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1 Introduction

Traffic congestion and its economic and social consequences plague most large
urban areas. On-demand taxi services have done little to alleviate these concerns,
and, on the contrary, have exacerbated congestion in some of the biggest cities.
In recent years, pooled transportation has emerged as a cheaper and more envi-
ronmentally and traffic friendly alternative to on-demand transportation services.
Examples of such pooled transportation options range fromUber’s UberPool service
to the shuttle services offered by Via, Chariot, and others in major cities across
countries. At the same time, most of these services face challenges as, many
customers remain reluctant to switch to pooled services from private on-demand
transportation options. The goal of this paper is, therefore, to understand customer
preferences in choosing between private and pooled transportation services and to
investigate the way that policies can be designed to incentivize customers to use
pooled transportation and effectively manage congestion.

From the government’s perspective, the most often used policies are congestion
surcharges. Local governments in large cities such as New York, Singapore, and
London have imposed congestion prices to incentivize increased usage of pooled
transportation and less usage of the private rides. For instance, the city of London
uses an all-day congestion surcharge policy, whereas Singapore uses a peak hour
surcharge policy. A key challenge for many cities is to assess the potential impact
and the relative effectiveness of these policies before they are implemented. Experi-
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menting with different policies in practice is extremely expensive in this setting, and,
hence, their implementation has been largely on an ad hoc basis. Our paper seeks to
provide guidance to evaluate the performance of different policies in incentivizing
customers to switch from private to pooled transportation. Specifically, our guidance
to policy makers is in terms of two aspects. First, we evaluate the efficacy of three
particular types of congestion strategies: (i) price strategies based on congestion
surcharges applied in the city; (ii) price strategies based on providing discounts to
pooled transportation services; and (iii) operational strategies based on improving
the service features of pooled transportation services. Second, our findings highlight
the importance of incorporating customer heterogeneity of preferences in designing
effective policies to promote pooled transportation usage.

Our analysis proceeds in two steps. First, we estimate customer demand for
pooled and private transportation with usage data from Ola Cabs in India. The
form of pooled transportation we study is the shuttle service, and the private
transportation we focus on is cabs. We adopt a structural modeling approach
to estimate demand and recover the customer’s preferences for price and other
operational service features. Then, we evaluate various congestion management
strategies using the estimated model via counterfactual analyses. We provide a brief
description of each of the two steps and summarize our main findings next.The
results from this analysis suggest a substantial degree of substitution between the
two services. We then build a structural model to estimate customer preferences
over prices and different service features for the cab and shuttle services. Our
control function approach with Lasso selected instruments corrects for the bias
in the customer price elasticity and wait time sensitivity estimates. The estimated
price coefficient is lower than the estimate without the correction, suggesting the
presence of route based discounting by the platform to grow the customer base.
We estimate an average cost of |98.5 ($1.3) for walking an additional km to the
shuttle stop |3.6 for traveling ten extra minutes on the shuttle. Using the estimates
from the model, we provide prescriptive recommendations on reducing congestion
through counterfactuals. In the first counterfactual, we apply differential percentage
congestion surcharges to cab and shuttle services in a congestion zone of the
city. We find that a 20% congestion surcharge on cabs achieves a 15.0% overall
vehicle reduction on the road. The corresponding vehicle reduction due to customers
substituting from cab to shuttle service is around 4.04%. We also apply congestion
surcharges to the services in peak hours following similar policies implemented in
Singapore. We find that, interestingly, surcharges applied to the evening rush hours
achieve around 3 times the %age vehicle reduction as compared to the morning rush
hours. Moreover, the evening rush hour surcharge policy achieves a higher %age
vehicle reduction than an all-day surcharge policy. In the second counterfactual, we
evaluate the impact of providing discounts to shuttle rides on customer choices.
We find that a 20% discount on shuttle rides leads to around 1% reduction in
vehicles due to customers substituting from cabs to the shuttle service. Moreover,
the reduction disproportionately comes from new users with relatively low past
shuttle usage and more room for usage growth in the future. Finally, we evaluate
operations based strategies and estimate the change in congestion levels when the
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firm improves some of the key shuttle service features. We find that a city could
reap a significant portion of the benefits obtained by applying congestion surcharge
policies by utilizing the operational levers itself. More importantly, adopting these
strategies avoids the deadweight losses associated with the price surcharges due
to its tax nature. Specifically, we find that a 20% decrease in customers’ walking
distance to shuttle pick up stops can achieve 35% of the total effect achieved by the
congestion surcharge in terms of the number of customers substituting from the cab
to shuttle services. Similarly, a 20% decrease in the shuttle travel time can achieve
6.9% of the total substitution achieved by the congestion surcharge. This result
shows that improving the service features of pooled ride services is an important
alternative to price-based policies in managing congestion in big cities.

