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Abstract. The design of Distributed Storage Systems involves many
challenges due to the fact that the users and storage nodes are physically
dispersed. In this doctoral consortium paper, we present a framework
for boosting the concurrent access to large shared data objects (such
as files), while maintaining strong consistency guarantees. In the heart
of the framework lies a fragmentation strategy, which enables different
updates to occur on different fragments of the object concurrently, while
ensuring that all modifications are valid.
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1 Problem and Motivation

Nowadays, data are rapidly generated through applications, social media,
browsers and so on. The challenge for many organizations and companies is to
design an efficient storage system to cope with this data explosion. A Distributed
Storage System (DSS) [17] provides data survivability and system availability.
Data replication on multiple storage locations is a well known technique to cope
with these issues. A main challenge due to replication, caused when the shared
data are accessed concurrently, is data inconsistency.

Numerous platforms prefer high availability over consistency, due to the belief
that strong consistency will burden the performance of their systems. As a result,
they devise strategies to address the issue of consistency, but they rely on system
coordinators to provide weaker consistency guarantees. However, modern storage
systems attempt to find the balance between the consistency of the data and the
availability of the system. In this work we aim to explore the development of a
Robust and Strongly Consistent DSS while providing highly concurrent access
to its users.

Our design is based on fundamental research in the area of distributed shared
memory emulation [1,2]. These emulations provide a strong consistency guaran-
tee, called linearizability (atomicity) [15], which is especially suitable for concur-
rent systems. Currently, such emulations, are either limited to small-size objects,
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or if two writes occur concurrently on different parts of the object, only one of
them prevails. To address these limitations, we introduce a framework based on
data fragmentation strategies that boost concurrency, while maintaining strong
consistency guarantees, and minimize the operation latencies.

2 Existing Knowledge

In this section, we briefly review existing distributed shared memory emulations,
proposed distributed file systems and discuss their strengths and limitations.
Table 1 presents a comparison of the main characteristics of the distributed
algorithms and storage systems that we will discuss in this document.

Attiya et al. [2] presents the first fault-tolerant emulation of atomic shared
memory, later known as ABD, in an asynchronous message passing system. It
implements Single-Writer Multi-Reader (SWMR) registers in an asynchronous
network, provided that at least a majority of the servers do not crash. The
writer completes write operations in a single round by incrementing its local
timestamp and propagating the value with its new timestamp to the servers,
waiting acknowledgments from a majority of them. The read operation com-
pletes in two rounds: (i) it discovers the maximum timestamp-value pair that
is known to a majority of the servers, (ii) it propagates the pair to the servers,
in order to ensure that a majority of them have the latest value, hence pre-
serving atomicity. This has led to the common belief that “atomic reads must
write”. This belief was refuted by Dutta et al. [5] who showed that it is possible,
under certain constraints, to complete reads in one round-trip. Several works
followed, presenting different ways to achieve one-round reads (e.g., [11,12,14]).
The ABD algorithm was extended by Lynch and Shvartsman [16], who present
an emulation of Multi-Writer and Multi-Reader (MWMR) atomic registers.

The above works on shared memory emulations were focused on small-size
objects. Fan and Lynch [7] proposed an extension, called LDR, that can cope
with large-size objects (e.g. files). The key idea was to maintain copies of the
data objects separately from their metadata; maintaining two different types of
servers, replicas (that store the files) and directories (that handle metadata and
essentially run a version of ABD). However, the whole object is still transmitted
in every message exchanged between the clients and the replica servers. Further-
more, if two writes update different parts of the object concurrently, only one of
the two prevails.

From the dozens of distributed file systems that exist in the market today, we
focus on the ones that are more relevant to our work. The Google File System
(GFS) [13] and the Hadoop Distributed File System (HDFS) [22] were built to
handle large volume of data. These file systems store metadata in a single node
and data in cluster nodes separately. Both GFS and HDFS use data stripping and
replicate each chunk/block for fault tolerance. HDFS provides concurrency by
restricting the file access to one writer at a time. Also, it allows users to perform
only append operations at the end of the file. However, GFS supports record
append at the offset of its own choosing. This operation allows multiple clients to
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append data to the same file concurrently without extra locking. These systems
are designed for data-intensive computing and not for normal end-users [6].

