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Preface

Welcome to “Precision Medicine in Cardiovascular Disease Prevention”. The
uniquely comprehensive book was made possible by tapping into the diverse and
talented faculty at the Johns Hopkins Ciccarone Center for the Prevention of
Cardiovascular Disease. Faculty members involved junior colleagues in chapters,
which is essential not only to bringing fresh perspectives to the topic, but also
to building the future leaders of precision medicine.

Preventive Cardiology is a proactive, patient-centered, and multidisciplinary
team-oriented medical subspeciality dedicated to mitigating cardiovascular risk
through research, education, and the highest level of clinical care tailored to a
patient’s risk profile. The field of Preventive Cardiology uses lifestyle interventions
and evidence-based medical treatments to prevent the onset of cardiovascular dis-
ease in people at risk and to prevent further issues in people who already have
cardiovascular disease.

Prevention can be initiated earlier or later in the course of disease. Primordial
prevention is preventing risk factors for cardiovascular disease in the first place.
Primary prevention is preventing cardiovascular events. Secondary prevention is
about preventing subsequent events after an initial event has already occurred. All
are important and will be addressed in this book.

With a view towards cardiovascular disease prevention, this book aims to pro-
vide a comprehensive, forward-thinking, and inspiring take on precision medicine.
It is infused with ample opinion informed by the best science to date and establishes
fundamental principles that regardless of the rapid advances in technology will
remain timeless guiding forces. While the focus is on use of precision medicine in
cardiovascular disease prevention, many of the learnings are relevant and important
to other areas of medicine.

Precision medicine has varied definitions. The US Food and Drug
Administration defined precision medicine as “an innovative approach to tailoring
disease prevention and treatment that takes into account differences in people’s
genes, environments, and lifestyles.” This definition is particularly comprehensive
and captures the movement to a tailored approach from a one-size-fits-all approach.
Related terms often include personalized medicine and individualized medicine.
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Cardiovascular disease prevention is especially well suited for precision medi-
cine. The field is naturally forward looking, aiming to getting ahead of the curve by
predicting the future and averting problems before they happen using the latest
evidence-based innovations. This involves stopping the progression of atheroscle-
rosis in its tracks and preventing cardiovascular events like heart attacks and strokes
before they occur and cause devastating consequences. Preventive cardiology is an
area with vigorous research activity on the cutting-edge of precision medicine
topics. The field has traditionally focused on population-based approaches, with
more recent movement towards precision medicine, and the tension between these
is interesting to explore.

Frequently the discussion of precision medicine takes on a narrower focus
limited to genomics or targeted pharmaceuticals. However, the opportunity for
precision medicine is much larger, as highlighted in this book. While genes,
molecules, and novel pharmaceuticals are key components of precision medicine,
viewing precision medicine through only this lens would be analogous in the
preventive cardiology world to focusing only on one risk factor that contributes to
atherosclerotic cardiovascular disease. To harness the potential, we must be
comprehensive.

As such, the topics in this include:

• Social Determinants of Health
• Biomarkers
• Genomics
• Atherosclerosis Imaging
• Digital Health
• Machine Learning / Artificial Intelligence
• Novel Research Methodologies
• Shared Decision-Making

The book’s 3 large aims are to:

1. Plot the path of precision medicine in cardiovascular disease prevention
2. Review advanced precision medicine techniques and their potential in the future
3. Establish the ground rules for the evaluation of new prevention techniques

Precision medicine is at an exciting intersection. It opens up new data streams,
new ways to process these data, and new ways to empower patients, their care-
givers, and clinicians with these data. It also opens up new ways to test if inter-
ventions work.

This book begins with a focus on social determinants of health because all of the
work that we do in precision medicine must be viewed through the lens of health
equity. Through this lens, we acknowledge that the most vulnerable in our society
need tailored tools to level the playing field. It is essential that research in this area
is diverse and inclusive. To this end, the national Precision Medicine Initiative
changed its name to “All of Us”, reflecting the critical value of diversity and
inclusion in precision medicine.
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A common goal of precision medicine has been, “the right treatment for the right
patient at the right time”. This emphasizes treatment as the ultimate impact of
precision medicine. This is appropriate, in that ultimately what matters is what we
can do to take action to help. But precision medicine is not only about treatment. It
is about diagnostics, even pre-diagnostics, screening, and prevention too. And
diagnostic and contextual data from new sensors, lab tests, and imaging, can play a
key role in informing treatment.

This book comes at a critical time in cardiology and in medicine. The concept of
precision medicine is not new, but we have new tools to realize the potential of
precision medicine. The digital age is disrupting medicine and it’s happening so
rapidly that no one can fully keep up or know exactly where it’s going. However,
clearly we are moving to a future of precision medicine where everything revolves
around the patient. A lot must align to deliver the right care to the right patient at the
right time. We are talking about moving from the population average to notable
subgroups to the individual. We are talking about moving from one-size-fits-all
approaches to tailored approaches.

Precision medicine brings together the fields of mobile and digital health, big
data, genetic medicine, and artificial intelligence. As precision medicine approaches
lead us to understand the individual better, we will understand the individual earlier
in life, at the edge of wellness, such that future disease is predicted and prevented.
But how do we make this a reality? It starts with understanding the pieces that are in
this book.

It is hoped that you will return to key sections of this book as you move forward
in your own journey applying the principles of precision medicine to build the
health care system of the future. Meanwhile, you may find that as additional studies
and discoveries emerge, the foundation of this book will provide a solid footing to
understand and apply new findings.

It is anticipated that the book will be updated from time to time, to incorporate
the latest concepts and advances. Your feedback is most welcomed. If there are
certain topics that you would like to see covered in future editions of this book,
please email smart100@jhmi.edu.

Baltimore, MD, USA Seth S. Martin
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Social Determinants

Zulqarnain Javed, Hashim Jilani, Tamer Yahya, Safi U. Khan,
Prachi Dubey, Adnan Hyder, Miguel Cainzos-Achirica, Bita Kash,
and Khurram Nasir

Social Determinants of Health and Cardiovascular Care:
A Historical Perspective

Dr. Martin Luther King Jr. once said, “Of all the forms of inequality, injustice in
healthcare is the most shocking and inhumane.” These words are as relevant today
as nearly 60 years ago, when they were first spoken by Dr. King at a convention of
the Medical Committee for Human Rights in Chicago in March of 1966 [1]. As
elusive as the concept of health equity sounds, inequities in health and healthcare

Z. Javed � M. Cainzos-Achirica � B. Kash
Center for Outcomes Research, Houston Methodist, Houston, TX, USA

H. Jilani
Department of Medicine, Carle Foundation Hospital, Urbana, IL, USA

T. Yahya � P. Dubey
Houston Methodist Hospital. Houston Methodist Research Institute, Houston, TX, USA

S. U. Khan
West Virginia University, Morgantown, WV, US

A. Hyder
Milken Institute School of Public Health, George Washington University, Washington, DC,
US

M. Cainzos-Achirica � K. Nasir (&)
Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston
Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
e-mail: khurram.nasir@yale.edu

K. Nasir
Center for Computational Health and Precision Medicine, Houston Methodist, Houston, TX,
USA

Division of Health Equity and Disparities Research, Center for Outcomes Research, Houston,
TX, USA

© Springer Nature Switzerland AG 2021
S. S. Martin (ed.), Precision Medicine in Cardiovascular Disease Prevention,
https://doi.org/10.1007/978-3-030-75055-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75055-8_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75055-8_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75055-8_1&amp;domain=pdf
mailto:khurram.nasir@yale.edu
https://doi.org/10.1007/978-3-030-75055-8_1


are explained—to a large extent—by the conditions in which individuals live and
work, procreate and grow old, form social networks, and seek and provide help [2].
These conditions—collectively known as the social determinants of health (SDOH)
—determine our physical, emotional and financial wellbeing, susceptibility to ill-
ness, and overall health and quality of life [3] (Fig. 1).

Traditional models of health and medical care in the US have historically ig-
nored the role of SDOH in predicting wellness and illness [4]. However, radical
changes in healthcare financing in the past decade, including performance-based
reimbursement mechanisms such as value-based care models, coupled with the
documented benefits of primary and secondary prevention on healthcare expendi-
tures and overall value of services, have highlighted the importance of acknowl-
edging and incorporating SDOH in chronic disease prevention and management [5,
6]; these changes in healthcare financing and overall service delivery have helped
bring SDOH to ‘mainstream’ clinical practice models, including care for cardio-
vascular disease (CVD) [5–7].

SDOH provide unique opportunities for tailoring medical care to the individual
patient, thereby improving health outcomes and reducing observed disparities by
informing equitable resource utilization and health services delivery [8–10]. Despite
the proven link between SDOH and health outcomes, and the demonstrated urgency
to incorporate SDOH into existing and any future policy and practice models, social
determinants are grossly under-utilized—to the detriment of the individual patient,
and the population at large [4, 11]. In particular, current frameworks of ‘precision
care’ rarely incorporate SDOH into clinical decision management tools, severely
limiting the documented benefits of SDOH application in clinical settings [9, 12, 13].

Fig. 1 Social determinants of
health
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President Barack Obama launched the Precision Medicine Initiative in 2015, and
outlined its goals as, ‘…delivering the right treatments, at the right time, every time
to the right person’ [14]. However, recent evidence points to the challenges and
shortcomings of contemporary precision medicine—from both an economic and
health outcomes perspective—owing to inattention to SDOH [13, 15, 16]. Indeed,
real-world evidence clearly suggests that SDOH integration into clinical care is
associated with improved outcomes in vulnerable populations [17, 18].
Consequently, novel health services delivery approaches advocate for the use of
individuals’ unique social and environmental risk factor profile to guide disease
prevention and management efforts and maximize the utility of precision health,
with major implications for health equity [12, 15].

This chapter discusses SDOH in the context of disparities in CVD care and
outcomes. We highlight the link between different SDOH domains and CVD;
potential role of SDOH in identifying high-risk, marginalized population sub-
groups; and the use of SDOH knowledge to inform care delivery to underserved
populations, given their unique SDOH burden. In addition, we provide a brief
overview of the major efforts in highlighting disparities in health and healthcare in
the US over the past four decades.

Landmark Reports on Health Disparities: Relevance to CVD

Much awareness, attention and work in the field of health disparities and minority
health is pioneered by the landmark report on minority health, “Black and Minority
Health”, issued in 1985 by then Secretary of US Health and Human Services,
Margaret M. Heckler [19]. The critical report presented objective evidence of wide
disparities in health outcomes, experienced disproportionately by the minority
populations in the US, particularly the Black population. The Heckler report was
the first detailed account of health disparities on a national level in the US, and the
first major acknowledgement of such disparities by the US government. The report
highlighted that heart disease and stroke were the leading cause of excess mortality
in Black people compared to White people—with an average annual excess mor-
tality burden of 31% [19].

It was not until nearly two decades later that the findings from the Hecker report
were used as a framework to build on work in the field, and determine future
directions on a path to health equity. The groundbreaking Institute of Medicine
(IOM) report titled “Unequal Treatment: Confronting Racial and Ethnic Disparities
in Healthcare,” [20] analyzed evidence from nearly 600 published studies and
revealed glaring racial/ethnic disparities in outcomes for major medical conditions,
including CVD. The IOM report provided the first comprehensive framework to
address disparities in health and healthcare, with a particular focus on race, racism,
and discrimination, and the interplay of various SDOH to produce health outcomes
in minority populations. The report concluded with a set of recommendations, and
provided a basis for design of interventions to address such disparities—a
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framework that many academicians, clinicians, population health scientists and
policy makers have used in the past two decades.

Subsequently, the American College of Cardiology (ACC) and the
Henry J. Kaiser Family Foundation (KFF) published a joint review of disparities in
cardiovascular services in the US, and reported that Black people were less likely
than White people to receive diagnostic and revascularization procedures, even after
adjusting for patient characteristics [21].

These accounts were followed by major work from the Centers for Disease
Control and Prevention (CDC): “State of Health Disparities and Inequalities in the
US,” [22] and two landmark scientific statements on SDOH from the American
Heart Association [23, 24]. These reports further acted as stark reminders of the fact
that healthcare in the US in general, and cardiovascular care specifically, are not
equitable, and that much needed attention must be accorded to SDOH if the goals of
health equity were to be achieved nationally. These reports are summarized in
Table 1.

Prior work presents important opportunities to further knowledge on health
disparities in the US, including frameworks that can—and must—be used to design
evidence-based, scientifically robust interventions in order to address various
SDOH and improve CVD risk and outcomes in vulnerable populations. The goal is
to inform future actions to incorporate SDOH into policy-making and clinical
practice, and reduce disparities in CVD and associated outcomes locally, nationally
and globally.

Role of SDOH in Cardiovascular Care: Ignored for Far Too
Long

Current State of CVD Disparities in the US

CVD is the leading cause of death in the US, [25] with significant financial
implications for both patients and the healthcare system. The cost of CVD in the US
is estimated at nearly $550 billion annually, including $237 billion in lost pro-
ductivity due to premature CVD and stroke [26]. By 2035, the direct costs asso-
ciated with CVD are expected to double in the US, with nearly 45% of the
population expected to develop some form of CVD [26]. Marginalized populations,
such as racial/ethnic minorities are affected disproportionately by CVD, and its risk
factors [27–29].

Recent data from Centers for Disease Control and Prevention (CDC) [27] show
that non-Hispanic Black people experience nearly 1.5 times increased prevalence of
hypertension and diabetes, and 20% higher rates of CVD related mortality, relative
to non-Hispanic White people. Non-Hispanic Black people are more than twice as
likely to die from heart disease, compared to other minority groups, including
non-Hispanic Asian people or Pacific Islanders. While a decreasing trend in CVD

4 Z. Javed et al.



Table 1 Landmark reports on health disparities in the US

Agency Published Title Major CVD
related findings

Link

U.S Department of
Health and Human
Services.
Contributor:
Heckler, M

1985 Report of the
Secretary’s Task
Force on Black &
Minority Health.
The ‘Heckler’
Report

Heart disease and
stroke were the
leading cause of
excess mortality in
the Black
population,
compared to their
White counterparts

https://collections.
nlm.nih.gov/
catalog/nlm:
nlmuid-8602912-
mvset

Institute of
Medicine
(US) Committee
on Understanding
and Eliminating
Racial and Ethnic
Disparities in
Health Care
Smedley, BD. et al

2002 Unequal
Treatment:
Confronting
Racial and Ethnic
Disparities in
Healthcare

Black people were
less likely to
undergo cardiac
catheterization,
revascularization
procedures or
CABS after MI,
compared to White
people

https://www.nap.
edu/catalog/
12875/unequal-
treatment-
confronting-racial-
and-ethnic-
disparities-in-
health-care

Henry J. Kaiser
Family
Foundation.
Lillie-Blanton, M.
et al

2002 Racial/Ethnic
Differences in
Cardiac Care:
The Weight of
the Evidence

Black people were
less likely than
White people to
receive diagnostic
and
revascularization
procedures, even
after adjusting for
patient
characteristics

https://www.kff.
org/wp-content/
uploads/2002/09/
6040r-racial-and-
ethnic-differences-
in-cardiac-care-
report.pdf

Centers for
Disease Control
and Prevention:
State of Health
Disparities and
Inequalities in the
US

2013 CDC Health
Disparities and
Inequalities
Report

Age-adjusted
coronary heart
disease
(CHD) death rate
was higher among
non-Hispanic
Black people than
any other racial/
ethnic group. Rate
of premature death
(aged < 75 yrs)
was higher among
non-Hispanic
Black people than
their White
counterparts

https://www.cdc.
gov/
minorityhealth/
CHDIReport.html
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prevalence is observed in non-Hispanic White people over the past two decades,
rates of heart disease have remained relatively unchanged in racial/ethnic minority
populations [27].

Such disparities are linked to multiple SDOH in underserved populations—
including barriers to care and socioeconomic disadvantage—which exert both
independent and cumulative effects on CVD outcomes. For example, rates of most
CVD preventive services are higher in non-Hispanic White people, relative to other
racial/ethnic groups [27, 30]. Compared to non-Hispanic White people, Asian
people are reported to have 60–64% lower likelihood of routine weight and blood
pressure screening, whereas Hispanic people are over 50% less likely to report
routine blood pressure measurement, and 66% less likely to be asked by their
healthcare provider about smoking habits [30].

A recent study of nearly 45,000 non-institutionalized US adults reported sub-
stantial and persistent disparities in CVD prevalence by socioeconomic status
(SES), from 1999–2016 [31]. Abdalla et al. found that overall prevalence of con-
gestive heart failure (CHF) and stroke was less than one-third, and less than
one-half in the ‘highest resource’ group, respectively, relative to the remainder of
the population. In addition, disparities in CVD prevalence between the highest and
lowest resource groups have widened over the past twenty years [31].

SDOH are important predictors of disparities in CVD risk and outcomes, and are
particularly relevant to CVD prevention and management [23]. Current models of
CVD care are mostly designed to address traditional risk factors for CVD; much
effort, energy and resources have been allocated to the medical determinants of
health [32]. However, past and present models of CVD care seldom acknowledge
the critical role of SDOH, or the failure of leaders in the field to build a compre-
hensive yet personalized care model, informed by SDOH. Meaningful reductions in
cardiovascular health disparities cannot be achieved without incorporating SDOH
into existing models of care, and informing CVD prevention and management
approaches. Indeed, SDOH are critical to achieving true equity in cardiovascular
care, and outcomes.

SDOH, ‘Traditional’ Risk Factors and Current Models
of CVD Care

Most existing practice models of CVD prevention target traditional downstream
CVD risk factors such as cigarette smoking, diabetes mellitus, obesity, hypertension
and physical activity; [33] very few recognize SDOH as major upstream determi-
nants of CVD outcomes, and fewer yet, identify potential mechanisms to incor-
porate SDOH into prevention efforts—both on a policy and practice level [32, 33].
Contrary to current norms of CVD care, years of research have shown that a
‘prescription’ for healthy behaviors seldom achieves the intended goal of lower
CVD risk, or improved clinical outcomes in most patients [34–36]. Instead,
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improvements in individual risk factor profile require a multi-faceted approach that
targets different SDOH domains, as well as pathways that link each domain to CVD
outcomes [32, 33].

Addressing upstream determinants of health is a top Healthy People 2030 goal:
“creating social, physical, and economic environments that promote attaining the
full potential for health and well-being for all” [37]. It is known that medical care
for traditional disease risk factors accounts for only 10–20% of the variation in
health outcomes; the rest is explained by our behaviors, environment, and the
conditions in which we live and work, i.e. SDOH [38]. Indeed, findings from a
unique population-based study using data from over 3000 US counties across 45
states demonstrate that socioeconomic factors, health behaviors, medical care and
physical environment contribute 47, 34, 16 and 3%, respectively to a composite
health outcomes score on a national level in the US [36].

Equitable healthcare resource distribution, such as uniform access to best
practice interventions for CVD prevention can significantly reduce disparities risk
in CVD mortality, overall and by SES [39]. However, current best practices rarely
incorporate SDOH as the “causes of causes,” i.e. upstream determinants of classic
CVD risk factors—a missed opportunity for population health management.
Unfortunately, improvements in CVD care have not been shared equally among
different population subgroups over the past century. Indeed disparities in CVD risk
and outcomes persist across a wide spectrum of SDOH [29, 31, 40, 41]. As dis-
cussed in the following sections, SDOH affect CVD not only directly but also
indirectly via effects on health behaviors and other traditional risk factors. These
pathways are discussed in greater detail in the following sections.

SDOH and CVD: A Review of Current Literature

The link between individual socioeconomic factors and health outcomes has been
extensively studied. However, relatively few studies have investigated the associ-
ation between different SDOH domains and risk factors, overall burden and
long-term outcomes for CVD.

The landmark American Heart Association (AHA) “Scientific Statement on
Social Determinants of Risk and Outcomes for Cardiovascular Disease” highlighted
major shortcomings of the US healthcare system in failing to address, and incor-
porate SDOH into policies and practices for cardiovascular care [24]. The report
also highlighted critical knowledge gaps that must be filled in order to move the
needle from health disparity to health equity; particularly if we are to stem the rising
burden of CVD in the US, which continues to impact marginalized populations
disproportionately, and is projected to rise to over 45% by 2035—a 30% increase
since 2015 [26].

The following subsections review existing knowledge of the link between dif-
ferent SDOH—organized into distinct domains and subdomains—and CVD. Each
section discusses current evidence and major pathways of the SDOH-CVD link.
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SDOH: A Domain-Based Analysis

SDOH influence CVD via multiple pathways and mechanisms. The association
between SDOH within each domain and CVD, and possible pathways of the
observed association are discussed briefly in this section. As depicted in Fig. 1,
SDOH do not act in isolation; rather different SDOH interact to influence CVD. The
discussion of SDOH herein is based on the frameworks proposed by Healthy
People 2020 and the Kaiser Family Foundation, [2, 42] which organize SDOH into
six distinct domains: economic stability, education, food, neighborhood and
physical environment, health care system and community and social context.

Economic Stability

Economic stability is defined by income, wealth, employment status and occupa-
tional category. While other definitions of economic stability also include physical
living conditions, education and food insecurity, [2, 42] those are discussed sepa-
rately, given their independent association with CVD. This section focuses on
income and employment as the major measures of economic stability.

Current Evidence and Pathways

The association between low income and increased risk of myocardial infarction
(MI), heart failure and stroke is seen across study designs and target populations
[43, 44]. In a unique computer simulation study of over 31 million US adults aged
35–64 years, Hamad et al. [45] analyzed the association between low SES (defined
as <150% of federal poverty level [FPL] or education less than high school) and
premature (i.e. occurring before age 65 years) CHD and myocardial infarction
(MI) deaths, and found that rates of premature MI and CHD mortality were twice as
high in the low SES group, relative to high SES group. The authors further
demonstrated that SES-associated ‘upstream’ risk factors explained a greater pro-
portion of the observed mortality disparities, compared to traditional risk factors
(60% vs. 40%, respectively).

A meta-analysis of 70 studies reported an overall increased risk of acute
myocardial infarction (AMI) for all three measures of SES, i.e. income, education
and occupation [46]. The study found 71% increased AMI risk for low income
(pooled relative risk [RR] 1.71; 95% CI 1.43–2.05); 34% for low education (pooled
RR 1.34; 95% CI 1.22–1.47); and 35% for low occupational socioeconomic
position (pooled RR 1.35; 95% CI 1.19–1.53). Another meta-analysis of over 50
studies reported an increased risk of hypertension associated with socioeconomic
adversity [47]. Leng et al. found 19% (pooled odds ratio [OR] 1.19; 95%
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CI = 0.96–1.48), 31% (pooled OR 1.31; 95%CI 1.04–1.64) and over 100% (pooled
OR 2.02; 95%CI 1.55–2.63) increased risk of hypertension for income, occupation
and education, respectively.

These findings are further corroborated by results from the landmark Whitehall
study of nearly 18,000 British civil servants, which showed that civil servants in the
lowest SES category had nearly 3 times increased risk of CHD mortality over a
10-year period, compared to those in the highest SES category; smoking and other
traditional CVD risk factors only explained part of the observed mortality difference
[48].

The association between economic stability and population level CVD outcomes
has been analyzed on a global scale. For example, in a comprehensive review of
published literature on SES and stroke outcomes, Addo et al. [49] reported that both
stroke mortality and disability-adjusted life years (DALY) lost are over threefold
higher in low income countries, compared to high and middle income countries.
A national prospective cohort study of over 45,000 patients in Netherlands, fol-
lowed for three years, reported a 37–39% increased relative risk of AMI and 55–
74% increased relative risk of chronic ischemic heart disease (CIHD), with the
variation attributed to gender [50]. Similarly, the Atherosclerosis Risk in
Communities (ARIC) study—a large-scale, prospective cohort of nearly 10,000
community-dwelling, predominantly black and white men and women—found that
participants who experienced decline in income levels over a mean follow-up of
17 years had higher risk of MI and stroke, compared to those whose income
remained relatively unchanged [51]. Conversely, participants whose income
increased during the study period experienced lower incidence of CVD compared to
those individuals whose income was unchanged [51].

Employment status and occupational category are important markers of eco-
nomic stability, and independent determinants of CVD. Unemployment, change in
employment status, blue collar/service occupational categories and job stress are all
linked to poor CVD outcomes in a variety of target populations. For example, a
unique prospective study of over 40,000 Japanese men and women followed for an
average of 15 years reported a 1.5–threefold increased risk of stroke incidence and
stroke mortality in individuals who experienced job loss (Hazard Ratio [HR] for
stroke incidence, men 1.58 [95%CI 1.18–2.13]; HR for stroke mortality, women
2.48 [95%CI 1.26–4.77]) or reemployment (HR for stroke incidence, men 2.96
[95%CI = 1.89–4.62]; HR for stroke mortality, women = 2.48 [95%CI = 1.26–
4.77]) [52].

In addition to the direct effects on CVD, economic stability plays a major role in
determining a variety of CVD outcomes via indirect effects on other SDOH
domains. Multiple proposed mechanisms link SES and CVD; most of which are
based on the interplay of different SDOH domains potentiating the risk of adverse
CVD outcomes. For example, loss of income has been associated with consumption
of unhealthy foods, unhealthy behaviors such as smoking, and greater degree of
psychological stress and depression, which are in turn linked to elevated risk of
CVD [53, 54]. Income level and loss of employment can affect health insurance
coverage, access to medical care and neighborhood of residence; all of which
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impact cardiovascular health [55]. Higher SES facilitates access to resources such
as knowledge, social networks, safe/stable housing and access to health care that
can mitigate the negative effects of economic instability on CVD and overall health
[56].

Summary

• Economic stability affects CVD through a multitude of direct and indirect
pathways, with great implications for both individual and population
cardiovascular health

• CVD treatment and prevention efforts must carefully consider the role of
economic stability, both on a clinical and policy level

• Future research must focus on development and validation of an
exhaustive measure of economic stability, inclusive of income and wealth,
education, and occupational status and employment, to be applied to
diverse population subgroups

Education

The association between education and health, wellbeing and quality of life is well
documented in the literature [57]. Education impacts health broadly, and CVD in
particular, via numerous pathways. The discussion of education herein includes
both formal educational attainment, and health literacy.

Current Evidence and Pathways

Low educational attainment is associated with adverse CVD risk factor profile and
increased risk of CVD incidence and mortality [41]. Results from the recent
Prospective Urban Rural Epidemiologic (PURE) study of over 150,000 participants
from 20 countries globally—followed for an average of 7.5 years—document a
1.23 to 2.23 times increased risk of major cardiovascular events for low educational
attainment, relative to high level of education, with the highest risk observed in
low-income countries (HR [low vs high level of education] 2.23; 95% CI 1.79–
2.77). These results are supported by a meta-analysis of 72 cohort studies from
Asia, Europe and the US, which reported an up to 40% higher risk of stroke, CAD
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and cardiovascular mortality in individuals with low educational attainment, rela-
tive to their counterparts [58].

INTERHEART—a case–control study of over 26,000 participants from 52
countries reported an over 30% increased risk of non-fatal AMI associated with less
than 8 years of education; the observed association persisted even after adjusting
for a variety of sociodemographic and clinical covariates [59, 60]. Similarly,
findings from the ARIC study—a prospective study of 13,948 White and African
American adults aged 45–64 years—demonstrated an inverse relationship between
educational attainment and lifetime CVD risk; [61] Kubota et al. found that over 1
in 2 participants with less than high school education experienced a lifetime event
of CVD.

Education can affect CVD outcomes both directly and indirectly via effects on
other SDOH. In general, academic success is linked to higher earnings, which in
turn provide resources for access to healthcare, better housing and healthier food
options [62–64]. Further, education is an important determinant of occupational
status; low educational attainment is linked to unemployment, which predisposes to
poverty, food insecurity, unstable/unsafe housing and various other intermediary
behavioral and environmental factors that predict adverse CVD outcomes [65].

Nearly 80 million U.S adults are reported to have limited health literacy, which
is associated with poor health outcomes [66]. Higher education levels increase
access to, and understanding of, important resources such as recommendations/
guidelines for a balanced diet, physical activity, as well as available evidence on
risk factors, prevention and management of major chronic illnesses, including CVD
[67].

It has been previously reported that individuals with limited health literacy are
more likely to adopt unhealthy behaviors such as smoking, and less likely to
achieve cessation [68, 69]. The negative effects of education on adverse CVD
outcomes such as coronary artery disease (CAD) persist, regardless of other
sociodemographic factors and clinical predictors [70]. Conversely, higher health
literacy is associated with healthy behaviors, positive lifestyle changes, and
increased medication adherence [71, 72].

Traditional risk factors such as diabetes, hypertension and body mass index
(BMI) have been shown to mediate the relationship between education and CVD
[122], which further reinforces the intersectional nature of SDOH, i.e. effects on
cardiovascular health via multiple direct and indirect pathways, including inter-
linkages among different SDOH domains, as well as between each domain and
traditional/clinical risk factors.
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Summary

• Education exerts important influences on cardiovascular health, both
directly and indirectly via ‘facilitatory’ effects on other SDOH such as
income and occupation

• Education—both formal educational attainment and health literacy—
play an important role in shaping our behaviors, and determining the risk
of CVD

• Future efforts must focus on elucidating possible pathways between
education and various upstream and downstream CVD risk factors

• Effects of education and other SDOH, including income, occupation and
race/racism must be analyzed from an intersectionality lens

Neighborhood and Physical Environment

This diverse domain encompasses various aspects of housing (e.g. safety, quality),
physical environmental conditions such as air/water quality, availability of play-
grounds, greenness, walkability, availability of hospitals, schools and grocery
stores, and public transport [2]. Our built environment determines access to a wide
range of other SDOH, and factors that can directly or indirectly affect risk of CVD.
For example, neighborhood safety and sidewalk availability to facilitate physical
activity and availability of nearby hospital to receive immediate medical care. These
relationships and pathways linking neighborhood/physical environment to both
CVD, and other SDOH, are discussed below.

Current Evidence and Pathways

Disadvantaged neighborhoods are known to predict adverse CVD outcomes [73].
Unger et al. [74] studied the association between neighborhood characteristics and
cardiovascular health using baseline (2000–2002) data from the Multi-Ethnic Study
of Atherosclerosis (MESA)—a national prospective cohort study nearly 7000 of
middle aged and older adults in the US. The authors reported that resources for
physical activity (OR 1.19; 95%CI 1.08–1.31), neighborhood walkability (OR 1.20;
95%CI 1.05–1.37) and high neighborhood SES (OR 1.20; 95%CI 1.05–1.37) were
all associated with increased odds of ideal cardiovascular health score (cumulative
measure of traditional CVD risk factors) [74].
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The Jackson Heart Study—a landmark cohort study of over 4000 African
American men and women aged 21–93 years—assessed the association between
neighborhood disadvantage/poor social conditions and CVD risk, and found that
each standard deviation (SD) increase in neighborhood disadvantage increased the
risk of CVD by 25% (HR 1.25; 95% CI 1.05–1.49) in women but not in men [75].
The authors also reported an inverse relationship between neighborhood disad-
vantage, and duration/frequency of physical activity, with implications for overall
CVD risk factor profile in disadvantaged communities. Similarly, findings from the
Cardiovascular Health in Ambulatory Care Research Team (CANHEART) [76]—a
large cross-sectional study of approximately 45,000 adults aged 40–70 years—
showed a 19–33% higher 10-year CVD risk for individuals living in neighborhoods
with low walkability scores, relative to residents of neighborhoods with high scores
[76].

Other aspects of physical environment, such as air quality also have important
effects on cardiovascular health. A systematic review of 18 studies (5 cohort and 13
cross-sectional) found that particulate matter air pollution was associated with the
presence and progression of subclinical atherosclerosis, as measured by coronary
artery calcium score and carotid intima media thickness [77]. Further, neighborhood
safety might directly affect physical activity and possibly increase psychological
stress—both risk factors for CVD [78, 79]. A cross-sectional study of the young
and middle aged population in Stockholm, Sweden found that individuals living in
unsafe neighborhoods with high crime rates experienced an up to 75% increased
odds of CHD (OR 1.75; 95% CI 1.37–2.22) [78].

A cross-sectional study of 11,404 Australian adults reported a protective effect of
neighborhood greenness (37% lower odds) on hospitalization for heart disease or
stroke [80]. The Baltimore Memory Study, a cross-sectional study of 1,140
Baltimore residents aged 50–70 years, demonstrated that individuals in the most
unsafe neighborhoods, as assessed by the self-reported neighborhood psychosocial
hazards scale (NPH)—including indicators of public safety, physical disorder,
economic deprivation and social disorganization—experienced over 4 times higher
odds of myocardial infarction (MI) and 3 times higher odds of MI, stroke, transient
ischemic attack (TIA), or intermittent claudication compared with residents living
in safer neighborhoods [79].

Relatively little is known about the cumulative ‘life course’ effects of neigh-
borhood disadvantage. While long-term effects of SES and neighborhood condi-
tions have been examined overall, relatively few studies have examined such effects
on cardiovascular outcomes [81–83]. Findings from a MESA study of nearly 5000
middle aged and older men and women, followed up for 20 years, suggest that
worse neighborhood trajectory class (i.e. greater neighborhood poverty) predicted
worse CVD outcomes, as measured by common carotid intima media thickness;
however, the association was only observed in women. Greater research is needed
to increase understanding of neighborhood and physical environment effects across
the life course.
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Summary

• Neighborhood and physical environment provide, and facilitate access to,
a variety of other SDOH

• Neighborhood environment affects CVD risk both directly as well as via
behavioral and psychosocial pathways

• Weight of current evidence suggests a positive impact of favorable
neighborhood conditions and a negative effect of unfavorable neighbor-
hood conditions on overall cardiovascular health

• Further research is needed to better understand how exposure to adverse
physical and psychosocial environments in early life predicts adverse
CVD outcomes later in life

• Future efforts must examine the life-course perspective of disease and
health in the context of neighborhoods, with particular attention to po-
tential disparities in long-term outcomes by race/ethnicity

Food

Dietary behaviors are an important part of traditional risk factor modification rec-
ommendations to promote cardiovascular health. Existing guidelines to reduce
CVD risk via improvements in dietary habits have been extensively reviewed
previously [84]. However, diet has mostly been analyzed in conjunction with other
behavioral risk factors such as physical activity; much less attention has been paid
to food as a distinct SDOH domain, particularly in the context of food insecurity—
as discussed in this section.

Current Evidence and Pathways

Presence of nearby grocery stores and supermarkets is essential to availability of
healthy food choices, which may improve overall cardiovascular risk profile. Kaiser
et al. [85] used data from the MESA study to evaluate the relationship between
neighborhood physical and social environment, and incident hypertension in nearly
3400 adults aged 45–84 years with a mean follow up of over 10 years; the authors
reported that a 1 standard deviation (SD) increase in healthy food availability was
associated with a 12% lower risk of hypertension (HR 0.88; 95%CI 0.82–0.95).
Similarly, results from another MESA study of over 6800 US adults suggested that
availability of ‘favorable’ food stores—defined as chain and non-chain
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supermarkets, and fruit and vegetable markets—was associated with 22% increased
odds of a favorable cardiovascular profile (cumulative risk score based on tradi-
tional CVD risk factors) [74].

Morland et al. [86] studied the association between presence of supermarkets
and convenience stores with CVD risk factors using data from over 10,000 adults
enrolled in the ARIC study. The authors reported that prevalence of supermarkets
was associated with lower prevalence of obesity (prevalence ratio [PR] 0.83; 95%
CI 0.75–0.92) and overweight (PR 0.94; 95% CI 0.90–0.98); conversely, presence
of convenience stores was associated with higher prevalence of both obesity (PR
1.16; 95% CI 1.05–1.27) and overweight (PR 1.06; 95% CI 1.02–1.10) [86].
Similar findings were documented by Powell and colleagues, who studied the
association between access to local convenience stores vs supermarkets, and ado-
lescent body mass index (BMI) in over 73,000 adolescents; [87] and reported that
one additional chain supermarket per 10,000 capita was associated with 0.11 units
lower BMI, and 0.6 percentage point reduction in overweight prevalence, whereas
an additional convenience store per 10,000 capita was associated with 0.03 units
higher BMI and 0.2 percentage points increase in prevalence of overweight [87].

Availability of healthy food choices may have important effects on CVD-related
health behaviors. For example, Morland et al. [88] studied the contextual effects of
local food environment on residents’ diet using data from the ARIC study, and
reported that presence of each additional supermarket in the census tract increased
fruit and vegetable consumption by 32% and 11% in African Americans and
Whites, respectively. However, low income neighborhoods are less likely to have
healthy food outlets and supermarkets, and more likely to have small grocery and
convenience stores [89]. Data from the 2000 Census [89] suggests considerable
racial/ethnic and socioeconomic disparities in access to healthy food outlets, with
25% fewer chain supermarkets in low income neighborhoods, compared to
middle-income neighborhoods; and 50–70% fewer chain supermarkets in African
American and Hispanic neighborhoods, relative to White neighborhoods.

Living in a food desert—defined as area with both poor food access and low area
income [90]—might increase risk of adverse CVD outcomes. A recent national
cross-sectional study of nearly 9,000 young adults reported an increased cardio-
vascular health risk associated with residence in a food desert [91]. Similarly, a
prospective study of nearly 5,000 middle aged and older individuals reported a 39%
increased risk of MI and 18% increased risk of death from MI associated with living
in a food desert, in patients with existing coronary artery disease (CAD); however,
the association was observed only for low area income and not food access [92].
Greater research is needed to better understand the impact of environmental and
contextual factors (e.g. nearby supermarkets) vs individual level barriers to access,
such as income and/or other resources for accessing healthy food options (e.g.
Supplemental Nutritional Assistance Program [SNAP] benefits, transportation,
etc.).
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Summary

• Access to, and availability of healthy food is critical toward cardiovas-
cular health, regardless of other sociodemographic determinants

• Both individual and area income, and availability of supermarkets and
healthy food options are important from a primary and secondary CVD
prevention perspective

• Further study is needed to better define—and measure—variables such as
‘food access’ that are often not well defined or appropriately analyzed in
epidemiological studies

• Additional research is needed to understand the impact of economic
resources (e.g. income, SNAP) on healthy food choices

• Public health programs should focus on developing evidence-based
behavioral interventions that target enhanced utilization of healthy food
options made available via supermarkets and grocery stores

• Community partnerships are key to improving access to healthy, afford-
able food

Community and Social Context

Community and social context is defined as “the context in which societal and
cultural factors interact to impact health outcomes” [93]. This domain is generally
divided into four distinct sub-domains, including social support, social cohesion/
social networks, community engagement and discrimination [3]. Each subdomain is
subclassified to represent distinct constructs. For example, social support is often
classified into the following four types: emotional, instrumental, informational and
appraisal [94]. Similarly, discrimination is subdivided by (a) impact on specific
population subgroups, such as racial/ethnic, national origin, gender, sexual orien-
tation, elderly, and disabled; and (b) level of impact, such as individual and
structural [3].

Current Evidence and Pathways

Each community and social context subdomain is linked to CVD via multiple, often
interconnected pathways. For example, social support—a key subdomain—is
linked to psychological wellbeing, increased ability to cope with stress, improved
self-care and overall health-related quality of life [94, 95]. In a secondary analysis
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of randomized controlled trial (RCT) data from over 300 older adults with a history
of heart failure (HF), Gallagher and colleagues found that individuals with high
levels of social support were more likely to consult with a health professional for
weight gain, adhere to medication, get a flu shot, and exercise regularly, compared
to those with medium or low levels of social support [95].

Conversely, lack of social support has been associated with increased risk of
CVD. In a secondary analysis of data for over 200 patients from two prospective
studies, Wu et al. reported 2.5 times increased risk of adverse cardiac events in
patients experiencing both lack of social support and medication non-adherence,
relative to those with medication adherence and higher social support (OR) 2.47;
95% CI 1.16 5.23) [96]. In the same study, the authors reported a mediation effect
of medication adherence on the social support-cardiac event-free survival rela-
tionship, highlighting a possible mechanism through which social support might
impact cardiovascular health.

In one of the largest reported prospective cohort studies on the topic, Kawachi
and colleagues [97] studied 32,624 male health professionals over a 4-year
follow-up period, and reported that participants with the least social support had 1.9
times increased risk for cardiovascular mortality and 2.21 times increased risk of
incident stroke, compared to those in the highest social support category (RR 1.90
& 2.21 for cardiovascular mortality and incident stroke, respectively).

While direct pathways from racism to CVD are relatively unclear, discrimination
has been documented to have detrimental effects on overall cardiovascular health in
marginalized populations [98]. A review of published empirical evidence (24
studies) of the link between racism/ethnic discrimination and hypertension found
consistently elevated risk of hypertension in individuals experiencing racism; the
observed patterns were more pronounced for institutional racism, compared to
individual racism; and ambulatory blood pressure relative to resting blood pressure
monitoring [99]. Similarly, results from the Metro Atlanta Heart Disease Study
show that high psychological stress associated with racial discrimination is a strong
predictor of incident hypertension in African Americans [100].

Social networks and social cohesion are important determinants of self-care and
health. In a prospective study of 1,384 participants from the Cardiovascular and
Metabolic Disease Etiology Research Center–High Risk Cohort, Joo and colleagues
found that individuals with deficient social networks were 72% more likely to have
higher CAC scores (>400) [101]. In addition, greater social cohesion has docu-
mented beneficial effects on cardiovascular health. For example, a prospective
cohort study of over 500 middle aged and older women reported that each single
point increase in social network index (SNI) score was associated with nearly 20%
reduced risk of CVD mortality (Relative Risk [RR] 0.81; 95% CI 0.66–0.99); the
authors reported that high SNI scores predicted lower total adverse cardiovascular
events (combined mortality, hospitalization, MI, stroke, CHF; RR 0.85; 95% CI
0.75–0.96) and lower rehospitalization rates (RR 0.87; 95% CI 0.77–0.99) over the
2.3 year follow-up period [102].

The positive impacts of community engagement on cardiovascular health, and
negative effects of a lack thereof, have been documented in the literature. In a
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unique cohort study of 2.8 million Swedish adults aged 45–74 years, low linking
social capital (i.e. low community engagement) was associated with nearly 20%
and 30% increased risk of CHD in men and women, respectively [103]. Conversely,
in a convenience sample of middle aged and older African American women,
Brown and colleagues demonstrated that a community engagement intervention for
healthy behaviors was associated with improvements in cardiorespiratory fitness
(Time to finish VO2max (min) = −1.87) and both systolic (−12.73 mmHg) and
diastolic (−3.31 mmHg) blood pressure [104].

