
Chapter 14
Intermediate Dimensions: A Survey

Kenneth J. Falconer

Abstract This article surveys the θ -intermediate dimensions that were introduced
recently which provide a parameterised continuum of dimensions that run from
Hausdorff dimension when θ = 0 to box-counting dimensions when θ = 1. We
bring together diverse properties of intermediate dimensions which we illustrate by
examples.

14.1 Introduction

Many interesting fractals, for example many self-affine carpets, have differing box-
counting and Hausdorff dimensions. A smaller value for Hausdorff dimension can
result because covering sets of widely ranging scales are permitted in the definition,
whereas box-counting dimensions essentially come from counting covering sets that
are all of the same size. Intermediate dimensions were introduced in [12] in 2019
to provide a continuum of dimensions between Hausdorff and box-counting; this is
achieved by restricting the families of allowable covers in the definition of Hausdorff
dimension by requiring that |U | ≤ |V |θ for all sets U,V in an admissible cover,
where θ ∈ [0, 1] is a parameter. When θ = 1 only covers using sets of the same size
are allowable and we recover box-counting dimension, and when θ = 0 there are
no restrictions giving Hausdorff dimension.

This article brings together what is currently known about intermediate dimen-
sions from a number of sources, especially [1, 3, 4, 12, 21]; in particular Banaji [1]
has very recently obtained many detailed results. We first consider basic properties
of θ -intermediate dimensions, notably continuity when θ ∈ (0, 1], and discuss some
tools that are useful when working with intermediate dimensions. We look at some
examples to show the sort of behaviour that occurs, before moving onto the more
challenging case of Bedford-McMullen carpets. Finally we consider a potential-
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theoretic characterisation of intermediate dimensions which turns out to be useful
for studying the dimensions of projections and other images of sets. Proofs for most
of the results can be found elsewhere and are referenced, though some are sketched
to provide a feeling for the subject.

We work with subsets of Rn throughout, although much of the theory easily
extends to more general metric spaces, see [1]. To avoid problems of definition,
we assume throughout this account that all the sets F ⊂ R

n whose dimensions are
considered are non-empty and bounded.

Whilst Hausdorff dimension dimH is usually defined via Hausdorff measure, it
may also be defined directly, see [7, Section 3.2]. For F ⊂ R

n we write |F | for the
diameter of F and say that a finite or countable collection of subsets {Ui} of Rn is a
cover of F if F ⊂ ⋃

i Ui . Then the Hausdorff dimension of F is given by:

dimH F = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of F such that

∑

i

|Ui |s ≤ ε
}
.

(Lower) box-counting dimension dimB may be expressed in a similar manner except
that here we require the covering sets all to be of equal diameter. For bounded F ⊂
R

n,

dimB F = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of F

such that |Ui | = |Uj | for all i, j and
∑

i

|Ui |s ≤ ε
}
.

From this viewpoint, Hausdorff and box-counting dimensions may be regarded
as extreme cases of the same definition, one with no restriction on the size of
covering sets, and the other requiring them all to have equal diameters; one might
regard these two definitions as the extremes of a continuum of dimensions with
increasing restrictions on the relative sizes of covering sets. This motivates the
definition of intermediate dimensionswhere the coverings are restricted by requiring
the diameters of the covering sets to lie in a geometric range δ1/θ ≤ |Ui | ≤ δ where
0 ≤ θ ≤ 1 is a parameter.

Definition 14.1 Let F ⊂ R
n. For 0 ≤ θ ≤ 1 the lower θ -intermediate dimension

of F is defined by

dim θF = inf
{
s ≥ 0 : for all ε > 0 and all δ0 > 0, there exists 0 < δ ≤ δ0

and a cover {Ui} of F such that δ1/θ ≤ |Ui | ≤ δ and
∑

|Ui |s ≤ ε
}
.
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Analogously the upper θ -intermediate dimension of F is defined by

dim θF = inf
{
s ≥ 0 : for all ε > 0 there exists δ0 > 0 such that for all 0 < δ ≤ δ0,

there is a cover {Ui} of F such that δ1/θ ≤ |Ui | ≤ δ and
∑

|Ui |s ≤ ε
}
.

Note that, except when θ = 0, these definitions are unchanged if δ1/θ ≤ |Ui | ≤ δ is
replaced by δ ≤ |Ui | ≤ δθ .

It is immediate that

dimH F = dim0F = dim0F, dimB F = dim1F and dimB F = dim1F,

where dimB is upper box-counting dimension. Furthermore, for a bounded F ⊂ R
n

and θ ∈ [0, 1],

0 ≤ dimH F ≤ dim θF ≤ dim θF ≤ dimB F ≤ n and 0 ≤ dim θF ≤ dimB F ≤ n.

As with box-counting dimensions we often have dim θF = dim θF in which case
we just write dimθF = dim θF = dim θF for the θ -intermediate dimension of F .

We remark that a continuum of dimensions of a different form, known as
the Assouad spectrum, has also been investigated recently, see [14, 16, 17]; this
provides a parameterised family of dimensions which interpolate between upper
box-counting dimension and quasi-Assouad dimension, but we do not pursue this
here.

14.2 Properties of Intermediate Dimensions

14.2.1 Basic Properties

We start by reviewing some basic properties of intermediate dimensions of a type
that are familiar in many definitions of dimension.

1. Monotonicity. For all θ ∈ [0, 1] if E ⊂ F then dim θE ≤ dim θF and dim θE ≤
dim θF .

2. Finite stability. For all θ ∈ [0, 1] if E,F ⊂ R
n then dim θ (E ∪ F) =

max{dim θE, dim θF }. Note that, analogously with box-counting dimensions,
dim θ is not finitely stable, and neither dim θ or dim θ are countably stable (i.e. it
is not in general the case that dim θ ∪∞

i=1 Fi = sup1≤i<∞ dim θFi ).
3. Monotonicity in θ . For all bounded F , dim θF and dim θF are monotonically

increasing in θ ∈ [0, 1].
4. Closure. For all θ ∈ (0, 1], dim θF = dim θF and dim θF = dim θF where F is

the closure of F . (This follows since for θ ∈ (0, 1] it is enough to consider finite
covers of closed sets in the definitions of intermediate dimensions.)
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5. Lipschitz and Hölder properties. Let f : F → R
m be an α-Hölder map, i.e.

|f (x) − f (y)| ≤ c|x − y|α for α ∈ (0, 1] and c > 0. Then for all θ ∈ [0, 1],

dim θf (F ) ≤ 1

α
dim θF and dim θf (F ) ≤ 1

α
dim θF. (14.2.1)

(To see this, if {Ui} is a cover of F with δ ≤ |Ui | ≤ δθ consider the cover of f (F )

by the sets {f (Ui)} if cδα ≤ |f (Ui)| and by sets Vi ⊃ f (Ui) with |Vi | = cδα

otherwise.)
In particular, if f : F → f (F ) ⊂ R

m is bi-Lipschitz then dim θf (F ) =
dim θF and dim θf (F ) = dim θF , i.e. dim θ and dim θ are bi-Lipschitz invariants.
For further Lipschitz and Hölder estimates see Banaji [1, Section 4].