Our paper is closely related to the structural demand estimation of mobility
services in operations management and economics. He et al. (2019) and Kabra
et al. (2019) study customer demand in bike-share systems. Buchholz (2020) and
Ata et al. (2019) study spatial demand for the taxi service. To the best of our
knowledge, our work is the first empirical study to investigate customer choices
between the on-demand and the pooled ride services, which allows us to quantify
the impact of congestion policies on customer choices. Our paper also closely
relates to the empirical literature on ride-sharing services in operations management.
Cohen et al. (2020b) run field experiments to nudge commuters to carpool using in-
app notifications. Also, Cohen et al. (2020a) document the frustrations caused by
inconveniences such as longer travel time in pooled services. The main difference
between these studies and our paper is that, instead of an experimental approach, we
recover customer preferences for choosing the services while directly incorporating
the inconveniences associated with the shuttle service in the model.

Our work also contributes to the literature on congestion management in
transportation. Han et al. (2019) build a stochastic model to develop a road pricing
scheme to curb congestion. Recent work by Ostrovsky and Schwarz (2018) studies
the relationship of carpooling, road pricing, and autonomous transportation. The
authors highlight the role of road pricing in the adoption of pooled transport. Almost
all of these studies are either analytical or predictive, even though the topic is of
high practical relevance to both policy makers and ride-sharing platforms. Our work
complements the literature using data and empirical methods to estimate customer
preferences and provide prescriptive recommendations for the design of congestion
policies.

Our work also fits into the growing literature on structural estimation in
operations management. We use a discrete choice model with a control function
to estimate the customer preference parameters for different ride service features.
Similar methods have been applied in Petrin and Train (2010) and Guajardo et al.
(2012). To correct for endogeneity, we build on the network type of instrumental
variable method used in prior work on demand estimation in operations management
(He et al., 2019). To strengthen the relevance of our instruments, we employ
selection methods commonly used in machine learning and the causal inference
literature (Belloni et al. 2011, 2012).
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2 Data

Our study uses data provided to us by the Indian ride-hailing company Ola Cabs.The
firm competes directly with (i) other, similar platforms such as Uber; (ii) public
transportation; and (iii) city taxis. Its market share in the Indian ride-hailing market
was around 65% at the time we collected our data. financing. We use four different
sources of data in our analysis: (i) cab rides data; (ii) shuttle rides and trips data;
(iii) Google Places API data; and (iv) census data

The cab rides dataset contains over 25 million cab rides from Jan-Aug 2016 in
Delhi. Each ride record contains information about (i) the customer’s pickup and
drop-off locations (latitudes and longitudes); (ii) anonymized ID; (ii) timestamps for
the initial ride request, pickup, and drop-off; (iii) prices; and (iv) distance traveled.
There are around 3.5 million unique users on the platform. The shuttle data contain
information about customer rides and shuttle trips. About 76K unique users took
1.28 million rides in Delhi from Jan-Aug 2016. For each ride record, we observe
(i) timestamps for the customer’s initial booking request; (ii) anonymized ID; (iii)
latitudes and longitudes for pickup and drop-off; (iv) prices; (v) distance traveled;
and (vi) latitude and longitude of the customer’s mobile device when she makes the
initial booking request. We also obtained latitudes and longitudes of around 176K
points of interest in the city, collected from Google Places API. The places are
classified into 93 classes, including restaurants, museums, libraries, hospitals, and
theaters. In addition, we obtain demographic information from the Indian census of
2011.

2.1 Descriptive Evidence

To motivate our main model, we document two sets of descriptive evidence to
motivate our main analysis. First, we show that a large number of customers
use both the on-demand cab service and the shuttle service, and, hence, the
market is not segmented into cab-only and shuttle-only users. Moreover, there is
a large heterogeneity in customers’ preferences for choosing shuttles and cabs. This
motivates the structure of our model in Sect. 3. We control for this heterogeneity by
including variables that measure the customer’s past usage metrics on the platform.