Dropbox [19] is possibly the most popular commercial DSS with big appeal to
end-users. It provides eventual consistency (which is weaker than linearizability),
synchronising a working object for one user at a time. Thus, in order to access
the object from another machine, a user must have the up-to-date copy; this
eliminates the complexity of synchronization and multiple versions of objects.

Blobseer [4] is a large-scale DSS that stores data as a long sequence of bytes
called BLOB (Binary Large Object). This system uses data stripping and ver-
sioning that allow writers to continue editing in a new version without blocking
other clients that use the current version. A version manager, the key compo-
nent of the system, deals with the serialization of the concurrent write requests
and assigns a new version number for each write operation. Unlike GFS and
HDFS, Blobseer does not centralize metadata on a single machine, but it uses a
centralized version manager. Thus linearizability is easy to achieve.

Our work aims in complementing the above systems by designing a highly
fault-tolerant distributed storage system that provides concurrent access to its
clients without sacrificing strong concurrency nor using centralized components.

Table 1. Comparative table of distributed algorithms and storage systems.

Algorithm/System Data
scalability

Data access
Concurrency

Consistency
guarantees

Versioning Data
Stripping

MWMR ABD [16] NO YES Strong NO NO

LDR [7] YES YES Strong NO NO

CoABD [8] NO YES Strong YES NO

GFS [13] YES Concurrent
appends

Relaxed YES YES

HDFS [22] YES Files restrict
one writer at
a time

Strong
(central-
ized)

NO YES

Dropbox [19] YES Creates
conflicting
copies

Eventual YES YES

Blobseer [4] YES YES Strong
(central-
ized)

YES YES

CoBFS [our work] YES YES Strong YES YES

3 Research Plan and Stage of Research

For the purpose of accomplishing a prototype of a Robust Distributed Storage
System, with strong consistency guarantees, my research will include the follow-
ing stages (quoting the estimated time for each one):
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1. From existing emulations of distributed shared memory [2,7,8,10], we want
to implement an optimized version of the most efficient one, in order to
establish linearizable consistency to a unit of storage, we call a block (3
months).

2. Survey Data Fragmentation Strategies, focusing on block strategies. This
would lead to our own fragmentation strategy, aiming to reduce the commu-
nication cost of write/read operations by splitting data into smaller atomic
data objects (blocks), while enabling concurrent access to these blocks (4
months).

3. Integrate the different algorithmic modules and strategies, envisioned via
a system architecture (see next section). This would entail our design and
implementation framework. Based on that, we aim to introduce new con-
sistency guarantees, that characterize the consistency of the whole object,
which is composed by smaller atomic objects (blocks) (3 months).

4. Implement an erasure-coding (EC) storage (such as ARES [3]) which divides
the object into encoded fragments and deliver each fragment to one server.
The object can be recovered from a subset of the fragments. However, oper-
ations are still applied on the entire object. Thus, we can evaluate the per-
formance of the system by combining our fragmentation approach with EC
(2 months).

5. Implement a Reconfiguration service in order to mask host failures or
switching between storage algorithms without service interruptions. It is
expected that an existing reconfigurable algorithm (such as ARES [3]) may
be extended to address this objective (2 months).

6. A failure prediction service can be used to estimate the risk of a device fail-
ing in order to trigger the reconfiguration service. It could be based on a
monitoring service that would collect S.M.A.R.T. (Self-Monitoring, Analy-
sis and Reporting Technology) metrics of the servers, indicating a possible
drive failure. Machine Learning would be used to identify correlations on
the metrics so to predict drive failures. We will integrate the failure predic-
tion service with reconfiguration. Also, we need to specify the aggressiveness
of reconfiguration: reconfiguring in every failure notification may result in
many frequent reconfigurations, whereas waiting too long may disable the
service due to many failures (5 months).

7. Design easy-to-use user interfaces to facilitate the use of our storage system
by users that are not necessarily highly technology-trained (5 months).

8. Deploy and evaluate the system in network testbeds. An emulation testbed
such as Emulab [20] will be used for developing and debugging the com-
ponents of our system. However, an overlay planetary-scale testbet such
as PlanetLab [23] will help us examine the performance of our system in
highly-adverse, uncontrolled, real-time environments (7 months).

9. Deploy the prototype on small devices with limited computing capabilities
(e.g. Raspberry Pie). During these experiments we will have the opportunity
to test the durability of our storage in high concurrency conditions. Also, it
will help us examine the performance of the reconfiguration operations by
physically replacing the serves (5 months).
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10. Further enhance our prototype implementation with more functionality and
features, having the ultimate goal of developing a fully-functioning and scal-
able DSS, that provides high concurrency and strong consistency (5 months).