14.2.2 Continuity

A natural question is whether, for a fixed bounded set F , dim θF and dim θF vary
continuously for θ ∈ [0, 1]. It turns out that this is the case except possibly at
θ = 0 where the intermediate dimensions may or may not be continuous, see the
examples in Sect. 14.4. Continuity on (0, 1] follows immediately from the following
inequalities which relate dim θF , respectively dim θF , for different values of θ .

Proposition 14.2 Let F be a bounded subset of Rn and let 0 < θ < φ ≤ 1. Then

dim θF ≤ dimφF ≤ φ

θ
dim θF (14.2.2)

and

dim θF ≤ dimφF ≤ dim θF +
(
1 − θ

φ

)
(n − dim θF ), (14.2.3)

with corresponding inequalities where dim θ and dimφ are replaced by dim θ and
dimφ . 
�
Proof We include the proof of (14.2.2) to give a feel for this type of argument. The
left-hand inequality is just monotonicity of dim θF .

With 0 < θ < φ ≤ 1 let t >
φ

θ
dim θF and choose s such that dim θF < s <

θ

φ
t .

Given ε > 0, for all sufficiently small 0 < δ < 1 we may find countable or finite
covers {Ui}i∈I of F such that

∑

i∈I

|Ui |s < ε and δ ≤ |Ui | ≤ δθ for all i ∈ I. (14.2.4)
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Let

I0 = {i ∈ I : δ ≤ |Ui | < δθ/φ} and I1 = {i ∈ I : δθ/φ ≤ |Ui | ≤ δθ }.

For each i ∈ I0 let Vi be a set with Vi ⊃ Ui and |Vi| = δθ/φ . Let 0 < s < tθ/φ ≤ n.
Then {Wi}i∈I := {Vi}i∈I0 ∪ {Ui}i∈I1 is a cover of F by sets with diameters in the
range [δθ/φ, δθ ]. Taking sums with respect to this cover:

∑

i∈I

|Wi |t =
∑

i∈I0

|Vi |t +
∑

i∈I1

|Ui |t =
∑

i∈I0

δt θ/φ +
∑

i∈I1

|Ui |t

≤
∑

i∈I0

|Ui |t θ/φ +
∑

i∈I1

|Ui |t θ/φ =
∑

i∈I

|Ui |t θ/φ ≤
∑

i∈I

|Ui |s < ε.

(14.2.5)

Thus for all t >
φ

θ
dim θF , for all ε > 0, for all sufficiently small δ (equivalently, for

all sufficiently small δθ ) there is a cover {Wi}i ofF by sets with (δθ )1/φ ≤ |Wi | ≤ δθ

satisfying (14.2.5), so dimφF ≤ φ

θ
dim θF .

The analogue of (14.2.2) for dim θ follows by exactly the same argument by
choosing covers of F with δ ≤ |Ui | ≤ δθ for arbitrarily small δ.

The proof of (14.2.3) is given in [12]: essentially, given a cover of F by sets {Ui}
with δ ≤ |Ui | ≤ δθ one breaks up those Ui with δφ ≤ |Ui | ≤ δθ into smaller pieces
to get a cover of F by sets with diameters in the range [δ, δφ]. 
�

Note that the right hand inequality of (14.2.2) is stronger than that in (14.2.3)

precisely when
θ

φ
≤ n

dimφF
− 1, which is the case for all 0 < θ < φ ≤ 1 if

dimφF ≤ 1
2n; similarly for lower dimensions.

Inequality (14.2.2) implies that
dim θF

θ
and

dim θF

θ
are monotonic decreasing

in θ ∈ (0, 1]; Banaji [1, Proposition 3.9] points out that they are strictly decreasing
if dimB F > 0, respectively dimB F > 0. Thus the graphs of θ �→ dim θF and
θ �→ dim θF (0 < θ ≤ 1) are starshaped with respect to the origin (i.e. each half-
line from the origin in the first quadrant cuts the graphs in a single point).

The following corollary is immediate.

Corollary 14.3 The maps θ �→ dim θF and θ �→ dim θF are continuous for θ ∈
(0, 1]. 
�

By setting φ = 1 in Proposition 14.2 and rearranging we get useful comparisons
with box-counting dimensions.
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Corollary 14.4 Let F be a bounded subset of Rn. Then

dim θF ≥ n −
(
n − dimB F

)

θ
(14.2.6)

and

dim θF ≥ θ dimB F, (14.2.7)

with corresponding inequalities where dim θ and dimB are replaced by dim θ and
dimB . 
�
Again (14.2.7) gives a better lower bound than (14.2.6) if and only if

θ ≤ n

dimB F
− 1 which is the case for all θ ∈ (0, 1] if dimB F ≤ 1

2n, and similarly

for lower dimensions.
Intermediate dimensions may or may not be continuous when θ = 0, see

Sect. 14.4.2 for examples. Indeed, determining whether a given set has intermediate
dimensions that are continuous at θ = 0, which relates to the distribution of scales
of covering sets for Hausdorff and box dimensions, is one of the key questions in
this subject.

Banaji [1] introduced a generalisation of intermediate dimensions by replacing
the condition δ1/θ ≤ |Ui | ≤ δ in Definition 14.1 by �(δ) ≤ |Ui | ≤ δ,
where � : (0, Y ) → R is monotonic and satisfies limδ↘0 �(δ)/δ = 0 for

some Y > 0, to obtain families of dimensions dim�F and dim
�
F ; clearly when

�(x) = x1/θ we recover dim θF and dim θF . He provides an extensive analysis
of these �-intermediate dimensions. In particular they interpolate all the way
between Hausdorff and box-dimensions, that is there exist such functions �s for
s ∈ [dimH F, dimB F ] that are increasing with s with respect to a natural ordering

and are such that dim
�
F = s and dim

�
F = min{s, dimB F }, see [1, Theorem 6.1].

14.3 Some Tools for Intermediate Dimension

As with other notions of dimension, there are some basic techniques that are useful
for studying intermediate dimensions and calculating them in specific cases.

