, and the overall scheme of the ps-WM (pilot-specificWorldModeling;
I told you the acronyms would only get weirder) project [414], shown in Fig. 5.15d,
looks quite involved. Note that there are several different kinds of maps that need
updating.

But in this book, we are especially interested in the MOBOT project because it
contained one of the earliest examples of a full-scale 3D simulation environment
for robotics. It is the 3d7 Simulation Environment [872]; the obscure name does not
refer to a nonexistent seven-sided die but is again an acronym for “3D Simulation
Environment”. The 3d7 environment was developed forMOBOT-IV, an autonomous
mobile robot that was supposed to navigate indoor environments; it had general-
purpose ambitions rather than simply being, say, a robot vacuum cleaner, because
its scene understanding was inherently three-dimensional, while for many specific
tasks, a 2D floor map would be quite sufficient.

The overall structure of 3d7 is shown in Figure 5.16a. It is quite straightforward:
the software simulates a 3D environment, robot sensors, and robot locomotion, which
lets the developers tomodel various situations, choose the best algorithms for sensory
data processing and action control, and so on, just like we have discussed above.

The main point I wanted to make with this example is this: creating realistic simu-
lations is very hard. Usually, when we talk about synthetic data, we are concentrating
on computer vision, and we are emphasizing the work it takes to create a realistic 3D
environment. It is indeed a lot, but just creating a realistic 3D scene is not the end of
the story for robotics. For 3D environment modeling, 3d7 contained an environment
editor that lets you place primitive 3D objects such as cubes, spheres, or cylinders
and also more complex objects such as chairs or tables. It produced a scene com-
plete with the labels of semantic objects and geometric primitives that make up these
objects, like the one shown in Fig. 5.16b.

But then the fun part began. MOBOT-IV contained two optical devices: a laser
radar sensor and a brand new addition compared to MOBOT-III, an infrared range
scanning device. This means that in order to make a useful simulation, the 3d7
environment had to simulate these two devices.

It turns out that both these simulations represent interesting projects. LARS, the
Laser Radar Simulator, was designed tomodel the real laser radar sensor ofMOBOT-
III and the new infrared range scanner of MOBOT-IV. It produced a simulation
illustrated in Figure 5.16c. As for sonar range sensors, the corresponding USS2D
simulator (Ultrasonic Sensor Simulation 2D) was evenmore interesting. It was based
on the work [478] that takes about thirty pages of in-depth acoustic modeling; I will
not go into the details but trust me, there are a lot of details there. The end result was
a set of sonar range readings corresponding to the reflections from nearest walls; a
sample set of readings is shown in Fig. 5.16d.

But wait, that’s not all! After all of this is done, you only have simulated the
sensor readings! To actually test your algorithm, you also need to model the actions
your robot can take and how the environment will respond to these actions. In the
case of 3d7, this means a separate locomotion simulation model for robot movement
called SKy (Simulation of Kinematics and Dynamics of wheeled mobile robots),

5.5 Case Study: MOBOT and The Problems of Simulation 157

Fig. 5.16 The 3d7 simulation environment [872]: (a) overall structure; (b) sample 3D scene; (c)
LARS laser simulation; (d) USS2D ultrasonic sensor simulation.

158 5 The Early Days of Synthetic Data

Fig. 5.17 Learning in the MOBOT project [1030]: (a) sample test environment; (b) test trajectory;
(c) topogical representation produced by SOMs.

which also merited its own paper but which we definitely will not go into. All of
these pieces can be found in Fig. 5.16a.

TheMOBOTproject did not containmanymachine learningmodels, it wasmostly
operated by fixed algorithms designed to work with sensor readings as shown above.
Even the 3d7 simulation environment was mostly designed to help test various data
processing algorithms (world modeling) and control algorithms (e.g., path planning
or collision avoidance), a synthetic data application similar to the early computer
vision we talked about before.

But at some point, MOBOT designers did try out some machine learning. The
work [1030] was titled Realtime-learning on an Autonomous Mobile Robot with
Neural Networks, which sounds quite relevant to this book. These are not, however,
the neural networks that we are used to: in fact, Zimmer and von Puttkamer used
self-organizing maps (SOM), sometimes called Kohonen maps in honor of their
creator [465], to cluster sensor readings.

The problem setting is as follows: as the robot moves around its surroundings, it
collects sensor information. The basic problem is to construct a topological map of
the floor with all the obstacles. To do that, the robot needs to be able to recognize
places where it has already been, i.e., to cluster the entire set of sensor readings

5.5 Case Study: MOBOT and The Problems of Simulation 159

into “places” that can serve as nodes for the topological representation. Due to the
imprecise nature of robotic movements, we cannot rely on the kinematic model of
where we tried to go: small errors tend to accumulate. Instead, the authors propose
to cluster sensor readings: if the current vector of readings is similar to what we have
already seen before, we are probably in approximately the same place.

And again we see the exact same effect: while Zimmer and von Puttkamer do
present experiments with a real robot, most experiments for SOM training were
done with synthetic data. This data was collected in a test environment that looked
as shown in Fig. 5.17a with test trajectories such as the one shown in Fig. 5.17b. And
indeed, when the virtual robot had covered this trajectory, SOMs clustered nicely
and allowed to construct a graph, a topological representation of the territory, like
the one in Fig. 5.17c.

5.6 Conclusion

In this chapter, we have seen how synthetic data became a staple of machine learning
starting from its very early years, mostly concentrated in computer vision, of course.
Synthetic data was the only way to go for early computer vision algorithms that could
not really handle real data. It has been invaluable in creating test sets for all sorts
of computer vision algorithms in problems that would be impossibly hard to label
manually (such as optical flow estimation).

We have also seen the main components of a robotic simulation system, discussed
the many different aspects that need to be simulated, and seen how this all came
together in one early robotic project, the MOBOT from the University of Kaiser-
slautern. Simulations were important for robotics in the early days, and by now, they
are becoming indispensable.

But these are only the early steps. Starting from the next chapter, we will be
getting close to the current state of the art of using synthetic data to train deep
learning models. Our next topic is to see how synthetic data can help models that
solve basic computer vision problems such as image classification, object detection,
segmentation, or the same optical flow estimation that we have touched upon in this
chapter. We will also review the most important synthetic datasets that have been
used as testbeds for this research.

Chapter 6
Synthetic Data for Basic Computer
Vision Problems

It is time to put the pedal to the metal: starting from this chapter, we will discuss the
current state of the art in various aspects of synthetic data. This chapter is devoted to
basic computer vision problems: we begin with low-level problems such as optical
flow estimation and stereo image matching, proceed to datasets of basic objects that
can be used to train computer vision models, discuss in detail the case study of
synthetic data for object detection, and finish with several different use cases such
as synthetic datasets of humans, OCR, and visual reasoning.

6.1 Introduction

In this chapter, we present an overview of several directions for using synthetic
data in computer vision, surveying both popular synthetic datasets that have been
widely used in recent studies and the studies themselves. We organize this chapter
by classifying datasets and models with respect to use cases, from generic object
detection and segmentation problems to specific domains such as face recognition.
All of these domains benefit highly from pixel-perfect labeling available by default
in synthetic data, both in the form of classical computer vision labeling—bounding
boxes for objects and segmentation masks—and labeling types that would be very
hard or impossible to do by hand: depth estimation, stereo image matching, 3D
labeling in voxel space, and others.

In Section 6.2, we begin with low-level computer vision problems such as optical
flow or stereo disparity estimation. Next we proceed to basic high-level computer
vision problems, including recognition of basic objects (Section 6.3), a case study
of improving object detection with synthetic data (Section 6.4), and solving other
high-level computer vision problems (Section 6.5).Wewill also discuss several more
specialized directions: human-related computer vision problems such as face recog-
nition or crowd counting in Section 6.6 and more narrow vision-related problems
such as character and text recognition and visual reasoning in Section 6.7. I refer to
Table 6.1 for a brief overview of major synthetic datasets considered in this chapter.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_6

162 6 Synthetic Data for Basic Computer Vision Problems

Table 6.1 An overview of synthetic datasets discussed in this chapter
Name Year Ref Size / comments

Low-level computer vision

Tsukuba Stereo 2012 [671] 1800 high-res stereo image pairs

MPI-Sintel 2012 [105] Optical flow from an animated movie

Middlebury 2014 2014 [764] 33 high-res stereo datasets

Flying Chairs 2015 [202] 22K frame pairs with ground truth
flow

Flying Chairs 3D 2015 [586] 22K stereo frames

Monkaa 2015 [586] 8591 stereo frames

Driving 2015 [586] 4392 stereo frames

UnrealStereo 2016 [1008] Data generation software

Underwater 2018 [641] Underwater synthetic stereo pairs
generator

Datasets of basic objects

YCB 2015 [690] 77 objects in 5 categories

ShapeNet 2015 [122] >3M models, 3135 categories, rich
annotations

ShapeNetCore 2017 [973] 51K manually verified models, 55
categories

UnrealCV 2017 [690] Plugin for UE4 to generate synthetic
data

VANDAL 2017 [115] 4.1M depth images, 9K objects, 319
categories

SceneNet 2015 [320] Automated indoor synthetic data
generator

SceneNet RGB-D 2017 [588] 5M RGB-D images from 16K 3D
trajectories

DepthSynth 2017 [677] Realistic simulation of depth sensors

PartNet 2018 [608] 26671 models, 573535 annotated part
instances

Falling Things 2018 [868] 61.5K images of YCB objects in
virtual envs

ADORESet 2019 [47] Hybrid dataset for object recognition
testing

Datasets of synthetic people

ViHASi 2008 [699] Silhouette-based action recognition

Agoraset 2014 [171] Crowd scenes generator

LCrowdV 2016 [145] 1M videos, 20M frames with crowds

PHAV 2017 [815] 40K action recognition videos, 35
categories

SURREAL 2017 [889] 145 subjects, 2.6K sequences, 6.5M
frames

SyRI 2018 [34] Virtual humans in UE4 with realistic
lighting

GCC 2019 [907] 15K images with 7.6M subjects

CLOTH3D 2019 [67] Virtual humans in various clothing

6.2 Low-Level Computer Vision 163

6.2 Low-Level Computer Vision

Low-level computer vision problems include, in particular, optical flow estimation,
i.e., estimating the distribution of apparent velocities of movement along the image,
stereo image matching, i.e., finding the correspondence between the points of two
images of the same scene from different viewpoints, background subtraction, and so
on. Algorithms for solving these problems can serve as the foundation for computer
vision systems; for example, optical flow is important for motion estimation and
video compression. Low-level problems can usually be approached with methods
that do not require modern large-scale datasets or much learning at all, e.g., classical
differential methods for optical flow estimation. However, at the same time, ground
truth datasets are very hard to label manually, and hardware sensors that would
provide direct measurements of optical flow or stereo image correspondence are
difficult to construct (e.g., commodity optical flow sensors simply run the same
estimation algorithms).

All of these reasons make low-level computer vision one of the oldest problems
where synthetic data was successfully used, originallymostly for evaluation (see also
Section 5.2); we illustrate the datasets considered in this section in Fig. 6.1. Works
as far back as late 1980s [529] and early 1990s [43] presented and used synthetic
datasets to evaluate different optical flow estimation algorithms. In 1999, Freeman et
al. [240] presented a synthetically generated world of images, with labeling derived
from the corresponding 3D scenes, designed to train and evaluate low-level computer
vision algorithms.

Amodern dataset for low-level vision isMiddlebury presented byBaker et al. [36];
in addition to ground truth real-life measurements taken with specially constructed
computer-controlled lighting, they provide realistic synthetic imagery as part of the
dataset and include it in a large-scale evaluation of optical flow and stereo correspon-
dence estimation algorithms that they undertake. The Middlebury dataset played an
important role in the development of low-level computer vision algorithms [765,
775], but its main emphasis was still on real imagery, as evidenced by its next ver-
sion, Middlebury 2014 [764].

Peris et al. [671] presented the Tsukuba CG Stereo Dataset with synthetic data
and ground truth disparity maps and showed improvements in disparity classifi-
cation quality. Butler et al. [105] presented a synthetic optical flow dataset MPI-
Sintel derived from the short animated movie Sintel1 produced as part of the Durian
Open Movie Project. The main characteristic feature ofMPI-Sintel is that it contains
the same scenes with different render settings, varying quality and complexity; this
approach can provide a deeper understanding of where various optical flow algo-
rithms break down. This is an interesting idea that has not yet found its way into
synthetic data for deep learning-based computer vision but might be worthwhile to
investigate.

An interesting study byMeister and Kondermann [596] shows that while real and
synthetic data (synthetic being very high-quality, produced with ray tracing) yield

1http://www.sintel.org/

http://www.sintel.org/

164 6 Synthetic Data for Basic Computer Vision Problems

Fig. 6.1 Sample images from synthetic low-level datasets: (a) MPI-Sintel [105] (left to right:
left view, right view, disparities; bottom row shows occluded and out-of-frame pixels); (b–
d) Tsukuba CG Stereo Dataset [671] with different illumination conditions: (b) daylight, (c) flash-
light, (d) lamps; (e) Driving [586]; (f) FlyingThings3D [586]; (g) Monkaa [586].

approximately the same results for optical flow detection in terms of mean endpoint
error, the spatial distributions of errors are different, so synthetic data in this case
may supplement real data in unexpected ways.

As the fieldmoved from classical unsupervised approaches to deep learning, state-
of-the-art models began to require large datasets that could not be produced in real
life, and after the transition to deep learning synthetic datasets started to dominate.
Dosovitsky et al. [202] presented a large-scale synthetic dataset called Flying Chairs
from a public database of 3D chair models, adding them on top of real backgrounds
to train a CNN-based optical flow estimation model. Mayer et al. [586] extended
this work from optical flow to disparity and scene flow estimation, presenting three
synthetic datasets produced in Blender (similar to Sintel):

• FlyingThings3D with everyday objects flying along randomized trajectories;
• Monkaa, made from its namesake animated short film, with soft nonrigid motion
and complex details such as fur;

• Driving with naturalistic dynamic outdoor scenes from the viewpoint of a driving
car (for more outdoor datasets see Section 7.2).

6.2 Low-Level Computer Vision 165

Fig. 6.2 Sample images from synthetic datasets of basic objects: (a–c) shapes from ShapeNet [122]:
(a) airplane, (b) chair, (c) grand piano); (d-e) from YCB Object and Model set [110]: (d) peach,
(e) tomato soup can; (f-g) 3D scenes from SceneNet [319, 320]: (f) living room, (g) bedroom;
(h–k) depth images from VANDAL [115]: (h) desk, (i) coffee maker, (k) grand piano.

166 6 Synthetic Data for Basic Computer Vision Problems

The Flying Chairs dataset was also later extended with additional modalities to
ChairsSDHom [384] with optical flow ground truth and Flying Chairs 2 [385] with
occlusion weights and motion boundaries.

TheUnrealStereo dataset byZhang et al. [1008] is a data generation framework for
stereo scene analysis based on Unreal Engine 4, designed to evaluate the robustness
of stereo vision algorithms to changes in material and other scene parameters. Many
datasets that we describe below for high-level problems, such as SceneNet RGB-
D [588] or SYNTHIA [731], also contain labeling for optical flow and have been
used to train the corresponding models.

Olson et al. [641] consider an unusual special case for this problem: underwater
disparity estimation. Their work is also interesting in the way how they produce
synthetic data: Olson et al. project real underwater images on randomized synthetic
surfaces produced in Blender, and then use rendering tools developed to mimic the
underwater sensors and characteristic underwater effects such as fast light decay and
backscattering. They produce synthetic stereo image pairs and use the dataset to train
disparity estimation models, with successful transfer to real images.

In a recent work, Mayer et al. [585] provide an overview of different synthetic
datasets for low-level computer vision and compare them from the standpoint of
training optical flow models. They come to interesting conclusions:

• first, for low-level vision synthetic data does not have to be realistic, Flying Chairs
works just fine;

• second, it is best to combine different synthetic datasets and train in a variety of
situations and domains; this ties into the domain randomization idea that we will
discuss in Section 9.1;

• third, while realism itself is not needed, it does help to simulate the flaws of a
specific real camera; Mayer et al. show that simulating, e.g., lens distortion and
blur or Bayer interpolation artifacts in synthetic data improves the results on a real
test set afterwards.

The question of realism remains open for synthetic data, and we will touch upon it
many times in this book.While it does seemplausible that for low-level problems such
as optical flow estimation “low-level realism” (simulating camera idiosyncrasies) is
much more important than high-level scene realism, the answer may be different for
other problems.

6.3 Datasets of Basic Objects

Basic high-level computer vision problems, such as object detection or segmentation,
fully enjoy the benefits of perfect labeling provided by synthetic data, and there is
plenty of effort devoted to making synthetic data work for these problems. Since
making synthetic data requires the development of 3D models, datasets usually also
feature 3D-related labeling such as the depth map, labeled 3D parts of a shape,
volumetric 3D data, and so on. There are many applications of these problems,

6.3 Datasets of Basic Objects 167

including object detection for everyday objects and retail items (where a high number
of classes and frequently appearing new classes make using real data impractical),
counting and detection of small objects, basically all applications of semantic and
instance segmentation (wheremanual labeling is especially hard to obtain), andmore.

Many works apply synthetic data to recognizing everyday objects such as retail
items, food, or furniture, andmost of them draw upon the same database for 3Dmod-
els. Developed by Chang et al. [122], ShapeNet2 indexes more than three million
models, with 220,000 of them classified into 3,135 categories that match WordNet
synsets. Apart from class labels, ShapeNet also includes geometric, functional, and
physical annotations, including planes of symmetry, part hierarchies, weight and
materials, and more; we show samples from ShapeNet and other datasets of basic
objects in Fig. 6.2. Researchers often use the clean and manually verified ShapeNet-
Core subset that covers 55 common object categories with about 51,000 unique 3D
models [973].

ShapeNet has become the basis for further efforts devoted to improving labelings.
In particular, region annotation (e.g., breaking an airplane into wings, body, and tail)
is a manual process even in a synthetic dataset, while shape segmentation models
increasingly rely on synthetic data [971]; this also relates to the 3D mesh segmen-
tation problem [787]. Based on ShapeNet, Yi et al. [972] developed a framework
for scalable region annotation in 3D models based on active learning, and Chen et
al. [137] released a benchmark dataset for 3D mesh segmentation.

A recent important effort related to ShapeNet is the release of PartNet [608],
a large-scale dataset of 3D objects annotated with fine-grained, instance-level, and
hierarchical 3D part information; it contains 573,585 part instances across 26,671
3D models from 24 object categories. PartNet was mostly intended to serve as a
benchmark for 3D object and scene understanding, but the corresponding 3Dmodels
will no doubt be widely used to generate synthetic data.

One common approach to generating synthetic data is to reuse the work of 3D
artists that went into creating the virtual environments of video games. For example,
Richter et al. [724, 725] captured datasets from the Grand Theft Auto V video game
(see also Section 7.2). They concentrated on semantic segmentation; note that getting
pixel-wise labels for segmentation still required manual labor, but the authors claim
that by capturing the communication between the game and the graphics hardware,
they have been able to cut the labeling costs (annotation time) by orders ofmagnitude.
Once the annotator has worked through the first frame, the same combinations of
meshes, textures, and shaders reused on subsequent frames can be automatically
recognized and labeled, and the annotators are only asked to label new combinations.
In essence, the game engine provides perfect superpixels that are persistent across
frames (we discussed superpixels in Section 3.3).

As Grand Theft Auto V and other games became popular for collecting synthetic
datasets (see also Section 7.2), more specialized solutions began to appear. One such
solution is UnrealCV developed by Qiu et al. [689, 690], an open-source plugin for
the popular game engine Unreal Engine 4 that provides commands that allow to get

2https://www.shapenet.org/

https://www.shapenet.org/

168 6 Synthetic Data for Basic Computer Vision Problems

and set camera location and field of view, get the set of objects in a scene togetherwith
their positions, set lighting parameters, modify object properties such as material,
and capture from the engine the image and depth ground truth for the current camera
and lighting parameters. This allows to create synthetic image datasets from realistic
virtual worlds.

Robotics has motivated the appearance of synthetic datasets with objects that
might be subject for manipulation, usually with fairly accurate models of their phys-
ical properties. Computer vision objectives in these datasets usually relate to robotic
perception and include segmentation, depth estimation, object pose estimation, and
object tracking. In particular, Choi et al. [148] present a dataset of 3D models of
household objects for their tracking filter, while Hodan et al. [351] provide a real
dataset of textureless objects supplemented with 3D models of these objects that
provide the 6D ground truth poses. Lee et al. [502] test existing tracking methods
with simulated video sequences with occlusion effects. Papon and Schoeler [655]
consider the problem of object pose and depth estimation in indoor scenes. They
have developed a synthetic data generator and trained on 7000 randomly generated
scenes with ≈60K instances of 2842 pose-aligned models from the ModelNet10
dataset [944], showing excellent results in transfer to real test data.

The Yale-CMU-Berkeley (YCB) Object and Model set presented by Calli et
al. [110] contains a set of 3D models of objects commonly used for robotic grasping
together with a database of real RGB-D scans and physical properties of the objects,
which makes it possible to use them in simulations.

Once we have these basic objects, the next step is to put them into context; it is no
coincidence that one of the main object detection datasets is called Common Objects
in Context. For instance, in real-world object detection and segmentation datasets
the problem becomes much harder if the same picture contains objects on different
scales (small and large in terms of the proportion of the picture) and if the objects
are embedded into a rich context. The backgrounds become especially hard if they
contain other objects that do not need to be recognized but that might confuse the
model; they are usually called distractors. Naturally, if you have a synthetic chair
centered on a white background, like in the images above, the corresponding object
detection or segmentation problem will be easy, and a network trained on this kind
of dataset will not get you very far in real object detection.

So what can we do about it? On the surface, it looks like we might have to bite the
bullet and start developing complex backgrounds that capture realistic 3D scenes.
Researchers actually do it in, say, creating simulations and datasets for training self-
driving cars that we will consider in Section 7.2, and it is an entirely reasonable
investment of time and effort. But in high-level object detection problems such as
object detection or segmentation, sometimes even much simpler things can work
well. Some of the hardest cases in these problems stem from complex interactions
between objects: partial occlusions, different scales caused by different distances to
the camera, and so on. So why don’t we use a more or less generic scene and just put
the objects there at random, striving to achieve a cluttered and complicated scene but
with little regard to physical plausibility?

6.3 Datasets of Basic Objects 169

This plays into the narrative of domain randomization, a general term that means
randomizing the parameters of synthetic scenes in order to capture as wide a variety
of synthetic data as possible. The idea is that if the network learns to do its job on an
extremely wide and varied distribution of data, it will hopefully do the job well on
real data as well, even if individual samples of this synthetic data are very far from
realistic. Domain randomization is instrumental in synthetic data research, and we
will discuss it in more detail in Section 9.1, but even in its simplest forms it is useful
for producing computer vision datasets.

When you put this idea into practice, you get datasets like Flying Chairs that
we have considered above and Falling Things. The Falling Things (FAT) dataset
by NVIDIA researchers Tremblay et al. [868] contains about 61500 images of 21
household objects taken from the YCB dataset and placed into virtual environments
under a wide variety of lighting conditions, with 3D poses, pixel-perfect segmen-
tation, depth images, and 2D/3D bounding box coordinates for each object. Virtual
environments are realistic enough, but the scenes are purely random, with a lot of

Fig. 6.3 Sample images from the Falling Things dataset [868]: (a–b) RGB images, (c–d) ground
truth segmentation maps; (e–f) depth maps.

170 6 Synthetic Data for Basic Computer Vision Problems

occlusions and objects just flying in the air in all directions; we show sample images
from FAT in Fig. 6.3.

The Falling Things dataset also demonstrates one more trend in synthetic data:
it can be downloaded as a standalone dataset, but even mere 21 objects result in a
dataset which is 42GB in size. This is a common theme: as synthetic datasets grow
in scale, it becomes less and less practical to render them completely in advance and
transfer the pictures over a network. Procedural generation is increasingly used to
avoid this and render images only on a per-need basis; we will return to this idea in
Section 12.1.

Recent works begin to use synthetic datasets of everyday objects in more complex
ways, in particular by placing them in real surroundings. Abu Alhaija et al. [5]
and Georgakis et al. [270] propose procedures to augment real backgrounds with
synthetic objects (see also Section 9.3 where we will discuss placing real objects on
real backgrounds). In [5], the backgrounds come from the KITTI dataset of outdoor
scenes and the objects are synthetic models of cars, while in [270] the authors place
synthetic objects into indoor scenes with an eye towards home service robots.

Synthetic objects have been used on real backgrounds many times before, but the
main distinguishing feature of [5] and [270] is that they are able to paste synthetic
objects on real surfaces in a way consistent with the rest of the background scene.
Abu Alhaija et al. developed a pipeline for automated analysis that recognized road
surfaces on 360° panoramic images, but at the same time they conclude that the best
(with respect to the quality of the resulting segmentationmodel) way to insert the cars
was to do it manually, and almost all their experiments used manual car placement.

These experiments showed that state of the art models for instance segmentation
and object detection yield better results on real validation tests when trained on
scenes augmented with synthetic cars. Georgakis et al. use the algorithm from [852]
to extract supporting surfaces from an image and place synthetic objects on such
surfaces with proper scale; they show significant improvements by training on hybrid
real+synthetic datasets.One of the latest and currentlymost advanced pipelines in this
direction for autonomous driving is AADS [513] that we will discuss in Section 7.2.

By this time, the reader might wonder just howmuch effort has to go into creating
a synthetic dataset of one’s own. If you need a truly large-scale dataset with photore-
alistic quality of rendering, it may be a lot, and so far there is no way to save on the
actual design of 3Dmodels. But, as it often happens in themachine learning industry,
people are working hard to commoditize the things that all these projects have in
common, in this case the randomization of 3D scenes and backgrounds, object place-
ment, lighting modifications, and other parameters, as well as procedural generation
of these randomized scenes.

One recent example is NVIDIA’s Dataset Synthesizer (NDDS) [859], a plugin for
Unreal Engine 4 that allows computer vision researchers to easily turn 3D models
and textures into ready-to-use synthetic datasets. NDDS can produce RGB images,
segmentation maps, depth maps, and bounding boxes, and if the 3D models contain
keypoints for the objects then these keypoints and object poses can be exported too.
What is even more important, NDDS has automated tools for scene randomization:
you can randomize lighting conditions, camera location, poses, textures, and more.

6.3 Datasets of Basic Objects 171

Basically, NDDSmakes it easy to create your own dataset similar to, say, the Falling
Things dataset. The result can look precisely like the examples in Fig. 6.3.

NVIDIA researchers are already using NDDS to produce synthetic datasets for
computer vision. For example, SIDOD (Synthetic Image Dataset for 3D Object Pose
Recognition with Distractors) by Jalal et al. [395] is a synthetic dataset which is
relatively small by today’s standards, only 144K stereo image pairs, but it is one of
the first datasets to combine all types of outputs with flying distractors.

In general, by now researchers have relatively easy access to large datasets of 3D
models of everyday objects to generate synthetic environments (we will see more of
this in Sections 7.2 and 7.3), add synthetic objects as distractors to real images, place
synthetic objects on real backgrounds in smarter ways, and so on. Although RGB-D
datasets with real scans are also increasingly available as the corresponding hardware
becomes available (see, e.g., the survey [236] and [151]), they cannot compete with
synthetic data in terms of the quality of labeling and diversity of environments (see
also Section 9.1). Over the next sections, we will see how this progress helps to solve
the basic computer problems: after all, recognizing synthetic objects is never the end
goal.

6.4 Case Study: Object Detection With Synthetic Data

Even a bookmight not havemargins large enough to fit a thorough discussion of each
and every computer vision problem. Therefore, I will intersperse this book, which is
primarily a high-level survey, with several sections that represent more detailed case
studies, digging into more detail on specific problems or applications. The first such
case study deals with synthetic data for object detection. In Section 3.3, we have
already given an overview of the main architectures used for object detection, and
here we will see some of the key works that have applied synthetic data to object
detection and presented insights that remain relevant for synthetic data today. We
will review seven papers in roughly chronological order.

We are concentrating on training neural networks with synthetic data, so our story
of synthetic data for object detection cannot begin earlier than the first deep learning
models for this problem. But it does not begin much later either: our first paper in
this review is by Peng et al. [664]; it came out on ICLR 2015, and the preprint is
dated 2014. Back in 2014, the deep learning revolution in computer vision was still
in early stages, so in terms of image classification architectures that could serve as
backbones for object detection researchers only had AlexNet, VGG, and GoogLeNet
(the first in the Inception line; see Section 3.2 for more details). But at the time, there
was little talk about “backbones”: the state of the art in object detection, reporting
a huge improvement over the ILSVRC2013 detection track winner OverFeat [783]
(31.4% mIoU vs. 24.3% for OverFeat), was R-CNN [276], the most straightforward
two-stage object detection architecture that we discussed in Section 3.3.

In 2014, researchers were not sure if synthetic data was helpful at all. Moreover,
the synthetic data they had was far from photorealistic, it was more like the ShapeNet

172 6 Synthetic Data for Basic Computer Vision Problems

Fig. 6.4 Sample synthetic images for object detection: (a) samples from the dataset used in [664];
(b) sample 3D bounding box from [77]; (c) different variations of synthetic data compared in [664];
(d) varied lighting conditions from [77].

dataset we discussed above. The work by Peng et al. was in many ways intended to
study this very question: can you improve object detection or, say, learn to recognize
new categories with synthetic data that looks like the sample shown in Fig. 6.4a.
Thus, the main question for Peng et al. was to separate different “visual cues”, i.e.,
different components of an object. Simplistic synthetic data does pretty well in terms
of shape, but poorly in terms of texture or realistic varied poses, and the background
will have to be inserted separately so it probably will not match too well. Given this
discrepancy in quality, what can we expect from object detection models?

To study this question, Peng et al. propose an object detection pipeline that looks
like R-CNN but is actually even simpler than that. They used AlexNet pretrained on
ImageNet as a feature extractor, and trained classifiers on features extracted from
region proposals. Then they started testing for robustness to various cues, producing
different synthetic datasets and testing object detection performance on a real test
set after training on these datasets. Fig. 6.4c shows six different versions of training
data that they compared: RGB and uniform gray objects superimposed against real,
grayscale, and pure white backgrounds. With a thorough experimental study, Peng et
al. obtained very interesting results that do not follow the standard intuition that the
more details you have, the better the results will be. The simplest synthetic dataset,
with uniform gray objects on white backgrounds, yields very reasonable results and
significantly outperforms gray objects on more complex backgrounds. On the other

6.4 Case Study: Object Detection With Synthetic Data 173

hand, experiments in [664] show that adding a more varied set of views (front, side,
and others) for a given object always helps, sometimes significantly.

The actual results in [664] did not really represent state of the art in object detection
even in 2015, and are definitely not relevant today; neither are the object detection
approaches and architectures. But conclusions and comparisons show an important
trend that goes through many early results on synthetic data for computer vision: for
many models, the details and textures do not matter as much since the models are
looking for shapes and object boundaries. If that is the case for your model, then it is
much more important to have a variety of shapes and poses, and textures can be left
as an afterthought. Looking back from the present time, I would probably generalize
this lesson: different cues may be of different importance to different models. So
unless you are willing to invest serious resources into making an effort to achieve
photorealism across the board, it is best to experiment with your model and find out
which aspects are really important and worth an investment, and which aspects can
be neglected (e.g., in this case, it turned out that you can leave the objects gray and
skip the textures).

The second paper, in chronological order, is one of the first approaches that used
synthetic videos for object detection, by Bochinski et al. [77]. This is one of the first
attempts I could find at building a complete virtual world with the intent of making
synthetic data for computer vision systems, and specifically for object detection.
Bochinski et al. were also among the pioneers in using game engines for synthetic
data generation. As the engine, they used Garry’s Mod, a sandbox game on the
Source engine designed by Valve for Half Life and Counter Strike games. For the
time, Source had a very capable physics engine, and more than that, it supported
scripting for bots, both humans and vehicles. Thus, it was relatively easy to create
a simulated world for urban driving applications, complete with humans, cars, and
surveillance cameras placed in realistic positions.Bochinski et al. extended the engine
to be able to export bounding boxes, segmentation, and other kinds of labeling; see
Fig. 6.4b for a sample human object with 3D bounding boxes and segmentation
masks with occlusion. The engine also allows to vary lighting conditions (Fig. 6.4d
shows a sample) and, naturally, place cameras at arbitrary positions, e.g., in realistic
surveillance camera locations.

For object detection, since Bochinski et al. worked with video data, they used
a simple classical technique to construct bounding boxes: background subtraction.
Basically, this means that they train a Gaussian mixture model to describe the history
of every pixel, and if the pixel becomes different enough, it is considered to be part of
the foreground (an object) rather than background. CNNs are only used (and trained)
to do classification inside the resulting bounding boxes. As a result, they achieved
quite good results even on a real test set.

This work exemplifies how even relatively crude synthetic data can be helpful
even for outdated pipelines: here, the bounding boxes were detected with a classical
algorithm, so synthetic data was only used to train the classifier, and it still helped
and resulted in a reasonable surveillance application.

For the third paper, we note an interestingmethod of using synthetic data for object
detection proposed by Hinterstoisser et al. [341]. They note that training on purely

174 6 Synthetic Data for Basic Computer Vision Problems

synthetic data may give sub-par results due to the low-level differences between
synthetic (rendered) images and real photographs. To avoid this, they propose to
simply freeze the lower layers of, say, a pretrained object detection architecture and
only train the top layers on synthetic data; in this way, basic features will remain
suited for the domain of real photos while the classification part (top layers) can
be fine-tuned for new classes. Otherwise, this is a straightforward test of synthetic
data: Hinterstoisser et al. superimpose synthetic renderings on randomly selected
backgrounds and fine-tune pretrained Faster-R-CNN [719], R-FCN [178], andMask
R-CNN [327] object detection architectures with freezed feature extraction layers.
They report that freezing the layers helps significantly, and different steps in the
synthetic data generation pipeline (different domain randomization steps, see also
Section 9.1) help as well, obtaining results close to training on a large real dataset.

The fourth and fifth works are both devoted to multiple object detection for food
and small vendor items. Before proceeding to the papers, let me briefly explain why
this specific application—recognizing multiple objects on supermarket shelves or in
a fridge—sounds like such a perfect fit for synthetic data. There are several reasons,
and each of them is quite general and might apply to other applications as well.

First, the backgrounds and scene compositions are quite standardized (the insides
of a fridge, a supermarket shelf) so it does not take too much effort to simulate
them realistically. Datasets for such applications often get by with really simplistic
backgrounds. Figure 6.5a shows some samples from the dataset from our first paper
today, aworkbyRajpura et al. [701]; the samples are available from the corresponding

Fig. 6.5 Sample synthetic images for multiple object detection in constrained spaces: (a) samples
from [701]; (b) sample background from [342] made of distractor objects; (c–d) sample synthetic
images from [342].

6.4 Case Study: Object Detection With Synthetic Data 175

Fig. 6.6 Sample real images for multiple object detection in constrained spaces: (a) a real sample
image from SKU-110K [285]; (b) sample real images from a vending machine in [904].

GitHub repository3; the entire dataset ismadewith a few surface textures and a couple
of glossy surfaces for glass shelves.

Second, while simple, the scenes and backgrounds for these problems are defi-
nitely not a common sight for ImageNet andother standard datasets. Standard datasets
contain plenty of pictures of people enjoying outdoor picnics and dozens of differ-
ent breeds of dogs (ImageNet has 120!) but not so many photos of the insides of a
refrigerator or supermarket shelves with labeled objects. Thus, researchers cannot
reuse pretrained models as easily.

Third, such scenes are perhaps unpopular in standard object detection datasets
precisely because they are extremely hard to label by hand. A supermarket shelf may
contain hundreds of densely packed objects; for an illustration, Figure 6.6a shows a

3https://github.com/paramrajpura/Syn2Real

https://github.com/paramrajpura/Syn2Real

176 6 Synthetic Data for Basic Computer Vision Problems

sample image from a real dataset of such images called SKU-110K; it was collected
only in 2019 [285].

Fourth, even now that we have a large-scale real dataset, we are not really done
because new objects arrive very often. A system for a supermarket (or a fridge,
since it in many ways contains the same kinds of objects) has to easily support the
introduction of new object classes because new products or, even more often, new
packaging for old products are introduced continuously. Thousands of new objects
appear in every supermarket over a year, sometimes hundreds of new objects at once
(think Christmas packaging). When you have a real dataset, adding new images
takes a lot of work: it is not enough to just have a few photos of the new object, you
also need to have it on the shelves, surrounded by old and new objects, in different
combinations... this gets really hard really quick. In a synthetic dataset, adding a new
3D model is sufficient to create any number of scenes in any combinations you like.

The fifth and final point is that while you need a lot of objects in this application
and a lot of 3D models for the synthetic dataset, most objects are relatively easy
to model. They are Tetra Pak cartons, standardized bottles, paper boxes, and the
like. The thousands of items in a supermarket often share relatively few different
packaging options, and most of them are standard items with different labels. So
once you have a 3D model for, say, a pint bottle, most beers will be covered by
swapping a couple of textures, and the bottle itself is far from a hard object to model
(compared to, say, a human face or a car). With all that said, object detection for
small retail items does sound like a perfect fit for synthetic data.

Rajpura et al. [701] made one of the first attempts at using deep learning with
synthetic data for this application. They concentrate on recognizing objects inside a
refrigerator, and some samples of their synthetic data are shown in Fig. 6.5a. Their
dataset is based on standard bottles and packaging from the ShapeNet repository
that we have discussed above, and they used Blender (often the tool of choice for
synthetic data since it is quite standard and free to use) to create simple scenes
of the inside of a refrigerator and placed objects with different textures there. For
object detection, Rajpura et al. used a fully convolutional version of GoogLeNet
that generates a coverage map and a separate bounding box predictor trained on its
results.

Their experimental results illustrate several important general points on the use
of synthetic data in computer vision. First of all, Rajpura et al. saw significantly
improved performance for hybrid datasets. In their comparison, using even 10% of
real data and adding 90% of synthetic data to it far outperformed purely synthetic and
purely real datasets. Note, however, that they only had 400 real images (since it was
really hard to label such imagesmanually), and second, the scale of synthetic datawas
also not so large (3600 synthetic images). Another interesting conclusion, however,
is that adding more synthetic images can actually hurt. In [701], performance began
to decline after 4000 synthetic images, that is, soon after the 10/90 split in favor of
synthetic data.

This is probably due to overfitting to synthetic data, and it remains an important
problem to this day. If the dataset uses a lot of synthetic images, the networks may
begin to overfit to specific peculiarities of these synthetic images. More generally,

6.4 Case Study: Object Detection With Synthetic Data 177

synthetic data is different from real, and hence there is always an inherent domain
transfer problem involved when you try to apply networks trained on synthetic data
to real test sets (which you always ultimately want to do). This is a huge field of
research, of course, and we will consider it in much more detail in Chapter 10.

The next work brings us already to 2019.Wang et al. [904] consider synthetic data
generation and domain adaptation for object detection in smart vending machines.
The premise looks very similar: vending machines have small food items placed
there, and the system needs to find out which items are still there judging by a camera
located inside the vendingmachine. But in terms of computer vision, there are several
interesting points that differentiate it from [701] and highlight how synthetic data
had progressed over these two years. Let us consider them in order.

First, data generation. In 2017, researchers took ready-made simple ShapeNet
objects. In 2019, 3D shapes of the vending machine objects were being scanned
from real objects by high-quality commercial 3D scanners, in this case one from
Shining 3D4. What’s more, 3D scanners still have a really hard time with specular
or transparent materials, so for specular materials, Wang et al. use a whole other
neural architecture (an adversarial one, actually) to transform the specular material
into a diffuse one based on multiple RGB images and then restore the material
during rendering (they used Unity3D for that). The specular-to-diffuse translation
was based on a previous work devoted to this specific topic [940]. As for transparent
materials, Wang et al. gave up even in 2019, saying that “although this could be
alleviated by introducing some manual works, it is beyond the scope of this paper”
and simply avoiding transparent objects. This has been rectified since this work,
and now synthetic data can successfully help solve computer vision problems for
transparent objects [751].

Second, Wang et al. introduce and apply a separate model for the deformation of
resulting object meshes. Cans and packs may warp or bulge in a vending machine, so
their synthetic data generation pipeline adds random deformations, complete with a
(more or less) realistic energy-based model with rigidity parameters, also based on
a previous work devoted specifically to this problem [906].

Third, the camera. Due to physical constraints, vending machines use fisheye
cameras to be able to cover the entire area where objects are located; we show sample
images from the paper in Figure 6.6b. Here is the vending machine fromWang et al.
and sample images from the cameras on every shelf. 3D rendering engines usually
support only the pinhole camera model, so, again, Wang et al. use a separate state-
of-the-art camera model by Kannala and Brandt [431], calibrating it on a real fisheye
camera and then introducing some random variation and noise.

Fourth, the synthetic-to-real image transfer, i.e., improving the resulting synthetic
images so that they look more realistic. Wang et al. use a variation of style transfer
based on CycleGAN that we will discuss in more detail in Section 10.3.

Finally, the object detection pipeline. Wang et al. compare several state of the art
object detectionmethods, including PVANET [453], SSD [539], andYOLOv3 [711].

4https://www.shining3d.com/3d-digitizing-solutions/

https://www.shining3d.com/3d-digitizing-solutions/

178 6 Synthetic Data for Basic Computer Vision Problems

Unlike all other works we have considered above, these are architectures that remain
quite relevant up to this day (with some new versions released recently).

The results are consistent with previous works: while the absolute numbers and
quality of the results have increased substantially since 2017, the general takeaway
points remain the same. It still helps to have a hybrid dataset with both real and
synthetic data. Note, by the way, that the dataset is again rather small; this time it is
because the models are good enough to achieve saturation in this constrained setting
with this kind of data, and more synthetic data probably does not help.

Interestingly, PVANET yields the best results, which is contrary to many other
object detection applications (YOLOv3 was usually best overall in standard com-
parisons). This leads to another important takeaway point that remains relevant: in
a specific application, it is best to redo the comparisons at least among the current
state-of-the-art architectures. Usually, it does not add much to the cost of the project:
in this case,Wang et al. definitely spent muchmore time and resources preparing and
adapting synthetic data than testing two additional object detection architectures. But
it can yield somewhat unexpected results (one can explain why PVANET has won in
this case, but it would probably be a post-hoc explanation, and in a new application
you really just do not know a priori which network will win) and let you choose
what is best for your own project.

With that, we come to the sixth work in this case study. It comes from the same
group as the third, authored by Hinterstoisser et al. [342] and aptly titled An Anno-
tation Saved is an Annotation Earned: Using Fully Synthetic Training for Object
Instance Detections. Similar to previous works, they consider multiple detection of
small common objects, most of which are packs of food items and medicine. But
the interesting thing about this paper is that they claim to achieve excellent results
without any real data at all, by training on a purely synthetic dataset.

Their first contribution is an interesting take on domain randomization for back-
ground images (again, see Section 9.1 for more details on domain randomization).
Hinterstoisser et al. try to getmaximally cluttered synthetic imageswith the following
procedure:

• take a separate dataset of distractor 3D models that represent objects that do not
need to be recognized in the current application (in the paper, they had ≈ 15000
such distractor models);

• render these objects on the background in random poses and with scales roughly
corresponding to the scale of the foreground objects (so they are comparable in
size) while randomly varying the hues of the background object colors (this is
standard domain randomization with distractor objects);

• choose and place new background objects until you have covered every pixel of
the background (this is the interesting part);

• then place the foreground objects on top (we will discuss it in more detail below).

As a result of this approach, the synthetic dataset does not have to have any back-
ground images or scenes at all: the background is fully composed of distractor objects.
Figure 6.5b shows a sample resulting background, and Figure 6.5c-d contains exam-
ples of the resulting synthetic images.

6.4 Case Study: Object Detection With Synthetic Data 179

But that is only one part of it. Another part is how to generate the foreground
layer, with objects that we actually want to recognize. Here, the contribution of
Hinterstoisser et al. is that instead of placing 3D models in random poses or in
poses corresponding to the background surfaces, as researchers had done before,
they introduce a deterministic curriculum (schedule) for placing foreground objects:

• iterate over scales from largest to smallest, so that the network starts off with the
easier job of recognizing large objects and then proceeds to learn to find their
smaller versions; for every scale, iterate over all possible rotations;

• and then for every scale and rotation iterate through all available objects, plac-
ing them with possible overlaps and cropping at the boundaries; there is also a
separate procedure to allow background distractor objects to partially occlude the
foreground.

As a result, this purely synthetic approach outperforms a 2000-image real training
set. Hinterstoisser et al. even estimate the costs: they report that it had taken them
about 200 hours to acquire and label the real training set. This should be compared
to a mere 5 hours needed for 3D scanning of the objects: as usual with synthetic
data, once the pipeline is ready all you need to do to add new objects or retrain
in a different setting is to scan the 3D models. The work [342] also presents a very
detailed ablation study. The authors analyze which of their ideas contributed themost
to their results. Interestingly (and a bit surprisingly), the largest effect is achieved
by their curriculum strategy. Another interesting conclusion is that the purely syn-
thetic cluttered background actually performs much better than a seemingly more
realistic alternative strategy: take real-world background images and augment them
with synthetic distractor objects (there is no doubt that distractor objects are useful
anyway).

With these results, Hinterstoisser et al. have the potential to redefine how we
see and use synthetic data for object detection; these conclusions most probably also
extend to segmentation and possibly other computer vision problems. In essence, they
show that synthetic data can be much better than real for object detection if done
right. And we have to admit that “done right” includes virtually every single element
of the synthetic data generation pipeline, even something seemingly inconsequential
such as the order of poses.

Finally, the last paper in this case study is by Nowruzi et al. [635]. Titled How
much real data do we actually need: Analyzing object detection performance using
synthetic and real data, this work concentrates on a different domain of images,
recognizing objects in urban outdoor environments with an obvious intent towards
autonomous driving. However, the conclusions it draws appear to be applicable well
beyond this specific case, and this paper has become the go-to source among experts
in synthetic data.

The difference of this work from other sources is that instead of investigating dif-
ferent approaches to dataset generation within a single general framework, it consid-
ers various existing synthetic and real datasets, puts them in comparable conditions,
and draws conclusions regarding how best to use synthetic data for object detection.
Nowruzi et al. consider three real datasets:

180 6 Synthetic Data for Basic Computer Vision Problems

• Berkeley Deep Drive (BDD) [981], a large-scale real dataset (100K images) with
segmentation and object detection labeling;

• Kitti-CityScapes (KC), a combination of visually similar classical urban driving
datasets KITTI [269] and CityScapes [167];

• NuScenes (NS) [107], a dataset with 1000 labeled video scenes, each 20 seconds
long;

and three synthetic (we show sample images from them in Chapter 7):

• Synscapes (7D) [935], a synthetic dataset designed to mimic the properties of
Cityscapes (see Fig. 7.3e-f);

• Playing for Benchmark (P4B) [725], a synthetic dataset with video sequences
obtained from the Grand Theft Auto V game engine (see Fig. 7.3a-b);

• CARLA [203], a full-scale driving simulator that can also be used to generate
labeled computer vision datasets (Fig. 7.4c-e).

To put all datasets on equal footing, the authors use only 15000 images from each
(since the smallest dataset has 15K images), resize all images to 640x370 pixels, and
remove annotations for objects that become too small under these conditions (less
than 4% of the image height). The object detection model is also very standard: it
is an SSD detector with MobileNet backbone, probably chosen for computational
efficiency of both training and evaluation. The interesting part, of course, is the
results.

First, as one would expect, adding more data helps. Training on smaller portions
of each dataset significantly impedes the results. The second important question
is about transfer learning: how well can object detection models perform on one
dataset when trained on another? Naturally, the best results are achieved when a
model is trained and tested on the same dataset; this is true for both synthetic and
real datasets, but synthetic data significantly outshines real data in this comparison.
This is a general theme throughout all synthetic data in computer vision: results on
synthetic datasets are always better, sometimes too much so, signifying overfitting
(but hopefully not in this case). But other than CARLA (which seems to be an outlier
that fails all attempts to transfer), synthetic datasets fair pretty well, with transfer
results clustering together with transfer from real datasets. Real datasets are still a
little better, but note that Nowruzi et al. have removed one of the key advantages of
synthetic data by equalizing the size of real and synthetic datasets.

But the real positive results come later. Nowruzi et al. compare two different
approaches to using hybrid datasets, where synthetic data is combined with real:

• synthetic-real data mixing, where a small(er) amount of real data is added to a
full-scale synthetic dataset, and the network is trained on the joint hybrid dataset;

• fine-tuning on real data, where we fully train the network on a synthetic dataset
and then fine-tune on (small portions of) real datasets, so training on synthetic and
real data is done separately.

The second approach is actually more convenient in practice: you can have a huge
synthetic dataset and train on it once, and then adapt the resulting model to various

6.4 Case Study: Object Detection With Synthetic Data 181

real-life conditions by fine-tuning which is computationally much easier. And the
main conclusion of [635] is that fine-tuning on real data actually performs signifi-
cantly better than just mixing in real with synthetic.

Let us summarize. In this section,wehave considered in somedetail several studies
on synthetic data for object detection. This is, of course, far from a full survey.Among
other works, Bayraktar et al. [46] show improvements in object detection on a hybrid
dataset in the context of robotics, extending a real dataset with images generated by
the Gazebo simulation environment (see Section 7.4). In a recent work, Bayrak-
tar et al. [47] test modern object recognition architectures such as VGGNet [477],
Inception v3 [838], ResNet [328], and Xception [152] by fine-tuning them on the
ADORESet dataset that contains 2500 real and 750 synthetic images for each of 30
object categories in the context of roboticmanipulation; they find that a hybrid dataset
achieves much better recognition quality compared to purely synthetic or purely real
datasets. Recent applications of synthetic data for object detection include the detec-
tion of objects in piles for training robotic arms [100], computer game objects [819],
smoke detection [962], deformable part models [985], face detection in biomedical
literature [185], detection of micro aerial vehicles (drones) [626, 739], and more.

However, the papers we have seen, especially the latter two influential recent
papers [342, 635], have a common theme: they show how important are the exact
curricula for training and the minute details of how synthetic data is generated and
presented to the network. Before these studies, it had been hard to believe that simply
changing the strategy of how to randomize the poses and scales of synthetic objects
can improve the results by 0.2-0.3 in mean average precision (a huge difference!).

All this suggests that there is still much left to learn in the field of synthetic data,
even for a relatively straightforwardproblemsuch as object detection.Using synthetic
data is not quite as simple as throwing as much randomly generated stuff at the
network as possible. This is a good thing, of course: harder problems with uncertain
results also mean greater opportunities for research and for a deeper understanding
of how neural networks work and how computer vision can be ultimately solved.
And the results we have discussed in this section suggest that while synthetic data is
already working well for us, there is still a fascinating and fruitful road ahead.

6.5 Other High-Level Computer Vision Problems

In the previous section, we have considered in a lot of detail the lessons learned in
the use of synthetic data for object detection, a classical and often used high-level
computer vision problem.

Segmentation is another classical computer vision problem with obvious benefits
to be had from pixel-perfect synthetic annotations. The above-mentioned SceneNet
RGB-D dataset by McCormac et al. [588] comes with a study showing that an RGB-
onlyCNN for semantic segmentation pretrained from scratch on purely synthetic data
can improve over CNNs pretrained on ImageNet; as far as we know, this was the first
time synthetic data managed to achieve such an improvement. The dataset is actually
an extension of SceneNet [319, 320], an annotated model generator for indoor scene

182 6 Synthetic Data for Basic Computer Vision Problems

understanding that can use existing datasets of 3D object models and place them
in 3D environments with synthetic annotation. By now, segmentation models are
commonly trained with synthetic data: semantic segmentation is the main problem
for most automotive driving models (Section 7.2) and indoor navigation models
(Section 7.3), Grard et al. [295] do it for object segmentation in depth maps of piles
of bulk objects, and so on.

Saleh et al. [754] note that not all classes in a semantic segmentation problem
are equally suited for synthetic data. Foreground classes that correspond to objects
(people, cars, bikes, etc., i.e., things in the terminology of [334]) are well suited for
object detectors (that use shape a lot) but suffer from the synthetic-to-real transfer for
segmentation networks because their textures (which segmentation models usually
rely upon) are hard to make photorealistic. On the other hand, background classes
(grass, road surface, sky, etc., i.e., stuff in the terminology of [334]) look very realistic
on synthetic images due to their high degree of “texture realism”, and a semantic
segmentation network can be successfully trained on synthetic data for background
classes. Therefore, Saleh et al. propose a pipeline that combines detection-based
masks by Mask R-CNN [327] for foreground classes and semantic segmentation
masks by DeepLab [133] for background classes.

Although most works on synthetic data use large and well-known synthetic
datasets, there are many efforts to bring synthetic data to novel applications by devel-
oping synthetic datasets from scratch. For instance, O’Byrne et al. [636] develop a
synthetic dataset for biofouling detection on marine structures, i.e., segmenting var-
ious types of marine growth on underwater images. Ward et al. [920] improve leaf
segmentation forArabidopsis plants for the CVPPP Leaf Segmentation Challenge by
augmenting real data with a synthetic dataset produced with Blender. For a parallel
challenge of leaf counting, Ubbens et al. [883] produce synthetic data based on an
L-system plant model; they report improved counting results. Moiseev et al. [609]
propose a method to generate synthetic street signs, showing improvements in their
recognition. Neff et al. [621] use GANs to produce synthetically augmented data
for small segmentation datasets (see Section 10.7). We also note that researchers
are also beginning to use synthetic data in other problems such as video stream
summarization [12].

Another important class of applications for CGI-based synthetic data relates to
problems such as 3D pose, viewpoint, and depth estimation, where manual labeling
of real data is very difficult and sometimes close to impossible. One of the basic
problems here is 2D-3D alignment, the problem of finding correspondences between
regions in a 2D image and a 3Dmodel (this also implies pose estimation for objects).
In an early work, Aubry et al. [31] solved the 2D-3D alignment problem for chairs
with a dataset of synthetic CADmodels. Gupta et al. [311] train a CNN to detect and
segment object instances for 3Dmodel alignment with synthetic data with renderings
of synthetic objects. Su et al. [821] learn to recognize 3D shapes from several 2D
images, training their multi-view CNNs on synthetic 2D views. Triyonoputro et
al. [873] train a deep neural network on multi-view synthetic images to help visual
servoing for an industrial robot. Liu et al. [535] perform indoor scene modeling from
a single RGB image by training on a dataset of 3D models, and in other works [533]

6.5 Other High-Level Computer Vision Problems 183

do 2D-3D alignment from a single image for indoor basic objects. Shoman et al. [791]
use synthetic data for camera localization (a crucial part of tracking and augmented
reality systems), using synthetic data to cover a wide variety of lighting and weather
conditions. They use an autoencoder-like architecture to bring together the features
extracted from real and synthetic data and report significantly improved results.

3D position and orientation estimation for objects, known as the 6-DoF (degrees
of freedom) pose estimation, is another important computer vision problem related
to robotic grasping and manipulation. NVIDIA researchers Tremblay et al. [869]
approach it with synthetic data: using the synthetic data generation techniques we
will consider in Section 9.1, they train a deep neural network and report the first state
of the art network for 6-DoF pose estimation trained purely on synthetic data. The
novelty was that Tremblay et al. train on a mixture of domain randomized images,
where distractor objects are placed randomly in front of a random background, and
photorealistic images, where the foreground objects are placed in 3D background
scenes obeying physical constraints; domain randomized images provide the diver-
sity needed to cover real data (see Section 9.1) while realistic images provide proper
context for the objects and are easier to transfer to real data. Latest results [577, 612,
695] show that synthetic data, especially with proper domain randomization for the
data and domain adaptation for the features, can indeed successfully transfer 3D pose
estimation from synthetic to real objects.

This also relates to depth estimation; synthetic renderings are easy to augment
with pixel-perfect depthmaps, andmany synthetic datasets includeRGB-Ddata. Car-
lucci et al. [115] created VANDAL, one of the first synthetic depth image databases,
collecting 3D models from public CAD repositories for about 480 ImageNet cat-
egories of common objects; the authors showed that features extracted from these
depth images by common CNN architectures improve object classification and are
complementary to features extracted by the same architectures trained on ImageNet.
Liebelt et al. [519] used 3D models to extract a set of 3D feature maps, then used a
nearest neighbors approach to do multi-view object class detection and 3D pose esti-
mation. Lee and Moloney [504] present a synthetic dataset with high-quality stereo
pairs and show that deep neural networks for stereo vision can perform competitively
with networks trained on real data. Siemens researchers Planche et al. [677] consider
the problem of more realistic simulation of depth data from real sensors and present
DepthSynth, an end-to-end framework able to generate realistic depth data rather
than purely synthetic perfect depth maps; they show that this added realism leads to
improvements with modern 2.5D recognition methods.

Easy variations and transformations provided by synthetic data can not only
directly improve the results by training, but also represent a valuable tool for studying
the properties of neural networks and other feature extractors. In particular, Pinto et
al. [675] used synthetic data to study the invariance of different existing visual feature
sets to variation in position, scale, pose, and illumination, while Kaneva et al. [429]
used a photorealistic virtual environment to evaluate image feature descriptors. Peng
et al. [663], Pepik et al. [667], and Aubry and Russell [32] used synthetic data to
study the properties of deep convolutional networks, in particular robustness to var-
ious transformations, since synthetic data is easy to manipulate in a predefined way.

184 6 Synthetic Data for Basic Computer Vision Problems

Earlier works recognized that the domain gap between synthetic and real images
does not allow to expect state of the art results when training on synthetic data only,
so many of them concentrated on bridging this gap by constructing hybrid datasets.
In particular, Vázquez et al. [892] considered pedestrian detection and proposed a
scheme based on active learning: they initially train a detector on virtual data and
then use selective sampling [165] to choose a small subset of real images for manual
labeling, achieving results on par with training on large real datasets while using 10x
less real data.

Purely synthetic approaches were also used in early works, although mostly for
problems where manual labeling would be even harder and noisier than for object
detection or segmentation. The Render for CNN approach by Su et al. [822] out-
performed real data with a hybrid synthetic+real dataset on the viewpoint estima-
tion problem. Synthetic data helped improve 3D object pose estimation in Gupta
et al. [310] and multi-view object class detection in Liebelt and Schmid [518] and
Stark et al. [817]; as an intermediate step, the latter work used synthetic data to learn
shape models. Hattori et al. [325] trained scene-specific pedestrian detectors on a
purely synthetic dataset, superimposing rendered pedestrians onto a fixed real scene
background; synthetic data has also been used for pedestrian detection by Marin et
al. [582].

We finish this section by returning to an important question for direct applications:
how realistic must synthetic data be in order to help with the underlying computer
vision problem? Early works often argued that photorealism is not necessary for
good domain transfer results; see, e.g., [826]. This question was studied in detail by
Movshovitz-Attias et al. [614].With the example of the viewpoint estimation problem
for cars, they showed that photorealistic rendering does indeed help, showed that the
gap between models trained on synthetic and real data can often be explained by
domain adaptation (i.e., adapting from a different real dataset would be just as hard
as adapting from a synthetic one), and hybrid synthetic+real datasets can significantly
outperform training on real data only.

Another data point is provided by Tsirikoglou et al. [876] who present a very
realistic effort for the rendering of synthetic data, including Monte Carlo-based light
transport simulation and simulation of optics and sensors, within the domain of
rendering outdoor scenes (see also Section 7.2, where we discuss a continuation of
this work by Wrenninge and Unger [935]). They show improved results in object
detection over other synthetic datasets and conclude that “a focus on maximizing
variation and realism is well worth the effort”.

6.6 Synthetic People

Synthetic models and images of people (both faces and full bodies) are an especially
interesting subject for synthetic data. On the one hand, real datasets here are even
harder to collect due to several reasons:

6.6 Synthetic People 185

• there are privacy issues involved in the collection of real human faces;
• labeling for some basic computer vision problems is especially complex: while
pose estimation is doable, facial keypoint detection (a key element for facial recog-
nition and image manipulation for faces) may require to specify several dozen
landmarks on a human face, which becomes very hard for human labeling [189,
843];

• finally, even if a large dataset is available, it often contains biases in its composition
of genders, races, or other parameters of human subjects, sometimes famously
so [470, 864].

On the other hand, there are complications as well:

• synthetic 3D models people and especially synthetic faces are much harder to
create than models of basic objects, especially if sufficient fidelity is required;

• basic human-related tasks are very important in practice, so there already exist
large real datasets for face recognition [112, 306, 512], pose estimation [24, 388,
543, 874], and other problems, which often limits synthetic data to covering corner
cases, augmenting real datasets, or serving more exotic use cases.

This creates a tension between the quality of available synthetic faces and improve-
ments in face recognition and other related tasks that they can provide. In this section,
we review how synthetic people have been used to improve computer vision models
in this domain; the datasets covered in this section are illustrated in Fig. 6.7.

In an early effort, Queiroz et al. [691] presented a pipeline for generating synthetic
videos with automatic ground truth for human faces and the resulting Virtual Human
Faces Database (VHuF) with realistic face skin textures that can be extracted from
real photos. Bak et al. [34] present the Synthetic Data for person Re-Identification
(SyRI) dataset with virtual 3D humans designed with Adobe Fuse CC to make the
models and Unreal Engine 4 for high-speed rendering. Interestingly, they model
realistic lighting conditions by using real HDR environment maps collected with
light probes and panoramic photos (Fig. 6.7).

While face recognition for full-face frontal high-quality photos has been mostly
solved in 2D, achieving human and superhuman performance both for classifica-
tion [843] and retrieval via embeddings [771], pose-invariant face recognition in
the wild [197, 366, 499, 500, 902], i.e., under arbitrary angles and imperfect con-
ditions, remains challenging. Here, synthetic data is often used to augment a real
dataset, where frontal photos usually prevail, with more diverse data points; we refer
to Section 10.4 for a detailed overview of the works by Huang et al. [369] and Zhao
et al. [1016, 1017] on GAN-based refinement.

An interesting approach to creating synthetic data for face recognition is provided
by Hu et al. [360]. In their “Frankenstein” pipeline, they combine automatically
detected body parts (eyes, mouth, nose, etc.) from different subjects; interestingly,
they report that the inevitable artifacts in the resulting images, both boundary effects
and variations between facial patches, do not hinder training on synthetic data and
may even improve the robustness of the resulting model.

There is also a related field of 3D-aided face recognition. This approach uses a
morphable synthetic 3D model of an abstract human face that has a number of free

186 6 Synthetic Data for Basic Computer Vision Problems

Fig. 6.7 Sample images from human-related synthetic datasets: (a) video frames from
ViHASi [699]; (b–d) a frame with ground truth from SURREAL [889]: (b) RGB image, (c) seg-
mentation map, (d) depth map; (e–g) a frame from PHAV [815]: (e) RGB image, (f) segmentation
map, (g) depth map; (h–j) sample synthetic faces with randomized backgrounds from [471, 472]
(based on the Basel Face Model).

6.6 Synthetic People 187

parameters; the model learns to tune these parameters so that the 3D model fits a
given photo and then uses the model and texture from the photo either to produce a
frontal image or to directly recognize photos taken from other angles. This is a classic
approach, dating back to late 1990s [75, 76] and developed inmany subsequentworks
with newmorphable models [361, 378], deep learning used to perform the regression
for morphing parameters [865], extended to 3D face scans [74], and so on; see, e.g.,
the survey [197] for more details. Xu et al. [965] used synthetic data to train their 3D-
aided model for pose-invariant face recognition as well. Recent works used GANs
to produce synthetic data for 3D-aided face recognition [1017]; we will discuss this
approach in detail in Section 10.4.

In a large-scale effort to combat dataset bias in face recognition and related prob-
lems with synthetic data, Kortylewski et al. [471, 472] have developed a pipeline
to directly create synthetic faces. They use the Basel Face Model 2017 [271], a 3D
morphable model of face shape [74, 75], and take special care to randomize the
pose, camera location, illumination conditions, and background. They report signif-
icantly improved results for face recognition and facial landmark detection with the
OpenFace framework [17, 760] and state of the art models for face detection and
alignment [1000] and landmark detection [703].

Human pose estimation is a very well known and widely studied problem [181,
543, 995]withmanydirect applications, so it is nowonder that thefield does not suffer
from lack of real data, with large-scale datasets available [25, 411, 525] and state
of the art models achieving impressive results [823, 828, 970]. However, synthetic
data still can help. Ludl et al. [562] show that in corner cases, corresponding to rare
activities not covered by available datasets, existing pose estimation models produce
errors, but augmenting the training set with synthetic data that covers these corner
cases helps improve pose estimation.