Stage of Research. I have been doing this research for the past fourteen
months. During this period, items (1) to (3) and part of item (8) have been
completed. We are currently working on items (4) and (5). As a proof of con-
cept implementation, we developed a prototype implementation realizing the
proposed framework [9]. Furthermore, we conducted a preliminary evaluation
on Emulab [20], using Ansible Playbooks [18] for the remote execution of tasks.
The evaluation shows the promise of our design; we overview the results obtained
so far in the next two sections.

4 Development and Prototype Implementation

Our prototype DSS is a Distributed File System, called CoBFS, which uti-
lizes coverable linearizable fragmented objects. The object (file), is composed of
blocks, and fragmented linearizability [9] guarantees that all concurrent updates
on different blocks are valid, and only concurrent updates on the same blocks
are conflicting with each other. Coverability [8] extends linearizability with the
additional guarantee that an update succeeds when the writer has the latest
version of the object before updating it. Otherwise, an update becomes a read
and returns the latest version with its associated value. The coverable version
of MWMR ABD (CoABD) [8] is used as the distributed shared memory ser-
vice in our system in order to ensure consistency. It allows multiple concurrent
updates (writes) and reads, in an asynchronous, message-passing, crash-prone
environment. We now proceed to more implementation details.

Fig. 1. The basic architecture of CoBFS

Basic Architecture Overview: The basic architecture of CoBFS, shown in
Fig. 1, is composed of two main modules: (i) a Fragmentation Module (FM), and
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(ii) a Distributed Shared Memory Module (DSMM). The asynchronous commu-
nication between layers is achieved by using DEALER and ROUTER sockets,
from the ZeroMQ library [26]. In summary, the FM implements the fragmented
object while the DSMM implements an interface to a shared memory service
that allows operations on individual block objects. Following this architecture,
clients can perform operations, passing commands through command-line inter-
face. Subsequently, the FM uses the DSMM as an external service to execute
these operations on the shared memory. To this respect, CoBFS is flexible
enough to utilize any underlying distributed shared object algorithm.

File as a Fragmented Object: Each file f is a list of blocks with the first
block being the genesis block bgen, and each block having the id of its next
block, whereas the last block has a null next value.

Fragmentation Module: The FM is the core concept of our implementation.
Each client has a FM responsible for (i) fragmenting the file into blocks and
identify modified or new blocks, and (ii) following a specific strategy to store
and retrieve the file blocks from the R/W shared memory.

Update Operation: The update strategy of the FM is the most challenging
part of our work. The FM uses a Block Identification (BI) module, which draws
ideas from the RSYNC (Remote Sync) algorithm [24]. The BI includes three
main modules, the Block Division, the Block Matching and Block Updates.

1. Block Division: Initially, the BI splits a given file f into data blocks based
on its contents, using rabin fingerprints [21]. This rolling hashing algorithm
performs content-based chunking by calculating and returning the fingerprints
(block hashes) over a sliding window. The algorithm allows you to specify
the minimum and maximum block sizes, avoiding blocks that are too small
or too big. It ignores a minimum size of bytes after a block boundary is
found and then starts scanning. However, if no block boundary occurs before
the maximum block size, the window is treated as a block boundary. The
algorithm guarantees that when a file is changed, only the hash of a modified
block (and in the worst case its next one) is affected, but not the subsequent
blocks.
BI has to match each hash, generated by the rabin fingerprint from the pre-
vious step, to a block identifier.

2. Block Matching: At first, BI uses a string matching algorithm [25] to com-
pare the current sequence of the hashes with the sequence of hashes computed
in the previous file update. The string matching algorithm outputs a list of
differences between the two sequences in the form of four statuses for all given
entries: (i) equality, (ii) modified, (iii) inserted, (iv) deleted.

3. Block Updates: Based on the hash statuses, the blocks of the fragmented
object are updated. In the case of equality, if a hashi = hash(bj) then Di is
identified as the data of block bj . In case of modification, an update operation
is then performed to modify the data of bj to Di. If new hashes are inserted
after the hash of block bj , then an update operation is performed to create
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the new blocks after bj . The deleted one is treated as a modification that sets
an empty value; thus, no blocks are deleted.

