
Chapter 3
Volterra Integral Equation Approach
to the Electron Dynamics in Intense
Optical Pulses

Yosuke Kayanuma

Abstract Recent advances in laser technology havemade it possible to utilized very
high intensity optical pulses with wide range of wave-length to pump electrons in
materials. This opened a new era in experimental physics to use pulse-lasers as a
tool to manipulate electrons not only for the ultrafast probe into electronic states in
materials, but also for a new means to obtain light with much higher frequebecause
it is morencies than the pump-pulse. From theoretical side, this requires to establish
a coherent theoretical framework to analyze the ultra fast dynamics of the electrons
driven by high intensity light fields. In this article, I propose a novel theoretical
technique to approach this subject. We formulate the Volterra integral equations of
second kind for that purpose. Although this is equivalent to the differential equations
of Schrödinger, it has an advantage to treat the light-matter interactions as two inde-
pendent modules; the intra-band driving and the inter-band driving. The expression
for the former can be obtained analytically in many cases and is incorporated into
the theory as an integral kernel. The formalism is applied to two simple models, the
population inversion in the molecules under intense laser beams in air, and the high
harmonic generations in solids.

3.1 Introduction

Thanks to the advances of high intensity and ultrashort laser technology, various new
aspects of the quantum dynamics in the electronic excited states have been revealed.
In understanding these phenomena, it may be said that the wave-like picture of light
of Maxwell revived rather than the corpuscular picture of photons of Einstein.
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The primary interest is in the phenomena of photo-ionization by a long wave-
length but intense light field. In this connection, one of the surprising achievements
in this decade is the demonstration of carrier multiplication in semiconductors by
terahertz pulses withmagnitude of 1–MVcm−1 [1]. Such an excitation of electrons to
the higher excited states may induce further extraordinary dynamical processes. For
the salient examples in this category, we may name the phenomena called the high
harmonic generation (HHG) from the strongly laser-driven atoms [2] and solids [3].

These developments in experimental physics require novel theoretical frameworks
to treat such a highly nonlinear interactions of light and matter non-perturbatively.
Since the pioneering work by Keldysh [4], a number of elaborate theories have been
proposed on this subject, both in the atoms and molecules [5–8] and in solids [9, 10].
As noticed by Becker and Faisa [11], the highly nolinear electron dynamics in the
intense fields can be formulated as a quest for the scattering matrix. An important
point in calculating the scattering matrix is that the equation of motion for a free
electron in the arbitrary time-dependent electric field has already been solved. The
eigen state is called a Volkov state [12] in the free vacuum, and a Houston state [13]
in the periodic lattice structure.

In the present article, I would like to add yet another contribution to this subject.
In our approach, we formulate the time-dependent problem in the form of an integral
equation of Volterra-type, where the integral kernel is explicitly obtained using the
Houston state representation. Although this is equivalent to the numerical solution of
the Schrödinger’s differential equation, it has some advantages over the differential
equation.

For the purpose of demonstration, I take two examples of application, the problem
of population inversion in air-lasing, and theHHGin solids. These examples represent
two typical situations of the spatial extension of light-matter interaction. In the first
example, the optical transition is localized at the position of the molecule. In the case
of HHG in solids, the transtion occurs throughout the bulk crystal from the valence
band to the conduction band according to the translational symmetry of the crystal
lattice. It will be be shown that, in both cases, a closed expression for the optical
responses is obtained.

3.2 Population Inversion in N+
2 Ions in the Intense Laser

Beam

It is well known that, when an intense light beam passes through a transparent
medium, say air, self focusing and filamentation of the beam often occur due to the
nonlinear optical effects [14]. Sometimes this was a nuisance for experimentalists.
Since the advent of high intensity ultrashort lase pulses, a possibility of application of
this phenomenon emerged. The filaments in air are often accompanied with lumines-
cenceor even lasing to forwardor backward [15] of the pumpingbeams.The spectrum
of backward scattered fluorescence or lasing will be a source of remote sensing. In
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the case of N2 molecules in air, the forward lasing is the dominant pathway and the
backward lasing is reported to be observed only under limited conditions [16]. In
the ambient conditions of the air, the backward lasing is strongly depressed by the
presence of oxygen molecules.

For the origin of lasing at 391.4 nm (3.17 eV) emission fromN2, awidely accepted
view is that it is mainly due to the induced emission from the excited state of N+

2 ions,
mostly assigned to B2�+

u → X2�+
g [15, 17]. The lasing of air can be initiated by

the irradiation of fundamentals of Ti-sapphire laser. The photon energy (1.55 eV )is
far below the ionization energy of N2 (16 eV). Therefore, at least two question must
be answered: What is the mechanism of ionization by below-threshold excitation?
What is the mechanism of population inversion in the N+

2 ions?
Population inversion in N+

2 ions is a little surprising, because if the transition
from the ground state to the excited state within the N2 molecule occurs first, the
photo-ionization from the excited state will follow much faster than that from the�g

state. In [18], the authors considered that the population inversion occurs within a
single pump pulse in the reversed order. In the first half of the pulse, an electron of the
highest occupiedmolecular orbital (HOMO) in a neutral N2 molecule is ejected to the
free state. Then the electronic configuration changes suddenly due to the transition
N2 →N+

2 : The second ionization potential becomesmuch larger, while the excitation
energy to the lowest unoccupied molecular orbital (denoted as B) becomes lower.
An electron in the HOMO (denoted as X) of N+

2 is excited to the B state by the
electric field in the last half of the pulse. The abrupt emergence of the new electronic
configuration gives rise to the double excitation as a highly nonadiabatic process.
The authors carried out a simulation of the population change in a simple model
within the assumption that a two-level system in the ground state is suddenly put in
the intense off-resonant field at the moment of maximum intensity. Although it is
noticed that the couplings between other excited states also plays a role [19–21], the
essential mechanism would be the same.