Second, using a difference-in-differences analysis, we estimate the degree of
substitution between the two services, thereby establishing that the services are
substitutes. We leverage the fact that the shuttle platform was adding routes as it was
expanding over time. The addition of routes over time serves as a quasi-experiment
for our difference-in-differences analysis. We run a two-way-fixed-effects (TWFE)
model to identify the causal impact of opening up the shuttle route on cab ridership.
There is a net reduction of 88 rides per route when the shuttle services are operating.
The reduction in cab ridership shows directly that the two services act as substitutes.
In summary, we show that customers choose between shuttle and cab services, and
we provide evidence of substitution between the two services. In the next section,
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we outline a richer customer-level choice model that helps us understand customer
preferences when they are making choices between the two services.

3 Choice Model

Customer’s Utility Customer i, who wants to travel from origin location j ∈
{1, . . . ., L} to destination location k ∈ {1, . . . ., L}, chooses to take one of the
alternatives, a ∈ {Shuttle,Cab} or an outside option. The customers who travel
from j to k belong to one market. The utility that customer i traveling in market jk

gets from choosing an alternative a at time t is:

Uijkta = αa +
∑

r

βrpjkadir + γwjc +
∑

r

X1′
jka�rdir + X2′

jk�

+ Q
′
iw(t)� + Tas(t) + ξjk + ξi + εijkta. (1)

In Eq. (1), αa represents the baseline preference for the shuttle and the cab
service. pjka denotes the average price for service a in market jk. wjc denotes
the average wait time for the cab service. We do not include the wait time for the
shuttle in our model since the majority of rides arrive at the scheduled time. We
allow for the price coefficient to vary across two groups of customers segmented
by their total shuttle usage in the past. dir is an indicator that identifies whether
customer i belongs to the low-usage or new users group (r = 1) or the high-usage
or experienced users group (r = 2). We include four sets of service features and
control variables in our model as follows:

Market-Alternative-Level Service Features X1
jka is a vector of key service

features other than prices and wait time that affect the customer’s choice. First,
it includes the time and distance traveled on the ride across the two services.
For any origin-destination pair jk, the time and distance traveled in shuttles is
larger than those in cabs. The extra time and distance traveled and walking are the
inconveniences associated with the shuttle service. Like price, we also allow for the
vector of sensitivities to the service features to vary across the two customer groups.

Market-Level Controls X2
jk is the vector of market-level control variables. We

include a rich set of market variables in the model. Specifically, we include the
number of Google Places category counts at both j and k (20 in total), and
demographic information such as population densities and working population at
both the locations (eight in total).

Customer-Time-Level Controls Qiw(t) is the vector of the time-varying usage
history of a customer on the two platforms. w(t) ∈ {1, . . . ., T } is an operator
that denotes the number of weeks starting from January 1, 2016. Qiw(t) includes
two variables: (i) the cumulative number of shuttle rides taken by the customer
up to last week, and (ii) the number of recent rides taken by the customer across
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the two services. The first usage variable controls for customers’ familiarity with
the experience of the shuttle service. Since the shuttle service was newly launched
during the period of our data, new shuttle customers may not have been fully aware
of the experience of using the shuttle service and, hence, may have been less likely
to choose that service. Thus, it is important to control for this variable. The second
variable captures the effect of the customer’s recent activity on the platform. A
customer may be more likely to choose the service if she was recently active on
the platform. Both variables control for customer heterogeneity in terms of their
awareness of the shuttle service.

Time-Level Controls Tas(t) are the time fixed effects, and s(t) is an operator that
denotes the time slot of the day (morning, evening, night, etc).

Unobservables ξjk are the market-level unobservables that affect demand. Exam-
ples of some of these factors are the unobserved popularity of the route, the level of
congestion on the route. ξi are the customer-level unobservables that affect demand.
Examples of these unobservables include income, age, and any other factors that
affect a customer’s preference for choosing between the two services. εijkta are
independent and identically distributed idiosyncratic errors that follow extreme
value type 1 distribution. Apart from the shuttles and cabs, the customer can also
choose to take an outside option. The utility of the outside option o is defined as:

Uijkto = uo + εijkto. (2)

where uo is normalized to be zero. The customer chooses the alternative that
maximizes her utility. The choice probability of customer i is given by :

Pijkta =

[
exp(αa + ∑

r βrpjkadir + γwjc + ∑
r X1′

jka�rdir + X2′
jk�

+Q
′
iw(t)� + Tas(t) + ξjk + ξi)

]

[
1 + 
a∈{c,s}exp(αa + ∑

r βrpjkadir + γwjc + ∑
r X1′

jka�rdir

+X2′
jk� + Q

′
iw(t)� + Tas(t) + ξjk + ξi).

