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1 Introduction

Nowadays, COVID-19 is a major threat that all mankind needs to face. Up till
now, some countries are approaching the end of the outbreak, thanks to vigorous
responses to the epidemic. In other countries, however, the outbreak has not yet
been brought under control, or there have been second waves of outbreak. In the
current situation, the study of the dynamics of COVID-19 is of great importance.
On the one hand, we can compare the impact of different control measures of the
epidemic horizontally between different countries. On the other hand, we can refer
to the dynamics of the epidemic in different countries to help predict possible future
developments in countries where the epidemic has not yet ended.

Intuitively, the dynamics of each wave of COVID-19 can be classified into several
stages, such as the early stage, the raising stage and the fading stage. However,
the current criteria for partitioning COVID-19 time series are still subjective.
Researchers lack quantitative standards to distinguish one stage from another. In
other words, a mathematical definition of different stages is still needed. This paper
aims at solving this problem by using polynomial regression with adaptive sliding
windows as a mathematical standard to partition the COVID-19 time series into
different stages.

Existing work on the dynamic analysis of COVID-19 can be broadly classi-
fied into the following four categories: epidemic models-based (e.g., SIR, SEIR)
methods (Wangping et al., 2020; Calafiore et al., 2020), regression and autoregres-
sive models (Ceylan, 2020; Singh et al., 2020), machine learning-based methods
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(Kapoor et al., 2020), and hybrid models of the above three approaches (Yang
et al., 2020). Methods based on epidemic models are well interpretable, that is,
their parameters have practical meaning. However, the time-dependent parameters
of the epidemic models are very difficult to estimate, due to the complexity of
people’s responses to COVID-19. Although multiple epidemic models with time-
varying parameters have been proposed (Chen et al., 2020; Waqas et al., 2020),
the determination of these time-varying parameters is still a difficult problem. Most
epidemic models such as SIR and SEIR can not adaptively adjust their parameters.
Therefore, when the control measures of COVID-19 change significantly, it is
needed to assess and quantify the effect of these measures on the model parameters,
which makes prediction rather difficult. Machine learning-based methods, on the
other hand, can fit the data very well. In particular, machine learning-based methods
can fuse and exploit data of multiple types and sources (e.g., population movement
data) (Kapoor et al., 2020), in addition to the time series itself. But they are less
interpretable, making it difficult to characterize the dynamics of the COVID-19
development. As a result, the usefulness of these methods is limited to forecasting.
They can not quantify the impact of different responses on the development of the
epidemic.

Regression and autoregressive models provide a good balance between inter-
pretability and prediction accuracy. Thus, they are widely used in the study of
COVID-19 time series. For example, Ceylan (2020) predicted total confirmed cases
in Italy, Spain and France based on ARIMA model using data up to April 15, 2020.
The optimal order of the ARIMA model is determined for each country. Similarly,
Singh et al. (2020) exploited an advanced autoregressive integrated moving average
(ARIMA) model to predict future trends in the 15 most affected countries at the
time, forecasting confirmed cases, deaths, and recoveries in the following 2 months
based on data up to April 24. Pandeya et al. (Gupta et al., 2020) compared the
effectiveness of the SEIR model and polynomial regression for predicting the
epidemic in India. Their results showed that the SEIR model had better prediction
accuracy than polynomial regression.

These existing regression methods have a similar defect, that is, they all use the
entire time series to fit the model. However, with the development of the epidemic,
diverse responses are adopted, thus leading to changes in the inherent dynamics
of the COVID-19 time series. Therefore, a more efficient approach would be to
segment the COVID-19 time series according to different dynamic patterns and then
fit a separate model for each segment.

In this paper, we adopt an approach based on polynomial regression with adaptive
sliding windows to segment the COVID-19 time series. Such method has been
proved to be able to efficiently extract the dynamic patterns of time series (Liu et
al., 2020). This method uses the sliding windows with adaptive lengths to partition
time series into segments. The dynamic pattern of each sliding window is defined
as a fitted n-order polynomial. For a sliding window of length L, we consider the
data within the sliding window to have the same dynamic pattern if the residual
of the n-order polynomial regression is less than a predetermined threshold. We
consecutively increase the length of the sliding window until the polynomial is
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insufficient to fit the newly added data. Subsequently, we set a new sliding window
and repeat the above steps. Experimental results show that this method is able to
adaptively segment the COVID-19 time series of different countries into segments
that are highly intuitively interpretable.

