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1 Introduction

Epidemic outbreaks impact the health of our society and bring significant disrup-
tions to the US and the world. For example, Coronavirus Disease 2019 (COVID-19)
is currently ravaging multiple countries and was declared as a global pandemic by
theWorld Health Organization (WHO) inMarch 2020. COVID-19 has caused a total
of approximately 7.82 million infected cases and 432 K deaths worldwide, as well
as 2.17 million infected cases and 118 K deaths in the US by June 16, 2020 (CDC,
2019). The abrupt increase of cases quickly exceeds the capacity of health systems
and highlights the shortages of workers, beds, medical supplies and equipment.
Many governments have taken a variety of actions (e.g., lockdown, large-scale
testing, stay-at-home) to flatten the curve and avoid overwhelming health systems,
but these reactionary policies have resulted in great economic losses. The US
unemployment rate has skyrocketed from 3.5% in February 2020 to 14.7% in April
2020 (The Bureau of Labor Statistics, n.d.). The number of unemployed persons
has increased to 23.1 million, which is even worse than the Great Depression in
1930s. The economic uncertainty has caused US stock markets to trigger the circuit
breakers to halt trading for a historical 4 times in the week of March 9–16, 2020
(Zhang et al., 2020). The US GDP shrunk 4.8% in the first quarter of 2020.
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When the COVID-19 epidemic emerged, it was not uncommon to encounter
a misperception or misinformation that coronavirus is like the seasonal influenza
(flu). Although there are similarities (e.g., causing respiratory illness) between
coronavirus and flu virus, they are significantly different. COVID-19 or severe acute
respiratory syndrome (SARS) is caused by the family of coronavirus, which is not
the same as the flu virus. There are three major types of flu viruses – Types A, B
and C. Type A flu virus caused many epidemics in the past 100 years (e.g., 1918
Spanish Flu (Trilla et al., 2008), 1968 H3N2 epidemic (Alling et al., 1981), and
2009 H1N1 epidemic (Sullivan et al., 2010)). It is worth mentioning that Type A
flu virus infects a wide variety of animals (e.g., poultry, swine, aquatic birds) and
easily evolves and mutates genes. Once transported and adapted to humans, it can
evolve into an epidemic. Types B and C flu viruses infect only humans as the typical
seasonal flu and has rarely been the cause of past epidemics (Taubenberger et al.,
2005). It is estimated by Center for Disease Control and Prevention (CDC) that
seasonal flu causes approximately 140,000–810,000 hospitalizations and 12,000–
61,000 deaths annually since 2010 (Disease Burden of Influenza, n.d.). However,
the death toll of 1918 Spanish Flu is about 50 million worldwide and 675,000 in the
US.

Historically, epidemics are inevitable and recur at more or less near-periodic
cycles. It is difficult to predict when a new virus will emerge and cause an epidemic.
The infection rate of a virus is commonly measured by the basic reproduction
number R0, which characterizes how many people on average can be infected by
one infected individual in a susceptible population. For COVID-19, R0 is estimated
to range from 1.4 to 6.49, with a mean of 3.28 (Liu et al., 2020). The potential
transmission pathway can be either through air droplets, which are generated when
infected individuals talk, cough, or sneeze, or through contact with an infected
person or surface that is contaminated with the virus. At the start of an outbreak,
antivirals and vaccines are often not available. People can only resort to non-
pharmaceutical interventions (NPIs) for the control and containment of virus spread
(Davies et al., 2020). Traditional NPI methods include the practice of good personal
hygiene, the use of disinfectants, the isolation and quarantine of infected individuals,
and the limitation of public gatherings. From 1918 Spanish flu epidemic to COVID-
19, this situation does not change much although health systems become more
advanced and medical resources are richer than before.

However, one thing that does change is the faster and augmented capability of
medical testing and diagnostics, thanks to rapid advances of gene/DNA, microbiol-
ogy, and imaging technologies (Ravi et al., 2020). As such, large amounts of data
are collected in the evolving process of epidemic outbreaks. The availability of data
calls upon the development of analytical methods and tools to gain a better under-
standing of virus spreading dynamics, optimize the design of healthcare policies for
epidemic control, and improve the resilience of health systems. Therefore, this paper
presents a review of the system informatics approach of Define, Measure, Analyze,
Improve, and Control (DMAIC) for epidemic management through the intensive
use of data, statistics and optimization. Despite the sustained successes of DMAIC
in a variety of established industries such as manufacturing, logistics, services and
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Fig. 1 The flowchart of system informatics for epidemic response and risk management

beyond (Yang et al., 2021; Knowles et al., 2005; Kumar et al., 2007), there is a
dearth of concentrated review and application of the data-driven DMAIC approach
in the context of epidemic outbreaks. As shown in Fig. 1, The DMAIC methodology
consists of five phases: (1) Define: outline the societal challenges posed by the
epidemic; (2) Measure: collect data about key variables in the epidemic process;
(3) Analyze: extract useful information pertinent to the spread of epidemic; (4)
Improve: design solutions and methods to improve the resilience of health systems;
(5) Control: develop health policies, management plans, and intervention methods
to control the spread of infectious diseases. The goal of this paper is to catalyze
more in-depth investigations and multi-disciplinary research efforts to accelerate
the application of system informatics methods and tools in epidemic response and
risk management.

The rest of the paper is organized as follows: Section 2 discusses specific societal
challenges arising from large-scale outbreaks of infectious diseases. Section 3
reviews the sampling and testing strategies to increase information visibility for
epidemic management. Then, we present a review of analytical methods and tools
for the extraction of useful information in Sect. 4. Continuous improvements and
re-design to improve the resilience of health systems are discussed in Sects. 5 and 6
presents the health policies and intervention strategies for the control of virus spread.
Section 7 discusses the system informatics approach for epidemic management and
concludes this paper.
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2 Epidemic Challenges to Our Society

2.1 Health System Challenges

Epidemic outreak calls upon the execution of large amounts of clinical testing to
examine the prevalence of a virus in the population. No doubt, such a large demand
poses significant challenges on the manufacturing and supply chain systems.
Fortunately, advanced medical technology (e.g., gene/DNA, microbiology) enables
the provision of viral and/or antibody testing kits to the US population. For example,
as of June 19, 2020, there are a total of 26,781,666 viral tests performed to
determine whether an individual is currently infected by the coronavirus (CDC,
2019). Approximately 10% of the test results are positive. Among a sample of
1,934,566 individuals with COVID-19, most of them are within 18–44 and 45–
64 age groups (41.4% and 32.8%, respectively). For the rest, 5.1% and 9.5% are
aged 0–17 and 65–74, respectively, and 11% of them are above 75 (CDC, 2019).
In general, when the age of patients increases, the hospitalization rate also becomes
higher. Hospitalization rate is the ratio between the number of individuals who are
hospitalized within 14 days after a positive viral test and the total population in
a spatial region. As shown in Table 1, the overall cumulative hospitalization rate
is 94.5 per million (CDC, 2019). For people aged 50–64 and above 65, the rates
increase to 143 and 286.9 per million, respectively. However, for people aged 0–4
and 5–17, the rates declined to 7.4 and 3.5, respectively.

The upsurge of positive cases poses significant challenges on the hospital
capacity. As shown in Table 2, as of June 18, 2020, 70% of inpatient beds are
occupied, in which 5% is used for COVID-19 patients. Also, nearly 63% of intensive
care units (ICU) beds are occupied (CDC, 2019). In addition, the shortages of
medical supplies (e.g., personal protection equipment (PPE)) become more and
more prevalent in the health systems with a rising number of coronavirus cases
and hospitalizations. In the era of globalization, US medical supplies are heavily
dependent on importation, nearly 72% of active pharmaceutical ingredients (APIs)
are imported from other countries. Specifically, approximately 13% of medical
products are from China, and 18% of pharmaceutical imports are provided by
India (COVID-19: Impact on Global Pharmaceutical and Medical Product Supply
Chain Constraints U.S. Production, 2019). Also, generic drugs imported from these
two countries account for about 90% of medicine supplies in the US. However,

Table 1 A summary of
cumulative hospitalization
rate for each age group

Age Group Hospitalization rate per million

Overall 94.5
0–4 years 7.4
5–17 years 3.5
18–49 years 56.5
50–64 years 143.0
65+ years 286.9
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Table 2 National estimates of hospital bed occupancy in the COVID-19 in the US

Estimates for June 18 Number (95% CI) Percentage (95% CI)

Inpatient Beds Occupied (all Patients) 524,610 (500,844–548,376) 65% (64–66%)
Inpatient Beds Occupied (COVID-19) 40,112 (37,682–42,541) 5% (5–5%)
ICU Beds Occupied (all Patients) 77,029 (72,135–81,922) 63% (61–64%)

the COVID-19 outbreak in January shuts down almost all manufacturing facilities
and non-essential businesses in China. Even though manufacturing activities were
resumed in late February, the average capacity utilization at top 500 manufacturing
enterprises in China was only 58.98% (Fernandes, 2020; ISM Report on Business,
2019). As such, a disrupted supply chain causes serious shortages of medical
products in the US, which endangers the healthcare workers in the front line.

Indeed, healthcare workers are among the most vulnerable group of people who
face a higher probability to get infected during the epidemic outbreak. The higher
risk is due to their closer contact with patients, the shortage of PPEs, the delay of
testing program in the early stage, and the high infection rate in the hospital. As
the COVID-19 proliferates, healthcare workers suffer from occupational burnout
and fatigue. The key factors include occupational hazards, emergence responses,
process inefficiencies, and financial instability (Sasangohar et al., 2020; Shechter
et al., 2020; Greenberg et al., 2020). During the period of February 12–April 9,
2020, approximately 19% of COVID-19 patients are healthcare workers. Therefore,
this fact further exacerbates the shortage of staffing in the hospital. To avoid
secondary infection in the hospital, screening and masks are required for all people
upon entry into the hospital (Bartoszko et al., 2020). Patients with suspected or
confirmed COVID-19 are placed in a single-occupancy room with a closed door
and a separated bathroom. Also, all healthcare workers should wear PPE, isolation
gowns and non-sterile gloves upon entering these patients’ room.When transporting
patients out of the room, both patients and healthcare workers should wear
PPE. Moreover, hospitals conduct routine cleaning and disinfection procedures.
Enhanced environmental cleaning and disinfection are preferred for rooms used by
patients with suspected or confirmed COVID-19, and for areas used by healthcare
workers who care for such patients (Chirico et al., 2020).

2.2 Economic Challenges

The COVID-19 epidemic made the nation shut down non-essential businesses,
schools and instituted travel bans, which have greatly impacted the U.S. economy.
The shocks to supply chain bring significant disruptions to manufacturing. Small
and mediummanufacturing enterprises faced unprecedented challenges, while some
have to shut down entirely to mitigate the virus spread. With social distancing
measures in place, many workers can only work from home. The production



6 H. Yang et al.

Fig. 2 The variations of Purchasing Manager’s Index (PMI) from January to May 2020

lead time has doubled due to shortages of workers and materials (ISM Report on
Business, 2019). Also, a limited number of products can be distributed worldwide
by air or ocean because of trade wars, hiking tariffs, and importation restrictions.
All these impacts of COVID-19 make companies question the just-in-time strategy
and reconsider the design of supply chain. In March 2020, there was a 6.3% drop
in manufacturing production, which was the largest 1-month drop since 1946 (ISM
Report on Business, 2019; Bonaccorsi et al., 2020). The drop was even larger for
April 2020. Note that the Purchasing Manager’s Index (PMI) shows the impacts
of COVID-19 on the economy. PMI is a composite index, ranging from 0 to 100,
of economic activities including new orders, inventory levels, production, supplier
deliveries, and employment. If the PMI is above 50, the manufacturing sector is
generally expanding. If PMI is below 50, it is generally contracting. As shown
in Fig. 2, US economic growth is strong in January 2020 with PMI 50.9, but
decreases from January to April 2020 (ISM Report on Business, 2019; Bonaccorsi
et al., 2020). When the COVID-19 outbreak occurred in March 2020, the PMI fell
below 50, further dropped to 41.7 in April 2020, and then remained low through
May 2020. From March to May 2020, COVID-19 poses significant challenges
on the US economic activities due to unexpected outbreaks, lockdowns, and non-
pharmaceutical interventions. After June 2020, the US economical activities recover
with the rollout of stimulus plans, increasing manufacturing productions, and new
modes for businesses such as teleconferencing, e-commerce and online learning.

A worse impact on the manufacturing industry during the epidemic would
be caused by decreased spending because of job loss or reduced incomes. The
disruption in the manufacturing industry and the tremendous drop in demand led to
the layoff of workers. As of May 2020, the unemployment rate in the manufacturing
industry increased to 11.6%. Table 3 summarizes the number of employees in the
manufacturing sector as issued by the U.S. Bureau of Labor Statistics, for both
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the non-seasonally adjusted case and the seasonally adjusted case (Manufacturing:
NAICS 31-33, n.d.). As shown in Table 3, when it is not seasonally adjusted, the
number of employees in the manufacturing sector decreased by 1.32 million from
March 2020 to April 2020, with about 0.90 million in durable goods manufacturing
and 0.42 million in non-durable goods manufacturing. Meanwhile, there were about
1.13 million fewer jobs in May 2020, compared to May 2019. When it is seasonally
adjusted, the U.S. manufacturing lost about 1.29 million jobs from March 2020
to April 2020. About 69% (0.91 million) of the job loss was in the durable good
manufacturing, while the rest 31% (0.38 million) was in the non-durable good
manufacturing. Compared to May 2019, there were 1.12 million fewer jobs in May
2020 (Manufacturing: NAICS 31-33, n.d.).