Summary

• Existing evidence strongly suggests a negative effect of lack of/poor social
support and social cohesion, and deficient social networks on cardio-
vascular health

• Evidence for a positive effect of social support—including the long-term
impact of social support interventions—on CVD outcomes is less well
documented in the literature

• Further evidence from large-scale, prospective studies is critical to
clearly demonstrating the benefits of social support on cardiovascular
health

• Greater quantitative and qualitative evidence is needed to develop a
standardized social support measurement tool, with provisions for
adaptation and use in a variety of sociodemographic settings

• Relatively few studies have examined the impact of race, racism and
racial/ethnic discrimination on CVD; further study is warranted to elu-
cidate potential mechanisms that explain the discrimination-CVD link in
vulnerable populations

Healthcare

Healthcare is a major SDOH. Given healthcare dynamics in the US, health insur-
ance is a major determinant of access to essential health services; lack of which
directly, and severely, limits access to health care and increases risk of adverse
health outcomes, particularly among vulnerable and underserved minority popu-
lation subgroups [105, 106].
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Current Evidence and Pathways

It is known that being uninsured or underinsured diminishes the likelihood of
receiving preventive care for CVD, increases the risk of missed doctor appoint-
ments and medication non-adherence, and is associated with poor overall cardio-
vascular health [107, 108]. A large-scale prospective study of over 15,000 middle
aged and older adults reported that individuals without health insurance had 65%
increased risk of stroke, and 26% increased risk of mortality, relative to the insured
[109]. Further, the uninsured were less likely to be aware of CVD risk factors such
as hypertension and hyperlipidemia, and less likely to report routine physical
examination, compared to those with insurance coverage.

Disparities in access to care are a major driver of disparities in health outcomes,
with a disproportionate impact on racial/ethnic minorities. Non-Hispanic Blacks
and Hispanics make up the bulk of the uninsured population in the US, predis-
posing these already vulnerable populations to adverse CVD outcomes—as high-
lighted in multiple prior reports [29, 110–112]. Related, type of insurance is an
important determinant of access to care. Findings from a nation-wide survey of
230,258 Medicaid beneficiaries indicated that this population is twice as likely to
experience barriers to obtaining primary care, relative to those with private insur-
ance [113]. For example, low re-imbursement for Medicaid patients has been cited
as a possible reason for physicians not accepting Medicaid patients [114].

The beneficial effects of insurance coverage for the previously uninsured are
well documented, [115] as evidenced by a household survey of 2203 middle aged
and older adults, which showed that differences in CVD risk screening such as
cholesterol screening between the insured and uninsured were reduced by nearly
20%, after the latter acquired Medicare coverage at the age of 65 [116]. Similarly,
in a quasi-experimental study of over 1,000,000 US adults with CVD, Barghi et al.
[117] reported positive outcomes with increased access to health services post
ACA. The authors reported that, relative to the pre-ACA period (2012–2013),
health insurance coverage, ability to pay for a doctor’s visit and frequency of
having an annual check-up increased by nearly 7, 3.6 and 2.2%, respectively in the
post-ACA period (2015–2016).

In addition, transportation barriers, such as lack of access to personal vehicle or
safe/reliable public transport may restrict access to, and utilization of health ser-
vices, potentially resulting in delayed and/or missed care and prescription
non-adherence [118].

A relatively under-investigated area is the issue of implicit provider bias in US
healthcare, which might be based on race/ethnicity, SES, gender, weight and/or
disability status. For example, findings from the Commonwealth Fund Minority
Health Survey of US adult population document that low income is the most
common reason for perceived discrimination [119]. In the same study, the authors
reported that African Americans and Hispanics were more likely to report perceived
discrimination, compared to White participants. Such biases affect patient-clinician
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interaction, medication adherence, treatment decisions, and overall quality of care
and health outcomes [120].

Summary

• Access, quality and timeliness of care are critical determinants of car-
diovascular health

• Vulnerable population subgroups, including racial/ethnic minorities and
the socioeconomically disadvantaged, face multiple health system
barriers

• Lack of/limited insurance coverage, implicit bias and perceived discrim-
ination predispose marginalized groups to higher CVD risk, and adverse
CVD outcomes

• Major policy interventions are needed at local, state and federal levels to
improve access to healthcare in minority populations

• Existing knowledge of the prevalence, and consequences of implicit bias
and discrimination in healthcare is scant

• Future efforts must focus on studying, and addressing, both observed and
implicit barriers to healthcare in underserved populations

Conclusions

Disparities in CVD outcomes continue to affect vulnerable populations in the US
adversely, and disproportionately. Existing disparities in both cardiovascular risk
factors and major CVD outcomes cannot be reduced without effectively incorpo-
rating SDOH into CVD prevention and management paradigms. Recent social
justice movements in the US have attracted much needed attention toward
inequities in healthcare; however, SDOH remain grossly underutilized in contem-
porary clinical practice models, to the detriment of the individual patient and the
healthcare system.

Policy initiatives to improve individual and population level health outcomes,
reduce health inequities, and provide evidence-based personalized care, such as the
Precision Medicine Initiative (2015) [14] and 21st Century Cures Act (2016), [15]
hinge on integrative care models that must effectively incorporate individuals’
unique SDOH burden. Recent efforts to achieve these goals, such as The National
Association of Community Health Center’s (NACHC) Protocol for Responding to
and Assessing Patients’ Assets, Risks, and Experiences (PRAPARE)
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Implementation and Action Toolkit offer great promise, and exciting opportunities
for future work in the field [121]. Future efforts must focus on development and
validation of these and similar tools in a variety of clinical settings, including CVD.

Meaningful synthesis, use and application of SDOH knowledge to design
equitable care models, and narrow CVD disparities will require rigorous and
coordinated efforts on the following fronts (Fig. 2):

1. Large-scale efforts to collect data on SDOH in local, regional and national data
streams, including surveys, registries and clinical/claims databases.

2. Ensure accuracy of race/ethnicity data to generate reliable estimates of racial/
ethnic disparities in cardiovascular outcomes in the US.

3. Greater use of existing population health databases to examine both
cross-sectional and longitudinal effects of SDOH on CVD risk factors and
outcomes.

4. Use knowledge generated from item 3 to design and implement evidence-based
public health interventions, targeting ‘upstream’ and ‘midstream’ factors.

5. Train the new generation of healthcare workforce to understand the burden and
implications of health disparities in the US; include modules on cultural com-
petence and implicit bias in medical school and residency training curricula.

6. Create multidisciplinary teams of clinicians, data scientists and population
health experts in order to harmonize efforts to achieve health equity.

Fig. 2 On the road to health equity
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Biomarkers

Renato Quispe, Thomas Das, and Erin D. Michos

Introduction

Due to the heterogenous and multifactorial nature of cardiovascular disease (CVD),
it can be difficult to predict which asymptomatic individuals are at increased risk for
developing symptomatic disease. Matching the intensity of treatment with the
absolute risk of the patient is the core tenet of precision medicine. Following a
healthy lifestyle throughout one’s lifespan is the foundation for CVD prevention.
For those determined to be at elevated risk for an atherosclerotic CVD (ASCVD)
event, HMG-CoA reductase inhibitors (statins) are first line pharmacotherapy for
reducing ASCVD risk across all major guidelines [1–3]. However, risk estimation
tools based on traditional CVD risk factors, such as the Pooled Cohort Equations
(PCE), which are derived from population averages, are imprecise for a given
individual [4–6]. This entire book is devoted to genetic, imaging, and other
strategies to improve precision in CVD risk estimation, and this chapter will focus
on the role of biomarkers.

Biomarkers, which are often used in conjunction with traditional risk factors, are
subclinical indicators of physiological and pathological processes [7]. Biomarkers
can serve as useful tools in facilitating prognostication of CVD risk and disease
progression [8], as well as assessment of cardiovascular health [9]. Elevation of
cardiac biomarkers can help identify the individuals at increased risk of incidence
and progression of disease who may benefit from more intensive medical therapy.
Compared to imaging-based risk markers such as coronary artery calcium (CAC),
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measurement of biomarkers has the advantage of no radiation exposure and can
easily be done from a single blood draw, often alongside other clinical laboratory
measures. Clinically useful biomarkers are molecules that can be repeatedly and
accurately measured, provide information on normal biological as well as patho-
logical processes [9, 10], and can change clinical management by guiding shared
decision making with patients about risk-reducing strategies [2].

In this chapter, we will discuss the role that biomarkers can play in refining CVD
risk estimation for a more individualized approach to prevention. Given the enor-
mity of biomarkers that have been studied over time, this chapter could not be
inclusive of all markers; however, it will touch on the major biomarkers that have
been investigated in CVD management. This chapter will be divided into 2 major
sections—(1) lipid-based biomarkers and (2) non-lipid cardiac biomarkers. The
goal is to provide clinicians a framework for best incorporating such biomarkers
into clinical care for an individualized approach to CVD prevention and to identify
gaps in knowledge that warrant further study.

Lipid Biomarkers and Cardiovascular Risk

An elevated serum cholesterol level was the first biomarker of risk for coronary
heart disease (CHD), identified back in the 1961 report from the Framingham Heart
Study (FHS) investigators [11]. Since that time, an extensive body of evidence from
genetic, epidemiologic, and interventional studies has established elevated low
density lipoprotein-cholesterol (LDL-C) as a causal factor for the development of
ASCVD [12–14]. Therefore, the management of blood cholesterol for the pre-
vention of ASCVD has become a central focus across clinical guidelines [1, 3, 15].
However, approximately 40% of those who develop CHD do not have elevation in
total cholesterol [16]; conversely many individuals with moderately elevated
LDL-C do not experience a myocardial infarction (MI) or stroke. Therefore, much
work had gone into improving ASCVD risk-estimation beyond cholesterol mea-
surement by considering other traditional ASCVD risk factors, as well as newer
“risk-enhancing” factors, to guide shared decision making about implementation of
preventive pharmacotherapies (i.e. statins) [2]. Newer lipid measures, as discussed,
can provide additional insights into ASCVD risk beyond total cholesterol and the
traditionally estimated LDL-C obtained from the Friedewald equation, as well as
reflect residual risk despite treatment with statin therapy.

Low-Density Lipoprotein Cholesterol

The development of ASCVD begins with the retention and accumulation of
cholesterol-rich apolipoprotein B (apoB)-containing lipoproteins within the arterial
intima. Trapping of an atherogenic apoB particle within the vascular wall is the
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pivotal event that initiates and sustains the atherosclerotic process. Lipoproteins that
are highly atherogenic, such as LDL, very low-density lipoprotein (VLDL) and
their remnants, intermediate-density lipoprotein (IDL) and lipoprotein (a) (Lp(a))
are small (<70 nm in diameter) and therefore, can easily enter and exit the arterial
intima (Fig. 1).

LDL particles represent about 90% of circulating apoB-containing lipoproteins
in fasting blood in most individuals. However, concentration of LDL particles in
plasma are not routinely measured in clinical practice or used in major randomized
clinical trials. Indeed, the total amount of cholesterol carried by these particles,
LDL-C, has been broadly used. As the concentrations of LDL-C increase, the
probability of retention of LDL in the intima wall increases in a dose-dependent
fashion. LDL-C is the most extensively studied modifiable risk factor associated
with ASCVD. Prospective cohort studies, Mendelian randomization studies and
randomized clinical trials demonstrate a log-linear association between absolute
exposure of LDL-C and risk of ASCVD, the so-called “the lower the better”
hypothesis [13, 17]. As such, among lipid measures, LDL-C has become the pri-
mary focus for assessing and reducing cardiovascular risk, which is supported by
guidelines worldwide [1–3, 15].
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Fig. 1 Lipid and inflammatory markers for development of atherosclerosis
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Estimation of LDL-C in Precision Medicine

Over the past decades, the clinical LDL-C (made up of biological LDL-C plus
IDL-C plus lipoprotein (a) [Lp(a)]-C) has been estimated by the Friedewald
equation in routine patient care, therefore avoiding additional time and extra costs
from direct measurements. The Friedewald equation [Total cholesterol (TC) minus
high density lipoprotein-cholesterol (HDL-C) minus triglycerides (TG)/5 in mg/dL
units] was derived from 448 normal or hyperlipidemic individuals more than 4
decades ago, even before the existence of current LDL-lowering therapies [18].
However, as Friedewald et al. acknowledged in their original paper, VLDL-C
cannot be accurately estimated by the one-size-fits-all approach of dividing TG by
the population average value of 5. The inaccuracy was viewed as acceptable at the
time because VLDL-C was a relatively small proportion of equation (i.e., VLDL-C
was relatively low compared with LDL-C). Subsequently, a significant amount of
work has shown the degree of inaccuracy of the Friedewald equation at all LDL-C
levels, which is particularly great at higher TG and lower LDL-C levels when the
inaccuracy accounts for a larger proportion of the equation [19]. In this setting, the
value of 5 is typically too low, and therefore VLDL-C is overestimated, and LDL-C
is underestimated.

There is a need for more accurate estimation in the current era where newer more
potent lipid-directed therapeutics (such as proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitors) are reducing LDL-C levels lower than ever seen before.
Taking advantage of statistical power of big data, Martin et al. developed and
validated a novel method for estimating LDL-C from the standard lipid profile [20].
This method uses 174 different adjustable factors in samples with TG <400 for the
TG/VLDL-C ratio based on non-HDL-C and TG levels, and in doing so is an
example of a precision medicine rather than one-size-fits-all approach to LDL-C
estimation. This approach provides a more accurate estimation of LDL-C, partic-
ularly in the setting of low LDL-C and high TG, compared to the Friedewald
equation. Elevated TG levels are more relevant nowadays in the current epidemic
era of diabetes and obesity. The Martin/Hopkins method has been externally val-
idated in different populations and represents a significant contribution to precision
medicine [21–25].

There is More Than LDL-C: LDL Particles
and Apolipoprotein B

Each LDL particle contains one single apoB molecule. As stated above, LDL
represents *90% of apoB-containing lipoproteins. Not surprisingly, lipid-directed
therapeutics that lower apoB levels also reduce ASCVD risk, with parallels
reductions in LDL-C [26]. However, LDL-C is simply the amount of cholesterol
carried by LDL particles (LDL-P). Under most conditions, LDL-C concentration
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and LDL particle number are highly correlated, and therefore, plasma LDL-C is a
good surrogate for LDL particle concentration. However, LDL particles are
heterogenous with regards to the mass of cholesterol they carry. As such, LDL
particles can be either normal, cholesterol-enriched or cholesterol-depleted. LDL
particles contain a normal mass of cholesterol, and only in this situation both
LDL-C and LDL-P are concordant, and therefore, equivalent markers of cardio-
vascular risk. Contrarily, when LDL particles are either cholesterol-enriched or
cholesterol-depleted, LDL-C will over- or underrepresent, respectively, the number
of LDL particles.

The lipid phenotype of individuals with metabolic conditions such as metabolic
syndrome, diabetes or hypertriglyceridemia, is characterized by a predominance of
small, dense cholesterol-depleted LDL. In these settings, plasma LDL-C and
LDL-P are discordant and therefore, plasma LDL-C may not accurately reflect LDL
particle concentration or its effect on cardiovascular risk. In these circumstances,
direct measurement of LDL-P can more accurately reflect the LDL-related
atherogenic burden. However, there are no cost-effective and well standardized
measures of LDL-P, and randomized controlled trials have not focused on LDL-P;
therefore it remains primarily a research tool.

Most biomarkers are usually assessed at a population level. Lipid parameters,
one of the most widely studied biomarkers, can also provide risk information for the
general population. Several parameters are now available in lipidology; as more
lipid variables are taken into account, the most significant and relevant information
obtained can be seen in those with discordance between one and another parameter,
and whether this discordance relate to a greater atherosclerosis or greater risk of
having events. The real information with regards to risk signals between two lipid
parameters that appear to be related (i.e. LDL-C and LDL-P), therefore, should be
assessed when they disagree—or are discordant—not when they agree. By focusing
on these groups, the analysis of discordance can help to more clearly weigh the
incremental risk prediction capacity of a given lipid measure over another [27].

Lipid parameters such as LDL-C, non-HDL-C, apoB, and LDL-P are highly
correlated one to the other. Most studies aim to compare the predictive power of
these variables using conventional statistical methods (i.e. multiple regressions,
Cox-proportional hazards) that indeed treat these variables as if they are unrelated,
or as if they are expected to provide completely different information like, for
instance, age and sex. In order to more accurately discriminate the additional
information provided by each variable and therefore the real predictive power of
each, discordance analyses should be used. Several epidemiologic studies have
shown the degree of discordance between LDL-P and LDL-C, and its magnitude on
cardiovascular risk prediction. Individuals from the FHS with high LDL-C and high
LDL-P, expectedly, had significantly more cardiovascular events than those low
LDL-C and low LDL-P. However, the number of events in those with low LDL-C/
high LDL-P did not differ significantly from those with high LDL-C/high LDL-P,
which suggests that risk correlates with LDL-P and not with LDL-C [28]. Similarly,
a Multi-Ethnic Study of Atherosclerosis (MESA) study showed that whereas both
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LDL-C and LDL-P predicted incident cardiovascular events, the risk in the dis-
cordant groups was more closely correlated with LDL-P than with LDL-C [29].

A study by Mora et al. of 28,345 women from the Women Health Study
(WHS) followed for a mean of 17 years showed a relatively high proportion of
discordance (defined by medians) between LDL-C and non-HDL-C (11.6%),
LDL-P (24.3%) and apoB (18.9%) [30]. As expected, those with increased number
of cholesterol-depleted LDL (or low LDL-C but discordantly high LDL-P or apoB)
had elevated levels of TG and C-reactive protein, in addition to higher body mass
index (BMI). In this discordant but highly prevalent group, risk of incident events
was greater than in the concordant group with low LDL-C and or low levels of
LDL-P or apoB. Additionally, those with cholesterol-enriched apoB particles below
the median (high LDL-C but discordantly low LDL-P or apoB) did not have
increased risk, which is consistent with previous study from FHS and MESA which
also showed that risk is related to particle number rather than to the cholesterol
content of apoB particles.

It is important to acknowledge that the definition of discordance is arbitrary as
there is no established cut-point at which particles become cholesterol-depleted or
cholesterol-enriched. However, multiple studies using different approaches have
shown overall same outcomes which provides strong support for the validity of the
approach. For instance, a discordance analysis from the Quebec cardiovascular
society used quintiles of LDL-C and apoB to define discordance, whereas indi-
viduals from the FHS and the WHS were divided into medians [28, 30, 31]. On the
other hand, a MESA study defined discordance as � 12 percentile difference
between LDL-C and LDL-P [29]. Of note, all these studies have used Friedewald
LDL-C instead of more accurate estimation methods. Finally, although these
attempts aim to assess existence and relevance of discordance between these lipid
markers, all of these cutpoints were arbitrarily estimated from the study popula-
tions, and do not have a direct clinical application.

Non-High-Density Lipoprotein Cholesterol (non-HDL-C):
The “Poor Man” apoB?

The amount of cholesterol in all non-HDL particles, the so-called non-HDL-C, is
simply calculated as TC minus HDL-C. Therefore, no additional measurements
need to be done beyond the standard lipid panel. Keeping in mind that TC is the
sum of LDL-C + IDL-C + Lp(a)-C + VLDL-C + HDL-C, it could be deduced that
non-HDL-C is a better marker of cardiovascular risk than LDL-C because it
includes the cholesterol in all atherogenic lipoproteins, in particular LDL-C and
VLDL. This becomes particularly important in the presence of hypertriglyc-
eridemia, in which cholesteryl ester can shift from LDL to VLDL in exchange for
TG, leading to LDL-C reduction but an increase in VLDL-C. Since these changes
are reciprocal and one compensates for the other, non-HDL-C remains unchanged
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and accounts for the reduction in LDL-C when LDL particles are
cholesterol-depleted. However, this hypothesis is not supported by the fact that
cholesterol in VLDL particles is not more atherogenic than cholesterol in LDL
particles, and VLDL are much larger and less numerous than LDL particles, being
less likely to enter the arterial wall [32]. One study from the Framingham Offspring
Study showed that adding VLDL particle number does not increase the predictive
power of LDL-P, as it should have if the superiority of non-HDL-C over LDL-C
was based on including VLDL in the estimate [28]. Additionally, there is not
conclusive evidence to date that lowering VLDL-C by means of, for instance,
fibrates, lead to benefit.

ApoB particles are present in all atherogenic lipoproteins, where HDL is not
included. Therefore, the amount of cholesterol in all non-HDL particles
(non-HDL-C) can be a surrogate marker—or indirect measure—of the number of
apoB particles. Indeed, these two variables are intimately related physiologically
and highly correlated as any change in levels of apoB will lead to changes in
cholesterol in non-HDL particles. As proof of this, most studies have shown that the
correlation between non-HDL-C and LDL-P or apoB are substantially greater than
between LDL-C and LDL-P or apoB, except for one [33].

As expected, both apoB and non-HDL-C appear to be somewhat stronger
markers of cardiovascular risk than Friedewald LDL-C. ApoB has been superior to
non-HDL-C only in some epidemiological studies, although they have often been
equivalent. Whereas non-HDL-C and apoB are highly correlated, they are only
moderately concordant because apoB particles differ substantially in the amount of
cholesterol they contain [31, 34]. Additionally, statins are known to reduce
non-HDL-C more than apoB, for which apoB can better predict risk among
statin-treated patients [35]. ApoB and non-HDL-C have been directly compared in
the INTERHEART study, which compared 15,512 cases with a first acute MI and
14,820 age and sex-matched controls without known ASCVD from 262 centers in
52 countries [36]. In this study, discordance was defined based on difference in
percentile levels (using differences as 1,2,3,4,5 or 10 percentile), and there was an
elevated risk in those with high apoB but low non-HDL-C, but decreased in those
with low apoB but high non-HDL-C. Another study showed that in a considerable
number of individuals, the concentration of apoB and non-HDL-C differed sig-
nificantly, likely because of variance in their individual metabolism of apoB
lipoproteins. Consequently, the individual hazard predicted is also expected to differ
[37].

Clinically, two opposite scenarios can be seen:

(A) ApoB > non-HDL-C, which suggests a predominance of cholesterol-depleted
LDL particles, and therefore assessment of risk should be driven by apoB [38].

(B) ApoB < non-HDL-C, in which case we should suspect excessive chylomicron
and VLDL remnants (type III hyperlipidemia).
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Maximizing the Use of the Standard Lipid Panel: The Total
Cholesterol to HDL-C Ratio

Total cholesterol and HDL-C are used in ASCVD risk estimating tools (such as the
PCE); they are also used for the estimation of LDL-C and calculation of
non-HDL-C. Furthermore, the ratio of TC/HDL-C, itself, has been strongly asso-
ciated with cardiovascular events [39–42]. In a meta-analysis of *900,000
patients, TC/HDL-C was suggested to have a 40% higher ability to predict vascular
deaths than non-HDL-C [43].

Following the advantages of using a discordance approach, the TC/HDL-C ratio
could provide additional clinical information to LDL-C or non-HDL-C when dis-
cordant with them within individuals. A cross-sectional study of 1.3 million
patients, in which discordance was defined as � 25 percentile units difference, *1
in 3 had discordance between TC/HDL-C and LDL-C, and *1 in 4 between TC/
HDL-C and non-HDL-C. Patients with low LDL-C or non-HDL-C but with dis-
cordantly high TC/HDL-C ratio were more likely to be male, have diabetes, and
have a more atherogenic lipid phenotype with lower HDL-C and higher TG [44].
Another study of patients with known coronary artery disease (CAD) showed that
the TC/HDL-C ratio reclassified atheroma progression and major adverse cardio-
vascular event rates in CAD patients when discordant with LDL-C, non-HDL-C
and apoB [45]. For instance, among patients with apoB <59 mg/dL, those with
discordantly elevated percentile equivalent TC/HDL-C ratio (� 2.5) had greater
atheroma progression and higher cardiovascular events that those with concordantly
low TC/HDL-C ratio (<2.5).

The existence of significant individual-level discordance between the TC/
HDL-C ratio and LDL-C and non-HDL-C was also shown in a large biracial cohort
of individuals free from ASCVD at baseline followed for over 20 years. Among
those with LDL-C and non-HDL-C < median, 1 in 4 and 1 in 5 had discordantly
higher TC/HDL-C � median, respectively. They were characterized by higher
levels of TGs, higher BMI and more hypertension, diabetes and smoking. Similarly,
those with discordance had a significant increase in the risk of incident ASCVD,
independent of clinical risk factors and use of lipid-lowering medications [46]. It
has been suggested that the TC/HDL-C ratio may reflect the discordance between
particle cholesterol content and concentration that frequently is seen in patients with
insulin resistance and low HDL-C. As such, the TC/HDL-C may be a marker of
atherogenic particle burden with the big advantage that it can be obtained from the
standard lipid profile. Previous studies have shown a close association between TC/
HDL-C and LDL-P. A recent analysis showed that TC/HDL-C < 3 was the stan-
dard lipid profile measure that was most correlated with LDL-P of <1000 nmol/L
[47]. In another study, the significant difference in LDL size between patients with
CAD and controls became non-significant after adjusting for TC/HDL-C [48].

In summary, evidence suggests that the TC/HDL-C ratio, available from the
standard lipid profile at no extra cost, provides additional information that can
enhance personalized ASCVD risk management. Whereas lowering LDL-C is

38 R. Quispe et al.



known to reduce risk, lowering the TC/HDL-C ratio could also provide further
benefits as the former are cholesterol-based measures which, as discussed above,
can underestimate the burden of circulating atherogenic particles. However, whe-
ther targeting the TC/HDL-C after optimizing LDL-C can improve patient out-
comes is a hypothesis still in need of testing in randomized controlled trials.

Residual Risk and Lipoprotein-Related Risk Beyond LDL:
Triglyceride-Rich Lipoproteins

Triglycerides have had growing interest as a target of ASCVD prevention, because of
their consistent causal association with ASCVD and their increased levels associated
with obesity [49, 50]. Lifestyle measures—reduced intake of simple refined carbo-
hydrates and alcohol, increased physical activity, and weight loss—remain the
first-line treatment for elevated TG, with statin therapy added for ASCVD prevention
for those at elevated ASCVD risk (secondary prevention and high risk primary
prevention) [15]. Furthermore, the 2019 ACC/AHA Guideline on the Primary
Prevention of CVD states that persistently elevated TG >175 mg/dL (non-fasting,
on � 3 occasions) is considered a “risk-enhancing” factor that would also favor statin
treatment among those at estimated borderline/intermediate ASCVD risk [2].

More recently, TG have been of particular interest as a treatment target because of
their relationship with residual risk for ASCVD among statin-treated individuals.
Schwartz et al. examined the association between fasting TG levels with recurrent
ASCVD in statin-treated participants from the Myocardial Ischemia Reduction with
Aggressive Cholesterol Lowering (MIRACL) and dal-OUTCOMES trials [51, 52].
They found a 50–60% increase in hazard for recurrent events among those in the
highest TG categories compared with those in the lowest, after adjustment for several
risk factors and independent of LDL-C [53]. A post-hoc analysis from the Pravastatin
or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial
Infarction 22 (PROVE IT-TIMI 22) trial showed a reduction in recurrent events with
lower on-treatment TG levels in statin-treated participants, independent of LDL-C [54].

With the exception of icosapent ethyl [55] (discussed below), other trials that have
evaluated TG-lowering pharmacotherapies (i.e. fibrates, niacin) to reduce residual risk
beyond statin therapy have been disappointing. However, post-hoc analyses from the
Action to Control Cardiovascular Risk in Diabetes (ACCORD) and the
Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High
Triglycerides: Impact on Global Health Outcomes (AIM-HIGH) trial showed that
fibrates and niacin, respectively, would provide benefit only in the subgroup with
elevated TG and low HDL-C, for which it was thought that elevated TG would help
to better identify patients in whom residual risk could be further reduced [56, 57].
More recently, the Reduction of Cardiovascular Events with Icosapent Ethyl–
Intervention Trial (REDUCE-IT) showed a significant reduction in cardiovascular
events among statin-treated individuals with elevated TG (>135 mg/dL) who
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received 4 g of icosapent ethyl daily (a highly purified form of eicosapentaenoic acid
(EPA)), although this benefit appeared to be independent of baseline or achieved TG
levels, suggesting non-lipid mechanisms for its benefit [55]. Furthermore, this may be
specific to EPA as other omega-3 preparations, such as docosahexaenoic acid (DHA)/
EPA combination, have not shown CVD benefit [58]. As novel TG-lowering ther-
apies are being developed, such as antisense inhibition of APOC3 synthesis, it is
expected that elevated TG levels will become progressively more clinically relevant
to identify individuals that would benefit from these therapies [59].

Indeed, a number of Mendelian randomization and prospective studies have
supported a causal role for TG-rich remnants in atherosclerosis [60–63]. In a cohort
of 5,754 statin-treated patients with CAD undergoing serial intravascular ultra-
sonography, remnant cholesterol was associated with residual risk independent of
conventional lipid parameters, C-reactive protein (CRP) or clinical risk factors [64].
Although it is extensively known how LDL particles and LDL cholesterol con-
tribute to atherosclerosis, the atherogenic properties of remnants are not fully
understood [65]. Finally, despite given ongoing interest for remnant cholesterol and
residual risk, there is a need to standardize its definitions and measurements [66].

Lipoprotein (a)—ready for Prime-Time Use?

Lipoprotein (a) , or Lp(a), is a cholesterol-rich, LDL-like particle with an apoB-100
covalently bound by a disulfide bond to apolipoprotein (a), mostly genetically
determined by the LPA gene, that has well described atherogenic properties, as well
as theoretical but unproven prothrombotic properties [67]. Mounting evidence,
from epidemiologic, Mendelian randomization and genome-wide association
studies, supports the causal association of elevated Lp(a) and development of
ASCVD [68–75].

Some studies have suggested a potential role of Lp(a) for risk assessment. In the
Bruneck study, 15-year primary prevention cohort, Lp(a) improved both risk dis-
crimination and reclassification when added to Framingham and Reynolds Risk
Scores (up to 39.6% in the intermediate risk group) [76]. In the European
Prospective Investigation of Cancer (EPI)—Norfolk cohort, adding Lp(a) (<di-
chotomized as <30 and � 30 mg/dL) to both the PCE and SCORE risk estimators
resulted in net reclassification index (NRI) of 15.9 and 16.8%, respectively, among
intermediate risk individuals [77]. In the Copenhagen City Heart Study, addition of
elevated Lp(a) (� 50 mg/dL) to conventional CVD risk factors yielded a NRI of
16% for MI and 3% for CAD [78]. The Brisighella Heart Study found that Lp(a)
was a significant predictor of CVD over 25 years in those with intermediate or high
risk [79]. Among patients with established CAD, Lp(a) was a significant inde-
pendent predictor of recurrent CVD, either in non-obstructive CAD, as well as
patients undergoing percutaneous coronary interventions and those treated with
statin therapy [80, 81].
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Although statins do not reduce Lp(a) levels, and may even increase Lp(a)
modestly, among high risk patients with elevated Lp(a), statin therapy still remains
first line for overall ASCVD risk reduction [1]. Other lipid-lowering therapies have
been shown to mild to moderately reduce Lp(a) levels. Niacin has been shown to
reduce Lp(a) but not CVD events [75, 82]. However, it is important to note that
none of the niacin trials selected patients based on elevated Lp(a). In the Further
Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with
Elevated Risk (FOURIER) trial, evolocumab reduced Lp(a) by a median of 27% at
48 weeks. Interestingly, those with Lp(a) above the median at baseline had a 23%
relative risk reduction in CAD. Furthermore, there was a significant relationship
between achieved Lp(a) at 12 weeks and adjusted risk of events [72].

Given the current lack of Lp(a)-targeted therapies, the case for Lp(a) screening
has been questioned by experts and in this scenario, recent guidelines differ slightly
in their recommendations. The 2018 AHA/ACC Cholesterol Management
Guideline recognizes Lp(a) as a “risk enhancer” in adults between the ages of 40 to
75 years, in whom those with Lp(a) � 50 mg/dL would be favored to start statin
therapy [1]. However, limited guidance is given as to when Lp(a) should be
measured; family history of premature CAD or personal history of ASCVD not
explained by major risk factors are relative indications for measurement. In con-
trast, the European Society of Cardiology (ESC)/European Atherosclerosis Society
(EAS) guidelines recommend that all adults have Lp(a) measured at least once in
their lifetime to identify those with very high Lp(a) > 180 mg/dL who have a
lifetime risk similar to those with heterozygous familial hypercholesterolemia, and
should be measured selectively among those with a family history of premature
CAD or at borderline/intermediate risk to revise their risk estimation [3].

Despite compelling evidence for the causal role of Lp(a) in ASCVD risk, evi-
dence is lacking that specifically lowering Lp(a) leads to a meaningful reduction in
cardiovascular events, which continues to limit its clinical use. One Mendelian
analysis demonstrated that while the clinical benefit of Lp(a) lowering is propor-
tional to the reduction in Lp(a) concentration, large absolute reductions (*100 mg/
dL) are necessary to produce a clinically meaningful impact on cardiovascular
outcomes [83]. A recent phase 2 randomized clinical trial showed that the
hepatocyte-directed antisense oligonucleotide APO(a)-LRX reduced Lp(a) levels in
a dose-dependent manner to up to 80% [73]. The phase 3 study is ongoing
(NCT04023552) and, if such Lp(a) reduction translates into reduction of ASCVD
clinical outcomes, it is expected that screening for Lp(a) its use in ASCVD risk
estimation will continue to gain relevance and be ready for prime-time clinical use.

From the laboratory measurement standpoint, there are two main issues that
impact the implementation of Lp(a) in clinical practice. First, most assays report Lp
(a) values as mass concentrations (mg/dL) instead of particle concentrations (nmol/
L). Second, there are no standardized Lp(a) assays [84].
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Non-Lipid Cardiac Biomarkers in Risk Stratification
of Asymptomatic Patients

In this second section, we will discuss biomarkers of wall stress (natriuretic pep-
tides), of myocardial injury (troponins) (section A), and inflammation (hsCRP,
GlycA) (section B), as well as other novel/emerging biomarkers under investigation
(section C) (Fig. 1).

A. Troponin and Natriuretic Peptides

Cardiac Biomarkers of Wall Stress and Myocardial Injury

Two of the most studied groups of cardiac biomarkers are the myofibrillar protein
cardiac troponin (cTn) and the natriuretic peptide derivatives such as B-type
natriuretic peptide (BNP) and its amino-terminal cleavage equivalent (NT-proBNP)
(Fig. 2). While these biomarkers have traditionally been used to identify symp-
tomatic cardiac pathology such as acute coronary syndrome and decompensated
heart failure (HF), their presence in asymptomatic individuals also has important
implications for risk stratification.

Cardiac troponins are regulatory proteins that control the interactions between
actin and myosin necessary for contraction of cardiomyocytes [85]. In the setting of
oxygen supply/demand imbalance at cardiomyocytes, myocardial ischemia and
necrosis occurs, resulting in elevation of cardiac troponins in the blood.
Importantly, these elevations can occur with both clinical and sub-clinical
myocardial injury. With the advent of high-sensitivity troponin (hs-cTn) assays,

Troponin

NT-proBNP BNP

Fig. 2 Cardiac biomarkers of wall stress and myocardial injury
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cardiac troponins can be measured above the limit of detection in � 50% of
overtly normal individuals [86]. High-sensitivity assays for troponin T and I
(hs-cTnT and hs-cTnI) have the potential to identify patients with asymptomatic
myocardial injury who may be at increased risk of disease progression.

BNP and NT-proBNP are released into the circulation from ventricular myo-
cardium in the setting of increased end-diastolic wall stress from increased volume
or pressure [87]. These natriuretic peptides have diuretic, natriuretic, and
hypotensive effects, and contribute to the body’s physiologic response to HF [88].
Given their presence in these pathologic states, assays for both BNP and
NT-proBNP are widely used. As a surrogate of ventricular wall stress, these
natriuretic peptides are clinically useful biomarkers. When used alongside of
clinical symptoms and exam findings, natriuretic peptides can help establish
diagnosis of acute onset of HF to distinguish it from other causes of dyspnea such
as chronic obstructive pulmonary disease exacerbations. Natriuretic peptides can
also be used among asymptomatic individuals to identify those with subclinical
disease at risk for developing HF who may benefit from more intensive risk-factor
modification and further diagnostic evaluation.

Factors Affecting Biomarker Interpretation

It is important to acknowledge certain patient characteristics that can affect inter-
pretation of these biomarkers. Particularly, patients with kidney failure can have
persistently elevated troponin, BNP, and NT-proBNP levels regardless of cardiac
pathology [89, 90]. This can complicate a biomarker’s prognostic value, as cut-off
values in end-stage kidney disease are less well defined. A patient’s age and sex
also affect these biomarkers [91]. Conventionally, the upper limit of normal for
hs-cTnT assays is defined as the 99th percentile, which in a normal reference
population was found to be 14 ng/L; however, subsequent population based studies
have shown that the 99th percentile value may be higher in older patients and in
men, leading to over-diagnosis of cardiac pathology in these groups [92].
Sex-specific thresholds of hs-cTn have been proposed for the evaluation of
myocardial injury [93]. In community cohorts, women have higher BNP and
NT-proBNP than men [91]. High BNP values are also seen among older individuals
[94]. BNP cutoffs for subclinical and acute HF are 10 pmol/L and 29 pmol/L
respectively; however, age- and sex-specific cut-offs in BNP reference ranges could
lead to more a patient specific risk assessment.

Lack of standardization across biomarker assays also complicates interpretation.
While a single troponin T assay exists, there are several troponin I assays that vary
in their limit of detection, absolute troponin values, and variance within the assay
[95]. The International Federation of Clinical Chemistry and Laboratory Medicine
Working Group on Standardization of cTnI (IFCC WG-TNI) is in the process of
developing a reference immunoassay measurement procedure for troponin I that
commercial assays could be calibrated against [96]. There are similar concerns with
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natriuretic peptide assays, as marked differences in analytic performance and
measured values exists between the several commercially available assays for BNP
and NT-proBNP [97].

Cardiac Troponin and Cardiovascular Risk

Population based studies have shown that elevations in cardiac troponins are
associated with adverse clinical outcomes. In an investigation of the Dallas Heart
Study (DHS) cohort, high levels of hs-cTn were associated with increased preva-
lence of left ventricular hypertrophy, and subsequent all-cause mortality [98]. This
predictive value may be stronger in patients with higher baseline cardiovascular
risk. The Troponina T UltraSensible en pacientes Asintomáticos de alto
Riesgo Cardiovascular (TUSARC) study investigated the prognostic value of ele-
vated hs-cTnT in an asymptomatic Spanish population characterized as high-risk by
ESC Guidelines [99]. This study found that an elevation in hs-cTnT greater than the
99th percentile was significantly associated with the incidence of a combined
outcome of death by cardiovascular cause, HF requiring hospitalization or intra-
venous diuretics, non-fatal stroke, non-fatal acute coronary syndrome, or the need
for coronary revascularization. Minimal elevation in troponin less than the upper
limit of normal may also have prognostic value. In the West of Scotland Coronary
Prevention Study (WOSCOPS), an elevated baseline hs-cTnI (less than the 99th
percentile) was shown to be an independent predictor of MI or death from CHD in
male patients with elevated LDL-C levels. Furthermore statin therapy reduced
hs-cTnI and those with greater reduction in hs-cTnI had lower CAD risk [100]. In
an Atherosclerosis Risk in Communities (ARIC) study, among individuals free of
CVD at baseline, an elevated hs-cTnI � 3.8 ng/L was associated with subsequent
risk of incident CAD, stroke, HF, and total CVD [101]. Furthermore, the addition of
hs-cTnT to the PCE improved risk CVD prediction compared to the PCE alone
[101]. Given this prognostic value, novel risk calculators have incorporated hs-cTn
measurements in determining future cardiovascular risk; this approach is especially
helpful in older patients, who may be re-classified into a lower risk category and
spared more aggressive medical therapies [102].

Of note the 2019 ACC/AHA Primary Prevention Guideline does not specifically
acknowledge hs-cTn as a risk enhancing factor for treatment decisions [2]. This
may change in future as further evidence accumulates to support its role a decision
aide tool for guiding pharmacotherapy. Given the prognostic value of these
biomarkers, several studies have already investigated the utility of a
biomarker-based approach in the risk-stratification and management of patients.
The following discussion highlights the utility of hs-cTn and natriuretic peptide
measurement in the management of several common cardiac pathologies.
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Cardiac Biomarkers in Hypertension

Hypertension is one of the most common cardiac comorbidities, and exhibits a wide
spectrum of severity and symptomatology. Given hypertension’s associated mor-
bidity and mortality, the identification of patients at increased risk of incident
hypertension through biomarkers can be of clinical benefit. A study in the ARIC
cohort showed that among patients free from CVD, a baseline elevation in hs-cTn
was associated with development of hypertension and left ventricular hypertrophy
over 20 years of follow-up [103]. This study suggests that identification of low risk,
normotensive patients with elevated hs-cTn could afford clinicians the opportunity
to consider ambulatory blood pressure monitoring, or more intensive prevention
strategies.

A biomarker-based approach could also identify patients with increased risk of
cardiovascular events due to hypertension in whom treatment decisions are unclear.
For example, in the 2017 ACC/AHA Blood Pressure Guideline states than patients
with an elevated blood pressure (120 to 129/ <80 mm Hg) or low-risk stage 1
hypertension (130 to 139/80 to 89 mm Hg) are not recommended for antihyper-
tensive medication; therefore, management of these patients can prove challenging,
as they carry increased risk without a clear indication for medical therapy.
However, one study using pooled data from the ARIC, DHS, and MESA cohorts
showed that 32% of individuals in this group had elevated hs-cTn or NT-proBNP.
In these individuals not recommended for medical therapy, the presence of bio-
marker elevation was associated with an 11% incidence rate of ASCVD or HF,
compared to 4.6% in those without elevated biomarkers [104]. Conversely, among
individuals who were recommended for anti-hypertensive therapy, more than half
had a non-elevated hs-cTn and NT-proBNP; lack of biomarker elevation was
associated with a less than 10% risk of cardiovascular event. Notably, the authors
still favor initiating anti-hypertensive therapy in these patients given the
cost-effectiveness and proven utility of medical therapy, but suggest that biomarker
measurement may be useful in informing the shared decision making process.

Cardiac Biomarkers in Aortic Stenosis

Another high-mortality cardiac pathology that may benefit from a biomarker-based
approach is aortic stenosis. Aortic stenosis (AS) is the most common form of
valvular heart disease in the developed world, and symptomatic AS is associated
with significant morbidity and mortality. While asymptomatic AS is traditionally
not intervened upon until symptoms develop, recent studies have challenged this
thinking [105]. The ESC and European Association of Cardio-thoracic surgery
recommends that aortic valve replacement may be considered in asymptomatic
patients with severe AS who have a normal ejection fraction, low surgical risk, and
marked elevation in natriuretic peptide levels confirmed by repeated measurements
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and without other explanation [106]. Studies have also investigated the utility of hs-cTn
as a useful tool in AS management. As cardiomyocyte damage is a late event in the
natural progression of AS, hs-cTn may serve as a more specific marker of clinically
significant AS when compared to BNP [107]. One study showed elevated hs-cTnI
levels in patients with AS were associated with need for aortic valve replacement
independent of age, sex, systolic ejection fraction, or AS severity [108]. Another study
measured hs-cTn levels in 58 patients with asymptomatic severe AS, and found a
hs-cTnT level greater than 10 ng/L was associated with an approximately tenfold
increase in the composite outcome of cardiovascular death, new-onset symptoms,
cardiac hospitalization, guideline-driven indication for valve replacement and cardio-
vascular death at 12 months [109]. Given this association, novel risk calculators pre-
dicting adverse outcomes in AS have begun to incorporate hs-cTn levels [110].