Read Operation: When the system receives a read request from a client, the
FM issues a series of read operations on the file’s blocks, starting from the genesis
block and proceeding to the last block by following the next block ids. As blocks
are retrieved, they are assembled in a file.

Read Optimization in DSMM: In the first phase, if a server has a smaller
tag than the reader, it replies only with its tag. The reader performs the second
phase only when it has a smaller tag than the one found in the first phase.

5 Preliminary Evaluation

We performed an experimental evaluation in the Emulab testbed [20], to com-
pare the performance of CoBFS and of its counterpart that does not use the
fragmentation module; we refer to this version as CoABD.

Experimental Setup: In our scenarios, we use three distinct sets of nodes,
writers, readers and servers. Communication between the distributed nodes is
via point-to-point bidirectional links implemented with a DropTail queue.

Performance Metrics: We measured performance by computing operational
latency as the sum of communicational and computational delays. Additionally,
the percentage of successful file update operations is calculated.

Scenarios: To evaluate the efficiency of the algorithms, we use several scenarios:

– Scalability: examine performance under various numbers of readers/writers
– File Size: examine performance when using different initial file sizes
– Block Size: examine performance under different block sizes (CoBFS only)

Readers and writers pick a random time between [1..rInt] and [1..wInt], respec-
tively, to invoke their next operation. During all the experiments of each scenario,
as the writers kept updating the file, its size increased.

Results: As a general observation, the efficiency of CoBFS is inversely affected
by the number of block operations, while CoABD shows no flexibility regarding
the size of the file.

Scalability: In Fig. 2(a), the update operation latency in CoBFS is always
smaller than the one of CoABD, mainly because in any number of writers, each
writer has to update only the affected blocks. Due to the higher percentage of
successful file updates achieved by CoBFS, reads retrieve more data compared
to reads in CoABD, which explains why it is slower than CoABD (Fig. 2(b)).
Also, it would be interesting to examine whether the read block requests in
CoBFS could be sent in parallel, reducing the overall communication delays.

File Size: As we can see in Fig. 2(c), the update latency of CoBFS remains at
extremely low levels, although the file size increases. That is in contrast to the
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Fig. 2. Simulation results for algorithms CoABD and CoBFS.

CoABD update latency which appears to increase linearly with the file size,
since it updates the whole file. The read latencies with and without the read
optimization can be found in Fig. 2(d). The CoABD read latency increases
sharply, even when using the read optimization. This is due to the fact that each
time a new file version is discovered, CoABD sends the whole file. However,
read optimization decreases significantly the CoBFS read latency, since it is
more probable for a reader to already have the last version of some blocks.

Block Size: When smaller blocks are used, the update and read latencies reach
their highest values and larger number of blocks (Figs. 2(e)(f)). As the minimum
and average bsizes increase, an update operation needs to add lower number of
blocks. Similarly, smaller bsizes require more read block operations to obtain the
file’s value. Therefore, further increase of bsize forces the decrease of the latencies,
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reaching a plateau in both graphs. This means that the emulation finds optimal
minimum and average bsizes and increasing it does not give better latencies.

Concurrency: The percentage of successful file updates achieved by CoBFS
are significantly higher than those of CoABD (Fig. 2(a)). As the number of
writers increases (and therefore concurrency), CoABD suffers greater number
of unsuccessful updates, since it manipulates the file as a whole. Also, as is
shown in Fig. 2(c), a larger number of blocks yields a better success rate. The
probability of two writes to collide on a single block decreases, and thus CoBFS
allows more file updates to succeed in all block updates.

6 Conclusions and Future Work

We investigated several strategies in order to build CoBFS, a Robust and
Strongly Consistent prototype distributed file system. This system brings for-
ward several optimization directions and opens the path for exploring new fea-
tures which can boost its reliability.

Selection of Block Size: As observed from the experiments, the operation per-
formance is affected from the selection of minimum/maximum block sizes. Thus,
it is important to have a mechanism for tuning the values for these parameters,
based on the size of the file, in order to obtain the best possible performance.

Fragmentation: Due to the modular architecture of CoBFS, we can integrate
other fragmentation strategies, even at the level of the shared memory module
(such as EC storage mentioned in Sect. 3).

Fully-Functioning Distributed File System: We plan to evolve CoBFS
into a distributed storage service handling different kind of large data, as well as
impose strong security guarantees. We would also like to provide an open API,
in which people could integrate their own DSSMs.
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