Schools and universities across the country have also been disrupted. In March
2020, most schools started to switch from in-person instruction to online-only
instruction, which gave rise to the concerns about instruction quality (Crawford et
al., 2020). Meanwhile, it is not uncommon that many universities faced financial
challenges. As students moved out of on-campus housing, universities issued pro-
rated refunds to them, which was a substantial amount of unexpected expenses.
Also, universities needed to allocate additional funds for dorm cleaning and
technology essentials for online classes. Moreover, due to the cancellation of college
entrance exams worldwide and limitation on travel, the enrollment for the fall 2021
semester is likely to drop, which will also cause financial issues to universities.

These paramount challenges posed by epidemics call upon multiple scientific
disciplines to design and develop new enabling methods and technological inno-
vations for rapid response and management. For example, a complete picture of
the new virus is urgently needed from the community of medical scientists. The
manufacturing community should be agile to innovate the design and increase the
production of personal protective equipment (PPE). In this paper, we propose a
system informatics approach for data-driven epidemic response and operational
management, thereby mitigating the risks and controlling the virus spread. In the
following sections, “Measure” provides statistical methods for optimal sampling
and testing of the population for the presence of virus, as well as a review of data
management and data visualization methods. “Analyze” focuses on the handling
and analysis of heterogeneous and interconnected datasets (e.g., from CDC, Census
Bureau, Food and Drug Administration, state and federal health departments)
that are collected during the epidemic lifecycle. “Improve” exploits data-driven
knowledge to improve the resilience design of health systems, including healthcare
capacity, resources, workflows, and operations. Further, “Control” focuses on the
learning and optimization of health policies and action strategies for controlling the
spread of virus. The system informatics methods and tools will complement med-
ical, clinical and pharmaceutical research efforts, helping safeguard the population
from infectious diseases and make health systems more resilient to overwhelming
epidemic events.
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3 Measure the Epidemic Dynamics

The “measure” step is directly aimed at testing the population for the prevalence
of virus, which is critical to monitoring the temporal evolution of an epidemic in
a spatial region. Rapid advances of gene, microbiology and imaging technologies
have greatly improved the design and development of testing methods (e.g., speed
and accuracy) of coronavirus and influenza. As discussed in Sect. 2, an epidemic
poses paramount challenges on the health and economy of our society. The
prevalence of a virus in a large population often incurs large amounts of testing,
which leads to spatially-temporally big data. This provides an opportunity for
the “analyze” step to develop an in-depth understanding of dynamically evolving
statuses of an epidemic. Here, data could be collected in disparate efforts by private
companies, research centers, universities, and government agencies, thereby leading
to the formation of data cohorts to address issues of data management. Epidemic
data can then be visualized in various ways to provide comprehensible information
about the spatiotemporal variations of an epidemic. An effective visualization
further helps the “analyze” step to estimate and extract salient features for the
prediction of future trajectory or the monitoring of transmission risks.

3.1 Testing and Sampling

Clinical testing is a critical first step to stopping the spread, which consists of viral
testing (i.e., examine whether an individual is currently infected or not) (Esbin et al.,
2020) and antibody testing (i.e., check whether an individual was infected before
and currently has the presence of antibodies in the blood) (Lipsitch et al., 2020). In
the case of COVID-19, specimens are often collected through swabs in the nose or
throat for the viral testing. If specimens show the existence of a virus’s ribonucleic
acid (RNA) or proteins, the test will be positive. The antibody testing is typically
done by collecting a sample of blood serum and then examining the presence of
antibodies. In order to monitor the prevalence of virus, testing can be performed in
three different ways as follows:

• 100% testing: Population is the entire collection of individuals of interests in
a region of interest (e.g., university, city, county, or state). If the cost is not a
concern, 100% testing makes sure everyone is tested and then all the infected
individuals can be isolated and quarantined. This is an effective approach to stop
the spread, but often encounters practical limitations such as inadequate supply
of testing kits, prohibitive cost, and population instability due to mobility and
immigration.

• Acceptance sampling: Sample is a representative subset of the population that
can be tested for statistical inference. Acceptance sampling, also called Lot
Quality Assurance Sampling (LQAS) (Hedt et al., 2012), is a middle ground
between 0% and 100% testing and requires a small sample size for population
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Fig. 3 Data-driven risk scoring systems for categorized sampling and testing

surveys. The population can be stratified into sub-groups (or lots), and each lot
can be sampled for clinical testing so as to “accept” or “reject” the lot according
to the risk tolerance levels. Also, these samples can be aggregated to establish
the confidence interval of infected proportion for testing the hypothesis on the
prevalence of an epidemic virus.

• 0% testing: This means that no testing will be done for the individuals in a
specific region. In the onset of an epidemic, few tests are performed because the
new virus is just emerging and has not caught enough attention from the public.
Once the epidemic virus is captured (e.g., genome sequenced and shared), testing
kits can then be designed and developed.

Figure 3 shows that mobile or web-based applications can be used for data
collection from individuals in a spatial region of interests, if the testing capacity
is constrained and 100% testing cannot be implemented. Examples of the predictors
may include x1: symp. vs asymptomatic; x2: workplace setting; x3: age; x4:
medical/comorbidity conditions; x5: work/school mode; x6: residential/commute
setting; x7: protective measures; x8: travel history (to/from); x9: contact tracing with
infections; x10: public gathering; x11: test history; The response variable will be the
risk probability of infection (range from 0 to 1). The data-driven decision support
system helps stratify the individuals into groups (or lots) and then optimize the
testing decisions. The risk scoring system categorizes the population into different
groups with various levels of risk probability. For example, four groups can be
stratified based on the risk probability, which helps further optimize the allocation of
testing resources and identify the infected individuals for isolation and quarantine.

As shown in Fig. 3, risk scoring systems can be established in three different
ways, namely point-based systems, regression modeling, or AI-based modeling.
Such scoring systems help categorize the acuity levels of patients and then improve
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the quality of healthcare services (e.g., surgical procedures, medication usages, care
guidelines, treatment plans, and resource allocations) (Chen & Yang, 2014; Imani
et al., 2019). Point-based scoring systems use the simple points or weights, and can
be easily implemented in questionnaire form. The points or weights can be adjusted
for different predictors (or factors). For example, if the symptom is weighted more
than other predictors, it may be assigned with a larger point (or weight). In clinical
practice, point-based scoring systems are widely used to stratify the patients, e.g.,
Acute Physiology and Chronic Health Evaluation (APACHE) (Zimmerman et al.,
2006), Sequential Organ Failure Assessment (SOFA) (Raith et al., 2017), Simplified
Acute Physiology Score (SAPS) (Metnitz et al., 2005; Moreno et al., 2005), and
Mini-mental state examination (MMSE) (Galasko et al., 1990). Figure 3 shows
an example of risk factors for the design of point-based scoring systems, which
also helps reduce the number of variables to compile into a short survey. An
increasing score indicates a higher risk of infection. In addition, the infection risk

can be derived using a multivariate logistic regression model as: log
(

risk
1−risk

)
=

a + ∑
ibixi , where Risk is the risk of death,

(
risk

1−risk

)
is the odds ratio, a is the

intercept, bi is the coefficients and xi
′
s are independent predictors. Here, training

data or medical domain knowledge can be used to adjust the regression coefficients
for different predictors (or factors). Finally, it is not uncommon that AI modeling
(e.g., neural networks) are utilized to learn from complex-structured data for risk
stratification. AI models, however, need large amounts of data for training and
learning the weights, and are difficult to implement for testing and sampling in an
epidemic.

Statistical sampling is a cost-effective approach to survey the groups (or lots)
of individuals when the testing capacity and supply chain are constrained. First,
the confidence interval for the proportion of infections p can be estimated from
testing data. If there are c infected individuals for a random sample of size n, then
an approximate 100(1 − α)% confidence interval for p is

p̂ − zα/2

√
p̂

(
1 − p̂

)

n
< p < p̂ + zα/2

√
p̂

(
1 − p̂

)

n
(1)

where p̂ is c/n, and zα/2 is the z value with an upper tail area of α/2. This estimation
tends to be more reliable when the number of confirmed individuals c is greater than
6 in the sample, and is also applicable in the case of hypergeometric distribution
when the sample size n is small. Here, the choice of sample size is dependent on

the significant level α and the margin of error (MOE), i.e., zα/2

√
p̂

(
1 − p̂

)
/n.

If a specific MOE value e is desired, then the sample size n is approximately
z2α/2p̂

(
1 − p̂

)
/e2. Note that the function p̂

(
1 − p̂

)
reaches the maximum 1/4 when

p̂ = 1/2. Hence, the MOE is guaranteed not to exceed e if the sample size is chosen
to be z2α/2/4e

2. For example, it is 95% confident that the MOE will not exceed 0.02

when the sample size is 1.962/(4 × 0.022) = 2401.
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Acceptance sampling is useful to help the decision-making process on whether
or not to lockdown or reopen a region (or “lot”) for regular businesses. As shown in
Fig. 4a, the operating characteristic (OC) curve describes an acceptance sampling
plan in terms of the probability of reopening versus the proportion infected. For
example, the probability of reopening is 1 − α if the region meets the acceptance
risk level (ARL) pARL. The probability of reopening is β if the region is on the
rejection risk level (RRL) pRRL. Assuming a binomial distribution, the sample size
n and acceptable number a can be obtained as:

1 − α =
a∑

c=0

n!
c! (n − c)!p

c
ARL(1 − pARL)n−c (2)

β =
a∑

c=0

n!
c! (n − c)!p

c
RRL(1 − pRRL)n−c (3)

Then, for this acceptance sampling plan, if there are more than a infections in the
random sample of size n from the region, lockdown will be implemented. If there
are less than or equal to a infections, the risk is below the ARL level and the region
can be reopened. For example, Fig. 4b shows the acceptance sampling plans with
n = 2000 and a is ranging from 15 to 95. When the acceptance number a increases,
this does not significantly change the slope, but rather move the OC curves to the
right. If the acceptance number a is small, the risk tolerance levels tend to be low.
For larger values of a, both ARL and RRL levels are higher. If a region is above
the RRL, NPIs such as lockdown and stay-at-home should be implemented. On
the other hand, rectification testing programs can further screen individuals in the
rejected region. Often, 100% testing can be performed to identify all the infected
individuals, then isolate and quarantine them.

In the practice of clinical testing, acceptance sampling may have the following
limitations. First, if the sample size is finite, then the distribution tends to be hyper-
geometric instead of binomial. However, binomial approximation of hypergeometric
is valid if the ratio between sample size and lot size is less than 1/10. Second,
acceptance sampling assumes the selection of samples at random from each region.
Although clinical testing is prioritized for symptomatic cases or traced contacts of
infected individuals, it can however assume that the infection of an individual is at
random. Then, clinical testing can be assumed to be implemented on individuals
who are infected at random, albeit with the introduction of bias to some extent.
Third, individuals are assumed to be homogeneous in a region. In other words,
homogeneity refers to the fact that the probability to get infected is approximately
the same if in contact with pathogens. This is a reasonable assumption for a
susceptible population, although there may be slight differences in the infection
probabilities for uncontrollable factors such as age groups and blood types. These
limitations and assumptions should be considered during the practice of acceptance
sampling for clinical testing.
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Fig. 4 (a) An illustration of operating characteristic (OC) curve, (b) OC curves of acceptance
sampling plans with the sample size n = 2000 and the acceptance number a is ranging from 15 to
95

3.2 Spatiotemporal Surveillance of Epidemic Processes

Clinical testing brings significant amount of data pertinent to the evolution of an
epidemic. The epidemic data may include total cumulative cases (or per capita),
daily new cases, total deaths for multiple spatial regions (or lots) of interest
and are dynamically changing over time. Therefore, the epidemic evolution is a
spatiotemporal process, i.e., varying in both space and time. The availability of data
provides a great opportunity to design monitoring charts and develop epidemiology
surveillance programs. Statistical monitoring methods help health systems leverage
sequentially observed data to trigger the alarms and identify the outbreak region.
However, raw data are often not normalized and cannot be directly used to develop
monitoring charts. For example, spatial regions often have different population
sizes. Total cases should be adjusted for the population in a region. As such, features
need to be extracted from the data to describe the epidemic characteristics in a
region. Examples of features may include cases per million, the incidence rate, or
transmission risk index that are characterized with data-driven models.

If the monitoring objective is to detect abnormal changes of incidence rates x1,
x2, . . . , xk over k regions, then the feature vector will be x = [x1, x2, . . . , xk]T .
The statistical test is aimed at setting up the null and alternative hypotheses, then
seeking data-driven evidence to determine whether an anomaly is present in any
dimension (i.e., a region) of the feature vector or not. Under the null hypothesis H0,
the incidence rates over k regions do not change over time. As such, the feature
vector x is assumed to follow a multivariate normal distribution with population
mean μ and covariance matrix Σ , i.e.,

f (x) = 1

(2π)p/2|�|1/2 exp
[
−1

2
(x − μ)′�−1 (x − μ)

]
(4)
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Monitor each region separately
Regions are independent

(a) (b)

Joint monitoring of multiple regions
Regions are dependent

Fig. 5 Multivariate monitoring schemes for epidemic surveillance: (a) Monitor each region
separately and regions are independent, (b) Joint monitoring of multiple regions and regions are
dependent

If an outbreak occurs in one region or multiple adjacent regions, then the assumption
of multivariate normal distribution is no longer valid. The alternative hypothesis H1
that the joint distribution of multivariate features is non-normal will tend to hold.
The hypothesis test accepts or rejects the null hypothesisH0 at a significance level α.
Although the assumption of multivariate normality is required to formally establish
confidence limits in the statistical test, a slight deviation will not severely impact the
results (Chen & Yang, 2016a). Here, multivariate normal probability plotting can be
used to evaluate whether the extracted features of incidence rates are approximately
normally distributed for multiple regions of interests.