Cardiac Biomarkers in Heart Failure

The clinical syndrome of HF is the end stage of several cardiovascular conditions.
Given the heterogeneity of HF causes, it can be difficult to predict incident HF in
the general population. In the FHS, baseline elevation in BNP and urinary albumin
to creatinine ratio was associated with increased risk for the development of
new-onset HF [111]. Elevated troponin levels are also seen across the clinical
spectrum of HF, with up to 50–80% of patients with asymptomatic HF having
hs-cTn levels above the limit of detection [112]. In an ARIC study of individuals
without CVD or HF at baseline, hs-cTnT levels � 3.8 ng/L was associated with a
fourfold risk of incident HF hospitalization over 15 years [HR 4.20 (95% CI 3.25–
5.37)] [101].

A few prospective studies have explored the utility of a biomarker-based
approach to HF management. The St Vincent’s Screening to Prevent Heart Failure
trial randomized 1374 patients with elevated cardiovascular risk to either usual
primary care or screening with BNP testing. Patients in the screening arm found to
have BNP levels greater than 50 pg/mL underwent echocardiography and collab-
orative care with cardiologist input, which often lead to more intensive risk factor
control and medical therapy. This BNP based screening approach was shown to
reduce the combined rates of LV systolic dysfunction, diastolic dysfunction, and
HF [113]. Similarly, the Screening Evaluation of the Evolution of New Heart
Failure (SCREEN-HF) study examined NT-proBNP levels in patients with high
cardiovascular risk but without prevalent HF; patients with NT-proBNP at the
highest quintile (>30 pmol/L) were found to have higher rates of left ventricular
systolic impairment and higher potential risk of incident HF [114]. Given this data,
a recent AHA statement indicated that in community-based populations, mea-
surement of natriuretic peptides or troponins alone adds prognostic information to
standard risk factors for predicting new-onset HF [115].

As assays for troponins and natriuretic peptides continue to evolve, so too will
their role in the risk stratification of asymptomatic patients. Professional societies
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have begun to recognize their utility in predicting incident CVD, and it is possible
that future recommendations will further expand the role of these commonly
available assays.

B. Inflammatory Markers

Inflammation plays a key role in the development of atherosclerosis and thrombosis
[116, 117]. High-sensitivity C-reactive protein (hsCRP) and other inflammatory
biomarkers can predict risk for ASCVD events independently of traditional risk
factors [118]. Lifestyle measures such as weight loss, physical activity, and
smoking cessation are central for reducing the inflammatory risk associated with
cardio-metabolic diseases. Regarding pharmacotherapy, the efficacy of statin ther-
apy in reducing ASCVD risk may in part be due to their anti-inflammatory prop-
erties, though recent studies suggest the benefit of this pleotropic effect is minimal
compared to the impact of lowering LDL-C [119, 120]. Among individuals with
elevated hsCRP levels � 2 mg/L, but with low LDL-C <130 mg/dL, rosuvastatin
conferred a 44% reduction in major adverse cardiac events in the Justification for
the Use of Statins in Prevention: an Intervention Trial Evaluating
Rosuvastatin (JUPITER) trial [121]. As proof of concept for causality of inflam-
mation in ASCVD pathogenesis, the Canakinumab Anti-inflammatory Thrombosis
Outcome Study (CANTOS) showed that an anti-inflammatory therapy targeting
interleukin-1b reduced the risk of recurrent CVD events independently of
lipid-lowering [122]. Thus, inflammatory markers have appeal as both prognostic
markers of risk and also therapeutic targets.

HsCRP

High-sensitivity C-reactive protein has emerged as the most commonly utilized
marker of systemic inflammation in clinical practice. hsCRP has been shown to be
associated with incident CVD events, independent of traditional risk factors [118,
123, 124]. In the ARIC study, an elevated hsCRP greater than the median
(� 2.4 mg/L) was associated with an increased *30–50% ASCVD risk, even
among individuals who had low cholesterol defined by having multiple measures of
atherogenic lipid particles below the median [124]. Some risk estimator tools,
notably the Reynolds Risk Score, have incorporated hsCRP in their models, with
improvement in re-classification of risk [125, 126].

While hsCRP appears may be a useful prognostic marker of risk, whether to use
hsCRP levels as a treatment goal remains a matter of controversy [127–129].
Post-hoc analyses of the JUPITER [130], Pravastatin or Atorvastatin Evaluation
and Infection Therapy trial (PROVE-IT) TIMI-22 [131], and Improved Reduction
of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) [132] trials
showed that individuals who achieved both the dual goals of low LDL-C <70 mg/
dL and low hsCRP <2 mg/L experienced lower ASCVD event rates compared to
those who did not achieve these dual goals. Similarly in the CANTOS trial, the
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benefit of canakinumab on lowering ASCVD events was seen only among those
who achieved on-treatment of hsCRP < 2 mg/L at 3 months but not those who
remained with levels � 2 mg/L on-treatment [133]. However, individuals who
achieved lower hsCRP on therapy also started with lower hsCRP levels at baseline
and had more favorable CVD risk profiles; thus, residual confounding may still
explain the associations seen [128, 129]. Additionally, while inflammation is
involved in the pathogenesis of atherosclerosis, hsCRP is a non-specific measure-
ment of inflammation, and is not itself involved in the causal pathway of ASCVD.
At this time, the 2018 AHA/ACC Cholesterol Guideline (1) and the 2019 ACC/
AHA Primary Prevention Guideline (2) endorse using hsCRP (if measured) as a
“risk-enhancing factor” that would favor the initiation or intensification of statin
therapy among those at borderline or intermediate risk; but they do not endorse
following hsCRP levels on treatment or targeting specific hsCRP goals.

GlycA

GlycA is a composite biomarker of systemic inflammation measured by nuclear
magnetic resonance (NMR) and reflects the serum concentration and glycosylation
state of main acute-phase reactants such as a1-acid glycoprotein, haptoglobin,
a1-antitrypsin, a1-antichymotrypsin and transferrin [134]. Compared with hsCRP,
this biomarker has several advantages, including its composite nature, lower
intra-individual variability, and improved analytic precision [134].

Several epidemiology studies have found elevated plasma GlycA to be associ-
ated with increased risk for incident CVD events and all-cause mortality, even after
adjustment for other inflammatory markers such as hsCRP [123, 135–140]. GlycA
was associated with HF with preserved ejection fraction, even after accounting for
adiposity [140]. Among individuals without clinical CVD, plasma GlycA levels
were associated with poorer cardiovascular health [141] and with several measures
of subclinical atherosclerosis [142–144]. Therefore, GlycA appears to hold promise
as a prognostic marker of risk, although it was not specifically listed in the 2019
ACC/AHA Primary Prevention Guideline for this purpose [2]. Whether therapeutic
lowering of GlycA (by lifestyle or pharmacotherapy) can prevent CVD remains
uncertain. This warrants further study before there can be clinical adoption of
GlycA measurement for the purposes of risk assessment, management, or follow-up
of patients.

C. Other Novel Biomarkers of CVD Risk

The field of biomarkers is continually evolving, with several novel biomarkers
currently under investigation. While studies have shown a prognostic value for
these biomarkers, further research is needed to fully elucidate their utility in risk
stratification and cardiovascular disease prevention.
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Galectin-3

Galectin-3 has been linked with cell fibrosis, inflammation, and myocardial
remodeling. Macrophages released during myocardial stress are a major source of
galectin-3, which may modulate the inflammatory response of damaged cardiac
tissue [145]. Rat models have shown that high levels of galectin-3 may be linked to
the development of HF, and galectin-3 knockout mice exhibited less fibrosis and
better echocardiographic parameters of cardiac function in the setting of pressure
overload [146]. Population studies have also shown that galectin-3 may have
prognostic value in risk stratification; the Prevention of REnal and Vascular
ENd-stage Disease (PREVEND) study showed galectin-3 levels are correlated with
many traditional cardiovascular risk factors, including blood pressure, serum lipids,
BMI, kidney function, and NT-proBNP [147]. High galectin-3 levels in this pop-
ulation were also associated with increased all-cause mortality. Given this associ-
ation, galectin-3 was approved by U.S. Food and Drug Administration in 2010 as a
new biomarker in the risk stratification of HF. However, it should be noted that in
the ARIC cohort, elevated galectin-3 was associated with incident HF only in
whites, not blacks, suggesting racial differences in the processes by which
galectin-3 confers disease [148].

Lp-PLA2

Lipoprotein-associated phospholipase A2 (Lp-PLA2) plays a critical role in
metabolizing pro-inflammatory phospholipids and in the generation of
pro-atherogenic metabolites [149]. Multiple studies have shown that elevated
Lp-PLA2 levels have prognostic value. A study of the ARIC population showed
that Lp-PLA2 was an independent predictor of CHD [150] and also might add
additional risk prognostication among individuals who are current smokers [151].
The JUPITER study showed patients in the fourth quartile of Lp-PLA2 levels had a
two-fold increased risk of cardiovascular events compared to patients in the first
quartile [152]. Based on these data, several professional societies note the mea-
surement of Lp-PLA2 has value in risk stratification for asymptomatic patients,
particularly those at moderate cardiovascular risk [153]. However, the more recent
2019 ACC/AHA Guideline for Primary Prevention of CVD only highlights hsCRP
as a risk-enhancing factor and does not specifically mention Lp-PLA2 [2]. This may
be because while the association between high Lp-PLA2 levels and cardiovascular
risk has been demonstrated, the clinical utility of this biomarker remains unclear
[154]. A randomized trial failed to show the benefit of the Lp-PLA2 inhibitor
darapladib in coronary artery disease, casting some doubt on Lp-PLA2’s causal role
in atherogenesis [155].
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Hepatocyte Growth Factor

Hepatocyte growth factor (HGF) is an angiogenic growth factor expressed in
endothelial and vascular smooth muscle cells [156], and thought to have many
potentially favorable mechanisms, such as being anti-apoptotic, angiogenic,
anti-fibrotic, and anti-inflammatory. In mouse models of HF, HGF reduces adverse
ventricular remodeling following an ischemic insult [157]. HGF is released in
circulation in response to endothelial damage, [158] and so while its physiologic
function is thought to be favorable, HGF elevation in the blood is marker of
increased risk for CVD [159–161], likely reflecting compensatory states that ulti-
mately proved inadequate.

In the MESA study, elevated levels of HGF were an independent predictor of
incident CHD [158], stroke [161], and progression of atherosclerosis [162, 163].
HGF has also been associated with incident HF with preserved ejection fraction
[164] and with a more concentric pattern of left ventricular remodeling [165].
Higher HGF levels have been associated with increased mortality risk among
patients with advanced HF [166]. Additionally, high levels of HGF have been
associated with traditional risk factors of hypertension, obesity, and diabetes [167].
Measurement of HGF is currently not endorsed in any professional guidelines at
this time, and additional studies are necessary to determine its clinical utility in risk
stratification.

Fibrinogen

Fibrinogen is a clotting factor and acute phase reactant involved in platelet
aggregation, endothelial injury, plasma viscosity, and thrombus formation. The
Fibrinogen Studies Collaboration showed that high fibrinogen levels are associated
with incident CHD, stroke, and other vascular mortality [168]. The 2012 ESC
Guidelines on CVD Prevention allowed for the measurement of fibrinogen in the
risk assessment of unusual or moderate risk of cardiovascular disease, but not in
asymptomatic low-risk patients; notably, this recommendation was not carried
forward into the 2016 guidelines [169, 170]. The 2019 ACC/AHA Primary
Prevention Guideline also does not list fibrinogen as one of the risk enhancing
factors [2].

Adipokines

Adipose tissue has an important endocrine role in the body through the production
of bioactive products known as adipokines. Obesity is characterized by an increase
in visceral fat, which leads to an imbalance in adipokines and many of the
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endocrine and endovascular complications seen in the metabolic syndrome [171],
which in turn may increase risk for CVD [172]. Multiple studies have reported an
association between adipokines with incident diabetes [173] and ASCVD [174–
177], and these associations have been independent of BMI. Adipokines have also
been implicated in gestational diabetes, [178] and dysregulation of adipokines
during pregnancy may be one mechanism linking multi-parity to future CVD risk in
women [179].

One of the most studied adipokines is adiponectin; while it is produced by
adipose tissue, it is paradoxically low in obese patients and may have a protective
effect on inflammation and atherosclerosis by decreasing monocyte adhesion to
endothelial cells and promoting angiogenesis [180]. Adiponectin is thought to have
favorable vasodilatory, anti-apoptotic, anti-inflammatory, and anti-oxidative prop-
erties. However, studies on adiponectin as a biomarker for risk stratification of
CVD have shown mixed results. One prior study showed that patients in the highest
quintile of adiponectin levels have a significantly decreased risk of MI compared to
those in the lowest quintile, even after adjustment for LDL-C, HDL-C, BMI, history
of diabetes and hypertension [175]. However, a subsequent study of the British
Regional Heart Study did not show a statistically significant association between
adiponectin levels and subsequent CHD [181]. This discrepancy may be due to
over-adjustment for other associated biomarkers such as cholesterol levels and
inflammatory markers, and additional studies will be necessary to further clarify the
role of adiponectin in risk stratification.

Leptin was the first adipokine to be characterized in 1994; it is felt to be
pro-atherogenic by initiating leukocyte and macrophage recruitment to the
endothelial cell wall and increasing oxidative stress [171]. Disruption of leptin
signaling could lead to cardiac hypertrophy [182]. In the FHS, increased levels of
leptin were shown to be associated with incident HF [183]. However, a study of the
MESA population showed that elevated leptin levels were not associated with
incident cardiovascular events [177].

Elevated resistin is thought to promote insulin resistance, inflammation,
endothelial dysfunction, foam cell formation, and thrombosis [184]. In the MESA
study there was an independent association between higher resistin levels and
incident CHD, CVD, and HF [174].

In addition to adiponectin, leptin, and resistin there are several additional
adipokines that may serve as biomarkers of CVD, including visfatin, apelin,
omentin, and chemerin [171]. While studies in animal models have shown a cor-
relation between these peptides and CVD, additional research is needed to better
understand their potential role in clinical risk stratification. Despite their associa-
tions with cardiometabolic diseases, at this time, adipokine measurement is not
widely used in clinical practice for ASCVD risk prediction or treatment monitoring,
and was not specifically mentioned in the 2019 ACC/AHA Primary Prevention
Guideline as one of the “risk enhancers”.
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Sex Hormones

Favorable properties of endogenous estrogens in pre-menopausal women have been
implicated as one of the mechanisms to explain the average onset of CAD
approximately 10-years later in women on average compared to men. Early
menopause is an independent risk for incident ASCVD in women [185], and also
mentioned as one of the “risk enhancing” factors in the 2019 ACC/AHA Guideline
[2]. The post-menopausal ovary continues to make testosterone, and higher
androgen levels in post-menopausal women (i.e., a more “male-like” hormone
pattern) has been associated with increased risk for CVD events [186]. In
post-menopausal women, higher free testosterone levels have been associated with
adverse left ventricular remodeling, aortic stiffness, endothelial dysfunction, sub-
clinical atherosclerosis progression, and increased NT-proBNP [91, 187–190].
Whereas, higher DHEA levels may be associated with decreased risk for ASCVD
and HF [191]. Conversely, in men, low testosterone levels have been associated
with increased CVD and mortality risk [192, 193]. Despite the fact that sex hor-
mone levels may identify a higher risk individual, sex hormone levels are not
measured clinically for the purpose of CVD risk stratification. This is likely because
at this time hormone replacement therapy in women and testosterone therapy in
men are not recommended for the purposes of ASCVD risk reduction. However,
hormone therapy might be used for other indications such as for menopausal
vasomotor symptoms or low libido, respectively, in otherwise low risk women and
men.

Conclusions

In sum, biomarkers measured from serum or plasma include markers in the direct
causal pathway of ASCVD risk, as well as markers that capture subclinical signs of
wall stress or myocardial damage, detect inflammatory states, or reflect compen-
satory states in response to vascular injury. Risk estimation tools incorporating
traditional risk factors alone, such as the PCE, are imprecise [6, 194]. These cal-
culators estimate the average risk in a group of individuals who have similar risk
factor profiles, but a given risk score is far more accurate for populations than it is
for any particular individual [4, 5]. Therefore assessment of biomarkers, alongside
of traditional CVD risk factors, has the potential to provide a more personalized
assessment of risk for a given individual. However, with the array of biomarkers to
choose from, the question arises of which marker or panel of markers has the most
prognostic utility in guiding shared decision making for implementing preventive
pharmacotherapies. Many of these biomarkers do not sufficiently change the area
under the curve (C-statistics) over traditional risk factors and as such have not been
endorsed for routine CVD risk assessment. Furthermore, it has also been questioned
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about whether biomarkers have any benefit over direct assessment of atheroscle-
rosis such as the CAC score [195–198].

At this time, current 2019 ACC/AHA Guideline for the Primary Prevention of
CVD has highlighted elevated hsCRP, TGs, apoB, and Lp(a) as the most helpful
“risk-enhancing” factors, that if measured, would favor initiation or intensification
of statin therapy among borderline or intermediate risk individuals. In high risk
primary prevention or secondary prevention, these lipid markers capture residual
risk despite statin therapy and could potentially be used to guide add-on therapies
(PCSK9 inhibitors, icosapent ethyl, or novel lipid therapeutics currently under
investigation) for further ASCVD risk reduction. Examples include use of icosapent
ethyl for elevated TGs despite controlled LDL-C, and PCSK9 inhibitor may be
considered to reduce Lp(a) in secondary prevention populations at very high risk. It
is important to acknowledge that further studies will be needed to support
approaches that are not included in the current guidelines. Additionally, natriuretic
peptides and high-sensitivity troponin assays are also increasingly being incorpo-
rated into clinical practice to guide clinical management decisions such as in HF
and AS, as mentioned above.

On the other hand, some of the other biomarkers mentioned in this review are
not commonly used despite showing initial promise of prognostic markers of CVD
risk, as it is not clear how management decisions should be changed after their
measurement among asymptomatic individuals. Despite the growing body of evi-
dence at the population-level supporting a link between these markers and devel-
opment of CVD, a better characterization of the accuracy of each of them at an
individual-level and how they can be used to tailor therapy is needed to facilitate
their implementation in clinical practice in the era of precision medicine. Future
studies should focus on whether biomarker-directed management strategies can
improve clinical outcomes compared traditional risk factors approaches alone.

References

1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/
ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on
the management of blood cholesterol: executive summary: a report of the American college
of cardiology/American heart association task force on clinical practice guidelines.
Circulation. 2019;139(25):e1046–81.

2. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al.
2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of
the American college of cardiology/American heart association task force on clinical practice
guidelines. Circulation. 2019;140(11):e596-646.

3. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/
EAS guidelines for the management of dyslipidaemias: lipid modification to reduce
cardiovascular risk. Eur Heart J. 2020;41(1):111–88.

4. McEvoy JW, Diamond GA, Detrano RC, Kaul S, Blaha MJ, Blumenthal RS, et al. Risk and
the physics of clinical prediction. Am J Cardiol. 2014;113(8):1429–35.

Biomarkers 53



5. Pender A, Lloyd-Jones DM, Stone NJ, Greenland P. Refining statin prescribing in lower-risk
individuals: informing risk/benefit decisions. J Am Coll Cardiol. 2016;68(15):1690–7.

6. Amin NP, Martin SS, Blaha MJ, Nasir K, Blumenthal RS, Michos ED. Headed in the right
direction but at risk for miscalculation: a critical appraisal of the 2013 ACC/AHA risk
assessment guidelines. J Am College Cardiol. 2014;63(25 Pt A):2789–94.

7. Biomarkers and surrogate endpoints. Preferred definitions and conceptual framework. Clin
Pharmacol Ther. 2001;69(3):89–95.

8. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical consider-
ations. Circulation. 2006;113(19):2335–62.

9. Osibogun O, Ogunmoroti O, Tibuakuu M, Benson EM, Michos ED. Sex differences in the
association between ideal cardiovascular health and biomarkers of cardiovascular disease
among adults in the United States: a cross-sectional analysis from the multiethnic study of
atherosclerosis. BMJ Open. 2019;9(11):e031414.

10. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular
biomarkers. Circulation. 2007;115(8):949–52.

11. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J, 3rd. Factors of risk in the
development of coronary heart disease–six year follow-up experience. The Framingham
Study. Annals Internal Med. 1961;55:33–50.

12. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE,
Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a
meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet (London,
England). 2010;376(9753):1670–81.

13. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, Keech A,
Simes J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low
risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet
(London, England). 2012;380(9841):581–90.

14. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density
lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic,
epidemiologic, and clinical studies. A consensus statement from the European
Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.

15. Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of
atherosclerotic cardiovascular disease. New England J Med. 2019;381(16):1557–67.

16. Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis. 1996;124
(Suppl):S1-9.

17. Sabatine MS, Wiviott SD, Im K, Murphy SA, Giugliano RP. Efficacy and safety of further
lowering of low-density lipoprotein cholesterol in patients starting with very low levels: a
meta-analysis. JAMA Cardiol. 2018;3(9):823–8.

18. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density
lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem.
1972;18(6):499–502.

19. Quispe R, Hendrani A, Elshazly MB, Michos ED, McEvoy JW, Blaha MJ, et al. Accuracy of
low-density lipoprotein cholesterol estimation at very low levels. BMC Med. 2017;15(1):83.

20. Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, et al.
Comparison of a novel method vs the friedewald equation for estimating low-density
lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310(19):2061–8.

21. Pallazola VA, Sathiyakumar V, Ogunmoroti O, Fashanu O, Jones SR, Santos RD, et al.
Impact of improved low-density lipoprotein cholesterol assessment on guideline classifica-
tion in the modern treatment era-Results from a racially diverse Brazilian cross-sectional
study. J Clin Lipidol. 2019;13(5):804–11 e2.

22. Chaen H, Kinchiku S, Miyata M, Kajiya S, Uenomachi H, Yuasa T, et al. Validity of a novel
method for estimation of low-density lipoprotein cholesterol levels in diabetic patients.
J Atheroscler Thromb. 2016;23(12):1355–64.

54 R. Quispe et al.



23. Lee J, Jang S, Son H. Validation of the Martin Method for Estimating Low-Density
Lipoprotein Cholesterol Levels in Korean Adults: Findings from the Korea National Health
and Nutrition Examination Survey, 2009–2011. PloS one. 2016;11(1):e0148147.

24. Mehta R, Reyes-Rodriguez E, Yaxmehen Bello-Chavolla O, Guerrero-Diaz AC,
Vargas-Vazquez A, Cruz-Bautista I, et al. Performance of LDL-C calculated with
Martin’s formula compared to the Friedewald equation in familial combined hyperlipidemia.
Atherosclerosis. 2018;277:204–10.

25. Martin SS, Giugliano RP, Murphy SA, Wasserman SM, Stein EA, Ceska R, et al.
Comparison of low-density lipoprotein cholesterol assessment by martin/hopkins estimation,
friedewald estimation, and preparative ultracentrifugation: insights from the FOURIER trial.
JAMA Cardiol. 2018;3(8):749–53.

26. Khan SU, Khan MU, Valavoor S, Khan MS, Okunrintemi V, Mamas MA, et al. Association
of lowering apolipoprotein B with cardiovascular outcomes across various lipid-lowering
therapies: Systematic review and meta-analysis of trials. Eur J Prev Cardiol.
2019:2047487319871733.

27. Martin SS, Michos ED. Are we moving towards concordance on the principle that lipid
discordance matters? Circulation. 2014;129(5):539–41.

28. Cromwell WC, Otvos JD, Keyes MJ, Pencina MJ, Sullivan L, Vasan RS, et al. LDL particle
number and risk of future cardiovascular disease in the framingham offspring study—
implications for LDL management. J Clin Lipidol. 2007;1(6):583–92.

29. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical
implications of discordance between low-density lipoprotein cholesterol and particle
number. J Clin Lipidol. 2011;5(2):105–13.

30. Mora S, Buring JE, Ridker PM. Discordance of low-density lipoprotein (LDL) cholesterol
with alternative LDL-related measures and future coronary events. Circulation. 2014;129
(5):553–61.

31. Sniderman AD, St-Pierre AC, Cantin B, Dagenais GR, Despres JP, Lamarche B.
Concordance/discordance between plasma apolipoprotein B levels and the cholesterol
indexes of atherosclerotic risk. Am J Cardiol. 2003;91(10):1173–7.

32. Sniderman AD, Pencina M, Thanassoulis G. ApoB. Circ Res. 2019;124(10):1425–7.
33. Soedamah-Muthu SS, Chang YF, Otvos J, Evans RW, Orchard TJ, Pittsburgh Epidemiology

of Diabetes Complications S. Lipoprotein subclass measurements by nuclear magnetic
resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes.
A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study.
Diabetologia. 2003;46(5):674–82.

34. Sniderman AD, Williams K, McQueen MJ, Furberg CD. When is equal not equal? J Clin
Lipidol. 2010;4(2):83–8.

35. Sniderman AD. Differential response of cholesterol and particle measures of atherogenic
lipoproteins to LDL-lowering therapy: implications for clinical practice. J Clin Lipidol.
2008;2(1):36–42.

36. Sniderman AD, Islam S, Yusuf S, McQueen MJ. Discordance analysis of apolipoprotein B
and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the
INTERHEART study. Atherosclerosis. 2012;225(2):444–9.

37. Emerging Risk Factors C, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, et al.
Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–
2000.

38. Barter PJ, Ballantyne CM, Carmena R, Castro Cabezas M, Chapman MJ, Couture P, et al.
Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of
the thirty-person/ten-country panel. J Intern Med. 2006;259(3):247–58.

39. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease–the Framingham
Heart Study. Can J Cardiol. 1988;4 Suppl A:5A-10A.

40. McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, et al. Lipids,
lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries

Biomarkers 55



(the INTERHEART study): a case-control study. Lancet (London, England). 2008;372
(9634):224–33.

41. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE. Non-HDL cholesterol, apolipopro-
teins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for
cardiovascular disease in women. JAMA. 2005;294(3):326–33.

42. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle
profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in
predicting incident cardiovascular disease in women. Circulation. 2009;119(7):931–9.

43. Prospective Studies C, Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, et al.
Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of
individual data from 61 prospective studies with 55,000 vascular deaths. Lancet (London,
England). 2007;370(9602):1829–39.

44. Elshazly MB, Quispe R, Michos ED, Sniderman AD, Toth PP, Banach M, et al. Patient-level
discordance in population percentiles of the total cholesterol to high-density lipoprotein
cholesterol ratio in comparison with low-density lipoprotein cholesterol and
non-high-density lipoprotein cholesterol: the very large database of lipids study
(VLDL-2B). Circulation. 2015;132(8):667–76.

45. Elshazly MB, Nicholls SJ, Nissen SE, St John J, Martin SS, Jones SR, et al. Implications of
total to high-density lipoprotein cholesterol ratio discordance with alternative lipid
parameters for coronary atheroma progression and cardiovascular events. Am J Cardiol.
2016;118(5):647–55.

46. Quispe R, Elshazly MB, Zhao D, Toth PP, Puri R, Virani SS, et al. Total cholesterol/
HDL-cholesterol ratio discordance with LDL-cholesterol and non-HDL-cholesterol and
incidence of atherosclerotic cardiovascular disease in primary prevention: The ARIC study.
Eur J Prev Cardiol. 2019:2047487319862401.

47. Mathews SC, Mallidi J, Kulkarni K, Toth PP, Jones SR. Achieving secondary prevention
low-density lipoprotein particle concentration goals using lipoprotein cholesterol-based data.
PloS one. 2012;7(3):e33692.

48. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein
particles with the incidence of coronary artery disease in men and women. JAMA. 1996;276
(11):875–81.

49. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al.
Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36
(9):539–50.

50. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides
and cardiovascular disease: a scientific statement from the American heart association.
Circulation. 2011;123(20):2292–333.

51. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Effects of
atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL
study: a randomized controlled trial. JAMA. 2001;285(13):1711–8.

52. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of
dalcetrapib in patients with a recent acute coronary syndrome. New England J Med.
2012;367(22):2089–99.

53. Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides
predict recurrent ischemic events in patients with acute coronary syndrome treated with
statins. J Am Coll Cardiol. 2015;65(21):2267–75.

54. Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E, et al. Impact of
triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome
in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51(7):724–30.

55. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular
risk reduction with Icosapent Ethyl for Hypertriglyceridemia. New England J Med.
2019;380(1):11–22.

56 R. Quispe et al.



56. Group AS, Ginsberg HN, Elam MB, Lovato LC, Crouse JR, 3rd, Leiter LA, et al. Effects of
combination lipid therapy in type 2 diabetes mellitus. New England J Med. 2010;362
(17):1563–74.

57. Guyton JR, Slee AE, Anderson T, Fleg JL, Goldberg RB, Kashyap ML, et al. Relationship
of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis
Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on
Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1580–4.

58. Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of
high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients
at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324
(22):2268–80.

59. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense
inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. New England J Med.
2015;373(5):438–47.

60. Jorgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjaerg-Hansen
A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as
causal risk factors for myocardial infarction. Eur Heart J. 2013;34(24):1826–33.

61. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R,
Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease.
J Am Coll Cardiol. 2013;61(4):427–36.

62. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function
mutations in APOC3 and risk of ischemic vascular disease. New England J Med. 2014;371
(1):32–41.

63. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function
mutations in APOC3, triglycerides, and coronary disease. New England J Med. 2014;371
(1):22–31.

64. Elshazly MB, Mani P, Nissen S, Brennan DM, Clark D, Martin S, et al. Remnant
cholesterol, coronary atheroma progression and clinical events in statin-treated patients with
coronary artery disease. Eur J Prev Cardiol. 2019:2047487319887578.

65. Varbo A, Nordestgaard BG. Remnant lipoproteins. Curr Opin Lipidol. 2017;28(4):300–7.
66. Faridi KF, Quispe R, Martin SS, Hendrani AD, Joshi PH, Brinton EA, et al. Comparing

different assessments of remnant lipoprotein cholesterol: the very large database of lipids.
J Clin Lipidol. 2019;13(4):634–44.

67. Spence JD, Koschinsky M. Mechanisms of lipoprotein(a) pathogenicity: prothrombotic,
proatherosclerotic, or both? Arterioscler Thromb Vasc Biol. 2012;32(7):1550–1.

68. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated
lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9.

69. Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights
from epidemiology, genetics, and biology. J Lipid Res. 2016;57(11):1953–75.

70. Emerging Risk Factors C, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A,
et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and
nonvascular mortality. Jama. 2009;302(4):412–23.

71. Pare G, Caku A, McQueen M, Anand SS, Enas E, Clarke R, et al. Lipoprotein(a) levels and the
risk of myocardial infarction among 7 ethnic groups. Circulation. 2019;139(12):1472–82.

72. O’Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al.
Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139(12):1483–92.

73. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ,
Steinhagen-Thiessen E, et al. Lipoprotein(a) reduction in persons with cardiovascular
disease. New England J Med. 2020;382(3):244–55.

74. Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and
emerging therapies. J Am Coll Cardiol. 2017;69(6):692–711.

75. Albers JJ, Slee A, O’Brien KD, Robinson JG, Kashyap ML, Kwiterovich PO Jr, et al.
Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes:
the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low

Biomarkers 57



HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol.
2013;62(17):1575–9.

76. Willeit P, Kiechl S, Kronenberg F, Witztum JL, Santer P, Mayr M, et al. Discrimination and
net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes
in the Bruneck Study. J Am Coll Cardiol. 2014;64(9):851–60.

77. Verbeek R, Sandhu MS, Hovingh GK, Sjouke B, Wareham NJ, Zwinderman AH, et al.
Lipoprotein(a) improves cardiovascular risk prediction based on established risk algorithms.
J Am Coll Cardiol. 2017;69(11):1513–5.

78. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and
improved cardiovascular risk prediction. J Am Coll Cardiol. 2013;61(11):1146–56.

79. Fogacci F, Cicero AF, D’Addato S, D’Agostini L, Rosticci M, Giovannini M, et al. Serum
lipoprotein(a) level as long-term predictor of cardiovascular mortality in a large sample of
subjects in primary cardiovascular prevention: data from the Brisighella heart study. Eur J
Intern Med. 2017;37:49–55.

80. Xie H, Chen L, Liu H, Cui Y, Zhang Z, Cui L. Long-term prognostic value of lipoprotein(a)
in symptomatic patients with nonobstructive coronary artery disease. Am J Cardiol.
2017;119(7):945–50.

81. Suwa S, Ogita M, Miyauchi K, Sonoda T, Konishi H, Tsuboi S, et al. Impact of lipoprotein
(a) on long-term outcomes in patients with coronary artery disease treated with statin after a
first percutaneous coronary intervention. J Atheroscler Thromb. 2017;24(11):1125–31.

82. Boden WE, Sidhu MS, Toth PP. The therapeutic role of niacin in dyslipidemia management.
J Cardiovasc Pharmacol Ther. 2014;19(2):141–58.

83. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of
LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering
therapies: a mendelian randomization analysis. JAMA Cardiol. 2018;3(7):619–27.

84. Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, et al.
Use of Lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific
statement from the National Lipid Association. J Clin Lipidol. 2019;13(3):374–92.

85. Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025–6.
86. Apple FS, Collinson PO, Biomarkers ITFoCAoC. Analytical characteristics of

high-sensitivity cardiac troponin assays. Clin Chem. 2012;58(1):54–61.
87. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide

strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between
systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47(4):742–8.

88. Brunner-La Rocca HP, Kaye DM, Woods RL, Hastings J, Esler MD. Effects of intravenous
brain natriuretic peptide on regional sympathetic activity in patients with chronic heart
failure as compared with healthy control subjects. J Am Coll Cardiol. 2001;37(5):1221–7.

89. Michos ED, Wilson LM, Yeh HC, Berger Z, Suarez-Cuervo C, Stacy SR, et al. Prognostic
value of cardiac troponin in patients with chronic kidney disease without suspected acute
coronary syndrome: a systematic review and meta-analysis. Ann Intern Med. 2014;161
(7):491–501.

90. McCullough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE, et al. B-type
natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the
breathing not properly multinational study. Am J Kidney Dis. 2003;41(3):571–9.

91. Ying W, Zhao D, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Sex hormones
and change in N-terminal Pro-B-type natriuretic peptide levels: the multi-ethnic study of
atherosclerosis. J Clin Endocrinol Metabol. 2018;103(11):4304–14.

92. Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, et al. Age- and
sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am
Coll Cardiol. 2014;63(14):1441–8.

93. Lee KK, Ferry AV, Anand A, Strachan FE, Chapman AR, Kimenai DM, et al. Sex-specific
thresholds of high-sensitivity troponin in patients with suspected acute coronary syndrome.
J Am Coll Cardiol. 2019;74(16):2032–43.

58 R. Quispe et al.



94. Keyzer JM, Hoffmann JJ, Ringoir L, Nabbe KC, Widdershoven JW, Pop VJ. Age- and
gender-specific brain natriuretic peptide (BNP) reference ranges in primary care. Clin Chem
Lab Med. 2014;52(9):1341–6.

95. Sherwood MW, Kristin Newby L. High-sensitivity troponin assays: evidence, indications,
and reasonable use. J Am Heart Assoc. 2014;3(1):e000403.

96. Tate JR, Bunk DM, Christenson RH, Katrukha A, Noble JE, Porter RA, et al.
Standardisation of cardiac troponin I measurement: past and present. Pathology. 2010;42
(5):402–8.

97. Clerico A, Zaninotto M, Prontera C, Giovannini S, Ndreu R, Franzini M, et al. State of the
art of BNP and NT-proBNP immunoassays: the CardioOrmoCheck study. Clin Chim Acta;
Int J Clin Chem. 2012;414:112–9.

98. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of
troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in
the general population. JAMA. 2010;304(22):2503–12.

99. Martin Raymondi D, Garcia H, Alvarez I, Hernandez L, Molinero JP, Villamandos V.
TUSARC: prognostic value of high-sensitivity cardiac troponin T assay in asymptomatic
patients with high cardiovascular risk. Am J Med. 2019;132(5):631–8.

100. Ford I, Shah AS, Zhang R, McAllister DA, Strachan FE, Caslake M, et al. High-sensitivity
cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol.
2016;68(25):2719–28.

101. Jia X, Sun W, Hoogeveen RC, Nambi V, Matsushita K, Folsom AR, et al. High-sensitivity
troponin i and incident coronary events, stroke, heart failure hospitalization, and mortality in
the ARIC study. Circulation. 2019;139(23):2642–53.

102. Lan NSR, Bell DA, McCaul KA, Vasikaran SD, Yeap BB, Norman PE, et al.
High-sensitivity cardiac troponin i improves cardiovascular risk prediction in older men:
HIMS (The Health in Men Study). J Am Heart Assoc. 2019;8(5):e011818.

103. McEvoy JW, Chen Y, Nambi V, Ballantyne CM, Sharrett AR, Appel LJ, et al.
High-sensitivity cardiac troponin T and risk of hypertension. Circulation. 2015;132
(9):825–33.

104. Pandey A, Patel KV, Vongpatanasin W, Ayers C, Berry JD, Mentz RJ, et al. Incorporation
of biomarkers into risk assessment for allocation of antihypertensive medication according to
the 2017 ACC/AHA high blood pressure guideline: a pooled cohort analysis. Circulation.
2019;140(25):2076–88.

105. Kang DH, Park SJ, Lee SA, Lee S, Kim DH, Kim HK, et al. Early surgery or conservative
care for asymptomatic aortic stenosis. New England J Med. 2020;382(2):111–9.

106. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS
guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–91.

107. McCarthy CP, Donnellan E, Phelan D, Griffin BP, Enriquez-Sarano M, McEvoy JW. High
sensitivity troponin and valvular heart disease. Trends Cardiovasc Med. 2017;27(5):326–33.

108. Chin CW, Shah AS, McAllister DA, Joanna Cowell S, Alam S, Langrish JP, et al.
High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic
response and adverse outcomes in patients with aortic stenosis. Eur Heart J. 2014;35
(34):2312–21.

109. Ferrer-Sistach E, Lupon J, Cediel G, Teis A, Gual F, Serrano S, et al. High-sensitivity
troponin T in asymptomatic severe aortic stenosis. Biomarkers. 2019;24(4):334–40.

110. Chin CW, Messika-Zeitoun D, Shah AS, Lefevre G, Bailleul S, Yeung EN, et al. A clinical
risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur
Heart J. 2016;37(8):713–23.

111. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, et al. Multimarker
approach for the prediction of heart failure incidence in the community. Circulation.
2010;122(17):1700–6.

112. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, et al.
Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease,

Biomarkers 59



heart failure, and mortality in the atherosclerosis risk in communities study. Circulation.
2011;123(13):1367–76.

113. Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, et al. Natriuretic
peptide-based screening and collaborative care for heart failure: the STOP-HF randomized
trial. JAMA. 2013;310(1):66–74.

114. McGrady M, Reid CM, Shiel L, Wolfe R, Boffa U, Liew D, et al. NT-proB natriuretic
peptide, risk factors and asymptomatic left ventricular dysfunction: results of the SCReening
evaluation of the evolution of new heart failure study (SCREEN-HF). Int J Cardiol.
2013;169(2):133–8.

115. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, et al. Role of
biomarkers for the prevention, assessment, and management of heart failure: a scientific
statement from the american heart association. Circulation. 2017;135(22):e1054–91.

116. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of
CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278–89.

117. Esmon CT. Inflammation and thrombosis. J Thrombosis Haemostasis: JTH. 2003;1
(7):1343–8.

118. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of
inflammation in the prediction of cardiovascular disease in women. New England J Med.
2000;342(12):836–43.

119. Schonbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors:
statins as antiinflammatory agents? Circulation. 2004;109(21 Suppl 1):II18–26.

120. Labos C, Brophy JM, Smith GD, Sniderman AD, Thanassoulis G. Evaluation of the
pleiotropic effects of statins: a reanalysis of the randomized trial evidence using egger
regression-brief report. Arterioscler Thromb Vasc Biol. 2018;38(1):262–5.

121. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al.
Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
N Engl J Med. 2008;359(21):2195–207.

122. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al.
Antiinflammatory therapy with Canakinumab for atherosclerotic disease. New England J
Med. 2017;377(12):1119–31.

123. Duprez DA, Otvos J, Sanchez OA, Mackey RH, Tracy R, Jacobs DR Jr. Comparison of the
predictive value of GlycA and other biomarkers of inflammation for total death, incident
cardiovascular events, noncardiovascular and noncancer inflammatory-related events, and
total cancer events. Clin Chem. 2016;62(7):1020–31.

124. Quispe R, Michos ED, Martin SS, Puri R, Toth PP, Al Suwaidi J, et al. High-sensitivity
C-reactive protein discordance with atherogenic lipid measures and incidence of atheroscle-
rotic cardiovascular disease in primary prevention: the ARIC study. J Am Heart Assoc.
2020;9(3):e013600.

125. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved
algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk
Score. JAMA. 2007;297(6):611–9.

126. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental
history improve global cardiovascular risk prediction: the Reynolds Risk Score for men.
Circulation. 2008;118(22):2243–51, 4p following 51.

127. Michos ED, Martin SS, Blumenthal RS. Bringing back targets to “IMPROVE” atheroscle-
rotic cardiovascular disease outcomes: the duel for dual goals; are two targets better than
one? Circulation. 2015;132(13):1218–20.

128. Michos ED, Blumenthal RS. Treatment concentration of high-sensitivity C-reactive protein.
Lancet (London, England). 2018;391(10118):287–9.

129. Cardoso R, Kaul S, Okada DR, Blumenthal RS, Michos ED. A deeper dive into the
CANTOS “Responders” Substudy. Mayo Clin Proc. 2018;93(7):830–3.

130. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al. Reduction
in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of

60 R. Quispe et al.



rosuvastatin: a prospective study of the JUPITER trial. Lancet (London, England). 2009;373
(9670):1175–82.

131. Ridker PM, Morrow DA, Rose LM, Rifai N, Cannon CP, Braunwald E. Relative efficacy of
atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density
lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the
PROVE-IT TIMI-22 trial. J Am Coll Cardiol. 2005;45(10):1644–8.

132. Bohula EA, Giugliano RP, Cannon CP, Zhou J, Murphy SA, White JA, et al. Achievement
of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets
more frequent with the addition of ezetimibe to simvastatin and associated with better
outcomes in IMPROVE-IT. Circulation. 2015;132(13):1224–33.

133. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ, et al. Relationship of
C-reactive protein reduction to cardiovascular event reduction following treatment with
canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet
(London, England). 2018;391(10118):319–28.

134. Otvos JD, Shalaurova I, Wolak-Dinsmore J, Connelly MA, Mackey RH, Stein JH, et al.
GlycA: a composite nuclear magnetic resonance biomarker of systemic inflammation. Clin
Chem. 2015;61(5):714–23.

135. Akinkuolie AO, Buring JE, Ridker PM, Mora S. A novel protein glycan biomarker and
future cardiovascular disease events. J Am Heart Assoc. 2014;3(5):e001221.

136. Akinkuolie AO, Glynn RJ, Padmanabhan L, Ridker PM, Mora S. Circulating N-linked
glycoprotein side-Chain biomarker, rosuvastatin therapy, and incident cardiovascular
disease: an analysis from the JUPITER trial. J Am Heart Assoc. 2016;5(7).

137. Fashanu OE, Oyenuga AO, Zhao D, Tibuakuu M, Mora S, Otvos JD, et al. GlycA, a novel
inflammatory marker and its association with peripheral arterial disease and carotid plaque:
the multi-ethnic study of atherosclerosis. Angiology. 2019;70(8):737–46.

