
Chapter 8
The Role of the Ponderomotive Force
in High Field Experiments

Luis Roso, José Antonio Pérez-Hernández, Roberto Lera,
and Robert Fedosejevs

Abstract Petawatt lasers are a new tool to understand many basic properties of
matter (solids, plasmas, molecules, atoms, and nuclei) in extreme conditions. Radi-
ation reaction and fundamental non-linear QED problems can also be studied with
high intensity lasers, as well as many other relevant problems. In all cases we focus
the laser to concentrate its energy over a small volume, therefore a huge intensity
gradient appears, and it generates a force -the ponderomotive force- that drives the
ionized electrons. This driving can be dominant in some situations. A conventional
focus has a convex intensity pattern and ponderomotive force expels the electrons out
of the focal region.With optimal use ofTEM01and10modes it is possible to generate
concave beams that trap and drag such electrons. Such possibilities are reviewed here,
particularly for the strongly relativistic intensities available with existing ultraintense
lasers.

8.1 Introduction

Origins of the ponderomotive force

A charged particle inside an oscillating electric field experiences a quiver motion
and therefore has an average energy larger than zero, even if its motion is perfectly
oscillatory and the average displacement is zero. Because the charged particle has
an energy larger inside the field than outside the field, there is a force that tends to
move it out of the high field region. The potential responsible for this force is known
as the ponderomotive potential.
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This idea was first developed, well before the arrival of lasers, for radiofrequency
waves. The first relativistic description was given in 1966 by Kibble [1] under a very
appealing name: mutual refraction of electrons and photons. Ponderomotive forces
were regarded as forces that modify the average trajectory of an accelerated electron
crossing a laser field. As the electron enters the laser field its direction is deflected
similar to refraction of light. This similarity is very physical and gives a lot of insight
to the problem that has been lost in modern literature about this subject. Kibble also
studied key features of the standing wave dynamics.

Today’s superintense lasers

Since the invention of theCPA technology by Strickland andMourou [2], ultraintense
lasers have increased in performance dramatically. Petawatt (PW), ormulti PW, lasers
are a reality now [3] and soon the 10 PW barrier will be broken in several facilities
around theworld. Peak power gives the possibility to focus to extreme intensities, and
intensity is the key to induce extreme effects. A focal spot close to diffraction limited
quality requires a good optical quality laser pulse, very precise beam transport and
a good focusing mirror (typically an off axis parabolic mirror). In order to suppress
nonlinear effects, every element after the amplification chain, including the pulse
compressor is kept under high vacuum, typically 10–6 mbar.

Laser acceleration

Particle accelerators are a fundamental tool in many fields of science and tech-
nology. Besides the TeV particle accelerators such as CERN LHC, designed to study
the fundamental building blocks of matter, there are many other systems used to
advance material science, biology, chemistry, and many more fields. Such accelera-
tors reach up to GeV energies for electrons after many meters, if not kilometers of
acceleration. We know today about the potential of ultra-intense lasers for particle
acceleration, particularly for electron acceleration, offering the possibility to achieve
similar energy per particle as conventional accelerators but in just a fraction of the
size. Laser acceleration of electrons uses collective plasma effects to generate, over
a very short period of time, enormous field gradients which have proved to be a
very efficient tool to accelerate GeV electrons over a short distance (of the order
of one or several centimeters) [4–6]. One of the most studied mechanisms is Laser
Wakefield Acceleration (LWFA), where the acceleration of particles is generated
inside the wake of a high intensity laser pulse as it travels through an underdense
plasma medium. The result is a strong longitudinal electric field that couples to the
electrons trapped inside this wave induced by the driving laser, accelerating those
electrons over the distance of the plasma channel. Since there is no breakdown limit
in plasma, the resulting accelerating gradient is huge [7]. Applications of this mecha-
nism include the generation of ultrashort coherent x-ray beams produced by betatron
radiation of the accelerated oscillating electrons, which have potential to be used in
a wide range of fields [8].

However, plasma effects are quite nonlinear and subject to intrinsic instabilities
and for that reason there is renewed interest in direct acceleration of electrons by a
laser field as a potential candidate for laser electron acceleration. The idea of such
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direct laser acceleration (we call it direct because it does not need the presence of
collective plasma effects) has been attracting a lot of interest during recent decades
[9]. In laser acceleration, the electron enters and leaves the beam and the goal is to
find the best configuration of fields that provides acceleration.

The aim of this work is to show the effects of the ponderomotive force when
a gas is ionized during the turn-on and electrons are driven by the focused beam.
Released electrons will be subject to an inhomogeneous electromagnetic field and
therefore the ponderomotive force will be fundamental for their dynamics. We are
not going to consider situations where electrons are injected at relativistic speeds.
Instead we will study something related but conceptually different. We consider
electrons ionized during the turn-on of the pulse, so they are born inside the field and
we want to see how they move. Our purpose is not to study their final speed after
leaving the intense pulse. We are going to study their dynamics while in the field
and describe common experimental situations seen from a different viewpoint. We
will describe several common experimental situations where such ponderomotive
force is present but maybe has not been not properly taken into account, as well as
other less considered situations where the ponderomotive force presents interesting
features. In most cases the electron cloud will explode, but in other cases part of the
cloud can be redirected to one side or trapped inside the field.

Experimental situation

A typical high-intensity experiment is performed in high vacuum. The pulse has to
be focused to a tiny spot (microns) in order to reach ultrahigh intensities and interact
with a target, that can be a solid, liquid or a gas. Gas targets, which take the form of
gas jets, gas cells or capillaries, are of special interest for the sake of this discussion
since they are employed in underdense plasma physics experiments such as coherent
x-ray sources or LWFA.Gas jets are usually delivered through a pulsed nozzle, which
is close to the focal spot, and the gas is released a few milliseconds before the arrival
of the pulse. As a consequence, the laser pulse hits a diluted neutral gas and atoms
or molecules are ionized in the leading edge of the pulse (by barrier suppression),
so electrons are released well before its peak. In this regime pondermotive force
is fundamental because it causes electrons to move towards weaker field regions
therefore deflecting them out of the ultrahigh intensity region. This force avoids
to some extent extreme effects (extreme acceleration, extreme radiation, etc.). We
will analyze, based on numerical simulations of the relativistic driven independent
electron trajectories, how to control and take profit of this ponderomotive repulsion.

Since the model neglects collective effects, it will be valid just for dilute targets.
For solid targets, usually fewmicron thick foils, liquid and overdense plasma experi-
ments, the study of the ponderomotive force needs to include also the fields generated
at the target, and this is outside the scope of the present text.

A third family of targets are the electron injectors. Electrons, pre-accelerated using
a conventional accelerator cross the laser field in order to get, if possible, an energy
boost. Although this has been a quite common experimental scenario, as we said,
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we are not going to consider it. In this chapter we will refer only to independent
electrons appearing from atoms or molecules after being suddenly ionized by barrier
suppression.