As shown in Fig. 5a, most of traditional monitoring schemes assume that k
regions are independent. Therefore, a common approach is to monitor each feature
independently in the literature. In the bivariate case, control limits will form a
rectangular region. If the pair of observations fall within this rectangular region, then
the null hypothesis H0 holds. If the pair of observations reside outside this region,
then the null hypothesisH0 is rejected. However, this monitoring scheme has limited
applications due to the “curse of dimensionality”. For example, if the probability
of Type I error is α for each feature, then Type I error for monitoring k features
independently is 1 − (1 − α)k. The probability that all k observations fall within
the confidence limits is (1 − α)k if all the k regions are in control (Yang & Chen,
2014; Chen & Yang, 2015). Hence, the error is significant when the dimensionality
of the feature vector increases. It may also be noted that k features are oftentimes
not independent because adjacent regions tend to be correlated with each other in
an epidemic situation.

Therefore, multivariate statistical methods that consider spatial correlations and
jointly monitor these regions (or features) are urgently needed. As shown in Fig.
5b, due to the correlation among adjacent regions, the pair of observations now
resides in the elliptical region for the bivariate case. Under the null hypothesis
H0, k regions will follow the multivariate normal distribution with the population
covariance matrix Σ . As such, the test statistic χ2 = (x − μ)

′
�−1(x − μ) follows
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a chi-square distribution with k degrees of freedom. The joint distribution changes
in the presence of regional anomalies. If there are shifts in at least one out of k
regions, then χ2 values will be above the upper control limit UCL = χ2

α,p, where α

is the significance level. If χ2 values are below the upper control limit, then the null
hypothesis H0 holds and there will be no significant evidence of anomalies. The
control ellipse of bivariate case in Fig. 5b is due to region-to-region correlations.
Because off-diagonal elements are no longer zero in covariance matrix Σ , the
principal axes of the ellipse are not parallel to the x1, x2 axes any more.

In the real world, population meanμ and covariance matrixΣ are often unknown
and need to be estimated from the data. If the sample mean x and covariance matrix
S are used instead, then the test statistic becomes T 2 = (x − x)′S−1 (x − x), which
is commonly called as the Hotelling T2 statistic (Mason et al., 1997; Li et al., 2008).
The new UCL for the Hotelling T2 statistic is:

UCL = p (N + 1) (N − 1)

N2 − Nk
Fα,k,N−k (5)

where x1,x2,· · · ,xN are N sequentially observed samples of epidemic data from
k regions, Fα, k, N − k is the upper 100α% critical point of F distribution with k
and N − k degrees of freedom. Note that control limits are established in Phase
I with in-control datasets (i.e., without the presence of anomalies). For Phase II
monitoring, the control chart plots control limits and the test statistic T2(i), i = 1,
2, · · ·N for each sample. When a new sample arrives, we will then compute the test
statistic and check the conformance in the control chart. Note that it is not feasible
to graphically construct the control ellipse for more than two regions as shown in
Fig. 5b. The composite index (i.e., Hotelling T2 statistic) helps characterize the
multivariate distribution of k features (or regions), and further establish the control
chart to effectively detect whether there are shifts in at least one out of k regions
(i.e., multivariate epidemic monitoring and surveillance).

3.3 Data Management and Visualization

As the epidemic progresses, large amounts of data are organized in the form of
data cohorts or lakes. Medical scientists collect pertinent data about the clinical
picture of a new virus for the development of effective intervention methods, such
as antivirals and vaccines. Epidemiologists and engineers leverage the public health
data to develop analytical models for the prediction of virus spread dynamics.
Real-time data of epidemic situations is critical to understand the spread, trace
the contacts, and control the propagation. Data management is indispensable to
integrate disparate data efforts from government agencies, universities, and private
companies. Here, data cohort connects various organizations to manage the data
using the defining characteristics, which help researchers save tremendous amount
of time in finding, analyzing, evaluating and validating relevant data for useful
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information and insights to stop the epidemic. Nonetheless, data lake is a repository
of unorganized data in the raw format. Data cohort may include necessary data from
on-going and completed research, as well as contact tracing data. This type of data
could contain the patient location, sociodemographic information, and the list of
contacts during the elicitation window and where the patient has visited. When
the number of infections become prevalent, data management gets increasingly
complex. This is partly due to the large number of cases, as well as the long list
of traced contacts of each positive case. Data management depends on the use of
database systems to support such many-to-many relational tables and provide a
higher level of flexibility of routine data storage, update, security, reporting, and
On-Line Analytical Processing (OLAP).

Note that the epidemic data is varying in both space and time. Table 4 provides
examples of data repositories and cohorts developed by government agencies,
institutions, and private companies. These data cohorts are open access to the public
or limited access by applications. The UN data lab, US CDC and European Centers
for Diseases Control (ECDC) organize and publish the real-time position data of
virus spread in either country level or county level. Such information can be used to
study and track the spread of the disease. US National Science Foundation (NSF)
supported a research project to develop the COVID Information Commons, which
is an open website to promote data and knowledge sharing across different COVID
research efforts. National Institute of Health (NIH) initiated an National COVID
Cohort Collaborative (N3C) project for collaboration on data collection, sharing,
and analytics, which also provides the open access to research literature about
COVID-19 genomics, virus structures, and clinical studies.

Also, academic institutions such as John Hopkins University (JHU) and the
University of Washington provides the organized COVID-19 data and popular
dashboards for data visualization. This, in turn, greatly facilitates the general
public in visualizing the spread and trend of epidemic, thereby promoting sit-
uational awareness. In addition, there are data cohorts from private companies
and foundations that provide targeted information about the disease. For example,
the COVID-19 tracking project assembles the testing data, hospitalization rates,
treatment outcomes, race and ethnicity data for researchers to investigate the
outbreak scale, the mortality rate, and regional effects of the disease. COVID-19
Open Research Dataset (CORD19) provides an application programming interface
(API) to retrieve the infection data, research feed, and COVID related texts. This
API can help researchers query data in a fast manner. Surgo Foundation provides
the community vulnerability index, social distance tracking, and nurse sentiment
data to help develop analytical methods and tools for epidemic response.

Large amounts of data are readily available from different sources. The next
step is to visualize and represent the data so that useful information and salient
features can be easily comprehensible by the audience. Data visualization focuses
on compact representations of trends and patterns in the data with graphical methods
and tools such as time series charts, density graphs, and heat maps. The human
brain can perceive information in graphics and images better than pale texts or data
tables. An effective visualization helps condense a thousand words in one picture.
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Table 4 Examples of COVID-19 data repository/cohort and features

Data cohorts and repositories Descriptions and features

Center for Disease Control and Prevention
(CDC)
https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/

US infection data with cases, race,
ethnicity, testing, hospital capacity and
other data streams at local, state, and
national levels

World Health Organization
https://www.who.int/

Global case updates with total confirmed
cases and deaths, new cases and deaths,
and transmission classifications

European CDC
https://www.ecdc.europa.eu/en/covid-19-
Epidemic

COVID-19 situation updates, case counts
and distributions for the EU/EEA, UK,
and worldwide.

National Institutes of Health
https://datascience.nih.gov/covid-19-open-
access-resources

COVID-19 data and resources such as
official data, related studies, and
high-performance computing consortium

National COVID Cohort Collaborative (N3C)
https://cd2h.org/

A very large patient-level COVID-19
clinical dataset shared by CTSA, CD2H
and other distributed clinical data
networks

Clinicaltrials.gov
https://clinicaltrials.gov/ct2/results?cond=
COVID-19

Detailed information about active and
recruiting clinical trials such as
intervention and phase

Johns Hopkins University
https://github.com/CSSEGISandData/COVID-
19

Global and US daily situation update at
country and state level, along with
time-series summary

NSF COVID Information Commons
https://covid-info-commons.site.drupaldisttest.
cc.columbia.edu/

Open website to facilitate knowledge
sharing and collaboration focused on NSF
funded COVID rapid response research
projects

New York Times
https://github.com/nytimes/covid-19-data

US state level and county level situation
updates, with historical and live data

Twitter Dataset
https://github.com/thepanacealab/COVID-
19_twitter

Tweets and retweets data acquired from
Twitter stream related to COVID-19
chatter with all languages

The COVID Tracking Project
https://covidtracking.com/data

US infection data with cases, tests,
hospitalized, severity (in ICU, on
ventilator, etc.), and outcomes

CORD-19
https://www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge

A dataset of over 167,000 scholarly
articles about COVID-19, SARS-CoV-2
and related coronavirus

Ding Xiang Yuan
https://ncov.dxy.cn/

Global case updates with active,
confirmed, recovered. China regional case
updates with city level native/imported
counts

OPENICPSR
https://www.openicpsr.org/openicpsr/search/
COVID-19/studies

Data cohort which contains links to US
state policy database, government
response dataset, and COVID-19 impact
survey

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.ecdc.europa.eu/en/covid-19-Epidemic/
https://datascience.nih.gov/covid-19-open-access-resources
https://datascience.nih.gov/covid-19-open-access-resources
https://cd2h.org/
https://clinicaltrials.gov/ct2/results?cond=COVID-19
https://clinicaltrials.gov/ct2/results?cond=COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://covid-info-commons.site.drupaldisttest.cc.columbia.edu/
https://covid-info-commons.site.drupaldisttest.cc.columbia.edu/
https://github.com/nytimes/covid-19-data
https://github.com/thepanacealab/covid19_twitter
https://covidtracking.com/data
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://ncov.dxy.cn/
https://www.openicpsr.org/openicpsr/search/covid19/studies
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There are a variety of visualization tools to represent the data in different ways, but
it is important to choose the right tool to balance visual appearances and hidden
information. The artisan spirit and craftsmanship help design better visualizations
for the target users.

Table 5 provides examples of visualization dashboards available online for
COVID-19, including the URL links and features. Most dashboards are developed
with geographical maps and applications such as ArcGIS, as well as the COVID-
19 data in the United States and worldwide. Figure 6 shows an illustration of the
infection map in the county level of US from April 29 to September 23, 2020.
The number of counties is close to 3141. Instead of pale numbers in the table,
such a visualization quickly provides a sense of the current status and the virus
spread across US counties. Spatial regions are often labeled with a color map or
with markers whose sizes are proportional to the number of infected cases. This
informs people quickly about the regions of interests and the current spread of virus
in the world. The temporal variations are shown as trends about how the number
of cases rises with respect to time. The dashboard can also include data-derived
features such as incidence rate, case-fatality ratio, testing rate, and hospitalization
rate. Examples of popular dashboards include the CDC, JHU, Google, Bing, and
1point3arc dashboards. Notably, ArcGIS Storymaps provide a visualization tool to
depict how the disease is spread from a regional epidemic to pandemic in a time-
lapsed manner. Pharmaintelligence visualizes the progress of drug discovery and
clinical trials worldwide, which highlight endeavors that medical scientists made to
control the epidemic.

4 Analyze the Data for Epidemic Insights

The “analyze” step focuses on the extraction of useful information from epidemic
data collected in the “measure” step. There are a variety of factors (e.g., demograph-
ics, socioeconomic factors, education factors, economy factors, population health
factors, and mobility index) that may be interrelated with epidemic characteristics
(e.g., the growth of confirmed cases). Therefore, it is critical to delineate and
determine salient factors that are sensitive to the response variable. Note that the
evolution of an epidemic is highly nonlinear and nonstationary. Traditional linear
methods tend to be limited in their ability to handle the nonlinearity. High level of
spatial heterogeneity also leads to skewed datasets and non-normal distributions of
factors. As such, data transformation is necessary to pre-process and transform the
data into normal shape. It is also imperative to utilize statistical models to investigate
the interrelationships between various factors and epidemic characteristics. Also,
rich data from the “measure” step can be fed into the development of simulation
models. This, in turn, will help the “improve” step (see Sect. 5) to forecast the real-
time positions of virus spread and further run “what-if” analysis for the optimization
of intervention strategies and healthcare policies. New experiments can then be
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Table 5 Examples of COVID-19 visualization dashboards and features

Data visualization dashboard Descriptions and features

Center for Disease Control and Prevention
https://www.cdc.gov/covid-data-tracker

US infection maps with testing outcomes,
forecasting, demographic trends of sex,
race/ethnicity and age, and social impacts

World Health Organization
https://COVID-19.who.int/

Country-level visualization of global trend
of new cases, confirmed cases, and deaths

European CDC
https://www.ecdc.europa.eu/en/covid-19-
Epidemic

Interactive dashboard to show situation
updates and case distributions for the
EU/EEA, UK, worldwide

Johns Hopkins University
https://coronavirus.jhu.edu/us-map

Interactive visualization of confirmed cases,
deaths, and a status health report in the US
and across the globe

Institute for Health Metrics and Evaluation
https://COVID-19.healthdata.org/

Graphical visualization of deaths, infections
and testing, and hospital resource utilization,
predictions, and social distancing by country

Google
https://news.google.com/COVID-19/map

A very high-level report of confirmed cases,
recovered, deaths, and new cases (last
60 days) by country and worldwide

Facebook
https://covid-survey.dataforgood.fb.com/

Interactive visualization of infection
proportion, population density, and elderly
population by country

Bing
https://www.bing.com/covid

Visualization of confirmed cases, recovered,
deaths, and relevant news by counties in the
US

Worldometer
https://www.worldometers.info/coronavirus/

Reported cases, deaths, and rankings by
country or continent

ArcGIS COVID-19 hub
https://coronavirus-disasterresponse.hub.
arcgis.com/

Esri storymaps and visualization tools to
create time-lapse animation of the spread
and help guide decisions around health,
racial, and economic equity

1 point 3 arc
https://coronavirus.1point3acres.com/en

Interactive dashboard with a summary of the
infected cases, deaths, recovered, and fatality
rate

Pharmaintelligence
https://pharmaintelligence.informa.com/
resources/key-topics/coronavirus

Drug discovery and clinical trial
visualization across the globe

The weather company
https://accelerator.weather.com/bi/

High-level visualization of confirmed cases
by day, by region (the last 14 days), deaths,
rate of spread, rate of deaths, spread over
time

Coronavirus3d
https://coronavirus3d.org/

SARS-Cov-2 protein structure visualization

NextStrain
https://nextstrain.org/ncov

Genomic epidemiology of novel coronavirus
by region (Asia, Europe, North America,
South America, etc), or by host, age, sex

https://www.cdc.gov/covid-data-tracker
https://covid19.who.int/
https://www.ecdc.europa.eu/en/covid-19-pandemic
https://coronavirus.jhu.edu/us-map
https://covid19.healthdata.org/
https://news.google.com/covid19/map
https://covid-survey.dataforgood.fb.com/
https://www.bing.com/covid
https://www.worldometers.info/coronavirus/
https://coronavirus-disasterresponse.hub.arcgis.com/
https://coronavirus-disasterresponse.hub.arcgis.com/
https://coronavirus.1point3acres.com/en
https://pharmaintelligence.informa.com/resources/key-topics/coronavirus
https://pharmaintelligence.informa.com/resources/key-topics/coronavirus
https://accelerator.weather.com/bi/
https://coronavirus3d.org/
https://nextstrain.org/ncov
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Fig. 6 The infection map of cumulative cases for 3141 counties in the United States

designed to test the effectiveness of these action strategies on either physical systems
or computer simulation models.

