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1 Introduction

Due to the discrete temporal and spatial distribution of customer demands that
results in a high delivery failure and a low vehicle utilization, the last-mile delivery
has become a time-consuming and uncertain process. As a result, parcel logistics
companies are exploring and implementing innovative tools such as drones and
pavement-based droids to optimize last-mile deliveries. However, such solutions
are difficult to be widely adopted due to significant public acceptability and regu-
latory barriers (https://www.nic.org.uk/publications/better-delivery-the-challenge-
for-freight/). Recently, lockers for self-service collection and return of parcels have
received positive feedback from both customers and industries by improving the
user experience for the former and providing scale benefits for the latter (Vakulenko
et al., 2017). Furthermore, contactless delivery has become a new hotspot in the
context of COVID-19, bringing new opportunities for the development of lockers.
Therefore, a crucial issue for a parcel logistics company is to redesign its pick-up
and delivery operations to include lockers as an option.
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In addition, there is a rising awareness of the need for alleviating the environ-
mental consequences of logistics operations by deploying low-emission vehicles,
e.g., electric vehicles (EVs) (Shen et al., 2019). For example, FedEx has expanded
the size of its EV fleets to minimize environmental impacts (http://csr.fedex.com/
pdf/FedEx_GCR_FINAL_4.17.19_144dpi.pdf). EVs are now sufficient to meet the
needs of short- and medium-distance transportation, and do not need to be charged
during the trip. Consequently, there are two delivery options that parcel logistics
companies can choose to serve customers. The first delivery option is the direct-to-
customer delivery where EVs transport parcels to customers’ homes or workplaces.
Another delivery option is the direct-to-locker delivery where EVs transport parcels
to lockers and customers pick up them at their own convenience.

In this paper, we first address a green location-routing problem with delivery
options (GLRP-DO) where a parcel logistics company needs to simultaneously
determine the location of lockers and the routing plans for EVs from a single depot.
Routes for the replenishment of lockers and routes for the delivery of parcels to
customers are separated due to several practical considerations. Hence, we consider
two types of EV fleets with different load capacities and battery driving ranges,
where large EVs are dedicated to replenishing lockers by providing the round-
trip service and small EVs are dedicated to servicing the customers. A locker can
serve customers within its pre-specified coverage range and has an accommodation
capacity limitation. Each customer must be served by either a locker or a small EV.
The goal is to minimize the total cost from the perspective of a parcel logistics
company, including the opening cost and handling cost of lockers, as well as
the routing costs of EVs. Figure 1 shows a schematic example of the GLRP-DO
distribution system.

Despite receiving considerable attention in the last-mile distribution system,
research on lockers appears to be scarce. The most related problem is the multi-
depot two-echelon vehicle routing problem with delivery options in (Zhou et al.,
2018). In this problem, the delivery option for each customer is pre-set by giving

Fig. 1 A schematic example of the GLRP-DO distribution system
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a node set including three cases (only served by direct delivery, only served by
pick-up facilities, served by either-or). Another related problem is a simultaneous
facility location and vehicle routing problem in (Veenstra et al., 2018). In contrast
to our problem where a patient within a service range may not be assigned to
the corresponding locker (probably due to the limitation of its accommodation
capacity), a patient in (Veenstra et al., 2018), is forced to be served by an open
locker if it is within the coverage distance of the locker, leading to an un-capacitated
locker. Then, a recent study extended the above research to a two-echelon system
and developed an efficient adaptive large neighbourhood search heuristic to provide
high-quality solutions for large-sized instances (Enthoven et al., 2020).

Different from the above literature, some studies have investigated a similar
locker network with the objective of maximizing the company’s overall profit. It
is not necessary to satisfy all customer demands in these studies. Deutsch and
Golany (2018) designed a parcel locker network as a solution to the last-mile
distribution system, and used discounts in the delivery cost for customers who
choose the locker service. Hosseini et al. (2019) developed a generalization of the
capacitated location-routing problem from the perspective of a company engaged
in collecting used products from customer zones to maximize its overall profit. A
financial incentive is defined to help determine the quantity of used products which
are returned by customers. In this problem, the idea of collection centers is similar to
our lockers. However, our study focuses on minimizing the total cost and satisfying
the total customer demand. Moreover, there is no limit on the accommodation
capacity of collection centers and the driving range of vehicles in Hosseini et al.
(2019).

