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Abstract. A classification bandits problem is a new class of multi-
armed bandits problems in which an agent must classify a given set of
arms into positive or negative depending on whether the number of bad
arms are at least N2 or at most N1(< N2) by drawing as fewer arms as
possible. In our problem setting, bad arms are imperfectly characterized
as the arms with above-threshold expected rewards (losses). We develop
a method of reducing classification bandits to simpler one threshold clas-
sification bandits and propose an algorithm for the problem that classifies
a given set of arms correctly with a specified confidence. Our numerical
experiments demonstrate effectiveness of our proposed method.
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1 Introduction

How to determine the presence or extent of a disease from biopsy under the
existence of some uncertainty is of crucial importance in life science. Let us
consider the following cancer diagnosis problem in which a doctor has to diagnose
whether a certain patient has cancer or not from given his/her K cells: if the
number of cancer cells N is negligible (N ≤ N1), then the doctor can diagnose
that the patient does not have cancer, but if it is non-negligible (N ≥ N2 > N1),
the doctor should diagnose that the patient does. One of the cancer cell diagnosis
methods is the classification of cells in terms of a set of Raman spectra1 averaged
over each cell [8]. However, Raman measurements require more than ten hours

1 Histopathologists usually diagnose whether cells are of cancer or not by inspecting
their morphological characteristics with a human bias, but Raman measurements
are considered to enable more reliably to judge the cell states.
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for one hundred cells, by scanning point illumination to single cells along which
Raman spectra are acquired in time to time. Thus, interactive measurement
depending on Raman spectra obtained so far is a key to realize fast cell diagnosis.
Such interactive measurement can be formulated as a bandit problem treated in
this paper by regarding each cell as an arm, and letting Raman spectra sampling
from each cell correspond to an arm draw.

In this bandit problem, doctor cannot always conclude whether the number
of cancer cells is negligible or not correctly due to two different types of uncer-
tainty. The first type of uncertainty is the variance of reward (cancer index calcu-
lated from sampled Raman spectra) obtained by each arm draw, which has been
extensively studied in the area of statistics. The second type of uncertainty is
the imprecision (imperfect positive predictive value) of the true expected reward
of each arm (cancer index averaged over each cell) and this frequently happens
in real situation. In fact, Raman spectra averaged over each cell was reported to
be classified into cancer or normal cells with about 85% accuracy [8]. While we
can obtain as much accurate value as we want by taking enough number of sam-
ples for the first type of uncertainty, the second type of uncertainty cannot be
reduced. To the best of our knowledge, this paper is the first one taking account
of the second type of uncertainty in the context of bandits.

In this paper, we study a pure exploration K-armed bandit problem, named
classification bandit problem, in which an agent must classify a given set of K
arms into “negative” or “positive” depending on whether the number of bad arms
is at most N1 or at least N2(> N1), respectively, within given allowable failure
probabilities δN and δP by drawing as small number of arms as possible. In our
formulation, the mean reward μi of each arm i is assumed to be an imperfect
discriminator of badness; μi ≥ θ holds for each bad arm i with probability
pTP > 0.5 and μi < θ holds for each good arm i with probability pTN > 0.5.

We show that the classification bandit problem with parameters pTP, pTN, δN ,
δP , N1, N2 can be reduced to the problem, named one-threshold classification
bandit problem, which has only one threshold λ instead of two thresholds N1

and N2 and one allowable failure probability δ instead of δP and δN and is
free from the second type of uncertainty. Our reduction is not always possible,
and we show the condition of the reduction and how to calculate λ and δ from
pTP, pTN, δN , δP , N1, N2. For the one-threshold classification bandit problem, we
propose an algorithm and prove its correctness for any arm selection policy. We
also propose a Thompson-sampling-based arm selection policy for this algorithm,
which demonstrates a faster stopping time of the algorithm than UCB-based and
Successive-Elimination-based arm selection policies.