Another specialized use-case has been considered by Rematas et al. in a very
interesting application of pose estimation called Soccer on Your Tabletop [715]. They
trained specialized pose and depth estimationmodels for soccer players and produced
a unified model that maps 2D footage of a soccer match into a 3D model suitable for
rendering on a real tabletop through augmented reality devices. For training, Rematas
et al. used synthetic data captured from the FIFA video game series. These are model
examples of how synthetic data can improve the results even when comprehensive
real datasets are available. We also note the recently presented CLOTH3D dataset by
Bertiche et al. [67] that contains full-body human 3D models clothed in thousands
of different outfits (see Figure 6.8 for an illustration).

Moving from still images to videos, we beginwith human action recognition [682,
996]. ViHASi by Ragheb et al. [699] is a virtual environment and dataset for
silhouette-based human action recognition. De Souza et al. [815] present Procedural
Human Action Videos (PHAV), a synthetic dataset that contains 39,982 videos with
more than 1,000 examples for each action of 35 categories. Inria andMPI researchers
Varol et al. [889] present theSynthetic hUmans foRREAL tasks (SURREAL)dataset.
They generate photorealistic synthetic images with labeling for human part segmen-
tation and depth estimation, producing 6.5M frames in 67.5K short clips (about 100
frames each) of 2.6K action sequences with 145 different synthetic subjects.

188 6 Synthetic Data for Basic Computer Vision Problems

Fig. 6.8 Sample images from the CLOTH3D dataset [67].

Microsoft researchers Khodabandeh et al. [451] present the DIY Human Action
generator for human actions. Their framework consists of a generative model, called
the Skeleton Trajectory GAN, that learns to generate a sequence of frames with
human skeletons conditioned on the label for the desired action, and a Frame GAN
that generates photorealistic frames conditioned on a skeleton and a reference image
of the person. As a result, they can generate realistic videos of people defined with a
reference image that perform the necessary actions, and, moreover, the Frame GAN
is trained on an unlabeled set of human action videos.

We also note here some privacy-related applications of synthetic data that are
not about differential privacy (which we discuss in Section 11). For example, Ren
et al. [721] present an adversarial architecture for video face anonymization; their
model learns to modify the original real video to remove private information while
at the same time still maximizing the performance of action recognition models.

As the problems become dynamic rather than static, e.g., as we move to recog-
nizing human movements on surveillance cameras, synthetic data takes the form of
full-scale simulated environments. This direction started a long time ago: already in
2007, The ObjectVideo Virtual Video (OVVV) system by Taylor et al. [853] used
theHalf-Life 2 game engine with additional camera parameters designed to simulate
real-world surveillance cameras to detect a variety of different events. Fernandez
et al. [235] place virtual agents onto real video surveillance footage in a kind of
augmented reality to simulate rare events. Qureshi and Terzopoulos [693] present a
multi-camera virtual reality surveillance system.

An interesting human-related video analysis problem, important for autonomous
vehicles, is to predict pedestrian trajectories in an urban environment. Anderson et
al. [20] develop a method for stochastic sampling-based simulation of pedestrian tra-
jectories. They then train the SocialGAN model by Gupta et al. [307] that generates
pedestrian trajectorieswith a recurrent architecture and uses a recurrent discriminator
to distinguish fake trajectories from real ones; Anderson et al. show that synthetic tra-
jectories significantly improve the results for a predictive model such as SocialGAN
(Fig. 6.9).

6.6 Synthetic People 189

Fig. 6.9 Sample images from synthetic crowd counting datasets: (a)GTA5 Crowd Counting [907];
(b) Agoraset [171]; (c) LCrowdV [145].

Another important application for datasets of synthetic people is crowd counting.
In this case, collecting ground truth labels, especially if the model is supposed to
do segmentation in addition to simple counting, is especially labor-intensive since
crowd counting scenes are often highly congested and contain hundreds, if not thou-
sands of people. Existing real datasets are either relatively small or insufficiently
diverse; e.g., the UCSD dataset [118] and the Mall dataset [131] have both about
50,000 pedestrians but in each case collected from a single surveillance camera, the
ShanghaiTech dataset [1012] has about 330,000 heads but only about 1200 images,
again collected on the same event, and the UCF-QNRF dataset [383], while more
diverse than previous ones, is limited to extremely congested scenes, with up to
12,000 people on the same image, and has only about 1500 images.

190 6 Synthetic Data for Basic Computer Vision Problems

In one of the first attempts to use synthetic datasets for crowd counting, the
LCrowdV system [145] generated labeled crowd videos and showed that augmenting
real data with the resulting synthetic dataset improved the accuracy of pedestrian
detection; LCrowdV and other crowd counting datasets are illustrated in Fig. 6.9.

To provide sufficient diversity and scale, Wang et al. [907] presented a synthetic
GTA5 Crowd Counting dataset collected with the help of the Grand Theft Auto
V engine; the released dataset contains about 15,000 synthetic images with more
than 7,5 million annotated people in a wide variety of scenes. They compare various
approaches to crowd counting as a supervised problem, in particular their new spatial
fully convolutional network (SFCN) model that directly predicts the density map of
people on a crowded image. They report improved results when pretraining on GCC
and then fine-tuning on a real dataset; they also consider GAN-based approaches that
we discuss in Section 10.5. A more direct approach to generating synthetic data has
been developed by Ekbatani et al. [224], who extract real pedestrians from images
and add them at various locations on other backgrounds, with special improvement
procedures for added realism; they also report improved counting results. Khadka
et al. [448] also present a synthetic crowd dataset, showing improvements in crowd
counting.

This ties into crowd analysis, where synthetic data is used to model crowds and
train visual crowd analysis tools on rendered images [798]. Huang et al. [367] present
virtual crowd models that could be used for such simulations. Courty et al. [171]
present the Agoraset dataset for crowd analysis research that aims to provide realistic
agent trajectories (simulated via the social forcemodel byHeibling andMolnár [335])
and high-quality rendering with the Mental Ray renderer [208]; the dataset has 26
different characters and provides a variety of different scenes: corridor, flow around
obstacles, escape through a bottleneck, and so on.

In general, we summarize that while the most popular problems such as frontal
face recognition or human pose estimation are already being successfully solvedwith
models trained on real datasets (because there has been sufficient interest for these
problems to collect and manually label large-scale datasets), synthetic data remains
very important for alleviating the effect of dataset bias in real collections, covering
corner cases, and tackling other problems or basic problems with different kinds
of data, e.g., in different modalities (such as face recognition with an IR sensor).
I believe that there are important opportunities for synthetic data in human-related
computer vision problems and expect this field to grow in the near future.

6.7 Other Vision-Related Tasks: OCR and Visual
Reasoning

In this section, we discuss two more vision-related problems where the correspond-
ing models are often trained on synthetic data. We begin with optical character
recognition (OCR). Various tasks related to text recognition, including OCR itself,
text detection, layout analysis and text line segmentation for document digitization,

6.7 Other Vision-Related Tasks: OCR and Visual Reasoning 191

and others have often been attacked with the help of synthetic data, usually with
synthetic text superimposed on real images.

This is a standard technique in the field because text pasted in a randomized way
often looks quite reasonable even with minimal additional postprocessing. Synthetic
data was used for character detection and recognition in, e.g., [10, 111, 910, 991] and
for text block detection in, e.g., [392, 393]. Krishnan and Jawahar [475] use synthetic
data to pretrain deep neural networks for learning efficient representations of hand-
written word images. Jo et al. [404] train an end-to-end convolutional architecture
that can digitize documentswith amixture of handwritten and printed text; to train the
network, they produce a synthetic dataset with real handwritten text superimposed
on machine-printed forms, with Otsu binarization applied before pasting.

There exist published datasets of synthetic text and software to produce them, in
particularMJSynth [392] (seeFig. 6.10a for a sample) andSynthText in theWild [308].
In the latter work, Gupta et al. use available depth estimation and segmentation
solutions to find regions (planes) of a natural image suitable for placing synthetic
text and find the correct rotation of text for a given plane. This process is illustrated
in the top row of Fig. 6.10b, and the bottom row shows sample text inserted onto
suitable regions.

Moreover, recent works have used GAN-based refinement (see Section 10.1)
to make synthetic text more realistic [220]. There also exist synthetic handwriting
generation models based on GANs that are conditioned on character sequences and
produce excellent results [14, 398].We note a recent work that deals with constrained
OCR, specificallyOCRfor domain-specific languages, and also studies synthetic data
generation for this task [670].

Fig. 6.10 Synthetic datasets for text recognition: (a)MJSynth [392]; (b) SynthText in theWild [308];
left to right in the top row: RGB image, depth map, semantic segmentation, filtered regions suitable
for text placement.

192 6 Synthetic Data for Basic Computer Vision Problems

The second topic for this section is visual reasoning, the field of artificial intelli-
gence where models are trained to reason and answer questions about visual data. It
is usually studied in the form of visual question answering (VQA), when models are
trained to answer questions about a picture such as “What is the color of the small
metal sphere?” or “Is there an equal number of balls and boxes?”.

There exist datasets for visual question answering based on real photographs,
collected and validated by human labelers; they include the first large dataset called
VQA [8] and its recent extension, VQA v2.0 [294]. However, the problem yields
itself naturally to automated generation, so it is no wonder that synthetic datasets are
important in the field.

The most important synthetic VQA dataset is Compositional Language and Ele-
mentary Visual Reasoning (CLEVR), created by Johnson et al. in a collaboration
between Stanford University and Facebook Research [408]. It contains 100K ren-
dered imageswith scenes composed of simple geometric shapes and about 1M (853K
unique) automatically generated questions about these images. The intention behind
this dataset was to enable detailed analysis of VQAmodels, simplifying visual recog-
nition and concentrating on reasoning about the objects.

In CLEVR, scenes are represented as scene graphs [410, 474], where the nodes
are objects annotated with attributes (shape, size, material, and color) and edges cor-
respond to spatial relations between objects (“left”, “right”, “behind”, and “in front”).
A scene can be rendered based on its scene graph with randomized positions of the
objects. The questions are represented as functional programs that can be executed on
scene graphs, e.g., “What color is the cube to the right of the white sphere?”. Differ-
ent question types include querying attributes (“what color”), comparing attributes
(“are they the same size”), existence (“are there any”), counting (“how many”), and
integer comparison (“are there fewer”). When generating questions, special care is
taken to ensure that the answer exists and is unique, and then the natural language
question is generated with a relatively simple grammar. Figure 6.11 shows two sam-
ple questions and their functional programs: in Fig. 6.11a the program is a simple
chain of filters, and Fig. 6.11b adds a logical connective, which makes the graph a
tree.

We also note a recently published COG dataset produced by Google Brain
researchers [968] that extends CLEVR’s ideas to video processing. It also contains
synthetic visual inputs and questions generated from functional programs, but now
questions can refer to time (e.g., “what is the color of the latest triangle?”). The
authors also released a generator that can produce synthetic video-question pairs
that are progressively more challenging and that have minimal response bias, an
important problem for synthetic datasets (in this case, the generator begins with a
balanced set of target responses and then generates videos and questions for them
rather than the other way around).

Finally, the field of visual question answering can be generalized to just ques-
tion answering (QA). To create datasets for training QA models, researchers almost
inevitably use synthetic data generation, extracting training sets of questions from
knowledge graphs or other structured knowledge representations. But this field has
only very recently started to move from simple template-based generation of ques-

6.7 Other Vision-Related Tasks: OCR and Visual Reasoning 193

Fig. 6.11 The CLEVR dataset [408]: (a) sample image; (b–c) sample visual reasoning questions.

194 6 Synthetic Data for Basic Computer Vision Problems

tions to a wider study of how best to generate synthetic data and whether existing
generation approaches may lead to information leakage or other undesirable effects.
We note a recent work by Lindjordet and Balog [527] that raises these questions and
hope that the leakage effects and insufficiently diverse question patterns that they
identify will be fixed in the nearest future.

6.8 Conclusion

This has been the first chapter in the book actually devoted to synthetic data and ways
in which it can improve the training of deep learning models. We have considered
basic synthetic datasets that are often used to train computer visionmodels and shown
examples where synthetic data helps to solve fundamental computer vision problems
better.

For themost basic computer vision problems such as image classification or object
detection, the common theme we have seen in this chapter is that synthetic data is
not that useful for general-purpose models. Indeed, it well may be that synthetic data
does not help much when ImageNet and OpenImages are already available. But as
soon as the problem setting changes, even slightly—be it a more detailed task in
a narrow domain, a change in camera settings, or unusual objects—synthetic data
immediately raises its head.

We have also discussed several applications where synthetic data is relatively
easy to produce, while labeling real data is much harder, so it is almost inevitable
that synthetic data will be used at least alongside real datasets. In the next chapter,
we proceed to situations where synthetic data is entirely indispensable: interactive
simulation environments.

Chapter 7
Synthetic Simulated Environments

In this chapter, we proceed from datasets of static synthetic images, either preren-
dered or procedurally generated, to entire simulated environments that can be used
either to generate synthetic datasets on the fly or provide learning environments for
reinforcement learning agents. We discuss datasets and simulations for outdoor envi-
ronments (mostly for autonomous driving), indoor environments, and physics-based
simulations for robotics. We also make a special case study of datasets for unmanned
aerial vehicles and the use of computer games as simulated environments.

7.1 Introduction

While collecting synthetic datasets is a challenging task by itself, it is insufficient
to train, e.g., an autonomous vehicle such as a self-driving car or a drone, or an
industrial robot. Learning to control a vehicle or robot often requires reinforcement
learning [831],where an agent has to learn from interactingwith the environment, and
real-world experiments to train a self-driving car or a robotic arm by reinforcement
learning are completely impractical. Fortunately, this is another field where synthetic
data shines: once one has a fully developed 3D environment that can produce datasets
for computer vision or other sensory readings, it is only one more step to active
interaction with this environment. Therefore, in most domains considered below we
can see the shift from static synthetic datasets to interactive simulation environments.

Reinforcement learning (RL) agents are commonly trained on simulations because
the interactive nature of reinforcement learning makes training in the real world
extremely expensive. We discuss synthetic-to-real domain adaptation in this context
in Section 10.6. However, in many works, there is no explicit domain adaptation:
robots are trained on simulators and later fine-tuned on real data or simply transferred
to the real world.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_7

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_7

196 7 Synthetic Simulated Environments

Table 7.1 An overview of synthetic datasets and virtual environments discussed in Section 7

Name Year Ref Engine Size / comments

Outdoor urban environments, driving

TORCS 2014 [946] Custom Game-based simulation engine

Virtual KITTI 2016 [254] Unity 5 environments, 50 videos

GTAVision 2016 [412] GTA V GTA plugin, 200K images

SYNTHIA 2016 [731] Unity 213K images

GTAV 2016 [725] GTA V 25K images

VIPER 2017 [724] GTA V 254K images

CARLA 2017 [203] UE Simulator

VIES 2018 [754] Unity3D 61K images, 5 environments

ParallelEye 2018 [857] Esri Procedural gen, import from OSM

VIVID 2018 [492] UE Urban sim with emphasis on people

DeepDrive 2018 [692] UE Driving sim + 8.2h of videos

PreSIL 2019 [380] GTA V 50K images with LIDAR point clouds

AADS 2019 [513] Custom 3D models of cars on real backgrounds

WoodScape 2019 [975] Custom 360° panoramas with fisheye cameras

ProcSy 2019 [449] Esri Procedural generation with varying
conditions

Robotic simulators and aerial navigation

Gazebo 2004 [464] Custom Industry standard robotic sim

MuJoCo 2012 [862] Custom Common physics engine for robotics

AirSim 2017 [785] UE Sensor readings, hardware-in-the-loop

CAD2RL 2017 [749] Custom Indoor flying sim

X-Plane 2019 [812] X-Plane 8K landings, 114 runways

Air Learning 2019 [476] — Platform for flying sims

VRGym 2019 [957] UE VR for human-in-the-loop training

ORRB 2019 [147] Unity Accurate sim used to train real robots

Indoor environments

ICL-NUIM 2014 [321] Custom RGB-D with noise models, 2 scenes

SUNCG 2016 [814] Custom 45K floors, 3D models

MINOS 2017 [761] SUNCG Indoor sim based on SUNCG

AI2-THOR 2017 [466] Unity3D Indoor sim with actionable objects

House3D 2018 [943] SUNCG Indoor sim based on SUNCG

Habitat 2019 [579] Custom Indoor sim platform and library

Hypersim 2020 [726] Custom Photorealistic indoor sim

Table 7.1 shows a brief summary of datasets and simulators that we review in this
section. To make the exposition more clear, we group together both environments
and “static” synthetic datasets for outdoor (Section 7.2) and indoor (Section 7.3)
scenes, including some works that use them to improve RL agents and other models.

7.1 Introduction 197

Next, we consider synthetic robotic simulators (Section 7.4) and vision-based simu-
lators for autonomous flying (Section 7.5), finishing with an idea of using computer
games as simulation environments in Section 7.6. Reinforcement learning in virtual
environments remains a common thread throughout this section.

7.2 Urban and Outdoor Environments: Learning to Drive

An important direction of applications for synthetic data is related to navigation,
localization and mapping (SLAM), or similar problems intended to improve the
motionof autonomous robots. Possible applications includeSLAM,motionplanning,
and motion for control for self-driving cars (urban navigation) [239, 498, 601, 649],
unmanned aerial vehicles [11, 170, 428], and more; see also general surveys of
computer vision for mobile robot navigation [83, 190] and perception and control
for autonomous driving [662].

Before proceeding to current state of the art, let me remind an interesting historical
fact that we discussed in detail in Section 5.3: one of the first autonomous driving
attempts based on neural networks, ALVINN [680], which used as input 30× 32
videos supplemented with 8× 32 range finder data, was already training on synthetic
data. One of the first widely adopted full-scale visual simulation environments for
robotics, Gazebo [464] (see Section 7.4), also provided both indoor and outdoor
environments for robotic control training.

In a much more recent effort, Xerox researchers Gaidon et al. [254] presented
a photorealistic synthetic video dataset Virtual KITTI1 intended for object detec-
tion and multi-object tracking, scene-level and instance-level semantic segmenta-
tion, optical flow, and depth estimation. The dataset contains five different virtual
outdoor environments created with theUnity game engine and 50 photorealistic syn-
thetic videos. Gaidon et al. studied existing multi-object trackers, e.g., based on an
improved min-cost flow algorithm [676] and on Markov decision processes [950];
they found minimal real-to-virtual gap. Note, however, that experiments in [254]
were done on trackers trained on real data and evaluated on synthetic videos (and
that’s where they worked well), not the other way around. In general, the Virtual
KITTI dataset is much too small to train a model on it, it is intended for evaluation,
which also explains the experimental setup.

Johnson-Robertson et al. [412], on the other hand, presented a method to train on
synthetic data. They collected a large dataset by capturing scene information from
the Grand Theft Auto V video game that provides sufficiently realistic graphics and
at the same time stores scene information such as depth maps and rough bounding
boxes in the GPU stencil buffer, which can also be captured; the authors developed an
automated pipeline to obtain tight bounding boxes. Three datasets were generated,
with 10K, 50K, and 200K images, respectively. The main positive result of [412] is

1The name comes from the KITTI dataset [269, 598] created in a joint project of the Karlsuhe
Institute of Technology and Toyota Technological Institute at Chicago.

198 7 Synthetic Simulated Environments

that a standard Faster R-CNN architecture [719] trained on 50K and 200K images
outperformed on a real validation set (KITTI) the same architecture trained on a real
dataset. The real training set was Cityscapes [167] that contains 2,975 images, so
while the authors used more synthetic data than real, the difference is only 1-2 orders
of magnitude. The VIPER and GTAV datasets by Richter et al. [724, 725] were also
captured fromGrand Theft Auto V ; the latter provides more than 250K 1920× 1080
images fully annotated with optical flow, instance segmentation masks, 3D scene
layout, and visual odometry.

The SYNTHIA dataset presented by Ros et al. [731] provides synthetic images of
urban scenes labeled for semantic segmentation. It consists of renderings of a virtual
New York City constructed by the authors with the Unity platform and includes seg-
mentation annotations for 13 classes such as pedestrians, cyclists, buildings, roads,
and so on. The dataset contains more than 213,000 synthetic images covering a wide
variety of scenes and environmental conditions; experiments in [731] show that
augmenting real datasets with SYNTHIA leads to improved segmentation. Later,
Hernandez-Juarez et al. [338] presented SYNTHIA-SF, the San Francisco version of
SYNTHIA. We illustrate SYNTHIA with a sample frame (that is, two frames since
the dataset contains two cameras) from the SYNTHIA-SF dataset in Figure 7.1.

Saleh et al. [754] presented a Unity3D framework called virtual environment for
instance segmentation (VEIS); while not very realistic, it worked well with their
detection-based pipeline (see Section 6.5). Li et al. [511] present a synthetic dataset
with foggy images to simulate difficult driving conditions. We note the work of
Lopez et al. [548] whose experiments suggest that the level of realism achieved in
SYNTHIA and GTAV is already sufficient for successful transfer of object detection
methods (Fig. 7.2).

Tian et al. [857] present theParallelEye synthetic dataset for urban outdoor scenes.
Their approach is rather flexible and relies on previously developed Esri CityEngine
framework [954] that provides capabilities for batch generation of 3D city scenes
based on terrain data. In [857], this data was automatically extracted from the Open-
StreetMap platform2. The 3D scene is then imported into the Unity3D game engine,
which helped add urban vehicles on the roads, set up traffic rules, and add support
for different weather and lighting conditions. Tian et al. showed improvements in
object detection quality for state-of-the-art architectures trained on ParallelEye and
tested on the real KITTI test set as compared to training on the real KITTI training
set.

Li et al. [513] develop the Augmented Autonomous Driving Simulation (AADS)
environment that is able to insert synthetic traffic on real-life RGB images. Starting
from the real-life ApolloScape dataset for autonomous driving [372] that contains
LIDAR point clouds, the authors remove moving objects, restore backgrounds by
inpainting, estimate illumination conditions, simulate traffic conditions and trajecto-
ries of synthetic cars, preprocess the textures of the models according to lighting and
other conditions, and add synthetic cars in realistic places on the road. In this way, a
single real image can be reused many times in different synthetic traffic situations.

2https://www.openstreetmap.org/.

https://www.openstreetmap.org/

7.2 Urban and Outdoor Environments: Learning to Drive 199

Fig. 7.1 Sample images fromSYNTHIA-SF [338]: (a–b) RGBground truth (left and right camera);
(c–d) ground truth segmentation maps; (e–f) depth maps (depth is encoded in the color as R + 256 ·
G + 2562 · B).

This is similar to the approach of Abu Alhaija et al. [5] (recall Section 6.3) but due to
available 3D information AADS can also change the observation viewpoint and even
be used in a closed-loop simulator such as CARLA or AirSim (see below). We do
not go into details on the already large and diverse field of virtual traffic simulation
and refer to a recent survey [123].

Wrenninge andUnger [935] present the Synscapes dataset that continues the work
of Tsirikoglou et al. [876] (see Section 6.5) and contains accurate photorealistic
renderings of urban scenes (Fig. 7.3e-f), with unbiased path tracing for rendering,
special models for light scattering effects in camera optics, motion blur, and more.
They find that their additional efforts for photorealism do indeed result in significant
improvements in object detection over GTA-based datasets, even though the latter
has a wider variety of scenes and pedestrian and car models.

200 7 Synthetic Simulated Environments

Fig. 7.2 Sample images from synthetic outdoor datasets: (a) VEIS [754]; (b) Esri CityEngine
Venice sample scene [954]; (c) AADS [513] (part of a frame from a showcase video).

Khan et al. [449] introduce ProcSy, a procedurally generated synthetic dataset
aimed at semantic segmentation (we showed a sample frame on Fig. 1.7c-d). It is
modeling a real-world urban environment, and its main emphasis is on simulating
various weather and lighting conditions for the same scenes. The authors show that,
e.g., adding a mere 3% of rainy images in the training set improves the mIoU of a
state-of-the-art segmentation network (in this case, Deeplab v3+ [135]) by as much

7.2 Urban and Outdoor Environments: Learning to Drive 201

Fig. 7.3 Sample images from synthetic outdoor datasets: (a–b) GTAV [725]: (a) RGB image, (b)
ground truth segmentation; (c–d) VIPER [724]: (c) RGB image, (d) ground truth segmentation;
(e–f) Synscapes [935].

as 10% on rainy test images. This again supports the benefits from using synthetic
data to augment real datasets and cover rare cases; for a discussion of the procedural
side of this work see Section 12.1.

Synthetic datasets with explicit 3D data (with simulated sensors) for outdoor
environments are less common, although such sensors seem to be straightforward
to include into self-driving car hardware. In their development of the SqueezeSeg
architecture,Wuet al. [936, 937] added aLiDARsimulator toGrandTheft AutoV and
collected a synthetic dataset from the game. SynthCity by Griffiths and Boehm [298]
is a large-scale open synthetic dataset which is basically a huge point cloud of an
urban/suburban environment. It simulates Mobile Laser Scanner (MLS) readings
with a Blender plugin [300] and is specifically intended for pretraining deep neural
networks.

Yogamani et al. [975] present WoodScape, a multi-camera fisheye dataset for
autonomous driving that concentrates on getting 360° sensing around a vehicle

202 7 Synthetic Simulated Environments

Fig. 7.4 Sample images from outdoor environments: (a–b) TORCS [946]; (c–e) CARLA [203];
(f–h) VIVID [492].

through panoramic fisheye images with a large field of view. They record 4 fisheye
cameras with 190° horizontal field of view, a rotating LiDAR, GNSS and IMU sen-
sors, and odometry signals with 400K frames with depth labeling and 10K frames
with semantic segmentation labeling. Importantly for us, together with their real
dataset they also released a synthetic part (10K frames) that matches their fisheye
cameras, with the explicit purpose of helping synthetic-to-real transfer learning. This
further validates the importance of synthetic data in autonomous driving.

Simulated environments rather than datasets are, naturally, also an important part
of the outdoor navigation scene; below we describe the main players in the field and
also refer to surveys [430, 824] for a more in-depth analysis of some of them. There
is also a separate line of work related to developing more accurate modeling in such
simulators, e.g., sensor noise models [605], that falls outside the scope of this book.

7.2 Urban and Outdoor Environments: Learning to Drive 203

TORCS3 (The Open Racing Car Simulator) [946] is an open-source 3D car racing
simulator that started as a game for Linux in the late 1990s but became increasingly
popular as a virtual simulation platform for driving agents and intelligent control
systems for various car components. TORCS provides a sufficiently involved simula-
tion of racing physics, including accurate basic properties (mass, rotational inertia),
mechanical details (suspension types, etc.), friction profiles of tyres, and a real-
istic aerodynamic model, so it is widely accepted as a useful source of synthetic
data. TORCS has become the basis for the annual Simulated Car Racing Champi-
onship [544] and has been used in hundreds of works on autonomous driving and
control systems (see Section 7.4); TORCS and other outdoor driving simulators are
illustrated in Fig. 7.4.

CARLA (CAR Learning to Act) [203] is an open simulator for urban driving,
developed as an open-source layer over Unreal Engine 4 [434]. Technically, it oper-
ates similarly to [412], extending Unreal Engine 4 by providing sensors in the form
of RGB cameras (with customizable positions), ground truth depth maps, ground
truth semantic segmentation maps with 12 semantic classes designed for driving
(road, lane marking, traffic sign, sidewalk, and so on), bounding boxes for dynamic
objects in the environment, and measurements of the agent itself (vehicle location
and orientation). DeepDrive [692] is a simulator designed for training self-driving
AI models, also developed as an Unreal Engine plugin; it provides 8 RGB cameras
with 512× 512 resolution at close to real-time rates (20Hz), as well as a generated
8.2-hour video dataset.

VIVID (VIrtual environment for VIsual Deep learning), developed by Lai et
al. [492], tackles a more ambitious problem: adding people interacting in various
ways and a much wider variety of synthetic environments, they present a universal
dataset and simulator of outdoor scenes such as outdoor shooting, forest fires, drones
patrolling a warehouse, pedestrian detection on the roads, and more. VIVID is also
based on the Unreal Engine and uses the wide variety of assets available for it; for
example, NPCs acting in the scenes are programmed using Blueprint, an Unreal
scripting engine, and the human models are animated by the Unreal animation edi-
tor. VIVID provides the ability to record video simulations and can communicate
with deep learning libraries via the TCP/IP protocol, through the Microsoft Remote
Procedure Call (RPC) library originally developed for AirSim (see Section 7.4).

As for reinforcement learning (RL) in autonomous driving, the original paper on
the CARLA simulator [203] also provides a comparison on synthetic data between
conditional imitation learning, deep reinforcement learning, and a modular pipeline
with separated perception, local planning, and continuous control, with limited suc-
cess but generally best results obtained by the modular pipeline.

Manyworks on autonomous driving use TORCS [946] as a testbed, both in virtual
autonomous driving competitions and simply as awell-established research platform.
I do not aim to provide a full in-depth survey of the entire field and only note that
despite its long history TORCS is being actively used for research purposes up to this
day. In particular, Sallab et al. [756, 757] use it in their deep reinforcement learning

3http://torcs.sourceforge.net/.

http://torcs.sourceforge.net/

204 7 Synthetic Simulated Environments

frameworks for lane keeping assist and autonomous driving, Xiong et al. [960] add
safety-based control on top of deep RL, Wang et al. [908] train a deep RL agent for
autonomous driving in TORCS, Barati et al. [41] use it to add multi-view inputs for
deep RL agents, Li et al. [509] develop Visual TORCS, a deep RL environment based
on TORCS, Ando, Lubashevsky et al. [21, 560] use TORCS to study the statistical
properties of human driving, Glassner et al. [279] shift the emphasis to trajectory
learning, Luo et al. [564] use TORCS as themain test environment for a new variation
of the policy gradient algorithm, Liu et al. [534] make use of the multimodal sensors
available in TORCS for end-to-end learning, Xu et al. [844] train a segmentation
network and feed segmentation results to the RL agent in order to unify synthetic
imagery from TORCS and real data, and so on.

In an interesting recent work, Choi et al. [149] consider the driving experience
transfer problem but consider a transfer not from a synthetic simulator to the real
domain but from one simulator (TORCS) to another (GTA V). Tai et al. [842] learn
continuous control for mapless navigation with asynchronous deep RL in virtual
environments.

Synthetic data in autonomous driving extends to other sensor modalities as well.
Thieling et al. [855] discuss the issues of physically realistic simulation for various
robot sensors. Yue et al. [983] present a LIDAR point cloud generator based on the
Grand Theft Auto V (GTA V) engine, showing significant improvements in point
cloud segmentation when augmenting the KITTI dataset with their synthetic data.
Sanchez et al. [840] generate synthetic 3D point clouds with the robotic simulator
Gazebo (see Section 7.4). Wang et al. [901] develop a separate open-source plugin
for LIDAR point cloud generation. Fang et al. [231] present an augmented LIDAR
point cloud simulator that can generate simulated point clouds from real 3D scanner
data, extending it with synthetic objects (additional cars).

The work based on GTA V has recently been continued by Hurl et al. [380] who
have developed a precise LIDAR simulator within the GTA V engine and published
the PreSIL (Precise Synthetic Image and LIDAR) dataset with over 50000 frames
with depth information, point clouds, semantic segmentation, and detailed anno-
tations; we use PreSIL to showcase the modalities available in modern synthetic
datasets in Fig. 7.5. There also exist works on synthesizing specific elements of the
environment, thus augmenting real data with synthetic elements; for example, Bruls
et al. [95] generate synthetic road marking layouts which improves road marking
segmentation, especially in corner cases.

Outdoor simulated environments go beyond driving, however, with simulators and
synthetic datasets successfully used for autonomous aerial vehicles.Most of them are
intended for unmanned aerial vehicles (UAVs) and have an emphasis on plugging in
robotic controllers, possibly even with hardware-in-the-loop approaches; we discuss
these simulators in Sections 7.4 and 7.5.

7.3 Datasets and Simulators of Indoor Scenes 205

Fig. 7.5 Sample images from the PreSIL dataset [380]: (a) RGB image, (b) point cloud, (c) black-
and-white depth map, (d) color depth map, (e) segmentation map, (f) stencil buffer.

7.3 Datasets and Simulators of Indoor Scenes

Although, as we have seen in the previous section, the main emphasis of many influ-
ential applications remains in the outdoors, indoor navigation is also an important
field where synthetic datasets are required. The main problems remain the same—
SLAM and navigation—but the potential applications are now more in the field of
home robotics, industrial robots, and embodied AI [584, 1023]. There exist large-
scale efforts to create real annotated datasets of indoor scenes [121, 176, 796, 813,
947, 951], but synthetic data is increasingly being used in the field [1001].

Historically, the main synthetic dataset for indoor navigation has been SUNCG4

presented by Song et al. [814]. It contains over 45,000 different scenes (floors of
private houses) with manually created realistic room layouts, 3D models of the fur-

4http://suncg.cs.princeton.edu/

http://suncg.cs.princeton.edu/

206 7 Synthetic Simulated Environments

niture, realistic textures, and so on.All scenes are semantically annotated at the object
level, and the dataset provides synthetic depthmaps and volumetric ground truth data
for the scenes. The original paper [814] presented state of the art results in semantic
scene completion, but, naturally, SUNCG has been used for many different tasks
related to depth estimation, indoor navigation, SLAM, and others [2, 143, 318, 568,
688], and it often serves as the basis for scene understanding competitions [825].

Interestingly, at the time of writing the SUNCGwebsite was down and the dataset
itself unavailable due to a legal controversy over the data5; that is why Fig. 7.6c shows
a standard showcase picture from [814] instead of data samples.While synthetic data
can solve a lot of legal issues with real data (as the main example of such issues, see
Chapter 11 for a discussion of privacy concerns), the data, and especially handmade
or manually collected 3D models, are still intellectual property and can bring about
problems of its own unless properly released to the public domain.

SUNCG has given rise to a number of simulation environments. Before SUNCG,
we note the Gazebo platform mentioned above [464] (see also Section 7.4) and the
V-REP robot simulation framework [728] that not only provided visual information
but also simulated a number of actual robot types, further simplifying control deploy-
ment and development. Handa et al. [321] provide their own simulated living room
environment and dataset ICL-NUIM (Imperial College London and National Uni-
versity of Ireland Maynooth) with special emphasis on visual odometry and SLAM;
they render high-quality RGB-D images with ray tracing and take special care to
model the noise in both depth and RGB channels.

MINOS by Savva et al. [761] is a multimodal simulator for indoor navigation
(later superceded by Habitat, see below). Wu et al. [943] made SUNCG into a full-
scale simulation environment named House3D6, with high-speed rendering suitable
for large-scale reinforcement learning. InHouse3D, a virtual agent can freely explore
3D environments taken from SUNCGwhile providing all the modalities of SUNCG.

House3D has been famously used for navigation control with natural language:
Wu et al [943] presented RoomNav, a task of navigation from natural language
instructions and some models able to do it, while Das et al. [183] presented an
embodied question answering model, where a robot is supposed to answer natu-
ral language questions by navigating an indoor environment. The AI2-THOR (The
House Of inteRactions) framework [466] provides near photorealistic interactive
environments with actionable objects (doors that can be opened, furniture that can
be moved, etc.) based on the Unity3D game engine (see an example of the same
scene after some actions have been applied to objects on Fig. 7.6f-g).

Zhang et al. [1009] studied the importance of synthetic data realism for vari-
ous indoor vision tasks. They fixed some problems with 3D models from SUNCG,
improved their geometry and materials, sampled a diverse set of cameras for each
scene, and compared OpenGL rendering against physically-based rendering (with
Metropolis light transport models [893] and the Mitsuba renderer7) across a variety

5https://futurism.com/tech-suing-facebook-princeton-data
6http://github.com/facebookresearch/House3D
7http://www.mitsuba-renderer.org/

https://futurism.com/tech-suing-facebook-princeton-data
http://github.com/facebookresearch/House3D
http://www.mitsuba-renderer.org/

7.3 Datasets and Simulators of Indoor Scenes 207

Fig. 7.6 Sample images from indoor datasets and simulation environments: (a-b) ICL-NUIM[321];
(c) SUNCG [814]; (d) House3D [943]; (e) Habitat [579]; (f–g) AI2THOR [466].

208 7 Synthetic Simulated Environments

of lighting conditions. Their main conclusion is that, again, added realism is worth
the effort: the quality gains are quite significant.

The two most recent (and also very impressive) advances in the field are Habitat
released by Facebook and Hypersim released by Apple. Habitat is a simulation
platform for embodied AI developed by Facebook researchers Savva et al. [579]. Its
simulator, called Habitat-Sim, presents a number of important improvements over
previous work that we have surveyed in this section:

• dataset support: Habitat-Sim supports synthetic datasets such as SUNCG [814]
and real-world datasets such as Matterport3D [121] and Gibson [947];

• rendering performance: Habitat-Sim can render thousands of frames per second,
10-100x faster than previous simulators; the authors claim that “it is often faster to
generate images using Habitat-Sim than to load images from disk”; this is impor-
tant because simulation stops being a bottleneck in large-scale model training;

• humans-as-agents: humans can function as agents in the simulated environment,
which allows to use real human behaviour in agent training and evaluation;

• accompanying library: the Habitat-API library defines embodied AI tasks and
implements metrics for easy agent development.

Savva et al. also provide a large-scale experimental study of various state of the art
agents, arriving at the conclusion (counter to previous research) that agents based
on reinforcement learning outperform SLAM-based ones, and RL agents generalize
best across datasets, including the synthetic-to-real generalization from SUNCG to
Matterport3D and Gibson. This is an important finding for synthetic data in indoor
navigation, and we expect it to be validated in later studies.

Hypersim is a dataset of photorealistic indoor images generated by Apple
researchers Roberts and Paczan and released in late 2020 [726]. Moving further than
just straightforward rendering of 3D scenes, they develop a novel computational CGI
pipeline that uses triangle meshes for annotation (in order to, in particular, avoid re-
rendering if a different annotation is required) and special algorithms for sampling
the camera trajectory. This has allowed Roberts and Paczan to create a nearly 2TB
dataset that includes 3D scenes, camera trajectories, lossless high-dynamic-range
images, and plenty of different types of annotations, as illustrated with a sample
image from Hypersim in Fig. 7.7. In addition to the types of annotation shown in
Fig. 7.7, the dataset also includes 3D bounding boxes and mesh annotations.

I definitely expect Habitat, Hypersim, and their successors to become the new
standard for indoor navigation and embodied AI research.

7.4 Robotic Simulators

We have seen autonomous driving sims that mostly concentrate on accurately reflect-
ing the outsideworld, modeling additional sensors such as LIDAR, and physics of the
driving process. Simulators for indoor robots and unmanned aerial vehicles (UAV)
add another complication: embedded hardware for such robots may be relatively

7.4 Robotic Simulators 209

Fig. 7.7 Sample image from the Hypersim dataset [726]: (a) photorealistic rendering; (b) depth;
(c) surface normals; (d-e) instance-level semantic segmentation; (f) diffuse reflectance; (g) diffuse
illumination; (h) non-diffuse residual image that captures lighting effects.

weak and needs to be taken into account. Hence, robotic simulators usually support
the Robot Operating System8 (ROS), a common framework for writing robot soft-
ware. In some cases, simulators go as far as provide hardware-in-the-loop capabili-
ties, where a real hardware controller can be plugged into the simulator; for example,
hardware-in-the-loop approaches to testing UAVs have been known for a long time
and represent an important methodology in flight controller development [7, 683,
899]. We also refer to the surveys [337, 575].

For a brief review, we highlight four works, starting with two standard references.
Gazebo, originally presented by Koenig and Howard [464] and now being developed
by OSRF (Open Source Robotics Foundation), is probably the best-known robotic
simulation platform. It supports ROS integration out of the box, has been used in the
DARPA Robotics Challenge [9], NASA Space Robotics Challenge, and others, and
has been instrumental for thousands of research and industrial projects in robotics.
Gazebo uses a realistic physical engine (actually, several different engines) that sup-
ports illumination and lighting effects, gravity, inertia, and so on; it can be integrated
with robotic hardware via ROS and provides realistic simulation that often leads to
successful transfer to the real world.

MuJoCo (Multi-Joint Dynamics with Contact) developed by Todorov [862] is
a physics engine specializing in contact-rich behaviours, which abound in robotics.
BothGazebo andMuJoCo have become industry standards for robotics research, and
surveying the full range of their applications goes far beyond the scope of this work.
There are, of course, other platforms as well. For example, Gupta and Jarvis [309]
present a simulation platform for training mobile robots based on the Half-Life 2
game engine.

The other two works are, on the contrary, very recent and may well define a
new industry standard in the near future. First, Xie et al. present VRGym [957], a
virtual reality testbed for physical and interactive AI agents. Their main difference
from previous work is the support of human input via VR hardware integration.
The rendering and physics engine are based on Unreal Engine 4, additional multi-
sensor hardware is capable of full-body sensing and integration of human subjects to

8https://www.ros.org/.

https://www.ros.org/

210 7 Synthetic Simulated Environments

Fig. 7.8 Sample images from robotic simulation environments: (a) VRGym [957]; (b) VRK-
itchen [261]; (c) ORRB [147].

virtual environments, while a ROS bridge allows to easily communicate with robotic
hardware. Xie et al. benchmark RL algorithms and show possibilities for socially
aware models and intention prediction; VRGym is already being further extended
and specialized into, e.g., VRKitchen by Gao et al. [261] designed to learn cooking
tasks (Fig. 7.8).

The second work is the OpenAI Remote Rendering Backend (ORRB) developed
by OpenAI researchers Chociej et al. [147], able to render robotic environments and
provide depth and segmentation maps in its renderings. ORRB emphasizes diversity,
aiming to provide domain randomization effects (see Section 9.1); it is based on
Unity3D for rendering and MuJoCo for physics, and it supports distributed cloud
environments. ORRB has been used to train Dactyl [646], a robotic hand for multi-
finger small object manipulation developed by OpenAI; Dactyl’s RL-based policies
have been trained entirely in ORRB simulation and then have been successfully
transferred to the physical robot. We expect more exciting developments in such
synthetic-to-real transfer for robotic applications in the near future.

7.5 Vision-Based Applications in Unmanned Aerial Vehicles 211

Fig. 7.9 Sample images from flight simulators: (a) AirSim [785] drone demo with depth, segmen-
tation, and RGB drone view on the bottom; (b) CAD2RL [749]; (c) Air Learning [476] (depth image
and drone camera view on the bottom); (d–e) XPlane dataset [812].

7.5 Vision-Based Applications in Unmanned Aerial Vehicles

A long line of research deals with vision-based approaches to operating unmanned
aerial vehicles (UAV) [11]. Since in this case it is almost inevitable to use simulated

212 7 Synthetic Simulated Environments

environments for training, and often testing the model is also restricted to synthetic
simulators (real-world experiments are expensive outdoors and simply prohibited in
urban environments), almost the entire field uses some kind of synthetic datasets or
simulators; some of the datasets and simulators we cover in this section are illustrated
in Fig. 7.9. Classical vision-related problems for UAVs include three major tasks that
UAVs often solve with computer vision:

• localization and pose estimation, i.e., estimating the UAV position and orientation
in both 2D (on themap) and in the 3Dspace; for this problem, real datasets collected
by real-world UAVs are available [82, 727, 779, 820], and the field is advanced
enough to use actual field tests, so synthetic-only results are viewedwith suspicion,
but existing research still often employs synthetic simulators, either handmade for
a specific problem [921] or based on professional flight simulators [26];

• obstacle detection and avoidance, where real-world experiments are often too
expensive even for testing [106];

• visual servoing, i.e., using feedback from visual sensors in order to maintain posi-
tion, stability, and performmaneuvers; here synthetic data has usually been used in
the form of hardware-in-the-loop simulators for the developed controllers [503],
sometimes augmented with full-scale flight simulators [485] or specially designed
“virtual reality” environments [763].

During the latest years, these classical applications of synthetic data for UAVs
have been extended and taken to new heights with modern approaches to synthetic
data generation. For example, Marcu et al. [581] considered the problem of locating
safe landing areas for UAVs, which requires depth estimation and segmentation into
“horizontal”, “vertical”, and “uncertain” regions to distinguish horizontal areas that
would be safe for landing. To train a convolutional architecture for this segmentation
and depth estimation task, the authors propose an interesting approach to generating
synthetic data: they begin with Google Earth data9 and extract 3D scenes from it.
However, since 3D meshes in Google Earth are far from perfect, the authors then
map textures to the 3D scenes to obtain less realistic-looking images but ones for
which the depth maps are known perfectly. Marcu et al. showed that from a bird’s eye
view the resulting images look quite realistic, and compare different segmentation
architectures on the resulting synthetic dataset.

Oyuki Rojas-Perez et al. [729] also compared the results obtained by training
on synthetic and real datasets, with the results in favor of synthetic data due to the
availability of depthmaps for synthetic images. In a recentwork, Castagno et al. [116]
solve the landing site selection problemwith a high-fidelity visual synthetic model of
Manhattan rooftops, rendered with the Unreal Engine and provided to the simulated
robots via AirSim.

Gazebo has been used for UAV simulations [251], but there are more popular
specialized simulators in the field. AirSim [785] by Microsoft is a flight simulator
that operates more like a robotic simulator such asGazebo than an accurate flight sim
such asMicrosoft Flight Simulator or X-Plane: it contains a detailed physics engine

9https://www.google.com/earth/

https://www.google.com/earth/

7.5 Vision-Based Applications in Unmanned Aerial Vehicles 213

designed to interact with specific flight controllers and providing a realistic physics-
based vehicle model but also supports ROS to interact with the drones’ software
and/or hardware. Apart from visualizations rendered with Unreal Engine 4, AirSim
provides sensor readings, including a barometer, gyroscope, accelerometer, magne-
tometer, and GPS. AirSim is also available as a plugin for Unreal Engine 4 which
enables extensions and new projects based on AirSim simulations of autonomous
vehicles.

There are plenty of extensions and projects that useAirSim and provide interesting
synthetic simulated environments (see also the survey [575]), in particular:

• Chen et al. [134] add realistic forests to use UAVs for forest visual perception;
• Bondi et al. [81] concentrate on wildlife preservation, extending the engine with
realistic renderings of, e.g., the African savanna;

• in two different projects, Smyth et al. [807, 808] and Ullah et al. [885] simulate
critical incidents (such as chemical, biological, or nuclear incidents or attacks)
with an explicit goal of training autonomous drones to collect data in these virtual
environments;

• Huang et al. [364] extend AirSim with a natural language understanding model to
simulate natural language commands for drones, and so on.

We also note thatMicrosoft itself recently extendedAirSim to include autonomous car
simulations,making the engine applicable to all the taskswe discussed in Section 7.2.

While AirSim andGazebo have been the most successful simulation frameworks,
we also note other frameworks for multiagent simulation that have been used for
autonomous vehicles, usually without a realistic 3D rendered environment (see also
a comparison of the frameworks in [615] and of their perception systems in [737]):
JaSIM [257], a multiagent 3D environment model based on the Janus platform [266],
Repast Simphony [634], an agent-based simulation library for complex adaptive
systems, FLAME [459] that concentrates on parallel simulations, and JADE [56], a
popular library for multiagent simulations.

Sadeghi and Levine [749] present the CAD2RL framework for avoiding colli-
sions while flying in indoor environments. They motivate the use of synthetic data
by the domain randomization idea (see Section 9.1) and produce a wide variety of
indoor simulated environments constructed in Blender. They do not use any real
images during training, learning the Q-function for the reinforcement learning agent
entirely on simulated data, with a fully convolutional neural network. The authors
report improvements in a number of complex settings such as flying around cor-
ners, navigating through narrow corridors, flying up a staircase, avoiding dynamic
obstacles, and so on.

The Air Learning platform recently presented by Krishnan et al. [476] is an end-
to-end simulation environment for autonomous aerial robots that combines plug-
gable environment and physics engine (such as AirSim or Gazebo), learning algo-
rithms, policies for robot control (implemented in, e.g., TensorFlow or PyTorch), and
“hardware-in-the-loop” controllers, where a real flight controller can be plugged in
and evaluated on the Air Learning platform. As an example, Krishnan et al. bench-
mark several reinforcement learning approaches to point-to-point obstacle avoidance

214 7 Synthetic Simulated Environments

tasks and arrive at important conclusions: for instance, it turns out that having more
onboard computational power (a desktop CPU vs. a Rapsberry Pi) can significantly
improve the result, producing almost 2x shorter trajectories.

Among vision-based synthetic datasets, we note the work by Solovev et al. [812]
who present a synthetic dataset for airplane landing based on the XPlane flight
simulator [493], which has been used for other UAV simulations as well [73, 262].
The main intention of Solovev et al. is to present a benchmark for representation
learning by combining different modalities (RGB images and various sensors), but
the resulting synthetic dataset is sufficiently large and diverse to be used for other
applications: 93GB of images and sensor readings from 8K landings on 114 different
runways.

Another interesting application where real and synthetic data come together is
provided by Madaan et al. [571], who solve a truly life-or-death problem for UAVs:
wire detection. They use real background images and superimpose them with ren-
derings of realistic 3D models of wires. The authors vary different properties of the
wires (material, wire sag, camera angle, etc.) but do not make any attempts to adapt
the wires to the semantics of the background image itself, simply pasting wires onto
the images. Nevertheless, Madaan et al. report good results with training first on syn-
thetic data and then fine-tuning on a small real dataset; synthetic pretraining proves
to be helpful.

7.6 Computer Games as Virtual Environments

Computer games and game engines have been a very important source of problems
and virtual environments for deep RL and AI in general [113, 417, 766]. Much of
the foundational work in modern deep RL has been done in the environments of 2D
arcade games, usually classical Atari games [55, 607]. First, many new ideas for
RL architectures or training procedures for robotic navigation were introduced as
direct applications of deep RL to navigation in complex synthetic environments, in
particular to navigatingmazes in video games such asDoom [69] andMinecraft [638]
or specially constructed 3D mazes, e.g., from the DeepMind Lab environment [49,
780].Doom became something of an industry standard, with theVizDoom framework
developed by Kempka et al. [443] and later used in many important works [15, 495,
705, 942]; it is illustrated in Fig. 7.10.

Games of other genres, in particular real-time strategy games [19, 851], also
represent a rich source of synthetic environments for deepRL;we note theTorchCraft
library for machine learning research in StarCraft [834], synthetic datasets extracted
from StarCraft [526, 599, 939], the ELF (Extensive, Lightweight, and Flexible)
library platformwith three simplified real-time strategy games [856], and the SC2LE
(StarCraft II LearningEnvironment) library for Starcraft II [896]. Racing games have
been used as environments for training end-to-end RL driving agents [672].

While data from computer games could technically be considered synthetic data,
we do not go into further details on game-related research and concentrate on virtual

7.6 Computer Games as Virtual Environments 215

Fig. 7.10 A sample snapshot of the VizDOOM environment [443]: (a) RGB image; (b) object
detection labeling; (c) depth map; (d) map of the environment.

environments specially designed for machine learning and/or transfer to real-world
tasks. Note, however, that synthetic data is alreadymaking inroads even into learning
to play computer games: Justesen et al. [418] show that using procedurally generated
levels improves generalization and final results forAtari games and can even produce
models that work well when evaluated on a completely new level every time they
play.

All of the above does not look too much in line with the general topic of synthetic
data: while game environments are certainly “synthetic”, there is usually no goal to
transfer, say, an RL agent playing StarCraft to a real armed conflict (thankfully).
However, recent works suggest that there is potential in this direction. For example,
while navigation in a first-person shooter is very different from real robotic naviga-
tion, successful attempts at transfer learning from computer games to the real world
are already starting to appear. Karttunen et al. [442] present an RL agent for navi-
gation trained on the Doom environment and transferred to a real-life Turtlebot by
freezing most of the weights in the DQN network and only fine-tuning a small subset
of them. As computer games get more realistic, we expect such transfer to become
easier.

7.7 Conclusion

This has been the second chapter on primary applications of synthetic data. We
have discussed simulation environments, ranging from classical robotic simulators
to computer games. In such environments, the produced data is necessarily synthetic,
but inmany domains and applications, such as reinforcement learning, they represent
the only practical way to allow models to train.

The next two chapters will be shorter and will sweep up most other direct appli-
cations of synthetic data. In Chapter 8, we will consider applications of synthetic
data outside computer vision and simulated environments; in other machine learning
domains such as natural language processing synthetic data is much less prominent,
but we will find several important cases. Chapter 9 will present several directions in
synthetic data development that may allow for better synthetic datasets in the future.
And then we will proceed to the second main topic of this book: synthetic-to-real
domain adaptation with generative models.

Chapter 8
Synthetic Data Outside Computer Vision

While computer vision remains the main focus of synthetic data applications, other
fields also begin to use synthetic datasets, with some directions entirely dependent on
synthetic data. In this chapter,we survey someof these fields. Specifically, Section 8.1
discusses how structured synthetic data is used for fraud and intrusion detection and
other applications in the form of network and/or system logs; in Section 8.2, we
consider neural programming; Section 8.3 discusses synthetic data generation and
use in bioinformatics, and Section 8.4 reviews the (admittedly limited) applications
of synthetic data in natural language processing.

8.1 Synthetic System Logs for Fraud and Intrusion
Detection

In this chapter, we discuss domains other than computer vision where synthetic data
can also be helpful. First, let us consider a very wide domain of datasets that span
many different fields of application: tabular data, that is, user records, logs of various
technical or computer systems, network traffic traces, and so on. There are important
cases where the need for synthetic tabular data is motivated by privacy concerns;
for instance, it is impossible to publish real electronic medical records, and open
datasets have to be generated synthetically with privacy guarantees. We will discuss
such applications in Section 11.5.

Apart from privacy concerns, another source of motivation for synthetic tabular
data is the fact that a system needs to recognize rare events that occur in real datasets
insufficiently often. For a specific case study, let us consider in this section rare
events in security applications such as fraud detection or intrusion detection. Fraud
and intrusion detection systems run based on network logs (traces) and system call
logs, so this is the kind of structured data that needs to be synthesized in this case.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_8

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_8

218 8 Synthetic Data Outside Computer Vision

Since real data on proven intrusions is very scarce, this field has used synthetic
data for a long time, but usually the scenario was more akin to the early days of
computer vision that we discussed in Section 5.2: synthetic data was generated to
serve as a testbed to compare approaches that were not even necessarily based on
machine learning. One notable example here is the 1998 and 1999 Off-Line Intrusion
Detection Evaluation organized by the Lincoln Laboratory of MIT and sponsored by
DARPA [528, 574]. The test data in this competition contained network traffic and
system log files from a large computer network which was completely simulated,
and both attacks and background “normal operation” data were entirely synthetic.
The competition organizers used real network traces to model the background data
after, and attacks were generated from a database of known attacks by running the
corresponding simulation scripts [445].

However, the 1998 and 1999 competitions were criticized precisely for the quality
of their synthetic dataset. McHugh [590] pointed out that the test dataset in these
competitions was not sufficiently validated, and the whole process of data generation
was not even explained in sufficient detail. Indeed, the papers cited above only give
vague descriptions that say that they have generated data “similar” to real traffic (in
fact, to traffic seen on operational Air Force bases, no less). However, real data on
the Internet is highly variable, contains a lot of seemingly anomalous but legitimate
traffic (including random garbage), often comes in bursts that are similar tomalicious
flooding, and so on. The synthetic attacks were also questionable: while the attack
simulation scripts seemed to be realistic enough, it was again unclear what their
distribution was and how well it reflected attacks in the real world. All of these
points indeed represent design choices that need to be made in the generation of
synthetic data, and they have to be explicitly and adequately addressed.

Therefore, since the early 2000s researchers in this field started paying closer
attention to the process of generating synthetic data. Let us highlight the work by
Lundin et al. [563]who developed amethodology for synthetic fraud data generation.
Noting the deficiencies of the ad-hoc approach, they design a general framework that
highlights the necessary design choices; we show it in Figure 8.1. The framework
identifies the following steps:

• data collection that should yield real data after which synthetic data is supposed
to be modeled;

• data analysis that identifies important properties of collected data, including user
statistics, a classification of users and attackers, and system profiles;

• profile generation that identifies various user profiles to be used in synthetic data
generation;

• user and attack modeling that produces (usually simplified) models of user and
attacker behaviour, e.g., by a finite state machine as in [186], with user profiles
serving as parameters for these simulators;

• system modeling that produces a simulator for the system’s reactions to user
actions; one can use the real system if it’s available in software, but in general
it is sufficient to limit the modeling to the aspects relevant for fraud or intrusion
detection.

8.1 Synthetic System Logs for Fraud and Intrusion Detection 219

Fig. 8.1 Synthetic data generation methodology by Lundin et al. [563].

As a result of going through these steps, we obtain a set of user profiles that can be
fed to user and attacker simulators, and the behaviour produced by these simulators
is fed into the system simulator. Note that while this methodology may look trivial
at first glance, the point is actually to highlight which design choices one has to
make in constructing a synthetic data generation system; from this point of view, this
methodology remains relevant to this day.

Apart from network fraud/intrusion detection, this methodology was put to work
in, for instance, fraud detection in mobile transfer services [252] and generation of
synthetic electronic health records [592].

Another similar field where synthetic data in the form of structured system logs is
needed for fraud detection is financial security [552]. Here, real-life financial records
usually represent sensitive information, and cases of fraud in real data are often hard to
label, which also leads to the need for a synthetic generation. Here, we can highlight
a sequence of works by two researchers from Blekinge Institute of Technology,
E.A. Lopez-Rojas and S. Axelsson. In [550], they constructed a multiagent-based
simulator (MABS) for synthetic data designed to train fraud detection systems. In
subsequent works, they have applied this agent-based approach to several different
domains where financial fraud needs to be detected:

• the original work [550] applied to money laundering detection, and later the same
simulator was applied by the authors to detecting suspicious financial transactions
in a mobile money system [551];

220 8 Synthetic Data Outside Computer Vision

• in [553], Lopez-Rojas and Axelsson developed RetSim, an agent-based simulator
of a shoe store based on real data from a Swedish retailer; RetSim was used for
fraud detection in retail transactions in [554, 555];

• in [549], they extended the original simulator to PaySim, an agent-based simulator
that simulates mobile money transactions based on an original dataset.

The basic idea of agent-based simulators is to generate entities corresponding to
clients (e.g., users of a mobile payment system), set up the parameters of transactions
between the clients, and then proceed to generate synthetic data with the purpose of
training fraud detection models on it.

In general, structured synthetic data in the form of simulated system logs or
synthetic electronic records has found plenty of applications in domains where real
data is either unavailable or sensitive. In my personal opinion, however, there is
an inherent trade-off in this kind of approach. With simplistic simulators that are
programmed by hand orwith tuning only a fewdistribution parameters from real data,
we can be sure to avoid privacy concerns. But these simulators have limited value:
whywould we need to generate large-scale synthetic datasets to detect behaviour that
we ourselves already know how to program? So to provide additional value on top
of what we already know, synthetic data generation systems need to be able to learn
patterns from real data that we cannot simply program into an agent’s behaviour.
And as soon as we rely on learning to uncover implicit patterns, privacy issues raise
their heads.

So while some of these relatively early attempts we have discussed in this section
can learn to reflect the original data distribution quite well, these methods actually
have no inherent security needed to protect sensitive original data on which they are
trained. Therefore, we will return to this form of data in more detail in Chapter 11,
wherewewill discuss privacy guarantees in synthetic data.And now it is time tomove
forward to a completely different domain where the data is definitely not sensitive,
and highly realistic (one could even say real) data can be quite easily generated.

8.2 Synthetic Data for Neural Programming

One interesting domain where synthetic data is paramount is neural program syn-
thesis and neural program induction. The basic idea of teaching a machine learning
model to program can be broadly divided into two subfields:

• program induction aims to train an end-to-end differentiable model to capture an
algorithm [191];

• program synthesis tries to teach a model the semantics of a domain-specific lan-
guage (DSL), so that the model is able to generate programs according to given
specifications [432].

Basically, in program induction the network is the program, while in program syn-
thesis the network writes the program.

8.2 Synthetic Data for Neural Programming 221

Naturally, both tasks require large datasets of programs together with their input–
output pairs. Since no such large datasets exist, and generating synthetic programs
and running them in this case is relatively easy (arguably even easier than generating
synthetic data for computer vision), all modern works use synthetic data to train the
“neural computers”.

In program induction, the tasks are so far relatively simple, and synthetic data gen-
eration does not present toomany difficulties. For example, Joulin andMikolov [415]
present a new architecture (stack-augmented recurrent networks) to learn regulari-
ties in algorithmically generated sequences of symbols; the training data, as in pre-
vious such works [273, 350, 354, 926], is synthetically generated by handcrafted
simple algorithms, including generating sequences from a pattern such as anb2n or
anbmcn+m , binary addition (supervised problem asking to continue a string such as
110+ 10 =), and similar formalizations of simple algorithmic tasks.

Zaremba and Sutskever [987] train a model to execute programs, i.e., map their
textual representations to outputs; they generate training data as Python-style pro-
gramswith addition, subtraction, multiplication, variable assignments, if-statements,
and for-loops (but without nested loops), each ending with a print statement; see
Fig. 8.2 for an illustration. Neural RAM machines [483] are trained on a number of
simple tasks (access, increment, copy, etc.) whose specific instances are randomly
synthesized. The same goes for neural Turing machines [296] and neural GPUs [241,
421]: they are trained and evaluated on synthetic examples generated for simple basic
problems such as copying, sorting, and arithmetic operations.

In neural program synthesis, again, the programs are usually simple and also gen-
erated automatically; attempts to collect natural datasets for program synthesis have
begun only very recently [988]. Learning-based program synthesis (earlier attempts
had been based on logical inference [578]) began with learning string manipulation
programs [304] and soon branched into deep learning, using recurrent architectures
to guide search-based methods [894] or to generate programs in encoder–decoder
architectures [138, 194]. In [101, 794], reinforcement learning is added on top of a
recurrent architecture in order to alleviate the program aliasing problem, i.e., the fact
that many different equivalent programs provide equally correct answers while the
training set contains only one. All of the above-mentioned models were trained on
synthetic datasets of randomly generated programs (usually in the form of abstract
syntax trees) run on randomized sets of inputs.

Fig. 8.2 Sample synthetic programs from [987].

222 8 Synthetic Data Outside Computer Vision

As a separate thread, wemention works on program synthesis for visual reasoning
and, generally speaking, question answering [362, 409, 759]. To do visual question
answering [8], models are trained to compose a short program based on the natural
language question that will lead to the answer, usually in the form of an execution
graph or a network architecture. This line of work is based on neural module net-
works [22, 120] and similar constructions [23, 363], where the network learns to
create a composition of modules (in QA, based on parsing the question) that are
also neural networks, all learned jointly (see, however, the critique in [776]). Latest
works use architectures based on self-attention mechanisms that have proven their
worth across a wide variety of NLP tasks [507]. Naturally, most of these works use
the CLEVR synthetic dataset for evaluation (see Section 6.7).

Generation of synthetic data itself has not been given much attention in this field
until very recently, but the interest is rising. The work by Shin et al. [790] presents a
study of contemporary synthetic data generation techniques for neural program syn-
thesis and concludes that the resulting models do not capture the full semantics of a
programming language, even if they do well on the test set. Shin et al. show that syn-
thetic data generation algorithms, including the one from the popular tensor2tensor
library [890], have biases that fail to cover important parts of the program space and
deteriorate the final result. To fix this problem, they propose a novel methodology
for generating distributions over the space of datasets for program induction and
synthesis, showing significant improvements for two important domains: Calculator
(which computes the results of arithmetic expressions) and Karel (which achieves a
given objective with a virtual robot moving on a two-dimensional grid with walls and
markers). We expect more research into synthetic data generation for neural program
induction and synthesis to follow in the near future.

8.3 Synthetic Data in Bioinformatics

We use examples from the heathcare and biomedical domains throughout this book;
see, e.g., Sections 10.7 and 11.5. In this section, we concentrate on applications of
synthetic data in bioinformatics that fall outside either producing synthetic medical
images (usually done with the help of generative models; see Section 10.7) or provid-
ing privacy guarantees for sensitive data through synthetic datasets (Section 11.5). It
turns out that there are still plenty, and synthetic data is routinely used and generated
throughout bioinformatics; see also a survey in [146]. Note that in this section, we
will present some sample applications of generative models, and a full treatment of
what deep generative models are will follow in Chapter 4.