8.2 Relativistic Modelling of Laser Driven Electrons

One of the reasons for the interest in the electron motion is its apparent simplicity:
interaction of a charged particle with an electromagnetic field in vacuum. At low
intensities, the classical motion of the electron is governed by the laser electric field.
Beyond 1018 W/cm2, however, the laser field is so strong that dynamics becomes
relativistic, and the coupling to the laser magnetic field is equally important for the
motion description.

Motion is described by the Lorentz force,
−→
F = −e (

−→
E + �v × −→

B /c), where
�v indicates the speed of the electron and c is the speed of light.

−→
E and

−→
B are the

electric and magnetic fields of the laser beam. We consider that the electron charge
is -e (e being positive). Then the relativistic equation of motion is

d −→p
dt

= −→
F = −e

(−→
E +

−→v
c

× −→
B

)
(8.1)

where �p = m γ �v, is the momentum and γ −1 =
√
1 − v2

/
c2 is the well-known

relativistic factor. And thus,

d

dt

(
γ −→v ) = − e

m

(−→
E +

−→v
c

× −→
B

)
(8.2)

The relativistic factor is the origin of interesting nonlinear effects, that will
dominant as intensity increases.

The electron is a spin ½ fermion, so for high intensities there must be a coupling
between the laser magnetic field and the spin. Fortunately, the free electron Dirac
equation can be worked out analytically for the case of plane propagating pulses,
regardless of the intensity [10].When working with such huge electromagnetic fields
it is reasonable to consider the coupling of the magnetic field with the electron spin.
Nevertheless, it has been shown [11] that such coupling is extraordinarily small and
can be neglected without introducing any relevant source of error. This justifies the
use of a classical (non-quantum) description for the driven electron, and thus the
validity of the motion at high intensities.

Probably the most limiting factor for the validity of the forthcoming calculations
at ultra-high intensities is radiation reaction [12]. The onset for radiation reaction
relevant effects, with a near infrared laser, occurs around 1023 W/cm2. We are going
to consider relativistic intensities always below that limit.
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Therefore, a description based in the relativistic dynamics will be employed. In
components, the Lorentz equation becomes:

d

dt
(γ vx ) = − e

m

(
Ex + 1

c

(
vy Bz − vz By

))

d

dt

(
γ vy

) = − e

m

(
Ey + 1

c
(vz Bx − vx Bz)

)

d

dt
(γ vz) = − e

m

(
Ez + 1

c

(
vx By − vy Bx

))
(8.3)

Plane wave analytical solution

For the particular case of a propagating plane wave, monochromatic or pulse,
Sarachik and Schappert developed a very elegant and useful exact solution [13] that
considers a propagating plane wave pulse of arbitrary shape. Their only condition is
that the pulse profile function depends only on a variable η = �s · �r − c t where �s is
a unitary vector indicating the propagation direction. For simplicity we will define
z as the propagation direction, and thus η = z − c t gives the pulse shape. For an
electron initially at rest, its energy is given by

E(η) = mc2
[
1 + e2A2(η) f 2(η)

2m2c4

]
(8.4)

�A(η) f (η) indicates the vector potential, where f (η) is a normalized pulse enve-
lope ( f = 1 at its maximum) that accounts for the pulse profile of the �A field. We
consider that �A is oscillating at a laser frequency ω and the pulse envelope function
gives the bandwidth. Sarachik and Schappert showed also that the momentum is
given by

�p(η) = −e

c
�A(η) f (η) + �s e2A2(η) f 2(η)

2mc3
(8.5)

This expression is very relevant because it shows that the momentum has a trans-
verse component (in the direction of polarization of the vector potential �A) and a
longitudinal component (in the direction of the propagation �s). The electric field is

related to the vector potential by the well-known relation �E = −(
1
/
c
)

∂ �A
/

∂ t .

For a plane wave pulse therefore, the momentum has an exact analytical solution
(fully relativistic) indicating its two components, one along the vector potential and
the other along the propagation direction (z). The two components lie in the plane
defined by �E and �s. Their relation defines a characteristic angle that indicates the
averaged motion direction of the electrons in the field. This motion is the first clear
expression due to the ponderomotive force. The electron is forced to move forward
due to this effect. Of course, it can’t move faster than light and eventually ends behind
the pulse.
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For a linearly polarized plane wave laser field,

Ex = E0 f (z − ct) cos(k(z − ct))

By = B0 f (z − ct) cos(k(z − ct))
(8.6)

the situation is shown schematically in Fig. 8.1, This motion is oscillatory and at
the end the electron will return to rest (provided that initially it was at rest). The
oscillation has some typical features. It has harmonic frequencies based on the fact
that Ex accelerates the electron along x, and the corresponding velocity vx couples
with the By magnetic field giving a vz speed. From Ex and By it is impossible to
get acceleration along the direction of the magnetic field if initially the speed is
zero, therefore the trajectory lies in the xz plane. The longitudinal component of
the velocity can be quite large and therefore the Doppler shift is very relevant. This
can be indirectly seen in Fig. 8.1 because the oscillation is much larger than the
initial laser wavelength, marked as λ in the figure. Also, this schematic plot shows
a very peculiar characteristic, the cusps. At those cusps the electric field gets its
maximum value and the electron experiences themaximum acceleration. Such figure
seen from a reference frame moving with the average speed of the electron presents
a characteristic figure-of-eight pattern as studied in Sarachik and Shappert paper.
More relevant is the fact the vxBy term couples two terms oscillating at the laser
frequency, so it is going to generate a second harmonic and as a consequence many
more harmonics. The oscillatory motion in a laser field becomes anharmonic [14]
The pattern of frequencies generated by such relativistically driven electron is quite
relevant for a number of applications [15, 16].

Computed electron trajectories, for a propagating plane wave laser field linearly
polarized along the x-axis, are shown in Fig. 8.2. This is a numerical simulation
but is totally in the region of validity of the analytical expressions of Sarachik and
Shappert, and fits them well. The pulse envelope is f (η) = exp (−(η/c τ)2), with a
time duration τ equal to 10 laser cycles. The figure corresponds therefore to a plane

Fig. 8.1 Motion of an electron driven by a plane wave laser. Although this is just a scheme, it is
quite realistic for an intensity of 2 1019 W/cm2 and 800 nm wavelength
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Fig. 8.2 Trajectories of a driven electron initially at rest at the origin of coordinates, in the situation
of applicability of the Sarachik-Schappert analytical model. The central wavelength is 800 nm. It
corresponds to a plane wave with the pulse envelope f (η) = exp (−(η/c τ)2), and τ equal to 10
laser cycles. The four trajectories correspond to different intensities, all in the relativistic domain.
The electrical field is linearly polarized (only Ex component). Although this plot is a numerical
computation, it agrees perfectly with their analytical result for plane waves

propagatingwave, and four different peak fields are shown, with intensities from 1018

W/cm2, that is the onset of the relativistic effects, to a strongly relativistic case1021

W/cm2. Observe that the four plots look quite similar and only the spatial scales
change. This is so because the number of oscillations corresponds to the number of
laser periods. In all cases the forward drift (due to the forward ponderomotive force)
is evident but its magnitude is quite different. In this case (plane wave) electrons are
forced forward, but always at a speed less than c, and sooner or later have to cross
the maximum of the field and slow down until the next maximum (or minimum) of
the field. This effect is well known and has been described as electron slippage [17].