Related Works

One-threshold classification bandits problem is regarded as a kind of pure explo-
ration bandit problem. Complexity analysis of this type of problem is performed
by minimizing error probability under a fixed budget or minimizing the number
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of samples under a fixed confidence. In this paper we focus on the fixed confi-
dence setting. The most studied pure exploration bandit problem is best arm
identification whose objective is to find the k highest expected reward arms for
a given k. For the best arm identification problem, Audibert et al. [1] proposed
an algorithm based on successive elimination that eliminates the worst arm one
by one from candidates of the best arm. Later, more efficient algorithms that
are not based on elimination such as LUCB [3] and UGapE [2] were proposed.

Instead of the highest expected reward arms, Locatelli et al. [6] proposed an
algorithm for a thresholding bandit problem in which an agent has to output all
the arms with the expected reward higher than a given threshold. Kano et al.
[4] formulated the good arm identification problem whose task is to find λ arms
whose expected rewards are above a given threshold, for a given λ, if at least
such λ arms exist, or to find all such arms otherwise. Kaufmann et al. [5] and
Tabata et al. [10] independently studied a problem to decide whether at least
one arm exists or not, whose expected reward is above the threshold, in which
precise identification of such arms is not necessarily required.

A question of ‘how one can derive accurate decision under the condition that
only qualitative test results would be obtained’ is one of the most intriguing
subjects in the area of fault detection of systems. In many cases, several kinds of
tests are assumed to be given explicitly with their false-positive, and the false-
negative rates. Nachla et al. [7] treated a problem to design the permutation of
tests in order to decrease the total cost of, e.g., quality inspections, repairs of
good components in products, and dispositions of no-fault systems, and proposed
heuristics to solve the problem. Raghavan et al. [9] proposed a method to decide
an optimal test sequence with qualitative tests by using dynamic programming.

To our best knowledge, there exists no research that deals with the prob-
lem of accurate decision in terms of qualitative test results in the context of
bandits algorithm. In this paper, we present an algorithm to transform classi-
fication bandits based on qualitative tests with nonnegligible false-positive and
false-negative rates into one-threshold bandits problem which can address the
transformability to one threshold bandits and design the threshold and the error
rate to meet the given allowed error rates.

2 Problem Formulation

We study a variant of a K-armed bandit problem defined as follows. An agent
is given a set of K arms that is composed of bad and good arms. No information
about which arm is bad or good is directly provided to the agent. However, the
agent can get values Xi(1),Xi(2), · · · of an indicator to represent badness for
each arm i by drawing it repeatedly, where Xi(n) denotes the value obtained
by the nth draw of arm i. For each arm i, we assume that Xi(1),Xi(2), · · · are
i.i.d. random variables whose distribution is denoted as νi with mean μi (whose
distribution and value cannot be known a priori).

For a given threshold θ, an arm i satisfying μi ≥ θ (μi < θ) is defined
as positive (negative) arm. We consider the case that arm’s expected indica-
tor value μi is an imperfect discriminator of its badness or goodness; a bad
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arm is positive with probability pTP and a good arm is negative with proba-
bility pTN. We also assume that, whether each arm is positive or negative, is
independent of any different arms i and j, e.g., P [arms i and j are positive] =
P [arm i is positive]P [arm j is positive].

At every time step t = 1, 2, . . ., an agent chooses one of the K arms it ∈
{1, 2, . . . ,K} and gets an indicator value Xit(nit(t)) of badness that is drawn
from distribution νit , where ni(t) is the number of times arm i has been drawn
by time step t. The agent’s task is to conclude whether the given set of K arms
contains non-negligible number of bad arms (i.e., a number of bad arms enough
to judge “positive”) or not by drawing arms as few times as possible. We can
formulate the problem as follows.

Problem 1 (classification bandits). For given pTP, pTN ∈ (0.5, 1] and δP , δN ∈
(0, 0.5), output “negative” with probability at least 1 − δN if the number of bad
arms is less than or equal to N1, and output “positive” with probability at least
1 − δP if the number of bad arms is larger than or equal to N2 by drawing as
small number of arms as possible.