According to the above review, although the above studies have mentioned
lockers or delivery options in various contexts, they have not totally regarded
delivery options as decision variables and have not considered both coverage ranges
of lockers and battery driving ranges of EVs. Furthermore, so far, there has been no
research to develop exact algorithms for similar problems, but this is very important
to obtain available benchmark solutions for larger instances. To address practical
issues and fill the research gap, we use an integrated modelling approach to assist
in the planning process to deploy a new last-mile distribution system with two
delivery options (i.e., the GLRP-DO) and propose an effective branch-and-price
(B&P) algorithm that can solve to optimality instances with moderately larger size.

2 Model Formulation

We apply a Danzig-Wolfe decomposition (Dantzig &Wolfe, 1960), to formulate the
GLRP-DO as a set partitioning formulation and treat it as a master problem (MP)
that links the columns generated through pricing subproblems. In this study, two
types of pricing subproblems are proposed for providing feasible columns. The first
type of pricing subproblems is the locker coverage service subproblem (LCSP) that
generates a pattern of service customers with negative reduced cost for each locker,
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and the second type of pricing subproblems is the shortest path problem with battery
driving range constraints (SPPBDRC) that helps generate a negative reduced-cost
small EV route.

2.1 Problem Statement

In this paper, the GLRP-DO is defined in a graph G = (V,A), where
V = {0} ∪ Vl ∪ Vc is the set of vertices, {0} represents the depot, Vl is
the set of potential lockers, and Vc is the customer set. Let the arc set
A = {(i, j) : i, j ∈ V, (i, j) �∈ Vl × Vl}, which comprises the arcs connecting the depot
to the customers and lockers, and those connecting pairs of customers. Associated
with a locker l ∈ Vl are, the fixed open cost fl (per day), the handling cost al (per
parcel), the accommodation capacity Ql and the coverage range rl. For replenishing
lockers, the set of large EVs K0 with load capacity Q0

e and battery driving range
B0 is available at the depot, and provides the round-trip service due to the high
volume transported between the depot and lockers. For serving customers, the set
of small EVs K with load capacity Qe and battery driving range B is available at the
depot and provides the direct delivery service. The distance, the travel cost of arc
(i, j) ∈ A and the charging consumption rate are given as dij, cij and h, respectively.
It is assumed that the distance and travel cost observe the triangle inequality. Each
customer i ∈ Vc has a known and deterministic demand qi, and can be served by a
small EV or an open locker. We also assume that no customer demand is greater
than the capacity of small EVs and lockers, and no accommodation capacity of
lockers is greater than the load capacity of large EVs. Therefore, only one round-
trip service is needed for each open locker. Let φ be a factor that represents the
economies of scale of the round-trip service, then fl = fl + φ (c0l + cl0) can be
treated as the fixed cost of locker l, consisting of the opening cost fl of locker l and
the routing cost φ(c0l + cl0) of large EVs.

2.2 Master Problem

We redefine the set Vl as {l| d0l + dl0 ≤ B0, l ∈ Vl} to ensure that lockers can
be visited by large EVs. Let P be the set of all feasible patterns. Each pattern
p ∈ Pl means a set of customers served by locker l within its coverage range and
accommodation capacity, and ∪l∈Vl

Pl = P . Let R be the set of all feasible routes.
Each route r ∈ R starts from the depot, visits one or several customers in Vc, and ends
at the depot. Moreover, each route does not violate the load and battery capacities
of small EVs by construction. Let αip ∈ {0, 1} be a binary parameter that equals 1
if customer i is assigned to pattern p, and 0 otherwise. Let β ir ∈ {0, 1} be a binary
parameter that equals 1 if customer i is visited by route r, and 0 otherwise. The costs
of each pattern p ∈ P and route r ∈ R are cp and cr, respectively. Then, let vl be a
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binary variable that takes value 1 if locker l is opened, and 0 otherwise. Let zp be
a binary variable that takes value 1 if pattern p ∈ P belongs to the solution, and 0
otherwise. Let xr be a binary variable that equals 1 if route r ∈ R belongs to the
solution, and 0 otherwise. Finally, the MP is formulated as follows:

min
v,z,x

∑

l∈Vl

f lvl +
∑

p∈P

cpzp +
∑

r∈R

crxr (1)

s.t.
∑

p∈P

αipzp +
∑

r∈R

βirxr = 1 ∀i ∈ Vc (2)

