
Optimal Dispatch in Emergency Service
System via Reinforcement Learning

Cheng Hua and Tauhid Zaman

1 Introduction

In the United States, medical responses by fire departments over the last four
decades have increased by 367%, as reported by Evarts (2019). The reasons for the
dramatic increase in medical calls include the aging population and health insurance
that covers most of the ambulance costs (Boston Globe, Nov 29, 2015). Cities
with tight budgets are short of response units to respond to the growing amount
of medical calls in time. NBC10 in Philadelphia, on Feb 28, 2019, reported that
two-thirds of the emergency medical calls had an ambulance response time of more
than nine minutes. Thus, how to efficiently use the existing resources becomes an
essential topic to decision-makers in emergency response departments.

In current practice, most cities dispatch ambulance units according to a fixed
dispatch rule, which always dispatches the closest available unit. The dispatch policy
is deemed a myopic policy as it only considers the current call and ignores the
impact of dispatching a unit to future calls. In this paper, we model the ambulance
dispatch problem as an average-cost Markov decision process (MDP). We propose
an alternative MDP formulation for the problem using post-decision states that we
show is mathematically equivalent to the original MDP formulation, but with a
much smaller state space. Due to the curse of dimensionality, the applications of
the formulations are restricted to small problems. To solve larger problems, we use
temporal difference learning (TD-learning) with the post-decision states. We show

C. Hua (�)
Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai, China
e-mail: cheng.hua@sjtu.edu.cn

T. Zaman
School of Management, Yale University, New Haven, CT, USA
e-mail: tauhid.zaman@yale.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Yang et al. (eds.), AI and Analytics for Public Health, Springer Proceedings in
Business and Economics, https://doi.org/10.1007/978-3-030-75166-1_3

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75166-1_3&domain=pdf
mailto:cheng.hua@sjtu.edu.cn
mailto:tauhid.zaman@yale.edu
https://doi.org/10.1007/978-3-030-75166-1_3

76 C. Hua and T. Zaman

that the TD-learning algorithm converges quickly, and the policies obtained from
our method outperform the myopic policy.

The remainder of this paper is organized as follows. In Sect. 2, we provide a
review of the relevant literature. In Sect. 3, we present the Markov decision process
formulation. Section 4 presents the formulation using post-decision states which
reduces the state space of the original formulation. In Sect. 5, we present the
temporal difference learning algorithm that is based on the post-decision states and
its theoretical properties, while in Sect. 6, we show the performance of the algorithm
in numerical experiments. We conclude the paper in Sect. 7.

2 Literature Review

The optimal dispatch rule was first studied in Carter et al. (1972). The authors
studied a simple system of two units. They provided a closed-form solution that
determines the response areas to be served by each unit to minimize average
response time. However, such a closed-form solution no longer exists in a system
with more than two units and finding the optimal dispatch rule has been an important
topic.

Jagtenberg et al. (2017a) studied whether dispatching the closest available unit is
optimal in a dynamic ambulance dispatching problem based on a Markov decision
process. The problem was discretized by time using one minute as the time interval.
Two objectives were considered: mean response time and the fraction of calls with
response time beyond a certain time threshold. The value iteration method was used
to find the optimal solution. Jagtenberg et al. (2017b) provide an empirical bound
for the gap between the existing solutions and the optimal solution.

Schmid (2012) followed the same formulation as introduced in Powell (2010)
that uses approximate dynamic programming (ADP) with aggregation function to an
ambulance relocation and dispatching problem to reduce the mean response time. A
seminal paper byMaxwell et al. (2010) applied ADP to the ambulance redeployment
problem, where they used Monte Carlo simulation with one-step bootstrap to
estimate complex expectations and applied least squares regression with linear
function approximation to learn the approximate value functions. Nasrollahzadeh
et al. (2018) studied the problem of real-time ambulance dispatching and relocation,
which is formulated as a stochastic dynamic program and solved using ADP. Their
formulation and method are the same as proposed in Maxwell et al. (2010). The
issues of this approach are that while most of the time they beat the benchmark
policy, they usually never output the optimal policy. Also, it is not guaranteed
that the learning method always converges, and finding useful basis functions for
approximation is more of an art than science, which requires domain knowledge
and testing.