For many of such methods in bioinformatics and medicine, generated synthetic
data is the end goal rather than a tool to improve machine learning models. In par-
ticular, de novo drug design [324, 769] is a field that searches for molecules with
desirable properties in a search space of about 1060 synthesizable molecules [267,
722]. The goal is to find (which in a space of this size rather means to generate)

8.3 Synthetic Data in Bioinformatics 223

candidate molecules that would later have to be explored further in lab studies and
then clinical trials.

First modern attempts at de novo drug design used rule-based methods that sim-
ulate chemical reactions [769], but the field soon turned to generative models, in
particular based on deep learning [130, 268]. In this context, molecules are usually
represented in the SMILES format [923] that encodes molecular graphs as strings in
a certain formal grammar, which makes it possible to use sequence learning models
to generate new SMILES strings. Segler et al. [773] used LSTM-based RNNs to learn
a chemical language model, while Gómez-Bombarelli et al. [286] trained a varia-
tional autoencoder (VAE) which is already a generative model capable of generating
new candidate molecules. To further improve generation, Kusner et al. [487] devel-
oped a novel extension of VAEs called Grammar Variational Autoencoders that can
take into account the rules of the SMILES formal grammar and make VAE outputs
conform to the grammar. To then use the models to obtain molecules with desired
properties, researchers used either a small set of labeled positive examples [773]
or augment the RNN training procedure with reinforcement learning [397]. In par-
ticular, Olivecrona et al. [640] use a recurrent neural network trained to generate
SMILES representations: first, a prior network (3 layers of 1024 GRU) is trained in a
supervised way on the RDKit subset [496] of ChEMBL database [267], then an RL
agent (with the same structure, initialized from the prior network) is fine-tuned with
the REINFORCE algorithm to improve the resulting SMILES encoding. A similar
architecture, but with a stack-augmented RNN [416] as the basis, which enables
more long-term dependencies, was presented by Popova et al. [681].

We especially note a series of works by Insilico researchers Kadurin, Polykovskiy,
and others who applied different generative models to this problem:

• Kadurin et al. [419] train a supervised adversarial autoencoder [576] with the
condition (in this case, growth inhibition percentage for tumor cells after treatment)
added as a separate neuron to the latent layer;

• in [420], Kadurin et al. compared adversarial autoencoders (AAE) with varia-
tional autoencoders (VAE) for the same problem, with new modifications to the
architecture that resulted in improved generation;

• in [679], Polykovskiy et al. introduced a new AAE modification, the entangled
conditional adversarial autoencoder, to ensure the disentanglement of latent fea-
tures; in this case, which is still quite rare for deep learning in drug discovery, a
newly discovered molecule (a new inhibitor of Janus kinase 3) was actually tested
in the lab and showed good activity and selectivity in vitro;

• Kuzmynikh et al. [488] presented a novel 3D molecular representation based on
thewave transform that led to improved performance for CNN-based autoencoders
and improved MACCS fingerprint prediction;

• Polykovskiy et al. [678] presented Molecular Sets (MOSES), a benchmarking
platform for molecular generation models, which implemented and compared var-
ious generative models for molecular generation including CharRNN [774], VAE,
AAE, and Junction Tree VAE [403], together with a variety of evaluation metrics
for generation results.

224 8 Synthetic Data Outside Computer Vision

The above works can be thought of as generation of synthetic data (in this case,
molecular structures) that could be of direct use for practical applications.

Johnson et al. [406] undertake an ambitious project: they learn a generative model
of the variation in cell and nuclear morphology based on fluorescence microscopy
images. Their model is based on two adversarial autoencoders [576], one learning a
probabilistic model of cell and nuclear shape and the other learning the interrelations
between subcellular structures conditional on an encoding of the cell and nuclear
shape from the first autoencoder. The resulting model produces plausible synthetic
images of the cell with known localizations of subcellular structures.

One interesting variation of “synthetic data” in bioinformatics concerns learning
from live experiments on synthetically generated biological material. For example,
Rosenberg et al. [734] study alternative RNA splicing, in particular the functional
effects of genetic variation on the molecular phenotypes through alternative splic-
ing. To do that, they created a large-scale gene library with more than two million
randomly generated synthetic DNA sequences, then used massively parallel reporter
assays (MPRA) to measure the isoform ratio for all mini-genes in the experiment,
and then used it to learn a (simple linear) machine learning model for alternative
splicing. It turned out that this approach significantly improved prediction quality,
outperforming state-of-the-art deep learning models for alternative splicing trained
on the actual human genome [959] in predicting the results of in vivo experiments.

We also note a related field of imitational modeling for bioinformatics data that
often results in realistic synthetic generators. For example, van den Bulcke et al. [99]
provide a generator for synthetic gene expression data, able to produce synthetic
transcriptional regulatory networks and simulated gene expression data while closely
matching real statistics of biological networks.

8.4 Synthetic Data in Natural Language Processing

Synthetic data has not been widely used in natural language processing (NLP), at
least by far not as widely as in computer vision. In our opinion, there is a conceptual
reason for this. Compare with computer vision: there, the process of synthetic data
generation can be done separately from learning the models, and the essence of what
the models are learning is, in a way, “orthogonal” to the difference between real and
synthetic data. If I show you a cartoon ad featuring a new bottle of soda, you will
be able to find it in a supermarket even though you would never confuse the cartoon
with a real photo.

In natural language processing, on the other hand, text generation is the hard
problem itself. The problem of generating meaningful synthetic text with predefined
target variables such as topic or sentiment is the subject of many studies in NLP;
we are still a long way to go before it is solved entirely, and it is quite probable that
when text generation finally reaches near-human levels, discriminative models for
the target variables will easily follow from it, rendering synthetic data useless. In fact,
recent developments in natural language processing, especially the GPT family of

8.4 Synthetic Data in Natural Language Processing 225

language models and BERT family of models for learning language representations
based on self-attention, are already proving this: recent works show that thesemodels
can learn to perform complexNLP-related taskswith very little or no supervision [94,
698].

Nevertheless, there have been works that use data augmentation for NLP in a
fashion that borders on using synthetic data. There have been simple augmentation
approaches such as to simply drop out certain words [778]. A development of this
idea shown in [913] switches out certain words, replacing them with random words
from the vocabulary. The work [958] develops methods of data noising for language
models, adding noise to word counts in a way reminiscent of smoothing in language
models based on n-grams.

Amore developed approach is to do data augmentation with synonyms: to expand
a dataset, one can replace words with their synonyms, getting “synthetic sentences”
that can still preserve target variables such as the topic of the text, its sentiment,
and so on. Zhang et al. [1004] used this method directly to train a character-level
network for text classification, while Galinsky et al. [256] tested augmentation with
synonyms for morphology-rich languages such as Russian. In [230], augmentation
with synonyms was used for low-resource machine translation, with an auxiliary
LSTM-based language model used to recognize whether the synonym substitution
is correct. Wang et al. [912], who concentrated on studying tweets, proposed to
use embedding-based data augmentation, using neighboring words in the word vec-
tor space as synonyms. Kobayashi [461] extends augmentation with synonyms by
replacing words in sentences with other words in paradigmatic relations with the
original words, as predicted by a bidirectional language model at the word positions.

Techniques for generating synthetic text are constantly evolving. First, modern
language models based on multi-head self-attention from the Transformer family,
starting from the Transformer itself [891] and then further developed by BERT [192],
OpenAI GPT [697], Transformer-XL [179], OpenAI GPT-2 [698], GROVER [990],
and GPT-3 [94] generate increasingly coherent text. Actually, Zellers et al. [990]
showed that their GROVER model for conditional generation (e.g., generating the
text of a news article given its title, domain, and author), based onGPT-2, outperforms
human-generated text in the “fake news”/“propaganda” category in terms of style
and content (evaluated by humans), and GPT-3 is even better.

Moreover, recently developed models allow to generate text with GANs. This is
a challenging problem because unlike, say, images, text is discrete and hence the
generator output is not differentiable. There are several approaches to solving this
problem:

• trainingwith theREINFORCEalgorithm and other techniques from reinforcement
learning that are able to handle discrete outputs; this path has been taken in the
pioneering model named SeqGAN [982], LeakGAN for generating long text frag-
ments [305], and MaskGAN that learns to fill in missing text with an actor-critic
conditional GAN [233], among others;

• approximating discrete sampling with a continuous function; these approaches
include the Gumbel Softmax trick [486], TextGAN that approximates the argmax

226 8 Synthetic Data Outside Computer Vision

function [1007], TextKD-GAN that uses an autoencoder to smooth the one-hot
representation into a softmax output [313], and more;

• generating elements of the latent space for an autoencoder instead of directly
generating text; this field started with adversarially regularized autoencoders by
Zhao et al. [1018] and has been extended into text style transfer by disentangling
style and content in the latent space [405], disentangling syntax and semantics [40],
DialogWAE for dialog modeling [301], Bilingual-GAN able to generate parallel
sentences in two languages [704], and other works.

This abundance of generative models for text has not, however, led to any significant
use of synthetic data for training NLP models; this has been done only in very
restricted domains such as electronic medical records [302] (we discuss this field in
detail in Section 11.5). We have suggested the reasons for this in the beginning of
this section, and so far the development of natural language processing supports our
view.

8.5 Conclusion

Overall, in this chapter we have seen a bird’s eye overview of using synthetic data
in several different domains that do not usually spring to mind in discussions of
synthetic data: tabular data such as system logs, data for neural programming, and
synthetic data for natural language processing and for bioinformatics other than
medical imaging. Sometimes this kind of synthetic data generation is still restricted
(as inNLP), and sometimes it has different purposes (as in, e.g., de novo drug design),
but all of these examples show how synthetic data is starting to gain traction even in
less-than-obvious applications.

In the next chapter, we will consider several directions intended to improve syn-
thetic data generation itself rather than find new applications for the result. We will
see methods that aim to improve the CGI-based process of making synthetic data or
find completely different ways to produce synthetic data: compose it from real data
points or produce directly by generative models.

Chapter 9
Directions in Synthetic Data
Development

In this chapter, we outline the main directions that we believe to represent promising
ways to further improve synthetic data, making it more useful for a wide variety
of applications in computer vision and other fields. In particular, we discuss the
idea of domain randomization (Section 9.1) intended to improve the applications of
synthetic datasets, methods to improve CGI-based synthetic data generation itself
(Section 9.2), ways to create synthetic data from real images by cutting and pasting
(Section 9.3), and finally possibilities to produce synthetic data by generative models
(Section 9.4). The latter means generating useful synthetic data from scratch rather
than domain adaptation and refinement, which we consider in a separate Chapter 10.

9.1 Domain Randomization

Domain randomization is one of the most promising approaches to make straightfor-
ward transfer learning from synthetic-to-real data actually work. The basic idea of
domain randomization had been known since the 1990s [394], but was probably first
explicitly presented and named in [861]. Consider a model that is supposed to train
on a synthetic dataset Dsyn ∼ psyn, where psyn denotes the distribution of synthetic
data, and later be applied to a real dataset Dreal ∼ preal, where preal is the distribution
of real data. The idea is simple: let us try to make the synthetic data distribution psyn
sufficiently wide and varied so that the model trained on psyn will be robust enough
to work well on preal.

Ideally, we would like to cover preal with psyn, but in reality this is never achieved
directly. Instead, synthetic data in computer vision can be randomized and made
more diverse in a number of different ways at the level of either constructing a 3D
scene or rendering 2D images from it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_9

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_9

228 9 Directions in Synthetic Data Development

Fig. 9.1 Sample images generated by the domain randomization approach by Tremblay et al. [867]
for an outdoor driving dataset.

• at the scene construction level, a synthetic data generator (SDG) can randomize the
number of objects, its relative and absolute positions, number and shape of distrac-
tor objects, contents of the scene background, textures of all objects participating
in the scene, and so on;

• at the rendering level, SDG can randomize lighting conditions, in particular, the
position, orientation, and intensity of light sources, change the rendering quality
bymodifying image resolution, rendering type such as ray tracing or other options,
add random noise to the resulting images, and so on.

Tobin et al. [861] made the first steps to show that domain randomization works
well; they used simple geometric shapes (polyhedra) as both target and distractor
objects, random textures such as gradient fills or checkered patterns. The authors
found that synthetic pretraining is indeed very helpful when only a small real training
set is available, but helpful only if sufficiently randomized, in particular, when using
a large number of random textures.

This approach was subsequently applied to a more ambitious domain by NVIDIA
researchers Tremblay et al. [867], who trained object detection models on synthetic
data with the following procedure:

• create randomized 3D scenes, adding objects of interest on top of random surfaces
in the scenes;

• add so-called “flying distractors”, diverse geometric shapes that are supposed to
serve as negative examples for object detection;

• add random textures to every object, randomize the camera settings, lighting, and
other parameters.

The resulting images are completely unrealistic (see Fig. 9.1 for a few samples that
are supposed to represent outdoor scenes to train the detection of cars), yet diverse
enough that the networks have to concentrate on the shape of the objects in question.
Tremblay et al. report improved car detection results for R-FCN [178] and SSD [539]
architectures (but failing to improve Faster R-CNN [719]) on their dataset compared
to Virtual KITTI (see Section 7.2), as well as improved results on hybrid datasets
(adding a domain-randomized training set to COCO [525]), a detailed ablation study,
and extensive experiments showing the effect of various hyperparameters.

Since then, domain randomization has been used and further developed in many
works. Borrego et al. [85] aim to improve object detection for common objects,
showing that domain randomization in the synthetic part of the dataset significantly

9.1 Domain Randomization 229

improves the results. Tobin et al. [860] consider robotic grasping, a problemwhere the
lack of real data is especially dire (see also Sections 7.4 and 10.6). They use domain
randomization to generate a wide variety of unrealistic procedurally generated object
meshes and textured objects for grasping, so that a model trained on them would
generalize to real objects as well. They show that a grasping model trained entirely
on non-realistic procedurally generated objects can be successfully transferred to
realistic objects.

Up until recently, domain randomization had operated under the assumption that
realism is not necessary in synthetic data. Prakash et al. [684] take the next logical
step, continuing this effort to structured domain randomization. They still randomize
all of the settings mentioned above, but only within realistic ranges, taking into
account the structure and context of a specific scene.

Finally, another important direction is learning how to randomize. Van Vuong et
al. [897] provide one of the first works in this direction, concentrating on picking the
best possible domain randomization parameters for sim-to-real transfer of reinforce-
ment learning policies. They show that the parameters that control sampling over
Markov decision processes are important for the quality of transferring the learned
policy to a real environment and that these parameters can be optimized. We mark
this as a first attempt and expect more works devoted to structuring and honing the
parameters of domain randomization.

9.2 Improving CGI-Based Generation

The basic workflow of synthetic data in computer vision is relatively straightforward:
prepare the 3D models, place them in a controlled scene, set up the environment
(camera type, lighting etc.), and render synthetic images to be used for training.
However, some works on synthetic data present additional ways to enhance the data
not by domain adaptation/refinement to real images (wewill discuss these approaches
in Section 10), but directly on the stage of CGI generation.

There are two different directions for this kind of added realism inCGI generation.
The first direction is to make more realistic objects. For example, Wang et al. [904]
recognize retail items in a smart vending machine; to simulate natural deforma-
tions in the objects, they use a surface-based mesh deformation algorithm proposed
in [906], introducing and minimizing a global energy function for the object’s mesh
that accounts for random deformations and rigidity properties of the material (Wang
et al. also use GAN-based refinement, see Section 10.3). Another approach, initiated
by Rozantsev et al. [738], is to estimate the rendering parameters required to syn-
thetize similar images from data; this approach ties into the synthetic data generation
feedback loop that we discuss in Section 12.2.

The second direction is to make more realistic “sensors”, introducing synthetic
data postprocessing that mimics the noise characteristics of real cameras/sensors.
For example, we discussed DepthSynth by Planche et al. [677] (see Section 6.5), a
system that makes simulated depth data more realistic, more similar to real depth

230 9 Directions in Synthetic Data Development

sensors, while the OVVV system by Taylor et al. [853] (Section 6.6), and the ICL-
NUIM dataset by Handa et al. [321] (Section 7.2) take special care to simulate the
noise of real cameras. There is even a separate area of research completely devoted
to better modeling of the noise and distortions in real-world cameras [72]

Apart from added realism on the level of images, there is also the question of high-
level coherence and realism of the scenes. While there is no problem with coherence
when the scenes are done by hand, the scale of modern datasets requires to automate
scene composition as well. We note a recent joint effort in this direction by NVIDIA,
University of Toronto, and MIT: Kar et al. [433] presentMeta-Sim, a general frame-
work that learns to generate synthetic urban environments (see also Section 7.2).
Meta-Sim represents the composition of a 3D scene with a scene graph and a proba-
bilistic scene grammar, a common representation in computer graphics [1026]. The
goal is to learn how to transform samples coming from the probabilistic grammar
so that the distribution of synthetic scenes becomes similar to the distribution of
scenes in a real dataset; this is known as bridging the distribution gap. What’s more,
Meta-Sim can also learn these transformations with the objective of improving the
performance of networks trained on the resulting synthetic data for a specific task
such as object detection (see also Section 12.2).

There are also a number of domain-specific developments that improve synthetic
data generation for specificfields. For example,Cheung et al. [145] presentLCrowdV,
a generation framework for crowd videos that combines a procedural simulation
framework that concentrates of movements and human behaviour and a rendering
framework for image/video generation, while Anderson et al. [20] develop a method
for stochastic sampling-based simulation of pedestrian trajectories (see Section 6.6).

In general, while computer graphics is increasingly using machine learning to
speed up rendering (by, e.g., learning approximations to complex computationally
intensive transformations [424, 651]) and improve the resulting 3D graphics, works
on synthetic data seldom make use of these advances; a need to improve CGI-based
synthetic data is usually considered in the direction of making it more realistic with
refinement models (see Section 10.1). However, we do expect further interesting
developments in specific domains, especially in situations where the characteristics
of specific sensors are important (such as, e.g., LIDARs in autonomous vehicles).

9.3 Compositing Real Data to Produce Synthetic Datasets

Another notable line of work that, in our opinion, lies at the boundary between
synthetic data and data augmentation is to use combinations and fusions of different
real images to produce a larger and more diverse set of images for training. This
does not require the use of CGI for rendering the synthetic images, but does require
a dataset of real images.

Early works in this direction were limited by the quality of segmentation needed
to cut out real objects. For some problems, however, it was easy enough to work.
For example, Eggert et al. [221] concentrate on company logo detection. To generate

9.3 Compositing Real Data to Produce Synthetic Datasets 231

synthetic images, they use a small number of real base images where the logos are
clearly visible and supplied with segmentation masks, apply random warping, color
transformations, and blurring, and then paste the modified (segmented) logo onto a
new background image. Training on this extended dataset yielded improvements in
logo detection results. In Section 6.6, we have discussed the “Frankenstein” pipeline
for compositing human faces [360].

The field started in earnest with the Cut, Paste, and Learn approach by Dwibedi
et al. [213], which is based on the assumption that only patch-level realism is needed
to train, e.g., an object detector. They take a collection of object instance images,
cut them out with a segmentation model (assuming that the instance images are
simple enough that segmentation will work almost perfectly), and paste them onto
randomized background scenes, with no regard to preserving scale or scene composi-
tion. Dwibedi et al. compare different classical computer vision blending approaches
(e.g., Gaussian and Poisson blending [669]) to alleviate the influence of boundary
artifacts after the paste; they report improved instance detection results. The work on
cut-and-paste was later extended with GAN-based models (used for more realistic
pasting and inpainting) and continued in the direction of unsupervised segmentation
by Remez et al. [716] and Ostyakov et al. [648].

Subsequent works extend this approach for generating more realistic synthetic
datasets. Dvornik et al. [212] argue that an important problem for this type of data
augmentation is to preserve visual context, i.e., make the environment around the
objects more or less realistic. They describe a preliminary experiment where they
placed segmented objects at completely random positions in new scenes and not only
did not see significant improvements for object detection on the VOC’12 dataset, but
actually saw the performance deteriorate, regardless of the distractors or strategies
used for blending and boundary artifact removal. Therefore, they added a separate
model (also a CNN) that predicts what kind of objects can be placed in a given
bounding box of an image from the rest of the image with this bounding box masked
out; then the trained model is used to evaluate potential bounding boxes for data
augmentation, choose the ones with the best object category score, and then paste a
segmented object of this category in the bounding box. The authors report improved
object detection results on VOC’12.

Wang et al. [903] develop this into an even simpler idea of instance switching: let us
switch only instances of the same class between different images in the training set; in
this way, the context is automatically right, and shape and scale can also be taken into
account.Wang et al. also propose to use instance switching to adjust the distribution of
instances across classes in the training set and account for class importance by adding
more switching for classes with lower scores. The resulting PSIS (Progressive and
Selective Instance Switching) system provides improved results on the MS COCO
dataset for various object detectors including Faster-RCNN [719], FPN [523], Mask
R-CNN [327], and SNIPER [803].

For a detailed consideration, let us consider a recent work by Jin and Rinard [402]
who take this basic cut-and-paste approach to the next level. In essence, they still
use the same basic pipeline:

232 9 Directions in Synthetic Data Development

• take an object space O consisting of synthetic objects placed in random poses and
subjected to a number of different augmentations;

• take a context space C consisting of background images;
• superimpose objects from O against backgrounds from C at random;
• train a neural network on the resulting composite images.

However, Jin andRinard consider this approach in detail and introduce several impor-
tant tricks that allow this simple approach to provide some of the very best results
available in domain adaptation and few-shot learning.

First, the sampling. One common pitfall of computer vision is that when you
have relatively few examples of a class, they cannot come in a wide variety of
backgrounds. Hence, in a process akin to overfitting the networksmight start learning
the characteristic features of the backgrounds rather than the objects in this class.

What is the easiest way out of this? How can we tell the classifier that it’s the
object that’s important and not the background? With synthetic images, it’s easy: let
us place several different objects on the same background! Then, since the labels
are different, the classifier will be forced to learn that backgrounds are not important
and it is the objects that differentiate between classes. Therefore, Jin and Rinard
take care to introduce balanced sampling of objects and backgrounds. The basic
procedure samples a random biregular graph so that every object is placed on an
equal number of backgrounds and vice versa, every background is used with the
same number of objects.

The other idea used by Jin andRinard stems from the obvious fact that the classifier
must learn to distinguish between different objects. Therefore, it would be beneficial
for training to concentrate on the hard cases where the classifier might confuse two
objects. In [402], this idea comes in two flavors. First, specifically for images the
authors suggest to superimpose one object on top of another, so that the previous
object provides a maximally confusing context for the next one. Second, they use
robustness training, a method basically equivalent to self-adversarial training that
we discussed in Section 3.4 but applied to synthetic images here. The idea is that if
we are training on synthetic image that might look a little unrealistic and might not
be hard enough to confuse even an imperfect classifier, we can try to make it harder
for the classifier by turning it into an adversarial example.

With all these ideas combined, Jin and Rinard obtain a relatively simple pipeline
that is able to achieve state-of-the-art results by training with only a single synthetic
image of each object class. Note that there is no complex domain adaptation here:
all ideas can be thought of as smart augmentations similar to the ones we considered
in Section 3.4.

With the development of conditional generative models, this field has blossomed
into more complex conditional generation, usually called image fusion, that goes
beyond cut-and-paste; we discuss these extensions in Section 10.4.

9.4 Synthetic Data Produced by Generative Models 233

9.4 Synthetic Data Produced by Generative Models

Generative models, especially generative adversarial networks (GAN) [290] that we
will discuss in detail in Chapter 4, are increasingly being used for domain adaptation,
either in the form of refining synthetic images to make them more realistic or in
the form of “smart augmentation”, making nontrivial transformations on real data.
We discuss these techniques in Chapter 10. Producing synthetic data directly from
random noise for classical computer vision applications generally does not sound
promising: GANs can only try to approximate what is already in the data, so why
can’t the model itself do it? However, in a number of applications synthetic data
produced by GANs directly from random noise, usually with an abstract condition
such as a segmentation mask, can help; in this section, we consider several examples
of these approaches.

Counting (objects on an image) is a computer vision problem that, formally speak-
ing, reduces to object detection or segmentation but in practice is significantly harder:
to count correctly the model needs to detect all objects on the image, missing not
a single one. Large datasets are helpful for counting, and synthetic data generated
with a GAN conditioned on the number of objects or a segmentation mask with
known number of objects, either produced at random or taken from a labeled real
dataset, proves to be helpful. In particular, there is a line of work that deals with leaf
counting on images of plants: ARIGAN by Giuffrida et al. [278] generates images
of arabidopsis plants conditioned on the number of leaves, Zhu et al. generate the
same conditioned on segmentation masks [1028], and Kuznichov et al. [490] gener-
ate synthetically augmented data that preserves the geometric structure of the leaves;
all works report improved counting.

Santana and Hotz [758] present a generative model that can learn to generate
realistic looking images and even videos of the road for potential training of self-
driving cars. Their model is a VAE+GAN autoencoder based on the architecture
from [497] that is combined with a recurrent transition model that learns realistic
transitions in the embedded space. The resulting model produces synthetic videos
that preserve road texture, lane markings, and car edges, keeping the road structure
for at least 100 frames of the video. This interesting approach, however, has not yet
led to any improvements in the training of actual driving agents.

It is hard to find impressive applications where synthetic data is generated purely
from scratch by generative models; as we have discussed, this may be a principled

)b()a(

Fig. 9.2 Sample handwritten text generated by Alonso et al. [14]: (a) French; (b) Arabic.

234 9 Directions in Synthetic Data Development

limitation. Still, even a small amount of additional supervision may do. For exam-
ple, Alonso et al. [14] consider adversarial generation of handwritten text (see also
Section 6.7). They condition the generator on the text itself (sequence of characters),
generate handwritten instances for various vocabulary words, and augment the real
RIMES dataset [299] with the resulting synthetic dataset (Fig. 9.2). Alonso et al.
report improved character recognition performance in terms of both edit distance
and word error rate. This example shows that synthetic data does not need to involve
complicated 3D modeling to work and improve results; in this case, all information
Alonso et al. provided for the generative model was a vocabulary of words.

A related but different field considers unsupervised approaches to segmentation
and other computer vision problems based on adversarial architectures, including
learning to segment via cut-and-paste [716], unsupervised segmentation by moving
objects between pairs of images with inpainting [648], segmentation learned from
unannotated medical images [1011], and more [70]. While this is not synthetic data
per se, in general we expect unsupervised approaches to computer vision to be an
important trend in the use of synthetic data.

At this point, we have seen many examples and applications of synthetic data.
Most synthetic data generation that we have encountered has involved manual com-
ponents: for instance, in computer vision, the 3D scene is usually set up by hand,
with manually crafted 3D objects. However, we have already seen a few cases where
synthetic data can be produced automatically with generative models. What’s even
more important in the context of synthetic data applications, generative models can
help adapt synthetic data to make it more realistic, or adapt models for downstream
tasks toworkwell on real data after training on synthetic.We have already introduced
generative models and specifically GAN-based architectures in Chapter 4, and in the
next chapter, it is time to put them to work for synthetic-to-real domain adaptation.

Chapter 10
Synthetic-to-Real Domain Adaptation
and Refinement

Domain adaptation is a set of techniques aimed to make a model trained on one
domain of data to work well on a different target domain. In this chapter, we give
a survey of domain adaptation approaches that have been used for synthetic-to-real
adaptation, that is, methods formakingmodels trained on synthetic data workwell on
real data, which is almost always the end goal. We distinguish two main approaches.
In synthetic-to-real refinement input synthetic data is modified, usually to be made
more realistic, and we can actually see the modified data. In model-based domain
adaptation, it is the training process or the model structure that changes to ensure
domain adaptation, while the data remains as synthetic as it has been.Wewill discuss
neural architectures for both approaches, includingmanymodels based on generative
adversarial networks.

10.1 Synthetic-to-Real Domain Adaptation and Refinement

So far, we have discussed direct applications where synthetic data has been used
to augment real datasets of insufficient size or to create virtual environments for
training. In this chapter, we proceed to methods that can make the use of synthetic
data muchmore efficient.Domain adaptation is a set of techniques designed to make
a model trained on one domain of data, the source domain, work well on a different,
target domain. This is a natural fit for synthetic data: in almost all applications, we
would like to train the model in the source domain of synthetic data but then apply
the results in the target domain of real data.

In this chapter, we give a survey of domain adaptation approaches that have been
used for such synthetic-to-real adaptation. We broadly divide the methods outlined
in this chapter into two groups. Approaches from the first group operate on the data
level, which makes it possible to extract synthetic data “refined” in order to work
better on real data, while approaches from the second group operate directly on the
model, its feature space, or training procedure, leaving the data itself unchanged. We

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_10

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_10

236 10 Synthetic-to-Real Domain Adaptation and Refinement

concentrate mostly on recent work related to deep neural networks and refer to, e.g.,
the survey [660] for an overview of earlier work.

In Section 10.1, we discuss synthetic-to-real refinement, where a model learns to
make synthetic “fake” data more realistic with an adversarial framework; we begin
with a case study on gaze estimation (Section 10.2), which was one of the first
applications for this field, and then proceed to other applications of such refiners
(Section 10.3) and GAN-based models that work in the opposite direction, making
real data more “synthetic-like” (Section 10.4). In Section 10.5, we discuss domain
adaptation at the feature and model level, i.e., methods that perform synthetic-to-real
domain adaptation but do not necessarily yield more realistic synthetic data as a
by-product. Section 10.6 is devoted to domain adaptation in control and robotics,
and in Section 10.7 we present a case study of adversarial architectures for medical
imaging, one of the fieldswhere synthetic data producedwithGANs can significantly
improve results.

We concentrate mostly on recent work related to deep neural networks and refer
to, e.g., the survey [660] for an overview of earlier work.

The first group of approaches for synthetic-to-real domain adaptation work with
the data itself. The models below can take a synthetic image and “refine” it, making it
better for subsequent model training. Note that while in most works we discuss here
the objective is basically to make synthetic data more realistic (and it is supported
by discriminators that aim to distinguish refined synthetic data from real samples),
this does not necessarily have to be the case; some early works on synthetic data
concluded that, e.g., synthetic imagery may work better if it is less realistic, resulting
in better generalization of the models; we have discussed this, e.g., in Section 9.1.

We begin with a case study on a specific problem that kickstarted synthetic-to-real
refinement and then proceed to other approaches, both refining already existing syn-
thetic data and generating new synthetic data from real by generative manipulation.

10.2 Case Study: GAN-Based Refinement for Gaze
Estimation

One of the first successful examples of straightforward synthetic-to-real refinement
was given byApple researchers Shrivastava et al. in [793], sowe begin by considering
this case study in more detail and show how the research progressed afterwards.
The underlying problem here is gaze estimation: recognizing the direction where
a human eye is looking. Gaze estimation methods are usually divided into model-
based, which model the geometric structure of the eye and adjacent regions, and
appearance-based, which use the eye image directly as input; naturally, synthetic
data is made and refined for the latter class of approaches.

Before [793], this problem had already been tackled with synthetic data. Wood
et al. [933, 934] presented a large dataset of realistic renderings of human eyes and
showed improvements on real test sets over previous work done with the MPIIgaze

10.2 Case Study: GAN-Based Refinement for Gaze Estimation 237

)b()a(

Fig. 10.1 Synthetic images used to train gaze estimation models: (a) sample images from Uni-
tyEyes [934]; (b) sample images from UnityEyes (top) refined by SimGAN (bottom) [793].

dataset of real labeled images [1003]. Note that the usual increase in scale here is
manifested as an increase in variability:MPIIgaze contains about 214K images, and
the synthetic training set was only about 1M images, but all images in MPIIgaze
come from the same 15 participants of the experiment, while the UnityEyes system
developed in [934] can render every image in a different randomized environment,
whichmakes themodel significantlymore robust. Sample images from theUnityEyes
dataset are shown in Fig. 10.1a.

Shrivastava et al. further improve upon this result by presenting a GAN-based
system trained to improve synthesized images of eyes, making them more realis-
tic. They call this idea Simulated+Unsupervised learning, learning a transformation
implemented with aRefiner networkwith the SimGAN adversarial architecture. Sim-
GAN consists of a generator (refiner) GRef

θ with parameters θ and a discriminator
DRef

φ with parameters φ; see Fig. 10.2 for an illustration. The discriminator learns to
distinguish between real and refined images with standard binary classification loss
function

LRef
D (φ) = −ES

[
log DRef

φ (x̂S)
]

− ET

[
log

(
1 − DRef

φ (xT)
)]

,

where x̂S = GRef
θ (xS) is the refined version of xS produced by GRef

θ . The generator,
in turn, is trained with a combination of the realism loss LRef

real that makes GRef
θ learn

to fool DRef
φ and regularization loss LRef

reg that captures the similarity between the
refined image and the original one in order to preserve the target variable (gaze
direction in [793]):

LRef
G (θ) = ES

[
LRef

real (θ; xS) + λLRef
reg (θ; xS)

]
,

where

LRef
real (θ; xS) = − log

(
1 − DRef

φ (GRef
θ (xS))

)
,

LRef
reg (θ; xS) =

∥∥∥ψ(GRef
θ (xS)) − ψ(xS)

∥∥∥
1
,

238 10 Synthetic-to-Real Domain Adaptation and Refinement

Fig. 10.2 The architecture of SimGAN, a GAN-based refiner for synthetic data [793].

where ψ(x) is a mapping to a feature space (that can contain the image itself, image
derivatives, statistics of color channels, or features produced by a fixed extractor
such as a pretrained CNN), and ‖ · ‖1 denotes the L1 distance. On Fig. 10.2, black
arrows denote the data flow and green arrows show the gradient flow (on subsequent
pictures, we omit the gradient flow to avoid clutter);LRef

real (θ) andLRef
D (φ) are shown

in the same block since it is the same loss function differentiated with respect to
different weights for G and D, respectively.

In SimGAN, the generator is a fully convolutional neural network that consists
of several ResNet blocks [328] and does not contain any striding or pooling, which
makes it possible to operate on pixel level while preserving the global structure. The
training proceeds by alternating between minimizing LRef

G (θ) and LRef
D (φ), with

an additional trick of drawing training samples for the discriminator from a stored
history of refined images in order to keep it effective against all versions of the
generator. Another important feature is the locality of adversarial loss: DRef

φ outputs

a probability map on local patches of the original image, and LRef
D (φ) is summed

over the patches. Sample results are shown in Fig. 10.1b; it is clear that SimGAN
results (shown on the bottom in Fig. 10.1b) lookmore realistic than original synthetic
images (on top in Fig. 10.1b).

SimGAN’s ideas were later picked up and extended in many works. A direct
successor of SimGAN, GazeGAN developed by Sela et al. [777], applied to syn-
thetic data refinement the idea of CycleGAN for unpaired image-to-image transla-
tion [1025] (recall Section 4.7). The structure of GazeGAN contains four networks:
GGz is the generator that learns to map images from the synthetic domain S to the
real domain R, FGz learns the opposite mapping, fromR to S, and two discriminators
DGz

S and DGz
R learn to distinguish between real and fake images in the synthetic and

real domains, respectively.

10.2 Case Study: GAN-Based Refinement for Gaze Estimation 239

Fig. 10.3 The architecture of GazeGAN [777]. Blocks with identical labels have shared weights.

An overview of the GazeGAN architecture is shown in Fig. 10.3. It uses the
following loss functions:

• the LSGAN [580] loss for the generator with label smoothing to 0.9 [668] to
stabilize training:

LGz
LSGAN(G, D, S, R) = ExS∼psyn

[
(D(G(xS)) − 0.9)2

] + ExT ∼preal

[
D(xT)2

] ;

this loss is applied to both directions, as LGz
LSGAN(GGz, DGz

R ,XS,XT) and also as
LGz

LSGAN(FGz, DGz
S ,XT ,XS);

• the cycle consistency loss [1025] designed to make sure both F ◦ G and G ◦ F
are close to identity:

LGz
Cyc(G

Gz, FGz) =ExS∼psyn

[‖FGz(GGz(xS)) − xS‖1
] +

ExT ∼preal

[‖GGz(FGz(xT)) − xT ‖1
] ;

• finally, a special gaze cycle consistency loss to preserve the gaze direction (so that
the target variable can be transferred with no change); for this, the authors train a
separate gaze estimation network EGz designed to overfit and predict the gaze very
accurately on synthetic data; the loss makes sure EGz still works after applying
F ◦ G:

LGz
GazeCyc(G

Gz, FGz) = ExS∼psyn

[‖EGz(FGz(GGz(xS))) − EGz(xS)‖22
]
.

Sela et al. report improved gaze estimation results. Importantly for us, they operate
not on the 30 × 60 grayscale images as in [793], but on 128 × 128 color images, and
GazeGAN actually refines not only the eye itself but parts of the image (e.g., nose
and hair) that were not part of the 3D model of the eye.

Finally, a note of caution: GAN-based refinement is not the only way to go.
Kan et al. [427] compared three approaches to data augmentation for pupil center

240 10 Synthetic-to-Real Domain Adaptation and Refinement

point detection, an important subproblem in gaze estimation: affine transformations
of real images, synthetic images from UnityEyes, and GAN-based refinement. In
their experiments, real data augmentation with affine transformations was a clear
winner, with the GAN improving over UnityEyes but falling short of the augmented
real dataset. This is one example of a general common wisdom: in cases where a
real dataset is available, one should squeeze out all the information available in it
and apply as much augmentation as possible, regardless of whether the dataset is
augmented with synthetic data or not.

10.3 Refining Synthetic Data with GANs

Gaze estimation is a convenient problem for GAN-based refining because the images
of eyes used for gaze estimation have relatively low resolution, and scaling GANs
up to high-resolution images has proven to be a difficult task in many applications.
Nevertheless, in this section,we consider awider picture of otherGAN-based refiners
applied for synthetic-to-real domain adaptation.

We begin with an early work in refinement, parallel to [793], which was done by
Google researchers Bousmalis et al. [87]. They train a GAN-based architecture for
pixel-level domain adaptation (PixelDA), using a basic style transfer GAN (basically
pix2pix that we discussed in Section 4.7), i.e., by alternating optimization steps they
solve

min
θG ,θT

max
φ

λ1Lpix
dom(Dpix,Gpix) + λ2Lpix

task(G
pix, T pix) + λ3Lpix

cont(G
pix),

where

• Lpix
dom(Dpix,Gpix) is the domain loss,

Lpix
dom(Dpix,Gpix) =ExS∼psyn

[
log

(
1 − Dpix(Gpix(xS; θG);φ)

)] +
ExT ∼preal

[
log Dpix(xT ;φ)

] ;

• Lpix
task(G

pix, T pix) is the task-specific loss,which in [87]was the image classification
cross-entropy loss provided by a classifier T pix(x; θ T)which is also trained as part
of the model:

Lpix
task(G

pix, T pix) =
ExS ,yS∼psyn

[−y�
S log T pix(Gpix(xS; θG); θT) − y�

S log T pix(xS; θ T)
] ;

• Lpix
cont(G

pix) is the content similarity loss, intended tomakeGpix preserve theparts of
the image related to target variables; in [87],Lpix

cont was used to preserve foreground
objects (that would later need to be classified) with a mean squared error applied
to their masks:

10.3 Refining Synthetic Data with GANs 241

Lpix
cont(G

pix) = ExS∼psyn

[
1

k

∥∥(xS − Gpix(xS; θG)) � m(x)
∥∥2
2 −

− 1

k2
(
(xS − Gpix(xS; θG))�m(x)

)2]
,

wherem(xS) is a segmentation mask for the foreground object extracted from the
synthetic data renderer; note that this loss does not “insist” on preserving pixel
values in the object but rather encourages the model to change object pixels in a
consistent way, preserving their pairwise differences.

Bousmalis et al. applied this GAN to the Synthetic Cropped LineMod dataset, a
synthetic version of a small object classification dataset [931], doing both classi-
fication and pose estimation for the objects. They report improved results in both
metrics compared to training on purely synthetic data and to a number of previous
approaches to domain adaptation.

Many modern approaches to synthetic data refinement include the ideas of Cycle-
GAN [1025]. Themost direct application is theGeneSIS-RT framework by Stein and
Roy [818] that refines synthetic data directly with a CycleGAN trained on unpaired
datasets of synthetic and real images. They show that a training set produced by
image-to-image translation learned by CycleGAN improves the results of training
machine learning systems for real-world tasks such as obstacle avoidance and seman-
tic segmentation.

T2Net byZheng et al. [1020] uses synthetic-to-real refinement for depth estimation
from a single image. This work also uses the general ideas of CycleGAN with a
translation network that makes the images more realistic. The new idea here is that
T2Net asks the synthetic-to-real generator GT2

S not only to translate one specific
domain (synthetic data) to another (real data) but also to work across a number of
different input domains, making the input image “more realistic” in every case, as
shown in Figure 10.4.

Fig. 10.4 The architecture of T2Net [1020]. Blocks with identical labels have shared weights.

242 10 Synthetic-to-Real Domain Adaptation and Refinement

In essence, thismeans thatGT2
S aims to learn theminimal transformation necessary

to make an image realistic, in particular, it should not change real images much. In
total, T2Net has the generator loss function

LT2 = LT2
GAN(GT2

S , DT2
T) + λ1LT2

GAN f
(f T2task, D

T2
f) + λ2LT2

r (GT2
S)

+ λ3LT2
t (f T2task) + λ4LT2

s (f T2task),

where

• LT2
GAN(GT2

S , DT2
T) is the usual GAN loss for synthetic-to-real transfer with discrim-

inator DT2
T :

LT2
GAN(GT2

S , DT2
T) =ExS∼psyn

[
log(1 − DT2

T (GT2
S (xS)))

]+
ExT ∼preal

[
log DT2

T (xT)
] ;

• LT2
GAN f

(f T2task, D
T2
f) is the feature-level GAN loss for the features extracted from

translated and real images with discriminator DT2
f :

LT2
GAN f

(f T2task, D
T2
T) =ExS∼psyn

[
log DT2

f (f T2task(G
T2
S (xS)))

]+
ExT ∼preal

[
log(1 − DT2

f (f T2task(xT)))
] ;

• LT2
r (GT2

S) = ∥∥GT2
S (xT) − xT

∥∥
1 is the reconstruction loss for real images;

• LT2
r (f T2task) = ∥∥ f T2task(x̂S) − yS

∥∥
1 is the task loss for depth estimation on synthetic

images, namely the L1-norm of the difference between the predicted depth map
for a translated synthetic image x̂S and the original ground truth synthetic depth
map yS; this loss ensures that translation does not change the depth map;

• LT2
s (f T2task) = ∣∣∂x f T2task(xT)

∣∣−|∂xxT | + ∣∣∂y f T2task(xT)
∣∣−|∂yxT |

, where ∂x and ∂y are image
gradients, is the task loss for depth estimation on real images; since ground truth
depth maps are not available now, this regularizer is a locally smooth loss intended
to optimize object boundaries, a common tool in depth estimation models [284].

Zheng et al. show that T2Net can produce realistic images from synthetic ones,
conclude that end-to-end training is preferable over separated training (of the trans-
lation network and depth estimation network), and note that T2Net can achieve good
results for depth estimation with no access to real paired data, even outperforming
some (but not all) supervised approaches. A few sample outdoor scenes processed
by T2Net are shown in Fig. 10.5.

We note a few more interesting applications of refiner-based architectures. Wang
et al. [919] use a classical refiner modeled after [793] for human motion synthesis
and control. Their model first generates a motion sequence from a recurrent neu-
ral network and then refines it with a GAN; since the goal is to model and refine
sequences, both generator and discriminator in the refiner also have RNN-based
architectures. Dilipkumar [196] applied SimGAN to improve handwriting recogni-
tion. They generated synthetic handwriting images and applied SimGAN to refine

10.3 Refining Synthetic Data with GANs 243

(a) (b) (c)

Fig. 10.5 Synthetic-to-real refinement by T2Net [1020]: (a) input synthetic images; (b) refined
images; (c) real images (for comparison).

them, with significantly improved recognition of real handwriting after training on
the resulting hybrid dataset.

A recent example that applies GAN-based refinement in a classical computer
vision setting is provided by Wang et al. [904], in a work whose other aspects we
already discussed in Section 6.4. They consider the problem of recognizing objects
inside an automatic vending machine; this is a basic functionality needed for moni-
toring the state of supplies and is usually done based on object detection.

Wang et al. begin by scanning the objects, adding random deformations to the
resulting 3D models (see Section 9.2), setting up scenes and rendering with settings
matching the fisheye cameras used in smart vending machines. Then they refine ren-
dered images with virtual-to-real style transfer done by a CycleGAN-based archi-
tecture (Fig. 10.6). The novelty here is that Wang et al. separate foreground and
background losses, arguing that style transfer needed for foreground objects is very
different from (much stronger than) the style transfer for backgrounds. Thus, they
use the overall loss function

LOD =LOD
GAN(GOD, DOD

T ,XS,XT) + LOD
GAN(FOD, DOD

S ,XT ,XS)+
+λ1LOD

cyc(G
OD, FOD) + λ2LOD

bg + λ3LOD
fg , where

• LOD
GAN(G, D, X,Y) is the standard adversarial loss for generator G mapping from

domain X to domain Y and discriminator D distinguishing real images from fake
ones in the domain Y ;

• LOD
cyc(G, F) is the cycle consistency loss as used in CycleGAN [1025] and detailed

above;
• LOD

bg is the background loss, which is the cycle consistency loss computed only
for the background part of the images as defined by the mask mbg:

LOD
bg =ExT ∼preal

[∥∥(
GOD(FOD(xT)) − xT

) � mbg(xT)
∥∥
2

]

+ExS∼psyn

[∥∥(
FOD(GOD(xS)) − xS

) � mbg(xS)
∥∥
2

] ;

244 10 Synthetic-to-Real Domain Adaptation and Refinement

Fig. 10.6 The architecture of the refiner used in [904]. Blocks with identical labels have shared
weights.

• LOD
fg is the foreground loss, similar to LOD

bg but computed only for the hue channel
in theHSV color space (the authors argue that color and profile are themost critical
for recognition and thus need to be preserved the most), as denoted by ·H below

LOD
fg =ExT ∼preal

[∥∥(
GOD(FOD(xT))H − xH

T

) � mfg(xT)
∥∥
2

]

+ExS∼psyn

[∥∥(
FOD(GOD(xS))H − xH

S

) � mfg(xS)
∥∥
2

]
.

Segmentation into foreground and background is done automatically in synthetic
data and is made easy in [904] for real data since the camera position is fixed, and the
authors can collect a dataset of real background templates from the vendingmachines
they used in the experiments and then simply subtract the backgrounds to get the
foreground part.

As a result, Wang et al. report significantly improved results when using hybrid
datasets of real and synthetic data for all three tested object detection architectures:
PVANET [453], SSD [539], and YOLOv3 [711]. Even more importantly, they report
a comparison between basic and refined synthetic data with clear gains achieved by
refinement across all architectures.

Wang et al. [907]1 discuss synthetic-to-real domain adaptation in the context of
crowd counting, a domain where synthetic data has been successfully used for a long
time. They collect synthetic data with the Grand Theft Auto V engine, producing the
so-calledGTA5 Crowd Counting (GCC) dataset (see also Section 6.6). They also use
a CycleGAN-based refiner from the domain of synthetic imagesXS to the domain of
real imagesXT but remark that CycleGAN can easily lose local patterns and textures
which is exactly what is important for crowd counting. Therefore, they modify the

1That’s a different person, QiWang fromNorthwestern Polytechnical University in Shaanxi, China,
while the previous paper’s first author was Kai Wang from CloudMinds Technologies.

10.3 Refining Synthetic Data with GANs 245

CycleGAN loss function with the structural similarity index (SSIM) [1024] that
computes the similarity between images in terms of local patterns. Their final loss
function is

LSSIM =LSSIM
GAN (GSSIM, DSSIM

T ,XS,XT) + LSSIM
GAN (FSSIM, DSSIM

S ,XT ,XS)

+ λLSSIM
cyc (GSSIM, FSSIM,XS,XR) + μLSSIM

SE (GSSIM, FSSIM,XS,XR),

where GSSIM : XS → XT is the generator from synthetic to real domains, FSSIM :
XT → XS works in the opposite direction, DSSIM

T and DSSIM
S are the corresponding

discriminators, LSSIM
GAN is a standard GAN loss function, and LSSIM

cyc is the cycle con-
sistency loss as defined above, while LSSIM

SE is a special loss function designed to
improve SSIM:

LSSIM
SE (GSSIM, FSSIM,XS,XR) =ExS∼psyn

[
1 − SSIM(xS, FSSIM(GSSIM(xS))

]

+ ExT ∼pdata

[
1 − SSIM(xT ,GSSIM(FSSIM(xT))

]
.

Bak et al. [34] (see Section 6.6) use domain translation with synthetic people as
a method for person re-identification. The domains in this model are represented
by illumination conditions for the images; the model has access to M real source
domains and N synthetic domains, with N � M , and the objective is to perform re-
identification in an unknown target domain. To achieve this, Bak et al. first learned a
generic feature representation from all domains, but the resultingmodel, even trained
on a hybrid dataset, did not generalize well.

Therefore, Bak et al. proceeded to domain adaptation done as follows: first choose
the nearest synthetic domain with a separately trained domain identification network
fine-tuned for illumination classification, then use the CycleGAN architecture (as
shown above) to do domain translation from this synthetic domain to the target
domain, and then use it to fine-tune the re-identification network. Bak et al. report
improved results from the entire pipeline as compared to any individual parts in the
ablation study.

In robotics, domain adaptation of synthetic imagery is not yet common, but some
applications have appeared there as well. For example, Pecka et al. [661] train a
CycleGAN-based domain adaptation model to learn a transformation from data
observed in a non-differentiable physics simulator to the domain of data collected
from a real robotic platform, showing improved sim-to-real policy transfer results.

10.4 Making Synthetic Data from Real with GANs

So far, we have discussed the refinement of synthetic data with a purpose to make
it more realistic or more suitable for training computer vision models. Now let us
discuss an interesting variation of GAN-based refinement that goes in the inverse
direction: the models turn real data into synthetic. Why would we ever want to

246 10 Synthetic-to-Real Domain Adaptation and Refinement

do that if the final goal is always to make the model work on real data rather than
synthetic? In this section, wewill see two examples from different domains that show
both why and how.

The first application of this idea is to start from real data and produce other
realistic images that have been artificially changed in some respects. This approach
could either simply serve as a “smart augmentation” to extend the dataset (recall
Section 3.4, where we discussed some other “smart augmentations”) or, even more
interestingly, could “fill in the holes” in the data distribution, obtaining synthetic data
for situations that are lacking in the original dataset.

As the first example, let us consider the work of Zhao et al. [1016, 1017] who
concentrated on applying this idea to face recognition in thewild, with different poses
rather than by a frontal image. They continued thework of Tran et al. [866] (we do not
review it in detail) and Huang et al. [369], who presented a TP-GAN (two-pathway
GAN) architecture for frontal view synthesis: given a picture of a face, generate a
frontal view picture. TP-GAN’s generator GTP

θ has two pathways: a global network
GTP

θ g that rotates the entire face and four local patch networks GTP
θ li
, i = 1, . . . , 4,

that process local textures around four facial landmarks (eyes, nose, and mouth).
Both GTP

θ g and GTP
θ li

have encoder-decoder architectures with skip connections for

multi-scale feature fusion. The discriminator DTP
φ learns to distinguish real frontal

face images xfront ∼ Dfront from synthesized images GTP
θ (x), x ∼ pdata:

min
θ

max
φ

[
Exfront∼Dfront

[
log DTP

φ (xfront)
] + Ex∼pdata

[
log

(
1 − DTP

φ (GTP
θ (x))

)]]
.

The synthesis loss function in TP-GAN is a sum of four loss functions:

• pixel-wise L1-loss between the ground truth frontal image and rotated image:

LTP
pixel(x, x

gt) = 1

W × H

W∑
i=1

H∑
j=1

∣∣∣GTP
θ (x)i, j − xgti, j

∣∣∣ ,

where xgt is the ground truth frontal image corresponding to x, and W and H are
an image’s width and height; this loss is measured at several different places of
the network: output of GTP

θ g , outputs of GTP
θ li
, and the final output of GTP

θ ;
• symmetry loss

LTP
sym = 1

W/2 × H

W/2∑
i=1

H∑
j=1

∣∣GTP
θ (x)i, j − GTP

θ (x)W−(i−1), j

∣∣ ,

intended to preserve the symmetry of human faces;
• adversarial loss

LTP
adv = 1

N

N∑
n=1

− log DTP
φ (GTP

θ (xn));

10.4 Making Synthetic Data from Real with GANs 247

• identity preserving loss

LTP
ip =

∑
l

1

Wl × Hl

Wl∑
i=1

Hl∑
j=1

∣∣Fl(GTP
θ (x))i, j − Fl(xgt)i, j

∣∣ ,

where Fl denotes the output of the lth layer of a face recognition network applied
to x and xgt (Huang et al. used Light CNN [941], and only used its last two layers
in LTP

ip); this idea is based on perceptual losses [407], a popular idea in GANs
designed to preserve high-level features when doing low-level transformations; in
this case, it serves to preserve the person’s identity when rotating the face.

As usual, the final loss function is a linear combination of the four losses above and
a regularization term.

In [1017], Zhao et al. propose the dual-agent GAN (DA-GAN) model that also
works with faces but in the opposite scenario: while TP-GAN rotates every face into
the frontal view, DA-GAN aims to fill in the “holes” in the real data distribution,
rotating real faces so that the distribution of angles becomes more uniform. They
begin with a 3D morphable model (see also Section 6.6) from [1027], extracting
68 facial landmarks with the recurrent attentive-refinement (RAR) model [952] and
estimating the transformation matrix with 3D-MM [74]. However, the authors report
that simulation quality dramatically decreases for large yaw angles, necessitating
further improvement with the DA-GAN framework.

Again, DA-GAN’s generator GDA
θ maps a synthetized image to a refined one,

x̂S = GDA
θ (xS). It is trained on a linear combination of three loss functions

LDA
G = −LDA

adv + λ1LDA
ip + λ2LDA

pp ,

and the discriminator DDA
φ consists of two parallel branches (agents) that optimize

LDA
adv and LDA

ip , respectively. The loss functions are defined as follows:

• the adversarial loss LDA
adv follows the BEGAN architecture introduced in [66]: this

branch of DDA
φ is an autoencoder that minimizes the Wasserstein distance with a

boundary equilibrium regularization term:

LDA
adv =

∑
j

∣∣xT, j − DDA
φ (xT) j

∣∣ − kt
∑
i

∣∣x̂S,i − DDA
φ (x̂S)i

∣∣ ,

where, again, xT is a real image, x̂S is a refined image, and kt is a boundary
equilibrium regularization term continuously trained to maintain the equilibrium

E

[∑
i

∣∣x̂S,i − DDA
φ (x̂S)i

∣∣
]

= γE

⎡
⎣∑

j

∣∣xT, j − DDA
φ (xT) j

∣∣
⎤
⎦

248 10 Synthetic-to-Real Domain Adaptation and Refinement

for some diversity ratio γ (see [66, 1017] for more details); in general, LDA
adv is

designed to keep the refined face in the manifold of real faces;
• the identity preservation loss LDA

ip , similar to LTP
ip , aims to make the refinement

respect the identities, but does it in a different way; here the idea is to put both xT
and xS through the same (relatively simple) face recognition network and bring its
features together; DA-GAN uses for this purpose a classifier CDA

φ trained on the
bottleneck layer of DDA

φ :

LDA
ip = 1

N

∑
j

[−y j logC
DA
φ (xT, j) + (1 − y j) log(1 − CDA

φ (xT, j))
]

+ 1

N

∑
j

[−y j logC
DA
φ (x̂S, j) + (1 − y j) log(1 − CDA

φ (x̂S, j))
]
,

where y j is the ground truth label;
• the pixel-wise loss LDA

pp is the L1-loss intended to make sure that the pose (angle
of inclination for the head) remains the same after refinement:

LDA
pp = 1

W × H

W∑
i=1

H∑
j=1

∣∣xS,i, j − x̂S,i, j

∣∣ .

In total, during training DA-GAN alternatively optimizes GDA
θ and DDA

φ with loss
functions LDA

G and LDA
D = LDA

adv + λ1LDA
ip . Following [66], to measure convergence

DA-GAN tests the reconstruction quality together with proportion control theory,
evaluating

LDA
con =

∑
j

∣∣∣xT, j − DDA
φ (xT, j)

∣∣∣ +
∣∣∣∣∣∣
γ

∑
j

∣∣∣xT, j − DDA
φ (xT, j)

∣∣∣ −
∑
i

∣∣∣x̂S, j − DDA
φ (x̂S, j)

∣∣∣
∣∣∣∣∣∣
.

Apart from experiments done by the authors, DA-GAN was verified in a large-
scale NIST IJB-A competition [229] where a model based on DA-GANwon the face
verification and face identification tracks. This result heavily supports the general
premise of using synthetic data: augmenting the dataset and balancing out the training
data distribution with synthetic images proved highly beneficial in this case.

Inoue et al. [386] try to find a middle ground between synthetic and real data.
They use two variational autoencoders (VAE) to reduce both synthetic and real data
to a common pseudo-synthetic image space, and then train CNNs on images from
this common space. The training sequence is as follows:

• train VAE1 : XS → XS as an autoencoder;
• train VAE2 : XT → XS where the decoder is fixed and shares weights with the
decoder from VAE1; as a result, VAE2 has to learn to generate pseudo-synthetic
images from real images;

10.4 Making Synthetic Data from Real with GANs 249

• train a CNN for the task in question on synthetic data, using VAE1 to map it to the
common image space;

• during inference, use a composition of VAE2 and CNN.

Another idea for generating synthetic data from real is to compose parts of real
images to produce synthetic ones. We have discussed the cut-and-paste approaches
in Section 9.3; a natural continuation of these ideas would be to use more complex,
semantic conditioning with a GAN-based architecture. For example, Joo et al. [413]
provide a GAN-based architecture for generating a fusion image, where, say, one
input x provides the identity of a person, another input y provides the shape (pose)
of a person, and the result is x̂ which has the identity of x and the shape of y. Their
FusionGAN architecture extends CycleGAN-like ideas to losses that distinguish
between identity and shape of an image, introducing the concepts of identity loss
and shape loss. FusionGAN relies on a dataset that has several images with different
shapes but the same identity (e.g., the same person in different poses; a dataset of
videos can serve as a simple example); its overall loss function is

LFus = LFus
I + λLFus

S , where

• LFus
I is the identity loss

LFus
I (GFus, DFus) =Ex,x′∼preal(x)

[∥∥1 − DFus(x, x′)
∥∥
2

]

+Ex∼preal(x),y∼preal(y)
[∥∥DFus(x,GFus(x, y))

∥∥
2

]
,

i.e., the discriminator DFus learns to distinguish real pairs of images (x, x′) with
the same identity (but different shapes) and fake pairs of images (x,GFus(x, y))
where GFus is supposed to take the identity from x;

• LFus
S is the shape loss defined as

LFus
S1 (GFus) = Ex,x′∼preal(x)

[∥∥x′ − GFus(x, x′)
∥∥
1

]

when x and x′ have the same identity, and

LFus
S2a (G

Fus) = Ex∼preal(x),y∼preal(y)
[∥∥y − GFus(y,GFus(x, y))

∥∥
1

]
,

LFus
S2b (G

Fus) = Ex∼preal(x),y∼preal(y)
[∥∥GFus(x, y) − GFus(GFus(x, y), y))

∥∥
1

]
,

i.e., GFus(y,GFus(x, y)) should be the same as y, with identity from y and shape
also from y, and GFus(GFus(x, y), y)) should be the same as GFus(x, y), with
identity from x and shape from y.

Similar ideas have been extended to animating still images [795], motion trans-
fer [119], and image-to-image translation [566]. In general, these works belong to an
interesting field of generative semantic manipulation with GANs. Important works
in this direction include Mask-Contrasting GAN [517] that can modify an object to

250 10 Synthetic-to-Real Domain Adaptation and Refinement

a different suitable category inside its segmentation mask (e.g., replace a cat with
a dog), Attention-GAN [139] that performs the same task with an attention-based
architecture, IterGAN [255] that attempts iterative small-scale 3D manipulations
such as rotation from 2D images, and others.

However, while this field produces very interesting works, so far we have not
seen direct applications of such architectures to generating synthetic data. I believe
that ideas similar to TP-GAN can also be fruitful in other domains, especially in
situations where one- or few-shot learning is required so “smart augmentations”
such as rotation can bring significant improvements.

The second approach to using real-to-synthetic refinement dealswith a completely
different idea of using the same transfer direction.Whydoweneeddomain adaptation
at all? Because we want models that have been trained on synthetic data to transfer to
real inputs. The idea is to reverse this logic: let us transfer real data into the synthetic
domain, where the model is already working great!

In the context of robotics, this kind of real-to-sim approach was implemented
by Zhang et al. [999] in a framework called VR-Goggles for Robots. It is based on
the CycleGAN ideas as they were continued in CyCADA [352], a popular domain
adaptation model that adds semantic losses to CycleGAN. The VR-Goggles model
has two generators, GVRG

S : XT → XS with discriminator DVRG
S that distinguishes

fake synthetic images andGVRG
T : XS → XT with discriminator DVRG

T that is defined
in the domain of real images. The overall loss function is

LVRG =LVRG
GAN(GVRG

T , DVRG
T ;XS,XT) + LVRG

GAN(GVRG
S , DVRG

S ;XT ,XS)

+λ1

(
LVRG

cyc (GVRG
S ,GVRG

T ;XT) + LVRG
cyc (GVRG

T ,GVRG
S ;XS)

)

+λ2
(LVRG

sem (GVRG
S ;XT , f VRGS) + LVRG

sem (GVRG
S ;XS, f VRGS)

)

+λ3
(LVRG

shift (G
VRG
T ;XS) + LVRG

shift (G
VRG
S ;XT)

)
, where

• LVRG
GAN is the standard GAN loss:

LVRG
GAN(GVRG

T , DVRG
T ;XS,XT) =ExT ∼preal

[
log DVRG

T (xT)
]+

ExS∼psyn,z
[
log

(
1 − DVRG

T (GVRG
T (xS))

)]

and similarly for LVRG
GAN(GVRG

S , DVRG
S ;XT ,XS);

• LVRG
sem is the semantic loss as introduced in CyCADA [352]; the idea is that if we

have ground truth labels for the synthetic domain XS (in this case, we are doing
semantic segmentation), we can train a network f VRGS on XS and then use it to
generate pseudolabels for the domain XT where ground truth is not available; the
semantic loss now makes sure that the results (segmentation maps) remain the
same after image translation:

10.4 Making Synthetic Data from Real with GANs 251

LVRG
sem (GVRG

S ;XT , f VRGS) = ExT ∼preal

[
CE

(
f VRGS (xT), f VRGS (GVRG

S (xT))
)]

,

LVRG
sem (GVRG

T ;XS, f VRGS) = ExS∼psyn

[
CE

(
f VRGS (xS), f VRGS (GVRG

T (xS))
)]

,

where CE denotes cross-entropy;
• LVRG

shift is the shift loss that makes the image translation result invariant to shifts:

LVRG
shift (G

VRG
T ;XS) = ExS ,i, j

[∥∥∥∥GVRG
T (xS)[x→i

y→ j

] − GVRG
T

(
x
S,

[
x→i
y→ j

]
)∥∥∥∥

2

2

]
,

LVRG
shift (G

VRG
S ;XT) = ExT ,i, j

[∥∥∥∥GVRG
S (xT)[x→i

y→ j

] − GVRG
S

(
x
T,

[
x→i
y→ j

]
)∥∥∥∥

2

2

]
,

where x[
x→i
y→ j

] denotes the shifting operation by i pixels along the X-axis and j

pixels along the Y-axis, and i and j are chosen uniformly at random up to the total
downsampling factor of the network K (since the result will always be invariant
to shifts of multiples of K).

Zhang et al. test their solution on the CARLA navigation benchmark [203] and show
significant improvements.

James et al. [396] consider the same kind of approach for robotic grasping. Their
model,Randomized-to-Canonical Adaptation Networks (RCAN), learn tomap heav-
ily randomized simulation images (with random textures) to a canonical (much sim-
pler) rendered image and also map real images to canonical rendered images; inter-
estingly, they achieve good results with a much simpler GAN architecture where
additional losses simply bring together the segmentation masks and depth maps for
simulated images, and there are no cycle consistency losses.