∑

p∈Pl

zp = vl ∀l ∈ Vl (3)

vl ∈ {0, 1} ∀l ∈ Vl (4)

zp ∈ {0, 1} ∀p ∈ P (5)

xr ∈ {0, 1} ∀r ∈ R (6)

The objective function (1) minimizes the total cost including the fixed cost of
opened lockers (the opening cost of opened lockers and the large EV routing cost
for these lockers), the handling cost of opened lockers, and the small EV routing
cost for customers. Constraint (2) ensures that each customer is served by exactly
one route or one pattern, thereby achieving a partitioning scheme for customers.
Constraint (3) guarantees that at most one pattern will be chosen for each locker.
To introduce the subsequent two types of pricing subproblems, let μ and τ be the
dual variables of the constraints (2) and (3), respectively. Constraints (4), (5) and (6)
specify the domains of the decision variables.

2.3 The Locker Coverage Service Subproblem

Let zl
i be a binary variable that takes value 1 iff customer i is served by locker l.

Then all pricing subproblems for each locker are identical except for the dual price
τ l considered in the objective function. Hence, the LCSP- l is simply dedicated to
each open locker l and is presented as follows:

min
z

∑

i∈Vc

(alqi − μi) zl
i − τl (7)

s.t. dilz
l
i ≤ rl ∀i ∈ Vc (8)
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∑

i∈Vc

zl
i = Ql (9)

zl
i ∈ {0, 1} ∀i ∈ Vc (10)

In this formulation, the objective function (7) is to minimize the reduced cost of
a pattern for locker l. Constraints (8) and (9) are implemented to define the coverage
range and the accommodation capacity constraints of locker l, respectively. The
binary requirement of the solution is ensured by constraint (10). The LCSP- l is
essentially a variant of knapsack problem that can be solved in pseudo-polynomial
time. Considering that commercial MIP solvers can easily solve instances of the
knapsack problem with thousands of variables (Poss, 2013). We call the CPLEX
solver to find the exact solution of the LCSP-l.

2.4 The Shortest Path Problem with Battery Driving Range
Constraints

Let xij be equal to 1 iff a small EV traverses arc (i, j). bi represents the remaining
battery of a small EV when it arrives at node i ∈ {0} ∪ Vc. Then, the SPPBDRC is
presented as follows:

min
x

∑

i∈{0}∪Vc

∑

j∈{0}∪Vc,j �=i

cij xij (11)

s.t.
∑

j∈Vc

x0j = 1 (12)

∑

j∈Vc

xj0 = 1 (13)

∑

j∈{0}∪Vc,j �=i

xji =
∑

j∈{0}∪Vc,j �=i

xij ∀i ∈ Vc (14)

∑
i∈Vc

∑

j∈{0}∪Vc,j �=i

qixij ≤ Qe (15)

bi ≤ B − h ∗ d0ix0i ∀i ∈ Vc (16)

bj ≤ bi − h ∗ dij xij + B
(
1 − xij

) ∀i ∈ Vc,∀j ∈ {0} ∪ Vc, j �= i (17)

xij ∈ {0, 1} ∀i ∈ Vc,∀j ∈ {0} ∪ Vc, j �= i (18)
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bi ≥ 0 ∀i ∈ {0} ∪ Vc (19)

The objective function (11) minimizes the reduced cost of the constructed
route. Constraints (12) and (13) are associated with the routing decision, and
constraint (14) ensures the flow balance. Constraint (15) relates to the total small
EV load capacity. Constraints (16) and (17) enforce sub-tour elimination using the
cumulative battery capacity consumed upon visiting a node for each small EV.
Constraints (18) and (19) define the domains of decision variables. Note that the
new arc cost cij is defined as cij = cij − μi,∀i ∈ Vc,∀j ∈ {0} ∪ Vc, j �= i and
c0j = c0j ,∀j ∈ Vc.