In the following section, I would like to examine this model of air lasing by a
simulation on a toy model with a very simple calculation. In order to mimic the
ultrafast electron dynamics for a molecule in vacuum, we introduce a discrete struc-
ture into the vacuum with a small mesh of a nearest neighbor hopping. The quantum
mechanical equation of motion for the ejected electron is then described by a tight-
binding model, and the bound states of molecule are replaced by localized states in
the lattice. This model is originally considered for the ultrafast electron dynamics
in the crystals. For the technique of solving the Schrödinger equation, a method of
Volterra integral equation of second kind [22, 23] is proposed. The advantage of this
method is its simplicity and flexibility for the extension taking into account various
effects.

A. Volterra Integral Equation

Let us assume a simple cubic “crystal structure” in three dimensions with the lattice
constanta and hopping parameter−B/2. Furthermore, an additional site or “impurity
state” is assumed at the origin. The Hamiltonian for the tight binding model in this
space is written as
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H0 = − B

2

∑

α=x,y,z

′∑

jα

(| jα + 1〉〈 jα| + H.c.) + εc
∑

jx , jy , jz

| jx , jy, jz〉〈 jx , jy, jz | + ε0|g〉〈g|.

(3.1)
In the above equation, | jx , jy, jz〉 = | jx 〉 ⊗ | jy〉 ⊗ | jz〉 means the state vector at the
site index ( jx , jy, jz), where ⊗ is the direct product. The symbol

∑′
jα
means that

the index jα runs over N sites jα = − N
2 ,− N

2 + 1, . . . , 0, . . . , N
2 − 2, N

2 − 1 with N
being a very large even number. The Symbol

∑
jα
indicates the sum over N + 1 site

from −N/2 to N/2. The state vector |g〉 is the “impurity state” located at (0, 0, 0)
site with the energy ε0(= 0) chosen as the origin of the energy. The band-center
energy is denoted as εc.

The eigenstate of H0 in the conduction band is written as |kx , ky, kz〉 = |kx 〉 ⊗
|ky〉 ⊗ |kz〉 where

|kα〉 = 1/
√
N

∑

jα

| jα〉 exp[iakα jα], −π/a ≤ kα ≤ π/a (α = x, y, z) ,

(3.2)
with the eigenvalue

εkx ,ky ,kz = εc − B
(
cos kxa + cos kya + cos kza

)
, −π/a ≤ kα ≤ π/a. (3.3)

Hereafter, we use the convention 	k = (kx , ky, kz) and 	j = ( jx , jy, jz).
The low energy states in the conduction band of the tight binding model can be

regarded as describing the free states in vacuum. In fact, in the limit |kαa| << 1, the
above equation can be approximated as

ε	k 
 εc − 3B + Ba2

2
	k2. (3.4)

Comparing this with the energy of a free electron in vacuum, ε	k = �
2	k2/2m, wherem

is the mass of electron, we find m = �
2/Ba2. In the case of N2 molecule in vacuum,

|g〉 corresponds to the HOMO, and εc − 3B is the ionization energy (
 16 eV).
Weassume that a linearly polarizedpumppulsewith polarization in the x-direction

hits the sample along the z-axis. The interaction with the intense electromagnetic
field will induce two kind of action on the initially localized electrons. The one is the
excitation of the localized electron to the continuum state. This effect will be called
an inter-band driving. The second is the perturbation of the excited states due to the
optical Stark effect, which will be called an intra-band driving.

The Hamiltonian for the intra-band driving is written as

H1(t) = −eaE(t)
∑

jx

jx | jx 〉〈 jx |, (3.5)

where E(t) is the electric field of the laser pulse. The Hamiltonian for the inter-band
driving is given by
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Fig. 3.1 Image of portal
state

g

p

H2(t) = E(t)
∑

k

(
μk |k〉〈g| + μ∗

k |g〉〈k|
)
, (3.6)

where μk is the transition dipole moment of the HOMO or impurity state to the state
|k〉 in the conduction band defined in the length gauge as

μk = −〈k|er |g〉,

with −er being the dipole moment of the molecule (e > 0). For the electric field of
the pump-pulse, we assume the Gaussian form,

E(t) = E0 exp[−t2/σ2] cos(ωt + ϕ), (3.7)

where σ is the pulse-width and ϕ is the carrier-envelope phase (CEP). For the pulse-
width not extremely short, the CEP-dependence of the responses is negligible. There-
fore, we set ϕ = 0 in the present work. We assumed an x-polarized light hits the
material along the z-direction. The theory can be readily extended to the circularly
polarized light.

It is noticeable that H2(t) is written as

H2(t) = μE(t)
(|p〉〈g| + |g〉〈p|), (3.8)

where |p〉 is given by
|p〉 = μ−1

∑

k

μk |k〉, (3.9)

with μ = √∑
k |μk |2. We call |p〉 a portal state because the electron goes out from

or comes back to the ground state |g〉 only through |p〉 as shown in Fig. 3.1.
The portal state is a localized state around |g〉 with spatial extension of the same

order of |g〉. The actual functional form of |p〉 is given once the transition dipole
moment μk is given. Although the following theory can be constructed for a general
case of |p〉, we assume here, for simplicity, that |g〉 is well localized at the origin, so
that μk is approximately independent of k. Then, |p〉 is given by the state |0, 0, 0〉 in
the site-representation. In other words, we assume a vertical transition in real space.
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At this point, a comment may be in order on the analogy and difference between
the electron dynamics in solids and in true vacuum. In solids, Bloch’s theory tells that
the electronic states are described by linear combinations of the atomic like localized
states (Wannier states). The magnitude and the selection rule for optical transitions
are determined, roughly speaking, by the Wannier functions and the overlapping of
the envelope functions. In the present article, the state |k〉 represents the envelope
functions of the Bloch states, with atomic functions being implicitly accompanied. In
the case of electrons in real vacuum, |k〉 should be a plane wave state or a scattering
state.