An even simpler approach is taken by Yang et al. [969] who introduce domain
unification for autonomous driving. Their model, called DU-Drive, consists of a
generator that translates real images to simplified synthetic images and a discrimi-
nator that distinguishes them from actual synthetic images; the driving policy is then
trained in the simulator.

Whymight this inverse real-to-sim direction be a good fit for robotics specifically,
and why haven’t we seen this approach in other domains before? The reason is that in
the real-to-sim approach, we need to use domain adaptationmodels during inference,
as part of using the model. In most regular computer vision applications, this would
be a great hindrance. In computer vision, if some kind of preprocessing is only part of
the training process it is usually assumed to be free (we have discussed some rather
complicated examples in Section 3.4), and inference time is precious.

Robotics is a very different setting: robots and controllers are often trained in
simulation environments with reinforcement learning, which implies a lot of com-
putational resources needed for training. The simulation environment needs to be
responsive and cheap to support, and if every frame of the training needs to be trans-

252 10 Synthetic-to-Real Domain Adaptation and Refinement

lated via a GAN-basedmodel it may add up to a huge cost that wouldmake RL-based
training infeasible. Adding an extra model during inference, on the other hand, may
be admissible: yes, we reduce the number of processed frames per second, but if it
stays high enough for the robot to react in real time, that is fine.

With this, we conclude the part of this chapter that deals with refinement, i.e.,
domain adaptation techniques that operate on the data level, translating data points
from one domain to another. In the next section, we discuss model-based domain
adaptation, that is, approaches that change themodel itself and leave the data in place.

10.5 Domain Adaptation at the Feature/Model Level

In previous sections, we have considered models that perform domain adaptation
(DA) at the data level, i.e., one can extract a part of the model that takes as input a
data point from the source domain (in our case, a synthetic image) and map it to the
target domain (domain of real images). However, the final goal ofmodel design rarely
involves the generation of more realistic synthetic images; they are merely a stepping
stone to producing models that work better, e.g., in the absence of supervision in the
target domain. Therefore, to make better use of synthetic data it makes sense to also
consider feature-level or model-level domain adaptation, i.e., methods that work in
the space of features or model weights and never go back to change the actual data.

The simplest approach to domain adaptation would be to share the weights among
networks operating on different domains or learn an explicit mapping between
them [155, 283]. While we mostly discuss other approaches, we note that sim-
pler techniques based on weight sharing remain relevant for domain adaptation. In
particular, Rozantsev et al. [739] recently presented a domain adaptation approach
where two similar networks are trained on the source and target domain with special
regularizers that bring their weights together; the authors evaluate their approach on
synthetic-to-real domain adaptation for drone detection with promising results.

Another approach to model-level domain adaptation is related to mining rela-
tively strong priors from real data that can then inform a model trained on synthetic
data, helping fix problematic cases or incongruencies between the synthetic and
real datasets. For example, Zhang et al. [1005, 1006] present a curriculum learning
approach to domain adaptation for semantic segmentation of urban scenes. They
train a segmentation network on synthetic data (specifically on the GTA dataset; see
also Section 7.2) but with a special component in the loss function related to the
general label distribution in real images:

LCurr = 1

|XS|
∑
xS∈XS

L (
yS, ŷS

) + λ
1

|XT |
∑

xT ∈XT

∑
k

C (
pk(xT), p̂k(xT)

)
,

where L (
yS, ŷS

)
is the pixel-wise cross-entropy, a standard segmentation loss, and

C (
pk(xT), p̂k(xT)

)
is the cross-entropy between the distribution of labels p̂(xT) in

a real image xT that the network produces and p(xT) is the real label distribution
(superscript k denotes different kinds of label distributions).

10.5 Domain Adaptation at the Feature/Model Level 253

Fig. 10.7 High-level architecture of model-level domain adaptation from [259, 260]: the gradient
flow (green) from the domain classification loss is reversed (becomes red) at the features.

Note that p(xT) is not available in the real data, so this is where curriculum learn-
ing comes in: the authors first train a simpler model on synthetic data to estimate
p(xT) from image features and then use it to inform the segmentation model. Recent
developments of this interesting direction shift from merely enforcing the label dis-
tribution to matching features on multiple different levels [368]. In particular, recent
works [515, 984] have introduced the so-called pyramid consistency loss instead of
C (

p(xT), p̂(xT)
)
that tries to enforce consistency across domains on the activation

maps of later layers of the network.
One of the main directions in model-level domain adaptation was initiated by

Ganin and Lempitsky [259] who presented a generic framework for unsupervised
domain adaptation. Their approach, illustrated in Figure 10.7, consists of

• a feature extractor,
• a label predictor that performs the necessary task (e.g., classification) on extracted
features, and

• a domain classifier that takes the same features and attempts to classify which
domain the original input belonged to.

The idea is to train the label predictor to perform as well as possible and at the
same time make the domain classifier perform as badly as possible; this is achieved
with gradient reversal, i.e., multiplying the gradients by a negative constant as they
pass from the domain classifier to the feature extractor. In a subsequent work, Ganin
et al. [260] generalized this domain adaptation approach to arbitrary architectures
and experimented with DA in different domains, including image classification, per-
son re-identification, and sentiment analysis. We also note extensions and similar
approaches to domain adaptation developed in [545, 546, 881] and the domain con-
fusion metric that helps produce domain-invariant representations [882], but proceed
to highlight the works that perform specifically synthetic-to-real domain adaptation.

Many general model-level domain adaptation approaches have been validated
on or subsequently extended to synthetic-to-real domain adaptation. Xu et al. [964]
consider the pedestrian detection problem (this work is a continuation of [892], see
Section 6.5). They adapt detectors trained on virtual datasets with a boosting-based
procedure, assigning larger weights to samples that are similar to target domain

254 10 Synthetic-to-Real Domain Adaptation and Refinement

Fig. 10.8 Architecture of the domain separation network [88]. Blocks with identical labels have
shared weights.

ones. Sun and Saenko [826] propose a domain adaptation approach based on decor-
relating the features of a classifier, both in unsupervised and supervised settings.
Later, López et al. [548] extended the SA-SVVM domain adaptation used in [892] to
train deformable part-based models, using synthetic pedestrians from the SYNTHIA
dataset (see Section 7.2) as themain example. In a parallel paper, the authors of SYN-
THIA Ros et al. [732] used a simple domain adaptation technique called Balanced
Gradient Contribution [733], where training on synthetic data is regularized by the
gradient obtained on a (small) real dataset, to further improve their results on segmen-
tation aided by synthetic data. Ren et al. [720] perform cross-domain self-supervised
multitask learning with synthetic images: their model predicts several parameters of
an image (surface normal, depth, and instance contour) and at the same time tries to
minimize the difference between synthetic and real data in feature space.

Domain separation networks by Bousmalis et al. [88], illustrated in Fig. 10.8,
explicitly separate the shared and private components of both source and target
domains. Specifically, they introduce a shared encoder EDSN(x) and two private
encoders, EDSN

S for the source domain and EDSN
T for the target domain. The total

objective function for a domain separation network is

LDSN = LDSN
task + λ1LDSN

rec + λ2LDSN
diff + λ1LDSN

sim ,

where

• LDSN
task is the supervised task loss in the source domain, e.g., for the image classifi-

cation task it is

LDSN
task = −ExS∼psyn

[
y� log f DSN(EDSN(xS))

]
,

10.5 Domain Adaptation at the Feature/Model Level 255

where f DSN is the classifier operating on the output of the shared encoder;
• LDSN

rec is the reconstruction loss defined as the difference between original samples
xS and xT and the results of a shared decoder DDSN that tries to reconstruct the
images from a combination of shared and private representations:

LDSN
rec = − ExS∼psyn

[Lsim(xS, DDSN(EDSN(xS) + EDSN
S (xS)))

]

− ExT ∼preal

[Lsim(xT , DDSN(EDSN(xT) + EDSN
T (xT)))

]

for some similarity metric Lsim;
• LDSN

diff is the difference loss that encourages the hidden shared representations
of instances from the source and target domains EDSN(xS) and EDSN(xT) to be
orthogonal to their corresponding private representations EDSN

S (xS) and EDSN
T (xT);

in [88], the difference loss is defined as

LDSN
diff =

∥∥∥H�
S H pri

S

∥∥∥
2

F
+

∥∥∥H�
T H pri

T

∥∥∥
2

F
,

where HS is the matrix of EDSN(xS), H
pri
S is the matrix of EDSN

S (xS), and similarly
for HT and H pri

T ;
• LDSN

sim is the similarity loss that encourages the hidden shared representations from
the source and target domains EDSN(xS) and EDSN(xT) to be similar to each
other, i.e., indistinguishable by a domain classifier trained through the gradient
reversal layer as in [259]; in [88], this loss is composed of the cross-entropy for
the domain classifier and maximal mean discrepancy (MMD) [297] for the hidden
representations themselves.

Bousmalis et al. evaluate their model on several synthetic-to-real scenarios,
e.g., on synthetic traffic signs from [609] and synthetic objects from the LineMod
dataset [931].

Domain separation networks became one of the first major examples in domain
adaptation with disentanglement, where the hidden representations are domain-
invariant and some of the features can be changed to transition from one domain to
another. Further developments include asymmetric training for unsupervised domain
adaptation [750], DistanceGAN for one-sided domain mapping [60], co-regularized
alignment [482], cross-domain autoencoders [288], multisource domain adversarial
networks [1015], continuous cross-domain translation [531], face recognition adap-
tation from images to videos with the help of synthetic augmentations [811], and
more [998]; all of these advances may be relevant for synthetic-to-real domain adap-
tation but we will highlight some works that are already doing adaptation between
these two domains.

The popular and important domains for feature-based domain adaptation aremore
or less the same as in domain adaptation on the data level, but feature-based DAmay
be able to handle higher dimensional inputs and more complex scenes because the
adaptation itself is done in an intermediate lower dimensional space. As an illus-
trative example, let us consider feature-based DA for computer vision problems for

256 10 Synthetic-to-Real Domain Adaptation and Refinement

outdoor scenes (see also Section 7.2). In their FCNs in the Wild model, Hoffman
et al. [353] consider feature-based DA for semantic segmentation with fully con-
volutional networks (FCNs) where ground truth is available for the source domain
(synthetic data) but unavailable for the target domain (real data). Their unsuper-
vised domain adaptation framework contains a feature extractor f FCNW and the joint
objective function

LFCNW = LFCNW
seg + LFCNW

DA + LFCNW
MI ,

where

• LFCNW
seg is the standard supervised segmentation objective on the source domain,

where supervision is available;
• LFCNW

DA is the domain alignment objective that minimizes the observed source and
target distance in the representation space by training a discriminator (domain
classifier) to distinguish instances from source and target domains; an interesting
new idea here is to take as an instance for this objective not the entire image but
a cell from a coarse grid that corresponds to the scale of high-level features that
domain adaptation is supposed to bring together;

• LFCNW
MI is the multiple instance loss that encourages pixels to be assigned to class

c in such a way that the percentage of an image labeled with c remains within the
expected range derived from the source domain.

Another direction of increasing the input dimension is to move from images to
videos. Xu et al. [962] use adversarial domain adaptation to transfer object detec-
tion models—single-shot multi-box detector (SSD) [539] and multi-scale deep CNN
(MSCNN) [108]—from synthetic samples to real videos in the smoke detection prob-
lem.

Chen et al. [141] construct the Cross City Adaptation model that brings together
features from different domains, again with semantic segmentation of outdoor scenes
in mind. Their framework optimizes the joint objective function

LCCA = LCCA
task + LCCA

global + LCCA
class ,

where

• LCCA
task is the task loss, in this case cross-entropy between predicted and ground

truth segmentation masks in the source domain;
• LCCA

global is the global domain alignment loss, again defined as fooling the domain
discriminator similar to FCNs in the Wild;

• LCCA
class is the class-wise domain alignment loss, where grid cells are assigned soft

class labels (extracted from the truth in the source domain andpredicted in the target
domain), and the domain classifiers and discriminators are trained and applied
class-wise, separately.

As the title suggests,CrossCity Adaptation is intended to adapt outdoor segmentation
models trained on one city to other cities, but Chen et al. also apply it to synthetic-to-

10.5 Domain Adaptation at the Feature/Model Level 257

real domain adaptation from SYNTHIA to Cityscapes (see Section 7.2), achieving
noticeable gains in segmentation quality.

Hong et al. [355] provide one of the most direct and most promising applica-
tions of feature-level synthetic-to-real domain adaptation. In their Structural Adap-
tation Network, the conditional generator GSDA

θ (xS, z) takes as input the features
f SDAl (xS) from a low-level layer of the feature extractor (i.e., features with fine-
grained details) and random noise z and produces transformed feature maps that
should be similar to feature maps extracted from real images. To achieve that, GSDA

produces a noise map ĜSDA
θ (f SDAl (xS), z) and then adds it to high-level features:

GSDA
θ (xS, z) = f SDAh (xS) + ĜSDA

θ (f SDAl (xS), z).
The optimization problem is

min
θ ,θ ′ max

φ

(LSDA
GAN(GSDA

θ , DSDA
φ) + λLSDA

task (GSDA
θ , T SDA

θ ′)
)
,

where

• LSDA
GAN is the GAN loss in the feature space:

LSDA
GAN(GSDA

θ , DSDA
φ) =ExT ∼preal

[
log DSDA

φ (xT)
] +

ExS∼psyn,z
[
log

(
1 − DSDA

φ (GSDA
θ (xS, z))

)] ;

• LSDA
task is the task loss for the pixel-wise classifier T SDA

θ ′ which is trained end-to-
end, together with the rest of the architecture; the task loss is defined as pixel-wise
cross-entropy between the segmentation mask T SDA

θ ′ (GSDA
θ (xS, z)) produced by

T SDA
θ ′ on adapted features and the ground truth synthetic segmentation mask yS .

Hong et al. compare the Structural Adaptation Network with other state of the art
approaches, including FCNs in the Wild [353] andCross City Adaptation [141], with
source domain datasets SYNTHIA and GTA and target domain dataset Cityscapes;
they conclude that this adaptation significantly improves the results for semantic
segmentation of urban scenes.

To summarize, feature-level domain adaptation provides interesting opportunities
for synthetic-to-real adaptation, but these methods still mostly represent work in
progress. In our experience, feature- and model-level DA is usually a simpler and
more robust approach, easier to get to work, so we expect new exciting developments
in this direction and recommend to try this family of methods for synthetic-to-real
DA (unless actual refined images are required).

10.6 Domain Adaptation for Control and Robotics

In the field of control, joint domain adaptation is usually intended to transfer control
policies learned in a simulated environment to a real setting. As we have already
discussed in Sections 7.3 and 7.2, simulated environments are almost inevitable in

258 10 Synthetic-to-Real Domain Adaptation and Refinement

)b()a(

Fig. 10.9 Real and simulated robots used by Rusu et al. [744]: (a) real camera frames; (b) synthetic
images rendered by MuJoCo.

reinforcement learning for robotics, as they allow to scale the datasets up compared
to real data and cover a much wider range of situations than real data that could
be used for imitational learning (see also the survey [841]). In this setting, domain
adaptation is performed either for the control itself or jointly for the control and
synthetic data.

The field began even before deep learning; for instance, Saxena et al. [762] learned
a model for estimating grasp locations for previously unseen objects on synthetic
data. In Cutler et al. [173], the results of training on a simulator serve as a prior
for subsequent learning in the real world. Moreover, in [174, 175] Cutler et al.
proceed to multifidelity simulators, training reinforcement learning agents in a series
of simulatorswith increasing realism;we note this idea as potentially fruitful for other
domains as well.

DeepMind researchersRusu et al. [744] studied the possibility for transfer learning
from simulated environments to the real world in the context of end-to-end reinforce-
ment learning for robotics. They use the general idea of progressive networks [743],
an architecture designed for multitask learning and transfer where each subsequent
column in the network solves a new task and receives as input the hidden activations
from previous columns. Rusu et al. present a modification of this idea for robot trans-
fer learning, then train the first column in the MuJoCo physics simulator [862], and
then transfer to a real Jaco robotic arm, using the Asynchronous Advantage Actor-
Critic (A3C) framework for reinforcement learning [606]. Even with a relatively
simple rendering engine, illustrated in Fig. 10.9, the authors report improved results
for progressive networks compared to simple transfer via fine-tuning.

There are plenty ofworks that consider similar kinds of transfer learning, known in
robotics as closing the reality gap. In particular, Bousmalis et al. [86] use a simulated
environment to learn robotic grasping with a domain adaptation model called Grasp-
GAN that makes synthetic images more realistic with a refiner (see Section 10.3);
they argue that the added realism improves the results for control transfer. Tzeng
et al. [880] propose a framework that combines supervised domain adaptation (that
requires paired images) and unsupervised DA (that aligns the domains on the level
of distributions); to do that, they introduce the notion of a “weak pairing” between
images in the source and target domains and learn to find matching synthetic images

10.6 Domain Adaptation for Control and Robotics 259

to produce aligned data. The resulting model is successfully applied to training a
visuomotor policy for real robots.

Pan et al. [977] consider sim-to-real translation for autonomous driving; they
convert synthetic images to a sceneparsing representation and thengenerate a realistic
image by a generator corresponding to this parsing representation; the reinforcement
learning agent receives this image as part of its driving environment. An even simpler
approach, taken, e.g., by Xu et al. [845], would be to directly use the segmentation
masks as input for the RL agent.

Researchers fromWayve Bewley et al. [68] perform domain adaptation for learn-
ing to drive from simulation; they claim to present the first end-to-end driving policy
transferred from an (obviously supervised) synthetic setting to the fully unsuper-
vised real domain. Their model does image translation and control transfer at the
same time, learning the control on a jointly learned latent embedding space.

The architecture consists of two encoders Ewve
S and Ewve

T , two generators Gwve
S

and Gwve
T , two discriminators Dwve

S and Dwve
T , and a controller Cwve. The image

translator follows the MUNIT architecture [536], with two convolutional variational
autoencoder networks that swap the latent embeddings to translate between domains,
i.e., for xS ∼ XS , xT ∼ XT

zS = Ewve
S (xS) + ε, x̂S = Gwve

S (zS),

zT = Ewve
T (xT) + ε, x̂T = Gwve

T (zT),

and the translation is to compute zS with Ewve
S and then predict x̂ with Gwve

T and vice
versa. The overall generator loss function is

Lwve = λ0Lwve
rec + λ1Lwve

cyc + λ2Lwve
ctrl + λ3Lwve

cyctrl+
+ λ4Lwve

LSGAN + λ5Lwve
perc + λ6Lwve

zrec ,

where

• Lwve
rec is the L1 image reconstruction loss in both domains:

Lwve
rec (xS) = ‖Gwve

S (Ewve
S (xS)) − xS‖1,

Lwve
rec (xT) = ‖Gwve

T (Ewve
T (xT)) − xT ‖1;

• Lwve
cyc is the cycle consistency loss for both domains:

Lwve
cyc (xS) = ‖Gwve

S (Ewve
T (Gwve

T (Ewve
S (xS)))) − xS‖1

and similar for XT ;
• Lwve

ctrl is the control loss that compares the controls produced on the training set
with the autopilot: Lwve

ctrl (xS) = ‖Cwve(Ewve
S (xS)) − c‖1 for ground truth control

c, and similar for XT ;

260 10 Synthetic-to-Real Domain Adaptation and Refinement

• Lwve
cyctrl is the control cycle consistency loss that makes the controls similar for

images translated to another domain:

Lwve
cyctrl(xS) = ‖Cwve(Ewve

T (Gwve
S (Ewve

S (xS)))) − Cwve(Ewve
S (xS))‖1,

and similar for XT ;
• Lwve

LSGAN is the LSGAN adversarial loss applied to both generator-discriminator
pairs (see also Section 4.5 for a discussion of LSGAN);

• Lwve
perc is the perceptual loss (see above) for both image translation directions with

instance normalization applied before, as shown in [373];
• Lwve

zrec is the latent reconstruction loss: Lwve
zrec (zS) = ‖Ewve

T (Gwve
T (zS)) − zS‖1 and

similar for XT .

Bewley et al. compare their approachwith a number of transfer learning baselines,
show excellent results for end-to-end learning to drive, and even perform real-world
experiments with the trained policy. Similar techniques have been used without syn-
thetic data in the loop as well; e.g., Wulfmeier et al. [945] use a similar model for
domain adaptation to handle appearance changes in outdoor robotics, i.e., changes
in weather conditions, lighting, and the like.

We have already discussed the works of Inoue et al. [386], Zhang et al. [999],
James et al. [396], and Yang et al. [969] whomake real data more similar to synthetic
for computer vision problems related to robotic grasping and visual navigation (see
Section 10.4). Importantly, these models are not merely translating images but are
also tested on real-world robots. Zhang et al. not only show improvements in semantic
segmentation results but also conduct real-world robotic experiments for indoor and
outdoor visual navigation tasks, first training a navigation policy in a simulated
environment and then directly deploying it on a robot in a real environment, while
James et al. test their solution on a real robotic hand, training theQT-Opt policy [422]
to grasp from a simulation with 5000 additional real-life grasping episodes better
than the same policy trained on 580,000 real episodes, a more than 99% reduction
in required real-world input.

Another direction where synthetic data might be useful for learning control is to
generate synthetic behaviours to improve imitation learning [647]. Bansal et al. [39]
discuss the insufficient data problem in imitation learning: for learning to drive,
even 30 million real-world expert driving examples that combine into more than 60
days of driving is not sufficient to train an end-to-end driving model. To alleviate
this lack of data, they present their imitation learning framework ChauffeurNet with
data where synthetic perturbations have been introduced to expert driving examples.
This allows to cover corner cases such as collisions and off-road driving, i.e., bad
examples that should be avoided but that are lacking in expert examples altogether.
Interestingly, perturbations are introduced into intermediate representations rather
than in raw sensor input or controller outputs.

To sumup, closing the reality gap is one of themost important problems in the field
of control and robotics. Important breakthroughs in this direction appear constantly,
but there is still some way to go before self-driving cars and robotic arms are able

10.6 Domain Adaptation for Control and Robotics 261

Fig. 10.10 Real and generated lung nodules from [158]: nodules 1–18 (numbered left to right) are
synthetic, and 19–36 are real benign nodules.

to train in a simulated environment and then perfectly transfer these skills to the
real world. On the other hand, the question of whether these techniques will actually
be needed at the end also still remains open. Some interesting recent advances in
robotics do use synthetic environments for training but do not use any explicit domain
adaptation, using sufficiently varied domain randomization as the main tool; recall
the Dactyl robotic arm we discussed in Section 7.4.

10.7 Case Study: GAN-Based Domain Adaptation for
Medical Imaging

Medical imaging is a field where labeled data is especially hard to come by. First,
while manual labeling is hard and expensive enough for regular computer vision
problems, in medical imaging it is far more expensive still because it cannot be
crowdsourced to anonymous annotators. For most problems, medical imaging data
can only be reliably labeled by a trained professional, often with a medical degree.
Second, for obvious privacy reasons it is very hard to arrange for publishing real
datasets, and collecting a large enough labeled dataset to train a standard object
detection or segmentationmodel would inmany cases require a concerted effort from
several different hospitals; thus,with the exception of somepublic competitions,most
researchers in the field use private datasets and are not allowed to share their data.
Third, some pathologies simply do not have sufficiently large and diverse datasets
collected yet. At the same time, often there are relatively large generic datasets
available, e.g., of healthy tissue but not of a specific pathology of interest.

While we emphasize GAN-based generation methods, we note that there have
been successful attempts to use rendered synthetic data for medical imaging tasks
that are based on recent developments in medical visualization and rendering tools.
For example, Mahmood et al. [573] use the recently developed cinematic rendering
technique forCT [223] (a photorealistic simulation of the propagation of light through
tissue) to train a CNN for depth estimation in endoscopy data.

GANs have been widely applied to generating realistic medical images [45, 53,
469, 627, 967, 974]. Moreover, since the images are domain-specific and often

262 10 Synthetic-to-Real Domain Adaptation and Refinement

low resolution, the quality of GAN-produced images has relatively quickly reached
the level where it can in many applications pass the “visual Turing test”, fooling
even trained specialists. For a characteristic example, see the lung nodule samples
generated in [158] and illustrated in Fig. 10.10. It is indeed very hard to distinguish
real images from fake ones, but the general quality and resolution of these radiology
images are low enough that even a simple GAN could do a very good job in this case.
Another example is given by GAN-based generation of magnetic resonance (MR)
images of the brain in [109, 314, 317]. Therefore, it is no wonder that GAN-based
domain adaptation (DA) techniques, especially based on fusing and augmenting real
images, are increasingly finding their way into medical imaging. In this section, we
give a brief overview of recent work in this domain.

In some works, synthetic data is generated from scratch, i.e., GANs are trained
to convert random noise into synthetic images (see also Section 9.4). Frid-Adar
et al. [244, 245] used two standard GAN architectures, deep convolutional GAN
(DCGAN) [696] and auxiliary classifier GAN (ACGAN) [637] with class label aux-
iliary information, to generate synthetic computed tomography (CT) images of liver
lesions. They report significantly improved results in image classification with CNNs
when training on synthetic data compared to standard augmentations of their highly
limited dataset (182 two-dimensional scans divided into three types of lesions). Baur
et al. [967] attempt high-resolution skin lesion synthesis, comparing several GAN
architectures and obtaining highly realistic results even with a small training dataset.

Han et al. [316, 317] concentrate on brain magnetic resonance (MR) images.
They use progressively growing GANs (PGGAN) [435] to generate 256 × 256 MR
images and then compare two different refinement approaches: SimGAN [793] as
discussed in Section 10.2 and UNIT [536], an unsupervised image-to-image transla-
tion architecture that maps each domain into a shared latent space with a VAE-GAN
architecture [497] (we remark that the original paper [536] also applies UNIT, among
other things, to synthetic-to-real translation; see also Section 4.7 where we discuss
GAN-based style transfer architectures). Han et al. report improved results when
combining GAN-based synthetic data with classic domain adaptation techniques.

Neff [621] uses a slightly different approach: to generate synthetic data for seg-
mentation, he uses a standard WGAN-GP architecture [303] but generates image-
segmentation pairs, i.e., images with an additional channel that shows the segmen-
tation mask. Neff reports improved segmentation results with U-Net [730] after
augmenting a real dataset with synthetic image-segmentation pairs. Mahmood et
al. [572] show an interesting take on the problem by doing the reverse: they make
real medical images look more like synthetic images in order to then apply a network
trained on synthetic data (see also Section 10.4). With this approach, they improve
state-of-the-art results in-depth estimation for endoscopy images.

In general, segmentation problems in medical imaging are especially hard to
label, and segmentation data is especially lacking in many cases. In this context,
recent works have often employed conditional GANs and pix2pixmodels to generate
realistic images from randomized segmentation masks. For example, Bailo et al. [33]
consider red blood cell image generation with the pix2pixHD model [909]. Namely,
their conditional GAN optimizes

10.7 Case Study: GAN-Based Domain Adaptation for Medical Imaging 263

(a) (b) (c) (d)

Fig. 10.11 Red blood cell images generated by Bailo et al. [33]: (a) real segmentation mask; (b) the
corresponding real blood image; (c) synthetic segmentation mask; (d) the corresponding synthetic
blood image.

min
Gp2p

[
max

Dp2p
1 ,Dp2p

2

[Lp2p
GAN(Gp2p, Dp2p

1) + Lp2p
GAN(Gp2p, Dp2p

2)
]+

+ λ1
(Lp2p

FM(Gp2p, Dp2p
1) + Lp2p

FM(Gp2p, Dp2p
2)

) + λ2Lp2p
PR (Gp2p(s, Ep2p(x)), x)

]
,

where

• x is an input image, s is a segmentation mask (it serves as input to the generator),
Dp2p

1 and Dp2p
2 are two discriminators that have the same architecture but operate on

different image scales (original and 2x downsampled),Lp2p
GAN(G, D) is the regular

GAN loss;
• Ep2p(x) is the feature encoder network that encodes low-level features of the objects
with instance-wise pooling; its output is fed to the generator Gp2p(s, Ep2p(x)) and
can be used to manipulate object style in generated images (see [909] for more
details);

• Lp2p
FM is the feature matching loss that makes features at different layers of the

discriminators (we denote the input to the i th layer of D as D(i)) match for x and
G(s):

Lp2p
FM(G, D) = E(s,x)

[
L∑

i=1

1

Ni

∥∥D(i)(s, x) − D(i)(s,G(s, Ep2p(x))
∥∥
1

]
;

• Lp2p
PR is the perceptual reconstruction loss for some feature encoder F :

Lp2p
PR (G, D) = E(s,x)

[
L ′∑
i=1

1

Mi

∥∥F (i)(x) − F (i)(G(s, Ep2p(x)))
∥∥
1

]
.

The real dataset in [33] consisted of only 60 manually annotated 1920 × 1200
RGB images (with another 40 images used for testing), albeit with a lot of annotated
objects (669 blood cells per image on average). Bailo et al. also developed a scheme
for sampling randomized but realistic segmentation masks to use for synthetic data
generation. Sample images, shown in Fig. 10.11, again show very realistic images
produced by this GAN-based architecture, to a large extent thanks to the regular

264 10 Synthetic-to-Real Domain Adaptation and Refinement

and relatively simple structure of the images that need to be generated. Bailo et al.
report improved segmentation results with FCN and improved detection with Faster
R-CNN when trained on a combination of real and synthetic data.

Zhao et al. [1014] consider the problem of generating filamentary structured
images, such as retinal fundus and neuronal images, from a ground truth segmenta-
tion map, with an emphasis on generating images in multiple different styles. Their
FILA-sGAN approach is based on GAN-based image style transfer ideas [407, 886].
Its generator loss function is

Lfil = Lfil
GAN(Gfil, Dfil) + λ1Lfil

cont(G
fil) + λ2Lfil

sty(G
fil) + λ3Lfil

TV(Gfil),

where

• Gfil : y → x̂ is a generator that takes a binary image and produces a “phantom”
x̂, Dfil is a synthetic vs. real discriminator, and Lfil

GAN is the standard GAN loss;
• Lfil

cont is the content loss thatmakes thefilamentary structure of a generated phantom
x̂match the real raw image x, evidenced through the featuresφ(i) for some standard
CNN feature extractor such as VGG-19:

Lfil
cont(G

fil) =
∑
l

1

WlHl

∥∥φ(l)(x) − φ(l)(x̂)
∥∥2

F ,

where x is the real raw image, l spans the CNN blocks and layers, Wl and Hl are
the width and height of the corresponding feature maps, and ‖ · ‖F is the Frobenius
matrix norm;

• Lfil
sty is the style loss that minimizes the textural difference between x̂ and a style

image xs :

Lfil
sty(G

fil) =
∑
l

ωl

Wl Hl

∥∥G(l)(xs) − G
(l)(x̂)

∥∥2

F ,

where xs is the style image, G(l) is the Gram matrix of the features in CNN block
l, and ωl is its weight (a hyperparameter);

• Lfil
TV is the total variation loss that serves as a regularizer and encourages x̂ to be

smooth:
Lfil

TV(Gfil) =
∑
i, j

(∥∥x̂i, j+1 − x̂i, j
∥∥2
2 + ∥∥x̂i+1, j − x̂i, j

∥∥2
2

)
.

As a result, Zhao et al. report highly realistic filamentary structured images gen-
erated from a segmentation map and a single style image in a variety of different
styles; some examples are shown in Fig. 10.12. Importantly for us, they also report
improved segmentation results with state-of-the-art approaches to the corresponding
segmentation task.

10.7 Case Study: GAN-Based Domain Adaptation for Medical Imaging 265

Fig. 10.12 Real and generated retinal images by Zhao et al. [1014]; in each column, the top image
is a real image, the middle is the ground truth filament segmentation, and the bottom is a synthetic
image generated from this segmentation map.

A similar architecture based on a conditional GAN has been used by Sirazitdinov
et al. [804] to generate tube-like objects on X-ray images, such as puncture nee-
dles, wires, or catheters; finding such objects on X-rays is a very important task for
interventional radiology but real data with such objects is (fortunately) hard to come
by.

In other works, Hou et al. [357] use GANs to refine synthesized histopathol-
ogy images (similar to SimGAN discussed in Section 10.2), with improved nucleus
segmentation and glioma classification results. Tang et al. [850] use the pix2pix
model [389] to generate realistic computed tomography (CT) images from cus-
tomized lymph node masks, reporting improved lymph node segmentation with
U-Net [730]. In [849], the same researchers use the multimodal image-to-image
translation (MUNIT) model [373], which we discussed in Section 4.7, to generate
realistic chest X-rays with custom abnormalities, reporting improved segmentation
with both U-Net and their developed model XLSor. Han et al. [315] were the first
to apply 3D GAN-based DA to produce data for 3D object detection, i.e., bounding
boxes; they use it in the context of synthetizing CT images of lung nodules.

In a related approach, synthetic data can be generated from real data, but in a
different domain. For example, Zhang et al. [1013] learn a CycleGAN-based archi-
tecture [1025] to learn volume-to-volume (i.e., 3D) translation for unpaired datasets
of CT and MR images (domain A and domain B, respectively). Moreover, they
augment the basic CycleGAN with segmentors SvolA and SvolB that help preserve
segmentation mask consistency. In total, their model optimizes the loss function

266 10 Synthetic-to-Real Domain Adaptation and Refinement

Lvol = Lvol
GAN(Gvol

A , Dvol
A) + Lvol

GAN(Gvol
B , Dvol

B) + λ1Lvol
cyc (Gvol

A ,Gvol
B)+

+ λ2Lvol
shape(S

vol
A , SvolB ,Gvol

A ,Gvol
B),

where

• Gvol
A : B → A and Gvol

B : A → B are CycleGAN generators, and Dvol
A and Dvol

B
are discriminators in domains A and B, respectively, trained to distinguish between
real and synthetic (generated by Gvol) images by the standard GAN loss function
Lvol

GAN;• Lvol
cyc is the cycle consistency loss

Lvol
cyc (Gvol

A ,Gvol
B) =ExA

[∥∥∥Gvol
A (Gvol

B (xA)) − xA

∥∥∥
1

]

+ExB

[∥∥∥Gvol
B (Gvol

A (xB)) − xB
∥∥∥
1

]
,

• SvolA : A → Y and SvolB : B → Y are segmentors that produce 3D segmentation
masks, and Lvol

shape is the shape consistency loss

Lvol
shape(S

vol
A , SvolB ,Gvol

A ,Gvol
B) =

ExB

[
− 1

N

∑
i

yiB log S
vol
A (Gvol

A (xB))i

]

+ ExA

[
− 1

N

∑
i

yiB log S
vol
A (Gvol

A (xB))i

]
,

where yA and yB are ground truth segmentation results for xA and xB , respectively.

Zhang et al. report that 3D segmentation in their architecture improves not only
over the baseline model trained only on real data but also over the standard approach
of fine-tuning SvolA and SvolB separately on generated synthetic data. Ben-Cohen et
al. [59] present a similar architecture for cross-modal synthetic data generation of
PET scans from CT images, also with improved segmentation results for lesion
detection. Similar image-to-image translation techniques have been applied to gen-
erating images from 2D MR brain images to CT and back [401, 628, 932], PET
to CT [28], cardiac CT to MR [125], virtual H&E staining, including transforma-
tion from unstained to stained lung histology images [48] and stain style trans-
fer [784], multi-contract MRI (from contrast to contrast) [182], 3D cross-modality
MRI [979], different styles of prostate histopathology [717], different datasets of
chest X-rays [128], and others.

Model-based domain adaptation (that we discussed in Section 10.5) has also been
applied in the context ofmedical imaging.Often it has beenused to dodomain transfer
between different types of real images, e.g., between different parts of the brain [65]
or from in vitro to in vivo images [166], but synthetic-to-real DAhas also been amajor
topic. As early as 2013, Heimann et al. [333] generated synthetic training data in the

10.7 Case Study: GAN-Based Domain Adaptation for Medical Imaging 267

form of digitally reconstructed radiographs for ultrasound transducer localization. To
close the domain gap between synthetic and real images, they used standard instance
weighting and found significant improvements in the resulting detections. Kamnitsas
et al. [425] use unsupervised DA for brain lesion segmentation in 3D, switching from
one type of MR images to another in domain adaptation. They use a state-of-the-
art 3D multi-scale fully convolutional segmentation network [426] and a domain
discriminator that makes intermediate feature representations of the segmentation
networks indistinguishable across the domains.

In general, GAN-based architectures for medical imaging, either generating syn-
thetic data or adapting real data from other domains, represent promising directions
of further research and will, in my opinion, define state of the art in the field for
years to come. However, at present the architectures used in different works differ a
lot, and comparisons across different GAN-based architectures are usually lacking:
each work compares their architecture only with the baselines. Further research and
large-scale experimental studies are needed to determine which architectures work
best for various domain adaptation problems related to medical imaging.

10.8 Conclusion

This chapter has been devoted to a survey of domain adaptation approaches to syn-
thetic data applications. Virtually all applications of synthetic data face the same
problem of synthetic-to-real transfer: we need to make a model trained on synthetic
data work on real data that we will face in the actual application. The most straight-
forward way is, of course, not to do any transfer or do it with domain randomization
(see Section 9.1) and pray that it works. But in this chapter, we have discussed ways
to actively help the models transfer from synthetic to real data better.

We have seen that approaches to this regard can be broadly classified into two cat-
egories. In synthetic-to-real refinement, which we discussed in Sections 10.1, 10.2,
and 10.3, domain adaptation changes the data itself, and it is possible to see a
“refined” image, usually (but not always) made more realistic by the refinement pro-
cedure. There even exists the opposite approach that we have seen in Section 10.4:
make real data look more “synthetic” so that the models trained on synthetic data
will better recognize the refined images.

Model-based domain adaptation approaches, which we have considered in
Section 10.5, leave the data in place but change the model itself or the training
procedure. They usually train a joint embedding or feature space for both synthetic
and real inputs, requiring that the model does not differentiate between the two
domains. We have also seen some domain adaptation techniques in control and
robotics (Section 10.6) and a case study of GAN-based domain adaptation for med-
ical imaging (Section 10.7).

268 10 Synthetic-to-Real Domain Adaptation and Refinement

With this, we are nearing the end of the book. The next chapter is devoted to a field
that looks completely orthogonal to what we have done before: differential privacy.
It proves to be important for synthetic data because in certain applications, synthetic
datasets are used to protect real data which is too sensitive to release. Differential
privacy is a way (actually, the way) to provide guarantees that a released synthetic
dataset, probably produced by some generative model, does not leak sensitive infor-
mation about the real data that the model had been trained on. In the next chapter,
we will see what kind of guarantees can exist in this regard.

Chapter 11
Privacy Guarantees in Synthetic Data

In this chapter, we discuss another important field of applications for synthetic data:
ensuring privacy. In many real-world problems, real data is sensitive enough that it is
impossible to release. One possible solution could be to train generative models that
would produce new synthetic datasets based on real data, while the real data itself
would remain secret. But how can we be sure that real data will not be inadvertently
leaked? Guarantees in this regard can be provided by the framework of differential
privacy. We give a brief introduction to differential privacy, its relation to machine
learning, and the guarantees that it can provide for synthetic data generation.

11.1 Why is Privacy Important?

In many domains, real data is not only valuable, but also sensitive; it should be
protected by law, commercial interest, and common decency. The unavailability of
real data is exactly what makes synthetic data solutions attractive in these domains.
But models for generating synthetic data have to train on real datasets anyway, so
how do we know we are not revealing it? A number of famous examples show that
naive attempts to anonymize data are often insufficient. Let me begin with a few
illustrative examples that have become famous in the studies of privacy in computer
science.

Probably the first such example dates back to 1997, when the Massachusetts
Group Insurance Commission published a carefully anonymized dataset with the
medical history of state employees. When it was published, a Ph.D. student from
MIT, Latanya Sweeney, spent $20 on a list of all voters from Cambridge, MA (a
perfectly legal operation), joined the two datasets according to zip code, birth date,
and sex (the three fields that they have in common), and immediately identified
William Weld, then the Governor of Massachusetts. She was able to confirm her
findings because Weld had a recent public medical incident, but she did not use

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_11

270 11 Privacy Guarantees in Synthetic Data

that information in the deanonymization procedure. This was one of the first such
incidents that attracted public attention, and Dr. Sweeney’s works dating back to
the 1990s were among the first not only to raise concerns, but also present specific
algorithmswithwhich privacy could be violated even in anonymized data and suggest
some ways to efficiently preserve privacy in practice [832, 833].

The second famous example came on August 4, 2006, when AOL Research, a
division of the internet company AOL that was at the time still a huge internet and
email provider (#1 in the United States) and a very popular web portal, published
anonymized search queries for over 650,000 users over a 3-month period. Naturally,
AOL research did not mean to do any harm: data was released purely for research
purposes, and the dataset did not contain anything other than search queries grouped
only by user id. But search queries often spoke for themselves: in five days, on
August 9, The New York Times ran a profile on one of the searchers whom they were
able to identify personally from the queries. This profile did not contain anything
incriminating, but other search histories were less than innocent: some suggested
that the user might be getting ready to commit murder (here’s an ethical question for
you: should AOL orGoogle be doing anything about this?), and the vagaries of “User
927” even became the basis of an experimental play staged in a Philadelphia theatre
in 2008. No, I am not going to cite what this user searched for, but, fortunately and
somewhat ironically, this information is just a couple of search queries away...

Search queries are, of course, an easy suspect for revealing sensitive information.
AOL Research quickly admitted that they made a mistake, removed the dataset in
three days (not that it helped, of course), and as a result of the scandal Maureen
Govern, the CTO of AOL, resigned in a couple of weeks. But what could go wrong if
we publish a much more restricted data type? Say, only the fields where the users do
not type in any odd thing? Say, their ratings for products in a recommender engine?..

Alas, the third example is exactly this. Every researcher working in the field of
recommender systems knows about the Netflix Prize, a competition held from 2006
to 2009 with a grand prize of one million dollars [64]. This was way before Kaggle
was a thing, and one could say that Kaggle was founded in 2010, in part, as a result
of the resounding success of the Netflix Prize. This competition brought to light
several new ideas about recommender systems that blossomed into whole directions
of research and for a long time defined state of the art in recommender systems [54,
468]. The Netflix Prize dataset only contained the identifiers of movies (names of
the movies were known) and ratings that a given user has given them; the users only
had numerical ids, there was no personal information disclosed.

However, even this kind of dataset proved to be dangerous: in 2008, researchers
from the University of Texas discovered that they could match IMDB user profiles
(which are public) with their anonymized Netflix profiles from the published dataset
with very high confidence [619]. This means that they could mine information about
movie preferences that the users chose not to disclose to their public IMDB profile;
needless to say, some of this informationmight, again, be rather sensitive. As a result,
a class action lawsuit was filed against Netflix based on the arguments from [619];
the company settled with the plaintiffs but had to cancel the second Netflix Prize,
which had already been announced at the time.

11.1 Why is Privacy Important? 271

These three examples show that the computational privacy is a very fragile thing.
The adversary might have additional information, such as a list of voters or public
IMDB profiles. The adversary does not need to attack a large fraction of the dataset
because a successful attack on even a small portion of the data might be damaging;
after all, the vast majority of people couldn’t care less about who knows their movie
ratings. A sparse dataset with high-dimensional information about the users helps the
adversary: high confidence in the case of the Netflix Prize became possible precisely
because there were a lot of movies in the dataset to mine for correlations (about
20,000). And finally, in all three cases, the datasets were not published by malicious
hackers or people who didn’t know any better: they were published by experienced
researchers, in case of AOL and Netflix by researchers who worked in computer
science. Still, the adversaries proved to be more resourceful: in these cases, finding
a crack in the wall is a much easier job than building a perfect all-encompassing
barrier.

When researchers recognized the preservation of privacy as a computer science
problem, formal negative results also followed quickly. A famous paper by Dinur
and Nissim [199] showed that a few database queries (e.g., taking sums or averages
of subsets) suffice to bring about strong violations of privacy even if the database
attempts to preserve privacy by introducing noise. Formally, one of their results was
that if a database of n private bits d1, . . . , dn responds to queries defined by subsets of
bits S ⊆ {1, . . . , n} by specifying the sums qS(D) = ∑

i∈S di approximately, and the
error in the database’s answers is on the order of o(

√
n) (it is hard to imagine a useful

database that responds to queries with an error of
√
n or more!), then a polynomial

number of queries suffices to reconstruct almost all, i.e., n − o(n) private bits in D.
Subsequent results made this even stronger.

This problem also pertains to machine learning. If a machine learning model has
trained on a dataset with a few outliers, how do we know it does not “memorize”
these outliers directly and will not divulge them to an adversary? For a sufficiently
expressive model, such memorization is quite possible, and note that the outliers are
usually themost sensitive data points. For instance, Carlini et al. [114] show that state
of the art language models do memorize specific sequences of symbols, and one can
extract, e.g., a secret string of numbers from the original dataset with a reasonably
high success rate.

How does all this relate to synthetic data? Machine learning on privacy-sensitive
datasets might be an important field of application for synthetic data: wouldn’t it be
great if AOL or Netflix didn’t have to publish their real datasets but would publish
information about synthetic users instead? This would immediately alleviate all pri-
vacy concerns. On the other hand, choosing a uniform distribution for the ratings
or random character strings for search queries would render such synthetic datasets
completely useless: naturally, to be useful the distribution of synthetic data must
resemble the distribution of real data. But then wouldn’t we be divulging private
information? Looks like we need to dig a little deeper.

272 11 Privacy Guarantees in Synthetic Data

11.2 Introduction to Differential Privacy

The field of differential privacy, pioneered by Dwork et al. [214, 216, 218], was
largely motivated by considerations such as the ones we saw in the previous section.
The works of Cynthia Dwork have been widely recognized as some of the most
novel and interesting advances in modern computer science: Prof. Dwork received
the Dijkstra Prize in 2007, the Gödel Prize in 2017 for the work [216], the Hamming
Medal and the Knuth Prize in 2020.

In the main definition of the field, a mechanism (randomized algorithm) M is
called (ε, δ)-differentially private for some positive real parameters ε and δ if for any
two databases D and D′ that differ in only a single point x , D \ {x} = D′ \ {x}, and
any subset of outputs S

p (M(D) ∈ S) ≤ eε p
(
M(D′) ∈ S

) + δ,

or, equivalently, for every point s in the output range of M

∣
∣
∣
∣ln

p (M(D) = s)

p (M(D′) = s)

∣
∣
∣
∣ ≤ ε with probability 1 − δ.

The ratio ln p(M(D)=s)
p(M(D′)=s) is an important quantity called privacy loss that needs to be

bounded in absolute value.
The intuition here is that an adversary who receives only the outputs of M should

have a hard time learning anything about any single point in D. The same intuition
could be reformulated in terms of a Bayesian update of beliefs (recall Section 2.2,
wherewediscussedhow theBayes theorem is the foundation of allmachine learning):
an adversary, after learning the result M(D) = s, updates their beliefs about the two
databases (that is, about the questionwhether the dataset contains some specific point
x) as

p(D | M(D) = s)

p(D′ | M(D) = s)
= p(D)

p(D′)
p(M(D) = s | D)

p(M(D′) = s | D′)
,

and the latter ratio on the right-hand side is precisely the privacy loss whose loga-
rithm’s absolute value is bounded by ε in the definition.

This definition has a number of important desirable qualities. First, it is robust to
the introduction of additional information, that is, knowledge of some events avail-
able to an adversary: naturally, additional information regarding the database will
help the adversary, but the definition still remains in place: an (ε, δ)-differentially
private mechanism will remain (ε, δ)-differentially private and will not help the
adversary further. Second, it is immune to postprocessing: an adversary cannot com-
pute some function of the private mechanism’s result M(D) and compromise the
privacy, i.e., the privacy loss cannot be increased by thinking hard about the results
of M . Third, it is composable: if an adversary has access to two mechanisms, M1

which is (ε1, δ1)-differentially private and M2 with parameters (ε2, δ2), any com-
position of them will have parameters not exceeding (ε1 + ε2, δ1 + δ2) regardless

11.2 Introduction to Differential Privacy 273

of whether M1 and M2 know about each other; this allows for modular design of
private architectures. Fourth, it allows for group privacy, that is, when the databases
differ by k elements an (ε, 0)-differentially private mechanism will become at most
(kε, 0)-differentially private.

Unfortunately, this definition conceals an unpleasant tradeoff. If we set δ = 0
the definition becomes too strong: for example, it is too pessimistic for repeated
applications of M (the exponent grows linearly). But if not, δ may hide a complete
failure of privacy preservation: for instance, an (ε, δ)-differentially private mecha-
nism may reveal the entire database with probability δ or reveal the δ share of data
with probability 1. Therefore, in practice, it should hold that δ � 1

n .
I do not want to get to a much deeper discussion of differential privacy than

the definitions, so I will conclude this brief intro with an example of the Laplace
mechanism, probably the simplest and most classical example of a differentially
private mechanism. Suppose that we are sending numerical queries to a database
of n integer numbers, that is, a query is a function f : Nn → R

k . An important
property of such functions f in this case is their L1-sensitivity, a measure of how
much changing a single element in the database can change the function:

� f = max
D,D′ :D and D′ differ in one point

∥
∥ f (D) − f (D′)

∥
∥
1 .

The Laplace mechanism works as follows: when someone asks to compute f (D), it
computes the correct answer and gives out a version of it perturbed by the Laplace
distribution (hence the name):

ML(D, f, ε) = f (D) + (
Y1 Y2 . . . Yk

)
, where Yi ∼ Lap

(
� f

ε

)

for some constant ε and for the Laplace distribution

Lap(x | b) = 1

2b
e− 1

b |x |.

Let us now compare the distributions of ML results on two databases D and D′
that differ at a single point. For some point z ∈ R

k ,

p(ML(D, f, ε) = z)
p(ML(D′, f, ε) = z)

=
k∏

i=1

e− ε
� f | f (D)i−zi |

e− ε
� f | f (D′)i−zi | =

=
k∏

i=1

e
ε(| f (D′)i−zi |−| f (D)i−zi |)

� f ≤
k∏

i=1

e
ε(| f (D′)i− f (D)i |)

� f = e
ε‖ f (D)− f (D′)‖1

� f ≤ eε,

where the first inequality is the triangle inequality and the second is by our assumption
on the L1-sensitivity of f . Similarly, p(ML (D, f,ε)=z)

p(ML (D′, f,ε)=z) ≥ e−ε, and we have proved that
the Laplace mechanism is (ε, 0)-differentially private.

274 11 Privacy Guarantees in Synthetic Data

A similar (but much more involved and cumbersome) argument shows that the
same can be achieved with L2-sensitivity and Gaussian noise. In other words, if we
define L2-sensitivity as

�2 f = max
D,D′ :D and D′ differ in one point

∥
∥ f (D) − f (D′)

∥
∥
2

and define the Gaussian mechanism as

MN (D, f, ε) = f (D) + (
Y1 Y2 . . . Yk

)
, where Yi ∼ N (

0,σ2) ,

then MN will be (ε, δ)-differentially private if we let

σ ≥ c
�2 f

ε
, where c2 > 2 ln

1.25

δ
;

see, e.g., [218] for details.

11.3 Differential Privacy in Deep Learning

We aremost interested inmachine learning applications for privacy: how canwe give
access to the results of learning without giving access to the training data? Before
we proceed to applying differential privacy to machine learning, we should define a
formal setting for such considerations. What should we allow the adversary to do?
One might think that we can hide the model from the adversary, but both theory and
practice show that if we provide an interface for running inference on the model
(which we definitely have to assume), a smart adversary can learn so much about
the model that it doesn’t make much sense to distinguish these two cases. Therefore,
research in this field mostly concentrates on how to keep training data private while
giving the model and its weights to the adversary (the “white box” scenario).

Note that a model that generalizes well does not necessarily preserve privacy.
Generalization is an average-case notion, and it characterizes how well the model’s
accuracy (or another objective function) transfers to new data. Privacy, on the other
hand, is a worst-case notion, and it deals with the corner cases and the information
that the entire model provides, not just its performance. For example, if you train an
SVM for classification, it might generalize very well, but the model will explicitly
contain (and thus provide to any adversary) full and unperturbed information about
its support vectors, which can hardly be called privacy-preserving. And let’s not even
get started on nearest neighbors...

Using a “standard model” that has been tried and tested also doesn’t really help.
For example, Zhang et al. [992], in a very important paper that has already become
a classic of deep learning research, studied standard models such as AlexNet on
standard datasets such as ImageNet (we discussed AlexNet in Section 3.2). Their

11.3 Differential Privacy in Deep Learning 275

experiment was to introduce a random permutation of the labels, that is, assign
labels from 1000 ImageNet classes completely at random, thus making the dataset
entirely unlearnable. After training AlexNet, they indeed saw purely random-looking
accuracy on the test set (about 0.1% top-1 accuracy and about 0.5% top-5 accuracy),
but on the training set the model actually achieved more than 90% top-1 accuracy,
not much worse than after training on original labels with the exact same learning
parameters! This means that even in the absence of any possibility for generalization
and extracting useful features, modern deep learning models can learn quite a lot by
simply memorizing the data; note also that AlexNet is by modern standards a pretty
small and weak network...

Therefore, if we want to be able to train on real data, we need to somehow
introduce privacy-preserving transformations into the model training process. Since,
in this book, we are mainly interested in deep learning, I will not go into preserving
privacy with other machine learning models; there is a growing body of research in
this field, and I can refer, e.g., to the surveys [238, 287, 312, 400] and references
therein. Our focus in this section is on how to make complex high-dimensional
optimization, such as training deep neural networks with stochastic gradient descent
(recall Sections 2.4 and 2.5), respect privacy constraints. Aswe have already seen, the
basic approach to achieving differential privacy is to add noise to the output ofM , just
like the Laplace and Gaussian mechanisms do. Many classical works on the subject
focus on estimating and reducing the amount of noise necessary to ensure privacy
under various assumptions [214–217, 520]. However, it is not immediately obvious
how to apply this idea to a deep neural network. There are two major approaches to
achieving differential privacy in deep learning, that is, in stochastic gradient descent.

The most important advance in this field came from Abadi et al. [1], who sug-
gested a method for controlling the influence of the training data during stochastic
gradient descent called Differentially Private SGD (DP-SGD). They use the Gaus-
sian mechanism that we introduced in the previous section, so the basic idea is to add
Gaussian noise to the gradients on every step of the SGD. But in order to estimate
the variance σ for the necessary noise, the Gaussian mechanism needs to know an
estimate on the influence that each individual example can have on the gradient gk
computed on the minibatch at step k. How can we get such an estimate when we do
not have any prior bound on the gradients? We have to bound them ourselves!

Specifically, Abadi et al. clip the gradients on each SGD iteration to a predefined
value of the L2-norm and add Gaussian noise to the resulting gradient value. The
entireDP-SGDscheme is presented inAlgorithm9.By careful analysis of the privacy
loss variable, i.e., log p(A(D)=s)

p(A(D′)=s) above, Abadi et al. show that the resulting algorithm
preserves differential privacy under reasonable choices of the clipping and random
noise parameters. Moreover, this is a general approach that is agnostic to the network
architecture and can be extended to various first-order optimization algorithms based
on SGD.

A year later, Papernot et al. [653] (actually, mostly the same group of researchers
from Google) presented the Private Aggregation of Teacher Ensembles (PATE)
approach. In PATE, the final “student”model is trained froman ensemble of “teacher”
models that have access to sensitive data, while the “student” model only has access

276 11 Privacy Guarantees in Synthetic Data

Algorithm 9: Differentially private stochastic gradient descent
Initialize w0, k := 0;
repeat

Dk := Sample(D);
for d ∈ Dk do

gk(d) := ∇w f (wk , d);
ḡk(d) := gk(d)/max

(
1, 1

C ‖gk(d)‖2
)
;

end

gk := 1
|Dk |

(∑
d∈Dk

ḡk(d) + N (
0,σ2C2I

))
;

wk+1 := wk − αkgk ;
k := k + 1;

until a stopping condition is met;

to (noisy) aggregated results of “teacher” models, which allows to control disclosure
and preserve privacy. A big advantage of this approach is that “teacher” models can
be treated as black box while still providing rigorous differential privacy guarantees
based on the same moments accounting technique from [1]. Incidentally, the best
results were obtained with adversarial training for the “student” in a semi-supervised
fashion, where the entire dataset is available for the “student” but labels are only
provided for a subset of it, preserving privacy.

In conclusion, I think it is important to note the practical side of things. Differential
privacy is a worst-case theoretical concept, and definitions of an (ε, δ)-differentially
private mechanism might have reminded the reader of definitions from theoretical
cryptography, where usually nothing is possible to actually achieve and even the best
results are often either negative or impossible to apply in practice. But differential
privacy for deep learning is a field that has actual implementations. The original paper
by Abadi et al. was already accompanied by a repository that added differentially
private variations of Tensorflow optimizers1. And the latest news is the release of
Opacus, a library developed by Facebook researchers Davide Testuggine and Ilya
Mironov that enables differential privacy for PyTorch models2.

Thus, deep learning with differential privacy guarantees may eventually provide
a good answer to the problem of preserving information regarding the datasets. But
if you want to release a dataset for the general public, say organize a Kaggle compe-
tition, rather than just publish your model while keeping the original dataset private,
you still cannot avoid the generation of synthetic data with privacy guarantees. This
is exactly what we will discuss in the next section.

1At the time of writing (late 2020), the Tensorflow Privacy library is alive and well supported:
https://github.com/tensorflow/privacy.
2At the time of writing (late 2020), this library has been very recently released, so it obviously also
does not lack support: https://github.com/pytorch/opacus

https://github.com/tensorflow/privacy
https://github.com/pytorch/opacus

11.4 Differential Privacy Guarantees for Synthetic Data Generation 277

11.4 Differential Privacy Guarantees for Synthetic Data
Generation

In this section, we review the applications of differential privacy and related con-
cepts to synthetic data generation. The purpose is similar: the release of a synthetic
dataset generated by somemodel trained on real data should not disclose information
regarding the individual points in this real dataset. Our review is slanted towards deep
learning; for a more complete picture of the field, we refer to the surveys in [71, 214].
However, we do note the efforts devoted to generating differentially private synthetic
datasets in classical machine learning. In particular, Lu et al. [559] develop a model
for making sensitive databases private by fixing a set of queries to the database
and perturbing the outputs to ensure differential privacy. Zhang et al. present the
PrivBayes approach [997]: construct a Bayesian network that captures the correla-
tions and dependencies between data attributes, inject noise into the marginals that
constitute this network, and then sample from the perturbed network to produce the
private synthetic dataset. In a similar effort, the DataSynthetizer model by Ping et
al. [673] is able to take a sensitive dataset as input and generate a synthetic dataset
that has the same statistics and structure but at the same time provides differential
privacy guarantees.

We also note some privacy-related applications of synthetic data that are not about
differential privacy. For example, Ren et al. [721] present an adversarial architecture
for video face anonymization; their model learns to modify the original real video to
remove private information while at the same time still maximizing the performance
of action recognition models (see also Section 6.6).

The general approaches we have discussed in the previous section have been
modified and applied for producing synthetic data with generative models, mostly,
of course, with generative adversarial networks. Although the methods are similar,
we note an important conceptual difference that synthetic data brings in this case.
Model release approaches in the previous section assumed access to and full control
of model training.Data release approaches (here we use the terminology from [871])
that perform synthetic data generation have the following advantages:

• they can provide private data to third parties to construct better models and develop
new techniques or use computational resources that might be unavailable to the
holders of sensitive data;

• moreover, these third parties are able to pool synthetic data from different sources,
while in the model release framework this would require a transfer of sensitive
data;

• synthetic data can be either traded of freelymade public, which is an important step
towards reproducibility of research, especially in such fields as bioinformatics and
healthcare, where reproducibility is an, especially, important problem and where,
at the same time, sensitive data abounds.

In this section, we discuss existing constructions of GANs that provide rigorous
privacy guarantees for the resulting generated data. Basically, in the ideal case, a

278 11 Privacy Guarantees in Synthetic Data

differentially private GAN has to generate an artificial dataset that would be sampled
from the same distribution pdata but with differential privacy guarantees as discussed
above. One general remark that is used in most of these works is that in a GAN-based
architecture, it suffices to have privacy guarantees or additional privacy-preserving
modifications (such as adding noise) only in the discriminator since gradient updates
for the generator are functions of discriminator updates. Another important remark
is that in cases when we generate differentially private synthetic data, a drop in
quality for subsequent “student” models trained on synthetic data is expected in
nearly all cases, not because of any deficiencies of synthetic data vs. real in general
but because the nature of differential privacy requires adding random noise to the
generative model training.

Xie et al. [955] present the differentially private GAN (DPGAN) model, which is
basically the already classical Wasserstein GAN [27, 303] but with additional noise
on the gradient of the Wasserstein distance, in a fashion following the DP-SGD
approach (Section 11.3). They apply DPGAN to generate electronic health records,
showing that classifiers trained on synthetic records have accuracy approaching that
of classifiers trained on real data, while guaranteeing differential privacy. This was
further developed by Zhang et al. [1002], who used the Improved WGAN frame-
work [303] and obtained excellent results on the synthetic data generated from vari-
ous subsets of the LSUN dataset [1002], which is already a full-scale image dataset,
albeit at low resolution (64 × 64).

Beaulieu-Jones et al. [50] apply the same idea to generating electronic health
records, specifically training on the data of the Systolic Blood Pressure Trial
(SPRINT) data analysis challenge [205, 854], which are in nature low-dimensional
time series. They used the DP-SGD approach for the Auxiliary Classifier GAN (AC-
GAN) architecture [637] and studied how the accuracy of various classifiers drops
when passing to synthetic data. Triastcyn and Faltings [871] continue this line of
work and show that differential privacy guarantees can be obtained by adding a spe-
cial Gaussian noise layer to the discriminator network. They show good results for
“student” models trained on synthetically generated data for MNIST, but already at
the SVHN dataset the performance degrades more severely.

Bayesian methods are a natural fit for differential privacy since they deal with
entire distributions of parameters and lend themselves easily to adding extra noise
needed for DP guarantees. In a combination of generative models and Bayesian
methods, a Bayesian variant of the GAN framework, which provides representa-
tions of full posterior distributions over the parameters, was provided by Saatchi
and Wilson [747]. The idea of their Bayesian GAN is to introduce prior distribu-
tions on generator parameters θg and discriminator parameters θd , p

(
θg | αg

)
, and

p (θd | αd) , respectively, and infer posteriors over θg and θd

11.4 Differential Privacy Guarantees for Synthetic Data Generation 279

p
(
θg | Z ,θd

) ∝p
(
θg | αg

)
Ng∏

n=1

D
(
G

(
zn;θg

) ;θd
)
,

p
(
θd | Z , X,θg

) ∝p (θd | αd)

Nd∏

n=1

D (xn;θd)

Ng∏

n=1

(
1 − D

(
G

(
zn;θg

) ;θd
))

,

where xn are real inputs, zn are randomnoise samples, and Nd and Ng are the numbers
of real and fake samples, respectively.

Saatchi and Wilson provide learning algorithms in this setting, marginalizing
the above posteriors over random noise by Monte Carlo integration and sampling
from posterior distributions with stochastic gradient Hamiltonian Monte Carlo [136,
1033]. Arnold et al. [30] adapted the BayesGAN framework for differential privacy
by injecting noise into the gradients during training, which was shown by Wang et
al. [918] to lead to DP guarantees. They apply the resulting DP-BayesGAN frame-
work to microdata, i.e., medium-dimensional samples of 40 explanatory variables of
different nature and one dependent variable.

As for the PATE framework, it cannot be directly applied to GANs since noisy
aggregation of a PATE ensemble is not a differentiable function that could serve as
part of a GAN discriminator. Ács et al. [6] proposed to use a differentially private
clustering method to split the data into k clusters, then train a separate generative
models (the authors tried VAE) on their own clusters, and then create a mixture of the
resulting models that would inherit differential privacy properties as well. A recent
work by Jordon et al. [976] circumvents the non-differentiability problem by training
a “student-discriminator” on already differentially private synthetic data produced
by the generator. The learning procedure alternates between updating “teacher” clas-
sifiers for a fixed generator on real samples and updating the “student-discriminator”
classifier and the generator for fixed “teachers”. PATE-GAN works well on low-
dimensional data but begins to lose ground on high-dimensional datasets such as,
e.g., the UCI Epileptic Seizure Recognition dataset (with 184 features).