Note that there is no requirement for the output when the number of bad
arms is larger than N1 and lower than N2.

3 Problem Reduction

3.1 Reduction Theorem

In this section, we show how to reduce classification bandits, which contain uncer-
tainty derived from probabilities pTP and pTN, to the following one-threshold
classification bandits, which is free from such uncertainty.

Problem 2 (one-threshold classification bandits). For a given λ ∈ N and δ > 0,
output “negative” with probability at least 1 − δ if the number of positive arms
is less than λ, and output “positive” with probability at least 1−δ if the number
of positive arms is at least λ by drawing as small number of arms as possible.

In this problem setting, the number to be identified is not the number of bad
arms but that of positive arms, that is, we only consider the uncertainty due to
reward variance to solve this problem. We will introduce the algorithm to solve
this reduced problem in the next section. Here we explain how such reduction is
possible.

Given the number of arms K, the number of bad arms N ∈ [0,K], probability
pTP > 0.5 with which a bad arm is positive, and probability pTN > 0.5 with
which a good arm is negative, the probability-generating function G(N,K)(t) for
the number of positive arms is expressed as

G(N,K)(t) = (pTPt + (1 − pTP))N ((1 − pTN)t + pTN)K−N ,

because of the arm’s independency.
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Let c
(N,K)
d denote the coefficient of td in G(N,K)(t). Then, c

(N,K)
d is the prob-

ability that the number of positive arms is d in the case that the given set of K
arms contains just N bad arms.

The following proposition is used to prove Lemma1.

Proposition 1.
∑�−1

j=0 c
(N,K)
j is a weakly decreasing function on N and

∑K
j=� c

(N,K)
j is a weakly increasing function on N .

Proof. Omitted due to space limitations. ��
Let X denote the number of positive arms. Then, P [X ≥ �|N = i] and

P [X < �|N = i], probabilities of X ≥ � and X < � under the condition of N = i,
are

∑K
j=� c

(i,K)
j and

∑�−1
j=0 c

(i,K)
j , respectively.

From Proposition 1, we can have the following lemma.

Lemma 1. Let X and N be the number of positive arms and the number of bad
arms, respectively. Then, the following two inequalities hold:

P [X ≥ �|N ≤ N1] ≤P [X ≥ �|N = N1] and
P [X < �|N ≥ N2] ≤P [X < �|N = N2].

Proof. By Proposition 1, for i ≤ N1,

P [X ≥ �|N = i] =
K∑

j=�

c
(i,K)
j ≤

K∑

j=�

c
(N1,K)
j = P [X ≥ �|N = N1]

holds, and thus

P [X ≥ �|N ≤ N1] =
∑N1

i=0 P [X ≥ �|N = i]P [N = i]
∑N1

i=0 P [N = i]

≤
∑N1

i=0 P [X ≥ �|N = N1]P [N = i]
∑N1

i=0 P [N = i]
= P [X ≥ �|N = N1].

We can show the second inequality similarly. ��
This implies that, e.g., the failure probability P [X ≥ �|N ≤ N1], that is,

under the condition of N ≤ N1 to be identified as negative, the classifier answers
“positive (X ≥ �)”, can be upperbounded by P [X ≥ �|N = N1]. By the above
lemma, the following reduction theorem can be proved.

Theorem 1 (reduction theorem). For classification bandit problem with
pTN, pTP ∈ (0.5, 1], δP , δN ∈ (0, 0.5), 0 ≤ N1 < N2 ≤ K, consider the one-
threshold classification bandit problem with

λ = arg max
�

δ(�, pTN, pTP, N1, N2,K), (1)

δ =δ(λ, pTN, pTP, N1, N2,K), (2)
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where δ(�, pTN, pTP, N1, N2,K) = min
(
δN − ∑K

j=� c
(N1,K)
j , δP − ∑�−1

j=0 c
(N2,K)
j

)
.