Now we calculate the time-resolved photo-ionization probability of the localized
electron with the integral equation method. For that purpose, the intra-band driving
term H1(t) is included into an unperturbed Hamiltonian with definition,

H̃0(t) ≡ H0 + H1(t).

The Schrödinger equation for the state vector |ψ(t)〉,

i�
d

dt
|ψ(t)〉 =

{
H̃0(t) + H2(t)

}
|ψ(t)〉 (3.10)

is transformed into an integral equation,

|ψ(t)〉 = −(i/�)

t∫

−∞
exp+

⎡

⎣−(i/�)

t∫

τ

H̃0(τ
′)dτ ′

⎤

⎦ H2(τ )|ψ(τ )〉dτ

+ exp+

⎡

⎣−(i/�)

t∫

−∞
H̃0(τ )dτ

⎤

⎦ |g〉, (3.11)

where exp+ is the time-ordered exponential, and |g〉 is the initial state at t = −∞.
The proof of (3.11) can be easily done by differentiating both sides of (3.11) with
respect to t , and show that it is equivalent to (3.10).

We calculate the probability amplitudesCp(t) andCg(t) that the electron is found
at the portal stateCp(t) = 〈p|ψ(t)〉, and at the ground stateCg(t) = 〈g|ψ(t)〉 at time
t . From (3.11), we find a pair of integral equations,

Cp(t) = −(i/�)

t∫

−∞
〈p| exp+

[
−(i/�)

t∫

τ

H̃0(τ
′)dτ ′

]
|p〉μE(τ )Cg(τ )dτ ,(3.12)

Cg(t) = −(i/�)

t∫

−∞
μE(τ )Cp(τ )dτ + 1. (3.13)

In (3.12), the integral kernel
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Kp,p(t, τ ) ≡ 〈p| exp+
[
−(i/�)

t∫

τ

H̃0(τ
′)dτ ′

]
|p〉

can be calculated analytically in the limit N → ∞. This is because the Hamiltonian
H̃0(t) is a sum of independent terms in the x , y and z direction. We find

Kp,p(t, τ ) = e−(i/�)εg(t−τ )K0(t, τ )2K1(t, τ ), (3.14)

in which

K0(t, τ ) = J0(B|t − τ |/�), (3.15)

K1(t, τ ) = J0(B|R(t, τ )|/�), (3.16)

where J0(x) is the 0th order Bessel function, and R(t, τ ) is given by the Lie algebraic
argument [24] as

R(t, τ ) =
t∫

τ

exp
[−i(ea/�)

u∫

τ

E(s)ds
]
du. (3.17)

The numerical solution of the integral equations was done by discretizing the time
intomeshes with small intervals. The numerical integration is written as a summation
using the trapezoidal approximation. This gives the iterative relations for the values
Cp(t) and Cg(t) with those of former time-bin, and determined successively.

In the two types of kernels, K0(t, τ ) represents the quantum diffusion to y, and z
direction. The kernel K1(t, τ ) represents the motion of the electron in the x direction
under the influence of the oscillating electric field. It is noticed that this intra-band
driving term is important in the below threshold photo ionization because it induces
the tunneling excitation as schematically shown in Fig. 3.2. However, it is found
that, at least within the present model calculation, the effect of this term becomes
significant only for a one-dimensional model. In three-dimension, the photo ioniza-
tion probability becomes enhanced appreciably only for very high intensities of the
electric field. This term is extremely important for the process of the high harmonic
generation. The existence of the long plateau in theHHG spectrum is solely attributed
to the intra-band driving as shown later.

B. Application to Population Inversion

Zhang and coauthors [18] studied theoretically their conjecture on the fundamental
mechanism of population inversion in N2 molecules under intense pulse irradiation
by a simple two-level model. They calculated the probability of excitation of a two-
level system after the passage of a modified Gaussian pulse. The temporal shape of
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(a) (b)

Fig. 3.2 Schematic picture for a the multi-photon excitation where the intra-band driving is absent,
and b the tunneling excitation where the intra-band driving exists and plays an important role.
Quantitatively, this effect is important for one-dimensional systems

a a

bb

(a) (b)

Fig. 3.3 Excitation probability of a two-level system plotted against the amplitude of the inter-
band driving a = μE0/2�ω and the energy gap b = ε/�ω. In a, the pump field is given by
the Gaussian pulse E(t) = E0e−t2/σ2

cosωt , and in b the pump field has a sudden rise as
E(t) = θ(t)E0e−t2/σ2

cosωt with θ(t) being the step function

the Gaussian pulse was strongly modified to a highly asymmetric form; the front
half of the pulse has a sharp edge while the back half has an original Gaussian
envelop. By the numerical simulation, they concluded that a necessary condition for
the population inversion is the abrupt exposure to the intense optical field and the
adiabatic fade away of the field strength.