Our paper is the first to model the emergency dispatch problem as an average-
cost MDP, whose objective is more appropriate than discounted sum. We also show

Tis a Butter Place 77

that the proposed TD-learning algorithm based on post-decision states is guaranteed
to converge to the optimal solution.

3 Markov Decision Process Formulation

Consider a geographical region R ⊂ R
2 that is served by a total of N emergency

units, all of the same type, e.g., ambulance units. Calls arrive in region R according
to a Poisson point process with an arrival intensity {�(x, y) : (x, y) ∈ R} at location
with coordinate (x, y). We partition the region R into J sub-regions and associate a
center of mass with each sub-region Rj ⊂ R, which is also referred to as a demand
node. Note that J can be as large as needed. Denote the total call rate in node j

as λj = ∫
Rj

�(x, y)dxdy. The overall call rate in region R is denoted by λ =
∑

j λj = ∫
R

�(x, y)dxdy. We assume the mean service time follows a negative
exponential distribution with rate μi for unit i. We assume that the service time
includes turnout time, travel time, and time at the scene. The justification for this
assumption is that travel time is usually a small portion of the total service time.
With longer travel times, Jarvis (1975) mentioned amean service time calibration to
calibrate the service time to maintain the Markov property. Define tij as the average
response time from the base of unit i to node j .

Let bi represent the state of unit i, where bi = 0 if the unit is available and bi = 1
if the unit is busy. We denote the state space of all units as an N -dimensional vector
B = {bN · · · b1} ∈ B, which is in a backward order similar to the representation of
binary numbers. We define B = bi as the status of unit i. Note that |B| = 2N . If all
units are busy when a call is received, we assume that it is handled by a unit outside
of the system, such as a private ambulance company, or a unit from a neighboring
jurisdiction, which is common mutual aid policy. This paper aims to find the optimal
dispatch policy that minimizes the average response time of all served calls.

3.1 State Space

Define S as the state space S and s ∈ S as the state of the system. We have s =
(j, B), which is a tuple of j and B that consists of the location of the current call
and the state of all units (available or busy) at the time of the arrival. We denote
s(0) = j and s(1) = B in state s. The entire state space has size |S| = J × 2N .

78 C. Hua and T. Zaman

3.2 Action Space

When a call is received in the system, we decide on which unit to be dispatched to
this call. An action in this problem is to dispatch a particular unit upon receiving a
call, so the action space is given as A = {1, 2, · · · , N}. Note that only an available
unit may be dispatched. We define As ⊂ A as the set of feasible actions at state s,
where As = {i : B(i) = 0, i = {1, 2, · · · , N}}. We define a ∈ As as an action from
the feasible action space.

3.3 Policy Space

We define the policy space as �, the set of all feasible policies. A policy π ∈ �

is a mapping from the state space to the action space, π : S → A. Specifically,
π(s) = a, a ∈ As . The optimal policy π∗ ∈ � is the policy that minimizes the
average cost over all time steps. Our goal is to find this optimal policy. We use a
benchmark policy which sends the closest available unit, denoted by πm ∈ �. We
have πm(s) = argmini tij ,∀i ∈ As,∀s ∈ S. Sending the closest available unit is
myopic as it does not consider potential future calls. Saving the closest unit to the
current call might greatly reduce the expected response time of a future call.

3.4 Costs

Define cπ (s) as the cost of being in state s following policy π , which equals to the
response time cπ (s) = tij when the call location in state s is j , i.e. s(0) = j , and
the policy dispatches unit i in state s, i.e. π(s) = i.

3.5 Transition Probabilities with Augmented Transitions

Define pπ(s, s′) as the transition probability from state s = (j, B) to state s′ =
(j ′, B ′) under policy π . In determining the transition state probability, we consider
an augmented transition where a unit completes a service, and no dispatch action
is needed. This is because the number of services completed between two arrivals
is a random variable whose probability is complicated to compute. Introducing the
augmented transition reduces the number of transition possibilities. Denote Ii as the
vector of all 0’s except for the ith element, which is 1. The transition rate pπ(s, s′)
with augmented transition is given as

Tis a Butter Place 79

pπ(s, s′) =
⎧
⎨

⎩

λj ′
λ+∑

k:B(k)=1 μk+μi
, if s′ = (j ′, B + Ii),

μl

λ+∑
k:B(k)=1 μk+μi

, if s′ = (∅, B + Ii − Il).
(1)

where the expression on the top corresponds to the transition from state s to state
s′ upon action π(s) = i is taken and a new call arrives in node j ′, and the bottom
expression corresponds to the augmented transition where no arrival occurs but a
busy unit l ∈ A/As completes its current service. No action is needed since there
are no arriving calls in this transition.