Further, we analyze the segmentation results and define the similarity between
segments using the dynamic time wrapping (DTW) distance (Berndt & Clifford,
1994). We visualize the similarity based on complex network analysis method. It
can be observed that each wave of the epidemic outbreak can be broadly partitioned
into three stages: the early outbreak, the rising stage, and the falling stage. Besides,
significant similarities exist between the same stages of different waves and in
different countries. In addition, some evidences suggest that the dynamics of the
previous segment could provide useful information of the subsequent development
of the epidemic.

2 Methodology

2.1 Data Sources

This paper studies the dynamics of COVID-19 through the time series of daily active
cases. Our data is collected from https://www.worldometers.info/coronavirus/ at
country level, from January 22, 2020 to September 2, 2020. In order to horizontally
compare the development of the epidemic across countries, we normalize the
number of the daily active cases by the total population of each country, which
is collected from https://github.com/datasets/population.

Based on the above data, we first extract the dynamic patterns of different
stages of COVID-19 in each country, then compare the dynamic patterns of 15
representative countries. These two steps are described as follows.

2.2 Extracting Dynamic Patterns of COVID-19 Time Series

For extracting the dynamic patterns, we adopt a similar approach to that proposed
by Liu et al. (2020), whose original purpose is to study the self-similarity of the
fluctuation behaviors of the WTI crude oil price. In this paper, we use a sliding
window with adaptive length to partition the entire the time series of COVID-19
daily active cases into segments, fitting each segment with an n-order polynomial as
shown in Eq. (1). In this paper, we choose n = 3.

y = α0 + α1x + α2x
2 + · · · + αnx

n + ε (1)

https://www.worldometers.info/coronavirus/
https://github.com/datasets/population
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Since the time series within each sliding window is fitted using an n-order
polynomial, the initial length of the sliding window is set to n + 1. Subsequently,
we use Eqs. (2) and (3) as metrics for determining the length of the sliding window,
where yi is the real value of the number of COVID-19 active cases at the i-th day of
the sliding window, and ŷi is the corresponding predicted value by the model. The
average number of the daily active cases inside the sliding window is expressed as
y. If both R2 and Emax are greater than a predetermined threshold T, we increase
the length of the window L by 1 day, that is, we move the front edge of the sliding
window 1 day forward. We fit the data within the new sliding window and check
whether the new fit satisfies R2 ≥ 0.9 and Emax ≥ 0.9. We iteratively increase the
length of the sliding window forward and perform polynomial regression until either
R2 or Emax is less than T. In this paper, we choose T = 0.9.

R2 = 1 −

L∑

i=1

(
yi − ŷi

)

L∑

i=1
(yi − y)

(2)

Emax = 1 − max

(∣
∣yi − ŷi

∣
∣

|yi |

)

(3)

When the R2 or Emax of a sliding window becomes less than T, we fix this
sliding window to its current state and create a new sliding window. The new sliding
window is created at the front edge of the old one, with the same initial length of
n + 1. The same operations are performed consecutively until the time series is
completely partitioned.

For each partition, its dynamic is described by a vector composed of coefficients
of its polynomial regression, which is denoted as [α1,α2, · · · ,αn]. Notice that the
intercept of the polynomial is not considered, since we are only interested in the
variation of the time series in each partition, not in the specific values.

2.3 Dealing with Structural Breakpoints of the Dynamics

In this paper, we use structural breakpoints to refer to the data points that divide the
time series into two fragments with different dynamics. In the method introduced
above, structural breakpoints of the dynamics naturally appear at the ends of
segments, and they participate in the polynomial regression. However, this operation
is inappropriate, since the occurrence of a structural breakpoint implies that the
dynamic pattern has changed. The structural breakpoint should be the beginning
point of the next segment, rather than the end point of the previous segment. At the
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Fig. 1 An illustrative example for dealing with structural breakpoints. (a) Original partition and
dynamics of the time series. (b) Partition and dynamics after dealing with breakpoints

same time, the structural breakpoint should not be involved in the regression of the
previous segment. The reason is explained as follows.