In Fig. 3.3, the density plot of the excitation probability P(a, b) in a two level
system is shown in the two parameter space, a = μE0/2�ω and b = ε/�ω, where ε
is the energy difference of the two-level system. In Fig. 3.3a, P(a, b) is shown for
the original Gaussian pulse E(t) = E0 exp[−t2/σ2] cos(ωt), while in (b), P(a, b)
is shown for the pulse shape E(t) = θ(t)E0 exp[−t2/σ2] cos(ωt), where θ(t) is a
step function defined as θ(t) = 0, for t < 0, and θ(t) = 1 for t ≥ 0. The pulse width
is chosen as σ = 20T where T is the oscillation period of the laser field. A part of
Fig. 3.3b has been presented in [18].
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Fig. 3.4 A proposed model
of correlated electrons for
the intense field induced
population inversion in N2
molecules

FromFig. 3.3, it is obvious that the highly asymmetric pulsewith abrupt turning on
and smooth fading away (Fig. 3.3b) is far more favorable for the population inversion
than that with the normal Gaussian shape (Fig. 3.3a). Interestingly, a systematic and
periodic pattern can be recognized inFig. 3.3a. Thismaybe explained by the adiabatic
Floquet theory and path interference in the Landau-Zener transitions at quasi-level
crossings [25]. In the plot Fig. 3.3b also, the periodic pattern in P(a, b) is discernible.

In order to see the whole process in a unified way, we applied our calculation
scheme to the population inversion in N2 molecules in the intense pulse laser field.
In Fig. 3.4, our model for the double excitation of N2 molecules in the intense
off-resonant pulse laser field is schematically shown. We assume two electrons are
occupying the HOMO of N2. For convenience, they are named “up-spin electron”
and “down-spin electron”, although the spin does not play any specific role in this
problem. In the initial state, the on-site Coulomb energy U works like Hubbard
model. The intense optical pulse first ejects one of the electrons, say, up-spin elec-
tron to the free state. Then the disappearance of U increases the second ionization
energy. Furthermore, due to the incomplete screening of the core potential, the higher
molecular orbital comes down, roughly to 3eV above the X-state of N+

2 , and prompts
the excitation of the down-spin electron. Our purpose is to see the conditions for this
scenario to work.

Our model Hamiltonian for the correlated two electrons is given as

H(t) = H0(t) + HI (t), (3.18)
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H0(t) = εg
(
u†gug + d†

gdg
) +Uu†gugd

†
gdg + (

ε0l + Vu†gug
)
d†
l dl

+
∑

k

εku
†
kuk − eaE(t)

∑

jx

jxu
†
jx
u jx , (3.19)

HI (t) = E(t)

(
μ1

∑

k

(
u†kug + u†guk

)
+ μ2

(
d†
l dg + d†

gdl
))

. (3.20)

In the above equations, d†
g and d†

l are creation operators of the down-spin in the
HOMO with energy εg and the lowest excited state with energy εl = ε0l + Vu†gug ,

in which u†g and u†k are the creation operators of the up-spin state in the HOMO
and the free state with energy εk , respectively. U and V are the on-site Coulomb
energies between the up-spin electron and the down-spin electron. The electric field
E(t) is assumed to be an x-polarized pulse with functional form given in (3.7). The
transition dipole moments from the HOMO are denoted μ1 for the free state and μ2

for the first excited state, respectively. In actual simulations, we set μ1 = μ2 = μ, for
simplicity. Note that our Hamiltonian (3.19 ) contains the Hamiltonians (3.1), (3.5),
and (3.6) in the part of up-spin variables.

Although it is possible to solve the two-electron dynamics described by the above
Hamiltonian, only an approximate solution is shown here. The up-spin electron plays
a key role to control the whole ultra fast process by changing the energy levels for
the down-spin electron. Therefore, we neglect the back-reaction from the down-
spin electron to the up-spin electron. Note that we only name the electron that was
ejected to continuum an up-spin electron, and that excited to the LUMO a down-
spin electron. The actual numerical calculation was done as follows. First, the time-
dependent probability of photo-ionization of the up-spin electron was calculated.
This gives the population probability to the HOMO n↑(t) = 〈u†gug〉. The energy
of the first excited state εl is then evaluated as εl(t) = ε0l + Vn↑(t). The transition
dynamics for the down-spin is simultaneously calculated by solving the Schrödinger
equation numerically for the two-level system |g〉 = d†

g |0〉 and |l〉 = d†
l |0〉, with input

of the value εl(t). The on-site Coulomb energy U is roughly equal to the difference
between the first and the second ionization energy of N2, and V is set to be 18�ω in
the numerical calculation.

In Fig. 3.5, two examples of the pulse-induced population inversion are plotted for
the one-dimensional model. In Fig. 3.5a, b, the field strength is set to be μE0/�ω =
eaE0/�ω = 6.0. In (a), the population of the up-spin electron to the HOMO of N2

is plotted as a function of t , and in (b), the population of the down-spin electron to
the B-state of N+

2 is shown. In this case, the up-spin electron is almost completely
ejected to the free state before the peak value of the pulse with half width σ = 10T .
The down-spin electron undergoes a nonadiabatic transition to the B-state with a
violent oscillation and smooth adiabatic convergence. In Fig. 3.5c, d, on the other
hand, the field strength is set to be slightly lower, μE0/�ω = eaE0/�ω = 5.9. The
probability of photo-ionization of the up-spin electron is almost complete as shown
in (c). However, the population inversion of the down-spin electron is not attained
as seen in (d). Detailed inspection into the power dependence of the final transition
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gP
t

lP
t

t / T t / T

(a) (b)
gP

t lP
t

t / T t / T

(c) (d)

Fig. 3.5 The pulse-intensity dependence of the population change in the lowest excited state of
N2

+ ions. a The population to the highest occupied state of the up-spin electron of N2 molecule, for
μE0/�ω = eaE0/�ω = 6.0 and b the corresponding population to the lowest excited state of the
down-spin electron. c The same as (a) with μE0/�ω = eaE0/�ω = 5.9 and d the corresponding
population to the lowest excited state of the down-spin electron. Other parameter values are common
to all of the figures, B/�ω = 25, εg/�ω = 35,σ/T = 10

rate of the down-spin electron indicates that it is not a monotonic function of E0 as
can be expected from Fig. 3.3b.