3.6 Bellman’s Equation

Define V π : S+ 	→ R as the value function for the MDP following policy π and the
value of state s is V π(s), where S+ is the augmented state space that has dimension
|S+| = (J + 1)2N . Let μπ be the average cost following policy π . The Bellman’s
equation for the average cost is

V π(s) = cπ (s) − μπ

2
+

∑

s′∈S+
pπ(s, s′)V π(s′), ∀s ∈ S+. (2)

Note that the 1/2 in the above equation is due to the existence of augmented
transitions. A transition that is due to a service completion has zero cost and the
number of service completions is always equal to the number of calls being served.

Define V π as the vector of all state values, cπ as the vector of all state costs, P π

as the transition matrix, and e as the vector of all ones. The vector form of Bellman’s
equation is

V π = cπ − μπe

2
+ P πV π . (3)

The solution to the above Bellman’s equation is not unique. Instead, the set of
all value functions takes the form {V π + me | m ∈ R}. Since shifting the value
function by a constant value does not change the relative differences between state
values, once we obtain a set of state values V π , the policy can be updated as

π ′(s) = arg min
a∈As

taj +
∑

s′∈S+
p(s, s′|a)V π(s′), (4)

where pπ(s, s′|a) is the one-step transition probability when taking action a instead
of following the policy π(s). This so-called policy iteration method is summarized
in Algorithm 1.

80 C. Hua and T. Zaman

Algorithm 1 Policy iteration method
1: Pick a random policy π0. Set k = 0.
2: while πk
= πk+1 do
3: Compute the cost cπk and transition matrix P πk .
4: Policy Evaluation: Solve the state values V πk from the Bellman’s equation (3).
5: Policy Improvement: For each state s ∈ S, update the actions of each state by

πk+1(s) = arg min
a∈As

taj +
∑

s′∈S+
p(s, s′|a)V πk (s′).

6: k = k + 1
7: end while
8: Output: Optimal Policy π∗ = πk

4 Post-Decision State Formulation

The policy iteration method guarantees the convergence to the optimal dispatch
policy that minimizes the average response time, requiring solving a linear system
with (J + 1)2N states repeatedly. In the section, by realizing the nature of the state
transitions of the dispatch problem, we introduce the notion of post-decision states
and use them as the new states in our problem. We show that the MDP formulation
using post-decision states reduces the state space to 2N , which also guarantees
finding the optimal dispatch policy.

In the original formulation, a state is a tuple of call locations and all units’
statuses s = (j, B). A post-decision state sx is a state that the system is in
immediately after observing state s and taking action a = π(s), before the next
random information arrives into the system, which is the arrival of the next call
location. Thus, given state s and unit i being dispatched, i.e., a = π(s) = i, the
post-decision state sx is sx = B + Ii .

Note that by defining the post-decision state this way, we only need information
about the statuses of all units. Define Sx as the post-decision state space; we have
|Sx | = 2N . Indeed, Sx = B.

Lemma 1 Let pπ
x (sx, s

′
x) be the corresponding transition probability from sx to s′

x .
We have

pπ
x (sx, s

′
x) =

⎧
⎪⎨

⎪⎩

∑
j∈Rπ

l|sx
λj

λ+∑
k:B(k)=1 μk+μi

, if s′
x = sx + Il,

μl

λ+∑
k:B(k)=1 μk+μi

, if s′
x = sx − Il,

(5)

where Rπ
l|sx is the set of demand nodes where policy π dispatches unit l, i.e.,

Rπ
l|sx = {j : π(s′) = l, s′ = (j, sx)}. (6)

Tis a Butter Place 81

Proof For s′
x = B + Ii − Il , where a transition happens when unit l completes its

current service, the post-decision state transition is the same as the transition from
s to the augmented state s′ = (∅, B + Ii − Il) as no call arrives and no action is
needed for this state; thus s′ = s′

x .
For s′

x = B + Ii + Il , where a call arrives in post-decision state sx , we need to
capture the randomness of exogenous information, which is the location of call that
arrives in sx . We thus have

pπ
x (sx, s

′
x) =

∑

j

pπ (s, s′ = (j, sx))1{π(s′)=l} =
∑

j

pπ (s, s′)1{s′=(j,sx)}1{π(s′)=l}

=
∑

j∈Rπ
l|sx

pπ (s, s′ = (j, sx)) =
∑

j∈Rπ
l|sx

λj

λ + ∑
k:B(k)=1 μk + μi

.