The regression of n-order polynomials can be approximately regarded as an n-
order Taylor expansion. Our decision on whether to create a new sliding window
depends on whether the n-order Taylor expansion is sufficient to describe the
dynamics within the current sliding window. In other words, we use the two criteria
(i.e., R2 ≥ 0.9 and Emax ≥ 0.9) to determine whether the n-order polynomial
regression is a good fit to the data in the current sliding window. If not, a new
sliding window will be created. Therefore, if the structural breakpoints are assigned
into the previous sliding window, then dynamic pattern within that sliding window
cannot be expressed by any n-order Taylor expansion. To ensure that the data within
the current window can be well described by the n-order polynomial regression,
structural breakpoints need to be assigned to the latter segment. In the rest part of
this subsection, we demonstrate this idea through the case study of China.

In the time series analysis of COVID-19, the reason of the occurrence of a
breakpoint, in addition to changes in COVID-19 dynamics, may also be an increase
in detection capability or a change in statistical methods. Figure 1a illustrates this
situation by a case study on China. In the CVOID-19 time series of China, there
was an obvious jump up on February 12, dividing the already-occurring downward
trend into two segments. This jump up was due to the fact that Hubei changed
the statistical method of COVID-19, including clinically diagnosed cases as active
cases. The overall downward trend of daily activity cases in China did not change.
However, this outlier significantly affects the results of the polynomial regression
of the previous segment, which can affect our judgment on the dynamics of the
epidemic. More importantly, improvements in the detection capability and changes
in the statistical methods can affect all the subsequent data after the structural
breakpoint. In fact, these are two reasons that trigger changes in the dynamics of
the COVID-19 time series. Therefore, assigning the structural breakpoints to the
latter segments is a more proper operation.
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In the regression shown in Fig. 1a, there is no special treatment on the structural
breakpoints. From the second segment which is marked in blue, it can be clearly
observed that the presence of the structural breakpoint in this sliding window
results in an unsatisfactory regression result. In fact, the regression result is an
approximately linear growth. It does not really reflect the dynamics of the time series
within the window, which is actually in a fading stage. Considering that changes in
detection capacity or statistical methods can affect both the breakpoints and their
subsequent data, we assign breakpoints into the latter segments. Regression results
obtained through this method is demonstrated in Fig. 1b, showing that we better
extract the dynamics of the time series.

2.4 Measuring the Similarity Among Segments

After dividing the COVID-19 time series of each country into segments according
to different dynamics, we further measure the similarity among these segments.
Liu et al. (2020) measure the similarity between segments based on the Euclidean
distance between the coefficient vectors of each segment’s polynomial regression,
as is shown in Eq. (4).

Sij =
√
√
√
√

n∑

t=1

[
α

(i)
t − α

(j)
t

]2
(4)

where
[
α

(i)
1 , α

(i)
2 , · · · , α

(i)
n

]
is the coefficient vectors of the polynomial regression

of Segment i. Notice that the intercept is ignored.
However, we argue that this method may not be suitable for measuring the

similarity between the segments of the COVID-19 time series. This is because
there is a huge variation in the percentage of daily active cases per population
among different countries. Therefore, we first normalized the time series of each
country with its peak value, then use the dynamic time warping (DTW) distance
(Berndt & Clifford, 1994) between each pair of segments as the similarity measure.
The experimental results show that the DTW distance can effectively identify the
similarity between the dynamics of each segment, thus matching the segments of
the same stages of the outbreak in different countries.
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3 Results

3.1 Partitioning COVID-19 Time Series

The trends of the COVID-19 epidemic can be broadly classified into three cate-
gories: rising, falling and equilibrium. Rising and falling mean that the number
of active cases is significantly increasing or decreasing, while equilibrium means
that the number of active cases does not change significantly. The equilibrium
state includes the beginning and the end of the epidemic, as well as the dynamic
equilibrium in the middle of the epidemic when the number of new infections and
the number of cured cases are approximately equal.

In this paper, the COVID-19 time series (i.e., the percentage of active cases
per population of each day) is partitioned into segments with different dynamics.
Figure 1 shows the results of the partitioning of the time series for a representative
set of 15 countries, where each fragment is labeled with a number. Overall, it can be
observed that the COVID-19 time series are partitioned into a number of segments
of different lengths. Especially, in the equilibrium state of the epidemic, the time
series are partitioned into segments of short lengths, whereas the rising and falling
trends are partitioned into long segments.