14.3.1 A Mass Distribution Principle

The mass distribution principle is frequently used for finding lower bounds for
Hausdorff dimension by considering local behaviour of measures supported on
the set, see [7, Principle 4.2]. Here are the natural analogues for dim θ and dim θ
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which are proved using an easy modification of the standard proof for Hausdorff
dimensions.

Proposition 14.5 ([12, Proposition 2.2]) Let F be a Borel subset of Rn and let
0 ≤ θ ≤ 1 and s ≥ 0. Suppose that there are numbers a, c > 0 such that for
arbitrarily small δ > 0 we can find a Borel measure μδ supported on F such that
μδ(F ) ≥ a, and with

μδ(U) ≤ c|U |s for all Borel sets U ⊂ R
n with δ ≤ |U | ≤ δθ . (14.3.1)

Then dim θF ≥ s. Alternatively, if measures μδ with the above properties can be
found for all sufficiently small δ, then dim θF ≥ s. 
�

Note that in Proposition 14.5 a different measure μδ is used for each δ, but it is
essential that they all assign mass at least a > 0 to F . In practice μδ is often a finite
sum of point masses.

14.3.2 A Frostman Type Lemma

Frostman’s lemma is another powerful tool in fractal geometry which is a sort of
dual to Proposition 14.5. We state here a version for intermediate dimensions. As
usual B(x, r) denotes the closed ball of centre x and radius r .

Proposition 14.6 ([12, Proposition 2.3]) Let F be a compact subset of Rn, let 0 <

θ ≤ 1, and let 0 < s < dim θF . Then there exists c > 0 such that for all δ ∈ (0, 1)
there is a Borel probability measure μδ supported on F such that for all x ∈ R

n and
δ1/θ ≤ r ≤ δ,

μδ(B(x, r)) ≤ crs. (14.3.2)

Fraser has pointed out a nice alternative proof of (14.2.2) using the Frostman’s
lemma and the mass distribution principle. Briefly, let 0 < θ < φ ≤ 1. if s <

dimφF , Proposition 14.6 gives probability measures μδ on F (which we may take

to be compact) such that μδ(B(x, r)) ≤ crs for δ1/φ ≤ r ≤ δ. If δ1/θ ≤ r ≤ δ1/φ

then

μδ(B(x, r)) ≤ μδ(B(x, δ1/φ)) ≤ c δs/φ ≤ c rsθ/φ,

so μδ(B(x, r)) ≤ c rsθ/φ for all δ1/θ ≤ r ≤ δ. Using Proposition 14.5 dim θF ≥
sφ/θ . This is true for all s < dimφF so dim θF ≥ θ

φ
dimφF .
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14.3.3 Relationship with Assouad Dimension

Assouad dimension has been studied intensively in recent years, see the books [14,
26] and paper [13]. Although Assouad dimension does not a priori seem closely
related to intermediate dimensions, it turns out that information about the Assouad
dimension of a set can refine estimates of intermediate dimensions and under certain
conditions imply discontinuity at θ = 0.

The Assouad dimension of F ⊂ R
n is defined by

dimA F = inf
{
s ≥ 0 : there exists C > 0 such that Nr(F ∩ B(x,R)) ≤ C

(R

r

)s

for all x ∈ F and all 0 < r < R
}
,

where Nr(A) denotes the smallest number of sets of diameter at most r that can
cover a set A. In general dimBF ≤ dimBF ≤ dimA F ≤ n, but equality of these
three dimensions often occurs, even if the Hausdorff dimension and box-counting
dimension differ, for example if the box-counting dimension is equal to the ambient
spatial dimension.

The following proposition due to Banaji, which extends an earlier estimate in
[12, Proposition 2.4], gives lower bounds for intermediate dimensions in terms of
Assouad and box dimensions. This lower bound is sharp, taking F to be the Fp of
Sect. 14.4.1, and can be particular useful near θ = 1 where the estimate approaches
the box dimension.

Proposition 14.7 ([1, Proposition 3.10]) For a bounded set F ⊂ R
n and θ ∈

(0, 1],

dim θF ≥ θ dimAF dimBF

dimA F − (1 − θ)dimBF
,

with a similar inequality for upper dimensions. In particular, if dimBF = dimA F

(which is always the case if dimBF = n ), then dim θF = dimθF = dimBF =
dimA F for all θ ∈ (0, 1]. 
�

One consequence of Proposition 14.7 is that if dimH F < dimBF = dimA F ,
then the intermediate dimensions dim θF and dim θF are constant on (0, 1] and
discontinuous at θ = 0. This will help us analyse examples that exhibit a range of
behaviours in Sect. 14.4.2.

Banaji also shows [1, Proposition 3.8] that (14.2.2), (14.2.3) and (14.2.6) may
be strengthened by incorporating the Assouad dimension of F into the right-hand
estimates.
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14.3.4 Product Formulae

It is natural to relate dimensions of products of sets to those of the sets themselves.
The following product formulae for intermediate dimensions are of interest in their
own right and are also useful in constructing examples.

Proposition 14.8 ([12, Proposition 2.5]) Let E ⊂ R
n and F ⊂ R

m be bounded
and let θ ∈ [0, 1]. Then

dim θE + dim θF ≤ dim θ (E × F) ≤ dimθ (E × F) ≤ dimθE + dimBF.

(14.3.3)

Sketch Proof The cases θ = 0, 1 are well-known, see [7, Chapter 7]. For other θ

the left hand inequality follows by using Proposition 14.6 to put measures on E and
F satisfying inequalities of the form (14.3.2) and then applying Proposition 14.5 to
the product of these two measures.

The middle inequality is trivial. For the right hand inequality let s > dimθE

and d > dimBF . We can find a cover of E by sets {Ui} with δ1/θ ≤ |Ui | ≤ δ

for all i and with
∑

i |Ui |s ≤ ε. Then, for each i, we find a cover {Ui,j }j of F

by at most |Ui |−d sets with diameters |Ui,j | = |Ui | for all j . Thus E × F ⊂
⋃

i

⋃
j

(
Ui × Ui,j

)
where δ1/θ ≤ |Ui × Ui,j | ≤ √

2δ for all i, j . A simple estimate

gives
∑

i

∑
j |Ui × Ui,j |s+d ≤ 2(s+d)/2ε, leading to the right hand inequality. 
�

Banaji [1, Theorem 5.5] extends such product inequalities to �-intermediate
dimensions.

14.4 Some Examples

The following basic examples in R or R2 serve to give a feel for intermediate
dimensions and indicate some possible behaviours of dim θ and dimθ as θ varies.