Initial conditions and ionization dynamics

The aim of this contribution is to show the relevance of the ponderomotive potential
in realistic experimental situations of atoms or molecules interacting with intense
laser pulses. If one is using an electron beam, then pre-accelerated electrons are
there from the very beginning. However, in the atomic or molecular case we start
with neutrals. Electrons do not feel the laser field until they are ionized.

In most of the calculations found in the literature, electrons are considered free
from the very beginning, so they feel the turn-on of the pulse and they are subject
to smooth dynamics that can bring considerations similar to the ones that originate
the Lawson Woodward theorem [18, 19]. In the real situation we need a model for
ionization, and this would depend on the atomic or molecular species. In the context
of relativistic intensities, we can consider that electrons are released when the field
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Fig. 8.3 Trajectories for a plane wave pulse for the same conditions as in the previous figure (plane
wave 10 cycles long pulse) with intensity 1019 W/cm2. While in the previous figure electron was
free from the very beginning, now the electron is released suddenly when the laser field arrives to
a given value, EBS, to ionize by barrier suppression. The value EBS = 1 a.u. (3.5 1016 W/cm2).
Observe the drift induced. This drift is much larger if the electron is released at higher fields as can
be the case of inner electrons EBS = 10 a.u. (3.5 1018 W/cm2)

amplitude reaches the barrier suppression regime.Well above this barrier suppression
field, in the region 1014 to 1015 W/cm2 for valence electrons of most atoms, electrons
are hundred percent ionized almost instantaneously. This simple model considers
that electrons are frozen (inside the atoms or molecules) until the field reaches a
given value high enough to fully ionize them. In other words, we wait until the laser
field reaches a convenient value (we call this EBS, from barrier suppression) and then
the electron is released inside the field. This is not a minor point. To prove that we
show in Fig. 8.3 the influence of EBS on the electron’s drift. This figure shows two
individual trajectories for a plane wave pulse for the same conditions as Fig. 8.2
(10 cycles long pulse) with intensity 1019 W/cm2. While in Fig. 8.2 the electron is
free from the very beginning, in Fig. 8.3 the electron is released suddenly when the
laser field arrives to a given value, EBS, to ionize by barrier suppression. The value
EBS = 1 a.u., corresponding to an intensity 3.5 1016 W/cm2 can be a realistic choice
for complete ionization. Observe the drift induced, this drift is much larger if the
electron is released at higher fields as can be the case of inner electrons, that can
be simulated introducing a larger value of the barrier suppresion field, for example
EBS = 10 a.u. (3.5 1018 W/cm2). This is quite relevant in the present context because
the distribution of the released electrons after the pulse will be influenced by the
moment where they appear. Inner shell electrons or second or third ionizations will
have different transverse distributions in the end.

8.3 Paraxial Beams Close to Waist

An ultrafast ultraintense laser beam is typically a flat-top with some inhomogeneities
that can be as large as 10 percent, in intensity. It is focused generally with an off-axis
parabola mirror and generates a focal spot and a transverse distribution of intensity in
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the focal plane. However, not all of the laser beam energy is concentrated on the focal
spot due to the profile of the beam or spatial and temporal aberrations, and a fraction
of it is lost. If the beam profile were an ideal flat top, the profile at the focal plane
would be the well-known Airy pattern due to diffraction (Fraunhofer diffraction) by
a circular aperture. Realistic modelling of the focus is now possible but depends on
many parameters, a number of them unknown.

A widely used first approximation that represents a reasonable compromise
between realistic description and simple mathematical model are paraxial beams.
When focusing the pulse with a long focal, such an approximation is reasonable.
Harmonic paraxial beams are solutions of the Helmholtz equation, k being the

harmonicwavenumber, ∂2 �E
/

∂ x2+∂2 �E
/

∂ y2 = −ik∂ �E
/

∂ z. The problem is that

the three components are not independent, they must obey the condition �∇ · �E = 0,
this condition is fundamental to understand ponderomotive potentials, as we will
show. Pulsed paraxial beams can be described with the introduction of a pulse func-
tion f (�r , t), with a gaussian time dependence exp(−(t/cτ)2), τ being the pulse
duration, as indicated above. Such pulse description is reasonable for pulses of 30 fs
(for Ti:Sapphire) or longer. For a few cycles pulses some corrections have to be added.
Other f (�r , t) functions can be used that give a realistic description (sin2, sech, and
more), but we are going to consider only the gaussian pulse shape. In fact we are
going to consider only Ti:Sapphire 800 nm laser pulses, with a realistic pulse dura-
tion, τ = 10 cycles . This gives a reasonable descriptition of most of the existing
high-field PW or multi-PW lasers around the world, including the Salamanca PW
laser.

Hermite-Gauss or Laguerre–Gauss modes (depending on the symmetry we want
to explicitly consider), give paraxial solutions of interest. These modes are widely
studied in the literature and they are characterized by a waist w0 and a Rayleigh
length zR , related by zR = π w0/λ. Their value depends on the F number of the
focusing system. If we are close to focus, i.e. if the distance from focus is smaller
than the Rayleigh length, wave-fronts are almost constant z planes and it is possible
to describe the field in the form,

Ex = E0 exp
(−ρ2

/
w2

0

)
f (z − ct) cos(k(z − c t)) (8.7)

Paraxial gaussian beams give very nice and useful descriptions of the fields before
and after the waist, including the corresponding spherically converging or diverging
wavefront. The generalization to such beams is straight forward, but in the present
noteswe are going to consider that allwavefronts are planes perpendicular to z. This is
reasonable only if we are close to the beamwaist, the region where most experiments
are performed. We introduce the name CTW (Close-to-Waist) approximation, to
refer to this plane wavefront description that is valid just at a distance from the
waist much smaller that the Rayleigh length. The big simplifying advantage to the
CTW approximation is the fact that we have just a propagating beam. Propagation
depends again only on the η = z − c t variable and the comparison with the infinite
plane analytical solutions is more evident. The CTW approximation represents a
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nice compromise between a realistic model and a model that is simple enough to
get compact expressions of the low order modes. Being close to the waist the Gouy
phase has been neglected, however it can be included when a careful consideration
of the phase velocity is needed because Gouy phase is a z-dependent phase to be
added to the propagation. In the following discussion we neglect the Gouy phase and
therefore we neglect the phase slippage it generates.