]

(3)

Our goal is to estimate the unknown scalars (βr , γ ) and vectors (�r,�,�) in
the model.

4 Estimation

4.1 Endogeneity

As in many discrete choice demand estimation settings, some of the observed
product attributes, such as price, are often correlated with unobserved product
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characteristics such as quality and, hence, are endogenously determined. Specifi-
cally, a firm that tries to optimize profits or growth adjusts prices for products and
services based on features that are observable to itself but not to the researcher.
In our setting, routes may be priced by the platform managers based on their
popularity. If the firm raises prices on the popular routes to optimize profits, without
taking this into account in the estimation, the price coefficient obtained from the
model will be underestimated. However, if the firm cuts prices on popular routes
to grow the customer base, the price coefficient obtained from the model would be
overestimated. In either case, using the biased estimate would lead to unreasonable
prescriptive policy recommendations and managerial insights in the counterfactual
analyses. Interestingly, in our setting, the shuttle service was in a phase of growth
and expansion, whereas, by comparison, the cab service was in a more mature
phase. This makes for an interesting setting in which to study the price endogeneity
problem. Prices of the two services are not the only endogenous variables in
our setting. Wait times for cabs are correlated with the unobserved popularity or
congestion level of the route and are determined endogenously. When wait times
increase with unobserved popularity or congestion, the coefficient for wait time
would be underestimated if we did not take into account the endogeneity problem in
the estimation. Moreover, past shuttle usage is correlated with unobserved customer-
level characteristics. These unobservables lead to an endogenous selection of users
into the low- and high-usage groups. Without considering this endogeneity issue,
the coefficient for past usage will be overestimated in magnitude.

4.2 Instruments

Our approach to correct for the biases discussed in the previous section is to find
valid instruments for the endogenous variables. We construct instrumental variables
for the prices and cab wait time by utilizing the network structure of our data.
Then, we select from a large set of valid instruments, the best set, following recent
developments in the intersection of the causal inference and machine learning
literatures. Second, we construct the instrumental variable for past shuttle usage
by utilizing the timing of the introduction of shuttle routes.

Network Instruments The first step here is to define a set of network-based
instruments following He et al. (2019). To explain the variation in prices for route
jk, we look for exogenous characteristics of h that affect the popularity of j and k.
We construct instrumental variables separately for origin j and destination k. Our
proposed valid instruments are averages of the exogenous characteristics of all such
feasible h that satisfy the relevance and the exclusion restriction criteria.

Lasso Instrument Selection Since the set of valid network instruments is large
(1236), selecting the right ones is not trivial. Instead of handpicking some instru-
ments or naively selecting the compete set, we use machine selection methods. We
follow the method in Belloni et al. (2012) to select the best set of instruments in our
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setting. The method involves using a penalty function that penalizes the addition of
more instruments to avoid a weak first stage in the IV estimation. The penalization
is achieved through the square root Lasso estimator.

Shuttle Route Introduction Based Instrument for Shuttle Usage The instrument
should provide an exogenous variation in customer i’s past shuttle usage to recover
the causal parameter of interest. We construct the instrument by utilizing the timing
of the introduction of different shuttle routes in our data. Specifically, to explain the
variation in customers’ shuttle usage, we utilize the time of introduction of a route
odi attached to the customer i. Let Todi

be the timing of the introduction of route
odi in the sample period and Dodi

the number of days from Jan 1 till Todi
. Then,

Zi = 244 − Dodi
is a valid instrument for shuttle usage (Fig. 1).

The rationale for using the above instrument is as follows. The timing of opening
up of shuttle operations on customer i’s home route gives an exogenous shock to
her shuttle usage. Thus, the length of time that the route odi is active in the sample
period affects customer i’s shuttle usage. This is the relevance condition for the
instrument. Also, the timing of the introduction of shuttle operations on a route is
unlikely to be correlated with the unobserved customer characteristics ξi conditional
on the market characteristics. This gives us the exclusion restriction condition.