However, these results are still underwhelming; it has proven very difficult to
stabilize GAN training with the additional noise necessary for differential privacy
guarantees, which has not allowed researchers to progress to, say, higher resolution
images so far. In a later work, Triastcyn and Faltings [870] consider a different
approach: they use the empirical DP framework [3, 124, 168, 768], an approach that
empirically estimates the privacy of a posterior distribution, and themodification that
ensures privacy is usually a sufficiently diffuse prior. In this framework, evaluating
the privacy would reduce to training a GAN on the original dataset D, removing one
sample from D to obtain D′, retraining the GAN and comparing the probabilities
of all outcomes, and so on, repeating these experiments enough times to obtain
empirical estimates for ε and δ. For realistic GANs, a large number of retrainings
is impractical, so Triastcyn and Faltings modify this procedure to make it operate
directly on the generated set D̃ rather than the original dataset D. They study the
tradeoff of privacy vs. accuracy of the “student” models trained on synthetic data

280 11 Privacy Guarantees in Synthetic Data

and show that GANs can fall into the region of practical values for both privacy and
accuracy. Their proposedmodification of the architecture (a single randomizing layer
close to the end of the discriminator) strengthens DP guarantees while preserving
good generation quality for datasets up to CelebA [542]; in fact, it appears to serve
as a regularizer and improve generation.

Frigerio et al. [246] extend theDPGAN framework to continuous, categorical, and
time series data. They use the Wasserstein GAN loss function [303], extending the
moment accountant to this case. To handle discrete variables, the generator produces
an output for every possible value with a softmax layer on top, and its results are sent
to the discriminator. Bindschadler [71] presents a seedbased modification of syn-
thetic data generation: an algorithm that produces data records through a generative
model conditioned on some seed real data record; this significantly improves quality
but introduces correlations between real and synthetic data. To avoid correlations,
Bindschadler introduces privacy tests that reject unsuitable synthetic data points.
The approach can be used in complex models based on encoder-decoder architecture
by adding noise to a seed in the latent space; it has been evaluated across different
domains from census data to celebrity face images, the latter through a VAE/GAN
architecture [497].

Finally, we note that synthetic data produced with differential privacy guarantees
is also starting to gain legal status; in a technical report [58], Bellovin et al. from the
Stanford Law School discuss various definitions of privacy from the point of view of
what kind of data can be released. They conclude: “...as we recommend, synthetic
data may be combined with differential privacy to achieve a best-of-both-worlds
scenario”, i.e., combining added utility of synthetic data produced by generative
models with formal privacy guarantees.

11.5 Case Study: Synthetic Data in Economics, Healthcare,
and Social Sciences

Synthetic data is increasingly finding its way into economics, healthcare, and social
sciences in a variety of applications. We discuss this set of models and applications
here since often the main concern that drives researchers in these fields to synthetic
data is not lack of data per se but rather privacy issues. A number of models that
guarantee differential privacy have already been discussed above, so in this section,
we concentrate on other approaches and applications.

As long ago as 1993, Rubin [740] discussed the dangers of releasing micro-
data (i.e., information about individual transactions) and the extremely complicated
legal status of data releases, as the released data might be used to derive protected
information even if it had been masked by standard techniques. To avoid these com-
plications, Rubin proposed to use imputed synthetic data instead: given a dataset
with confidential information, “forget” and impute confidential values for a sam-
ple from this dataset, using the same background variables but drawing confidential

11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences 281

data from the predictions of some kind of imputation model. Repeating the pro-
cess for several samples, we get a multiply-imputed population that can then be
released. In the same year (actually, the same special issue of the Journal of Offi-
cial Statistics), Little [530] suggested to also keep the non-confidential part of the
information to improve imputation. By now, synthetic datasets produced by multiple
imputation are a well-established field of statistics, with applications to finance and
economics [195, 713], healthcare [18], social sciences [102], survey statistics [4, 13],
and other domains. Since the main emphasis of the present survey is on synthetic
data for deep learning, we do not go into details about multiple imputation and refer
to the book [207] and the main recent sources in the field [206, 700, 712, 714].

In a very recent work, Heaton and Witte [332] propose another interesting take
on synthetic data in finance. They begin with the well-known problem of overfitting
during backtesting: since there is a very large number of financial products and
relatively short time series available for them, one can always find a portfolio (subset
of products) that works great during backtesting, but it does not necessarily reflect
future performance. The authors suggest to use synthetic data not to train financial
strategies (they regard it as infeasible), but rather to evaluate developed strategies,
generating synthetic data with a different distribution of abnormalities and testing
strategies for robustness in these altered circumstances. Interestingly, the motivation
here is not to improve or choose the best strategies, but to obtain evidence of their
robustness that could be used for regulatory purposes. As a specific application,
the authors use existing fraud detection algorithms to find anomalies in the Kaggle
Credit Card Fraud Detection Dataset [180] and generate synthetic data that balances
the found abnormalities.

However, at present, I know of no direct applications where synthetically gener-
ated financial time series that would lead to improved results in financial forecasting,
developing financial strategies, and the like. In general, financial time series are
notorious for not being amenable to either prediction or accurate modeling, and even
with current state-of-the-art economic models, it looks like generating useful syn-
thetic financial time series is still in the future. Moreover, the reasons we discussed in
Section 8.4 regarding why synthetic data is unpopular in natural language processing
apply here as well.

As for healthcare, this is again a field where the need for synthetic data was under-
stood very early, and this need was mostly caused by privacy concerns: hospitals are
required to protect the confidentiality of their patients. Ever since the first works in
this direction, dating back to early 1990s, researchers mostly concentrated on gener-
ating synthetic electronic medical records (EMR) in order to preserve privacy [44].
Amongmore recent works,MDClone [594] is a system that samples synthetic EMRs
from the distributions learned on existing cohorts, without actually reusing original
data points. Walonoski et al. [898] present the Synthea software suite designed to
simulate the lifespans of synthetic patients and produce realistic synthetic EMRs.
McLaghlan [591] discusses realism in synthetic EMR generation and methods for
its validation, and in another work presents a state transition machine that incorpo-
rates domain knowledge and clinical practice guidelines to generate realistic synthetic
EMRs [592].

282 11 Privacy Guarantees in Synthetic Data

Fig. 11.1 The architecture of medGAN [150]. Blocks with identical labels have shared weights.

Another related direction of research concentrates not on individual EMRs, but
on modeling entire populations of potential patients. Synthetic micro-populations
produced by Smith et al. [805] are intended to match various sociodemographic
conditions found in real cities and use them in imitational modeling to estimate the
effect of interventions. Moniz et al. [610, 746] create synthetic EMRs made avail-
able on the CDC Public Health grid for imitational modeling. Buczak et al. [98]
generate synthetic EMRs for an outbreak of a certain disease (together with back-
ground records). Kartoun [441] progressed from individual EMRs to entire virtual
patient repositories, concentrating on preserving the correct general statistics while
using simulated individual records. However, most of this work does not make use of
modern formalizations of differential privacy or recent developments in generative
models, and only very recently researchers have attempted to bring those into the
healthcare microdata domain as well.

A direct application of GANs for synthetic EMR generation was presented by
Choi et al. [150]. Their medGAN model consists of a generator Gmed, discriminator
Dmed, and an autoencoder with encoder Encmed and decoder Decmed; the architecture
is shown in Fig. 11.1. The autoencoder is trained to reconstruct real data xT ∼ XT ,
while Gmed learns to generate latent representations Gmed(z) from a random seed
z such that Dmed will not be able to differentiate between Decmed(Gmed(z)) and a
real sample xT ∼ XT . Privacy in the medGAN model is established empirically, and
the main justification for privacy is the fact that medGAN uses real data only for the
discriminator and never trains the generator on any real samples. We note, however,
that in terms of generation medGAN is not perfect: for example, Patel et al. [659]
present the CorrGAN model for correlated discrete data generation (with no regard
for privacy) and show improvements overmedGAN with a relatively straightforward
architecture.

The DP-SGD framework has also been applied to GANs in the context of medical
data. We have discussed Beaulieu-Jones et al. [50] above. Another important appli-
cation for synthetic data across many domains, including but not limited to finance,
would be to generate synthetic time series. This, however, has proven to be a more
difficult problem, and solutions are only starting to appear. In particular, Hyland
et al. [228] present the Recurrent GAN (RGAN) and Recurrent Conditional GAN
architectures designed to generate realistic real-valuedmulti-dimensional time series.
They applied the architecture to generating medical time series (vitals measured for

11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences 283

ICU patients) and reported successful generation and ability to train classifiers on
synthetic data, although there was a significant drop in quality when testing on real
data. Hyland et al. also discuss the possibility to use a differentially private training
procedure, applying the DP-SGD framework to the discriminator and thus achieving
differential privacy for the RGAN training. The authors report that after this proce-
dure, synthetic-to-real test results deteriorate significantly but remain reasonable in
classification tasks on ICU patient vitals.

Finally, we note another emerging field of research related to generating synthetic
EMRs for the sake of privacy: generating clinical notes and free-text fields in EMRs
with neural language models (see also Section 8.4). Latest advances in deep learning
for natural language processing have led to breakthroughs in large-scale language
modeling [193, 359, 697], and it has been applied to smaller datasets of clinical
notes as well. Lee [505] uses an encoder-decoder architecture to generate chief
complaint texts for EMRs. Guan et al. [302] propose a GAN architecture called
mtGAN (medical text GAN) for the generation of synthetic EMR text. It is based on
the SeqGAN architecture [982] and is trained with the REINFORCE algorithm; the
primary difference is a condition added by Guan et al. to be able to generate EMRs
for a specific disease or other features. Melamud and Shivade [597] compare LSTM-
based language models for generating synthetic clinical notes, suggesting a new
privacy measure and showing promising results. Further advances in this direction
may be related to the recently developed differentially private languagemodels [593].

11.6 Conclusion

In this chapter, we have investigated a motivation for synthetic data very different
from the rest of the book. Instead ofmaking synthetic data that alleviates the hardships
of collecting and labeling real data, here we have beenmaking synthetic data because
real data, while available, cannot be published for legal or ethical reasons. This
motivation has led to very different methods: now the main problem is to guarantee
that real data is not released by publishing the synthetic dataset. Therefore, in this
chapter,we have beenmostly talking about themain (and probably the only) approach
that can provide these guarantees: differential privacy.

Next, we come to the final chapter of the book. In it, we will try to highlight
the most promising directions for further research, ideas that I believe will bring
interesting advances in the nearest future. Who knows, maybe my readers will be
among those who take up these directions and bring machine learning to new heights
with synthetic data. Let’s find out together!

Chapter 12
Promising Directions for Future Work

In this concluding chapter, we discuss the next steps that we can expect from the
field of synthetic data for deep learning. We consider four different ideas that are
starting to gain traction in this field. First, procedural generation of synthetic data
can allow for much larger synthetic datasets or datasets generated on the fly. Second,
recent works try to make the shift from domain randomization to the generation
feedback loop, adapting synthetic data generation to the model and problem at hand.
Third, we discuss how to best incorporate additional knowledge into the domain
adaptation architectures, and fourth, show examples of introducing extra modalities
into synthetic datasets with the purpose to improve downstream tasks that formally
might not even use these modalities.

12.1 Procedural Generation of Synthetic Data

The first direction that we highlight as important for further study in the field of
synthetic data is procedural generation. Take, for instance, synthetic indoor scenes
that we discussed in Section 7.3. Note that in the main synthetic dataset for indoor
scenes, SUNCG, the 3D scenes, and their layouts were created manually. While we
have seen that this approach has an advantage of several orders of magnitude in
terms of labeled images over real datasets, it still cannot scale up to millions of 3D
scenes. The only way to achieve that would be to learn a model that can generate
the contents of a 3D scene (in this case, an indoor environment with furniture and
supported objects), varying it stochastically according to some random input seed.
This is a much harder problem than it might seem: e.g., a bedroom is much more
than just a predefined set of objects placed at random positions.

There is a large relatedfield of procedural content generation for videogames [336,
786, 863], but we highlight a recent work by Qi et al. [687] as representative for state
of the art and more directly related to synthetic data. They propose a human-centric

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4_12

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75178-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-75178-4_12

286 12 Promising Directions for Future Work

(a) (b) (c) (d)

Fig. 12.1 Sample interior scenes generated procedurally byQi et al. [687], with two rendered views
and a heatmap: (a) bathroom; (b) bedroom; (c) dining room; (d) garage.

approach to modeling indoor scene layout, learning a stochastic scene grammar
based on an attributed spatial AND-OR graph [1026] that relates scene components,
objects, and corresponding human activities. A scene configuration is represented by
a parse graphwhose probability is modeledwith potential functions corresponding to
functional grouping relations between furniture, relations between a supported object
and supporting furniture, and human-centric relations between the furniture based
on the map of sampled human trajectories in the scene. After learning the weights of
potential functions corresponding to the relations between objects, MCMC sampling
can be used to generate new indoor environments. Qi et al. train their model on the
very same SUNCG dataset and show that the resulting layouts are hard to distinguish
(by an automated state-of-the-art classifier trained on layout segmentation maps)
from the original SUNCG data. The sample pictures—some of them are reproduced
in Fig. 12.1—also look quite convincing.

In Section 7.2, we have already discussed ProcSy by Khan et al. [449]. In addition
to randomizingweather and lighting conditions, another interesting part of their work
is the procedural generation of cities and outdoor scenes. They base this procedural
generation on the method of Parish and Müller [656], which is, in turn, based on the
notion of Lindenmayer systems (L-systems) [686] and embodied in the CityEngine
tool [954] (see Section 7.2). They use a part of real OpenStreetMaps data for the
road network and buildings, but we hope that future work based on the same ideas
can offer fully procedural modeling of cities and road networks.

We believe that procedural generation can lead to an even larger scale of synthetic
data adoption in the future, covering cases when simply placing the objects at random
is not enough. The nature of the model used for procedural generation may differ
depending on the specific field of application, but, in general, for procedural gener-
ation, one needs to train probabilistic generative models that allow for both learning
from real or manually prepared synthetic data and then generating new samples.

12.2 From Domain Randomization to the Generation Feedback Loop 287

Algorithm 10: Learning in the SimOpt framework

Initialize pφ(ξ), ε;
repeat

Env := Simulation
(
pφ

)
;

πθ,pφ := RL(Env);

τobreal ∼ RealRollout
(
πθ,pφ

)
;

ξ ∼ pφ;
τobξ ∼ SimRollout

(
πθ,pφ , ξ

)
;

c(ξ) := D
(
τobreal, τ

ob
ξ

)
;

pφ := UpdateDistribution
(
pφ, ξ, c(ξ), ε

)
;

until a stopping condition is met;

12.2 From Domain Randomization to the Generation
Feedback Loop

Chebotar et al. [126] make one of the first steps in a very interesting direction by
introducing the SimOpt framework. They are also working on domain transfer, trans-
ferring continuous control policies for robotic arms from synthetic-to-real domain.
But importantly, they attempt to close the feedback loop between synthetic data gen-
eration and domain transfer via domain randomization. Previous works on domain
randomization (see Section 9.1)manually tuned the distribution of simulation param-
eters pφ(ξ) such that a policy trained on Dξ∼pφ

would perform well. On the contrary,
in [126] the parameters of pφ(ξ) are learned automatically via a feedback loop from
the results of real observations.

The SimOpt framework is presented inAlgorithm10 and illustrated in Figure 12.2.
The idea is to create an environment from the simulation with a given distribution of
parameters pφ, then train a policy πθ,pφ

with some reinforcement learning algorithm,

Fig. 12.2 The structure of the SimOpt framework [126].

288 12 Promising Directions for Future Work

and then sample two sets of trajectories with the trained policy πθ,pφ
: real-world

observation trajectories τ ob
real and simulated observation trajectories τ ob

ξ . The idea is
to update the distribution pφ in such a way that the two sets of trajectories will
become closer to each other, which means that training in simulation will produce
agents that perform in similar ways in the simulation and in the real world.

A similar approach on the level of data augmentation was presented in [706]. As
we discussed in Section 3.4, data augmentation differs from synthetic data in that it
modifies real data rather than creates new; the modifications are usually done with
predefined transformation functions (TFs) that do not change the target labels. This
assumption is somewhat unrealistic: e.g., if we augment by shifting or cropping the
image for image classification, we might crop out exactly the object that determines
the class label. The work [706] relaxes this assumption, treating TFs as black boxes
that might move the data point out of all necessary classes, into the “null” class, but
cannot mix up different classes of objects. The authors train a generative sequence
model with an adversarial objective that learns a sequence of TFs that would not
move data points into the “null” class by training a null class discriminator D∅

φ and
a generator Gθ for sequences of TFs hL ◦ . . . ◦ h1:

min
θ

max
φ

Eτ∼Gθ
Ex∼U

[
log(1 − D∅

φ(hτL ◦ . . . ◦ hτ1(x)))
]

+ Ex ′∼U
[
log(D∅

φ(x
′))

]
,

where U is some distribution of (possibly unlabeled) data. Since TFs are not nec-
essarily differentiable or deterministic, learning Gθ is defined in the syntax of rein-
forcement learning.

Pashevich et al. [658] note that the space of augmentation functions is very large
(for 8 different transformations they estimate to have ≈ 3.6 · 1014 augmentation
functions), and propose to use Monte Carlo Tree Search (MCTS) [169, 463] to find
the best augmentations by automatic exploration. They apply this idea to augmenting
synthetic images for sim-to-real policy transfer for robotic manipulation and report
improved results in real-world tasks such as cube stacking or cup placing.

The next step was taken by Google Brain researchers Cubuk et al. [172], who
continued this work by presenting a framework called AutoAugment for learning
augmentation strategies from data. Their approach is modeled after recent advances
in neural architecture search [35, 57, 1031, 1032] that have recently yielded new
families of neural architectures for feature extraction from images and image clas-
sification (EfficientNet, see Section 3.2 for more details), object detection (the Effi-
cientDet family, see Section 3.3), and more. Cubuk et al. use reinforcement learning
to find the best augmentation policy composed of a number of parameterized opera-
tions. As a result, they significantly improve state-of-the-art results on such classical
datasets as CIFAR-10, CIFAR-100, and ImageNet.

In [172], the controller is trainedbyproximal policyoptimization, a rather involved
reinforcement learning algorithm [772]. Also, reinforcement learning on this scale
definitely takes up a lot of computational resources. So, can this research help us
when we are not Google Brain and cannot run this pipeline for our problem? Cubuk
et al. note that the resulting augmentation strategies can indeed transfer across a wide

12.2 From Domain Randomization to the Generation Feedback Loop 289

variety of datasets and network architectures. On the other hand, this transferability
is far from perfect, and so far the results of AutoAugment pop up in other works as
often as the authors would probably like.

Zakharov et al. [986] look at a similar idea from the point of view of domain
randomization (see also Section 9.1). Their framework consists of a recognition
network that does the basic task (say, object detection and pose estimation) and
a deception network that transforms the synthetic input with an encoder-decoder
architecture. Training is done in an adversarial way, alternating between two phases:

• fixing the weights of the deception network, perform updates of the recognition
network as usual, serving synthetic images transformed by the deception network
as inputs;

• fixing the weights of the recognition network, perform updates of the deception
network with the same objective but with reversed gradients, updating the decep-
tion network so as to make the inputs hard for the recognition network.

The deception network is organized and constrained in such a way that its trans-
formations do not change the ground truth labels or change them in predictable
ways. This adversarial framework exhibits performance comparable to state-of-the-
art domain adaptation frameworks and shows superior generalization capabilities
(better avoiding overfitting).

There are two recent works that represent important steps towards closing
this feedback loop. First, the Meta-Sim framework [433], which we discussed in
Section 9.2 in the context of high-level procedural scene generation, also makes
inroads in this direction: the distribution parameters for synthetic data generation
are tuned not only to bring the synthetic data distribution closer to the real one but
also to improve the performance on downstream tasks such as object detection. The
difference here is that instead of low-level parameters of image augmentation func-
tions Meta-Sim adapts high-level parameters such as the synthetic scene structure
captured as a scene graph.

Second, the Visual Adversarial Domain Randomization and Augmentation
(VADRA)model by Khirodkar et al. [450] makes the next step in developing domain
randomization ideas: instead of simply randomizing synthetic data or making it sim-
ilar to real, let us learn a policy πω that generates rendering parameters in such a
way that the downstream model learns best. They use the REINFORCE algorithm to
obtain stochastic gradients for the objective J (ω) which consists of the downstream
model performance (for supervised data) and the errors of a domain classifier (for
unsupervised data); this is the “adversarial” part of VADRA.

The structure of learning in the VADRA framework, shown in Fig. 12.3, is a good
illustration to the general idea of closing the feedback loop. In VADRA, the policy
πω produces rendering parameters θ that are used by the synthetic data generator to
produce a data sample (x, y). This data sample is used to produce a hypothesis (train
a model for the downstream task), and the error of this hypothesis (performance
of this model) is used as the reward for learning πω . As a result, VADRA works
much better for synthetic-to-real transfer on problems such as object detection and
segmentation than regular domain randomization.

290 12 Promising Directions for Future Work

Fig. 12.3 The structure of the VADRA framework [450].

Similar ideas have been recently explored by Mehta et al. [595], who present
Active Domain Randomization, again learning a policy for generating better simu-
lated instance, but this time in the context of generating Markov decision processes
for reinforcement learning, Ruiz et al. [741], who also learn a policy πω that outputs
the parameters for a simulator, learning to generate data tomaximize validation accu-
racy, with reinforcement learning techniques, and Louppe et al. [558], who provide
an inference algorithm based on variational approximations for fitting the parameters
of a domain-specific non-differentiable simulator.

We believe that this meta-approach to automatically learning the best way to
generate synthetic data, both high-level and low-level, is an important new direction
that might work well for other applications too. In my opinion, this idea might be
further improved by methods such as the SPIRAL framework by Ganin et al. [258]
or neural painter models [375, 617, 1021] that train adversarial architectures to
generate images in the form of sequences of brushstrokes or higher-level image
synthesis programs with instructions such as “place object X at location Y ”; these
or other kinds of high-level descriptions for images might be more convenient for
the generation feedback loop. Whether with these ideas or others, I expect further
developments in this direction in the nearest future.

12.3 Improving Domain Adaptation with Domain
Knowledge

To showcase this direction, let us consider one more work on gaze estimation (see
Section 10.2) that presents a successful application of a hybrid approach to image
refinement.Namely,Wang et al. [905] propose a very different approach to generating
synthetic data for gaze estimation: a hierarchical generativemodel (HGM) that is able
to operate both top-down, generating new synthetic images of eyes, and bottom-up,
performing Bayesian inference to estimate the gaze in a given new image.

The general structure of their approach is shown in Figure 12.4. Specifically,
Wang et al. design a probabilistic hierarchical generative shape model (HGSM)
based on 27 eye-related landmarks that together represent the shape of a human
eye. The model connects personal parameters that define variation between humans,
visual axis parameters that define eye gaze, and eye shape parameters. The structure
of HGSM is based on anatomical studies, and its parameters are learned from the

12.3 Improving Domain Adaptation with Domain Knowledge 291

Fig. 12.4 General structure of the hierarchical generative model for eye image synthesis and gaze
estimation [905]. Left to right: top-down image synthesis pipeline; right to left: bottom-up eye gaze
estimation pipeline.

UnityEyes dataset [934]. During generation, HGSM generates eye shape parameters
(positions of the 27 landmarks in the eyeball’s spherical coordinate system) based
on the given gaze direction.

The second part of the pipeline generates the actual images with a conditional
BiGAN (bidirectionalGAN) architecture [201]. BidirectionalGAN is an architecture
that learns to transform data in both directions, from latent representations to the
objects and back, while regular GANs learn to generate only the objects from latent
representations. The conditionalBiGAN(c-BiGAN)modification developed in [905]
does the same with a condition, which in this case are the eye shape parameters
produced byHGSM.As a result, themodel byWang et al. canwork in both directions:

• generate eye images by sampling the gaze from a prior distribution, sampling 2D
eye shape parameters from HGSM, and then using the generator G of c-BiGAN
to generate a refined image;

• infer gaze parameters from an eye image by first estimating the eye shape through
the encoder E of c-BIGAN and then performing Bayesian inference in the HGSM
to find the posterior distribution of gaze parameters.

Wang et al. report performance improvements of the model itself applied to gaze
estimation over [793] for sufficiently large training sets, and also show that the
synthetic data generated by themodel improves the results of standard gaze estimators
(LeNet, as used in [1003]).

In general, the approach of [905] to combining probabilistic generative models
that incorporate domain knowledge and GAN-based architectures appears to be a
very interesting direction for further research. I believe this approach can be suitable
for applications other than gaze estimation.

12.4 Additional Modalities for Domain Adaptation
Architectures

Another natural idea that has not been used too widely yet is to use the additional
data modalities such as depth maps or 3D volumetric data, which are available for
free in synthetic datasets but usually unavailable in real ones, to improve the tasks
that might, on the surface, not require these additional modalities at all.

292 12 Promising Directions for Future Work

Fig. 12.5 General structure of the GIO-Ada model with input- and output-level domain adapta-
tion [142].

Pioneering work in this direction has been recently done by Chen et al. [142].
They note that depth estimation and segmentation are related tasks that are increas-
ingly learned together with multitask learning architectures [444, 665, 961] and then
propose to use this idea to improve synthetic-to-real domain adaptation. Their model,
called Geometrically Guided Input-Output Adaptation (GIO-Ada), is based on the
PatchGAN architecture [389] intended for image translation.

We have illustrated the GIO-Ada model on Figure 12.5. Similar to the refiners
considered in Section 10.3, they train a GAN generator to refine the synthetic image,
but the refiner takes as input not just a synthetic image xS but an input triple (xS, y,d),
where xS is a synthetic image, y is its segmentation map, and d is its depth map.
Moreover, they also incorporate output-level adaptation, where a separate genera-
tor predicts segmentation and depth maps, and a discriminator tries to distinguish
whether these maps came from a synthetic transformed image or from a real one.
In this way, the model can use the depth information to obtain additional cues to
further improve segmentation on real images, and the output-level adaptation brings
segmentation results on synthetic and real domains closer together.

Specifically, the GIO-Ada model optimizes, in an adversarial way, the following
objective:

min
GGIO

img ,G
GIO
task

max
DGIO

img ,D
GIO
out

[
LGIO

seg + λ1LGIO
depth + λ2LGIO

image + λ3LGIO
out

]
,

where

• GGIO
img is an image transformation network that performs input-level adaptation,

i.e., produces a transformed image x̂ = GGIO
img (x, y,d);

• GGIO
task is the output-level adaptation network that predicts the segmentation and

depth maps (ỹ, d̃) = GGIO
task (x);• DGIO

img is the image discriminator that tries to distinguish between x̂S and xT , and

DGIO
out is the output discriminator that distinguishes between (ỹS, d̃S) = GGIO

task (x̂S)
and (ỹT , d̃T) = GGIO

task (xT);

12.4 Additional Modalities for Domain Adaptation Architectures 293

• LGIO
seg is the segmentation cross-entropy loss LGIO

seg = ExS∼psyn

[
CE (yS, ỹS)

]
;

• LGIO
depth is the depth estimation L1-loss LGIO

depth = ExS∼psyn

[∥∥∥dS − d̃S

∥∥∥
1

]
;

• LGIO
image is the GAN loss for DGIO

img :

LGIO
image = ExT ∼preal

[
log DGIO

img (xT)
]

+ ExS∼psyn

[
log(1 − DGIO

img (x̂S))
]
;

• LGIO
out is the GAN loss for DGIO

out :

LGIO
out = ExT ∼preal

[
log DGIO

out (ỹT , d̃T)
]

+ ExS∼psyn

[
log(1 − DGIO

out (ỹS, d̃S))
]
.

Chen et al. report promising results on standard synthetic-to-real adaptations:
Virtual KITTI to KITTI and SYNTHIA to Cityscapes (see Section 7.2). This, how-
ever, looks to us as merely a first step in the very interesting direction of using
additional data modalities easily provided by synthetic data generators to further
improve domain adaptation.

12.5 Conclusion

And with this, we come to the last section of the whole book. In this work, we have
attempted a survey of one of the most promising general techniques on the rise in
modern deep learning, especially computer vision: synthetic data. This source of
virtually limitless perfectly labeled data has been explored in many problems, but
we believe that many more potential use cases still remain.

In direct applications of synthetic data, we have discussedmany different domains
and use cases, from basic computer vision tasks such as stereo disparity estimation or
semantic segmentation to full-scale simulated environments for autonomous driving,
unmanned aerial vehicles, and robotics. In the domain adaptation part, we have
surveyed a wide variety of generative models for synthetic-to-real refinement and
for feature-level domain adaptation. As another important field of synthetic data
applications,wehave considered data generationwith differential privacyguarantees.
We have also reviewed the works dedicated to improving synthetic data generation
and outlined potential promising directions for further research.

In general, throughout this book, we have seen synthetic data work well across
a wide variety of tasks and domains. I believe that synthetic data is essential for
further development of deep learning: many applications require labeling which is
expensive or impossible to do by hand, other applications have awide underlying data
distribution that real datasets do not or cannot fully cover, yet other applications may
benefit from additional modalities unavailable in real datasets, and so on.Moreover, I
believe that synthetic data will find new applications in the near future. For example,

294 12 Promising Directions for Future Work

while this book does not yet have a section devoted to sound and speech processing,
works that use synthetic data in this domain are already beginning to appear [510,
745]. As synthetic data becomes more realistic (where necessary) and encompasses
more use cases and modalities, I expect it to play an increasingly important role in
deep learning.

I strongly believe that synthetic data will be indispensable in the future of deep
learning. Let us build this future together!

References

1. Abadi,M.,Chu,A.,Goodfellow, I.,McMahan,H.B.,Mironov, I., Talwar,K., Zhang, L.:Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pp. 308–318. ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2976749.2978318

2. Abbasi, A., Kalkan, S., Sahillioglu, Y.: Deep 3d semantic scene extrapolation. Vis. Comput.
35, 271–279 (2018)

3. Abowd, J., Schneider, M., Vilhuber, L.: Differential privacy applications to bayesian and
linear mixed model estimation. J. Priv. Confid. 5(1), 185–205 (2013)

4. Abowd, J., Stinson, M., Benedetto, G.: Final report to the social security administration on
the sipp/ssa/irs public use file project. Technical report, Longitudinal Employer—Household
Dynamics Program, U.S. Bureau of the Census, Washington, DC (2006) https://hdl.handle.
net/1813/43929

5. AbuAlhaija,H.,Mustikovela, S.K.,Mescheder, L.,Geiger,A.,Rother,C.:Augmented reality
meets computer vision: efficient data generation for urban driving scenes. Int. J. Comput.
Vis. 126(9), 961–972 (2018). https://doi.org/10.1007/s11263-018-1070-x

6. Ács, G., Melis, L., Castelluccia, C., Cristofaro, E.D.: Differentially private mixture of gen-
erative neural networks. CoRR (2017). arXiv e-prints abs:1709.04514

7. Adiprawita, W., Ahmad, A.S., Semibiring, J.: Hardware in the loop simulator in UAV rapid
development life cycle. CoRR (2008). arXiv e-prints abs:0804.3874

8. Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C.L., Parikh, D., Batra, D.: VQA:
visual question answering. Int. J. Comput. Vis. 123(1), 4–31 (2017). https://doi.org/10.
1007/s11263-016-0966-6

9. Aguero, C., Koenig, N., Chen, I., Boyer, H., Peters, S., Hsu, J., Gerkey, B., Paepcke, S.,
Rivero, J., Manzo, J., Krotkov, E., Pratt, G.: Inside the virtual robotics challenge: simulating
real-time robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2), 494–506 (2015).
https://doi.org/10.1109/TASE.2014.2368997

10. Akbani, O., Gokrani, A., Quresh, M., Khan, F.M., Behlim, S.I., Syed, T.Q.: Character
recognition in natural scene images. In: 2015 International Conference on Information
and Communication Technologies (ICICT), pp. 1–6 (2015). https://doi.org/10.1109/ICICT.
2015.7469575

11. Al-Kaff, A., Martín, D., García, F., de la Escalera, A., Armingol, J.M.: Survey of computer
vision algorithms and applications for unmanned aerial vehicles. Expert Syst. Appl. 92,
447–463 (2018). https://doi.org/10.1016/j.eswa.2017.09.033

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
S. I. Nikolenko, Synthetic Data for Deep Learning Optimization, Springer Optimization
and Its Applications 174, https://doi.org/10.1007/978-3-030-75178-4

295

https://doi.org/10.1145/2976749.2978318
https://hdl.handle.net/1813/43929
https://hdl.handle.net/1813/43929
https://doi.org/10.1007/s11263-018-1070-x
http://arxiv.org/abs/abs:1709.04514
http://arxiv.org/abs/abs:0804.3874
https://doi.org/10.1007/s11263-016-0966-6
https://doi.org/10.1007/s11263-016-0966-6
https://doi.org/10.1109/TASE.2014.2368997
https://doi.org/10.1109/ICICT.2015.7469575
https://doi.org/10.1109/ICICT.2015.7469575
https://doi.org/10.1016/j.eswa.2017.09.033
https://doi.org/10.1007/978-3-030-75178-4

296 References

12. Al-Musawi, N.J., Hasson, S.T.: Improving video streams summarization using synthetic
noisy video data. Int. J. Adv. Comput. Sci. Appl. 6(12) (2015). https://doi.org/10.14569/
IJACSA.2015.061233

13. Alfons, A., Kraft, S., Templ, M., Filzmoser, P.: Simulation of close-to-reality population
data for household surveys with application to eu-silc. Stat. Methods Appl. 20(3), 383–407
(2011). https://doi.org/10.1007/s10260-011-0163-2

14. Alonso, E., Moysset, B., Messina, R.O.: Adversarial generation of handwritten text images
conditioned on sequences. CoRR (2019). arXiv e-prints abs:1903.00277

15. Alvernaz, S., Togelius, J.: Autoencoder-augmented neuroevolution for visual doom playing.
In: 2017 IEEE Conference on Computational Intelligence and Games (CIG) pp. 1–8 (2017)

16. Amodei,D.,Hernandez,D., Sastry,G.,Clark, J., Brockman,G., Sutskever, I.:Ai and compute
(2018). https://openai.com/blog/ai-and-compute/

17. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: A general-purpose face recogni-
tion library with mobile applications. Technical Report, CMU-CS-16-118, CMU School of
Computer Science (2016)

18. An,D., Little, R.J.A.,McNally, J.W.:Amultiple imputation approach to disclosure limitation
for high-age individuals in longitudinal studies. Stat.Med.29(17), 1769–1778 (2010). https://
doi.org/10.1002/sim.3974

19. Andersen, P., Goodwin, M., Granmo, O.: Deep rts: A game environment for deep reinforce-
ment learning in real-time strategy games. In: 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 1–8 (2018). https://doi.org/10.1109/CIG.2018.8490409

20. Anderson,C.,Du,X.,Vasudevan,R., Johnson-Roberson,M.: Stochastic sampling simulation
for pedestrian trajectory prediction (2019). arXiv e-prints abs:1903.01860

21. Ando, H., Lubashevsky, I., Zgonnikov, A., Saito, Y.: Statistical properties of car following:
theory and driving simulator experiments (2015). arXiv e-prints arXiv:1511.04640

22. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Deep compositional question answering
with neural module networks. CoRR (2015). arXiv e-prints abs:1511.02799

23. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Learning to compose neural networks for
question answering. CoRR (2016). arXiv e-prints abs:1601.01705

24. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New
benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2014)

25. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New
benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3686–3693 (2014). https://doi.org/10.1109/CVPR.2014.471

26. Angelino, C.V., Baraniello, V.R., Cicala, L.: High altitude UAV navigation using imu, GPS
and camera. In: Proceedings of the 16th International Conference on Information Fusion,
FUSION 2013, Istanbul, Turkey, 9–12 July 2013, pp. 647–654 (2013)

27. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In:
D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, Inter-
national Convention Centre, Sydney, Australia (2017)

28. Armanious, K., Yang, C., Fischer, M., Küstner, T., Nikolaou, K., Gatidis, S., Yang, B.:
Medgan:Medical image translation using gans.CoRR (2018). arXiv e-prints abs:1806.06397

29. Arnab, A., Zheng, S., Jayasumana, S., Romera-Paredes, B., Larsson, M., Kirillov, A.,
Savchynskyy, B., Rother, C., Kahl, F., Torr, P.H.S.: Conditional random fields meet deep
neural networks for semantic segmentation: Combining probabilistic graphical models with
deep learning for structured prediction. IEEE Signal Process. Mag. 35(1), 37–52 (2018).
https://doi.org/10.1109/MSP.2017.2762355

30. Arnold, C., Neunhoeffer, M., Sternberg, S.: Releasing differentially private synthetic micro-
data with bayesian gans (2019). http://www.marcel-neunhoeffer.com/pdf/papers/dp_gan.
pdf

31. Aubry, M., Maturana, D., Efros, A., Russell, B., Sivic, J.: Seeing 3d chairs: exemplar part-
based 2d-3d alignment using a large dataset of cad models. In: CVPR (2014)

https://doi.org/10.14569/IJACSA.2015.061233
https://doi.org/10.14569/IJACSA.2015.061233
https://doi.org/10.1007/s10260-011-0163-2
http://arxiv.org/abs/abs:1903.00277
https://openai.com/blog/ai-and-compute/
https://doi.org/10.1002/sim.3974
https://doi.org/10.1002/sim.3974
https://doi.org/10.1109/CIG.2018.8490409
http://arxiv.org/abs/abs:1903.01860
http://arxiv.org/abs/1511.04640
http://arxiv.org/abs/abs:1511.02799
http://arxiv.org/abs/abs:1601.01705
https://doi.org/10.1109/CVPR.2014.471
http://arxiv.org/abs/abs:1806.06397
https://doi.org/10.1109/MSP.2017.2762355
http://www.marcel-neunhoeffer.com/pdf/papers/dp_gan.pdf
http://www.marcel-neunhoeffer.com/pdf/papers/dp_gan.pdf

References 297

32. Aubry, M., Russell, B.C.: Understanding deep features with computer-generated imagery.
In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
ICCV ’15, pp. 2875–2883. IEEE Computer Society, Washington, DC, USA (2015). https://
doi.org/10.1109/ICCV.2015.329

33. Bailo, O., Ham, D., Shin, Y.M.: Red blood cell image generation for data augmentation using
conditional generative adversarial networks. CoRR (2019). arXiv e-prints abs:1901.06219

34. Bak, S., Carr, P., Lalonde, J.F.: Domain adaptation through synthesis for unsupervised person
re-identification. In: ECCV (2018)

35. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. CoRR (2016). arXiv e-prints abs:1611.02167

36. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and
evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011). https://
doi.org/10.1007/s11263-010-0390-2

37. Bansal, A., Castillo, C., Ranjan, R., Chellappa, R.: The do’s and don’ts for cnn-based face
verification (2017). arXiv preprint arXiv:1705.07426

38. Bansal, A., Nanduri, A., Castillo, C.D., Ranjan, R., Chellappa, R.: Umdfaces: An annotated
face dataset for training deep networks (2016). arXiv preprint arXiv:1611.01484v2

39. Bansal, M., Krizhevsky, A., Ogale, A.S.: Chauffeurnet: Learning to drive by imitating the
best and synthesizing the worst (2018). arXiv preprint arXiv:1812.03079

40. Bao, Y., Zhou, H., Huang, S., Li, L., Mou, L., Vechtomova, O., Dai, X.Y., Chen, J.: Gen-
erating sentences from disentangled syntactic and semantic spaces. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 6008–6019.
Association for Computational Linguistics, Florence, Italy (2019)

41. Barati, E., Chen, X., Zhong, Z.: Attention-based deep reinforcement learning for multi-view
environments. CoRR (2019). arXiv preprint arXiv:1905.03985

42. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J.
Comput. Vis. 12(1), 43–77 (1994). https://doi.org/10.1007/BF01420984

43. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J.
Comput. Vis. 12(1), 43–77 (1994). https://doi.org/10.1007/BF01420984

44. Barrows, R.C., Clayton, P.D.: Privacy, confidentiality, and electronic medical records. J. Am.
Med. Inform. Assoc. (JAMIA) 3(2), 139–48 (1996)

45. Baur, C., Albarqouni, S., Navab, N.: Melanogans: High resolution skin lesion synthesis with
gans. CoRR (2018). arXiv preprint arXiv:1804.04338

46. Bayraktar, E., Yigit, C.B., Boyraz, P.: A hybrid image dataset toward bridging the gap
between real and simulation environments for robotics. Mach. Vis. Appl. 30, 23–40 (2018)

47. Bayraktar, E., Yigit, C.B., Boyraz, P.: A hybrid image dataset toward bridging the gap
between real and simulation environments for robotics. Mach. Vis. Appl. 30(1), 23–40
(2019). https://doi.org/10.1007/s00138-018-0966-3

48. Bayramoglu, N., Kaakinen, M., Eklund, L., Heikkilä, J.: Towards virtual h e staining of
hyperspectral lung histology images using conditional generative adversarial networks. In:
2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 64–71
(2017). https://doi.org/10.1109/ICCVW.2017.15

49. Beattie, C., Leibo, J.Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A.,
Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S., Cant, M., Cain,
A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Legg, S., Petersen, S.: Deepmind lab.
CoRR (2016). arXiv preprint arXiv:1612.03801

50. Beaulieu-Jones, B.K., Wu, Z.S., Williams, C., Lee, R., Bhavnani, S.P., Byrd, J.B., Greene,
C.S.: Privacy-preserving generative deep neural networks support clinical data sharing.
bioRxiv (2018). https://doi.org/10.1101/159756

51. Bechtel, W.: Connectionism and the philosophy of mind: an overview*. South. J. Philos.
26(S1), 17–41 (1988). https://doi.org/10.1111/j.2041-6962.1988.tb00461.x

52. Bechtel, W., Abrahamsen, A.: Connectionism and the Mind: An Introduction to Parallel
Processing in Networks. Blackwell, Cambridge, MA (1990)

https://doi.org/10.1109/ICCV.2015.329
https://doi.org/10.1109/ICCV.2015.329
http://arxiv.org/abs/abs:1901.06219
http://arxiv.org/abs/abs:1611.02167
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/s11263-010-0390-2
http://arxiv.org/abs/1705.07426
http://arxiv.org/abs/1611.01484v2
http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1905.03985
https://doi.org/10.1007/BF01420984
https://doi.org/10.1007/BF01420984
http://arxiv.org/abs/1804.04338
https://doi.org/10.1007/s00138-018-0966-3
https://doi.org/10.1109/ICCVW.2017.15
http://arxiv.org/abs/1612.03801
https://doi.org/10.1101/159756
https://doi.org/10.1111/j.2041-6962.1988.tb00461.x

298 References

53. Beers, A., Brown, J.M., Chang, K., Campbell, J.P., Ostmo, S., Chiang, M.F., Kalpathy-
Cramer, J.: High-resolution medical image synthesis using progressively grown generative
adversarial networks. CoRR (2018). arXiv preprint arXiv:1805.03144

54. Bell, R.M., Koren, Y.: Lessons from the netflix prize challenge. SIGKDD Explor. Newsl.
9(2), 75–79 (2007). https://doi.org/10.1145/1345448.1345465

55. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an
evaluation platform for general agents. J. Artif. Int. Res. 47(1), 253–279 (2013)

56. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE
(Wiley Series in Agent Technology). John Wiley & Sons Inc, USA (2007)

57. Bello, I., Zoph, B., Vasudevan, V., Le, Q.V.: Neural optimizer search with reinforcement
learning. In: D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 459–468.
PMLR, International Convention Centre, Sydney, Australia (2017)

58. Bellovin, S.M., Dutta, P.K., Reitinger, N.: Privacy and synthetic datasets. Technical Report,
SSRN (2018)

59. Ben-Cohen, A., Klang, E., Raskin, S.P., Soffer, S., Ben-Haim, S., Konen, E., Amitai, M.M.,
Greenspan, H.: Cross-modality synthesis from CT to PET using FCN and GAN networks
for improved automated lesion detection. CoRR (2018). arXiv preprint arXiv:1802.07846

60. Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. In: Proceedings of the 31st
International Conference onNeural Information Processing Systems,NIPS’17, pp. 752–762.
Curran Associates Inc., USA (2017)

61. Benenson, R., Popov, S., Ferrari, V.: Large-scale interactive object segmentation with human
annotators. In: CVPR (2019)

62. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Neural Information Processing Systems (NIPS) (2007)

63. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings
of the 26th Annual International Conference on Machine Learning, ICML ’09, p. 41–48.
Association forComputingMachinery,NewYork,NY,USA (2009). https://doi.org/10.1145/
1553374.1553380

64. Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of the KDDCupWorkshop 2007,
pp. 3–6. ACM, New York (2007)

65. Bermúdez-Chacón, R., Becker, C., Salzmann, M., Fua, P.: Scalable unsupervised domain
adaptation for electronmicroscopy. In: Ourselin, S., Joskowicz, L., Sabuncu,M.R., Unal, G.,
Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI
2016, pp. 326–334. Springer International Publishing, Cham (2016)

66. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial
networks. CoRR (2017). arXiv preprint abs:1703.10717

67. Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3d humans. CoRR (2019). arXiv
preprint abs:1912.02792

68. Bewley, A., Rigley, J., Liu, Y., Hawke, J., Shen, R., Lam, V.D., Kendall, A.: Learning to
drive from simulation without real world labels (2018). arXiv preprint abs:1812.03823

69. Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N., Torr, P.H.S.: Playing
doom with slam-augmented deep reinforcement learning. CoRR (2016). arXiv preprint
abs:1612.00380

70. Bielski, A., Favaro, P.: Emergence of object segmentation in perturbed generative models
(2019). arXiv preprint abs:1905.12663

71. Bindschadler, V.: Privacy-preserving seedbased data synthesis. Ph.D. thesis, University of
Illinois at Urbana-Champaign (2018)

72. Bisagno, N., Conci, N.: Virtual camera modeling for multi-view simulation of surveillance
scenes. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 2170–2174
(2018). https://doi.org/10.23919/EUSIPCO.2018.8553409

73. Bittar, A., de Oliveira, N.M.F., de Figueiredo, H.V.: Hardware-in-the-loop simulation with
x-plane of attitude control of a suav exploring atmospheric conditions. J. Intell. Robot. Syst.
73(1), 271–287 (2014). https://doi.org/10.1007/s10846-013-9905-8

http://arxiv.org/abs/1805.03144
https://doi.org/10.1145/1345448.1345465
http://arxiv.org/abs/1802.07846
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.23919/EUSIPCO.2018.8553409
https://doi.org/10.1007/s10846-013-9905-8

References 299

74. Blanz, V., Scherbaum, K., Seidel, H.: Fitting a morphable model to 3d scans of faces. In:
2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007). https://doi.
org/10.1109/ICCV.2007.4409029

75. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of the
26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’99, pp. 187–194. ACMPress/Addison-Wesley Publishing Co., NewYork, NY, USA (1999).
https://doi.org/10.1145/311535.311556

76. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans.
Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003). https://doi.org/10.1109/TPAMI.2003.
1227983

77. Bochinski, E., Eiselein,V., Sikora, T.: Training a convolutional neural network formulti-class
object detection using solely virtual world data. In: 2016 13th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), pp. 278–285 (2016). https://doi.
org/10.1109/AVSS.2016.7738056

78. Bochkovskiy, A.,Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object
detection (2020). arXiv e-prints arXiv:2004.10934

79. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. CoRR (2016). arXiv e-prints abs:1607.04606

80. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection
methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013). https://doi.org/10.1007/
s10115-012-0487-8

81. Bondi, E., Dey, D., Kapoor, A., Piavis, J., Shah, S., Fang, F., Dilkina, B.N., Hannaford, R.,
Iyer,A., Joppa, L., Tambe,M.:Airsim-w:A simulation environment forwildlife conservation
with uavs. In: COMPASS (2018)

82. Bonetto, M., Korshunov, P., Ramponi, G., Ebrahimi, T.: Privacy in mini-drone based video
surveillance. In: 2015 11th IEEE International Conference and Workshops on Automatic
Face and Gesture Recognition (FG) 04, 1–6 (2015)

83. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. J. Intell.
Rob. Syst. 53(3), 263 (2008). https://doi.org/10.1007/s10846-008-9235-4

84. Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Sagastizábal, C.A.: Numerical Optimization:
Theoretical and Practical Aspects. Springer, Berlin Heidelberg (2013)

85. Borrego, J., Dehban,A., Figueiredo,R.,Moreno, P., Bernardino,A., Santos-Victor, J.:Apply-
ing domain randomization to synthetic data for object category detection. CoRR (2018).
arXiv e-prints abs:1807.09834

86. Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L.,
Ibarz, J., Pastor, P., Konolige, K., Levine, S., Vanhoucke, V.: Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA) pp. 4243–4250 (2018)

87. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-
level domain adaptation with generative adversarial networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) pp. 95–104 (2017)

88. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation
networks. In: Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems, NIPS’16, pp. 343–351. Curran Associates Inc., USA (2016)

89. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural
image synthesis. CoRR (2018). arXiv e-prints abs:1809.11096

90. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural
image synthesis. In: International Conference on Learning Representations (2019)

91. Brooks, R.A.: Intelligence without reason. In: Proceedings of the 12th International Joint
Conference on Artificial Intelligence, Vol. 1, IJCAI’91, p. 569–595. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1991)

92. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1–3), 139–159 (1991).
https://doi.org/10.1016/0004-3702(91)90053-M

https://doi.org/10.1109/ICCV.2007.4409029
https://doi.org/10.1109/ICCV.2007.4409029
https://doi.org/10.1145/311535.311556
https://doi.org/10.1109/TPAMI.2003.1227983
https://doi.org/10.1109/TPAMI.2003.1227983
https://doi.org/10.1109/AVSS.2016.7738056
https://doi.org/10.1109/AVSS.2016.7738056
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/abs:1607.04606
https://doi.org/10.1007/s10115-012-0487-8
https://doi.org/10.1007/s10115-012-0487-8
https://doi.org/10.1007/s10846-008-9235-4
http://arxiv.org/abs/abs:1807.09834
http://arxiv.org/abs/abs:1809.11096
https://doi.org/10.1016/0004-3702(91)90053-M

300 References

93. Brooks, R.A., Mataric, M.J.: Real Robots, Real Learning Problems, pp. 193–213. Springer
US, Boston, MA (1993). https://doi.org/10.1007/978-1-4615-3184-5_8

94. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin,M., Gray, S., Chess, B., Clark, J., Berner, C.,McCandlish, S., Radford, A., Sutskever,
I., Amodei, D.: Language models are few-shot learners (2020)

95. Bruls, T., Porav, H., Kunze, L., Newman, P.: Generating all the roads to rome: Road
layout randomization for improved road marking segmentation (2019). arXiv e-prints
abs:1907.04569

96. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach. Learn.
8(3–4), 231–357 (2015). https://doi.org/10.1561/2200000050

97. Buchberger, M., Jorg, K.W., von Puttkamer, E.: Laserradar and sonar based world modeling
and motion control for fast obstacle avoidance of the autonomous mobile robot mobot-iv.
In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp.
534–540 vol.1 (1993). https://doi.org/10.1109/ROBOT.1993.292034

98. Buczak, A.L., Babin, S., Moniz, L.: Data-driven approach for creating synthetic electronic
medical records. BMCMed. Inform. Decis. Mak. 10(1), 59 (2010). https://doi.org/10.1186/
1472-6947-10-59

99. Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A.,
De Moor, B., Marchal, K.: Syntren: a generator of synthetic gene expression data for design
and analysis of structure learning algorithms. BMC Bioinform. 7(1), 43 (2006). https://doi.
org/10.1186/1471-2105-7-43

100. Buls, E., Kadikis, R., Cacurs, R., Arents, J.: Generation of synthetic training data for object
detection in piles. In: International Conference on Machine Vision (2019)

101. Bunel, R., Hausknecht, M.J., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar
and reinforcement learning for neural program synthesis. CoRR (2018). arXiv e-prints
abs:1805.04276

102. Burgard, J.P., Kolb, J.P., Merkle, H., Münnich, R.: Synthetic data for open and repro-
ducible methodological research in social sciences and official statistics. AStAWirtschafts-
und Sozialstatistisches Archiv 11(3), 233–244 (2017). https://doi.org/10.1007/s11943-017-
0214-8

103. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.:
Albumentations: Fast and flexible image augmentations. Information 11(2) (2020). https://
doi.org/10.3390/info11020125

104. Buslaev, A.V., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin, A.A.: Albumentations:
fast and flexible image augmentations. CoRR (2018). arXiv e-prints abs:1809.06839

105. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for
optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.
(eds.) Computer Vision–ECCV 2012, pp. 611–625. Springer, Berlin, Heidelberg (2012)

106. Byrne, J., Taylor, C.J.: Expansion segmentation for visual collision detection and estimation.
In: 2009 IEEE International Conference on Robotics and Automation, pp. 875–882 (2009).
https://doi.org/10.1109/ROBOT.2009.5152487

107. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous driving. CoRR
(2019). arXiv e-prints abs:1903.11027

108. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unifiedmulti-scale deep convolutional neural
network for fast object detection. CoRR (2016). arXiv e-prints abs:1607.07155

109. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using
generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F., Villa,
A.E. (eds.) Artificial Neural Networks and Machine Learning–ICANN 2017, pp. 626–634.
Springer International Publishing, Cham (2017)

110. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The ycb object and
model set: Towards common benchmarks for manipulation research. In: 2015 International

https://doi.org/10.1007/978-1-4615-3184-5_8
http://arxiv.org/abs/abs:1907.04569
https://doi.org/10.1561/2200000050
https://doi.org/10.1109/ROBOT.1993.292034
https://doi.org/10.1186/1472-6947-10-59
https://doi.org/10.1186/1472-6947-10-59
https://doi.org/10.1186/1471-2105-7-43
https://doi.org/10.1186/1471-2105-7-43
http://arxiv.org/abs/abs:1805.04276
https://doi.org/10.1007/s11943-017-0214-8
https://doi.org/10.1007/s11943-017-0214-8
https://doi.org/10.3390/info11020125
https://doi.org/10.3390/info11020125
http://arxiv.org/abs/abs:1809.06839
https://doi.org/10.1109/ROBOT.2009.5152487
http://arxiv.org/abs/abs:1903.11027
http://arxiv.org/abs/abs:1607.07155

References 301

Conference on Advanced Robotics (ICAR), pp. 510–517 (2015). https://doi.org/10.1109/
ICAR.2015.7251504

111. Emídio deCampos, T., RakeshBabu, B., Varma,M.: Character recognition in natural images.
In: VISAPP 2009—Proceedings of the 4th International Conference on Computer Vision
Theory and Applications, vol. 2, pp. 273–280 (2009)

112. Cao, Q., Shen, L., Xie,W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for recognising
faces across pose and age. In: International Conference on Automatic Face and Gesture
Recognition (2018)

113. Capo, E.: State of the art on: Deep learning for video games ai development (2018). http://
www.honours-programme.deib.polimi.it/2018-I/Deliverable1/CSE_CAPO_SOTA.pdf

114. Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., Song, D.: The secret sharer: Measuring unin-
tended neural network memorization & extracting secrets. CoRR (2018). arXiv e-prints
abs:1802.08232

115. Carlucci, F.M., Russo, P., Caputo, B.: A deep representation for depth images from synthetic
data. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
1362–1369 (2017). https://doi.org/10.1109/ICRA.2017.7989162

116. Castagno, J.D., Yao, Y., Atkins, E.M.: Realtime rooftop landing site identification and selec-
tion in urban city simulation (2019). arXiv preprint abs:1903.03829

117. Castelle, M.: Deep learning as an epistemic ensemble (2018). https://castelle.org/pages/
deep-learning-as-an-epistemic-ensemble.html

118. Chan, A.B., Zhang-Sheng John Liang, Vasconcelos, N.: Privacy preserving crowd moni-
toring: Counting people without people models or tracking. In: 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.
2008.4587569

119. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now (2018). arXiv preprint
abs:1808.07371

120. Chandu, K.R., Pyreddy, M.A., Felix, M., Joshi, N.N.: Textually enriched neural module
networks for visual question answering. CoRR (2018). arXiv preprint abs:1809.08697

121. Chang, A.X., Dai, A., Funkhouser, T.A., Halber, M., Nießner, M., Savva, M., Song, S.,
Zeng, A., Zhang, Y.: Matterport3d: Learning from RGB-D data in indoor environments.
CoRR (2017). arXiv preprint abs:1709.06158

122. Chang, A.X., Funkhouser, T.A., Guibas, L.J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: Shapenet: An information-rich 3d model
repository. CoRR (2015). arXiv preprint abs:1512.03012

123. Chao, Q., Bi, H., Li, W., Mao, T., Wang, Z., Lin, M.C., Deng, Z.: A survey on visual traffic
simulation: models, evaluations, and applications in autonomous driving. Comput. Graph.
Forum 39(1), 287–308 (2020)

124. Charest, A.S., Hou, Y.: On the meaning and limits of empirical differential privacy. J. Priv.
Confident. 7(3), 185–205 (2017)

125. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for
unpaired multi-modal cardiac data. In: SASHIMIMICCAI (2017)

126. Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N.D., Fox, D.:
Closing the sim-to-real loop: Adapting simulation randomizationwith real world experience.
CoRR (2018). arXiv preprint abs:1810.05687

127. Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural networks for
document processing. In: International Workshop on Frontiers in Handwriting Recognition
(2006)

128. Chen, C., Dou, Q., Chen, H., Heng, P.: Semantic-aware generative adversarial nets for
unsupervised domain adaptation in chest x-ray segmentation. CoRR (2018). arXiv preprint
abs:1806.00600

129. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection
models with knowledge distillation. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017)

https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ICAR.2015.7251504
http://www.honours-programme.deib.polimi.it/2018-I/Deliverable1/CSE_CAPO_SOTA.pdf
http://www.honours-programme.deib.polimi.it/2018-I/Deliverable1/CSE_CAPO_SOTA.pdf
http://arxiv.org/abs/abs:1802.08232
https://doi.org/10.1109/ICRA.2017.7989162
https://castelle.org/pages/deep-learning-as-an-epistemic-ensemble.html
https://castelle.org/pages/deep-learning-as-an-epistemic-ensemble.html
https://doi.org/10.1109/CVPR.2008.4587569
https://doi.org/10.1109/CVPR.2008.4587569

302 References

130. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep learning in
drug discovery. Drug Discovery Today 23(6), 1241–1250 (2018). https://doi.org/10.1016/j.
drudis.2018.01.039

131. Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd counting. In:
BMVC (2012)

132. Chen, L., Jin, L., Du, X., Li, S., Liu, M.: Deforming the Loss Surface to Affect the Behaviour
of the Optimizer. arXiv e-prints arXiv:2009.08274 (2020)

133. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/
TPAMI.2017.2699184

134. Chen, L., Wang, W., Zhu, J.: Learning transferable uav for forest visual perception (2018).
arXiv preprint abs:1806.03626

135. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Smin-
chisescu, C., Weiss, Y. (eds.) Computer Vision–ECCV 2018, pp. 833–851. Springer Inter-
national Publishing, Cham (2018)

136. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient hamiltonian monte carlo. In: E.P. Xing,
T. Jebara (eds.) Proceedings of the 31st International Conference on Machine Learning,
Proceedings of Machine Learning Research, vol. 32(2), pp. 1683–1691. PMLR, Bejing,
China (2014). http://proceedings.mlr.press/v32/cheni14.html

137. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. ACM
Trans. Graph. 28(3), 73:1–73:12 (2009). https://doi.org/10.1145/1531326.1531379

138. Chen, X., Liu, C., Song, D.: Execution-guided neural program synthesis. In: International
Conference on Learning Representations (2019)

139. Chen, X., Xu, C., Yang, X., Tao, D.: Attention-gan for object transfiguration in wild images.
In: Ferrari, V., Hebert, M., Sminchisescu, C.,Weiss, Y. (eds.) Computer Vision–ECCV 2018,
pp. 167–184. Springer International Publishing, Cham (2018)

140. Chen, Y., Assael, Y., Shillingford, B., Budden, D., Reed, S., Zen, H., Wang, Q., Cobo, L.C.,
Trask, A., Laurie, B., Gulcehre, C., van den Oord, A., Vinyals, O., de Freitas, N.: Sample
efficient adaptive text-to-speech (2019)

141. Chen, Y., Chen, W., Chen, Y., Tsai, B., Wang, Y.F., Sun, M.: No more discrimination: Cross
city adaptation of road scene segmenters. CoRR (2017). arXiv e-prints abs:1704.08509

142. Chen, Y., Li, W., Chen, X., Van Gool, L.: Learning semantic segmentation from synthetic
data: A geometrically guided input-output adaptation approach. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

143. Chen, Y.T., Garbade, M., Gall, J.: 3d semantic scene completion from a single depth image
using adversarial training (2019). arXiv e-prints arXiv:1905.06231

144. Chernodub, A., Oliynyk, O., Heidenreich, P., Bondarenko, A., Hagen, M., Biemann, C.,
Panchenko, A.: Targer: Neural argument mining at your fingertips. In: Proceedings of the
57thAnnualMeetingof theAssociationofComputationalLinguistics (ACL’2019). Florence,
Italy (2019)

145. Cheung, E., Wong, T.K., Bera, A., Wang, X., Manocha, D.: Lcrowdv: Generating labeled
videos for simulation-based crowd behavior learning. In: Hua, G., Jégou, H. (eds.) Com-
puterVision–ECCV2016Workshops, pp. 709–727. Springer International Publishing,Cham
(2016)

146. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P.,
Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., Xie, W., Rosen, G.L., Lengerich,
B.J., Israeli, J., Lanchantin, J.,Woloszynek, S., Carpenter, A.E., Shrikumar, A., Xu, J., Cofer,
E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu, Z., Harris, D.J., DeCaprio, D.,
Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K., Segler, M.H.S., Boca, S.M., Swamidass, S.J.,
Huang, A., Gitter, A., Greene, C.S.: Opportunities and obstacles for deep learning in biology
and medicine. J. R. Soc. Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.
2017.0387

https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
http://arxiv.org/abs/2009.08274
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
http://proceedings.mlr.press/v32/cheni14.html
https://doi.org/10.1145/1531326.1531379
http://arxiv.org/abs/abs:1704.08509
http://arxiv.org/abs/1905.06231
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387

References 303

147. Chociej, M., Welinder, P., Weng, L.: ORRB—openai remote rendering backend. CoRR
(2019). arXiv e-prints abs:1906.11633

148. Choi, C., Christensen, H.I.: Rgb-d object tracking: A particle filter approach on gpu. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1084–1091
(2013). https://doi.org/10.1109/IROS.2013.6696485

149. Choi, D., An, T., Ahn,K., Choi, J.: Driving experience transfermethod for end-to-end control
of self-driving cars. CoRR (2018). arXiv e-prints abs:1809.01822

150. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-label
discrete patient records using generative adversarial networks. In: F. Doshi-Velez, J. Fackler,
D. Kale, R. Ranganath, B.Wallace, J.Wiens (eds.) Proceedings of the 2ndMachine Learning
for Healthcare Conference, Proceedings of Machine Learning Research, vol. 68, pp. 286–
305. PMLR, Boston, Massachusetts (2017)

151. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans (2016). arXiv
e-prints arXiv:1602.02481

152. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CoRR (2016).
arXiv e-prints abs:1610.02357

153. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., USA (2017)
154. Chollet, F.: On the measure of intelligence (2019). arXiv e-prints arXiv:1911.01547
155. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with appli-

cation to face verification. In: 2005 IEEEComputer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 1, pp. 539–546 vol. 1 (2005). https://doi.org/10.
1109/CVPR.2005.202

156. Chorowski, J., Weiss, R., Bengio, S., van den Oord, A.: Unsupervised speech representation
learning using wavenet autoencoders. IEEE Trans. Audio Speech Lang. Process. (2019)

157. Chum, L., Subramanian, A., Balasubramanian, V.N., Jawahar, C.V.: Beyond supervised
learning: A computer vision perspective. J. Indian Inst. Sci. 99(2), 177–199 (2019). https://
doi.org/10.1007/s41745-019-0099-3

158. Chuquicusma, M.J.M., Hussein, S., Burt, J., Bagci, U.: How to fool radiologists with gen-
erative adversarial networks? a visual turing test for lung cancer diagnosis. In: 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 240–244 (2018).
https://doi.org/10.1109/ISBI.2018.8363564

159. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high
performance convolutional neural networks for image classification. In: International Joint
Conference on Artificial Intelligence IJCAI, pp. 1237–1242 (2011)

160. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: Multi-column deep neural network for
traffic sign classification. Neural Netw. 32, 333–338 (2012)

161. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs). arXiv e-prints arXiv:1511.07289 (2015)

162. Clowes, M.: On seeing things. Artif. Intell. 2(1), 79–116 (1971). https://doi.org/10.1016/
0004-3702(71)90005-1

163. Cohen, T.S., Geiger,M.,Köhler, J.,Welling,M.: Spherical cnns. CoRR (2018). arXiv e-prints
abs:1801.10130

164. Cohen, T.S., Welling, M.: Steerable cnns. CoRR (2016). arXiv e-prints abs:1612.08498
165. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn.