3.3 High Harmonic Generations in Solids

Now, we extend the formalism developed in previous sections to the case of bulk
solids in the intense pulse fields. A number of recent topics in the laser science can
be classified in this category. Our interest is focused mainly on the above band-gap
excitation of valence electrons in insulators, and subsequent high harmonic radiation.
This subject has been attracting intense interest both of the experimentalists and
theoreticians since the first report of HHG in solids [3]. For reviews on HHG in
atoms and molecules in gas phase, see [26, 27] for example.

Following the success of the explanation of the HHG profile for the gas phase
by a simple semi-classical model of Corkum [28] and its quantum mechanical ver-
sion [29], a number of theories have been proposed for the HHG in solids. They may
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be classified according to the methodology in the treatment of the interaction with
an intense driving field in solids as the semiclassical one [30], semiconductor Bloch
equation [31, 32], Floquet theory [33, 34], and so forth. Our purpose here is not to
present a comprehensive review of these works, nor a detailed theoretical analysis of
the experimental data, but to propose a new theoretical framework to overview this
subject, based on a model as simple as possible.

A. Crystal model of Two-Level Atoms

Let us assume a simple cubic crystal of N × N × N sites (N >> 1). Each site is
occupied by a single atom with atomic orbitals, or Wannier functions, φc and φv .
The energy difference between φc and φv is εc. Both of the φc and φv are coupled to
the same kind of orbitals at the nearest neighbor atoms with the hopping parameters,
−Bc/2 and Bv/2, respectively. This forms the conduction band and the valence
band. This is the simplest toy-model of the band structure of a crystal lattice. The
extension to a little more realistic model can be done, for example, by putting an
s-orbital and three-fold degenerate p-orbitals at each site. This is the tight-binding
model describing the band structures of carbon materials like graphene [35], or III-V
semiconductors like GaAs [36].

Each site is designated with three indices jx , jy, jz as before, and the indices
c and v which designate the conduction and the valence band. The unperturbed
Hamiltonian H0 in this section is given by

H0 = − Bc

2

∑

α=x,y,z

′∑

jα

(| jα + 1, c〉〈 jα, c| + H.c.) + ε0
∑

	j
| 	j, c〉〈 	j , c|

+ Bv

2

∑

α=x,y,z

′∑

jα

(| jα + 1, v〉〈 jα, v| + H.c.) , (3.21)

where the convention of the summation is the same as before. The Hamiltonian H0

can be diagonalized by introducing the Bloch states |	k, c〉 and |	k, v〉,

H0 =
∑

	k
εc(	k)|	k, c〉〈	k, c| +

∑

	k
εv(	k)|	k, v〉〈	k, v|,

where
εc(	k) = ε0 − Bc

(
cos kxa + cos kya + cos kza

)
,

and
εv(	k) = Bv

(
cos kxa + cos kya + cos kza

)
.

The half-width of the conduction band and the valence band are 3Bc and 3Bv , respec-
tively. It is assumed that the band-gap ε0 − 3(Bc + Bv) ismuch larger than the photon
energy �ω.
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Fig. 3.6 Schematic picture
of the recombination
luminescence in a
electron-vacancy picture and
b electron-hole picture.

(a) (b)

The electromagnetic field of the optical pulse is assumed to be linearly polarized
in the x-direction. The interaction with the electron can be divided into two as before.
The intra-band driving term is given by

H1(t) = −eaE(t)
∑

jx

jx (| jx , c〉〈 jx , c| + | jx , v〉〈 jx , v|) , (3.22)

and the inter-band driving is by

H2(t) = μE(t)
∑

jα=x,y,z

(| jα, c〉〈 jα, v| + H.c.) , (3.23)

where the functional form of E(t) is the same as (3.7).
In Fig. 3.6, the optical pumping and HHG process in our model is schematically

depicted. In Fig. 3.6a, the electron in the conduction band, and a “vacancy” of electron
in the valence band are shown by a solid circle, and an open circle, respectively.
This vacancy should not be confused with the so called “hole” in the high-energy
physicist’s sense. The vacancy has a positive charge and negative mass at the zone
center, so that it is accelerated in the k-space to the same direction as the electron.
The hole is defined as a quasi particle which has a positive charge and positive
mass at zone center. Furthermore, it has an opposite momentum and inversed value
of energy to the vacancy as shown in (b). In Fig. 3.6a, the radiative recombination
process of an electron-vacancy pair is schematically shown. In this view, the radiative
recombination process is described as the vertical transition in the Bloch space. In
Fig. 3.6b, the same process is shown in the electron-hole picture. In this view, the
recombination process is described as a radiative pair annihilation of an electron
and a hole with opposite momentum. The electron-vacancy view is common in the
society of solid state physics, while the electron-hole picture, or particle-anti particle
picture, is common among the high-energy physicists.
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Hereafter, we adopt the electron-hole picture, because it is more suitable to
describe the two-particle dynamics. The Hamiltonians (3.19)–(3.23) are written in
the second quantized form as

H0 = − Bc

2

∑

α=x,y,z

′∑

jα

(
a†jα+1a jα + H.c.

)
+

∑

	j
ε0a

†
	j a 	j

− Bv

2

∑

α

′∑

jα

(
b†jα+1b jα + H.c.