138. Gruppen EG, Riphagen IJ, Connelly MA, Otvos JD, Bakker SJ, Dullaart RP. GlycA, a
Pro-inflammatory glycoprotein biomarker, and incident cardiovascular disease: relationship
with C-reactive protein and renal function. PloS one. 2015;10(9):e0139057.

139. Lawler PR, Akinkuolie AO, Chandler PD, Moorthy MV, Vandenburgh MJ,
Schaumberg DA, et al. Circulating N-linked glycoprotein acetyls and longitudinal mortality
risk. Circ Res. 2016;118(7):1106–15.

140. Jang S, Ogunmoroti O, Ndumele CE, Zhao D, Rao VN, Fashanu OE, et al. Association of
the novel inflammatory marker GlycA and incident heart failure and its subtypes of
preserved and reduced ejection fraction: the multi-ethnic study of atherosclerosis. Circ Heart
Fail. 2020;13(8):e007067.

141. Benson EA, Tibuakuu M, Zhao D, Akinkuolie AO, Otvos JD, Duprez DA, et al.
Associations of ideal cardiovascular health with GlycA, a novel inflammatory marker: the
Multi-Ethnic Study of Atherosclerosis. Clin Cardiol. 2018;41(11):1439–45.

142. Tibuakuu M, Fashanu OE, Zhao D, Otvos JD, Brown TT, Haberlen SA, et al. GlycA, a
novel inflammatory marker, is associated with subclinical coronary disease. AIDS. 2019;33
(3):547–57.

143. Joshi AA, Lerman JB, Aberra TM, Afshar M, Teague HL, Rodante JA, et al. GlycA is a
novel biomarker of inflammation and subclinical cardiovascular disease in psoriasis. Circ
Res. 2016;119(11):1242–53.

144. Ezeigwe A, Fashanu OE, Zhao D, Budoff MJ, Otvos JD, Thomas IC, et al. The novel
inflammatory marker GlycA and the prevalence and progression of valvular and thoracic
aortic calcification: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis.
2019;282:91–9.

145. Knight B, Xue Y, Maisel AS, de Boer RA. Galectin 3: newest marker of HF outcomes. Curr
Emerg Hosp Med Rep. 2014;2(2):112–9.

146. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and
pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with
myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107–17.

Biomarkers 61



147. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH,
Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population.
J Intern Med. 2012;272(1):55–64.

148. McEvoy JW, Chen Y, Halushka MK, Christenson E, Ballantyne CM, Blumenthal RS, et al.
Galectin-3 and risk of heart failure and death in blacks and whites. J Am Heart Assoc.
2016;5(5).

149. Maiolino G, Bisogni V, Rossitto G, Rossi GP. Lipoprotein-associated phospholipase A2
prognostic role in atherosclerotic complications. World J Cardiol. 2015;7(10):609–20.

150. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, et al.
Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for
incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk
in Communities (ARIC) study. Circulation. 2004;109(7):837–42.

151. Tibuakuu M, Kianoush S, DeFilippis AP, McEvoy JW, Zhao D, Guallar E, et al. Usefulness
of lipoprotein-associated phospholipase A2 activity and C-reactive protein in identifying
high-risk smokers for atherosclerotic cardiovascular disease (from the Atherosclerosis Risk
in Communities Study). Am J Cardiol. 2018;121(9):1056–64.

152. Ridker PM, MacFadyen JG, Wolfert RL, Koenig W. Relationship of lipoprotein-associated
phospholipase A(2) mass and activity with incident vascular events among primary
prevention patients allocated to placebo or to statin therapy: an analysis from the JUPITER
trial. Clin Chem. 2012;58(5):877–86.

153. Davidson MH, Corson MA, Alberts MJ, Anderson JL, Gorelick PB, Jones PH, et al.
Consensus panel recommendation for incorporating lipoprotein-associated phospholipase
A2 testing into cardiovascular disease risk assessment guidelines. Am J Cardiol. 2008;101
(12A):51F-F57.

154. Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HB. Novel biomarkers for cardiovascular risk
prediction. J Geriatr Cardiol. 2017;14(2):135–50.

155. Investigators S, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for
preventing ischemic events in stable coronary heart disease. New England J Med. 2014;370
(18):1702–11.

156. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, et al. Hepatocyte growth
factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem
Cells. 2006;24(1):23–33.

157. Rong S-l, Wang X-l, Wang Y-c, Wu H, Zhou X-d, Wang Z-k, et al. Anti-inflammatory
activities of hepatocyte growth factor in post-ischemic heart failure. Acta Pharmacol Sinica.
2018;39(10):1613–21.

158. Bielinski SJ, Berardi C, Decker PA, Larson NB, Bell EJ, Pankow JS, et al. Hepatocyte
growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease.
Heart (British Cardiac Society). 2017;103(15):1185–93.

159. Morishita R, Aoki M, Yo Y, Ogihara T. Hepatocyte growth factor as cardiovascular
hormone: role of HGF in the pathogenesis of cardiovascular disease. Endocr J. 2002;49
(3):273–84.

160. Rajpathak Swapnil N, Wang T, Wassertheil-Smoller S, Strickler Howard D, Kaplan
Robert C, McGinn Aileen P, et al. Hepatocyte growth factor and the risk of ischemic stroke
developing among postmenopausal women. Stroke. 2010;41(5):857–62.

161. Bell EJ, Larson NB, Decker PA, Pankow JS, Tsai MY, Hanson NQ, et al. Hepatocyte
growth factor is positively associated with risk of stroke: the MESA (Multi-Ethnic Study of
Atherosclerosis). Stroke. 2016;47(11):2689–94.

162. Decker PA, Larson NB, Bell EJ, Pankow JS, Hanson NQ, Wassel CL, et al. Increased
hepatocyte growth factor levels over 2 years are associated with coronary heart disease: the
Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2019;213:30–4.

163. Bell EJ, Decker PA, Tsai MY, Pankow JS, Hanson NQ, Wassel CL, et al. Hepatocyte
growth factor is associated with progression of atherosclerosis: the Multi-Ethnic Study of
Atherosclerosis (MESA). Atherosclerosis. 2018;272:162–7.

62 R. Quispe et al.



164. Ferraro RA, Ogunmoroti O, Zhao D, Ndumele CE, Rao V, Pandey A, et al. Abstract 264: the
association of hepatocyte growth factor with incident heart failure and its subtypes: the
Multi-Ethnic Study of Atherosclerosis. Arterioscl. Thrombosis Vascul Biol. 2020;40
(Suppl_1):A264-A.

165. Ferraro RA, Ogunmoroti O, Zhao D, Ndumele CE, Lima JAC, Subramanya V, et al.
Abstract 13300: hepatocyte growth factor and 10-year change in left ventricular structure:
the Multi-Ethnic Study of Atherosclerosis. Circulation. 2020;142(Suppl_3):A13300-A.

166. Rychli K, Richter B, Hohensinner PJ, Mahdy Ali K, Neuhold S, Zorn G, et al. Hepatocyte
growth factor is a strong predictor of mortality in patients with advanced heart failure. Heart.
2011;97(14):1158.

167. Bancks MP, Bielinski SJ, Decker PA, Hanson NQ, Larson NB, Sicotte H, et al. Circulating
level of hepatocyte growth factor predicts incidence of type 2 diabetes mellitus: the
Multi-Ethnic Study of Atherosclerosis (MESA). Metabolism. 2016;65(3):64–72.

168. Fibrinogen Studies C, Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, et al.
Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular
mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.

169. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European
guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth
joint task force of the European society of cardiology and other societies on cardiovascular
disease prevention in clinical practice (constituted by representatives of nine societies and by
invited experts). Eur Heart J. 2012;33(13):1635–701.

170. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European
guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force
of the European society of cardiology and other societies on cardiovascular disease
prevention in clinical practice (constituted by representatives of 10 societies and by invited
experts) developed with the special contribution of the European Association for
Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis. 2016;252:207–74.

171. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, et al. Role of adipokines in
cardiovascular disease. Circ J. 2017;81(7):920–8.

172. Dutheil F, Gordon BA, Naughton G, Crendal E, Courteix D, Chaplais E, et al.
Cardiovascular risk of adipokines: a review. J Int Med Res. 2018;46(6):2082–95.

173. Wannamethee SG, Lowe GD, Rumley A, Cherry L, Whincup PH, Sattar N. Adipokines and
risk of type 2 diabetes in older men. Diabetes Care. 2007;30(5):1200–5.

174. Muse ED, Feldman DI, Blaha MJ, Dardari ZA, Blumenthal RS, Budoff MJ, et al. The
association of resistin with cardiovascular disease in the Multi-Ethnic Study of
Atherosclerosis. Atherosclerosis. 2015;239(1):101–8.

175. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin
levels and risk of myocardial infarction in men. JAMA. 2004;291(14):1730–7.

176. Landecho MF, Tuero C, Valenti V, Bilbao I, de la Higuera M, Fruhbeck G. Relevance of
Leptin and other Adipokines in obesity-associated cardiovascular risk. Nutrients. 2019;11
(11).

177. Martin SS, Blaha MJ, Muse ED, Qasim AN, Reilly MP, Blumenthal RS, et al. Leptin and
incident cardiovascular disease: the Multi-ethnic Study of Atherosclerosis (MESA).
Atherosclerosis. 2015;239(1):67–72.

178. Fasshauer M, Bluher M, Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes
Endocrinol. 2014;2(6):488–99.

179. Rodriguez CP, O. O, Quispe R, Osibogun OI, Ndumele CE, Echouffo Tcheugui JB, et al.
Abstract 13525: The association between multiparity and Adipokine levels: the Multi-Ethnic
Study of Atherosclerosis (MESA). Circulation. 2020;142(Suppl_3):A13525-A.

180. Jensen MK, Bertoia ML, Cahill LE, Agarwal I, Rimm EB, Mukamal KJ. Novel metabolic
biomarkers of cardiovascular disease. Nat Rev Endocrinol. 2014;10(11):659–72.

181. Sattar N, Wannamethee G, Sarwar N, Tchernova J, Cherry L, Wallace AM, et al.
Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation.
2006;114(7):623–9.

Biomarkers 63



182. Barouch LA, Berkowitz DE, Harrison RW, O’Donnell CP, Hare JM. Disruption of leptin
signaling contributes to cardiac hypertrophy independently of body weight in mice.
Circulation. 2003;108(6):754–9.

183. Ho JE, Lyass A, Courchesne P, Chen G, Liu C, Yin X, et al. Protein biomarkers of
cardiovascular disease and mortality in the community. J Am Heart Assoc. 2018;7(14).

184. Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: a reappraisal. Mech
Ageing Dev. 2019;178:46–63.

185. Honigberg MC, Zekavat SM, Aragam K, Finneran P, Klarin D, Bhatt DL, et al. Association
of premature natural and surgical menopause with incident cardiovascular disease. Jama.
2019.

186. Zhao D, Guallar E, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Endogenous
sex hormones and incident cardiovascular disease in post-menopausal women. J Am Coll
Cardiol. 2018;71(22):2555–66.

187. Subramanya V, Zhao D, Ouyang P, Lima JA, Vaidya D, Ndumele CE, et al. Sex hormone
levels and change in left ventricular structure among men and post-menopausal women: the
Multi-Ethnic Study of Atherosclerosis (MESA). Maturitas. 2018;108:37–44.

188. Subramanya V, Ambale-Venkatesh B, Ohyama Y, Zhao D, Nwabuo CC, Post WS, et al.
Relation of sex hormone levels with prevalent and 10-year change in aortic distensibility
assessed by MRI: the multi-ethnic study of atherosclerosis. Am J Hypertens. 2018;31
(7):774–83.

189. Subramanya V, Zhao D, Ouyang P, Ying W, Vaidya D, Ndumele CE, et al. Association of
endogenous sex hormone levels with coronary artery calcium progression among
post-menopausal women in the Multi-Ethnic Study of Atherosclerosis (MESA).
J Cardiovascul Comp Tomography. 2019;13(1):41–7.

190. Mathews L, Subramanya V, Zhao D, Ouyang P, Vaidya D, Guallar E, et al. Endogenous sex
hormones and endothelial function in postmenopausal women and men: the multi-ethnic
study of atherosclerosis. J Women’s Health (2002). 2019;28(7):900–9.

191. Jia X, Sun C, Tang O, Gorlov I, Nambi V, Virani SS, et al. Plasma dehydroepiandrosterone
sulfate and cardiovascular disease risk in older men and women. J Clin Endocrinol Metabol.
2020;105(12).

192. Akishita M, Hashimoto M, Ohike Y, Ogawa S, Iijima K, Eto M, et al. Low testosterone level
as a predictor of cardiovascular events in Japanese men with coronary risk factors.
Atherosclerosis. 2010;210(1):232–6.

193. Menke A, Guallar E, Rohrmann S, Nelson WG, Rifai N, Kanarek N, et al. Sex steroid
hormone concentrations and risk of death in US men. Am J Epidemiol. 2010;171(5):583–92.

194. DeFilippis AP, Young R, McEvoy JW, Michos ED, Sandfort V, Kronmal RA, et al. Risk
score overestimation: the impact of individual cardiovascular risk factors and preventive
therapies on the performance of the American heart association-American college of
cardiology-atherosclerotic cardiovascular disease risk score in a modern multi-ethnic cohort.
Eur Heart J. 2017;38(8):598–608.

195. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al.
Comparison of novel risk markers for improvement in cardiovascular risk assessment in
intermediate-risk individuals. JAMA. 2012;308(8):788–95.

196. Yeboah J, Young R, McClelland RL, Delaney JC, Polonsky TS, Dawood FZ, et al. Utility of
nontraditional risk markers in atherosclerotic cardiovascular disease risk assessment. J Am
Coll Cardiol. 2016;67(2):139–47.

197. Blaha MJ, Cainzos-Achirica M, Greenland P, McEvoy JW, Blankstein R, Budoff MJ, et al.
Role of coronary artery calcium score of zero and other negative risk markers for
cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation.
2016;133(9):849–58.

198. Michos ED, Blaha MJ, Blumenthal RS. Use of the coronary artery calcium score in
discussion of initiation of statin therapy in primary prevention. Mayo Clin Proc. 2017;92
(12):1831–41.

64 R. Quispe et al.



Genetics

Marios Arvanitis, Wendy S. Post, and Alexis Battle

Introduction

The discovery of next generation sequencing in the 1990s [1] along with the rapid
rise in computing power over the past decade has led to an unprecedented broad-
ening of our understanding of genetic processes that underlie disease biology. It is
ever more appreciated that we are living in an era of a genomic revolution, one of
enormous magnitude and scale, capable of reshaping our understanding of bio-
logical processes [2]. Indeed, the twenty-first century literature has seen an
impressive rise in the number of publications regarding genomics [3].

Although this genomic analysis revolution has until recently been limited to
research, it is increasingly understood that we are approaching a new phase in which
genomic analyses will be translated into everyday clinical medicine [4].
Cardiovascular disease, being the primary cause of death worldwide and one of the
most challenging public health concerns, has traditionally been at the forefront of
changes in medical practice. For example, evidence-based medicine, which is con-
sidered a crucial aspect of current clinical practice, thrived within cardiology with
multiple randomized trials dating back to the 1980s [5] before its official introduction
as a term [6]. Therefore, it is not surprising to see the first signs of the integration of
genomics into medicine within the field of Cardiovascular Disease Prevention.
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In this chapter, we offer an overview of methods and strategies via which
genomics can influence everyday clinical practice with a particular focus on the
impact these approaches can have on cardiovascular prevention.

Rare Variation Highlights Novel Disease Pathways

Background

Sequencing technologies have allowed for the discovery of rare coding variants that
can lead to extreme deviations from normal phenotypes. The traditional approach to
identify these variants starts with the finding of an extreme phenotype in the clinical
setting. Once clinicians or researchers identify a person as an outlier for a specific
condition, and assuming that phenomenon cannot be easily explained by an envi-
ronmental factor or comorbidity, then they can perform what is formally known as a
family linkage study [7]. Specifically, investigators can perform genotyping or
sequencing of several affected and unaffected members of the family and evaluate
how certain haplotypes segregate with presence of the target phenotype.

Relevance for Cardiovascular Prevention

This approach has been used successfully in cardiovascular prevention both clini-
cally and in research. Perhaps the most widely appreciated recent example is the
discovery of the PCSK9 gene as a major driver of atherosclerosis. In a series of
studies, Boileaut et al. identified several families in France that had clear phenotypic
signs of severe hypercholesterolemia with an autosomal dominant inheritance
pattern but did not carry any mutations in LDLR or APOB, which at the time were
the only known familial hypercholesterolemia (FH) genes. The investigators
mapped the cause of these patients’ hypercholesterolemia within chromosome 1 in
a locus they named “FH3” [8]. They subsequently went further and with detailed
experimental evidence they were able to identify with confidence that mutations in
the PCSK9 gene were the cause of FH in these families [9]. This opened the door to
a series of studies about PCSK9 inhibition as a potential new avenue for
atherosclerotic cardiovascular disease (ASCVD) prevention that culminated to the
creation of PCSK9 inhibitors evolocumab and alirocumab which are now widely
used in clinical practice and have been proven to reduce both lipid levels and
cardiovascular events [10, 11].

The discovery of other FH genes (APOE [12], ABCG5 [13], ABCG8 [13])
followed a similar path and we now are familiar with 8 genes that can cause FH and
many more that can cause other subtypes of familial lipid disorders. Targeted gene
sequencing is used in everyday practice to screen individuals at high risk for
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familial lipid disorders. The importance of diagnosing monogenic familial lipid
disorders is twofold. First, it can guide therapy for the individual who is a mutation
carrier. Specifically, we now know that people who have monogenic FH have a
higher risk of disease than individuals with FH lacking any known mutation [14]. It
is therefore prudent to treat LDL more aggressively in such patients. Second, it can
inform evaluation and treatment of family members of the identified proband.
Specifically, it is now recommended that we perform cascade screening in family
members of individuals who have monogenic FH [15]. This approach can allow
identification of asymptomatic individuals with FH who may benefit from early
intervention to prevent ASCVD.

Beyond their influence in diagnosis and risk stratification, rare variants can help
highlight novel disease pathways that can spark research into novel therapies for
ASCVD as was the case for PCSK9. A more recent example of this approach is the
identification of ANGPTL4. In a series of studies published in the New England
Journal of Medicine, independent investigators identified rare coding variants of
ANGPTL4, a gene that inhibits lipoprotein lipase, as risk factors for coronary artery
disease [16, 17]. In the first of these studies, researchers evaluated the impact of rare
coding variants across multiple genes in the genome in a high-throughput fashion in
72,000 cases with coronary disease and 120,000 controls. They discovered that
inactivating variants of the ANGPTL4 gene confer protection against coronary
disease potentially via lowering triglyceride levels [16]. An independent study
published at around the same time confirmed these findings and also showed that
the same ANGPTL4 variant leads to drastically lower triglyceride levels and higher
HDL levels [17]. The researchers subsequently showed that monoclonal antibody
inhibition of ANGPTL4 in mice and monkeys leads to decreased triglyceride levels
[17], along with improved insulin sensitivity and glucose homeostasis [18]. In a
similar design study, the same group of investigators showed that rare variants
within ANGPTL3, a gene in the same family as ANGPTL4, also led to lower risk of
coronary disease and decreased levels of all three lipid components (Triglycerides,
LDL and HDL cholesterol). Monoclonal antibody inhibition of ANGPTL3 with a
molecule named evinacumab decreased triglyceride levels by 76% and LDL
cholesterol by 23% in humans [19]. Two subsequent phase 2 trials in individuals
with homozygous FH [20] and refractory hypercholesterolemia [21] showed that
evinacumab reduced LDL cholesterol by approximately 50% when added to
standard of care therapy.

Beyond discovery of novel therapeutics, rare variant identification can also guide
targeted therapy based on a mechanistic understanding of the defect that causes a
certain disease phenotype. For example, we know that individuals with two copies
of autosomal recessive ABCG8 or ABCG5 variants have a phenotype indistin-
guishable from FH [13]. These individuals have a condition known as sitos-
terolemia which leads to increased absorption and diminished bile secretion of plant
sterols in the gut. This phenomenon in turn increases circulating levels of plant
sterols that lead to increased LDL cholesterol measurements and premature coro-
nary disease. Interestingly, plant sterol levels are not substantially affected by statin
therapy, which is the first line treatment for most individuals with FH, but are
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instead particularly responsive to ezetimibe therapy. Ezetimibe decreases intestinal
cholesterol absorption, making this medication a reasonable first line intervention
for this group of patients [22].

Leveraging Common Variant Genomics to Understand
Disease Pathophysiology

Background

It is increasingly understood that rare coding variants only account for a small
portion of the heritability of most complex traits and diseases [23]. In contrast, a
substantial portion of the heritability is driven by variants in non-coding regions of
the genome [24]. Therefore, identification of these alternative disease-causing
variants and their mechanism of action is a crucial task in our understanding of the
genetic underpinnings of human disease. The genome-wide association
(GWA) framework has been the workhorse method of investigations aiming to
understand the way in which genetic variation influences disease risk. The last
decade has seen a dramatic rise in the number of successful GWA studies (GWAS)
performed. Indeed, the latest estimates from the GWAS catalog show that over
179,000 independent variant-trait associations have been identified by GWAS
to-date [25].

The concept of GWAS is simple. Once we obtain the genotypes of a large set of
individuals for whom we know the prevalence of a human disease, then we can
associate each genotype individually with the risk of disease. The concept is similar
to traditional cohort studies in which we associate an exposure with an outcome,
only in this case the exposure is the genotype at a particular position in the DNA
[26]. In contrast to traditional observational studies, this approach is more robust to
reverse causation (as the genotype by definition precedes disease incidence) and
some other confounding artifacts.

Although the GWAS strategy is simple in principle, it took several years for
GWAS to become widespread [27]. The reasons behind this delay are variable. Firstly,
there are often millions of genetic variants tested in each GWAS. Consequently, mul-
tiple testing burden is high and false positives are expected, which is why GWAS often
require replication to have high confidence in detected associations. Further, although
traditional confounding is uncommon in GWAS, these studies are prone to other sources
of inference errors that are inherent to the way a GWAS is performed. Specifically,
genotyping platforms and even more advanced whole genome sequencing technologies
that are available nowadays can have errors [28]. These errors can happen in any stage
across the genotyping process, from DNA isolation, to library preparation to the actual
sequencing. Depending on the affected step, errors can either affect a single genotype
from a single individual or can, not uncommonly, affect multiple participants and
generate what is known as “batch effects” which if not corrected will inevitably lead to
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false GWAS results. Therefore, an extensive quality control procedure is necessary to
successfully perform a GWAS. These quality control steps have now become standard
practice [29]. GWAS studies are affected by another type of confounding known as
population stratification [30]. Population stratification reflects the fact that different
populations tend to have different ancestry and therefore substantial differences in their
genotypes. The same populations also have different habits and are affected by different
environmental factors. Therefore, these differences can confound the results of a GWAS.
Approaches including Principal Component Analysis correction [31] and linear mixed
models are now available to address these concerns. A detailed description of these is
beyond the scope of the current review.

Last and perhaps most importantly, GWAS has been impeded by the fact that
most common variants that are found in high enough numbers in a population to be
able to be evaluated for association with disease, are also the same variants that are
less likely to have large effects disease [32]. The reason for that becomes obvious
when one considers evolutionary pressures. Variants that are likely to have major
effects in disease are also likely to cause a fitness disadvantage and therefore be
selected against. Consequently, for GWAS to successfully identify true genetic
associations with disease, they require large numbers of enrolled individuals, as
most common variants have only tiny effects on disease development.

Relevance for Cardiovascular Prevention

Despite these shortcomings, population genetics studies have been successful at
identifying variants that play an important role in Cardiovascular Health. Indeed, there
are presently over 160 identified loci across the genome that affect the risk of coronary
artery disease [33] and a larger number of loci that influence lipid traits [34].

Beyond identification of these risk loci, functional characterization to dissect
their mechanism of action is considered particularly important in the effort towards
their clinical translation. In certain situations, the task is easy as the risk locus is
found in a gene with a known function. For example, GWAS loci for coronary
disease risk have been identified in the LDLR, PCSK9 and LPA genes. Even in
these situations, GWAS can help expand our understanding of the impact of certain
genes in disease. For example, a large multi-ethnic GWAS study in 2013 showed
that variants near the LPA gene that affect lipoprotein (a) levels are strongly
associated with aortic valve calcification and incident aortic stenosis, [35] thereby
providing a novel target for the prevention of aortic valve stenosis.

However, in most cases the problem is more complicated because the GWAS
locus is non-coding, and in some cases no nearby gene has a known role in disease
development. A classic example is the discovery of SORT1. Early GWAS studies
for coronary disease identified a locus in chromosome 1 that was inside an intron of
the PSRC1 gene and that had a strong signal for association with disease, which
replicated across multiple different cohorts. Initial studies attributed the effect of
those variants to PSRC1 [36], a gene that is required for cell proliferation and
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normal progression through mitosis. However, a pivotal study from Musunuru et al.
proved that to be a false assumption [37]. Despite the fact that the nearest gene for
the variants identified in GWAS is indeed PSRC1, study of these variants in human
hepatocytes showed that they do not in fact affect PSRC1 expression. Instead, the
variants seemed to influence the expression of another more distant gene known as
SORT1. The investigators subsequently performed experiments in mice in which
they inactivated SORT1 using a small inhibitory RNA (siRNA) and showed that
decreased SORT1 expression leads to an increase in the levels of LDL and VLDL
by altering hepatic VLDL cholesterol secretion. SORT1 could therefore represent a
potential novel drug target for ASCVD [38].

Many other examples exist in the literature of efforts to functionally characterize
the role of identified ASCVD GWAS loci. In one case, investigators evaluated the
role of a locus in chromosome 6 that is the second most significant GWAS asso-
ciation with coronary disease. They found that instead of the traditional hypothesis
of the locus exerting its effects on ASCVD via an influence on the PHACTR1 gene,
the locus actually has no impact on PHACTR1 but affects endothelin − 1 (EDN1),
a more distant gene known to be associated with vascular stiffness [39]. In another
example, researchers showed that a new gene known as LMOD1 is a major reg-
ulator of smooth muscle cell proliferation during the atherosclerotic process and
fully explains the GWAS association with coronary disease in a chromosome 1
locus [40]. Lastly, a recent study by Lo Sardo et al. profiled and functionally
characterized the most impactful coronary disease GWAS locus in 9p21 [41]. Using
genome editing in inducible pluripotent stem cell (iPSC)-derived vascular smooth
muscle cells (VSMCs), the investigators showed that VSMCs that carry the risk
genotype demonstrate aberrant adhesion, contraction and proliferation, whereas
activating the expression of a long non-coding RNA within the 9p21 locus known
as ANRIL, induces risk phenotypes in non-risk VSMCs. This suggests that ANRIL
may have a crucial role in increasing the risk of aberrant VSMC proliferation in
atherosclerotic lesions.

Mendelian Randomization Can Help Us Understand Causal
Relationships

Background

Beyond the role of genomics in propelling discovery of novel disease mechanisms,
there are other important benefits that we can derive from genetic discoveries.
A major advance of genomics in medical practice has been the application of
Mendelian Randomization (MR) to understand causal factors in disease.

MR refers to the process by which we can leverage genotypes known to be
directly linked to a specific exposure (for example genetic variants that affect LDL
cholesterol levels) to randomize individuals into groups that subsequently allow us
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to test the effect of that exposure on outcomes of interest [42]. Indeed, the method is
considered a tremendous advance to traditional observational cohort studies as it is
much less prone to confounding and, provided certain basic assumptions hold, can
allow us to infer causal relationships between exposures and outcomes before
investing in an expensive and time-consuming randomized controlled trial [43].

Relevance for Cardiovascular Prevention

MR studies have been quite successful in identifying major underappreciated
exposure-outcome relationships or disproving long-held beliefs in the field of
Cardiovascular Prevention. For example, a large MR study performed in 2012
showed that genetic variants that lead to increased HDL cholesterol do not in fact
confer protection against atherosclerosis [44], thereby providing a justification as to
why previous randomized trials failed to show ASCVD prevention benefit from
interventions that increase HDL cholesterol [45]. Similarly, different investigators
performed MR to show that variants that directly affect inflammation via their
influence on interleukin-6 (IL6) substantially increase the risk of adverse coronary
events, thereby establishing the role of inflammation as a major risk factor for
atherosclerosis [46]. This role was subsequently proven by a recent randomized trial
that showed cardiovascular benefit from an intervention specifically targeting the
innate immunity pathway for secondary prevention in patients with established
ASCVD [47]. Similar to the above, MR studies have largely been successful at
disentangling causal from non-causal factors for ASCVD. For example, multiple
MR studies proved the role of increased blood pressure [48], increased LDL
cholesterol [48, 49], triglycerides [50] and lipoprotein(a) [51] in coronary disease,
whereas others failed to show a causal role of CETP [52] or vitamin D levels [53],
effects largely confirmed by subsequent randomized trials.

Beyond associations that have already been tested and confirmed by randomized
trials, MR studies can point towards a role for novel biomarkers and exposures in
ASCVD risk, thereby providing new targets for therapeutic and preventive inter-
ventions. For example, a recent MR study demonstrated that ATP citrate lyase
(ACLY), an enzyme that is found upstream of HMG-CoA reductase (HMGCR) in
the cholesterol biosynthesis pathway is associated with a lipid effect and cardio-
vascular protection similar to HMGCR [54]. The lipid effect was shown in a ran-
domized controlled trial of bempedoic acid, an inhibitor of ACLY, in which the
active drug lowered LDL cholesterol when added to maximally tolerated statin
therapy and did not lead to a higher incidence of adverse events [55].

Despite the indubitable success of MR studies in general, there are important
caveats that demand cautious interpretation of their findings. Specifically, MR
estimates are valid only if certain assumptions hold. Those assumptions are the
following: (a) the genetic variants are associated with the exposure; (b) no
unmeasured confounders are present in the association between the variants and the
outcome; and (c) the variants affect the outcome only through their effect on the
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exposure. Even if all fundamental assumptions of MR hold, and MR does reveal a
causal link between an exposure and an outcome, that cannot be construed as proof
of what would happen in a randomized trial of an intervention aimed at targeting
that same exposure. The reason for that is that interventions do not always have the
same effect on the exposure as do the tested genetic variants. If their effects were
exactly the same then an interpretation of MR as a mini-RCT is warranted but in the
absence of that assertion, a more cautious interpretation would be that the MR
findings represent unconfounded estimates of the impact of the exposure on the
outcome [56]. One example that highlights this caveat of MR is found in recent
trials of triglyceride-lowering regimens on ASCVD risk. MR studies from different
groups have repeatedly shown that high triglycerides increase ASCVD risk [50,
57]. To capitalize on that, the recent STRENGTH randomized controlled trial [58]
investigated the role of omega-3 fatty acids in ASCVD events. The study was
terminated early for futility and showed that despite the significant decrease in
triglyceride levels in omega-3 fatty acid recipients compared to corn-oil controls,
ASCVD events were similar between the two groups. In contrast, the REDUCE-IT
trial [59] which investigated isolated eicosapentaenoic acid (EPA) ethyl ester that
also reduces triglycerides showed a significant reduction of ischemic events in the
intervention group compared to placebo, hence highlighting how specific effects of
different medications could lead to discordant findings despite promising MR
studies.

Polygenic Risk Scores Can Improve Risk Prediction

Background

An important application of GWAS discoveries that has recently been appreciated
is their role in predicting disease risk. Even in situations lacking a mechanistic
understanding of the pathway that leads from GWAS variants to disease, we can
still leverage the GWAS associations to generate polygenic risk scores for a disease
[60]. These polygenic scores can subsequently be mapped to a probability of dis-
ease incidence and thus open the door to early identification of individuals at risk
for a particular disease by genotyping or sequencing their genome, which could
prove highly beneficial in instituting early prevention or treatment.

There are several considerations that should be taken into account when creating
a polygenic risk score for a particular disease. One of the major challenges lies in
the fact that nearby variants tend to be highly correlated with each other (a phe-
nomenon known as linkage disequilibrium or LD that arises due to historical pat-
terns of recombination events in the human population). Consequently, for any
given disease risk variant identified in a GWAS, often hundreds or thousands of
nearby variants will also appear to be significantly associated with the disease in the
same GWAS, although none of these associated variants actually have any causal
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phenotypic consequences [61]. Therefore, there have been substantial research
efforts on developing methodologies that can generate a robust polygenic risk score
without overcounting associations that happen to occur within genomic regions of
high LD. The traditional approach has been what is known as pruning and
thresholding [62]. In this approach, we incorporate into the polygenic risk scores
only associations that pass the genome-wide significant p-value threshold of 5*10−8

and among correlated variants (in LD) we select one variant (traditionally the
variant with the strongest GWA signal) to enter into the polygenic score. Although
this approach has been successful at predicting disease risk, more recent approaches
that leverage sub-threshold loci and/or use a larger number of variants weighted by
a metric associated with their pairwise LD have been able to achieve higher pre-
dictive power [63, 64].

Another important issue related to the above has to do with the fact that LD
patterns are usually different among different ethnic groups. Consequently, poly-
genic risk scores generated based on European GWAS, which are by far the most
prevalent and highly powered, lose in predictive capacity when applied to
non-European ethnic groups [65]. Although adjustments of the polygenic risk
scores to account for ethnicity have been proposed [66], all existing approaches
have limitations and, in the absence of large scale highly powered GWAS for all
different ethnic populations, a widely applicable solution to that problem remains
elusive.

Relevance for Cardiovascular Prevention

Calculating the risk of ASCVD for a given individual has been in the spotlight of
preventive cardiology for several years. Indeed multiple studies have tried to
combine different demographic characteristics, comorbid conditions and biomark-
ers to predict the individual risk of disease and this type of risk estimation is used in
everyday practice to guide primary prevention interventions, such as lipid lowering
therapies in the form of the AHA Pooled Cohort Equation [67] or the
European SCORE system [68].

Polygenic risk scores offer a novel attractive method of calculating risk of
ASCVD that could have substantial implications for clinical practice. Although the
cardiovascular medicine community has identified family history as a risk factor for
ASCVD for several years, only recently did investigators appreciate the fact that
family history is a poor surrogate for polygenic risk prediction [69], which led to an
increased interest in other approaches to calculate inherited risk [70]. Initial efforts
at using results from large scale GWAS studies for coronary disease in calculating
inherited risk for ASCVD took the approach of selecting only genome-wide sig-
nificant variants (those with p-value < 5*10−8) for inclusion in the risk estimation
[71]. Although these efforts were successful, newer approaches that leverage signal
across the entire genome by incorporating a much larger number of variants [72] or
even all tested GWAS variants [73], weighted in a way that accounts for the
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underlying LD structure, are much more effective in robustly estimating the
downstream risk of disease. Indeed, research groups have now shown that poly-
genic risk scores for ASCVD can predict risk of disease beyond and additively to
lifestyle factors [74], whereas recent post-hoc analyses of the FOURIER [75] and
ODYSSEY OUTCOMES [76] trials showed that a high polygenic risk for coronary
disease can predict individuals who have a higher benefit from PCSK9 inhibitor
treatment, regardless of their clinical risk factors. More importantly, a polygenic
risk score is acquired at birth and can therefore provide a reliable estimator of
ASCVD risk well in advance of any other prediction systems that rely on
biomarkers or comorbid conditions, and very strongly on age.

There remain, however, several questions about polygenic risk score use that
could determine the scope and strategy of implementation into clinical practice.
First, in their current form, polygenic risk scores for ASCVD are heavily affected by
ancestry. Since most GWAS studies that guide polygenic risk score generation have
been performed on European participants, it is not a surprise that polygenic risk
scores for most diseases, including ASCVD are more reliable in European ancestry
individuals. That is not to say that the application of an ASCVD polygenic score
generated from a European GWAS is useless in individuals of other race groups,
but their predictive power is somewhat reduced [77]. Second, most current versions
of polygenic risk scores include only common variants. Consequently, additional
components that substantially change the heritable risk of ASCVD, such as PCSK9,
APOB or LDLR rare variants, are not presently incorporated in these risk scores.
Last but not least, it remains uncertain what clinical benefit can be derived in
practice from the knowledge of a high or low polygenic score for ASCVD.
Although the literature has shown that a high polygenic risk score (top 5th per-
centile) for coronary disease confers similar risk of downstream events to a clinical
diagnosis of familial hypercholesterolemia [77], and retrospective studies support
the notion that individuals in those extremes of polygenic risk have greater benefit
from lipid lowering agents, randomized data confirming that benefit are still lack-
ing. In fact, recent studies in independent large population genetics cohorts show
that even robustly estimated polygenic scores for coronary disease do not outper-
form traditional risk stratification measures like the Pooled Cohort Equation in
middle aged European ancestry individuals and have a minimal, if any, additive
prediction benefit with questionable clinical significance [78, 79]. Further, although
the biggest strength of polygenic risk score may be its ability to predict risk of
disease at a young age [70], data on timing of intervention for patients in extremes
of polygenic risk are absent to date. With the growing use and availability of
sequencing technologies, along with the decreasing associated cost (current geno-
typing cost per person is < $100) it is likely that many of these questions will be
answered in the near future.
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Conclusions and Future Perspectives

There is no doubt that the era of genomic revolution will influence Cardiovascular
Prevention in a major way. Many of its effects are already seen in multiple aspects
of everyday practice, including the discovery of novel disease pathways and
treatment targets, the improved understanding of causal relationships via MR and
the strengthened risk stratification via the discovery of genetic variants that affect
risk of disease (Table 1). As more aspects of the effects of our genetic code on
cardiovascular disease become known and as broader sequencing availability will
allow for incorporation of genetic predictions in clinical trials, it is likely that we
will be seeing an increasing clinical use of these discoveries in the near future.
Private companies are already making genetic tools commercially available and it is
paramount for the medical community to provide guidelines for their appropriate
use and interpretation. In summary, the recent computational biology advances,
along with the discovery of methods to edit human DNA at a nucleotide resolution
may harbor an era where genomic medicine can grow from a peripheral tool in the
disposal of clinicians and researchers to the predominant driver of precision medical
diagnosis, prevention and treatment.

Table 1 Genomic methods that affect cardiovascular disease prevention

Method Advantages Limitations Examples of
application to
Preventive
Cardiology

Family linkage
studies

Allow for rare variant
identification—can
discover new
disease-risk genes

Low throughput,
explain only a small
portion of disease
heritability

PCSK9 gene
discovery

Genome-wide
association
studies

High-throughput
discoveries of variants
associated with risk of
disease

Interpretation is hard
and require substantial
downstream functional
characterization.
Difficult to use for rare
variants

Discovery of SORT1

Mendelian
randomization
studies

Allow for the study of
causal relationships
between exposures and
disease. Are not
affected by reverse
causation

Require certain
assumptions to hold

Discovery of ACLY

Polygenic risk
scores

Allow for disease risk
stratification—often
additive to traditional
disease risk factors

Limited
generalizability to
multi-ethnic
populations, cost of
sequencing

Polygenic score for
CAD has equivalent
risk of disease to a
diagnosis of familial
hypercholesterolemia

ACLY: ATP-citrate lyase, CAD: Coronary artery disease, PCSK9: Paraprotein convertase
subtilisin/kexin type 9, SORT1: Sortilin-1
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HR Hazard ratio
hsCRP High sensitivity C-reactive protein
LDL-C Low-density lipoprotein cholesterol
LV Left ventricular
MACE Major adverse cardiovascular events
MDCT Multidetector computed tomographic scanners
MESA Multi Ethnic-Study of Atherosclerosis
MI Myocardial infarction
MPI Myocardial perfusion imaging
MRI Magnetic resonance imaging
NNH Number needed to harm
NNT Number needed to treat
NRI Net reclassification improvement
NT-proBNP N-terminal-pro hormone B-type natriuretic peptide
PCE Pooled cohort equations
PET Positron emission tomography
PROMISE Prospective Multicenter Imaging Study for Evaluation of Chest

Pain
SCOT-HEART Scottish Computed Tomography of the Heart
SPECT Single photon emission computed tomography
USPSTF United States Preventive Services Task Force

Traditional Risk Scores and Individualized Risk
Assessment

Traditional cardiovascular risk assessment is defined by the routine screening of
individuals without symptoms of cardiovascular disease (CVD) for risk factors in
order to detect increased CVD risk [1]. Detection of risk rather than exclusion of
clinical CVD is emphasized. This traditional approach to screening is widely
endorsed by general practice guidelines, including the United States Preventive
Services Task Force (USPSTF) guidelines. These guidelines recommend routine
screening of middle aged adults using only widely available traditional
atherosclerotic cardiovascular disease (ASCVD) risk factors, such as blood
cholesterol levels and blood pressure [2]. Multiple risk models have been developed
for quantifying traditional cardiovascular risk assessment. Perhaps most widely
known in the United States, the 2013 American College of Cardiology/American
Heart Association (ACC/AHA) guidelines published the Pooled Cohort Equations
(PCE) which model the 10-year risk of a first ASCVD event (heart attack, stroke, or
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cardiovascular death) [3]. Accordingly, current 2018 ACC/AHA cholesterol man-
agement guidelines and 2019 ACC/AHA primary prevention guidelines carried
PCE forward [4, 5]. Similar to most other cardiovascular risk assessment scores, the
PCE calculates risk by taking into account traditional risk factors, such as smoking
status, sex, race, systolic blood pressure, cholesterol, diabetes, and age.

Most cardiovascular risk calculators have been developed to guide preventive
therapy decisions for individuals. However, risk calculators estimate the average
risk of a population with similar risk factors, and thus might better estimate the net
benefit of preventive therapy across a broad population [1]. Thus, the risk estimate
and consequent clinical decision making for the individual—not the population at
large—may be less accurate using these population-based models [1]. Therefore,
ACC/AHA guidelines as well as the European Society of Cardiology
(ESC) guidelines also have provisions for arriving at a more individualized
approach to risk assessment. Individualized risk assessment aims to optimize risk
assessment of the individual patient rather than rely exclusively on the broad
population average estimate (Fig. 1). With this approach, a patient’s risk status can
be re-classified from the traditional risk factor-only models. This is particularly
useful in individuals with intermediate cardiovascular risk by traditional risk
models, where risk-based clinical decision making may be uncertain.

Population intervention

Screening program with traditional risk factors 

Individualized risk assessment

Personalized medicine
Increasing
specificity 

Decreasing
Number

Needed to 
Treat (NNT)

Fraction of Population Treated 

Fig. 1 Adapted from Michos et al. Screening for Atherosclerotic Cardiovascular Disease in
Asymptomatic Individuals, 2018, Chronic Coronary Artery Disease: A Companion to Braunwald's
Heart Disease (pp. 459–478). Population-based versus individual based approaches to preventive
therapy: selection of target groups. The number needed to treat (NNT) decreases and specificity
increases as the treatment spectrum narrows from population-based to individual-based
approaches. NNT = number needed to treat
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For example, patients in whom a more individualized approach results in
de-risking (lowering the post-test risk estimate after applying the individualized
approach) might safely avoid pharmacological primary prevention, even though
they would have qualified for aggressive treatment based on traditional risk
assessment with conventional risk factors. In contrast, sometimes an individualized
approach might identify unheralded risk that could not be arrived at by conventional
risk factors alone, necessitating aggressive preventive pharmacologic intervention.