4.3 Control Function Approach to Estimation

We use a control function approach with the instruments described in Sect. 4.2 to
correct for the endogeneity in prices, wait time and past shuttle usage variables,
following the method in Petrin and Train (2010). The control functions for the prices

Fig. 1 Instrument for past shuttle usage of a customer. Dodi
represents the number of days from

the start of the sample period to the introduction of home route odi . The length of the solid line in
days is the magnitude of the instrument
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and wait time are specified below in the system of equations:

pjks = αsp + κspZLASSO
sp + X1′

jks�sp + X2′
jksp + ν

p
jks

pjkc = αsc + κcpZLASSO
cp + X1′

jkc�sp + X2′
jkcp + ν

p
jkc

wjc = αwc + κcwZLASSO
cw + X1′

jkc�sp + X2′
jkcw + μw

jc.

(4)

where, pjks, pjkc are average route-level prices for shuttle and cabs, and wjc is the
average cab wait time. (ZLASSO

sp , ZLASSO
cp , ZLASSO

cw ) are the Lasso selected sets

of instrumental variables for the endogenous variables. X2
jk is the same vector

of exogenous market characteristics used in Eq. (1). Similarly, X1
jks and X1

jkc

are the vectors of exogenous market-alternative level controls used in Eq. (1).
(�sp,�cp,�cw) and (sp,cp,cw) are the associated coefficients. Using the
control functions ν

p
jkc, ν

p
jkc , μ

p
jc and μus

i obtained from Eq. (4), the customer utility
can be written as:

Uijkta = αa +
∑

r

βrpjkadir + γwjc +
∑

r

X1′
jka�rdir + X2′

jk� + Q
′
iw(t)�

+ Tas(t) + λ1ν
p
jkc + λ2ν

p
jkc + λ3μ

p
jc + λ4μ

us
i + εijkta. (5)

where λ1, λ2, λ3 and λ4 are the coefficients for the control functions. Then the
customer’s choice probability can be calculated as :

Pijkta(βr , γ,�r,�,�, λ1, λ2, λ3, λ4)

= exp(Vijkta + λ1ν
p
jkc + λ2ν

p
jkc + λ3μ

p
jc + λ4μ

us
i )

1 + 
a∈{c,s}exp(Vijkta + λ1ν
p
jkc + λ2ν

p
jkc + λ3μ

p
jc + λ4μ

us
i ).

(6)

We recover the parameters (βr , γ,�r,�,�, λ1, λ2, λ3, λ4) by maximum likeli-
hood estimation. The log likelihood is computed over all the choices observed in
the data.

(β̂r , γ̂ , �̂r , �̂, �̂, λ̂1, λ̂2, λ̂3, λ̂4) = argmax L(((βr , γ,�r,�,�, λ1, λ2, λ3, λ4)).

(7)

4.4 Results from the Choice Model

The estimated parameters from the choice model (second stage) are presented in
Table 1. First, we note that the price coefficients βr in the specification without
using the IVs are −0.017 and −0.013 for groups 1 and 2, respectively. After using
the control function approach, we recover βr = −0.014 and −0.009. Hence, the
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Table 1 Parameter estimates
from the choice model. .s and
.c are shuttle- and
cab-specific coefficients. .1
and .2 are coefficients for the
two customer usage groups
(*,**,*** indicates statistical
significance at 10%,5%,1%
level)

Explanatory variable Without IV With IV

Shuttle intercept −13.922∗∗∗ −13.942∗∗∗

(0.082) (0.082)

Cab intercept −12.887∗∗∗ −13.032∗∗∗

(0.080) (0.080)

Price Paid.1 −0.017∗∗∗ −0.014∗∗∗

(0.0001) (0.0001)

Price Paid.2 −0.013∗∗∗ −0.009∗∗∗

(0.0001) (0.0001)

Wait −0.129∗∗∗ −0.135∗∗∗

(0.001) (0.001)

Time −0.002∗∗∗ −0.004∗∗∗

(0.0001) (0.0001)

Commute.1 −1.516∗∗∗ −1.536∗∗∗

(0.006) (0.006)

Commute.2 −0.830∗∗∗ −0.807∗∗∗

(0.006) (0.006)