14.4.1 Convergent Sequences

The pth power sequence for p > 0 is given by

Fp =
{
0,

1

1p
,
1

2p
,
1

3p
, . . .

}
. (14.4.1)

Since Fp is countable dimH Fp = 0 and a standard exercise shows that dimBFp =
1/(p + 1), see [7, Chapter 2]. We obtain the intermediate dimensions of Fp.
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Proposition 14.9 ([12, Proposition 3.1]) For p > 0 and 0 ≤ θ ≤ 1,

dim θFp = dimθFp = θ

p + θ
. (14.4.2)

Sketch Proof This is clearly valid when θ = 0. Otherwise, to bound dimθFp from
above, let 0 < δ < 1 and let M = �δ−(s+θ(1−s))/(p+1)�. Take a covering U of Fp

consisting of the M intervals B(k−p, δ/2) of length δ for 1 ≤ k ≤ M together with
�M−p/δθ� ≤ M−p/δθ + 1 intervals of length δθ that cover the left hand interval
[0,M−p]. Then

∑

U∈U
|U |s ≤ Mδs + δθs

( 1

Mpδθ
+ 1

)
(14.4.3)

≤ 2δ(θ(s−1)+sp)/(p+1) + δs + δθs → 0

as δ → 0 if s(θ + p) > θ . Thus dimθFp ≤ θ/(p + θ). [Note that M was chosen
essentially to minimise the expression (14.4.3) for given δ.]

For the lower bound we put a suitable measure on Fp and apply Proposition 14.5.
Let s = θ/(p + θ) and 0 < δ < 1 and, as with the upper bound, let
M = �δ−(s+θ(1−s))/(p+1)�. Define μδ as the sum of point masses on the points
1/kp (1 ≤ k < ∞) with

μδ

({ 1

kp

})
=

{
δs if 1 ≤ k ≤ M

0 if M + 1 ≤ k < ∞ . (14.4.4)

Then

μδ(Fp) = Mδs ≥ δ−(s+θ(1−s))/(p+1)δs = 1

by the choice of s. To check (14.3.1), note that the gap between any two points of
Fp carrying mass is at least p/Mp+1. A set U such that δ ≤ |U | ≤ δθ , intersects at
most 1 + |U |/(p/Mp+1) = 1 + |U |Mp+1/p of the points of Fp which have mass
δs . Hence

μδ(U) ≤ δs + 1

p
|U |δsδ−(s+θ(1−s)) ≤

(
1 + 1

p

)
|U |s,

Proposition 14.5 gives dim θFp ≥ s = θ/(p + θ). 
�
Here is a generalisation of Proposition 14.9 to sequences with ‘decreasing gaps’.

Let a ∈ R and let f : [a,∞) → (0, 1] be continuously differentiable with f ′(x)

negative and increasing and f (x) → 0 as x → ∞. Considering integer values,
the mean value theorem gives that f (n) − f (n + 1) is decreasing, so the sequence
{f (n)}n is a ‘decreasing sequence with decreasing gaps’.
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Proposition 14.10 With f as above, let

F = {
0, f (1), f (2), . . .

}
.

Suppose that
xf ′(x)

f (x)
→ −p as x → ∞, where 0 ≤ p ≤ ∞. Then for all

0 < θ ≤ 1,

dim θF = dimθF = θ

p + θ
,

taking this expression to be 0 when p = ∞. 
�
This may be proved in a similar way to Proposition 14.9 using that xf ′(x)/f (x)

is close to, rather than equal to, −p when x is large.
For example, taking f (x) = 1/ log(x + 1), the sequence

Flog =
{
0,

1

log 2
,

1

log 3
,

1

log 4
, . . .

}
(14.4.5)

has dim θFlog = 1 if θ ∈ (0, 1] and dim0Flog = 0, so there is a discontinuity at 0.
On the other hand, with f (x) = e−x ,

Fexp = {
0, e−1, e−2, e−3, . . .

}

has dim θFexp = 0 for all θ ∈ [0, 1].

14.4.2 Simple Examples Illustrating Different Behaviours

Using the examples above together with tools from Sect. 14.3 we can build up
simple examples of sets exhibiting various behaviours as θ ranges over [0, 1], shown
in Fig. 14.1.

Example 14.11 (Continuous at 0, Part Constant, Then Strictly Increasing) Let F =
F1 ∪E where F1 is as in (14.4.1) and let E ⊂ R be any compact set with dimH E =
dimB E = 1/4 (for example a suitable self-similar set). Then

dim θF = max
{ θ

1 + θ
, 1/4

}
(θ ∈ [0, 1]).

This follows using (14.4.2) and the finite stability of upper intermediate dimensions.

Example 14.12 (Discontinuous at 0, Part Constant, Then Strictly Increasing) Let
F = F1 ∪ E where this time E ⊂ R is any closed countable set with dimB E =
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Fig. 14.1 Graphs of dim θF for the three examples in Sect. 14.4.2

dimA E = 1/4. Using Proposition 14.7 and finite stability of upper intermediate
dimensions,

dim θF = max
{ θ

1 + θ
, 1/4

}
(θ ∈ (0, 1].

Note that the intermediate dimensions are exactly as in Example 14.11 except when
θ = 0 and a discontinuity occurs.

Example 14.13 (Discontinuous at 0, Smooth and Strictly Increasing) Consider the
countable set

F = F1 × Flog ⊂ R
2.

Then dim0F = dimH F = 0 and

dim θF = θ

1 + θ
+ 1 (θ ∈ (0, 1]),

noting that dim θFlog = dimBFlog = dimA Flog = 1 for θ ∈ (0, 1] using (14.4.5)
and Propositions 14.7 and 14.8.

14.4.3 Circles, Spheres and Spirals

Infinite sequences of concentric circles and spheres with radii tending to 0 might
be thought of as higher dimensional analogues of the sets Fp defined in (14.4.1).
A countable union of concentric circles will have Hausdorff dimension 1, but the
box and intermediate dimensions may be greater as a result of the accumulation of
circles at the centre. For p > 0 define the family of circles

Cp = {
x ∈ R

2 : |x| ∈ Fp

}
.
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Tan [27] showed, using the mass distribution principle and the Frostman lemma,
Proposition 14.6, that

dim θCp = dimθCp =
{

2p+2θ(1−p)
2p+θ(1−p)

if 0 < p ≤ 1

1 if 1 ≤ p

with analogous formulae for concentric spheres in Rn and also for families of circles
or spheres with radii given by other monotonic sequences converging to 0. He also
considers families of points evenly distributed across such sequences of circles or
spheres for which the intermediate dimension may be discontinuous at 0.