While many strategies for individualized risk assessment exist, this chapter will
focus on imaging of subclinical atherosclerosis to help refine personalization of risk
estimates. This is because imaging allows direct detection of the precursor lesion
(atherosclerotic plaque) in an individual in the arterial bed of interest. Imaging
produces results more akin to a “disease score” rather than a traditional risk factor.
While multiple imaging modalities exist, computed tomography (CT) imaging
appears to be a highly effective tool in order to quantify atherosclerotic burden, and
is most ready for routine clinical practice. Detection of coronary artery calcium
(CAC) through a non-contrast cardiac-gated CT or the visualization of the coronary
arteries through contrasted CT angiography (CTA) can effectively quantify car-
diovascular risk.

Proposed Tools for Personalizing Risk Estimation

Serum Biomarkers and Genetics: Pros and Cons

The optimal strategy to test the large potentially at-risk population is controversial.
Many have advocated for routine testing for blood-based serum biomarkers, for
example tests for subclinical inflammation (i.e. high sensitivity C-reactive protein).
In addition, multiple other biomarkers signifying oxidative stress, vascular dys-
function, or myocardial injury/remodeling have emerged as supplying varying
incremental prognostic value. An advantage of these types of tests is that they are
relatively cheap and easy to measure. The main drawback is that they lack speci-
ficity, and generally are much weaker risk predictors compared to atherosclerosis
imaging. Many other experts have argued that the future is genetics, including
so-called polygenic risk scores. An advantage of these tests (at least as individual
single nucleotide polymorphisms (SNPs)) is that they can be specific to underlying
pathophysiology and to the individual patient. In addition, genetics allow risk
detection early in life, consequently making early interventions possible. However,
the downside is that they are costly, not widely available, not strong risk predictors
as individual SNPs, and that they lose their specificity for underlying pathophysi-
ology when combined into polygenic risk scores.

Here we consider the example of serum measurements of natriuretic peptides.
Evidence suggests that natriuretic peptide levels may be increased in pre-clinical
heart failure, and therefore may predict future heart failure or cardiovascular death.
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For instance, participants reclassified to Stage B heart failure from Stage A heart
failure had significantly higher N-terminal-pro hormone B-type natriuretic peptide
(NT-proBNP) than other stage B HF patients [6]. However, the optimal threshold
marking elevated risk for NT-proBNP is not yet established [7]. A matter of con-
sideration is also the lower levels of NT-proBNP in obese patients, reducing the
diagnostic sensitivity in these populations [7]. NT-proBNP is also highly linked to
age, with increasing value found throughout adult life, once again making inter-
pretation more challenging. Clinical trials have not been able to show that
NT-proBNP-guided management reduces the risk of initial or recurrent heart failure
[8, 9].

Combining multiple biomarkers may still be a viable approach to guiding pre-
ventive therapy in the future [10]. However, biomarker panels have so far led to
relatively disappointing results in terms of risk discrimination [11, 12]. Several
studies have also evaluated combination of imaging with biomarkers to enhance
diagnostic testing [13, 14]. For instance, the combination of NT-proBNP with
echocardiography was shown to effectively reclassify 5-year heart failure risk of
older adults when added to clinical models [14].

Coronary Artery Calcium

CAC Imaging

Early imaging modalities relied on chest radiography as well as fluoroscopy or
digital subtraction fluoroscopy to see CAC [15]. Later, more precise quantification
of CAC became possible with the introduction of cardiac gating for electron-beam
computed tomography (EBCT) [16]. EBCT also offered sufficient resolution to
adequately capture CAC in a moving heart. However, EBCT was inadequate for
general CT imaging and was replaced by modern multidetector computed tomo-
graphic scanners (MDCT). Gantry rotation generates a cross-sectional image of the
heart by taking several thousand pictures from different angels [17]. This creates a
high definition image of the heart including coronary arteries. Most scans are
executed with 0.5–1.5 mSv of radiation (similar to 10 chest X-Rays) [1].

CAC scans are executed with non-contrast, cardiac gated CT scanners. CAC is
visible in unenhanced images, as calcified deposits in coronary arteries heavily
attenuate X-rays [1]. Modern MDCTs with faster gantry rotations and more detector
rows make CAC detection possible even in ungated MDCT scans. Even though
ungated MDCT is not formally used for quantitative CAC scoring, evidence sug-
gests that visual assessment of CAC in a non-gated routine chest CT accurately
predicts Agatston score ranges (0, 1 to 100, 101 to 400, and >400) [18, 19].
Ungated MDCT are beneficial as they allow for the combination of CAC scoring as
well as lung cancer screening [20]. The Society of Cardiovascular Computed
Tomography (SCCT)/Society of Thoracic Radiology awarded a Class I
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recommendation for the evaluation of qualitative CAC scoring in non-contrast chest
CT scans [21].

CAC Scoring

In general, the Agatston score is used to quantify CAC scans. The Agatston score is
a sum of all calcified lesions of the coronary arteries through the z-axis of the heart,
weighed by density of the calcium [22]. The score for an individual lesion is
calculated by multiplying the lesion area with the density weighting factor (DWF),
which originates from the greatest attenuation within the calcified lesion [23]. The
individual Agatston score of all lesions in all coronary arteries are summed to
obtain the total Agatston score [23] (Fig. 2). Other scoring methods include the
volume score, which is highly similar to the Agatston score but does not rely on
lesion density but instead calculates the lesion volume by multiplying the number of
voxels by the volume of each voxel [23]. Currently, the Agatston score is seen as
the gold standard of CAC scoring due to its simplicity, as well as being the first
scoring method developed. However, the ideal CAC score is still being debated as
critiques argue it is lacking in many respects. Potential improvements may stem
from accounting for the regional distribution of calcium and extra-coronary calci-
fication, as well as differential calculations of calcium density [23] (Fig. 3).
Implementation of characteristics like calcium volume, density and plaque features
into CAC calculators could improve risk discrimination for younger and older
individuals whose particular risk characteristics are not optimally accounted for in
traditional models [23, 24].

Early Data

A range of early, small studies investigated the relationship between CAC and
detection of obstructive coronary artery disease (CAD). Here, CAC burden corre-
lated with atherosclerotic plaque and CAC scoring was highly sensitive for CAD
and associated with a very high negative predictive value [25–29].

However, understanding of CAC quickly shifted from detection of obstructive
CAD to one of quantification of plaque burden. For instance, Sangiogri et al.
demonstrated in a histopathological study a significant relation between plaque area
and CAC, but no association between CAC and lumen area [30]. In another
histopathological study examining coronary arteries from autopsy hearts,
Rumberger et al. demonstrated that CAC and coronary artery plaque areas were
highly correlated for whole hearts, individual coronary arteries as well as for seg-
ments of coronary arteries [31]. The strong risk-predictive value of CAC was also
established early on by smaller studies. For instance, data on 4,903 asymptomatic
patients in the St. Francis Heart study after 4.3 years of follow up demonstrated that
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CAC predicted CAD events independent of standard risk factors and was superior
to the Framingham risk score (area under the curve (AUC) 0.79 vs. 0.69) [32].
More publications elucidated the positive risk predictive value of CAC for specific
subpopulations, such as patients with diabetes [33], smokers [34], as well as elderly
and young individuals [35].

Major Population-Based Studies

Major population-based studies established CAC as an effective tool for facilitating
patient risk estimation and guiding primary preventive therapy decisions.

RCA

LAD

LCx

LM

Agatston Score = 679

LM

LAD LCx

RCA

Fig. 2 Adapted from CAC-DRS: Coronary Artery Calcium Data and Reporting System. An expert
consensus document of the Society of Cardiovascular Computed Tomography (SCCT), 2018,
Journal of Cardiovascular Computed Tomography. Agatston score example. CAC=coronary artery
calcium; LAD = left anterior descending; LCx = left circumflex; LM = left main; RCA = right
coronary artery
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MESA

The Multi-Ethnic Study of Atherosclerosis (MESA) investigated the prevalence,
correlation and progression of subclinical CVD in 6,814 individuals belonging to
four ethnicities (White, African-American, Hispanic, and Chinese). In a series of
pioneering publications, MESA demonstrated that multiple markers of subclinical
CVD improved coronary heart disease (CHD) risk prediction when added to tra-
ditional Framingham risk factors [36]. CAC was shown to have the greatest
enhancement in prognostic capabilities of all risk factors. In the first landmark
MESA publication, Detrano et al. reported the relationship between CAC and CHD.
CAC provided predictive information over traditional risk factors with similar
strength in all 4 ethnicities [37]. The authors also established that the addition of
CAC to traditional risk models improves risk prediction more than any other test or
traditional risk factors. The AUC for prediction of major coronary events as well as
any coronary event was greater when CAC was added to standard risk factors (0.79
to 0.83 (p = 0.006) and 0.77 to 0.82 (p < 0.001)) [37]. Different CAC distributions
were noted between ethnicities, with higher CAC prevalence in whites compared
with the three other ethnic groups [38]. Compared to a CAC score of 0, a CAC
score 1–100 was associated with a nearly fourfold higher risk of coronary event

Agatston Score = 350
Area of CAC = 95 mm2

Mean Density = 670 HU (weighting factor ~ 4)
Number of Vessels = 1
Pattern = Concentrated
Number of Lesions = 3
Lesion Type = Large

Agatston Score = 350
Area of CAC = 160 mm2

Mean Density = 247 HU (weighting factor ~ 2)
Number of Vessels = 4

Pattern = Diffuse
Number of Lesions = 13

Lesion Type = Small

Rela�vely 
Lower Risk

Rela�vely 
Higher Risk

Fig. 3 Adapted from Blaha et al. Coronary Artery Calcium Scoring Is It Time for a Change in
Methodology?, 2017, JACC Imaging. Both scans have an Agatston CAC score of 350. However,
CAC area, density, distribution of CAC, number of calcified lesions and average lesion size differ
in the scans. CAC=coronary artery calcium
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(95% confidence interval (CI) 1.72–8.79) in multi-variable adjusted models and a
CAC score > 300 was even associated with a sevenfold higher ASCVD event risk
(95% CI 2.93–15.99) [37]. Doubling of CAC score was associated with a 15–35%
increase in risk for major coronary event (95% CI 1.12–1.29) [37]. To further
solidify these results, Polonsky et al. calculated the net reclassification improvement
(NRI)—an index that attempts to quantify how well a new model reclassifies
subjects as compared to an old model—before and after addition of CAC to tra-
ditional Framingham risk factors [39]. Addition of CAC resulted in 728 individuals
being reclassified to a higher risk category and 814 to a lower risk factory. The
overall NRI was 0.25 (95% CI 0.16–0.34).

Heinz Nixdorf

The population-based cohort Heinz Nixdorf Recall (HNR) study included 4,487
people from German cities between 45 and 75 years of age. 100% of men and 82%
of women with known CAD had a CAC >0. HNR demonstrated similar results to
MESA. For individuals deemed intermediate risk by Framingham risk factors, CAC
testing reclassified 21.7% of individuals with CAC <100 into a lower risk group
and 30.6% with CAC � 400 into the high-risk category [40]. A CAC score of 0
was associated with an extremely low event rate of 0.16%/year. In contrast, par-
ticipants with very high CAC scores had a 9–16 fold higher hazard ratio (HR) of
ASCVD events than individuals without detectable CAC [41]. After adding CAC to
the Framingham risk calculator, the AUC significantly increased from 0.681 to
0.749 (p = 0.003).

Rotterdam Study

The Rotterdam study was a prospective cohort study with 7,839 individuals in
Rotterdam, Netherlands and included participants of older age (69.6 ± 6.2 years)
than in MESA or HNR [42]. In all risk categories, the addition of CAC to
Framingham risk model correctly reclassified 10-year risk of hard CHD events
(NRI 0.14, p < 0.01). The largest share of reclassified individuals was observed in
the intermediate Framingham risk group, in which 51% of men and 53% of women
were reclassified.

Meta-Analysis

Due to the similarity of MESA, HNR and the Rotterdam Study, multiple meta
analyses examined the predictive ability of CAC for specific subpopulations.
Among 6739 women with low ASCVD risk from 5 cohort studies, CAC was
present in approximately one-third of participants. The presence of CAC > 0
compared to a CAC score of 0 was associated with a significant increase in risk of
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ASCVD events (HR 2.04 (95% CI 1.44–2.90)) [43]. A meta-analysis including the
cohorts of three US studies (MESA, the Framingham Heart Study, Cardiovascular
Health study) as well as two European cohorts (Rotterdam Study and HNR)
examined the predictive ability of CAC score versus age for ASCVD risk prediction
in elderly patients [44]. One third of participants had a CAC score of 0, which was
associated with a low ASCVD event rate [44]. In the three US cohorts, CAC
resulted in a more accurate reclassification of ASCVD risk than age. This was also
the case in both European cohorts.

CAC in Guidelines

The CAC score as a risk prediction tool was noted in the 2013 ACC/AHA
guidelines among a variety of other potential tests. In the current 2018 ACC/AHA
cholesterol management guidelines and 2019 ACC/AHA primary prevention
guidelines, the CAC score is recommended for asymptomatic individuals in the
borderline and intermediate 10-year ASCVD risk group (5–20%) where risk esti-
mates are uncertain. In very high (>20%) or low risk (<5%) risk patients, CAC
scoring is not warranted because it does not meaningfully alter risk prediction in
this group [45] (Fig. 4 and Table 1).

Estimate Absolute 10-year ASCVD Risk

Low Risk
<5%

High Risk
≥20%

Intermediate Risk 
7.5 to <20%

If uncertainty or patient indecision remains 
consider CAC score 

and revise decision based on results 

Lifestyle
and drug therapy

Lifestyle
modification

Borderline Risk 
5 to <7.5%

Clinician-patient discussion considering 
risk-enhancing factors and net benefit of therapy

Step 1: Risk assessment

Step 2: Risk stratification

Step 3: Prevention CAC=0 High
CAC

Fig. 4 Adapted from 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular
Disease. For patients with borderline and intermediate risk, CAC scoring can individualize risk
assessment and guide therapy decisions. ASCVD = Atherosclerotic cardiovascular disease;
CAC=coronary artery calcium
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Shared Decision-Making

2019 ACC/AHA primary prevention guidelines as well as the 2017 USPSTF are
placing more emphasis on taking patient preferences into consideration. As dis-
cussed in more detail in Chapter 9 on Shared Decision Making, guidelines endorse
a collaborative approach between clinicians and patients to decide on preventive
therapy strategies [5, 21]. In a shared-decision making discussion, health care
professionals should communicate the most recent evidence regarding risk
assessment and preventive therapeutics, while allowing patients to express their
preferences and values [5, 21, 46]. A risk discussion is particularly relevant to
intermediate risk patients, as here risk-based decisions are often unclear and
appropriate choices require a detailed understanding of ASCVD risk. Current
guidelines recommend individualizing risk decisions by assessing risk enhancing
factors as well as CAC after initial risk assessment with PCE. Compared to risk
enhancers such as family history of ASCVD as well as biomarkers like
ankle-brachial index (ABI), high sensitivity C-reactive protein (hsCRP), CAC was
the most effective marker to reclassify risk [47–49]. Visualization of cardiovascular
risk through the CAC score also provides a tangible understanding of ASCVD for
patients, facilitating risk discussions and enhancing therapy adherence [21].
Evidence suggests that knowledge of CAC can promote lifestyle and behavioral
changes in asymptomatic individuals [50].

Risk Re-Classification Through CAC

Multiple publications showed that CAC consistently outperforms other biomarkers
in the ability to further stratify ASCVD risk [45, 47]. The NRI for CAC was 0.66,
compared to 0.02–0.1 for other biomarkers [49]. CAC could reclassify cardiovas-
cular risk of about 50% of individuals and thereby prevent preventive medication
initiation in patients initially eligible for statin therapy by 2013 ACC/AHA
guidelines. Data from MESA demonstrated that patients with CAC >300 but

Table 1 Primary preventive treatment by CAC score according to ACC/AHA 2018 guidelines

CAC score Therapeutic consequence

CAC = 0 – In adults 40–75 years and LDL-C 70–189 mg/dL and intermediate risk
(10 year ASCVD risk 7.5–19.9%) withhold statin therapy if no high risk
conditions (diabetes mellitus, family history of premature CHD, cigarette
smoking)

– Avoid statins in older adults 76–80 years of age with LDL-C 70–189 mg/dL

CAC 1–99 – In adults 40–75 years and LDL-C 70–189 mg/dL and intermediate risk,
initiate statin therapy if patient is � 55 years of age

CAC > 100 In adults 40–75 years and LDL-C 70–189 mg/dL initiate statin therapy

ACC/AHA = American College of Cardiology/American Heart Association;
ASCVD=atherosclerotic cardiovascular disease; CAC= coronary artery calcium;
CHD = coronary heart disease; LDL-C = low-density lipoprotein cholesterol
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without risk factors had a 3.5 times higher ASCVD event rate than individuals
with > 3 traditional risk factors but a CAC score of 0 [51]. Even asymptomatic
adults with minimal CAC (1–10) had a 3-times higher risk of CHD events than
individuals without CAC [52].

For the first time, current guidelines more clearly recognize the potency of a
CAC score of 0. When comparing 13 risk markers with data from the MESA study,
CAC was the biomarker associated with the strongest downward classification of
ASCVD risk [47]. A CAC score of 0 is associated with a low event and mortality
rate (<1%) [53]. In a IIa recommendation, the guidelines state that statin therapy as
primary preventive therapy can be withheld, at least as the initial strategy, in
patients without high-risk conditions if CAC score = 0. However, a CAC score of 0
provides less reassurance in individuals with diabetes [54] or smokers [34] and the
decision on preventive therapy should be made with other clinical information [1].

CAC Future Directions

CAC Score = 0

While extensive evidence has established that CAC = 0 is associated with an
excellent prognosis, multiple questions regarding CAC = 0 need to be addressed in
the future. For one, the warranty period of a CAC = 0 is not entirely explored and
adequate time intervals for rescanning remain unclear. Two recent MESA studies
included 3,116 participants with baseline CAC = 0 and follow-up scans over
10 years after baseline showing a prevalence of CAC > 0, CAC > 10, and
CAC > 100 of 53, 36, and 8% respectively at 10 years. Using a 25% testing yield
(number needed to scan = 4), the estimated warranty period of CAC > 0 varied
between 3 to 7 years depending on sex and race/ethnicity. Approximately 15%
progressed to CAC > 10 in 5 to 8 years, while 10-year progression to CAC > 100
was rare. The presence of diabetes was associated with a significantly shorter
warranty period, while family history and smoking had small effects. 19% of all
10-year coronary events occurred in CAC = 0 prior to performance of a subsequent
scan at 3–5 years, while new detection of CAC > 0 preceded 55% of future events
and identified individuals at threefold higher risk of coronary events [55, 56].
However, more precise information on the warranty period of CAC = 0 in other
major population-based studies is called for, taking into consideration race/ethnicity
and risk enhancing conditions like diabetes, smokers or family history of CHD.

CAC Predicting Non-CVD Outcomes

Optimally, in the future CAC scoring could be used as a synergistic tool to predict
CVD but as well as non-cardiovascular outcomes. The discussion of CAC as a
measure of “biological age” gives rise to the notion of using CAC as a risk marker
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for non-CVD, age related diseases such as cancers and neurodegenerative diseases
like dementia. Risk of death from non-CVD causes are associated with high levels
of CAC [57]. Conversely, CAC = 0 appears protective against CVD as well as
non-CVD events [58]. Eventually multi-disease screening will become the norm,
such as combining screening for sub-clinical lung disease and sub-clinical cardio-
vascular disease with CAC scoring. Since cancer is the leading cause of death next
to CVD, the association of CAC scoring and risk of cancer mortality is of special
interest. A MESA analysis demonstrated that individuals with CAC > 400 had a
significantly higher risk of cancer (HR 1.53, 95% CI 1.18–1.99), compared to those
with CAC = 0 [58]. Overall, future guidelines will likely embrace the possibility of
predicting multiple ASCVD and non-CVD disease outcomes after CAC scanning.

Risk Estimators Incorporating CAC Scores

Currently there is only one existing risk calculator which includes CAC. The
MESA-CHD risk score published in 2015 was the first risk calculator in which
users had the option to calculate risk with integration of the CAC score [59]. With
the use of 10-year of follow up data from MESA, McClelland et al. created a CHD
risk score incorporating traditional risk factors as well as CAC information.
The MESA risk calculator was validated by the Dallas Heart Study (DHS) and the
HNR study. The external validation by the HNR established excellent calibration
and discrimination [17]. Available online or per smartphone, users enter informa-
tion on age, sex, race/ethnicity, traditional Framingham risk factors, family history
of CHD and CAC score to calculate the 10-year risk of CHD with and without
incorporation of CAC data. Risk calculators available for clinicians as well as
patient use would help communicate cardiovascular risk to patients and be a helpful
tool in shared decision-making discussions between clinicians and patients.

Coronary Computed Tomography Angiography

Technology

Coronary computed tomography angiography (CCTA) is performed by a multi-
detector CT system and unlike CAC scanning, requires injection of iodine contrast.
The final image is formed through a series of axial slices covering the entire length
of the heart. With modern scanners, CCTA can be executed with radiation of 1–5
mSV, which of now is still higher than the 0.5–1.5mSV associated with CAC scans.
Beta blockers are often administered prior to scanning, in order to limit radiation
exposure and motion artifacts [60]. Isotropic voxels allow for 3D reconstruction of
plaques.
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Characterization of Atherosclerotic Plaque

The CAC score is a widely available, inexpensive, and simple test for quantifying
atherosclerosis burden. However, this marker is not sufficient to gain full infor-
mation regarding coronary plaque morphology. The native CT scan to obtain the
CAC score only avails to diagnose calcified plaques and cannot detect the presence
or extent of mixed or non-calcified plaques or their associated degree of luminal
stenosis. The clinical importance of detecting non-calcified plaques is currently
being debated. A study observed that individuals with low CAC score (� 100) had
a high prevalence of non-calcified plaques (83.3%) [61]. Non-calcified plaques are
thought of as higher risk for plaque rupture, subsequently causing serious cardiac
events. Stable plaques are causal to coronary artery stenosis, and are predominantly
made up of calcified or mixed plaques [62]. However, according to multiple studies
the prevalence of exclusively non-calcified plaques in patient populations is low.
One publication suggested that 1–2% of symptomatic patients with angina and a
CAC score of 0 have non-calcified CAD [63, 64]. These findings were not asso-
ciated with future coronary revascularization or adverse prognosis within 2 years
[63]. The COroNary CT Angiography Evaluation For Clinical Outcomes: An
InteRnational Multicenter Registry (CONFIRM) registry study including 10,037
patients showed that only 3.5% of patients had obstructive CAD with a CAC score
of 0. These patients did not have an elevated risk of all-cause mortality [65].

In addition to detecting the degree of calcification, CCTA was shown to identify
characteristics atherosclerotic lesions most vulnerable for development of acute
coronary syndrome (ACS) [66]. Data from the Prospective Multicenter Imaging
Study for Evaluation of Chest Pain (PROMISE) study demonstrated that high-risk
plaque detected by CCTA (positive remodeling, low CT attenuation or napkin ring
sign) was significantly associated with major adverse cardiovascular events
(MACE) (HR 1.73, 95% CI 1.13–2.26) [67]. Ferencik et al. similarly established
that CT-based plaque morphology, such as positive remodeling, spotty calcium,
stenosis length, low attenuation plaque volume provided high discriminatory value
for detection of ACS in patients with acute chest pain [68].

Scoring/Measuring

SCCT guidelines recommend a simple approach for describing plaque types in
CCTA [69]. All 17 coronary segments are visually classified by stenosis severity
and plaque type. According to relative amounts of calcification, plaques are cate-
gorized into three categories: non-calcified, mixed plaque or calcified plaque.
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Evidence for Clinical Outcome

The CONFIRM registry demonstrated that plaque burden and stenosis measured by
CCTA carry significant prognostic value. A prognostic score using CCTA
parameters improved risk prediction compared to traditional clinical risk scores
[70].

Much evidence suggests the benefit of CAC severity visualized by CCTA as a
treatment guide. In a very recent publication, Mortensen et al. modeled to what
extent information of severity of CAD and LDL-C levels can benefit patients
treating LDL-C to guideline targets. The authors calculated the NNT in 6 years to
prevent 1 ASCVD event and the number of events prevented if LDL-C was treated
to target and concluded that CCTA test results could individualize preventive
treatment and identify patients who would benefit the most from lipid-lowering
therapy. For example, the NNT in 6 years to prevent 1 ASCVD event by treating
LDL-C to the ESC guidelines target was 8 for patients with 3-vessel CAD com-
pared to 233 for patients with no CAD assessed by CCTA [71].

Multiple large, randomized-controlled trials provide evidence of improved
clinical outcome after using CCTA. PROMISE, a large cohort study enrolling
10,003 patients, assessed the clinical outcome of patients assigned to anatomical
testing with CCTA compared to functional testing. While the PROMISE study had
a neutral outcome for the primary endpoint of death, myocardial infarction, hos-
pitalization for unstable angina or major procedural complications after 2 years of
follow up, the authors did report a 34% relative reduction in all-cause death and
myocardial infarction at 12 months for those receiving CCTA [72].

The Scottish Computed Tomography of the Heart (SCOT-HEART) Trial
recruited patients aged 18–75 years who had been referred to a cardiology clinic
from their primary physician for suspected stable angina from CHD [73]. Patients
were randomized to standard care plus CAC and CCTA, or standard care alone.
Standard care included routine examination and if appropriate, stress test and
invasive coronary angiography. The SCOT-HEART trial demonstrated a clear
reduction in the composite long-term endpoint of coronary heart disease after
5 years for patients who underwent CCTA compared to standard care alone (HR
0.59, 95% CI 0.41–0.84; p = 0.004) [73].

Authors of the Computed Tomography versus Exercise Testing in Suspected
Coronary Artery Disease (CRESCENT) randomized controlled trial compared the
efficacy of a tiered cardiac CT protocol based on calcium imaging with functional
testing. Here, for patients with suspected stable CAD, a tiered cardiac CT protocol
offered an effective and safe alternative to functional testing. Incorporating the
calcium scan into the diagnostic workup was safe and lowered radiation exposure.
After 1 year, CT scanning was cost effective, reducing overall diagnostic costs by
16% [74]. Even though underpowered for clinical events, CRESCENT demon-
strated a lower rate of myocardial infarctions in patients diagnosed with CCTA
[74]. Plank et al. demonstrated that coronary plaque burden identified by CCTA
was associated with MACE. Patients with SIS > = 5 (Coronary segment
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involvement score, total number of segments with plaque) had a HR of 6.5 (95% CI
1.6–25.8, p < 0.013) for MACE [75].

However, the use of routine CCTA as a screening modality for high-risk
asymptomatic groups was not beneficial. In FACTOR-64, routine screening for
CAD in patients with type 1 and type 2 diabetes mellitus and CCTA directed
therapy did not reduce risk of death or coronary outcomes [76].

CCTA Versus CAC

At present, CCTA is most useful to rule out CAD in high-risk, symptomatic
patients with known or suspected CHD. (Fig. 5) The added benefit of relying on
CCTA beyond CAC for asymptomatic patients has not yet been confirmed. The key
question remains how the prognostic information from less conclusive CCTA could
be deciphered—especially in those with extensive CAC—and, at the same time,
improve the pre-test probability accrued to better select patients who need to
undergo further imaging testing. Results from an observational registry including
27,125 patients compared the predictive value of CCTA and CAC to diagnose CAD
in patients without chest pain syndrome [77]. While both imaging modalities
improved the performance of standard risk factor prediction models for all-cause
mortality and the composite outcome (all-cause mortality and nonfatal myocardial
infarction), CAC scoring provided greater incremental discriminatory value than
CCTA [77]. The large randomized clinical trial, SCOT-HEART II, will assess
whether cardiovascular outcomes are improved with CCTA screening compared to
standard of care in asymptomatic patients.

Extra-Coronary Atherosclerosis Imaging

Carotid Artery Ultrasound

Ultrasound can non-invasively measure the carotid vessel wall, and historically
B-mode ultrasound has been used to measure the thickness of the intima-media
layer of the vessel wall (carotid intima media thickness (CIMT)). CIMT is an
established measure of an arteriosclerosis-like process, and multiple studies have
demonstrated a positive association between increased CIMT and degree of
atherosclerosis identified by invasive angiography [78–80]. Indeed the cellular and
molecular mechanisms underlying early atherosclerosis lead to intima-media
thickening. However, carotid wall thickening is not completely synonymous with
atherosclerosis, as CIMT increases with advancing age and hypertension induced
media thickening [81, 82].
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Ultrasound Carotid Plaque Imaging

Ultrasound measures of carotid plaque on the other hand is distinctive to advanced
stages of atherosclerosis, as it is a result of atherogenic lipoprotein entry into the
arterial wall, followed by inflammation, oxidative stress and endothelial cell dys-
function [83]. The American Society of Echocardiography recommends to quantify
atherosclerotic plaque in the common carotid artery, carotid bifurcation, and
internal carotid artery [84]. While CIMT is most easily measured in the common
carotid artery due to its perpendicular location to the ultrasound beam,
atherosclerotic plaque most often occurs downstream in the outer wall of carotid
artery bulb, which is not as accurately measured by CIMT. A meta-analysis
demonstrated that the ultrasound assessment of carotid plaque had a higher diag-
nostic accuracy for the prediction of CAD and future myocardial infarcts than
CIMT measures alone [85].

These factors may explain the limited improvement of traditional risk assessment
with CIMT. The benefit of adding CIMT measurements to the traditional
Framingham risk score was evaluated in a meta-analysis including 45,828 indi-
viduals of 14 cohort studies [86]. Incorporation of CIMT resulted in a small
improvement in 10-year risk prediction (NRI 0.8%; 95% CI 0.1–1.6) [86]. Albeit
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Fig. 5 Emerging consensuses for use of CT in precision medicine adapted from Cardoso et al.
Cardiac Computed Tomography for Personalized Management of Patients with Type 2 Diabetes
Mellitus 2020, Circulation: Cardiovascular Imaging. Overview of coronary artery calcium
(CAC) and coronary computed tomography angiography (CCTA) in the evaluation of
asymptomatic and symptomatic patients. CAC=coronary artery calcium; CAD = coronary artery
disease; CCTA = coronary computed tomography angiography; CHD = coronary heart disease;
CT-FFR = computed tomography angiography derived-fractional flow reserve; MI = myocardial
infarction
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still small, for patients with intermediate risk, the NRI was a slightly higher at 3.6%
[86]. A prospective analysis with MESA data compared CIMT to CAC score for
prediction of cardiovascular events [87]. The authors observed a graded increase
between quartile of CIMT and risk of CVD event. However, CAC was a stronger
predictor of CHD as well as CVD [87]. When tested among patients with elevated
blood pressure, measurement of mean common CIMT did not improve cardio-
vascular risk prediction [88]. There was some benefit however in measuring CIMT
for patients at intermediate risk. The NRI was small 5.6% (95% CI 1.6–10.4), but
statistically significant [88]. Other studies failed to demonstrate any significant
benefit of using CIMT over traditional risk factor assessment, such as the
Framingham risk score [49, 89]. In response to this evidence, the 2013 ACC/AHA
guidelines on the assessment of cardiovascular risk do not recommend the routine
clinical measurement of CIMT to improve risk assessment of ASCVD events [3].
Likewise, the 2016 European Guidelines on CVD prevention in clinical practice
advised against regular use of CIMT for risk stratification [90]. Some evidence
suggests the use of CIMT in pediatric patients. Part of the appeal stems from
CIMT’s non-invasive nature, lack of side effects as well as the ability to detect
subclinical disease prior to symptoms. Multiple studies observed an association
between CIMT and exposure to parental cardiovascular risk enhancers, such as
smoking and maternal high blood pressure, in children 5 years of age [91, 92].

CT-Detected Extra-Coronary Atherosclerosis

Detection of extra-coronary calcification (ECC) has been discussed as possibly
improving ASCVD risk prediction. Atherosclerosis is a systemic process, thus
measuring calcification of multiple sites into consideration may be more repre-
sentative of the diffuse nature of whole-body atherosclerosis [93]. Even though
currently measuring the calcification burden outside of the coronary arteries does
not predict ASCVD events better than CAC, ECC has the advantage of being
identifiable on multiple imaging modalities like radiography, echocardiography,
ultrasound and routine chest CTs [94–96]. Thus, information on atherosclerotic
burden can be obtained without additional cost or radiation exposure. Using MESA
data, Tison et al. evaluated the prognostic value of multi-site ECC for CHD events,
CHD mortality and all-cause mortality [93]. The results suggest that ECC is highly
prevalent (45% of patients). Patients with detectable ECC in 4 sites had a two-fold
higher risk of outcomes independent of CAC score.

Magnetic Resonance Imaging

Due to the soft tissue contrast, magnetic resonance imaging (MRI) is well suited for
atherosclerotic plaque visualization of large arteries. Unlike ultrasound, MRI can
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visualize plaque components specific to vulnerable plaque that are more prone to
rupture [97]. Accurate identification of vulnerable plaques is significant, as 60–70%
of acute MIs and almost all of ischemic strokes are caused by plaque rupture [98,
99]. In a meta-analysis of 8 studies with 690 participants, the presence of carotid
intra-plaque hemorrhage identified by MRI was associated with a sixfold higher
risk of cerebrovascular events [100]. The detection of vulnerable plaque may also
inform status of atherosclerosis disease in other vessels, as certain plaque pheno-
types are associated with events from coronary arteries [101]. In a MESA study,
adverse carotid arterial remodeling and lipid core identified by MRI was associated
with an increased risk of cardiovascular events in asymptomatic subjects [102].
However, carotid MRI is still considered a specialty technique that is time con-
suming and costly, thus it is not considered a viable option for population risk
assessment.

Tests for Myocardial Ischemia

Single photon emission computed tomography and positron emission tomography
myocardial perfusion imaging.

Single photon emission computed tomography (SPECT) is used for visualizing
myocardial perfusion as a result of coronary blood flow while positron emission
tomography (PET) myocardial perfusion imaging (MPI) further enables quantifi-
cation of myocardial perfusion. The unifying principle of these two imaging
modalities is that a contrast medium is given via a peripheral vein, which then
circulates in the body, enabling visualization of the perfusion of all myocardial
tissue at both rest and stress. These tests can identify patients with reduced coronary
blood flow or coronary blood flow reserve, which is often the result of obstructive
CAD but can also be caused by non-obstructive CAC or other conditions such as
coronary vasospasm.

In addition, radioactive tracers have been developed which accumulate in areas
where pathological processes specific to cardiovascular disease is occurring. In the
PET scan, early atherosclerosis can be detected by using 18-fluoro-deoxyglucose
(FDG) as a tracer. Enhanced FDG uptake is a sign of vascular inflammation and
thereby visualizes early manifestations of atherosclerosis. More specific tracers
such as 18-F-NaF or 68-Ga-DOTATATE are characterized by low uptake in the
myocardium and are therefore better suited for detecting plaque in the coronary
arteries [103, 104]. Similar tracers for inflammation imaging have been developed
for SPECT.

SPECT and PET MPI are highly accurate for diagnosis of obstructive CAD.
A study of 7,061 patients demonstrated that the severity of ischemia and scar as
detected by PET MPI significantly improved risk reclassification of cardiac death
(NRI 0.116 (95% CI 0.021–0.210)) [105]. A smaller study by Yoshinaga et al.
evaluated the prognostic capabilities of stress PET MPI with rubidium-82 (82RB)
for cardiac events. A normal stress 82RB PET MPI was associated with an excellent
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prognosis, with an annual hard cardiac event rate of 0.4% [106]. However, routine
screening for CAD with PET MPI did not significantly improve outcomes among
high risk patients. Type 2 diabetes patients in the Detection of Ischemia in
Asymptomatic Diabetics (DIAD) study did not have significantly lower rates of
cardiac death or nonfatal myocardial infarction when screened with PET MPI for
myocardial ischemia [107]. However, one major limitation of PET MPI imaging is
that it is unable to identify nonobstructive CAD, as MPI can only visualize reduced
blood flow, which is a late finding in ASCVD. Studies have shown that patients
with normal SPECT results and subsequent CAC scanning, had evidence of
atherosclerosis, often with severe CAC scores [108]. The synergistic use between
CAC scoring and PET MPI may overcome this limitation and improve diagnostic
accuracy [109]. Engbers et al. evaluated this approach by referring 4,897 asymp-
tomatic patients to stress-rest SPECT-MPI and CAC scoring. The authors observed
a step-wise increase in adverse cardiac events with increasing CAC scores and
SPECT-MPI abnormalities. In asymptomatic patients with high CAC score
(CAC > 400), SPECT is considered “appropriate” [110]. It was demonstrated that
frequency of myocardial ischemia increased with increasing CAC score [108]. In
high-risk patients, SPECT-MPI imaging may be warranted earlier at a lower CAC
threshold. For instance, among patients with CAC score 100–399, 13.0% of dia-
betic individuals had frequent ischemia’s compared to 2.3% of non-diabetics [111].

Structural Imaging

Echocardiography

Resting transthoracic echocardiography using ultrasound provides a detailed view
of cardiac chambers, valves, and function and is broadly used to assess patients with
structural heart disease or suspicious symptoms. However, echocardiography does
not have the spatial resolution nor does ultrasound have the penetrance to detect
atherosclerosis of the coronaries. Population-based studies on asymptomatic indi-
viduals found that incidental diagnosis of left ventricular (LV) dysfunction and LV
hypertrophy with echocardiography is associated with cardiovascular and all-cause
mortality and was independent of blood pressure and other risk factors [112]. In
response, the 2010 American College of Cardiology Foundation and the American
Heart Association (ACCF/AHA) guidelines awarded a weak recommendation
(class IIb recommendation) for echocardiography screening for LV hypertrophy
and LV dysfunction in asymptomatic adults with hypertension [112, 113].
However, widespread screening with echocardiography is not recommended, and is
in fact discouraged. Meaningful abnormalities in the healthy population are rare,
echocardiography is not specific to ASCVD, and therefore it adds little to risk
assessment in a general population.
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Cardiac Magnetic Resonance

While echocardiography is used more often in the clinical setting for routine
assessment of cardiac structure and function, cardiac magnetic resonance (CMR) is
more reproduceable and accurate. With the application of contrast, myocardial scar
tissue and fibrosis can be visualized. In addition, CMR can effectively measure LV
size and function. Results from the Dallas Heart Study suggested strong association
between LV hypertrophy measured by CMR and risk of adverse CV outcomes
[114]. However, CMR does not have the spatial resolution for routine assessment of
coronary atherosclerosis, and it is costly and image acquisition takes a long time.
CMR can be used for detection of myocardial ischemia in stress testing protocols,
however there is currently no role for CMR-guided risk assessment in the general
healthy population.

Diagnostic Accuracy of Cardiac Imaging

Compared to traditional risk factors, cardiac imaging is much more sensitive for
detection of early atherosclerosis compared to cardiovascular risk assessment with
traditional risk-factors. Due to cardiac imaging’s high sensitivity it is also associ-
ated with a high negative predictive value for ASCVD and thereby an excellent tool
for downgrading low-risk patients [115]. CAC in particular is one of the most
sensitive cardiac imaging modalities. For high-risk patients with a higher pre-test
probability of CAD, imaging tests with a higher specificity such as CCTA are
recommended. Thus, current consensus is using CAC as a gatekeeper to more
invasive testing like CCTA in low-intermediate risk patients.

Conclusion

The promise of precision medicine is giving the right patient the right therapy at the
right time based on their highly personal characteristics. In the field of risk pre-
diction, consensus is moving toward direct detection of overall burden of
atherosclerosis to create a personalized estimation of cardiovascular risk, instead of
relying on a population-based 10-year risk estimate reliant on the number of tra-
ditional risk factors present. Also, these risk factors were measured commonly at a
single point time, which is subject to measurement error and does not take into
account the cumulative exposure. Cardiac imaging is a highly effective tool given
its sensitivity for detecting a clinically important burden coronary atherosclerosis,
along with its specificity in detecting atherosclerosis directly versus merely risk for
atherosclerosis. Identifying patients with the highest risk of ASCVD who would
benefit most of preventive treatment is paramount, as this would focus resources on
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risk reduction strategies in the right patients at the right time and avoid aggressive
treatment in patients who are in fact low-risk. By determining an individual’s
distinctive CAD burden, cardiac imaging can facilitate personalized allocation of
primary and secondary preventive therapy and improve ASCVD outcomes.
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Digital Health

Francoise A. Marvel, Pauline P. Huynh, and Seth S. Martin

Introduction

As the digital ecosystem continues to grow in the United States (US), it is estimated
that there will be over 50 billion internet-connected devices by 2020 with 91% of
the US population owning smartphones by 2025 [1]. The traditional approach to
cardiovascular disease (CVD) management is being disrupted by unprecedented
levels of innovation focusing on enhanced systems of healthcare delivery, patient
engagement, tracking, and virtual health coaching through state-of-the-art
consumer-based technology called digital health interventions (DHIs). DHIs are
defined by the US Food and Drug Administration (FDA) as any form of software or
hardware used to improve the quality, access, efficacy, or efficiency of health care
delivery [2]. The World Health Organization (WHO) Global Observatory for
eHealth (GOe) uses a broader definition of mobile health (mHealth) as medical and
public health practice supported by mobile devices [3]. The rapid evolution of
health-related digital technologies has the potential to synergize with principles of
precision medicine. This convergence of health technology and precision medicine
is impacting healthcare delivery and may prove to be a cost-effective solution for
cardiovascular disease detection, management, and health equity. This chapter
discusses state-of-the-digital science for delivery of personalized care. Specifically
the following topics are addressed: (1) consumer connected health and tracking, (2)
digital health coaching, and (3) transformation of healthcare delivery.
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Consumer Connected Health & Tracking

The economic success of the digital health technology market is emblematic of
society’s interest in consumer-empowered health transformation and disease pre-
vention [4–6]. As technologies advance, consumers are able to access and track
additional health metrics (heart rate, blood pressure, weight, oxygen saturation),
biomarkers (blood glucose), physical activity (step count, frequency, duration, and
type of exercise), and adherence to treatment goals (medication adherence, diet) [6,
7]. In 2017 alone, there existed over 350,000 mHealth apps spanning calorie count
and exercise regimens, allowing for manual logging of diet and exercise [8].
Moreover, given increasing patient interest in sharing health data from smart
devices with their clinicians, [9] the ability to access these ambulatory data could
serve as a valuable asset in developing an individualized care plan. For example,
longitudinal data collected from these devices will allow clinicians to titrate med-
ication dosages based on a range of readings versus one set collected at time of
office visit thereby increasing patient safety and improving outcomes [6]. Within
cardiovascular medicine, there have been a multitude of studies evaluating the
breadth and efficacy of these technologies, as detailed below and summarized in
Fig. 1. Below, we highlight examples of major advances in innovation and clinical
trials of these technologies.

Fig. 1 Summary of consumer connected health tools and tracking technologies
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Heart Rate Monitoring and Arrhythmia Detection

Since 2017, the FDA has cleared several digital health apps and devices targeting
heart rhythm monitoring, bringing these technologies directly in the hands of
consumers [10–16]. Many of these apps and devices utilize mobile external elec-
trocardiograms (ECGs), [14] optic technology such as photoplethysmography
(PPG) that detects pulsatile light changes in the vascular bed beneath the skin, [13]
and smart algorithms to record heart rates and even alert users of irregular heart
rhythms such as atrial fibrillation (AF). Other innovations have included a dermal
self-applied ECG patch [4].