4.1 Descriptive Analytics

This section of “descriptive analytics” aims to visualize the COVID-19 data
and pertinent factors in an easily comprehensible form, and further investigate
key predictors that are interrelated with the progress of infection situations in
the US. In this study, the dependent variable (or responses) is set to be either
cumulative y1 or weekly new cases y2 of COVID-19 infections at the county level,1

which are retrieved from New York Times data repository (i.e., https://github.com/
nytimes/covid-19-data as shown in Table 4). To avoid confounding effects by
population sizes, we have also considered response variables that are averaged by
the population, i.e., cumulative y3 or weekly new cases y4 per capita in each county.
The data repository provides real-time updates coronavirus cases in the US since
January 2020, and provides cumulative daily counts of cases at state and county
levels, respectively. We leveraged and processed the data at county level from Mar.
29, 2020 (Week 1) to Aug. 22, 2020 (Week 21) for the cumulative and incremental
new cases of coronavirus at each week. In total, this study includes pertinent data
about 2781 counties from 50 US states with a time span of 21 weeks (Mar. 29–Aug.
22, 2020) for the descriptive analytics.

For the independent variables, we have extracted a total of 72 predictors2 at
the county level from Google COVID-19 community mobility reports, US Census

1Note that the distributions of response variables are highly skewed, and are therefore transformed
to the log scale for descriptive analytics, i.e., y

′ = log (y + 1).
2If predictors are approximately normally distributed, no transform is made. For positively skewed
data, log(x + 1) is used, while for negatively skewed data, log(max(x + 1) − x) is applied.

https://github.com/nytimes/covid-19-dataa
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Fig. 7 The geographical distribution of (a) total population, (b) household with grandparents
living with grandchildren, (c) percentage of people age >60, (d) average family size, (e) mean
of mobility change in residential setting (Apr. 5) (f) skewness of mobility change in residential
setting (Apr. 5)

database, and County Health Rankings reports. Figure 7 depicts the geographical
distribution of some example predictors (e.g., total population, household with
grandparents living with grandchildren, people aged >60) in 3141 US counties.
These predictors are categorized into four groups, namely social-economy, health,
demography, and mobility, as follows.

• Social-economic predictors:We have extracted pertinent data about 3 education
variables, 4 economic variables, and 9 occupational variables from the US census
database in 2018 at the county level. (1)Education: The percentage of population
aged 25 and over who don’t have a degree (x1), have a bachelor’s degree or higher
(x2), and have a graduate or professional degree (x3), respectively. (2) Economy:
The unemployment rate among population aged 16 years and over (x4), median
household income (x5), median family income (x6) and median earnings (x7).
(3) Occupation: Among the employed population aged 16 years and over,
we consider the percentage of population who work in management, business,
science, and arts (x8); service (x9); sales and office occupations (x10); natural
resources, construction, and maintenance (x11); production, transportation, and
material moving (x12); manufacturing (x13); wholesale trade (x14); retail trade
(x15); educational services, and health care and social assistance (x16).

• Health predictors: Moreover, we extracted the data about 10 health features
from County Health Rankings reports as follows: percentage of population
with disability (x17), percentage of adults that report fair or poor health (x18),
average number of reported physically unhealthy days (x19), percentage of adults
that reported currently smoking (x20), food environment index (x21), percentage
of adults that report no leisure-time physical activity (x22), percentage of the
population with access to places for physical activity (x23), percentage of adults
that report excessive drinking (x24), percentage of people under age 65 without
insurance (x25), and primary care physician (PCP) rate (x26).
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• Demography predictors:

Population: total population (x27)
Age and sex: median age (x28), percentage of population aged >60 (x29), and
sex ratio (males per 100 females) (x30).

Household and family: average household size (x31), average family size (x32),
number of households with grandparents living with grandchildren (x33), and
percentage of single-parent households (x34).

Marital status: percentage of population married (x35), divorced (x36), wid-
owed (x37).

• Mobility predictors: (1) Commute mode: The US Census provides the percent-
age of population aged 16 and over who drive alone (x38), or carpool (x39) by
car, truck, van, or use public transportation (excluding taxicab) (x40), as well as
the percentage of workers who commute in their car alone commute more than
30 min (x41), work at home (x42). (2) Community mobility: Google provides the
community mobility change from the baseline (in percentage) in 6 different types
of places, namely retail and recreation, groceries and pharmacies, parks, transit
stations, workplaces, and residential. The mobility data provide insights about
how COVID-19 and related policies impact the population’s mobility patterns in
public places. The data were organized on a daily basis. For each week fromMar.
29 to Aug. 22, we calculated the average, median, variance, skewness, kurtosis
of mobility variations in each type of place at the county level, thereby extracting
a total of 30 mobility features (i.e., x43~x72: 5 features × 6 places).

4.1.1 Correlation Analysis

Figure 8a shows the Pearson correlations between 72 predictors (i.e., x1~x72,
see details above) and cumulative confirmed cases y1. In general, there are high
correlations between COVID-19 situations and social-economic, demography and
mobility predictors. The highest correlation (83.89%) is with the total population
x27 in each county, also see the scatter plot in Fig. 9a. This shows the prevalence
of COVID-19. The more population a county has, the more infections it will have.
As of August 22, 2020, COVID-19 had spread over the whole US territory and few
counties could be an exception.

The second highest (81.77%) is with the number of households with grandparents
and grandchildren x33; also see the scatter plot in Fig. 9b. Elderly people and chil-
dren are both high-risk groups. When the number of households with grandparents
living with grandchildren is high, these two groups of people are more vulnerable
and more likely to transmit the virus to each other.

For some social-economic factors, the Pearson correlations are approximately
in the range of 29–46%, also see Fig. 8. This is not as highly correlated as two
demographic variables, but are sensitive to COVID-19 situations to some degree.
Also, it may be noted that the Pearson correlations are approximately in the range of
42–63% for somemobility predictors. This is not surprising because the virus spread



Epidemic Informatics and Control: A Review from System Informatics. . . 23

(a) (b)
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demography

Social-economy

demography
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Fig. 8 The correlation between 72 predictors (i.e., x1~x72) and cumulative confirmed cases y1
(a) and weekly new cases y2 of COVID-19, before period. The error bar represents the mean and
standard deviation over 21 weeks

(a) (b)

Fig. 9 Scatter plots of cumulative COVID-19 cases vs. total population (a) and the number of
households with grandparents living with grandchildren (b). The circle size is proportional to the
total population in each county

causes many businesses to shut down and people to stay at home. The variations of
mobility patterns in community places are sensitive to the COVID-19 situations.

Further, we computed and compared with the Pearson correlations between 72
predictors (i.e., x1~x72, see details above) and weekly new cases y2 for 2781 counties
from 50 US states, as shown in Fig. 8b. The results are similar to the cumulative
confirmed cases in Fig. 8a, but with slight decreases in the magnitude of 3–10%.
In other words, there are slightly higher correlations between 72 predictors and
cumulative cases than weekly new cases.

The prevalence of coronavirus in the US leads to the highest correlation (i.e.,
83.89%) with total population. This is conducive to building a regression model to
forecast the growth of COVID-19 cases in each county. However, total population
poses a confounding effect that dilutes the factorial effects from other predictors.
Therefore, we have further examined each predictor’s correlation with cumulative
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(a) (b)demography demography mobility
mobility

Fig. 10 The correlation between 72 predictors (i.e., x1~x72) and cumulative confirmed cases per
capita y3 (a) and weekly new cases per capita y4 of COVID-19 (b). The error bar represents the
mean and standard deviation over 21 weeks

and weekly new cases per capita as response variables (i.e., y3 and y4, respectively),
as shown in Fig. 10.

Figure 10 shows that social-economic factors are no longer as significant as in
Fig. 8, and yield the average Pearson correlations below 20% after the per capita
adjustment. Nonetheless, demographic and mobility predictors are still significant
among all, although their Pearson correlations are approximately in the range of 30–
40%. As shown in Fig. 10a, the predictors with high correlations with cumulative
confirmed cases per capita y3 include: x29 the percentage of the population aged >60
x29 (−33.27%), the average family size x32 (30.32%), the mean of mobility change
in residential x69 (40.4%), and the skewness of mobility change in residential x68
(39.67%). The scatter plots in Fig. 11 also show that there are correlations between
these four predictors and the response variable (i.e., cumulative confirmed cases
per capita y3). However, neither positive nor negative correlations are as strong as
the level of 83.89% in Fig. 9. Similarly, Fig. 10b shows the Pearson correlations
between 72 predictors and weekly new cases per capita y4 for 2781 counties from 50
US states. The results are similar to the cumulative cases per capita in Fig. 10a, but
with slight decreases. In other words, weekly new cases per capita y4 are essentially
the week-by-week differences of y3. Thus, there are slight decoupling of correlation
effects.

4.1.2 Regression Modeling

Section 4.1.1 focuses on the relevancy between predictors and response variables.
However, there is also redundancy (or multicollinearity) among the predictors that
causes the regression model to be unstable and sensitive to external noises. A total
of 72 predictors tend to bring the “curse of dimensionality” problem, and cause
overfitting to the model. Therefore, we utilize the lasso regression model to shrink
the number of predictors and further select a sparse set of significant variables. For
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(a) (b)

(c) (d)

Fig. 11 Scatter plots of cumulative cases per capita vs. the percentage of the population aged >60
(a) the average family size in (b), the mean of mobility change in residential (%) (c), and the
skewness of mobility change in residential (%) (d). The circle size is proportional to the total
population in each county

a given value of λ, a nonnegative parameter, lasso regression penalizes the sum of
L1 norm of regression parameters as:

min
β0,β

⎛
⎝ 1

2N

N∑
i=1

(
yi − β0 − Xi

T β
)2 + λ

p∑
j=1

∣∣βj

∣∣
⎞
⎠ (6)

where N is the number of observations, yi is the response at observation i, Xi

is a vector of predictor values at observation i, and p is the dimensionality of
predictors. Lasso-penalized regression addresses the multicollinearity issue via
regularized learning. A parsimonious set of predictors also helps increase the model
interpretability, as opposed to a lower level of interpretability with the use of
traditional dimensionality reduction methods (e.g., principal component analysis).

Figure 12a shows the variations of prediction errors with respect to the reg-
ularization parameter λ. The lasso experiment is performed with ten-fold cross
validation for the response variable of cumulative cases per capita and 72 predictors.
When λ decreases, the number of selected predictors increases. Note that the predic-
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(b)(a)

Fig. 12 (a) The variations of prediction errors vs. regularization parameter in Lasso regression
with cumulative cases per capita and 72 predictors; (b) The coefficient path for the Lasso regression

tion error decreases to a local minimum and then increases. The optimal penalization
parameter λopt is identified at the location with minimal cross-validation error plus
one standard deviation, which is as shown in Fig. 12a as the green dashed line and
the green circle. For cumulative cases per capita, λopt suggests the inclusion of 19
predictors which yield the lowest cross-validation error. It is evident that variable
selection via Lasso penalization yields not only a sparser model, but also a smaller
cross-validation error.

Figure 12b shows the coefficient paths of 72 predictors when the value of λ

decreases. It may be noted that more and more predictors are included when λ

decreases. The green dashed line locates an optimal regularization parameter for
the selection of 19 predictors that is identified using the ten-fold cross validation.
We have repeated the experiments for each of four response variables (y1~y4). The
results are consistent with slight deviations because of the variations of correlations
as in Figs. 8 and 10.