It can be shown that the SPPBDRC is modeled as an elementary shortest path
problem with resource constraints which is NP-hard (Dror, 1994), but it can be
solved by dynamic programming in pseudo-polynomial time. Therefore, we employ
the label setting algorithm to generate the optimal route of the SPPBDRC. Labels
are attached to each node to identify the state of the resources (reduced cost, load
capacity and battery capacity) when a corresponding feasible path is found from the
depot to the present node. In addition, we extend labels and accelerate the solution
procedure by adopting the method proposed by Feillet et al. (2004).

3 Methodology

First, the linearly relaxed version of MP (LMP) is solved to obtain dual values
for defining reduced costs. Considering that a restricted LMP (LRMP) involves a
small subset of columns at each branch node, then the column generation is called
to identify the subsets of patterns and routes with negative reduced costs. These
patterns and routes as new columns are added to the LMP and resolved iteratively.
This procedure is repeated until no new column exists and then we can obtain
the optimal solution of LMP. If it is fractional, some branching rules are applied
hierarchically in the B&P algorithm and the detail is described later. The best-first
strategy is implemented to explore the branch-and-bound tree, which guarantees that
the child node with the best lower bound will be explored first.

3.1 Branching Rules

In this study, two types of pricing subproblems are proposed for constructing
feasible columns. In order to create adequate branching rules that are compatible
with these pricing subproblems, we consider four-layer hierarchical branching rules
in the proposed B&P algorithm.
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The first branching rule branches on the location variable vl. Fixing vl = 1
enforces the use of locker l with its LCSP- l solved, and fixing vl = 0 is achieved by
imposing a value of zp = 0 for all of the patterns p ∈ Pl in the RMP.

The second branching rule restricts the service assignment for each customer. We
define ρi = ∑

p ∈ Pαipzp as the value of choosing the locker service for customer
i. We branch on the value of ρi∗ that is most fractional (whose fractional part is
closest to 0.5). Fixing ρi∗ = 1 means that customer i∗ is only visited by the locker
service, and can be achieved by deleting all routes that visit customer i∗ and no
longer allowing small EVs to visit customer i∗ in its corresponding subproblems.
Fixing ρi∗ = 0 ensures that customer i∗ cannot be satisfied by the locker service.
We delete all patterns that visit customer i∗ and prohibit any locker to serve customer
i∗ in its pricing subproblems.

The third branching rule branches on the arc (i, j). Let Rij be the set of all routes
that visit the arc (i, j), and we select the arc (i∗ , j∗ ) such that ϕi∗j∗ = ∑

r∈Ri∗j∗ xr is
most fractional. Then, we impose ϕi∗j∗ = 0 by removing the arc (i∗ , j∗ ) from the
network for small EVs and dropping all routes that include arc (i∗ , j∗ ) in one branch.
In the other branch, we impose ϕi∗j∗ = 1 by removing all arcs (i

′
, j∗ ) and (i∗ , j

′
) such

that i
′ �= i∗ and j

′ �= j∗ , and dropping all route-related columns that do not satisfy
this constraint.

The fourth branching rule restricts the locker assignment for each customer. We
define θil = ∑

p∈Pl
αipzp as the value of choosing locker l for serving customer

i. We branch on the value of θi∗j∗ that is most fractional. Fixing θi∗j∗ = 1 means
that customer i∗ is only visited by locker l∗ , and can be achieved by deleting all
patterns from locker l �= l∗ that visit customer i∗ and no longer allowing locker
l �= l∗ to visit customer i∗ in its corresponding subproblems. Fixing θi∗j∗ = 0 ensures
that customer i∗ cannot be satisfied by locker l∗ . We delete all patterns from locker
l∗ that visit customer i∗ and prohibit locker l∗ to serve customer i∗ in its pricing
subproblems.