Distance.1 −0.192∗∗∗ −0.161∗∗∗

(0.002) (0.002)

Distance.2 −0.106∗∗∗ −0.066∗∗∗

(0.003) (0.003)

Controlfunction shuttle price −0.026∗∗∗

(0.0002)

Controlfunction cab price 0.002∗∗∗

(0.0002)

Controlfunction cab wait 0.069∗∗∗

(0.005)

Morning.s 3.857∗∗∗ 3.879∗∗∗

(0.009) (0.009)

Morning.c −13.754∗∗∗ −13.766∗∗∗

(0.082) (0.081)

Cumulative Shuttle Usage.s 0.091∗∗∗ 0.087∗∗∗

(0.0002) (0.0002)

Controlfunction Usage.s 0.004∗∗∗

(0.0001)

Cumulative Shuttle Usage.c −3.923 −4.051

(163.312) (165.234)

Controlfunction Usage.c 0.602

(1.321)

Recent Week Rides.s 0.948∗∗∗ 0.955∗∗∗

(0.002) (0.002)

Recent Week Rides.c 0.691∗∗∗ 0.680∗∗∗

(0.003) (0.003)

Market controls Yes Yes

Observations 1,323,413 1,323,413

McFadden R2 0.580 0.585
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price coefficients are adjusted down in magnitude—i.e., the price coefficient is
overestimated without using the IVs. The control function for the shuttle price is
significant and negative. The strong negative control function for the shuttle price
indicates that the average price of the shuttle in a market is lower than what the
observed market characteristics can explain. The control function for cab price is
positive and much weaker in magnitude than that for the shuttle price. The positive
sign indicates that the average price of cabs on a route is higher than as explained
by the observed attributes. This is consistent with our discussion on the endogeneity
of price in Sect. 4.1. Moreover, we find that there is substantial heterogeneity in
the price coefficients across the two groups. The new users (group 1) are about
1.55 times more price-sensitive than experienced users (group 2). The coefficient
for wait time γ in the model without IV is −0.129. The control function for cab
wait time corrects for this bias expectedly. The corrected coefficient is −0.135.
The coefficients for walking distance to the shuttle are negative and significant for
both the user groups. The coefficient on walking distance captures the disutility
incurred by the customer in walking to the shuttle pickup stop. Group 1 users
are more sensitive to walking than group 2 users. The results allow us to estimate
the monetary cost associated with the disutility of walking to the pickup stop. We
estimate a disutility of |109 ($1.45) and |89 ($1.18), respectively, for walking 1 km
to the shuttle stop to catch the shuttle for the two groups.

In addition to the operational levers, the customer’s usage variables enter our
model specification. First, the number of cumulative shuttle rides taken by a
customer has a positive and significant effect on the probability of choosing the
shuttle. The shuttle-specific coefficient of cumulative shuttle rides by a customer
is 0.091 in the specification without IV. This shows that it is important to control
for the usage variables when explaining the customer’s choice. In the model with
correction, we recover an estimate of 0.087. In addition to cumulative usage, the
total number of rides on the platform in the recent week positively influences the
probability of choosing both the shuttles and the cabs. The fixed effects for morning
time slots are also significant. Our base category for the time slots is afternoon hours.
As compared to the afternoon slot, people are more likely to choose shuttles and less
likely to choose cabs in the morning. Finally, the pseudo R2 for both specifications
is around 0.58, which suggests that our rich model fits the data quite well.

5 Counterfactuals

In this section, we use our estimated model to conduct counterfactual analyses
and provide prescriptive guidance to policy makers on congestion management in
big cities. The question that we seek to answer is how to effectively increase the
usage of pooled ride services and reduce the level of congestion on the roads. Our
counterfactuals evaluate the impact of different policy interventions on customers’
choices between private and pooled ride services and, therefore, on the number of
vehicles on the road. Specifically, we examine three sets of strategies: (i) imposing
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congestion surcharges on private cabs and shuttles; (ii) providing discounts on
shuttle service; and (iii) improving the service features of shuttle service. We call the
first two sets of strategies the price-based strategies and the latter operations-based
strategies. From a policy maker’s point of view, it is challenging to evaluate the
effectiveness of a strategy before implementing it. For example, it is very difficult to
know a priori the right level of congestion surcharge to levy on the vehicles. This is
where the strength of our model lies. Our estimated model allows us to measure
customers’ service choices when prices or service features are changed. Hence,
using the estimated model, we can evaluate the relative efficacy of the different
policies before implementation and, thus, provide the policy maker with a host of
prescriptive solutions.