)
, (3.24)

H1(t) = −eaE(t)
∑

jx

jx
(
a†jx a jx − b†jx b jx

)
, (3.25)

H2(t) = μE(t)
∑

	j

(
a†	j b

†
	j + a 	j b 	j

)
, (3.26)

where a†	j and b
†
	j are creation operators for electron, and hole at

	j th site, respectively,
and the origin of energy is chosen at the vacuum of electrons and holes. It should be
noted that the creation operators a†	j are defined as the direct product, a†	j = ax

jx
† ⊗

ay
jy
† ⊗ azjz

†.
With the Fourier transformation,

a†	j = 1√
N 3

∑

	k
a†	k e

−ia	k 	j , b†	j = 1√
N 3

∑

	k
b†	ke

−ia	k 	j ,

H0 and H2(t) are rewritten as

H0 =
∑

	k

(
εc	ka

†
	k a	k − εv

−	kb
†
	kb	k

)
, (3.27)

H2(t) = μE(t)
∑

	k

(
a†	k b

†
−	k + a	kb−	k

)
, (3.28)

which explicitly indicate the mechanism of generation of high energy photons by
pair annihilations of an electron and a hole with opposite momentums, �	k and

−�	k to yield a photon with zero momentum and energy εc	k +
(
−εv

−	k
)
as shown in

Fig. 3.7.
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Fig. 3.7 Schematic picture
for the electron-hole pair
creation and
pair-annihilation in the
two-level model of crystals
in the cite representation j' j

B. Calculation of HHG Probability

Now we calculate the probability of HHG within the framework of the integral
equation. For that purpose, the intra-band driving term H1(t) is included into an
unperturbed Hamiltonian with definition,

H̃0(t) ≡ H0 + H1(t),

= Hc
0 (t) + H v

0 (t), (3.29)

with

Hc
0 (t) =

∑

	k
εc	ka

†
	k a	k − eaE(t)

∑

jx

jxa
†
jx
a jx ,

H v
0 (t) = −

∑

	k
εv

−	kb
†
	kb	k + eaE(t)

∑

jx

jxb
†
jx
b jx . (3.30)

The Schrödinger equation for the state vector |ψ(t)〉,

i�
d

dt
|ψ(t)〉 =

{
H̃0(t) + H2(t)

}
|ψ(t)〉 (3.31)

is transformed into an integral equation,

|ψ(t)〉 = −(i/�)

t∫

−∞
exp

⎡

⎣−(i/�)

t∫

τ

H̃0(τ
′)dτ ′

⎤

⎦ H2(τ )|ψ(τ )〉dτ

+ exp

⎡

⎣−(i/�)

t∫

−∞
H̃0(τ )dτ

⎤

⎦ |ψg〉, (3.32)

where |ψg〉 is the initial state at t = −∞ and is given by the vacuum of electron and
hole, |ψg〉 = |0〉. We calculate the probability amplitude C 	j (t) ≡ 〈0|a 	j b 	j |ψ(t)〉 that
the electron and the hole are found at 	j th site at time t . It should be noted that the
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electron and the hole are always created at the same site, but once created, they are
driven in the conduction band and the valence band independently, until they collide
at another identical site and are annihilated simultaneously.

We adopt here a single-pair approximation, in which the simultaneous excitations
of multiple electron-hole pairs are neglected. This is justified if the energy gap is
large enough, and if the electromagnetic field is not extremely intense. Within this
approximation the amplitude C 	j (t) is calculated from (3.11) and (3.13) as

C 	j (t) = −(i/�)
∑

	j ′

t∫

−∞
〈0|a 	j exp[−(i/�)

t∫

τ

Hc
0 (τ ′)dτ ′]a†	j ′ |0〉

× 〈0|b 	j exp[−(i/�)

t∫

τ

H v
0 (τ ′)dτ ′]b†	j ′ |0〉〈0|ψ(τ )〉μE(τ )dτ . (3.33)

For the amplitude in the ground state Cg(t) ≡ 〈0|ψ(t)〉, we find

Cg(t) = −(i/�)
∑

	j

t∫

−∞
C 	j (τ )μE(τ )dτ + 1. (3.34)

If we define the kernels for the electron,

K (c)
	j, 	j ′(t, τ ) ≡ 〈0|a 	j exp[−(i/�)

t∫

τ

Hc
0 (t ′)dτ ′]a†	j ′ |0〉

and for the hole,

K (v)

	j, 	j ′(t, τ ) ≡ 〈0|b 	j exp[−(i/�)

t∫

τ

H v
0 (t ′)dτ ′]b†	j ′ |0〉,

the above equations are written as

C 	j (t) = −(i/�)
∑

	j ′

t∫

−∞
K (c)

	j, 	j ′(t, τ )K (v)

	j, 	j ′(t, τ )Cg(τ )μE(τ )dτ , (3.35)

Cg(t) = −(i/�)
∑

	j

t∫

−∞
C 	j (τ )μE(τ )dτ + 1. (3.36)



3 Volterra Integral Equation Approach to the Electron Dynamics … 57

The kernels K (c)
	j, 	j ′(t, τ ) and K (v)

	j, 	j ′(t, τ ) describe the transition amplitudes that the

electron (hole) is found at the site 	j at time t under the condition it exists at the site
	j ′ at time τ with the influence of quantum hopping with uniform driving field. They
can be obtained analytically as

K (c)
	j, 	j ′ = e−(i/�)ε0(t−τ )K (c)

jx , j ′x
(t, τ )K (c)

jy , j ′y
(t, τ )K (c)

jz , j ′z
(t, τ ), (3.37)

K (v)

	j, 	j ′ = K (v)
jx , j ′x

(t, τ )K (v)
jy , j ′y

(t, τ )K (v)
jz , j ′z

(t, τ ), (3.38)

in which

K (c)
jx , j ′x

(t, τ ) = exp[i π
2

( jx − j ′x )]Jjx− j ′x (Bc|R(t, τ )|) , (3.39)