This result matches very well with our intuition. In both the rising and the falling
state, the method adopted in this paper is able to nicely extract the corresponding
trend. On the other hand, in the equilibrium state, when the number of active cases
fluctuates, it is not possible to discern from the time series itself whether this is a
random fluctuation (e.g., controllable imported cases) or a signal of the change in
dynamics that indicates an upward or downward trend in the future. The approach
adopted in this paper treats the data in the equilibrium state with caution, regarding
each of the significant fluctuations as a signal of the change in dynamics. This results
in the equilibrium state being split into small segments (Fig. 2).

Moreover, in many countries, a complete wave of an outbreak can be partitioned
into four major segments: the beginning stage, the ascending stage, the descending
stage, and the end stage. We can observe that the lengths of the beginning stages and
end stages exceed the lengths of the short fragments during the equilibrium state, but
are significantly smaller than the lengths of the ascending and descending stages. In
addition, note that the ascending and descending stages are not segmented from the
peak point, rather, these two stages are segmented from a time point before the time
series reaches the peak. This is because we focus on the change in the dynamics
of COVID-19, which is essentially caused by the epidemic being under control. In
other words, the number of new daily infections gradually decreases and the number
of cured cases gradually increases after the time point where the dynamics change,
which leads to the number of daily active cases reaching the peak after a period of
time.
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Fig. 2 Partitioning the COVID-19 time series according to different dynamics

3.2 Analyzing the Dynamics of the First Wave of the Outbreak

For the countries in Fig. 1, the development of the COVID-19 epidemic can be
broadly classified into three categories: (1) the countries with only one peak where
the epidemic is almost over, (2) the countries where the first wave of the epidemic
is not yet under control, (3) the countries with two peaks where there is a second
outbreak. We selected China, the United States, and Australia as representatives of
each of the three categories. In this subsection, we compare the dynamics of the first
wave of the COVID-19 outbreak in these three countries.

Table 1 selects some representative segments and shows the coefficients of the
polynomial regression of these segments. Segment 0, Segment 100, and Segment
174 represent the dynamics of the initial stage of the outbreak in China, the USA and
Australia, respectively. We can see that the polynomial coefficients of theses three
segments are roughly proportional, suggesting that the same dynamics are present
among the three countries at the beginning of the epidemic outbreak. However,
the subsequent dynamics of the outbreak become very different. For China, the
polynomial regression coefficients in Segment 1 already reflect the decreasing trend
in the number of active cases, but the jump up on February 12 disrupts the dynamics
we identified. For the U.S., the number of active cases in Segment 101 first decreases
and then increases, indicating the occurrence of a second outbreak before the first
wave of the epidemic ends. Segment 102 appears to be entering a downward trend,
but the future is still unclear. For Australia, Segment 145 is similar to the Segment
1 of China, but the declining speed of Segment 176 is significantly slower than that
of China’s Segment 3, which may suggest the risk of a second outbreak.

Similar phenomenon can be observed from many other countries such as Japan,
Italy and Denmark, where a slower declining speed of the first wave is followed
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Table 1 Representative segments of the first wave of the outbreak in China, the U.S. and
Australia

Country Index of Segment [α1, α2, α3]

China 0 [7.27× 10−8, 5.87× 10−8, 4.03× 10−9]
1 [5.26× 10−7, 2.49× 10−7, −1.20× 10−8]
2 [2.04× 10−6, −2.24× 10−7, 4.28× 10−9]
3 [−1.07× 10−6, 4.92× 10−8, −9.36× 10−10]

USA 100 [5.92× 10−6, 2.20× 10−6, 1.18× 10−8]
101 [1.11× 10−4, −1.61× 10−6, 8.60× 10−9]
102 [9.10× 10−5, −1.56× 10−7, −4.92× 10−9]

Australia 174 [5.86× 10−7, 1.25× 10−7, 1.24× 10−8]
175 [9.25× 10−6, 1.03× 10−6, −6.91× 10−8]
176 [−4.78× 10−6, 2.81× 10−7, −1.39× 10−8]

by a second outbreak. By comparing the dynamics of the first wave of the COVID-
19 outbreak across different countries, we propose an initial assumption that the
dynamics at the end of the first wave may partially reflect the future development of
the epidemic. A slower decline at the end of the first wave may suggest the risk of a
second outbreak in the future.