5.1 Applying Percentage Surcharges to a Congestion Zone

Local governments in large cities around the world, such as London, Singapore, and
NewYork, have introduced congestion pricing policies to reduce congestion. In New
York, for example, a surcharge is applied to all ride-hailing trips in a pre-determined
congestion zone in Manhattan. In this counterfactual, we quantify the impact of
imposing percentage congestion surcharges on cabs and shuttles on the number of
vehicles on the road. Specifically, for all rides that cross the congestion zone—
i.e., j ∈ Zone 1 or k ∈ Zone 1, irrespective of the time of the day, we calculate
the customers’ choices, the number of vehicles on the road, and the platform’s
revenue under policy P

′
. We vary the level of the surcharge by applying different

price multipliers, (1 + θc) and (1 + θs), to pc and ps for cab and shuttle services,
respectively. Here, θc and θs are the percentage price surcharges. The corresponding
θs for the shuttle ride is determined by the relationship:

Mpcθc = nspsθs . (8)

whereM is a multiplier and ns is the number of seats on the shuttle. Specifically, in
our simulations, we setM to 2, based on proposed recommendations in New York.1

The number of seats in the shuttle, ns , is set to 20, equal to the median number.
Figure 2 shows the effect of applying percentage congestion surcharges to

shuttles and cabs. The x-axis is 100×(θc). The status quo policyPZone1(pc, ps,X
1
s )

is on the extreme left (θc = 0). The red line in Fig. 2 shows the net percentage
reduction in the number of total vehicles on the road calculated relative to the
status quo level. The number of vehicles at any point is calculated as: # cab rides +
# shuttle rides

20 . For this calculation, we assume that the outside option is public
transportation which does not affect the total number of vehicles on the road.
Although we do not observe the outside option of the customers, this calculation
provides an upper bound to the magnitude of the impact of the surcharge policy

1https://www.nytimes.com/2019/04/24/nyregion/what-is-congestion-pricing.html.

https://www.nytimes.com/2019/04/24/nyregion/what-is-congestion-pricing.html
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Fig. 2 Percentage reduction in total number of vehicles (red line) and percentage reduction due
to pure substitution (blue line) after application of percentage surcharges. Vertical dashed line
corresponds to θc = 0.2

on congestion reduction. We also quantify the reduction in vehicles due to cab
customers substituting to the shuttle service only. The blue line shows the net
percentage reduction due to the pure substitution between the cabs and the shuttles.
For instance, a 20% surcharge on the cabs (θc = 0.2) leads to a 15% net vehicle
reduction on the road. The percentage vehicle reduction due to the pure substitution
effect is around 4.04%. In this calculation, since we focus only on customers
substituting from the cab service to the shuttle service without taking into account
potential substitutions to the outside option which includes public transportation and
other ride services, and that substituting to the outside option is unlikely to increase
the number of vehicles on the road given the surcharge raises the price of riding in
(or driving) smaller vehicles more than that of the big ones, the blue line provides a
lower bound to the impact of the surcharge policy on congestion reduction.

We also disentangle the total reduction (blue line) into two components based on
the customer segments that it arises from: (i) new users and (ii) experienced users.
For θc = 0.2, the effect from new users (solid black line) is close to 80% of the
total congestion reduction. This suggests that customer heterogeneity is crucial in
designing an effective congestion policy.
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5.2 Offering Discounts to Users

In this counterfactual, we study the service choice of customers and quantify the
decrease in the number of vehicles due to the substitution between the services—
i.e., the lower bound of the impact on congestion reduction when discounts are
offered to shuttle customers. Specifically, we change the shuttle price by applying a
discount multiplier B while keeping the cab price the same as observed in the data.
We vary B in increments of 0.05 over the support of [0.60,1].