K (c)
jy , j ′y

(t, τ ) = exp[i π
2

( jy − j ′y)]Jjy− j ′y (Bc|t − τ |) , (3.40)

K (c)
jz , j ′z

(t, τ ) = exp[i π
2

( jz − j ′z)]Jjz− j ′z (Bc|t − τ |) , (3.41)

where Jj (x) is j th order Bessel function, and R(t, τ ) is given in (3.17). For the kernel
of the hole, K (v)

	j, 	j ′ , the analogous expressions to the above formula are obtained, with
only difference that Bc must be replaced by Bv . Strictly speaking, the above formu-
las are derived for the infinitely large tight binding model, but it is approximately
valid under the condition N >> 1. The fact that the integral kernels are completely
decoupled into the three components of the direction of motion is an advantage of
the present theory in the time domain. Furthermore, using Neumann’s sum rule,

∞∑

n=−∞
Jn(a)Jn(b)e

inθ = J0(
√
a2 + b2 − 2ab cos θ), (3.42)

we can carry out the summation over the creation sites of the electron-hole pair, and
finally obtain

C 	j (t) = −(i/�)

t∫

−∞
e−(i/�)εg(t−τ ) J0 ((Bc + Bv)|R(t, τ )|) (3.43)

× J0 ((Bc + Bv)|t − τ |)2 Cg(τ )μE(τ )dτ , (3.44)

Cg(t) = −(i/�)
∑

	j

t∫

−∞
C 	j (τ )μE(τ )dτ + 1.

So far, we have not taken into account any relaxation phenomena in the dynamical
processes. Furthermore, in actual experiments, the observed intensity of the high
harmonics depends on the spot-size of the pump pulse. Therefore, we introduce here
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the effective number of atoms Nef f that contribute to high harmonic generation.
Since C 	j (t) does not depend on 	j , we may set C 	j (t) = Cp(t)/

√
Nef f , and find

Cp(t) = −(i/�)

t∫

−∞
e−(i/�)εg (t−τ ) J0 ((Bc + Bv)|R(t, τ )|) × J0 ((Bc + Bv)|t − τ |)2 Cg(τ )μe f f E(τ )dτ , (3.45)

Cg(t) = −(i/�)

t∫

−∞
Cp(τ )μe f f E(τ )dτ + 1. (3.46)

where μe f f = √
Nef f μ is the effective dipole moment.

For the source of harmonic radiation in solids, two mechanism of polarization can
be considered. The one is the intra-band polarization, and the other is the inter-band
polarization [37]. The electromagnetic radiation from the intra-band polarization
is due to the non-parabolicity of the band dispersion. The inter-band polarization
corresponds to the recombination emission. Numerical calculations show that the
intra-band contribution is usually smaller than that of the inter-band one [30]. So, we
consider only the contribution from the inter-band transition radiation here. The time-
dependent amplitude of the emitted radiation A(t) is proportional to the expectation
value of the source term

∑
	j a 	j b 	j as

A(t) = 〈ψ(t)|
∑

	j
a 	j b 	j |ψ(t)〉. (3.47)

Because the component of the excited states in |ψ(t)〉 is very small in the present
parameter values, we can safely write

A(t) = 〈0|
∑

	j
a 	j b 	j |ψ(t)〉 =

∑

	j
C 	j (t).

The intensity of high harmonics photons of frequency � per unit density of atoms is
then given by the Fourier transform of Cp(t) as

I (�) =
∣∣∣∣∣∣

∞∫

−∞
Cp(t) exp[i�t]dt

∣∣∣∣∣∣

2

. (3.48)

It is remarkable that the above formulas (3.45) and (3.46) for the HHG in the bulk
crystals are formally the same as the (3.12), (3.13), which are derived for the electron
dynamics in the impurity state, or a molecule in the vacuum in the previous section.
This suggests that the mechanism of the HHG in the crystal is essentially the same
as that in a gas in vacuum. A difference is that the parameter for the half band-width
in the latter model is the sum of Bc and Bv , in contrast to the former case, where only
the half band-width Bc appears in the formula.
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Fig. 3.8 Theoretical results for the high harmonic spectrum. The parameter values are (Bc +
Bv)/�ω = 15, εg/�ω = 50which correspond to the band-gap 5�ω,σ = 5T . Thefield intensities are
a eaE0 = μe f f E0 = 0.5�ω, b eaE0 = μe f f E0 = 1.0�ω, c eaE0 = μe f f E0 = 2.0�ω, d eaE0 =
μe f f E0 = 3.0�ω, respectively.

In Fig. 3.8, the dependence of the high harmonic spectra on the incident pulse-
amplitude are shown for the three dimensional tight-binding model. The parameter
values are Bc + Bv = 15�ω (total half band-width= 45�ω), ε0 = 50�ω which cor-
responds to the band gap 5�ω at �-point. The incident pulse is linearly polarized
in the x-direction, and the pulse-width is σ = 5T where T = 2π/ω. The amplitude
of the electric field is chosen as (a) eaE0/�ω = μe f f E0/�ω = 0.5, (b) eaE0/�ω =
μe f f E0/�ω = 1.0, (c) eaE0/�ω = μe f f E0/�ω = 2.0 and (d) eaE0/�ω = μe f f