3.2 A Tight Upper Bound

Through numerical experiments, we find that in most cases, the best lower bound
has reached the optimal value after the first three steps of branching rules. It means
that the best routes have been found but the best patterns haven’t been identified. To
reduce the number of branching, we propose an acceleration technique with the aim
of finding a better feasible solution and thus improving the performance of our B&P
algorithm.

If a solution of RLMP satisfies the first three branching rules, we can obtain a
feasible small EV routing plan and its cost zEV = ∑

r ∈ Rcrxr. In addition, the set
of lockers to open V ′

l and the set of customers served by lockers V ′
c can also be

acquired. Then, we develop the following locker assignment problem (LAP) to find
a feasible solution for assigning remaining customers to the opened lockers.
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zLocker = min
v,z

∑
l∈V ′

l

f lvl +
∑

i∈V ′
c

∑
l∈V ′

l

alqiz
l
i (20)

s.t.
∑

l∈V ′
l

zl
i = 1 ∀i ∈ V ′

c (21)

zl
idil ≤ rlvl ∀i ∈ V ′

c,∀l ∈ V ′
l (22)

∑

i∈V ′
c

qiz
l
i ≤ Qlvl ∀l ∈ V ′

l (23)

vl ∈ {0, 1} ∀l ∈ V ′
l (24)

zl
i ∈ {0, 1} ∀i ∈ V ′

c,∀l ∈ V ′
l (25)

Once the first three branching rules are met and the fourth branching rule is
violated, we first solve the LAP to obtain a new upper bound z

′ = zLocker + zEV
to update the best upper bound, rather than implementing the fourth branching rule.
In the computational experiments section, we will test that the above acceleration
strategy to observe its impact on the reduction of running time.

4 Computational Experiments

We conduct numerical experiments with two aims. First, we assess the performance
of our B&P algorithm in comparison with the original MIP model using the
branch-and-cut algorithm implemented via CPLEX with version 12.7. Second, the
sensitivity analysis and managerial insights are given to consider the impact of
delivery options of the GLRP-DO. All experiments are coded by JAVA and run
on a computer with a 16GB RAM and 4.0 GHz CPU.

4.1 Description of Problem Instances

For the GLRP-DO, we construct our instances by extending three well-known sets
of benchmark instances (Perboli et al., 2011), namely “Set 2” and “Set 3”. Moreover,
some new information is added and summarized in Table 1, which includes the name
of sets (Set), the number of instances (#), the numbers of customers (Nc), lockers
(Nl) and EVs (Ne), and other values of related parameters. Note that we assume the
parameter settings of EVs are sufficient to ensure the feasibility of testing instances.
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Table 1 Characteristics of the GLRP-DO instances

Set # Nc Nl Ne fl φ al Ql Q0
e R B0 B h

2/3 6 21 3 16 60 0.1 0.001 6000 3000 30 180 120 1
6 21 4 16 60 0.1 0.001 4500 3000 30 180 120 1
6 50 5 23 100 0.1 0.01 90 45 50 300 200 1
6 50 6 23 100 0.1 0.01 75 45 50 300 200 1

4.2 Computational Performance of the B&P Algorithm

Partial results of performance comparison between our B&P algorithm and CPLEX
are shown in Table 2. The first and second columns show the name and the set
of potential lockers of each instance, respectively. For CPLEX, Columns 3–5,
respectively, represent the objective value (optimal solutions or best upper bound
found) obtained with CPLEX (Best), the solver optimality gap within 3600 seconds
(Gap(%)), and the computing time of CPLEX (T(seconds)). The remaining columns
relate to the B&P algorithm. Columns 6–9 report the following: (i) the optimal
objective value or the upper bound obtained within 3600 seconds (Best); (ii) the
optimality gap at termination or within 3600 seconds (Gap(%)); (iii) total CPU
time of the B&P algorithm without the tight upper bound described in Sect. 3.2
(Tno(seconds)); (iv) total CPU time of the B&P algorithm with the tight upper bound
(T(seconds)).