Figure 3 shows the substitution effect after applying percentage discounts on the
shuttle service. The red line in Fig. 3 shows the percentage decrease in the number
of vehicles due to pure substitution, calculated over the status quo level (B = 0).
At a discount level of 20% (B = 0.7), the corresponding percentage decrease in the
number of vehicles is 1.04%. This is about 26% of the corresponding substitution
effect in the percentage surcharge counterfactual in Sect. 5.1. We decompose this
reduction into two components: the reduction arising from new users (solid black
line) and from experienced users (dashed black line). The corresponding reduction
from the two groups is 0.7% and 0.3% of the total number of vehicles on the road,
respectively. Since the number of new and experienced users is the same, our finding
suggests that targeting the new users when providing discounts is more than twice
as effective as targeting the experienced users.
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Fig. 3 Percentage reduction in the number of vehicles due to the pure substitution between the
cabs and the shuttles (red line). The solid (dashed) black line is the contribution from the new
(experienced) user group. Vertical dashed line corresponds to the discount percentage level of 20%
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5.3 Improving Service Features

Using price-based strategies is an effective way to curb congestion on the road,
but it comes with many drawbacks, such as deadweight loss to overall welfare
due to its tax nature. An interesting alternative to achieve the same outcome
is to use operations-based strategies, which have two advantages. First, they
do not hurt customer welfare. Second, the strategies come “free” for the firm.
The firm does not lose any surcharge revenue by employing these strategies. In
this counterfactual, we apply multipliers Q to the service features and estimate
the corresponding percentage reduction in the number of vehicles. We vary the
multiplier in increments of 0.05 over the support of [0.65,0.95]. We do this exercise
separately for the walking distance and the shuttle travel time features. As in the
surcharge counterfactuals, we calculate both the total change in vehicles and the
change in vehicles due to the substitution between the two services.

We report the corresponding effects in Table 2. We find that a 20% reduction
in walking distance and travel time for shuttle rides leads to around a 1.46% and a
0.28% decrease in the number of vehicles on road due to the substitution between
the two services. We can compare this decrease with the corresponding substitution
in the price-based strategies. Considering the 20% surcharge scenario as the base
case (see, Fig. 2), a 20% decrease in walking inconvenience can achieve around
35% of the total substitution achieved by the congestion surcharge. Similarly, a
20% decrease in the shuttle travel time can achieve 6.9% of the total substitution
achieved by the congestion surcharge. In other words, a city could reap a significant
portion of the benefits of congestion surcharges by utilizing the operational levers of
the pooled ride service. The benefits could quickly stack up when the improvements
in the various inconveniences are combined. Specifically, a 20% reduction in both
shuttle ride time and walking inconvenience leads to a cumulative 1.51% vehicle
reduction due to substitution (around 37.3% of the reduction achieved by the
congestion surcharges in Sect. 5.1). From the policy maker’s perspective, we find
that improving the pooled ride service features proved to be an effective strategy to
reduce congestion, while avoiding the drawbacks of the surcharge policies.

Table 2 Comparison of percentage reductions (total number of vehicles and substitution effect)
when shuttle : travel time (left) and walking distances (right) are reduced

Shuttle travel time inconvenience Shuttle walking inconvenience

Multiplier Vehicle reduction Substitution Vehicle reduction Substitution

0.95 0.05% 0.07% 0.07% 0.37%

0.90 0.10% 0.14% 0.15% 0.74%

0.85 0.15% 0.22% 0.25% 1.11%

0.80 0.21% 0.28% 0.36% 1.46%

0.75 0.26% 0.35% 0.48% 1.80%

0.70 0.31% 0.42% 0.62% 2.15%

0.65 0.36% 0.49% 0.79% 2.48%
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6 Conclusion

In this paper, we study customer preferences of private and pooled transportation
services and investigate how effective policies can be designed to incentivize cus-
tomers to use pooled transportation to reduce congestion. Using detailed customer
usage data from Ola’s on-demand cab and fixed-route shuttle services in India,
we estimate customer preferences of key service features using a discrete choice
model. We account for the endogeneity of the service features, such as price and
wait time, and of customers’ past shuttle usage on the platform using the control
function approach. We then conduct counterfactual analyses to evaluate the impact
of congestion surcharge policies, discount policies, and improved pooled service
features on the customers’ choices and, therefore, the number of vehicles on the
road. We find that, by changing operations levers such as pooled service features,
instead of imposing a surcharge policy, cities can reduce a substantial amount of
congestion without sacrificing consumer welfare. We also highlight the role of
customer heterogeneity in improving the effectiveness of policy design. Our findings
provide prescriptive recommendations to cities for designing effective policies for
congestion management.
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