E0/�ω = 3.0.
The theoretical results in Fig. 3.8 reproduce the experimental features [3, 38]

fairly well. The high harmonic spectrum has a long plateau and a sudden cutoff.
Experimentally, it is observed that the spectrum obeys the optical selection rule that
only the odd order harmonics have appreciable intensities for crystals with space-
inversion symmetry. In the theoretical line shapes, however, such a selection rule
seems to be blurred except for the low order harmonics and those near cutoff. This is
paradoxical since the theoretical results derived on a simple symmetrical model gives
much more noisy curves than the experimental data. The elucidation of this paradox
has been attracting theoretical interest recently. It is reported that the selection rule
is recovered [30, 39, 40] if one takes into account some mechanism of dephasing
in his model. In a phenomenological model [30], it was shown that a surprisingly
short dephasing time, as short as 1 femtosecond, is required in order to get agreement
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Fig. 3.9 The dependence on
the intra-band driving of the
HHG spectrum for
μe f f E0/�ω = 1.0 with a
eaE0 = 0 and b
eaE0/�ω = 3.0

with experimental data. It was also asserted that the pulse propagation in the dense
and inhomogeneous media also plays a role to make the experimental HHG spectra
clean [41]. This is an intriguing open question.

In order to clarify the distinct roles of the inter-band driving and the intra-band
driving, the theoretical line shapes of the high harmonics are shown in Fig. 3.9 for
two set of parameter values, namely for μe f f E0 = 1.0 and eaE0 = 0 (no intra-band
driving) in (a) and μe f f E0 = 1.0 and eaE0 = 3.0 (strong intra-band driving) in (b).
In Fig. 3.9a, only the 1st, 3rd and 5th harmonics are seen. In contrast, a long plateau
of high harmonics is observed in Fig. 3.9b. Note that the line-shape is almost the same
as shown in Fig. 3.8d. This means that the total line-shape of the high harmonics is
entirely determined by the intra-band driving field, although its amplitude depends
on the inter-band driving.

The features in these line-shape ofHHGqualitatively agreewith those reported [3,
38] andwith the simple formula of the three-stepmodel [28].Quantitatively, however,
the agreement with the formula by the three-step model in not good. The three-step
model predicts the energy of the cutoff of the plateau Ec as

Ec = Ip + 3Up, (3.49)
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where Ip is the ionization energy and Up is the ponderomotive energy, Up =
e2E2

0/4mω2. From (3.4), we may set Ip = εg − 3(Bc + Bv) and m = �
2/(Bc +

Bv)a2. But this gives a too small value of Ec. The main reason of the disagree-
ment is the breakdown of the effective mass approximation. In the present model
of a two-level atom crystal, it is assumed that the transition dipole moment is a
constant and the optical transition is allowed all over the first Brillouin zone verti-
cally. Although the main contribution comes from the excitation around the �-point
because the transition probability depends also on the energy gap, the contribution
from other region will not be negligible. In the present model of cosine-band, the
effective mass becomes much smaller and even formally be zero at the band-center.
For a quantitative analysis of the HHG spectra in solids, information on the actual
band structure will be needed.

On the other hand, it is reported experimentally that the high-energy cutoff in
solids has a linear dependence on the amplitude of drive laser field [42]. This is in
agreement with the present theoretical result shown in Fig. 3.8. It is noticed that,
in the theory, the gap between the edge of the plateau and the cutoff is extended in
the high intensity limit as shown in Fig. 3.8d. In order to clarify all these features,
further investigation will be needed into the electron dynamics in solids induced by
the high intensity pulse fields.

3.4 Conclusion and Prospect

I have proposed a simple formalism based on an integral equation of Volterra-type to
calculate the electron dynamics driven by intense pulse fields. It is an analogy of the
Dyson equation in time-domain, but has some advantages compared with other more
elaborate methods. If the wave-length of the electromagnetic field is much larger
than the atomic scales, as is usually the case, the integral kernel for the propagation
of the electron in the free-space or in the crystal lattice structures can be analytically
obtained. Because the integral kernels are exponential functions, it is easily extended
to higher dimensions.

In this article, I have shown two examples for the application of this method. In
the Section II, the electron is assumed to make transitions between a localized state
and a delocalized “band”. In the Section III, an electron and a hole make transitions
between the two delocalized “bands” from the “vacuum”. It is remarkable that the
integral equations are reduced to a formally the same structure, if one introduces a
“portal state”. This suggests that the mechanism of the high harmonic generation in
the system of atoms in vacuum and in the crystals are essentially the same. In the
latter case, the translational symmetry plays an important role.

One of the difference in the two models treated here is the quantitative difference
in the effective interaction amplitude with the external fields. In the case of crystals,
the dipole moment for inter-band transition is enhanced by a factor

√
Nef f , where

Nef f is the phenomenologically introduced effective number of atoms participating
in the interaction with photons. The actual value of

√
Nef f will be determined taking
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into account the experimental conditions such as the spacial profile of the laser pulses,
the relaxation times in the excited states and so forth. Anyway, it may be expected
that the solids are promising candidate for the intense light source of high harmonics
because of their higher atomic densities. Another difference of the electron dynamics
in solids from that in vacuum is the existence of a periodic structure of lattice. Usually
this is negligible in the low energy region. However, in the case of motion under the
intense electromagnetic field, the discrete structure of the crystal lattice may become
non-negligible. The criterion for this boundary is the ratio aE0/�ω. In fact, in the
simple tight-binding picture, the effective transfer energy B is reduced to zero for
aE0/�ω = 2.405 and even become negative i. e. the particle has a negative mass, for
2.405 < aE0/�ω < 5.52. This phenomenon is called a dynamic localization [43] or
a band-collapsing [44]. This is due to the coherent path-interference [24] in the driven
quantum system. This effect has been automatically incorporated in the expression of
the integral kernels under uniform electromagnetic field. To the authors knowledge,
clear experimental observation of the dynamic localization in real crystals is yet to
be done. It may be a next target in the intense-laser science in solids.
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