The results show that the superior performance of the B&P algorithm over the
B&B/C algorithm implemented with CPLEX mainly comes from the following
two aspects: (i) The proposed tight upper bound presented in previous section
is beneficial for accelerating the B&P procedure. For large-size instances, the
substantial CPU time savings achieved by this acceleration technique are about 30%
on average for the instances in Set 2, and about 12% on average for the instances in
Set 3. For medium-size instances, the performance of the tight upper bound is not
outstanding, or even worse. The reason may be that this upper bound cannot provide
a tighter upper bound but increases the redundant upper bound calculation. (ii) The
proposed B&P algorithm is both effective and efficient in solving the GLRP-DO.
In fact, CPLEX failed to solve the GLRP-DO for 50% of instances to provable
optimality within 3600 seconds. In contrast, the proposed B&P algorithm solved all
testing instances to optimality in an average of 5 seconds for instances with three
lockers and 21 customers, an average of 18 seconds for instances with four lockers
and 21 customers, an average of 186 seconds for instances with five lockers and
50 customers, and an average of 572 seconds for instances with six lockers and 50
customers.
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Fig. 2 Sensitivity analysis of the GLRP-DO

4.3 Sensitivity Analysis for the GLRP-DO

In this section, we investigate three sets of model parameters that may affect the
solutions of the GLRP-DO. The first one is the sensitivity of the result to the cost of
lockers including the opening cost, the handling cost and economies of scale factor.
The second one is the impact of the coverage range of lockers and the battery driving
range of small EVs, and the third one is the effect of the accommodation capacity
of lockers and the load capacity of small EVs.

Examples of such lockers that provide self-service options can include lockers
and self-built service stations. As a result, the costs of these lockers and the
realization of economies of scale may be very different. Figure 2a and 2b contrast
the composition of the optimal total cost under different opening cost fl, holding
cost al and economies of scale factor φ settings. The results show that when the
opening cost is high, as the holding cost or economies of scale factor increases, the
total cost increases, where the cost of locker service decreases and the cost of small
EVs increases. In addition, we observe the GLRP-DO system is more sensitive to
the handling cost than the opening cost.

Given a depot, a set of customers and a set of potential lockers can be opened,
the changes in the coverage range R and the battery driving range B may result in
different delivery solutions for serving all the customers. Figure 2c illustrates that
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with the increase in the coverage range of lockers, the total cost decreases, and
the delivery proportion of lockers increases. Furthermore, when the battery driving
range of EVs reaches a certain level, it will not have much impact on the choice of
delivery options and cost.

Indeed, different types of lockers or EVs can provide different accommo-
dation/load capacities. Thus, planning an efficient GLRP-DO system requires
examining the impact of the accommodation capacity Ql of lockers and the load
capacity Qe of small EVs. As can be seen in Fig. 2d, the accommodation capacity
and load capacity can provide better competitive advantages for their corresponding
delivery options (lockers and EVs). Moreover, the solutions of the GLRP-DO are
more sensitive to the accommodation capacity than to the load capacity.

5 Summary

In this paper, we introduce the GLRP-DO, a practical last-mile delivery problem,
that can deal with the presence of delivery options (lockers or direct delivery) and
the application of EVs. We develop an effective B&P algorithm for the GLRP-
DO, where two types of pricing subproblems are solved exactly and some useful
acceleration techniques are proposed. Due in part to the tighter upper bound, the
computing time of the algorithm is reduced by 20% on average for large-size testing
instances. Furthermore, the B&P algorithm greatly outperforms the commercial
solver CPLEX over all testing instances. Our computational study also illustrates
how the GLRP-DO can support parcel logistics companies to make better decisions
in the relevant context. First, it is very important to improve the utilization rate
of locker accommodation capacity as much as possible if companies consider
including lockers as a delivery option, as the comparative advantage of using
lockers depends largely on the economies of scale. In addition, experimental results
demonstrate that the GLRP-DO system is more sensitive to the handling cost than
to the opening cost of lockers. Second, EVs are suitable for such hybrid delivery
systems and mixed-fleet policies for the management of EVs are profitable in such
a delivery network. Consequently, interesting extensions on this research consist
of involving customer participation in decision-making process to maximize the
utilization rate of the opened lockers, and investigating the GLRP-DO with special
aspects such as multi-trips or customer time windows.
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