Furthermore, we use the selected set of 19 predictors to build the fixed-effect
regression models and investigate the relationship between predictors and the
temporal variations of four response variables (y1~y4 � t) over 21 weeks. The fixed-
effect regression model is formulated as follows:

yi | t = β0 +
n∑

j=1

βjxij +
m∑

k=1

λkIik + ε, t = 1, 2, · · · , 21 (7)

where yi is the number of cumulative (or weekly new) confirmed cases in county i,
xij is county i’s predictor j, n is the total number of predictors, and β0 and β j are
parameter estimates. Also, λk is the fixed effect for state k, m is the number of states
considered in the analysis, Iik is an indicator function for county i and Iik=1, if i∈k
(county i belongs to state k); otherwise, Iik=0. We fitted the regression model on a
weekly basis.
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Fig. 13 The variations of adjusted R2 for the fixed-effect models with response variables of (a)
cumulative and weekly new cases, and (b) cumulative and weekly new cases per capita over the
period of 21 weeks

Figure 13a shows the variations of adjusted R2 for the fixed-effect models with
response variables of cumulative and weekly new cases, respectively, over 21 weeks.
Note that the presence of highly sensitive predictors (e.g., total population, 83.89%
correlation) achieves the adjusted R2 in the range from 88% to 94% for cumulative
cases. However, for weekly new cases, there is a high level of fluctuation in the
adjusted R2 (i.e., approximately 55–82%) over 21 weeks. This is mainly due to
policy adjustments from local and federal governments (e.g., reopen the economy),
causing high variations of weekly new cases. Also, these policies are not consistent
and sometimes heterogeneous in different US counties. Nonetheless, the high
adjusted R2 values show the predictability of fixed-effect models. Figure 13b shows
the variations of adjusted R2 for the fixed-effect models with response variables
of cumulative and weekly new cases per capita, respectively, over 21 weeks. The
results are consistent with correlation analysis in Sect. 4.1.1. Because of the decrease
in variable correlation, the adjusted R2 values are approximately in the range from
71% to 79% for cumulative cases per capita. Similarly, for weekly new cases per
capita, the adjusted R2 are still fluctuating due to policy adjustments.

Figure 14 shows an example of residual plots that provide diagnosis results of
the fixed-effect regression model with the response variable of cumulative cases
per capita. Note that no systematic patterns are discerned in the residual plots. The
histogram plot in Fig. 14a shows that the normality assumption is valid. Figure 14b
shows parallel bands centered around zero in the series of residuals.

4.2 Spatiotemporal Analytics

The outbreak of an epidemic is often spatially distributed and evolves over time,
thereby generating spatially and temporally big data. For example, epidemic
situation reports, in days, months and even years with multiple waves of infections,
brings about large amounts of data. Infection dynamics can be visualized through
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(a) (b)

Fig. 14 The residual diagnosis of regression model with the response variable of cumulative cases
per capita

data dashboards or time-lapsed visualization in geographically distributed regions,
e.g., see Sect. 3.3. However, spatiotemporal data poses significant challenges for
human experts to delineate key factor-to-factor interactions and predict the evolution
of an epidemic. Fully utilizing the spatiotemporal data depends to a great extent
on the development and implementation of information-processing methodologies.
Only with effective analytical methods and tools, we can then enable and assist (i)
the identification of key factors that are highly correlated with the epidemic growth,
(ii) the development of spatiotemporal models for epidemic prediction and risk
assessment, and (iii) the provision of decision-support tools for resource planning
and intervention strategies towards smarter healthcare services.

Figure 15 illustrates spatiotemporal dynamics of epidemic data generated over
geographical regions in the contiguous US. Each cross-section is a snapshot
of the epidemic situation at a particular time point. As the infection dynamics
evolve across both space and time, epidemiological surveillance systems produce
spatiotemporal data:

{
Y (s, t) : s ∈ S ⊂ R

d , t ∈ T
}
, where Y is dependent on both

spatial domain S and time T symbolizes the spatiotemporal variations. Space and
time dimensions are relevant but different in an epidemic. It may be noted that
the time dimension includes the past, present, and future, which is not directly
comparable to the space. Instead, the space dimension is indexed by spatial
coordinates. Note that each spatial region can also be embodied with characteristic
covariates, predictors or features, xs, such as demographics, socioeconomic factors,
or mobility features. If two regions are close to each other, they tend to have a
higher correlation. In general, the spatial “closeness” can be due to spatial distance,
characteristic features, or high-level traffics (e.g., air transportation) between two
regions. There is a need to investigate not only spatial correlation and temporal
correlation, but also space-time interaction. Such spatiotemporal interactions bring
substantial complexity in the scope of epidemic modeling and analytics.

In the past few decades, the proliferation of space-time data has fueled increased
interests in spatiotemporal analytics. Examples of application areas include brain
imaging (Bowman, 2007; Mark et al., 2004), public health (Waller et al., 1997;
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Fig. 15 An illustration of space-time dynamics in the evolution of an epidemic

Kelsall & Wakefield, 2002), service equity (Serban, 2011) and socio-economics
(Mateu et al., 2004). The specific questions include the analysis of time-varying
brain image and fMRI data, geographical diffusion of epidemic infectious diseases,
and spatial equity of public services. Also, there are previous works that employ
random fields in R

d + 1 to model space and time dependencies (Descombes et al.,
1998). After a review of the literature on spatiotemporal modeling, we summarize
four classical models for the analysis of space-time indexed data below. These
models are not meant to be comprehensive or exclusive, but rather serve as initial
ideas for spatiotemporal modeling of an epidemic.

• Spatially-varying time series model: Y(s, t) = Ys(t), which separates the
temporal analysis for each location. This model Ys(t) shows specific interests
in time-dependent patterns for each spatial location, and allows for location-to-
location analysis between time series. For example, the time series of infection
cases can be represented and characterized at each zip code, county, or state to
investigate the variations of health policy and pertinent impacts on each location.
In the literature, Yang et al. extracted patterns from ECG time series at each
sensor location on the body surface and exploited the useful information for the
identification of cardiovascular diseases (Liu & Yang, 2013; Yang et al., 2012,
2013).

• Temporally-varying spatial model: Y(s, t) = Yt(s), which separates spatial
analysis for each time point. The model Yt(s) focuses more on space-dependent
patterns at a particular time point. For example, spatial patterns of virus spread
can be modeled at a specific time point; then how spatial patterns change over
time. Yao et al. studied body-surface ECG images during the period of ventricular
contraction for the detection of myocardial infarction sites (Yao et al., 2017;
Yao & Yang, 2016). However, both Ys(t) and Yt(s) are conditional methods that
investigate either the space given time or time given space, which tend to be
limited in their ability to capture space-time correlations.

• Space-time separation model: This model separates the spatial and temporal
components in the multiplicative form as Y(s, t) = M(xs)g(t), where xs are the
characteristic covariates for each spatial region, Y(s, t) can be the number of
cumulative confirmed cases for a spatial region s at time t. Here, M(xs) can take
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the form of a nonlinear regression model form with adjusted fixed effects for
each spatial region. The temporal growth g(t) can be modeled with sigmoidal
functions such as logistic or Gompertz functions. For example, Jia et al. presents
a space-time separation model for the COVID-19 growth from Jan 24 to Feb 19,
2020 in China (Jia et al., 2020). However, this separation model only accounts
for multiplicative effects between spatial and temporal components, and can only
model the exponential growth with saturation after a period of time.

• Parameter-driven spatiotemporal model: To increase the flexibility to model
spatiotemporal dynamics, at a particular time point t, a spatial model can be
developed for the cross-section data to represent how epidemic patterns are
correlated with characteristic covariates xs, i.e., Y(s, t) = M(xs;β t) + ε, where
ε is the random noise and M(xs;β t) is the parameterized model. As epidemic
observations change over time, model parameters will also vary with respect to
time, i.e.,M(xs; βt),M(xs; βt + 1), · · · . Then, a state space model β t = g(β t − 1, γ )
can be used to characterize temporal correlation and link the parameters over
time, where g(·) is the nonlinear evolution model and γ is process noise. As such,
spatial and temporal components interact with each other to sequentially update
the model when new data are available at the next time point. For example, Yang
et al. develop a sparse particle filtering approach for characterizing and modeling
space-time dynamic data generated from stochastic sensor networks (Chen &
Yang, 2016b).

4.3 Privacy-Preserving Data Analytics

As the epidemic data (e.g., contact tracing, quarantine) proliferate, people are
increasingly concerned about privacy issues. When data resolution and dimension-
ality are high, each entry in a database is essentially unique. Hence, establishing a
linkage with named individuals becomes a much simpler matter. In the traditional
practice, data analytics tend to focus on the effectiveness and efficiency of models,
but overlook privacy in the context of an epidemic. Privacy breaches can bring
unexpected disruptions to health policies and mitigation efforts in the epidemic
response. For example, data exfiltration of contact tracing endangers the privacy
of pertinent individuals, thereby causing a trust crisis and potential failures to the
execution of policies. It is estimated that healthcare systems suffer from the cost of
approximately $300 billion annually due to privacy and security threats (Walker-
Roberts et al., 2018).

One immediate safeguard is data anonymization techniques, which unfortunately
do not provide a substantial level of privacy protection to the patients while guaran-
teeing the performance of data analytics (Dwork & Roth, 2014). It is not uncommon
to come across disturbing news about risks and vulnerabilities in anonymized data.
For example, it is not a difficult task to “match known patients to anonymized
health records in Washington state data” (Sweeney, 2013). Netflix is under fire
because of the privacy concerns and lawsuits over the anonymized database of
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Fig. 16 An illustration of privacy-preserving predictive modeling

480,000 customers in the recommendation contest (Lohr, 2010). Achieving an
optimal balance between model utility and data privacy is difficult when relying
solely on data anonymization. Therefore, new privacy-preserving approaches are
urgently needed to protect the privacy while capitalizing on the power of data
analytics to build a smart and interconnected epidemic response system.

As shown in Fig. 16, differential privacy provides a viable solution to address
the issue of data breaches, while realizing data analytics for smart health (Krall et
al., 2020, 2021). A differential-privacy algorithm ensures that one’s participation
in a dataset, or lack thereof, will not be disclosed (Dwork & McSherry, 2010).
Suppose that an epidemic database D contains n tuples, each with d input variables
xi = (xi1, . . . , xid) and the output space of a response variable yi. The input space
of X is assumed to be with symmetric neighboring relation x ∼= x

′
. As shown in the

Definition 1, privacy parameter ε ≥ 0 controls probability bounds about the level
of privacy protection, which is the degree of difference allowed between output
distributions by applying the function F (· ) onto databases D and D

′
.

Definition 1 A randomized function F : X → Y gives the ε-differential privacy if
for all datasets D and D

′
differing by at most one row and for all ξ ⊆ Range (F),

we have

Pr {F(D) ∈ ξ} ≤ eε Pr
{
F

(
D′) ∈ ξ

}
(8)

Under differential privacy, one’s inclusion within a dataset should make no statisti-
cal difference in an algorithm’s output. Therefore, two databases that only differ by
a single record of data should produce statistically similar results when running a
differential-privacy algorithm (Dwork & Pottenger, 2013).

The “analyze” step develops and trains machine learning models (e.g., regression
models, spatiotemporal statistical models, neural networks) by minimizing the
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objective function J(β,D) with the available set of predictor and response variables
in the epidemic database D = {(x1, y1), · · · , (xN , yN)}. Therefore, empirical risk
minimization (ERM) is formulated to search an optimal set of parameters β that
minimize the regularized empirical loss function as

J (β,D) = 1

n

∑
(xi ,yi )∈D

� (β, xi , yi) + ΛR (β) (9)

where � is the loss function (e.g., prediction errors),  is the regularization
parameter, and R(·) is the regularization function. To achieve the differentially
private ERM algorithms, there are three different ways to inject the designed noises
(e.g., Laplacian noises) in the model training.

• Output perturbation: add noises to the model’s optimal coefficients β∗ =
argminβ∈BJ (β,D)

• Objective perturbation: add noises to the objective function J(β,D)
• Gradient perturbation: optimize J(β,D) with noisy gradients∇J and stochastic

gradient descent

In the literature, standard output and objective perturbation techniques for
logistic regression models were developed by Chaudhuri and Monteleoni (2009).
A variant of objective perturbation, known as the functional mechanism, was
later introduced by Zhang et al. (2012). The functional mechanism works by
injecting noise into the regressor coefficients. Furthermore, the sensitive mecha-
nism, proposed by Wang et al. (2015), serves as an expansion to the functional
mechanism. This new sensitive mechanism is capable of deterring against model
inversion attacks by differentiating between sensitive and non-sensitive attributes
when performing coefficient perturbation.

Traditionally, output and objective perturbation techniques are easy to implement
and more suitable for centralized computing. Nonetheless, distributed processing
has become a more dominant force in the era of big data. Gradient-based pertur-
bation techniques provide a higher degree of flexibility in light of this distributed
reality. Song et al. (2013) first proposed the gradient perturbation for differentially
private updates, which however does not adaptively adjust the learning rate for
fast convergence. As shown in Table 6, this paper presents a privacy-preserving
algorithm with adaptive learning rate, which is also a newly revised implementation
of gradient perturbation techniques.