Closely related to circles are spirals. For 0 < p ≤ q define

Sp,q =
{(

1

tp
sinπt,

1

tq
cosπt

)

: t ≥ 1

}

⊂ R
2.

Then Sp,q is a spiral winding into the origin, if p = q it is a circular polynomial
spiral, otherwise it is an elliptical polynomial spiral. Burrell, Falconer and Fraser
[5] calculated that

dim θSp,q = dimθSp,q =
{

p+q+2θ(1−p)
p+q+θ(1−p)

if 0 < p ≤ 1

1 if 1 ≤ p
.

Not unexpectedly, when p = q these circular polynomial spirals have the same
intermediate dimensions as the concentric circles Cp.

Another variant is the ‘topologist’s sine curve’ given, for p > 0 by

Tp =
{(

1

tp
, sinπt

)

: t ≥ 1

}

⊂ R
2,

that is the graph of the function f : (0, 1] → R given by f (x) = sin(πx−1/p). Tan
[27] used related methods show that

dim θTp = dimθTp = p + 2θ

p + θ
,

as well as finding the intermediate dimensions of various generalisations of this
curve.

14.5 Bedford-McMullen Carpets

Self affine carpets are a well-studied class of fractals where the Hausdorff and box-
counting dimensions generally differ; this is a consequence of the alignment of
the component rectangles in the iterated construction. The dimensions of planar
self-affine carpets were first investigated by Bedford [2] and McMullen [24]
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independently, see also [25], and these carpets have been widely studied and
generalised, see [6, 15] and references therein. Finding the intermediate dimensions
of these carpets gives information about the range of scales of covering sets needed
to realise their Hausdorff and box-counting dimensions. Deriving exact formulae
seems a major challenge, but some lower and upper bounds have been obtained, in
particular enough to demonstrate continuity of the intermediate dimensions at θ = 0
and that they attain a strict minimum when θ = 0.

Bedford-McMullen carpets are attractors of iterated function systems of a set of
affine contractions, all translates of each other which preserve horizontal and vertical
directions. More precisely, for integers n > m ≥ 2, an m×n-carpet is defined in the
following way. Let I = {0, . . . ,m − 1} and J = {0, . . . , n − 1} and let D ⊂ I × J

be a digit set with at least two elements. For each (p, q) ∈ D we define the affine
contraction S(p,q) : [0, 1]2 → [0, 1]2 by

S(p,q) (x, y) =
(

x + p

m
,
y + q

n

)

.

Then
{
S(p,q)

}
(p,q)∈D

is an iterated function system so there exists a unique non-

empty compact set F ⊂ [0, 1]2 satisfying

F =
⋃

(p,q)∈D

S(p,q)(F )

called a Bedford-McMullen self-affine carpet, see Fig. 14.2 for examples. The carpet
can also be thought of as the set constructed using a ‘template’ consisting of the
selected rectangles

{
S(p,q)([0, 1]2)

}
(p,q)∈D

by repeatedly substituting affine copies
of the template in each of the selected rectangles.

Fig. 14.2 A 2 × 3 and a 3 × 5 Bedford-McMullen carpet
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Bedford [2] and McMullen [24] showed that the box-counting dimension of F

exists with

dimBF = logM

logm
+ logN − logM

logn
(14.5.1)

where N is the total number of selected rectangles and M is the number of p such
that there is a q with (p, q) ∈ D, that is the number of columns of the template
containing at least one rectangle. They also showed that

dimH F = log
(∑m

p=1 N
logn m
p

)

logm
, (14.5.2)

where Np (1 ≤ p ≤ m) is the number of q such that (p, q) ∈ D, that is the number
of rectangles in the pth column of the template. The Hausdorff and box-counting
dimensions of F are equal if and only if the number of selected rectangles in every
non-empty column is constant.

Virtually all work on these carpets depends on dividing the iterated rectangles
into ‘approximate squares’. The box-counting dimension result (14.5.1) is then a
straightforward counting argument. The Hausdorff dimension (14.5.1) argument is
more involved; McMullen’s approach defined a Bernoulli-type measure μ on F via
the iterated rectangles and obtained an upper bound for the local upper density of μ

that is valid everywhere and a lower bound valid μ-almost everywhere. These ideas
have been adapted and extended for estimating intermediate dimensions, but with
the considerable complication that one seeks good density estimates that are valid
over a restricted range of scales, but even getting close estimates for the intermediate
dimensions seems a considerable challenge.

The best upper bounds known at the time of writing are:

dimθF ≤ dimH F +
(
2 log(logm n) log a

logn

)
1

− log θ

(
0 < θ < 1

4 (lognm)2
)
,

(14.5.3)

proved in [12]. The −1/ log θ term makes this a very poor upper bound as θ

increases away from 0, but at least it implies that dimθF and dimθF are continuous
at θ = 0 and so are continuous on [0, 1]. An upper bound for θ that is better except
close to 0 was given in [21]:

dimθF ≤ dimBF − 	0(θ)

logn
(1 − θ) < dimBF (logn m ≤ θ < 1), (14.5.4)

where 	0(θ) is the solution an equation involving a large deviation rate term which
can be found numerically in particular cases. This upper bound is strictly increasing
near 1 and by monotonicity also gives a constant upper bound if 0 < θ < logn m.
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A reasonable lower bound that is linear in θ is

dimθF ≥ dimH F + θ
log |D| − H(μ)

logn
(0 ≤ θ ≤ 1), (14.5.5)

where H(μ) is the entropy of McMullen’s measure μ; this was essentially proved
in [12], but see [21] for a note on the constant. In particular this implies that there
is a strict minimum for the intermediate dimensions at θ = 0. An alternative lower
bound depending on optimising a certain function was given by [21]:

dimθF ≥ sup
t>0

ψ(t, θ) (0 ≤ θ ≤ 1) (14.5.6)

Here ψ(t, θ) depends on entropies of linear interpolants of probability measures of
the form θ t p̃+ (1− θ t )̂p and θ t q̃+ (1− θ t )̂q where p̃, q̃ and p̂, q̂ are measures that
occur naturally in the calculations for, respectively, the box-counting and Hausdorff
dimensions of the carpets. Of course, the lower bounds given by Corollary 14.4
for a general F in terms of box-counting dimensions also apply here. In particular,
Banaji’s general lower bound [1, Proposition 3.10] in terms of the box and Assouad
dimensions of F gives the best-known lower bound for θ close to 1 for some, though
not all, Bedford-McMullen carpets.

Many questions on the intermediate dimensions of these carpets remain, most
notably finding the exact forms of dimθF and dimθF . Towards that we would at
least conjecture that the lower and upper intermediate dimensions are equal and
strictly monotonic.