��
Lemma 2 The cost of post-decision state is cπ (sx) =

∑
l∈As

∑
j∈Rπ

l|sx
λj tlj

λ+∑
k:B(k)=1 μk+μi

.

Proof The cost of sx is the expected one-step transition cost from sx to s′
x under

policy π . Let cπ
l (sx) be the expected cost of dispatching unit l in sx . We have

cπ
l (sx) =

∑
j∈Rπ

l|sx
λj tlj

∑
j∈Rπ

l|sx
λj

if l ∈ As , and 0 otherwise. We thus have

cπ (sx) =
∑

l∈As

cπ
l (sx)p

π
x (sx, sx + Il) =

∑

l∈As

∑
j∈Rπ

l|sx
λj tlj

∑
j∈Rπ

l|sx
λj

∑
j∈Rπ

l|sx
λj

λ + ∑
k:B(k)=1 μk + μi

=
∑

l∈As

∑
j∈Rπ

l|sx
λj tlj

λ + ∑
k:B(k)=1 μk + μi

.

��
Note that all components defining cπ (sx) and pπ

x (sx, s
′
x) are known, which are

computed beforehand. Define Jπ : Sx 	→ R as the value function for the post-
decision state space Sx . Let μπ

x be the average cost following policy π in the post-
decision state space. The Bellman’s equation is

Jπ(sx) = cπ (sx) − μπ
x

2
+

∑

s′
x∈Sx

pπ
x (sx, s

′
x)J

π (s′
x), ∀sx ∈ Sx. (7)

Let Jπ , cπ
x and P π

x be the corresponding vector representations. The vector form
Bellman’s equation around post-decision states is

Jπ = cπ
x − μπ

x e

2
+ P π

x Jπ . (8)

82 C. Hua and T. Zaman

Algorithm 2 Policy iteration with post-decision states
1: Pick a random policy π0. Set k = 0.
2: while πk
= πk+1 do
3: Compute the cost cπk

x and transition matrix P
πk
x .

4: Policy Evaluation: Solve the state values Jπk from the Bellman’s equation (8).
5: Policy Improvement: For each state s ∈ S, update the actions of each state by

πk+1(s) = arg min
a∈As

taj + Jπk (sx = B + Ia).

6: k = k + 1
7: end while
8: Output: Optimal Policy π∗ = πk

Theorem 1 The MDP formulation around post-decision states is equivalent to the
original formulation. In particular

(i) μπ
x = μπ ;

(ii) For sx = B, let � = λ + ∑
k:B(k)=1 μk , s(j) = (j, B) and s[k] = (∅, B − Ik).

We have

Jπ(sx) =
∑

j

λj

�
V π

(
s(j)

) +
∑

k:B(k)=1

μk

�
V π

(
s[k]). (9)

The proof of the above theorem is obtained from expanding the value functions
V π in (9) by (2) and collecting terms. The details of the proof is shown in the full
version of the paper online. Under this formulation, the new policy π ′ for state
s = (j, B) is updated as π ′(s) = argmina∈As taj + Jπ(sx = B + Ia). The new
policy iteration around post-decision states is summarized in Algorithm 2.

5 Temporal Difference Learning with Post-Decision States

Let φ[p] : Sx 	→ R, p = 1, 2 · · · , P , be the basis functions of post-decision states,
and let r = {r[p] : p = 1, 2 · · · , P } be the tunable parameters. The value function
approximation is given by J̃ (sx, r) = ∑P

p=1 r[p]φ[p](sx). Let J̃ (r) be the vector
of approximate state values of all states given parameter vector r and let � be an
2N × P matrix whose pth column is equal to the vector φ[p] of all states in Sx . The
vector form of the above equation is J̃ (r) = �r . Define {xt | t = 0, 1, . . .} as the
Markov chain on the post-decision state space Sx with transition matrix P π

x .