15(2), 201–221 (1994). https://doi.org/10.1007/BF00993277
166. Conjeti, S., Katouzian, A., Roy, A.G., Peter, L., Sheet, D., Carlier, S., Laine, A., Navab, N.:

Supervised domain adaptation of decision forests: Transfer of models trained in vitro for
in vivo intravascular ultrasound tissue characterization. Med. Image Anal. 32, 1–17 (2016).
https://doi.org/10.1016/j.media.2016.02.005

167. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

http://arxiv.org/abs/abs:1906.11633
https://doi.org/10.1109/IROS.2013.6696485
http://arxiv.org/abs/abs:1809.01822
http://arxiv.org/abs/1602.02481
http://arxiv.org/abs/abs:1610.02357
http://arxiv.org/abs/1911.01547
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1007/s41745-019-0099-3
https://doi.org/10.1007/s41745-019-0099-3
https://doi.org/10.1109/ISBI.2018.8363564
http://arxiv.org/abs/1511.07289
https://doi.org/10.1016/0004-3702(71)90005-1
https://doi.org/10.1016/0004-3702(71)90005-1
http://arxiv.org/abs/abs:1801.10130
http://arxiv.org/abs/abs:1612.08498
https://doi.org/10.1007/BF00993277
https://doi.org/10.1016/j.media.2016.02.005

304 References

168. Cormode, G., Procopiuc, C.M., Shen, E., Srivastava, D., Yu, T.: Empirical privacy and
empirical utility of anonymized data. In: 2013 IEEE 29th International Conference on Data
EngineeringWorkshops (ICDEW), pp. 77–82 (2013). https://doi.org/10.1109/ICDEW.2013.
6547431

169. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: H.J.
van den Herik, P. Ciancarini, H.H.L.M.J. Donkers (eds.) Computers and Games, pp. 72–83.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

170. Courbon, J., Mezouar, Y., Guénard, N., Martinet, P.: Vision-based navigation of unmanned
aerial vehicles. Control Eng. Pract. 18(7), 789–799 (2010). https://doi.org/10.1016/j.
conengprac.2010.03.004 (Special Issue on Aerial Robotics)

171. Courty, N., Allain, P., Creusot, C., Corpetti, T.: Using the agoraset dataset: assessing for the
quality of crowd video analysis methods. Pattern Recogn. Lett. 44, 161–170 (2014). https://
doi.org/10.1016/j.patrec.2014.01.004 (Pattern Recognition and Crowd Analysis)

172. Cubuk, E.D., Zoph, B., Mané, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning aug-
mentation policies from data. CoRR (2018). arXiv e-prints abs:1805.09501

173. Cutler,M., How, J.P.: Efficient reinforcement learning for robots using informative simulated
priors. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.
2605–2612 (2015). https://doi.org/10.1109/ICRA.2015.7139550

174. Cutler, M., Walsh, T.J., How, J.P.: Reinforcement learning with multi-fidelity simulators. In:
IEEE International Conference on Robotics and Automation (ICRA), pp. 3888–3895. Hong
Kong (2014). http://markjcutler.com/papers/Cutler14_ICRA.pdf

175. Cutler,M.,Walsh,T.J.,How, J.P.:Real-world reinforcement learningviamultifidelity simula-
tors. IEEE Transactions on Robotics 31(3), 655–671 (2015). http://markjcutler.com/papers/
Cutler15_TRO.pdf

176. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision and Pattern Recog-
nition (CVPR), IEEE (2017)

177. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully convolutional
networks. In: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (eds.) Advances
in Neural Information Processing Systems 29, pp. 379–387. Curran Associates, Inc. (2016)

178. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional
networks. CoRR (2016). arXiv e-prints abs:1605.06409

179. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.: Transformer-XL: Atten-
tive language models beyond a fixed-length context. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 2978–2988. Association for
Computational Linguistics, Florence, Italy (2019)

180. Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned
lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41,
4915–4928 (2014). https://doi.org/10.1016/j.eswa.2014.02.026

181. Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep learning based 2d human pose estimation: A
survey. Tsinghua Sci. Technol. 24(6), 663–676 (2019)

182. Dar, S.U.H., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in
multi-contrast MRI with conditional generative adversarial networks. CoRR (2018). arXiv
e-prints abs:1802.01221

183. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question answering.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 2135–213509 (2018). https://doi.org/10.1109/CVPRW.2018.00279

184. Davydow, A., Nikolenko, S.I.: Land cover classification with superpixels and jaccard index
post-optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2018 Workshops, pp. 280–284 (2018)

185. Dawson, M., Zisserman, A., Nellaker, C.: Mining faces from biomedical literature using
deep learning. In: Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology,and Health Informatics, ACM-BCB ’17, pp. 562–567. ACM, New
York, NY, USA (2017). https://doi.org/10.1145/3107411.3107476

https://doi.org/10.1109/ICDEW.2013.6547431
https://doi.org/10.1109/ICDEW.2013.6547431
https://doi.org/10.1016/j.conengprac.2010.03.004
https://doi.org/10.1016/j.conengprac.2010.03.004
https://doi.org/10.1016/j.patrec.2014.01.004
https://doi.org/10.1016/j.patrec.2014.01.004
http://arxiv.org/abs/abs:1805.09501
https://doi.org/10.1109/ICRA.2015.7139550
http://markjcutler.com/papers/Cutler14_ICRA.pdf
http://markjcutler.com/papers/Cutler15_TRO.pdf
http://markjcutler.com/papers/Cutler15_TRO.pdf
http://arxiv.org/abs/abs:1605.06409
https://doi.org/10.1016/j.eswa.2014.02.026
http://arxiv.org/abs/abs:1802.01221
https://doi.org/10.1109/CVPRW.2018.00279
https://doi.org/10.1145/3107411.3107476

References 305

186. Debar, H., Dacier, M., Lampart, S.: An experimentation workbench for intrusion detection
systems. IBM TJ Watson Research Center (1999)

187. Deng, J., Dong,W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchi-
cal image database. In: 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee (2009)

188. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face
recognition. In: IEEEConference onComputerVision and PatternRecognition, CVPR2019,
Long Beach, CA, USA, 16–20 June 2019, pp. 4690–4699. Computer Vision Foundation.
IEEE (2019). https://doi.org/10.1109/CVPR.2019.00482

189. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: Single-stage dense
face localisation in the wild. CoRR (2019). arXiv e-prints abs:1905.00641

190. Desouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern
Anal. Mach. Intell. 24(2), 237–267 (2002). https://doi.org/10.1109/34.982903

191. Devlin, J., Bunel, R.R., Singh,R.,Hausknecht,M.,Kohli, P.:Neural programmeta-induction.
In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Gar-
nett (eds.) Advances in Neural Information Processing Systems 30, pp. 2080–2088. Curran
Associates, Inc. (2017)

192. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Vol. 1
(Long and Short Papers), pp. 4171–4186 (2019)

193. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

194. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A., Kohli, P.: Robustfill: Neural
program learning under noisy I/O. CoRR (2017). arXiv e-prints abs:1703.07469

195. DiCesare, G.: Imputation, estimation and missing data in finance. Ph.D. thesis, University
of Waterloo (2006)

196. Dilipkumar, D., Póczos, B.: Generative adversarial image refinement for handwriting recog-
nition (2017). https://www.ml.cmu.edu/research/dap-papers/F17/dap-dilipkumar-deepak.
pdf

197. Ding, C., Tao, D.: A comprehensive survey on pose-invariant face recognition. ACM Trans.
Intell. Syst. Technol. 7(3), 37:1–37:42 (2016). https://doi.org/10.1145/2845089

198. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. CoRR (2016).
arXiv e-prints abs:1605.08803

199. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the
Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, pp. 202–210. ACM, New York, NY, USA (2003). https://doi.org/10.
1145/773153.773173

200. Doersch, C.: Tutorial on variational autoencoders (2021)
201. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. CoRR (2016). arXiv

e-prints abs:1605.09782
202. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., v. d. Smagt, P.,

Cremers, D., Brox, T.: Flownet: Learning optical flowwith convolutional networks. In: 2015
IEEE International Conference on Computer Vision (ICCV), pp. 2758–2766 (2015). https://
doi.org/10.1109/ICCV.2015.316

203. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban
driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp.
1–16 (2017)

204. Dozat, T.: Incorporating nesterovmomentum into adam. In: ICLRWorkshop, pp. 2013–2016
(2016)

205. Drazen, J.M., Morrissey, S., Campion, E.W., Jarcho, J.A.: A sprint to the finish. N.
Engl. J. Med. 373(22), 2174–2175 (2015). https://doi.org/10.1056/NEJMe1513991. PMID:
26551058

https://doi.org/10.1109/CVPR.2019.00482
http://arxiv.org/abs/abs:1905.00641
https://doi.org/10.1109/34.982903
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/abs:1703.07469
https://www.ml.cmu.edu/research/dap-papers/F17/dap-dilipkumar-deepak.pdf
https://www.ml.cmu.edu/research/dap-papers/F17/dap-dilipkumar-deepak.pdf
https://doi.org/10.1145/2845089
http://arxiv.org/abs/abs:1605.08803
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
http://arxiv.org/abs/abs:1605.09782
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1056/NEJMe1513991

306 References

206. Drechsler, J.: Generating multiply imputed synthetic datasets: Theory and implementation.
Ph.D. thesis, Otto-Friedrich-Universität Bamberg (2010)

207. Drechsler, J.: Synthetic Datasets for Statistical Disclosure Control. Lecture Notes in Statis-
tics, vol. 201. Springer (2011)

208. Driemeyer, T.: Rendering with Mental Ray. Springer, New York (2001)
209. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and

stochastic optimization. J. Mach. Learn. Res. 12(61), 2121–2159 (2011). http://jmlr.org/
papers/v12/duchi11a.html

210. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. ICLR (2017)
211. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning (2016). ArXiv

e-prints
212. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object

detection datasets. CoRR (2018). arXiv e-prints abs:1807.07428
213. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for

instance detection. 2017 IEEE International Conference on Computer Vision (ICCV) pp.
1310–1319 (2017)

214. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D., Duan, Z., Li,
A. (eds.) Theory and Applications of Models of Computation, pp. 1–19. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2008)

215. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves:
Privacy via distributed noise generation. In: Vaudenay, S. (ed.) Advances in Cryptology–
EUROCRYPT 2006, pp. 486–503. Springer, Berlin, Heidelberg (2006)

216. Dwork,C.,McSherry, F.,Nissim,K., Smith,A.: Calibrating noise to sensitivity in private data
analysis. In: Proceedings of the Third Conference on Theory of Cryptography, TCC’06, pp.
265–284. Springer-Verlag, Berlin, Heidelberg (2006). https://doi.org/10.1007/11681878_14

217. Dwork,C.,Nissim,K.: Privacy-preserving datamining onvertically partitioned databases. In:
Franklin, M. (ed.) Advances in Cryptology–CRYPTO 2004, pp. 528–544. Springer, Berlin,
Heidelberg (2004)

218. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci. 9(3–4), 211–407 (2014). https://doi.org/10.1561/0400000042

219. Edlinger, T., von Puttkamer, E.: Exploration of an indoor-environment by an autonomous
mobile robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’94), vol. 2, pp. 1278–1284 (1994). https://doi.org/10.1109/IROS.1994.
407463

220. Efimova, V., Filchenkov, A.: Generative models for placing text on images. In: IFMOYoung
Researchers Congress (2019)

221. Eggert, C., Winschel, A., Lienhart, R.: On the benefit of synthetic data for company logo
detection. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM
’15, pp. 1283–1286. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2733373.
2806407

222. Eggert, C., Zecha,D., Brehm, S., Lienhart, R.: Improving small object proposals for company
logo detection. CoRR (2017). arXiv e-prints abs:1704.08881

223. Eid,M.H., Cecco, C.N.D., Nance, J.W., Caruso, D., Albrecht,M.H., Spandorfer, A.J., Santis,
D.D., Varga-Szemes, A., Schoepf, U.J.: Cinematic rendering in ct: A novel, lifelike 3d
visualization technique. AJR Am. J. Roentgenol. 209(2), 370–379 (2017)

224. Ekbatani., H.K., Pujol., O., Segui., S.: Synthetic data generation for deep learning in counting
pedestrians. In: Proceedings of the 6th International Conference on Pattern Recognition
Applications and Methods—Vol. 1: ICPRAM, pp. 318–323. INSTICC, SciTePress (2017).
https://doi.org/10.5220/0006119203180323

225. Elgendy, M.: Deep Learning for Vision Systems. Manning (2019)
226. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does

unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
http://arxiv.org/abs/abs:1807.07428
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/IROS.1994.407463
https://doi.org/10.1109/IROS.1994.407463
https://doi.org/10.1145/2733373.2806407
https://doi.org/10.1145/2733373.2806407
http://arxiv.org/abs/abs:1704.08881
https://doi.org/10.5220/0006119203180323

References 307

227. Ertugrul, I.O., Jeni, L.A., Cohn, J.F.: Facscaps: Pose-independent facial action coding with
capsules. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, CVPRWorkshops 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 2130–2139.
IEEE Computer Society (2018). https://doi.org/10.1109/CVPRW.2018.00287

228. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (Medical) Time Series Generation with
Recurrent Conditional GANs. arXiv e-prints arXiv:1706.02633 (2017)

229. Face recognition prize challenge (2017). https://www.nist.gov/programs-projects/face-
recognition-prize-challenge-2017

230. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural machine
translation. In: Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 567–573. Association for Computational
Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/P17-2090

231. Fang, J., Yan, F., Zhao, T., Zhang, F., Zhou, D., Yang, R., Ma, Y., Wang, L.: Simulating lidar
point cloud for autonomous driving using real-world scenes and traffic flows (2018). arXiv
e-prints abs:1811.07112

232. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J.,
Gustavsson, T. (eds.) Image Analysis, pp. 363–370. Springer, Berlin, Heidelberg (2003)

233. Fedus, W., Goodfellow, I., Dai, A.M.: MaskGAN: Better text generation via filling in the—.
In: International Conference on Learning Representations (2018)

234. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J.
Comput.Vision 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.
77

235. Fernández, C., Baiget, P., Roca, F., Gonzàlez, J.: Augmenting video surveillance footage
with virtual agents for incremental event evaluation. Pattern Recogn. Lett. 32(6), 878–889
(2011). https://doi.org/10.1016/j.patrec.2010.09.027

236. Firman,M.: Rgbd datasets: Past, present and future. In: 2016 IEEEConference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 661–673 (2016). https://doi.org/
10.1109/CVPRW.2016.88

237. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New York (1987)
238. Fletcher, S.C.: Data mining and privacy: Modeling sensitive data with differential privacy.

Ph.D. thesis, Charles Sturt University (2017)
239. Fossen, T.I., Pettersen, K.Y., Nijmeijer, H.: Sensing and Control for Autonomous Vehicles:

Applications to Land, Water and Air Vehicles. Lecture Notes in Control and Information
Sciences, vol. 474. Springer (2017)

240. Freeman, W.T., Pasztor, E.C.: Learning low-level vision. In: Proceedings of the Seventh
IEEE International Conference on Computer Vision, vol. 2, pp. 1182–1189 vol.2 (1999).
https://doi.org/10.1109/ICCV.1999.790414

241. Freivalds, K., Liepins, R.: Improving the neural gpu architecture for algorithm learning.
CoRR (2017). arXiv e-prints abs:1702.08727

242. Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press
(1998)

243. Frey, B.J., Hinton, G.E., Dayan, P.: Does the wake-sleep algorithm produce good density
estimators? In: Proceedings of the 8th International Conference on Neural Information Pro-
cessing Systems, NIPS’95, p. 661–667. MIT Press, Cambridge, MA, USA (1995)

244. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based
synthetic medical image augmentation for increased cnn performance in liver lesion classi-
fication. Neurocomputing 321, 321–331 (2018). https://doi.org/10.1016/j.neucom.2018.09.
013

245. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-
based synthetic medical image augmentation for increased CNN performance in liver lesion
classification. CoRR (2018). arXiv e-prints abs:1803.01229

246. Frigerio, L., de Oliveira, A.S., Gomez, L., Duverger, P.: Differentially private generative
adversarial networks for time series, continuous, and discrete open data. In: Dhillon, G.,
Karlsson, F., Hedström, K., Zúquete, A. (eds.) ICT Systems Security and Privacy Protection,
pp. 151–164. Springer International Publishing, Cham (2019)

https://doi.org/10.1109/CVPRW.2018.00287
http://arxiv.org/abs/1706.02633
https://www.nist.gov/programs-projects/face-recognition-prize-challenge-2017
https://www.nist.gov/programs-projects/face-recognition-prize-challenge-2017
https://doi.org/10.18653/v1/P17-2090
http://arxiv.org/abs/abs:1811.07112
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1016/j.patrec.2010.09.027
https://doi.org/10.1109/CVPRW.2016.88
https://doi.org/10.1109/CVPRW.2016.88
https://doi.org/10.1109/ICCV.1999.790414
http://arxiv.org/abs/abs:1702.08727
https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/10.1016/j.neucom.2018.09.013
http://arxiv.org/abs/abs:1803.01229

308 References

247. Frosst, N., Sabour, S., Hinton, G.E.: DARCCC: detecting adversaries by reconstruction from
class conditional capsules. CoRR (2018). arXiv e-prints abs:1811.06969

248. Fukushima, K.: Neural network model for a mechanism of pattern recognition unaffected
by shift in position—Neocognitron. Trans. IECE J62-A(10), 658–665 (1979)

249. Fukushima, K.: Artificial vision by multi-layered neural networks: Neocognitron and its
advances. Neural Netw. 37, 103–119 (2013)

250. Fukushima, K., Miyake, S.: Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In: S.i. Amari, M.A. Arbib (eds.) Competition and
Cooperation in Neural Nets, pp. 267–285. Springer, Berlin, Heidelberg (1982)

251. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: RotorS—A Modular Gazebo MAV Simu-
lator Framework, pp. 595–625. Springer International Publishing, Cham (2016). https://doi.
org/10.1007/978-3-319-26054-9_23

252. Gaber, C., Hemery, B., Achemlal, M., Pasquet, M., Urien, P.: Synthetic logs generator for
fraud detection in mobile transfer services. In: 2013 International Conference on Collabo-
ration Technologies and Systems (CTS), pp. 174–179 (2013). https://doi.org/10.1109/CTS.
2013.6567225

253. Gaidon, A., Lopez, A., Perronnin, F.: The reasonable effectiveness of synthetic visual data.
Int. J. Comput. Vision 126(9), 899–901 (2018). https://doi.org/10.1007/s11263-018-1108-
0

254. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking
analysis. In: CVPR (2016)

255. Galama,Y.,Mensink, T.: Itergans: Iterative gans to learn and control 3d object transformation
(2018). arXiv e-prints abs:1804.05651

256. Galinsky, R., Alekseyev, A., Nikolenko, S.I.: Improving neural network models for natural
language processing in russian with synonyms. In: Proceedings of the 5th conference on
Artificial Intelligence and Natural Language, pp. 45–51 (2016)

257. Galland, S., Gaud, N., Demange, J., Koukam, A.: Environment model for multiagent-based
simulation of 3d urban systems. In: Proceedings of the 7thEuropeanWorkshoponMultiagent
Systems (EUMAS09) (2009)

258. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S.M.A., Vinyals, O.: Synthesizing pro-
grams for images using reinforced adversarial learning. CoRR (2018). arXiv e-prints
abs:1804.01118

259. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Pro-
ceedings of the 32Nd International Conference on International Conference on Machine
Learning—Volume 37, ICML’15, pp. 1180–1189. JMLR.org (2015)

260. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand,
M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res.
17(1), 2096–2030 (2016)

261. Gao, X., Gong, R., Shu, T., Xie, X., Wang, S., Zhu, S.: Vrkitchen: an interactive 3d virtual
environment for task-oriented learning. CoRR (2019). arXiv e-prints abs:1903.05757

262. Garcia, R., Barnes, L.: Multi-uav simulator utilizing x-plane. J. Intell. Rob. Syst. 57(1), 393
(2009). https://doi.org/10.1007/s10846-009-9372-4

263. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D.P., Wilson, A.G.: Loss surfaces, mode
connectivity, and fast ensembling of dnns. In: S. Bengio, H.Wallach, H. Larochelle, K. Grau-
man,N.Cesa-Bianchi, R.Garnett (eds.)Advances inNeural Information Processing Systems
31, pp. 8789–8798. Curran Associates, Inc. (2018)

264. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR (2015).
arXiv e-prints abs:1508.06576

265. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled generation
of natural stimuli using convolutional neural networks. CoRR (2015). arXiv e-prints
abs:1505.07376

266. Gaud, N., Galland, S., Hilaire, V., Koukam, A.: An organisational platform for holonic and
multiagent systems. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) Programming Multi-
Agent Systems, pp. 104–119. Springer, Berlin, Heidelberg (2009)

http://arxiv.org/abs/abs:1811.06969
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1109/CTS.2013.6567225
https://doi.org/10.1109/CTS.2013.6567225
https://doi.org/10.1007/s11263-018-1108-0
https://doi.org/10.1007/s11263-018-1108-0
http://arxiv.org/abs/abs:1804.05651
http://arxiv.org/abs/abs:1804.01118
http://arxiv.org/abs/abs:1903.05757
https://doi.org/10.1007/s10846-009-9372-4
http://arxiv.org/abs/abs:1508.06576
http://arxiv.org/abs/abs:1505.07376

References 309

267. Gaulton, A., Bellis, L., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S.,
Akhtar, R., Atkinson, F., Bento, A., Al-Lazikani, B., Michalovich, D., Overington, J.:
Chembl: A large-scale bioactivity database for chemical biology and drug discovery. Nucleic
Acids Res. 40, 1100-D1107 (2011)

268. Gawehn, E., Hiss, J., Schneider, G.: Deep learning in drug discovery. Mol. Inf. 35, (2015).
https://doi.org/10.1002/minf.201501008

269. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J.
Robot. Res. (IJRR) (2013)

270. Georgakis, G., Mousavian, A., Berg, A.C., Kosecka, J.: Synthesizing training data for object
detection in indoor scenes (2017). arXiv e-prints abs:1702.07836

271. Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schoenborn, S., Vetter, T.:
Morphable face models—an open framework. In: 2018 13th IEEE International Conference
on Automatic Face Gesture Recognition (FG 2018), pp. 75–82 (2018). https://doi.org/10.
1109/FG.2018.00021

272. Germain,M., Gregor, K.,Murray, I., Larochelle, H.:Made:Masked autoencoder for distribu-
tion estimation. In: F. Bach, D. Blei (eds.) Proceedings of the 32nd International Conference
on Machine Learning, Proceedings of Machine Learning Research, vol. 37, pp. 881–889.
PMLR, Lille, France (2015). http://proceedings.mlr.press/v37/germain15.html

273. Gers, F.A., Schmidhuber, E.: Lstm recurrent networks learn simple context-free and context-
sensitive languages. IEEE Trans. Neural Netw. 12(6), 1333–1340 (2001). https://doi.org/10.
1109/72.963769

274. Ghiasi, G., Lin, T., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture
for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 7036–7045. Computer Vision
Foundation, IEEE (2019). https://doi.org/10.1109/CVPR.2019.00720

275. Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., Alameda-Pineda, X.: Dynamical vari-
ational autoencoders: a comprehensive review (2020)

276. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587 (2014)

277. Girshick, R.B.: Fast R-CNN. CoRR (2015). arXiv e-prints abs:1504.08083
278. Giuffrida, M.V., Scharr, H., Tsaftaris, S.A.: ARIGAN: synthetic arabidopsis plants using

generative adversarial network. CoRR (2017). arXiv e-prints abs:1709.00938
279. Glassner, Y., Gispan, L., Ayash, A., Shohet, T.F.: Closing the gap towards end-to-end

autonomous vehicle system. CoRR (2019). arXiv e-prints abs:1901.00114
280. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-

works. In: Y.W. Teh, M. Titterington (eds.) Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research,
vol. 9, pp. 249–256. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)

281. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: AISTATS 15, 315–323
(2011)

282. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. Proc.Mach. Learn.
Res. 15, 315–323 (2011)

283. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classifica-
tion: A deep learning approach. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pp. 513–520. Omnipress, USA
(2011)

284. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with
left-right consistency. In: CVPR (2017). http://visual.cs.ucl.ac.uk/pubs/monoDepth/

285. Goldman, E., Herzig, R., Eisenschtat, A., Ratzon, O., Levi, I., Goldberger, J., Hassner, T.:
Precise detection in densely packed scenes. CoRR (2019). arXiv e-prints abs:1904.00853

286. Gómez-Bombarelli, R., Duvenaud,D.K., Hernández-Lobato, J.M., Aguilera-Iparraguirre, J.,
Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven
continuous representation of molecules. CoRR (2016). arXiv e-prints abs:1610.02415

https://doi.org/10.1002/minf.201501008
http://arxiv.org/abs/abs:1702.07836
https://doi.org/10.1109/FG.2018.00021
https://doi.org/10.1109/FG.2018.00021
http://proceedings.mlr.press/v37/germain15.html
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/CVPR.2019.00720
http://arxiv.org/abs/abs:1504.08083
http://arxiv.org/abs/abs:1709.00938
http://arxiv.org/abs/abs:1901.00114
http://visual.cs.ucl.ac.uk/pubs/monoDepth/
http://arxiv.org/abs/abs:1904.00853
http://arxiv.org/abs/abs:1610.02415

310 References

287. Gong, M., Xie, Y., Pan, K., Feng, K., Qin, A.K.: A survey on differentially private machine
learning [review article]. IEEE Comput. Intell. Mag. 15(2), 49–64 (2020)

288. Gonzalez-Garcia, A.,Weijer, J.v.d., Bengio, Y.: Image-to-image translation for cross-domain
disentanglement. In: Proceedings of the 32Nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18, pp. 1294–1305. Curran Associates Inc., USA (2018)

289. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.
deeplearningbook.org

290. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 27,
pp. 2672–2680. Curran Associates, Inc. (2014)

291. Goodfellow, I.J.: NIPS 2016 tutorial: generative adversarial networks. CoRR (2017). arXiv
e-prints abs:1701.00160

292. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2015)

293. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey (2021)
294. Goyal, Y., Khot, T., Agrawal, A., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in

vqa matter: Elevating the role of image understanding in visual question answering. Int. J.
Comput. Vision 127(4), 398–414 (2019). https://doi.org/10.1007/s11263-018-1116-0

295. Grard,M., Brégier, R., Sella, F., Dellandréa, E., Chen, L.: Object segmentation in depthmaps
with one user click and a synthetically trained fully convolutional network. In: Ficuciello, F.,
Ruggiero, F., Finzi, A. (eds.) Human Friendly Robotics, pp. 207–221. Springer International
Publishing, Cham (2019)

296. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR (2014). arXiv e-prints
abs:1410.5401

297. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample
test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

298. Griffiths, D., Boehm, J.: SynthCity: A large scale synthetic point cloud. arXiv e-prints
arXiv:1907.04758 (2019)

299. Grosicki, E., Abed, H.E.: Icdar 2009 handwriting recognition competition. In: 2009 10th
International Conference on Document Analysis and Recognition, pp. 1398–1402 (2009).
https://doi.org/10.1109/ICDAR.2009.184

300. Gschwandtner, M., Kwitt, R., Uhl, A., Pree,W.: Blensor: Blender sensor simulation toolbox.
In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., More-
land, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) Advances in Visual Computing,
pp. 199–208. Springer, Berlin, Heidelberg (2011)

301. Gu, X., Cho, K., Ha, J.W., Kim, S.: DialogWAE: Multimodal response generation with con-
ditional wasserstein auto-encoder. In: International Conference on Learning Representations
(2019)

302. Guan, J., Li, R., Yu, S., Zhang, X.: Generation of synthetic electronic medical record text.
In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.
374–380 (2018). https://doi.org/10.1109/BIBM.2018.8621223

303. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of
wasserstein gans. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30, pp.
5767–5777. Curran Associates, Inc. (2017)

304. Gulwani, S.: Automating string processing in spreadsheets using input-output examples.
SIGPLAN Not. 46(1), 317–330 (2011). https://doi.org/10.1145/1925844.1926423

305. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long text generation via adversarial
training with leaked information. CoRR (2017). arXiv e-prints abs:1709.08624

306. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition. CoRR (2016). arXiv e-prints abs:1607.08221

307. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially accept-
able trajectories with generative adversarial networks. CoRR (2018). arXiv e-prints
abs:1803.10892

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/abs:1701.00160
https://doi.org/10.1007/s11263-018-1116-0
http://arxiv.org/abs/abs:1410.5401
http://arxiv.org/abs/1907.04758
https://doi.org/10.1109/ICDAR.2009.184
https://doi.org/10.1109/BIBM.2018.8621223
https://doi.org/10.1145/1925844.1926423
http://arxiv.org/abs/abs:1709.08624
http://arxiv.org/abs/abs:1607.08221
http://arxiv.org/abs/abs:1803.10892

References 311

308. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images.
CoRR (2016). arXiv e-prints abs:1604.06646

309. Gupta, O.K., Jarvis, R.A.: Using a virtual world to design a simulation platform for vision
and robotic systems. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J.,
Wang, J.X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva,
C.T., Coming, D. (eds.) Advances in Visual Computing, pp. 233–242. Springer, Berlin,
Heidelberg (2009)

310. Gupta, S., Arbeláez, P.A., Girshick, R.B., Malik, J.: Inferring 3d object pose in RGB-D
images. CoRR (2015). arXiv e-prints abs:1502.04652

311. Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Aligning 3d models to rgb-d images of
cluttered scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4731–4740 (2015). https://doi.org/10.1109/CVPR.2015.7299105

312. Ha, T., Dang, T.K., Dang, T.T., Truong, T.A., Nguyen, M.T.: Differential privacy in deep
learning: An overview. In: 2019 International Conference on Advanced Computing and
Applications (ACOMP), pp. 97–102 (2019)

313. Haidar,M.A., Rezagholizadeh,M.: Textkd-gan: Text generation using knowledgedistillation
and generative adversarial networks. CoRR (2019). arXiv e-prints abs:1905.01976

314. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., Furukawa, Y.,
Mauri, G., Nakayama, H.: Gan-based synthetic brain mr image generation. In: 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 734–738 (2018).
https://doi.org/10.1109/ISBI.2018.8363678

315. Han, C., Kitamura, Y., Kudo, A., Ichinose, A., Rundo, L., Furukawa, Y., Umemoto, K.,
Nakayama, H., Li, Y.: Synthesizing Diverse Lung Nodules Wherever Massively: 3D Multi-
Conditional GAN-based CT Image Augmentation for Object Detection. arXiv e-prints
arXiv:1906.04962 (2019)

316. Han, C., Rundo, L., Araki, R., Furukawa, Y., Mauri, G., Nakayama, H., Hayashi, H.: Infinite
brain MR images: Pggan-based data augmentation for tumor detection. CoRR (2019). arXiv
e-prints abs:1903.12564

317. Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., Mauri, G., Nakayama, H., Hayashi,
H.: CombiningNoise-to-Image and Image-to-ImageGANs: BrainMR ImageAugmentation
for Tumor Detection (2019). arXiv e-prints arXiv:1905.13456

318. Han, X., Zhang, Z., Du, D., Yang, M., Yu, J., Pan, P., Yang, X., Liu, L., Xiong, Z., Cui,
S.: Deep reinforcement learning of volume-guided progressive view inpainting for 3d point
scene completion from a single depth image (2019). arXiv e-prints abs:1903.04019

319. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Scenenet: Under-
standing real world indoor scenes with synthetic data. CoRR (2015). arXiv e-prints
abs:1511.07041

320. Handa, A., Patraucean, V., Stent, S., Cipolla, R.: Scenenet: An annotated model generator
for indoor scene understanding. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5737–5743 (2016). https://doi.org/10.1109/ICRA.2016.7487797

321. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for rgb-d visual odom-
etry, 3d reconstruction and slam. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1524–1531 (2014). https://doi.org/10.1109/ICRA.2014.6907054

322. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction with back-
propagation. In: D.S. Touretzky (ed.) Advances in Neural Information Processing Systems
1, pp. 177–185. Morgan-Kaufmann (1989)

323. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/
10.1109/TSSC.1968.300136

324. Hartenfeller, M., Schneider, G.: Enabling future drug discovery by de novo design. Wiley
Interdisc. Rev. Comput. Mol. Sci. 1(5), 742–759 (2011). https://doi.org/10.1002/wcms.49

325. Hattori, H., Boddeti, V.N., Kitani, K., Kanade, T.: Learning scene-specific pedestrian detec-
tors without real data. In: 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 3819–3827 (2015). https://doi.org/10.1109/CVPR.2015.7299006

http://arxiv.org/abs/abs:1604.06646
http://arxiv.org/abs/abs:1502.04652
https://doi.org/10.1109/CVPR.2015.7299105
http://arxiv.org/abs/abs:1905.01976
https://doi.org/10.1109/ISBI.2018.8363678
http://arxiv.org/abs/1906.04962
http://arxiv.org/abs/abs:1903.12564
http://arxiv.org/abs/1905.13456
http://arxiv.org/abs/abs:1903.04019
http://arxiv.org/abs/abs:1511.07041
https://doi.org/10.1109/ICRA.2016.7487797
https://doi.org/10.1109/ICRA.2014.6907054
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1002/wcms.49
https://doi.org/10.1109/CVPR.2015.7299006

312 References

326. He, H., Huang, G., Yuan, Y.: Asymmetric valleys: Beyond sharp and flat localminima. CoRR
(2019). arXiv e-prints abs:1902.00744

327. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/
ICCV.2017.322

328. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR
(2015). arXiv e-prints abs:1512.03385

329. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR (2015). arXiv e-prints abs:1502.01852

330. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc.
2016 CVPR, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

331. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. CoRR
(2016). arXiv e-prints abs:1603.05027

332. Heaton, J., Witte, J.: Generating synthetic data to test financial strategies and investment
products for regulatory compliance. Technical Report, SSRN (2019)

333. Heimann, T., Mountney, P., John, M., Ionasec, R.: Learning without labeling: Domain adap-
tation for ultrasound transducer localization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C.,
Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI
2013, pp. 49–56. Springer, Berlin, Heidelberg (2013)

334. Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) Computer Vision–ECCV 2008, pp. 30–43. Springer, Berlin,
Heidelberg (2008)

335. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–
4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

336. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for
games: a survey. ACM Trans. Multimedia Comput. Commun. Appl. 9(1), 1–22 (2013).
https://doi.org/10.1145/2422956.2422957

337. Hentati, A.I., Krichen, L., Fourati, M., Fourati, L.C.: Simulation tools, environments and
frameworks for uav systems performance analysis. In: 2018 14th International Wireless
Communications Mobile Computing Conference (IWCMC), pp. 1495–1500 (2018). https://
doi.org/10.1109/IWCMC.2018.8450505

338. Hernandez-Juarez, D., Schneider, L., Espinosa, A., Vazquez, D., Lopez, A.M., Franke, U.,
Pollefeys, M., Moure, J.C.: Slanted stixels: Representing san francisco’s steepest streets. In:
British Machine Vision Conference (BMVC), 2017 (2017)

339. Hertz, J., Palmer, R.G., Krogh, A.S.: Introduction to the Theory of Neural Computation, 1st
edn. Perseus Publishing (1991)

340. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: Gans
trained by a two time-scale update rule converge to a nash equilibrium. CoRR (2017). arXiv
e-prints abs:1706.08500

341. Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and
synthetic images for deep learning. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision–
ECCV 2018 Workshops, pp. 682–697. Springer International Publishing, Cham (2019)

342. Hinterstoisser, S., Pauly, O., Heibel, H., Marek, M., Bokeloh, M.: An Annotation Saved is
an Annotation Earned: Using Fully Synthetic Training for Object Instance Detection (2019).
arXiv e-prints arXiv:1902.09967

343. Hinton, G.: What is wrong with convolutional neural nets? Talk at the Brain &
Cognitive Sciences—Fall Colloquium Series (2014). https://www.youtube.com/watch?
v=rTawFwUvnLE

344. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

345. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS
Deep Learning and Representation Learning Workshop (2015)

346. Hinton, G.E., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in

http://arxiv.org/abs/abs:1902.00744
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
http://arxiv.org/abs/abs:1512.03385
http://arxiv.org/abs/abs:1502.01852
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/abs:1603.05027
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1109/IWCMC.2018.8450505
https://doi.org/10.1109/IWCMC.2018.8450505
http://arxiv.org/abs/abs:1706.08500
http://arxiv.org/abs/1902.09967
https://www.youtube.com/watch?v=rTawFwUvnLE
https://www.youtube.com/watch?v=rTawFwUvnLE

References 313

speech recognition: The shared views of four research groups. IEEE Signal Process. Mag.
29(6), 82–97 (2012)

347. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

348. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

349. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with em routing. In: ICLR (2018)
350. Hochreiter, S., Schmidhuber, J.: Long short-termmemory. Neural Comput. 9(8), 1735–1780

(1997). https://doi.org/10.1162/neco.1997.9.8.1735
351. Hodan, T., Haluza, P., Obdrzálek, S., Matas, J., Lourakis, M.I.A., Zabulis, X.: T-LESS: an

RGB-D dataset for 6d pose estimation of texture-less objects. CoRR (2017). arXiv e-prints
abs:1701.05498

352. Hoffman, J., Tzeng, E., Park, T., Zhu, J., Isola, P., Saenko, K., Efros, A.A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. CoRR (2017). arXiv e-prints
abs:1711.03213

353. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial and
constraint-based adaptation. CoRR (2016). arXiv e-prints abs:1612.02649

354. Hölldobler, S., Kalinke,Y., Lehmann,H.: Designing a counter: Another case study of dynam-
ics and activation landscapes in recurrent networks. In: Brewka, G., Habel, C., Nebel, B.
(eds.) KI-97: Advances in Artificial Intelligence, pp. 313–324. Springer, Berlin, Heidelberg
(1997)

355. Hong, W., Wang, Z., Yang, M., Yuan, J.: Conditional generative adversarial network for
structured domain adaptation. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1335–1344 (2018). https://doi.org/10.1109/CVPR.2018.00145

356. Hoppen, P., Knieriemen, T., von Puttkamer, E.: Laser-radar based mapping and navigation
for an autonomous mobile robot. In: Proceedings of the IEEE International Conference on
Robotics andAutomation, pp. 948–953 vol. 2 (1990). https://doi.org/10.1109/ROBOT.1990.
126113

357. Hou, L., Agarwal, A., Samaras, D., Kurç, T.M., Gupta, R.R., Saltz, J.H.: Unsupervised
histopathology image synthesis. CoRR (2017). arXiv e-prints abs:1712.05021

358. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. CoRR (2017). arXiv e-prints abs:1704.04861

359. Howard, J., Ruder, S.: Fine-tuned language models for text classification. CoRR (2018).
arXiv e-prints abs:1801.06146

360. Hu, G., Peng, X., Yang, Y., Hospedales, T.M., Verbeek, J.: Frankenstein: Learning deep
face representations using small data. IEEE Trans. Image Process. 27(1), 293–303 (2018).
https://doi.org/10.1109/TIP.2017.2756450

361. Hu, G., Yan, F., Chan, C.H., Deng, W., Christmas, W., Kittler, J., Robertson, N.: Face
recognition using a unified 3d morphable model. In: Computer Vision—ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,
Part VIII, Lecture Notes in Computer Science, vol. 9912, pp. 73–89 (2016). https://doi.org/
10.1007/978-3-319-46484-8_5

362. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason: End-
to-end module networks for visual question answering. CoRR (2017). arXiv e-prints
abs:1704.05526

363. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in ref-
erential expressions with compositional modular networks. CoRR (2016). arXiv e-prints
abs:1611.09978

364. Huang, B., Bayazit, D., Ullman,D., Gopalan, N., Tellex, S.: Flight, camera, action! using nat-
ural language and mixed reality to control a drone. In: Proceedings of the IEEE International
Conference on Robotics and Automation (2019)

365. Huang, D.: How much did alphago zero cost? (2019)

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/abs:1701.05498
http://arxiv.org/abs/abs:1711.03213
http://arxiv.org/abs/abs:1612.02649
https://doi.org/10.1109/CVPR.2018.00145
https://doi.org/10.1109/ROBOT.1990.126113
https://doi.org/10.1109/ROBOT.1990.126113
http://arxiv.org/abs/abs:1712.05021
http://arxiv.org/abs/abs:1704.04861
http://arxiv.org/abs/abs:1801.06146
https://doi.org/10.1109/TIP.2017.2756450
https://doi.org/10.1007/978-3-319-46484-8_5
https://doi.org/10.1007/978-3-319-46484-8_5
http://arxiv.org/abs/abs:1704.05526
http://arxiv.org/abs/abs:1611.09978

314 References

366. Huang,G.B., Ramesh,M., Berg, T., Learned-Miller, E.: Labeled faces in thewild:A database
for studying face recognition in unconstrained environments. Technical Report No. 07-49,
University of Massachusetts, Amherst (2007)

367. Huang, H., Guo, H., Ding, Z., Chen, Y., Wu, X.: 3d virtual modeling for crowd analysis.
In: 2015 IEEE International Conference on Information and Automation, pp. 2949–2954
(2015). https://doi.org/10.1109/ICInfA.2015.7279793

368. Huang, H., Huang, Q.X., Krähenbühl, P.: Domain transfer through deep activationmatching.
In: ECCV (2018)

369. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: Global and local perception gan
for photorealistic and identity preserving frontal view synthesis. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2458–2467 (2017). https://doi.org/10.1109/
ICCV.2017.267

370. Huang,W.R., Emam,Z.,Goldblum,M., Fowl,L., Terry, J.K.,Huang, F.,Goldstein, T.:Under-
standing generalization through visualizations. CoRR (2019). arXiv e-prints abs:1906.03291

371. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normal-
ization. In: ICCV (2017)

372. Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., Lin, Y., Yang, R.: The
apolloscape dataset for autonomous driving. CoRR (2018). arXiv e-prints abs:1803.06184

373. Huang, X., Liu, M., Belongie, S.J., Kautz, J.: Multimodal unsupervised image-to-image
translation. CoRR (2018). arXiv e-prints abs:1804.04732

374. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image
translation. In: ECCV (2018)

375. Huang, Z., Heng, W., Zhou, S.: Learning to paint with model-based deep reinforcement
learning (2019). arXiv e-prints abs:1903.04411

376. Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction, and functional architecture
in the cat’s visual cortex. J. Physiol. (London) 160, 106–154 (1962)

377. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate
cortex. J. Physiol. 195(1), 215–243 (1968)

378. Huber, P., Feng, Z., Christmas, W., Kittler, J., Rätsch, M.: Fitting 3d morphable face models
using local features. In: 2015 IEEE International Conference on Image Processing (ICIP),
pp. 1195–1199 (2015). https://doi.org/10.1109/ICIP.2015.7350989

379. Huffman, D.A.: Impossible object as nonsense sentences. Mach. Intell. 6, 295–324 (1971)
380. Hurl, B., Czarnecki, K., Waslander, S.L.: Precise synthetic image and lidar (presil) dataset

for autonomous vehicle perception (2019). arXiv e-prints abs:1905.00160
381. Hutchins, J.: The georgetown-ibm experiment demonstrated in january 1954. In: Machine

translation: from real users to research. 6th Conference of the Association for Machine
Translation in the Americas, AMTA 2004, pp. 102–114. Springer (2004)

382. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR (2016).
arXiv e-prints abs:1602.07360

383. Idrees, H., Tayyab, M., Athrey, K., Zhang, D., Al-Máadeed, S., Rajpoot, N.M., Shah, M.:
Composition loss for counting, density map estimation and localization in dense crowds.
CoRR (2018). arXiv e-prints abs:1808.01050

384. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution
of optical flow estimation with deep networks. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017)

385. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries with a
generic network for disparity, optical flow or scene flow estimation. In: EuropeanConference
on Computer Vision (ECCV) (2018)

386. Inoue, T., Choudhury, S., De Magistris, G., Dasgupta, S.: Transfer learning from synthetic
to real images using variational autoencoders for precise position detection. In: 2018 25th
IEEE International Conference on Image Processing (ICIP), pp. 2725–2729 (2018). https://
doi.org/10.1109/ICIP.2018.8451064

https://doi.org/10.1109/ICInfA.2015.7279793
https://doi.org/10.1109/ICCV.2017.267
https://doi.org/10.1109/ICCV.2017.267
http://arxiv.org/abs/abs:1906.03291
http://arxiv.org/abs/abs:1803.06184
http://arxiv.org/abs/abs:1804.04732
http://arxiv.org/abs/abs:1903.04411
https://doi.org/10.1109/ICIP.2015.7350989
http://arxiv.org/abs/abs:1905.00160
http://arxiv.org/abs/abs:1602.07360
http://arxiv.org/abs/abs:1808.01050
https://doi.org/10.1109/ICIP.2018.8451064
https://doi.org/10.1109/ICIP.2018.8451064

References 315

387. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift. CoRR (2015). arXiv e-prints abs:1502.03167

388. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale datasets and
predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal.
Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248

389. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adver-
sarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 5967–5976 (2017)

390. Itseez: Open source computer vision library (2015). https://github.com/itseez/opencv
391. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.P., Wilson, A.G.: Averaging weights

leads towider optima and better generalization. CoRR (2018). arXiv e-prints abs:1803.05407
392. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural

networks for natural scene text recognition. CoRR (2014). arXiv e-prints abs:1406.2227
393. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with

convolutional neural networks. Int. J. Comput. Vision 116(1), 1–20 (2016). https://doi.org/
10.1007/s11263-015-0823-z

394. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of simulation in
evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) Advances
in Artificial Life, pp. 704–720. Springer, Berlin, Heidelberg (1995)

395. Jalal, M., Spjut, J., Boudaoud, B., Betke, M.: Sidod: A synthetic image dataset for 3d object
pose recognition with distractors. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 475–477 (2019)

396. James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J., Levine, S.,
Hadsell, R., Bousmalis, K.: Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks (2018). arXiv e-prints abs:1812.07252

397. Jaques, N., Gu, S., Turner, R.E., Eck, D.: Tuning recurrent neural networks with reinforce-
ment learning. CoRR (2016). arXiv e-prints abs:1611.02796

398. Ji, B., Chen, T.: Generative adversarial network for handwritten text. CoRR (2019). arXiv
e-prints abs:1907.11845

399. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information distillation for unsupervised image
segmentation and clustering. CoRR(2018). arXiv e-prints abs:1807.06653

400. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy andmachine learning: a survey and review.
CoRR (2014). arXiv e-prints abs:1412.7584

401. Jin, C., Jung, W., Joo, S., Park, E., Ahn, Y.S., Han, I.H., Lee, J., Cui, X.: Deep CT to MR
synthesis using paired and unpaired data. CoRR (2018). arXiv e-prints abs:1805.10790

402. Jin, C., Rinard, M.: Learning from context-agnostic synthetic data (2020)
403. Jin, W., Barzilay, R., Jaakkola, T.: Junction Tree Variational Autoencoder for Molecular

Graph Generation (2018). arXiv e-prints arXiv:1802.04364
404. Jo, J., Koo, H.I., Soh, J.W., Cho, N.I.: Handwritten text segmentation via end-to-end learning

of convolutional neural network. CoRR (2019). arXiv e-prints abs:1906.05229
405. John, V., Mou, L., Bahuleyan, H., Vechtomova, O.: Disentangled representation learning for

non-parallel text style transfer. In: Proceedings of the 57thAnnualMeeting of theAssociation
for Computational Linguistics, pp. 424–434. Association for Computational Linguistics,
Florence, Italy (2019)

406. Johnson, G.R., Donovan-Maiye, R.M., Maleckar, M.M.: Generative Modeling with Condi-
tional Autoencoders: Building an Integrated Cell. arXiv e-prints arXiv:1705.00092 (2017)

407. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-
resolution. In: ECCV (2016)

408. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.B.:
Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In:
2017 IEEEConference onComputerVision and PatternRecognition (CVPR) pp. 1988–1997
(2017)

409. Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Li, F.F., Lawrence Zitnick, C.,
Girshick, R.: Inferring and executing programs for visual reasoning. In: ICCV, pp. 3008–
3017 (2017). https://doi.org/10.1109/ICCV.2017.325

http://arxiv.org/abs/abs:1502.03167
https://doi.org/10.1109/TPAMI.2013.248
https://github.com/itseez/opencv
http://arxiv.org/abs/abs:1803.05407
http://arxiv.org/abs/abs:1406.2227
https://doi.org/10.1007/s11263-015-0823-z
https://doi.org/10.1007/s11263-015-0823-z
http://arxiv.org/abs/abs:1812.07252
http://arxiv.org/abs/abs:1611.02796
http://arxiv.org/abs/abs:1907.11845
http://arxiv.org/abs/abs:1807.06653
http://arxiv.org/abs/abs:1412.7584
http://arxiv.org/abs/abs:1805.10790
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/abs:1906.05229
http://arxiv.org/abs/1705.00092
https://doi.org/10.1109/ICCV.2017.325

316 References

410. Johnson, J., Krishna, R., Stark, M., Li, L.J., Shamma, D.A., Bernstein, M.S., Fei-Fei, L.:
Image retrieval using scene graphs. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 3668–3678 (2015)

411. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human
pose estimation. In: Proceedings of the British Machine Vision Conference, pp. 12.1–12.11.
BMVA Press (2010). https://doi.org/10.5244/C.24.12

412. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.:
Driving in the matrix: Can virtual worlds replace human-generated annotations for real
world tasks? In: 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 746–753 (2017). https://doi.org/10.1109/ICRA.2017.7989092

413. Joo, D., Kim, D., Kim, J.: Generating a fusion image: One’s identity and another’s shape. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1635–1643
(2018). https://doi.org/10.1109/CVPR.2018.00176

414. Jorg, K.W., Palmes, M., von Puttkamer, E.: Pilot specific realtime world modeling for an
autonomous mobile robot using heterogeneous sensor information. In: Fifth Euromicro
Workshop on Real-Time Systems, pp. 168–173 (1993). https://doi.org/10.1109/EMWRT.
1993.639087

415. Joulin, A., Mikolov, T.: Inferring algorithmic patterns with stack-augmented recurrent nets.
In: Proceedings of the 28th International Conference on Neural Information Processing
Systems—Volume 1, NIPS’15, pp. 190–198. MIT Press, Cambridge, MA, USA (2015)

416. Joulin, A., Mikolov, T.: Inferring algorithmic patterns with stack-augmented recurrent nets.
CoRR (2015). arXiv e-prints abs:1503.01007

417. Justesen, N., Bontrager, P., Togelius, J., Risi, S.: Deep learning for video game playing. IEEE
Trans. Games 1–20, (2019). https://doi.org/10.1109/TG.2019.2896986

418. Justesen, N., Torrado, R.R., Bontrager, P., Khalifa, A., Togelius, J., Risi, S.: Procedural level
generation improves generality of deep reinforcement learning. CoRR (2018). arXiv e-prints
abs:1806.10729

419. Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov, K., Zha-
voronkov, A.: The cornucopia of meaningful leads: Applying deep adversarial autoencoders
for new molecule development in oncology. Oncotarget 8, (2016)

420. Kadurin, A., Nikolenko, S.I., Khrabrov, K., Aliper, A., Zhavoronkov, A.: drugan: An
advanced generative adversarial autoencodermodel for de novo generation of newmolecules
with desired molecular properties in silico. Mol. Pharm. 14(9), 3098–3104 (2017)

421. Kaiser, L., Sutskever, I.: Neural gpus learn algorithms. CoRR (2016). arXiv e-prints
abs:1511.08228

422. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly,
E., Kalakrishnan, M., Vanhoucke, V., Levine, S.: Scalable deep reinforcement learning for
vision-based robotic manipulation. In: A. Billard, A. Dragan, J. Peters, J. Morimoto (eds.)
Proceedings of The 2nd Conference on Robot Learning. Proceedings of Machine Learning
Research, vol. 87, pp. 651–673. PMLR (2018)

423. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for mod-
elling sentences. CoRR (2014). arXiv e-prints abs:1404.2188

424. Kallweit, S., Müller, T., Mcwilliams, B., Gross, M., Novák, J.: Deep scattering: Rendering
atmospheric clouds with radiance-predicting neural networks. ACM Trans. Graph. 36(6)
(2017). https://doi.org/10.1145/3130800.3130880

425. Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A., Menon,
D., Nori, A., Criminisi, A., Rueckert, D., Glocker, B.: Unsupervised domain adaptation
in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M.,
Aylward, S., Zhu, H., Oguz, I., Yap, P.T., Shen, D. (eds.) Information Processing in Medical
Imaging, pp. 597–609. Springer International Publishing, Cham (2017)

426. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueck-
ert, D., Glocker, B.: Efficient multi-scale 3d cnn with fully connected crf for accurate brain
lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.
2016.10.004

https://doi.org/10.5244/C.24.12
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/CVPR.2018.00176
https://doi.org/10.1109/EMWRT.1993.639087
https://doi.org/10.1109/EMWRT.1993.639087
http://arxiv.org/abs/abs:1503.01007
https://doi.org/10.1109/TG.2019.2896986
http://arxiv.org/abs/abs:1806.10729
http://arxiv.org/abs/abs:1511.08228
http://arxiv.org/abs/abs:1404.2188
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1016/j.media.2016.10.004

References 317

427. Kan, N., Kondo, N., Chinsatit, W., Saitoh, T.: Effectiveness of data augmentation for cnn-
based pupil center point detection. In: 2018 57th Annual Conference of the Society of
Instrument and Control Engineers of Japan (SICE) pp. 41–46 (2018)

428. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for uavs: Current develop-
ments and trends. J. Intell. Robot. Syst. (2017). https://doi.org/10.1007/s10846-017-0483-
z

429. Kaneva, B., Torralba, A., Freeman,W.T.: Evaluation of image features using a photorealistic
virtual world. In: 2011 International Conference onComputerVision, pp. 2282–2289 (2011).
https://doi.org/10.1109/ICCV.2011.6126508

430. Kang, Y., Yin, H., Berger, C.: Test your self-driving algorithm: an overview of publicly
available driving datasets and virtual testing environments. IEEE Trans. Intell. Veh. 4, 171–
185 (2019)

431. Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional,
wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340
(2006)

432. Kant, N.: Recent advances in neural program synthesis. CoRR (2018). arXiv e-prints
abs:1802.02353

433. Kar, A., Prakash, A., Liu, M., Cameracci, E., Yuan, J., Rusiniak,M., Acuna, D., Torralba, A.,
Fidler, S.: Meta-sim: Learning to generate synthetic datasets. CoRR (2019). arXiv e-prints
abs:1904.11621

434. Karis, B.: Real shading in unreal engine 4. Technical Report, Epic Games (2013). http://blog.
selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf

435. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality,
stability, and variation. CoRR (2018). arXiv e-prints abs:1710.10196

436. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative
adversarial networks with limited data (2020)

437. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. CoRR (2018). arXiv e-prints abs:1812.04948

438. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

439. Karras, T., Laine, S., Aittala,M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving
the image quality of stylegan. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2020)

440. Karras, T., Laine, S., Aittala,M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving
the image quality of StyleGAN. In: Proc. CVPR (2020)

441. Kartoun, U.: A methodology to generate virtual patient repositories. CoRR (2016). arXiv
e-prints abs:1608.00570

442. Karttunen, J., Kanervisto, A., Hautamäki, V., Kyrki, V.: From video game to real robot: The
transfer between action spaces (2019). arXiv e-prints abs:1905.00741

443. Kempka,M.,Wydmuch,M., Runc, G., Toczek, J., Jaśkowski,W.: ViZDoom: ADoom-based
AI research platform for visual reinforcement learning. In: IEEE Conference on Computa-
tional Intelligence and Games, pp. 341–348. IEEE, Santorini, Greece (2016)

444. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. CoRR (2017). arXiv e-prints abs:1705.07115

445. Kendall, K.: A database of computer attacks for the evaluation of intrusion detection systems.
M.Sc. Thesis, Massachusetts Institute of Technology (1999)

446. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch
training for deep learning: Generalization gap and sharp minima. CoRR (2016). arXiv e-
prints abs:1609.04836

447. Keskar, N.S., Socher, R.: Improving generalization performance by switching from adam to
SGD. CoRR (2017). arXiv e-prints abs:1712.07628

https://doi.org/10.1007/s10846-017-0483-z
https://doi.org/10.1007/s10846-017-0483-z
https://doi.org/10.1109/ICCV.2011.6126508
http://arxiv.org/abs/abs:1802.02353
http://arxiv.org/abs/abs:1904.11621
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://arxiv.org/abs/abs:1710.10196
http://arxiv.org/abs/abs:1812.04948
http://arxiv.org/abs/abs:1608.00570
http://arxiv.org/abs/abs:1905.00741
http://arxiv.org/abs/abs:1705.07115
http://arxiv.org/abs/abs:1609.04836
http://arxiv.org/abs/abs:1712.07628

318 References

448. Khadka, A.R., Oghaz, M.M., Matta, W., Cosentino, M., Remagnino, P., Argyriou, V.: Learn-
ing how to analyse crowd behaviour using synthetic data. In: Proceedings of the 32Nd Inter-
national Conference on Computer Animation and Social Agents, CASA ’19, pp. 11–14.
ACM, New York, NY, USA (2019). https://doi.org/10.1145/3328756.3328773

449. Khan, S., Phan, B., Salay, R., Czarnecki, K.: Procsy: Procedural synthetic dataset gener-
ation towards influence factor studies of semantic segmentation networks. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

450. Khirodkar, R., Yoo, D., Kitani, K.M.: Vadra: Visual adversarial domain randomization and
augmentation (2018). arXiv e-prints arXiv:1812.00491

451. Khodabandeh, M., Joze, H.R.V., Zharkov, I., Pradeep, V.: Diy human action dataset gener-
ation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pp. 1529–152910 (2018). https://doi.org/10.1109/CVPRW.2018.00194

452. Killian, T.W., Goodwin, J.A., Brown, O.M., Son, S.H.: Kernelized capsule networks (2019).
arXiv e-prints arXiv:1906.03164

453. Kim, K., Cheon, Y., Hong, S., Roh, B., Park, M.: PVANET: deep but lightweight neural
networks for real-time object detection. CoRR (2016). arXiv e-prints abs:1608.08021

454. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Y. Bengio, Y. LeCun
(eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

455. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In:
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (eds.)
Advances in Neural Information Processing Systems, vol. 31, pp. 10215–10224. Curran
Associates, Inc. (2018)

456. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved
variational inference with inverse autoregressive flow. In: D. Lee,M. Sugiyama, U. Luxburg,
I. Guyon, R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 29,
pp. 4743–4751. Curran Associates, Inc. (2016)

457. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014,
Conference Track Proceedings (2014)

458. Kingma,D.P.,Welling,M.: An introduction to variational autoencoders. CoRR (2019). arXiv
e-prints abs:1906.02691

459. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.: Flame: Sim-
ulating large populations of agents on parallel hardware architectures. In: Proceedings of the
9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1—
Volume 1, AAMAS ’10, pp. 1633–1636. International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2010)

460. Klare, B.F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother, P., Mah, A.,
Burge, M., Jain, A.K.: Pushing the frontiers of unconstrained face detection and recogni-
tion: Iarpa janus benchmark a. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1931–1939 (2015). https://doi.org/10.1109/CVPR.2015.7298803

461. Kobayashi, S.: Contextual augmentation: Data augmentation by words with paradigmatic
relations. In: Proceedings of the 2018Conference of theNorthAmericanChapter of theAsso-
ciation for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pp. 452–457. Association for Computational Linguistics, New Orleans, Louisiana
(2018). https://doi.org/10.18653/v1/N18-2072

462. Kobyzev, I., Prince, S., Brubaker, M.: Normalizing flows: an introduction and review of cur-
rent methods. IEEE Trans. Patt. Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.
2020.2992934

463. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) Machine Learning: ECML 2006, pp. 282–293. Springer, Berlin,
Heidelberg (2006)

464. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot
simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

https://doi.org/10.1145/3328756.3328773
http://arxiv.org/abs/1812.00491
https://doi.org/10.1109/CVPRW.2018.00194
http://arxiv.org/abs/1906.03164
http://arxiv.org/abs/abs:1608.08021
http://arxiv.org/abs/abs:1906.02691
https://doi.org/10.1109/CVPR.2015.7298803
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1109/TPAMI.2020.2992934

References 319

(IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–2154 vol. 3 (2004). https://doi.org/
10.1109/IROS.2004.1389727

465. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps, pp. 509–
521. MIT Press, Cambridge, MA, USA (1988)

466. Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., Farhadi, A.: AI2-THOR: an inter-
active 3d environment for visual AI. CoRR (2017). arXiv e-prints abs:1712.05474

467. Korakakis, M., Mylonas, P., Spyrou, E.: A short survey on modern virtual environments that
utilize ai and synthetic data. In: MCIS 2018 Proceedings (2018)

468. Koren, Y.: Tutorial on recent progress in collaborative filtering. In: Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys ’08, pp. 333–334. Association
for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1454008.
1454067

469. Korkinof, D., Rijken, T., O’Neill, M., Yearsley, J., Harvey, H., Glocker, B.: High-resolution
mammogram synthesis using progressive generative adversarial networks. CoRR (2018).
arXiv e-prints abs:1807.03401

470. Kortylewski,A., Egger, B., Schneider,A.,Gerig, T.,Morel-Forster,A.,Vetter, T.: Empirically
analyzing the effect of dataset biases on deep face recognition systems. CoRR (2017). arXiv
e-prints abs:1712.01619

471. Kortylewski, A., Egger, B., Schneider, A., Gerig, T., Morel-Forster, A., Vetter, T.: Analyzing
and reducing the damage of dataset bias to face recognition with synthetic data. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

472. Kortylewski, A., Schneider, A., Gerig, T., Blumer, C., Egger, B., Reyneke, C.,Morel-Forster,
A., Vetter, T.: Priming deep neural networks with synthetic faces for enhanced performance.
CoRR (2018). arXiv e-prints abs:1811.08565

473. Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S., Kuznetsova, A., Rom, H.,
Uijlings, J., Popov, S., Kamali, S., Malloci, M., Pont-Tuset, J., Veit, A., Belongie, S., Gomes,
V., Gupta, A., Sun, C., Chechik, G., Cai, D., Feng, Z., Narayanan, D., Murphy, K.: Openim-
ages: A public dataset for large-scale multi-label andmulti-class image classification (2017).
Dataset available from https://storage.googleapis.com/openimages/web/index.html

474. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li,
L.J., Shamma, D.A., Bernstein, M.S., Fei-Fei, L.: Visual genome: Connecting language and
vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73
(2017). https://doi.org/10.1007/s11263-016-0981-7

475. Krishnan, P., Jawahar,C.V.:Hwnet v2: an efficientword image representation for handwritten
documents. Int. J. Doc.Anal. Recogn. (IJDAR) (2019). https://doi.org/10.1007/s10032-019-
00336-x

476. Krishnan, S., Boroujerdian, B., Fu, W., Faust, A., Reddi, V.J.: Air learning: An AI research
platform for algorithm-hardware benchmarking of autonomous aerial robots. CoRR (2019).
arXiv e-prints abs:1906.00421

477. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Proceedings of the 25th International Conference onNeural Information
Processing Systems—Volume 1, NIPS’12, pp. 1097–1105. Curran Associates Inc., USA
(2012)

478. Kuc, R., Siegel, M.W.: Physically based simulation model for acoustic sensor robot naviga-
tion. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(6), 766–778 (1987). https://doi.org/
10.1109/TPAMI.1987.4767983

479. Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic
hierarchy of spatial representations. Rob. Auton. Syst. 8(1), 47–63 (1991). https://doi.org/
10.1016/0921-8890(91)90014-C (Special Issue Toward Learning Robots)