We can infer the popularity of these features among consumers given the rapid
flux of releases and 510(K) applications [10–16]. For example, in 2018, the FDA
approved an ECG app and irregular heart rhythm notification feature on the Apple
Watch; this was followed by a series of approvals for the AliveCor KardiaMobile,
marketed as “a personal EKG” for the detection of atrial fibrillation, bradycardia,
and tachycardia [13, 14, 17]. It is therefore imperative that the information from
these devices and applications are validated, given the clinical significance of heart
rate data in diagnosing and managing cardiac arrhythmias. In their review, Al-Alusi
et al. [18] describe 11 devices specifically targeting cardiac monitoring, noting the
swaths of studies supporting the validity of the Apple Watch and AliveCor Kardia
devices to detect AF. Beyond accurate detection, however, the authors highlight the
need for studies evaluating the use of these wearables on patient outcomes as well
as the need for collaboration between clinicians and manufacturers for clinical
integration [19–21]. In response to the call for integration of health technology into
clinical workflow, innovative teams are developing clinical decision support tools
based on machine learning algorithms from user-generated data [7, 22].

Blood Pressure Tracking

In addition to heart rate monitoring, the advancement of wearables also allows for
remote blood pressure (BP) tracking through wireless Bluetooth-enabled cuffs. BP
control is a major risk factor for cardiovascular health and unfortunately nearly half
(46%) of the adult US population have hypertension according to the most recent
AHA/ACC guidelines [23]. Effective BP management strategies have generally
integrated patient education, medication reminders, and behavioral modification [7,
24]. Although patients are encouraged to measure and record their BP at home,
multiple studies have found these logs to substantially under-report BP when com-
pared to measurements done in a clinical setting, [25] and that self-tracking alone is
insufficient without education or medical decision-making in response to those mea-
surements [26, 27]. Initial efforts to leverage telemedicine in BP management have
included reminder systems and coaching programs; however, these efforts were lim-
ited by a commitment on behalf of the patient to manually measure their BP and
transmit their recorded measurements to clinic via fax, email, or paper logs [28–30].

Digital Health 113



More recent innovations have included automated BP measurements through a
Bluetooth-enabled cuff, which could be paired with a smartphone application to
store measurements [4, 31]. Like with HR data, these devices have the potential to
generate enormous amounts of BP data that could provide actionable insights and
facilitate personalized medical decision-making, including systematic medication
titration, if properly integrated in clinical workflow. In their randomized clinical
trial, Rifkin et al. [30] demonstrated the feasibility of a home-based
Bluetooth-enabled BP monitoring for older patients through the use of wirelessly
transmitted BP readings to their care team. Patients who were randomized into the
digital intervention arm transmitted a median of 29 BP readings to their clinician
per month, allowing for interval titration of their medication regimen by their care
team and achieving overall better BP control over the course of 6 months. This
study highlights how digital technology could synergize with precision medicine
among patients with cardiovascular disease, including hypertension, while
demonstrating patients’ willingness to utilize these technologies over the long term.

Weight Tracking and Management

The rising prevalence of obesity has reached epidemic levels, affecting over
90 million people in the United States or 1 in 3 Americans [32]. In addition to
higher rates of morbidity and mortality, obesity has been consistently associated
with cardiovascular disease [33]. Furthermore, these health risks could be signifi-
cantly mitigated with as little as a 5–10% weight loss [34, 35]. Unfortunately,
despite numerous weight loss interventions spanning lifestyle modification, phar-
macology, and surgery, long-term efficacy remains elusive [36, 37]. The hetero-
geneity of responses has been attributed to the multifactorial mechanism of obesity,
involving the interplay of genetic and environmental factors. As a result, attention
has turned to precision medicine as a potential solution to account for these vari-
ables and promote sustainable weight management [38].

Interestingly, while precision medicine is conventionally known to consider
genetic differences in formulating interventions, discussions of its application for
weight loss extended beyond pharmacological efficacy into strategies optimizing
long-term patient adherence and sustainable lifestyle modification [38, 39]. These
strategies may include the frequency of communication between the patient and
healthcare team, cost of intervention (e.g. medication, gym membership, level of
supervision), or intervention intensity. Moreover, Severin et al. [38] notes that
technological advances may be a cost-effective solution to address potential
barriers.

Outside of targeted weight loss programs, there is a growing desire among the
public to know more about their weight, body compositions, and ways to optimize
their fitness goals. This is evidenced by the rising market for DXA scans as pro-
moted on social media platforms as a way to personalize weight loss goals.
Consumer connected health technologies have capitalized on this desire,
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empowering users to track and log their weight, with some even breaking the
weight down into muscle mass, water, and fat. However, the validity of these
consumer weight analytics remains unknown, [40] highlighting a need for further
research.

Medication Adherence Support and Tracking

For individuals with CVD and related risk factors, medical therapy is a mainstay of
management along with lifestyle modification. Unfortunately, medication adher-
ence remains a challenge for a majority of patients [41] and poses a substantial
economic burden, translating into over $5 billion in preventable costs annually and
poor outcomes [42]. Conventional methods of evaluating adherence are limited by
their subjective (e.g. recall bias), time-consuming (e.g. manual pill count), and cost
(e.g. obtaining serum levels) [43]. Advances of digital technologies and connected
health devices may provide a cost-effective solution to optimize medication
adherence through patient empowerment, education, and communication.

Multiple interventions targeting medication adherence have been developed
including remote medication delivery, scheduled text message or push notification
reminders to take medication, and even medication intake surveillance. The Corrie
Health Digital Platform, as an example, features a medication log with relevant
information about each medication, a notification system of when to take medi-
cations, and a visual summarizing adherence information [44]. Other examples have
included digital pillboxes and “digitized medicine” with ingestible sensors verifying
medication adherence with information synced to a provider portal [45, 46].
Although aimed to improve adherence, the invasive nature of digital pills has
sparked ethical debate on patient autonomy [47]. Furthermore, while a systematic
review by Conway & Kelechi [43] found some of these strategies to increase
adherence in the short-term, long-term adherence to therapy remains unknown as
most studies have a maximum follow-up of only 6 months. As these technologies
continue to develop, it is imperative that industry leaders collaborate with clinicians
to ensure long-term efficacy and preserve the patient-clinician relationship.

Physical Activity and Exercise Tracking

There exists a plethora of connected health technologies—from pedometers to
smartwatches to wrist step sensors to smartphone applications—aimed at promoting
and tracking physical activity and exercise. These technologies provide objective
data on intensity and duration of activity, as well as feedback on user’s progress
toward their daily fitness goals. While these digital solutions may involve per-
sonalized coaching and automated activity tracking described in further detail later
in this chapter, there remains a need to promote actionable insights for behavior
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change. Moreover, although these technologies have been associated with
short-term increases in activity and even weight reduction, [48–50] the long-term
efficacy on outcomes remain equivocal [51].

Diet and Nutrition Tracking

Within the digital health sphere, diet self-tracking has been primarily used within
the health prevention and personal fitness space, as demonstrated by the growing
number of food diary and calorie-counting applications [52]. This highlights the
common theme of digital consumers attempting to leverage digital tools and
optimize their own health and wellness; indeed, several diet-related mobile appli-
cations offer nutrition recommendations based on user-entered biometric data (e.g.
height, weight, activity level) and fitness goals (e.g. weight loss, gain muscle mass).
Users of these applications can track their own dietary intake, leveraging extensive
food databases via barcode scans on their smartphones or manually enter nutrition
information. Other innovative approaches allow users to take photos of each food or
meal, logging them into a digital diary [53].

Given AHA/ACC recommended cardiac diets (i.e. DASH, sodium-restriction) in
cardiovascular disease prevention and management, research efforts have recently
focused on the accuracy of the data in these connected health technologies and their
efficacy, especially in patients with chronic disease. In their review of the 7 most
popular diet-tracking mobile applications, Ferrara et al. [54] found that although
most diet-tracking applications scored well in terms of usability and goal-oriented
behavior change there was inconsistency in the information provided. Specifically,
they found variability in nutrient estimates when compared to those provided by the
US Department of Agriculture as well as differences between the iOS and Android
versions of the same applications. Based on this summary, further investigations on
the validity of nutrition facts provided by consumer diet-tracking tools is needed.

Digital Biomarker Tracking

The rapid digital and technology advances have allowed consumers access to their
own information, including physiological measures. Digital biomarkers are
consumer-generated physiological and behavioral measures collected through
connected digital tools. Two such examples are continuous transdermal glucose
readings for patients with diabetes and remote monitoring of pulmonary artery
pressure for patients with congestive heart failure.

It has been well-established that diabetes mellitus is a major risk factor for
cardiovascular diseases, [55, 56] with a seminal study describing its risk of as
equivalent to a non-diabetic with a history of myocardial infarction [57–59].
However, while routine measurement of one’s blood glucose, often through

116 F. A. Marvel et al.



finger-prick blood samples using a lancet, is part of standard of care to ensure
adequate glucose control, the discomfort with glucose testing and cost of testing
supplies has highlighted a need to develop accurate non-invasive methods to
measure glucose concentrations [60]. Digital health technology advancements may
be uniquely apt at addressing the need for painless monitoring, as demonstrated by
the recent development of mobile glucometers and transdermal sensors.
Additionally, the ability to continuous monitor blood glucose vs. discrete glucose
monitoring may present an opportunity for further personalizing and optimizing
glucose management for a patient.

In 2018, Segman [61] released a methods paper describing the technology
behind the Cogna TensorTip Combo Glucometer, a device containing invasive and
non-invasive components via optic technology and mathematical modeling for
glucose monitoring. Another unobtrusive method involved transdermal sweat-based
glucose monitoring through disposable sensor patches, correcting for skin tem-
perature and humidity [62]. Recently, there have also been attempts to leverage
machine learning in personalized blood glucose prediction, although challenges
remain in developing universal algorithms to predict hyper- and hypo-glycemic
events [63]. Lastly, while technically invasive, a third area of research focuses on
flash glucose monitoring systems, which utilize a subcutaneous sensor to take
scheduled measurements of the interstitial fluid glucose concentration as frequently
as every minute and can be monitored in real time [64]. One notable example of a
flash glucose monitoring system is the Freestyle Libre system, which has been
associated with high user satisfaction, although data on long-term clinical and
quality of life outcomes are lacking [65].

Another use case of a hybrid approach of remote physiologic monitoring
combined with digital health is an implantable continuous monitor of pulmonary
arterial pressure for early identification of volume overload in heart failure patients
[66]. With the advent of consumer connected health trackers and patient portals,
both patients and clinicians can now have access to this clinical information, as
demonstrated by Abbott’s CardioMEMS HF System, which comprises of an
implantable remote monitor measuring pulmonary arterial pressure, a mobile
application for the patient, and a clinician portal through a collaboration with the
Merlin system [67]. The robust network demonstrated by this system highlights
how the ability to proactively monitor biomarkers and adjust for individual patient
thresholds could transform the healthcare system, reducing hospitalizations as much
as 33–50% [66].

Digital Health Coaching

Overview of Digital Health Coaching

The approach to designing and developing mHealth coaching tools is based on the
combination of clinical expertise and widely accepted theories promoting health
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behavior change. The two most common theories for behavioral change in mHealth
are the Health Belief Model (HBM) and social cognitive theory [68]. The HBM
theorizes that people’s beliefs about whether they are at risk for a health problem,
and their perceived benefits of taking action, influence readiness to change [69].
The HBM has most frequently been applied for prevention-related, asymptomatic
conditions such as CVD [70, 71]. The social cognitive theory synthesizes concepts
from cognitive, behavioristic, and emotional models of behavior change and can be
applied to interventions for disease prevention and management [72]. Both theo-
retical approaches have overlapping constructs that, when included in behavior
change interventions, have been associated with better outcomes [73–77]. Behavior
change strategies based on these theories, such as education, self-monitoring,
goal-setting, feedback, and prompts, are particularly useful components of mHealth
interventions. A review of 13 lifestyle activity monitors show that the majority
employ a variety of behavior change techniques, including self monitoring feed-
back, goal setting, behavioral cues, and rewards for past success [78].

Digital health coaching begins with the patient embedded in a health ecosystem
(cardiovascular disease, risk behaviors, social determinants of health, and genetics)
and utilizing health technology as self-monitoring health improvement strategy.
The next level of coaching occurs when health data is captured and transmitted to
the patient’s digital health care network to inform coaching and management
decisions. The following figure illustrates the mechanism of action and workflow of
digital health coaching to individualize care (Fig. 2).

Fig. 2 Digital health coaching mechanism of action

118 F. A. Marvel et al.



Exercise Health Coaching

A key example of mHealth exercise health coaching is the mActive randomized
clinical trial in which Martin et al. evaluated the ability of an automated and
personalized text messaging system to increase physical activity [48]. The text
messages were customized to an individual’s schedule and real-time level of
physical activity, among other personal factors such as name and favorite athlete
(e.g., “Jon, you are on track to have a VERY ACTIVE day! Outstanding! We might
as well call you Lebron James!”). 48 patients from the Johns Hopkins Ciccarone
Center for the Prevention of Heart Disease participated, including some with car-
diovascular disease risk factors such as diabetes and some with known coronary
heart disease, thus targeting both primary and secondary prevention. Using a
sequential randomization design, Martin et al. evaluated two core interventions:
activity tracking and text messaging [48]. Activity outcomes were similar in
patients who could access the activity tracker data in real-time (unblinded) as
compared with those who could not (blinded to real-time activity data but wore the
same tracker). There was a 25% increase in physical activity (*1 mile per day
increase) when patients received automated coaching via personalized text mes-
sages, thereby supporting the need for such motivational drivers in addition to
simple self-monitoring with devices. A systematic review of 11 articles similarly
showed promise for electronic activity systems (wearables) to increase physical
activity and manage weight [79].

Smoking Cessation Coaching

Smoking has long been recognized as a major risk factor for CVD and a leading
preventable cause of death [7]. Moreover, successful attempts at smoking cessation
have conventionally applied behavior change techniques [80]. Digital devices and
mobile technologies have allowed for the scaling of these behavioral intervention at
the convenience of device ownership, thereby having the potential to reach an
impact at the population level. This has been noted by the immense number of text
message-based cessation programs, including the American Cancer Society’s
Text2Quit and National Cancer Institute’s SmokeFreeTXT programs [7, 81–84].
These programs have been shown to successfully leverage remote support, edu-
cation counseling, and scheduled messages in order to promote and maintain
smoking cessation [81, 84, 85]. Moreover, there is potential to promote a “preci-
sion” framework through personalized messaging, timed to situational urges such as
around one’s scheduled work breaks—when the risks of relapse are high—as
described in the “just-in-time” adaptive interventions [86]. These efforts may be
further augmented when deployed in combination with live support through tele-
phone counseling [87].
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Blood Pressure Control Coaching

According to recent American Heart Association guidelines, 103 million U.S.
adults (about 46%) have hypertension, costing the healthcare system about
$48.9 billion annually. In 2005, hypertension was responsible for 45% of all car-
diovascular deaths, making it the single largest cardiovascular risk factor [88]. As
discussed in this chapter, there remains ample opportunity to leverage digital health
technologies within a precision medicine framework to facilitate personalized care.
One such avenue is through mHealth coaching, as demonstrated in remote blood
pressure management. A meta-analysis showed that self-monitoring of blood
pressure alone improves hypertension control and the effect is greater for programs
combining self-monitoring with additional support [89]. Virtual strategies including
low-cost wireless monitoring is another example of traditional office-based
appointments being transitioned to virtual visits. As demonstrated by Rifkin
et al., remote wireless transmission of BP measurements from a Bluetooth-enabled
cuff allowed for more frequent medication titrations, resulting in greater commu-
nication between the care team and patient as well as a trend toward improvements
in BP control over usual care at 6 months [30]. A more recent retrospective study
expanded on the potential utility of mHealth coaching in promoting patient edu-
cation and behavior change [90]. Mao et al. evaluated a mobile phone-based health
coaching service via app combined with wireless scale, pedometer, and blood
pressure cuff on weight loss and blood pressure management among a population of
overweight patients. Participants received 4 months of intensive health coaching
via live video, phone, and text messages and were also provided with a wireless
scale, pedometer, and blood pressure cuff. Among 151 intervention participants
with blood pressure data, 112 (74.2%) had a baseline blood pressure that was above
the goal (systolic blood pressure > 120 mmHg); 55 out of 112 (49.1%) participants
improved their blood pressure at 4 months by an entire hypertensive stage-as
defined by the Seventh Report of the Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure. Participants in the
intervention group lost an average of 3.23% total body weight (TBW) at 4 months
of coaching and 28.6% (218/763) intervention participants achieved a clinically
significant weight loss of 5% or more of TBW, with an average of 9.46% weight
loss in this cohort. This suggests that mobile phone app-based health coaching
interventions can be an acceptable and effective means to promote blood pressure
and weight management in overweight or obese individuals.

Blood Glucose Control Coaching

Earlier, we described various consumer-based tracking systems for blood glucose
monitoring. Based on patient self-reports, there is a clear signal of patient interest to
streamline glucose monitoring and logging, suggesting that the ability to receive
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one’s own glucose data in a structured manner may improve tracking adherence
[91, 92]. A retrospective study by Offringa et al. [93] found that participants who
used a mobile platform displaying personalized glucose data in a digital log per-
formed self-monitored glucose checks more frequently and had lower mean glucose
levels than controls. Moreover, a systematic review of over 14 trials suggests that
mobile applications may provide benefit as an adjuvant to guideline-directed
management in patients with type 2 diabetes, with a mean hemoglobin A1c
reduction of 0.5% compared to non-users [91]. In a separate systematic review of
12 trials, Wu et al. [92] found that A1c reductions are greater if mobile applications
included education on complication prevention, but identified a concern regarding
the “decision-making function” featured in 3 mobile applications that provided
treatment recommendations derived from an algorithm without clinician oversight.
As more patient-facing applications and digital tools enter the market, it is critical
that clinicians are involved to oversee algorithm development of any
“decision-making” features to prevent adverse health events such as hypoglycemic
episodes.

Transformation of Healthcare Delivery

Digital health is positioned to transform health delivery and shape precision med-
icine practices. Previously in this chapter, we described the role of patient-facing
biosensors and software is to generate and collect cardiovascular clinically-relevant
data (e.g. heart rate, blood pressure, and biomarkers), detect risk signals, and inform
clinicians for health coaching and management. By connecting the streams of health
data from the technology-enabled tools with other relevant clinical data the aim is
create a multifaceted and highly personalized profile of each patient. Furthermore,
the actionable health insights generated from technology-enabled tools will allow
for proactive intervention tailored to each individual patient. From a healthcare
system architecture standpoint this requires leveraging (1) mobile data capture from
patient, (2) secure data platforms, (3) portal for patients to access data and engage
with clinicians, and (4) a cloud-connected electronic medical record and/or clinician
portal with artificial intelligence capability. In the following schematic overview of
telehealth and precision medicine, we illustrate the potential integration among
consumer connected health technologies, predictive analytics, and electronic health
systems to facilitate clinician decision-making (Fig. 3).

Cardiovascular disease prevention, detection, and management may be more
precise, less invasive, and cost-effective as technology adoption increases in the
future. In order to do so it will require collaboration between key stakeholders in
developing, testing, and implementing the most promising DHIs. Additionally,
payers including the US Centers for Medicare & Medicaid Services will play a
major role in sustaining technological advancement by adapting regulation and
reimbursement policies to support digital services. Ultimately, healthcare organi-
zations and systems will need to systematically identify health technology that
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offers improvement in clinical care delivery and outcomes in a cost-effective
manner. We will provide three examples of how digital health could potentially
transform and personalize healthcare delivery in the outpatient clinic, hospital, and
post-acute care.

Outpatient Clinic (Chronic Condition Management
and Prevention)

The traditional clinic-based office visit is based on a care model which proposes to
manage patients with periodic visits and one set of vitals every 3-month, 6-month,
12 month or annual follow-up appointments. A conventional approach such as this
is limited by snapshots of the patient’s health instead of a holistic and continuous
picture. It also creates barriers for access to care including time, costs of travel and
parking, absence from work, and is a major barrier to relatively immobile patients.
Patients and clinicians are increasingly communicating via HIPAA-compliant
electronic patient portals and video-based visits. While these tele-visits are limited
by a lack of the physical exam, the benefits of seeing the patient, discussing
concerns, and actively tailoring therapy according to transmitted biometric data
(e.g. vital signs, step count, weight, biomarkers) have the ability to deepen the
patient-clinician relationship. Telemedicine, in addition to promoting health equity
by addressing geographic, logistic, and financial barriers to care, is able to leverage
technology to individualize care through longitudinal care in the home and com-
munity environment. In a highly efficient and modern manner, it can bring medicine
back to the days of home visits. This is inherently more personal and patient-centric
than hospital based care. Notably, the American Heart Association emphasized a

Fig. 3 Digital health data flow and cooperability to enhance precision medicine
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call-to-action for system level changes to improve access to care, citing disparities
in rural communities such as a 20% higher mortality rate and 40% higher preva-
lence rate for CVD compared to urban populations [94] mHealth and telemedicine
may be aptly suited to mitigate these disparities by expanding access to care in a
cost-efficient manner; further research is necessary to assess the cost-effectiveness
and patient outcomes of these interventions.

Inpatient (Acute Care)

The standard hospital discharge process remains problematic for healthcare systems
due to multiple handoffs, lack of understanding among patients of care plans, and
unacceptable rates of hospital readmission. Individualizing the cardiovascular
recovery experience after an acute cardiac event remains a priority for health sys-
tems and involves improving the hospital discharge process, transitioning to out-
patient management, and promoting long-term adherence to guideline-directed
medical therapy. For example, 30-day readmissions for acute myocardial infarction
are among the leading causes of preventable morbidity, mortality, and healthcare
costs [95]. Digital health interventions may be an effective tool in promoting
self-management, adherence to guideline-directed therapy, and cardiovascular risk
reduction. One example of how clinicians can leverage mHealth interventions to
facilitate the transition from acute inpatient care to long-term outpatient manage-
ment is the Corrie Health Digital Platform (Corrie) [44]. Corrie is the first cardi-
ology Apple CareKit smartphone application, which is paired with an Apple Watch
and iHealth Bluetooth-enabled blood pressure cuff, and was developed to be
delivered early in hospitalization for acute myocardial infarction to support
guideline-directed medical therapy and prepare patients for post-acute care car-
diovascular recovery. The system allows the care team to help set individualized
medication logs and patient health information, including care coordination con-
tacts. The Corrie Myocardial infarction, COmbined-device, Recovery Enhancement
(MiCORE) study results show reduce all-cause, unplanned 30-day hospital read-
missions and related healthcare costs for acute myocardial infarction
(AMI) patients.

Case Example of Application of Digital Health Coaching for a
Cardiovascular Patient [96]
A 55-year-old woman with undiagnosed familial hypercholesterolemia,
pre-diabetes, tobacco use, physical inactivity, diet consisting of fried and
processed foods, and morbid obesity was admitted with chest pain. She was
diagnosed with an inferior ST-elevation MI and two drug-eluting stents were
placed in her right coronary artery. She had previously been incarcerated,
earned US$31 000 annually working at a retail store, and had been uninsured
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for several years. She had never received preventive care to reduce her car-
diac risk factors

While hospitalized, she was enrolled in Corrie Myocardial infarction,
Combined-device, Recovery Enhancement (MiCORE) study, which was a
trial primarily aimed to determine if type I MI patients using Corrie have
lower all-cause unplanned 30-day hospital readmissions and related health-
care costs compared with a historical comparison group. Corrie consists of
(1) a smartphone application for medication management, education, vitals
and care coordination, (2) cooperative sensors including an Apple Watch and
an iHealth wireless blood pressure cuff and (3) a data backend platform. This
intervention engages patients early during the hospitalization and facilitates
adoption of guideline-directed medical treatment and lifestyle modifications
known to improve health outcomes. At the time of enrolment, the patient
owned a flip phone and had never used a smartphone. She was provided with
an iPhone preloaded with the Corrie app and Apple Watch and wireless blood
pressure monitor to participate in the study. She was briefly trained for
30 min on how to use the app, and was provided with an orientation packet
highlighting key features of the app

With the help of reminders from the Corrie app on both her phone and
watch, she tracked adherence to her cardiac medications and follow-up
appointments with her primary care doctor and cardiologist. She monitored
her step count and increased her exercise to climbing stairs and/or walking
3–5 miles daily. She learnt more about cardiovascular health and her recent
diagnosis through a curriculum consisting of brief, easy to understand and
visually engaging educational videos. She also changed her lifestyle, as
recommended in the videos, by quitting smoking, avoiding fast and fried
foods, eating heart healthy foods and reducing her soda intake by half. At
30 days, and at an interview conducted 2.4 years after initial enrolment, she
was continuing healthy daily habits, avoiding both post-MI complications and
hospital readmission

Center-Based Services (Post Acute Care)

Cardiac rehabilitation (CR) is an effective modality to reduce cardiovascular mor-
tality and improve health-related quality of life across a broad range of cardio-
vascular disease (e.g. myocardial Infarction, heart failure, peripheral arterial
disease) [97]. CR is a medically supervised program to reinforce guideline-directed
medical therapy, risk factor modification, psychosocial support, and exercise
training [98]. Despite the strong evidence in support of the benefits of CR, less than
20% of patients who are eligible for CR participate [99]. Low utilization of CR due
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to lack of time and costs associated with participation and travel, lack of access to a
CR facility due to scheduling, transportation, or distance have created an oppor-
tunity for a virtual CR model [100].

Digital health technologies have the potential to address the challenges associ-
ated with traditional facility-based CR programs with a precision medicine
approach by delivering care to patients in the convenience of their own homes and
providing real-time, personalized support and individualized activity thresholds.
Digital CR is attractive as an adjunct or as an alternative to traditional CR
[101–107]. Home- and center-based CR appear similarly effective in improving
clinical- and health-related QoL outcomes in myocardial infarction, myocardial
revascularization, and heart failure patients [108]. Furthermore, the American Heart
Association/American College of Cardiology/American Association of
Cardiovascular and Pulmonary Rehabilitation provided a consensus statement
highlighting evidence that home- and facility-based CR can achieve similar
improvements in 3- to 12-month clinical outcomes [109]. Overall a Virtual Cardiac
Rehab transition from traditional facility-based care highlights the potential of
telehealth and digital technology to enhance cardiovascular care by broadening
access to the evidence-based benefit of CR.

Conclusions

Healthcare is on the verge of a digital health transformation that will deliver the
promise of personalized medicine. Health technology can extend cardiovascular
expertise to connect cardiologists with patients in resource-limited settings.
Stakeholders particularly health consumers, clinicians, innovators, technology
industry, payers, and healthcare leadership must forge this pathway together. We
share a common purpose to achieve the adoption of digital health and personalized
medicine to promote healthier populations, decreased healthcare spending, and
improvement in health equity.

The key takeaways from this chapter include understanding:
The role of biosensors, biomarkers, and software that can generate, gather,

and share data with clinicians to inform personalized health coaching
How disease could be identified earlier, intervened on proactively, and

personalized to the patient to drive their empowerment to execute
self-management actions
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How healthcare transformation with technology-enabled tools can improve
precision medicine across care settings

The importance of advocating to policymakers, payers, insurers, and
healthcare administrators for supporting the adoption of health technology.
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Artificial Intelligence and Machine
Learning

Fawzi Zghyer, Sharan Yadav, and Mohamed B. Elshazly

The greatest opportunity offered by AI is not reducing errors or
workloads, or even curing cancer: it is the opportunity to
restore the precious and time-honored connection and trust—
the human touch—between patients and doctors.

—Eric Topol

Preventive Cardiology, the Past and the Future

Cardiologists, for many years, have been successful in implementing measures and
pioneering medical therapies and interventions to treat cardiovascular diseases.
These measures have become very advanced and aggressive; however, accurate risk
assessment and prevention promise to have the biggest impact on the human health
span. Continuous renovation of primary and secondary prevention strategies is
needed now more than ever [1, 2] as we shift towards a new era of big data and
personalized interventions leading to the democratization of medicine.

Risk prediction is the foundation of prevention, and the Framingham studies set
the stage for Atherosclerotic Cardiovascular Disease (ASCVD) risk prediction
using clinical scores. Other primary prevention cohorts such as the Atherosclerosis
Risk in Communities study (ARIC) and the Multi-Ethnic study of Atherosclerosis
(MESA) [3, 4] have helped further refine risk scores over the years and new
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markers such as C-reactive protein and Coronary Artery Calcium (CAC) have been
suggested as risk modifiers. However, the core of risk assessment strategies has not
significantly changed. Clinical risk scores are not dynamic enough, lack granularity,
do not incorporate important information such as lifestyle behaviors and polygenic
risk, and are not very accurate at predicting lifelong risk, which is essential for
primordial prevention. Moreover, other cardiovascular diseases such as heart failure
(HF) or atrial fibrillation do not have well-developed risk assessment scores.

Advancements in technology and big data collection and analysis will
undoubtedly allow us to identify more risk factors for cardiovascular diseases. With
the increased availability of personalized lifestyle and pharmacotherapeutic inter-
ventions, the science and field of prevention are evolving at a great pace. The future
of cardiovascular disease prevention will involve the use of dynamic real-world
patient data collected from lifestyle surveys or chatbots, smart wearables, or
imaging studies coupled with genomics, demographics and clinical risk factors; all
trained and continuously fine-tuned by evolving and personalized artificial intelli-
gence (AI) algorithms.

Artificial Intelligence, Machine Learning, and Deep Learning

Widespread digitization and abundance of data has led to machine learning and AI
analytical skills becoming some of the most sought‐after skills today. AI, which has
been around since the 1950s, is the study of intelligent agents that perceive their
environment and act accordingly to maximize the chances of successfully achieving
their goals [5]. Machine Learning (ML), a form of AI, is a characterized software
that can progressively learn from data and make predictions without explicit prior
programming [6]. ML can be used to analyze large amounts of data, making it
particularly useful for tasks requiring automation.

ML algorithms can be trained via supervised, unsupervised, semi-supervised,
reinforcement, and active learning tasks (Fig. 1) [7]. Most of the studies that will be
discussed in this chapter utilize supervised learning algorithms. This involves
learning a function, through a labeled training dataset where both input and desired
output data are provided [8]. After sufficient training, the ML system can then
perform the tasks on unlabeled input data. Linear regression, logistic regression,
decision tree, random forest, support vector machine, and deep neural networks are
some commonly employed supervised learning algorithms [8]. In contrast, in
unsupervised learning, algorithms are provided with input data without corre-
sponding output values [8]. The focus is on detecting patterns in a data set, making it
popular in applications of clustering, association, or predicting rules that describe a
data set [9]. Examples of unsupervised learning algorithms include k‐means clus-
tering, hierarchical clustering and principal component analysis [8]. Both
semi-supervised learning and active learning involve partially labelled input data [8].

Deep learning (DL), which involves algorithms called artificial neural networks
(ANNs) that are inspired by the structure and function of the brain, is a part of the
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broader family of ML. It involves computational models composed of multiple
processing layers, consisting of interconnected “nodes” analogous to neurons in the
brain [8]. Some noteworthy classes of DL architecture include deep neural network
(DNN), convolutional neural network (CNN), and recurrent neural network
(RNN) [10].

There has been growing interest in utilizing AI and ML in healthcare, and it has
already been demonstrated to be helpful in a variety of different areas of medicine
including cancer diagnosis [11], imaging, and drug development [12], to name a
few. Cardiology is one of the fields that can benefit from utilization of this tech-
nology. Although AI has mostly been used in imaging thus far, its ability to
efficiently analyze large amounts of data make it promising for several aspects of
patient care. Research has been done to apply ML in cardiology to imaging,
electrocardiography, in-hospital telemonitoring, and mobile and wearable technol-
ogy [8]. In the era of precision medicine, ML can be applied to the early diagnosis
and development of patient tailored therapies, and in the prediction of different
cardiovascular diseases [13] (Figs. 1 and 2).

Fig. 1 Machine learning algorithms. Adopted from Springer Nature Media [72]
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Applications in the Cardiovascular Care

Coronary Artery Disease

Approximately every 40 seconds an American will suffer from a myocardial
infarction. This year *720,000 Americans will have a new coronary event [14].
Despite the advancements in diagnostic strategies and primary and secondary
prevention, coronary artery disease (CAD) remains a major source of morbidity and
mortality. Our current methods of estimating ASCVD risk involve incorporating
traditional risk factors to predict the risk of events over a defined period of time
[16]. Event prediction is crucial to the current practice of cardiology, as it allows for
characterization of sub-clinical disease processes, modification of risk factors and
primordial or primary prevention. 10-year risk calculators such as the ACC/AHA
Pooled Cohort Equation, though beneficial in practice, tend to underestimate CVD
events in women and certain ethnic groups, and overestimate risk in others [17].
There remains a need to develop more accurate tools for early detection of high-risk
groups, and this is where ML techniques show promise.

Several studies have developed ML-based techniques using data from the
Multi-ethnic study of atherosclerosis (MESA). MESA is a prospective, observa-
tional cohort study that included 6814 participants aged 45–84, representing four
racial/ethnic groups, who were free of clinical cardiovascular disease at enrollment
[18]. Baseline examinations were extensive and included measurement of CAC
using computed tomography, cardiac MRI measurement of ventricular mass, ankle
and brachial blood pressure, and ECGs among others. Baseline microalbuminuria,

Fig. 2 Artificial intelligence, Machine learning, and Deep learning
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standard cardiovascular risk factors, lifestyle habits, and psychosocial factors were
also collected. Participants were observed over a median of more than 10 years for
identification and characterization of cardiovascular events, including myocardial
infarction, stroke, peripheral vascular disease, HF, and mortality, in addition to
characterization of therapeutic interventions initiated over the years [18]. For the
duration of the study, measurements of selected subclinical disease indicators and
risk factors were repeated. Kakadiaris et al. developed an ML based risk calculator
utilizing Support Vector Machines (SVMs) on a 13‐year follow up data set from
MESA, and compared their results to the ACC/AHA Risk Calculator [19]. SVM’s
are supervised learning algorithms that are fine-tuned by human experts in the field.
The FLEMENGHO study served as an external cohort for validation. Their pro-
posed calculator utilized the same 9 traditional risk factors as the ACC/AHA
Calculator. Yet, despite having identical inputs, it outperformed the ACC/AHA
Calculator by detecting 13% more high‐risk individuals and 25% more low‐risk
individuals who may not need statin therapy [19]. Moreover, the ML Risk
Calculator was successful at predicting both “Hard” and “All” cardiovascular
events, and performed well in males and females. Ambale-Venkatesh and col-
leagues also utilized data from MESA, using a random survival forests (RF)
technique to identify the top 20 predictors of each endpoint in the study [20]. They
found that imaging, ECG, and serum biomarkers featured more heavily than tra-
ditional CV risk factors. Age was noted to be the most important predictor for
all-cause mortality, while CAC score was the most important predictor of coronary
heart disease and all ASCVD combined [20]. The proposed RF technique outper-
formed established risk scores with increased prediction accuracy.

CAC score from routine cardiac-gated non-contrast CT scans is frequently used
in addition to traditional risk factors to enhance cardiovascular risk prediction.
Al’Aref et al. developed an ML model incorporating CAC score, in addition to
clinical and demographic factors, to predict the presence of obstructive CAD on
Cardiac Computed Tomographic Angiography (CCTA). They screened the
CONFIRM registry to select 13,054 participants who were evaluated with CCTA
for suspected or previously established CAD. They used a boosted ensemble
algorithm, a method that combines several decision trees classifiers to produce a
more accurate predictive model [21]. They compared the performance of the ML
model with and without CAC score, the CAD consortium clinical score alone and
with CAC score, and the updated Diamond-Forrester score. ML incorporating the
CAC score had the best performance with an AUC of 0.881, and CAC, age, and
gender were the highest-ranking features. Such an approach can improve risk
stratification and guide management. Han et al. used an ML framework to integrate
CCTA derived quantitative and qualitative plaque features to predict those at risk
for rapid coronary plaque progression (RPP) [22]. RPP, defined as the annual
progression of atheroma percentage volume by � 1.0%, is associated with incident
cardiovascular events [22]. The study utilized data from 1083 patients in the
PARADIGM registry. They designed three different ML models including com-
binations of clinical features, qualitative, and quantitative plaque characteristics,
and compared them to the ACC/AHA pooled cohort equation, Duke coronary artery
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disease score, and a logistic regression statistical model. The ML model incorpo-
rating clinical, qualitative, and quantitative plaque features, had the highest dis-
criminatory performance to identify those at risk for RPP, with quantitative
atherosclerosis being the most important feature [22].

CCTA based risk stratification traditionally relies on detecting obstructive
lesions or coronary calcification. However, Oikonomou et al. took a different
approach to risk prediction by using AI to analyze the radiomic profile of coronary
perivascular adipose tissue (PVAT) [23]. Vascular inflammation is now known to
cause spatial shifts in PVAT composition, captured by the perivascular Fat
Attenuation Index (FAI) [24]. FAI has been shown to have prognostic value for all
cause and cardiac cause mortality, however it may lose its prognostic value in
patients on appropriate pharmacotherapy [25]. Using ML, they were able to build a
new radiomic signature of high-risk PVAT, namely the perivascular Fat Radiomic
Profile, that relies on detection of more persistent structural changes associated with
PVAT fibrosis and microvascular remodeling induced by chronic coronary
inflammation. They verified their method in three different studies, and trained the
algorithm to identify those at risk for major adverse cardiac events (MACE).
Applying their method to the SCOT-HEART trial significantly improved MACE
prediction beyond traditional risk stratification that included risk factors, CAC,
coronary stenosis, and high-risk plaque features on CCTA [23]. This study illus-
trates how ML, when applied to imaging, can help identify new patterns of sig-
nificant clinical value. The authors of the study propose a ‘radio-transcriptomic’
approach by linking such imaging patterns to underlying tissue biology and gene
expression status. This could lead to more granular and individualized assessment
of disease activity and provide novel insights into pathogenesis [23].

The advent of precision medicine relies in part on the availability of accurate and
predictive polygenic risk scores. The cost of sequencing the human genome is
rapidly decreasing, allowing for development of genomic risk prediction models
accessible to the entire population. ML can be utilized to this end due to its capacity
to integrate a large number of predictors. Pare et al. developed an ML-based
technique to boost the predictive performance of polygenic risk scores using gra-
dient boosted regression trees, leading to significant improvements in the predictive
ability (R2) of risk scores [26]. Okser et al. searched for subsets of genetic variants
and their interactions that are most predictive of the various risk classes for
atherosclerosis. They developed a predictive model using Single Nucleotide
Polymorphisms (SNPs) selected via ML, combined with clinical risk factors, to
predict the extreme classes of risk for atherosclerosis and progression over a 6‐year
period [27]. They achieved AUCs of 0.84 and 0.76 for the risk prediction and
disease progressions tasks, respectively, which were both significantly better than
those achieved using conventional risk factors alone [27].

Nevertheless, some of the parameters utilized in ML risk scores described above
may not be readily available to clinicians, and imaging studies can be time con-
suming. Poplin et al. were thus interested in extracting signals for cardiovascular
risk from retinal images, which can be obtained quickly, cheaply and
non-invasively in an outpatient setting. They trained deep learning models to make

138 F. Zghyer et al.



quantitative predictions of popular cardiovascular risk factors from retinal fundus
images from the UK Biobank and EyePACS, and tested their models on images
from these databases [28]. The proposed models were found to predict the smoking
status with an AUC of 0.71, systolic BP with a mean absolute error within
11.23 mm Hg (95% CI, 11.18–11.51), and MACE with an AUC of 0.70 [28]. The
prediction of MACE achieved a comparable accuracy to the SCORE risk calculator
[28]. Wang et al. also applied deep learning techniques, using CNNs to discriminate
breast arterial calcification (BAC) from non–BAC on mammograms [29]. The
free-response ROC analysis of their model showed a level of detection similar to
the human experts [29]. Since breast arterial calcification has been proposed as a
risk indicator for CAD, stroke, and HF [30], these results are promising for
development of an automated system for BAC detection and cardiovascular risk
assessment in women undergoing mammograms.

Heart Failure

HF has a high prevalence, affecting around 2% of the adult population in developed
countries, including >6.2 million Americans above the age of 20 [31]. Its preva-
lence is rising, along with the associated morbidity, mortality, and increasing
healthcare costs. Thus, early accurate diagnosis and estimation of the severity of HF
is crucial. Currently, clinical decision algorithms used to diagnose HF in non-acute
settings utilize pertinent clinical history, physical examination, ECG data, along
with labs such as Brain Natriuretic Peptide (BNP) to identify patients requiring an
echocardiogram. There are several studies that have looked at using ML techniques
to detect the presence or absence of HF, making diagnosis more efficient. Most
reported studies utilize short or long-term heart rate variability (HRV) incorporated
within ML algorithms such as SVMs, decision trees or neural networks, to classify
patients as having or not having HF. For example, Melillo et al. studied the dis-
crimination power of long-term HRV measures for diagnosis of chronic HF, using a
decision tree method known as CART [32]. Their classification scheme achieved a
sensitivity of 89.74%, and a specificity of 100%. Similar results have been obtained
in other studies looking at long term [33], as well as short term, HRV [34, 35].
A 2014 study by Liu et al. utilized three nonstandard short-term HRV features in an
SVM based HF classification model, and achieved accuracy values of 100% [36].
These results are promising given the rising popularity of smartphones and wear-
able devices with capabilities for HR monitoring.

Studies have also looked at the risk of developing HF by considering factors
other HRV. Aljaaf et al. proposed multi-level risk assessment for developing HF,
where patients were classified into 5 categories of increasing risk using a decision
tree classifier. The algorithm was trained using the Cleveland Clinic heart disease
dataset with three additional risk factors—obesity, physical activity and smoking—
achieving an overall precision of 86% [37]. Others, such as Yang et al., suggested a
scoring method which allows both the detection of HF as well as assessment of its
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severity [38]. They also classified the non-HF patients to a Healthy group or to a
HF-prone group. The model achieved a total accuracy of 74% [38]. Zheng et al.
proposed an innovative Least Squares SVM based model that utilized heart sounds
and cardiac reserve features to diagnose HF, achieving diagnostic accuracy, sen-
sitivity and specificity of 95%, 97% and 94% respectively [39]. RNNs, which can
take the temporal relationships between different clinical events into consideration,
have been successfully employed in some studies. Choi et al. focused on predicting
the onset of HF by applying RNNs to longitudinal structured patient data such as
diagnosis, medication, and procedure codes in electronic health records [40].

In addition to diagnosis and risk prediction, ML techniques can help in identi-
fication of novel risk factors for HF. A recent study applied ML to the UK biobank
sample of 500,451 individuals, excluding those with prior HF. Patients were fol-
lowed up for 9.8 years. Leg bio-impedance was noted to be lower in those who
developed HF, and after adjusting for known HF risk factors, was shown to be
inversely related to HF [41]. The authors created a model including leg
bio-impedance, sex, age, history of myocardial infarction that showed good dis-
crimination for future HF hospitalization (Concordance index = 0.82) [41].