Lemma 3 The Markov chain corresponding to the state space Sx and transition
matrix P π

x is irreducible and has a unique stationary distribution.

Tis a Butter Place 83

The proof of the above lemma is straightforward by noting that the Markov chain
with post-decision state space forms a hypercube loss model whose property can be
found in Larson (1974).

We define the temporal difference by dt = c (xt)− μt

2 + J̃ (xt+1, rt)− J̃ (xt , rt),
where c (xt)−μt

2 +J̃ (xt+1, rt) is the differential cost function at state xt based on the
one-step bootstrap and J̃ (xt , rt) is the old approximate differential cost function at
state xt . Define rt as the parameter vector at time t . We update the parameter vector
r by rt+1 = rt + γtdtφ (xt) and μt+1 = (1 − γt) μt + 2γtc (xt). We let γt = a

a+t

where a ≥ 1 is a hyper-parameter that controls the learning speed.
In this paper, we present a simple way of defining the basis function. We give an

index ix to each post-decision state sx = B, where ix = ∑N
i 2i1B(i)=1. We let the

basis function φ[p](sx) be

φ[p](sx) =
{
1, if p = ix,

0, if p
= ix .
(10)

Algorithm 3 Policy iteration with TD-learning
1: Pick a random policy π0. Set k = 0. Specify T and K .
2: while k ≤ K do
3: Set t = 0. Initialize r0 and μ0.
4: Starting from a random state x0, generate a state trajectory {xt | t = 0, 1, . . . T } correspond-

ing to the Markov chain with state transition probability P
πk
x that is defined by the policy

πk .
5: for t = 0 to T do
6: Calculate the temporal difference dt by

dt = c (xt) − μt

2
+ J̃ (xt+1, rt) − J̃ (xt , rt) .

7: Update the parameters by

rt+1 = rt + γtdtφ (xt) ,

μt+1 = (1 − γt) μt + 2γt c (xt) .

8: end for
9: For each state s ∈ S, update the policy

πk+1(s) = arg min
a∈As

taj + J̃ (sx = B + Ia, rT).

10: k = k + 1
11: end while
12: Output: Policy π̃∗ = πK

84 C. Hua and T. Zaman

Theorem 2 Algorithm 3 has the following three properties:

(i) Converges with probability 1.
(ii) The limit of the sequence μt

2 at the kth iteration of the algorithm is the average

cost μ
πk
x

2 , i.e., limt→∞ μt = μ
πk
x .

(iii) The limit of the sequence rt at the kth iteration of the algorithm, denoted by rk∗,
is the unique solution of the equation T

(
�rk∗) = �rk∗, where T : R2N 	→

R
2N

is an operator defined by T J = c
πk
x − μ

πk
x e
2 + P

πk
x J .

The proof of the above theorem follows from Tsitsiklis and Van Roy (1999) and
Lemma 3, and the basis functions φ(sx) being linearly independent for all states. It
is also necessary that γt is positive, deterministic, and satisfies

∑∞
t=0 γt = ∞ and∑∞

t=0 γ 2
t < ∞. The details of the proof is shown in the full version of the paper.

Theorem 2 guarantees that Algorithm 3 always returns the optimal policy if T is
large enough. When T is moderately large, it is enough to obtain a policy close to
optimal, as shown in the next section. Our algorithm avoids solving the complex
Bellman’s equation, which has exponential complexity. Once we calculate the cost
vector cπ

x and transition matrix P π
x , we easily obtain the temporal differences dt by

Monte Carlo simulation and evaluate the value functions that are needed for policy
improvement in the policy iteration algorithm.

6 Numerical Results

In this section, we show the numerical results comparing the policy obtained from
the TD-Learning method to the myopic policy that always dispatches the closest
available unit for systems with N = 5, 10, and 15 units. We created an imaginary
region which is partitioned into J = 30 demand nodes. We randomly locate
units in the region and obtain the corresponding response times from each unit to
each demand point. The policy from the proposed TD-Learning method with post-
decision states is obtained by running the algorithm in 25 iterations. We perform
a roll-out with 200,000 state transitions in each iteration and update the parameter
vector r using the temporal differences d. We record the sample average response
time in each iteration and the results are shown in Figs. 1a, b, and c, respectively.