3.3 Comparing the Dynamics of the First and Second Outbreak

In this subsection, we analyze a number of other representative segments. The
additional segments are shown in Table 2. The main aim is to compare the
similarities in epidemic dynamics across countries, as well as the similarities
between the first and second outbreak.

Based on the method described in Sect. 2.4, we measure the similarity between
the segments listed in Tables 1 and 2. We further normalize each column of the
DTW matrix by the following Eq. (5).

S′
ij =

Sij − 1
n

n∑

i=1
Sij

1
n

n∑

i=1

(

Sij − 1
n

n∑

i=1
Sij

) (5)

Figure 3a demonstrates the matrix of DTW distance among those segments. We
select the 15% percentile of all elements in the matrix as the threshold t. We drop
the DTW distance greater than t to obtain the similarity network shown in Fig. 3b.

We further study the similarity network shown in Fig. 3b based on some complex
network analysis methods. In this network, each node represents a corresponding
segment and the edge (i, j) represents Segment i and Segment j are similar. The
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Table 2 Additional representative segments of the first and second wave of the outbreak

Country Index of Segment [α1, α2, α3]

Australia: 2nd outbreak 178 [−3.69× 10−7, 5.61× 10−8, 2.45× 10−9]
179 [8.30× 10−6, 5.15× 10−7, −2.06× 10−8]
180 [−1.52× 10−5, 1.04× 10−6, −3.75× 10−8]

Japan: 1st outbreak 184 [4.44× 10−7, −2.35× 10−8, 7.22× 10−10]
185 [−5.04× 10−7, 2.48× 10−7, −4.40× 10−9]
186 [5.10× 10−6, −2.13× 10−7, 1.59× 10−9]
187 [−3.01× 10−6, −4.23× 10−8, 3.56× 10−9]

Japan: 2nd outbreak 189 [7.45× 10−8, 1.64× 10−8, 4.98× 10−10]
190 [4.92× 10−6, 2.57× 10−8, −5.06× 10−9]
191 [−2.50× 10−6, −1.58× 10−7, 1.66× 10−8]

Fig. 3 Measuring the similarity among the representative segments. (a) The normalized DTW
matrix. (b) The similarity network of the representative segments

similarity network is composed of six connected components. In Fig. 3b, the
connectivity components are marked by different colors, with nodes belonging to
the same connected component represented by the same color. After ignoring the
outliers 3 and 199, it can be observed that the four major components (i.e., labeled
red, blue, brown, and gray) represent roughly four different types of dynamics. The
first three components represent the early outbreak, the raising, and the falling,
respectively. Meanwhile, the segments that belong to the gray component are
followed by second outbreaks.

Based on the above, some preliminary ideas can be suggested. Among the time
series of COVID-19 daily active cases, some similarities can be observed in the
dynamical structure. First, each wave of the outbreak can be roughly partitioned in
to three stages: the early outbreak, the ascending stage, and the descending stage. In
particular, the descending stage is characterized by the containment of the epidemic
rather than a decrease in the number of daily active cases. Second, if we partition
COVID-19 time series in to segments according to different dynamics, significant
similarities can also be observed between the same stages in different countries and
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different waves of outbreak. Finally, the dynamics of the previous segment may
implicitly inform the subsequent trends of the epidemic development, e.g., slower
decline at the end of the first wave may suggest higher risk of a second outbreak in
the future.

4 Conclusion

Understanding the dynamics of development of COVID-19 is crucial in the
prediction and containment of the epidemic. This paper extracts the underlying
dynamical structures of the time series of COVID-19 daily active cases, based on
polynomial regression with adaptive sliding windows. Further, similarities among
the partitioned COVID-19 time series of different countries are compared based
on DTW distance and complex network analysis. We find that each wave of the
outbreak can be roughly divided into three stages: the early outbreak, the ascending
stage, and the descending stage. Significant similarities exist between the same
stages of different waves in different countries. The dynamics of the previous stage
may provide information of the subsequent development of the epidemic.
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