Atrial Fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia globally. Currently,
there are 2.2 million cases in the US [42]. AF is an arrhythmia with a propensity
towards the ageing population; the prevalence of AF is 0.5% in individuals aged
50–59, but can go up to 10% in individuals aged 80–89 [43]. Interestingly, it is
estimated that up to 40% of AF patients will go on undiagnosed [44]. While AF
itself is not life threatening, patients are at an increased risk for thromboembolic
events, particularly strokes that result in a great deal of morbidity and mortality
[45]. Earlier diagnosis of AF and treatment with anticoagulation significantly
decreases the risk of strokes [46, 47].

While a 12 lead ECG can be used to check for the presence of AF, it is just
analogous to a random blood glucose in the diagnosis of diabetes. A more com-
prehensive window like glycated hemoglobin is needed for accurate diagnosis
especially in patients with paroxysmal AF (PAF). Currently, prolonged ambulatory
rhythm monitoring is used to screen for the presence of AF, especially following a
stroke [48]. Prolonged monitoring with traditional devices such as Holter monitors
is cumbersome, costly, and not of great yield. More advanced automated techniques
using traditional ECG or wearable devices combined with ML will become the
future of AF prediction and diagnosis.

Attia et al. were among the first to use CNNs to identify the electrocardiographic
signature of AF present during normal sinus rhythm. They used an AI model to
pinpoint ECG signals, that might be invisible to the human eye but contain
important information about the presence of AF. The AI was trained solely using
the usual 12 lead 10-s ECG strip and included 180,922 patients and 649,931 normal
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sinus rhythm ECGs. In their study, they found that the AI model performed well
with an area under the curve (AUC) of 0.87 for a single lead ECG and 0.90 for
multiple leads in detecting AF [49]. This performs better compared to other medical
screening tests such as B-natriuretic peptide for HF with an AUC of 0.6–0.70 [50]
as well as CHA2DS2-VASc score for stroke risk in AF with an AUC of 0.57–0.72
[51]. Attia and colleagues were successful in showing the power of advanced
computer technology, non-linear models, large datasets as well as the use of con-
volutional neural layers in the diagnosis of a prevalent disease [49].

The Apple Heart Study utilized a commercial smart wearable device, an Apple
watch Model 3 or earlier model without ECG, to screen for AF using photo-
plethysmography tachograms and AF notification algorithms. The group used the
irregular pulse notification algorithm, which if activated, would initiate a tele-
medicine visit and then an ECG patch would be sent to the participant to be worn
for 7 days. The possibility of receiving an irregular pulse notification was low at
0.52%. Among the participants who received an irregular pulse notification, 34%
had an irregular pulse on subsequent ECG monitoring, and 84% of the irregular
pulse notifications were concordant with atrial fibrillation [15].

In another study published by Tiwari and colleagues, the group explored if
machine learning can be applied to electronic health record (EHR) data to identify
patients at risk of 6-month incident AF. The study used data from 2,252,219
patients, of which 28,037 (1.2%) developed AF at the end of the 6 months interval.
In their investigation of the application of an ML model using harmonized EHR
data, they found that a shallow neural network using random oversampling utilizing
the most common 200 EHR features, including age and sex, had an AUC of 0.80.
Harmonized data means that the results can be applied to any EHR however, a
simple unregularized logistic regression model of known risk factors gave an AUC
of 0.79, arguing that the ML model was not substantially better than simpler models
based on AF risk factors. [52]. Hill and colleagues explored neural networks for AF
risk prediction in primary care practice as compared to already existing models such
as CHARGE-AF, a score developed to predict incident AF in three American
cohorts and validated in two European cohorts. Analysis of almost 3 million
individuals identified time-varying neural networks as the optimal method of
screening with an AUC of 0.827 as compared to 0.725 for CHARGE-AF, with a
number needed to screen reduction by 31%, from 13 to 9 [53].

HRV is another promising variable in the detection of arrhythmias. In a study
published by Chesnokov on the role of HRV in detecting PAF using AI, the
artificial neural network developed was able to detect PAF in 13 patients (62
– 21 min in advance) from non-PAF HRV [54]. A recent study used an ML
approach using combined feature vector coupled with expert classification of HRV
signal to detect PAF. The performance of this algorithm has shown itself to be
superior to previously developed methods with a sensitivity of 100% and a
specificity of 95.5% [55].
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Sudden Cardiac Death

Sudden cardiac death (SCD) is the leading cause of natural death in the United
States and accounts for 325,000 deaths annually and half of heart disease deaths
[56]. In North America and Europe, the annual incidence of SCD ranges between
50 and 100 per 100,000 in the general population [57]. The most common cause of
SCD in adults above the age of 30 is ASCVD followed by left ventricular hyper-
trophy. Ventricular fibrillation appears to be causing the majority of deaths [58] and
its outcomes are catastrophic in the absence of early cardiopulmonary resuscitation
and defibrillation. Developing methods to predict SCD events well before they
occur [59] can potentially prevent some of these events or enhance survival
post-arrest through rapid intervention.

Shen and colleagues created a personal cardiac homecare system by sensing the
Lead-I ECG signal and trying to predict SCD events. A wavelet analysis was
applied to detect SCD and the overall performance was 87.5%. They also imple-
mented a least mean square (LMS), decision based on neural network (DBNN), and
back propagation neural network with prediction rates of 67.4%, 58.1%, and 55.8%
respectively [58]. To follow up on the results, Ebrahimzadeh and colleagues
extracted linear, time frequency and non-linear features from HRV signals to pre-
dict SCD. When comparing it to Shen et. al’s results, the predictive accuracy
increased from 67.4 to 98.7% [60]. It was clear that non-linear and time frequency
methods produced more accurate results. Ebrahimzadeh et al. also investigated
ECG patterns up to 4 minutes before the onset of SCD. They concluded that the
2-min pre-event interval can be used to distinguish between a normal ECG and one
that is prone to SCD, when every minute counts.

Polygenic Risk Scores in the Era of Machine Learning

The most widely used model for polygenic risk scores was based on linkage dis-
equilibrium (LD) pruning of a large number of single nucleotide polymorphisms
(SNPs) [61]. A study published by Abraham and colleagues showed that a poly-
genic risk score incorporating 49,310 variants had a discrimination ability similar to
the Framingham risk score for the prediction of CAD [62]. Another study by Khera
and colleagues studied genome-wide polygenic scores for common diseases; taking
CAD as an example, they developed a polygenic predictor from 184,305 partici-
pants and tested their ability to predict CAD based on the UK study biobank. Their
predictors had AUCs between 0.79 and 0.81 with the best score including more
than 6.6 million variants. Since ML excels at analyzing large datasets, it is being
explored for its application to polygenic risk scores [63].

Paré and colleagues studied a novel heuristic based on ML techniques. The
group proposed to leverage the large number of SNPs and the available summary
from genome wide association studies to standardize the weights of SNPs
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contributing to the polygenic risk score for several variables and risk factors, and
then adjust for LD rather than using the conventional pruning method [64]. Their
heuristic, gradient boosted and LD adjusted (GraBLD) model, used 1.98 million
SNPs and yielded a prediction R2 of 0.239 and 0.082 for height and BMI
respectively, which explains 46.9 and 32.7% of the overall polygenic variance. For
diabetes status, the AUC was 0.602 using the UK biobank study. GraBLD out-
performed previous polygenic risk scores for prediction of height and BMI, and was
noninferior to LD prediction method for diabetes [64]. Polygenic risk methods are
very promising in the field of cardiovascular prevention as they allow the clinician
to assess for the disease early in childhood, well before the discriminative capacity
of common risk scores kick in.

A Dynamic Approach to Prevention

Beneath the dynamic approach to risk management and prediction is the concept of
“initial conditions” which sets the path for changing system performances [65]. The
concept represents the existing state of an organization prior to the occurrence of
any hazardous events. With the distinctive sets of initial conditions, a scheme is
involved in a continuous learning process that reflects a response to the initial risk
and sets the upcoming state of operation [66]. To help us understand this in relation
to medicine, Paltrinieri and colleagues coined the term Dynamic Risk Management
Framework (DRMF), which focuses on continuous systematization of information
depending on new risk evidence. The whole point of this framework is that it allows
the incorporation of new input as well as continuous monitoring [67]. For example,
if an individual drastically changes their diet to an unhealthy one, or starts smoking,
there will be risk recalculation based on the change, allowing the process to be a
continuum rather than a single snapshot. The dynamic approach to risk assessment
and prevention allows for the implementation of not only primary prevention, but
primordial prevention [68]. In the upcoming era of remote patient care, digital
health trends such as smartphones, smart wearables and remote monitoring devices
will generate a plethora of daily and real-world lifestyle and biometric data that will
usher a new age of continuous risk assessment and real-time intervention. This will
become the future of cardiovascular risk assessment and primary prevention.

Limitations and Future Directions

As evident from our previous discussions, the use of AI and ML in medicine and
cardiology in particular, is promising. However, their use is not without challenges.
The training phase is critical to develop accurate ML models, and this requires large
amounts of data, good bioinformatics analytical skills and an adequate reference
standard [69]. DL in particular requires a vast amount of data, which should be
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sufficiently labeled [8]. ML functions on the principle of “garbage in, garbage out”
and inadequate data can be much more detrimental than no data. Without the
availability of sufficient quality and quantity of training data, classifiers may pick up
unhelpful patterns or “noise”, limiting their real-life clinical applications. The first
challenge comes with finding patients who are willing to share their data. While
efforts are made to de-identify medical data, the risk of reidentifying the patients
exist posing a risk to patient privacy [70]. Secondly, in supervised learning models,
the data must be annotated by trained physicians; this can be time consuming and
expensive. Moreover, these annotations may be subject to bias, which could easily
get incorporated into ML models [8]. Tackling this requires careful data sampling,
and efforts from the creators of the models to limit personal bias from the input data.
Bias can also occur at the level of sampling, if the distribution of the training data
differs from the actual setting in which the ML model will be applied [8].
Overfitting can also occur when the algorithm is excessively tuned to the training
sample [69]. In this case, while the model makes very accurate predictions on its
training set, its generalizability becomes limited. This can be avoided by including
more data or subtly modifying the training set. Considering the pace of advance-
ments in healthcare, ML algorithms may need to be updated frequently.

In addition to algorithm design, there are other challenges with the application of
ML to health systems. Healthcare has several stakeholders, some of whom may
have competing interests [8]. To successfully utilize ML in medicine, all parties
must be on board. There may be resistance from healthcare professionals due to
fears of being replaced, or concern over the “black box” nature of ML [8]. The
decision-making processes of many ML algorithms, particularly unsupervised
algorithms, are poorly understood in totality. This makes it difficult for clinicians to
trust data interpretation and identify any incorrect recommendations. Patients too
may want to know the reasons behind these results. As ML finds its way into
clinical practice, the issue of liability should be discussed—who would be at fault if
a patient is harmed due to a failure of an ML algorithm?

Development of ML techniques and their validation in cardiology is ongoing, so
many of these challenges are being addressed. Efforts are underway to make
integrated and curated data sets to enable ML efficacy [8]. For example, the AHA
established the Precision Medicine Platform to make data easily available for
researchers and improve the ease of searching across data sets [71]. Future
ML-based classifier systems can be made more interpretable to increase the trust of
patients and clinicians. AI can assist clinicians at every step of patient care, but
cannot replace them. Rather than feel threatened by AI, clinicians should embrace it
as a means for improving health care. With the advent of personalized medicine, the
interest in using AI and ML in cardiology will only increase. Wearables and mobile
devices are rising in popularity, and the cost of genome sequencing is decreasing,
both bringing with them a plethora of available data [8]. Our community of car-
diovascular practitioners should begin to get acquainted with AI and ML‐based
applications in cardiovascular medicine that can support their daily clinical
practices.
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Novel Research Designs

Anjali Wagle, Nino Isakadze, and Seth S. Martin

Introduction

Medicine is constantly evolving. Now, more than ever, we are seeing an expo-
nential growth of therapeutics particularly capitalizing on technological advances.
Healthcare providers have found ways to provide medical care outside of the classic
clinic or hospitalist visit and the techniques continue to grow. In the past few years
we have seen increasing use of electronic devices for patient care, medical edu-
cation, and clinical guidance. Through more accessible monitoring and reporting at
both the individual and population level, mobile applications have the potential to
greatly improve our diagnosis and treatment of health conditions as well as reduce
the cost of health care. What is currently lacking in this new paradigm is not
innovation in technology, but innovation in how technology is evaluated. The
present landscape does not have research methods with the necessary rigor and
efficiency to monitor the efficacy and challenges of these new interventions. Of
particular importance is developing a method to evaluate technology at a rate that
keeps up with the pace of creation. The aim of this chapter will be to discuss the
limitations of our current techniques in evaluating mobile health (mHealth) tech-
nology as well as providing an introduction to new methods created for this
purpose.
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History of RCTs

Randomized controlled trials have long been considered the gold standard of evi-
denced based medicine. The first randomized controlled trial is typically attributed
to the British Medical Research Council’s (MRC) evaluation of streptomycin for
the treatment of tuberculosis in 1948 [1]. Prior to the MRC trial, researchers strove
to evaluate therapeutic efficacy of interventions using case reports, case series,
clinical reasoning, and prior experience. However, the prevailing methodology was
the alternate-allocation scheme that involved treating every other patient in a
research cohort. However, in the 1930s, concerns about selection bias led
Dr. Bradford Hill to devise a new methodology for the MRC trial that was without
the limitations of alternate-allocation trials. The MRC was one of the first trials to
assign patients in a randomized fashion and to conceal patient assignments from
researchers. In doing so, Dr. Hill demonstrated how to proactively address selection
bias and established the importance of blinded randomized trials.

The RCT carved a place for itself in the United States particularly after World
War II, when the medical community was trying to make sense of the pharma-
ceutical revolution that had recently occurred. Pharmaceutical companies were
reluctant to spend even more resources and potentially delay approval for their drug
in order to test for efficacy. The unsustainable system revealed its flaws in 1961
when a new drug, thalidomide, was prescribed to thousands of pregnant women.
The subsequent years were marked by an international epidemic of stillbirths and
malformed neonatal limbs, eventually traced back to the “mild sleeping pill”. In
response, between the 1960s and 70s, the Food and Drug Administration mandated
proof of efficacy of new drug applications in the form of RCT results [2, 3]. The
U.S. was closely followed by other national regulatory agencies including the
Japanese government and the Council of the European Economic Community. To
comply with the new regulations, the pharmaceutical industry became a leading
sponsor of RCTs while medical researchers promoted RCTs as a way to make
medicine more rational [4]. The RCT thus became the most vigorous representation
of study designs aimed to adjudicate clinical efficacy and address research bias.

Benefits of RCTs

Over the past 50 years, RCTs have undergone development and refinement making
it one of the highest levels of evidence in EBM. Qualities unique to RCTs include
randomization, blinding, and placebo control, making RCTs the reference standard
for driving practice.

All study designs aim to yield objective data with bias minimized. A major way
that RCTs provide this is by randomization, where participants are randomly assigned
to different intervention or placebo conditions. Selection bias occurs when there are
nonrandom factors that can influence enrollment in either arm of a study.
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Randomization protects against selection bias because there cannot be a priori
knowledge of group assignment with randomization techniques. This is also known
as allocation concealment, which keeps clinicians and participants unaware of the
participants’ assignments. Pharmaceutical trials are well suited to allocation con-
cealment since a matching placebo can be manufactured. Failure of allocation con-
cealment leads to exaggerated positive and negative estimates of treatment effects [5].

In observational studies, causal interpretation is more limited than in RCTs
because of the numerous confounding variables that are not adjusted for or
incompletely adjusted for. Randomization provides a fundamental tool for
researchers to attempt to minimize confounding in treatment assignment by pro-
ducing separate groups in which influencing prognostic factors and other baseline
covariates, known and unknown, can have symmetry. Randomization can be as
simple as flipping a coin, however, this can lead to inter-group chance imbalances.
This imbalance of baseline characteristics can influence comparison between treat-
ment and control groups and introduce confounding factors. Various techniques
have thus been developed to address this issue including different ways to randomize
participants [6–8]. Examples include simple, block, stratified and covariate adaptive
randomizations. Each randomization method is used in specific situations as each
method has a particular set of advantages and disadvantages [9]. As a result of
randomization, baseline characteristics are often well balanced between the com-
parative groups as classically presented in the first table of RCT manuscripts [10].

RCTs have contributed to developing successful treatments for cardiovascular
health. Some of the first, large randomized controlled trials in cardiology include
the International Study of Infarct Survival (ISIS) and Gruppo Italiano per lo Studio
della Streptochinasi nell’Infarto Miocardico (GISSI) series of trials which con-
cluded that beta blockers, aspirin, thrombotic therapy, and angiotensin converting
enzyme inhibitors are beneficial in patients with ischemia [11, 12]. Key aspects of
these trials were the large trial size and simplicity in design that made these studies
practical and cost effective.

Limitations of RCTs

While RCTs have become the standard in research and cardiology guidelines, the
medical community still frequently utilizes “lower-tiers” of evidence to inform
practice. This is largely because we lack RCTs for many of the common clinical
questions that face patients and clinicians. Furthermore, other methods may be well
suited to answer the clinical question such as questions about diagnostic perfor-
mance or natural history.

In order for data gleaned from an RCT to become clinically useful, it must
minimize the possibility of bias and have a result that is clearly applicable to a
defined group of people, also known as internal and external validity, respectfully.
While there have been many methods to optimize internal validity, lack of external
validity is one of the most frequent criticisms by clinicians of RCTs [13–17].
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External validity can be compromised by the eligibility criteria, subject recruitment,
or diagnosis definition. Many RCTs exclude pregnant women and the elderly [18].
Other RCTs exclude patients with comorbidities that are highly prevalent in the
general population, also making the trial less generalizable.

Such assessments from trial data must reconcile the difference of benefits and
harms ascertained at a group level with how that translates to individual patient care.
Usually, published trials include baseline characteristics of their patient population
from which clinicians can assess external validity by comparing with their patient.
However, comparing baseline clinical characteristics have proven misleading
because patients may differ from the trial population in seemingly inconsequential
attributes that later are deemed to have a major effect on the end result.

Another limitation many RCTs face is the increasingly high cost and time
demands required to complete a trial. Given the complexity, RCTs often take years
to plan, implement, and analyze, which can reduce their utility in some instances. In
urgent public health crises, for example, clinicians initially rely on case studies and
anecdotal information to guide treatment as RCTs are developed and conducted.
Additionally, in rapidly evolving specialties, RCTs may have outdated therapies by
the time they publish.

There are countless other examples of the limitations of RCTs including the
difficulty of identifying rare but serious adverse effects and limited ability to detect
individualized effect of a treatment [4]. Judging if an RCT is applicable for an
individual patient falls on the shoulders of clinicians and in areas of large infor-
mation gaps new ways to obtain clinical data on interventions have been recently
gaining favor [19].

In this chapter, we describe how technology is being leveraged to better
understand and improve health. Additionally, we aim to describe new ways to
analyze these digital health interventions, illustrate key limitations of each method,
and suggest when they are appropriate (Table 1).

Micro-randomized Trials

Summary of the Design

In the past, interventions largely took the form of medications or in-office proce-
dures. However, with the advent of largely ubiquitous mobile phone ownership
there has been an interest in leveraging personalized technology to understand and
improve health. One recent development in mHealth intervention includes
just-in-time adaptive interventions, or JITAIs. For JITAIs, the intervention can be
as simple as sending a motivational message through text messaging. These
interventions can be sent multiple times per day depending on the type of inter-
vention. While there have been numerous JITAIs created, data have largely lagged
behind as the research interventions are created faster than current research methods
can prove their efficacy.
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Table 1 Advantages and disadvantages of innovative research designs to drive precision
medicine forward

Name of
design

Example Advantages Disadvantages

MRT HeartSteps physical
activity study

∙ Multiple
randomizations allow for
causal inferences to be
made
∙ Optimized for
behavioral interventions
∙ Can better identify
which component of the
intervention is effective

∙ The method for MRTs
are not ideal for optional
interventions
∙ Not suited for situations
and interventions that are
rare

N-of-1 N-of-1 (single-patient)
trials for statin related
myalgias

∙ Evaluate short-term
outcomes
Appropriate to determine
effect of intervention on
individual basis rather
than the population level
∙ Able to focus on patient
reported symptoms

∙ Challenge with
generalizing the results
∙ Time-intensive for staff
to conduct the study for
few individuals

Patient
centered
participatory
research

Diabetes Networking
Tool

∙ Involves the target
audience of the
application to make it
more user friendly and
provides better
understanding of the
needs for the application
∙ Transparency of the
limitations with users

∙ Members of the team
will have variable
expertise with mHealth
tools
∙ Incorporating ideas
from a wide variety of
participants may increase
the amount of time and
money required

Site-less
trials

Apple Heart Study ∙ Decreases the time and
cost of running a clinical
trial
∙ Increases patient
participation by
decreasing barriers of
traveling
∙ Allows increased
participation from
patients who live in
remote areas

∙ Inappropriate to study
medications with
uncertain safety profiles
∙ Not as beneficial of a
design in trials that
involve medical imaging
or medically
administered
medications

Stepped
Wedged
Trial

High-Sensitivity
Cardiac Troponin and
the Universal
Definition of
Myocardial Infarction

∙ Allows participants to
trial both the intervention
and the control

∙ May prolong trial
timeline as all
participants will need to
trial the intervention and
control
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The micro-randomized trial (MRT) is an example of an alternative to traditional
parallel-group randomized controlled trials [20, 21]. In this method, the treatments
under study and a control are randomly assigned to an individual at each decision
point throughout the entirety of the study (Fig. 1). The treatment recommendations
can include engagement and/or therapeutic treatment that rely on self-reported or
gathered user-specific information to provide personalized recommendations. The
decision point is a specific time when the study intervention might be efficacious for
the participant, which is initially based on theory, the individual’s past behavior,
and current context. The decision points can be location, time, or trigger based
depending on the type of study. For example, if a study was interested in the effect
of a message encouraging the individual to take his or her medication at a specific
time, the decision point would be the medication time. An example of a location
guided decision point would be if a study was interested in the effect of a message
discouraging alcohol use, then every time the participant was within 5 feet of an
alcohol store the message would be sent.

A key feature of the MRT is defining proximal and distal outcomes. Proximal
outcomes are similar to primary outcomes of an RCT, meaning the goal behavioral
change that occurs immediately after an intervention is deployed. In the first
example above, a proximal outcome could be to measure the number of days in a
week that a participant was adherent to his or her medication. Proximal outcomes
are often seen as building blocks to the distal outcome. The distal outcomes are
often the amalgamation of the proximal outcomes at each decision point over a
certain period of time. The distal outcome in this example could be the number of
heart failure exacerbations a patient has in 6 months if the medications targeted for
adherence include heart failure medications.

Another group of effects MRTs can study are lagged effects. Lagged effects are
changes in behavior that are due to the intervention but are outside the window
period of a proximal effect. These effects are important to determine decision point
characteristics. If the proximal outcomes show low medication adherence, lagged
effects may still be present. In particular, a delayed but sustained increase in
medication adherence suggests that the intervention had some effect, but addi-
tionally that number or timing of the intervention can be changed perhaps to elicit
an effect more proximally.

Pros and Cons

Micro-randomized trials (MRTs) have been able to optimize JITAI’s for two main
reasons. First, because the interventions are repeatedly randomized, MRTs allow
researchers to understand how the causal effects vary over time, in different con-
ditions, and with individual factors. JITAI’s have largely used multicomponent
behavioral interventions such as targeting cardiovascular disease with messaging
that encourages adherence with the prescribed medication, exercise, and diet reg-
imen. Previously, such trials were assessed using an RCT to determine if these
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Fig. 1 Visualizations of innovative research designs to drive precision medicine forward:
micro-randomized, n-of-1, stepped wedge, site-less, and patient participatory designs. Section A
illustrates an example of a MRT. All participants initially are monitored with the control during the
validation phase. With each decision point, the participant may be randomized to any of the
interventions or the control. Section B describes how during n-of-1 trials there is one participant
who is monitored on a control and then may cross-over back and forth between and intervention
and control, possibly with a washout. Section C, patient-centered participatory design, is where the
end-user or patient is engaged in all steps of the product development process. Section D gives an
example of a site-less design where the entire study is conducted without person-to-person
interaction. Section E shows the Stepped-Wedge trial design which gradually integrates the
intervention until all participants are in the intervention arm by the end of the trial
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interventions had an effect on the behavior of interest. However, RCTs were
optimized to evaluate single-component interventions and when they are applied to
multi-component interventions there are some challenges in the protocol. The RCT
was not designed to investigate the particular components of the intervention (when
is it efficacious, what contextual or psychosocial factors influenced the efficacy, or
what particular components of the intervention were effective) only the intervention
as a whole. However, to optimize JITAI’s it is crucial to first understand what
impacts the intervention’s target end points.

Another downstream effect of repeatedly randomizing interventions for the same
participant is that this allows researchers to understand time-varying effects of an
intervention. Through MRT’s researchers can study how a participant responds to
JITAI over time and in differing psychosocial and contextual conditions.
Additionally, this type of randomization, because it is done at every decision point,
can randomize a participant hundreds of times in the course of a month, depending
on the trial. Analysis can be done not only in the classical manner of comparing
participants in the intervention group and the placebo group, but also since each
individual is randomized multiple times to a different or no intervention, analysis
can be done on the contrasts in outcomes for one person. This allows MRT studies
to require a fewer total number of participants than classic research methods would
dictate. Randomization of this magnitude makes MRTs highly efficient research
methods which is why they are helpful to keep up with the fast-paced innovation of
JITAIs.

There are a few limitations of MRTs. First, these trials are only available to test
interventions that send reminders or prompts to individuals rather than interventions
that the participants can access optionally. Second, given that individuals are
receiving these interventions likely in the context of interruptions, MRTs are best
suited to interventions for which the proximal outcomes are easily tracked either
passively or through brief self-report given the repeated number of times an indi-
vidual will have an intervention. Lastly, these trials are well suited for testing
interventions that occur often.

MRT Example

An example of an MRT study and JITAI is the HeartSteps physical activity study, a
JITAI developed to help individuals increase their physical activity, primarily
through walking [20]. In this study, through sensors and user surveys, information
about the users’ context such as location, time of day, day of week, and weather is
gathered to customize every suggestion for how users can be active in their current
environment. The HeartSteps team conducted an MRT to assess the efficacy of
these activity suggestions to evaluate whether the participants had a proximal
increase in physical activity following the interventions and if the effect varied over
time.
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HeartSteps would only deliver activity suggestions to participants if they were
deemed available for treatment. The users were considered “unavailable” while
driving, if the participant was already currently walking or running, if the partici-
pant recently finished an activity on the last 90s, and if their phone was offline.

For each decision point that a user was considered available, the HeartSteps
server micro-randomized the delivery of the activity suggestion. Each suggestion
was treated as independent from prior suggestions. The possible suggestions
included walking, anti-sedentary, and no suggestions. The anti-sedentary sugges-
tions were included as an engagement strategy to add variety with activities such as
stretching, jumping jacks, etc. The 37 participants generated 8,274 person-decision
points over the course of the 6-week study period.

The study showed that each suggestion results in an additional 35 steps totaling
around 100 steps over the course of the day. The MRT found that the walking
suggestions performed better than anti-sedentary suggestions. Additionally, due to
the MRT design, the study was able to demonstrate that tailoring suggestions to
user context influenced the efficacy of the suggestions and that the potency of
suggestions diminished over time likely due to habituation.

Other examples of current MRTs include Sense2Stop, investigating JITAIs
using sensor-based assessments of stress to aid in smoking cessation. Another is the
BaraFIT MRT aiming to promote weight maintenance status post bariatric surgery
by using the JITAI approach in text messages encouraging physical activity and
improved diets.

N-of-1

Summary of the Design

For every medical decision, clinicians are tasked with applying results from
guidelines, RCTs, and other published data to their patient. As mentioned in the first
section, this can be challenging for many reasons including heterogeneous effects in
study populations and external validity concerns of the trials.

Additionally, there is growing interest in understanding the individual variables
of a person that impact treatment effectiveness and adverse effects. This field of
medicine has had particular success in oncological research where many cancer
therapeutic profiles are influenced by genomic profiles causing the US FDA to
require genetic profiling prior to administering certain treatments [22]. Similarly, in
other fields of medicine there have been attempts to estimate individual treatment
effects (ITE) indirectly, most notably through subgroup analyses. However, this
method has been criticized due to problems associated with multiple testing causing
an increase in the false-positive rate.

Reconciling the growing interest in precision medicine and the need for evidence
based practicing has led to a plethora of new methods including the N-of-1 trial.
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N-of-1 trials are single-patient trials of treatment effectiveness and safety. The
design of an “n-of-1” trial is based on conventional research methods that are
already in wide-use for population-based trials. They model RCTs in design in that
they are double blind and randomized in order to minimize bias. However, the key
difference between n-of-1 trials and conventional trials is that n-of-1 trials revolve
around one individual, which allows researchers to ascertain benefit and safety on
an individual level to allow for objective determination of the optimal therapy for
an individual patient.

The main method of n-of-1 trials lies in the simple crossover design in which the
administration order of two compounds, either two treatments or one treatment and
one placebo, is randomized across multiple periods for one individual (Fig. 1). This
type of design is commonly referred to as “ABAB” design with “A” referring to an
intervention and “B” referring to a placebo or second intervention. The timing of
each intervention period would be based on the characteristics of the outcome and
therapy with particular thought given to minimizing carryover effects. Repeated
number of periods of “ABAB” can be performed to reduce confounding variables.

Pros and Cons

A key advantage found in n-of-1 trials is the ability to evaluate causality at the
individual level for short-term outcomes. Whereas traditional RCTs are unable to
detect uncommon but troublesome adverse drug effects, and unable to assess if they
are causal in nature in individuals who experience them, the n-of-1 trial can be
applied in this setting. An important part of planning an n-of-1 trial is defining the
treatment target to select symptoms that have been particularly troublesome for the
individual patient in order to capitalize on the advantage of n-of-1 trial design.

While n-of-1 trials have a long history in education and psychology, the rise of
this design in clinical medicine has been slow to date for a variety of reasons [23].
For a clinician, the barriers predominantly include time and cost. In order to start a
clinical n-of-1 trial with a patient the clinician must discuss their idea with the
patient, see them regularly throughout the trial, and evaluate their symptoms at
specific time points. With increasingly shortened clinic visits and over-booked
clinicians, having a physician spend an increased amount of time conducting these
meetings can be a significant burden on their clinic schedule. Other challenges with
n-of-1 trials include that not all clinical conditions are optimized to be tested with
an n-of-1 trial, and furthermore IRB approval and consent may be needed, and the
cost of manufacturing matching placebos.

Another often noted challenge with n-of-1 trials include the lack of generaliz-
ability often makes it difficult to disseminate the data. However, while this is true, if
concurrent n-of-1 trials testing the same intervention in multiple patients are con-
ducted then a possible solution could involve meta-analyses on data generated from
the individual trials [24]. An advantage of starting with an individual approach and
then broadening it to the more generalizable population analysis is that each
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participant involved in an n-of-1 trial has an opportunity to benefit immediately
from the information obtained. This is in contrast to RCTs where a patient may be
on placebo during the whole study period.

Example of N-of-1 Trials

A classic n-of-1 trial focused on statin associated muscle symptom in 8 patients
who had high 10-year Framingham cardiovascular risk profiles [25]. Each of these
patients had developed myalgia within three weeks of starting a statin, which
allowed for the treatment period to be set to three weeks for each intervention arm:
placebo and statin. The study design included three pairs of three weeks of active
treatment and three weeks of placebo with an equivalent washout period in between
to minimize carryover effects. The statin used for treatment was the same type of
statin and dose that the patient had previously ascribed their myalgia to.
A computer-generated algorithm randomly determined the order of the treatment or
placebo during the treatment pair. The protocol maintained blinding by creating
identical bottles and capsules that were compounded by the hospital pharmacy.
Additionally, physicians and other staff were also blinded to the treatment
sequence.

The study assessed patient symptoms using two different visual analogue scales
(VAS) and the Brief Pain Inventory (BPI) short form [26]. The visual analogue
scales assessed the patient’s level of muscle pain as well as the intensity of a
pre-determined symptom (thought to be from statin initiation) that was most
bothersome to the individual patient. The symptom assessments were completed on
a weekly basis during the treatment periods.

Data analysis of the patients’ self-reported VAS myalgia scores, symptom
specific VAS score, or BPI found no statistically significant difference in myalgia
during the statin and placebo periods. Considering these results, most of the patients
(5 of 8) in the study population restarted their statin therapy after the trial.

There are many advantages of using an n-of-1 trial design to assess statin
associated muscle symptoms. Standard practice when a patient endorses
statin-related myalgia would be to discontinue then rechallenge, lower the dose,
start a different type of statin, or discontinue statin use indefinitely. With exception
to the last option, many times these patients have persistent muscle symptoms that
are not definitively attributable to statin use and until n-of-1 trials, there have not
been systematic ways to gain further understanding of if patients should be taken off
of a statin. This n-of-1 trial was able to control for biases to determine whether the
myalgia was caused by statin use. Additionally, since the trial was an n-of-1 design,
the researchers were also able to assess individualized symptoms that were most
bothersome to the patient that was initially thought to be statin-related. By indi-
vidualizing the symptom assessments, the result of the n-of-1 trial showing that the
symptoms were not significantly increased during the statin periods was able to
convince patients to restart their statin.
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Patient Centered Participatory Research/User Centered
Design

Summary of Design

A large part of precision medicine includes using mHealth tools to empower
patients to take a more active role in their medical care. mHealth tools have been
used to improve patient communication, access to health services, treatment
adherence and chronic disease management [27–29]. However, mHealth tools have
had variable attrition rates and usability problems often attributed to the method of
development. The predominant culture of mHealth tool development is character-
ized by an expert mind-set, where the end-user takes a passive role. The converse
method is a participatory mind-set which views the end-user as co-creators in the
design process [30]. Many mHealth tools are constructed with marginal, if any,
engagement from the end-user, which leads to disconnect in usability, effectiveness,
and sustainability of the applications [31–33].

User-centered design (UCD) refers to a method of creating mHealth tools based
on discussions with the ultimate end-user of the tool. This is in contrast to devel-
oping an app based off of opinions from an engineer or medical expert in the topic
or large data analyses [34]. The eventual goals of such a patient-facing process are
to increase patient self-sufficiency and deliver a tool that needs minimum effort to
learn how to use it.

Participatory design (PD) is a subset of UCD. It is a qualitative research method,
primarily used in mHealth interventions, that aims to bring in users as
“co-investigators” in the design process to better align the technology with the
eventual users. Whereas UCD observes how users interact with the current system
and understands their thought processes behind their opinions to then later inde-
pendently develop a new system, PD invites users to the development of the new
system. The main principles of PD include a mutual exchange of ideas between
designers and users to better understand the needs of the technology, equalization of
power amongst the group, and framing of design tasks in ways that allow end-users
the ability to communicate and participate in the design process [35].

Pros and Cons

The main advantages of UCD and PD is that by directly involving the target
audience of the technology in the design process the team will receive a better
understanding of the social, practical, and psychological factors behind the usability
of a mHealth tool. Incorporating the end-users in the development process will lead
to products that are more user-friendly, efficient, effective, and sustainable.
Additionally, involving patients could also have a benefit of increasing their sense
of ownership in the product and over their disease.
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Another advantage of these methods is to be transparent about the limitations in
design and functionality to users. Understanding why a function is not present could
help manage expectations and result in a smoother integration of the product into
the environment.

The main disadvantage precluding this type of design from most development
plans is that to gather data from users takes time and money. Additionally, with
many members of the team with differing expertise and experience with mHealth
tools there has to be an emphasis on communicating effectively and respectfully.
Lastly, including focus groups of users may create a tool that is developed to tailor
to a small group of people and be less generalizable for a larger population.

Example of PD

The Diabetes Networking Tool (DNT) was created as a mHealth tool to improve
health outcomes in patients with type 2 diabetes by bolstering their social support
network to help meet these needs [36]. The researchers used a PD to involve a
low-income, predominantly African American community with a high burden of
diabetes in the developmental process of the DNT.

There were a total of four forums over a three-month period that involved
various members of the community (end-users) as well as user-interface, mHealth,
and public health experts. The user-interface and mHealth experts’ roles were to
ensure the ideas developed during these forms were feasible for the DNT. There
were four forums held which centered on the users desires for functionality and user
experience of the app. Each forum had a moderator, and the activities of the forum
were recorded in a variety of ways.

By the end of the four forums, 29 specific functions for the DNT had emerged.
In order to reduce the functional goals of the app with the hopes of increasing
usability, the team distributed a survey of the potential functions to a subcommittee
of technology developers, community engagement researchers, and clinicians to
rank each function as low, medium, or high priority. Functions were removed from
consideration due to low priority rankings, technicalities such as coding difficulties,
and cost constraints, ultimately establishing a list of ten community-suggested DNT
functions for inclusion in the final design. These ten functions were then grouped
into four groups, each of which was the task of a different content group. The four
groups included: remind, share, active, and learn and are available at the bottom of
the DNT screen.

In addition to guiding the functionality of the app, the forums with community
members also revealed other aspects of the app that impact usability. For example,
many members of the community shared that, due to their diabetes, they have
developed vision and fine-motor issues. The team used that information and created
pages with larger fonts and simple gesture interactions.
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Site-Less/Digital Clinical Trials

Summary of Design

Currently, the pace of clinical trials and the development of mHealth tools have
been incongruent, resulting in needless halting of the development and distribution
of apps aimed to help the population’s health. The period of clinical testing is
particularly burdensome both from a financial and timeline perspective with some
estimates proposing that it takes about 10 years to bring a new entity through
research and development [37]. A significant amount of the cost involves
site-monitoring alone, comprising between 9 and 14% of overall expenditures [38].
Recruitment and retention of participants also pose an additional risk largely due to
varying proximity of patient homes to the academic center and the inconvenience
associated with multiple patient visits [39].

Research groups have developed creative means around these barriers including
the site-less clinical trials. As the naming suggests, site-less clinical trials are based
on patient location rather than the academic center. Many of these trials use
video-conferencing, wearable sensors, and other telehealth initiatives to conduct the
recruitment and/or the study period which has decreased the number of visits, time,
and cost of research initiatives [40]. If ‘visits’ are needed they can be implemented
through synchronous (same time) or asynchronous (different time) communication
platforms [41]. The advent of site-less trials became popular after 2015 when the
FDA solicited feedback on individual and industry experiences with the use of
technology in the conduct of clinical investigation.

One of the first European remote clinic studies without a single site visit was
used to assess the utility of a wireless glucometer in patients with diabetes [42].
Participants were recruited through Facebook, registered online through a cloud
platform, reviewed patient information documents, and signed an online informed
consent document. Study materials were delivered to the patients’ houses where
they connected the wireless glucometer with their personal online account. With the
site-less design, compliance was shown to improve 18% and the study site esti-
mated spending 66% less time in care coordination activities which represents a
significant improvement in patient convenience and clinical efficiency [43].

Pros and Cons

Site-less clinical trials have been used to decrease the time and cost of running a
clinical trial as well as increase patient participation by decreasing burden.
Additionally, this method would be especially helpful in special populations such as
rare diseases, patients with disabilities, patients who live in remote areas where
typical studies usually require traveling long distances to participate. The virtual
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aspect of the trial also lends itself to home-observation of clinical symptoms, as will
be discussed in the next section.

There are aspects of some clinical trials, however, that make the site-less design
not appropriate. These trials include those that require medically administered
medications, medications with uncertain safety profile, and trials that require regular
medical imaging [44].

Example of a Site-Less Design

One of the most ubiquitous phones and watches, the Apple iPhone and Watch were
recently evaluated in the Apple Heart Study to determine if an irregular pulse
notification algorithm can aid in identifying atrial fibrillation [45]. Potential par-
ticipants were sent a single email to Apple Watch owners inviting them to partic-
ipate. The trial was able to recruit 419,297 participants in 8 months. The study app
was used to verify eligibility, obtain participants’ consent, provide study education,
and explain the study procedures. Once the participant provided consent, the
irregular pulse notification algorithm was automatically activated.

The participants were prompted from the study app to initiate occasional tele-
medicine visits, which were conducted by a physician. If a patient was found to
have an irregular rhythm and was deemed stable, the patient would receive an ECG
patch to wear for 7 days after which they were returned and read by two clinicians.
2161 patients received in irregular pulse notification and were mailed an ECG
patch. 450 participants returned their ECG strip to be analyzed. The trial found a
positive predictive value of 0.84 in patients who received an irregular pulse noti-
fication that was later confirmed on the ECG patch. Additionally, the trial found
atrial fibrillation present in 34% of patients overall among participants who received
an irregular rhythm notification. The site-less design of the Apple Heart Study
allowed for widespread enrollment in only 8 months with diversity in geography,
race and ethnicity.

Stepped Wedge Trial

Summary of Design

A stepped wedge trial (SWT) is a method that uses a sequential rollout of the
intervention to all of the participants within the study [46]. With the SWT, all
participants begin in the control group. After a pre-specified time, a set amount of
participants will initiate the intervention while the remaining participants will
continue with the control (Fig. 1). This will continue to happen until all participants
have crossed over into the intervention arm. There are two classifications of SWT
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that depend on how which participants are measured within a cluster [47]. If the
same participants are measured at each measurement occasion then the design is
called a cohort SWT. Alternatively, if the participants measured at the measurement
occasion are randomly chosen each time then it is called a cross-sectional SWT.

Pros and Cons

The SWT design is particularly useful in cases where the intervention is expected to
be superior to the control. In these situations, there has been an ethical dilemma
when assessing the intervention using a traditional parallel design because the
intervention is being withheld from one group. In the SWT, all participants have
access to the intervention at some point during the study period. Additionally,
because the participants will have experienced both the intervention and the control
the SWT can compare individuals to themselves and reduce unmeasured
confounders.

The main disadvantage of a SWT is that it can take longer to complete the trial
since the participants enter the intervention period at differing times and all par-
ticipants must have the intervention. The SWT may also be difficult because there
may be practical hurdles in providing all of the participants with the intervention.
Additionally, a SWT is not suited to test multiple types of interventions. Lastly,
blinding is particularly difficult in a SWT given that all participants would be aware
of the change in protocol when they transition from the control to intervention.

Example of Stepped Wedged Trial Design

The SWT design was used to investigate the implementation of high sensitivity
cardiac troponin (hs-cTnI) assays in a study by Chapman et al. [48]. The study used
a validation period of 6–12 months where the results of the hs-cTn1 were concealed
from the attending physician and management was driven based off of the con-
temporary troponin assay (cTnI). There were 10 hospitals who participated and
were randomly assigned when they would advance to the intervention phase. The
study used national registries to ensure follow up after hospitalization with primary
outcomes being subsequent myocardial infarction or cardiovascular death within
1 year following the hospitalization. About 17% of patients were reclassified after
introduction of high-sensitivity troponin, however, the incidence of subsequent MI
and cardiovascular death was not changed. The SWT design allowed for analysis to
be down between hospitals with different randomization outcomes as well as within
one hospital using pre and post intervention data.
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Summary/Conclusion

Medicine is moving towards a more individualized approach with technological
advancements increasingly tailored towards specific patients. mHealth technologies
have included using smart phone applications, wearable devices, and hand held
devices, among others to provide real-time monitoring of physiologic measure-
ments. This innovation has started to change the way that healthcare services are
organized and delivered which has consequences for the generation of clinical
evidence. The novel research designs highlighted in this chapter will drive precision
medicine forward by changing the way evidence-based and individualized medicine
are pursued. These methods will help move research from population-averaged
effects to those directly relevant to the individual. While the RCT remains an
important standard, it has its own limitations and these novel research designs have
the capacity to more accurately match the research method to the clinical question.
Further development and understanding of research methods to assess mHealth
technologies is critical.
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Shared Decision Making

David I. Feldman, Ramzi Dudum, and Roger S. Blumenthal

Shared Decision Making: The Introduction

Shared decision making is “an approach where clinicians and patients share the best
available evidence when faced with the task of making decisions, and where
patients are supported to consider options, to achieve informed preferences” [1]. Sir
William Osler once said,

“The good physician treats the disease; the great physician treats the patient who has the
disease” [2].