At the beginning of this algorithm, several parameters (i.e., a privacy parameter ε,
a regularization parameter , the number of epochs K, and a batch size b) are firstly

initialized. Note that the initial learning rate η0 is calculated as
√

1
Λ1/2 . Next, an

initial guess for regression coefficients β(1) is randomly generated. Before entering
the main loop, iteration counter τ and epoch counter κ are both set to one. The
parameter, τ 0, is an intermediate variable that is employed to determine η(τ ) at each
iteration. The starting value of τ 0 is set as 1/η0. Further, the Dataset D is divided
into a set of batches B, each of size b.
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Table 6 The gradient
perturbation algorithm for
privacy-preserving predictive
modeling

Input: Data D, parameters ε, , K, b, θ
Output: Approximate noisy minimizer β

1: Initialize β(1), τ = 1, κ = 1, η0 =
√

1
Λ1/2

2: Let τ0 = 1
Λη0

3: Distribute D into a set of batches B, each of size b
4: whileκ ≤ K
5: for each j = 1, . . . , |B| do
6: Set η(τ) = 1

Λ(τ0+τ−1)

7: Set Δ(τ) = 2θη(τ)

b

8: Draw a vector z(τ ) ∼ Lap
(

Δ(τ)

ε

)

9: Set β(τ+1) = β(τ) − η(τ)
(
∇J

(
β(τ),Bj

) + 1
b
z(τ )

)

10: Set τ = τ + 1
11: end for
12: Set κ = κ + 1
13: If ‖β(τ + 1) − β(τ )‖ < δ, break
14: end while
15: Let β = β(τ)

For each epoch κ , the algorithm will process all batches B, i.e., j = 1, . . . , |B|.
The processing of one batch constitutes a single iteration within the epoch. For each
iteration τ , the learning rate η(τ ) is updated, whose value is then utilized to update
the global sensitivity �(τ ). Perturbation is carried forth by drawing a random vector
z(τ )~Lap(�(τ )/ε), which is scaled by 1/b. This scaled noise vector is injected into
the gradient ∇J. Once the gradient has been perturbed, it is used to update β. The
final step of each iteration entails updating the iteration counter τ by one. Once all
batches are processed, the epoch counter κ is also incremented by one. This entire
process continues until convergence or until κ > K.

Figure 17 shows that decreasing ε causes both model and attack accuracies to
degrade. Nonetheless, each will decay at different rates. Once epsilon falls beneath
10−2, the attack accuracy experiences a substantial drop with minimal impact on
the model accuracy. The attack accuracy approaches zero when ε draws closer to
10−4. However, the model accuracy only decreases by ~5% from baseline when
ε approaches 10−4. Beyond this ε value, the degradation of model accuracy will
accelerate. However, there is little utility in decreasing ε any further since the
attack accuracy has already been reduced to zero. Privacy-preserving techniques
provide an enabling tool to mitigate the risks and costs due to privacy breaches (e.g.,
model inversion attacks) while maintaining the performance of epidemic predictive
models.
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Fig. 17 Privacy model and attack accuracies with respect to varying ε

5 Improve the Resilience of Health Systems

Epidemic outbreaks demand medical resources in a short period of time. Such
demands can outpace the supply for months, because the waves of an epidemic may
recur in multiple years. The abrupt increase of infected cases quickly overwhelms
health systems, causing the devastating shortages of staffs, beds, supplies and equip-
ment. Also, if health systems are not prepared to handle highly contagious viruses,
they will likely become “hotpots” and increase the spread of infectious diseases.
The outbreak of COVID-19 urges changes and transformations of existing health
systems to become a smarter and interconnected healthcare delivery system that
is more resilient. The term “resilience” corresponds to the system’s adaptiveness
and robustness in the handling of unexpected events such as epidemic outbreaks
or disasters (e.g., hurricanes, terrorist attacks, earthquakes), and can include multi-
faceted definitions as follows:

• Capacity resilience: For increasing levels of demand, NPIs help flatten the curve
to avoid the overload of health systems. On the other hand, if the curve is above
capacity, a health system should be resilient to leverage the network for optimal
capacity planning and allocation, as well as build up temporary capacity (e.g.,
field hospitals) to treat the patients and control the spread.

• Resource resilience: The supply chain should also be resilient to avoid shortages
and provide sufficient medical resources (e.g., N95 masks, ventilators, antivirals)
during epidemic events. Thus, a certain level of redundancy is needed in the
design of supply chain. In addition, optimal resource allocation is urgently
needed to ensure the equity and accessibility in the design of resource resilience.
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• Workflow resilience: Traditional workflows in the hospital tend to cause sec-
ondary infections of healthcare workers and other susceptible patients. As a
result, labor supply dwindles and more beds need to be allocated for the treatment
of healthcare professionals. It is therefore imperative to re-design workflows and
avoid secondary infections in case of an epidemic.

• Operational resilience: It is common that physicians see their patients in person
for health care. However, with the increasing availability of wearable sensors,
cloud computing, and information technology, such routine practices may be
transformed to online delivery of health care or a hybrid online-onsite approach.
Operational resilience calls upon the integration of telehealth systems with
existing infrastructures and practices to advance the future of health care.

After all, rich data are provided in the “measure” step about the evolution of
an epidemic. The “analyze” step extracts useful information from the data about
epidemic characteristics. Now, the “improve” step exploits data-driven knowledge
to improve the resilience design of health systems.

5.1 Artificial Intelligence for Smart and Interconnected Health
Systems

Epidemic outbreaks call upon a resilient response from health systems. As shown
in Fig. 18, artificial intelligence (AI) has a wide range of applications in various
areas of health care, and can further promote the changes and transformation of
existing healthcare practices. AI can help reduce the probability for a healthcare
worker to get secondary infections via optimal allocation and use of PPEs, robot-
assisted care, health informatics, and telehealth amongst many others. The provision
of healthcare services includes a large number of healthcare professionals (e.g.,
physicians, nurses, radiologists) and medical technologies (e.g., wearable sensors,
patient monitors, robotics, medical imaging). The future of work in health systems
depends to a great extent on the seamless integration of human and technology.
Figure 18 shows different application areas that AI has generated impacts or will
bring transformations to the health systems:

• Capacity planning: The surge of hospitalizations is not uncommon during an
epidemic outbreak. For a resilient preparation, AI tools can be developed to
forecast the number of admissions, plan the medical resources, optimize the
staffing level, and thereby improve availability of care. For example, the burn rate
model can help health systems plan and optimize the use of PPE by predicting
the trend and usage patterns during the COVID-19 pandemic (Raja et al., 2020).
Also, data-driven models can be developed to facilitate hospital planning based
on the estimated demand of ICU beds, non-ICU beds, COVID admissions, and
ventilators (Klein et al., 2020).
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Fig. 18 AI-driven transformation of healthcare systems

• Operational workflow: Infectious diseases increase the transmission risks
between human subjects. AI and robots can help improve the operational
workflow by human-robot collaboration, thereby reducing the probability of
secondary infections. For example, autonomous service robots can take over the
labor-intensive logistic tasks to deliver medications, specimens, testing results
throughout the hospital 7/24 (Ozkil et al., 2009; Rafflin & Fournier, 1996). AI
algorithms can run the scheduling of jobs and tasks in an optimal manner. Also,
operational workflow can be improved by adding an AI-supported telemedicine
option, a redesign the triage process to separate infected patients from others,
and smart sensing stations for symptom examination (e.g., wireless temperature
sensors, thermal imaging cameras).

• Medical diagnostics: The increasing number of infections also brings significant
amount of data in the care and treatment process. During an epidemic, a hospital
is often expected to perform thousands of CT scans every day to check the status
of lung infections. It is time consuming and labor intensive for human experts to
visually inspect and interpret these CT images. However, AI screening is much
faster than physicians, and significantly improves operational efficiency (Li et al.,
2020). In addition, severely infected patients need advanced life support (e.g.,
ventilators), regular lab tests, and real-time monitoring in the ICUs. The on-hand
availability of clinical data (e.g., blood pressure, heart rate, gas exchange, pulse
oximetry and metabolic panel) provides an opportunity to establish AI models for
the prediction of mortality and outcomes (Kim et al., 2020). This helps stratify
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patients for better care and resource allocation, thereby reducing costs and the
length of stay (LOS).

• Error reduction: To err is human, but medical errors could lead to tangible
consequences. Human errors can be due to many aspects, e.g., physical condition,
skill level, training, attitude, emotion and cognitive bias. AI tools can help reduce
and minimize human errors, e.g., robust check of appropriate dosage levels, the
reduction of diagnosis errors. For example, Liu et al. developed an AI model to
offer warnings about serious side effects of drug-drug interactions (Liu et al.,
2019). This model automatically labels data from thousands of drugs and screens
millions of potential interactions among drugs, which helps reduce adverse drug
events and improve patient safety.

• Clinical trials: AI is conducive to optimize the design of clinical trials to
assess and evaluate the effectiveness of drugs or antivirals for the treatment
of an infectious disease. For example, AI models can be used to facilitate the
identification and grouping of participants. A poor design may not reveal the
effectiveness of a drug or lead to wrong conclusions about an ineffective drug.
Notably, Lancet retracts a study that reported an anti-malarial drug, named
hydroxychloroquine, has little effects to curb COVID-19 (Funck-Brentano et
al., 2020). AI-based design and analysis is critical to establish the statistical
significance and validity of a clinical trial. Also, pharmaceutical companies can
leverage AI methods and tools to circumvent the patent cliff for the new drug
design and clinical trials (Topol, 2020; Kaitin, 2010).

• Medical training: Rapid advances of Virtual Reality (VR) technology have
fueled increasing interests and steady growth in healthcare applications. For
example, VR is conducive to improve medical training for decision making, and
help patients to cope with pain, overcome anxiety and depression (Niederriter et
al., 2020). VR has been used to evaluate different kinds of medical, surgical,
psychiatric, and neurocognitive conditions, as well as to improve the effects
of traditional therapies in current practices (Oyama et al., 1995; Bowman,
1997). VR provides an immersive 3D environment for active interactions and
longer training sessions. AI models can integrate sensing data with user inputs
to optimize the learning steps and improve the quality of medical training
(Basdogan et al., 2007).

• Drug discovery: AI has also been extensively used for drug discovery, which is
evident through the rising of spotlight companies such as Genesis Therapeutics,
Atomwise, and Benevolent.ai. AI is used as a preliminary filtering step to screen
potential molecules on how they interact and control the activity of a virus.
As there are more than billions of molecules, it is impossible for biologists or
chemists to test each one of them to characterize the effects in a short period of
time. AI is integrated with molecular dynamics simulation and drug docking to
identify the most sensitive and effective molecules (Smith et al., 2018; Smalley,
2017). Further, AI models can be developed for the analysis of genomics and
proteomics, which will help gain a better epidemiological understanding of
pathogen evolution and identify the origin host of a virus (Uddin et al., 2020;
Libin et al., 2019).
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• Virtual assistant: When infections and hospitalizations rise, health systems face
increasing pressure due to the shortage of medical labor. There are growing
concerns about the burnout and stress of physicians and nurses. Certainly, they
cannot be readily available 24/7 to assist those people who are infected or
are worried about getting infected by the virus. AI-embedded virtual assistants
enable the patients to communicate with care providers at any time anywhere
(Miner et al., 2020; Sezgin et al., 2020). The AI assistant can learn and
understand the questions from a patient, screen the symptoms by steps, then guide
the care.

• Telehealth: Telehealth provides an opportunity for healthcare professionals to
deliver timely health care to patients through e-platforms (e.g., Teledoc, MeMD,
iCliniq, Amwell) (Smith et al., 2020; Hollander & Carr, 2020). The remote
interaction greatly helps preserve the PPEs and avoid secondary infections. There
are three major types of telehealth modalities as follows: (i) Synchronous: This is
conducted through real-time live audio-video interaction with smartphone, tablet,
or computer. (ii) Asynchronous: This includes a “store and forward” technology
where message, image, or data are collected first from patients, then interpreted
or responded later. (iii) Remote patient monitoring: This includes smart sensors
and internet-of-things technologies (Yang et al., 2020; Kan et al., 2015), where a
patient’s clinical data are measured and transmitted from a distance to healthcare
providers. Telehealth helps screen symptoms of COVID-19, provide low-risk
urgent care for non-COVID-19 patients, follow up with patients after discharge,
and access to primary care or specialists for chronic disease management.

• Community health: AI models can be extended to the community. People live
in the community and connect with social networks. Also, they commute through
transportation networks. There are symptomatic and asymptomatic people who
get infected, each can have a list of contacts with the risk to be infected.
Contacts can be traced in the community with the use of smart sensors, mobile
applications, and surveys (Kretzschmar et al., 2020; Budd et al., 2020), e.g.,
Sara Alert (https://saraalert.org/). AI models can be established to characterize
the spread and propagation of infectious diseases, predict the future evolution
for prevention and control. In the community, AI tools can help reduce the
transmission risk, prevent unplanned hospitalization, and improve the patient
engagement.

AI applications are not limited to those areas describe above, and can be extended
to fitness, compliance, cybersecurity, data privacy and to name a few. Epidemic
response and management depend on the realization of full potentials of AI and big
data to build the next-generation health system.

https://saraalert.org/
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5.2 Healthcare Resource Allocation for Coverage Control

Healthcare resources are critical to infection prevention and control during an
epidemic. Examples of such resources include personal protective equipment (PPE),
ventilators, medicines, antivirals, testing kits, and testing facilities (e.g., drive-thru
testing sites). PPEs protect healthcare workers and patients from getting exposed to
the virus. Ventilators are indispensable to saving the lives of patients with severe
lung infections from coronaviruses (e.g., COVID-19) that cause excess fluid in the
lungs and make patients experience difficulties to breathe on their own. Medicines
and antivirals are also vital to stopping the spread of viruses and keep the mortality
rate under control. Testing resources (e.g., test kits and sites) help identify infections
in a timely manner and intervene as early as possible, e.g., quarantines or contact
tracing to identify the patient’s contacts and been-to. The availability of such
resources directly determines the success or failure of virus containment before
vaccines are available.

During the period of an epidemic or pandemic, the number of infected cases
grows exponentially and yields heterogeneous distributions in multiple spatial
regions. As such, the demand of healthcare resources is not uniformly distributed
in spatial dimensions. Figure 20a shows the complex distribution for the number of
confirmed cases in each zip code at the state of Pennsylvania. The demand varies
with respect to the number of cases and population sizes across the regions, which
is also called spatial demand heterogeneity. Such heterogeneity may be due to
many factors, e.g., the demographic structure of the population, the infrastructure
of the region, or the transportation in the area. The density of spatial demand
(i.e., estimated from infected cases, demographics, or vulnerable population in
each zip code) provide critical information to help optimize the allocation of
healthcare resources, e.g., ventilators, testing kits, vaccines, drive-thru testing and/or
vaccination sites.