Scalar modes

The lowest order mode, the gaussian mode, is given by the scalar function,

u00(�r) = u0 exp
(−ρ2

/
w2

0

)
f (z − ct) cos(kz − ωt) (8.8)

As is well known, the dependence of the next two modes is

u10(�r) = u0
x

w0

exp
(−ρ2

/
w2

0

)
f (z − ct) cos(kz − ωt)

u01(�r) = u0
y

w0

exp
(−ρ2

/
w2

0

)
f (z − ct) cos(kz − ωt)

(8.9)

To describe more complicated transverse profiles, it is always possible to consider
higher order Hermite-Gauss, or Laguerre–Gauss modes, depending of the transverse
symmetry of the problem (circular or squared). It is also possible to consider geome-
tries where the waist is not circular, but larger in one dimension that other. In that
case one needs to replace the ρ2

/
w2

0 term in the exponential giving the transverse

profile by x2
/
w2

0x + y2
/

w2
0y , w0x being the waist in the x direction and w0y in the

y direction (Fig. 8.4).
Clearly, the u10 scalar function has a node along the yz plane, while the u01 scalar

function has a node along the xz plane. Adding these two modes in phase one gets
a node plane at 45 degrees. However, adding them π/2 out of phase generates the
simplest beams with one unit of OAM (Orbital Angular Momentum), i.e.

Fig. 8.4 Schematic representation of the amplitude distribution on the transverse plane of the
different scalar modes. (00) indicates the u00 scalar function; (10) indicates the u10 scalar function;
(01) indicates the u01 scalar function; (10) + (01) is the sum in phase of the two previous ones;
and (10) + i(01) indicates the sum with a π/2 dephasing, that corresponds to u1, the simplest mode
with non-vanishing Orbital Angular Momentum
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u1(�r) = u0 exp
(−ρ2

/
w2

0

)
f (z − ct)

(
x

w0
cos(kz − ωt) + y

w0
sin(kz − ωt)

)

(8.10)

Vector transverse modes

Those three basic scalar modes, (00), (01) and (10), are enough to get a clear descrip-
tion of the relativistic ponderomotive force. To calculate the trajectory of the electron
it is necessary to take a full vector description of the fields, taking also into account
the longitudinal fields to fulfill the �∇ · �E = �∇ · �B = 0 transversality conditions both
for electric and magnetic fields.

For the rest of this chapter we are going to study five of such vectorial modes, that
represent modes with internal structure able to generate different dynamics. Most
of the ponderomotive potential relevant features can be obtained using these basic
modes and combinations of them with convenient phases and/or delays.

Gas density

In the simulations we consider a dilute neutral gas from which electrons appear. The
gas density is assumed to be low enough to notmodify the laser propagation indicated
in Eqs. (8.8) and (8.9). Ionized electron density is assumed also to be small enough to
not affect the propagation. In other words, the refractive index (linear and nonlinear)
induced by the neutrals, the ions and the ionized electrons is not relevant to change the
fields propagation. In our model, moreover, electrons move independently, without
interacting between them.

All this can be realistic for Argon, Nitrogen or other gases at low pressures (from
10–2 to 10–4 mb) and for slightly higher pressures for the case of Helium. Higher
densities would imply B integral effects and collisions and the present model will
fails. In the collision dominated regime PIC simulations are needed [20].

8.4 Numerical Results for the Lowest Order Mode

Our purpose is to give the reader some degree of intuition about the ponderomotive
force that can be useful for the design of high field experiments where relativistic or
ultra-relativistic dynamics is dominant. We will present several mode combinations
that induce conceptually different ponderomotive patterns.

We start with the simplest mode, the gaussian (00) mode. Because we are going
to introduce different polarizations, we introduce a compact notation, labeling this
mode as (×00), where x stands for the polarization (electric field in the xz plane)
and 00 indicates the mode. The gaussian mode, linearly polarized along x, can be
written as:
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Ex = E0 exp
(−ρ2

/
w2

0

)
f (z − ct) cos(kz − ωt)

Ez = E0 exp
(−ρ2

/
w2

0

)
f (z − ct) sin(kz − ωt)

2 x

w0

1

kw0

By = B0 exp
(−ρ2/w2

0

)
f (z − ct) cos(kz − ωt)

Bz = B0 exp
(−ρ2/w2

0

)
f (z − ct) sin(kz − ωt)

2 y

w0

1

kw0

(8.11)

With Ey = 0, and Bx = 0. Observe that in the Ez and Bz expressions we neglected
the space derivative of the pulse profile function f. This can be reasonable in the
context of the rest of the approximations made provided that the pulse is not too
short. Observe thus that there are two large components, Ex and By, and two small
longitudinal components Ez and Bz introduced to keep the transversality in the CTW
region. The 1/kw0 factor gives a reference for the relative size of the longitudinal
field. To be consistent, the error introduced when neglecting the z derivative of the
pulse shape function f must be much smaller. Although it is well known, it is always
convenient to remember that in spite of its small value (even when kw0 << 1)
the longitudinal field is fundamental for a proper description of the ponderomotive
dynamics [21].

As is well known, within the CTW approximation, the longitudinal components
are in quadrature with the transverse components (in our case, considering just the
real fields for simplicity, thismeans that the phase dependence is cos(kz − ωt) for the
transverse components and sin(kz − ωt) for the longitudinal ones). To understand
this, it is convenient to write explicitly the components of the Lorentz equation,

Without transverse fields With transverse fields

d(γ vx )

dt
= − e

m
Ex + e

mc
vz By

d
(
γ vy

)
dt

= 0

d(γ vz)

dt
= − e

mc
vx By

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(γ vx )

dt
= − e

m
Ex − e

mc
vy Bz + e

mc
vz By

d
(
γ vy

)
dt

= + e

mc
vx Bz

d(γ vz)

dt
= − e

m
Ez − e

mc
vx By

(8.12)

We can observe that without the longitudinal fields, and when the electron is
initially at rest, the motion is in the xz plane. The ponderomotive displacement along
the y axis requires the longitudinal magnetic field.

The best way to show the essence of the ponderomotive force is to consider a
gaussian 00 mode. In the next figures we show snapshots of the motion of the barrier
suppression ionized electrons driven by such a field mode (Fig. 8.5).