In the case with δ > 0, classification bandit problem associated with nonzero
false-positive and false-negative rates can be reduced to a one-threshold bandit
problem.

Proof. Assume that δ > 0 and algorithm A is an algorithm for one-threshold
bandit problem with λ and δ defined Eqs. (1) and (2). Consider the case that
the number of bad arms N is at most N1, which is the case that the algorithm
is desired to output “negative.” Let X be the number of positive arms. The
failure probability that algorithm A outputs “positive” falsely is upper-bounded
by P [X ≥ λ|N ≤ N1] + δ. By Eq. (2) and Lemma 1, δ ≤ δN − P [X ≥ λ|N =
N1] ≤ δN − P [X ≥ λ|N ≤ N1] holds. Thus, P [X ≥ λ|N ≤ N1] + δ ≤ δN holds.
For the case that the number of bad arms N is at least N2, algorithm A can be
proved similarly to output “negative” with probability at most δP . ��

3.2 Reducible Parameter Region

In the one-threshold classification bandits problem that is reduced from classifi-
cation bandits problem, the value of confidence parameter δ calculated by reduc-
tion theorem, that is, δ = max� min

(
δN − ∑K

j=� c
(N1,K)
j , δP − ∑�−1

j=0 c
(N2,K)
j

)
,

significantly affects sample complexity of the problem, and the problem is not
solvable if this δ is non-positive. In the followings, we derive an approximate
boundary δ = 0 between solvable and unsolvable (N1, N2)-region for fixed
pTP, pTN, δP , δN .

Let X(m) be the number of positive arms when the number of bad arms is
m. Then, X(m) can be expressed as X(m) = XB + XG using XB ∼ B(m, pTP)
(B:binomial distribution) and XG ∼ B(K−m, 1−pTN). By law of large numbers,
B(m, pTP) ≈ N(mpTP,mpTP(1−pTP)) and B(K−m, 1−pTN) ≈ N((K−m)(1−
pTN), (K − m)pTN(1 − pTN)) when mpTP,m(1 − pTP), (K − m)(1 − pTN) and
(K − m)pTN are enough large (e.g. ≥ 5). By reproductive property of normal
distribution, X(m) ∼ N(μm, σ2

m) holds for μm = mpTP +(K −m)(1−pTN) and
σ2

m = mpTP(1 − pTP) + (K − m)pTN(1 − pTN)).

By the Polya’s approximation 1√
2π

∫ x

0
exp

(
− t2

2

)
dt ≈ 1

2

√
1 − exp

(− 2
π x2

)
,

P [X(m) ≥ μm + αδσm] ≈ δ and P [X(m) ≤ μm − αδσm] ≈ δ hold for αδ =√
π
2 ln 1

1−(1−2δ)2 . Thus, P [X(N1) ≥ μN1 + αδN σN1 ] ≈ δN and

P [X(N2) ≤ μN2 − αδP σN2 ] ≈ δP hold. Therefore,

δ > 0 ⇔∃λ ∈ N s.t. μN1 + αδN σN1 < λ < μN2 − αδP σN2

≺≈�μN1 + αδN σN1 < μN2 − αδP σN2
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holds approximately. By solving μN1 + αδN σN1 ≈ μN2 − αδP σN2 we have the
following approximate boundary δ ≈ 0 over N1-N2 plane:

(N2 − N1)(pTP + pTN − 1) ≈ αδN

√
N1pTP(1 − pTP) + (K − N1)pTN(1 − pTN)

+αδP

√
N2pTP(1 − pTP) + (K − N2)pTN(1 − pTN).