14.6 Potential-Theoretic Formulation

The potential-theoretic approach for estimating Hausdorff dimensions goes back to
Kaufman [20]. More recently box-counting dimensions have been defined in terms
of energies and potentials with respect to suitable kernels and these have been used
to obtain results on the box-counting dimensions of projections of sets in terms
of ‘dimension profiles’, see [8, 9]. In particular the box-counting dimension of the
projection of a Borel set F ⊂ R

n onto m-dimensional subspaces is constant for
almost all subspaces (with respect to the natural invariant measure) generalising the
long-standing results of Marstrand [22] and Mattila [23] for Hausdorff dimensions.

As with Hausdorff and box-counting dimensions, it turns out that θ -intermediate
dimensions can be characterised in terms of capacities with respect to certain
kernels, and this can be extremely useful as will be seen in Sect. 14.7. Let θ ∈ (0, 1]
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and 0 < m ≤ n (m is often an integer, though it need not be so). For 0 ≤ s ≤ m and
0 < r < 1, define the kernels

φ
s,m
r,θ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 0 ≤ |x| < r
(

r
|x|

)s
r ≤ |x| < rθ

rθ(m−s)+s

|x|m rθ ≤ |x|
(x ∈ R

n). (14.6.1)

If s = m this reduces to

φ
m,m
r,θ (x) =

{
1 0 ≤ |x| < r
(

r
|x|

)m
r ≤ |x| (x ∈ R

n), (14.6.2)

which are the kernels φm
r (x) used in the context of box-counting dimensions [8, 9].

Note that φs,m
r,θ (x) is continuous in x and monotonically decreasing in |x|. LetM (F )

denote the set of Borel probability measures supported on a compact F ⊂ R
n. The

energy of μ ∈ M (F ) with respect to φ
s,m
r,θ is

∫ ∫

φ
s,m
r,θ (x − y) dμ(x)dμ(y) (14.6.3)

and the potential of μ at x ∈ R
n is

∫

φ
s,m
r,θ (x − y) dμ(y). (14.6.4)

The capacity C
s,m
r,θ (F ) of F is the reciprocal of the minimum energy achieved by

probability measures on F , that is

C
s,m
r,θ (F ) =

(

inf
μ∈M (E)

∫ ∫

φ
s,m
r,θ (x − y) dμ(x)dμ(y)

)−1

. (14.6.5)

Since φ
s,m
r,θ (x) is continuous in x and strictly positive and F is compact, Cs,m

r,θ (F ) is
positive and finite. For general bounded sets we take the capacity of a set to be that
of its closure.

The existence of energy minimising measures and the relationship between the
minimal energy and the corresponding potentials is standard in classical potential
theory, see [8, Lemma 2.1] and [4] in this setting. In particular, there exists an
equilibrium measure μ ∈ M (E) for which the energy (14.6.3) attains a minimum
value, say γ . Moreover, the potential (14.6.4) of this equilibrium measure is at least
γ for all x ∈ F (otherwise perturbing μ by a point mass where the potential is less
than γ reduces the energy) with equality for μ-almost all x ∈ F . These properties
turn out to be key in expressing these dimensions in terms of capacities.
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Let F ⊂ R
n be compact, m ∈ (0, n], θ ∈ (0, 1] and r ∈ (0, 1). It may be shown

that

logC
s,m
r,θ (F )

− log r
− s (14.6.6)

is continuous in s and decreasesmonotonically from positive when s = 0 to negative
or 0 when s = m. Thus there is a unique s for which (14.6.6) equals 0. Moreover,
the rate of decrease of (14.6.6) is bounded away from 0 and from −∞ uniformly for
r ∈ (0, 1). This means we can pass to the limit as r → 0 and for each m ∈ (0, n]
define the lower θ -intermediate dimension profile of F ⊂ R

n as

dimm
θ F = the unique s ∈ [0,m] such that lim inf

r→0

logC
s,m
r,θ (F )

− log r
= s (14.6.7)

and the upper θ -intermediate dimension profile as

dim
m

θ F = the unique s ∈ [0,m] such that lim sup
r→0

logC
s,m
r,θ (F )

− log r
= s. (14.6.8)

Since the kernels φ
t,m
r,θ (x) are decreasing in m the intermediate dimension

profiles (14.6.7) and (14.6.8) are increasing in m.
The reason for introducing (14.6.7) and (14.6.8) is that they not only permit an

equivalent definition of θ -intermediate dimensions but also give the intermediate
dimensions of the images of sets under certain mappings, as we will see in
Sect. 14.7. The following theorem states the equivalence between intermediate
dimensions when defined by sums of powers of diameters as in Definition 14.1
and using this capacity formulation.

Theorem 14.14 Let F ⊂ R
n be bounded and θ ∈ (0, 1]. Then

dim θF = dimn
θF

and

dim θF = dim
n

θF.

The proof of these identities involve relating the potentials to s-power sums
of diameters of covering balls of F with diameters in the required range, using a
decomposition into annuli to relate this to the kernels, see [4, Section 4].

We defined the intermediate dimension profiles dimm
θ F and dim

m

θ F for F ⊂ R
n

but Theorem 14.14 refers just to the case when m = n. The significance of these
dimension profiles when 0 < m < n will become clear in the next section.
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14.7 Projections and Other Images

The relationship between the dimensions of a set F ⊂ R
n and its orthogonal projec-

tions πV (F ) onto subspaces V ∈ G(n,m), where G(n,m) is the Grassmannian of
m-dimensional subspaces of Rn and πV : Rn → V denotes orthogonal projection,
goes back to the foundational work on Hausdorff dimension by Marstrand [22] for
G(2, 1) and Mattila [23] for general G(n,m). They showed that for a Borel set
F ⊂ R

n

dimH πV (F ) = min{dimH F,m} (14.7.1)

for almost all m-dimensional subspaces V with respect to the natural invariant prob-
ability measure γn,m on G(n,m), where dimH denotes Hausdorff dimension. Later
Kaufman [20] gave a potential-theoretic proof of these results. See, for example,
[11] for a survey of the many generalisations, specialisations and consequences
of these projection results. In particular, there are theorems that guarantee that
the lower and upper box-counting dimensions and the packing dimensions of the
projections πV (F ) are constant for almost all V ∈ G(n,m), see [8–10, 18]. This
constant value is not the direct analogue of (14.7.1) but rather it is given by a
dimension profile of F .