We consider a cloud of 104 electrons originally randomly distributed over a trans-
verse region of ± xmax by ± ymax. They are placed in the slab 0 < z < 10 λ. Using a
thicker z slab does not add relevant information and at the same time blurs the results.
The transverse size, 2xmax by 2ymax, is chosen in order to span the whole range of
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Fig. 8.5 Typical example of the initial cloud of 104 points considered in the numerical simulations.
Left) Those points represent neutral atoms able to release one electron when the field amplitude
reaches a given value, chosen as E = 1 au in the present plot. This is an arbitrary but reasonable
value. The profile is a parallelogram of 10 wavelengths in the longitudinal direction (from z = 0
to z = 8μm) and enough spreading in the transverse plane to account for all atoms that can be
ionized. The initial density of points is uniform. Right) After the arrival of the (×00) pulse ionized
electrons appear and start moving. The figure on the right depicts only the ionized electron cloud

transverse positions where the electron can appear by barrier suppression ionization.
For a (00) pulse, the maximum transverse radius, ρmax, at which electrons are born, is

given by ρmax = w0

√
ln

(
E0

/
EBS

)
. For other combinations of pulses this may vary.

In the simulations we guarantee that the random sampling homogeneously covers
the region where electrons can appear (i.e. the region with field higher that EBS).

The number of electron trajectories used in our simulations has nothing to do with
the actual gas density in an experiment. The number of computed trajectories has to
be large enough to get a visual idea of the electron cloud motion. The gas density
can be increased up to the point where collective effects become relevant and this is
several orders of magnitude above the density of trajectories considered.

The situation to be described in the following simulations is shown in Fig. 8.6.
Some of the mode configurations to be analyzed will have an offset 
. In the combi-
nations involving the (00) mode, it will be the delayed one. In a real experiment the
cloud of atoms from a jet nozzle will be very thick, however we consider that the
atoms are localized only in the space between the z= 0, and the z= 8microns planes.
Due to the CTW approximation, the consideration of a thicker electron cloud will be
simply a repetition of that. To be sure that the initial dynamics is properly accounted
for, we consider that at the starting of the computation we have just neutral atoms.
Being precise, we start the computation at a time when the pulse envelope function
E0 f (z − ct) << EBS . In order to have a clear reference of the time scale for each
of the following plots, we define a time t0 as the time when the maximum of the
first component arrives to z = 0 (i.e. f (ct0) = 1). All figures and discussions will
be referred to this time. In the case of an offset 
 (for combinations of the gaussian
modes with others) the maximum of the gaussian pulse will arrive to z = 0 at time
t0 + 
/c. Obviously t0 has nothing to do with the time where the simulation started
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Fig. 8.6 Schematic representation of the initial situation. Randomly distributed neutral atoms
(represented as dots) are waiting for the arrival of the pulse in a region 10 lambda thick. When field
amplitude arrives to the barrier suppression value, EBS, the atom at that point is ionized, i.e. the
electron escapes from the atom/ion and starts moving. 
 is the offset of the (01) and (10), or their
combinations. Typically we consider 
 = c τ or 
 = c τ/2, to get interesting superpositions of
intensity. This is just a scheme of the two pulses, of course, in the actual case they will interfere

that, depending on the parameters, particularly on the intensity, can be 20 or mode
cycles before.

A simple “well known” case

Just to understand well the transition from plane propagating wave to a real case,
we may consider the case of a large waist, 100 wavelengths (80 microns) and an
intensity of 1019 W/cm2 (E0 = 17 au). Observe that this may seem a modest intensity
however, considering that the waist is quite large this would correspond to about 100
TW of power. Power precisely inside the focal spot, not in other parts of the focal
plane. This requires a very good beam quality plus a very high intensity, almost in
the limit of today’s lasers (Fig. 8.7).

Forward velocity mapping

Depicting electron trajectories, or electron clouds, in space gives direct information
on the dynamics but gives an information that is difficult to see in a real experiment.
In a number of experiments, it could be possible to measure the signature of the
electron trajectories going out of the focal spot driven away by the ponderomotive
force by analyzing the angles were electrons are to be found. We computed also the
x and y directions, i.e. we plot vx/vz and vy/vz (vz being the longitudinal speed),
so those plots give the integrated forward pattern of the electron ponderomotive
explosion. In principle this could be measured with a scintillator or a radio-chromic
plate strategically placed after the focal spot. Although in those cases one would get
the integrated pattern, it is also interesting to analyze (but much more difficult to
observe) its time evolution because at the beginning, as shown in Fig. 8.8, dynamics
is dominated by the vxBy term, as in Sarachik-Shappert analytical theory, and the
motion is along the electric field polarization. When the vx velocity combines with
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Fig. 8.7 Representation of the position of the electrons just after the pulse, for a large waist (oblate
gaussian pulse with waist w0 = 100 wavelengths, and duration 10 cycles) for 1019 W/cm2 (E0 = 17
au). The front view shows the transverse plane (plane xy). The side view shows the y axis projection.
Both correspond to the final position of those electrons after the pulse. Dashed lines indicate the
pulse contour (the outer one corresponds to 1/e amplitude, i.e. its radius is w0)

Fig. 8.8 Evolution of the dynamical pattern. Initially the dynamics is driven by the vxBy term, as
in the Sarachik-Shappert analytical description, later the longitudinal field drives the electron. All
parameters as in Fig. 8.7, including the 80 μm beam waist

the longitudinal field we start to have ponderomotive repulsion along the y axis too.
This process needs a time because the longitudinal component of the electric field is
zero along the x = 0 plane and the longitudinal component of the magnetic field is
zero along the y = 0 plane.
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Fig. 8.9 Front views of the distribution for the (×00) mode, for a mildly relativisitic field, Eo = 17
a.u. (1019 W/cm2), spherical pulse (w0 = cτ = 10λ = 8μm). Time t0 corresponds to the moment
where the maximum of the gaussian pulse arrives to z = 0. The other plots correspond to 20 and 40
cycles later. Dashed lines indicate the pulse contour (the outer one corresponds to 1/e amplitude)

A large waist is closer to Sarachik-Shappert plane wavemodelling. In Fig. 8.8 this
can be seen, particularly analyzing the direction of the electronic motion. The plot
shows the forward angles in the x and y directions (in fact shows the forward velocity
tangents vx/vz and vy/vz). This plot is very interesting because at the beginning the
distribution follows the motion in along the xz plane (vy velocity is very small), but
after 40 laser cycles transverse fields wash out the plane dynamics.

The ponderomotive pattern created by a (00) mode is well known. It is shown for
the realistic case of an 8µmwaist in Fig. 8.9. This value of the waist will be the same
for all the remainding plots in this chapter. The plot at the left, t0, corresponds to the
moment where the peak of the pulse arrives to z = 0 (electrons are, as indicated in
Fig. 8.6, filling the region 0 < z < 10λ). Calculations, however started a few tens
of cycles before to guarantee that the field is well below barrier supression at the
beginning of the computation. The time lapse between each of the three views is 20
cycles. On the right-hand side one the interaction with the pulse is over (the forward
drift is small) and the ponderomotive explosion is clearly seen showing a region at the
center empty of electrons. Some of those structures may look like as a shock wave,
but they are not. Electron–electron repulsion is not accounted for and there are no
collective plasma effects. Thewave is a caustic of the different electronic trajectories.
At higher intensities the dynamics is similar, electrons are pushed outwards and the
central region is depleted quickly.