(3)

In the case with pTN = pTP, the approximate boundary becomes a simple line:

N2 ≈ N1 +
(αδN + αδP )

√
KpTP(1 − pTP)

2pTP − 1
(4)

Fig. 1. δ-values at (N1, N2) ∈ [0, K] × [0, K] for K = 100 and δP = δN = 0.1 and
(pTP, pTN) ∈ {1.0, 0.9, 0.8} × {1.0, 0.9, 0.8}. pTP = 1.0, 0.9, 0.8 for top, middle and
bottom graphs, respectively, and pTN = 1.0, 0.9, 0.8 for left, center and right graphs,
respectively. Regions of δ < 0 are filled with oblique lines. The regions of δ ≥ 0
are colored in grayscale from black (δ = 0) to white (δ = 0.1). The range of δ is
[−0.9, 0.1] because δP = δN = 0.1 in these experiments. The approximate boundary
by the expression (3) is shown by a gray dashed line on each graph and it looks good
approximations.

We give a graphical representation of δ-value over N1-N2 plane for fixed K,
δP , δN and various pTP, pTN in Fig. 1.
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noend 1. Algorithm for One-Threshold Classification Bandit Problem
Input: K: number of arms, θ: reward threshold, δ: confidence parameter,

λ: threshold on the number of positive arms
Output: “positive” or “negative”
1: initialization: t ← 0, A ← {1, 2, . . . , K}, D ← [ ], nP , nN ← 0, n1, . . . , nk ← 0
2: loop
3: t ← t + 1
4: it ← ASP(D, K, δ, λ, A) {ASP: Arm Selection Policy. See Sec. 4.2}
5: Pull arm it and update nit as nit ← nit + 1
6: Get reward Xit(nit) and append (it, Xit(nit)) to D
7: Update μit

(t) and μ
it

(t) using Eqs. (5) and (6)

8: if μit
(t) < θ then

9: A ← A \ {it}, nN ← nN + 1
10: if K − nN < λ return “negative”
11: else if μ

it
(t) ≥ θ then

12: A ← A \ {it}, nP ← nP + 1
13: if nP ≥ λ return “positive”

For fixed K = 100 and δP = δN = 0.1, δ-values at (N1, N2) ∈ [0,K] × [0,K]
are shown in Fig. 1 for (pTP, pTN) ∈ {1.0, 0.9, 0.8} × {1.0, 0.9, 0.8}. The regions
of negative δ-values are filled with oblique lines. The regions of non-negative
δ-values are colored in grayscale from black (δ = 0) to white (δ = 0.1). From
the definition of N1 and N2, the region of N2 ≤ N1 is always filled with oblique
lines.

When both of pTP and pTN are 1.0, δ is 0.1 at any point of region N1 < N2,
because bad (good) arm is always assigned to positive (negative) arm. Even if
there is no bad arm, (1 − pTN)K arms are discriminated as positive arms on
average. In fact, at N1 = 0, we have δ ≤ 0 for N2 in some interval [0, N0

2 ], and
N0

2 increases as pTN decreases. Similarly, even if all the arms are bad arms, only
pTPK arms are discriminated as positive arms on average. In fact, at N2 = K, we
have δ ≤ 0 for N1 in some interval [NK

1 ,K], and NK
1 decreases as pTP decreases.

We can see that the expression (3) gives good approximation from the approx-
imate boundaries shown by a gray dashed lines.

4 Algorithm

The pseudocode of proposed algorithm for one-threshold classification bandits
is shown in Algorithm 1. Note that the algorithm works for any arm selection
policy.

4.1 Decision Condition

The upper and lower confidence bounds μi,n, μ
i,n

of μi after taking n samples
from arm i are defined as follows:

μi,n = μ̂i,n +

√
1
2n

log
2Kn2

δ
, μ

i,n
= μ̂i,n −

√
1
2n

log
2Kn2

δ
, (5)
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where μ̂i,n is the sample mean of rewards of arm i after n pulls. We use the
following notations as well for the sake of simplicity.

μi(t) = μi,ni(t+1), μ
i
(t) = μ

i,ni(t+1)
. (6)

Here, ni(t + 1) is the number of pulls of arm i after t pulls in total.
The decision condition for positiveness of arm i is μ

i
(t) ≥ θ and that for

negativeness of arm i is μi(t) < θ.
For these decision conditions, the following lemma guarantees the probability

of wrong decision for each arm is at most δ/K.