The optimality, however, depends to a great extent on accessibility (e.g., shortest
travel distances between demand and supply in each region) (Penchansky &
Thomas, 1981) and equity (e.g., the distribution of demand density among coverage
regions of testing sites) (Daskin, 1997). Specifically, resource accessibility refers to
the ease of access to resources when the demand distribution is heterogeneous in a
spatial region. Equity, on the other hand, is a coverage measure of heterogeneous
demands over multiple regions. A high level of equity ensures equal coverage of
healthcare resources. As shown in Fig. 19, let σ (s) be the spatial demand function:
Ω → R+ that provides the demand density for each location s in the polygon
space Ω . The objective function is to find optimal locations of resource facilities
Θ = {θ1, θ2, . . . θ i} in the space Ω that minimize the sum of weighted distance
functions between supply and demand locations, which is formulated as a coverage
control problem. The cost function is defined as the sum of the moment of inertia in
the regions:
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Fig. 19 Greedy-Voronoi tessellation with a heterogeneous demand function in the space

C (Θ,V ) =
∑I

i=1

∫

Vi

d (‖s − θi‖) σ (s)ds (10)

where I is the number of resource facilities, Vi is the ith Voronoi region, θ i is the
ith Voronoi center, and σ (s) can be the demand density of confirmed cases (or
vulnerable population, virus spread situations) at location s. The location of each
resource facility is determined by minimizing the cost function as:

c (Vi) = argminθi
C (Θ,V)

Voronoi tessellation guarantees that each resource facility is the closest to every
location in its cell (Du et al., 1999). The moment of inertia loss function ensures
the demand density within each region is taken into account. This, in turn, helps
control the coverage of heterogeneous demand over all the Voronoi regions. Note
that this is different from traditional clustering problems, because of the need to
consider both distance functions and the spatial demand function that can be highly
heterogenous. Table 7 shows the proposed algorithm of greedy-Voronoi tessellation,
which includes two stages, namely sequential placement and global calibration.
First, each facility is sequentially placed to minimize the cost function (i.e., defined
as the sum of the moment of inertia in the regions). In each iteration, Voronoi
tessellation is computed based on the locations of existing facilities. A new facility
is then randomly placed in the Voronoi cell with the largest mass (i.e., the sum
of the moment of inertia). The tessellation is then updated to re-evaluate the new
cost function. The location of this newly placed facility is optimized step-by-step
along the gradient direction. This process is repeated until convergence. Such a
sequential formulation provides both monotonicity and submodularity properties,
and yields a sub-optimal solution. After the sequential placement, the global
calibration continues to search for the optimal solution by computing and updating
the Voronoi tessellation to optimize locations of all I facilities. In each iteration,
the locations of all facilities are adjusted and calibrated with the gradient descent
algorithm. This process terminates until convergence. The algorithm then returns
the optimized locations of all I facilities.
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Table 7 The Greedy-Voronoi tessellation algorithm

Demand function σ (s), Polygon space �, total number of facilities I

1: Place the first facility θ1at the center of mass of the � with density σ (s)
2: Fori = 2 to I
3: Randomly place a new facility θ j in the Voronoi cell with the largest mass
4: Compute Voronoi tessellation V based on the location of current facilities
5: Compute the cost function C (θ) = ∑

i

∫
Vi

dist (θi , s) σ (s)ds

6: Compute the gradient ∂C
∂θi

for this newly added facility θ i

7: Update θ j according to θi = θi − α ∂C
∂θi

8: Repeat 4-7 until convergence
9: Update Voronoi tessellation V
10: End For
11: Compute the cost function C (θ) = ∑I

i=1

∫
Vi

dist (θi , s) σ (s)ds

12: Compute the gradient ∂C
∂θi

,i = 1, 2, . . . , I for all facility locations

13: Update all θ i
′
s according to θi = θi − α ∂C

∂θi
, i = 1, 2, . . . , I

14: Update Voronoi tessellation V
15: Repeat 11-14 until convergence
16: Return facility locations θ i, i = 1, 2, . . . , I

(a) (b)

Fig. 20 (a) Greedy-Voronoi tessellation and (b) convergence curve of cost function for optimal
allocation of 100 drive-thru testing sites in PA

We implemented and evaluated the proposed algorithm using a case study of the
COVID-19 infection map in Pennsylvania, as shown in Fig. 20, where the red color
indicates the high demand density and the blue is the low density. The proposed
greedy-Voronoi tessellation helps balance between accessibility and equity for each
region, allows the flexibility to dynamically adjust the tessellation based on real data
(i.e., the number of available resource sites, or the variation of density in the PA
map). The proposed algorithm is generally applicable to a variety of demand-driven
allocation of resources in a spatial region.
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Fig. 21 The screening process and febrile clinics

5.3 Re-design of Health Systems

As COVID-19 cases continue to surge in the US, there is an urgent need to re-
design health systems such as hospitals, medical clinics, and emergency rooms for
better treatment and accommodation of patients. The main objective is to segregate
infected patients, avoid secondary infections, and reduce transmission risks, thereby
improving the safety and quality of healthcare services.

Temperature screening and febrile clinics An immediate change is to add a
screening process for patients at the entrance of a hospital, which makes it easier
and less costly to detect, monitor and control the infiltration of contagious diseases
(Cameron et al., 2006; Li et al., 2005). As shown in Fig. 21, patients are required to
complete a short questionnaire about their health conditions, which includes but not
limited to their travel history, fever history, and symptoms. Meanwhile, their body
temperature will be taken and recorded. If the answer to any of the questions on
the questionnaire is “YES” or the body temperature is above the normal level, the
patients will be guided to a febrile clinic, an isolated area with quarantine units at
the hospital. Otherwise, they can enter the hospital/ Emergency Department (ED)
and proceed to the triage area.

The identification and control of fever and high-risk patients during the screening
process can separate them from other patients at an early stage, which reduces
the risk of secondary infections in the hospital (Lateef, 2009; Improving Hospital
Design for Better Infection Control, n.d.). Febrile clinics have a separate entrance
and negative-pressure ventilation systems, which keep the air mix with other areas in
the hospital at a minimum level. Also, febrile clinics have isolated exam rooms and
its own pharmacy so that high-risk patients do not infect each other or travel to other
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areas of the hospital (Lateef, 2009). Depending on the diagnosis results, patients
may either stay in the patient rooms in the febrile area to get further treatments or
go home.

Environmental considerations to prevent infections Healthcare-associated infec-
tions have caused high morbidity and mortality during the epidemic outbreaks,
which are mainly due to the contact between patients and healthcare workers,
patients and staff, and patients and the environment. Here, we present a brief
review of recommended designs and guidelines to minimize healthcare-associated
infections:

Airflow system
• The difference of air pressure between isolation rooms and other areas should be

about positive 15 Pa (Lateef, 2009).
• Room air should be changed 10–12 times every hour to sufficiently dilute the

bacterial load around an infected patient (Eames et al., 2009).
• Equip ventilation, especially in communal areas (Eames et al., 2009).
• Install negative-airflow systems in areas where high-risk patients will be cared

for (Noskin & Peterson, 2001).
• Isolation rooms should have negative airflow and frequent air exchanges. The

air cannot be recirculated (Noskin & Peterson, 2001; Baker & Lamb Jr, 1992;
Burmahl, 2000).

Hygiene and cleaning
• Install at least one sink in every patient room, examination room, procedure room

and isolation room, which is close to the entrance of the room. Each sink should
be with a hands-free control, soap dispenser, and paper towel holder (Noskin &
Peterson, 2001; Stiller et al., 2016).

• Use information systems to monitor hand hygiene performance and provide
feedback (Marques et al., 2017).

• Frequent disinfection of non-disposable material, equipment, work surfaces,
wards, environment, facilities, horizontal surfaces, surfaces touched by patients
and staff and toilet facilities using hypochlorite 1000 ppm (Stiller et al., 2016).

Room design
• Convert the patient rooms into single rooms with en suite toilets (Stiller et al.,

2016; Bacon & Erickson, 1950).
• Recommend square footage for patient rooms in critical care units (ICU):

13.94 m2 per bed for single-patient rooms and 11.15 m2 for multiple-patient
rooms (Facility Guidelines Institute, 2014).

• Add ante-rooms in negative pressure rooms to reduce the escape of droplet nuclei
(Lateef, 2009).

• Equip the observation unit in the ED with isolation rooms, which have automatic
doors (Lateef, 2009).

Drive-thru medical clinics As shown in Fig. 22, another idea is to transform
the garage of a hospital into drive-thru medical clinics. This design is currently
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Fig. 22 An illustration of (a) drive-thru medical clinics and (b) in-car care units

proposed and evaluated by our University Medical Center in collaboration with
NBBJ (i.e., an American global architecture, planning and design firm, http://www.
nbbj.com/). Each in-car care unit will include necessary medical equipment and
a paramedic. Drive-thru medical clinics bridge the gap between telehealth and in-
room visits. It not only enables patients to get timely access to healthcare services,
but also gain in-person interactions with healthcare providers for diagnosis and
treatments. Furthermore, in-car care units provide medical monitoring that cannot
be achieved otherwise via telehealth, which includes but not limited to vital signs,
blood pressure, electrocardiogram, and auscultation.

In conventional medical visits, patients often go through a lengthy cycle that
includes parking the car, screening in the main entrance, registration in the front
desk, waiting to be called, entering the exam room, getting the services, waiting for
the results, exiting the hospital, and then departing the garage. There is a higher risk
for patients to get infected or infect others in each step of the process. Instead, drive-
thru medical clinics follows a much shorter cycle, i.e., entering the in-car care units
for examination or treatments and then departing the garage, as shown in Fig. 22.
For a car with four seats, four people can get health care at the same time. In-
car healthcare platforms bring benefits to both patients and healthcare providers.
For patients, they can get the necessary exam or treatments more conveniently and
faster, while avoiding secondary infection in the hospital. For healthcare providers,
they can treat more patients while maintaining the hospital capacity and have a lower
risk of secondary infection.

http://www.nbbj.com/
http://www.nbbj.com/
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6 Prescriptive Analytics – Control the Spread

Predictive analytics extract useful information from the data to delineate key
risk factors and predict real-time positions of virus spread. Further, this section
will present the prescriptive analytics that exploit the knowledge from predictive
analytics to identify the course of actions to control the spread of virus. Specifically,
we will focus on the development of simulation models and computer experiments
to benchmark the performances of health policies and action strategies.

6.1 Simulation Modeling and Computer Experiments

Simulation models provide a mathematical description about the physics of disease
propagation and how infections are correlated with the dynamics of human move-
ments in spatial regions. With rapid advances in epidemic surveillance systems,
abundant infection data are collected. The availability of data offers an unprece-
dented opportunity to model human traffics and the progress of an epidemic from
a dynamic, as opposed to a static sense. Fast and accurate simulation models are
critically needed to: (1) analyze main effects and interaction effects of process
parameters in an epidemic, (2) predict how these parameters of interests impact the
resource allocation and epidemic outcomes, (3) aid the design of health policies
and action plans, (4) compare and benchmark a variety of existing policies and
strategies, and (5) augment real-world epidemic control by providing a model-based
baseline for process adjustment.

Experiments, either physical or computer-based, are critical to the discovery
of new insights and knowledge from epidemic processes. However, physical
experiments, also called clinical surveys or trials, on the human population are
often difficult, even with the approval of an internal review board (IRB). Note that
there are many practical and ethical limitations pertinent to physical experiments
of human subjects. Also, it is very expensive to design a comprehensive protocol
to collect data from a large population. Computer experiments with simulation
models (Du et al., 2016) are highly flexible and offers a great opportunity for the
investigation of epidemic processes. As such, research communities have identified
the urgent need to develop epidemic simulations and, more importantly, design
computer experiments to accelerate prescriptive analytics and control the virus
spread. This is essential for making the health system respond in a fast and proactive
manner to disease variations and disruptive events.

From a broader vista, epidemic simulation can be categorized into two classes
contingent on the level of modeling details of human behaviors, namely, continuous
system dynamics modeling and discrete event simulation (DES). Continuous system
dynamics models, e.g., “susceptible-infected-recovered” (or SIR) compartment
models, are constructed with a set of differential equations (Prem et al., 2020;
Chen et al., 2020). The population is assumed to be segregated into a variety of
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compartments (e.g., susceptible, exposed, infected, recovered), which represents
different system states in an epidemic. The rates of change among these states are
modeled with differential equations. Such continuous models operate at a much
more aggregate level by concentrating on system states and the rates of change
in sub-populations. As a result, they are more suitable to answering questions
in the macro level instead of micro level. In other words, the large number
of human subjects are represented as continuous states for a better description
of aggregated behaviors, but individual activities cannot be tracked or modeled
through the continuous system dynamics models. On the contrary, discrete-event
simulation (DES) focuses more on detailed representations of individuals’ activities
and environments in the spread process of infectious diseases (Currie et al., 2020).
DES models capture detailed behaviors on the individual level (e.g., movement
behaviors, contact patterns, personal protective measures) and allow heterogeneity
in the rates of change within sub-populations. Discrete models are generally more
suitable when individual behaviors need to be modeled so that operational details
are available to investigate health policies. Hence, DES models are conducive to
answer specific questions in the operational or tactical level.