As a partial conclusion of this section, we just can say that the ponderomotive
force for a convex pulse acts just as a repulsive force, expelling electrons out of
the high intensity region, as expected. Nothing is new here, but these ideas are very
relevant for comparison with higher order modes, with nodal planes or axial nodes,
that will lead to a different dynamical phenomenology.
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8.5 Numerical Results for the 10 or 01 Modes

The scalar modes (01) and (10) are very relevant because they represent a field with
a nodal plane. Such nodal plane represents a minimum in in the ponderomotive
potential and could deviate or trap electrons. When considering the vector modes,
polarization can go along or be perpendicular to the nodal plane, therefore there are
four basicmodes, (×01), (×10), (y01), and (y10), according to the polarization of the
electric field, as indicated in Fig. 8.10. We need to study all four modes because we
are going to present some interesting combinations of them with the (×00) gaussian
mode. It is relevant to write them explicitly, including the longitudinal component.

In the equations for the different modes, we keep the E0 amplitude, as we did with
the gaussian pulse. However, while for the gaussian pulse E0 indicates the maximum
of the peak (at the center) with a 01 or 10mode this is not. Because of the nodal plane,

themaximumfield occurs at a distance 0.7w0 (the exact factor is 1
/√

2) of the node,

and that peak value is Emax = 0.43 E0 (the exact factor is exp(−1/2)
/√

2). Observe

that intensities of those modes are calculated from Emax not from E0.

Mode 10 with x polarization, (×10)

The 10 mode, linearly polarized along x is:
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The other two components are Ey = By = 0. The kw0 inverse dependence in Ez

and Bz is kept expicitely because this factor gives idea of the relative value of the

Fig. 8.10 Schematic representation of the four basic modes with one plane node. The four modes
are relevant for this paper because we are going to present combined results with the linearly
polarized gaussian mode
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longitudinal fields. Again, in these expressions we have neglected the z derivatives
of the pulse shape function f. Although this would be beyond the scope of the present
paper, it is possible to develop these expressions with higher accuracy observing that
we have odd and even degree polynomials of x and y. A complete description of
those higher orders can be found in [22].

Pulses with a nodal plane are very interesting because the ponderomotive force
traps electrons. Within a region of about w0/2 from the nodal plane, the intensity
gradient drives the electrons towards the nodal plane, we can consider this as the
attraction basin for the nodal plane. Therefore, some electrons are trapped along the
x axis in this case (x axis because is a 10 mode, not because of the polarization) and
they propagate along the nodal plane. Ponderomotive expansion in the perpendicular
direction takes place, as expected. This is clear in Fig. 8.11, that corresponds to a
mildly relativistic case, E0 = 34 a.u. (this corresponds to a maximum field of 7.5 1010

V/cm, i.e. to a peak intensity of 7.4 1018 W/cm2). The snapshot is taken 45 cycles after
the maximum of the pulse crosses the z = 0 plane. The side view at the right of this
figure shows also the pulse profile (dashed lines). At the time shown, all electrons
(initially in the 0 < z < 10λ slab) lie behind the laser pulse. The results show
some tansverse trapping, as expected. The situation changes for strongly relativisitic
pulses. Figure 8.12, is similar to the previous one, but now the intensity is 100 times
more, i.e. it corresponds to a strongly relativistic case (7.4 1020 W/cm2). Now the
trapping is accompanied by a forward acceleration of the electron cloud. An electron
eactly at the nodal plane will not feel any transverse field and will pass through the
pulse. However, most of the electrons in the attraction basin experience a field that is
quite intense. As those electrons bounce back from one side to the other of the nodal
plane they experience a field that causes them to drift in the forward direction. The
subsequent Doppler shift, makes them experience a longer wavelength field (in their
moving frame) and the combined result is that electrons are drifted when trapped.
As a consequence they do not go through the nodal plane. They stay for quite a large
number of oscillations with the forefront of the pulse.

Fig. 8.11 Front view and side view of the electron distribution for a mode (×10) pulse with a
mildly relativistic intensity, E0 = 34 au. The pulse at the instant of the plot has already left all
electrons behind. Dashed red lines show the pulse position at that time



8 The Role of the Ponderomotive Force in High Field Experiments 167

Fig. 8.12 Mode (×10) for a high intensity. The upper plots show the front view of the electron
cloud and the lower ones the side view. There is trapping along the mode 01 node. The amplitude
is E0 = 340 a.u. (7.4 1020 W/cm2). In this case, the quivering motion due to the electric field is
perpendicular to the nodal plane

The simulation shown in Fig. 8.12 indicates a trapping ponderomotive force in
one direction and a repulsive motion in the other. In other words, the ponderomotive
potential has a saddle point. For that reason, electrons are trapped along the x axis
but escape along the y.

Mode 10 with y polarization, (y10)

The 10 mode, linearly polarized along y is:
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The other two components are are Ex = By = 0. There is no need to show specific
plots for this case because they are quite similar to the ones shown in Fig. 8.12,
trapping along the x axis is due the mode (10) amplitude profile, not to the field
polarization. However, in this case the electric field is driving the electrons along the
nodal plane, not across it, as in the previous case. The remaining two modes will
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have the same ponderomotive characteristics. We write them explicitly, just to have
they expressions for the next sections, although they are only rotations.

Mode 01 with x polarization, (×01)

The 01 mode, linearly polarized along x, is
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The other two components are. are Ey = Bx = 0.

Mode 01 with y polarization, (y01)

The 01 mode, linearly polarized along y, is
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The other two components are Ex = By = 0.
In the next pages we are going to show simulations of the ponderomotive force

induced by some of thesemodes aswell as some combinations of them,with different
delays and amplitudes. For simplicity, in all cases we are going to consider the
Ti:sapphire wavelength, 800 nm, a beam waist w0 = 8 μm and a pulse length τ =
10 cycles. There will be some delays between them, sowewill indicate it as delay, for
simplicity the gaussian 00 will be the reference and the other mode will come before
(in these notes we are going to present only simulations where the 00 is the last one to
arrive to the target). The offset or delay between one and the other will be on the order
of the pulse duration or half of the pulse duration to have a clear interplay between
them. For simplicity we can borrow the quantum mechanics notation of states (using
parenthesis instead of brackets), so we are going to have combinations of the form
(×00)+ a(y10)+ b(y01)+ c(×01)+ d(×10), where a, b, c, d are complex numbers
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giving the relative amplitudes and phases of the modes. The offset will be explicitly
indicated for each example.