Lemma 2. For a positive arm i (i.e., μi ≥ θ), μi(t) ≥ θ holds for any time step
t with probability at least 1 − δ

K . For a negative arm i (i.e., μi < θ), μ
i
(t) < θ

holds for any time step t with probability at least 1 − δ
K .

Proof. For a positive arm i, we have

P[∃t, μi(t) < θ] =P[∃n, μi,n < θ] ≤
∞∑

n=1

P[μi,n < θ]

=
∞∑

n=1

P

[

μ̂i,n +

√
1
2n

log
2Kn2

δ
< θ

]

≤
∞∑

n=1

P

[

μ̂i,n < μi −
√

1
2n

log
2Kn2

δ

]

(because μi ≥ θ)

≤
∞∑

n=1

exp

⎛

⎝−2n

(√
1
2n

log
2Kn2

δ

)2
⎞

⎠

(
by Hoeffding’s

inequality

)

=
∞∑

n=1

δ

2Kn2
<

δ

K

(

because
∞∑

n=1

1
n2

=
π2

6
< 2

)

.

Therefore, for a positive arm i, the probability that μi(t) > θ always holds for
any time step t is larger than 1 − δ

K .
Similarly, we can show the inequality for a negative arm as well. ��

As n → ∞, μ̂i,n goes to μi from law of large numbers and
√

1
2n log 2Kn2

δ

goes to 0. Therefore, a positive arm i satisfies μ
i,n

> θ (i.e. it is diagnosed as a
positive arm) for some finite n if μi �= θ. Here μi = θ generally corresponds to
the situation that infinite number of draw of the arm i is required for diagnosis.
From Lemma 2, the probability that a positive arm i satisfies μi(t0) < θ (i.e.
it is diagnosed as a negative arm) is at most δ

K . Therefore a positive arm is
diagnosed as a positive arm correctly with failure probability at most δ

K . Simi-
larly, a negative arm is diagnosed correctly with failure probability at most δ

K .
Therefore the failure probability that the agent diagnoses any arm wrongly is
at most δ as long as μi �= θ for any arm i. The agent counts the number of
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positive arm nP and negative arm nN by using these conditions at each time
step t, and stops and outputs “positive” when nP ≥ λ or outputs “negative”
when K − nN < λ since the number of positive arms cannot exceed K − nN .
Since the counts nP and nN are correct with probability at least 1 − δ from the
above discussion, Algorithm 1 solves one-threshold classification bandits with a
specified confidence. We have proved the following theorem.

Theorem 2. For one-threshold classification bandits with parameters K, θ, λ, δ,
the outputs of Algorithm1 using any arm selection policy satisfy the requirements
of Problem 2.

4.2 Arm Selection Policies

Let At be a set of arms that have not been diagnosed as positive or negative
before time step t by the conditions explained in the previous section. It is enough
to choose arm only from At at each time step t.

We developed the arm selection policy based on the Thompson sampling.
Let θi be the parameter of the reward distribution νi of arm i. Assume a prior
distribution π0

i of θi. The original Thompson sampling estimates a posterior
distribution πt−1

i of θi for each arm i at each time step t, and chooses an arm.
The proposed algorithm is described as follows:

ThompsonSampling-CB:
1. For each arm i ∈ At,
(1) Calculate the posterior distribution πt−1

i of θi using all the rewards
obtained by time step t.

(2) Sample θ̂i ∼ πt−1
i .

(3) Calculate the expected mean for given θ̂i: μ̃t
i = EP [X|i,θ̂i]

[X].
2. Count the number of arms i with μ̃t

i at least θ, Bt = |{i ∈ [K]|μ̃t
i ≥ θ}|.