Thus a natural question is whether there is a Marstrand-Mattila-type theorem for
intermediate dimensions, and it turns out that this is the case with the θ -intermediate
dimension profiles dimm

θ F and dim
m

θ F defined in (14.6.7) and (14.6.8) providing
the almost sure values for orthogonal projections from R

n onto m-dimensional sub-
spaces. Intuitively, we think of dimm

θ F and dim
m

θ F as the intermediate dimensions
of F when regarded from an m-dimensional viewpoint.

Theorem 14.15 Let F ⊂ R
n be bounded. Then, for all V ∈ G(n,m)

dim θπV F ≤ dimm
θ F and dim θπV F ≤ dim

m

θ F (14.7.2)

for all θ ∈ (0, 1]. Moreover, for γn,m-almost all V ∈ G(n,m),

dim θπV F = dimm
θ F and dim θπV F = dim

m

θ F (14.7.3)

for all θ ∈ (0, 1]. 
�
The upper bounds in (14.7.2) utilise the fact that orthogonal projection does not

increase distances, so does not increase the values taken by the kernels, that is

φ
s,m
r,θ (πV x − πV y) ≥ φ

s,m
r,θ (x − y) (x, y ∈ R

n).

By comparing the energy of the equilibrium measure on F with its projections onto
each πV F it follows that C

s,m
r,θ (πV F ) ≥ C

s,m
r,θ (F ) and using (14.6.7) or (14.6.8)



488 K. J. Falconer

gives the θ -intermediate dimensions of πV F as a subset of the m-dimensional
space V .

The almost sure lower bounds in (14.7.3) essentially depend on the relationship
between the kernels on R

n and on their averages over V ∈ G(n,m). More
specifically, for m ∈ {1, . . . , n − 1} and 0 ≤ s < m there is a constant a > 0,
depending only on n,m and s, such that for all x ∈ R

n, θ ∈ (0, 1) and 0 < r < 1
2 ,

∫

φ
s,m
r,θ (πV x − πV y)dγn,m(V ) ≤ a φ

s,m
r,θ (x − y) log

r

|x − y| .

Using this for a sequence r = 2−k with a Borel-Cantelli argument gives (14.7.3).
Full details may be found in [4, Section 5].

Theorem 14.15 has various consequences, firstly concerning continuity at θ = 0.

Corollary 14.16 Let F ⊂ R
n be such that dim θF is continuous at θ = 0. Then

dim θπV F is continuous at θ = 0 for almost all V . A similar result holds for the
upper intermediate dimensions. 
�
Proof If dimH F ≥ m then for almost all V , dimH πV (F ) = m = dim θπV F for all
θ ∈ [0, 1] by (14.7.1). Otherwise, for almost all V and all θ ∈ [0, 1],

dimH F = dimH πV F ≤ dim θπV F ≤ dimm
θ F ≤ dim θF → dimH F

as θ → 0, where we have used (14.7.1) and (14.7.2). 
�
For example, taking F ⊂ R

2 to be an m × n Bedford-McMullen carpet (see
Sect. 14.5), it follows from (14.5.3) and Corollary 14.16 that the intermediate
dimensions of projections of F onto almost all lines are continuous at 0. In fact
more is true: if logm/ logn /∈ Q then dim θπV F and dim θπV F are continuous at 0
for projections onto all lines V , see [4, Corollaries 6.1 and 6.2] for more details.

The following surprising corollary shows that continuity of intermediate dimen-
sions of a set at 0 is enough to imply a relationship between the Hausdorff dimension
of a set and the box-counting dimensions of its projections.

Corollary 14.17 Let F ⊂ R
n be a bounded set such that dim θF is continuous at

θ = 0. Then

dimB πV F = m

for almost all V ∈ G(n,m) if and only if

dimH F ≥ m.

A similar result holds on replacing lower by upper dimensions. 
�
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Proof The ‘if’ direction is clear even without the continuity assumption, since if
dimH F ≥ m, then

m ≥ dimB πV F ≥ dimH πV F ≥ m

for all V using (14.7.1).
On the other hand, suppose that dimB πV F = m for almost all V . The final

statement of Proposition 14.7 gives that dim θπV F = m for all θ ∈ (0, 1] for almost
all V . As dim θF is assumed continuous at θ = 0, Corollary 14.16 implies that
dim θπV F is continuous at 0 for almost all V and so dimH F = dimH πV F =
dim0πV F = m for almost all V , using (14.7.1). 
�

An striking example of this is given by products of the sequence sets Fp

of (14.4.1) for p > 0. By Proposition 14.9 dimBFp = θ/(θ + p) so by
Proposition 14.8

dimθ (Fp × Fp) = 2θ

θ + p
(θ ∈ [0, 1]),

which is continuous at θ = 0. Since dimH (Fp × Fp) = 0, Corollary 14.17 implies
that

dimB πV (Fp × Fp) < 1

for almost all V . This is particularly striking if p is close to 0, as dimB(Fp × Fp) =
2/(1+ p) is close to 2 but still the box-counting dimensions of its projections never
reach 1. In fact, a calculation not unlike that in Proposition 14.9 shows that for all
projections onto lines V , apart from the horizontal and vertical projections,

dimB πV (Fp × Fp) = 1 −
(

p

p + 1

)2

.

Analogous ideas using dimension profiles can be used to find dimensions of
images of a given set F under other parameterised families of mappings. These
include images under certain stochastic processes (which are parameterised by
points in the probability space). For example, let Bα : R → R

m be index-α
fractional Brownian motion where 0 < α < 1, see for example [7, Section 16.3].
The following theorem generalises the result of Kahane [19] on the Hausdorff
dimension of fractional Brownian images and that of Xiao [28] for box-counting
and packing dimensions of fractional Brownian images.

Theorem 14.18 Let F ⊂ R
n be compact. Then, almost surely, for all 0 ≤ θ ≤ 1,

dim θBα(F ) = 1

α
dimmα

θ F and dim θBα(F ) = 1

α
dimmα

θ F. (14.7.4)
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The proof of this is along the same lines as for projections, see [3] for details. The
upper bound uses that for all ε > 0 fractional Brownian motion satisfies an almost
sure Hölder condition |Bα(x) − Bα(y)| ≤ M|x − y|1/2−ε for x, y ∈ F , where M is
a random constant. The almost sure lower bound uses that

E
(
φsm

r,θ (Bα(x) − Bα(y))
) ≤ c φsm

r,θ (x − y)

where c depends only on m and s.
We can get an explicit form of the intermediate dimensions of these Brownian

images taking F = Fp of (14.4.1).