6.2 Epidemic Simulation in the Spatial Network

Figure 23 shows our proposed DES simulation of human movements and epidemic
dynamics in a spatial network. This framework is embodied by five components,
namely spatial data, network modeling, human traffic, infection modeling, and
computer experiments, in a close loop to investigate detailed representations
of individuals’ activities in spatial environments. This modeling framework is
designed to overcome the complexity to model human activities directly in a spatial
environment, and leverage the extracted or derived network structure to model
spatiotemporal dynamics of the virus spread.

(1) Spatial Data Daily activities are often inter-connected and happen in a
spatial region with key activity locations such as schools, grocery stores, shopping
malls, restaurants, and homes. Spatial data are readily available as geographical
information system (GIS) mapping files from US Census Bureau and other geospa-
tial service providers. Examples of mapping file formats include Environmental
Systems Research Institute (ESRI) files (e.g., ArcGIS) (Kienberger & Tiede,
2008), Keyhole Markup Language (KML) files (Google) (Ballagh et al., 2011),
and shapefiles that are in a geospatial vector data format with TIGER/Line and
cartographic boundary (US Census Bureau, 2010). The shapefiles also include
geographic entity codes (GEOIDs) that can be used to link with demographic data
from the US Census Bureau. However, GIS map files contain geospatial details
(e.g., forests, water wells, and rivers) that are not necessary for epidemic simulation.
Although geospatial maps are static, the movement of human subjects is dynamic
and tends to form traffic flows in a networked way.
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Fig. 23 The flow chart of epidemic simulation in a spatial network

(2) Network Model Indeed, many real-world systems can be represented by
network models with a large number of nodes that are connected by edges or links.
In a small-scale spatial environment, human subjects often visit a set of key locations
(e.g., schools, stores, offices) daily that are connected by roads. In a large-scale
spatial environment, people travel through a network of highways, or a network
of airports. The spatial network is a graph representation with a set of nodes (i.e.,
key locations) that are linked by edges (i.e., spatial relationship via interconnected
means of transportation). Based on real-world geospatial information, these nodes
can be characterized with network features such as the degree, centrality, clustering
coefficient (Yang & Liu, 2013; Albert & Barabási, 2002; Liu & Yang, 2017). In
the state of the art, there are abundant literatures on network models (e.g., social
network, citation network, neural network, sensor network). However, very little has
been done to derive network models from GIS data in a spatial region of interest and
then further investigate epidemic dynamics in the spatial network. It is imperative to
model the movement dynamics of human subjects in a spatial network and further
capture details of human contacts and interactions during the virus spread.

(3) Human Traffic Notably, geographic entity codes (GEOIDs) can be used to link
with demographic data in a spatial region. This, in turn, helps simulate the number
of human subjects with a diverse set of demographic information (e.g., age groups,
population sizes). The population can also be divided into different activity levels,
namely low, medium and high, which correspond to the number of nodes they are
going to visit. For example, individuals with a high level of activity visit more places
than low and medium sub-groups in a day. These individuals will then be assigned
to nodes in the spatial network, and many can be placed in the same node due to
the clustered nature of residences (e.g., family members in houses and roommates
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in apartments). For each individual, daily activity involves the visit to a sequence of
nodes via edges. The path is randomly generated according to individuals’ attributes
such as age groups and activity levels. We assume that individuals often choose the
shortest path for each activity and therefore plan the route by Dijkstra’s algorithm
(Zhan & Noon, 1998).

The schedule of human movements is simulated in a day of 24 h as follows: The
daily activity is sparse before 8 am, but become busy from 8 am until midnight.
The number of active individuals in the spatial network is dependent on time. New
individuals will be activated and join the network traffic based on current time of a
day. Rush hours are set to be at 8 am, 12 pm, and 6 pm, when more individuals will
move within the network. After 11 pm, no new individuals will be added, and the
remaining ones will finish their activities before a new day starts.

(4) Infection Model When individuals move and make contacts with each other,
the virus spreads in the spatial network. The infection model provides real-
time positions of healthy, infected, recovered, and deceased individuals based on
human movement dynamics in the network. In this investigation, we assume that
infections primarily occur in nodes, and rarely on the path. When individuals
visit a sequence of nodes, they come across each other in the same node. When
they share the same environment, infections occur with a certain probability by
surrounded virus carriers. The infection probability is dependent on exposure time
τ , virus transmissibility ρ, the infectivity level r of virus carriers, the number of
surrounding carriers Nr, and the susceptibility level si of an individual i. The virus
transmissibility ρ is a disease-specific property that defines how likely a susceptible
person will be infected by the virus on average. For a virus carrier, the infectivity
level r defines a person’s capability to infect susceptible people. In other words,
some virus carriers, also called super spreaders, may have a higher infectivity
level than others (Gómez-Carballa et al., 2020). The susceptibility level si defines
the degree of vulnerability of an individual getting infected that may vary due to
risk factors such as age, gender, and comorbidity. As such, the model of infection
probability is formulated as:

pi = 1 − exp

⎛
⎝τ

∑
r∈〈R〉

Nr ln (1 − rsiρ)

⎞
⎠ , 0 < r, si, ρ < 1 (11)

where R is the set of virus carriers, 〈R〉 is the set of infectivity levels from
surrounding carriers, and Nr is the number of surrounding carriers at the infectivity
level r. For super spreaders, r ≈ 1.

The infected individuals can be either symptomatic or asymptomatic. For a
specific infectious disease, this ratio between symptomatic and asymptomatic cases
can be available when more data are collected from clinical studies (Nishiura et al.,
2020). For symptomatic individuals, it takes a time lag (e.g., a random variable with
the mean of one day) towards self-isolation or quarantine. They will stay isolated
until recovery or deceased. Asymptomatic individuals are not aware that they are a
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carrier of a contagious virus and will continue their daily activities. There is little
time lag for a susceptible individual to get infected. However, once someone gets
infected, it will take a time lag (e.g., a random variable with the mean of 14 days)
to either recover or become deceased (Pan et al., 2020; Baud et al., 2020). Once
recovered, this individual will gain an increased level of immunity to the disease.
Networked traffic of human movements is integrated with infection model to study
spatiotemporal dynamics of the virus spread.

6.3 Computer Experiments of NPIs

The availability of simulation models enables “what-if” analysis that will help local
authorities in a spatial region to dynamically adjust health policies, plan near-term
health care capacity, and control virus spread with rapid and timely measures. The
proposed DES simulation captures not only detailed behaviors in the individual
level (e.g., movement behaviors, contact patterns, personal protective measures),
but also the dynamics of population traffic for infection modeling in a spatial
network. Further, we evaluate and benchmark alternative healthcare policies, akin
to making informed decisions, such that the healthcare system is more resilient and
can respond expeditiously and effectively to epidemic events. In the experimental
setting, the spatial network contains 5000 nodes, 5000 edges, and a total number of
6000 individuals who interact with each other based on daily schedules. The total
simulation time is 90 days.

How asymptomatic vs. symptomatic impact the virus spread? Figure 24 shows
the time evolution of virus spread under three different ratios of asymptomatic
vs. symptomatic cases. When the ratio decreases, there will be more symptomatic
cases than asymptomatic ones. Because symptomatic cases can be quickly identified
and then go into self-isolation or quarantine, the virus spreads at a slower rate.
Specifically, when the ratio is reduced from 3 to 0.33, infection peaks decreases from
85.48% to 45.93%. After 90 days, the remaining susceptible populations are 0.4%,
2.18%, and 13.93% for three scenarios, respectively. At 30 days, the percentages of

(a) asym vs. sym = 3:1  (b) asym vs. sym = 1:1  (c) asym vs. sym = 1: 3  

— susceptible 
— infected
— recovered
— deceased 

Fig. 24 Temporal characteristic curves of virus spread for different asym vs. sym ratios, (a) 3:1,
(b) 1:1, (c) 1:3
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(a) transmissibility = 0.00025 (b) transmissibility = 0.0005 (c) transmissibility = 0.001 

— susceptible 
— infected
— recovered
— deceased 

Fig. 25 Temporal characteristic curves of virus spread under stay at home policy when viral
transmissibility is (a) 0.00025, (b) 0.0005, and (c) 0.001

infected population are 81.32%, 29.03% and 2.85%, respectively. As shown in Fig.
24a–c, the percentages of recovered population at 30 days are 14.07%, 0.53% and
1.10%, and the percentages of deceased population are 0.58%, 0% and 0% for three
scenarios, respectively. Therefore, temporal infection characteristics are sensitive to
the variations of asymptomatic vs. symptomatic ratio.

How stay-at-home impacts the virus spread? Figure 25 shows the impacts of
the stay-at-home policy on the time evolution of virus spread with three different
transmissibility values (i.e., ρ = 0.00025, 0.0005 and 0.001). The solid line
represents the implementation of stay-at-home policy that reduce daily activities
to 67%, while the dashed line represents the scenario with regular activities. After
the stay-at-home policy is enforced, Fig. 25a–c shows that infection peaks drop
dramatically from 49.83%, 85.48%% and 98.20% to 2.3%, 41.60% and 80.52%,
respectively. When daily activities are reduced, the time to reach infection peak is
also prolonged. This time delay decreases when the virus transmissibility increases.
Hence, the stay-at-home policy is critical to stopping the virus spread and flattening
the curve, which will provide tremendous help to avoid an overload on the healthcare
systems.

How non-pharmaceutical interventions impact the virus spread? Figure 26
shows the impacts of NPIs on the virus spread that is benchmarked with the
baseline scenario (i.e., regular daily activities without interventions, and the ratio
of asym vs. sym is 3:1). When infections exceed 20% of the population, the stay-
at-home policy is triggered to reduce the level of daily activity to 67%. As shown
in Fig. 26b, this intervention decreases the increasing rate of infections (i.e., the
derivative of the red line), and the infection peak is much lower than the baseline
scenario. Further, protective measures are triggered for active individuals when
more than 30% of the population gets infected (e.g., good hygiene, face masks,
social distancing). Figure 26c shows that this policy greatly reduces the increasing
rate. Also, when the disease transmissibility decreases with protective measures,
the proportion of susceptible population after 90 days increases from 7.10% to
30.00%. Eventually, the proportion of deceased population is approximately 3%,
2.2% and 1.2%, respectively, as shown in Fig. 26a–c. NPIs reduce the transmission
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(a) Baseline   (b) Stay at home  (c) Stay at home + Social distancing    

— susceptible 
— infected
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— deceased 

Fig. 26 Temporal characteristic curves of virus spread under NPIs, (a) baseline, (b) stay at home,
(c) stay at home and social distancing

risks of infectious diseases. Therefore, a combination of NPI policies should be
implemented to effectively lower the probability of infection and save more lives.

Simulation-based decision support provides an enabling tool to benchmark
alternative healthcare policies and make health systems more resilient to coronavirus
events, rather than relying solely on the experience and expertise of human experts.
The proposed DES simulation provides detailed behaviors of individuals (e.g.,
movement behaviors, contact patterns, personal protective measures) in a spatial
network. Such details are often not available in conventional DES, SEIR, or statis-
tical models, and therefore can be used to help design and analyze clinical testing
programs for the population in the future work. Furthermore, networked traffic of
human movements offers a higher level of flexibility for future investigation of
network interdiction models in the epidemic settings. In other words, public health
experts will be able to investigate the traffic control through arc interdictions to
stop the spread of infectious diseases. In summary, effective simulation analysis and
prediction of virus positions in geographic regions will not only help optimize the
design of healthcare policies to control the virus spread, but also help safeguard the
population and make health systems more resilient to epidemic events. The proposed
methodology can be applicable in general to a wide range of infectious diseases.

7 Conclusions

The broad spread of a highly infectious disease leads to an epidemic in a country
and may also bring a global pandemic if ravaging over multiple countries. For
example, COVID-19 changes everyone’s daily life and poses significant challenges
to health and economy of our society. Before vaccines or antivirals are available,
non-pharmaceutical interventions (e.g., isolation, quarantine, hygiene, face masks
and social distancing) are only effective means for the control and containment
of virus spread. This does not change much in the twenty-first century, although
health systems are equipped with more advanced technologies than the era of 1918
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Spanish flu epidemic. However, modern health systems do have the increasing
capability of medical testing and diagnostics for a specific virus, with rapid advances
of gene/DNA, microbiology, and imaging technologies. As such, large amounts of
data are collected in the evolving process of epidemic outbreaks. The availability
of data calls upon the development of new analytical methods and tools to gain a
better understanding of virus spreading dynamics, optimize the design of healthcare
policies for epidemic control, and improve the resilience of health systems.

This paper presents a review about epidemic informatics and control in the
framework of Define, Measure, Analyze, Improve, and Control (DMAIC), which
focuses more on the intensive use of data, statistics and optimization. The proposed
DMAIC framework integrates epidemic data with statistics, AI, privacy, system
design, and simulation models to predict real-time positions of virus spread in the
spatial network, simulate human traffic and virus spread dynamics, and provide
decision support tools for the design of healthcare policies. As opposed to purely
data-driven approaches, which cannot suggest action strategies, this DMAIC frame-
work provides a higher level of flexibility to not only design computer experiments
for the analysis of a variety of alternative health policies and strategies, but also
augment real-world epidemic control by providing a model-based baseline for
process adjustment. In addition, epidemic surges mandate the re-design of health
systems such as hospitals, medical clinics, and emergency rooms for better treatment
and accommodation of patients. Such re-designs help segregate infected patients,
avoid secondary infections, and reduce transmission risks, thereby improving the
safety and quality of healthcare services. System informatics show strong potentials
to spur the growth of healthcare innovations in the US and the world, as well as
complement the pharmaceutical and medical approaches to stop the spread.We hope
this review can help catalyze more in-depth investigations and multi-disciplinary
research efforts to advance the system informatics methods and tools for the future
of healthcare.
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