3. Select arm it =

⎧
⎪⎨

⎪⎩

arg max
i∈At

μ̃t
i (when Bt ≥ λ)

arg min
i∈At

μ̃t
i (when Bt < λ)

For comparison, we examine the following arm selection policies as well.

UCB-CB:
Select it = arg max

i∈At

μ̂i(t)+
√

1
2ni(t)

log t
Successive Elimination-CB:
Select it = arg min

i∈At

ni(t)

In both arm selection policies, if more than one argument satisfy the condi-
tion, one of them is chosen arbitrarily. As one of comparison methods, we select
UCB algorithm because it is the best performer for good arm identification prob-
lem [4], whose problem setting is most similar to the setting of our one-threshold
classification problem.
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5 Experiments

In this section, we show the result of comparison experiments for the three
algorithms that we proposed in Sect. 4.2.

The stopping time of Algorithm 1 using ThompsonSampling-CB is com-
pared with those using UCB-CB and Successive Elimination-CB for the one-
threshold classification bandits with positive δ that is reduced from classifica-
tion bandits instances. In this experiment, we fixed parameters K, θ, pTN, pTP, δP

and δN of the original classification bandits instances as K = 20, θ = 0.5,
pTN = pTP = 0.95 and δP = δN = 0.1. Expected reward μi of arm i is taken from
a uniform distribution over [0, θ] for negative arms and [θ, 1] for positive arms.
The distributions of reward are Bernoulli distribution. For N1 = 0, 1, . . . , 14,
N2 = N1 + 5 and the cases with just 5, 10, 15 positive arms, we reduced each
problem instance to the corresponding one-threshold problem with parameters λ
and δ, and measured the stopping time (the number of samples) of Algorithm1.

The results are shown in the upper left, the upper right and the lower left
graphs for the cases with just 5, 10, 15 positive arms, respectively, of Fig. 2. For

Fig. 2. Average stopping times (the number of samples) over 100 runs of Algorithm 1
using three arm selection policies for one-threshold classification bandits instances with
parameters λ and δ reduced from classification bandits instances with parameters K =
20, θ = 0.5, pTN = pTP = 0.95, δP = δN = 0.1, N1 = 0, 1, . . . , 14 and N2 = N1 + 5.
y-axis is ‘log’ scale. The upper left, the upper right and the lower left graphs are results
for the case with just 5, 10, and 15 positive arms, respectively.
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these three graphs, we can see ThompsonSampling-CB always stops earlier than
SuccessiveElimination-CB and always stops earlier or in time comparable to
UCB-CB. The performance of UCB-CB is poor when the output should be
“negative” because UCB-CB tries to select positive arms with higher priority.

6 Conclusion and Future Works

In this paper, we presented an algorithm to reduce classification bandits prob-
lem based on an imperfect classifier with nonnegligible false-positive and false-
negative rates into a one-threshold classification bandits problem under the
allowed error rate δ. The parameters of true negative and positive probabili-
ties pTN, pTP, and the number of arms K are supposed to be given in actual
applications. Then the question here was whether we can still discriminate the
number of bad arms is at most N1 with probability at least 1 − δN or at least
N2 (> N1) with probability at least 1 − δP . Usually confidence parameter δ
required for bandits algorithms is the same as a given parameter itself, but in
classification bandits, the confidence parameter δ required for the transformed
one-threshold classification bandits is smaller than given parameters δN and δP

for original classification bandits. Our reduction theorem enables us not only
to provide the error rate δ smaller than originally given δP and δN but also to
suggest whether it is difficult to find algorithm satisfying the given confidence
level when δ < 0.

For future work, we plan to apply our algorithm for classification bandits to
interactive measurement by Raman microscope for differentiating cancer cells
and non-cancer cells, where no one can identify whether each cell is cancer or
not with 100% accuracy (at best 80–95% for example). Theoretically there exists
some room to improve the algorithm such as selection policy although in our
simulation through Thompson sampling was found to be superior in performance
to the algorithms based on UCB and successive elimination.
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