Proposition 14.19 For index-α Brownian motion Bα : R → R, almost surely, for
all 0 ≤ θ ≤ 1 and p > 0,

dim θBα(Fp) = dim θBα(Fp) = θ

pα + θ
. (14.7.5)

In particular (14.7.5) is less than the upper bound θ/α(p + θ) that comes
from directly applying the almost sure Hölder condition (14.2.1) for Bα to the
intermediate dimensions of Fp.

14.8 Open Problems

Finally here are a few open questions relating to intermediate dimensions. A general
problem is to find the possible forms of intermediate dimension functions. At the
very least they are constrained by the inequalities of Proposition 14.2.

Question
Characterise the possible functions θ �→ dim θF and θ �→ dim θF that may
be realised by some set F ⊂ R or F ⊂ R

n.

It may be easier to answer more specific questions about the form of the
dimension functions. I am not aware of any counter-example to the following
suggestion.

Question
Is it true that if dim θF , respectively dim θF , is constant for θ ∈ [a, b] where
0 < a < b ≤ 1 then it must be constant for θ ∈ (0, b]?
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Similarly, the following question suggested by Banaji seems open.

Question
Can dim θF or dim θF be convex functions of θ , or even (non-constant) linear
functions?

As far as I know, in all cases where explicit values have been found, the
intermediate dimensions equal upper bounds obtained using coverings by sets of
just the two diameters δ1/θ and δ (or constant multiples thereof). It seems unlikely
that this is enough for every set, indeed Kolossváry [21, Section 5] suggests that
three or more diameters of covering sets may be needed to get close upper bounds
for the intermediate dimensions of Bedford-McMullen carpets.

Question
Are there (preferably fairly simple) examples of sets F for which the
intermediate dimensions dim θF or dim θF cannot be approximated from
above using coverings by sets just of two diameters? Are there even sets where
the number of different scales of covering sets needed to get arbitrary close
approximations to the intermediate dimensions is unbounded?

Coming to more particular examples, the Bedford-McMullen carpets are a class
of sets where current knowledge of the intermediate dimensions is limited.

Question
Find the exact form of the intermediate dimensions dim θF and dim θF for
the Bedford McMullen carpets F discussed in Sect. 14.5, or at least improve
the existing bounds.

Getting exact formulae for these dimensions is likely to be challenging, but
better bounds, in particular the asymptotic form near θ = 0 and θ = 1, would
be of interest. It would also be useful to know more about the behaviour of the
intermediate dimensions of these carpets as functions of θ .

Question
Are the intermediate dimensions dim θF and dim θF of Bedford McMullen
carpets F equal? Are they strictly increasing in θ? Are they differentiable, or
even analytic, as functions of θ or can they exhibit phase transitions?



492 K. J. Falconer

Acknowledgments The author thanks Amlan Banaji, Stuart Burrell, Jonathan Fraser, Tom
Kempton and István Kolossváry for many discussions around this topic. The work was supported
in part by an EPSRC Standard Grant EP/R015104/1.

References

1. A. Banaji, Generalised intermediate dimensions. arxiv: 2011.08613
2. T. Bedford, Crinkly curves, Markov partitions and box dimensions in self-similar sets. PhD

dissertation, University of Warwick, 1984
3. S. Burrell, Dimensions of fractional Brownian images. arxiv: 2002.03659
4. S. Burrell, K.J. Falconer, J. Fraser, Projection theorems for intermediate dimensions. J. Fractal

Geom. arxiv: 1907.07632. Online First, 1 May 2021, https://doi.org/10.4171/JFG/99
5. S. Burrell, K.J. Falconer, J. Fraser, The fractal structure of elliptical polynomial spirals. arxiv:

2008.08539
6. K.J. Falconer, Dimensions of self-affine sets: a survey, in Further Developments in Fractals

and Related Fields, ed. by J. Barrel, S. Seuret (Birkhauser, Basel, 2013), pp. 115–134
7. K.J. Falconer, Fractal Geometry - Mathematical Foundations and Applications, 3rd edn.

(Wiley, New York, 2014)
8. K.J. Falconer, A capacity approach to box and packing dimensions of projections and other

images, in Analysis, Probability and Mathematical Physics on Fractals, ed. by P. Ruiz, J. Chen,
L. Rogers, R. Strichartz, A. Teplyaev (World Scientific, Singapore, 2020), pp. 1–19

9. K.J. Falconer, A capacity approach to box and packing dimensions of projections of sets and
exceptional directions. J. Fractal Geom. 8, 1–26 (2021)

10. K.J. Falconer, J.D. Howroyd, Packing dimensions of projections and dimension profiles. Math.
Proc. Camb. Philos. Soc. 121, 269–286 (1997)

11. K. Falconer, J. Fraser, X. Jin, Sixty years of fractal projections, in Fractal Geometry and
Stochastics V, ed. by C. Bandt, K. Falconer, M. Zähle. Progress in Probability, vol. 70
(Birkhäuser, Basel, 2015), pp. 3–25

12. K.J. Falconer, J.M. Fraser, T. Kempton, Intermediate dimensions. Math. Zeit. 296, 813–830
(2020)

13. J.M. Fraser, Assouad type dimensions and homogeneity of fractals. Trans. Am. Math. Soc.
366, 6687–6733 (2014)

14. J.M. Fraser, Assouad Dimension and Fractal Geometry (Cambridge University Press, Cam-
bridge, 2020). arxiv: 2005.03763

15. J.M. Fraser, Fractal geometry of Bedford-McMullen carpets, in These Proceedings (2021),
pp. 495–517

16. J.M. Fraser, Interpolating between dimensions, in Fractal Geometry and Stochastics VI, ed.
by U. Freiberg, B. Hambly, M. Hinz, S. Winter. Progress in Probability, vol. 76 (Birkhäuser,
Basel, 2021)

17. J.M. Fraser, H. Yu, New dimension spectra: finer information on scaling and homogeneity.
Adv. Math. 329, 273–328 (2018)

18. J.D. Howroyd, Box and packing dimensions of projections and dimension profiles. Math. Proc.
Camb. Philos. Soc. 130, 135–160 (2001)

19. J.-P. Kahane, Some Random Series of Functions (Cambridge University Press, Cambridge,
1985)

20. R. Kaufman, On Hausdorff dimension of projections. Mathematika 15, 153–155 (1968)
21. I. Kolossváry, On the intermediate dimensions of Bedford-McMullen carpets. arxiv:

2006.14366
22. J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimen-

sions. Proc. Lond. Math. Soc. 4, 257–302 (1954)

https://doi.org/10.4171/JFG/99


14 Intermediate Dimensions: A Survey 493

23. P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes. Ann.
Acad. Sci. Fenn. Ser. A I Math. 1, 227–244 (1975)

24. C. McMullen, The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96,
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