When Osler practiced medicine, technology was rudimentary and accessing
medical knowledge was difficult for even the savviest patients [3]. For these rea-
sons, as well as an emphasis on paternalistic practice patterns [4], clinicians were
the primary source of medical knowledge and were often trusted to make man-
agement decisions on behalf of patients. This agreement defined the
clinician-patient relationship during that period.

The message of this quote continues to hold true, but the relationship between
clinicians and patients has changed. Lifesaving, high quality care requires more than
brilliant diagnosticians; it requires trust and effective communication, which are critical
to building a healthy clinician-patient relationship. Once this occurs, and clinicians better
understand the patient—who they are, their goals, their understanding, their unique
personal situation that may impact the treatment alliance—then they can begin the
process of shared decision making to treat the patient and their disease [5].

Shared decision making was first cited in 1982 to study the ethical problems in
medicine and biochemical and behavioral research by the President’s Commission
[6]. Roughly a decade and a half later, Charles et al. recognized that the term had
been poorly defined and largely underutilized; he proposed a model to help guide
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individuals with life threatening or other serious illnesses who reached a crossroads
in terms of treatment options [7].

The basis of this model required a clinician and a patient to share information
that would help build a consensus about a preferred treatment option, which would
then be implemented. Two years later, given the concern at the oversimplification
of the shared decision-making process, Charles et al. addended the original
framework to recognize the importance of flexibility throughout the process [8].
This would attempt to account for changes that may occur as the discussion or
patient preferences evolved.

While shared decision making was first officially referenced as early as the
1980s, the principles, which focus on patient centered care, date back much further
[6]. Like today, where both the Institute of Medicine [9] and the United States
Preventive Services Task Force (USPSTF) [10] encourage clinicians to implement
shared decision making in their practice to optimize health care decisions, Osler
identified the utility of this early on in his practice [2].

Now more than ever though, with increased access to medical knowledge
through the internet and social media, patients have clearly voiced their preference
to be actively involved in the decision making process [11–13]. Incorporating this
process into the daily practice of clinicians is not only important to protect patient
autonomy but is critical to achieve optimal clinical outcomes [14].

The Role of Shared Decision Making in Personalizing Care

Cardiology, a field with decades of advancements helping to reduce the global
burden of morbidity and mortality, abounds with decisions that require active
participation of both clinicians and patients. Despite hundreds of methodologically
rigorous randomized controlled clinical trials attempting to elucidate clinical
uncertainties, many difficult or nuanced decisions such as the management of stable
coronary artery disease, anticoagulation in atrial fibrillation, and placement of
implantable cardioverter-defibrillators still exist. Each scenario requires clinicians
to assess patient priorities, including the patient’s prior experiences, perceived risk
and potential benefits of therapy, and desire for autonomy.

Often patients are unable to accurately assess their personal risk of atherosclerotic
cardiovascular disease (ASCVD) and when given the choice would prefer a “whatever
the doctor or other clinician recommends” approach as long as they understand why
the health care professional is making a certain recommendation [15]. Formulating the
final recommendation requires the clinician to first have an accurate in-depth under-
standing of the patient’s cardiovascular risk profile and associated ASCVD risk, and
then reconcile this with both clinical guidelines and clinical trial data. As with any
informed consent process, while communicating the potential benefits of treatment is
essential, a clinician must also explain the possible risks and alternatives to therapy.
These key components of the clinician-patient discussion allow for more effective
shared decision making in cardiovascular prevention.
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Incorporating the shared decision making process into clinical practice has
brought new meaning to personalized, precision medicine in the field of Cardiology
(Fig. 1). In each clinical encounter, clinicians are tasked with disseminating accu-
rate, understandable health information based on a patient’s risk assessment and
therapeutic options. During this discussion, a clinician will actively engage patients
to explore their values and expectations of care to reach a shared path forward. It
informs patients of the available treatment options and manages expectations, both
of which improve individual understanding of the possible benefits and harms [16].

By stimulating patients’ involvement in the decision making of their own care
plan, clinicians are ensuring that the patient’s personal values and choices are
included. As a result of including patient preferences into the decision making
process, clinicians help patient's think more positively about their disease process,
better adhere to their treatment regimen, and feel more satisfied with their health
outcomes [17, 18].

Shared Decision Making Highlighted in the ACC/AHA
Guidelines

Despite major advancements in the understanding of the pathophysiology, diag-
nostic testing, and therapeutic armamentarium, cardiovascular disease remains the
leading cause of death nationwide [19]. Even today, interventions like initiating
statin therapy, which can slow or prevent disease progression in individuals without
a history of ASCVD, are not being maximally utilized.

Fig. 1 The shared decision making process
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There are a myriad of factors leading to this underutilization—some of which
include access and affordability of medicines and side effect profiles. In addition,
some clinicians fail to identify individuals who would benefit or do not impress
upon those eligible individuals during the clinician-patient discussion the impor-
tance of adherence to therapies that have proven successful in randomized clinical
trials [20, 21]. This gap is one example of what has prompted prioritization of
additional primary prevention efforts to reduce the global burden of ASCVD.

Risk assessment in ASCVD prevention occurs in individuals without a history of
myocardial infarction (MI), angina, stroke, or transient ischemic attack. However,
many have subclinical, asymptomatic ASCVD that may ultimately transition to
overt, symptomatic disease. Risk assessments should identify individuals who are
high risk to convert from subclinical to clinical ASCVD in a 10-year period and
would therefore likely benefit from aggressive lifestyle modifications and thera-
peutic interventions.

Lifestyle modifications can improve blood pressure control, lower cholesterol
levels, and reduce the risk for ASCVD or diabetes. As a result, these recommen-
dations are unanimously first-line in all individuals at risk for ASCVD. Once diet
and lifestyle habits are reviewed and recommendations regarding a heart healthy
diet, regular aerobic exercise, maintenance of an ideal body weight, and avoidance
of tobacco products are provided, then a clinician can discuss pharmacologic
options and more intensified lifestyle changes for ASCVD risk reduction [22].

In 2013, the American College of Cardiology (ACC)/American Heart
Association (AHA) Guideline on the Treatment of Blood Cholesterol to
Reduce ASCVD Risk in Adults incorporated the principles of shared decision
making into their model for whom to treat with statin therapy [23]. Shared decision
making was integrated into the guidelines in order to best facilitate patient-centered
care and customize appropriate preventive therapies to those most likely to benefit.
Personalization becomes tantamount since each patient may have different baseline
risk factors or lifestyle practices, could experience different side effects or adverse
outcomes, and may feel differently about initiating statin therapy. Through opti-
mizing therapeutic partnerships and alliances, shared decision making will more
effectively reduce the global ASCVD burden.

Statin Use in Primary Prevention

Statin medications have been a mainstay when it comes to therapy for primary
ASCVD prevention. Since the first statin was introduced to the market in 1987
(lovastatin) [24], it has been the primary goal of clinicians to responsibly allocate
statins to individuals at high risk for ASCVD, where the benefits clearly outweigh
the risks. Prior to the 2013 ACC/AHA cholesterol guidelines, treatment with statin
therapy was determined based on low-density lipoprotein cholesterol (LDL-C)
thresholds; an LDL-C that was above ‘goal’ required up-titration of the statin or
addition of other non-statin lipid lowering therapies.
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While LDL-C levels are important, the association with adverse cardiovascular
events instead mirrors the estimated ASCVD risk [25]. In fact, roughly 35% of
adverse events secondary to ASCVD occur in individuals with a total
cholesterol < 200 mg/dl (this was the prior cut-off for normal total cholesterol
levels), which suggests that ASCVD risk is multifactorial and adverse events can
occur despite normal cholesterol levels [26]. However, the Cholesterol Treatment
Trialists’ Collaboration was transformative for demonstrating the wide-ranging
benefits of statin therapy on LDL-C levels and ASCVD risk reduction; it high-
lighted that for every 39 mg/dl reduction in LDL-C the relative risk of incident
ASCVD was also decreased by *22% [27].

After publication of the 2013 cholesterol guidelines though, this concept of
LDL-C goals was removed, and statin eligibility and intensity were primarily
determined by the Pooled Cohort Equations (PCE) individualized risk assessment.
If the guidelines were fully implemented, it was determined that the new statin
prescribing pattern would broaden eligibility to >12 million newly identified
high-risk primary prevention adults in the United States [28]. Given the hetero-
geneity among those individuals who would now qualify for statin therapy,
determining individualized factors that can help inform the clinician-patient dis-
cussion and reclassify ASCVD risk was critical [29].

Therefore, each patient required their own individualized clinician-patient dis-
cussion about whether they would benefit from statin therapy to help reduce their
risk for ASCVD. The importance of this discussion is emphasized frequently,
knowing that the ultimate patient care decisions must be made together by the
clinician and patient in light of the circumstances described by the patient [23]. This
process, which describes shared decision making, is a critical part of the
clinician-patient discussion.

The 2013 ACC/AHA cholesterol guidelines are an invaluable resource for ref-
erencing the highest quality clinical recommendations for reducing ASCVD risk.
However, successful implementation of the guidelines in the primary prevention
setting requires more than optimal interpretation and seamless application of the
recommendations into clinical practice [30]. With the evolution and prioritization of
patient autonomy and a shift from paternalism, successful implementation requires
special attention to the clinician-patient risk discussion.

During this discussion, clinicians should individualize risk assessment and the
potential for risk reduction, clarify the possibility for adverse effects or drug-drug
interactions, and incorporate patient preferences. Only then can clinicians
strengthen their relationship with patients. Once a patient’s personal preferences are
incorporated and the patient is maximally engaged to increase adherence, then
clinicians and patients together can decide on a strategy that will optimize an
individual’s 10-year and 30-year risk for ASCVD.
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Shared Decision Making: The Transition
from the Population to Individual Level

In pursuit of optimal primary prevention of ASCVD, clinicians and policymakers
are tasked with navigating the most effective strategy—should focus be placed on
population-level, public health, and structural interventions or targeting individuals
at highest risk for disease? Geoffrey Rose, a British epidemiologist, observed the
interplay between risk at the individual and population level noting that, “a large
number of people at a small risk may give rise to more cases of disease than the
small number who are a high risk” [31].

Rose went on to describe that individual level risk variance may be “inherent in
genes, behavior, and social factors” [31], whereas population level disease inci-
dence may not be predicted by these same factors [32]. As such, Rose described the
importance of intervening with a “population strategy” in addition to the traditional
“high-risk strategy” [32].

In cardiovascular prevention, a population strategy has yielded significant
improvement in ASCVD risk by reducing exposure to certain well-known risk
factors—including tobacco products, sugar sweetened beverages, processed foods,
and environmental pollutants [33]. It also has been instrumental in increasing access
to health promoting behaviors—including increased physical activity by developing
more walkable, safe cities, decreasing sedentary behavior by introducing active
workstations in the professional environment, and incentivizing the distribution of
fresh foods to food deserts [33]. Together, these interventions have had major
effects on our population’s ASCVD risk and for many individuals may have proven
sufficient to reduce downstream ASCVD events [34].

While professional organizations and policymakers are drivers for implementing
change at the population level, individual clinicians are uniquely suited to imple-
ment change at the individual level. At this level, clinicians can target both those at
low and intermediate risk, as well as those at higher risk using the PCE [35]. In
2013, Goff et al. provided clinicians with this updated individualized risk assess-
ment tool that would serve as the backbone for bringing epidemiologic observa-
tions to the individual [35].

Through the utilization of cohort-level prediction tools, appropriate ASCVD risk
reduction begins with accurate risk assessment, which facilitates patient centered
care by way of a clinician-patient risk discussion, and ultimately a shared decision
on a treatment strategy. In 2013, the demand for this individualized approach to
ASCVD risk reduction was identified by guideline writers who explicitly incor-
porated clinician-patient discussions and shared decision making into their
recommendations.
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Shared Decision Making in Clinical Practice

In practice, a clinician should calculate the 10-year ASCVD risk with the PCE for
individuals 40 to 75 years of age, without clinical ASCVD or diabetes with a
LDL-C level of 70 to 189 mg/dl [23]. Individual risk estimation is then completed
every 4 to 6 years and should not be used again in patients already started on statins
or in individuals immediately following a short course of lifestyle modifications
[23].

Initiating statin therapy is a Class of Recommendation (COR) I, Level of
Evidence (LOE) A recommendation when a patient has clinical ASCVD, diabetes
and an LDL-C between 70–189 mg/dl, or an estimated 10-year ASCVD risk of
7.5% and an LDL-C between 70–189 mg/dl. There is also a COR I, LOE B rec-
ommendation when a patient has primary LDL-C � 190 mg/dl (Fig. 2) [23]. The
threshold to recommend starting statin therapy in these groups was based on a
number need to treat to prevent an ASCVD event versus the number needed to
potentially harm (with respect to diabetes or other side effects) analysis. However,
given that statins are commonly a lifelong medication, the guideline authors
emphasized the central role for a clinician-patient discussion, which can facilitate
shared decision making.

To ensure all aspects of the clinician-patient discussion were addressed before
deciding to prescribe a statin, a checklist was developed and required all criteria to
be met before appropriateness of statin therapy is determined [30]. Table 1 is an
adapted version of the checklist, which includes pertinent updates since the pub-
lication of the original manuscript. Incorporating the checklist into clinical practice
provides another layer of protection to ensure that the guideline recommenda-
tions take into account patient specific factors and preferences.

A Guideline Driven Approach to Sta�n Therapy 

Sta�n Therapy Benefit 
Groups

Class of 
Recommenda�on Level of Evidence

Clinical Atherosclero�c Cardiovascular 
Disease Class I Level of Evidence A

Primary Low-Density Lipoprotein 
Cholesterol >190 mg/dL Class I Level of Evidence B

Diabetes and a Low-Density Lipoprotein 
Cholesterol between 70 – 189 mg/dL Class I Level of Evidence A

10-year Atherosclero�c Cardiovascular 
Disease Risk >7.5% and a Low-Density 

Lipoprotein Cholesterol between 70 – 189 
mg/dL

Class I Level of Evidence A

Fig. 2 A guideline driven approach to statin therapy
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While individual risk can help stratify patients into specific subgroups for
determining appropriate treatment options, it should serve as a starting point to
begin the discussion and decision making process [36]. When this process is not
prioritized or ignored completely [37, 38], patients may become disengaged, the
treatment alliance can break down, and outcomes may be worse [14].

Shared Decision Making—Discussing Patient Risk

To help increase the likelihood that shared decision making occurs among clini-
cians and patients, the 2013 ACC/AHA cholesterol guideline committee developed
the ACC/AHA Risk Estimator Application. It is widely available, easily accessible,
and now even incorporated into many electronic medical records. This facilitated

Table 1 Checklist for the
clinician-patient risk
discussion

Checklist for clinician-patient risk discussion

Calculate the individual 10-year or 30-year ASCVD risk using
the ACC/AHA Pooled Cohort Equations

Discuss all of the lifestyle and pharmacologic options for risk
reduction using the ‘ABCDE’ approach to ASCVD prevention:

– Aspirin

– Blood pressure

– Cholesterol

– Cigarette smoking

– Diet

– Diabetes control

– Exercise

Consider an individual’s ASCVD REF for personalized risk
assessment

Refine risk using objective assessments of an individual’s risk
for ASCVD (i.e., CAC score)

Optimize aggressive behavioral and lifestyle modifications

Assess willingness to start medications to maximize risk
reduction

Discuss the benefits and potential side effects of statin therapy
(first line) for ASCVD risk reduction

Encourage patient involvement in the decision making process
by incorporating individualized values and preferences

Answer specific questions regarding the individualized
approach to ASCVD risk reduction

Reassess at each subsequent clinician patient encounter

Abbreviations: ASCVD, atherosclerotic cardiovascular disease;
ACC, American College of Cardiology; AHA, American Heart
Association; REF, Risk Enhancing Factor; CAC, Coronary
Artery Calcium
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patients seeing firsthand the data that went into calculating a 10-year ASCVD risk
score. It also allowed them to see how adjustments in their risk factor profiles
impacted the estimation of their 10-year ASCVD risk.

For example, in an otherwise healthy 50-year-old African American male,
transitioning from a smoker to non-smoker decreases his 10-year ASCVD risk on
the application from 9 to 5%, respectively. Depending on an individual’s 10-year
ASCVD risk or 30-year risk (calculated in those 20 to 59 years of age through an
alternative algorithm [39]), it personalizes therapeutic and lifestyle guideline rec-
ommendations relevant to the individual risk factor profile and 10-year or lifetime
risk for ASCVD. In the gentleman whose case is described above, utilizing just the
lifestyle modifications, including a recommendation to stop smoking, can alter his
estimated ASCVD risk from intermediate to borderline risk.

This resource was pivotal in helping to communicate the concept of risk to
patients, a topic often perceived as difficult to understand by both patients and
clinicians, alike. Many variables can affect how risk is perceived, including how
clinicians communicate risk, the trust a patient has in his/her clinician, and the
nature of the risk communicated (i.e. imminent versus abstract) [40]. A number of
these variables can decrease the perceived ASCVD risk—including that heart
disease is often viewed as a chronic rather than catastrophic condition, the famil-
iarity with which people view heart disease and its associated complications, and
the perception of control over the disease and the risk factors, to name a few [40].

In its simplest form, risk is often perceived as the “the probability of something
bad happening” [41]. The ways in which this is presented can greatly impact how
patients view their individual risk. For instance, one example (others are listed in
Table 2) to communicate risk using our patient described above with an initial
10-year ASCVD risk of * 9% would be to have a physician say, “of 100 patients
like you, 9 would be expected to have a stroke or heart attack in the next 10 years
[30, 42]. The corollary to this, would be to state that there is a roughly 90% chance
that the patient does not have a stroke or heart attack over the next 10 years.
A positive versus a negative framing can greatly change how risk is perceived [43].

For our 50 year-old gentleman who is a current smoker, the way we frame his
choice to become a non-smoker, could also shift how he views the magnitude of
effect. Rather than saying that smoking cessation could decrease his risk of stroke or
heart disease by 4% over the next 10 years, a better way to frame this, which might
be more likely to change his behavior, would be to say that he could reduce his risk
of stroke or heart disease over the next 10-years by over 40% with smoking
cessation [44]. Other ways to communicate risk employ the incorporation of visual
cues, which could show absolute risk and incremental benefits/risks associated with
drug therapy using risk pictographs [45].

With multiple options available for conveying risk to patients, a systematic
review was completed to try and elucidate whether one method was superior. While
the review did not identify the optimal method for conveying risk, it suggested that
incorporating visual cues leads to improved patient understanding and satisfaction
[46]. The significance of clearly conveying risk to patients during the
clinician-patient discussion is that when embarking on the process of shared
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decision making, patients have been given the information necessary to make
informed decisions about their treatment plan.

When Shared Decision Making Feels Like Shared Decision
Guessing

While the 2013 cholesterol guidelines successfully identified the majority of indi-
viduals who would benefit from statin therapy after engaging in a clinician-patient
discussion, there are certain groups where treatment decisions regardless of the
most effective clinician-patient discussions are uncertain. After estimating an
individual’s ASCVD risk using the PCE, four discrete groups clearly benefit from
statin initiation after a clinician-patient discussion: (1) individuals with clinical
ASCVD, (2) individuals with LDL-C � 190 mg/dl, (3) individuals aged 40–
75 years old + diabetes + LDL-C 70–189 mg/dl, and (4) individuals with 10-year
ASCVD risk � 7.5% + LDL-C 70–189 mg/dl.

Table 2 Options for conveying risk during a clinician-patient discussion

Options for conveying risk during a clinician-patient discussion

Recommendation: Rationale:

Start by having a patient estimate their
own risk

Patients may have optimistic or pessimistic biases
which may require different communication
strategies

Communicate risk using visual cues Visual cues lead to improved patient
understanding and satisfaction

Optimize the use of both absolute risk
reduction and relative risk reduction

Patients may have difficulty justifying a daily
medication for a 2% absolute risk reduction
however they may be more inclined to adhere if it
is framed as a 40% relative risk reduction

Determine whether qualitative or
quantitative expression of risk is
preferred

When informing a patient they are high risk, some
patients will respond more to hearing “high risk”
for adverse events in a 10-year period compared to
others who may prefer >20% risk for adverse
events in a 10-year period

Utilize both 10 and 30-year risk
estimates when applicable

In high risk young adults, lifetime risk for an
adverse event may be more impactful. For
example, in the next 10 years, your risk for a
myocardial infarction is 10% vs. you have a >50%
chance of having a myocardial infarction in your
lifetime

When conveying risk, provide both the
positive and negative perspective

A positive (there is a >90% chance you do not
have a myocardial infarction) versus a negative (of
100 people like you, 9 would be expected to have a
myocardial infarction) framing can greatly change
how risk is perceived

178 D. I. Feldman et al.



The first three subgroups are based on objective data and therefore agreeing on a
treatment plan after a clear explanation of the risk and perceived benefit of treat-
ment often occurs. The fourth group—10-year ASCVD risk � 7.5% + LDL-C
70–189 mg/dl—relies on the accuracy of the PCE, which performs poorly in certain
subgroups of the population. For instance, in individuals with low socioeconomic
status, human immunodeficiency virus, or inflammatory diseases including sys-
temic lupus erythematosus or rheumatoid arthritis, the PCE often underestimates the
10-year ASCVD risk [47]. In highly engaged, high socioeconomic status individ-
uals, the PCE overestimates the 10-year ASCVD risk [48].

The relevance of this issue dates back to when the 2013 cholesterol guideline
was published, and many clinicians felt certain individuals fell into subgroups
where the recommendations were less clear based on uncertainty about the accuracy
of the risk estimation. In fact, in many United States cohorts, observed ASCVD
event rates were much lower than expected rates, which leads to overtreatment with
statin therapy and possibly aspirin or antihypertensive therapy [49].

In 2019, when the ACC/AHA Guideline on the Primary Prevention of ASCVD
was published, the approach to identifying individuals who would benefit from
statin initiation was modified [50]. Previously, individuals with a 10-year ASCVD
risk of <5% (low risk) and � 20% (high risk) were prescribed aggressive lifestyle
modifications only and aggressive lifestyle modification and drug therapy after a
clinician-patient discussion, respectively. However, now borderline (5–7.5%) and
intermediate (7.5–20%) risk individuals should engage in a clinician-patient dis-
cussion that considers risk enhancing factors and the net benefit of therapy.

When the decision to start statin therapy is uncertain, risk enhancing factors can
help provide clearer evidence of individual ASCVD risk and can guide decisions
around preventive therapy. While the list of risk enhancing factors is expansive,
including family history of premature ASCVD, the presence of metabolic syn-
drome, chronic kidney disease, chronic inflammatory conditions, premature
menopause, or high-risk race/ethnicities, they were compiled to help further risk
stratify the need for preventive interventions (e.g., statin therapy) when initial
risk-based decisions were uncertain. For example, when the PCE provide an
ASCVD risk that lands in the broad intermediate risk range and the treatment
decisions are uncertain, start by determining the presence of risk enhancing factors.
When present, these risk enhancing factors can shift initial risk estimates to ensure
more appropriate treatment intensity [51].

Selective Use of Coronary Artery Calcium Measurements

As part of this shared decision making process, clinicians can also offer a coronary
artery calcium (CAC) scan, which helps reclassify individual risk either upward or
downward. A CAC score can reclassify risk in both the borderline and intermediate
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risk groups but generally does not meaningfully alter risk in both the low and
high-risk groups [52]; one exception may involve those with a family history of
premature ASCVD [53]. Certain risk enhancing factors were emphasized including
the use of CAC scores, which as a single risk enhancing factor to guide
clinician-patient risk discussion received a COR IIa, LOE B-NR.

Singling out CAC scores from the large list of risk enhancing factors is based on
decades of research that demonstrate its strong graded association with 10-year risk
of ASCVD [54]. Increased CAC scores are associated with a tenfold higher risk of
ASCVD events on top of traditional cardiovascular risk factors as compared to a
person with no CAC and comparable risk factors [55]. However, when CAC is
absent, there is a very low 10–15-year risk for future ASCVD events and patients
can opt for lifestyle modifications with shared decision making that focuses on
flexible treatment goals [56].

Importantly, CAC also accurately predicts ASCVD risk independent of age,
race, and sex, which allows for broad application of risk prediction [54]. Once a
CAC score is determined in the borderline and intermediate risk individuals who
are undecided on therapy or there is clinical uncertainty regarding the net benefit of
statin therapy, the risk revision process can begin. If negative (CAC = 0), CAC
scores can help reassure individuals that their risk for an adverse event in the next
5 years is low despite statin therapy [57]. Therefore, the patient is below the
threshold for statin benefit, and after a clinician-patient discussion, avoidance or
postponement of drug therapy is reasonable.

If CAC is 1–99 and <75th percentile for age, sex and race, the clinician-patient
discussion can now include objective evidence that subclinical atherosclerosis is
present, and while the risk estimate is roughly similar to what was estimated by the
PCE initially, a more informed decision can be made whether to initiate statin
therapy or postpone with plans to repeat CAC testing in *5 years. In these cases,
CAC can also be used as a motivational tool that objectively demonstrates sub-
clinical atherosclerosis and further informs the individual regarding his/her ASCVD
risk and benefit of therapy.

If CAC is >100, the patient is clearly above the threshold for statin benefit, and
after a clinician-patient discussion and shared decision making, statin therapy
should be initiated. While CAC is not meant to be a screening test to determine an
individual’s eligibility for statin therapy, it can be helpful in selective cases in
determining how aggressive a clinician should be in initiating treatment in a patient.
Once treatment is initiated, CAC can also affect behavioral motivation and medi-
cation adherence [58]. In fact, individuals with elevated CAC scores typically are
more likely to initiate and adhere to lifestyle and pharmacologic interventions for
ASCVD risk reduction [59, 60].
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When ‘Plan A’ Fails, Lean on Shared Decision Making

“It is much more important to know what sort of a patient has a disease than what sort of a
disease a patient has.”

—Sir William Osler

Identifying individuals at risk for ASCVD is easier with tools like the PCE. After
shared decision making, many individuals can lower their ASCVD risk through
aggressive lifestyle modifications and initiation of statin therapy. However, roughly
10–15% of people are intolerant to their first statin therapy and an even greater
percentage are hesitant to start statin therapy, which typically is a lifetime medi-
cation [61].

Statin Associated Side-Effects

When the shared decision making process leads to the initiation of statin therapy,
those individuals who do not tolerate the medication and report adverse side effects
of the drug will generally be unable to adhere to therapy [62]. It is critical that
despite the initial side effects of statin therapy, that the clinician and patient attempt
alternatives to the initial statin prescription such as taking a statin that may be
hydrophilic (e.g. rosuvastatin), taking a lower intensity statin, or taking the statin
every other day or even weekly.

A patient cannot be considered completely statin intolerant until patients have
tried multiple statins, weekly dosing and have clear documentation of new symp-
toms from baseline since starting the medication. There are alternative treatments to
help lower LDL-C and overall ASCVD risk in patients who are ultimately deemed
statin intolerant.

Ezetimibe, PCSK9-Inhibitors, Icosapent Ethyl &
Bempedoic Acid

Ezetimibe reduces intestinal absorption of cholesterol and reduces LDL-C and
ASCVD outcomes when added on top of statin therapy [63]. For this reason, in
addition to its excellent safety profile over 7 years of follow-up, it is often added to
maximally tolerated statin therapy for those highest risk individuals and in those
high-risk individuals who cannot tolerate low dose or weekly dosing of statin
therapy. The latter group represents a subpopulation of at-risk individuals who
could benefit from the ASCVD risk reduction of statin therapy, but report statin
associated muscle symptoms such as myalgia, myopathy or rarely rhabdomyolysis.
Since publication of the Improved Reduction of Outcomes: Vytorin Efficacy
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International Trial (IMPROVE-IT), ezetimibe has been increasingly prescribed in
statin intolerant patients who could benefit from further LDL-C lowering therapy.

When statin intolerant patients have a high baseline ASCVD risk (ASCVD
risk >20%, CAC score >100), the risk reduction benefits of ezetimibe alone are
often not sufficient. Proprotein convertase subtilisin/kexin type 9 inhibitors
(PCSK9-I) were first FDA approved in 2015 as an option for additional LDL-C
reduction on top of high-intensity statin [64]. Since then, in addition to the LDL-C
lowering effects, it has proven to reduce ASCVD outcomes when added to a
moderate/high intensity statin.

In current practice, PCSK9-I are being utilized in high-risk individuals on
maximally tolerated statin and LDL-C � 70 mg/dl. However, the implications of
this drug and its drastic ASCVD risk reduction capabilities are revolutionary for
those individuals at high ASCVD risk who are unable to tolerate statin therapy
secondary to reported side effects. When comparing the side effect profile for
PCSK9-I and placebo, the rate of both minor and serious adverse events was
similar, and therefore PCSK9-I are not only effective at reducing risk but generally
very well tolerated.

In 2019, icosapent ethyl, which is a highly purified eicosapentaenoic acid ethyl
ester, was studied in individuals with established cardiovascular disease or with
diabetes and other risk factors who had already been initiated on statin therapy [65].
Individuals had to have a triglyceride level of 135 to 499 mg/dl and an LDL-C level
of 40 to 100 mg/dl. Those individuals who were randomized to icosapent ethyl had
lower triglycerides and fewer cardiovascular events and cardiovascular deaths.
They also experienced a small increase in hospitalizations for atrial fibrillation or
flutter and serious bleeding events. While icosapent ethyl is a non-LDL-C lowering
therapy, it has a significant role in reducing adverse cardiovascular events and
therefore should be considered in all individuals at risk for ASCVD, including in
those who are unable to tolerate statin therapy.

Bempedoic acid—a nonstatin LDL-C lowering therapy that targets the choles-
terol biosynthesis pathway upstream of statin therapy via inhibition of adenosine
triphosphate-citrate lyase—is orally administered as a prodrug and later converted
to its active form by a hepatic enzyme not present in skeletal muscles. As a
promising therapy for patients with statin-associated muscle symptoms, its efficacy
and safety were first demonstrated in statin-intolerant patients who required addi-
tional LDL-C lowering in both the Cholesterol Lowering via Bempedoic Acid, an
ACL-Inhibiting Regimen (CLEAR) Tranquility and Serenity trials [66, 67].

In the CLEAR Wisdom and Harmony trials, its efficacy and safety were assessed
in high-risk cardiovascular patients with ASCVD, heterozygous familial hyperc-
holesterolemia (HeFH) or both. In individuals on maximally tolerated statin ther-
apy, addition of bempedoic acid resulted in * 18% LDL-C lowering compared to
placebo [68, 69]. When studied in combination with ezetimibe in a similar high-risk
population on maximally tolerated statin, LDL-C lowering reached upwards of 40%
compared to placebo [70].

The side-effect profile of bempedoic acid did not differ substantially from the
placebo subgroup, however the incidence of adverse events leading to
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discontinuation of the regimen was higher in bempedoic acid group, as was the
incidence of gout [69]. Despite ongoing evaluation for its role on ASCVD events in
the CLEAR Outcomes trial, the FDA approved its use in 2020 as an adjunct to diet
and maximally tolerated statin therapy in adults with HeFH or established ASCVD
who require additional LDL-C lowering [71, 72]. The FDA also approved a
fixed-dose combination of bempedoic acid (180 mg) and ezetimibe (10 mg) for the
same indications.

While statins are still first line for ASCVD risk reduction, ezetimibe, PCSK9-I,
icosapent ethyl and bempedoic acid are helpful additions in high risk individuals or
alternatives in statin intolerant patients. Most importantly, they are very well tol-
erated with limited side effect profiles.

Shared Decision Making Beyond Statins and LDL-C
Lowering Therapies

Aspirin

In addition to statin therapy, aspirin was another cornerstone for the primary pre-
vention of ASCVD for many years. After the AHA and USPSTF referenced its
utility in their 2002 guidelines, it became one of the most commonly used medi-
cations for the primary prevention of ASCVD. In fact, in 2016, it was estimated that
40% of adults over 50 years of age in the United States were taking aspirin for the
primary prevention of ASCVD [73]. These recommendations were based on data
from studies like the Physicians’ Heart Study (PHS), Thrombosis Prevention Trial
(TPT), and Hypertension Optimal Trial (HOT) [74–76].

Using these data, the USPSTF conducted a meta-analysis to determine the effect
of aspirin therapy on cardiovascular outcomes. In individuals with 5-year CVD risk
between 3–5% (which equates to *6–10% ASCVD risk), aspirin therapy resulted
in 4–20 fewer coronary heart disease (CHD) events per 1000 person-years, at the
cost of only 2–4 major gastrointestinal bleeding events per 1000-person years [77].
Later, in 2009, using data from the Women’s Health Study, the USPSTF broadened
the aspirin benefit group to include all men aged 45 to 79 and women aged 55 to 79
in order to reduce MI and strokes respectively, assuming the CVD risk was greater
than the bleeding risk [78].

Since these initial recommendations, as the implementation of primary preven-
tion efforts has improved in cardiology, the utility of aspirin in primary prevention
has been questioned. In 2014, a meta-analysis was completed that demonstrated a
modest but statistically significant reduction in events with aspirin for the primary
prevention of ASCVD. However, the same study also identified a significantly
increased risk of major bleeding. It was determined that over a 7-year period, 284
individuals needed to be treated with aspirin to prevent 1 major ASCVD event and
299 individuals needed to be treated to cause 1 major bleed [79].
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After these data were published, a practical stepwise approach to the use of
aspirin in primary prevention was proposed [80]. In those individuals with a
10-year ASCVD risk <10%, the bleeding risk outweighed the ASCVD risk
reduction benefit. If the 10-year ASCVD risk was 10% or greater, the benefit of
aspirin therapy depends on careful consideration of the individual's bleeding risk. If
the patient had a history of bleeding without reversible causes or concurrent use of
other medication that increase bleeding risk, the ASCVD risk reduction benefit
from aspirin was thought to be insufficient to risk a major bleeding event. If there
were no significant bleeding risk factors and the ASCVD risk was 10% or greater,
individuals were recommended to initiate aspirin with caution (Fig. 3) [80].

In 2018, three trials studying aspirin in primary ASCVD prevention were pub-
lished: the ASCEND (A Study of Cardiovascular Events in Diabetes) trial, the
ARRIVE (Aspirin to Reduce Risk of Initial Vascular Events) trial, and the ASPREE
(Aspirin in Reducing Events in the Elderly) trial [81–83]. In the ASCEND trial,
which was enriched with primary prevention patients with diabetes, the number
needed to treat to avoid a serious vascular event was lower than the number needed
to harm to cause a major a bleed [81]. However, the overall benefit of prophylactic
aspirin in primary prevention was less than demonstrated in trials over a decade ago
where individuals were not optimized on other ASCVD preventive treatments,
including hypertension and cholesterol therapies.

Given the mixed signal for ASCVD risk reduction with aspirin initiation and a
significant harm signal in some individuals, all clinicians should engage their
patients in shared decision making to ensure the patients values and preferences are
considered before starting long-term aspirin therapy. The 2019 ACC/AHA
Guideline on the Primary Prevention of Cardiovascular Disease emphasizes the
need for an individualized assessment for the benefit of aspirin therapy in primary

Fig. 3 Decision tree for aspirin therapy in ASCVD prevention
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prevention [84]. They indicate the possible harm in those adults greater than
70 years of age who are at increased risk of bleeding.

In primary prevention, there is a COR IIB, LOE A recommendation for low-dose
aspirin in select adults 40–70 years of age who are at higher ASCVD risk but not at
increased bleeding risk [83]. Ultimately, thoughtful decisions are needed in the
context of a clinician-patient risk discussion where factors such as current smoking,
strong family history of early MI, very high LDL-C levels with statin intolerance,
CAC score >100, and ASCVD risk >20% can be considered to determine the
suitability of aspirin in primary ASCVD prevention [85].

Blood Pressure

Another key component to address ASCVD risk based on the PCE is blood pres-
sure control. Based on an individual’s systolic and diastolic blood pressure and
current anti-hypertensive medication regimen, the Risk Estimator Application will
provide standardized recommendations for blood pressure control as part of the
ASCVD risk reduction process. As part of a clinician-patient risk discussion,
individuals should consider initiating lifestyle and pharmacologic interventions
including thiazide diuretics, angiotensin converting enzyme inhibitors (ACE-I),
angiotensin II receptor blockers (ARB) or calcium channel blockers to help obtain
better blood pressure control.

In adults with elevated blood pressure that may require anti-hypertensive med-
ications, it is important to first ensure non-pharmacologic interventions are dis-
cussed during the shared decision making process. These non-pharmacologic
options include weight loss, a heart-healthy diet, sodium reduction, dietary potas-
sium supplementation, increased physical activity, and limiting alcohol [86].

The 2017 AHA/ACC Blood Pressure Guideline includes ranges of normal,
elevated, high stage 1, and high stage 2 blood pressure, which is accompanied by
recommendations for appropriate therapy based on the perceived risk [86]. While
the Systolic Blood Pressure Intervention Trial (SPRINT) demonstrated a significant
benefit (*25% relative risk reduction) of strict blood pressure control (target less
than 120/80 versus less than 140/90) on the risk of MI, strokes, heart failure, or
death, many clinicians will still target a more modest blood pressure (less than 130/
80) given the potential for adverse events with more aggressive control [87].

Shared decision making is required to incorporate an individual’s ASCVD risk
and appropriately measured blood pressure to determine the most optimal combi-
nation of both lifestyle and pharmacologic interventions. In fact, these recom-
mendations will differ depending on an individual’s age, race, and cardiovascular
risk factor profile.

For example, an African American patient with a 10-year ASCVD risk score
10% and a blood pressure � 130/80 would benefit from a medication like a thi-
azide diuretic or calcium channel blocker for blood pressure control. If the same
patient were Caucasian, the recommendation for optimal treatment would include
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thiazide diuretics (chlorthalidone preferred), calcium channel blockers, ACE-I or
ARB. In all patients treated with anti-hypertensive medication, reliable screening
for adverse signs or symptoms related to their treatment should be completed, and
can include hypotension, syncope, bradycardia, electrolyte abnormalities, falls, or
kidney damage [86].

Anticoagulation

While the ACC/AHA risk estimator application only references statin, aspirin and
blood pressure medications as therapeutic options for ASCVD risk reduction in
individuals, many other risk factors contribute to an individual’s risk for ASCVD.
Atrial fibrillation, which is the most common cardiac arrhythmia, is one important
ASCVD risk factor not included in the PCE. Given the increasing prevalence and
known harmful effects of atrial fibrillation including stroke and death, optimal risk
reduction is important for preventing adverse outcomes. The cornerstone of treat-
ment in atrial fibrillation is anticoagulation with vitamin K antagonist like warfarin
or non-vitamin K antagonist oral anticoagulants (NOAC) like dabigatran, apixaban,
rivaroxaban or edoxaban [88].

Shared decision making in the treatment of atrial fibrillation starts with calcu-
lating an individual’s CHA2DS2-VASc score. This tool, which estimates the risk of
ischemic stroke by considering the individual’s age, sex, and history of congestive
heart failure, hypertension, diabetes, stroke/TIA/thromboembolism, and vascular
disease (MI, peripheral arterial disease, or aortic atherosclerosis), has demonstrated
a graded association with score and risk for ischemic stroke.

For example, individuals with a CHA2DS2-VASc score of 0 have a *0.2% risk
for stroke each year; CHA2DS2-VASc score of 2 have a 2.2% risk for stroke each
year; and CHA2DS2-VASc score of 9 have a 12.2% risk for stroke each year.
Therefore, guidelines currently recommend individuals with atrial fibrillation and
with a history of stroke or CHA2DS2-VASc of 2 or greater start on warfarin or a
NOAC (assuming they have non-valvular atrial fibrillation) to reduce the risk for
stroke [88].

Shared decision making in the setting of a clinician-patient discussion must
occur prior to initiating anticoagulation because there is a known risk of bleeding
from these medications. Similar to how the CHA2DS2-VASc score informs the
benefit of anticoagulation for atrial fibrillation, the HAS-BLED score estimates risk
of major bleeding in individuals on anticoagulation for atrial fibrillation [89].

Using this tool, the risk of bleeding is estimated using a validation study [90], and
depending on the risk, a recommendation for anticoagulation is given. Based on the
individual risk factors, including hypertension, renal or liver disease, stroke history,
prior bleeding event, age, INR lability, alcohol use, and the use of other blood
thinning medications, a score is given with an accompanying recommendation. If the
score is less than or equal to1/9 anticoagulation should be considered; 2/9 antico-
agulation can be considered; and >3/9 alternatives to anticoagulation should be
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recommended as the individual has a very high bleeding risk [89, 90]. Controlling a
patient’s modifiable risk factors for atrial fibrillation (e.g. weight/body mass index/
waist circumference, alcohol intake, blood pressure, and obstructive sleep apnea) can
help reduce the incidence of the disease and associated risk of treatment.

Like other decisions in cardiology, the management of anticoagulation in
patients with atrial fibrillation requires an individualized clinician patient discussion
focused on shared decision making. While some individuals may identify a daily or
twice daily medication as an insignificant price to pay for stroke prevention, others
may be interested in undergoing a one-time procedure like a left atrial appendage
closure to eliminate the risk of stroke associated with atrial fibrillation. Ultimately,
clinicians and patients must form an alliance, which allows for decisions to be made
based on the the highest quality of evidence assuming it fits within the patient goals
and preferences, in order to achieve maximal ASCVD risk reduction.

Conclusion

As medicine has evolved, so too has the clinician-patient relationship. What was
once a more paternalistic and uniform practice pattern, has fortunately shifted to a
more individualized and patient-oriented approach. In this new framework, the
heart of primary prevention is centered around risk estimation using the PCE fol-
lowed by a thoughtful clinician-patient discussion with the expressed purpose of
engaging in shared decision making. In fact, many tools have been created to help
guide and elucidate the best ways to communicate risk and the effects of behavioral
modification. Effectively conveying risk to patients during the clinician-patient
discussion substantiates the shared decision making process by providing patients
the necessary information to make informed decisions about their treatment plan.

Utilizing a shared decision making approach allows the clinician to provide
evidence-based recommendations for risk reduction and treatment that reflect the
patient’s values, goals, and concerns. When necessary, clinicians can opt for
additional decision making aids such as risk-enhancing factors like coronary artery
calcium, which can further inform the shared decision making process. Ultimately,
this approach will better engage and empower patients in their cardiovascular care,
which will likely lead to improved adherence to therapies and reduction in ASCVD
risk and adverse events.
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