8.6 Numerical Results for Modes with an Axial Node
(Donut Modes)

We saw that (10) or (10) modes trap in one dimension only. Therefore, as pointed
out by Moore, convenient combinations of them will trap in the transverse plane.
In other words, the three-dimensional saddle point will be attractive along the two
transverse directions and repulsive along the forward axis. Taking into account the
polarizations there are two conceptually different combinations, the standard donut
modemixing two crossed polarizations (and resulting -due to the lack of interference-
as a flat-phase mode) and the OAM donut mode (mixing the same polarizations with
a π/2 dephasing (resulting in a helical-phase mode).

Flat-phase donut mode

The more famous combination of those modes is the so-called donut mode. We
can make such a mode with equal amplitude combinations of the (×10) and (y01)
modes or, alternatively with (y01) and (×10). Regardless of the relative phase among
them the mode intensity profile will have the well-known shape. Obviously, different
phases between these two modes will result in different field patterns (radial polar-
ization, for example), but the intensity profile is the same because being of crossed
polarizations they do not interfere [23].

The idea of confining electrons at the center of an intense laser beam via the
ponderomotive potential was suggested initially by Phillips and Sanderson [24] in
a very preliminary form and later reexamined by Moore [25] for feasible laser
conditions. As was pointed out by Moore such an axial node generates a tunnel
that traps electrons in the transverse directions. Electrons born within a cylinder of
radius approximately w0/2 can be trapped. Figure 8.13 shows the numerical result for
such donut mode (×01) + (y10). Both plots correspond to the transverse projection
of the electron cloud (x corresponds to the electric field polarization and z is the
propagation). The left plot corresponds to a mildly relativistic case, E0 = 34 + 34
a.u. (or 7.4 1018 W/cm2 peak intensity for each mode), on each of the twomodes. It is
clear that some electrons went through the ponderomotive potential tunnel, but they
are not pushed forward. The center of the donut pulse is at z = 45 λ for the left figure.
The right plot corresponds to an intensity hundred times larger, E0 = 340 + 340 a.u.
(peak intensity 7.4 1020 W/cm2 for eachmode) and the picture corresponds to the time
where the center of the donut pulse is at z = 85 λ. Here the electron cloud evolution
is completely different, the transversally trapped electrons feel a strongly relativistic
fieldwith the corresponding forward drift. The cloud of fast forwardmoving electrons
is evident and it is still being pushed forward before the pulse maximum. Thus, at
strongly relativistic intensities we can say that besides transverse trapping there is a
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Fig. 8.13 Numerical result for the donut mode (×01) + (y10). Both plots correspond to the lateral
projection of the electron cloud The left plot corresponds to an amplitude E0 = 34 + 34 a.u., on
each of the twomodes (i.e. 7.4 1018 W/cm2 each), and a time t0 + 45 cycles, at that time the electron
cloud is behind the pulse (the pulse position is indicated by the red dashed lines). The right plot
corresponds to an intensity hundred times larger, E0 = 340 + 340 a.u. (7.4 1020 W/cm2) and to a
time t0 + 85 cycles. A number of trapped electrons have a strong drift forward, following the pulse

strong longitudinal drift that acts as a forward trapping. This effect was shown by
Miyazaki and co-workers [26], but using an electron injector, instead of a gas of
neutral atoms to be ionized. A similar effect will appear for the l = 1 OAM mode,
because the ponderomotive force pattern is quite similar.

Helical-phase donut mode- (OAM mode, with parallel polarizations)

Combinations such as (×10) and (×01) are also quite interesting. Since both have the
same polarization, their relative phase is very important. If both modes are in phase,
i.e. combinations as (×01) + (×10), then we just shift the nodal plane and get just a
rotation of ponderomotive potential pattern. However, if we introduce a π/2 phase
shift among them, i.e. combinations of the form (×01) + i(×10), then we obtain an
OAM l = 1 mode [27]. Such a mode has an intensity profile that looks like a donut
mode, and it is called as donut many times in the literature. However, it has a helical
phase structure. To avoid confusions, we will use the name donut to refer to the flat
phase and OAM to refer to the helical phase l = 1 mode in this text. Observe that
the helical structure of the OAM is in the phase distribution, the field polarization is
always in the same direction (except, of course, the longitudinal component). Such
Helical OAMmodes can efficiently be produced form a (00) mode [28] using simple
spiral staircase mirrors. This technique can be used in high intensity laser systems
[29]. As a consequence, ultraintense OAMmodes are achievable with existing lasers,
and their potential for trap electrons in conjunction with other LWFA mechanisms
has probably not being fully studied.

The in phase superposition of the (×01) and (×10) modes shifts the node to the
x + y = constant plane, however the superposition with a phase shift of π

/
2, gives
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rise to the well-known OAM mode (with one unit of orbital angular momentum).
The other possibility of combining two modes, y01 and y10 is just a rotation and
does not add new information.

Figure 8.14 (upper part) shows the OAM mode (×01) + i(×10) trapping, for E0

= 34 + 34 a.u., i.e. a mildly relativistic case (7.4 1018 W/cm2 at each component).
Electrons are trapped in the minimum, but they are not pushed forward, so at the
end there is a cloud of electrons repelled outwards by the ponderomotive force and
a number of electrons trapped close to the axis. However, all electrons are out of
the high intensity region, as can be seen in the upper right plot in Fig. 8.14. The
lower part of Fig. 8.14 shows a case 100 times more intense. Transverse trapping
perpendicularly to the beam axis is clear in this front view. However, there is a
fundamental difference between them. For the strongly relativistic regime, electrons
are pushed forward, so there is the expected trapping plus a relevant drift. This drift
is evident in Fig. 8.14.

Fig. 8.14 Characteristic distribution of the electron cloud for an OAM, (×01) + i(×10) of the
electron distribution. The two upper figures are the front view and the side view for a mildly
relativistic case, with amplitudes E0 = 34 au (7.4 1018 W/cm2). for each of the two modes. Result
seems obvious, and is plotted just for comparison. The two lower plots correspond to the pulse
structure but 100 times more intense, E0 = 340+ 340 a.u. (7.4 1020 W/cm2). In this case, a fraction
of the electrons are also trapped in the axial node, but in this case they experience a strong drift
forward. Time is 25 cycles after t0
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The OAM mode (×01) + i(×10) traps and drags a number of electrons when
the intensity is strongly relativistic. Figures 8.15 and 8.16 correspond to the case E0

= 340 + 340 a.u. (7.4 1020 W/cm2 at each component) and evidence the electron

Fig. 8.15 Motion of the electronic cloud for a highly relativistic OAM mode, the same mode and
fields as the previous figure. In the present plot only electrons with speed v > 0.9c have been plotted.
The presence of a number of electrons close to the axial node and having a large drift is clear. Dashed
lines indicate the position of the laser pulse