480. Kuipers, B., Froom, R., Lee, W.Y., Pierce, D.: The Semantic Hierarchy in Robot Learning,
pp. 141–170. Springer US, Boston, MA (1993). https://doi.org/10.1007/978-1-4615-3184-
5_6

481. Kuipers, B.J., Byun, Y.T.: A robust, qualitative method for robot spatial learning. In: Pro-
ceedings of the Seventh AAAI National Conference on Artificial Intelligence, AAAI’88, pp.
774–779. AAAI Press (1988)

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
http://arxiv.org/abs/abs:1712.05474
https://doi.org/10.1145/1454008.1454067
https://doi.org/10.1145/1454008.1454067
http://arxiv.org/abs/abs:1807.03401
http://arxiv.org/abs/abs:1712.01619
http://arxiv.org/abs/abs:1811.08565
https://storage.googleapis.com/openimages/web/index.html
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s10032-019-00336-x
https://doi.org/10.1007/s10032-019-00336-x
http://arxiv.org/abs/abs:1906.00421
https://doi.org/10.1109/TPAMI.1987.4767983
https://doi.org/10.1109/TPAMI.1987.4767983
https://doi.org/10.1016/0921-8890(91)90014-C
https://doi.org/10.1016/0921-8890(91)90014-C
https://doi.org/10.1007/978-1-4615-3184-5_6
https://doi.org/10.1007/978-1-4615-3184-5_6

320 References

482. Kumar, A., Sattigeri, P., Wadhawan, K., Karlinsky, L., Feris, R., Freeman, W.T., Wornell,
G.: Co-regularized alignment for unsupervised domain adaptation. In: Proceedings of the
32Nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
9367–9378. Curran Associates Inc., USA (2018)

483. Kurach, K., Andrychowicz, M., Sutskever, I.: Neural random access machines. ICLR (2016)
484. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. CoRR

(2016). arXiv e-prints abs:1607.02533
485. Kurnaz, S., Kaynak, O., Konakoglu, E.: Adaptive neuro-fuzzy inference system based

autonomous flight control of unmanned air vehicles. In: Proceedings of the 4th International
Symposium on Neural Networks: Advances in Neural Networks, ISNN ’07, pp. 14–21.
Springer-Verlag, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72383-7_3

486. Kusner, M.J., Hernández-Lobato, J.M.: GANS for Sequences of Discrete Elements with the
Gumbel-softmax Distribution. arXiv e-prints arXiv:1611.04051 (2016)

487. Kusner,M.J., Paige, B., Hernández-Lobato, J.M.: GrammarVariational Autoencoder (2017).
arXiv e-prints arXiv:1703.01925

488. Kuzminykh, D., Polykovskiy, D., Kadurin, A., Zhebrak, A., Baskov, I., Nikolenko, S.I.,
Shayakhmetov, R., Zhavoronkov, A.: 3d molecular representations based on the wave trans-
form for convolutional neural networks. Mol. Pharm. 15(10), 4378–4385 (2018)

489. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S.,
Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., Ferrari, V.: The open images dataset
v4: Unified image classification, object detection, and visual relationship detection at scale.
IJCV (2020)

490. Kuznichov, D., Zvirin, A., Honen, Y., Kimmel, R.: Data augmentation for leaf segmentation
and counting tasks in rosette plants (2019). arXiv e-prints arXiv:1903.08583

491. Lagani, V., Karozou, A.D., Gomez-Cabrero, D., Silberberg, G., Tsamardinos, I.: A compar-
ative evaluation of data-merging and meta-analysis methods for reconstructing gene-gene
interactions. BMC Bioinform. 17(S-5), S194 (2016). https://doi.org/10.1186/s12859-016-
1038-1

492. Lai, K.T., Lin, C.C., Kang, C.Y., Liao, M.E., Chen, M.S.: Vivid: Virtual environment for
visual deep learning. In: Proceedings of the 26th ACM International Conference on Mul-
timedia, MM ’18, pp. 1356–1359. ACM, New York, NY, USA (2018). https://doi.org/10.
1145/3240508.3243653

493. Laminar Research: X-plane flight simulator (2018). https://www.x-plane.com/
494. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures

for named entity recognition. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 260–270. Association for Computational Linguistics, San Diego, California (2016).
https://doi.org/10.18653/v1/N16-1030

495. Lample, G., Chaplot, D.S.: Playing fps games with deep reinforcement learning. In: Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp.
2140–2146. AAAI Press (2017)

496. Landrum, G.: Rdkit: Open-source cheminformatics software (2016). https://github.com/
rdkit/rdkit/releases/tag/Release_2016_09_4

497. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels
using a learned similarity metric. In: M.F. Balcan, K.Q. Weinberger (eds.) Proceedings of
The 33rd International Conference onMachine Learning. Proceedings of Machine Learning
Research, vol. 48, pp. 1558–1566. PMLR, New York, New York, USA (2016)

498. Lategahn, H., Geiger, A., Kitt, B.: Visual slam for autonomous ground vehicles. In:
Proceedings—IEEE International Conference on Robotics and Automation, pp. 1732–1737
(2011). https://doi.org/10.1109/ICRA.2011.5979711

499. Learned-Miller, E., Huang, G.B., RoyChowdhury, A., Li, H., Hua, G.: Labeled Faces in the
Wild: A Survey, pp. 189–248. Springer International Publishing, Cham (2016). https://doi.
org/10.1007/978-3-319-25958-1_8

http://arxiv.org/abs/abs:1607.02533
https://doi.org/10.1007/978-3-540-72383-7_3
http://arxiv.org/abs/1611.04051
http://arxiv.org/abs/1703.01925
http://arxiv.org/abs/1903.08583
https://doi.org/10.1186/s12859-016-1038-1
https://doi.org/10.1186/s12859-016-1038-1
https://doi.org/10.1145/3240508.3243653
https://doi.org/10.1145/3240508.3243653
https://www.x-plane.com/
https://doi.org/10.18653/v1/N16-1030
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://doi.org/10.1109/ICRA.2011.5979711
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1007/978-3-319-25958-1_8

References 321

500. Learned-Miller, G.B.H.E.: Labeled faces in the wild: Updates and new reporting procedures.
Technical Report UM-CS-2014-003, University of Massachusetts, Amherst (2014)

501. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

502. Lee, B.Y., Liew, L.H., Cheah, W.S., Wang, Y.C.: Simulation videos for understanding occlu-
sion effects on kernel based object tracking. In: Yeo, S.S., Pan, Y., Lee, Y.S., Chang, H.B.
(eds.) Computer Science and its Applications, pp. 139–147. Springer, Netherlands, Dor-
drecht (2012)

503. Lee, D., Ryan, T., Kim, H.J.: Autonomous landing of a vtol uav on a moving platform
using image-based visual servoing. In: 2012 IEEE International Conference on Robotics
and Automation, pp. 971–976 (2012). https://doi.org/10.1109/ICRA.2012.6224828

504. Lee, K., Moloney, D.: An evaluation of synthetic data for deep learning stereo depth algo-
rithms. In: Proceedings of the International Conference on Watermarking and Image Pro-
cessing, ICWIP 2017, pp. 42–45. ACM, New York, NY, USA (2017). https://doi.org/10.
1145/3150978.3150982

505. Lee, S.: Natural language generation for electronic health records. In: npj Digital Medicine
(2018)

506. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data aug-
mentation strategy. IEEE Access 5, 5858–5869 (2017). https://doi.org/10.1109/ACCESS.
2017.2696121

507. Lewis, M., Fan, A.: Generative question answering: Learning to answer the whole question.
In: International Conference on Learning Representations (2019)

508. Li, C., Li, Y., Wang, K., Rahaman, M.M., Li, X., Sun, C., Chen, H., Wu, X., Zhang, H.,
Wang, Q.: A comprehensive review for mrf and crf approaches in pathology image analysis
(2020)

509. Li, D., Zhao, D., Zhang, Q., Chen, Y.: Reinforcement learning and deep learning based
lateral control for autonomous driving. CoRR (2018). arXiv e-prints abs:1810.12778

510. Li, J., Gadde, R., Ginsburg, B., Lavrukhin, V.: Training neural speech recognition systems
with synthetic speech augmentation. CoRR (2018). arXiv e-prints abs:1811.00707

511. Li, K., Li, Y., You, S., Barnes, N.: Photo-realistic simulation of road scene for data-driven
methods in bad weather. In: 2017 IEEE International Conference on Computer VisionWork-
shops (ICCVW), pp. 491–500 (2017). https://doi.org/10.1109/ICCVW.2017.65

512. Li, S.Z., Jain, A.K.: Handbook of Face Recognition, 2nd edn. Springer Publishing Company,
Incorporated (2011)

513. Li, W., Pan, C., Zhang, R., Ren, J., Ma, Y., Fang, J., Yan, F., Geng, Q., Huang, X., Gong, H.,
Xu,W.,Wang, G.,Manocha, D., Yang, R.: Aads: Augmented autonomous driving simulation
using data-driven algorithms. CoRR (2019). arXiv e-prints abs:1901.07849

514. Li, Y., Wei, C., Ma, T.: Towards explaining the regularization effect of initial large learning
rate in training neural networks. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp.
11674–11685. Curran Associates, Inc. (2019)

515. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid curriculums for
cross-domain semantic segmentation: A non-adversarial approach (2019). arXiv e-prints
abs:1908.09547

516. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collab-
orative filtering. In: Proceedings of the 2018 World Wide Web Conference, WWW ’18, p.
689–698. International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.3186150

517. Liang, X., Zhang, H., Xing, E.P.: Generative semantic manipulation with contrasting gan.
CoRR (2017). arXiv e-prints abs:1708.00315

518. Liebelt, J., Schmid, C.: Multi-view object class detection with a 3d geometric model. In:
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
1688–1695 (2010). https://doi.org/10.1109/CVPR.2010.5539836

https://doi.org/10.1109/ICRA.2012.6224828
https://doi.org/10.1145/3150978.3150982
https://doi.org/10.1145/3150978.3150982
https://doi.org/10.1109/ACCESS.2017.2696121
https://doi.org/10.1109/ACCESS.2017.2696121
http://arxiv.org/abs/abs:1810.12778
http://arxiv.org/abs/abs:1811.00707
https://doi.org/10.1109/ICCVW.2017.65
http://arxiv.org/abs/abs:1901.07849
http://arxiv.org/abs/abs:1908.09547
https://doi.org/10.1145/3178876.3186150
http://arxiv.org/abs/abs:1708.00315
https://doi.org/10.1109/CVPR.2010.5539836

322 References

519. Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3d
feature maps. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587614

520. Ligett, K., Neel, S., Roth, A., Waggoner, B., Wu, S.Z.: Accuracy first: Selecting a differ-
ential privacy level for accuracy constrained erm. In: I. Guyon, U.V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information
Processing Systems 30, pp. 2566–2576. Curran Associates, Inc. (2017)

521. en Lin, C.: Introduction tomotion estimation with optical flow (2019). https://nanonets.com/
blog/optical-flow/

522. Lin, M., Chen, Q., Yan, S.: Network in network (2013). http://arxiv.org/abs/1312.4400
523. Lin, T.,Dollár, P.,Girshick,R.,He,K.,Hariharan,B., Belongie, S.: Feature pyramid networks

for object detection. In: 2017 IEEEConference on Computer Vision and Pattern Recognition
(CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

524. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In:
2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

525. Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. CoRR
(2014). arXiv e-prints abs:1405.0312

526. Lin, Z., Gehring, J., Khalidov, V., Synnaeve, G.: STARDATA:A starcraft AI research dataset.
CoRR (2017). arXiv e-prints abs:1708.02139

527. Linjordet, T., Balog, K.: Sanitizing synthetic training data generation for question answering
over knowledge graphs. Proceedings of the 2020 ACM SIGIR on International Conference
on Theory of Information Retrieval (2020). https://doi.org/10.1145/3409256.3409836

528. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: Analysis and results of the 1999
darpa off-line intrusion detection evaluation. In: Debar, H., Mé, L., Wu, S.F. (eds.) Recent
Advances in Intrusion Detection, pp. 162–182. Springer, Berlin, Heidelberg (2000)

529. Little, J.J., Verri, A.: Analysis of differential and matching methods for optical flow. In:
Proceedings of the Workshop on Visual Motion, pp. 173–180 (1989). https://doi.org/10.
1109/WVM.1989.47107

530. Little, R.: Statistical analysis of masked data. J. Off. Stat. 9, 407–426 (1993)
531. Liu,A.H., Liu,Y.C.,Yeh,Y.Y.,Wang,Y.C.F.:Aunified feature disentangler formulti-domain

image translation and manipulation. In: Proceedings of the 32Nd International Conference
on Neural Information Processing Systems, NIPS’18, pp. 2595–2604. Curran Associates
Inc., USA (2018)

532. Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A.L., Huang, J., Murphy,
K.: Progressive neural architecture search. CoRR (2017). arXiv e-prints abs:1712.00559

533. Liu, F., Wang, S., Ding, D., Yuan, Q., Yao, Z., Pan, Z., Li, H.: Retrieving indoor objects:
2d–3d alignment using single image and interactive roi-based refinement. Comput. Graph.
70, 108–117 (2018). https://doi.org/10.1016/j.cag.2017.07.029 (CAD/Graphics 2017)

534. Liu, G., Siravuru, A., Prabhakar, S., Veloso, M.M., Kantor, G.: Learning end-to-end
multimodal sensor policies for autonomous navigation. CoRR (2017). arXiv e-prints
abs:1705.10422

535. Liu,M.,Guo,Y.,Wang, J.: Indoor scenemodeling froma single imageusingnormal inference
and edge features. Vis. Comput. 33(10), 1227–1240 (2017). https://doi.org/10.1007/s00371-
016-1348-3

536. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In:
I. Guyon,U.V. Luxburg, S.Bengio,H.Wallach,R. Fergus, S.Vishwanathan,R.Garnett (eds.)
Advances in Neural Information Processing Systems 30, pp. 700–708. Curran Associates,
Inc. (2017)

537. Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-shot
unsupervised image-to-image translation. In: IEEE International Conference on Computer
Vision (ICCV) (2019)

538. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759–8768
(2018)

https://doi.org/10.1109/CVPR.2008.4587614
https://nanonets.com/blog/optical-flow/
https://nanonets.com/blog/optical-flow/
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/CVPR.2017.106
http://arxiv.org/abs/abs:1405.0312
http://arxiv.org/abs/abs:1708.02139
https://doi.org/10.1145/3409256.3409836
https://doi.org/10.1109/WVM.1989.47107
https://doi.org/10.1109/WVM.1989.47107
http://arxiv.org/abs/abs:1712.00559
https://doi.org/10.1016/j.cag.2017.07.029
http://arxiv.org/abs/abs:1705.10422
https://doi.org/10.1007/s00371-016-1348-3
https://doi.org/10.1007/s00371-016-1348-3

References 323

539. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single
shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer
Vision–ECCV 2016, pp. 21–37. Springer International Publishing, Cham (2016)

540. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single
shot multibox detector. CoRR (2015). arXiv e-prints abs:1512.02325

541. Liu, X., He, P., Chen,W., Gao, J.: Improving multi-task deep neural networks via knowledge
distillation for natural language understanding. CoRR (2019). arXiv e-prints abs:1904.09482

542. Liu, Z., Luo, P.,Wang, X., Tang, X.: Deep learning face attributes in thewild. In: Proceedings
of International Conference on Computer Vision (ICCV) (2015)

543. Liu, Z., Zhu, J., Bu, J., Chen, C.: A survey of human pose estimation. J. Vis. Comun. Image
Represent. 32(C), 10–19 (2015). https://doi.org/10.1016/j.jvcir.2015.06.013

544. Loiacono, D., Cardamone, L., Lanzi, P.L.: Simulated car racing championship: Competition
software manual. CoRR (2013). arXiv e-prints abs:1304.1672

545. Long,M.,Cao,Y.,Wang, J., Jordan,M.I.: Learning transferable featureswith deep adaptation
networks. In: Proceedings of the 32nd International Conference on International Conference
on Machine Learning—Volume 37, ICML’15, pp. 97–105. JMLR.org (2015)

546. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual
transfer networks. In: Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, pp. 136–144. Curran Associates Inc., USA (2016)

547. Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S.,
Ding, E., Wen, S.: PP-YOLO: An Effective and Efficient Implementation of Object Detector
(2020). arXiv e-prints arXiv:2007.12099

548. López, A.M., Xu, J., Gómez, J.L., Vázquez, D., Ros, G.: From Virtual to Real World Visual
Perception Using Domain Adaptation—The DPM as Example, pp. 243–258. Springer Inter-
national Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_13

549. Lopez-Rojas, E., Elmir, A., Axelsson, S.: Paysim: A financial mobile money simulator for
fraud detection. In: 28th European Modeling and Simulation Symposium, EMSS, Larnaca,
pp. 249–255. Dime University of Genoa (2016)

550. Lopez-Rojas, E.A., Axelsson, S.: Money laundering detection using synthetic data. In: The
27th annual workshop of the Swedish Artificial Intelligence Society (SAIS), vol. 71(5), pp.
33–40. Linköping Electronic Conference Proceedings (2012)

551. Lopez-Rojas, E.A., Axelsson, S.: Multi agent based simulation (mabs) of financial trans-
actions for anti money laundering (aml). In: Nordic Conference on Secure IT Systems.
Blekinge Institute of Technology (2012)

552. Lopez-Rojas, E.A., Axelsson, S.: A review of computer simulation for fraud detection
research in financial datasets. In: 2016 Future Technologies Conference (FTC), pp. 932–
935 (2016). https://doi.org/10.1109/FTC.2016.7821715

553. Lopez-Rojas, E.A., Gorton, D., Axelsson, S.: Retsim: A shoestore agent-based simulation
for fraud detection. In: 25th European Modeling and Simulation Symposium, EMSS 2013;
Athens; Greece, pp. 25–34 (2013)

554. Lopez-Rojas, E.A., Gorton, D., Axelsson, S.: Extending the retsim simulator for estimating
the cost of fraud in the retail store domain. In: Proceedings of the European Modeling and
Simulation Symposium (2015)

555. Lopez-Rojas, E.A., Gorton, D., Axelsson, S.: Using the retsim simulator for fraud detec-
tion research. Int. J. Simul. Process Model. 10(2), 144–155 (2015). https://doi.org/10.1504/
IJSPM.2015.070465

556. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR (2017). arXiv
e-prints abs:1711.05101

557. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net (2019)

558. Louppe, G., Hermans, J., Cranmer, K.: Adversarial Variational Optimization of Non-
Differentiable Simulators. arXiv e-prints arXiv:1707.07113 (2017)

http://arxiv.org/abs/abs:1512.02325
http://arxiv.org/abs/abs:1904.09482
https://doi.org/10.1016/j.jvcir.2015.06.013
http://arxiv.org/abs/abs:1304.1672
http://arxiv.org/abs/2007.12099
https://doi.org/10.1007/978-3-319-58347-1_13
https://doi.org/10.1109/FTC.2016.7821715
https://doi.org/10.1504/IJSPM.2015.070465
https://doi.org/10.1504/IJSPM.2015.070465
http://arxiv.org/abs/abs:1711.05101
http://arxiv.org/abs/1707.07113

324 References

559. Lu, W., Miklau, G., Gupta, V.: Generating private synthetic databases for untrusted system
evaluation. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 652–663
(2014). https://doi.org/10.1109/ICDE.2014.6816689

560. Lubashevsky, I., Ando, H.: Intermittent Control Properties of Car Following: Theory and
Driving Simulator Experiments. arXiv e-prints arXiv:1609.01812 (2016)

561. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application
to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial
Intelligence—Volume 2, IJCAI’81, p. 674–679. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1981)

562. Ludl, D., Gulde, T., Thalji, S., Curio, C.: Using simulation to improve human pose estima-
tion for corner cases. In: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pp. 3575–3582 (2018). https://doi.org/10.1109/ITSC.2018.8569489

563. Lundin, E., Kvarnström, H., Jonsson, E.: A synthetic fraud data generation methodology.
In: Deng, R., Bao, F., Zhou, J., Qing, S. (eds.) Information and Communications Security,
pp. 265–277. Springer, Berlin, Heidelberg (2002)

564. Luo, M., Tong, Y., Liu, J.: Orthogonal policy gradient and autonomous driving application.
CoRR (2018). arXiv e-prints abs:1811.06151

565. Ma, J., Yarats, D.: Quasi-hyperbolic momentum and adam for deep learning. CoRR (2018).
arXiv e-prints abs:1810.06801

566. Ma, L., Sun, Q., Schiele, B., Gool, L.V.: A novel bilevel paradigm for image-to-image
translation (2019). arXiv e-prints abs:1904.09028

567. Ma, N., Zhang, X., Sun, J.: Activate or Not: Learning Customized Activation. arXiv e-prints
arXiv:2009.04759 (2020)

568. Ma, R., Patil, A.G., Fisher, M., Li, M., Pirk, S., Hua, B.S., Yeung, S.K., Tong, X., Guibas,
L.J., Zhang, H.: Language-driven synthesis of 3d scenes from scene databases. ACM Trans.
Graph. 37, 212:1–212:16 (2018)

569. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume1:LongPapers), pp. 1064–1074.Association forComputational Linguistics, Berlin,
Germany (2016). https://doi.org/10.18653/v1/P16-1101

570. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acous-
tic models. In: in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing (2013)

571. Madaan, R.,Maturana,D., Scherer, S.:Wire detection using synthetic data and dilated convo-
lutional networks for unmanned aerial vehicles. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3487–3494 (2017). https://doi.org/10.1109/
IROS.2017.8206190

572. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic
medical images via adversarial training. CoRR (2017). arXiv e-prints abs:1711.06606

573. Mahmood, F., Chen, R.J., Sudarsky, S., Yu, D., Durr, N.J.: Deep learning with cinematic
rendering—fine-tuning deep neural networks using photorealistic medical images. CoRR
(2018). arXiv e-prints abs:1805.08400

574. Mahoney, M.V., Chan, P.K.: An analysis of the 1999 darpa/lincoln laboratory evaluation
data for network anomaly detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) Recent
Advances in Intrusion Detection, pp. 220–237. Springer, Berlin, Heidelberg (2003)

575. Mairaj, A., Baba, A.I., Javaid, A.Y.: Application specific drone simulators: Recent advances
and challenges. Simul. Model. Pract. Theory 94, 100–117 (2019). https://doi.org/10.1016/
j.simpat.2019.01.004

576. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: Interna-
tional Conference on Learning Representations (2016)

577. Malik, J., Elhayek, A., Nunnari, F., Varanasi, K., Tamaddon, K., Heloir, A., Stricker, D.:
Deephps: End-to-end estimation of 3d hand pose and shape by learning from synthetic
depth. In: 2018 International Conference on 3D Vision (3DV), pp. 110–119 (2018). https://
doi.org/10.1109/3DV.2018.00023

https://doi.org/10.1109/ICDE.2014.6816689
http://arxiv.org/abs/1609.01812
https://doi.org/10.1109/ITSC.2018.8569489
http://arxiv.org/abs/abs:1811.06151
http://arxiv.org/abs/abs:1810.06801
http://arxiv.org/abs/abs:1904.09028
http://arxiv.org/abs/2009.04759
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.1109/IROS.2017.8206190
https://doi.org/10.1109/IROS.2017.8206190
http://arxiv.org/abs/abs:1711.06606
http://arxiv.org/abs/abs:1805.08400
https://doi.org/10.1016/j.simpat.2019.01.004
https://doi.org/10.1016/j.simpat.2019.01.004
https://doi.org/10.1109/3DV.2018.00023
https://doi.org/10.1109/3DV.2018.00023

References 325

578. Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. Commun. ACM 14(3),
151–165 (1971). https://doi.org/10.1145/362566.362568

579. Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Zhao, Y., Wijmans, E., Jain,
B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.: Habitat: A Platform for
Embodied AI Research. arXiv preprint arXiv:1904.01201 (2019)

580. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative
adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2813–2821 (2017). https://doi.org/10.1109/ICCV.2017.304

581. Marcu, A., Costea, D., LicareŢ, V., Pîrvu, M., Sluşanschi, E., Leordeanu, M.: Safeuav:
Learning to estimate depth and safe landing areas for uavs from synthetic data. In: Leal-
Taixé, L., Roth, S. (eds.) Computer Vision–ECCV 2018 Workshops, pp. 43–58. Springer
International Publishing, Cham (2019)

582. Marín, J., Vázquez,D., Gerónimo,D., López,A.M.: Learning appearance in virtual scenarios
for pedestrian detection. In: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 137–144 (2010). https://doi.org/10.1109/CVPR.2010.5540218

583. Mason, K., Vejdan, S., Grijalva, S.: An “on the fly” framework for efficiently generating
synthetic big data sets (2019). arXiv e-prints abs:1903.06798

584. Mautz, R., Tilch, S.: Survey of optical indoor positioning systems. In: 2011 International
Conference on Indoor Positioning and Indoor Navigation, IPIN 2011, pp. 1–7 (2011). https://
doi.org/10.1109/IPIN.2011.6071925

585. Mayer, N., Ilg, E., Fischer, P., Hazirbas, C., Cremers, D., Dosovitskiy, A., Brox, T.: What
makes good synthetic training data for learning disparity and optical flow estimation? Int. J.
Comput. Vision 126(9), 942–960 (2018). https://doi.org/10.1007/s11263-018-1082-6

586. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
CoRR (2015). arXiv e-prints abs:1512.02134

587. McCarthy, J., Minsky, M., Rochester, N., Shannon, C.E.: A proposal for the dartmouth
summer research project on artificial intelligence (1955). http://www-formal.stanford.edu/
jmc/history/dartmouth/dartmouth.html

588. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: Scenenet rgb-d: Can 5m synthetic
images beat generic imagenet pre-training on indoor segmentation? In: 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 2697–2706 (2017). https://doi.org/10.
1109/ICCV.2017.292

589. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 7, 115–133 (1943)

590. McHugh, J.: The 1998 lincoln laboratory ids evaluation. In: Debar, H., Mé, L., Wu, S.F.
(eds.) Recent Advances in Intrusion Detection, pp. 145–161. Springer, Berlin, Heidelberg
(2000)

591. McLachlan, S.: Realism in synthetic data generation. Ph.D. thesis, Massey University,
Palmerston North, New Zealand (2017)

592. McLachlan, S., Dube, K., Gallagher, T.: Using the caremapwith health incidents statistics for
generating the realistic synthetic electronic healthcare record. In: 2016 IEEE International
Conference on Healthcare Informatics (ICHI), pp. 439–448 (2016). https://doi.org/10.1109/
ICHI.2016.83

593. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent
language models. In: International Conference on Learning Representations (2018)

594. Mdclone: Introducing a new clinical data paradigm (2016). https://www.mdclone.com/
595. Mehta, B., Diaz, M., Golemo, F., Pal, C.J., Paull, L.: Active domain randomization (2019).

arXiv e-prints abs:1904.04762
596. Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow eval-

uation. In: 2011 14th ITG Conference on Electronic Media Technology, pp. 1–6 (2011)
597. Melamud, O., Shivade, C.: Towards automatic generation of shareable synthetic clinical

notes using neural language models (2019). arXiv e-prints abs:1905.07002

https://doi.org/10.1145/362566.362568
http://arxiv.org/abs/1904.01201
https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/CVPR.2010.5540218
http://arxiv.org/abs/abs:1903.06798
https://doi.org/10.1109/IPIN.2011.6071925
https://doi.org/10.1109/IPIN.2011.6071925
https://doi.org/10.1007/s11263-018-1082-6
http://arxiv.org/abs/abs:1512.02134
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/ICHI.2016.83
https://doi.org/10.1109/ICHI.2016.83
https://www.mdclone.com/
http://arxiv.org/abs/abs:1904.04762
http://arxiv.org/abs/abs:1905.07002

326 References

598. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on
Computer Vision and Pattern Recognition (CVPR) (2015)

599. Merelo Guerv’os, J.J., Fernández-Ares, A., Álvarez-Caballero, A., García-Sánchez, P.,
Rivas, V.M.: Reddwarfdata: a simplified dataset of starcraft matches. CoRR (2017). arXiv
e-prints abs:1712.10179

600. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of
words and phrases and their compositionality. CoRR (2013). arXiv e-prints abs:1310.4546

601. Milz, S., Arbeiter, G., Witt, C., Abdallah, B., Yogamani, S.: Visual slam for automated
driving: Exploring the applications of deep learning. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops (2018)

602. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR (2014). arXiv e-
prints abs:1411.1784

603. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge distillation
via teacher assistant: Bridging the gap between student and teacher (2019)

604. Misra, D.: Mish: A Self Regularized Non-Monotonic Activation Function. arXiv e-prints
arXiv:1908.08681 (2019)

605. Mitra, P., Choudhury, A., Aparow, V.R., Kulandaivelu, G., Dauwels, J.: Towards modeling
of perception errors in autonomous vehicles. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pp. 3024–3029 (2018). https://doi.org/10.1109/
ITSC.2018.8570015

606. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: M.F. Bal-
can, K.Q. Weinberger (eds.) Proceedings of The 33rd International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 48, pp. 1928–1937. PMLR, New
York, New York, USA (2016)

607. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). http://dx.
doi.org/10.1038/nature14236

608. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su, H.: Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level 3d object understanding. CoRR
(2018). arXiv e-prints arXiv:1812.02713 (2019)

609. Moiseev, B., Konev, A., Chigorin, A., Konushin, A.: Evaluation of traffic sign recognition
methods trained on synthetically generated data. In: Blanc-Talon, J., Kasinski, A., Philips,
W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems,
pp. 576–583. Springer International Publishing, Cham (2013)

610. Moniz, L.J., Buczak, A.L., Hung, L.M., Babin, S., Dorko,M., Lombardo, J.M.: Construction
and validation of synthetic electronic medical records. In: Online journal of public health
informatics (2009)

611. Moor, J.: The dartmouth college artificial intelligence conference: The next fifty years. AI
Mag. 27(4), 87 (2006). https://doi.org/10.1609/aimag.v27i4.1911

612. Mora, P.B.: Deep 3d pose regression of real objects trainedwith synthetic data.M.Sc. Thesis,
Universitat Politécnica de Catalunya (UPC) (2019)

613. Moravec, H.P.: The Stanford Cart and the CMU Rover, pp. 407–419. Springer New York,
New York, NY (1990). https://doi.org/10.1007/978-1-4613-8997-2_30

614. Movshovitz-Attias, Y., Kanade, T., Sheikh, Y.: How useful is photo-realistic rendering for
visual learning? In: Hua, G., Jégou, H. (eds.) Computer Vision–ECCV 2016Workshops, pp.
202–217. Springer International Publishing, Cham (2016)

615. Mualla, Y., Bai, W., Galland, S., Nicolle, C.: Comparison of agent-based simulation frame-
works for unmanned aerial transportation applications. Procedia Computer Science 130, 791
– 796 (2018). https://doi.org/10.1016/j.procs.2018.04.137. The 9th International Conference
on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Con-
ference on Sustainable Energy Information Technology (SEIT-2018) / AffiliatedWorkshops

http://arxiv.org/abs/abs:1712.10179
http://arxiv.org/abs/abs:1310.4546
http://arxiv.org/abs/abs:1411.1784
http://arxiv.org/abs/1908.08681
https://doi.org/10.1109/ITSC.2018.8570015
https://doi.org/10.1109/ITSC.2018.8570015
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1812.02713
https://doi.org/10.1609/aimag.v27i4.1911
https://doi.org/10.1007/978-1-4613-8997-2_30
https://doi.org/10.1016/j.procs.2018.04.137

References 327

616. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:
Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, p. 807–814. Omnipress, Madison, WI, USA (2010)

617. Nakano, R.: Neural painters: A learned differentiable constraint for generating brushstroke
paintings (2019). arXiv e-prints abs:1904.08410

618. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep double descent:
Where bigger models and more data hurt. In: International Conference on Learning Repre-
sentations (2020)

619. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008
IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125 (2008)

620. National Research Council: Language and Machines: Computers in Translation and Lin-
guistics. The National Academies Press, Washington, DC (1966). https://doi.org/10.17226/
9547

621. Neff, T.: Data augmentation in deep learning using generative adversarial networks. Ph.D.
thesis, Graz University of Technology (2018)

622. Nelson, J., Solawetz, J.: Responding to the controversy about yolov5 (2020). https://blog.
roboflow.com/yolov4-versus-yolov5/

623. Nelson, J., Solawetz, J.: Yolov5 is here: State-of-the-art object detection at 140 fps (2020).
https://blog.roboflow.com/yolov5-is-here/

624. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Doklady AN USSR 269, 543–547 (1983)

625. Nesterov, Y.: Introductory Lectures on Convex Optimization. Springer (2004)
626. Nguyen, T., Miller, I., Cohen, A., Thakur, D., Prasad, S., Guru, A., Taylor, C.J., Chaudrahi,

P., Kumar, V.: Pennsyn2real: Training object recognition models without human labeling
(2020). arXiv e-prints abs:2009.10292

627. Nie, D., Trullo, R., Lian, J., Wang, L., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: Medical
image synthesis with deep convolutional adversarial networks. IEEE Trans. Biomed. Eng.
65(12), 2720–2730 (2018). https://doi.org/10.1109/TBME.2018.2814538

628. Nie, D., Trullo, R., Petitjean, C., Ruan, S., Shen, D.: Medical image synthesis with context-
aware generative adversarial networks. CoRR (2016). arXiv e-prints abs:1612.05362

629. Nie, W., Karras, T., Garg, A., Debnath, S., Patney, A., Patel, A.B., Anandkumar, A.: Semi-
supervised stylegan for disentanglement learning (2020)

630. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2018). http://
neuralnetworksanddeeplearning.com/

631. Nikolenko, S., Kadurin, A., Arkhangelskaya, E.: Deep Learning. Piter (2017)
632. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: Subject agnostic face swapping and reenactment.

In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7184–7193
(2019)

633. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, New York (2006)

634. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.:
Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model.
1(1), 3 (2013). https://doi.org/10.1186/2194-3206-1-3

635. Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: Howmuch
real data do we actually need: Analyzing object detection performance using synthetic and
real data (2019). arXiv e-prints abs:1907.07061

636. O’Byrne, M., Pakrashi, V., Schoefs, F., Ghosh, B.: Semantic segmentation of underwater
imagery using deep networks trained on synthetic imagery. J. Marine Sci. Eng. 6(3) (2018).
https://doi.org/10.3390/jmse6030093

637. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans.
In: Proceedings of the 34th International Conference on Machine Learning—Volume 70,
ICML’17, pp. 2642–2651. JMLR.org (2017)

638. Oh, J., Chockalingam, V., Singh, S., Lee, H.: Control of memory, active perception, and
action in minecraft. In: Proceedings of the 33rd International Conference on International
Conference onMachine Learning—Volume 48, ICML’16, pp. 2790–2799. JMLR.org (2016)

http://arxiv.org/abs/abs:1904.08410
https://doi.org/10.17226/9547
https://doi.org/10.17226/9547
https://blog.roboflow.com/yolov4-versus-yolov5/
https://blog.roboflow.com/yolov4-versus-yolov5/
https://blog.roboflow.com/yolov5-is-here/
http://arxiv.org/abs/abs:2009.10292
https://doi.org/10.1109/TBME.2018.2814538
http://arxiv.org/abs/abs:1612.05362
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1186/2194-3206-1-3
http://arxiv.org/abs/abs:1907.07061
https://doi.org/10.3390/jmse6030093

328 References

639. Oh, K.S., Jung, K.: Gpu implementation of neural networks. Pattern Recogn. 37(6), 1311–
1314 (2004). https://doi.org/10.1016/j.patcog.2004.01.013

640. Olivecrona,M.,Blaschke,T., Engkvist,O.,Chen,H.:Molecular de-novodesign throughdeep
reinforcement learning. J. Cheminform. 9(1), 48 (2017). https://doi.org/10.1186/s13321-
017-0235-x

641. Olson, E.A., Barbalata, C., Zhang, J., Skinner, K.A., Johnson-Roberson, M.: Synthetic
data generation for deep learning of underwater disparity estimation. In: OCEANS 2018
MTS/IEEE Charleston pp. 1–6 (2018)

642. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbren-
ner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw audio. In: Arxiv
(2016)

643. van denOord,A., Li,Y.,Babuschkin, I., Simonyan,K.,Vinyals,O.,Kavukcuoglu,K., van den
Driessche, G., Lockhart, E., Cobo, L., Stimberg, F., Casagrande, N., Grewe, D., Noury, S.,
Dieleman, S., Elsen, E., Kalchbrenner, N., Zen, H., Graves, A., King, H., Walters, T., Belov,
D., Hassabis, D.: Parallel WaveNet: Fast high-fidelity speech synthesis. In: J. Dy, A. Krause
(eds.) Proceedings of the 35th InternationalConferenceonMachineLearning,Proceedings of
MachineLearningResearch, vol. 80, pp. 3918–3926. PMLR,Stockholmsmässan, Stockholm
Sweden (2018). http://proceedings.mlr.press/v80/oord18a.html

644. van den Oord, A., Vinyals, O., kavukcuoglu, k.: Neural discrete representation learning. In:
I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
(eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 6306–6315. Curran
Associates, Inc. (2017)

645. Oord, A.V., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: M.F.
Balcan, K.Q. Weinberger (eds.) Proceedings of The 33rd International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1747–1756.
PMLR, New York, New York, USA (2016). http://proceedings.mlr.press/v48/oord16.html

646. OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki,
J.W., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., Zaremba, W.: Learning dexterous in-hand manipulation.
CoRR (2018). arXiv e-prints abs:1808.00177

647. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J.: An algorithmic
perspective on imitation learning. CoRR (2018). arXiv e-prints abs:1811.06711

648. Ostyakov, P., Suvorov, R., Logacheva, E., Khomenko, O., Nikolenko, S.I.: SEIGAN: towards
compositional image generation by simultaneously learning to segment, enhance, and
inpaint. CoRR (2018). arXiv e-prints abs:1811.07630

649. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and
control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1, (2016). https://
doi.org/10.1109/TIV.2016.2578706

650. Panchendrarajan, R., Amaresan, A.: Bidirectional LSTM-CRF for named entity recogni-
tion. In: Proceedings of the 32nd Pacific Asia Conference on Language, Information and
Computation. Association for Computational Linguistics, Hong Kong (2018)

651. Panin, M., Nikolenko, S.I.: Rendering atmospheric clouds with latent space light probes.
In: 12th ACM SIGGRAPH Conference and Exhibition on Computer Graphics & Interactive
Techniques in Asia, pp. 21–24 (2019)

652. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density esti-
mation. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 2338–
2347. Curran Associates, Inc. (2017)

653. Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I.J., Talwar, K.: Semi-supervised
knowledge transfer for deep learning from private training data. In: 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Con-
ference Track Proceedings (2017)

654. Papert, S.A.: The summer vision project (1966). https://dspace.mit.edu/handle/1721.1/6125

https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
http://proceedings.mlr.press/v80/oord18a.html
http://proceedings.mlr.press/v48/oord16.html
http://arxiv.org/abs/abs:1808.00177
http://arxiv.org/abs/abs:1811.06711
http://arxiv.org/abs/abs:1811.07630
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/TIV.2016.2578706
https://dspace.mit.edu/handle/1721.1/6125

References 329

655. Papon, J., Schoeler, M.: Semantic pose using deep networks trained on synthetic rgb-d.
In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 774–782 (2015).
https://doi.org/10.1109/ICCV.2015.95

656. Parish, Y.I.H., Müller, P.: Procedural modeling of cities. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 301–
308. ACM, New York, NY, USA (2001). https://doi.org/10.1145/383259.383292

657. Parker, J.R.: Algorithms for Image Processing and Computer Vision, 2nd edn. Wiley Pub-
lishing (2010)

658. Pashevich, A., Strudel, R.A.M., Kalevatykh, I., Laptev, I., Schmid, C.: Learning to augment
synthetic images for sim2real policy transfer. CoRR (2019). arXiv e-prints abs:1903.07740

659. Patel, S., Kakadiya, A., Mehta, M., Derasari, R., Patel, R., Gandhi, R.: Correlated discrete
data generation using adversarial training. CoRR (2018). arXiv e-prints abs:1804.00925

660. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: A survey of
recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015). https://doi.org/10.1109/
MSP.2014.2347059

661. Data-driven policy transfer with imprecise perception simulation: Pecka, M., Zimmermann,
K., Petrlx00EDk, M., Svoboda, T. IEEE Robotics and Automation Letters 3, 3916–3921
(2018)

662. Pendleton, S.D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y.H., Rus, D., Ang,
M.H.: Perception, planning, control, and coordination for autonomous vehicles. Machines
5(1) (2017). https://doi.org/10.3390/machines5010006

663. Peng, X., Sun, B., Ali, K., Saenko, K.: Exploring invariances in deep convolutional neural
networks using synthetic images. CoRR (2014). arXiv e-prints abs:1412.7122

664. Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3d models. In:
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV
’15, pp. 1278–1286. IEEEComputer Society,Washington, DC, USA (2015). https://doi.org/
10.1109/ICCV.2015.151

665. Peng Wang, Xiaohui Shen, Zhe Lin, Cohen, S., Price, B., Yuille, A.: Towards unified depth
and semantic prediction from a single image. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2800–2809 (2015). https://doi.org/10.1109/
CVPR.2015.7298897

666. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar (2014)

667. Pepik, B., Benenson, R., Ritschel, T., Schiele, B.: What is holding back convnets for detec-
tion? CoRR (2015). arXiv e-prints abs:1508.02844

668. Pereyra,G., Tucker,G.,Chorowski, J.,Kaiser, L.,Hinton,G.E.:Regularizingneural networks
by penalizing confident output distributions. CoRR (2017). arXiv e-prints abs:1701.06548

669. Pérez, P., Gangnet,M., Blake,A.: Poisson image editing.ACMTrans.Graph. 22(3), 313–318
(2003). https://doi.org/10.1145/882262.882269

670. Perianez-Pascual, J., Rodriguez-Echeverria, R., Burgueño, L., Cabot, J.: Towards the Optical
Character Recognition of DSLs, p. 126–132. Association for Computing Machinery, New
York, NY, USA (2020)

671. Peris, M., Martull, S., Maki, A., Ohkawa, Y., Fukui, K.: Towards a simulation driven stereo
vision system. In: Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), pp. 1038–1042 (2012)

672. Perot, E., Jaritz, M., Toromanoff, M., d. Charette, R.: End-to-end driving in a realistic racing
game with deep reinforcement learning. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 474–475 (2017). https://doi.org/10.1109/
CVPRW.2017.64

673. Ping, H., Stoyanovich, J., Howe, B.: Datasynthesizer: Privacy-preserving synthetic datasets.
In: Proceedings of the 29th International Conference on Scientific and Statistical Database
Management, SSDBM ’17, pp. 42:1–42:5. ACM, New York, NY, USA (2017). https://doi.
org/10.1145/3085504.3091117

https://doi.org/10.1109/ICCV.2015.95
https://doi.org/10.1145/383259.383292
http://arxiv.org/abs/abs:1903.07740
http://arxiv.org/abs/abs:1804.00925
https://doi.org/10.1109/MSP.2014.2347059
https://doi.org/10.1109/MSP.2014.2347059
https://doi.org/10.3390/machines5010006
http://arxiv.org/abs/abs:1412.7122
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.1109/CVPR.2015.7298897
https://doi.org/10.1109/CVPR.2015.7298897
http://arxiv.org/abs/abs:1508.02844
http://arxiv.org/abs/abs:1701.06548
https://doi.org/10.1145/882262.882269
https://doi.org/10.1109/CVPRW.2017.64
https://doi.org/10.1109/CVPRW.2017.64
https://doi.org/10.1145/3085504.3091117
https://doi.org/10.1145/3085504.3091117

330 References

674. Pinheiro, P.H.O., Lin, T., Collobert, R., Dollár, P.: Learning to refine object segments. CoRR
(2016). arXiv e-prints abs:1603.08695

675. Pinto, N., Barhomi, Y., Cox, D.D., DiCarlo, J.J.: Comparing state-of-the-art visual features
on invariant object recognition tasks. In: 2011 IEEEWorkshop on Applications of Computer
Vision (WACV), pp. 463–470 (2011). https://doi.org/10.1109/WACV.2011.5711540

676. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for track-
ing a variable number of objects. CVPR 2011, 1201–1208 (2011). https://doi.org/10.1109/
CVPR.2011.5995604

677. Planche, B., Wu, Z., Ma, K., Sun, S., Kluckner, S., Lehmann, O., Chen, T., Hutter, A.,
Zakharov, S., Kosch, H., Ernst, J.: Depthsynth: Real-time realistic synthetic data generation
from cad models for 2.5d recognition. In: 2017 International Conference on 3D Vision
(3DV), pp. 1–10 (2017). https://doi.org/10.1109/3DV.2017.00011

678. Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev,
S., Kurbanov, R., Artamonov, A., Aladinsky, V., Veselov, M., Kadurin, A., Nikolenko, S.I.,
Aspuru-Guzlik, A., Zhavoronkov, A.: Molecular sets (moses): A benchmarking platform for
molecular generation models (2018)

679. Polykovskiy, D., Zhebrak, A., Vetrov, D., Ivanenkov, Y., Aladinskiy, V., Mamoshina, P.,
Bozdaganyan, M., Aliper, A., Zhavoronkov, A., Kadurin, A.: Entangled conditional adver-
sarial autoencoder for de novo drug discovery. Mol. Pharm. 15(10), 4398–4405 (2018).
https://doi.org/10.1021/acs.molpharmaceut.8b00839. PMID: 30180591

680. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In: Touretzky,
D.S. (ed.) Advances in Neural Information Processing Systems 1, pp. 305–313. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1989)

681. Popova, M., Isayev, O., Tropsha, A.: Deep reinforcement learning for de novo drug design.
Sci. Adv. 4(7) (2018). https://doi.org/10.1126/sciadv.aap7885

682. Poppe, R.: A survey on vision-based human action recognition. ImageVisionComput. 28(6),
976–990 (2010). https://doi.org/10.1016/j.imavis.2009.11.014

683. Prabowo, Y.A., Trilaksono, B.R., Triputra, F.R.: Hardware in-the-loop simulation for visual
servoing of fixed wing uav. In: 2015 International Conference on Electrical Engineering and
Informatics (ICEEI), pp. 247–252 (2015). https://doi.org/10.1109/ICEEI.2015.7352505

684. Prakash, A., Boochoon, S., Brophy, M., Acuna, D., Cameracci, E., State, G., Shapira, O.,
Birchfield, S.T.: Structured domain randomization: Bridging the reality gap by context-aware
synthetic data. CoRR (2018). arXiv e-prints abs:1810.10093

685. Prenger, R., Valle, R., Catanzaro, B.:Waveglow:A flow-based generative network for speech
synthesis. CoRR (2018). arXiv e-prints abs:1811.00002

686. Prusinkiewicz, P., Hanan, J.: Lindenmayer systems, fractals, and plants, Springer Science &
Business Media, vol. 79. Springer (2013)

687. Qi, S., Zhu, Y., Huang, S., Jiang, C., Zhu, S.: Human-centric indoor scene synthesis using
stochastic grammar. In: 2018 IEEE/CVFConference onComputerVision andPatternRecog-
nition, pp. 5899–5908 (2018). https://doi.org/10.1109/CVPR.2018.00618

688. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3d graph neural networks for rgbd semantic
segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV) pp.
5209–5218 (2017)

689. Qiu,W., Yuille, A.L.: Unrealcv: Connecting computer vision to unreal engine. CoRR (2016).
arXiv e-prints abs:1609.01326

690. Qiu, W., Zhong, F., Zhang, Y., Siyuan Qiao, Z.X., Kim, T.S., Wang, Y., Yuille, A.: Unrealcv:
Virtual worlds for computer vision. ACM Multimedia Open Source Software Competition
(2017)

691. Queiroz, R., Cohen, M., Moreira, J.L., Braun, A., Jacques Junior, J.C., Musse, S.R.: Gen-
erating facial ground truth with synthetic faces. In: 2010 23rd SIBGRAPI Conference on
Graphics, Patterns and Images, pp. 25–31 (2010). https://doi.org/10.1109/SIBGRAPI.2010.
12

692. Quiter, C., Ernst, M.: deepdrive/deepdrive: 2.0 (2018). https://doi.org/10.5281/zenodo.
1248998

http://arxiv.org/abs/abs:1603.08695
https://doi.org/10.1109/WACV.2011.5711540
https://doi.org/10.1109/CVPR.2011.5995604
https://doi.org/10.1109/CVPR.2011.5995604
https://doi.org/10.1109/3DV.2017.00011
https://doi.org/10.1021/acs.molpharmaceut.8b00839
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1016/j.imavis.2009.11.014
https://doi.org/10.1109/ICEEI.2015.7352505
http://arxiv.org/abs/abs:1810.10093
http://arxiv.org/abs/abs:1811.00002
https://doi.org/10.1109/CVPR.2018.00618
http://arxiv.org/abs/abs:1609.01326
https://doi.org/10.1109/SIBGRAPI.2010.12
https://doi.org/10.1109/SIBGRAPI.2010.12
https://doi.org/10.5281/zenodo.1248998
https://doi.org/10.5281/zenodo.1248998

References 331

693. Qureshi, F.Z., Terzopoulos, D.: Surveillance in virtual reality: System design and multi-
camera control. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383071

694. Raczkowsky, J., Mittenbuehler, K.H.: Simulation of cameras in robot applications. IEEE
Comput. Graph. Appl. 9(1), 16–25 (1989). https://doi.org/10.1109/38.20330

695. Rad, M., Oberweger, M., Lepetit, V.: Feature mapping for learning fast and accurate 3d pose
inference from synthetic images. CoRR (2017). arXiv e-prints abs:1712.03904

696. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep con-
volutional generative adversarial networks. In: 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track
Proceedings (2016)

697. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understand-
ing by generative pre-training (2018). https://s3-us-west-2.amazonaws.com/openai-assets/
researchcovers/languageunsupervised/languageunderstandingpaper.pdf

698. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models
are unsupervised multitask learners (2018). https://d4mucfpksywv.cloudfront.net/better-
language-models/language-models.pdf

699. Ragheb, H., Velastin, S., Remagnino, P., Ellis, T.: Vihasi: Virtual human action silhouette
data for the performance evaluation of silhouette-based action recognition methods. In:
2008 Second ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–10
(2008). https://doi.org/10.1109/ICDSC.2008.4635730

700. Raghunathan, T., Reiter, J., Rubin, D.: Multiple imputation for statistical disclosure limita-
tion. J. Off. Stat. 19(1), 1–16 (2003)

701. Rajpura, P.S., Hegde, R.S., Bojinov,H.: Object detection using deep cnns trained on synthetic
images. CoRR (2017). arXiv e-prints abs:1706.06782

702. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. CoRR (2017).
arXiv e-prints abs:1710.05941

703. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: A deep multi-task learning framework
for face detection, landmark localization, pose estimation, and gender recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2019). https://doi.org/10.1109/TPAMI.
2017.2781233

704. Rashid,A., Do-Omri, A., Haidar,M.A., Liu,Q., Rezagholizadeh,M.: Bilingual-GAN:A step
towards parallel text generation. In: Proceedings of theWorkshop onMethods forOptimizing
and Evaluating Neural Language Generation, pp. 55–64. Association for Computational
Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/W19-2307

705. Ratcliffe, D.S., Devlin, S., Kruschwitz, U., Citi, L.: Clyde: A deep reinforcement learning
doom playing agent. In: AAAI Workshops (2017)

706. Ratner, A.J., Ehrenberg, H., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-
specific transformations for data augmentation. In: I. Guyon, U.V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information
Processing Systems 30, pp. 3236–3246. Curran Associates, Inc. (2017)

707. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with
VQ-VAE-2. CoRR (2019). arXiv e-prints abs:1906.00446

708. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. CoRR (2019).
arXiv e-prints abs:1904.09237

709. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-
time object detection. CoRR (2015). arXiv e-prints abs:1506.02640

710. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR (2016). arXiv e-prints
abs:1612.08242

711. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. CoRR (2018). arXiv e-prints
abs:1804.02767

712. Reiter, J.P.: Releasing multiply imputed, synthetic public use microdata: An illustration and
empirical study. J. R. Stat. Soc. Ser. A 168, 185–205 (2005). https://doi.org/10.1111/j.1467-
985X.2004.00343.x

https://doi.org/10.1109/CVPR.2007.383071
https://doi.org/10.1109/38.20330
http://arxiv.org/abs/abs:1712.03904
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language understanding paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language understanding paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1109/ICDSC.2008.4635730
http://arxiv.org/abs/abs:1706.06782
http://arxiv.org/abs/abs:1710.05941
https://doi.org/10.1109/TPAMI.2017.2781233
https://doi.org/10.1109/TPAMI.2017.2781233
https://doi.org/10.18653/v1/W19-2307
http://arxiv.org/abs/abs:1906.00446
http://arxiv.org/abs/abs:1904.09237
http://arxiv.org/abs/abs:1506.02640
http://arxiv.org/abs/abs:1612.08242
http://arxiv.org/abs/abs:1804.02767
https://doi.org/10.1111/j.1467-985X.2004.00343.x
https://doi.org/10.1111/j.1467-985X.2004.00343.x

332 References

713. Reiter, J.P., Drechsler, J.: Releasing multiply-imputed synthetic data generated in two stages
to protect confidentiality. Stat. Sinica 20, (2007)

714. Reiter, J.P., Raghunathan, T.E.: The multiple adaptations of multiple imputation. J. Am. Stat.
Assoc. 102, 1462–1471 (2007)

715. Rematas, K., Kemelmacher-Shlizerman, I., Curless, B., Seitz, S.: Soccer on your tabletop. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4738–4747
(2018). https://doi.org/10.1109/CVPR.2018.00498

716. Remez, T., Huang, J., Brown,M.R.: Learning to segment via cut-and-paste. In: ECCV (2018)
717. Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Adversarial domain adaptation

for classification of prostate histopathology whole-slide images. In:Medical Image Comput-
ing and Computer Assisted Intervention—MICCAI 2018—21st International Conference,
Granada, Spain, September 16–20, 2018, Proceedings, Part II, pp. 201–209 (2018). https://
doi.org/10.1007/978-3-030-00934-2_23

718. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with
region proposal networks. In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett
(eds.)Advances inNeural InformationProcessingSystems 28, pp. 91–99.CurranAssociates,
Inc. (2015)

719. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(06), 1137–1149
(2017). https://doi.org/10.1109/TPAMI.2016.2577031

720. Ren, Z., Lee, Y.J.: Cross-domain self-supervised multi-task feature learning using synthetic
imagery. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
762–771 (2018)

721. Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action
detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision–
ECCV 2018, pp. 639–655. Springer International Publishing, Cham (2018)

722. Reymond, J.L., Ruddigkeit, L., Blum, L., van Deursen, R.: The enumeration of chemical
space. Wiley Interdisc. Rev. Comput. Mol. Sci. 2(5), 717–733 (2012). https://doi.org/10.
1002/wcms.1104

723. Rezende, D.,Mohamed, S.: Variational inferencewith normalizing flows. In: F. Bach, D. Blei
(eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 37, pp. 1530–1538. PMLR, Lille, France (2015). http://
proceedings.mlr.press/v37/rezende15.html

724. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. CoRR (2017). arXiv e-prints
abs:1709.07322

725. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from computer
games. CoRR (2016). arXiv e-prints abs:1608.02192

726. Roberts, M., Paczan, N.: Hypersim: A photorealistic synthetic dataset for holistic indoor
scene understanding (2020)

727. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: Human
trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision–ECCV2016, pp. 549–565. Springer International Publishing, Cham
(2016)

728. Rohmer, E., Singh, S.P.N., Freese, M.: V-rep: A versatile and scalable robot simulation
framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1321–1326 (2013). https://doi.org/10.1109/IROS.2013.6696520

729. Rojas-Perez, L.O., Munguia-Silva, R., Martinez-Carranza, J.: Real-time landing zone detec-
tion for uavs using single aerial images. In: IMAV2018, 10th InternationalMicro Air Vehicle
Conference (IMAV) (2018)

730. Ronneberger, O., P.Fischer, Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), LNCS, vol. 9351, pp. 234–241. Springer (2015). http://lmb.informatik.uni-freiburg.
de/Publications/2015/RFB15a, arXiv:1505.04597 [cs.CV])

https://doi.org/10.1109/CVPR.2018.00498
https://doi.org/10.1007/978-3-030-00934-2_23
https://doi.org/10.1007/978-3-030-00934-2_23
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1002/wcms.1104
https://doi.org/10.1002/wcms.1104
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://arxiv.org/abs/abs:1709.07322
http://arxiv.org/abs/abs:1608.02192
https://doi.org/10.1109/IROS.2013.6696520
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://arxiv.org/abs/1505.04597

References 333

731. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: A large
collection of synthetic images for semantic segmentation of urban scenes. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016).
https://doi.org/10.1109/CVPR.2016.352

732. Ros, G., Sellart, L., Villalonga, G., Maidanik, E., Molero, F., Garcia, M., Cedeño, A., Perez,
F., Ramirez,D., Escobar, E., Gomez, J.L., Vazquez,D., Lopez,A.M.: Semantic Segmentation
of Urban Scenes via Domain Adaptation of SYNTHIA, pp. 227–241. Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_12

733. Ros, G., Stent, S., Alcantarilla, P.F., Watanabe, T.: Training constrained deconvolutional net-
works for road scene semantic segmentation. CoRR (2016). arXiv e-prints abs:1604.01545

734. Rosenberg, A., Patwardhan, R., Shendure, J., Seelig, G.: Learning the sequence determinants
of alternative splicing from millions of random sequences. Cell 163(3), 698–711 (2015).
https://doi.org/10.1016/j.cell.2015.09.054

735. Rosenblatt, F.: Theperceptron: a probabilisticmodel for information storage andorganization
in the brain. Psychol. Rev. 65(6), 386 (1958)

736. Rosenblatt, F.: Principles of Neurodynamics. Spartan, New York (1962)
737. Rosique, F., Navarro, P.J., Fernández, C., Padilla, A.: A systematic review of perception

system and simulators for autonomous vehicles research. Sensors 19(3) (2019). https://doi.
org/10.3390/s19030648

738. Rozantsev, A., Lepetit, V., Fua, P.: On rendering synthetic images for training an object
detector. Comput. Vis. Image Underst. 137, 24–37 (2015). https://doi.org/10.1016/j.cviu.
2014.12.006

739. Rozantsev, A., Salzmann, M., Fua, P.: Beyond sharing weights for deep domain adaptation.
IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 801–814 (2019). https://doi.org/10.1109/
TPAMI.2018.2814042

740. Rubin, D.: Discussion: Statistical disclosure limitation. J. Off. Stat. 9, 462–468 (1993)
741. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. In: International Conference

on Learning Representations (2019)
742. Rumelhart,D.E.,Hinton,G.E.,Williams,R.J.: Learning representations byback-propagating

errors. Nature 323(6088), 533–536 (1986)
743. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,

K., Pascanu, R., Hadsell, R.: Progressive neural networks. CoRR (2016). arXiv e-prints
abs:1606.04671

744. Rusu, A.A., Vecerik, M., Rothörl, T., Heess, N., Pascanu, R., Hadsell, R.: Sim-to-real robot
learning from pixels with progressive nets. In: CoRL (2017)

745. Rygaard, L.V.: Using synthesized speech to improve speech recognition for low-resource
languages. In: Grace Hopper Celebration 2015, Poster Session (2015)

746. S. Lombardo, J., Moniz, L.: A method for generation and distribution of synthetic medical
record data for evaluation of disease-monitoring systems. Johns Hopkins APL Technical
Digest (Applied Physics Laboratory) 27 (2008)

747. Saatchi, Y., Wilson, A.G.: Bayesian gan. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems 30, pp. 3622–3631. Curran Associates, Inc. (2017)

748. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules (2017). arXiv e-
prints abs:1710.09829

749. Sadeghi, F., Levine, S.: Cad2rl: Real single-image flight without a single real image (2017).
arXiv e-prints abs:1611.04201

750. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adapta-
tion. In: Proceedings of the 34th International Conference on Machine Learning—Volume
70, ICML’17, pp. 2988–2997. JMLR.org (2017)

751. Sajjan, S.S., Moore, M., Pan, M., Nagaraja, G., Lee, J., Zeng, A., Song, S.: ClearGrasp: 3D
Shape Estimation of Transparent Objects forManipulation. arXiv e-prints arXiv:1910.02550
(2019)

https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1007/978-3-319-58347-1_12
http://arxiv.org/abs/abs:1604.01545
https://doi.org/10.1016/j.cell.2015.09.054
https://doi.org/10.3390/s19030648
https://doi.org/10.3390/s19030648
https://doi.org/10.1016/j.cviu.2014.12.006
https://doi.org/10.1016/j.cviu.2014.12.006
https://doi.org/10.1109/TPAMI.2018.2814042
https://doi.org/10.1109/TPAMI.2018.2814042
http://arxiv.org/abs/abs:1606.04671
http://arxiv.org/abs/abs:1710.09829
http://arxiv.org/abs/abs:1611.04201
http://arxiv.org/abs/1910.02550

334 References

752. Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: D. van Dyk, M. Welling
(eds.) Proceedings of the Twelth International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research, vol. 5, pp. 448–455. PMLR, Hilton
Clearwater Beach Resort, Clearwater Beach, Florida USA (2009). http://proceedings.mlr.
press/v5/salakhutdinov09a.html

753. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Y.W.
Teh, M. Titterington (eds.) Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 9, pp.
693–700. JMLR Workshop and Conference Proceedings, Chia Laguna Resort, Sardinia,
Italy (2010). http://proceedings.mlr.press/v9/salakhutdinov10a.html

754. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Effective use
of synthetic data for urban scene semantic segmentation. CoRR (2018). arXiv e-prints
abs:1807.06132

755. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: Pixelcnn++: Improving the pixelcnn
with discretized logistic mixture likelihood and other modifications. CoRR (2017). arXiv
e-prints abs:1701.05517

756. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: End-to-end deep reinforcement learning
for lane keeping assist (2016). arXiv e-prints abs:1612.04340

757. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework
for autonomous driving (2017). arXiv e-prints abs:1704.02532

758. Santana, E., Hotz, G.: Learning a driving simulator (2016). arXiv e-prints abs:1608.01230
759. Santoro, A., Raposo, D., Barrett, D.G.T., Malinowski, M., Pascanu, R., Battaglia, P.W.,

Lillicrap, T.P.: A simple neural network module for relational reasoning. In: NIPS (2017)
760. Santoso, K., Kusuma, G.P.: Face recognition using modified openface. Procedia Computer

Science 135, 510–517 (2018). https://doi.org/10.1016/j.procs.2018.08.203. The 3rd Inter-
national Conference on Computer Science and Computational Intelligence (ICCSCI 2018)
: Empowering Smart Technology in Digital Era for a Better Life

761. Savva, M., Chang, A.X., Dosovitskiy, A., Funkhouser, T., Koltun, V.: MINOS: Multi-
modal indoor simulator for navigation in complex environments (2017). arXiv e-prints
arXiv:1712.03931

762. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J.
Rob. Res. 27(2), 157–173 (2008). https://doi.org/10.1177/0278364907087172

763. Sayre-McCord, T., Guerra, W., Antonini, A., Arneberg, J., Brown, A., Cavalheiro, G., Fang,
Y., Gorodetsky, A., McCoy, D., Quilter, S., Riether, F., Tal, E., Terzioglu, Y., Carlone, L.,
Karaman, S.: Visual-inertial navigation algorithm development using photorealistic camera
simulation in the loop. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2566–2573 (2018). https://doi.org/10.1109/ICRA.2018.8460692

764. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X.,
Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In:
X. Jiang, J. Hornegger, R. Koch (eds.) GCPR, Lecture Notes in Computer Science, vol.
8753, pp. 31–42. Springer (2014). http://dblp.uni-trier.de/db/conf/dagm/gcpr2014.html#
ScharsteinHKKNWW14

765. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. In: Proceedings IEEE Workshop on Stereo and Multi-Baseline
Vision (SMBV 2001), pp. 131–140 (2001). https://doi.org/10.1109/SMBV.2001.988771

766. Schaul, T., Togelius, J., Schmidhuber, J.: Measuring intelligence through games. CoRR
(2011). arXiv e-prints abs:1109.1314

767. Schmidhuber, J.: Deep learning in neural networks: An overview. CoRR (2014). arXiv e-
prints abs:1404.7828

768. Schneider, M.J., Abowd, J.M.: A new method for protecting interrelated time series with
bayesian prior distributions and synthetic data. J. R. Stat. Soc. A. Stat. Soc. 178(4), 963–975
(2015). https://doi.org/10.1111/rssa.12100