We observe that the TD-Learning algorithm converges quickly in all cases as
expected. We show the updates of the post-decision state values J̃ in one TD-
Learning iteration for the case of N = 5 in Fig. 1d. The resulted policies in all three
cases outperform the myopic policy that always dispatches the closest available
units. We also observe that our algorithm obtains a superior policy reasonably
quickly in about three iterations. In the case where N = 15, solve the Bellman’s
equation requires solving a system with 31 × 215 = 1,015,808 states. In contrast,
our method obtains a good policy in less than two minutes, and it applies virtually
to systems of any sizes as guaranteed by its theoretical properties.

Tis a Butter Place 85

Fig. 1 (continued)

86 C. Hua and T. Zaman

Fig. 1 Numerical results. (a) Mean response time comparison for N = 5 units. (b) Mean response
time comparison for N = 10 units. (c) Mean response time comparison for N = 15 units. (d) State
value updates in one TD-Learning iteration

The policies obtained from our algorithm result in an average of three seconds
reduction in terms of response time with no additional resources. Our findings
suggest that emergency response departments can improve their performance with
minimal to no cost.

7 Conclusion

In this paper, we model the ambulance dispatch problem as an average-cost Markov
decision process and aim to find the optimal dispatch policy that minimizes the
mean response time. The regular MDP formulation has a state space of (J + 1) ·
2N . We propose an alternative MDP formulation that uses the post-decision states
and reduces the state space to 2N . We show that this formulation is mathematically
equivalent to the original MDP formulation.

The two formulations are restricted to only small problems due to the curse
of dimensionality. We next present a TD-Learning algorithm based on the post-
decision states that is guaranteed to converge to the optimal solution. In our
numerical experiments, we show that the TD-Learning algorithm with post-decision
states converges quickly. The policies obtained from our method outperform the
myopic policy that always dispatches the closest available unit in all cases.

Tis a Butter Place 87

References

Carter, G. M., Chaiken, J. M., & Ignall, E. (1972). Response areas for two emergency units.
Operations Research, 20(3), 571–594.

Evarts, B. (2019). Fire loss in the united states during 2018. NFPA National Fire Protection
Association, Quincy.

Jagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2017a). Dynamic ambulance dispatching: is
the closest-idle policy always optimal? Healthcare Management Science, 20(4), 517–531.

Jagtenberg, C. J., van den Berg, P. L., & van der Mei, R. D. (2017b). Benchmarking online dispatch
algorithms for emergency medical services. European Journal of Operational Research,
258(2), 715–725.

Jarvis, J. P. (1975). Optimization in stochastic service systems with distinguishable servers. Ph.D.
thesis, Massachusetts Institute of Technology.

Larson, R. C. (1974). A hypercube queuing model for facility location and redistricting in urban
emergency services. Computers & Operations Research, 1(1), 67–95.

Maxwell, M.S., Restrepo, M., Henderson, S. G., & Topaloglu, H. (2010). Approximate dynamic
programming for ambulance redeployment. INFORMS Journal on Computing, 22(2), 266–281.

Nasrollahzadeh, A. A., Khademi, A., & Mayorga, M. E. (2018). Real-time ambulance dispatching
and relocation. Manufacturing & Service Operations Management, 20(3), 467–480.

Powell, W. B. (2010). Merging AI and OR to solve high-dimensional stochastic optimization
problems using approximate dynamic programming. INFORMS Journal on Computing, 22(1),
2–17.

Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using
approximate dynamic programming. European Journal of Operational Research, 219(3), 611–
621.

Tsitsiklis, J. N., & Van Roy, B. (1999). Average cost temporal-difference learning. Automatica,
35(11), 1799–1808.

	Optimal Dispatch in Emergency Service System via Reinforcement Learning
	1 Introduction
	2 Literature Review
	3 Markov Decision Process Formulation
	3.1 State Space
	3.2 Action Space
	3.3 Policy Space
	3.4 Costs
	3.5 Transition Probabilities with Augmented Transitions
	3.6 Bellman's Equation

	4 Post-Decision State Formulation
	5 Temporal Difference Learning with Post-Decision States
	6 Numerical Results
	7 Conclusion
	References