Fig. 8.16 Distribution of electrons at t0 + 60 cycles. For a OAM mode (×01) + i(×10) with E0
= 340 + 340 a.u. (7.4 1020 W/cm2), and a waist w0 equal to ten wavelengths, as in the previous
figure. The left plot shows the ionized electrons. A large fraction are expelled by the ponderomotive
force, but about ten percent of the electrons remain close to the axis and move forward with the
field. The left part shows the electrons that move with γ > 10. Among those electrons, a few are
escaping due to the ponderomotive force and the majority are trapped
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trapping and dragging. Figure 8.15 shows only the electrons with v > 0.9 c for
different times. The structure is clear, there is a group of trapped electrons that are
bouncing back and forth inside the OAM axial node (transverse motion) at the same
time that this motion induces a longitudinal drift in accordance to Eq. (8.5). In this
back and forth oscillation some electrons escape and generate a flat pattern clearly
visible in Fig. 8.15. The same pattern of a central trapped part and escaping cloud is
seen in Fig. 8.16 (for the same pulse parameters). At the right part of this figure we
depicted only the electrons moving with γ > 10, while at the left part we plotted all
ionized electrons. The structure at the left shows a circle of electrons ionized at the
outer part of the field that due to the low intensity are not pushed forward while the
inner electrons are expelled generating some sort of bag or fish trap (with the helical
structure induced by the OAM helical phase). Electrons at the center are trapped and
move forward quickly giving the high density tip. For this case about 9.5 percent of
the ionized electrons are trapped and accelerated to γ > 10 and about one percent of
them have a relativistic factor γ > 100. The attractive (concave) region of the OAM
beam corresponds to a radius of about 0.7 w0.

8.7 Numerical Results for Delayed Mode Superpositions

Nowwe can analyze combinations of the (×00) mode with only one of the other four
modes conveniently shifted in time. The offset is of the order of the pulse duration,
or less (otherwise the overlap won’t be relevant), and the gaussian pulse is the last
to arrive. In this case ponderomotive force shows other interesting features. Some of
them can be more or less foreseen from the above considerations and we will skip
them, but other features are also surprising and interesting.

Electron steering

Among the surprising possibilities of the different combinations of such modes with
different offsets, one of the most relevant is the possibility of electron steering.
Combining conveniently the pulses we may get potentials able to deflect electrons.
One example of these kind of pulses is the combination (×00) + (×10). Being that
the two are polarized in the same direction there will be interference, and the fields
add up on one side and show destructive interference on the other side of the 10
nodal plane. Thus, the potential will deviate the electrons to the region of destructive
interference because there the intensity is lower. To be sure that the deviation is due
to this effect we may compute three different combinations (×00) + (×10), (×00)
+ i(×10), and (×00)-(×10).

Results are shown in Fig. 8.17, in all cases the offset is 8 μm(10 cycles) with
the (10) mode advanced with respect to the (00). The superpositions (×00) + (×
10) and the (×00)-(×10) are equivalent, deflecting electrons towards the destructive
interference side. However the (×00)+ i(×10) has a symmetrical structure and does
not steer electrons. Such combinations are feasible experimentally and moreover a
super high intensity is not needed., Thus, ponderomotive steering has a lot of potential
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Fig. 8.17 Thedestructive interference in one side and constructive on the other, generates a pondero-
motive force along x that deflects electrons to the region of lower total field. Simulation corresponds
to E0 = 17 a.u. (peak at 1019 W/cm2 for the (×00) mode and at 1.8 1018 W/cm2 for the (×10)
mode) and 8 microns offset, and for a time 65 cycles after t0. Electrons born at the edges of the pulse
have a very small drift and they constitute the cloud seen between z = 0 and z = 10 wavelengths

Fig. 8.18 Representation of
a cut along the y = 0 plane
of the (×00) + (×10) pulse,
for 10 cycles offset. Grey
arrow indicates the path of
the deflected electrons

for coherent control of ionized electrons. Such pulses can push electrons out of one
side of the target in a real experiment (Fig. 8.18).

The number of combinations is very large and with five modes and different
configurations it is possible to reproduce a huge number of experimental configu-
rations. For example, it is possible to model the horseshoe (or concave) beams, as
proposed by Brijesh et al. [30]. They introduced for the first time to our knowledge
the concept of concave beams for trapping not only in the transverse directions but
also in the longitudinal direction the electrons. Their discussion is very interesting at
the onset of the relativistic regime, however, when the dynamics is highly relativistic,
electron’s drift dominates.

Concave pulses with a gaussian and an OAM mode

To end this investigation of ponderomotive dynamics, let’s consider Brijesh horse-
shoe pulses. The can be modelled here as a combination of the (x00) gaussian pulse
and a y-polarized OAM pulse with a few cycles offset. According to our notation
those pulses will be (×00) + 2(y10) + 2i(y01), with a 5 cycles offset (always the
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Fig. 8.19 Side views of the electron cloud, during the interaction with the pulse (rigth) and just at
the beginning (left). This figure corresponds to a highly relativistic case with E0 = 170 a.u., and a
pulse structure (×00) + 2(y10) + 2i(y01), with a 5 cycles offset. This corresponds to 1021 W/cm2,
peak intensity, for the (00) mode, and 7.4 1020 W/cm2 for each one of the other two

donut in front of the gaussian). Results for that case are shown in Fig. 8.19 for a
strongly relativistic case. One can see that the drift of the electron cloud is similar to
that observed in Figs. 8.13 and 8.14 for the pure donut or OAM modes themselves
and the observed trapped high energy electrons are mainly due to the OAM forward
drift itself. The figure corresponds to E0 = 170 a.u. for the gaussian beam (1021

W/cm2). Combining such a peak power gaussian pulse with a similar donut pulse
both having smooth profiles is probably on the limit of today’s multi PW lasers.

8.8 Conclusions

The ponderomotive potential is ubiquitous in any strong-field experiment where a
laser pulse is focused to a small spot. In most cases this is a force that drives electrons
out of the focal volume, i.e. it is a force that repels electrons out of the high intensity
spot. However, there aremodeswith a nodal structure that allow trapping and steering
of the ionized electrons. While this can readily be understood in the classical or
mildly relativistic regime, as intensities enter the 1021 W/cm2 region drifts play a
fundamental role in enhancing the trapping and dragging of electrons. With the new
multi petawatt lasers and the use of higher order modes, there are a large set of pulse
configurations that can be explored and exploited for various applications in electron
trapping and steering.

All the present notes are based on the simulation of the Lorentz force dynamics
for independent relativistically driven electrons, and without considering nonlinear
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effects on the laser propagation. Therefore, the validity of the present results is just for
very dilute gases. Study at higher densities would require more complex simulation
tools as PIC codes.

Such tools to control the electron dynamics while electrons are still driven by
the intense pulse may result in interesting applications such as injection to other
accelerators or boosters. Also new coherent radiation schemes seem possible because
electrons are self-organized in patterns by the relativistic dynamics. At the present
low densities, the number of emitted photons will be small.
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