769. Schneider, P., Schneider, G.: De novo design at the edge of chaos. J. Med. Chem. 59(9),
4077–4086 (2016). https://doi.org/10.1021/acs.jmedchem.5b01849. PMID: 26881908

http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v9/salakhutdinov10a.html
http://arxiv.org/abs/abs:1807.06132
http://arxiv.org/abs/abs:1701.05517
http://arxiv.org/abs/abs:1612.04340
http://arxiv.org/abs/abs:1704.02532
http://arxiv.org/abs/abs:1608.01230
https://doi.org/10.1016/j.procs.2018.08.203
http://arxiv.org/abs/1712.03931
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1109/ICRA.2018.8460692
http://dblp.uni-trier.de/db/conf/dagm/gcpr2014.html#ScharsteinHKKNWW14
http://dblp.uni-trier.de/db/conf/dagm/gcpr2014.html#ScharsteinHKKNWW14
https://doi.org/10.1109/SMBV.2001.988771
http://arxiv.org/abs/abs:1109.1314
http://arxiv.org/abs/abs:1404.7828
https://doi.org/10.1111/rssa.12100
https://doi.org/10.1021/acs.jmedchem.5b01849

References 335

770. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., Silver, D.: Mastering Atari, Go, Chess
and Shogi by planning with a learned model (2019). arXiv e-prints arXiv:1911.08265

771. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition
and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 815–823 (2015)

772. Schulman, J.,Wolski, F.,Dhariwal, P., Radford,A.,Klimov,O.: Proximal policy optimization
algorithms. CoRR (2017). arXiv e-prints abs:1707.06347

773. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focussed molecule
libraries for drug discovery with recurrent neural networks. CoRR (2017). arXiv e-prints
abs:1701.01329

774. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries
for drug discovery with recurrent neural networks. ACS Cent. Sci. 4(1), 120–131 (2018).
https://doi.org/10.1021/acscentsci.7b00512. PMID: 29392184

775. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation
of multi-view stereo reconstruction algorithms. In: Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition—Volume 1, CVPR ’06,
pp. 519–528. IEEE Computer Society, Washington, DC, USA (2006). https://doi.org/10.
1109/CVPR.2006.19

776. Sejnova, G., Tesar, M., Vavrecka, M.: Compositional models for vqa: Can neural module
networks really count? Proc. Comput. Sci. 145, 481–487 (2018). https://doi.org/10.1016/j.
procs.2018.11.110 (Postproceedings of the 9th Annual International Conference on Biolog-
ically Inspired Cognitive Architectures, BICA 2018 (Ninth Annual Meeting of the BICA
Society), held August 22–24, 2018 in Prague, Czech Republic)

777. Sela, M., Xu, P., He, J., Navalpakkam, V., Lagun, D.: Gazegan—unpaired adversarial image
generation for gaze estimation. CoRR (2017). arXiv e-prints abs:1711.09767

778. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for wmt
16. In: Proceedings of the First Conference on Machine Translation, pp. 371–376. Associ-
ation for Computational Linguistics, Berlin, Germany (2016). https://doi.org/10.18653/v1/
W16-2323

779. Sensefly datasets (2019). https://www.sensefly.com/education/datasets/
780. Sepulveda, G., Niebles, J.C., Soto, A.: A deep learning based behavioral approach to indoor

autonomous navigation. In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 4646–4653 (2018). https://doi.org/10.1109/ICRA.2018.8460646

781. Serban, A., Poll, E., Visser, J.: Adversarial examples on object recognition: A comprehensive
survey. ACM Comput. Surv. 53(3) (2020). https://doi.org/10.1145/3398394

782. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: Inte-
grated Recognition, Localization and Detection using Convolutional Networks. arXiv e-
prints arXiv:1312.6229 (2013)

783. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated
recognition, localization anddetectionusing convolutional networks. In:Y.Bengio,Y.LeCun
(eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings (2014)

784. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: Staingan: Stain style transfer for digital
histological images. CoRR (2018). arXiv e-prints abs:1804.01601

785. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical sim-
ulation for autonomous vehicles. In: Field and Service Robotics (2017). arXiv e-prints
abs:1705.05065

786. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games, 1st edn.
Springer Publishing Company, Incorporated (2016)

787. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6),
1539–1556 (2008). https://doi.org/10.1111/j.1467-8659.2007.01103.x

788. Shao, K., Tang, Z., Zhu, Y., Li, N., Zhao, D.: A Survey of Deep Reinforcement Learning in
Video Games (2019). arXiv e-prints arXiv:1912.10944

http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/abs:1707.06347
http://arxiv.org/abs/abs:1701.01329
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1109/CVPR.2006.19
https://doi.org/10.1109/CVPR.2006.19
https://doi.org/10.1016/j.procs.2018.11.110
https://doi.org/10.1016/j.procs.2018.11.110
http://arxiv.org/abs/abs:1711.09767
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/W16-2323
https://www.sensefly.com/education/datasets/
https://doi.org/10.1109/ICRA.2018.8460646
https://doi.org/10.1145/3398394
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/abs:1804.01601
http://arxiv.org/abs/abs:1705.05065
https://doi.org/10.1111/j.1467-8659.2007.01103.x
http://arxiv.org/abs/1912.10944

336 References

789. Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: Recvae: A new varia-
tional autoencoder for top-n recommendations with implicit feedback. In: 13th International
Conference on Web Search and Data Mining, pp. 528–536 (2020)

790. Shin, R., Kant, N., Gupta, K., Bender, C., Trabucco, B., Singh, R., Song, D.: Synthetic
datasets for neural program synthesis. In: International Conference on Learning Represen-
tations (2019)

791. Shoman, S., Mashita, T., Plopski, A., Ratsamee, P., Uranishi, Y., Takemura, H.: Illumination
invariant camera localization using synthetic images. In: 2018 IEEE International Sympo-
sium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 143–144 (2018).
https://doi.org/10.1109/ISMAR-Adjunct.2018.00053

792. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning.
J. Big Data 6(1), 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

793. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from
simulated and unsupervised images through adversarial training. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2242–2251 (2017)

794. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-guided
program synthesis. In: International Conference on Learning Representations (2019)

795. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects
via deep motion transfer (2018). arXiv e-prints abs:1812.08861

796. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference
from rgbd images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.)
Computer Vision–ECCV 2012, pp. 746–760. Springer, Berlin, Heidelberg (2012)

797. Silva, S., Gutman, B., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated
learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data
(2019)

798. Silveira Jacques Junior, J.C., Musse, S.R., Jung, C.R.: Crowd analysis using computer vision
techniques. IEEE Signal Process. Mag. 27(5), 66–77 (2010). https://doi.org/10.1109/MSP.
2010.937394

799. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam,V., Lanctot,M., Dieleman, S., Grewe,D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

800. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.: A general
reinforcement learning algorithm thatmasters chess, shogi, and go through self-play. Science
362(6419), 1140–1144 (2018). https://doi.org/10.1126/science.aar6404

801. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks
applied to visual document analysis. In: Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings., pp. 958–963 (2003). https://doi.org/10.1109/
ICDAR.2003.1227801

802. Simonyan,K., Zisserman,A.: Very deep convolutional networks for large-scale image recog-
nition (2014). arXiv e-prints abs:1409.1556

803. Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. In: S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (eds.) Advances in
Neural Information Processing Systems 31, pp. 9310–9320. Curran Associates, Inc. (2018)

804. Sirazitdinov, I., Schulz, H., Saalbach, A., Renisch, S., Dylov, D.V.: Tubular shape aware data
generation for semantic segmentation in medical imaging (2020)

805. Smith, D.M., Clarke, G.P., Harland, K.: Improving the synthetic data generation process
in spatial microsimulation models. Environ. Plan. Econ. Space 41(5), 1251–1268 (2009).
https://doi.org/10.1068/a4147

806. Smith, L.N., Topin, N.: Super-convergence: Very fast training of residual networks using
large learning rates. CoRR (2017). arXiv e-prints abs:1708.07120

https://doi.org/10.1109/ISMAR-Adjunct.2018.00053
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/abs:1812.08861
https://doi.org/10.1109/MSP.2010.937394
https://doi.org/10.1109/MSP.2010.937394
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
http://arxiv.org/abs/abs:1409.1556
https://doi.org/10.1068/a4147
http://arxiv.org/abs/abs:1708.07120

References 337

807. Smyth, D.L., Fennell, J., Abinesh, S., Karimi, N.B., Glavin, F.G., Ullah, I., Drury, B., Mad-
den, M.G.: A virtual environment with multi-robot navigation, analytics, and decision sup-
port for critical incident investigation (2018). arXiv e-prints abs:1806.04497

808. Smyth, D.L., Glavin, F.G.,Madden,M.G.: Using a game engine to simulate critical incidents
and data collection by autonomous drones. In: 2018 IEEE Games, Entertainment, Media
Conference (GEM), pp. 1–9 (2018). https://doi.org/10.1109/GEM.2018.8516527

809. Sobel, I.: An isotropic 3x3 image gradient operator. Presentation at Stanford A.I. Project
1968 (2014)

810. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal
transfer. In: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (eds.)
Advances in Neural Information Processing Systems 26, pp. 935–943. Curran Associates,
Inc. (2013)

811. Sohn, K., Liu, S., Zhong, G., Yu, X., Yang, M., Chandraker, M.: Unsupervised domain adap-
tation for face recognition in unlabeled videos. CoRR (2017). arXiv e-prints abs:1708.02191

812. Solovev, P., Aliev, V., Ostyakov, P., Sterkin, G., Logacheva, E., Troeshestov, S., Suvorov, R.,
Mashikhin, A., Khomenko, O., Nikolenko, S.I.: Learning state representations in complex
systems with multimodal data. CoRR (2018). arXiv e-prints abs:1811.11067

813. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding benchmark
suite. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
567–576 (2015). https://doi.org/10.1109/CVPR.2015.7298655

814. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene com-
pletion from a single depth image. In: Proceedings of 30th IEEE Conference on Computer
Vision and Pattern Recognition (2017)

815. d. Souza, C.R., Gaidon, A., Cabon, Y., López, A.M.: Procedural generation of videos to
train deep action recognition networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2594–2604 (2017). https://doi.org/10.1109/CVPR.2017.
278

816. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–
1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

817. Stark, M., Goesele, M., Schiele, B.: Back to the future: Learning shape models from 3d cad
data. In: BMVC (2010)

818. Stein, G.J., Roy, N.G.: Genesis-rt: Generating synthetic images for training secondary real-
world tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 7151–7158 (2018)

819. Struckmeier, O.: Leagueai: Improving object detector performance and flexibility through
automatically generated training data and domain randomization (2019).arXiv e-prints
https://arxiv.org/abs/1905.13546

820. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the eval-
uation of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 573–580 (2012)

821. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural net-
works for 3d shape recognition. In: 2015 IEEE International Conference onComputer Vision
(ICCV), pp. 945–953 (2015). https://doi.org/10.1109/ICCV.2015.114

822. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for cnn: Viewpoint estimation in images using
cnns trained with rendered 3d model views. In: 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2686–2694 (2015). https://doi.org/10.1109/ICCV.2015.308

823. Su, Z., Ye, M., Zhang, G., Dai, L., Sheng, J.: Improvement multi-stage model for human
pose estimation. CoRR (2019). arXiv e-prints abs:1902.07837

824. Sulkowski, T., Bugiel, P., Izydorczyk, J.: In search of the ultimate autonomous driving
simulator. In: 2018 International Conference on Signals and Electronic Systems (ICSES),
pp. 252–256 (2018). https://doi.org/10.1109/ICSES.2018.8507288

825. The 2019 sumo workshop 360◦ indoor scene understanding and modeling (2019). https://
sumochallenge.org/2019-sumo-workshop.html

http://arxiv.org/abs/abs:1806.04497
https://doi.org/10.1109/GEM.2018.8516527
http://arxiv.org/abs/abs:1708.02191
http://arxiv.org/abs/abs:1811.11067
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1109/CVPR.2017.278
https://doi.org/10.1109/CVPR.2017.278
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1905.13546
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/ICCV.2015.308
http://arxiv.org/abs/abs:1902.07837
https://doi.org/10.1109/ICSES.2018.8507288
https://sumochallenge.org/2019-sumo-workshop.html
https://sumochallenge.org/2019-sumo-workshop.html

338 References

826. Sun, B., Saenko, K.: From virtual to reality: Fast adaptation of virtual object detectors to real
domains. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)

827. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data
in deep learning era. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 843–852 (2017). https://doi.org/10.1109/ICCV.2017.97

828. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human
pose estimation. CoRR (2019). arXiv e-prints abs:1902.09212

829. Supervisely: Ai assisted labeling (2019). https://docs.supervise.ly/
830. Sutton, C., McCallum, A.: An introduction to conditional random fields. Found. Trends

Mach. Learn. 4(4), 267–373 (2012). https://doi.org/10.1561/2200000013
831. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd ed. edn.MITPress,

Cambridge, MA (2018)
832. Sweeney, L.: Maintaining patient confidentiality when sharing medical data requires a sym-

biotic relationship between technology and policy. MIT A.I. Working Paper No. AIWP-
WP344b (1997)

833. Sweeney, L.: Weaving technology and policy together to maintain confidentiality. J. Law
Med. Ethics 25(2–3), 98–110 (1997). https://doi.org/10.1111/j.1748-720X.1997.tb01885.x

834. Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., Richoux, F.,
Usunier, N.: Torchcraft: a library for machine learning research on real-time strategy games.
CoRR (2016). arXiv e-prints abs:1611.00625

835. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of resid-
ual connections on learning. CoRR (2016). arXiv e-prints abs:1602.07261

836. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A.: Going deeper with convolutions (2014). arXiv e-prints abs:1409.4842

837. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision (2015). arXiv e-prints abs:1512.00567

838. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

839. Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science.
Springer, London (2011)

840. Sánchez, M., Martínez, J.L., Morales, J., Robles, A., Morán, M.: Automatic generation of
labeled 3d point clouds of natural environments with gazebo. In: 2019 IEEE International
Conference on Mechatronics (ICM), vol. 1, pp. 161–166 (2019). https://doi.org/10.1109/
ICMECH.2019.8722866

841. Tai, L., Liu, M.: Deep-learning in mobile robotics—from perception to control systems: A
survey on why and why not. CoRR (2016). arXiv e-prints abs:1612.07139

842. Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: Continuous control
of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 31–36 (2017). https://doi.org/10.1109/IROS.
2017.8202134

843. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level
performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708 (2014). https://doi.org/10.1109/CVPR.2014.220

844. Tan, B., Xu, N., Kong, B.: Autonomous driving in reality with reinforcement learning and
image translation. CoRR (2018). arXiv e-prints abs:1801.05299

845. Tan, B., Xu, N., Kong, B.: Autonomous driving in reality with reinforcement learning and
image translation (2018). arXiv e-prints abs:1801.05299

846. Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: Mnasnet: Platform-aware neural
architecture search for mobile. CoRR (2018). arXiv e-prints abs:1807.11626

847. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks.
CoRR (2019). arXiv e-prints abs:1905.11946

848. Tan,M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

https://doi.org/10.1109/ICCV.2017.97
http://arxiv.org/abs/abs:1902.09212
https://docs.supervise.ly/
https://doi.org/10.1561/2200000013
https://doi.org/10.1111/j.1748-720X.1997.tb01885.x
http://arxiv.org/abs/abs:1611.00625
http://arxiv.org/abs/abs:1602.07261
http://arxiv.org/abs/abs:1409.4842
http://arxiv.org/abs/abs:1512.00567
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/ICMECH.2019.8722866
https://doi.org/10.1109/ICMECH.2019.8722866
http://arxiv.org/abs/abs:1612.07139
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/CVPR.2014.220
http://arxiv.org/abs/abs:1801.05299
http://arxiv.org/abs/abs:1801.05299
http://arxiv.org/abs/abs:1807.11626
http://arxiv.org/abs/abs:1905.11946

References 339

849. Tang, Y., Tang, Y., Xiao, J., Summers, R.M.: Xlsor: A robust and accurate lung segmen-
tor on chest x-rays using criss-cross attention and customized radiorealistic abnormalities
generation. CoRR (2019). arXiv e-prints abs:1904.09229

850. Tang, Y.B., Oh, S., Tang, Y.X., Xiao, J., Summers, R.M.: Ct-realistic data augmentation
using generative adversarial network for robust lymph node segmentation. In: SPIEMedical
Imaging 2019: Computer-Aided Diagnosis, vol. 10950 (2019). https://doi.org/10.1117/12.
2512004

851. Tang, Z., Shao, K., Zhu, Y., Li, D.M., Zhao, D., Huang, T.: A review of computational
intelligence for starcraft ai. In: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1167–1173 (2018)

852. Taylor, C.J., Cowley, A.: Parsing indoor scenes using rgb-d imagery. In: Robotics: Science
and Systems (2012)

853. Taylor, G.R., Chosak, A.J., Brewer, P.C.: Ovvv: Using virtual worlds to design and evaluate
surveillance systems. In: 2007 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383518

854. The SPRINT Research Group: A randomized trial of intensive versus standard blood-
pressure control. N. Engl. J. Med. 373(22), 2103–2116 (2015). https://doi.org/10.1056/
NEJMoa1511939. PMID: 26551272

855. Thieling, J., Roßmann, J.: Highly-scalable and generalized sensor structures for efficient
physically-based simulation of multi-modal sensor networks. In: 2018 12th International
Conference on Sensing Technology (ICST), pp. 202–207 (2018). https://doi.org/10.1109/
ICSensT.2018.8603563

856. Tian,Y., Gong,Q., Shang,W.,Wu,Y., Zitnick, L.: ELF: an extensive, lightweight and flexible
research platform for real-time strategy games. CoRR (2017). arXiv e-prints abs:1707.01067

857. Tian, Y., Li, X., Wang, K., Wang, F.Y.: Training and testing object detectors with virtual
images. IEEE/CAA J. Autom. Sinica 5, 539–546 (2018). https://doi.org/10.1109/JAS.2017.
7510841

858. Times, N.Y.: New navy device learns by doing; psychologist shows embryo of computer
designed to read and grow wiser (1958). https://www.nytimes.com/1958/07/08/archives/
new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

859. To, T., Tremblay, J., McKay, D., Yamaguchi, Y., Leung, K., Balanon, A., Cheng, J., Hodge,
W., Birchfield, S.: NDDS: NVIDIA deep learning dataset synthesizer (2018). https://github.
com/NVIDIA/Dataset_Synthesizer

860. Tobin, J., Biewald, L., Duan, R., Andrychowicz, M., Handa, A., Kumar, V., McGrew, B.,
Ray, A., Schneider, J., Welinder, P., Zaremba, W., Abbeel, P.: Domain randomization and
generative models for robotic grasping. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3482–3489 (2018). https://doi.org/10.1109/
IROS.2018.8593933

861. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization
for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 23–30 (2017).
https://doi.org/10.1109/IROS.2017.8202133

862. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033
(2012)

863. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is procedural content gen-
eration?: Mario on the borderline. In: Proceedings of the 2Nd International Workshop on
Procedural Content Generation in Games, PCGames ’11, pp. 3:1–3:6. ACM, NewYork, NY,
USA (2011). https://doi.org/10.1145/2000919.2000922

864. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A Deeper Look at Dataset Bias, pp.
37–55. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-
58347-1_2

865. Tran, A.T., Hassner, T., Masi, I., Medioni, G.G.: Regressing robust and discriminative 3d
morphable models with a very deep neural network. In: 2017 IEEEConference on Computer
Vision and Pattern Recognition (CVPR), pp. 1493–1502 (2017)

http://arxiv.org/abs/abs:1904.09229
https://doi.org/10.1117/12.2512004
https://doi.org/10.1117/12.2512004
https://doi.org/10.1109/CVPR.2007.383518
https://doi.org/10.1056/NEJMoa1511939
https://doi.org/10.1056/NEJMoa1511939
https://doi.org/10.1109/ICSensT.2018.8603563
https://doi.org/10.1109/ICSensT.2018.8603563
http://arxiv.org/abs/abs:1707.01067
https://doi.org/10.1109/JAS.2017.7510841
https://doi.org/10.1109/JAS.2017.7510841
https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
https://github.com/NVIDIA/Dataset_Synthesizer
https://github.com/NVIDIA/Dataset_Synthesizer
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1007/978-3-319-58347-1_2
https://doi.org/10.1007/978-3-319-58347-1_2

340 References

866. Tran, L., Yin, X., Liu, X.: Disentangled representation learning gan for pose-invariant
face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1283–1292 (2017). https://doi.org/10.1109/CVPR.2017.141

867. Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci,
E., Boochoon, S., Birchfield, S.T.: Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 1082–10828 (2018)

868. Tremblay, J., To, T., Birchfield, S.: Falling things: A synthetic dataset for 3d object detec-
tion and pose estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pp. 2119–21193 (2018). https://doi.org/10.1109/
CVPRW.2018.00275

869. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.T.: Deep object
pose estimation for semantic robotic grasping of household objects. In: CoRL (2018)

870. Triastcyn, A., Faltings, B.: Generating Artificial Data for Private Deep Learning (2018).
arXiv e-prints arXiv:1803.03148

871. Triastcyn, A., Faltings, B.: Generating differentially private datasets using gans. CoRR
(2018). arXiv e-prints abs:1803.03148

872. Trieb, R., Von Puttkamer, E.: The 3d7-simulation environment: a tool for autonomousmobile
robot development. In: Proceedings of International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 358–361 (1994). https://doi.
org/10.1109/MASCOT.1994.284398

873. Triyonoputro, J.C., Wan, W., Harada, K.: Quickly inserting pegs into uncertain holes
using multi-view images and deep network trained on synthetic data (2019). arXiv e-prints
abs:1902.09157

874. Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.: Total capture: 3d human
pose estimation fusing video and inertial sensors. BMVC (2017). https://doi.org/10.5244/
C.31.14

875. Tsirikoglou, A., Eilertsen, G., Unger, J.: A survey of image synthesis methods for visual
machine learning. Comput. Graph. Forum 39(6), 426–451 (2020). https://doi.org/10.1111/
cgf.14047

876. Tsirikoglou, A., Kronander, J., Wrenninge, M., Unger, J.: Procedural modeling and physi-
cally based rendering for synthetic data generation in automotive applications. CoRR (2017).
arXiv e-prints abs:1710.06270

877. Turing,A.M.:Computingmachinery and intelligence.Mind 59(236), 433–460 (1950). http://
www.jstor.org/stable/2251299

878. Turing, A.M.: Computing Machinery and Intelligence, pp. 11–35. MIT Press, Cambridge,
MA, USA (1995)

879. Turk, M.A., Morgenthaler, D.G., Gremban, K.D., Marra, M.: Vits-a vision system for
autonomous land vehicle navigation. IEEETrans. Pattern Anal.Mach. Intell. 10(3), 342–361
(1988)

880. Tzeng, E., Devin, C., Hoffman, J., Finn, C., Peng, X., Levine, S., Saenko, K., Darrell, T.:
Towards adapting deep visuomotor representations from simulated to real environments.
CoRR (2015). arXiv e-prints abs:1511.07111

881. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains
and tasks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), ICCV ’15, pp. 4068–4076. IEEE Computer Society, Washington, DC, USA (2015).
https://doi.org/10.1109/ICCV.2015.463

882. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maxi-
mizing for domain invariance. CoRR (2014). arXiv e-prints abs:1412.3474

883. Ubbens, J., Cieslak, M., Prusinkiewicz, P., Stavness, I.: The use of plant models in deep
learning: an application to leaf counting in rosette plants. Plant Methods 14(1), 6 (2018).
https://doi.org/10.1186/s13007-018-0273-z

884. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recog-
nition. Int. J. Comput. Vision (2013)

https://doi.org/10.1109/CVPR.2017.141
https://doi.org/10.1109/CVPRW.2018.00275
https://doi.org/10.1109/CVPRW.2018.00275
http://arxiv.org/abs/1803.03148
http://arxiv.org/abs/abs:1803.03148
https://doi.org/10.1109/MASCOT.1994.284398
https://doi.org/10.1109/MASCOT.1994.284398
http://arxiv.org/abs/abs:1902.09157
https://doi.org/10.5244/C.31.14
https://doi.org/10.5244/C.31.14
https://doi.org/10.1111/cgf.14047
https://doi.org/10.1111/cgf.14047
http://arxiv.org/abs/abs:1710.06270
http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299
http://arxiv.org/abs/abs:1511.07111
https://doi.org/10.1109/ICCV.2015.463
http://arxiv.org/abs/abs:1412.3474
https://doi.org/10.1186/s13007-018-0273-z

References 341

885. Ullah, I., Abinesh, S., Smyth, D.L., Karimi, N.B., Drury, B., Glavin, F.G., Madden, M.G.:
A virtual testbed for critical incident investigation with autonomous remote aerial vehicle
surveying, artificial intelligence, and decision support. In: Alzate, C., Monreale, A., Assem,
H., Bifet, A., Buda, T.S., Caglayan, B., Drury, B., García-Martín, E., Gavaldà, R., Koprinska,
I., Kramer, S., Lavesson, N., Madden, M., Molloy, I., Nicolae, M.I., Sinn, M. (eds.) ECML
PKDD 2018 Workshops, pp. 216–221. Springer International Publishing, Cham (2019)

886. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: Feed-forward syn-
thesis of textures and stylized images. In: Proceedings of the 33rd International Conference
on International Conference on Machine Learning—Volume 48, ICML’16, pp. 1349–1357.
JMLR.org (2016)

887. Uria, B., Côté, M.A., Gregor, K., Murray, I., Larochelle, H.: Neural autoregressive distribu-
tion estimation. J. Mach. Learn. Res. 17(205), 1–37 (2016). http://jmlr.org/papers/v17/16-
272.html

888. Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder (2021)
889. Varol,G.,Romero, J.,Martin,X.,Mahmood,N.,Black,M.J., Laptev, I., Schmid,C.: Learning

from synthetic humans. CoRR (2017). arXiv e-prints abs:1701.01370
890. Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A.N., Gouws, S., Jones, L., Kaiser,

L., Kalchbrenner, N., Parmar, N., Sepassi, R., Shazeer, N., Uszkoreit, J.: Tensor2tensor for
neural machine translation. CoRR (2018). arXiv e-prints abs:1803.07416

891. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017)

892. Vázquez, D., López, A.M., Marín, J., Ponsa, D., Gerónimo, D.: Virtual and real world
adaptation for pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 797–809
(2014). https://doi.org/10.1109/TPAMI.2013.163

893. Veach, E., Guibas, L.J.: Metropolis light transport. In: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 65–76.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997). https://doi.org/
10.1145/258734.258775

894. Vijayakumar, A.J., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-guided
deductive search for real-time program synthesis from examples. CoRR (2018). arXiv e-
prints abs:1804.01186

895. Vincent, P., Hugo, L., Bengio, Y., Manzagol, P.A.: Extracting and composing robust fea-
tures with denoising autoencoders. In: Proceedings of the 25th international conference on
Machine learning, ICML ’08, pp. 1096–1103. ACM, New York, NY, USA (2008). https://
doi.org/10.1145/1390156.1390294

896. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo,M.,Makhzani, A.,
Küttler, H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S., Petersen, S., Simonyan, K.,
Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T.P., Calderone, K., Keet, P., Brunasso, A.,
Lawrence,D., Ekermo,A.,Repp, J., Tsing,R.: Starcraft II:Anewchallenge for reinforcement
learning. CoRR (2017). arXiv e-prints abs:1708.04782

897. Vuong, Q.V., Vikram, S., Su, H., Gao, S., Christensen, H.I.: How to pick the domain ran-
domization parameters for sim-to-real transfer of reinforcement learning policies? (2019).
arXiv e-prints abs:1903.11774

898. Walonoski, J., Kramer, M., Nichols, J., Quina, A., Moesel, C., Hall, D., Duffett, C., Dube,
K., Gallagher, T., McLachlan, S.: Synthea: An approach, method, and software mechanism
for generating synthetic patients and the synthetic electronic health care record. J. Am.Med.
Inform. Assoc. 25(3), 230–238 (2017)

899. Wandarosanza, R., Trilaksono, B.R., Hidayat, E.: Hardware-in-the-loop simulation of uav
hexacopter for chemical hazard monitoring mission. In: 2016 6th International Conference
on System Engineering and Technology (ICSET), pp. 189–193 (2016). https://doi.org/10.
1109/ICSEngT.2016.7849648

http://jmlr.org/papers/v17/16-272.html
http://jmlr.org/papers/v17/16-272.html
http://arxiv.org/abs/abs:1701.01370
http://arxiv.org/abs/abs:1803.07416
https://doi.org/10.1109/TPAMI.2013.163
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/258734.258775
http://arxiv.org/abs/abs:1804.01186
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/abs:1708.04782
http://arxiv.org/abs/abs:1903.11774
https://doi.org/10.1109/ICSEngT.2016.7849648
https://doi.org/10.1109/ICSEngT.2016.7849648

342 References

900. Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y., Hsieh, J.W.: CSPNet: A New
Backbone that can Enhance Learning Capability of CNN. arXiv e-prints arXiv:1911.11929
(2019)

901. Wang, F., Zhuang, Y., Gu, H., Hu, H.: Automatic generation of synthetic lidar point clouds
for 3-d data analysis. IEEE Trans. Instrum. Meas. 68(7), 2671–2673 (2019). https://doi.org/
10.1109/TIM.2019.2906416

902. Wang, H., Kang, B., Kim,D.: Pfw:A face database in thewild for studying face identification
and verification in uncontrolled environment. In: 2013 2nd IAPR Asian Conference on
Pattern Recognition, pp. 356–360 (2013). https://doi.org/10.1109/ACPR.2013.53

903. Wang, H., Wang, Q., Yang, F., Zhang, W., Zuo, W.: Data augmentation for object detection
via progressive and selective instance-switching (2019). arXiv e-prints abs:1906.00358

904. Wang, K., Shi, F., Wang, W., Nan, Y., Lian, S.: Synthetic data generation and adaption for
object detection in smart vending machines. CoRR (2019). arXiv e-prints abs:1904.12294

905. Wang, K., Zhao, R., Ji, Q.: A hierarchical generative model for eye image synthesis and eye
gaze estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 440–448 (2018). https://doi.org/10.1109/CVPR.2018.00053

906. Wang, K., Zheng, J., Seah, H.S., Ma, Y.: Triangular mesh deformation via edge-based graph.
Comput. Aided Des. Appl. 9(3), 345–359 (2012). https://doi.org/10.3722/cadaps.2012.345-
359

907. Wang, Q., Gao, J., Lin, W., Yuan, Y.: Learning from synthetic data for crowd counting in
the wild. CoRR (2019). arXiv e-prints abs:1903.03303

908. Wang, S., Jia, D., Weng, X.: Deep reinforcement learning for autonomous driving. CoRR
(2018). arXiv e-prints abs:1811.11329

909. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthe-
sis and semantic manipulation with conditional gans. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8798–8807 (2018). https://doi.org/10.1109/
CVPR.2018.00917

910. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional
neural networks. In: Proceedings of the 21st International Conference on PatternRecognition
(ICPR2012), pp. 3304–3308 (2012)

911. Wang,W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: Settings, methods,
and applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019). https://doi.org/10.1145/
3293318

912. Wang, W.Y., Yang, D.: That’s so annoying!!!: A lexical and frame-semantic embedding
based data augmentation approach to automatic categorization of annoying behaviors using
#petpeeve tweets. In: EMNLP (2015)

913. Wang,X., Pham,H.,Dai, Z., Neubig,G.: Switchout: an efficient data augmentation algorithm
for neuralmachine translation. In: Proceedings of the 2018ConferenceonEmpiricalMethods
in Natural Language Processing, pp. 856–861. Association for Computational Linguistics,
Brussels, Belgium (2018)

914. Wang, X., Wang, K., Lian, S.: A survey on face data augmentation. CoRR (2019). arXiv
e-prints abs:1904.11685

915. Wang, X., Wang, S., Zhang, S., Fu, T., Shi, H., Mei, T.: Support vector guided softmax loss
for face recognition. CoRR (2018). arXiv e-prints abs:1812.11317

916. Wang,Y.,Yao,Q.: Few-shot learning:A survey.CoRR (2019). arXiv e-prints abs:1904.05046
917. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: A survey on

few-shot learning. ACM Comput. Surv. 53(3) (2020). https://doi.org/10.1145/3386252
918. Wang, Y.X., Fienberg, S.E., Smola, A.J.: Privacy for free: Posterior sampling and stochastic

gradient monte carlo. In: Proceedings of the 32Nd International Conference on International
Conference onMachine Learning—Volume 37, ICML’15, pp. 2493–2502. JMLR.org (2015)

919. Wang, Z., Chai, J., Xia, S.: Combining recurrent neural networks and adversarial training
for human motion synthesis and control. CoRR (2018). arXiv e-prints abs:1806.08666

920. Ward, D., Moghadam, P., Hudson, N.: Deep leaf segmentation using synthetic data. In:
BMVC (2018)

http://arxiv.org/abs/1911.11929
https://doi.org/10.1109/TIM.2019.2906416
https://doi.org/10.1109/TIM.2019.2906416
https://doi.org/10.1109/ACPR.2013.53
http://arxiv.org/abs/abs:1906.00358
http://arxiv.org/abs/abs:1904.12294
https://doi.org/10.1109/CVPR.2018.00053
https://doi.org/10.3722/cadaps.2012.345-359
https://doi.org/10.3722/cadaps.2012.345-359
http://arxiv.org/abs/abs:1903.03303
http://arxiv.org/abs/abs:1811.11329
https://doi.org/10.1109/CVPR.2018.00917
https://doi.org/10.1109/CVPR.2018.00917
https://doi.org/10.1145/3293318
https://doi.org/10.1145/3293318
http://arxiv.org/abs/abs:1904.11685
http://arxiv.org/abs/abs:1812.11317
http://arxiv.org/abs/abs:1904.05046
https://doi.org/10.1145/3386252
http://arxiv.org/abs/abs:1806.08666

References 343

921. Warren,M., Upcroft, B.: Robust scale initialization for long-range stereo visual odometry. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2115–2121
(2013). https://doi.org/10.1109/IROS.2013.6696652

922. Weber, M.:Where to? a history of autonomous vehicles (2014). https://computerhistory.org/
blog/where-to-a-history-of-autonomous-vehicles/

923. Weininger, D.: Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988). https://
doi.org/10.1021/ci00057a005

924. Werbos, P.J.: Applications of advances in nonlinear sensitivity analysis. In: Proceedings of
the 10th IFIP Conference, 31.8–4.9, NYC, pp. 762–770 (1981)

925. Wiesel, D.H., Hubel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J.
Physiol. 148, 574–591 (1959)

926. Wiles, J., Elman, J.L.: Learning to count without a counter: A case study of dynamics and
activation landscapes in recurrent networks. In: ACCSS (1995)

927. Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of adaptive
gradient methods in machine learning. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing
Systems 30, pp. 4148–4158. Curran Associates, Inc. (2017)

928. Wilson, A.G.: The Case for Bayesian Deep Learning (2020). arXiv e-prints
arXiv:2001.10995

929. Wilson, A.G., Izmailov, P.: Bayesian Deep Learning and a Probabilistic Perspective of Gen-
eralization (2020). arXiv e-prints arXiv:2002.08791

930. Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. CoRR (2019).
arXiv e-prints abs:1905.01392

931. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3d pose estimation.
2015 IEEEConference onComputerVision and PatternRecognition (CVPR) pp. 3109–3118
(2015)

932. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T.,
Isgum, I.: Deep MR to CT synthesis using unpaired data. CoRR (2017). arXiv e-prints
abs:1708.01155

933. Wood, E., Baltruaitis, T., Zhang, X., Sugano, Y., Robinson, P., Bulling, A.: Rendering of eyes
for eye-shape registration and gaze estimation. In: 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 3756–3764 (2015). https://doi.org/10.1109/ICCV.2015.428

934. Wood, E., Baltrušaitis, T., Morency, L.P., Robinson, P., Bulling, A.: Learning an appearance-
based gaze estimator from one million synthesised images. In: Proceedings of the Ninth
Biennial ACM Symposium on Eye Tracking Research & Applications, ETRA ’16, pp. 131–
138. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2857491.2857492

935. Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene
parsing. CoRR (2018). arXiv e-prints abs:1810.08705

936. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with recurrent
CRF for real-time road-object segmentation from 3d lidar point cloud. CoRR (2017). arXiv
e-prints abs:1710.07368

937. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model structure
and unsupervised domain adaptation for road-object segmentation from a lidar point cloud.
CoRR (2018). arXiv e-prints abs:1809.08495

938. Wu, F., Liu, J., Wu, C., Huang, Y., Xie, X.: Neural chinese named entity recognition via cnn-
lstm-crf and joint training with word segmentation. In: The World Wide Web Conference,
WWW ’19, p. 3342–3348. Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3308558.3313743

939. Wu, H., Zhang, J., Huang, K.: Msc: A dataset for macro-management in starcraft ii (2017).
arXiv e-prints abs:1710.03131

940. Wu, S., Huang, H., Portenier, T., Sela, M., Cohen-Or, D., Kimmel, R., Zwicker, M.:
Specular-to-diffuse translation for multi-view reconstruction. CoRR (2018). arXiv e-prints
abs:1807.05439

https://doi.org/10.1109/IROS.2013.6696652
https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/
https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
http://arxiv.org/abs/2001.10995
http://arxiv.org/abs/2002.08791
http://arxiv.org/abs/abs:1905.01392
http://arxiv.org/abs/abs:1708.01155
https://doi.org/10.1109/ICCV.2015.428
https://doi.org/10.1145/2857491.2857492
http://arxiv.org/abs/abs:1810.08705
http://arxiv.org/abs/abs:1710.07368
http://arxiv.org/abs/abs:1809.08495
https://doi.org/10.1145/3308558.3313743
http://arxiv.org/abs/abs:1710.03131
http://arxiv.org/abs/abs:1807.05439

344 References

941. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels.
IEEE Trans. Inf. Forensics Secur. 13, 2884–2896 (2018)

942. Wu, Y., Tian, Y.: Training agent for first-person shooter game with actor-critic curriculum
learning. In: ICLR (2017)

943. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a realistic and
rich 3d environment. CoRR (2018). arXiv e-prints abs:1801.02209

944. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3d shapenets for 2.5d object recognition
and next-best-view prediction (2014). arXiv e-prints abs:1406.5670

945. Wulfmeier, M., Bewley, A., Posner, I.: Addressing appearance change in outdoor robotics
with adversarial domain adaptation. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) pp. 1551–1558 (2017)

946. Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., Sumner, A.: TORCS,
The Open Racing Car Simulator (2014). http://www.torcs.org

947. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson env: Real-world per-
ception for embodied agents. CoRR (2018). arXiv e-prints abs:1808.10654

948. Xia, X., Kulis, B.: W-net: A deep model for fully unsupervised image segmentation. CoRR
(2017). arXiv e-prints abs:1711.08506

949. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—A comprehensive eval-
uation of the good, the bad and the ugly. CoRR (2017). arXiv e-prints abs:1707.00600

950. Xiang,Y., Alahi, A., Savarese, S.: Learning to track:Onlinemulti-object tracking by decision
making. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4705–
4713 (2015). https://doi.org/10.1109/ICCV.2015.534

951. Xiao, J., Owens, A., Torralba, A.: Sun3d: A database of big spaces reconstructed using
sfm and object labels. In: 2013 IEEE International Conference on Computer Vision, pp.
1625–1632 (2013). https://doi.org/10.1109/ICCV.2013.458

952. Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection
via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision—ECCV 2016, pp. 57–72. Springer International Publishing, Cham
(2016)

953. Xiao, X., Ganguli, S., Pandey, V.: Vae-info-cgan: Generating synthetic images by combining
pixel-level and feature-level geospatial conditional inputs. In: Proceedings of the 13th ACM
SIGSPATIAL International Workshop on Computational Transportation Science, IWCTS
’20. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.
1145/3423457.3429361

954. Xiaoxia Hu, Xuefeng Liu, Zhenming He, Jiahua Zhang: Batch modeling of 3d city based
on esri cityengine. In: IET International Conference on Smart and Sustainable City 2013
(ICSSC 2013), pp. 69–73 (2013). https://doi.org/10.1049/cp.2013.1979

955. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial
network. CoRR (2018). arXiv e-prints abs:1802.06739

956. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with Noisy Student improves Ima-
geNet classification (2019). arXiv e-prints arXiv:1911.04252

957. Xie, X., Liu, H., Zhang, Z., Qiu, Y., Gao, F., Qi, S., Zhu, Y., Zhu, S.C.: Vrgym: A virtual
testbed for physical and interactive ai. In: Proceedings of the ACM Turing Celebration
Conference—China, ACMTURC ’19, pp. 100:1–100:6. ACM, NewYork, NY, USA (2019).
https://doi.org/10.1145/3321408.3322633

958. Xie, Z.,Wang, S.I., Li, J., Lévy,D., Nie, A., Jurafsky,D., Ng,A.Y.: Data noising as smoothing
in neural network language models. CoRR (2017). arXiv e-prints abs:1703.02573

959. Xiong, H.Y., Alipanahi, B., Lee, L.J., Bretschneider, H., Merico, D., Yuen, R.K.C., Hua, Y.,
Gueroussov, S., Najafabadi, H.S., Hughes, T.R., Morris, Q., Barash, Y., Krainer, A.R., Jojic,
N., Scherer, S.W., Blencowe, B.J., Frey, B.J.: The human splicing code reveals new insights
into the genetic determinants of disease. Science 347(6218) (2015). https://doi.org/10.1126/
science.1254806

960. Xiong, X., Wang, J., Zhang, F., Li, K.: Combining deep reinforcement learning and safety
based control for autonomous driving. CoRR (2016). arXiv e-prints abs:1612.00147

http://arxiv.org/abs/abs:1801.02209
http://arxiv.org/abs/abs:1406.5670
http://www.torcs.org
http://arxiv.org/abs/abs:1808.10654
http://arxiv.org/abs/abs:1711.08506
http://arxiv.org/abs/abs:1707.00600
https://doi.org/10.1109/ICCV.2015.534
https://doi.org/10.1109/ICCV.2013.458
https://doi.org/10.1145/3423457.3429361
https://doi.org/10.1145/3423457.3429361
https://doi.org/10.1049/cp.2013.1979
http://arxiv.org/abs/abs:1802.06739
http://arxiv.org/abs/1911.04252
https://doi.org/10.1145/3321408.3322633
http://arxiv.org/abs/abs:1703.02573
https://doi.org/10.1126/science.1254806
https://doi.org/10.1126/science.1254806
http://arxiv.org/abs/abs:1612.00147

References 345

961. Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-net: Multi-tasks guided prediction-and-
distillation network for simultaneous depth estimation and scene parsing. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 675–684 (2018)

962. Xu, G.Y., Zhang, Q., Liu, D., Lin, G., Wang, J., Zhang, Y.: Adversarial adaptation from
synthesis to reality in fast detector for smoke detection. IEEEAccess 7, 29471–29483 (2019)

963. Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., Jain, A.K.: Adversarial attacks and
defenses in images, graphs and text: A review. CoRR (2019). arXiv e-prints abs:1909.08072

964. Xu, J., Vázquez, D., Ramos, S., López, A.M., Ponsa, D.: Adapting a pedestrian detector by
boosting lda exemplar classifiers. In: 2013 IEEEConference onComputer Vision and Pattern
Recognition Workshops, pp. 688–693 (2013). https://doi.org/10.1109/CVPRW.2013.104

965. Xu, X., Dou, P., Le, H.A., Kakadiaris, I.A.: When 3d-aided 2d face recognition meets deep
learning: An extended UR2D for pose-invariant face recognition. CoRR (2017). arXiv e-
prints abs:1709.06532

966. Yan, M., Zhao, M., Xu, Z., Zhang, Q., Wang, G., Su, Z.: Vargfacenet: An efficient variable
group convolutional neural network for lightweight face recognition. CoRR (2019). arXiv
e-prints abs:1910.04985

967. Yan, P., Xu, S., Rastinehad,A.R.,Wood, B.J.: Adversarial image registrationwith application
for MR and TRUS image fusion. CoRR (2018). arXiv e-prints abs:1804.11024

968. Yang, G.R., Ganichev, I., Wang, X.J., Shlens, J., Sussillo, D.: A dataset and architecture for
visual reasoning with a working memory. In: ECCV (2018)

969. Yang, L., Liang, X., Xing, E.P.: Unsupervised real-to-virtual domain unification for end-to-
end highway driving. CoRR (2018). arXiv e-prints abs:1801.03458

970. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose
estimation. CoRR (2017). arXiv e-prints abs:1708.01101

971. Yi, L., Guibas, L., Hertzmann, A., Kim, V.G., Su, H., Yumer, E.: Learning hierarchical shape
segmentation and labeling from online repositories. ACM Trans. Graph. 36(4), 70:1–70:12
(2017). https://doi.org/10.1145/3072959.3073652

972. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A.,
Guibas, L.: A scalable active framework for region annotation in 3d shape collections. ACM
Trans. Graph. 35(6), 210:1–210:12 (2016). https://doi.org/10.1145/2980179.2980238

973. Yi, L., Shao, L., Savva, M., Huang, H., Zhou, Y., Wang, Q., Graham, B., Engelcke, M.,
Klokov, R., Lempitsky, V.S., Gan, Y., Wang, P., Liu, K., Yu, F., Shui, P., Hu, B., Zhang, Y.,
Li, Y., Bu, R., Sun, M., Wu, W., Jeong, M., Choi, J., Kim, C., Geetchandra, A., Murthy, N.,
Ramu, B., Manda, B., Ramanathan, M., Kumar, G., Preetham, P., Srivastava, S., Bhugra, S.,
Lall, B., Häne, C., Tulsiani, S., Malik, J., Lafer, J., Jones, R., Li, S., Lu, J., Jin, S., Yu, J.,
Huang, Q., Kalogerakis, E., Savarese, S., Hanrahan, P., Funkhouser, T.A., Su, H., Guibas,
L.J.: Large-scale 3d shape reconstruction and segmentation from shapenet core55. CoRR
(2017). arXiv e-prints abs:1710.06104

974. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: A review.
CoRR (2018). arXiv e-prints abs:1809.07294

975. Yogamani, S., Hughes, C., Horgan, J., Sistu, G., Varley, P., O’Dea, D., Uricár, M., Milz, S.,
Simon, M., Amende, K., Witt, C., Rashed, H., Chennupati, S., Nayak, S., Mansoor, S., Per-
roton, X., Perez, P.: Woodscape: A multi-task, multi-camera fisheye dataset for autonomous
driving. CoRR (2019). arXiv e-prints abs:1905.01489

976. Yoon, J., Jordon, J., van der Schaar, M.: PATE-GAN: Generating synthetic data with differ-
ential privacy guarantees. In: International Conference on Learning Representations (2019)

977. You, Y., Pan, X., Wang, Z., Lu, C.: Virtual to real reinforcement learning for autonomous
driving. CoRR (2017). arXiv e-prints abs:1704.03952

978. Yu, B., Fan, Z.: A comprehensive review of conditional random fields: variants, hybrids
and applications. Artif. Intell. Rev. 53, 1–45 (2020). https://doi.org/10.1007/s10462-019-
09793-6

979. Yu, B., Zhou, L., Wang, L., Fripp, J., Bourgeat, P.: 3d cgan based cross-modality mr image
synthesis for brain tumor segmentation. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pp. 626–630 (2018). https://doi.org/10.1109/ISBI.2018.
8363653

http://arxiv.org/abs/abs:1909.08072
https://doi.org/10.1109/CVPRW.2013.104
http://arxiv.org/abs/abs:1709.06532
http://arxiv.org/abs/abs:1910.04985
http://arxiv.org/abs/abs:1804.11024
http://arxiv.org/abs/abs:1801.03458
http://arxiv.org/abs/abs:1708.01101
https://doi.org/10.1145/3072959.3073652
https://doi.org/10.1145/2980179.2980238
http://arxiv.org/abs/abs:1710.06104
http://arxiv.org/abs/abs:1809.07294
http://arxiv.org/abs/abs:1905.01489
http://arxiv.org/abs/abs:1704.03952
https://doi.org/10.1007/s10462-019-09793-6
https://doi.org/10.1007/s10462-019-09793-6
https://doi.org/10.1109/ISBI.2018.8363653
https://doi.org/10.1109/ISBI.2018.8363653

346 References

980. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions. arXiv e-prints
arXiv:1511.07122 (2015)

981. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A
diverse driving video database with scalable annotation tooling. CoRR (2018). arXiv e-
prints abs:1805.04687

982. Yu, L., Zhang,W.,Wang, J., Yu, Y.: Seqgan: Sequence generative adversarial nets with policy
gradient. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, pp. 2852–2858. AAAI Press (2017)

983. Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L.: A lidar point
cloud generator: from a virtual world to autonomous driving. In: ICMR (2018)

984. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.: Domain
randomization and pyramid consistency: Simulation-to-real generalization without access-
ing target domain data (2019). arXiv e-prints abs:1909.00889

985. Yılmaz, B., Amasyalı, M.F., Balcılar, M., Uslu, E., Yavuz, S.: Impact of artificial dataset
enlargement on performance of deformable part models. In: 2016 24th Signal Processing
and Communication Application Conference (SIU), pp. 193–196 (2016). https://doi.org/10.
1109/SIU.2016.7495710

986. Zakharov, S., Kehl,W., Ilic, S.: Deceptionnet: Network-driven domain randomization. CoRR
(2019). arXiv e-prints abs:1904.02750

987. Zaremba,W., Sutskever, I.: Learning to execute. CoRR (2014). arXiv e-prints abs:1410.4615
988. Zavershynskyi, M., Skidanov, A., Polosukhin, I.: NAPS: natural program synthesis dataset.

CoRR (2018). arXiv e-prints abs:1807.03168
989. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR (2012). arXiv e-prints

abs:1212.5701
990. Zellers, R., Holtzman,A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., Choi, Y.: Defending

against neural fake news. CoRR (2019). arXiv e-prints abs:1905.12616
991. Zhang, B., Zhao,W., Liu, J., Wu, R., Tang, X.: Character recognition in natural scene images

using local description. In: Zhang, Y., Zhou, Z.H., Zhang, C., Li, Y. (eds.) Intelligent Science
and Intelligent Data Engineering, pp. 193–200. Springer, Berlin, Heidelberg (2012)

992. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning
requires rethinking generalization. CoRR (2016). arXiv e-prints abs:1611.03530

993. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk mini-
mization. CoRR (2017). arXiv e-prints abs:1710.09412

994. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.N.: Stackgan: Text to
photo-realistic image synthesis with stacked generative adversarial networks. CoRR (2016).
arXiv e-prints abs:1612.03242

995. Zhang, H.B., Lei, Q., Zhong, B.N., Du, J.X., Peng, J.: A survey on human pose estima-
tion. Intell. Autom. Soft Comput. 22(3), 483–489 (2016). https://doi.org/10.1080/10798587.
2015.1095419

996. Zhang, H.B., Zhang, Y.X., Zhong, B., Lei, Q., Yang, L., Du, J.X., Chen, D.S.: A compre-
hensive survey of vision-based human action recognition methods. Sensors 19, 1005 (2019).
https://doi.org/10.3390/s19051005

997. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data
release via bayesian networks. ACMTrans. Database Syst. 42(4), 25:1–25:41 (2017). https://
doi.org/10.1145/3134428

998. Zhang, J., Li,W.,Ogunbona, P., Xu,D.: Recent advances in transfer learning for cross-dataset
visual recognition: A problem-oriented perspective. ACM Comput. Surv. 52(1), 7:1–7:38
(2019). https://doi.org/10.1145/3291124

999. Zhang, J., Tai, L., Xiong,Y., Liu,M., Boedecker, J., Burgard,W.: VRgoggles for robots: real-
to-sim domain adaptation for visual control. CoRR (2018). arXiv e-prints abs:1802.00265

1000. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask
cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016).
https://doi.org/10.1109/LSP.2016.2603342

http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/abs:1805.04687
http://arxiv.org/abs/abs:1909.00889
https://doi.org/10.1109/SIU.2016.7495710
https://doi.org/10.1109/SIU.2016.7495710
http://arxiv.org/abs/abs:1904.02750
http://arxiv.org/abs/abs:1410.4615
http://arxiv.org/abs/abs:1807.03168
http://arxiv.org/abs/abs:1212.5701
http://arxiv.org/abs/abs:1905.12616
http://arxiv.org/abs/abs:1611.03530
http://arxiv.org/abs/abs:1710.09412
http://arxiv.org/abs/abs:1612.03242
https://doi.org/10.1080/10798587.2015.1095419
https://doi.org/10.1080/10798587.2015.1095419
https://doi.org/10.3390/s19051005
https://doi.org/10.1145/3134428
https://doi.org/10.1145/3134428
https://doi.org/10.1145/3291124
http://arxiv.org/abs/abs:1802.00265
https://doi.org/10.1109/LSP.2016.2603342

References 347

1001. Zhang, S.H., Zhang, S.J., Liang, Y., Hall, P.: A survey of 3d indoor scene synthesis. J.
Comput. Sci. Technol. 34, 594–608 (2019)

1002. Zhang, X., Ji, S., Wang, T.: Differentially private releasing via deep generative model. CoRR
(2018). arXiv e-prints abs:1801.01594

1003. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the
wild. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4511–4520 (2015). https://doi.org/10.1109/CVPR.2015.7299081

1004. Zhang,X., Zhao, J., LeCun,Y.: Character-level convolutional networks for text classification.
In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (eds.) Advances in Neural
Information Processing Systems 28, pp. 649–657. Curran Associates, Inc. (2015)

1005. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to
the semantic segmentation of urban scenes. CoRR (2018). arXiv e-prints abs:1812.09953

1006. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation
of urban scenes. CoRR (2017). arXiv e-prints abs:1707.09465

1007. Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., Carin, L.: Adversarial feature
matching for text generation (2017). arXiv e-prints arXiv:1706.03850

1008. Zhang, Y., Qiu, W., Chen, Q., Hu, X.C., Yuille, A.L.: Unrealstereo: A synthetic dataset for
analyzing stereo vision (2016). arXiv e-prints arXiv:1612.04647

1009. Zhang, Y., Song, S., Yumer, E., Savva, M., Lee, J., Jin, H., Funkhouser, T.A.: Physically-
based rendering for indoor scene understanding using convolutional neural networks. CoRR
(2016). arXiv e-prints abs:1612.07429

1010. Zhang, Y.,Wallace, B.C.: A sensitivity analysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. CoRR (2015). arXiv e-prints abs:1510.03820

1011. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial
networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux,
M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image
Computing and Computer Assisted Intervention (MICCAI 2017), pp. 408–416. Springer
International Publishing, Cham (2017)

1012. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-
column convolutional neural network. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 589–597 (2016). https://doi.org/10.1109/CVPR.2016.70

1013. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes
with cycle- and shape-consistency generative adversarial network. In: 2018 IEEE/CVFCon-
ference on Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)

1014. Zhao, H., Li, H., Cheng, L.: Synthesizing filamentary structured images with gans. CoRR
(2017). arXiv e-prints abs:1706.02185

1015. Zhao, H., Zhang, S., Wu, G., Costeira, J.A.P., Moura, J.M.F., Gordon, G.J.: Adversarial
multiple source domain adaptation. In: Proceedings of the 32Nd International Conference
on Neural Information Processing Systems, NIPS’18, pp. 8568–8579. Curran Associates
Inc., USA (2018)

1016. Zhao, J., Xiong, L., Cheng, Y., Cheng, Y., Li, J., Zhou, L., Xu, Y., Karlekar, J., Pranata,
S., Shen, S., Xing, J., Yan, S., Feng, J.: 3d-aided deep pose-invariant face recognition. In:
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 1184–1190. International Joint Conferences on Artificial Intelligence Orga-
nization (2018). https://doi.org/10.24963/ijcai.2018/165

1017. Zhao, J., Xiong, L., Li, J., Xing, J., Yan, S., Feng, J.: 3d-aided dual-agent gans for uncon-
strained face recognition. IEEE Trans. Patt. Anal. Mach. Intell. 2380–2394, (2018). https://
doi.org/10.1109/TPAMI.2018.2858819

1018. Zhao, J.J., Kim, Y., Zhang, K., Rush, A.M., LeCun, Y.: Adversarially regularized autoen-
coders for generating discrete structures. CoRR (2017). arXiv e-prints abs:1706.04223

1019. Zhao, J.J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. CoRR
(2016). arXiv e-prints abs:1609.03126

1020. Zheng, C., Cham, T.J., Cai, J.: T2net: Synthetic-to-realistic translation for solving single-
image depth estimation tasks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.

http://arxiv.org/abs/abs:1801.01594
https://doi.org/10.1109/CVPR.2015.7299081
http://arxiv.org/abs/abs:1812.09953
http://arxiv.org/abs/abs:1707.09465
http://arxiv.org/abs/1706.03850
http://arxiv.org/abs/1612.04647
http://arxiv.org/abs/abs:1612.07429
http://arxiv.org/abs/abs:1510.03820
https://doi.org/10.1109/CVPR.2016.70
http://arxiv.org/abs/abs:1706.02185
https://doi.org/10.24963/ijcai.2018/165
https://doi.org/10.1109/TPAMI.2018.2858819
https://doi.org/10.1109/TPAMI.2018.2858819
http://arxiv.org/abs/abs:1706.04223
http://arxiv.org/abs/abs:1609.03126

348 References

(eds.) Computer Vision–ECCV2018, pp. 798–814. Springer International Publishing, Cham
(2018)

1021. Zheng, N., Jiang, Y., jiang Huang, D.: Strokenet: A neural painting environment. In: ICLR
(2019)

1022. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr,
P.H.S.: Conditional random fields as recurrent neural networks. In: 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1529–1537 (2015). https://doi.org/10.1109/
ICCV.2015.179

1023. Zhou, F.: A survey ofmainstream indoor positioning systems. J. Phys. Conf. Ser. 910, 012069
(2017). https://doi.org/10.1088/1742-6596/910/1/012069

1024. Zhou Wang, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–
612 (2004). https://doi.org/10.1109/TIP.2003.819861

1025. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE InternationalConference onComputerVision
(ICCV), pp. 2242–2251 (2017)

1026. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Found. Trends. Comput. Graph.
Vis. 2(4), 259–362 (2006). https://doi.org/10.1561/0600000018

1027. Zhu, X., Yan, J., Yi, D., Lei, Z., Li, S.Z.: Discriminative 3d morphable model fitting. In:
2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition (FG), vol. 1, pp. 1–8 (2015). https://doi.org/10.1109/FG.2015.7163096

1028. Zhu,Y.,Aoun,M.,Krijn,M.,Vanschoren, J.:Data augmentation using conditional generative
adversarial networks for leaf counting in arabidopsis plants. In: BMVC (2018)

1029. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial approach
for zero-shot learning from noisy texts. In: 2018 IEEE/CVFConference on Computer Vision
and Pattern Recognition, pp. 1004–1013 (2018). https://doi.org/10.1109/CVPR.2018.00111

1030. Zimmer, U.R., von Puttkamer, E.: Realtime-learning on an autonomous mobile robot with
neural networks. In: Proceedings Sixth Euromicro Workshop on Real-Time Systems, pp.
40–44 (1994). https://doi.org/10.1109/EMWRTS.1994.336867

1031. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR (2016).
arXiv e-prints abs:1611.01578

1032. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition. CoRR (2017). arXiv e-prints abs:1707.07012

1033. Zou, D., Xu, P., Gu, Q.: Stochastic gradient hamiltonian monte carlo methods with recursive
variance reduction. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc. (2019)

https://doi.org/10.1109/ICCV.2015.179
https://doi.org/10.1109/ICCV.2015.179
https://doi.org/10.1088/1742-6596/910/1/012069
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1561/0600000018
https://doi.org/10.1109/FG.2015.7163096
https://doi.org/10.1109/CVPR.2018.00111
https://doi.org/10.1109/EMWRTS.1994.336867
http://arxiv.org/abs/abs:1611.01578
http://arxiv.org/abs/abs:1707.07012

	Preface
	Contents
	Acronyms
	1 Introduction: The Data Problem
	1.1 Are Machine Learning Models Hitting a Wall?
	1.2 One-Shot Learning and Beyond: Less Data for More Classes
	1.3 Weakly Supervised Training: Trading Labels for Computation
	1.4 Machine Learning Without Data: Leaving Moore's Law in the Dust
	1.5 Why Synthetic Data?
	1.6 The Plan

	2 Deep Learning and Optimization
	2.1 The Deep Learning Revolution
	2.2 A (Very) Brief Introduction to Machine Learning
	2.3 Introduction to Deep Learning
	2.4 First-Order Optimization in Deep Learning
	2.5 Adaptive Gradient Descent Algorithms
	2.6 Conclusion

	3 Deep Neural Networks for Computer Vision
	3.1 Computer Vision and Convolutional Neural Networks
	3.2 Modern Convolutional Architectures
	3.3 Case Study: Neural Architectures for Object Detection
	3.4 Data Augmentations: The First Step to Synthetic Data
	3.5 Conclusion

	4 Generative Models in Deep Learning
	4.1 Introduction to Generative Models
	4.2 Taxonomy of Generative Models in Deep Learning and Tractable …
	4.3 Approximate Explicit Density Models: VAE
	4.4 Generative Adversarial Networks
	4.5 Loss Functions in GANs
	4.6 GAN-Based Architectures
	4.7 Case Study: GAN-Based Style Transfer
	4.8 Conclusion

	5 The Early Days of Synthetic Data
	5.1 Line Drawings: The First Steps of Computer Vision
	5.2 Synthetic Data as a Testbed for Quantitative Comparisons
	5.3 ALVINN: A Self-Driving Neural Network in 1989
	5.4 Early Simulation Environments: Robots and the Critique of Simulation
	5.5 Case Study: MOBOT and The Problems of Simulation
	5.6 Conclusion

	6 Synthetic Data for Basic Computer Vision Problems
	6.1 Introduction
	6.2 Low-Level Computer Vision
	6.3 Datasets of Basic Objects
	6.4 Case Study: Object Detection With Synthetic Data
	6.5 Other High-Level Computer Vision Problems
	6.6 Synthetic People
	6.7 Other Vision-Related Tasks: OCR and Visual Reasoning
	6.8 Conclusion

	7 Synthetic Simulated Environments
	7.1 Introduction
	7.2 Urban and Outdoor Environments: Learning to Drive
	7.3 Datasets and Simulators of Indoor Scenes
	7.4 Robotic Simulators
	7.5 Vision-Based Applications in Unmanned Aerial Vehicles
	7.6 Computer Games as Virtual Environments
	7.7 Conclusion

	8 Synthetic Data Outside Computer Vision
	8.1 Synthetic System Logs for Fraud and Intrusion Detection
	8.2 Synthetic Data for Neural Programming
	8.3 Synthetic Data in Bioinformatics
	8.4 Synthetic Data in Natural Language Processing
	8.5 Conclusion

	9 Directions in Synthetic Data Development
	9.1 Domain Randomization
	9.2 Improving CGI-Based Generation
	9.3 Compositing Real Data to Produce Synthetic Datasets
	9.4 Synthetic Data Produced by Generative Models

	10 Synthetic-to-Real Domain Adaptation and Refinement
	10.1 Synthetic-to-Real Domain Adaptation and Refinement
	10.2 Case Study: GAN-Based Refinement for Gaze Estimation
	10.3 Refining Synthetic Data with GANs
	10.4 Making Synthetic Data from Real with GANs
	10.5 Domain Adaptation at the Feature/Model Level
	10.6 Domain Adaptation for Control and Robotics
	10.7 Case Study: GAN-Based Domain Adaptation for Medical Imaging
	10.8 Conclusion

	11 Privacy Guarantees in Synthetic Data
	11.1 Why is Privacy Important?
	11.2 Introduction to Differential Privacy
	11.3 Differential Privacy in Deep Learning
	11.4 Differential Privacy Guarantees for Synthetic Data Generation
	11.5 Case Study: Synthetic Data in Economics, Healthcare, and Social Sciences
	11.6 Conclusion

	12 Promising Directions for Future Work
	12.1 Procedural Generation of Synthetic Data
	12.2 From Domain Randomization to the Generation Feedback Loop
	12.3 Improving Domain Adaptation with Domain Knowledge
	12.4 Additional Modalities for Domain Adaptation Architectures
	12.5 Conclusion

	Appendix References
	

